
The Impact of Performing a Network
Meta-Analysis with Imperfect Evidence

A thesis submitted to the University of Dublin, Trinity College in partial

fulfillment of the requirements for the degree of Doctor of Philosophy (Statistics)

Joy Leahy

(under the supervision of Dr. Cathal Walsh)

March 2019



Declaration

I declare that this thesis has not been submitted as an exercise for a degree at this

or any other university and it is entirely my own work.

I agree to deposit this thesis in the University’s open access institutional repos-

itory or allow the library to do so on my behalf, subject to Irish Copyright Legis-

lation and Trinity College Library conditions of use and acknowledgement.

Joy Leahy

1



Abstract

Network meta-analysis (NMA) is an important aspect of evidence synthesis in a

clinical setting, as it allows us to compare treatments which may not have been

analysed in the same trial. In an ideal scenario we would have a fully connected

network of randomised controlled trials (RCTs) when undertaking an NMA. Ide-

ally, these RCTs would contain the full patient population for a particular disease,

and individual patient data (IPD) would be available for all trials. However,

in reality we are never going to have all this information. Therefore, this the-

sis investigates methods for dealing with imperfect evidence. We consider two

techniques for adjusting for confounding variables due to differing patient popu-

lations in a connected network. Firstly, we assess the benefit of the extra effort

involved in obtaining and including IPD in an NMA. Secondly, we evaluate the

impact of using IPD to adjust for differing trial populations through the increas-

ingly popular method of matching adjusted indirect comparison. We also propose

a method for including single-arm evidence in a disconnected network through

aggregate level matching, and analyse the impact of this method. Although our

work mainly focuses on the methodological aspects, all methods are illustrated

using real world datasets, namely Hepatitis C virus (HCV) infection, melanoma

and multiple myeloma.
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Table 1: Glossary of commonly used acronyms used throughout this thesis

AgD Aggregate Data
AIC Akaike Information Criterion
ASCT Autologous Stem Cell Transplant
CrI Credible Interval
CR Complete Response
DAG Directed Acyclic Graph
DIC Deviance Information Criterion
ECOG Eastern Cooperative Oncology Group
FE Fixed Effects
GT1 Genotype 1
HCV Hepatitis C Virus
HR Hazard Ratio
IPD Individual Patient Data
ISS International Staging System
KM Kaplan Meier
LDH Lactate Dehydrogenase
LOR Log Odds Ratio
MA Meta-Analysis
MAIC Matching Adjusted Indirect Comparison
MAE Mean Absolute Error
MC Error Monte Carlo Error
MCMC Markov Chain Monte Carlo
NCPE National Center for Pharmacoeconomics
ndMM Multiple Myeloma in newly diagnosed patients
NICE National Institute for Health and Care Excellence
NMA Network Meta-Analysis
OS Overall Survival
PFS Progression-free survival
PRISMA Preferred Reporting Items for Systematic Reviews and

Meta-Analyses
RCT Randomised Controlled Trials
RE Random Effects
SD Standard Deviation
STC Simulated Treatment Comparisons
SUCRA SUrface under the Cumulative RAnking curve
SVR Sustained Virological Response
ULN Upper Limit of Normal
VGPR Very Good Partial Response
WHO World Health Organisation
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Table 2: Glossary of mathematical notation for Chapter 3

Mathematical
Notation

Explanation

rij Number of events in the jth arm of the ith trial. This is
the number of patients who achieved sustained virolog-
ical response (SVR) in the case of HCV infection.

pij Probability of an event in the jth arm of the ith trial.
xij Proportion of patients possessing the binary character-

istic in the jth arm of the ith trial in the case of one
covariate.

xmij Proportion of patients possessing the binary character-
istic m in the jth arm of the ith trial.

β Coefficient of effect of the covariate when only one co-
variate is considered.

βm Coefficient of effect of covariate m.
µi Baseline risk of having an event in study i.
δij Study-specific treatment effect in the jth arm of the ith

trial.
dtij True effect of the treatment in the jth arm of the ith trial

relative to the reference treatment.
dk True effect of treatment k relative to the reference treat-

ment.
dRCT[k] True effect of treatment k relative to the reference treat-

ment for RCT studies.
dMATCHED[k] True effect of treatment k relative to the reference treat-

ment for matched studies.
µi log odds of having an event in the baseline treatment

(i.e. the treatment in arm one) for study i. This param-
eter is considered in the RCT only model, pooled model,
and hierarchical model.

νi log odds of having an event in treatment one in trial
i. This parameter is considered in the plug-in estimator
model.

σµ Standard deviation of the baseline study effect, i.e. vari-
ability of the log odds of having an event in baseline
treatments (i.e. treatment in arm one) across studies.

σδ Standard deviation of study-specific treatment effects.
σdes Standard deviation of the between-study design effect.
ω The variance inflation on the matched evidence.
ξ Bias in single-arm trials.
T Number of simulations.
M Number of identified covariates.
Hs,k Cumulative hazard for treatment k in study s in survival

model.
db True effect of the baseline treatment in survival model.
Sij(t) Survival function for the jth arm of the ith trial at time

t in the survival model.
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Table 3: Glossary of mathematical notation for Chapter 4

Mathematical
Notation

Explanation

rij Number of events in the jth arm of the ith trial. This is
the number of patients who achieved SVR in the case of
HCV infection.

rijl Binary outcome for the lth patient in the jth arm of the
ith trial. It is whether or not a patient attained SVR in
the case of HCV infection.

pij Probability of an event in the jth arm of the ith trial.
pijl Probability of an event for the individual patient l in

the jth arm of the ith trial.
xij Proportion of patients possessing the characteristic in

the case of a binary covariate, or mean of the continuous
covariate, in the jth arm of the ith trial.

xijl Indicator variable for the presence of the characteristic
associated with the covariate for patient l in the jth arm
of the ith trial.

β Effect of the covariate.
βk Effect of the covariate interacting with treatment k when

interactions are considered independent or exchange-
able.

βtij Effect of the covariate interacting with the treatment in
the jth arm of the ith trial when interactions are consid-
ered independent or exchangeable.

µβ Mean of covariate effect across treatments when inter-
actions are considered exchangeable.

σβ Standard deviation of covariate effect across treatments
when interactions are considered exchangeable.

µi Baseline risk in trial i.
δij Study-specific treatment effect in the jth arm of the ith

trial.
σδ Standard deviation of study-specific treatment effects.
dk True effect of treatment k relative to the reference treat-

ment.
dtij True effect of the treatment in the jth arm of the ith trial

relative to the reference treatment.
S Number of simulations.
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Table 4: Glossary of mathematical notation for Chapter 5

Mathematical
Notation

Explanation

AB-IPD trial Trial with individual patient data comparing treatment
A to treatment B.

BC-AgD trial Trial with aggregate data only comparing treatment B
to treatment C.

Ylk(AB) Outcome for patient l on treatment k in the AB trial.
Nk(AB) Number of patients assigned to treatment k in the AB

trial.
wlk Weight assigned to the patient l receiving treatment k.
Tijl time-to-event for individual l, in study i and arm j.
Cijl Censored time for individual l, in study i and arm j.
βm,tij Coefficient for the effect of covariate m for the treatment

in arm j of study i, relative to treatment 1, when the
covariate is an effect modifier.

βm Effect of covariate m for all treatments when the covari-
ate is a prognostic variable.

xm,ijl Binary indicator for the presence of the characteristic m
for patient l in arm j of study i.

xm1m2 Proportion of the population possessing the relevant
characteristics in the case of two covariates.

µi Baseline risk in trial i.
δij Study-specific treatment effect in the jth arm of the ith

trial.
dk True effect of treatment k relative to the reference treat-

ment.
dtij True effect of the treatment in the jth arm of the ith trial

relative to the reference treatment.
db True effect of the reference treatment.
Hik Hazard ratio of treatment k versus the baseline treat-

ment in study i.
rei,k Random effect deviation for arm k of study i.
Sij(t) Survival function for the jth arm of the ith trial at time

t.
β0i Covariate effect in trial i when using an IPD model.
σδ Standard deviation of study-specific treatment effects.
Q Number of simulations.
M Number of covariates.
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Chapter 1

Introduction

Network meta-analysis (NMA) is a method for comparing multiple treatment in-

terventions simultaneously in a single analysis, by combining direct and indirect

evidence within a network (Rouse et al. (2017)). NMA has the potential to be

the highest level of evidence. However, it is crucial that there is clear and robust

methodological techniques and high reporting standards (Faltinsen et al. (2018)).

Pharmaceutical companies stand to make tremendous amounts of money if their

treatments are routinely used to treat a particular illness. Therefore, pharmaceu-

tical companies put a lot of time and effort into running randomised controlled

trials (RCTs) to show that their treatments are safe and effective. However, as

we will discuss in Chapter 2, there are multiple reasons why trials cannot give a

perfect estimate of efficacy of a treatment, no matter how much investigators try

to minimise bias. On top of this, we must be cognizant of the incentive for phar-

maceutical companies to show their treatments in the best light. Therefore, the

aim of this thesis is to contribute to the statistical methodology behind NMA, so

that all analysis can be carried out in the most objective way possible. This is done

through proposing new methods, assessing new and existing methods through sim-

ulation studies, and examining the implementation of these methods in a number

of different disease areas.

NMA is particularly useful when attempting to compare the efficacy of different

treatment options. For most diseases there are many different drugs that can be

used to treat them. Therefore, it is crucial that we are able to compare available

treatments. For patients it is important that doctors are able to identify the best

treatment for them. For governments it is important to be able to assess new

treatments in comparison to other treatments, in order to decide whether they

are cost effective. For many illnesses it may be necessary to treat the patient

with multiple different treatments over the lifetime of the illness. Patients may

have negative reactions to a specific drug or in some illnesses, such as cancer, the
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disease may build up a resistance to a drug and therefore alternative treatment

options are needed. This emphasises the importance of not just identifying the

best treatment, but being able to rank all treatment options.

NMA is routinely used in Health Technology Assessments (HTAs), whereby

HTA agencies compare the efficacy of one treatment relative to its competitors, in

order to assess whether the government in that country should agree to pay the

price being offered for that treatment. Ideally, an NMA should be as informative as

possible and consist of high quality RCTs. However, HTA agencies are increasingly

being asked to assess NMAs comprised of poorer quality evidence, coupled with

increasingly complex methodology to compensate. This thesis aims to investigate

some of this methodology, and to determine whether or not it is possible to obtain

an improved or even sufficiently accurate estimate using these techniques.

1.1 Outline of Chapters

• Chapter 2 - Background: This chapter introduces the concepts contained in

this thesis and provides some background. Various types of trials are dis-

cussed, along with the motivation for NMA and some possible complications

that arise. We then introduce Bayesian methods and their application to

NMA.

• Chapter 3 - Aggregate Level Matching of Single-Arm Evidence: Single-armed

evidence is increasingly being used to demonstrate the efficacy of treatments.

Although it is recognised that RCTs provide a higher standard of evidence,

these are not available for many new agents which have been granted licences

in recent years. Therefore, it is important to examine whether alternative

strategies for assessing this evidence may be used.

While it is important to assess the potential benefit of including this form

of evidence, we must be mindful that this has the potential to increase bias.

Nevertheless, given that this information is being used in practice, in this

chapter we aim to quantify the potential bias, provide guidance to identify

situations where this method may or may not be appropriate, and provide

a clear method for including this type of evidence, which is backed up by

systematic investigation. In this chapter we examine approaches to incorpo-

rate single-armed evidence formally in the evaluation process. We consider

matching aggregate level covariates to comparator arms or trials, and includ-

ing this evidence in an NMA. We consider two methods of matching:

1. We include the chosen matched arm in the dataset itself as a comparator
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for the single-arm trial,

2. We use the baseline odds of an event in a chosen matched trial to use

as a plug-in estimator for the single-arm trial.

We illustrate that the syntheses of evidence resulting from such a setup is

sensitive to the between-study variability, formulation of the prior for the

between-study design effect, the weight given to the single-arm evidence,

and the extent of the bias in single-armed evidence. We provide a flow

chart for the process involved in such a synthesis, and highlight additional

sensitivity analyses that should be carried out. This work was motivated by

a Hepatitis C virus (HCV) infection dataset where many agents have only

been examined in single-arm studies. We present the results of our methods

applied to this dataset and to two melanoma networks.

• Chapter 4 - Individual Patient Data: This chapter assesses the impact of

incorporating individual patient data (IPD) into an NMA where possible,

and using aggregate data (AgD) for the remaining studies in the network.

The use of IPD in NMA is becoming increasingly popular. However, as most

studies do not report IPD, most NMAs are carried out using AgD for at

least some, if not all, of the studies. We investigate the benefits of including

varying proportions of IPD studies in an NMA.

Several models have previously been developed for including both AgD and

IPD in the same NMA. We carried out a simulation study based on these

models to examine the impact of additional IPD studies on the accuracy

and precision of the estimates of both the treatment effect and the covariate

effect. We also compared the Deviance Information Criterion (DIC) between

models to assess model fit. An increased proportion of IPD resulted in more

accurate and precise estimates for most models and datasets. However, in

certain scenarios coverage probability decreased, particularly when the model

was misspecified. The use of IPD leads to greater differences in DIC, which

allows us choose the correct model more often.

We analysed a HCV infection network consisting of three IPD observational

studies. The ranking of treatments remained the same for all models and

datasets. We observed similar results to the simulation study: the use of IPD

leads to differences in DIC and more precise estimates for the covariate effect.

However, IPD sometimes increased the posterior SD of the treatment effect

estimate, which may indicate between-study variability. We recommend that

IPD should be used where feasible, especially for assessing model fit. If a
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researcher has access to IPD, it should be included in an NMA. If a researcher

has no IPD or limited IPD then the benefit and cost of obtaining additional

IPD needs to be assessed in the context of the extra time and effort required.

We provide a framework for assessing the benefit of collecting this additional

IPD.

• Chapter 5 - Matching Adjusted Indirect Comparison (MAIC): Although IPD

is the highest form of evidence to consider in an NMA, the situation often

arises where a researcher has IPD for trials concerning a particular treatment

(for example from a sponsor), but none for other trials. Therefore, one could

reweight the IPD so that the covariate characteristics in the IPD trials match

that of the AgD trials, using an MAIC.

We assess the impact of using the reweighted aggregated data, obtained by

the MAIC, in a Bayesian NMA for a connected treatment network. We com-

pare the performance of this method to the standard NMA model and a

mixed AgD/IPD NMA model, similar to the models outlined in Chapter 4.

We apply this method to a network of multiple myeloma treatments in newly

diagnosed patients (ndMM), where the outcome is progression-free survival.

We investigate the reliability of our methods and results through a simula-

tion study which mirrors the ndMM network. The ndMM network consists

of three IPD studies comparing lenalidomide to placebo (Len-Placebo), one

AgD study comparing Len-Placebo, and one AgD study comparing thalido-

mide to placebo (Thal-Placebo). We therefore investigate two options of

weighting the covariates:

1. The IPD within each of the three studies are reweighted such that the

AgD of each reweighted study matches the AgD of the Thal-Placebo

trial.

2. All three IPD studies are pooled together for the reweighting element,

such that the AgD of the three studies combined matches the AgD of the

Thal-Placebo trial, but they are put into the NMA as three separate

trials. Note that this is a less stringent requirement as it generally

involves less reweighting.

We observe limited benefit to MAIC in the full network population. While

MAIC can be beneficial as a sensitivity analysis to confirm results across pa-

tient populations, we advise that MAIC is used and interpreted with caution.

We recommend the either a standard NMA model or the mixed AgD/IPD

model over an MAIC for the base case analysis.
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• Chapter 6 gives a summary of the work in this thesis and gives some sug-

gestions for future work. We discuss the importance of running RCTs, and

the potential bias that can arise from statistical methods which deal with

imperfect data. We also discuss types of evidence for which we are most

likely to be able to obtain IPD.

1.2 Research Contributions

The novel contributions of this work are as follows:

• In Chaper 3:

– Novel methods for including single-arm studies in an NMA are proposed

and analysed through simulation studies in Section 3.2.1.

– We suggest a number of sensitivity analyses that can be undertaken

when including single arm evidence.

– We provide an algorithm for deciding whether or not to include single

arm evidence in Figure 3.1.

• In Chaper 4:

– We quantify the impact of IPD in an NMA by performing a simulation

study.

– We assess how much IPD can help to assess how a covariate affects

different treatments equally (ie treatment-covariate interaction).

– We present the consequences of making an incorrect assumption about

the nature of the treatment-covariate interaction.

• In Chaper 5:

– We undertake a simulation study to compare MAIC to a standard NMA

or a standard NMA using a covariate term.

– We assess how to best reweight three IPD trials by using either an

MAIC pooled trials method or MAIC separate trials method.

– We compare how MAIC affects hazard ratio model and median models.

• Throughout the thesis we provide examples of how to quantify unknown and

important real-world issues using synthesised evidence.
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Chapter 2

Background

2.1 Meta-Analysis (MA)

Meta-analysis is a statistical technique for combining the results of trials which

compare the same two interventions. When there are multiple trials assessing two

interventions there can be differences in the results of these trials (Krauss (2018),

Welton et al. (2012)). For example, this could be because each trial was carried out

only on a subset of the population, who each react to the intervention in slightly

different ways (Rothwell (2005)). For instance, let’s assume we are comparing an

active treatment to a placebo. If a trial consists of relatively healthy patients then

many may get better, regardless of which treatment they are given. However, if

the trial consists of sicker patients, they may respond only if they receive the active

treatment.

A second reason could be because of differences in the drug administration

in each trial. For example, some antibiotics can be given both orally or through

intravenous therapy (IV), which can impact on how effective the treatment is

relative to the competing treatment. Furthermore, some trials may give differing

dosages of the same treatment, which can also affect the outcome.

A third complication that may affect the results of trials is how the outcome

is measured. For example, blood pressure can be affected by the time of day that

the reading is taken at, or whether the patient is sitting or active when the reading

is taken. As the method of measuring blood pressure can vary from trial to trial,

this can have an impact on the efficacy of one treatment relative to another.

These variations between studies are referred to as the heterogeneity between

studies. When combining all relevant clinical trials, most of these trials will give

us some information about the efficacy of the treatments involved, but no single

trial will give us perfect information. The idea is that if we analyse the results of

all these trials in one meta-analysis we get the best possible estimate of the true
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treatment effect (Haidich (2010)).

Another reason why meta-analysis is so important is because smaller trials on

their own may not have the power to detect differences between treatments. A

meta-analysis of multiple trials has larger power to detect differences and ensure

that the best possible treatment is given to all patients.

2.2 Network Meta-Analysis (NMA)

NMA is a method for assessing the entire evidence base for a particular disease

when three or more treatment options are available (Caldwell et al. (2005)). It is

an extension of traditional pair-wise Meta-Analysis (MA), as described in Section

2.1 which is used when directly evaluating two treatment options. NMA combines

direct and indirect evidence to obtain effect estimates by comparing all treatments

against all other treatments in the network. Much research has been carried out on

its benefits and potential drawbacks (Lumley (2002), Lu & Ades (2004), Cooper

et al. (2011), Senn et al. (2013), Salanti et al. (2008), Song et al. (2012), Jansen

& Naci (2013), Dias et al. (2018)).

As there are a large number of treatments available for some diseases it is not

practical to assess all these treatments in one trial. If we have two competing

treatments they may often be compared to a placebo. However, decision makers

may be mainly concerned with evaluating those two treatments relative to one

another. Therefore, we want to use indirect comparisons to compare these two

treatments. Treatments are often tested in placebo controlled trials. However,

when a treatment is known to be effective and is routinely used in clinical practice,

it could be considered unethical to test a new potential comparator against a

placebo as opposed to the known effective treatment. These newer treatments are

often assessed versus the best available or the standard care. Therefore we can

have a network of treatments with many connections between treatments. Even

when direct evidence is available as a comparison for certain treatments it can

strengthen the evidence to use indirect evidence as well (Welton et al. (2012)).

Before an NMA can be performed the relevant studies need to be identified.

This is done by a systematic review. This is defined as “a review of the evidence on

a clearly formulated question that uses systematic and explicit methods to identify,

select and critically appraise relevant primary research, and to extract and analyse

data from the studies that are included in the review” (Khan et al. (2001)). The

systematic reviews in this thesis are carried out in accordance with the criteria of

the Preferred Reporting Items for Systematic Reviews and Meta-Analyses group

(PRISMA) (Moher et al. (2009)).
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According to O’Rourke (2007), the first meta-analysis looked at typhoid inoc-

ulation and was published in 1904 by Simpson and Pearson (Simpson & Pearson

(1904)). Higgins & Whitehead (1996) and Bucher et al. (1997) were two of the ear-

liest meta analyses to also include an indirect treatment comparison. In 2004 Lu

and Ades used Bayesian methods for NMA (Lu & Ades (2004)). One area where

NMA is used is HTA. In a HTA a treatment is assessed to see if it is cost effective.

Many countries use HTA in deciding whether or not to fund new treatments, for

example the National Centre for Pharmacoeconomics (NCPE) in Ireland and the

National Institute for Health and Care Excellence (NICE) in England and Wales.

Therefore, it is crucial to be able to quantify the efficacy of any treatment relative

to its competitors. The World Health Organisation (WHO) have also recently

started using NMA (Kanters et al. (2016)).

The term network meta-analysis was first used in 2002 and is inspired by a

graph illustrating which treatments have been compared directly with each other

within primary studies (Higgins & Welton (2015)). In an NMA we want to compare

all possible treatment regimens so it is necessary to form a connected network.

Figure 2.1 shows two examples of networks. The nodes represent the treatments

and the edges indicate whether these treatments have been compared in the same

study. For example, the edge between treatment A and treatment B indicates that

there is a study in our network which has an arm with treatment A and an arm

with treatment B, i.e., some patients were assigned treatment A and others were

assigned treatment B. Figure 2.1a shows a connected network. We can, therefore,

compare any two treatments even if they are not in the same study. For example,

although treatment B and treatment D have never been compared directly in a

study we can still assess the relative efficacy of these treatments as they have

a common comparator in treatment A. However, Figure 2.1b is not a connected

network. There is no way of comparing treatment B and treatment D as they have

no common comparator.

2.3 Types of Evidence

2.3.1 Observational Evidence

There are many different ways that evidence can be recorded to enable us to

compare treatments. A simple way to do this is to keep a database of any treatment

that people are taking. This is a form of observational evidence. However, this

evidence is potentially biased, and we need to be cautious about being over-reliant

on this form of evidence (Grieve et al. (2016)). We can look at treatments for
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(a) Connected Network Example (b) Disconnected Network Example

Figure 2.1: Examples of Networks

cancers, as an example. Let’s say there is a promising new treatment available.

Doctors may be more likely to prescribe this treatment to particularly sick patients,

for example. This may be because either they want to give the best treatments

to the sickest patients, or they prefer to have exhausted all other tried and tested

treatment options before giving more experimental newer treatments. In this case

the new treatment may end up looking less effective than it actually is as it has

been given to patients who were less likely to respond to treatments. For this and

for other reasons, it is difficult to obtain an unbiased estimate of the treatment

effect through this type of evidence.

2.3.2 Randomised Control Trials (RCTs)

For the reasons described in Section 2.3.1, it is important to run Randomised Con-

trol Trials (RCTs). In an RCT a patient is randomly assigned to a particular

treatment. The idea is that both treatments will be given to a similar cohort of

patients overall, which allows us to compare like with like. Without randomisa-

tion, bias could seep into a trial, for example, through unconscious decisions by

the investigator, such as assigning the treatment under investigation to healthier

patients.

The highest quality RCTs will be doubly blinded RCTs, which means that

neither the investigator of the trial nor the patient knows to which treatment arm

the patient has been assigned. Without blinding there are a number of ways in

which bias can be introduced in a trial. Patients who have been assigned to the

seemingly inferior treatment may be less hopeful about the trial and this may affect

their adherence to the medication or their interest in their general well-being. On

the other hand, if investigators know which treatments the patients are on, they
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may be expecting more positive results from the treatment that they consider to

be better, and therefore they may be more likely to record a positive outcome for

patients on these treatments. For further discussion on RCTs see Akobeng (2005).

2.3.3 RCTs versus Observational Evidence

Although there are clear reasons why RCTs are the gold standard of evidence when

estimating relative treatment effect, it may be beneficial to consider other forms

of evidence as well, especially when it comes to external validity. In fact, Faraoni

& Schaefer (2016) suggest that “meta-analyses using both RCT and observational

studies should be used to highlight some questions that neither a RCT, nor an

observational study would have the ability to solve by themselves.” A number of

authors have reviewed the benefits and weaknesses of observational evidence versus

RCTs (Shrier et al. (2007), Kunz & Oxman (1998), Ioannidis et al. (2001)). Firstly,

RCTs may lack generalisability. The specific selection criteria for RCTs may limit

how well results extend to the patient population as a whole. For example, RCTs

rarely allow children or pregnant women to be included, and therefore we cannot

know for certain if the results of the RCT extends to these groups of patients.

Secondly, RCTs can lack real world applicability. For example, patients often tend

to take particularly good care of themselves when participating in an RCT, so

benefits may be over-estimated.

Even if we consider RCTs to be the highest standard of evidence there may

be other reasons for including lesser quality evidence. In some cases, if we lack

sufficient data, the limited RCT estimates available can mean that we are not able

to detect all true differences between treatments. While we may get estimates for

all relative treatment effects, the credible intervals associated with these estimates

may be very wide, which can lead us to be unable to make recommendations for

clinical practice based on the results. In this case including observational evidence

such as registry data can allow us to produce more precise estimates, even if we

have to be a bit more cautious in relying on the results, due to potential bias.

A further reason for using non-randomised evidence is that we may not be

able to compare all treatments using only the RCT evidence available. Take, for

example, the disconnected network in Figure 2.1b. When faced with this type of

network it may not be possible to carry out a trial which connects the network.

Sometimes it may be unethical, for example, comparing a blood transfusion with

no transfusion in the case of critical haemorrhage (Trentino et al. (2016)). If there

was extra observational evidence available comparing, for example, treatment D

and treatment A, then we could use this evidence to connect the network, thus
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allowing us to draw a comparison between any two treatments in the network,

although once again we may need to be more cautious in interpreting the results.

2.3.4 Single-Arm Evidence

A final type of evidence to be considered is that of single-arm evidence. This is a

type of observational evidence that has no comparator at all. There are a number

of reasons why this type of evidence is available (Griffiths et al. (2017)). It can

come from Phase I or Phase II studies, when the pharmaceutical company was

first gathering evidence on whether the treatment worked, before the additional

expense of a more involved RCT. It can also come in the form of Phase IV studies

for ongoing monitoring, where the treatment is being used in practice. Sometimes

no other treatment may be available for a particular disease and it may be unethical

to run a comparative trial where some patients are given a placebo. Another

possible reason is because a disease may be so rare that it is not feasible to run a

trial where patients are randomised to different arms.

This type of evidence is even more prone to the biases of comparative observa-

tional evidence. When examining observational evidence with multiple treatments

we cannot know whether there was bias in treatment assignment, and therefore we

are unsure how appropriate it is to compare treatment arms. Single-arm evidence

has become very common in cancer trials. However, with this type of evidence,

we do not even have another arm with which to compare the evidence, so it is

very difficult to infer how patients would have responded to a different treatment

(Twombly (2006)). Nonetheless, we can sometimes find ourselves in the situation

of not having any other evidence for evaluating a specific treatment. In this in-

stance we need to make a judgment call as to whether to incorporate this type of

evidence or not. The work in Chapter 3 is designed to aid in this decision mak-

ing process by identifying circumstances when it may or may be not appropriate

to consider this form of evidence. We also examine sensitivity analyses that can

be undertaken to check the effect and the appropriateness of including single-arm

evidence.

2.4 Adjusting for Bias

All trials, regardless of whether they are RCTs or observational studies can be

prone to some forms of bias. In general RCTs should be free from internal biases,

as both groups are treated in the same way. However, these trials may be subject

to external bias. This may be because patients in the trial behave differently
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to how they would under regular clinical conditions, or as discussed previously,

the patients are from a particular subset of the population. Turner et al. (2009)

provide a method for eliciting, quanitifying and adjusting for bias, by constructing

a prior distribution to represent the biases in each study. They build on work

from Eddy et al. (1992) and Wolpert et al. (2004) by modelling bias from each

trial individuallu, but also assume a direct form of bias in the target parameter,

following Spiegelhalter & Best (2003). Welton, Ades, Carlin, Altman & Sterne

(2009) also provide models for adjusting for bias. They find that in terms of

precision, there is little benefit from including studies at high risk of bias, regardless

of how large these studies are.

2.5 Individual Patient Data (IPD)

When carrying out an NMA we usually take results from the published literature.

In the vast majority of cases only summary statistics (aggregate data (AgD)) are

published. Therefore, most NMAs can only be carried out on AgD. For continuous

outcomes an example would be the mean and standard deviation of the change

reported in each group. In other circumstances a continuous outcome can be

represented as a time-to-event, in which case we could use medians or hazard

ratios (HRs). For binary outcomes it could be the number of people who have

died or have been cured. By simply using AgD we will be losing some information.

For example, we would not be able to analyse differing patient characteristics to

see which characteristics may affect outcomes on various treatments.

For these reasons, an NMA using IPD for each trial is considered a more infor-

mative analysis. However, having a full network of IPD trials would be quite rare.

In some cases, however, IPD may be available for a subset of trials in the network.

Therefore, Donegan et al. (2013), Saramago et al. (2012), Hong et al. (2018), and

Thom et al. (2015) have worked on methods for including both aggregate data and

IPD in a Network Meta-Analysis. When a researcher has limited access to IPD it

may be possible to obtain IPD from other sources. However, this can be a long

and time consuming process. Attempting to estimate the additional benefit that

IPD may contain can aid in considering whether or not to pursue this data. In

Chapter 4 we analyse the strengths and weaknesses of including IPD.

2.6 Matching Adjusted Indirect Comparison (MAIC)

Sometimes the situation arises where there is IPD available for trials concerning

a particular treatment, but only AgD is available for the other trials. This could
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be because investigators working in a pharmaceutical company or in collaboration

with a pharmaceutical company may have access to the IPD from the trials which

were carried out by that company, which of course will be focused on their own

treatment. In this scenario the investigator can carry out an MAIC, by reweighting

patients in the IPD trial so that the covariate make-up of the IPD trial matches

that of the AgD trial (Signorovitch et al. (2010, 2012)). There are two main

types of MAIC; anchored or unanchored. An anchored MAIC means that there

is a common comparator in each trial, i.e. we have a connected network. An

unanchored MAIC means that we have a disconnected network (Phillippo et al.

(2016)). In this thesis we focus on an anchored MAIC only, but note that we could

consider the techniques of an unanchored MAIC as an extension to Chapter 3.

There are numerous reasons why it may be desirable to carry out an MAIC. In

some cases a pharmaceutical company may wish to assess the results of their trial

in their competitor’s trial population. This may be the case where a company is

carrying out a HTA for the country in which their competitor’s trial was carried

out. Secondly, a company may wish to show that their trial results would hold

in varying patient populations. Thirdly, a company may be aware that there

are differences between effect modifiers between both trial populations, and may

want to adjust for these so as to guard against inconsistency and make a fairer

comparison with their competitor.

MAIC is an increasingly popular method, but as it is a post hoc analysis of

data it can be more susceptible to bias than other methods. It therefore requires

rigorous investigation. We therefore examine the strengths and weaknesses of an

anchored MAIC in Chapter 5.

2.7 Fixed Effects versus Random Effects

The technical question of Fixed Effects (FE) versus Random Effects (RE) is often

an issue in MA and NMA, which is discussed in Green & Higgins (2005). FE

assumes that the true treatment effect is constant across trials and that differences

in the results are due to sampling variability. Random Effects (RE) assumes

that trial-specific treatment effects are not the same but come from a common

distribution (Borenstein et al. (2010)).

For example, looking at the average test scores across schools, a fixed effects

model assumes that the test scores will be the same across schools. However,

a random effects model assumes that test scores will vary from school to school

and, therefore, typically puts more weight on smaller studies when calculating

the overall test scores of the population, i.e. 10 people surveyed from a new
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school would be considered more informative than 10 extra people in a school

from where data has already been collected. FE models require a much more

stringent assumption than RE models and therefore should be used with caution

as they could potentially overestimate the certainty of any findings (Hunter &

Schmidt (2000)).

Given that there can often be quite a lot of heterogeneity between trials in an

NMA, it is important to assess whether an FE or RE analysis is more appropriate.

The degree of heterogeneity can be quantified using statistical tests. For example,

the I2 statistic indicates the variation across studies that is attributable to genuine

heterogeneity rather than chance (Higgins & Thompson (2002)). However, the

heterogeneity should also be assessed by inspecting the difference between the

studies themselves. If there is a concern that an FE model is too restrictive, then

an RE model may be more appropriate (Welton et al. (2012)).

2.8 Types of Outcomes

2.8.1 Binary Outcomes

A typical NMA model for binary outcomes is constructed as follows. We observe

rij, the number of events in the jth arm of the ith trial. Examples of events could

be deaths or cures. Treatment 1 is considered the overall reference treatment,

with all other treatments being compared to it. rij ∼ Bin(pij, nij), where pij is the

probability of the binary event in the jth arm of the ith trial and nij is the number

of patients in the jth arm of the ith trial. nij is a fixed, observed quantity and pij

is made up of δij, the treatment effect in the jth arm of the ith trial and µi, the log

odds of having an event in the baseline treatment (i.e. in arm one) for study i. We

assume an RE model, δij ∼ N(dtij − dti1 , σ2
δ ), where dtij denotes the effect of the

treatment in the jth arm of the ith trial relative to the reference treatment and σδ

represents the between trial standard deviation (SD) of the treatment effect. Let

dk denote the effect of treatment k relative to the reference treatment.

The model is written as:

logit(pij) =

{
µi if j=1

µi + δij if j>1
, (2.1)

Thus, δij can be considered as a random, within study effect of the treatment,

centred on the underlying mean value of the treatment, dtij − dti1 . In this thesis

the assumed priors are µi ∼ N(0, 1.832), dk ∼ N(0, 1.832). σδ ∼ Unif(0, 2) in

Chapter 3 and σδ ∼ Unif(0, 5) in Chapters 4 and 5. Although different priors
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are used in different chapters, we found both priors to be sufficiently vague. We

can adjust for trials with more than two arm,s by following Dias, Sutton, Ades &

Welton (2013). In the case of an FE model δij is simply set equal to dtij − dti1 ,
instead of being centred on this value.

The hyper-parameters for µ and d are chosen in order to have a rather flat

distribution on the log odds ratio. Kass & Wasserman (1996) point out that the

properties of a prior on one scale can differ when transformed to another scale. A

seemingly vague prior such as N(0, 1002) is not vague on the inverse logit scale, as

most of the distribution is close to either 0 or 1. However, the choice of σ = 1.83

meant that two standard deviations on each side of the mean covered 95% of the

transformed (approximately flat) distribution. This is illustrated in Leahy et al.

(2018) and in Chapter 4. For the prior for σδ, when transformed to the probability

scale, two standard deviations covers the range (0.02, 0.98), which we deemed to

be sufficiently vague. This prior has also been examined by Lambert et al. (2005).

We compare the log odds ratios (LORs) for a dataset of RCTs in Hepatitis C using

a commonly used WinBugs prior, N(0, 1
0.001

), versus the prior proposed here. The

results are shown in Table A.6 in Section A.3.

2.8.2 Time to Event Outcomes

In this thesis we consider two different models used, either based on hazard ratios

or median survival data.

Hazard Ratio Model

A simplified method of the models used in Woods et al. (2010) was employed using

just hazard ratios (HRs). The model is:

ln(Hs,k) = µi + dk − db + reik − reib, (2.2)

where Hs,k is the cumulative hazard for treatment k in study s, µ is the study effect

and dk and db are the treatment effect for treatment k and the baseline treatment

effect (defined on a per study basis) respectively. For further information see

Woods et al. (2010). The random effects on each of the treatment effect could

result in the model being over-parameterised, leading to identifiability challenges.

In practice, informative prior information for the variance parameters can resolve

this. Nonetheless, an alternative model to consider could be to only use one random

effects. The effect of this is not explored in this thesis, but could be considered in

future work.
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In Chapters 3 and 5 we assume proportional hazards when utilising the HR

model. For the time to event simulation in Chapter 5 we know that the propor-

tional hazards assumption is met as the data is simulated from an exponential

distribution. However, when working with real-world data the proportional haz-

ards assumption should be checked by methods such as visual inspection of the

log-cumulative hazard plots, checking if time dependent covariates are significant

in the Cox Model or analysing the Schoenfeld Residuals (Hess (1995), Schoenfeld

(1982)).

Median Survival Model

In most cases we will only have AgD so our choice of model is limited to a model

with one parameter. Therefore, we assume an exponential survival distribution

and use the median survival time. In this case we take the fact that 50% of

patients have had the event at this time point, and put this value in for the

numerator and the total number of patients as the denominator. If we had IPD

then other survival models would be available to use, which may produce more

accurate results. Let rij, the number of events (i.e. 50%) in the jth arm of the ith

trial. rij ∼ Bin(pij, nij), where pij is the probability of an event in the jth arm of

the ith trial and nij is the number of patients in the jth arm of the ith trial. As

we are dealing with medians the outcome is t∗, the time when half of the patients

have had the event. Therefore, we obtain µi and δij from:

Sij(t) =

{
exp(−t∗ exp(µi)) if j=1

exp(−t∗ exp(µi + δij)) if j>1
, (2.3)

noting that for the median time pij is 50%. δij is the effect of the treatment

in the jth arm of the ith trial, µi is the baseline risk in study i and t∗ is the

median survival time. The treatment effects follow δij ∼ N(dtij − dti1 , σ2
δ ), where

dtij denotes the effect of the treatment in the jth arm of the ith trial relative to

the reference treatment and σδ represents the between trial standard deviation

(SD) of the treatment effect. The prior distributions chosen are µi ∼ N(0, 1.832),

dk ∼ N(0, 1.832) and σδ ∼ Unif(0, 2). The effect of treatment A (the reference

treatment) is set to zero in the model with all other treatments being compared

to treatment A.
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2.9 Meta-Regression

Meta-regression is a tool for investigating the impact that variables other than the

treatment of interest have on the outcome. There may be a number of covariates

affecting the outcome of interest other than the treatment effect, for example age or

severity of disease. When clinically plausible covariates have been identified these

can then be tested through a meta-regression (Borenstein et al. (2009a)). The

effect size in the studies is the dependent variable and the average covariate in

each study is the independent variable. These covariates can either be discrete or

continuous. It can be difficult for meta-regression to positively identify a covariate

that affects outcome due to a lack of data points (i.e. a small number of studies),

and therefore the Cochrane handbook only recommends that meta-regression is

carried out if there are at least ten studies in the meta-analysis (Green & Higgins

(2005)). However, IPD can potentially help to identify influential covariates.

Taking the binary outcome equation (3.4) as an example, this can be extended

to include a covariate by:

logit(pij) =

{
µi if j=1

µi + δij + (βtij − β)xij if j>1
, (2.4)

where β is the effect of the covariate, and xij is the proportion possessing the

characteristic associated with the covariate of interest for a binary covariate, or

the mean of a continuous covariate in the jth arm of the ith trial. Other outcomes

can be extended using similar methods.

2.10 Covariate-Treatment Interactions

Covariates may be classified in a number of different ways, depending on their

interaction with the treatments. In some cases, treatments will affect the outcome

for all patients equally, regardless of the level of the covariate, i.e. the covariate

has no interaction with the treatment. Therefore, the relative treatment effects

will stay the same throughout the network. This means that the covariate is

a prognostic variable (Phillippo et al. (2016)). In other cases there will be an

interaction between the covariate and the treatment, which means the covariate

is considered an effect modifier. This can make it more difficult to separate the

underlying treatment effects from the covariate effects, so methods such as MAIC

may be useful in adjusting for varying levels of the covariate. Hence, there are

three ways to model the interaction between the covariate and the treatment:

1. Identical (Prognostic Variable): The covariate has no interaction with the
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treatment. This model is described in Equation refIdCov in Section ??.

2. Effect Modifiers:

(a) Independent: The covariate has a separate underlying distribution for

each treatment. In this case the model in Equation IdCov is extended

to:

logit(pij) =

{
µi if j=1

µi + δij + (βtij − βti1)xij if j>1
, (2.5)

where βtij is the effect of the covariate interacting with each treatment.

In this case each covariate-treatment interaction comes from a seperate

distribution such as N(0, 1.832).

(b) Exchangeable: The covariate comes from a common distribution for

each treatment. In this case the model is the same as Model 2.5. How-

ever, each βtij ∼ N(µβ, σ
2
β), which in turn comes from N(0, 1.832).

Identifying which assumption is most appropriate can have a large influence

on results, but this may often be difficult to identify. In this thesis we investigate

the extent with which IPD can help with this.

2.11 Consistency

The assumption of consistency is the most important assumption underlying NMA.

If a network is consistent then we will obtain the same estimate from both the direct

and the indirect evidence, i.e.:

δAC3 = δAB1 + δBC2 , (2.6)

where δAB1 , δBC2 and δAC3 are the effects from studies 1 (comparing A and B),

2 (comparing B and C), and 3 (comparing A and C), respectively (Dias, Wel-

ton, Sutton, Caldwell, Lu & Ades (2013)). Sometimes, however, the consistency

assumption will not hold, in particular when there are differences in effect mod-

ifiers between trials. Some of the methods in this thesis, such as including IPD

or undertaking an MAIC can attempt to account for these differences between

studies.

2.12 Bayesian Methods

Bayesian methodology provides a flexible framework (O’Hagan & Forster (2004))

which has been used by numerous authors, especially in the field of medicine
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(O’Hagan & Luce (2003), Ashby (2006), Spiegelhalter, Abrams & Myles (2004)).

Bayesian methods are useful for a number of reasons, such as:

• Bayesian methods are a flexible modelling framework, which facilitate com-

plex synthesis. In NMA this can be useful as we can model different types

of evidence separately, as described in Chapter 3.

• We can include known information in the prior. This is especially important

in medicine as we often have more knowledge than simply considering the

data which we are analysing. By specifying the prior we can incorporate this

information.

• It enables us to discuss the results in terms of direct probabilities and is

therefore more easily interpretable. The frequentist notion of confidence

intervals can often be quite confusing, whereas Bayesian confidence intervals,

generally referred to as credible intervals are directly interpretable.

• Bayesian models are useful in predicting future benefits, in particular when

a priori beliefs have been incorporated. (Prevost et al. (2000)).

Spiegelhalter et al. (2004) points out that Bayesian priors can be particularly useful

in healthcare, as most trials produce incremental gains adding to the knowledge

base as a whole, as opposed to “paradigm-shifting break throughs”. Thus the prior

can be particularly useful to incorporate the previous knowledge base.

Although Bayes theorem was published in 1763, it was not until the 20th cen-

tury that Bayesian techniques came to the fore. There were two main reasons

for this. Firstly, many statisticians did not approve of the subjective nature of

Bayesian statistics. Secondly, it was not practical to implement a Bayesian frame-

work until the development of computers. Bayesian techniques were implemented

at multiple times during the 20th century. For example, during the second world

war Alan Turing and others used Bayesian statistics to crack the Enigma code

(Good (1950), Simpson (2010)). It was also used in medical research to demon-

strate that smoking causes lung cancer (Cornfield (1951)), calculating insurance

premiums (Bailey (1950), Hickman & Heacox (1999)), and predicting rare events

such as a nuclear detonation (Ikle et al. (1958)). However, in a number of these

applications Bayesian statistics were often used as a tool of convenience, rather

than being considered as an academic concept in their own right. It was not until

the introduction of Markov Chain Monte Carlo (MCMC) that Bayesian statistics

were fully appreciated and routinely implemented. The results of the NMAs in

this thesis are obtained using MCMC methods through OpenBUGS (Spiegelhalter

et al. (2014)) or JAGS (Plummer (2012)).
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2.13 Bayes Theorem

For completeness it is useful to introduce Bayes Theorem. Bayes theorem gives us

the probability of an event conditional on another event having taken place. Let

A and B be two events. Given that P(A) > 0 and P(B) > 0, then,

P (A|B) =
P (B|A)P (A)

P (B)
.

This can also be used to give a posterior distribution. Let P (A) be the prior

information. P (A|B) is the posterior distribution that we are trying to find. B

can then be thought of as the evidence. This can also be written in terms of

random variables. Let θ = (θ1, ..., θp) be the parameter of interest and π(θ) be the

prior distribution. We observe some data X = (X1, ...Xn). Then,

f(θ|X) =
f(X|θ)π(θ)

f(X)
∝ f(X|θ)π(θ),

where f(X|θ) is the likelihood and f(θ|X) is the posterior probability. f(X) is a

normalising constant given by:

f(X) =

{ ∫
f(X|θ)π(θ)dθ for continuous random variables

Σθf(X|θ)π(θ) for discrete random variables.

2.14 Importance of Priors

In the frequentist or classical approach to statistics no prior information is taken

into account. In classical statistics the objective is that we are trying to find a

fixed unknown value by sampling.

We can consider the following contrived example, which illustrates that even in

a classical framework, prior knowledge is still important. If a frequentist wanted

to look at the average height of the adult population of Ireland, they would take a

sample of the population and find the average, and use that as the best estimate

of the sample of the population as a whole. However, if he got a value of three feet

or eight feet then he would most likely conclude that there was either sampling

error, or that the sample was too small, or sampling from a biased part of the

population. This is because he has some prior knowledge of adult height.

In a Bayesian framework we can include this knowledge as a prior and it can

influence the results (Spiegelhalter et al. (2004), Berger & Berry (1988)). In fact,

Spiegelhalter states that Bayesian methods “explicity allow for the possibility that

the conclusions of the analysis may depend on who is conducting it”. The amount

by which it influences the results is a function of the size of the data collected, and
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how informative the prior is. We can have non-informative, weakly informative,

moderately informative or informative priors. Thorlund et al. (2013), Gelman

(2006), and Lambert et al. (2005) have conducted simulation studies on looking

at the effect of different types of priors. Ibrahim et al. (2000) discuss prior distri-

butions for regression models. In this thesis we use non-informative priors in our

analysis.

2.15 Bayesian Hierarchical Models

When conducting a meta-analysis we may be concerned with obtaining estimates

at multiple levels, for example, on a study level and then on a higher overall level.

We once again look at the random effects model in the school test scores example

from Section 2.7. At the bottom level we obtain an estimate of the mean in each

school, θ̂i where

θ̂i ∼ f(θi, ξ
2
i ). (2.7)

Each θ̂i comes from a true mean for each school, θi. This in turns comes from an

overall θ, which is the top level of the hierarchy. Each θi comes from a common

distribution

θi ∼ f(θ, σ2), (2.8)

and so are considered exchangeable.

Let n be the number of studies and let

Y = (θ̂1, θ̂2, ....., θ̂n).

and

Ψ = (θ1, θ2, ....., θn).

Let f(y|Ψ) be a function for the data and p(Ψ|θ, σ2) be the prior distribution for

Ψ. Then,

p(Ψ|y) ∝ f(y|Ψ)p(Ψ),

and the joint posterior distribution is given by:

p(Ψ, θ, σ2|y) ∝ f(y|Ψ)p(Ψ|θ, σ2)p(θ)p(σ2),

where p(θ) and p(σ2) are the prior distributions for θ and σ2 respectively. For

further discussion see Whitehead (2002).

The Directed Acyclic Graph (DAG) for Equations 2.7 and 2.8 are shown in

Figure 2.2. A DAG is a graphical representation of a set of quantities, G, in which
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each quantity, v ∈ G is represented as a node in the graph. Nodes which have

an arrow running into them mean that they have a stochastic dependency on the

parent node, from which the arrow is pointing. Given that nodes have a stochastic

dependency, this means that they are independent of all other nodes, except nodes

from which they are descendants (Lunn et al. (2012)).

θ̂i

Θi ξi

Θ σ

Figure 2.2: Directed Acyclic Graph for Meta-Analysis. The lowest level θ̂i gives
the estimate of the mean effect in each study. The middle level gives the true
mean and standard deviation in each study. The top level gives the overall true
mean and standard deviation.

Bayesian hierarchical models can be particularly useful when we have evidence

from different design types. In this case we can model each type of evidence

seperately and combine these on the highest level of the hierarchy, as suggested

in Welton et al. (2012), Schmitz et al. (2013). Additionally bayesian methods

can be utilized to augment the data available from studies in humans, by also

including animal studies (DuMouchel & Harris (1983)). Finally, these hierarchical

model also use to group classes of treatments together, as shown in Dominici et al.

(1999) and Owen et al. (2015).

2.16 Deviance Information Criterion (DIC)

The DIC (Spiegelhalter et al. (2002)) is a goodness of fit test which allows us to

identify which model best fits a given dataset. In this thesis we employ the DIC

in Chapters 4 and 5 to identify the nature of the covariate-treatment interaction

and in Chapter 5 to test the appropriateness of FE models versus RE models. The

DIC is a generalisation of the Akaike Information Criterion (AIC). The DIC is

defined as:

DIC = pD + D̄,

where D̄ is the expectation of the deviance, D̄ = D(θ) = −2log(f(X|θ)) + C,

and f(X|θ) is the likelihood function. As we always use the DIC to compare two
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or more models, the constant C will cancel out. pD = D̄ − D(θ̄), where θ̄ is the

expectation of θ. pD is essentially a penalty for a larger number of parameters,

which is required because more parameters make it easier for the model to fit the

data. The model with the lowest DIC is the model which best fits the data. A

variety of different thresholds, generally between two and ten, are used to conclude

that one model is superior to another model. In this thesis we use a difference of

three to indicate that there is a meaningful difference in model fit, as is consistent

with (Welton, Caldwell, Adamopoulos & Vedhara (2009)).

2.17 Markov Chain Monte Carlo (MCMC)

For most Bayesian models it is not possible to identify the posterior as a known

distribution, i.e. it is not of closed form. This posed a major problem for Bayesian

statistics until the development of more powerful computers and the method of

Markov Chain Monte Carlo (MCMC). This method allows us to sample from the

posterior distribution by means of a Markov Chain, i.e., each step is dependent only

on the previous step and is independent of all steps before that point. If we know

the prior and the likelihood function we then have an expression for the posterior.

We can pick an initial starting value and sample from the posterior a number of

times until the samples converge. We can then disregard the unconverged samples

(known as the burn-in) and get an average over the converged samples to give

an estimate of the true value. If we are trying to find an estimate for more than

one variable then we first use the initial sample of the other variables for our first

sample and the most recent sample of each variable after that.

There are two popular types of MCMC:

• Metropolis-Hastings (MH) - in this case not all samples are accepted. The

posterior distribution is used to decide whether to accept or reject each

proposal. Suppose the Markov Chain is in state x. The following algorithm

is used to sample from p:

– Propose a move to y with probability q(y|x).

– Calculate the ratio:

r =
p(y)q(x|y)

p(x)q(y|x)
. (2.9)

– Accept the proposed move with probability min(1, r). Otherwise, re-

main at x.

• Gibbs sampling - this is a special case of MH where the proposal distri-

bution is a full conditional, and therefore the proposal is always accepted,
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as is outlined in Chib & Greenberg (1995). Let π(y|x) be the full condi-

tional distribution for y. This is proportional to p(y)q(x|y), with a constant

of proportionality being p(x), and therefore it cancels. In Gibbs sampling

q(y|x) = π(y|x), and therefore the acceptance probability is one.

The MCMC processes carried out in this thesis are carried out in the software

packages BUGS and JAGS, which implement Gibbs sampling, when the full con-

ditional distribution is available.

2.18 Convergence Diagnostics

In order to decide the number of iterations to use for the burn-in we need to be

able to assess whether or not a chain has converged. The Gelman-Rubin statistic

(Gelman & Rubin (1992)) provides a method to assess whether the chain has

converged. For this we need to run at least two chains. We then look at the ratio:

between chain variance

within chain variance
. (2.10)

If this ratio is close to 1 it has typically converged. Gelman et al. (2011)

suggest a value of 1.1 shows adequate mixing between chains and indicates that

the chains have converged. However, they warn that this could potentially lead

to premature assumptions of convergence and therefore also recommend other

methods for assessing convergence, for example using visual inspection. One way

in which this can be done is by using “bgr diag” in BUGS as shown in Figure 2.3.

The green line shows the between chain variability, the blue line shows the within

chain variability and the red line is the ratio between the two. We can see that it

has converged if the red line is close to one and the blue and green lines are stable.
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Figure 2.3: BGR Plot from OpenBugs
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Chapter 3

Aggregate Level Matching of

Single-Arm Evidence

The methodological work in this chapter and the work on the HCV infection

dataset is currently under review for publication in “Statistics in Medicine” as

a revised resubmission. It is based on collaboration with a number of different

authors. Dr Aisling O’Leary and Dr Emma Gray undertook the systematic review

and provided guidance on the clinical aspect relating to HCV infection. Dr Arthur

White made substantial comments on the work during the internal academic PhD

confirmation process, and in subsequent meetings thereafter. Dr Howard Thom,

Dr Jeroen Jansen and myself were the co-organisers of an ISPOR workshop stem-

ming from the original research. Some additional improvements to the work arose

through discussions surrounding this workshop, namely including the plug-in es-

timator model (described in Section 3.2.1) and the scenario where the bias was

varied (described in Section 3.3.1). All other aspects and all implementation of the

additional improvements were carried by the author. This chapter also includes

an application in melanoma. Claire Gorry undertook the systematic review for

this application and provided guidance on the clinical aspect.

3.1 Introduction

RCTs are considered the gold standard of evidence, as their controlled approach

minimises potential bias. However, sometimes not all treatments have been eval-

uated in an RCT, and the only available evidence on a treatment may be from

sources such as observational studies or single-arm studies. These types of evidence

may contain valuable information, especially when no other evidence is available,

but they may potentially be biased (Sterne et al. (2016), Cameron et al. (2015),

Valentine & Thompson (2013)). In a well conducted RCT we can be confident that
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the patients are exchangeable across treatment arms, as they have been randomly

assigned. However, the same cannot be said for non-randomised evidence.

In one of the most recent reviews of it’s kind, Griffiths et al. (2017) examined

submissions to three Health Technology Assessment (HTA) agencies between 2010

and 2015; NICE (UK), CADTH (Canada), and IQWiG (Germany). The percent-

age of HTA submissions which considered non comparative evidence was 38%,

13%, and 12% for each agency respectively, although this may be a wider cohort

than simply single-arm trials. Submissions based exclusively on non comparative

evidence was 4%, 6%, and 4% respectively, making a total of 27 submissions, al-

though some of these submissions may have included IPD. Positive outcome rates

for non comparative evidence alone versus overall submissions were 60% versus 84%

for NICE, 69% versus 68% for CADTH, and 17% versus 38% for IQWiG. From

this analysis it is clear that when RCTs are unavailable, HTA decision-makers are

willing to consider non-comparative evidence, despite its limitations. Given that

single-arm evidence is being accepted by HTA agencies, it is crucial to minimise

potential bias by providing clear guidelines for incorporating this evidence into an

NMA. In 2016 Bell et al. (2016) identified “priority research requirements” such as

exploration into “when data is drawn from intervention in one setting versus com-

parator patients from a different setting” and “the extent to which observational

designs can complement or replace those of RCTs”.

Matching-Adjusted Indirect Comparisons (MAIC) or Simulated Treatment Com-

parisons (STC) are emerging methods for reducing bias when incorporating single-

arm trials into an NMA. However these require IPD for at least some of the studies.

In practice IPD can be quite difficult to obtain and it is frequently the case that

only aggregate data is available. Additionally, there are still questions on how

applicable MAIC and STC are to a full evidence network, as opposed to just three

treatments. The benefits and drawbacks of MAIC are investigated in Chapter 5.

However, it is important to investigate techniques for including single-arm evidence

with only aggregate data also.

Much research has been carried out on including non-randomised evidence into

an NMA to date. Sutton & Abrams (2001) investigate incorporating observational

evidence in a pairwise meta-analysis, while Schmitz et al. (2013) and Efthimiou

et al. (2017) propose methods for including observational studies in an NMA in

a manner that treats both evidence types seperately. Thom et al. (2015) and

Goring et al. (2016) investigate methods of including single-arm evidence. Thom

et al propose using a random effects model for the expected placebo effect in

order to incorporate single-arm evidence into an NMA. However, this interferes

with the randomisation of the RCT evidence. Goring et al estimate absolute
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treatment effects and compare the results of their models to the recommended

relative effects models. Other work on absolute versus relative effects includes

Hong et al. (2016a), and follow-up discussions by Dias & Ades (2016) and Hong

et al. (2016b). However, it has been argued by Dias & Ades (2016) that absolute

effects “effectively breaks randomisation, and in fact runs against the entire way

in which randomised controlled trials are designed, analysed, and used.”

Here we aim to address the research requirement proposed by Bell et al by as-

sessing the appropriateness of including single-arm evidence in an NMA through

matching to other arms or trials with similar patient covariates. As we are dealing

with single-arm studies we match on both effect modifiers and prognostic vari-

ables, as recommended in Phillippo et al. (2016). Firstly, we consider a method of

choosing another arm from the network. This means that we treat the single-arm

and the chosen matched arm as if they are arms from the same study. We consider

a naive pooled method and a more formal hierarchical model. The first approach

was recently adopted by Jaff et al. (2017) in an application to assess the efficacy of

endovascular interventions. They compare the NMAs which do and do not include

single-arm trials using matching. Schmitz et al. (2018) also use a pooled model

to include single-arm trials, and investigate the appropriateness of these models

depending on how close the matches are to the single-arm trial. Secondly,we match

to a chosen trial by pluging in the baseline odds of an event in a chosen matched

trial for the reference treatment. We compare these different models and evaluate

the performance in a simulation study. We also recommend a number of sensitivity

analyses which can be used to detect bias. This is illustrated in Section 3.4 by an

example in HCV infection and Section 3.5 by an example in melanoma.

There are a number of advantages to these methods over the methods described

above:

1. The method only requires aggregate data.

2. Although including matched evidence adds non-randomised evidence into

the network, the randomisation of the available RCTs is kept intact.

3. The methods fit within the relative effects framework.

4. We can apply this method to a network of any size.

The objectives of this chapter are to:

1. Assess which parameters influence the accuracy of the model’s estimate in

an NMA;
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2. Assess under what circumstances it is appropriate to include single-arm ev-

idence.

The remainder of this chapter is organised as follows: A detailed description

of the matched arm methodology is provided in Section 3.2. Section 3.3 describes

the construction and results of a comprehensive simulation study. Section 3.4

presents our methods applied to a HCV infection network and Section 3.5 presents

our methods applied to a melanoma network. A general discussion and some

recommendations are provided in Section 3.6. Table 2 at the beginning of this

thesis gives a glossary of notation used throughout this chapter.

3.2 Methods

3.2.1 Model Development

In this Chapter we extend Equation 2.8.1 as we examine at a number of ways for

incorporating single-arm trials into an NMA.

1. (a) Including the matched arm in data - pooled model: We treat the single-

arm trial and its chosen match as if they come from the same trial.

In this case we group all evidence types together in such a way that

different forms of evidence are not distinguished by the model. This

is the most straight-forward model to implement and is set up as in

Equation 3.4. In this case the number of studies is the total number of

RCT and matched studies.

(b) Including matched arm in data - hierarchical model: Again, we treat

the single-arm trial and its chosen match as if they come from the same

trial. In this model we estimate the treatment effect, d, at each level of

the study design, and then combine to give the overall treatment effect.

This model provides more flexibility, at the cost of requiring a more

stable network structure. This model is shown in Figure 3.2.

2. Plug in estimator model: We assume the log odds of having an event on

treatment 1 (reference treatment) is the same for the single-arm trial and

the chosen matched trial. This model has the advantage of not using any

data more than once. Both the RCTs and the single-arm trials are pooled

as in 1a above.

When using matching to incorporate single-arm trials into an NMA, the main

concern is that the chosen comparator will include patients from a very different

44



population to the single-arm trial. This could add bias to the model as one treat-

ment could end up looking superior when it was simply allocated to a particularly

healthy patient population. In order to minimise this potential bias we propose

to choose matched comparators with the closest patient characteristics. When in-

cluding a matched arm in the data (Model 1a or 1b), this match can be any other

arm in the network, from either an RCT or another single-arm trial, provided that

that the treatment is not the same as the treatment in the single-arm to which

we are matching. Let M be the number of covariates considered, let xmk be the

proportion of patients possessing the characteristic associated with the covariate

in the single-arm trial with treatment k, and let xmij be the proportion of patients

possessing the characteristic associated with the covariate in arm j of study i.

The difference is: ∆ij,k =
∑M

m=1|xmij − xmk |. When matching to a trial using a

plug-in estimator (Model 2) we can choose to match to any RCT. In this case the

difference simplifies to: ∆i,k =
∑M

m=1|xmi−xmk |. In our example, since we look at

binary covariates, x is a proportion. However, this can easily extend to continuous

covariates where x is the mean value of the covariate. The full steps and sensitivity

analyses that can be carried out when matching single-arms is presented in a flow

diagram in Figure 3.1.

For the hierarchical model the extra level on the treatment effect is modelled

as follows:

dRCT[k] ∼ N(d[k], σ
2
des),

dMATCHED[k] ∼ N(d[k], σ
2
des),

(3.1)

where σdes is the between-study design SD which represents the variability between

the RCT and matched studies. This is essentially a random effects model for the

study design level. The prior distributions for d are the same as for the standard

and pooled NMA models, and σdes ∼ Unif(0, 2). A benefit of the hierarchical

model is that we can adjust for overprecision in the matched arms by applying a

multiplicative factor ω to the matched precision, thus inflating the variance. This

represents our increased uncertainty in the evidence from the matched arms, and

can be thought of as the weight given to the matched evidence. For example, if ω

is small this indicates that we believe that the matched evidence is a poor estimate

of the mean effect.

dRCT[k] ∼ N(d[k], σ
2
des),

dMATCHED[k] ∼ N(d[k],
σ2
des

ω
).

(3.2)

Schmitz et al. (2013) investigate a number of different models for incorporating

different types of evidence into an NMA and propose the hierarchical model as the
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Figure 3.1: Steps to be taken when carrying out the matching by including an extra
arm in the data, and recommended sensitivity analyses. xmij is the proportion
possessing the characteristic associated with the binary covariate m (or mean of
in the case of a continuous covariate m) in the jth arm of the ith trial, xmk is the
proportion possessing the characteristic associated with the binary covariate m (or
mean of the covariate in the case of a continuous covariate m) in the comparison
arm, K is the total number of treatments examined in single-arm trials, and M is
the total number of identified covariates.

best option, as we can obtain estimates for each study design levels, and down-

weight certain types of evidence. However, due to the extra level in a hierarchical

model, estimates may often be less certain and can be drawn closer to zero.

The plug-in estimator model is written for the RCT part as:

logit(pij) = νi + δij, (3.3)
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Figure 3.2: Three level hierarchical model. The first level represents estimates of
the treatment effect from each study (δij for the RCTs (i=1 to number of RCTs)
and δlj for the matched evidence (l=1 to number of matched studies)). The middle
level has separate estimates of the treatment effect for the RCTs (dRCT[k]) and the
matched trials (dMATCHED[k]). The final level combines these estimates to get an
overall estimate of the treatment effect (d[k]).

and the matched part is written as:

logit(pl) = νChosenRCT[i] + δl, (3.4)

where νi is the log odds of having an event for treatment 1 in trial i, and ChosenRCT[i]

represents the chosen trial to match to single-arm trial l. For the matched part

of the model the j subscript is unnecessary on δ as this part includes single-arm

evidence only.

3.3 Simulation Study

Our research was motivated by a network of treatment regimens for the treatment

of HCV infection. Therefore, we loosely based the simulation study on the HCV

infection network which we discuss in Section 3.4. In recent years there has been a

major change in the way that newer HCV infection treatments have been formu-

lated (Goring et al. (2016)). Several of these newer treatment regimens were not

assessed for efficacy using comparative randomised trials and hence have not been

compared in RCTs to older treatments. The network is therefore disconnected

and in fact includes many treatment regimens that have only been assessed for

efficacy in single-arm trials, but nonetheless have shown very promising results
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in such studies. Therefore, to assess comparative efficacy with existing treatment

regimens, it is desirable to be able to make a comparison between any two treat-

ment regimens using a connected network, hence the need to use the matching

methods described in this chapter.

3.3.1 Methods

Set Up

We compare the results of the matching method to only using RCT evidence. We

also include a scenario in which we randomly choose a matched arm, in order to

assess how much value there is in finding the best match. We present results and

analysis on the effect that varying four parameters have on including matched

evidence. These are:

1. The SD of the baseline study effect, σµ. This is the measure of variability that

will be used throughout this chapter. It is the standard deviation of the base-

line risk of having an event in each study in the network. It can be thought of,

for example, as the variability between published studies. In our simulations

it is varied between 0 and 1.18. The highest value of 1.18 is approximately 3

times as large as the estimate of σµ in the HCV infection network. It should

be noted that we choose to investigate this measure, instead of the more

commonly investigated between-study heterogeneity, which quantifies how

relative treatment effects varying between trials. When matching single arm

trials we are interested in matching on prognostic variables and effect mod-

ifiers, whereas the between-study heterogeneity in RCTs is only affected by

effect modifiers. Since σµ is driven by both unidentified prognostic variables

and effect modifiers, we consequently use this as our measure of between

study variability. Note that in the simulation the baseline risk refers to the

risk when on treatment one. However, when including the matched arm

as data (models 1a and 1b), this baseline risk is calculated for whichever

treatment is first in each study. As we are only interested in relative effects

this will not affect our results. In the case of the plug-in estimator model,

a common baseline study effect is required and therefore the baseline risk of

having an event on treatment 1 is calculated.

2. The bias, ξ, in the single-arm trials. In this case the mean study effect

in the RCTs comes from a fixed distribution N(0, 0.59), while the mean of

the single-arm studies varies between 0 and 1. In the most extreme case

the single-arm trials are simulated from N(1, 0.59). This corresponds to a
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baseline rate of 75% on the probability scale, so we believe that this is a

sufficiently high value to use as the mean to cover plausible scenarios. We

refer to this difference in the mean as bias in the single-arm trials.

3. The upper bound, z, of the uniform prior, (0, z) on the between-study design

effect in the hierarchical model, σdes. z varied from 0.25 to 2. 2 is a sufficiently

vague upper bound as two standard deviations cover the range (0.02, 0.98)

on the probability scale.

4. The variance inflation on the matched evidence in the hierarchical model,

ω. This has the effect of downweighting the matched evidence. It is varied

between 0.1 to 1.

The parameters which we varied are highlighted on the directed acyclic graphs

(DAGs) in Figure 3.3.

When examining the hierarchical model two further scenarios were considered:

• When examining the prior on the between-study design effect, σdes, we also

included a scenario with 12 RCT studies, but we assume that there are eight

of one type and four of another. This is to quantify the effect of the prior on

the hierarchical model versus the effects of genuine difference in study types.

• When examining the variance inflation of the matched evidence in the hi-

erarchical model, ω, we also include ω acting on the RCTs instead of the

randomly matched trials, dRCT[k] ∼ N(d[k],
σ2
des

ω
). Although we do not recom-

mend that this is done in practice, this is examined in order to demonstrate

that the effect of downweighting RCTs and downweighting single-arm tri-

als will have different outcomes, which is due to the quality of the evidence

types.

A network of 12 studies with seven treatments was simulated. The studies

consisted of eight two-armed RCTs and four single-arm studies. The RCT stud-

ies consisted of treatments numbered 1-5 and the single-arm studies consisted of

treatments 1, 2, 6 and 7. To ensure our results were applicable to a wide range

of real world networks we kept our network as generic as possible, and randomly

assigned treatments to the RCTs at each iteration. Additionally, the treatment

effects, study effects and covariate effects were simulated at each iteration. An

example of a typical network is shown in Figure 3.4.

Given we want to compare all possible treatment regimens in an NMA, it is

necessary to form a connected network (Jansen et al. (2011)). In 3.4c the matched

connection alone would not form a connected network, as treatments 1 and 5 are

49



pijl

rijl

dtij β

xijl

µi

µ σµ

ξ

(a) DAG for the simulation study.
The parameters that are varied are
dependent on the data themselves,
and the investigator has no input.

Note: ξ is 0 for RCTs.

pijnij

rij

δij

dtij
σd

µi

dRCT[k]

σdes

dMATCHED[k]

ω

Lower Upper (z)

(b) DAG for Hierarchical Model. The
parameters varied are modeling choices

which are chosen by the investigator. Note:
This DAG simplifies to the RCT or Pooled
Model by excluding all hyper-parameters on

dtij .

Figure 3.3: Directed acyclic graphs for simulations and models. The red box around
certain nodes indicates that these are varied in a simulation study. Square nodes
represent fixed quantities while the ellipses are stochastic nodes. The shaded nodes
represent observed quantities.

not connected to the other treatments. A disconnected network would rely on

the remote evidence in the hierarchical structure and therefore we believe that

connected networks are preferable. The impact of this is explored in Section 3.3.2.

For the purpose of ensuring a connected network for each study design, when faced

with this scenario after choosing the best matches, we would restrict the potential

matches for treatment 1 to those are already included in the larger network, i.e.

treatments 2, 3, 6, and 7 in this case, as shown 3.4d. In Section 3.3.2 we discuss

how often our simulated networks were connected within each study type when

using the best match.

Simulations were carried out by finding the probability of the event pijl for each

individual patient l, in arm j of study i. This was computed by the study effect

µi, the treatment effect dtij , the effect of one baseline binary covariate β, and xijl,
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(a) RCT Connections Only. (b) RCT and Matched Connections.

(c) Network is disconnected at the
matched level. Therefore we restricted
our choice of match for treatment 1 to
one of the treatments already included

in the larger network.

(d) Network is connected at the
matched level.

Figure 3.4: Example Simulated Network: Black nodes denote treatments in RCT
trials only, white nodes denote treatments in single-arm trials only, and gray nodes
denote treatments in both single-arm trials and RCT trials. Black solid lines rep-
resent RCT connections and dashed lines represent matched connections. The
treatment requiring the match has the arrow pointing towards it, i.e., an arm with
treatment 3 has been chosen for the single-arm trial containing treatment 7.

a binary indicator variable for the presence of the characteristic associated with

the covariate: logit(pijl) = µi + dtij +βxij. The event rate rijl was calculated from

Bernoulli(pijl) for each patient l. These were then aggregated to give an event

rate for each arm, rij, which was provided to our model. As we are examining

aggregate data we summarize the binary covariates as the proportion of patients

possessing the characteristic associated with that covariate in a given arm. In the

case of continuous covariates our summary would be the mean, which takes the

place of the proportion in the model. Thus our approach can be extended in a

natural fashion to continuous covariates. We also included scenarios where there

were three covariates. For brevity the description and results of the three covariate

scenario has been included in the appendix.
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Default Values

The default values were chosen based on the HCV infection network in Section 3.4

or based on vague prior distributions. The values were set as follows:

• The between-study variability, µi ∼ N(0, 0.592). The default of 0.59 is half

way through the range on which we are varying the between-study variability.

• The relative difference of treatments to baseline, dk ∼ N(0, 1.832), which is

a broad range for this parameter.

• The number of patients for single-arm trials was simulated from ni ∼ Unif(75, 134),

which reflected the inter-quartile range of the size of trials in the HCV in-

fection network. The number of patients in the RCTs was twice this value.

• The probability of patients possessing the characteristic associated with each

covariate was sampled from Unif(0, 1) for each trial in order to cover the

full range of possibilities. From this, each individual patient possessing the

covariate was sampled from a Bernoulli distribution with the trial probability

of possessing the characteristic associated with the covariate. This ensured

that the RCT trials reflected the real world situation where treatment arms

are exchangeable.

• The covariate effect size, β = −1.04, was set to be twice as large as the

largest estimated covariate effect we found when analysising the RCT studies

through a meta regression (Borenstein et al. (2009b)) in our HCV infection

example, and was therefore thought to be adequately large to reflect possible

real world covariates.

Implementation

We ran the models as described in Section 3.2 to assess how well they predicted

the true relative treatment effects, d. Models were run using Markov chain Monte

Carlo (MCMC) simulation in OpenBugs (Spiegelhalter et al. (2014)). A burn-in

of 20 000 iterations was tested for convergence using the Gelman-Rubin statistic

(Gelman & Rubin (1992)). Following this another 10 000 iterations were sampled

for our estimates. If the convergence condition was not met the number of itera-

tions was doubled (both for the burn-in and for the samples for estimation) and

then tested again until the Gelman-Rubin statistic was less than 1.1. If the chains

had not converged after a burn-in of 320 000 this iteration was excluded from the

analysis. Given the amount of simulations required we decided it was not feasi-

ble to include chains that had not converged by this point. If the chains did not
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converge for one of the models in a particular simulation the results for all other

methods in the simulation were excluded from the analysis in order to eliminate

any potential bias due to differing simulations. Reasons for non-convergence could

include identifiablity of certain parameters or numerical issues. In this chapter a

potential cause could be the sparsity of information at each part of the hierarchical

model, and the fact that we only have two study designs to help us estimate σdes.

We varied each parameter in turn and sampled 8-12 data points for each at least

200 times.

Let T be the total number of simulations. In order to assess whether in-

cluding single-arm trials produces more accurate estimates than using RCT ev-

idence alone, we look at the mean absolute error (MAE) for treatments 2 to 5:

MAE =
∑T

s=1

{∑5
k=2|dks − d̂ks|/4

}
/T , where d̂k is our model’s estimate of the

relative effect of treatment k, compared to treatment 1. A lower MAE means that

the model produces a more accurate estimate of the treatment effect.

We can also compare the posterior SD as reported in the BUGS output to

quantify the uncertainty in the resulting estimates. While we might expect a

lower posterior SD when more evidence is added into the model, this might not

necessarily hold due to the potential bias from the single-arm studies. Graphs

showing the MAE and BUGS posterior SD are included in the results section.

3.3.2 Results

In a preliminary analysis we analysed the MAE for the hierarchical model with

networks connected at all levels using the best match versus networks that were

disconnected at the matched level using the best match, and found that using the

connected network produces better results. We restricted our network matches to

ensure a connected network on each study design if the best match did not pro-

duce a connected network on each study design. This replicates how a connected

network could be ensured in a real world scenario. In a simulation study only 34%

of the randomly matched networks and 24% of matches using the covariate were

connected for each study types (i.e. RCT and matched single-arm sub-networks);

as a consequence we restricted the choice of match for the hierarchical model for

any network that was not connected using the best match. By contrast, 99.8% of

networks were connected when pooling across study types. For simplicity, we use

a pooled model for all analyses that do not directly investigate the nature of the

hierarchical model.

The graphs in this section show the lines of best fit for the simulated data

points, obtained by regression using both a linear and a quadratic term. Graphs
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showing the original data and the Monte Carlo Error (MC Error) of the simulations

are included in the appendix.

Between-Study Variability

We examine the effect of the between-study variability, σµ, on the accuracy of the

estimate of the treatment effect and the posterior SD in Figure 3.5. The study

effect is centered at zero. As σµ increases, the accuracy of the estimates obtained

by including the single-arm evidence decreases to a point where including single-

arm evidence produces less accurate estimates than the RCT only model. The

estimates are more accurate when the study effects are close together, as the

information is more accurate in the model. However, as the difference increases

noise is added into the model by assuming that treatment arms in the matched

studies are exchangeable, when in reality they come from different distributions.

The plug-in estimator model becomes worse than the pooled model when σµ is

large.

The MAE will, of course, be larger for the treatments that are not in any RCTs.

The error for treatments 6 and 7 alone when matching by covariate in the pooled

model is between 0.57-1.52 as σµ varies from 0 to 1.18.

The crossing point is of particular interest as this is the decision point of

whether to include the matched evidence or not. In Table 3.1 we estimate the

between study variability for the HCV infection network, as detailed in Section

3.4, and a number of publicly available datasets with binary outcomes from the

statistical software package, R (R Core Team (2013)). The estimates of σµ are

of the order of, if not greater than the crossing point in the graph, indicating

that matched evidence may often lead to an increase in bias. It may be worth

noting that the dataset with the most objective outcome of mortality, i.e. the

thrombolytic dataset has one of the lowest between study variability. In a previ-

ous analysis Turner et al. (2012) found that heterogeneity is lowest in networks

where the outcome is an objective outcome. It may be possible that between study

variability also follows this same pattern.

Figure A.3 examines the danger of incorrectly assuming that the single-arm

studies come from the same distribution as the RCTs. We see that the estimates

and posterior SDs increase slightly as the bias increases. However, the increase

is quite small. We see that the bias has a low influence on the plug-in estimator

model in particular.
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Table 3.1: Between study variability in example networks

Dataset σ̂µ Source Outcome Description

Thrombolytic 0.36 gemtc in R Mortality after 30-35 days.

Hepatitis C 0.39 details in Section 3.4 SVR after 12 or 24 weeks.

Certolizumab 0.35 gemtc in R Improvement of at least 50% on the
American College of Rheumatology
scale (ACR50) at 6 Months.

Smoke 0.59 pcnetmeta in R Successful cessation of smoking at 6-12
months.

Depression 0.61 gemtc in R Reduction of at least 50% from the
baseline score on the HAM-D or
MADRS at week 8 (or, if not available,
another time between week 6 and 12).

Figure 3.5: Effect of between-study variability, σµ, on the MAE and posterior stan-
dard deviation. Covariate effect, β=-1.04. The extreme left point on the graph
shows the scenario where the study effect is set to zero for every study. The vari-
ability between the studies increases with the horizontal axis.

Hierarchical Model

We now look at the hierarchical model, which includes a between-study design

effect. We exclude the plug-in estimator model from these results as this model is

not be affected by the parameters that are varied in this section. Figure 3.7 shows

how varying the upper bound of the prior on the between-study design effect affects

the MAE and the posterior SD. The prior on the between-study design effect is

given by Unif(0, z) where z varies along the x-axis. The RCT only model has the

same estimate at each point as there is only one study type in this model, therefore

we have used the average value over all simulations for this line.

As the upper bound of the prior on the between-study design variance increases,
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Figure 3.6: Effect of varying the bias in the single-arm trials on the MAE and
posterior standard deviation. Between-study variability, σµ=0.59, covariate effect,
β=-1.04. The study effect in the RCTs comes from N(0, 0.59). The value on the
x-axis indicates the mean of the single-arm trials. Hence, at the extreme left point
both the single-arms and RCTs come from the same distribution.

the MAE and posterior SD also increases. There is a fourth line on the graph

corresponding to 12 RCT studies, where we assume that there are eight of one

type and four of another. Here we see the same trend as before, with the posterior

SD increasing as the prior on the between-study design σdes increases. However,

this time it happens to a lesser extent. The increase in posterior SD when including

the extra RCTs is solely due to the prior. Any extra increase for the matching

methods is due to actual differences between the study types.

Figure 3.8 shows the effect that down-weighting matched evidence, ω, has on

the accuracy of our model’s estimate of the treatment effect and the posterior SD.

Again, the RCT only line is the average value over all simulations, as there is no

weight on the matched evidence. The “RCT By Omega” line shows ω acting on the

RCT evidence instead of the (randomly) matched evidence. Decreasing the weight

of the high quality RCT evidence generally gives less accurate estimates and larger

posterior SDs. However, decreasing the weight of the matched evidence actually

gives a concave downwards shape. The MAE and the posterior SD is smallest when

ω = 0.1, i.e., the smallest weighting in the simulation study. However, weighting

the matched evidence fully appears to be preferable to, or at least as good as, some

of the values for ω in the centre of the graph.
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Figure 3.7: Effect of the prior on the between-study design effect (σdes) on the MAE
and posterior standard deviation. Between-study variability, σµ=0.59, covariate
effect, β=-1.04. The horizontal axis shows the upper bound for the prior on the
between-study design effect Unif(0, z). Taking two standard deviations for the
largest value of an upper bound of 2 corresponds to (0.02, 0.98) on the probability
scale.

Figure 3.8: Effect of ω on the MAE and posterior standard deviation. Between
study variability, σµ=0.59, covariate effect, β=-1.04, prior on between study design
effect, σdes ∼ unif(0, 2).

Other parameters considered

In an exploratory analysis a number of other parameters were examined through

the simulation study. We analysed the magnitude of the covariate and found

that for larger covariates effects there was an increased advantage of choosing a

matched arm based on covariates over a randomly chosen match. However, the

magnitude of the covariate effect chosen for the simulation study was based on
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how large we would reasonably expect a single standardised covariate to possibly

be. Heterogeneity between treatment effects was also examined. When there was

large heterogeneity all methods were less accurate and less precise at estimating the

treatment effect. However the loss of accuracy and precision was more pronounced

for the RCT only evidence than when matched evidence was included. Finally, we

examined how trial size affected the accuracy of treatment effect estimation. We

found that including matched evidence was most beneficial when trials were small.

3.4 Example: Hepatitis C Virus (HCV) Infec-

tion - Treatment Naive Patients - NMA

Chronic HCV infection is a global health burden of major concern. A number

of treatment combinations are currently licensed for genotype 1 (GT1) HCV in-

fection. At the time of this systematic review there was a wealth of clinical trial

evidence available that compared single regimens in terms of treatment duration

and with or without the addition of ribavirin. However, head-to-head comparative

trials between all licensed regimens for GT1 infection were unavailable. There have

been major advances in the treatment of HCV infection in the recent years, with

a move away from non-specific anti-viral therapies, which had relatively low levels

of cure rates, to antiviral combination therapies that directly target replication of

the virus, with the ability to significantly enhance cure rates. While RCTs are the

most appropriate method to directly assess the relative efficacy of all regimens from

a methodological perspective, RCTs comparing newer treatment regimens to older

(and most probably inferior) treatments may not be appropriate from an ethical

perspective. Therefore, most of the evidence available on the newer HCV infection

treatment regimens is disconnected from the older network, and in fact comes in

the form of single-arm evidence. We apply the techniques discussed in Section

2 to indirectly estimate the relative treatment effect of licensed regimens for the

treatment of GT1, by including single-arm trials, in treatment naive patients with

chronic GT1 HCV infection.

3.4.1 Methods

A systematic review was conducted in accordance with the criteria of the Preferred

Reporting Items for Systematic Reviews and Meta-Analyses group (PRISMA)

(Moher et al. (2009)) on 6th May 2015, and repeated on 24th November 2015 and

on 14th May 2016. These cut off dates are based on the needs of informing the

clinical programme in Ireland. We identified 13 RCTs that looked at two inter-
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Table 3.2: List of treatment regimens with abbreviations

Abbreviation Treatment Regimen

PR Pegylated-interferon and ribavirin

DCV/PR Daclatasvir (+ pegylated interferon and ribavirin)

BOC/PR Boceprevir (+ pegylated interferon and ribavirin)

SIM/PR Simeprevir (+ pegylated interferon and ribavirin)

TEL/PR Telaprevir (+ pegylated interferon and ribavirin)

SOF/PR Sofosbuvir (+ pegylated interferon and ribavirin)

PrOD±RBV Paritaprevir boosted with ritonavir, ombitasvir and dasabu-
vir (with or without ribavirin)

SOF/LDV±RBV Sofosbuvir and ledipasvir (with or without ribavirin)

DCV/SOF±RBV Daclatasvir + Sofosbuvir (with or without ribavirin)

SIM/SOF±RBV Simeprevir and sofosbuvir (with or without ribavirin)

SOF/RBV Sofosbuvir (+ ribavirin)

ventions (Jacobson et al. (2011), Hézode et al. (2009), McHutchison et al. (2009),

Poordad et al. (2011), Kwo et al. (2010), Kumada et al. (2012), Jacobson et al.

(2014), Manns et al. (2014), Fried et al. (2013), Pol et al. (2012), Lawitz, Lalezari,

Hassanein, Kowdley, Poordad, Sheikh, Afdhal, Bernstein, DeJesus, Freilich et al.

(2013), Gane et al. (2014), Dore et al. (2016)) and 18 single-arm trials with no

comparator. There were 11 different regimens in our network. In total the single-

arm studies examined seven different treatment regimens. We choose one arm

with no comparator from each treatment regimen to use in this example (Sherman

et al. (2011), Feld et al. (2014), Osinusi et al. (2013), Afdhal et al. (2014), Kwo

et al. (2015), Sulkowski et al. (2014), Lawitz, Mangia, Wyles, Rodriguez-Torres,

Hassanein, Gordon, Schultz, Davis, Kayali, Reddy et al. (2013)). Where possible

we choose single-arms that had full information on the covariates of interest. The

full list of regimens is described in Table 4.1. The outcome of interest was a binary

outcome, Sustained Virological Response (SVR).

We first ran an analysis which investigated the 13 RCT studies. We then

matched the single-arms to an arm of another study to act as the comparator

regimen. We then re-ran the meta-analysis using these matched arms. We used

the pooled model, four hierarchical models, and the plug-in estimator model. The

first hierarchical model gave equal weight to both study types, the other three

hierarchical model provided sensitivity analyses by down-weighting the matched

estimate by multiplying the matched precision by ω = 0.7, ω = 0.4 and ω = 0.1.

The studies were matched according to the proportion of patients that were

cirrhotic, had genotype 1a, and had viral load >800,000 IU/ml at baseline. These

covariates were chosen, because according to clinical expert opinion, they were

likely to influence SVR, and because these were reported in the majority of tri-
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als. Each single-arm study was compared to every individual arm (including other

single-arm studies) and the differences in their baseline characteristics were de-

termined. As we had more than one covariate to use for matching we added the

difference in the three covariates together. The arm with the smallest difference

in baseline characteristics was then chosen as the matched arm. Not all arms had

information on each of the three covariates. The best match was chosen from the

pool of arms that had at least the same amount of information as the single-arm

trial. A network diagram of the RCT only network and a network including the

single-comparator studies is shown in Figure 3.9. Note that for the plug-in estima-

tor model the closest trial was chosen instead of the closest arm, and therefore a

network diagram comparing matched treatments is not applicable for this model.

(a) RCT only
(b) Including matched evidence when match-
ing to arms

Figure 3.9: Network Diagram for HCV infection. Black nodes denote treatments
in RCT trials only, white nodes denote treatments in single-arm trials only, and
gray nodes denote treatments in both single-arm trials and RCT trials. Black solid
lines represent RCT connections and dashed lines represent matched connections.
The treatment requiring the match has the arrow pointing towards it. Although
SOF/LDV±RBV and SOF/RBV are in an RCT they are treated as only being in
a single-arm trial as the RCT cannot be included as it is not connected to the rest
of the network.

Random Matching Arms - Sensitivity Analysis

It is possible that the results of the analysis could change based on the choice of

matched arms. As there are millions of combinations of arms, it is not possible to

test all of them. Therefore, we ran over 1 000 simulations to check matching arms

at random in order to assess the sensitivity to the choice of match.

Removing RCT arms

In order to assess the accuracy of matching on the HCV infection network we

investigated how well our method would work on RCTs, which we turned into
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single-arm trials by removing arms. We found an estimate of the efficacy of each

drug by using only the RCT evidence. We excluded those that did not have full

information for the three covariates and were therefore left with nine RCTs and

four treatments: PR, TEL/PR, BOC/PR and SIM/PR. We then selected studies

at random and removed all the arms except one. We then matched these new

“one-arm” studies to the remaining studies in the network. We compared our

results to the results of the reduced dataset with the “one-armed” trials excluded

to see which was closer to the estimate with nine trials. We compared these results

making a varying amount of studies into single-arm trials, from one to six. In all

cases we ensured that there was at least one study with each treatment remaining

in an RCT so that we were comparing like with like.

3.4.2 Results

Table 3.3 shows the mean and posterior SD of the log odds ratios (LOR) for each

treatment regimen versus PR (standard of care). For treatment regimens which

have both RCT and matched evidence (TEL/PR, SOF/PR, and PrOD±RBV)

including the matched evidence decreases the posterior SD of the LOR in all cases.

The hierarchical model generally results in higher posterior SDs than the pooled

model. This may be explained by the additional prior variance on the study

effect. However, for all treatment regimens with RCT evidence only (DCV/PR,

BOC/PR and SIM/PR) the adjusted hierarchical model with matched evidence

down-weighted has the smallest posterior SD. The pooled model generally gives

a more extreme LOR than the hierarchical model, since in the latter case the

summary effect is shrunken toward zero.

We store the rank of each treatment at each iteration of the MCMC chain, and

use these values to a posteriori estimate the probability of each regimen being in

each position, and plot these on a rankogram as shown in Figure 3.10. We can

then sum these probabilities to find the probability of each regimen being in the

nth position or better. Calculating the SUCRA (SUrface under the Cumulative

RAnking curve) (Salanti et al. (2011)) gives us a one number summary for each

regimen. Possible SUCRA scores range from 0 to 1. A treatment with a value of

1 means that it is the best treatment with no uncertainty, and a value of 0 mean

that it is worst treatment with no uncertainty.

Table 3.4 shows the SUCRA for each regimen. All models that include the

extra treatments rank these treatments in the same order. Including the matched

evidence has had little impact on the RCT only treatment rankings. The hier-

archical model and the hierarchical model with matched evidence down-weighted
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Table 3.3: Log Odds Ratio versus PR. White represents largest posterior SD, darker
shades of green represent smallest posterior SD within each row.
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Figure 3.10: Rankogram for each of the seven models.

have the same treatment rankings as the RCT network. In the pooled model

only TEL/PR and BOC/PR are switched. These were very close together anyway

and are also unlikely to be the best treatments. In the plug-in estimator model

SOF/PR and DCV/PR are switched, as well as TEL/PR and BOC/PR. We note

that the plug-in estimator model is the only model that ranks DCV/ SOF ±RBV

above DCV/PR, which would be considered clinically more plausible.
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Table 3.4: SUrface under the Cumulative RAnking curve (SUCRA) score for each
of the seven models. A treatment with a value of 1 means that it is best treatment
with no uncertainty, and a value of 0 mean that it is worst treatment with no
uncertainty.

RCT
Only

PrOD
±RBV

DCV/
PR

SOF/
PR

SIM/
PR

BOC/
PR

TEL/
PR

PR

0.97 0.74 0.61 0.44 0.38 0.35 0.00

Pooled SOF/
LDV
±RBV

PrOD
±RBV

SIM/
SOF
±RBV

DCV/
PR

SOF/
PR

DCV/
SOF
±RBV

SIM/
PR

TEL/
PR

BOC/
PR

SOF/
RBV

PR

0.95 0.90 0.76 0.60 0.57 0.54 0.32 0.31 0.29 0.24 0.01

Hier PrOD
±RBV

SOF/
LDV
±RBV

DCV/
PR

SIM/
SOF
±RBV

SOF/
PR

DCV/
SOF
±RBV

SIM/
PR

BOC/
PR

TEL/
PR

SOF/
RBV

PR

0.88 0.85 0.68 0.65 0.52 0.50 0.40 0.37 0.32 0.27 0.06

Hier
Matched
Down-
weighted
ω = 0.7

PrOD
±RBV

SOF/
LDV
±RBV

DCV/
PR

SIM/
SOF
±RBV

SOF/
PR

DCV/
SOF
±RBV

SIM/
PR

BOC/
PR

TEL/
PR

SOF/
RBV

PR

0.87 0.86 0.67 0.66 0.52 0.51 0.39 0.36 0.32 0.29 0.05

Hier
Matched
Down-
weighted
ω = 0.4

PrOD
±RBV

SOF/
LDV
±RBV

DCV/
PR

SIM/
SOF
±RBV

DCV/
SOF
±RBV

SOF/
PR

SIM/
PR

BOC/
PR

TEL/
PR

SOF/
RBV

PR

0.87 0.85 0.69 0.66 0.51 0.51 0.40 0.37 0.32 0.26 0.06

Hier
Matched
Down-
weighted
ω = 0.1

PrOD
±RBV

SOF/
LDV
±RBV

SIM/
SOF
±RBV

DCV/
PR

DCV/
SOF
±RBV

SOF/
PR

SIM/
PR

BOC/
PR

TEL/
PR

SOF/
RBV

PR

0.88 0.86 0.68 0.66 0.53 0.52 0.37 0.34 0.31 0.29 0.04

Plug in
estima-
tor

SOF/
LDV
±RBV

PrOD
±RBV

SIM/
SOF
±RBV

DCV/
SOF
±RBV

SOF/
PR

DCV/
PR

SIM/
PR

SOF/
RBV

TEL/
PR

BOC/
PR

PR

0.94 0.90 0.73 0.72 0.62 0.54 0.28 0.27 0.26 0.26 0.00

Random Matching Arms - Sensitivity Analysis

Figure 3.11 shows the distribution of the point estimates for the LOR for each of

treatment regimen vs PR. This can identify how sensitive treatments are to the

choice of match. We see that the distribution of the point estimates for treatment

regimens for which RCTs are available are quite small. However, the distribution

of the point estimates for treatments regimens for which only matched evidence is

available are much larger. We can see that on average newer treatments have the

highest LOR (PrOD±RBV, which has both evidence types and SOF/LDV±RBV,

DCV/SOF±RBV, and SIM/SOF±RBV which all have single-arm evidence only).

This highlights the importance of including these treatments in an NMA as they

are likely to be better than the older treatment regimens, which are included in

RCTs. It is important to note here that most estimates from the chosen match give

a smaller LOR than average. In particular we compare the best match hierarchical

model (denoted by a red triangle) with the distribution shown, as these are the

same models. This reassuringly highlights that, in this case, we are at least being
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conservative with our estimates of the single-arm treatments.

Figure 3.11: Distribution of the log odds ratio using randomly matching arms
compared with results from RCT only and the best match chosen by the equal
weights method.

Removing RCT arms

As we can see in Figure 3.12, in the HCV infection network if we change three

or fewer RCTs to single-arm trials the reduced model is slightly closer to the full

network than using our matched methods, on average. However, if we change five

or six RCTs into single-arm trials then all methods gives results that are much

closer to the full network than the results we obtain from the reduced dataset. We

also see that the estimate of the reduced dataset is less precise than the pooled

model, and thus the reduced model has the same or higher posterior SD than the

plug-in estimator model. A “U-shaped” curved is noticeable for the hierarchical

model for the posterior SD. The reason for the high uncertainty when we only

match one or two studies is because we have very little evidence on the matched

side of the hierarchical model. From this analysis the pooled model would be the

most preferable.

3.5 Example: Melanoma - NMA

We have analysed a number of different networks of treatments for melanoma from

a clinical perspective. The network on overall survival for second line treatments
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Figure 3.12: We use only one arm from a number of RCTs (as indicated on the
x-axis). Results from the reduced RCT network or network obtained by matching
the new “single-arm” studies are compared to our best estimate of the treatment
effect, i.e. the full nine study network, where the number of new “single-arm”
studies equals zero.

and the network for progression-free survival for patients with a BRAF mutation

both contained single-arm trials. We therefore present the results of both of these

networks, along with the sensitivity analysis of using random matches, as described

previously. In both of these networks any single-arm treatments have also been

compared in other multi-arm trials and therefore the single-arm trials are not

required to connect the network. However, this provides us with an opportunity

to assess any potential bias that single-arm trials may introduce.

Melanoma is a type of skin cancer. Metastatic melanoma means that melanoma

cells have spread to distant sites in the body. There has been an influx of new

drugs licensed for the treatment of metastatic melanoma in recent years, and

there is significant uncertainty surrounding how to optimise the use of these new

agents, and their relative efficacy. Some melanomas harbour the BRAF muta-

tion, which is present in approximately 17-24% of cases of metastatic melanoma

in Ireland. Treatment options vary according to the BRAF mutation status

of the melanoma. Patients with BRAF positive melanoma may potentially re-

ceive any of the following as first line treatment; dabrafenib/trametinib in com-

bination, vemurafenib/cobimetinib in combination, nivolumab, pembrolizumab or

nivolumab/ipilimumab in combination. No RCTs exist to compare these treat-

ment options in terms of clinical efficacy or safety. All of these treatments are

licensed for use regardless of line of treatment; however some of the agents have

never been trialled in a second line treatment cohort.
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Much work has been done in recent years to identify the important prognostic

factors in metastatic melanoma, to better inform clinical research and aid clinical

decision making. In 2009, Balch et al published a revised staging system for

melanoma, based on data from the American Joint Committee on Cancer (AJCC)

Melanoma Staging database (Balch et al. (2009)). They found that there were

two significant prognostic factors in Stage IV melanoma, elevated serum lactate

dehydrogenase (LDH) levels and the sites of distant metastases (nonvisceral versus

lung versus all other visceral sites).

Additional work has been published by Korn et al, in the form of a meta-

analysis of Phase II trials in metastatic melanoma, to determine progression-free

survival (PFS) and overall survival (OS) benchmarks (Korn et al. (2008)). They

found that the Eastern Cooperative Oncology Group (ECOG) performance status,

presence of visceral disease, and gender were all prognostic for OS. They found

ECOG performance status, age and gender were prognostic for PFS although

adjusting for these factors failed to eliminate between trial variability in PFS at 6

months. It should be noted that LDH values were not available for almost all of

the 42 trials included, and so was not considered in the analysis.

Many treatments have been licensed for the treatment of advanced melanoma,

in particular in the period since 2010. While most of these treatments have been

licensed based on good quality Phase III RCTs, there is little evidence of their

comparative efficacy, mainly because of the pace of change in the field over the

last number of years. This systematic review was conducted in order to identify

all relevant sources of efficacy information, in order to synthesise the outcomes in

a network meta-analysis, to produce relative efficacy outcomes for the included

treatments.

3.5.1 Methods

Systematic Review

The systematic review was conducted in accordance with the criteria of the Pre-

ferred Reporting Items for Systematic Reviews and Meta-Analyses group (PRISMA)

(Moher et al. (2009)). EMBASE, Medline and Central databases were searched

for both networks. The databases were searched from inception to 9th March 2017.

Seven RCTs (Ascierto et al. (2016), McArthur et al. (2014), Long et al. (2015),

Robert et al. (2015), Hauschild et al. (2013), Flaherty, Robert, Hersey, Nathan,

Garbe, Milhem, Demidov, Hassel, Rutkowski, Mohr et al. (2012)) and three single

arm trials (sosman2012survival, ascierto2013phase, kim2013phase) were identified

for the BRAF inhibitor network. Four RCTs (Larkin et al. (2017), Hamid et al.
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Table 3.5: List of treatment regimens with abbreviations

Abbreviation Treatment Regimen

BRAF Inhibitor PFS Network

DTIC Dacarbazine 850mg/m2 or 1g/m2

Vem Mono Vemurafnib 960mg twice daily (BD) monotherapy

Tram2mg Trametinib 2mg once daily (OD) monotherapy

Dab Mono Dabrafenib 150mg BD monotherapy

Dab+Tram1mg Dabrafenib 150mg BD + trametinib 1mg OD dualtherapy

Dab+Tram2mg Dabrafenib 150mg BD + trametinib 2mg OD dualtherapy

Vem+Cob Vem+Cob = Vemurafenib 960mg BD + Cobimetinib 60mg
OD dual therapy

Second Line OS Network

GP100 GP 100 /Standard of Care

Pem2mg Pembrolizumab 2mg/kg every 3 weeks (Q3W)

Pem10mg Pembrolizumab 10mg/kg Q3W

Niv3mg Nivolumab 3mg/kg every two weeks (Q2W)

Ipi3mg Ipilimumab 3mg/kg Q3W

Ipi3mg+GP100 Ipilimumab 3mg/kg +GP 100

(2016), Hodi et al. (2010), Robert et al. (2014)) and three single arm trials (Wol-

chok et al. (2010), Hersh et al. (2011), Zimmer et al. (2015)) were identified for

the second line network. Figure 3.13 shows the RCTs and matched trials for both

networks. The full list of treatment regimens is described in Table 3.5.

(a) BRAF Inhibitors Progression-free
survival Network Diagram

(b) Second Line Overall Survival
Network Diagram

Figure 3.13: Network Diagram. Black nodes denote treatments in RCT trials only,
gray nodes denote treatments in both single-arm trials and RCT trials. Black solid
lines represent RCT connections and dashed lines represent matched connections.
The treatment requiring the match has the arrow pointing towards it.

Statistical Methods

In this section we use the HR model (Equation 2.8.2) for our analysis. Single-arm

trials were once again matched according to patient characteristics. Covariates

identified to be used were LDH greater than the upper limit of normal (LDH
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>ULN), ECOG ≥ 1, and disease at more than three sites. Disease at more than

three sites was unavailable for the single-arm trial so this was excluded.

There was an extra complication using the survival data as there was insufficient

information to obtain HRs on the matched trials based on the summary statistics.

However, Kaplan Meier (KM) curves were published in the trials so IPD was

reconstructed from these curves using a digitising method provided by Guyot et al.

(2012). A second complication arose for the BRAF inhibitor network as Flaherty,

Infante, Daud, Gonzalez, Kefford, Sosman, Hamid, Schuchter, Cebon, Ibrahim

et al. (2012) contained a three armed trial. A HR was therefore required for

Dab+Tram1mg vs Dab+Tram2mg and this was not provided. The KM curves

were also reconstructed to obtain this HR using the same digitising process.

If using the HR model for the sensitivity analysis of matching random arms

all curves would have to be digitised, which is quite labour intensive. However,

another method would be to match arms using a median model, as described in

Equation 2.8.2, instead of a HR model. Information on the median is available

for each trial in both networks. Although HRs incorporate more information than

simply using medians, we discuss in Chapter 5 that sometimes a median model

can be preferable to a HR model.

For the second line network a relevant observational study was also identified

through the systematic review. Although it may be desirable to run a sensitivity

analysis with and without this study, for the purposes of this thesis we have chosen

to include it in all scenarios. Therefore, in the second line network we consider

scenarios of excluding single-arms versus including single-arms through aggregate

level matching.

3.5.2 Results

Log Hazard Ratio

For both networks we present the results of four models. The first model excludes

the single-arm trials. The next three models included the matched evidence by

using a pooled model, a hierarchical model and an adjusted hierarchical model

where ω = 0.1. The log HRs are shown in Table 3.6 for the BRAF PFS network

and Table 3.7 for the second line OS network. The posterior SDs are colour coded,

with green indicating the smallest SD across the row and red indicating the largest

SD. For both networks we see that including the matched evidence increases the

precision of our estimates. The pooled model gives the smallest posterior SD,

but the hierarchical gives a smaller posterior SD than excluding the single-arm

evidence. For the BRAF network the ranking of the treatments stays the same no
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matter which model we’re using. However, for the second line OS network, while

Pem 10mg is the best treatment for each model there is a large variation between

the ranking of the other treatments.

Table 3.6: Log hazard ratio for each treatment versus DTIC for the BRAF Inhibitor
Network - Progression-free survival. Green cells indicate the smallest SD within
each row, while red cells indicate the largest SD within each row.

RCT Only Matched
Arms
Pooled

Matched
Arms Hi-
erarchical
Model

Matched
Arms
Down-
Weighted

Mean SD Mean SD Mean SD Mean SD
Tram2mg -0.75 1.11 -0.59 0.27 -0.68 0.45 -0.68 0.56
Dab Mono -0.97 0.94 -0.96 0.26 -0.99 0.90 -0.99 0.83
Dab+Tram2mg -1.59 0.98 -1.62 0.31 -1.61 0.48 -1.62 0.67
Vem+Cob -1.61 1.56 -1.82 0.33 -1.76 0.97 -1.70 0.92
Vem Mono -1.01 0.88 -1.13 0.26 -1.12 0.94 -1.06 0.81
Dab+Tram1mg -1.38 1.30 -1.40 0.44 -1.41 0.66 -1.42 0.84

Table 3.7: Log hazard ratio for each treatment versus GP100 for the Second Line
Network - Overall Survival. Green cells indicate the smallest SD within each row,
while red cells indicate the largest SD within each row.

Excluding
Single
Arms

Matched
Arms
Pooled

Matched
Arms Hi-
erarchical
Model

Matched
Arms
Down-
Weighted

Mean SD Mean SD Mean SD Mean SD
Pem2mg -0.19 1.27 -0.38 0.51 -0.24 0.50 -0.30 0.61
Pem10mg -0.30 1.22 -0.51 0.51 -0.37 1.06 -0.42 0.96
Niv3mg -0.11 1.66 -0.21 0.49 -0.09 1.08 -0.12 1.01
IPI3mg -0.28 1.36 0.02 0.42 -0.05 1.01 -0.25 0.92
IPI3mg+GP100 -0.25 1.45 -0.17 0.63 -0.33 0.57 -0.30 0.73

Matching Random Arms

When examining Figure 3.14 we note that lower values indicate better treatments,

which is the opposite of the corresponding graph for the HCV infection example.

We see that two of the treatments included in single-arms (Tram 2mg and Vem

Mono) would appear better if choosing a random match, while two of the other

treatments would look worse (Dab+Tram 2mg and Dab+Tram 1mg). The other

treatment analysed in a single-arm trial (Dab mono) is quite similar to the mean
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(a) BRAF Inhibitor Network -
Progression-free survival

(b) Second Line Network - Overall
Survival

Figure 3.14: Distribution of the log hazard ratio using randomly matching arms
compared with results from single-arms excluded, pooled, and hierarchical models,
with the best match chosen by the equal weights. The names of the treatment
regimens with single-arm trials are coloured in orange.

of the random matches, which is quite a small distribution to begin with. The

one non single-arm treatment that looks better (Vem+Cob) is the only treatment

which is not in a single-arm that is compared to a treatment in single-arm.

In the second line OS network we see a different scenario from what we have

previously seen in this sensitivity analysis of single-arm trials. In this case same

treatment (Ipi 3mg) has been analysed in three single-arm trials, which makes it

more likely that the estimate from the best matches will correspond to the middle

of the distribution of random matches. While this could give a more accurate

reflection of the true relative effect of Ipi 3mg, it could also simply be adding

noise to matched arms. This is plausible as we know that single-arm matching can

produce quite large posterior SDs. Therefore an alternative analysis could be to

identify which single arm trial has the closest match and to use this trial only.

In these scenarios we see that including the matched evidence has decreased

the posterior SD in both the matched and the pooled models. We have also

demonstrated how our method can be transferred to different outcome models.

Finally we see once again in the BRAF inhibitor network that single-arms may

consist of disproportionately healthy patient populations, while the second line

network has no clear bias in either direction, possibly because of the fact that

there are a number of single-arm trials which have been matched. Once again we

recommend that single-arms can add strength to networks with limited evidence,

but should always be analysed with caution.
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3.6 Discussion

3.6.1 Summary

If there was sufficient RCT evidence there would be no need to include single-arm

evidence as it is of lesser quality. However, sometimes only single-arm evidence is

available. Single-arm evidence is currently being used in HTA, so it is important

that we find the most suitable method, if any, for including single-arm evidence

in an NMA, and that we understand the benefits and limitations of this type of

evidence. Figure 3.15 shows a schematic representation of the association between

some of the parameters considered in this chapter and the MAE and posterior SD.

Other factors such as the covariate effect, the treatment effect and the size

of the RCTs can also affect the appropriateness of including matched evidence.

For these we tried to choose the parameters in the simulation study so that they

were as realistic as possible, and if anything they favoured RCT evidence. In the

exploratory analysis we found that matching was most valuable when trials were

small. Similarly, in the HCV infection example the matching method only showed

superiority over the reduced method once four or five studies had been removed.

There is a concern that allowing the inclusion of single-arm evidence would

disincentivise further RCT research from being undertaken. There is also the

question of whether we are willing to accept a particularly biased estimate over

no estimate at all. Therefore it makes sense to have the option to down-weight

the single-arm evidence, so that it does not have the same impact as RCT evi-

dence. Another possibility could be to only consider single-arm evidence for new

treatments while RCTs are being undertaken. However, sometimes it may not be

ethical to carry out the RCTs necessary to connect the network. For example, in

the case of HCV infection where the new treatment regimens appear to be much

better, it would not be in the interest of the patients to run an RCT involving new

and old treatments regimens.

3.6.2 Recommendations

We recommend considering single-arm evidence when the variability between stud-

ies is small and when we can find an appropriate match. We can attempt to

quantify this variability by examining the baseline effect across the RCTs. As the

discrepancies between the studies increases, the incorrect assumption of exchange-

ablity between matched arms leads to a decreased accuracy and precision in the

estimates. This form of evidence has a high possibility of being biased and should

be used with caution. The estimates of between study variability for the networks
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Figure 3.15: Schematic representation of the association between the parameters
and the mean absolute error and posterior SD based on the results from the simu-
lation study. The default parameters assumed in this graph (with the exception of
when each parameter is varied) are based on the parameters used in the simuala-
tion study, namely σµ = 0.59, no bias in single arm trials, prior on between-study
design effect, σdes ∼ Unif(0, 2), full weight on single arm studies. Note that loca-
tion and size of effects may depend on other parameters as described in the text.
Therefore the relative positioning of some lines are subject to change.
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analysed in this chapter were close to the crossing point where including matched

studies produces more biased estimates, which indicates that this method may not

be suitable for many networks where RCT data is also available. For treatments

that are not in any RCTs we cannot quantify the bias versus using RCT only as

this information simply is not available. However, in some cases including matched

evidence will be the only option available to connect the network.

When undertaking single-arm matching there are a number of sensitivity anal-

yses that should be carried out:

1. Quantify the variability between RCTs;

2. Compare the results using the best match to the results using random matches;

3. Adjust the weight of the matched evidence in the hierarchical model by

increasing the variance inflation.

It is important to emphasise that any method for incorporating single-arm evi-

dence cannot replace the unbiased approach of an RCT. Given the large potential

monetary gain for a pharmaceutical company arising from a positive HTA recom-

mendation, there is a clear incentive for pharmaceutical companies to ensure that

their treatment looks as effective as possible. Single-arm trials are much more

exposed to bias or manipulation than RCTs (Grieve et al. (2016)). Therefore, it

is imperative that we remember this when making decisions based on single-arm

evidence. While aggregate level matching may be helpful in estimating treatment

rankings when no other evidence is available, we would not consider this type of

evidence to be convincing enough to be the primary source of evidence when mak-

ing reimbursement decisions. Although there are advantages in using single-arm

evidence, the burden of proof must be on the pharmaceutical company to demon-

strate the benefits of their treatments using methods that are as free from bias as

possible.

3.6.3 Limitations and Extensions

When matching arms, we are making the assumption that we have considered all

relevant effect modifiers and prognostic variables. However, this may not necessar-

ily be the case. As we have seen in the case of Hepatitis C, not all studies record

the same covariates, nor might all relevant covariates even be known to clinician

when the trial is carried out. Therefore, making use of observational evidence to

explore covariate effects further may be useful when checking the validity of the

assumptions made during the matching process.
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We analysed five networks of RCTs to estimate the between study variability

in order to identify the typical amount of variability in a network. However, this

may not be a representative sample as four of the five networks were taken from

R, and these may have been chosen by the package authors as they have well

behaved properties. In addition, only datasets with binary outcomes were chosen,

as these were the most relevant to our simulation study. Finally, if we estimate

the variability between studies by using the RCTs alone, there is no guarantee

that the between-study effect σµ in the single-arm studies will follow the same

distribution as the RCTs. As there are often multiple single-arm trials available

for each treatment regimen, another method would be to study the variability

between these single-arm trials.

In the hierarchical model we were concerned that choosing a disconnected net-

work at each study design would lead to excessive influence from remote parts

of the hierarchy. Since we have flexibility in which study arms to match we can

force the matched network to be connected, as we had to do most of the time in

the simulation study. However, doing this means we are using a less similar arm

for matching. Whether we want to do this or not would depend on the differ-

ence between the two potential matches, which may require further exploration.

However, we believe that this was the most conservative option to take in this

scenario. A further issue is that the prior can add in extra uncertainty and the

hierarchical model can lead to less accurate estimates than the pooled model as

well, especially when each level is too sparse. In addition, given that we have only

two study types, it can be quite difficult to estimate σdes. Therefore, it may be

worth considering an informative prior distribution formed by expert opinion as

suggested by Efthimiou et al. (2017). A further option could be to include a bias

term in the hierarchical for the matched data.

Although our worked example only uses binary covariates, this method can

easily be applied to continuous covariates by using the mean in each trial. This

work could be extended to match the SD of continuous covariates also. Issues

with scale may arise when matching to multiple continuous covariates. In this

situation the standardised mean difference should be used as in Austin (2011)

and Flury & Riedwyl (1986). In this analysis we have only considered differences

in patient populations. However, there are other factors that can account for

differences between studies, for example differences in how treatment regimens

were administered. This work could be extended to include these differences as

well.

In this chapter we choose the closest match for each treatment regimen. How-

ever, there can be uncertainty regarding the choice of best match, as there may be
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other studies or arms that are nearly as similar as the chosen match. On the other

hand, there may be some treatments regimens for which all potential matches are

very dissimilar to the single arm trial. In this case we may want to consider exclud-

ing this treatment regimen from the analysis. Criteria for assessing a sufficiently

similar match is discussed in Schmitz et al. (2018). In addition, the sensitivity

analysis suggested in this chapter of choosing random matches gives us some idea

of the variability that arises in the conclusions based on the choice of match.

In both the HCV infection network and the melanoma BRAF inhibitor network

the best match is more conservative than a random match in the network, possibly

due to single-arm trials having a disproportionately healthier patient population.

The second line melanoma network has no clear bias in either direction, possibly

because of the fact that there are a number of single-arm trials which have been

matched, and are therefore closer to the average overall. It would be worth checking

if the best match is usually more conservative than a random match in various

networks. If so, it may indicate that single-arm trials are more likely to give better

results than RCTs and reinforce the point that single-arm evidence should be used

with caution and covariates should be matched as much as possible.

3.6.4 Conclusion

There is an increasing desire to use single-arm evidence where available. However,

single-arm evidence is never going to be a perfect substitute for RCTs. Methods

such as those explored in this chapter are already being implemented in clinical

practice, as seen in Jaff et al. (2017). There is a high risk of bias in the conclusions

from including this evidence type. Therefore it is imperative that there is a clear

method for including this evidence, backed up by systematic investigation, and an

indication for how much bias could potentially be introduced by using this evi-

dence. We believe that this work provides such an approach method, in particular

by following the steps and sensitivity analyses in Figure 3.1.
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Chapter 4

Individual Patient Data (IPD)

The following chapter is based closely on Leahy et al. (2018), which has appeared

in Research Synthesis Methods. It is based on joint work with Dr Aisling O’Leary,

Dr Emma Gray, Dr Nezam Afdhal, Dr Scott Milligan, and Dr Malte Wehmeyer.

Dr O’Leary and Dr Gray undertook the systematic review and provided guidance

on the issues relating to HCV infection. Dr Afdhal, Dr Milligan, and Dr Wehmeyer

provided IPD and provided guidance on the relevant datasets.

4.1 Introduction

While most trials publish only the summary statistics (Aggregate Data (AgD))

for patients as a whole, some may also be able to provide IPD. There are both

benefits and drawback to IPD NMAs (Debray et al. (2016), Veroniki et al. (2016),

Tierney et al. (2015), Jansen (2012), Van Walraven (2010), Sud & Douketis (2009),

Stewart & Tierney (2002)). On the positive side IPD allows for a more in-depth

and accurate analysis of the data, as we can explore how patient covariates influ-

ence the treatment effect, dk, as defined in Figure 4.1. We can therefore account

for differences in the patient covariates between arms. It also allows separation

of within study associations of the covariates from across study associations. It

facilitates harmonisation between trials, both in terms of outcome and analysis,

and encourages input from the clinical investigators. However, IPD can be quite

time consuming to obtain, and only certain types of IPD may be available which

could potentially lead to bias. For example, IPD may only be available for obser-

vational studies, or perhaps certain investigators may be more likely to share their

data than others. There are also a number of data protection issues that arise

from using IPD, and as such it can take a long time before IPD can be released

to secondary researchers. Finally, even when the IPD are obtained, much more

computational power is required to perform the analysis. As it is unlikely that

77



investigators will obtain a full IPD network, the best way to make use out of the

data is to be able to combine both IPD and AgD in the same NMA. Therefore, a

number of models have been developed for this purpose (Hong et al. (2018), Thom

et al. (2015), Donegan et al. (2013), Saramago et al. (2012)).

A number of articles have reviewed the use of IPD in MAs and in NMAs.

Debray et al. (2016) and Poppe et al. (2011) found that there are differences in

results between IPD and AgD, and encourage researchers to consider using IPD.

However, there remains a question as to whether the marginal benefit is worth

the additional time involved. Tudur Smith et al. (2016) also found IPD-MAs to

be beneficial, but note that “in many cases, similar results and conclusions can

be drawn from IPD-MA and AgD-MA. Therefore, before embarking on a resource

intensive IPD-MA, an AgD-MA should initially be explored and researchers should

carefully consider the potential added benefits of IPD.”

Therefore, this chaper aims to quantify the impact of including IPD studies in

NMA. A simulation study is carried out to examine the impact of additional IPD

studies on:

1. The accuracy of the point estimate of both the treatment effect and the

covariate effect,

2. The posterior Standard Deviation (SD) from the model’s estimate of both

the treatment effect and the covariate effect,

3. The coverage probability, which is the proportion of the time that the Cred-

ible Interval (CrI) contains the true effect,

4. The DIC, which assesses model fit.

We compare the results of this simulation study for both RCTs and observational

studies. We also analyse a HCV infection network consisting of three IPD obser-

vational studies to ascertain how different amounts or combinations of IPD studies

affect results.

A simulation study has previously been undertaken by Jansen (2012). He found

that the use of IPD does increase precision and reduce bias. We extend his work

by examining the coverage probabilities and the DIC. We also explore a number of

different model assumptions for the interaction between covariates and treatments.

This chapter is organised as follows: Section 2 describes the model development,

construction of the simulation study, and the HCV infection network. Section 3

presents the results of both the simulation study and the HCV infection network.

A general discussion and some recommendations are provided in Section 4.
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4.2 Methods

4.2.1 Model Development

All notation used throughout this chapter is described in Table 3 at the beginning

of this thesis. We extend the models described in Sections 2.9 and 2.10 to include

IPD. We examine models relating to a binary outcome (e.g. death or cure), and

a covariate which can either be binary or continuous. Following on from Done-

gan et al. (2013), we use the following nomenclature for the models we examined,

that is independent, exchangeable, and identical interactions of the treatment with

the covariates. Formally we note that independent refers to the situation where

the effects are independently and identically distributed (i.i.d). The exchangeable

model is one where the effects are conditionally i.i.d., and the identical model as-

sumes that the effects are the same. This is shown in Figure 4.1f. As described

in Chapter 2, an identical interaction can also be referred to as a prognostic vari-

able, while independent and exchangeable interactions can be referred to as effect

modifiers. To illustrate the interaction modelling options we take the example

of a binary covariate that reduces the probability of being cured. If there is an

identical interaction with all treatments then, in this case, one’s probability of

being cured decreases by a fixed amount regardless of which treatment is taken.

However, another possibility is that certain treatments may target this covariate

more effectively than others, and therefore possessing this covariate may be worse

on one treatment than on another. In this scenario interactions can be considered

either completely independent, or exchangeable, which means that they are still

different but come from the same underlying distribution.

The first model assumes independent treatment by covariate interactions. The

effect of treatment 1 (the reference treatment) is set to zero in the model with all

other treatments being compared to treatment 1. For AgD the model is:

logit(pij) =

{
µi if j=1

µi + δij + (βtij − βti1)xij if j>1
, (1a)

and for IPD the model is:

logit(pijl) =

{
µi + β0ixijl if j=1

µi + β0ixijl + δij + (βtij − βti1)xijl if j>1
, (1b)

where pij is the probability of an event in the jth arm of the ith trial. This probabil-

ity comes from the effect of the ith study, µi, the treatment effect in the jth arm of

the ith trial, δij, the covariate effect interacting with each treatment, βtij , and the
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proportion possessing the characteristic associated with the covariate of interest

for a binary covariate, or the mean of a continuous covariate in the jth arm of the

ith trial, xij. For the IPD part, let pijl be the probability of an event for the lth

patient in the jth arm of the ith trial and xijl is a binary indicator variable for the

presence of the characteristic associated with the covariate of interest for patient

l in the jth arm of the ith trial. In the case of the IPD dataset we can also include

the trial-specific covariate effect β0. As this model assumes that the interaction

with the covariate is independent for each treatment, there is a separate prior for

the covariate associated with each treatment. The covariates are centred in the

model, as was done in Donegan et al. (2013).

The second model assumes that treatment by covariate interactions are ex-

changeable, i.e. that the interactions are different for each treatment, but that

they come from a common distribution. With this assumption the model stays

the same as above but the priors differ, as detailed later in this section.

The third model assumes that treatment by covariate interactions are identical.

Hence the models are now:

logit(pij) =

{
µi if j=1

µi + δij + βxij if j>1
, (2a)

and:

logit(pijl) =

{
µi + β0ixijl if j=1

µi + β0ixijl + δij + βxijl if j>1
. (2b)

All three models are represented as directed acyclic graphs (DAGs) in Figure 4.1.

The prior distributions for the parameters chosen for this model are µi ∼
N(0, 1.832), δij ∼ N(dtij − dti1 , σ

2
δ ), dk ∼ N(0, 1.832), σδ ∼ Unif(0, 5), β0 ∼

N(0, 1.832). We can adjust for trials with arms greater than two by following Dias,

Sutton, Ades & Welton (2013). For the independent model the prior on each β is

βk ∼ N(0, 1.832) for each treatment by covariate interaction. For the exchangeable

model the distribution for each β is βk ∼ N(µβ, σ
2
β), with µβ ∼ N(0, 1.832) and

σβ ∼ Unif(0, 5). For the identical model the prior is β ∼ N(0, 1.832)

The prior distributions for µ are chosen in order to have an approximate uni-

form distribution on the log odds ratio. Kass & Wasserman (1996) point out that

the properties of a prior on one scale can differ when transformed to another scale.

A seemingly vague prior such as µi ∼ N(0, 1002) is not vague on the inverse log

odds scale, as most of the distribution is close to either 0 or 1. This is illustrated

in Figure 4.2. However, σ = 1.83 was chosen such that two SDs on each side of

the mean covered 95% of the distribution. σδ represents the between trial SD of

the treatment effect, which covers (0, 1) on the probability scale (rounded to four
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Figure 4.1: DAGs for the identical, exchangeable and identical models. Square
nodes represent fixed quantities while the ellipses are stochastic nodes. The shaded
nodes represent observed quantities. Nodes written in red change depending on
whether the model is for AgD or IPD. Nodes written in blue change depending on
which treatment by covariate interaction is assumed.
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Figure 4.2: Simulated values from transformed probability distribution after apply-
ing the inverse log odds function

figures).

4.2.2 Simulation Study

A simulation study was performed in order to assess the impact of using IPD

studies. IPD was simulated for eight studies and this was aggregated. We then used

each data point in a nine iteration loop to compare the results from using the AgD

from the eight studies with no IPD, to the results obtained from analysis including

one more IPD study each time until we eventually used a full IPD network. This

was repeated at least 100 times in order to reduce Monte Carlo error. The accuracy

and precision of our model’s estimate of the treatment effect and covariate effect,

the coverage probabilities, and difference in DIC between models were assessed as

the number of IPD studies increased. Models were run using Markov Chain Monte

Carlo (MCMC) simulation in the JAGS software package (Plummer (2012)).

Two different interactions between treatments and covariates were examined:

• The covariate effects are identical for each treatment and one value is simu-

lated from N(0, 1.832).

• The covariate effects are exchangeable between treatments and the value for

each treatment is simulated from N(0, 1.832).

This distribution was chosen for the covariate effects as it is rather flat in the trans-

formed space as described in Section 5.2.4. These were examined for both RCT

and observational studies, as well as for a binary and a continuous covariate, which

came to eight scenarios in total. For each scenario the three modelling assumptions
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of independent interactions, exchangeable interactions and identical interactions

were explored. A tree diagram that illustrates all scenarios and modelling options

for the simulation study is shown in Figure 4.3.

There were five treatment regimens in the network. Each study had two arms.

In order to keep the studies as generic as possible the treatments were randomly

assigned to each study arm. Other values were simulated as follows:

• µ was simulated from N(0, 1.832) as it was a vague distribution that is rather

flat on the inverse logit scale as seen in Figure 4.2.

• d was simulated from N(0, 1.832) as it was a vague distribution that is rather

flat on the inverse logit scale as seen in Figure 4.2.

• Number of patients generated from a rounded Unif(250, 350) for the first

arm of each trial. This was then doubled and patients were then randomly

assigned to one of the arms so both arms did not necessarily have the same

number of patients. This method was chosen to more accurately reflect the

reality of patients being recruited first and then assigned to an arm. This was

applied for both the RCTs and the observational studies. As a consequence

of this approach the number of patients in each arm of a trial will be similar,

although the covariate make-up of the patients will differ for observational

studies as highlighted in the next step.

• In the case of binary covariates the probability of possessing the character-

istic associated with the covariate was generated from Unif(0.1, 0.9). The

covariate for each individual patient was then generated from a Bernoulli

distribution using the simulated probability. For RCTs one probability was

generated per study. As a consequence the underlying distribution for both

arms is the same. However, a known issue with observational studies is that

there can be systematic differences between arms as they have not been ran-

domly assigned (Schmitz et al. (2013)). In order to reflect these differences

the probability of possessing the characteristic associated with the covariate

was generated separately for each arm.

• In the case of continuous covariates the mean was simulated from Unif(0.1, 0.9).

The covariate for each individual patient was then generated from a trun-

cated normal distribution. This was done to allow the continuous and binary

scenarios to be as similar as possible in terms of the effect of the covariate,

so as to allow comparison between the two scenarios. The covariate for each

individual patient was bounded either below by 0 (if the mean was less than

0.5) or above by 1 (if the mean was greater than 0.5). The other side was
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Figure 4.3: Tree diagram for all scenarios and modelling assumptions for the
simulation study as described in Section 5.2.3
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dtij
β

xijl

µi

(a) DAG Assuming Identical
interactions for the covariates

pijl
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dtij
βtij

xijl

µi

(b) DAG Assuming Exchangeable

Figure 4.4: DAGs for simulation study. Square nodes represent fixed quantities
while the ellipses are stochastic nodes. The shaded nodes represent observed quan-
tities. Nodes written in blue change depending on which treatment by covariate
interaction is assumed.

bounded by the same distance from the mean, in order to maintain the sym-

metry of the distribution. For example, if the mean of the distribution was

0.3 then the individual patient covariates were bounded between (0, 0.6).

The SD was set at a sixth of the range of the distribution, in order to limit

the amount of truncated values. For RCTs we used the same mean for both

arms in a study; however for observational studies we generated the mean

separately for each arm. As was the case with the binary covariates, the

distribution was generated at the study level for the RCTs and at an arm

level for observational studies.

The probability of an event, pijl, in each study i and each arm j, was computed

on the basis of the ith study effect, µi, the treatment effect, dtij , and the effect of

each of the baseline covariates, βij(xijl), where xijl is a indicator variable for the

presence of the characteristic associated with the covariate for patient l in arm j

of study i:

logit(pijl) = µi + dtij + βtij(xijl).

The observed event, rijl, is then calculated from a Bernoulli(pijl) for each patient l,

in arm j of study i based on the above probability. DAGs describing the simulation

study are shown in Figure 4.4.

The three models were tested to assess how well they predicted the true treat-

ment effects and covariate effects. A burn-in of 20 000 iterations was tested for

convergence by checking if the Gelman-Rubin statistic (Gelman & Rubin (1992))

was less than 1.1. Following this another 10 000 iterations were sampled for our

estimates. If the convergence condition was not met the number of iterations
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was doubled (both for the burn-in and for the samples for estimation), and then

tested again until the Gelman-Rubin statistic was less than 1.1. If the chains

had not converged after a burn-in of 320 000 the corresponding simulation was

excluded from the analysis. For the full IPD dataset it can take approximately

five minutes to complete 20 000 iterations with binary covariates, and 17 minutes

to complete 20 000 iterations with continuous covariates. We were prepared to

allow the model run 16 times longer than this to converge. Given the amount

of simulations required we decided it was not feasible to include chains that had

not converged by this point. This occurred for less than 1% of chains. Reasons

for non-convergence could include identifiablity of certain parameters or numer-

ical issues. In this chapter a potential cause could be the indentifiability of the

covariate-treatment interaction, particularly in the exchangeable model. For each

set of simulated values we analysed all three models and all nine possibilities for

the proportion of IPD studies. Therefore, if the chains did not converge for one

of the models in a particular simulation the results for the two other models in

the simulation, and all other eight possibilities for proportions of IPD studies were

excluded from the analysis, in order to eliminate any potential bias due to differ-

ing simulations. The simulations took approximately 18 000 computing hours, run

over parallel sessions. The exact number of simulations for each of the eight sce-

narios are detailed in the appendix. There are more simulations completed for the

scenarios that involve binary covariates since each simulation for the continuous

covariate required longer computation time.

Coverage probability was examined to ascertain how often the estimate of the

treatment effect was in the 95% CrI. The mean absolute error (MAE) was also

assessed by looking at the mean absolute difference between the estimates and the

true values for treatments 2 to 5 as defined as follows:

MAE(d̂) ≡
∑S

s=1

∑5
k=2|dks−d̂ks |

4

S
, (4.3)

where d̂k is our model’s estimate of the effect of treatment k and S is the total

number of simulations. Treatment 1 was excluded as this is our reference treat-

ment, which was set to 0. When identical covariate interactions were simulated

the accuracy of the estimates for β were assessed by:

MAE(β̂) ≡
∑S

s=1 |βs − β̂s|
S

, assuming identical interactions,

MAE(β̂) ≡
∑S

s=1

∑5
k=1|βs−β̂ks |

5

S
, assuming non-identical interactions,

(4.4)
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where β̂ is our model’s estimate of the effect of the covariate under the identical in-

teraction assumption, and β̂k is our model’s estimate of the effect of the interaction

of the covariate with treatment k under the exchangeable and independent inter-

action assumptions. When exchangeable interactions were simulated the accuracy

of the estimates for β was assessed by:

MAE(β̂) ≡
∑S

s=1

∑5
k=1|βks−β̂ks |

5

S
. (4.5)

Note that for the case of the identical model each β̂k will be the same. Precision is

obtained from the posterior SD. The DIC was calculated and models were ranked

according to which had the lowest DIC. We highlight differences greater than three,

as is consistent with Welton, Caldwell, Adamopoulos & Vedhara (2009).

4.2.3 Applied Example in HCV Infection

We used studies from a HCV infection network to test our conclusions. 36 potential

studies, composed of 20 RCTs and 16 observational studies, were identified by a

systematic review. We attempted to make contact with the authors of all the

studies in order to collect as much IPD as possible. Our intention was to conduct

a full IPD NMA. We received anonymised IPD from three observational studies

(TRIO (Flamm et al. (2017)), Wehmeyer (Wehmeyer et al. (2014)), and ICORN

(Gray et al. (2017))), which highlights the difficulty in obtaining IPD. We limited

the network used in this chapter to these three observational studies in order to

allow us compare a full AgD network to a full IPD network. Notwithstanding the

risk of data accessibility bias in the type of studies for which IPD are available

(Debray et al. (2015)), we proceed to analyse these data in order to illustrate our

approach.

Using these three studies we had a network of 10 treatment regimens in total.

However, most treatment regimens had been considered in only one study in our

IPD network so we decided to restrict our network to treatments that appeared

in more than one study. We restricted our analysis to patients with a subtype of

the disease known as HCV infection genotype 1 (and therefore treatment regimens

which are indicated for genotype 1), who had received treatment for at least 12

weeks. This resulted in a network of 4 treatment regimens as listed in Table 4.1.

The treatment regimens in each study, as well as the number of patients per arm

are detailed in Table 4.2. Figure 4.5 shows the network diagram.
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Table 4.1: List of treatment regimens with abbreviations

Abbreviation Treatment Regimen

TEL/PR Telaprevir (+ pegylated interferon and ribavirin)

BOC/PR Boceprevir (+ pegylated interferon and ribavirin)

PrOD±RBV Paritaprevir boosted with ritonavir, ombitasvir and dasabu-
vir (with or without ribavirin)

SOF/LDV±RBV Sofosbuvir and ledipasvir (with or without ribavirin)

Table 4.2: Number of patients per arm for each of the three studies. Dashes indicate
that the treatment was not included in the study.

TEL/PR BOC/PR PrOD±RBV SOF/LDV±RBV

TRIO - - 459 3149

Wehmeyer 65 37 - -

ICORN 203 94 183 315

Figure 4.5: HCV infection Network of IPD Studies

4.3 Results

4.3.1 Simulation Study

In this section we compare the three models in terms of coverage probability, MAE

of the estimates, and posterior SD. Ideally, we would like the coverage probability

to be as close to the nominal CrI (in this case 95%) as possible, while minimising the

MAEs of the estimates and posterior SDs. We also assess the effect of additional

IPD on these outcomes and explore when the DIC can be used to choose between

models. A summary of all results in this section is presented in Tables 4.8 and 4.9

in the discussion.

The results obtained when using a binary covariate and a continuous covari-

ate followed the same trend. However, the effect of IPD was sometimes more
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pronounced for binary covariates. For the most part, there was no noticeable dif-

ference between the results from the simulated RCTs and observational studies.

For clarity and brevity, only the results from the scenario using RCTs with a bi-

nary covariate are presented in the main text. Graphs for all four scenarios are

included in the appendix.

Coverage Probability

Figure 4.6 shows the coverage probability. Low coverage probability indicates

that we have underestimated the uncertainty that is present; whereas coverage

probability that is too high indicates that we have overestimated uncertainty. In

our results we use the term misspecified model to mean that in the inference phase

of our simulation the model that was fitted differed from the model that was used

to generate the data from that same simulation.

Note that the coverage for some misspecified models is quite far away from

the nominal 95%. When the identical model is used incorrectly the coverage of

both the treatment effect and the covariate effect is much lower than the nominal

CrI. Meanwhile, for the covariate effect, the coverage of the independent model is

much lower than the nominal CrI when the true interactions are identical. The

coverage of both of these misspecified models becomes even worse when extra IPD

are included. A decrease in coverage probability is due to either a less accurate

estimate or smaller posterior SD. We will see in Section 4.3.1 that MAEs of the

estimates do not tend to increase with extra IPD, so most of the decrease in

coverage is due to smaller posterior SD. This indicates a potential issue with IPD;

it can cause over confidence when the incorrect model is chosen.

When we only have AgD, the coverage of the covariate effect for the identical

model is too low regardless of whether it is correct or not. However, when the

interactions are in fact identical the coverage increases as we include more IPD.

When most of the studies have IPD then the coverage is too high. An increase

in coverage probability can be caused by a more accurate estimate or a larger

posterior SD. We will see in Section 4.3.1 that posterior SDs do not tend to increase

with extra IPD, and most of the increase in coverage is due to smaller MAEs of

the estimates.

Excessively large posterior SDs can also be seen in most of points for the

exchangeable model, especially for the coverage of the covariate effect when it is

the correct model. Here the coverage is 100% in all cases, which indicates that the

posterior SD should be much smaller. However, in this scenario the independent

model is almost exactly on the 95% line.

For the treatment effect the inclusion of IPD shows evidence of a very slight
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increase of coverage, but sometimes this is further away from the nominal CrI.

Figure 4.6: Coverage Probabilities of the 95% credible intervals for treatment effect
and covariate vs percentage of IPD studies. Coverage above the solid black 95%
line often indicates that posterior standard deviations are too conservative, while
coverage below this often line indicates that posterior standard deviations are too
precise. IPD can cause over confidence when the incorrect model is chosen.

Mean Absolute Errors and Posterior SDs

Figure 4.7 shows the MAEs of the estimates and posterior SD from the JAGS

output of the treatment effect and covariate effect vs percentage of IPD studies. It

demonstrates the importance of choosing the correct model, or at the very least,

making a distinction between an identical interaction model (prognostic variable),

as defined in Equations 2a and 2b, or a non-identical interaction model (effect

modifier), as defined in Equations 1a and 1b. As we may have assumed, correctly

choosing between an identical or non-identical model gives the smallest MAEs
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for both the estimates of the treatment effect and the covariate effect. However,

the identical model produces the smallest posterior SDs for the covariate effect

regardless of which model is correct, even though it has the highest MAE for both

the estimate of the covariate and the treatment effect when the true interactions

are in fact exchangeable. In this situation the posterior SD is quite a bit smaller

than the MAE of the estimate, which would explain the poor coverage of the model.

Again when true interactions are exchangeable, the posterior SD of the identical

model for the treatment effect is also smaller than the MAE of the estimate, and

is in fact the smallest posterior SD when the majority of studies are AgD. This

discrepancy between the MAE of the estimate and posterior SD highlights the

danger of assuming an identical model when this is not the case. The MAEs of

the estimate from the non-identical models do not differ much between the two

scenarios simulated from models assuming identical and non-identical interaction

effects, but the error of the estimate obtained from the model assuming identical

interaction is shifted quite far up when it is chosen incorrectly.

The posterior SD of the treatment/covariate effect for the exchangeable model

is much higher than the corresponding MAE of the estimates in all cases. This is

the reason why the coverage probability for the exchangeable model is too high.

For covariate effects, the posterior SD is much higher for the exchangeable model

than for the other two models. The exchangeable model incorporates all five

interactions into one distribution, whereas the other models need to just estimate

one effect (identical), or estimate five completely separate effects (independent).

The covariate effect is generated from a N(0, 1.832) distribution. The mean

of the absolute values from this distribution is 1.46, which is quite close to the

MAE of the estimate of the covariate effect when the incorrect model is chosen.

This implies that we gain very little information about the covariate when a non-

identical model is chosen incorrectly.

All models have some MAEs of the estimates and posterior SD which have been

decreased by including extra IPD. This can particularly be seen for the treatment

effects and the non-identical models. The effect of IPD mainly follows a slightly

convex downwards slope, which means that most of the benefit of IPD comes from

the first few studies, with the marginal benefit decreasing the more IPD that is

included in the NMA.

Deviance Information Criterion (DIC)

As we have demonstrated the importance of choosing the correct model, we need

to check how well this can be undertaken by comparing the DIC across models,

and whether IPD can be of benefit here. Examining Figure 4.8 we can see that
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Figure 4.7: Mean absolute error (MAE) and posterior standard deviation (SD)
of the estimate of the treatment effect and covariate effect vs percentage of IPD
studies. As the amount of IPD increases, the MAEs of the estimates and posterior
SDs decrease for a number of models. While the correct assumption will produce the
lowest MAEs of the estimates, an incorrect model may produce smaller posterior
SDs which are overly precise.
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there is quite a large difference in our ability to choose between models, even

when we include a small number of IPD studies, as compared to none. When the

true interactions are identical, using the DIC we can correctly choose the identical

model over the independent interaction model approximately 60% of the time with

a full IPD dataset, whereas this can rarely be done with a full AgD dataset. In

a small number of instances the DIC can also choose identical over exchangeable

or exchangeable over independent. This is what we may have expected as the

exchangeable assumption is somewhere between identical and independent. When

the true interactions are exchangeable, the DIC is even more powerful. While

there is no difference between models with the AgD dataset, using the DIC allows

us to differentiate correctly between models up to 100% of the time with the full

IPD dataset. Even including one IPD study has a considerable effect on the DIC.

Again, we see the marginal benefit decreasing as more IPD are included in the

NMA. There seems to be a clear distinction between either using the identical

model or using one of the other two models. However, there is no difference

between the exchangeable and independent models.

While we see some of the same patterns with continuous covariates it is less

pronounced. As was the case with the binary covariate, when using the full AgD

dataset we cannot distinguish between models. While there is more of a difference

in DIC when IPD are included, differences in DIC do not occur with the same

frequency as when using binary covariates (see Figure B.7 in the appendix).

To understand the reason why the DIC is more powerful for true exchangeable

interactions, we examine the SD of the interaction of the covariate with the five

treatments for the independent and exchangeable models, as seen in Figure 4.9.

There is clearly a larger SD when the interactions are truly different. Therefore,

if the model incorrectly assumes that there is a difference between treatments,

the estimates will not be as diverse as in a truly exchangeable scenario, and so

there is not as much of a difference between an identical and non-identical model

in a truly identical scenario. We can also note that the SD in the exchangeable

scenario increases with more IPD studies. So as the model gets more information

about the covariates it can estimate them to be further apart. The true effects are

simulated with an SD of 1.83, which is quite close to the estimate from a full IPD

dataset. Conversely, in the truly identical scenario, the SD slightly decreases with

more IPD, i.e., it gets closer to the true SD of 0.

Finally, we examine the MAE for the chosen model. In this case we only

include simulations where the difference between the highest and lowest DIC is

greater than three. We then choose the model with the lowest DIC as the chosen

model. In this case we see that the MAE of the chosen model performs almost the
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Figure 4.8: Proportion of deviance information Criterion (DIC) differences greater
than 3 vs percentage of individual patient data (IPD) studies. The lines track
the number of iterations when there is a meaningful difference between two mod-
els. There are seldom differences between the models with a full aggregate dataset.
However, as the amount of IPD increases the correct model is identified more often
(up to 100% of the time in the case of an exchangeable model).

same as the effect modifier models when the interactions are truly exchangeable,

and somewhere between the effect modifier models and the identical model when

the true interactions are truly identical. This echos what has been observed in

Figure 4.8, in that we are unlikely to choose the incorrect model when interactions

are truly exchangeable, but we may choose the incorrect model when interactions

are identical.

RCT vs Observational Studies

The main difference between RCTs and observational studies is that the obser-

vational studies produce a more accurate estimate of an identical covariate effect

when we have mainly AgD studies (see Figure B.5). Under the identical model the

observational studies provide estimates at different covariate levels in the two arms

and thus have a smaller MAE of the estimates when compared to RCTs, which

will measure both arms at approximately the same level of the covariate because

of randomisation.

We may have expected a greater difference in the accuracy of the treatment

effect between the RCTs and the observational studies, as the RCTs are better

quality trials that balance patient level covariates by design. While the MAEs of
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Figure 4.9: Standard deviation of the interaction of the covariate with the five
treatments for the independent and exchangeable models vs percentage of individual
patient data (IPD) studies. Exchangeable and independent models will estimate
the covariate effects to be more different from each other when they are actually
exchangeable as opposed to truly identical. As the amount of IPD increases the
standard deviation comes closer to the true standard deviation of zero when true
interactions are identical, while the standard deviation tends to the prior when true
interactions are exchangeable.

Figure 4.10: MAE for chosen model vs percentage of IPD studies. In this case we
see that the MAE of the chosen model performs almost the same as the effect mod-
ifier models when the interactions are truly exchangeable, and somewhere between
the effect modifier models and the identical model when the true interactions are
truly identical.
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the estimates are slightly higher in all scenarios for the observational studies as

compared to the RCTs, the difference is not large enough that we can confidently

conclude that it is not due to chance (see Figure B.3).

4.3.2 Applied Example in Hepatitis C Virus (HCV) Infec-

tion

We now present the results of all eight possible datasets for the HCV infection

network. These consist of a full AgD dataset, a full IPD dataset, and the six

mixed combinations of either one or two IPD studies out of the three possible

IPD studies. We will also present the results using the three model assumptions

of independent, exchangeable and identical interactions. A tree diagram that

illustrates all dataset combinations and modelling options is shown in Figure 4.11.

Deviance Information Criterion (DIC)

Table 4.3 shows the DIC for the three models using the eight different datasets.

Models with a smaller DIC are considered better. Examining the difference in

DIC for one IPD study, we can see that ICORN is the only study that shows a

difference between models; this is the only study to include all four treatments. In

this case the DIC from the independent and exchangeable models are at least three

lower than identical, which indicates a better model fit. Using IPD from either

of the other two studies on their own does not allow us to distinguish between

models. In fact, we only see a difference of greater than 3 between any models

when we include IPD from ICORN. However, when IPD from TRIO is included

in addition to IPD from ICORN the difference in DIC decreases. In fact, the

difference between identical and exchangeable falls below 3 in this case. This

possibly demonstrates some discrepancy between TRIO and ICORN. Overall we

conclude that one of the non-identical (effect modifier) models is more appropriate

in this case.

Credible Intervals and Posterior SDs

Results of all models and datasets are shown in Figures 4.12 and 4.13. All of these

CrIs span zero. Of course, it is recognised that this is not the full evidence base for

HCV infection, but it is used here for illustrative purposes. Including all AgD stud-

ies could lead to smaller CrIs, but this is outside the scope of this chapter. Figure

4.12 shows the treatment effects. Although there are some noticeable differences

in point estimates for the efficacy of PrOD±RBV and SOF/LDV±RBV versus

96



No IPD

Wehmeyer

ICORN

TRIO

ICORN and
Wehmeyer

TRIO and
Wehmeyer

ICRN and
TRIO

Full IPD

Assuming Identical

Assuming Exchangeable

Assuming Independent

Assuming Identical

Assuming Exchangeable

Assuming Independent

Assuming Identical

Assuming Exchangeable

Assuming Independent

Assuming Identical

Assuming Exchangeable

Assuming Independent

Assuming Identical

Assuming Exchangeable

Assuming Independent

Assuming Identical

Assuming Exchangeable

Assuming Independent

Assuming Identical

Assuming Exchangeable

Assuming Independent

Assuming Identical

Assuming Exchangeable

Assuming Independent

Studies
Using IPD

Chosen
Model

Figure 4.11: Tree diagram for all IPD and AgD combinations and modelling
options for the real world HCV infection network as described in Section 4.2.3
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Table 4.3: Deviance Information Criterion (DIC) for each model and dataset.
Models with lower DIC are considered more appropriate. A full aggregate dataset
does not allow us to differentiate between the models. The identical model is
never chosen for any dataset.

DIC One IPD Two IPD
AgD TRIO ICORN WEH IC&WE TR&WE IC&TR IPD

Identical 57.41 2,720.21 678.79 186.08 807.17 2,849.06 3,341.78 3,470.00
Exchangeable 56.85 2,720.36 674.14 186.18 802.86 2,849.24 3,339.51 3,467.67
Independent 56.42 2,720.16 672.85 186.37 801.05 2,850.07 3,337.30 3,465.49

Identical 0.56 0.16 4.65 -0.10 4.31 -0.18 2.28 2.32
minus Exchangeable
Identical 0.99 0.04 5.94 -0.29 6.12 -1.02 4.49 4.50
minus Independent
Exchangeable 0.43 0.20 1.29 -0.19 1.81 -0.84 2.21 2.18
minus Independent

Notation: AgD (aggregate data), WEH (Wehmeyer), IC&WE (ICORN and Wehmeyer), TR&WE (TRIO and Wehmeyer),
IC&TR (ICORN and TRIO), IPD (individual patient data)

TEL/PR, in each of the 24 model and dataset options, the ranking of the treat-

ment regimens, in terms of attainment of SVR, is unchanged. SOF/LDV±RBV is

ranked highest, followed by PrOD±RBV, TEL/PR, and finally BOC/PR. This is

consistent with Gray et al. (2015), which uses all available AgD evidence, which

also found SOF/LDV±RBV to be the best treatment, followed by PrOD±RBV.

Figure 4.13 shows the covariate effects. The difference in the length of the CrIs be-

tween identical and exchangeable covariate interactions again highlights the need

to check model choice if we wish to draw conclusions on the effect of the covari-

ate. There is considerably more discrepancy between models for the covariate

effects, with the identical models in particular being closer to the line of no effect.

Depending on the model and dataset there are estimates on either side of this line.

The size of the credible intervals is solely dependent on the posterior SDs which

is detailed in Tables 4.4 and 4.5. For all three model assumptions the posterior

SD of each covariate effect decreases when including IPD. As we have identified

that the identical model would not be appropriate for this network, the identical

model may produce overly precise SDs, as shown in the coverage probability of

the simulation study in Figure 4.6. The posterior SD of the treatment effects

are sometimes increased and sometimes decreased. In cases where including extra

IPD increases posterior SD of the estimated treatment effect, this may indicate

between-study variability. It should be noted that the main decrease in posterior

SD of the treatment effect is for the identical model, which is most likely not the

correct model for this network.

Tables 4.6 and 4.7 show the effect of IPD and model choice on the posterior SD

for each combination of IPD and AgD. Cells are colour coded based on the size of

the posterior SD within each model (row). In Table 4.6 we see that including IPD
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Figure 4.12: 95% credible intervals for each treatment relative to TEL/PR. The
panel on the left hand side specifies the studies for which IPD are included. Points
to the right of the vertical line of no effect indicate that the treatment is superior to
TEL/PR. Treatment rankings are the same for all models and datasets. All lines
span zero which indicates a non statistically significant difference.
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Figure 4.13: 95% credible intervals (CrI) for covariate interaction with each treat-
ment. The panel on the left hand side specifies the studies for which IPD are
included. The credible interval for the identical assumption is the same in each
graph. CrIs are smaller when the amount of IPD are increased. The estimate of
the covariate effect is quite dependent on which model or dataset is chosen.
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Table 4.4: Posterior Standard Deviation (SD) for covariate effects. Percentage
change shows the reduction between the full aggregate dataset and full individual
patient dataset. Smaller posterior SDs within each row are coloured in green.

AgD IPD Percent Change
Identical β 1.48 0.91 -39%

Exchangeable

βTEL/PR 2.58 1.82 -30%
βBOC/PR 2.90 1.99 -31%
βPrOD±RBV 2.85 1.98 -30%
βSOF/LDV±RBV 2.30 1.96 -15%

Independent

βTEL/PR 1.53 0.99 -35%
βBOC/PR 1.80 0.98 -45%
βPrOD±RBV 1.57 0.95 -39%
βSOF/LDV±RBV 1.44 0.94 -35%

Table 4.5: Posterior Standard Deviation (SD) for treatment effects versus
TEL/PR. Percentage change shows the reduction between the full aggregate dataset
and full individual patient dataset. In the case of treatment effect this is some-
times negative to represent an increase. Smaller posterior SDs within each row
are coloured in green.

AgD IPD Percent Change

Identical

BOC/PR 0.71 0.72 1%
PrOD±RBV 0.85 0.84 -1%
SOF/LDV±RBV 0.93 0.85 -9%

Exchangeable

BOC/PR 0.84 0.84 0%
PrOD±RBV 1.35 1.10 -19%
SOF/LDV±RBV 1.23 1.12 -9%

Independent

BOC/PR 0.77 0.91 18%
PrOD±RBV 1.14 1.23 8%
SOF/LDV±RBV 1.19 1.27 7%

from any one study decreases the posterior SD of the covariate effects for identical

and exchangeable. For the independent assumption, some of the posterior SDs are

not decreased with IPD from only Wehmeyer or TRIO, as neither one of these has

studied all four treatments. We again see some evidence of disagreement between

studies as some posterior SDs are increased when IPD are included from more than

one study. Overall, however, the full IPD dataset has posterior SDs that are quite

close to the smallest posterior SD, which indicates that there is not considerable

disagreement. Once again we see that the exchangeable model produces the highest

posterior SDs, especially for covariate effects. In Table 4.7 we see that the use of

IPD does not make as much difference to the posterior SD of the treatment effect.

As highlighted in the simulation study, this may indicate heterogeneity between

studies and therefore we should use the full IPD where possible so as not to rely

on overly precise posterior SDs.
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Table 4.6: Posterior Standard Deviation (SD) for covariate effects for all
eight datasets. Smaller posterior SDs within each row are coloured in green.

One IPD Two IPD
AgD WEH ICORN TRIO IC&WE TR&WE IC&TR IPD

Identical β 1.48 1.23 1.26 1.19 1.13 0.89 0.98 0.91

Exchangeable

βTEL/PR 2.39 2.16 2.06 2.07 2.24 1.91 2.27 1.98

βBOC/PR 2.90 2.17 2.08 2.32 2.25 1.92 2.28 1.99

βPrOD±RBV 2.85 2.72 2.15 1.81 2.27 1.86 2.32 1.98
βSOF/LDV ±RBV 2.30 2.03 2.14 1.83 2.23 1.85 2.32 1.96

Independent

βTEL/PR 1.49 1.20 0.92 1.49 1.01 1.30 1.06 0.97

βBOC/PR 1.80 1.24 0.94 1.78 1.04 1.33 1.08 0.98

βPrOD±RBV 1.57 1.58 1.03 1.17 1.15 1.24 1.08 0.95
βSOF/LDV ±RBV 1.44 1.48 1.04 1.17 1.12 1.22 1.07 0.94

Notation: AgD (aggregate data), WEH (Wehmeyer), IC&WE (ICORN and Wehmeyer), TR&WE (TRIO and
Wehmeyer), IC&TR (ICORN and TRIO), IPD (individual patient data). White represents largest posterior SD, darker
shades of green represent smallest posterior SD within each row .

Table 4.7: Posterior Standard Deviation (SD) for treatment effects relative
to TEL/PR for all eight datasets. Smaller posterior SDs within each row
are coloured in green.

One IPD Two IPD
AgD WEH ICORN TRIO IC&WE TR&WE IC&TR IPD

Identical

BOC/PR 0.71 0.71 0.75 0.72 0.73 0.72 0.73 0.72
PrOD±RBV 0.85 0.83 0.87 0.87 0.84 0.84 0.85 0.84
SOF/LDV±RBV 0.93 0.90 0.89 0.90 0.86 0.86 0.86 0.85

Exchangeable

BOC/PR 0.84 0.66 0.76 0.84 0.78 0.76 0.83 0.84
PrOD±RBV 1.35 1.26 1.04 1.08 1.06 0.92 1.08 1.10
SOF/LDV±RBV 1.23 1.03 1.23 1.11 1.23 0.94 1.12 1.12

Independent

BOC/PR 0.77 0.68 0.81 0.89 0.80 0.79 0.93 0.91
PrOD±RBV 1.14 1.12 1.11 1.16 1.11 1.11 1.23 1.23
SOF/LDV±RBV 1.19 1.19 1.27 1.20 1.27 1.14 1.27 1.27

Notation: AgD (aggregate data), WEH (Wehmeyer), IC&WE (ICORN and Wehmeyer), TR&WE (TRIO and
Wehmeyer), IC&TR (ICORN and TRIO), IPD (individual patient data). White represents largest posterior SD,
darker shades of green represent smallest posterior SD within each row.

4.4 Discussion

Through our simulation study we found a variety of benefits of using IPD, even

when IPD are not available for all studies. Therefore, when conducting an NMA

one should not abandon an IPD approach, even if IPD are unavailable for some

studies. The proportion of IPD that is available, in combination with any available

AgD, could have great benefits to an NMA. It decreases MAEs of estimates and

posterior SDs in most cases. It also increases our ability to choose between model

assumptions through the DIC. This is almost impossible using just AgD. When

the model is misspecified, IPD may cause overconfidence in posterior SD leading

to poor coverage probabilities. However, using IPD to choose between models

should limit the frequency with which an incorrect model is used. Therefore we

recommend using IPD when and where possible.

Tables 4.8 and 4.9 summarise the findings of the simulation study for both

model comparisons and the use of IPD, in order to identify situations when model

choice is particularly important and when IPD are most useful. Ideally we wish

to have the coverage probability of the CrI as close as possible to the nominal

probability (in this case 95%), while keeping the MAEs of estimates and posterior

SD as small as possible.
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Table 4.8: Summary of findings from simulation study on differences between mod-
els.

Assuming Iden-
tical

Assuming Ex-
changeable

Assuming Inde-
pendent

Correct cover-
age probability
for treatment
effects?

Above when identi-
cal, below when ex-
changeable

Close or above in
both cases

Close or above in
both cases

Correct cover-
age probability
for covariate
effects?

Below when ex-
changeable, below
with AgD for iden-
tical and increases
to above with in-
clusion of IPD

Too high when
exchangeable, cor-
rect or above when
identical

Correct to slightly
below when ex-
changeable, poor
when identical
(decreases with
IPD)

Correct model
can be identified
by using the
DIC?

Not using full AgD,
up to 60% of the
time (over inde-
pendent) with IPD
(less when covari-
ate is continuous)

Not using full AgD,
up to 100% of the
time with IPD (less
when covariate is
continuous)

NA

Ranking of
MAE of treat-
ment effect
estimates?

Smallest when
identical, largest
when exchangeable

Middle when iden-
tical, joint smallest
when exchangeable

Largest when iden-
tical, joint smallest
when exchangeable

Ranking of
MAE of co-
variate effect
estimates?

Smallest when
identical, largest
when exchangeable

Joint largest when
identical, joint
smallest to middle
when exchangeable

Joint largest when
identical, smallest
or joint smallest
when exchangeable

Size of posterior
SD of treatment
effects?

Smallest when
identical and when
using a contin-
uous covariate,
smallest using
majority AgD for
exchangeable with
a binary covari-
ate (but overly
confident), other
models decrease
with inclusion of
IPD

Middle when iden-
tical, joint largest
for continuous,
joint largest for
continuous using
majority AgD but
decreases with
inclusion of IPD

Largest when iden-
tical, joint largest
for continuous,
joint largest for
continuous using
majority AgD but
decreases with
inclusion of IPD

Size of posterior
SD of covariate
effects?

Smallest for
both (but overly
confident when
exchangeable)

Largest for both Middle for both
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Table 4.9: Summary of findings for all models from simulation study on effect of
Individual Patient Data (IPD)

True Identical True Exchangeable

Improve coverage
probability for treat-
ment effects?

Very slight increase (of-
ten further away from
nominal)

Slight improvement (of-
ten further away from
nominal)

Improve coverage
probability for covari-
ate effects?

Decrease when model
is misspecified as in-
dependent (especially
for binary covariates),
increases identical
model which eventu-
ally surpasses nominal
probability.

No noticeable effects

Improves ability for
DIC to identify cor-
rect model?

Increases correct model
choice

Increases correct model
choice

Improve estimate of
treatment effects?

Yes, especially for non-
identical model (but to a
lesser extent when using
a continuous covariate)

Yes, especially for non-
identical model (but to a
lesser extent when using
a continuous covariate)

Improve estimate of
covariate effects?

Yes, especially for identi-
cal (prognostic variable)
model

Yes, especially for non-
identical (effect modifier)
model

Increase precision of
treatment effects?

Yes, for non-identical
models

Yes, for non-identical
models

Increase precision of
covariate effects?

Yes, for non-identical
models

Yes, for non-identical
models

Dias, Sutton, Welton & Ades (2013) have highlighted that identical models are

often used in practice and for this reason their chapter explored the properties

of only the identical model in greater depth. However, as we have seen from the

simulation study, assuming identical interaction effects when they are not identical

can be quite problematic due to the overly precise estimates. On the other hand,

in the simulation study, through examining the DIC, the identical model is very

rarely incorrectly identified as the best model, so if this model has the lowest DIC

it is quite likely to be correct.

If a model has been identified as non-identical it appears that an independent

model may be preferable over an exchangeable model, due to the unnecessar-

ily high SDs from the exchangeable model. However, as the independent model

can produce quite low coverage of the covariate effect, it is worth investigating

whether an identical model is more appropriate. Additionally, we have only con-

sidered cases with five treatments in the simulation study and four treatments in

the HCV infection network. Perhaps if there were many more treatments, an ex-
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changeable model may be more appropriate than independent. Similarly, we have

only examined the scenario when all the treatments are either identical or non

identical. There are possibly many cases where there are a few different classes of

treatments. Therefore these could possibly be modelled as a joint distribution with

independence or exchangeability between groups of treatments and exchangeable

or identical interactions within groups.

It should be noted that the covariate-treatment interactions in the exchange-

able model can also be considered as independent and identically distributed. In

particular, given the vague hyper-priors on these parameters in this chapter, there

is only a small difference between the exchangeable and the independent models.

It could be worth examining more informative priors for the hyper-parameters on

the exchangeable interaction to increase precision.

In the HCV infection example the ranking of treatments remained the same

regardless of the amount of IPD included. This is consistent with the conclusion

of Tudur Smith et al. (2016), that in many cases similar conclusions can be drawn

from both AgD and IPD NMA. However, the use of IPD also allowed us to conclude

that we should use a model which assumes non-identical interactions between the

treatments and the covariates. The use of IPD also reduced the posterior SDs

for the covariate effects, and occasionally reduced posterior SDs for the treatment

effects, which may indicate some heterogeneity between studies. By including the

IPD we can gain more information about covariates, (although it is worth pointing

out that the covariates are centred in our models, and therefore interpretation

of the results should be done with this in mind). Increased information on the

covariates either produce more precise estimates of effect, or allow us to identify

between-study heterogeneity. Of course, part of the motivation for meta-analysis is

that no one study can provide complete information about treatments. Therefore,

identifying and including heterogeneous studies is crucial as it provides a more

accurate picture of the effect of treatments on a wider scale.

4.4.1 Conclusion

Overall, we would recommend using IPD when available, particularly due to the

added benefit of choosing the correct model. In the case where no IPD are avail-

able, we would recommend trying to obtain IPD from at least one or two datasets

to ensure that the model is specified correctly. This could also lead to more accu-

rate and precise estimates. While any extra IPD study is valuable, the marginal

benefits decrease as more IPD are included in the NMA. In practice all studies

should be included when undertaking an NMA, including those with just AgD.
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Chapter 5

Matching Adjusted Indirect

Comparison (MAIC)

The work in this chapter has been reviewed by Research Synthesis Methods and

referees comments have been addressed for resubmission there.

5.1 Introduction

As discussed in Chapter 4, if IPD is available for some, or all, trials in an NMA,

then incorporating this IPD into an NMA is considered the gold standard of ev-

idence synthesis, as it allows a more in-depth analysis of the data, and accounts

for differences in covariates between trials. However, the situation can often arise

where a researcher has IPD for trials concerning a particular treatment (for ex-

ample from a sponsor), but none for other trials. In this case one can reweight

the IPD so that the covariate characteristics in the IPD trials match that of the

aggregate data (AgD) trials, in what is known as a matching adjusted indirect

comparison (MAIC) (Signorovitch et al. (2010, 2012)). MAIC allows one to ac-

count for the differences in covariates between trials, and provides insight into the

potential outcome of the researcher’s IPD trial, if it had been carried out in the

trial population to which it is being matched. However, there are many poten-

tial downsides to this method, and the subjective nature that can be involved in

identifying covariates for matching can potentially leave this method open to bias

or even manipulation. Given that this is an increasingly popular method, it is

important to be able to identify situations when it is appropriate and situations

when it is not appropriate. This importance is also expressed in Phillippo et al.

(2016), as they identify the need for comprehensive simulation studies to explore

the properties of the method.

We undertake an MAIC for a connected network of treatments for multiple
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myeloma in newly diagnosed patients (ndMM) post-Autologous Stem Cell Trans-

plant (ASCT), where the outcome is progression-free survival. The results of this

MAIC (i.e. the aggregated data of each reweighted IPD study) are then treated

as data in a Bayesian NMA. We investigate the reliability of the methods and

results through a simulation study, which mirrors the ndMM network. MAIC can

be carried out using a number of different outcome models. Tremblay et al. (2016),

Van Sanden et al. (2017), and Kühnast et al. (2017) have all used survival models,

with Van Sanden et al also using the reweighted MAIC data in a Bayesian setting.

Kähnast et al evaluate the use of MAIC using two studies in a simulation study in a

frequentist setting and found MAIC to be particularly useful when effect modifiers

are present in dissimilar populations. Belger et al. (2015) conducted a simulation

study with more than two studies in a frequentist setting using a continuous out-

come. We extend these works to a Bayesian NMA with a time-to-event outcome,

while also assessing the options available when we have multiple IPD studies.

This chapter aims to quantify the impact of reweighting IPD studies before

running an NMA in a Bayesian setting with a time-to-event outcome. A simulation

study is carried out to:

1. Quantify the effect of MAIC in NMAs using median and hazard ratio (HR)

models.

2. Investigate two different options of weighting covariates. Firstly, within sep-

arate IPD trials, or secondly, using one weighting method across all IPD

trials.

We compare the results of the MAIC method to using a standard NMA, and to

using a mixed Agd/IPD model, which allows us to incorporate extra information

about the covariates of interest, without the requirement for a researcher to carry

out a post hoc weighting of the data.

This chapter is organised as follows: Section 2 describes the model develop-

ment, construction of the simulation study, and the ndMM network. Section 3

presents the results of both the simulation study and the ndMM network. A

general discussion and some recommendations are provided in Section 4.

5.2 Methods

In this section we will describe the method of MAIC, an application to ndMM and

details of the simulation study. As a number of different models are implemented,

we describe the details of the NMA models at the end in Section 5.2.4. All notation

used throughout this chapter is described in Table 4 at the beginning of this thesis.
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5.2.1 Matching Adjusted Indirect Comparison

In this chapter we consider binary covariates only. Suppose we have an AB-

IPD trial with IPD comparing treatment A to treatment B, and a BC-AgD trial

with aggregate data only comparing treatment B to treatment C. To match to

the target (BC-AgD) trial we reweight the IPD trial such that the proportion

of patients possessing the characteristic associated with each covariate in the IPD

trial match the proportion of patients possessing the characteristic associated with

each covariate in the target trial. The outcome for the reweighted AB-IPD trial

to the target BC population is given by:

Ŷk(BC) =

Nk(AB)∑
l=1

Ylk(AB)wlk

Nk(AB)∑
l=1

wlk

,

where the weight wlk assigned to the patient l receiving treatment k is equal to the

odds of being enrolled in the BC trial versus the AB trial, Ylk(AB) is the outcome

for patient l receiving treatment k in the AB-IPD study and Nk(AB) is the number

of patients assigned to treatment k in the AB-IPD study. For further information

see Phillippo et al. (2016).

This method may be appropriate when the effect of the treatment is dependent

on the characteristic that the patient possesses. In this case the covariate is an

effect modifier, which means there is a non-zero covariate-treatment interaction.

When the covariate-treatment interaction is zero this means the covariate is a

prognostic variable and it is not recommended to adjust for these types of vari-

ables (Phillippo et al. (2016)) in a connected network (also known as an anchored

comparison), due to the unnecessary increase in variance associated with MAIC.

5.2.2 Applied Example in Newly Diagnosed Multiple Myeloma

The ndMM network consists of three IPD studies comparing Lenalidomide to

Placebo/Observation (Len-Placebo), one AgD study comparing Len-Placebo, and

one AgD study comparing Thalidomide to Placebo (Thal-Placebo) (McCarthy

et al. (2012), Attal et al. (2012), Palumbo et al. (2014), Morgan et al. (2012),

Jackson et al. (2016)). Figure 5.1 shows the network diagram.

IPD information was available for the following binary covariates:

• Age: < 60 vs ≥ 60.
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Figure 5.1: Newly diagnosed multiple myeloma network. Abbreviations: IPD = in-
dividual patient data; AgD=aggregate data; Len=lenalidomide; Thal=thalidomide.

• International Staging System (ISS) stage: I/II vs III.

• Adverse Risk Cytogenetics: Present vs Absent.

• Response post-ASCT (Response): Complete Response/Very Good Partial

Response (CR/VGPR) vs Other.

• Gender: Male vs Female.

To ascertain which covariates were effect modifiers and which were prognostic

variables we compared models assuming identical, exchangeable or independent

covariate-treatment interactions using the DIC. It has been shown that it can be

difficult to distinguish between models using AgD alone (Leahy et al. (2018)).

Consequently, we used IPD models to aid in this decision-making. In some cases,

studies were missing patient level covariate information for a proportion of the

patients in the study. In this case we imputed the missing covariate information

by conditioning on the other covariates.

As there are multiple IPD studies comparing Lenalidomide to Placebo/Observation,

there are two different reweighting options:

1. MAIC Separate Trials: The IPD within each of the three studies are reweighted

such that the AgD of each reweighted study matches the AgD trial as follows:

(a) Within each IPD study reweight the IPD, such that the proportion of

patients possessing the characteristic associated with each covariate in

each IPD study matches the Thal-Placebo study.

(b) Generate aggregate data from each reweighted IPD study.

(c) Combine the aggregate data from the reweighted Len-Placebo studies

and the AgD studies using NMA.
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2. MAIC Pooled Trials: All IPD studies are pooled together for the reweighting

element, such that the AgD of the studies combined matches the AgD trial,

but they are put into the NMA as separate trials as follows:

(a) Pool IPD from the three IPD studies together.

(b) Reweight the IPD irrespective of study, such that the IPD from the

three studies combined matches the Thal-Placebo trial.

(c) Separate the reweighted IPD back into the three original studies.

(d) Generate aggregate data from each reweighted IPD study.

(e) Combine the aggregate data from the reweighted Len-Placebo studies

and the AgD studies using NMA. Note that this contrasts with a naive

pooling approach where studies are not separated out again before the

NMA.

We wish to stress the importance of including the reweighted studies in the NMA

as separate studies in both methods to ensure the original randomisation is still

intact. Note that MAIC pooled trials is a less stringent requirement than MAIC

separate trials, as only the combination of three studies need to reflect the covariate

distribution of the AgD study, rather than each study having to reflect the covariate

distribution of the AgD study, as is the case for MAIC separate trials. For all

models when carrying out the NMA we included all five studies. These are the

three IPD Len-Placebo trial (reweighted in the case of MAIC), the AgD Len-

Placebo trial, and the AgD Thal-Placebo trial. When carrying out the MAIC,

although we could plausibly match the IPD trials to the AgD Len-Placebo trial, in

this case we are assuming that the population of interest is the Thal-Placebo trial.

The NMA was carried out using Markov Chain Monte Carlo (MCMC) simulation

in the OpenBUGS package (Spiegelhalter et al. (2014)).

The proportion of patients possessing the characteristic associated with each

covariate in each trial is detailed in Table 5.1. In order to decide which covariates

we should adjust for we obtained an estimate for the extent of bias from each

covariate, as recommended in Phillippo et al. (2016). We calculated the difference

in the covariate-treatment interaction for lenalidomide versus thalidomide from

the fixed effect IPD models. We also calculated the degree of imbalance for which

we need to adjust, by calculating the difference in the proportion of the patients

possessing the characteristic associated with the covariate in the Thal-Placebo trial

(Morgan), versus the average proportion of patients possessing the characteristic

associated with the covariate in the Len-Placebo IPD trials. The imbalance of each

covariate is multiplied by the difference in the covariate-treatment interaction for
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Table 5.1: Proportion of patients with the characteristic associated with each co-
variate in each of the Len-Placebo trials and the Thal-Placebo AgD “target” trial in
the newly diagnosed multiple myeloma network for patients post-autologous stem
cell transplant. All trials compared an active treatment to placebo. For trials with
IPD, covariates are computed from the available data, which includes some missing
data, hence proportions may differ slightly to what was reported at the aggregate
level.

Active
Treat-
ment

Age: <60 ISS Stage: III Response: CR/VGPR Cytogenetics: Present Gender: Male

Treat- Placebo Treat- Placebo Treat- Placebo Treat- Placebo Treat- Placebo
ment ment ment ment ment

McCarthy Len 0.57 0.58 0.26 0.22 0.61 0.71 - - 0.52 0.56
Attal Len 0.64 0.63 0.22 0.17 0.59 0.58 0.17 0.10 0.55 0.59

Palumbo Len 0.64 0.74 0.12 0.14 0.40 0.38 0.40 0.32 0.48 0.60
Jackson (AgD Only) Len - - 0.29 0.26 0.73 0.73 0.51 0.44 - -

Morgan Thal 0.56 0.60 0.31 0.36 0.75 0.72 0.39 0.46 0.63 0.66

lenalidomide versus thalidomide to obtain the bias. These results are shown in

Table 5.3

5.2.3 Simulation Study

A simulation study was carried out in order to assess the impact of using MAIC.

Results were assessed by examining:

1. the mean absolute error (MAE) between the estimated effects and the true

simulated effects.

2. the posterior SD, as reported in the JAGS output.

3. the effect on the estimate of the between study heterogeneity, i.e. the esti-

mate of the difference in the relative treatment effects between trials.

4. the coverage probability, which is the proportion of the time that the CrI

contains the true effect.

Four trials were simulated. Three of these trials were IPD trials comparing

treatment A to treatment B (AB-IPD trials), and the fourth trial compared treat-

ment B to C, with only the AgD available for the NMA (BC-AgD trial). This was

set up to mimic the ndMM network. However we did not include any AB-AgD

trial as this could dilute the effect of the MAIC, thus making it more difficult

to analyse the results of the simulation study and to understand the true effect

of MAIC. The network diagram for the simulation study is shown in Figure 5.2.

We varied the covariate-treatment interaction (scenario 1) and the distribution of

covariates in the trials (scenarios 2-4) as detailed below. Monte Carlo error was

examined and is illustrated on the graphs in Section 5.3.1. The accuracy and preci-

sion of our model’s estimate of the treatment effect was assessed as the parameters

111



Figure 5.2: Network diagram for simulation study. Abbreviations: IPD = individ-
ual patient data; AgD=aggregate data.

varied. The simulation study was run in the JAGS software package (Plummer

(2012)), rather than OpenBUGS, as it was carried out through a high performance

computing cluster, which better supports JAGS.

Parameters were set in the simulation study as follows:

• The baseline risk in each study, the treatment effect and the overall covariate

effect were simulated from N(0, 0.5).

• The SD of each covariate effect between treatments (i.e. the covariate-

treatment interaction) varied from 0-0.8. When this was set to zero it means

that the treatment effect was the same for all levels of the covariate (or, in

this case of a binary covariate, the treatment effect is the same regardless

of whether or not the patient possesses the characteristic associated with

the covariate), i.e. the covariate is a prognostic variable. Any other value

for the standard deviation (SD) means that the treatment has a differing

effect depending on whether the patient possesses the covariate or not, i.e.

the covariate is an effect modifier. For simulations where this is not varied

this value was set to 0.8. This means that two standard deviations of the

covariate-treatment interaction range from 0.17-0.83 on the probability scale,

which we believe sufficiently covers the difference in effect that a covariate

could plausibly have on a range of treatments.

• When the covariate-treatment interaction was varied (scenario 1), the simula-

tion set-up mimicked the number of patients in each trial and the proportion

of those patients possessing the characteristics associated with the covariates

in the ndMM network Section 5.2.2. We included three covariates; ISS stage,

response, and age. We excluded cytogenetics as this was not recorded in the

McCarthy trial.
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• For scenarios where we varied the proportion of patients possessing the char-

acteristics associated with the covariates (scenarios 2-4) we considered only

two covariates for simplicity. These are detailed in Table 5.2. The covariates

have the same proportion in each trial arm. However, these are assigned to

patients individually.

• For scenarios 2-4 the number in each IPD arm was set to 200, and the number

in each AgD arm was set to 240. These figures were similar to the numbers

in the ndMM network, when the total number of patients in AB-IPD trials

was averaged over the three trials.

Any parameter that was static in a scenario was only simulated at the beginning

of each loop and held constant until all data points in the loop had been sampled,

in order to reduce variance between the data points.

Table 5.2: Proportion possessing the characteristic associated with the binary co-
variate in each arm for the simulation study. The parameters were sampled in a
loop in the range detailed below at the specified increments. Parameters where the
increments are statics are fixed for that scenario. The values in scenarios 2 and 3
were chosen so that the fixed proportions were in the centre of the considered range.
The values in Scenario 4 were chosen to allow the average proportion possessing
the characteristic associated with the covariate to differ sufficiently between the
AgD and IPD trials and within the IPD trials.

Range Increments

Scenario 2:
Varying
BC-AgD Covariate

AB-IPD(1) 0.4 Static
AB-IPD(2) 0.5 Static
AB-IPD(3) 0.6 Static
BC-AgD 0.1-0.9 0.1

Range Increments

Scenario 3:
Varying
AB-IPD Covariate

AB-IPD(1) 0.1-0.9 0.1
AB-IPD(2) 0.1-0.9 0.1
AB-IPD(3) 0.1-0.9 0.1
BC-AgD 0.5 Static

Range Increments

Scenario 4:
Varying AB-IPD Be-
tween Studies

AB-IPD(1) 0.45 Static
AB-IPD(2) 0.45-0.9 0.05
AB-IPD(3) 0.45-0.1 -0.05
BC-AgD 0.9 Static

The time-to-event (Tijl) for each individual l, in study i and arm j, was simu-

lated by Tijl ∼ Exp(λijl) where the rate λ is given by:

log(λijl) = µi + dtij + β1,tij(x1,ijl) + β2,tij(x2,ijl),

where µi is the study effect in trial i, dtij is the treatment effect in arm j of study

i, and the effect of covariate 1 is given by β1,tij(x1,ijl), where β1,tij is the covariate

interaction with the treatment in arm j of study i, and x1,ijl indicates whether

patient l in arm j of study i possesses the characteristic associated with covariate
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1. The same notation follows for covariate 2. In order to imitate a real world

trial, censoring time was simulated by Cijl ∼ Unif(0,max(Ti)). Whether or not an

individual was censored was decided by the minimum of time-to-event or censoring.

This resulted in approximately 20% of patients being censored.

In total nine models were tested to assess how well they predicted the true

treatment effects. These were:

1. HR model:

(a) Standard NMA Model: Unadjusted weights.

(b) Standard NMA Model with Covariate: Including a term for the average

covariate per arm in the model. In this model we only use aggregate

data and assume that the covariate is a prognostic variable due to lim-

ited data points.

(c) MAIC Separate Trials: The IPD within each of the three studies are

reweighted such that the AgD of each reweighted study matches the

AgD trial.

(d) MAIC Pooled Trials: All IPD studies are pooled together for the reweight-

ing element, such that the AgD of the studies combined matches the

AgD trial, but they are put into the NMA as separate trials.

2. Median model:

(a) Standard NMA Model: Unadjusted weights.

(b) Standard NMA Model with Covariate: Including a term for the average

covariate per arm in the model. In this model we only use aggregate

data and assume that the covariate is a prognostic variable due to lim-

ited data points.

(c) MAIC Separate Trials: The IPD within each of the three studies are

reweighted such that the AgD of each reweighted study matches the

AgD trial.

(d) MAIC Pooled Trials: All IPD studies are pooled together for the reweight-

ing element, such that the AgD of the studies combined matches the

AgD trial, but they are put into the NMA as separate trials.

(e) Mixed AgD/IPD Model: IPD is used in the model where possible, (i.e.

for the AB IPD trials), and we use AgD otherwise (i.e. for the BC AgD

trial). We also model each covariate as an effect modifier, assuming an

independent interaction between each treatment and covariate. This
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is the similar to the independent model described in Chapter 4, but

applied to a time-to-event outcome, rather than a binary outcome.

The models were tested to assess how well they predicted the true treatment

effects. A burn-in of 20 000 iterations was tested for convergence by checking if

the Gelman-Rubin statistic (Gelman & Rubin (1992)) was less than 1.1. Following

this another 10 000 iterations were sampled for our estimates. If the convergence

condition was not met the number of iterations was doubled (both for the burn-in

and for the samples for estimation), and then tested again until the Gelman-Rubin

statistic was less than 1.1. If the chains had not converged after a burn-in of 320

000 the corresponding simulation was excluded from the analysis. If the chains

did not converge for one of the models in a particular simulation, or if there were

numerical problems, for example, if a trap error was reported in JAGS, the results

for all other models compared in the simulation, and all other data points in

the loop were excluded, in order to eliminate any potential bias due to differing

simulations. Less than 5% of simulations could not be used for each scenario for

these reasons, which mainly affected the HR model.

The accuracy of the estimate was assessed by looking at the mean absolute

error (MAE) between the estimates and the true values for treatments B and C.

It was necessary to adjust for differing levels of covariates due to the interaction

with the treatments. Given a population with M binary covariates, there are 2M

distinct covariate groups. For illustrative purposes we consider a population with

2 covariates, for example, age (< 60 vs ≥ 60) and ISS stage: I/II vs III. Let xm1m2

denote the proportion of the population in each covariate group. In this case m1

is either a 1 to indicate that a patient is under 60, and 0 otherwise. Likewise, m2

is either a 1 to indicate that a patient has ISS stage III, and 0 if a patient has ISS

stage I or II. Thus, there are four distinct groups: x00 for patients ≥ 60 with ISS

stage I or II, x10 for patients < 60 with ISS stage I or II, x01 for patients ≥ 60

with ISS stage III, and x11 for patients < 60 with ISS stage III. The true average

efficacy of treatment k is estimated as:

d̄k = dkx00 + (dk + β1,tk)x10 + (dk + β2,tk)x01 + (dk + β1,tk + β2,tk)x11. (5.1)

Then, the MAE for each treatment is given by:

MAE(d̂k) ≡
∑Q

q=1|d̄kq − d̂kq |
Q

,

where d̂k is our model’s estimate of the effect of treatment k relative to treatment A,

and Q is the total number of simulations. Treatment A is treated as our reference
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treatment and hence set to 0 for the inference, therefore results are presented for

treatments B and C only. We consider two populations of interest:

1. Full network population: xm1m2 is computed across all studies in the network,

weighted by sample size. Although this may not necessarily be the general

population of patients in the target indication, we consider this to be the

best possible estimate for the general population.

2. Target study population: xm1m2 is computed using only the target study.

Uncertainty is measured as the posterior SD, as reported in the JAGS output. This

is the same for both the full network population and the target population. For the

MAIC it is obtained in the same way as the rest of the models, as the posterior SD

in the JAGS output from the NMA using the reweighted trial data as the input.

For the mixed AgD/IPD model, given that we have estimated a treatment effect

and an effect for each covariate, we also use equation 5.1 to compute the estimate

of the overall treatment effect for that population. Note that this cannot be done

for the standard NMA models with the covariate, (Models 1b and 2b), as in this

case we are assuming that the covariate is a prognostic variable. For the AgD/IPD

mode the calculation is carried out in the JAGS model itself, in order to obtain

the correct posterior SD and upper and lower CrI bounds from the trace.

5.2.4 NMA Models

The models used in this chapter are based on the models described in Section 2.8.

We used the HR part of a model detailed in Woods et al. (2010) for the standard

NMA HR model as well as the two HR models after the MAIC adjustment in the

simulation study (Models 1a, 1c, and 1d):

ln(Hik) = µi + dk − db + reik − reib,

where Hik is the hazard ratio of treatment k versus the baseline treatment in

study i, µi is the study effect of study i, dk and db are the treatment effects for

treatment k and the baseline treatment in each study, respectively, and rei,k is

the random effect deviation for arm k of study i. The prior distributions chosen

are µi ∼ N(0, 1002), dk ∼ N(0, 1002), reik ∼ N(0, σ2), and σ2 ∼ Unif(0, 5). σ is

the measure of between study heterogeneity in the HR model. All simulated and

ndMM trials had exactly two arms so corrections for multiple arms did not need

to be considered.
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An extra model allowing for an extra term for each covariate was also considered

(Model 1b):

ln(Hik) = µi + dk − db +
M∑
m=1

βm(xmb − xmk) + reik − reib,

where βm is the effect of each covariate m, xmb is the proportion possessing the

characteristic associated with the covariate m in the baseline arm, and xmk is

the proportion possessing the characteristic associated with the covariate m in the

treatment arm. As AgD models contain very little information about covariates, it

was not possible to assign the vague priors, which were given the other parameters,

to each βm. Therefore the prior on each βm follows N(0, 3.162).

Although HR models are often preferred, sometimes limited information means

that only medians are available. Therefore, we also consider models which use only

medians and assume an exponential survival model. The first median model which

we will present is the standard NMA median model, which includes NMAs that

are implemented after a MAIC adjustment (Models 2a, 2c, and 2d). Let rij, the

number of events in the jth arm of the ith trial. rij ∼ binomial(pij, nij), where pij

is the probability of an event in the jth arm of the ith trial and nij is the number of

patients in the jth arm of the ith trial. As we are dealing with medians we obtain

µi and δij from:

Sij(t
∗) =

{
exp(−t∗ exp(µi)) if j=1

exp(−t∗ exp(µi + δij)) if j>1
,

noting that for the median time pij is 50%. δij is the effect of the treatment in

the jth arm of the ith trial, µi is the baseline risk in study i and t∗ is the median

survival time. The treatment effects follow δij ∼ N(dtij − dti1 , σ
2
δ ), where dtij

denotes the effect of the treatment in the jth arm of the ith trial relative to the

reference treatment and σδ is the measure of between study heterogeneity in the

HR model. The prior distributions chosen are µi ∼ N(0, 1.832), dk ∼ N(0, 1.832)

and σδ ∼ Unif(0, 2). The effect of treatment A (the reference treatment) is set to

zero in the model with all other treatments being compared to treatment A.

An additional model which allows for covariate terms was also considered

(Model 2b):

Sij(t
∗) =

{
exp(−t∗ exp(µi)) if j=1

exp(−t∗ exp(µi + δij +
∑M

m=1 βmxmij)) if j>1
,

where xmij is the proportion of patients in the jth arm of the ith trial possessing
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the characteristic associated with the covariate, m. The prior on each βm follows

N(0, 1.832). The parameters for µ, d, and βm are chosen for the reasons discussed

in Chapters 3 and 4.

We also considered a mixed AgD/IPD model to utilise IPD where possible and

AgD otherwise. For the AgD part the model is:

Sij(t
∗) =

{
exp(−t∗ exp(µi)) if j=1

exp(−t∗ exp(µi + δij + (βtij − βti1)xij)) if j>1
,

and for the IPD part the rate λ is given by:

log(λ) =

{
µi + β0ixijl if j=1

µi + β0ixijl + δij + (βtij − βti1)xijl if j>1
.

For the IPD dataset we can also include the trial-specific covariate effect β0i . In

this case, βtij is the covariate effect for the treatment in the jth arm of the ith

trial, i.e., the covariate is an effect modifier as it interacts with each treatment

differently. This covariate effect can either be modelled as independent, (i.e.,

each βk ∼ N(0, 1.832), where k represents the treatment), or as exchangeable,

(i.e., the distribution for each β is βk ∼ N(µβ, σ
2
β), with µβ ∼ N(0, 1.832) and

σβ ∼ Unif(0, 5)). β1 is set to zero, with all other covariate effects estimated

relative to the covatiate effect of treatment 1, in order to aid convergence. This

varies in parameterisation from Chapter 4, where the prior on β1 was also from

the same vague distribution. While the choice of parameterisation does not affect

the absolute effect estimates, this method will improve convergence.

We also consider a model which assumes that each covariate is a prognostic

variable:

Sij(t
∗) =

{
exp(−t∗ exp(µi)) if j=1

exp(−t∗ exp(µi + δij + βxij)) if j>1
,

and for the IPD part the rate λ is given by:

log(λ) =

{
µi + β0ixijl if j=1

µi + β0xijl + δij + βxijl if j>1
.

For the ndMM example we compare the mixed AgD/IPD model that makes

the assumption of effect modifier to the mixed AgD/IPD model that makes the

assumption of prognostic variable for each covariate to identify the nature of each

covariate. We also extend the mixed AgD/IPD model to using two or three co-

variates where applicable in both the simulation study and the ndMM example.
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In this case we assume an independent treatment effect for each covariate.

All above models can be simplified to an FE model, by removing the variance

on δ in the median models, and removing the re term in the HR models. When

identifying the nature of the covariates using the mixed AgD/IPD models we used

the FE models in order to reduce variance and detect true interactions. Given

that the goal of MAIC is to reduce differences between studies, FE models could

also be considered appropriate. However, while MAIC may reduce some hetero-

geneity there is no guarantee that it has removed all heterogeneity. For example,

researchers may not have collected all relevant covariates when carrying out the

study. In the ndMM example we know that we have not matched on cytogenetics

and we have lost some information due to the fact that age was dichotomised.

Therefore, we have assessed the suitability of both FE models and RE models.

5.3 Results

5.3.1 Simulation Study

In this section we compare the models in terms of MAE in both the full network

population (i.e. all studies in the network) and the target population (i.e. just

the B vs C studies in this case). The coverage probabilities associated with these

estimates are also presented. We also consider the posterior SD, which applies to

both populations. The dotted lines around each MAE and posterior SD estimate

represent the MC Error on each side. Finally, we provide the average measure of

heterogeneity for each data point.

As the computation time required for the mixed AgD/IPD model is substan-

tially longer than the computation time for all other models, we present the results

of this model for scenario 2 (varying proportion possessing the characteristic asso-

ciated with each covariate in the BC-AgD trial) and scenario 3 (varying proportion

possessing the characteristic associated with each covariate in the AB-IPD trials)

only. However, in a preliminary analysis we examined the effect of the covariate-

treatment interaction on this model, and we found it behaved similarly to the

other models.

Covariate-Treatment Interaction

Figures 5.3 and 5.4 both show how an increase in the SD of the covariate-treatment

interaction affects the MAE and posterior SD. The MAE increases for all models

as the covariate-treatment interaction increases, but the HR model is particularly
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Figure 5.3: Examining mean absolute error (MAE) and posterior standard devi-
ation (SD) while increasing the SD of the covariate-treatment interaction. The
dotted lines around each MAE estimate represent the MC Error on each side. At
the left most point of the x-axis the covariate is a prognostic variable and at all
other points the covariate is an effect modifier. When the interaction is zero or
relatively small there is little difference between models. HR models are worse than
median models when the interaction is large. MAIC is better than a standard NMA
when looking at the direct B versus A comparison in the target population, espe-
cially for large interactions. For the HR model in the full network population there
is little difference between the standard NMA model and the MAIC model.

impacted. The posterior SD increases as the covariate-treatment interaction in-

creases for the NMA models, but stays relatively constant for the MAIC models.

The top row of Figure 5.3 shows the impact on the indirect estimate of C versus

A. We see that the MAIC adjustment gives better results than a standard NMA

when the interaction is large, especially for the target population. At the left-

hand side of the x-axis, when the interaction is zero, the covariate is a prognostic

variable rather than an effect modifier. In this case all models are quite similar.

However, we should bear in mind that it can be difficult to distinguish between

prognostic variables and effect modifiers, and note that, in the case of an anchored

comparison, there is a larger benefit to reweighting for an effect modifier than

there is for not adjusting for a prognostic variable.

In the bottom row we examine the impact of the covariate-treatment interaction

on the direct estimate of B versus A. Although it is not necessary to do an MAIC
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Figure 5.4: Examining mean absolute error (MAE) and posterior standard devi-
ation (SD) while increasing the SD of the covariate-treatment interaction. The
dotted lines around each MAE estimate represent the MC Error on each side. At
the left most point of the x-axis the covariate is a prognostic variable and at all
other points the covariate is an effect modifier. The HR standard NMA model with
covariate produces a much larger posterior SD than the other models. This model
also has the highest MAE for the C vs A estimate and the joint highest (with HR
standard NMA model) MAE for the B vs A estimate.

for this estimate, it is important to understand how this estimate is affected by

MAIC, as NMAs often report the relative efficacy of all treatments versus the

reference treatment. For both the HR and the median models, MAIC produces

a lower MAE than the standard NMA model in the target population. However,

MAIC does not have a large impact on the MAE of the HR model in the full

network population as both models give very similar MAEs. MAIC negatively

impacts the MAE for the median model for the full network population. This

highlights that the RCT evidence is of better quality than the MAIC evidence

when we are interested in the direct comparison.

Finally, the graphs on the right hand side show the posterior SD. We see a small

increase in posterior SD due to an increase in the covariate-treatment interaction

for the standard NMA models, but the increase is not as large as the increase

for the MAE. The posterior SD of the MAIC models are generally unaffected by

an increase in the covariate-treatment interaction. For both the median and the
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HR models the MAIC produces a larger posterior SD than the standard NMA

when the covariate-treatment interaction is small, but as the covariate-treatment

interaction increases, the posterior SDs of the standard NMA model increase to

the point where they are larger than the posterior SD for the corresponding MAIC

model.

Figure 5.4 shows the same simulation scenario, but this time the standard NMA

Model with Covariate (1b and 2b) is compared to the standard NMA model. We

explore this model as it may be a feasible alternative to MAIC, if a researcher

does not have access to IPD. For the HR model (1b), this is clearly inferior as it

produces much larger posterior SDs and slightly larger MAEs for the indirect C

versus A estimate. We note that Figure 5.3 and Figure 5.4 have different scales

due to these higher posterior SDs. Here we are including three extra terms in a

model with only four studies, and hence we do not have enough data-points to

include the extra terms. We should note that this model is already using a much

less vague prior for the covariate effect, in order to reduce the uncertainty in the

posterior SD, than it is for any other parameter. For the median model (2b), we

get very similar results with and without the covariates. However, as this is a

more complex model, there does not appear to be any benefit to including the

extra terms given the limited data in this scenario. We therefore do not explore

this model in further scenarios, due to a preference for model simplicity.

These simulations use the same prevalence of the covariates that are in the

ndMM network, so it can plausibly give us an indication that MAIC may be of

benefit to estimating the Len-Thal comparison, especially for the median model.

However, we will now analyse other scenarios to ascertain the benefit of MAIC

over more generic networks.

Varying Proportion of Patients Possessing Each Covariate

The remaining figures in this section all assume that the standard deviation of

the covariate-treatment interaction is 0.8, which is the largest that we looked at

in the previous graphs. Figures 5.5 and 5.6 show that the proportion of patients

possessing the characteristics associated with the covariates in each trial greatly

influences the effect of MAIC. In both figures we see that for the target population

(centre graphs), MAIC produces an MAE which is lower than or the same as the

corresponding standard NMA model. However, using a mixed AgD/IPD model

also produces MAEs as low as the MAIC model, and when the proportion of

patients possessing the characteristic associated with the covariate in the IPD

trials is particularly low or high (Figure 5.6, middle column, edge of graphs), the

mixed AgD/IPD model produces a lower MAE than the MAIC models. For the
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Figure 5.5: Examining mean absolute error (MAE) and posterior standard devi-
ation (SD) while varying the proportion of patients possessing each characteristic
in the BC-AgD study. The dotted lines around each MAE estimate represent the
MC Error on each side. The proportion of patients possessing each characteristic
in the IPD study is 40%, 50% and 60% for the three IPD-AB studies, respectively.
There is little difference between the models in the full network population for the
indirect C versus A estimate, while both the mixed AgD/IPD model and the stan-
dard NMA model produce lower MAEs than the MAIC model in the full network
population for the direct B versus A estimate. For the target population the mixed
AgD/IPD model and the MAIC median model produce the lowest MAE.

target population, when the distribution of covariates in the AB-IPD trials is very

different to the BC-AgD trial (i.e. the extremes of the graphs) the standard NMA

models give worse estimates than they do when the covariate make-up is similar

between the studies. The median MAIC model and the mixed AgD/IPD models,

however, are not as affected by a difference in covariates, as the MAE is quite flat,

with the exception of the extreme points in Figures 5.5 5.6. The MAIC HR model

also has a flat line for the target population in Figure 5.6, but has a slight concave

downwards slope for the target population in Figure 5.5.

Looking at the effect of MAIC on the full network population (left hand side

graphs) and on the posterior SD (right hand side graphs) we can see that there

are downsides to running an MAIC. In Figure 5.6 the MAIC gives a posterior SD

that is at least as big, if not greater than, the standard NMA model for both the

direct AB estimate and the indirect AC estimate. This means we are increasing
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Figure 5.6: Examining mean absolute error (MAE) and posterior standard devi-
ation (SD) while varying the proportion of patients possessing each characteristic
in the AB-IPD study. The dotted lines around each MAE estimate represent the
MC Error on each side. The proportion of patients possessing each characteris-
tic in the BC-AgD study is 50%. There is little difference between the models in
the full network population for the indirect C versus A estimate, while both the
mixed AgD/IPD model and the standard NMA model produce lower MAEs than
the MAIC model in the full network population for the direct B versus A esti-
mate. For the target population both the mixed AgD/IPD model and the MAIC
median model produce lower MAEs than the standard NMA model, with the mixed
AgD/IPD model performing particularly well at the edge of the graph.

our uncertainty in our estimate by running an MAIC. In particular, we can see

that the C versus A posterior SD is much larger than the corresponding MAE for

the MAIC. We also see that the posterior SD increases when more reweighting

is required in Figure 5.5. The MAE of the C vs A estimate for the full network

population is quite similar for the standard NMA model and the MAIC model.

However, the direct B vs A estimate from the MAIC in the full network population

is usually worse, or at best similar to the the standard NMA, hence we do not

recommend using MAIC for this estimate. The mixed AgD/IPD model shows no

benefit in terms of MAE over the other models in terms of MAE in the full network

population for the indirect C versus A estimate, and produces similar MAEs to

the standard NMA model for the direct B versus A estimate. However, we also

see that there is decreased uncertainty with this model.
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There is a noticeable lack of symmetry in some models in Figures 5.5 and 5.6.

This is due to the fact that the model is computed on the log scale, and therefore

the distances between points on the axis are not equal on this scale.

As mentioned earlier, some of the HR models show a concave downwards slope.

For example direct B versus A estimate in the target population graph in Figure

5.5. In Figure 5.5 the MAIC reweights the data such that the proportion possessing

each characteristic is equal to the number on the x-axis. The patients in the

trial are most heterogeneous when 50% of the patients in the trial possess each

characteristic. This is approximately where the HR model produces the worst

MAE (slight difference due to some calculations being on the log scale). This is

consistent with Figure 2 of Shrier & Pang (2015), where the estimated odds ratio

is impacted by the value of the covariate.

Figures 5.5 and 5.6 both assume that for any given point on the x-axis there

is the same proportion of patients who possess the characteristic associated with

each covariate in each trial, so it is not possible to differentiate between the two

methods of reweighting the IPD. We therefore consider an additional scenario in

where there is a difference between the proportion possessing the characteristic

associated with each covariate in each IPD trial. Both the HR models and the

median models give similar results. For clarity in the graphs we have kept the

two models separate. As the median model has shown more promising results in

general, we will present the results for the median model in the main text and

the HR model in the appendix. Given that the purpose of this scenario is to

compare the two MAIC methods, we exclude the AgD/IPD model due to the

large computing power required for this model.

Figure 5.7 keeps the overall proportion of patients who possess each character-

istic constant at 45%, while varying the IPD proportion between the three studies.

For example, on the left most point of the x-axis all three AB-IPD studies have

45% of patients who possess each characteristic, however, on the right hand side

Study 1 has 45% of patients who possess each characteristic, Study 2 has 90% of

patients who possess each characteristic, and Study 3 has 10% of patients who

possess each characteristic. We can see overall that when there is an increase in

heterogeneity between the studies the posterior SD increases, as does the MAE

in nearly all cases, barring the direct estimate of B versus A in the full network

population. When the studies are similar there is not much of a difference between

the two reweighting methods. However, the MAIC pooled trials method is a less

stringent requirement, since the AB-IPD studies need only match the BC-AgD

study between the three of them, whereas for MAIC separate trials each AB-IPD

study needs to match the BC-AgD study. Therefore, less reweighting is carried
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Figure 5.7: Examining mean absolute error (MAE) and posterior standard devia-
tion (SD) while varying the difference in proportion possessing the characteristic
associated with each covariate between AB-IPD trials. The dotted lines around
each MAE estimate represent the MC Error on each side. On the left most point
of the x-axis all three AB-IPD studies have 45% of patients possessing the charac-
teristic associated with each covariate, however, on the right hand side Study 1 has
45% of patients possessing the characteristic associated with each covariate, Study
2 has 90% of patients possessing the characteristic associated with each covariate,
and Study 3 has 10% of patients possessing the characteristic associated with each
covariate. The numbers on the x-axis represent the difference in the proportion
possessing the characteristic associated with each covariate between Study 2 and
Study 3. The AB-AgD study has a fixed proportion possessing the characteris-
tic associated with each covariate of 90%. MAIC pooled trials is a less stringent
requirement and so less reweighting needs to be done with this method.
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out for the pooled trials method and the posterior SD is slightly smaller for the

pooled trials method. In fact, the posterior SD is more similar to the posterior

SD of the standard NMA than it is to the separate trials MAIC. For the target

population, for both the direct B versus A comparison and the indirect C versus

A comparison, the separate trials method produces a slightly lower MAE than the

pooled trials model, as the covariate make-up of the IPD trials become more dif-

ferent from each other. However, as there is a greater amount of interference in the

AB-IPD studies, the direct B versus A estimate are worse for the separate trials

MAIC than the pooled trials MAIC in the full network population. In fact, when

one of the AB-IPD trials has the same covariate make-up as the BC-AgD trial,

the MAIC pooled trials method is approximately as good as the standard NMA

model in terms of the MAE for the BA estimate in the full network population.

Coverage Probabilities and Fixed Effects Models

We compared the coverage for both RE and FE models in Figures 5.8, 5.9, 5.10,

and 5.11. In general, the RE models had coverage which was closer to the nominal

95% CrI, and this is why we choose to present the RE model for the main results.

However, there were some exceptions to this. For example, in Figure 5.9, for

the target population, when a large amount of patients possess the characteristic

associated with each covariate, the median MAIC FE model has coverage which is

closer to the nominal CrI than the corresponding RE models. Therefore, we have

included the results of FE models in the appendix. FE models gave similar results

to the RE models for the MAE. The posterior SD, however, was much smaller for

the FE models compared to the RE models.

The standard NMA HR model with the covariate (Model 1b) generally had

coverage which was too high (close to 100%), this was also the case for the RE

mixed AgD/IPD model (Model 2e). For the rest of the models however, the

coverage was generally below the nominal 95%, and in many cases had quite low

coverage. In the target population we note that the MAIC models often had

coverage which was closer to the nominal 95% than the corresponding standard

NMA model. This is especially true for the FE models, which implies that MAIC

has reduced the differences between trials. However, we would stress that in a real-

world scenario, there may be more effect modifiers which have not been accounted

for.

The coverage probability is driven by a combination of the MAE and the poste-

rior SD. For example, the coverage probabilities for the standard NMA FE models

in Figure 5.9 are almost the inverse of the MAE in Figure C.4. In this case the

MAE increases at the edges of the graphs, but the posterior SD stays the same.
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Figure 5.8: Examining coverage probability while increasing the standard deviation
of the covariate-treatment interaction. The RE models are generally unaffected
by an increase in the covariate-treatment interaction. Although the coverage of
standard NMA models and the MAIC models are lower than the 95% nominal
probability, in particular for the B versus A comparison. For the FE model, how-
ever, the coverage becomes much lower than the 95% nominal probability as the
covariate-treatment interaction increases.

In other cases, for example in Figure 5.11, we see the coverage of the standard

standard RE NMA models increase as the difference between the IPD studies, in

term of the proportion of patients possessing the characteristic associated with the

covariate, increases. This is almost entirely due to an increase in the posterior SD

in Figures 5.7 and Figures C.1.

Effect on the Between Study Heterogeneity

Figure 5.12 shows how the between study heterogeneity is affected in the various

scenarios explored previously. In many cases the models produce quite similar

between study heterogeneity. On the top left panel we can see that the standard

NMA HR model with the covariate (Model 1b) produces larger between study

heterogeneity than the other models. This model often behaves differently from

the other models, for example, the posterior SD of this models was also higher

than the other models in Figure 5.4. In the bottom left panel we see that when

the IPD trials have a relatively large or small number of patients possessing the
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Figure 5.9: Examining coverage probability while varying the proportion of patients
possessing the characteristic associated with each covariate in the BC-AgD study.
The FE models are more sensitive to differing values of patients possessing the
characteristic associated with each covariate than the RE models. For the FE
models, in the target population the MAIC models generally have coverage closer
to the nominal 95% than the standard NMA models, while in the full network
population, for the B versus A estimate, the standard NMA models have coverage
closer to the nominal 95% probability than the MAIC models.

characteristic associated with each covariate (i.e. at the edges of the graph), the

MAIC model produces a larger measure of heterogeneity then the standard NMA

models, most likely due to the large amount of reweighting required. In the bottom

right panel we see a clear increasing trend as the difference in proportion of patients

possessing the characteristic associated with each covariate increases between AB-

IPD trials. Hence, as the difference in each patient population increases, more

between trial heterogeneity is estimated, as the model does not explicitly take the

effect modifiers into account. The standard NMA models are more affected by this

difference. When the three IPD trials are similar the MAIC models again produce

a larger estimate of between study heterogeneity than the standard NMA models.

There is no noticeable difference between MAIC pooled trials and MAIC separate

trials model.
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Figure 5.10: Examining coverage probability while varying the proportion of pa-
tients possessing the characteristic associated with each covariate in the AB-IPD
study. The FE models are more sensitive to differing values of patients possessing
the characteristic associated with each covariate than the RE models.

5.3.2 Applied Example in Newly Diagnosed Multiple Myeloma

(ndMM)

We first investigate which covariates are appropriate to be used in the ndMM net-

work. Table 5.3 shows the potential bias resulting from the differences between

trials, assuming that there is an independent covariate-treatment interaction. A

second scenario was considered assuming an exchangeable covariate-treatment in-

teraction with similar results and we therefore just show the independent model.

In both cases no covariate could be excluded as not interacting with the treat-

ments by looking at the differences in DIC. We also found the potential bias in

most cases to be relatively small. The only exception to this was Response which

had the highest potential bias of 0.10. However, based on the DIC, Response was

most likely to be a prognostic variable, although the differences in the DIC was

below the threshold of 3. Clinical advice recommended that gender was unlikely

to interact with treatment, so we excluded this as a covariate for matching, given

that it also had one of the smallest potential biases. We considered using the other

four covariates for matching. However, given that we did not have any information

on cytogenetics in the McCarthy trial, we would not have been able to include this
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Figure 5.11: Examining coverage probability while varying the difference in propor-
tion possessing the characteristic associated with each covariate between AB-IPD
trials. In general RE models have coverage closer to the nominal 95% probabil-
ity than FE models. There is no noticeable difference between the MAIC separate
trials model and the MAIC pooled trials model.

Table 5.3: Potential bias if each covariate is an effect modifier. This is based
on a fixed effects model using medians, using IPD where possible and assuming
an independent covariate-treatment interaction. The potential bias is calculated
by multiplying the absolute difference in interaction for Len versus Thal and the
absolute difference between the proportion of patients possessing the characteristic
associated with each covariate in Morgan trial versus the average across the Len-
Placebo IPD trials.

Age:
<60

ISS
Stage:
III

Response:
CR/VGPR

Cytogenetics:
Present

Gender:
Male

Absolute Difference in Interaction for Len versus
Thal if Effect Modifier

0.24 0.26 0.31 0.01 0.31

Proportion possess-
ing characteristic

McCarthy (Len-Placebo) 0.58 0.24 0.66 NA 0.54
Attal (Len-Placebo) 0.64 0.20 0.59 0.13 0.57
Palumbo (Len-Placebo) 0.69 0.13 0.39 0.36 0.54
Average Len-Placebo 0.63 0.19 0.55 0.25 0.55
Morgan (Thal-Placebo) 0.58 0.34 0.74 0.42 0.64

Potential Bias if Effect Modifier 0.01 0.04 0.06 0.002 0.03
DIC Difference (Positive favours Effect Modifier) 1 0 -2 0 1
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Figure 5.12: Effect on the between study heterogeneity. In the bottom left panel
we see that when the IPD trials have a relatively large or small number of patients
possessing the characteristic associated with each covariate (i.e. at the edges of
the graph), the MAIC model produces a larger measure of heterogeneity then the
standard NMA models, most likely due to the large amount of reweighting required.
In the bottom right panel we see a clear increasing trend as the difference in pro-
portion of patients possessing the characteristic associated each covariate increases
between AB-IPD trials. When the three IPD trials are similar the MAIC model
again produces a larger estimate of between study heterogeneity than the standard
NMA models.

in a pooled trials model. Hence, to allow a equal comparison between pooled trials

MAIC and separate trials MAIC we excluded cytogenetics as a covariate to be

used in the MAIC. For a clinical analysis we could of course include cytogenetics,

but as our goal was to analyse the differences between models we found it to be

more appropriate to exclude it, given that it also had the smallest potential bi-

ases. In the case of the models that explicitly include a covariate (Models 1b, 2b,

2e), we included only the covariates for response and ISS stage, as we had no age

information for the Jackson trial.

We considered both FE and RE models. However, when comparing the DIC

between FE and RE for each of the nine models shown in Table 5.4, we found no

differences greater than three, and therefore could not conclude that one model

was more appropriate than the other. We therefore present the results of the RE

model, as these, in general, had coverage which was closer to the nominal 95% CrI
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Table 5.4: Estimate of between study heterogeneity for the random effects (RE)
model, and the difference in DIC for the Fixed Effects (FE) model minus the RE
model. Given that the difference in DIC is small, we conclude that there is not
enough evidence to conclude that either the RE or FE model fits better than the
other.

Between Study Heterogeneity Difference in DIC (RE minus FE)
HR Standard NMA (1a) 0.15 1.58
HR MAIC With Cov (1b) 0.41 0.63
HR MAIC Separate (1c) 0.22 1.02
HR MAIC Pooled (1d) 0.22 1.19
Median Standard NMA (2a) 0.15 1.78
Median MAIC With Cov (2b) 0.18 2.06
Median MAIC Separate (2c) 0.17 1.86
Median MAIC Pooled (2d) 0.17 1.83
Mixed AgD/IPD (2e) 0.31 -2.00

Figure 5.13: Credible intervals (CrI) for the log hazard ratios for ndMM network.
The point estimates for lenalidomide are superior to thalidomide in all cases, how-
ever, the CrIs all cross the line of no effect at zero. MAIC does not have a large
impact on the point estimate but slightly increases the width of the credible inter-
vals.
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in Section 5.3.1.

Figure 5.13 shows the results for the ndMM network. The point estimates in all

cases indicate that lenalidomide is superior to thalidomide. However, the Credible

Intervals (CrI) span zero. The relative size of the CrIs between models replicate

what we saw in the simulation study. The mixed AgD/IPD has the widest CrI.

The main reason for this is because we have no IPD available for a Thalidomide

study. The standard NMA HR model with covariate also has quite a wide CrI.

The CrI of the median model with covariate is slightly wider than the standard

NMA median model also, but the difference between these two median models is

not as big as the difference between the corresponding HR models. This again

is similar to what has been observed in the simulation study. The MAIC models

have larger CrIs than the corresponding standard NMA model for both the HR

and median models. We also obtained CrIs for lenalidomide relative to placebo.

In the case of MAIC relative to the unadjusted AgD estimate we found that the

MAIC estimates were slightly shrunken towards zero, while once again becoming

slightly more uncertain.

We can also look at the between study heterogeneity for the RE models, as

shown in Table 5.4. For both the median and the HR models the between study

heterogeneity is lowest for the standard NMA model, followed by the MAIC mod-

els, and is highest for the models which explicitly include the covariate. This may

indicate that there are further unidentified covariates, which may be contributing

to the between study heterogeneity.

5.4 Discussion

With MAIC generating more interest across the research and pharmaceutical com-

munity, it is important to evaluate the benefits and drawbacks compared to other

models. While we saw some benefits to using MAIC over the standard NMA

model, these same benefits can be obtained by using a mixed AgD/IPD NMA,

which doesn’t involve any post-hoc reweighting of data, and hence doesn’t neg-

atively impact the MAE in the full network population. Our results and recom-

mendations are summarised in Table 5.5.

We also recommend that further analysis is carried out after conducting an

MAIC, such as an indication of model fit and the effective sample size of the

reweighted data. A further point to note is that the MAIC models generally pro-

duces posterior SDs that are larger than those produced from a standard NMA.

However, in this simulation study we see that MAIC models generally have cover-

age below the 95% nominal CrI, and can be lower than the corresponding standard
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Table 5.5: Summary of results and recommendations from simulation study

Comparison Population
of Interest

Result Recommendation

C vs A Full network MAE is similar
for all models.

Don’t use MAIC.

C vs A Target Mixed AgD/IPD
model and MAIC
produce lowest
MAE.

Use mixed AgD/IPD model as main
analysis. Use MAIC only as a sensitiv-
ity analysis when interested in target
population.

B vs A Full network Standard NMA
and mixed
AgD/IPD model
produce lowest
MAE.

Don’t use MAIC.

B vs A Target AgD/IPD model
and MAIC pro-
duce lowest MAE.

Use mixed AgD/IPD model as main
analysis. Use MAIC only as a sensitiv-
ity analysis when interested in target
population.

NMA model, which indicates that the increased posterior SD is not sufficiently ac-

counting for the increased MAE. As mentioned in Chapter 4, Jansen (2012) also

proposed IPD models for population adjustment, and found that the use of IPD

does increase precision and reduce bias. Therefore, these models should also be

considered as an alternative to MAIC.

A limitation of this study is that we have considered binary covariates only.

The reason being is that the simulation study was motivated by the real world

ndMM example, where only binary covariates were available, thus ensuring real

world applicability. We note that it would have been preferable to include more

detailed information on the covariates in the ndMM example as well, such as

including the exact age of each patient rather than the binary covariate of greater

or less than sixty. For instance, Schmitz et al. (2012) have noted the information

lost when continuous outcomes are dichotomised. Unfortunately, however, due to

the difficulty involved in sharing IPD, only binary covariates were available to us.

An extension to the work could be to include continuous covariates also.

When carrying out the reweighting element of the MAIC we assumed that

all covariates were independent of each other. However, in reality there could

be interactions or correlations between the covariates. Therefore, it would be

preferable to include an interaction term in the reweighting model, as suggested

in Phillippo et al. (2016).

In the simulation study we have assumed that all effect modifiers are correctly

identified and we have accounted for them in the MAIC. However, a further ex-

135



tension of this study could be to either have extra unidentified effect modifiers, or

to assess the impact of incorrectly assuming that a prognostic variable is an effect

modifier and using this in the MAIC as well. We touched on this when the stan-

dard deviation of the covariate-treatment was zero, as in this case the covariate is

an prognostic variable, but we are treating it as if it is an effect modifier. This

could be explored further in future work.

In our simulation study, the median models generally produced a lower MAE

than the hazard ratio models, especially when there is a large covariate-treatment

interaction. An extension of this work could be to investigate the performance

of other survival distributions, and to investigate how well the exponential model

performs when the simulated data does not come from an exponential distribution.

In the ndMM example, results are quite similar with and without the MAIC

adjustment. However, by carrying out the MAIC it gives us increased confidence

in the result, as it shows that results hold across populations. Were the results to

have been quite contradictory, we should have more trust in the standard NMA

results, as this is a higher form of evidence. We wish to stress once again that

RCTs are the highest standard of evidence. It should be noted that post hoc

adjustment of results cannot be a substitute for randomisation in clinical trials.

MAIC can be much more susceptible to publication bias than a clinical trial

since at present there is no mechanism in place to ensure that an MAIC is registered

before it is carried out. MAICs are relatively easy to undertake, provided one

has the IPD, which is most likely owned by the manufacturer of the treatment.

If an MAIC has negative implications for the owner of the IPD, then there is no

obligation to publish the results. There is also a lot of flexibility for the analysts to

choose which covariates to adjust for, which gives greater scope to choose covariates

that may give better results for the owners of the IPD treatment. It is a limitation

of our simulation study that we cannot explore such aspects here, though we do

caution users of MAIC results on the possibility of these potential biases.

5.4.1 Conclusion

We have observed limited benefit to MAIC in the full network population. While

MAIC can be beneficial as a sensitivity analysis to confirm results across patient

populations, we advise that MAIC is used and interpreted with caution. We rec-

ommend that researchers use either a standard NMA model or a mixed AgD/IPD

NMA model for their base case analysis.
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Chapter 6

Conclusion

6.1 Summary

This thesis assesses a number of methods for making the most out of all available

evidence, even when the evidence is of a lower quality than we would like. We

investigate the benefits and drawbacks of each method employed, all the while

being mindful that some of these methods may introduce bias into estimates of

relative treatment effects.

In Chapter 3 we evaluated the benefits and drawbacks of including single-arm

evidence in an NMA. We found that when the between-study variability was low,

it is potentially beneficial to incorporate this type of evidence, provided that it

is unbiased. However, when the variability between studies is high, aggregate

level matching of single-arm trials can produce quite an inaccurate estimate. We

suggest that researchers attempt to quantify the between-study variability, by

examining the baseline effect across all studies. The estimates for the networks

analysed in this chapter were close to the crossing point where including matched

evidence produces more biased estimates, which indicates that this method may

not be suitable for many networks where RCT data is also available. In addition,

even when the between-study variability estimate is low, there can still be quite

a lot of uncertainty associated with this estimate. Therefore, we also recommend

carrying out sensitivity analyses, as suggested in Chapter 3. Of course, there are

some situations where including matched evidence is the only option available to

statisticians to connect the network. However, it is important to bear in mind

that any method of including single-arm trials can never replace RCTs, both due

to the inherent inferior data quality and the relative ease with which it can be

manipulated. Therefore, it is crucial that companies still continue to run unbiased

RCTs, whenever feasible.

In Chapter 4 we assessed the benefit of incorporating IPD into an NMA, when-
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ever possible. While it is not necessary to obtain a full IPD network, obtaining a

few IPD trials can be quite beneficial in an NMA. This is particularly true when

trying to understand the nature of the covariate-treatment interaction through the

DIC.

In Chapter 5 we assessed the benefit of an anchored MAIC with a time-to-

event outcome. We found that while the MAIC can increase the accuracy when

considering the population that we are matching to, we may lose generalisability

with regards to the total network population. MAIC can also increase our uncer-

tainty in the estimates due to a smaller effective sample size, but the increase in

posterior SD does not always reflect the full increase in uncertainty. We there-

fore recommend to use MAIC as a sensitivity analysis only if we are specifically

interested in the target population, otherwise using a standard NMA model or a

mixed AgD/IPD model is preferable. We also investigated the best way to utilise

multiple IPD studies of the same comparison in an MAIC. We found that pooling

the IPD studies can lead to less uncertainty, but may not be as accurate with

regards to the target AgD trial population as matching each IPD trial separately.

6.2 Discussion

In this thesis we explore a number of ways to deal with poor quality evidence.

Overall, there can be benefits to making the most of the evidence available to us,

but a consistent theme is that care is required to ensure correct use of methods

and the awareness that is needed to avoid bias.

The most radical method of dealing with imperfect evidence explored in this

thesis is aggregate level matching of single armed studies. This method may be

necessary as pragmatism is needed at times in order to work with the available

data. However, it is also important that we do not lose the emphasis on RCTs,

as indicated in Grieve et al. (2016), and we do not want to disincentivise running

RCTs, by lax acceptance of these methods, and by extension of poorer quality

evidence. We need to ensure that pharmaceutical companies continue to run large,

high quality RCTs to prove that their treatments work and that they are cost

effective. Therefore we do not recommend making reimbursement decisions based

on aggregate level matching alone. However, there are some situations in which we

need information on the efficacy of treatment when RCTs and IPD are unavailable,

and therefore, we attempt to present a framework and some guidance for making

decisions in such an environment.

The more decisions that need to be made in any analysis the more susceptible

it is to manipulation. We can look at the example of matching by covariates,
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through either aggregate level matching or MAIC. If a party with a vested interest

is choosing the covariates to match on then they can choose the covariates which

best suit their interests. This is clearly a much greater problem for an unanchored

MAIC than an anchored MAIC. However, even with an anchored MAIC there is

still the possibility for manipulation. The main danger here is that an investigator

can check the results of many combinations of covariates with relative ease, before

sharing results, and then provide a justification after the analysis. Although we

found benefits to MAIC over a standard NMA in the target population of interest,

these same benefits could be seen by using a mixed AgD/IPD model, which does

not require a post hoc reweighting of data, and hence doesn’t have the same

negative impact on the full network population.

We have considered observational evidence as well in this thesis. Although it

may be prone to more bias than RCTs, the TRIO and ICORN datasets in Chap-

ter 4 demonstrate the wealth of information that is available from this form of

evidence. We should also note that all three studies included in the IPD chapter

came from observational evidence. It is clearly much easier to share this type of

evidence, as opposed to proprietary evidence owned by pharmaceutical companies

running RCTs. With the detailed IPD that is available from some observational

studies, there is great potential to adjust for bias arising from differing levels of

patient characteristics. We have seen a clear benefit of using IPD, in both iden-

tifying the nature of the covariates, and adjusting for differing levels of covariates

across trials in a network.

Overall, novel statistical methods in general have the potential to improve

analysis and decision making, but come with the caveat that care is required. This

thesis has been no exception, and while these methods can add value, caution must

be exercised when independently evaluating results from methods such as these.

6.3 Future Work

A number of extensions can be made to the work carried out so far:

• For the single-arm methodology these include:

– Further investigation to find the best method for choosing a matched

arm. While this is quite clear in circumstances where we have identified

one covariate only, having a number of covariates leads to the additional

challenge of how to weight each covariate. We have identified a number

of methods for choosing the weights but it is yet unclear if there is one

method that is more effective than the rest.
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– Instead of choosing the best match we could choose a weighted average

of the top x number of matches. This would be an interesting way to

extend this current work. Additionally, we could look at choosing one

arm at a given probability, which is determined by the distance of each

arm from the single arm of interest.

– Compare the matching methods in this thesis to other available match-

ing methods, such as random effects on baseline (Thom et al. (2015)).

This has already begun in an ISPOR workshop (Thom et al. (2017)).

• For the IPD chapter the simulation study can be extended to:

– Networks with more than one identified covariate.

– Using an applied example with continuous covariates instead of binary

covariates.

– Using further models from Donegan et al. (2013), which consider within-

trial and across-trial treatment-by-covariate interactions separately.

• Work on the MAIC chapter can be extended by:

– Analysing the impact of IPD on a disconnected network, and assessing

whether it is less biased than the aggregate level matching explored in

this thesis.

– Undertaking a similar analysis of MAIC using a binomial or continuous

outcome or using continuous covariates.

– We compared a median time-to-event model assuming an exponential

survival rate to a HR model. The simulation study was set up such that

the true survival function followed an exponential model also. However,

it could be worth investigating how these two models compared when

the true survival function differs from the assumption in the models.

– Undertaking a similar analysis of the other major population adjusted

indirect comparison method, Simulated Treatment Comparison (STC).

– Comparing the strengths and limitations of MAIC versus the strengths

and limitations of STC, in order to identify if one method is likely to

perform better than the other in a given context.

– Given the particularly large potential for publication bias in an MAIC

it could be useful to analyse past NMAs which used MAIC to see if this

has arisen. In particular, we could examine previous unanchored MAIC

or STC analyses which have resulted in positive recommendations from

HTA agencies to see if any later trials confirm the conclusions reached.
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• Other future work includes:

– We have not included any continuous outcome in this thesis. All chap-

ters could be extended to consider continuous outcomes.

– We saw the IPD chapter that the exchangeable model had a posterior

SD that was much larger than its estimate error. We also saw that

the hierarchical model has much larger posterior SDs than estimate er-

rors. The hierarchical model assumes exchangeability on the study type

level. Further investigation is necessary to investigate why exchangeable

models produce such large posterior SDs.

6.4 Final Remarks

Under ideal circumstances, we could compare all treatments using standard NMA

techniques. However, in this thesis we have seen that this is not always possi-

ble, either because of disconnected or single-arm evidence, or because of differing

patient populations. In this thesis we have provided and critically assessed tech-

niques to account for these difficulties. While these techniques can be crucial in

assessing new treatments, we must always remember the importance of comparing

these techniques to the ideal scenario of using the highest standard of evidence

to ensure that bias is kept to a minimum. Although it is important to investi-

gate these methods we must remember that even highly sophisticated statistical

methods are unlikely to be able to replace an RCT.
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Appendix A

For Chapter 3 (Single Arm

Evidence)

In Chapter 3 we assessed the impact of incorporating single-arm evidence in an

NMA using aggregate level matching on one covariate. This appendix extends the

work in Chapter 3 to a scenario with 3 covariates. We also provide additional

material such as the original simulations and the MC error associated with them,

assumptions surrounding the choice of priors, extra details of the studies in the

applied HCV infection example, and the WinBUGS code used.

A.1 Scenario With Three Covariates

In the main text of Chapter 3 we carried out a simulation study in which matching

was based on one covariate. We now extend this to matching based on three

covariates.

A.1.1 Methods

The goal of matching by covariates is to minimise the difference between matched

arms. When we have information about multiple covariates, there is a question

of how much weight we should put on each covariate. We may want to give a

bigger weight to variables that more strongly influence outcome. We define M to

be the number of covariates considered. The difference in each arm is computed

by: ∆ij,k =
∑M

m=1|wm(xmij − xmk)|, where xmk is the proportion of patients with

characteristic associated with the covariate m in the single agent trial with treat-

ment k. w is an additional parameter in this equation compared to the main text,

which denotes the estimated weight of each covariate.
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We considered a number of different methods to reflect the weight when we

have multiple identified covariates:

1. Equal Weights: Matching by equal weights. In this case each covariate is

given the same weight.

2. Covariate effect: Weighting by our best estimate of the effect of each co-

variate. We run a meta-regression on the RCT evidence alone to obtain an

estimate for the covariates of interest. We use the estimate of the mean of

each covariate (β̂) as the weights, and use the results of this equation to

choose the matched arm.

3. Covariate effect with SD: Again, we run a meta-regression on the RCT ev-

idence to estimate the covariates. We obtain the weight by dividing the

estimate of the mean by the posterior SD, β̂
σβ

. In this way we are penalising

uncertainty in our estimate. If two different covariates both have an esti-

mate of 2, for example, but covariate A has a standard deviation of 1 and

covariate B has a standard deviation of 10, then we would put more weight

on covariate A, as we can be more confident that the estimate is not due

to noise. In this example covariate B would need an estimate of 20 to be

given the same weight as covariate A. This is analogous to a Sharpe ratio

or information ratio in finance where expectancy is divided by the standard

deviation Sharpe (1994).

While methods 2 and 3 are the most informed method they require extra analysis

to be carried out. In addition, the meta-regression is based on the RCT network

alone, so while we would expect results to be indicative of the matched network,

they may not hold exactly for the single agent trials.

For the simulation study, in addition to the methods set out above we com-

pare the results of the matching methods to only using RCT evidence, randomly

matching, and methods that require perfect information.

1. RCT Only: Including RCTs only.

2. Random Matching: Randomly selecting a matching arm.

3. True Covariate Effects: This assumes that the covariate effects β are known

and used for the weights w. Therefore if we knew that the effect of covariate

A was 2 and the effect of covariate B was 0.5, then covariate A would be

given four times as much weight as covariate B.

4. Equal Weights: Matching using equal weights as described in above.
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5. Largest Covariate: Matching only by the covariate with the largest effect (as

defined by the simulation study) while ignoring all other covariates.

6. Estimated Covariate Effects: Using the mean of β from the meta-regression

as described above.

7. Estimated Covariate Effects with SD: Using the mean and posterior SD of

β from the meta-regression as described above.

Methods 3 and 5 use information which we do not have in reality, but they can

give us an indication of how well our model works. Therefore we include them as

part of the simulation study. We have excluded the plug-in estimator model in

this scenario to limit the number of lines on the graphs.

A.1.2 Results

We can see from figure A.1 that when including three covariates the study effect

influences our estimate error in the same way that it did with one covariate. The

effect of the three covariates are set to be β = (−0.52,−1.04,−2.08). Random

matching stands out from the other matching types as producing the worst MAE

and largest posterior SD. It is difficult to tell the difference between the other

matching methods, so any attempt at matching by covariates is likely to be bene-

ficial. For this reason that we decided to use equal weights in the HCV infection

application.
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Figure A.1: Effect of the between-study variability, σµ, on the estimate error and
posterior standard deviation. In this case three covariates have been identified,
the effect, β = (−0.52,−1.04,−2.08). The extreme left point on the graph shows
the scenario where the study effect is set to zero for every study. The variability
between the studies increases with the horizontal axis.

A.2 Graphs and Monte Carlo Error of Original

Simulations

Figure A.2: Effect of the between-study variability, σµ, on the estimate error and
posterior SD (original data). Covariate effect, β=-1.04.
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Table A.1: MC Error for Figure A.2

Mean Absolute Error Posterior SD
σµ RCT Only Random By Covariate Plug in Estimator RCT Only Random By Covariate Plug in Estimator
0 0.009 0.007 0.006 0.007 0.006 0.004 0.005 0.005
0.11 0.008 0.007 0.006 0.006 0.006 0.004 0.004 0.004
0.21 0.009 0.007 0.007 0.007 0.006 0.004 0.005 0.005
0.32 0.009 0.008 0.007 0.008 0.006 0.004 0.005 0.005
0.43 0.008 0.008 0.007 0.008 0.006 0.004 0.005 0.005
0.54 0.009 0.009 0.008 0.009 0.006 0.004 0.005 0.005
0.64 0.008 0.009 0.008 0.009 0.005 0.004 0.006 0.006
0.75 0.009 0.009 0.009 0.009 0.005 0.004 0.006 0.006
0.86 0.009 0.01 0.009 0.01 0.005 0.004 0.006 0.006
0.97 0.009 0.01 0.009 0.011 0.005 0.004 0.006 0.006
1.07 0.009 0.011 0.011 0.011 0.005 0.004 0.006 0.007
1.18 0.009 0.011 0.011 0.011 0.005 0.004 0.007 0.007

Figure A.3: Effect of bias in the single-arm trials on the estimate error and pos-
terior SD (original data). Covariate effect, β=-1.04.

Table A.2: MC Error for Figure A.3

Mean Absolute Error Posterior SD
σµ RCT Only Random By Covariate Plug in Estimator RCT Only Random By Covariate Plug in Estimator
0 0.009 0.01 0.009 0.009 0.004 0.006 0.005 0.004
0.1 0.009 0.009 0.008 0.009 0.004 0.006 0.005 0.004
0.2 0.009 0.008 0.008 0.008 0.004 0.006 0.005 0.004
0.3 0.009 0.009 0.009 0.008 0.004 0.006 0.006 0.004
0.4 0.008 0.008 0.008 0.008 0.004 0.006 0.006 0.004
0.5 0.008 0.008 0.008 0.008 0.004 0.006 0.005 0.004
0.6 0.009 0.008 0.009 0.008 0.004 0.006 0.006 0.004
0.7 0.008 0.009 0.009 0.008 0.004 0.006 0.006 0.004
0.8 0.008 0.009 0.01 0.009 0.004 0.006 0.006 0.004
0.9 0.008 0.009 0.009 0.008 0.004 0.006 0.006 0.004
1 0.008 0.01 0.009 0.008 0.004 0.006 0.006 0.004
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Figure A.4: Effect of the prior on the between-study design effect (σdes) on the esti-
mate error and posterior SD (original data). Between-study variability, σµ=0.59,
covariate effect, β=-1.04.

Table A.3: MC Error for Figure A.4

Mean Absolute Error Posterior SD
σdes Random By Covariate Extra RCTs Random By Covariate Extra RCTs
0.25 0.008 0.008 0.007 0.004 0.004 0.004
0.5 0.008 0.009 0.008 0.004 0.004 0.004
0.75 0.008 0.008 0.008 0.004 0.004 0.004
1 0.008 0.008 0.008 0.004 0.005 0.004
1.25 0.008 0.008 0.007 0.004 0.004 0.004
1.5 0.007 0.007 0.007 0.004 0.004 0.004
1.75 0.008 0.008 0.007 0.005 0.005 0.005
2 0.008 0.008 0.007 0.005 0.005 0.005

Figure A.5: Effect of ω on the estimate error and posterior SD (original data).
Between study variability, σµ=0.59, covariate effect, β=-1.04, prior on between
study design effect, σdes ∼ unif(0, 2).
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Table A.4: MC Error for Figure A.5

Mean Absolute Error Posterior SD
ω Random By Covariate RCT By Omega Random By Covariate RCT By Omega
0.1 0.013 0.013 0.014 0.009 0.009 0.01
0.2 0.013 0.012 0.013 0.009 0.009 0.01
0.3 0.017 0.016 0.018 0.011 0.011 0.011
0.4 0.013 0.012 0.013 0.008 0.008 0.009
0.5 0.012 0.012 0.012 0.008 0.009 0.009
0.6 0.013 0.014 0.014 0.008 0.008 0.009
0.7 0.014 0.014 0.014 0.009 0.009 0.009
0.8 0.012 0.012 0.013 0.008 0.008 0.008
0.9 0.015 0.014 0.014 0.010 0.010 0.010
1 0.012 0.011 0.012 0.007 0.007 0.007

Figure A.6: Effect of the between-study variability, σµ, on the estimate error and
posterior SD (original data). In this case three covariates have been identified,
β = (−0.52,−1.04,−2.08).
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Table A.5: MC Error for Figure A.6
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A.3 Comparing Priors

Table A.6: Comparing Log Odds Ratio (LOR) for each treatment versus PR for the
HCV infection RCT Only using a commonly used WinBugs prior (mean, precision)
versus the prior purposed in this chapter. The are sizable differences in some of
the LORs, but the order of treatment ranking does not change. Smaller numbers
were also tested for the precision of the standard prior but this lead to numerical
problems in WinBugs.

N(0, τ=0.001) N(0, τ=0.298)

mean sd mean sd

DCV/PR 3.01 1.18 2.15 0.90

BOC/PR 1.13 0.23 1.10 0.23

SIM/PR 1.18 0.22 1.17 0.22

TEL/PR 1.11 0.20 1.06 0.21

SOF/PR 1.90 0.71 1.64 0.65

PrOD±RBV 3.62 0.66 3.24 0.61
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A.4 Details of HCV infection Studies

Table A.7: Details of HCV Infection Studies

Study Treatment N SVR G1a Cirrhotic Viral Load

>800,000

IU/ml

RCTs

ADVANCE PR 361 158 58% 6% 77%

ADVANCE TEL/PR 363 271 59% 6% 77%

PROVE1 PR 75 31 67% 0% 92%

PROVE1 TEL/PR 79 48 67% 0% 84%

PROVE1 TEL/PR 79 53 61% 0% 86%

PROVE2 PR 82 38 43% 0% 83%

PROVE2 TEL/PR 81 56 38% 0% 90%

Kumada PR 63 31 0% 0% 29%

Kumada TEL/PR 126 92 2% 0% 21%

SPRINT1 PART 1 PR 104 39 51% 8% 90%

SPRINT1 PART 1 Boc/PR 103 58 51% 7% 87%

SPRINT1 PART 1 Boc 103 77 58% 6% 90%

Sprint-2 PR 363 137 63% 4% 85%

Sprint-2 BOC/PR 368 233 64% 4% 91%

Sprint-2 BOC/PR 366 242 65% 7% 93%

PILLAR PR 77 50 38% 0% 82%

PILLAR SIM/PR 78 63 46% 0% 82%

PILLAR SIM/PR 75 53 45% 0% 84%

PILLAR SIM/PR 77 60 48% 0% 90%

PILLAR SIM/PR 79 67 47% 0% 91%

QUEST-1 PR 130 65 57% 13% 74%

QUEST-1 SIM/PR 264 210 56% 12% 83%

QUEST-2 PR 134 67 40% 11% 73%

QUEST-2 SIM/PR 257 209 41% 7% 77%

PROTON PR 26 15 77% 0% Unknown

PROTON SOF/PR 47 42 74% 0% Unknown

NCT00874770 PR 12 3 58% 0% Unknown

NCT00874770 DCV/PR 12 10 75% 0% Unknown

MALACHITE-I/II TEL/PR 75 60 45% 0% Unknown

MALACHITE-I/II PrOD±RBV 236 231 29% 0% Unknown

ELECTRON SOF/RBV 25 21 Unknown 0% Unknown

ELECTRON SOF/LDV±RBV 25 25 80% 0% Unknown

Single-Arm Trials

ILLUMINATE TEL/PR 278 216 72% 9% 84%

NEUTRINO SOF/PR 292 261 77% 100% 91%

SAPPHIRE-I PrOD±RBV 473 455 68% 0% 78%

ION-1 SOF/LDV±RBV 217 215 66% 17% 79%

COMMAND-1 DCV/SOF±RBV 15 15 73% 0% Unknown

OPTIMIST-1 SIM/SOF±RBV 115 112 Unknown 0% Unknown

SPARE SOF/RBV 25 17 80% 4% 64%

A.5 Winbugs Code

A.5.1 RCT and Pooled Model

model{

for(i in 1:ns){

w[i,1] <- 0

delta[i,1] <- 0

169



mu[i] ~ dnorm(0,0.298)

#chosen to get an rather flat distribution on the probability scale

for (k in 1:na[i]) {

r[i,k] ~ dbin(p[i,k],n[i,k])

logit(p[i,k]) <- mu[i] + delta[i,k]

}

for (k in 2:na[i]) {

delta[i,k] ~ dnorm(md[i,k],taud[i,k])

md[i,k] <- d[t[i,k]] - d[t[i,1]]+ sw[i,k]

taud[i,k] <- tau*2*(k-1)/k

w[i,k] <- (delta[i,k] - d[t[i,k]] + d[t[i,1]])

sw[i,k] <- sum(w[i,1:k-1])/(k-1)

}

}

d[1]<-0

for (k in 2:nt){ d[k] ~ dnorm(0,0.298)}

sd ~ dunif(0,2)

tau <- pow(sd,-2)

for (c in 1:(nt-1)) {

for (k in (c+1):nt) {

or[k,c] <- exp(d[k] - d[c])

lor[k,c] <- (d[k]-d[c])

}

}

for (k in 1:nt) {

rk[k] <- nt+1-rank(d[],k)

for (j in 1:nt){

best[j,k] <- equals(rk[k],j)}

}

} #end

The following is the data for the RCT only dataset

list(

ns=12,

nt=7,

na=c(2, 3, 2, 2, 3, 3, 5, 2, 2, 2, 2, 2),

n=structure(.Data= c(361, 363, NA, NA, NA,

75, 79, 79, NA, NA,

82, 81, NA, NA, NA,

63, 126, NA, NA, NA,

104, 103, 103, NA, NA,

363, 368, 368, NA, NA,

77, 78, 75, 77, 79,

130, 264, NA, NA, NA,

134, 257, NA, NA, NA,

26, 47, NA, NA, NA,

12, 12, NA, NA, NA,

75, 236, NA, NA, NA

), .Dim=c(12, 5)),

r=structure(.Data= c(158,271, NA, NA, NA,

31, 48, 53, NA, NA,

38, 56, NA, NA, NA,

31,92, NA, NA, NA,
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39, 58, 77, NA, NA,

137, 233, 242, NA, NA,

50, 63, 53, 60, 67,

65, 210, NA, NA, NA,

67, 209, NA, NA, NA,

15, 42, NA, NA, NA,

3, 10, NA, NA, NA,

60, 231, NA, NA, NA

), .Dim=c(12, 5)),

t=structure(.Data= c(1, 5, NA, NA, NA,

1, 5, 5, NA, NA,

1, 5, NA, NA, NA,

1, 5, NA, NA, NA,

1, 3, 3, NA, NA,

1, 3, 3, NA, NA,

1, 4, 4, 4, 4,

1, 4, NA, NA, NA,

1, 4, NA, NA, NA,

1, 6, NA, NA, NA,

1, 2, NA, NA, NA,

5, 7, NA, NA, NA

), .Dim=c(12, 5))

)

The following includes the pooled dataset. The final 7 lines of each matrix refer to the matched arms. The two

study types are indistinguishable in the model. Note that there is a 13th RCT which is not included in the RCT

only dataset. This is because this RCT is not connected to the main network unless the matched evidence is also

included.

list(

ns=20,

nt=11,

na=c(2, 3, 2, 2, 3, 3, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2),

n=structure(.Data= c(

361, 363, NA, NA, NA,

75, 79, 79, NA, NA,

82, 81, NA, NA, NA,

63, 126, NA, NA, NA,

104, 103, 103, NA, NA,

363, 368, 368, NA, NA,

77, 78, 75, 77, 79,

130, 264, NA, NA, NA,

134, 257, NA, NA, NA,

26, 47, NA, NA, NA,

12, 12, NA, NA, NA,

75, 236, NA, NA, NA,

25, 25, NA, NA, NA,

278, 363, NA, NA, NA, #Matched (second column) starts here

292, 278, NA, NA, NA,

473, 79, NA, NA, NA,

217, 130, NA, NA, NA,

15, 47, NA, NA, NA,

115, 75, NA, NA, NA,

25, 473, NA, NA, NA

), .Dim=c(20, 5)),

r=structure(.Data= c(

158,271, NA, NA, NA,

31, 48, 53, NA,NA,
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38, 56, NA, NA,NA,

31, 92, NA, NA,NA,

39, 58, 77, NA,NA,

137, 233, 242, NA, NA,

50, 63, 53, 60, 67,

65, 210, NA, NA,NA,

67, 209, NA, NA, NA,

15, 42, NA, NA, NA,

3, 10, NA, NA, NA,

60, 231, NA, NA, NA,

21, 25, NA, NA, NA,

216, 137, NA, NA, NA, #Matched (second column) starts here

261, 216, NA, NA, NA,

455, 48, NA, NA, NA,

215, 65, NA, NA, NA,

15, 42, NA, NA, NA,

112, 60, NA, NA, NA,

17, 455, NA, NA, NA

), .Dim=c(20, 5)))

t=structure(.Data= c(

1, 5, NA, NA, NA,

1, 5, 5, NA, NA,

1, 5, NA, NA, NA,

1, 5, NA, NA, NA,

1, 3, 3, NA, NA,

1, 3, 3, NA, NA,

1, 4, 4, 4, 4,

1, 4, NA, NA, NA,

1, 4, NA, NA, NA,

1, 6, NA, NA, NA,

1, 2, NA, NA, NA,

5, 7, NA, NA, NA,

11, 8, NA, NA, NA,

5, 1, NA, NA, NA, #Matched (second column) starts here

6, 5, NA, NA, NA,

7, 5, NA, NA, NA,

8, 1, NA, NA, NA,

9, 6, NA, NA, NA,

10, 5, NA, NA, NA,

11, 7, NA, NA, NA

), .Dim=c(20, 5)),

A.5.2 Hierarchical Model
model{

### Overall Level ###

d[1]<-0

RCTd[1]<-0

MATCHEDd[1]<-0

for (k in 2:nt){

RCTd[k]~dnorm(d[k],COtauRCT)

MATCHEDd[k]~dnorm(d[k],COtauMATCHED)

d[k]~dnorm(0,0.298)}

for (k in 1:nt){
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d_branch[k, 3]<-RCTd[k]

d_branch[k, 1]<-MATCHEDd[k]

d_branch[k, 2]<-d[k]

Used_d[k]<-d_branch[k, RCTorMatched[k]] }

COsd~dunif(0,SDUpper)

COvar<-pow(COsd,2)

COtauMATCHED<-Omega/COvar

COtauRCT<-1/COvar

for (c in 1:(nt-1)) {

for (k in (c+1):nt) {

or[k,c] <- exp(Used_d[k] - Used_d[c])

lor[k,c] <- (Used_d[k]-Used_d[c])

}

}

### RCTs###

for(i in 1:RCTns){

RCTw[i,1] <- 0

RCTdelta[i,1] <- 0

RCTmu[i] ~ dnorm(0,0.298)

for (k in 1:RCTna[i]) {

RCTr[i,k] ~ dbin(RCTp[i,k],RCTn[i,k])

logit(RCTp[i,k]) <- RCTmu[i] + RCTdelta[i,k]

}

for (k in 2:RCTna[i]) {

RCTdelta[i,k] ~ dnorm(RCTmd[i,k],RCTtaud[i,k])

RCTmd[i,k] <- RCTd[RCTt[i,k]] - RCTd[RCTt[i,1]]+ RCTsw[i,k]

RCTtaud[i,k] <- RCTtau*2*(k-1)/k

RCTw[i,k] <- (RCTdelta[i,k] - RCTd[RCTt[i,k]] + RCTd[RCTt[i,1]])

RCTsw[i,k] <- sum(RCTw[i,1:k-1])/(k-1)

}

}

RCTsd ~ dunif(0,2)

RCTtau <- pow(RCTsd,-2)

### MATCHED###

for(i in 1:MATCHEDns){

MATCHEDw[i,1] <- 0

MATCHEDdelta[i,1] <- 0

MATCHEDmu[i] ~ dnorm(0,0.298)

for (k in 1:MATCHEDna[i]) {

MATCHEDr[i,k] ~ dbin(MATCHEDp[i,k],MATCHEDn[i,k])

logit(MATCHEDp[i,k]) <- MATCHEDmu[i] + MATCHEDdelta[i,k]

}

for (k in 2:MATCHEDna[i]) {

MATCHEDdelta[i,k] ~ dnorm(MATCHEDmd[i,k],MATCHEDtaud[i,k])

MATCHEDmd[i,k] <- MATCHEDd[MATCHEDt[i,k]] - MATCHEDd[MATCHEDt[i,1]]+ MATCHEDsw[i,k]

MATCHEDtaud[i,k] <- MATCHEDtau*2*(k-1)/k

MATCHEDw[i,k] <- (MATCHEDdelta[i,k] - MATCHEDd[MATCHEDt[i,k]] + MATCHEDd[MATCHEDt[i,1]])

MATCHEDsw[i,k] <- sum(MATCHEDw[i,1:k-1])/(k-1)

}

}

MATCHEDsd ~ dunif(0,2)

MATCHEDtau <- pow(MATCHEDsd,-2)

} #end
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The following shows the dataset for the hierarchical model. In this case the RCT and matched evidence are

treated as different study types.

list(

RCTns=12,

RCTna=c(2, 3, 2, 2, 3, 3, 5, 2, 2, 2, 2, 2),

RCTn=structure(.Data= c(

361, 363, NA, NA, NA,

75, 79, 79, NA, NA,

82, 81, NA, NA, NA,

63, 126, NA, NA, NA,

104, 103, 103, NA, NA,

363, 368, 368, NA, NA,

77, 78, 75, 77, 79,

130, 264, NA, NA, NA,

134, 257, NA, NA, NA,

26, 47, NA, NA, NA,

12, 12, NA, NA, NA,

75, 236, NA, NA, NA

), .Dim=c(12, 5)),

RCTt=structure(.Data= c(

1, 5, NA, NA, NA,

1, 5, 5, NA, NA,

1, 5, NA, NA, NA,

1, 5, NA, NA, NA,

1, 3, 3, NA, NA,

1, 3, 3, NA, NA,

1, 4, 4, 4, 4,

1, 4, NA, NA, NA,

1, 4, NA, NA, NA,

1, 6, NA, NA, NA,

1, 2, NA, NA, NA,

5, 7, NA, NA, NA

), .Dim=c(12, 5)),

RCTr=structure(.Data= c(

158,271, NA, NA, NA,

31, 48, 53, NA, NA,

38, 56, NA, NA, NA,

31,92, NA, NA, NA,

39, 58, 77, NA, NA,

137, 233, 242, NA, NA,

50, 63, 53, 60, 67,

65, 210, NA, NA, NA,

67, 209, NA, NA, NA,

15, 42, NA, NA, NA,

3, 10, NA, NA, NA,

60, 231, NA, NA, NA

), .Dim=c(12, 5)),

MATCHEDns=7,

nt=11,

MATCHEDna=c(2, 2, 2, 2, 2, 2, 2),

MATCHEDn=structure(.Data= c(

278, 363,

292, 278,

473, 79,

217, 130,
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15, 47,

115, 75,

25, 473

), .Dim=c(7, 2)),

MATCHEDt=structure(.Data= c(

5, 1,

6, 5,

7, 5,

8, 1,

9, 6,

10, 5,

11, 7

), .Dim=c(7, 2)),

MATCHEDr=structure(.Data= c(

216, 137,

261, 216, ,

455, 48,

215, 65,

15, 42,

112, 60,

17, 455

), .Dim=c(7, 2)),

RCTorMatched=c(2, 3, 3, 3, 2, 2, 2, 1, 1, 1, 1),

Omega=0.5,

SDUpper=2)

A.5.3 Plug in Estimator Model
model{

# Model for RCTs #

for(i in 1:ns){

w[i,1] <- 0

mu[i] ~ dnorm(0,0.298)

for (k in 1:na[i]) {

r[i,k] ~ dbin(p[i,k],n[i,k])

logit(p[i,k]) <- mu[i] + delta[i,k]

}

delta[i,1] <- d[t[i,1]]

for (k in 2:na[i]) {

delta[i,k] ~ dnorm(md[i,k],taud[i,k])

md[i,k] <- d[t[i,k]] + sw[i,k]

taud[i,k] <- tau *2*(k-1)/k

w[i,k] <- (delta[i,k] - d[t[i,k]])

sw[i,k] <- sum(w[i,1:k-1])/(k-1)

}

}

# Model for Matched Studies #

for(i in 1:MATns){

MATr[i] ~ dbin(MATp[i],MATn[i])

logit(MATp[i]) <- mu.cut[i] + MATdelta[i]

mu.cut[i] <- cut(mu[ChosenRCT[i]])

MATdelta[i]~dnorm(d[MATt[i]],tau.cut)

}

# Specify remaining priors
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d[1]<-0

for (k in 2:nt){ d[k] ~ dnorm(0,0.298) }

sd ~ dunif(0,2)

tau <- pow(sd,-2)

tau.cut<-cut(tau)

# pairwise ORs and LORs for all possible pair-wise comparisons, if nt>2

for (c in 1:(nt-1)) {

for (k in (c+1):nt) {

or[k,c] <- exp(d[k] - d[c])

lor[k,c] <- (d[k]-d[c])

}

}

# ranking on relative scale

for (k in 1:nt) {

rk[k] <- nt+1-rank(d[],k)

for (j in 1:nt){

best[j,k] <- equals(rk[k],j)}

}

}

The following shows the dataset for the Plug in estimator model.

list(

ns=12,

nt=11,

na=c(2, 3, 2, 2, 3, 3, 5, 2, 2, 2, 2, 2),

n=structure(.Data= c(

361, 363, NA, NA, NA,

75, 79, 79, NA, NA,

82, 81, NA, NA, NA,

63, 126, NA, NA, NA,

104, 103, 103, NA, NA,

363, 368, 368, NA, NA,

77, 78, 75, 77, 79,

130, 264, NA, NA, NA,

134, 257, NA, NA, NA,

26, 47, NA, NA, NA,

12, 12, NA, NA, NA,

75, 236, NA, NA, NA

), .Dim=c(12, 5)),

t=structure(.Data= c(

1, 5, NA, NA, NA,

1, 5, 5, NA, NA,

1, 5, NA, NA, NA,

1, 5, NA, NA, NA,

1, 3, 3, NA, NA,

1, 3, 3, NA, NA,

1, 4, 4, 4, 4,

1, 4, NA, NA, NA,

1, 4, NA, NA, NA,

1, 6, NA, NA, NA,
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1, 2, NA, NA, NA,

5, 7, NA, NA, NA

), .Dim=c(12, 5)),

r=structure(.Data= c(

158,271, NA, NA, NA,

31, 48, 53, NA, NA,

38, 56, NA, NA, NA,

31,92, NA, NA, NA,

39, 58, 77, NA, NA,

137, 233, 242, NA, NA,

50, 63, 53, 60, 67,

65, 210, NA, NA, NA,

67, 209, NA, NA, NA,

15, 42, NA, NA, NA,

3, 10, NA, NA, NA,

60, 231, NA, NA, NA

), .Dim=c(12, 5)),

MATCHEDns=7,

MATCHEDn=c(278, 292, 473, 217, 15, 115, 25),

MATCHEDt=c(5, 6, 7, 8, 9, 10, 11),

MATCHEDr=c(216, 261, 455, 215, 15, 112, 17),

ChosenRCT=c(10, 6, 11, 8, 10, 7, 2))

A.5.4 Model For Estmaiting σµ
In order to estimate σµ we use the RCT part of the plug-in estimator model. This is because it is neccessary to

have a common reference treatment so that the study effects, µi are comparable across studies.

model{

for(i in 1:ns){

w[i,1] <- 0

mu[i] ~ dnorm(0,0.298)

for (k in 1:na[i]) {

r[i,k] ~ dbin(p[i,k],n[i,k])

logit(p[i,k]) <- mu[i] + delta[i,k]

}

delta[i,1] <- d[t[i,1]]

for (k in 2:na[i]) {

delta[i,k] ~ dnorm(md[i,k],taud[i,k])

md[i,k] <- d[t[i,k]] + sw[i,k]

taud[i,k] <- tau *2*(k-1)/k

w[i,k] <- (delta[i,k] - d[t[i,k]])

sw[i,k] <- sum(w[i,1:k-1])/(k-1)

}

}

d[1]<-0

for (k in 2:nt){ d[k] ~ dnorm(0,0.298) }

sd ~ dunif(0,2)

tau <- pow(sd,-2)

tau.cut<-cut(tau)

}
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This is simply the RCT only dataset.

list(

ns=12,

nt=11,

na=c(2, 3, 2, 2, 3, 3, 5, 2, 2, 2, 2, 2),

n=structure(.Data= c(

361, 363, NA, NA, NA,

75, 79, 79, NA, NA,

82, 81, NA, NA, NA,

63, 126, NA, NA, NA,

104, 103, 103, NA, NA,

363, 368, 368, NA, NA,

77, 78, 75, 77, 79,

130, 264, NA, NA, NA,

134, 257, NA, NA, NA,

26, 47, NA, NA, NA,

12, 12, NA, NA, NA,

75, 236, NA, NA, NA

), .Dim=c(12, 5)),

t=structure(.Data= c(

1, 5, NA, NA, NA,

1, 5, 5, NA, NA,

1, 5, NA, NA, NA,

1, 5, NA, NA, NA,

1, 3, 3, NA, NA,

1, 3, 3, NA, NA,

1, 4, 4, 4, 4,

1, 4, NA, NA, NA,

1, 4, NA, NA, NA,

1, 6, NA, NA, NA,

1, 2, NA, NA, NA,

5, 7, NA, NA, NA

), .Dim=c(12, 5)),

r=structure(.Data= c(

158,271, NA, NA, NA,

31, 48, 53, NA, NA,

38, 56, NA, NA, NA,

31,92, NA, NA, NA,

39, 58, 77, NA, NA,

137, 233, 242, NA, NA,

50, 63, 53, 60, 67,

65, 210, NA, NA, NA,

67, 209, NA, NA, NA,

15, 42, NA, NA, NA,

3, 10, NA, NA, NA,

60, 231, NA, NA, NA

), .Dim=c(12, 5)))
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Appendix B

For Chapter 4 (Individual Patient

Data)

Table B.1: Number of simulations for each scenario. The differences in the number
of runs is due to the computing power available and the relative length of time
required for each scenario.

True Identical True Exchangeable

RCT Binary Covariate

248 314

Observational Binary Covariate

241 301

RCT Continuous Covariate

138 153

Observational Continuous Covariate

122 128
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Figure B.1: Coverage probabilities of the 95% credible interval for treatment Effect
vs percentage of individual patient data (IPD) studies. Coverage above the solid
black 95% line often indicates that posterior standard deviations are too conserva-
tive, while coverage below this line often indicates that posterior standard deviations
are too precise.
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Figure B.2: Coverage probabilities of the 95% credible interval for covariate effect
vs percentage of individual patient data (IPD) studies. Coverage above the solid
black 95% line often indicates that posterior standard deviations are too conserva-
tive, while coverage below this line often indicates that posterior standard deviations
are too precise. IPD can cause over confidence when the incorrect model is chosen.

181



Figure B.3: Mean absolute error for the estimate of the treatment effect vs percent-
age of individual patient data (IPD) studies. IPD has a particularly large effect in
the scenarios with the binary covariate.
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Figure B.4: Posterior standard deviation (SD) for treatment effect vs percentage
of individual patient data (IPD) studies. IPD decreases the posterior SD for the
independent and exchangeable (effect modifiers) models.
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Figure B.5: Mean absolute error (MAE) for the estimate of the covariate effect
vs percentage of individual patient data (IPD) studies. As the amount of IPD
increases, the MAE of the estimate decreases for a number of models.
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Figure B.6: Posterior standard deviation for covariate effect vs percentage of in-
dividual patient data (IPD) studies. The effect of IPD is not as noticeable in this
case but can still be seen in some scenarios.
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Figure B.7: Proportion of Deviance Information Criterion (DIC) differences
greater than 3 vs percentage of individual patient data (IPD) studies. The lines
track the number of iterations when there is a meaningful difference between two
models. There are seldom differences between the models with a full aggregate
dataset. However, as the amount of IPD increases the correct model is identified
more often (up to 100% of the time in the case of an exchangeable model). The
increase due to IPD is much larger in the scenarios with the binary covariate.
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Figure B.8: Standard deviation of the interaction of the covariate with the five
treatments for the independent and exchangeable models vs percentage of individual
patient data (IPD) studies. Exchangeable and independent models will estimate
the covariate effects to be more different from each other when they are actually
exchangeable as opposed to truly identical.
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Appendix C

For Chapter 5 (Matching

Adjusted Indirect Comparison)

Figure C.1: Examining MAE and posterior SD while varying the difference in
proportion possessing the characteristic associated with each covariate between AB-
IPD trials. The dotted lines around each MAE estimate represent the MC Error on
each side. On the left most point of the x-axis all three AB-IPD studies have 45% of
patients possessing the characteristic associated with each covariate, however, on
the right hand side Study 1 has 45% of patients possessing the characteristic associ-
ated with each covariate, Study 2 has 90% of patients possessing the characteristic
associated with each covariate, and Study 3 has 10% of patients possessing the
characteristic associated with each covariate. The numbers on the x-axis represent
the difference in the proportion possessing the characteristic associated with each
covariate between Study 2 and Study 3. The AB-AgD study has a fixed proportion
possessing the characteristic associated with each covariate of 90%.
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Figure C.2: Fixed effects models: Examining MAE and posterior SD while increas-
ing the standard deviation of the covariate-treatment interaction: Standard NMA
and standard NMA with covariate models

Figure C.3: Fixed effects models: Examining MAE and posterior SD while increas-
ing the standard deviation of the covariate-treatment interaction: Standard NMA,
MAIC, and mixed AgD/IPD models

190



Figure C.4: Fixed effects models: Examining MAE and posterior SD while varying
the proportion of patients possessing each characteristic in the BC-AgD study

Figure C.5: Fixed effects models: Examining MAE and posterior SD while varying
the proportion of patients possessing each characteristic in the AB-IPD study
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Figure C.6: Fixed effects models: Examining MAE and posterior SD while vary-
ing the difference in proportion possessing the characteristic associated with each
covariate between AB-IPD trials

Figure C.7: Fixed effects models: Examining MAE and posterior SD while vary-
ing the difference in proportion possessing the characteristic associated with each
covariate between AB-IPD trials
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