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Thesis summary

Adrenoceptors (AR) belong to the G-protein coupled receptor (GPCR) family. These 

receptors play an important role in regulating many processes in the body related to the 

central nervous system, vascular system and many others. The importance of these 

receptors as regulators can be further stressed as they are considered promising drug 

targets. Currently 40%  of all marketed drugs are targeted at GPCRs. The adrenoceptors 

can be subdivided into nine different classes of which the o rA R  class consists of three 

subtypes ( q u -A R, Qib -AR and Q id -A R ). This ai-AR class plays an important role in the 

condition known as benign prostatic hyperplasia (BPH). BPH affects 50%  of men over 50 

years old and with the aging of the population percentage, this percentage is expected to 

rise. BPH is manifested by the enlargement of prostate tissue that constrains the urethra 

Prostatic smooth muscle contraction occurs mainly via the Qia-AR subtype. The effect of 

BPH is manifested through the impaired flow of urine through the urethra when is passes 

the prostate. Inhibition of the Qia-AR by using an antagonist has shown to increase the 

urine flow and therefore, decrease the physiological aspects of BPH. The class aio-AR is 

located in the neck of the bladder where the urine leaves the bladder and it is believed 

that inhibiting this receptor could be beneficial in the treatm ent of BPH. The Qib-AR does 

not play a role related to BPH, but is present in the brain. Therefore, it is believed that 

inhibition of this receptor could result in unwanted side-effects. Hence, antagonists which 

are selective for the Qia-AR and Qid-AR would be useful for treating BPH with reduced side 

effects. In our research we develop models for each of the three Oj-AR subtypes which 

can be used in determining ligand-specific interaction with each subtype.

Structure based drug design requires the knowledge of the structure of target receptor, 

which in our case are the three Qia-AR, Qib-AR and aio-AR subtypes. The 3-dimensional 

structures for these receptors are still unavailable and until recently, the only GPCR crystal 

structures that were available were that of bovine rhodopsin. The structure of bovine 

rhodopsin has a low similarity (< 2 0 % ) to the adrenoceptors but shares a number of 

residues in the transmembrane helices which are conserved amongst all GPCRs making 

this structure potentially useful as a template for homology models and is the template 

we choose for our studies. During the writing of this thesis, the structure of the (32- 

adrenoceptor has been discovered, which shares higher similarity (6 0 % ) with the other 

adrenoceptors, although this discovery was made towards the end of this study.



A number of ligands are known to selectively interact with the three oi-AR subtypes and 

they provide a good starting point for modelling the interaction between ligand and 

protein. These ligands are described for the neutral state, but at physiological pH they 

should be protonated. In general, the ligand-receptor complex involves different 

interactions such as hydrogen bonds and ionic interaction and thus, an accurate 

description of the protonated state of the ligand is very important.

Using homology modelling we have developod models of the three adrenoceptor subtypes 

□ ia-AR, Qib-AR and Qid-AR based on the crystal structure of bovine rhodopsin. Several 

approaches have been taken and compared to obtain accurate 3D models. These models 

are tested for stability using molecular dynamics (IMD) simulations. The adrenoceptors are 

normally found in a phospholipid bilayer, but such bilayers are difficult to model. An 

alternative approach to model this environment is to make use of solvent layers consisting 

of water/chloroform /water in which chloroform represents the hydrophobic phosplipid 

bilayer and water the intra- and extra-cellular space. A selection of models is made and 

can be further used for study of protein-ligand complexes.

A number of ligands selected from the literature were optimized for this protein-ligand 

interaction study. This optimization consisted of a conformational search to find a range 

of minimum energy conformations. Each conformation was then further optimized using 

hybrid functional theory (B3LYP) which provides accurate minimum energy conformations. 

The lowest energy conformation of all these calculated conformations is then selected 

which is regarded as the global minimum. This minimum energy conformation is then 

subjected to proton affinity calculations by protonation of each nitrogen independently 

and optimization of each structure using B3LYP. The conformation with the largest 

difference in energy between the neutral state and the most stabel protonated state is 

regarded as the site for protonation at physiological pH.

Using the homology models and the optimized ligands, the drug-receptor interaction can 

be investigated using molecular docking followed by MD simulations. The ligand has 

several possibilities of fitting into the receptor. Therefore, by means of molecular docking 

different ligand-protein complexes are generated and an optimal complex is selected. To 

refine this, further MD simulations are performed using the three-layer solvent model to 

model the membrane bilayer. From our ligand set a selection of 12 antagonists has been 

made which are docked individually into each of the three ai-AR subtypes giving rise to



36 different antagonist-adrenoceptor complexes. The refinement of the interaction 

between ligand and receptor within the binding pocket of each subtype allows the 

determination of subtype specific interactions.

Analysis of the final complexes identifies a number of residues which are involved in 

binding. Most of the residues commonly considered to be involved in the binding to 

antagonists are conserved the three adrenoceptors and can therefore not be used to 

design subtype specific antagonists. They can be used to identify the binding pocket and 

used for identification if a ligand has bound correctly, as binding to these residues is 

expected. A considerable number of residues involved in binding can be considered as 

ligand-specific but our studies have not allowed the explaination of subtype specificity. 

Furthermore, it appears that some or our resulting ligand-protein complexes lack some 

strong interactions which were known to be important for strong binding affinity. This 

suggests that an optimal interaction has not been achieved. However, we believe that for 

four of the compounds studied an optimal binding has been achieved and for each 

adrenoceptor subtype establishing the reported needed interactions. Considering the 

diversity of these four structures and the different interactions established with each a r  

AR subtype, these compounds could be considered as good 'lead' comnpounds for 

developing sub^/pe specific antagonists.
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Chapter I

Introduction: Benign Prostatic Hyperplasia,

Adrenoceptors and GPCRs.

Heavier-than-air flying machines are impossible 

Lord Kelvin (1824-1907)



Chapter 1: Introdurtinn

1.1. Introduction
In this introduction several aspects of benign prostatic hyperplasia (BPH), G-protein 

coupled receptors (GPCRs) and the adrenoceptors will be discussed. First, an introduction 

to BPH which describes the prostate, the pathological processes involved, the prevalence 

and the current drug therapies for BPH will be presented. The receptors which are the 

object of this work are the adrenoceptors which belong to a class of proteins known as 

GPCRs. An overview of different structural and functional aspects of GPCRs will be given. 

This will be followed by a short overview of rhodopsin which was the only GPCR with a 

known crystal structure at the time of this study. Recently, the crystal structure of the p2- 

AR has been discovered which shares more sequence similarity to the Oi-ARs. The next 

section will deal with the adrenoceptors. Several of their known structural features will be 

discussed and the different binding pockets are described. The last part of the 

introduction will consist on an overview of the research that has been performed on the 

adrenoceptors using pharmacophore analysis, quantitative structure activity relationships 

(QSAR), homology modelling, molecular docking and other computational methods.

1.1.1. Benign prostatic hyperplasia

The term BPĤ ^̂  is used to describe histopathologic hyperplastic changes in the prostate. 

Hyperplastic changes refer to an increase in the number of cells. Clinicians commonly use 

the term BPH to describe a clinical syndrome consisting of thee components: lower 

urinary tract symptoms (LUTS), benign prostatic enlargement and bladder outlet 

obstruction. A fourth term, benign prostatic obstruction is used when bladder outlet 

obstruction and benign prostatic enlargement occur. Several common physiological 

aspects of BPH such as flow rate, obstruction and the size of the prostate have been 

measured. However, there appear to be no or weak correlations between the occurring 

symptoms of BPH and these physiologic measures.^^'^^

1.1.2. Prostate

The main function of the prostate is to store and secrete a clear, slightly basic fluid that 

constitutes up to one-third of the volume of semen. The prostate also contains some 

smooth muscles that help expel semen during ejaculation.

A healthy human prostate is slightly larger than a walnut. It  surrounds the urethra just 

below the urinary bladder (Fig. 1.1) and can be felt during a rectal exam. Within the
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prostate, the urethra coming from the bladder is called the prostatic urethra and merges 

with two ejaculatory ducts.

Ureter opening

Bladder

Prostate

Opening of: ^
Prostatic duct 
Ejaculatory duct Verumontanum

UrethraSphincter

Figure 1.1: Anatomy of man showing the bladder and prostate (picture taken from
indianhealthguru.wordpress.com)

The prostate consists of four different glandular regions^^  ̂(Fig. 1.2). The peripheral zone 

is the bottom part of the outside of the prostate gland which surrounds the urethra. The 

transition zone surrounds the proximal urethra and is the region of the prostate gland 

which grows throughout life and is responsible for the benign prostatic enlargement. The 

anterior fibromuscular zone or preprostatic sphincter consists of muscle and fibrous 

tissue. The verumontanum is an elevation in the wall of the urethra where the seminal 

ducts enter it.

Figure 1.2: Overview of the prostate where P is the peripheral zone, T  is the transition zone, S is 
the preprostatic sphincter, U is the urethra and V is the verumontanum (picture taken from

Oesterling et a l.® )
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1.1.3. Progression of BPH

Benign prostatic hyperplasia nodules originate within the transistion zone that lies 

proximal to the verumontanum and in proximity to the cylindrical urinary sphincter that 

arises form the bladder neck.^^  ̂ Inside the internal sphincter and immediately adjacent to 

the urethra is the periurethral tissue. BPH nodules can arise from different tissues. Those 

formed in the transition zone develop early and consist of large epithelium groups 

constituting the main mass of BPH tissue enlargements. Those nodules that orginate from 

the periurethral zone tend to have a later onset and to be smaller, fewer in number and 

composed primarily of fibroblastic tissue. The initial lesion of BPH does not arise from 

supportive tissue (stromal nodules), but from a formation of glandular budding and 

branching towards a central focus that occurs primarily in the transition zone.

In the early states of BPH, the transition zone undergoes a diffuse enlargement without 

any significant change in its architecture. The prostate shows microscopic enlargement, 

but no clinical symptoms occur. In the next stage of development, the initial microscopic 

nodules undergo further hyperplasic changes, resulting in a substantial increase in size. 

The process of budding and branching continues within the nodule and adjacent ducts 

become stimulated and are incorporated into the process as well. Microscopic nodules 

develop into macroscopic nodules and the original anatomy of the prostate gland 

becomes distorted.

The final stage in the histogenesis of BPH is the development of clinical symptoms as a 

result of the enlarged prostate gland. Prostatic enlargement by itself is not sufficient to 

produce clinically significant bladder outlet obstruction. Additional factors are necessary 

for the progression of pathological BPH into clinical BPH. An event such as prostatic 

infarction could be a cause for developing pathological BPH.

1.1.4. Prevalence of BPH

The estimated prevalence of BPH from community-based studies is 4 0%  of men in their 

70s, but histological evidence in autopsy studies has been found BPH in 60-80%  of men 

aged 60-69 y e a r s . F u r t h e r  research into histological development of BPH shows that 

initial development of BPH can begin as early as 25-30 years of age with a prevalence of 

approximately 10%.^^^ With advancing age the occurence of BPH increases such, that by 

the age o f 51-60 year the prevalence is more than 50% . At the age of 85 approximately 

90%  of men will have this condition. This means that BPH is a condition that starts early 

in life and if men live long enough, full BPH develops later.

- 4 -
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1.1.5. Impact on quality of life

BPH has in general a great impact on the quality of life (QOL)/^^ QOL is an important 

factor in an aging society. The two most troublesome symptoms are sleep interruption to 

empty the bladder (nocturia) and incomplete emptying of the bladder. The difference 

between the groups with moderate decrease in QOL and severe decrease of QOL was 

related to a significant difference in the symptoms that were experienced. Because LUTS 

and, and in particular BPH develop with age and result in a decrease of QOL, several 

treatments are focussed on increasing the QOL and not necessarily on the treatment of 

the causes of BPH itself.

1.1.4. Treatment of BPH

The treatment of BPH is dependent on the progression of the hyperplasia in the prostate 

and on the size of the prostate.̂ "̂  ̂A medicinal approach can be taken for moderate and 

severe BPH accompanied with an enlarged prostate. Current therapies used in clinic are 

drugs that target 5-a-reductase which prevent further progression of BPH and target the 

Qi-adrenoceptors which limits the physiological effect of BPH.

5-a-reductase^^^ is an enzyme that is involved in the progression of BPH. It  has been 

discovered in men with a disease termed pseudovaginal perineoscrotal hypospadias. This 

condition is caused by the absence of 5-a-reductase. This disease is characterized with 

underdeveloped genital organs, but in late puberty a gender reassignment takes place in 

response to a significant rise in testosterone. It  was also found that these men do not 

develop benignly enlarged prostates or prostate cancer. In addition they do not develop 

male pattern baldness. Testosteron can be degraded by 5-a-reductase to 

dihydroxytestosterone (DHT). This suggests that DHT instead of testosterone is needed to 

develop BPH. The drug Finasteride has been developed to inhibit 5-a-reductase. 

Finasteride competes with testosterone for the active side of the enzyme without affecting 

the interaction of testorone or DHT with the androgen receptor. Therefore finasteride 

reduces the serum DHT level by 70%  and locally at the prostate by 90%  which stops the 

progression of BHP.

The oi-adrenoceptors are receptors embedded in the membrane of cells present amonst 

other tissues in the prostate. Several subtypes of the adrenoceptor are known. Of these
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the Qia-AR is the most prominent in the prostate and therefore this receptor is a drug 

target. A more detailed description of adrenoceptors can be found in chapter 2. It  has 

been found that the alpha-biockers help to relax the smooth muscle in the prostate, 

therefore allowing a better urine flow. Drugs that target the a-AR adrenoceptor have been 

evaluated for over 30 years and have resulted in six drugs being marketed^^^, (Fig. 1.3). 

First, the non-selective a-inhibitor phenoxybenzamine followed by selective oi-AR  

antagonists. The first selective antagonist was prazosin, which was short acting, followed 

by the long-acting antagonists terazosin, doxazosin, tamsulosin and alfuzosin. The 

improvement of the long-acting antagonists arise from the reduction of side effects but 

these newer drugs have not shown an effective improvement in the treatm ent of BPH 

itself.

X -N -v '
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' O o
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Phenoxybenzamine 
(Rogitine, Novartis) Prazosin 

(Mlnipress, Pfizer)

OMe

OMe

Terazosin 
(Hytrin, Abbott)

H,C

H ,C '

Tamsulosin 
(Flomaxtra/Flomax, Astellas Pharma, 

Boehringer-Ingelheim)

OMe

OMe

Doxazosin 
(Cardura, Pfizer)

Alfuzosin 
(Uroxatral, Sanofi-Aventis)

Figure 1.3: Overview of the structures of the different antagonists that target the Oi-AR.

Phenoxybenzamine was the first drug to be effective for the treatm ent of BPH. However, 

it came with several side-effects such as tiredness, dizziness, impaired ejaculation, nasal 

stuffiness, and hypertension.
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Prazosin was the second drug and reduced the side effects of phenoxybenzamine 

significantly. The downside of prazosin was that it requires nnultiple daily dosing and has 

some adverse events related to its blood pressure-lowering effect.

Terazosin was the first long-acting drug which in contrast to Prazosin only needs daily 

dosing. Doxazosin was the second long-acting drug for treatment of BPH. The advantage 

of doxazosin was its longer half-live tolerability. However, in practice this did not give it a 

therapeutical benefit. Tamsulosin was the third long-acting drug and was marketed as an 

antagonist for treatm ent of BPH. However, it did not show clinically sufficient 

improvements. The advantage of tamsulosin is that it does not need a dose titration and 

it has a minimal effect on blood pressure. One of the side effects of tamsulosin is that it 

causes anejaculation. Alfuzosin is the fourth drug that was approved by the FDA for 

treatm ent of BPH. I t  shares the same advantages as tamsulosin by not needing a buildup 

of the dose (dose titration), but has the benefit that is does not cause ejaculatory 

dysfunction. Alfuzosin has also the most minimal effects on dizziness, asthenia and 

ejaculatory dysfunction relative to all the other a-blockers.

Both terazosin and doxazosin have observed effects of lowering blood pressure in men 

who are hypersensitive at the baseline. This was desirable because it suggested that two 

common conditions, hypertension and hyperplasia, could be treated with a single drug. 

However, it was found that drugs that have both effects, are significantly less effective on 

releaving hypertension than the available antihypertensive drugs.

With the introduction of selective Oi-AR blockers the focus on improving drugs for the 

treatm ent of BPH targeted at reducing side-effects, but there has been little progress 

made in the treatm ent of BPH itself. It  has also been found by a number of 

pharmaceutical companies that antagonists that increase the urine flow do not necessarily 

relieve the symptoms of LUTS. This has moved the focus of research for BPH away from  

selective targeting of ai-AR to other pathophysiological processes surrounding LUTS.

1.2. Adrenoceptor
Adrenoceptors are metabotropic receptors (GPCRs) and the target of the 

neutrotransmitter/hormone noradrenaline and adrenaline.
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1.2.1. Subtypes

The adrenoceptors (AR ) can be subdivided into a-A R  and p-AR^^^ (Fig 1 .9 ). The  a-AR 

m ediate m ost excitatory functions such as vasoconstriction, uterine musculature  

contraction, urethra contraction and pupil dilation and one im portant inhibitory function, 

intestinal relaxation. (3 -AR m ediate most inhibitory functions such as vasodilation, uterine  

m usculature relaxation and bronchodilation and one excitatory cardiac function. The  a-AR 

can be further subdivided into Oi-AR and az-AR while the p-A R  can be subdivided into P i- 

AR, P2-AR and P3-AR. Due to our interest in the Oi-AR , the Q2-AR and p-AR  will not be 

discussed further. The  current classification of Oi-AR consists o f Qia -A R , q ib -AR and Q id - 

AR.

'2C‘2A/DI : ^2B

Adrenoceptor

Figure 1.3: Classification of the adrenoceptors

The Qi-AR usually m ediates excitatory responses in the  effector organ. The  0 2 -AR is 

located presynaptically and regulates the release o f the  neurotransm itter, but is also 

present in postsynaptical locations. Both a-ARs are im portant for the control of vascular 

tone. T h ere  is how ever a difference in the distribution o f the d ifferent a-AR subtypes in 

different organs. This difference in distribution can be used to  develop treatm ents based 

on selective ligands.^®^

1.2.2. Treatment of BPH by subtype selective antagonists.

The prostate contains a high concentration o f Oia-AR, but not Qib-AR  and Cid -AR. I t  is also 

found th a t the  stim ulation of the adrenoceptor leads to a less than favourable flow  of 

urine through the prostate. Therefore  the Qm -AR  is an ideal ta rg e t for suppressing 

symptoms o f BPH. Besides the prostate, adrenoceptors are also present in the bladder
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mouth. But these are of type Cid-AR and stimulation of these receptors leads to 

symptoms such as incomplete emptying of the bladder. This receptor can be targeted as 

well to treat BPH. Thus targeting the receptors Oia-AR and Oid-AR an effective 

suppression of BPH symptoms is obtained. However, most drugs are not selective for 

those two receptors alone. I f  a ligand has an affinity for the Qib-AR which is present in the 

brain, this could result in unwanted side-effects. Therefore an ideal drug should be 

designed to selectively inhibit the Oia-AR and Qid-AR, but not interact with the Qib-AR.

1.2.3. Structural features of the adrenoceptors.

There are several known structural features of adrenoceptors which have been primarily 

derived from mutation studies. A characteristic structural feature is the presence of two  

cysteine residues which are able to form a disulphide bond and are conserved in most 

class A GPCRs. Based on the arrangement of the ligand in the receptor this leads to a 

reaction mechanism for the cleavage of the disulfide bond catalysed by the ligands.^^^ The 

interaction between the carboxylic acid side chain of aspartic acid and the disulfide bond 

leads to the polarization and withdrawal of a proton from the protonated nitrogen of the 

ligand to one of the sulphur atoms. The accompanying cleavage of the disulfide bond may 

produce a conformational change in the extracellular loops, opening the pore formed by 

the seven-helix bundle. This means that not only can the ligands move into the receptor, 

but water and ion flux can also occur through the receptor from the extracellular to the 

intracellular regions of the cell. W ater or ion penetration through the pore of the helices is 

probably an additional trigger leading to the activation, by means of conformational 

changes in the receptor, of the G-proteins and followed biochemical responses.

Another characteristic feature is that the conformational change associated with the 

activation of GPCRs (section 1.3), involves the disruption of a salt bridge constraint 

between Glu“  ̂ on T M -III  and a Lyŝ ®® in TM-VII.^^°^ When there is a c/s-/ra/7sconversion 

this salt bridge is broken and the receptor is activated.

The residues Asp^^  ̂ and Lyŝ ^̂  in the Oi-AR have the potential of forming a constraining 

salt bridge holding the receptor to an inactive protein configuration.^^^ This salt bridge 

constraint is then released upon binding by the receptor agonist. Substitution of the lysine 

with an alanine and, thereby eliminating the positive charge at position 331, resulted in a 

6-fold increment of adrenaline binding affinity with no alterations of affinity values for 

selective adrenoceptor antagonists. These mutations suggest a molecular mechanism by 

which the positively charged Lyŝ ^̂  stabilize the negatively charges Asp^^  ̂ via a salt bridge
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constraint until the receptor is bound by an agonist. The salt bridge and ionic lock are 

thought to be common in most GPCRs.

Another important structural feature is the second extracellular loop (ECL-II) which has 

been studied extensively for the dopamine D2 receptor^^^ .̂ It is proposed that this loop can 

enter the binding site crevice of aminergic and other rhodopsin-like GPCRs that have small 

molecule ligands. Experimental findings suggest that the residues in the ECL-II loop that 

contribute to ligand binding are not freely accessible.'^^  ̂Thus, ECL-II is likely to be folded 

into the binding-site crevice a significant fraction of the time. The experiments also 

suggest that some amino acids of the ECL-II loop could have their residues in close 

proximity to the binding pocket and be involved in binding or activation.

In the case of the third extracellular loop (ECL-III), it is not a simple peptide that links 

TM-VI to TM-VII.^^ '̂ '̂'  ̂This loop occupies a significant position in the GPCR architecture 

and it is likely that it is involved in providing important epitopes for normal receptor 

functioning. It  has been found that the replacement of the ECL-III does give a different 

affinity for antagonists if the ECL-III is replaced by the ECL-III of another subtype of the 

adrenoceptor. It is unlikely that one or more key amino acids are responsible for this, but 

that for the different GPCRs there are different amino acids located at different positions 

on the ECL-III loop.

A very important feature of GPCRs is the highly conserved Glu/Asp-Arg-Tyr motif (E/DRY) 

which plays an important role in the activation process.̂ ^̂ '̂ ^̂  It  has been found that the 

arginine of the DRY-motif can drive the isomerization of the Qib-AR into different states, 

therefore having a crucial role in the activation process of the receptor.^^^  ̂ Due to the 

sequence similarity with other other GPCRs this is likely to occur in several GPCRs.

It has been demonstrated that different mutations of Phê '̂  ̂ in the aiB-adrenoceptor result 

in diverse functional effects. The hypothesis is that Arĝ '̂  ̂ in the oiB-adrenoceptor plays a 

role in receptor isomerization towards different states. The mutation of Arĝ "’  ̂to lysine 

seems to trigger receptor isomerization to an 'active' state. In contrast, it is found that the 

mutation of Arĝ '̂  ̂ to glutamic acid seems to induce the isomerization of the receptor to 

an 'active-like' state that shares some properties with the 'active' forms, including high 

affinity for agonists, enhanced basal phosphorylation, and the opening of a cytosolic 

crevice between the ICL-II and IC L-III, but is severely impaired in its ability to mediate a 

response.
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The apparent polymorphism of the phenotype, which can be associated with mutations of 

the arginine of E/DRY motif in different GPCRs, does not invalidate the hypothesis that 

this residue might play an important role in the activation process of various receptors. 

However, the true mechanism of the arginine in this E/DRY motif remains unclear. There  

are several papers reporting the protonation of the Asp in the strongly conserved E/DRY 

motif as a requirement for activation.

1.2.4. Mutation data
I t  has been found that the residue Phe^°^ is highly conserved in GPCRs and is located in 

TM-VI^^^^ of the Qib-AR. Phe^“  is a key residue in coupling TM helical movements to G- 

protein-activation.

In the Qia-AR Phe °̂® and Phe^^  ̂ are involved in the binding of imidazoline-type agonists 

such as oxymetazoline, cirazoline, and clonidine.^^^^ This in contrast to phenethylamine- 

type agonists suggesting a different binding mode for different types of ligands.

Studies indicate that the Phe^^° side chain of the Qia-AR is well positioned to interact with 

the catechol-ring of an agonist. Substituted cysteine accessibility method studies reveal 

that the side chain of the Phe^^° residue is solvent accessible and directed into the 

agonist-binding pocket.^^^  ̂They conclude that for catecholamine agonists the interaction 

with Phe^^° is essential for the transformation from the ground state to the fully activated 

state.

Another mutation study found that neither the mutation of Phe^^^to Gln^“  nor Phe^^^to 

Ala^®  ̂ had any effect on the affinity of the ai-antagonists^^''^ However, the affinity of the 

endogenous agonist adrenaline was reduced 12.5 and 8-fold by the Phe^^^GIn and 

Phe^^^Ala respectively. An additiye loss in affinity (150-fold) was observed for adrenaline 

for both mutations. It  was proposed that both Phê ®̂  and Phe^®  ̂ are involved in 

independent aromatic interactions with the cathechol ring of agonists, but are not 

involved in the activation of the receptor.

-11  -
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1.2.5. Binding pocket

Several residues have been found to be involved in binding of agonists and antagonist. 

These residues have been found using experimental methods or computational methods. 

Most of the residues involved in binding have been determined for the Qia-AR and several 

for the qib-AR. However, due to the similarity in amino acid sequence and structure it is 

likely that residues which are aligned similarly are involved in binding in the Qia-AR, qib* 

AR and Qiq-AR. Therefore, the aligned residues can be found in all of the adrenoceptor 

subtypes, leading to the following residues being possibly involved in binding of agonists 

(Table 1.2) or antagonists (Table 1.3).

Table 1.2: Residues of the ai-AR subtypes involved in binding of an agonist

Residue in oia-AR Residue in qib-AR Residue in qid-AR Reference

Asp'°®’ Asp'^^* Asp'^®* 25

Ser^'« Ser^^^ Ser '̂® 26

Phê ®̂ Leu'®' Leu'^' 27

Gln^"'* Gly'^ *̂ 25

Val̂ ®̂ Ala'°^ Ala' '̂ 25

Phê ®̂ Phe206 Phe'^^ 25,27

Ser̂ ®® Ser^°^ Ser '̂® 25

Ser^^^ S er'i' Ser^®' 27

Phe'^'* Phe'^'* Phe'®'* 27

Phê ®̂ phe303 Phe^'^ 29
Trp285 Trp307 Trp36i 26

Phe288* Phe^'°* Phe'®'* 18,25

Met^^^ Leû '"̂ Leu368 25

*  residue is involved in binding o f both agonist and antagonist
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Table 1.3: Residues of the Oi-AR subtypes involved in binding of an antagonist

Residue in aiA-AR Residue in oib-AR Residue in aio-AR Reference

Asp'“ * Aspi25* Asp'^^* 25

Cys“ ° Cys^^^ Cys^®° 26

Gln^” * G l/^^ * Gly'"' * 25

Ile'^« Val^^^ Ile'"« 25

Asn̂ ^® Thr̂ ®® Thr '̂*^ 25

Phe^^'* Phe^'^* Phe'“ * 27

p h e 2 8 8 * Phe3io* Phe'^'* 17,25

Phe^os Phe33o phe384 25,29

Phe^^^ Phe^'^ Phe388 25,29

Tyr^i^ -pyr338 Tyr^52 26

*  residue is involved in binding o f both agonist and antagonist

1.3. G-protein coupled receptors
G-protein coupled receptors (GPCRs) are the target for a large amount of 

neurotransmitters. GPCRs are characterized by seven membrane-spanning domains (a- 

helices) with an extracellular N terminus and a cytoplasmic C terminus (Fig 1.4). GPCRs 

can be divided into three major subfamilies^^°^ of which the rhodopsin-related GPCRs is 

the largest family and also the most investigated:

• Class A: receptors related to rhodopsin

• Class B: receptors related to the calcitonin receptor

• Class C: receptors related to the metabotropic glutamate receptors

Figure 1.4: General structure of a GPCR

- 13 -
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Activation of a GPCR consists of a ligand entering the protein setting off a cascade of 

reactions, leading to a desired biological effect. The first models that describe activation 

for GPCRs are described as 'lock-and-key' models (Section 1.3.1). However, further insight 

into GPCRs shows that there are more possible mechanisms involved in activation as 

explained by the ternary complex model (Section 1.3.2). Besides the activation by the 

ligand there appear to be other proteins such as receptor acitivity modifying proteins 

(Section 1 .3 .3 .) and Arrestins (Section 1 .2.4.) involved in activation and deactivation of 

GPCRs. Finally there is also evidence that GPCRs can form oligomers (Section 1.2.5.) and 

this formation is needed to perform their function. This has been demonstrated only for 

some of the GPCRs, leading us to believe that these mechanisms exist for several GPCRs, 

but not for all. Still, these potential mechanisms should be considered when analysing 

modelling results. Due to the computational costs and lack of data on which influences to 

model for each GCPR, these factors are usually not considered in computational models.

1.3.1. Activation of GPCRs

The activation of GPCRs has been studied extensively, but is not completely understood. 

However, several basic steps have been found to occur in all of the GPCRs leading to a 

basic model for GPCR activation^^^^ The basic model of activation involves the following 

steps (Fig 1.5):

1. The receptor is in an unbound and inactive state.

2. The ligand binds to the GPCR.

3. The GPCR undergoes a conformational change.

4. The GDP that is attached to the G-protein is replaced by a GTP.

5. The G-protein is split up into two subunits: the a-subunit (carrying GTP) and the

Py-subunit. The a-part binds to the effector mechanism (i.e. adenyl cyclase, ion

channels) which is then activated.

6. The GTP of the a-subunit is dephosforylated by GTP-ase to GDP and the a-part 

and the (3y-part can merge back together.

-14  -
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Figure 1.5: Activation of a GPCR (taken from wikipedia.de)

The inactive structure of the GPCR rhodopsin has been determined by crystallisation. 

However, the structural changes that need to occur to obtain an active conformation and 

the active conformation itself are unknown. There is an indication that after the ligand 

binds to the receptor, the protein undergoes a linear rearrangement, adopting a p-strand 

conformation'^^'.

The structure of rhodopsin does not include the attachment of the G-protein. It  is 

suggested that the G-protein is attached to the highly conserved DRY motif in helix three 

and the highly conserved NR—Y— ERD motif in helix eight.'^ '̂ '̂*'

1.3.2. Ternary complex model

The GPCR can exist in an inactive state (Ri) and an active state (Ra). The G proteins 

which mediate the physiological response, can only bind to the active-state Ra. This 

means that the receptor can be in three different states, the inactive state, the active 

state and the active state with the g-protein being bound'^^l A ligand can bind to all of 

these three forms and form three corresponding ligand bound species with different 

preferences to form the active state and different affinities for G proteins. This is known 

as the ternary complex model and a general scheme is shown in Fig. 1.6.

- 15 -
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AR. - ARa- -  AR,G

R . RaG

Figure 1.6; The extended ternary complex model showing the inactive state (F^), the active state
(Ra), the ligand (A) and the G-protein (G).

A thermodynamically more complete but more complex model is known as the cubic 

ternary complex model^^®  ̂ (Fig 1.7). In this model the inactive state of the receptor can 

also form a complex with the G protein that does not signal. Still, this model can 

exchange GDP for GTP and activate the physiological response without a ligand being 

bound, an occurrence known as constitutive activity.

AR,G"-

AR,

R, -

AR,

R , G ^

-  R .

-  ARaG

- R a G

Figure 1.7: the cubic ternary complex model showing the inactive state (Ri), the active state (Ra),
the ligand (A) and the G-protein (G).

1.3.3. Receptor activity modifying proteins

The receptor activity modifying proteins (RAMPs) are single transmembrane proteins that 

heterodimerize with GPCRs^^^l RAMPs have an influence in obtaining the appropriate 

cellular localization and can influence the function of a GPCR. For most GPCRs, the 

function of RAMPs in not known, but it has been studied extensively for the calcitonin-like 

receptor (CLR). There have been three different RAMPs found for the CLR. The interaction 

of these three different RAMPs with CLR gives rise to receptors for different ligands. This 

creation of diversity in receptor interaction has been confirmed by the finding that four 

ligands could interact with two GPCRs and three RAMPs differentially to yield seven 

different receptor phenotypes.^^®^ RAMPs interact with CLR at the endoplasmic reticulum

-16  -
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(ER) of Golgi and then stay together during the life cycle. This has lead to the belief that 

RAMPs can be therapeutically targeted to influence the behaviour of GPCRs.

Due to the clear influence of RAMP for the CLR, it is likely that RAMPs interact with a 

whole series of GPCRs and are a factor that should be taken into account. However, it is 

not known which GPRCs have an interaction with a RAMP and how strong the influence of 

the RAMP on the function of the GPCR is.

1.3.4. Desensitization

Desensitization is the decrease in the signal of a GPCR after a long exposure to an 

agonist. GPCRs are regulated by a common desensitizing mechanism. This underlying 

mechanism involves two families of proteins, the GPCR kinases (GRKs) and the 

arrestins.^^®  ̂ GRKs bind specifically to GPCRs and phosphorylate agonist-occupied receptor 

systems. Arrestins bind to phosphorylated receptors and prevent their coupling to G- 

proteins.

GRKs have been linked to rhodopsin and the P2-adrenergic receptor, leading to the belief 

that there must be more widely distributed members of the GRK and arrestin families 

which can be tissue or receptor specific.

After the activation of the GPCR, GRKs are recruited to the ligand-bound GPCRs and 

phosphorylate residues within both the intracellular loops and cytoplasmic tail of the  

GPCR. Ligand activated phosphorylated receptors are targeted to clathrin-coated pits 

using p-arrestins. By binding to the small G protein p-arrestins accelerate the exchange of 

GDP for GTP. The receptors are internalized when these pits are 'pinched off' from the 

plasma membrane and placed into coated vesicles.

1.3.5. Oligomerization

Recently, it has become evident that GPCRs can exist as either dimers or oligomers and 

this could be related to their function. '̂^®  ̂The addition of either an agonist or antagonist 

can not alter these interactions. I t  has also been shown that the au-A R  can form  

intracellular dimers/oligomers suggesting that this receptor is a constitutive 

dimer/oligomer at different stages in its life history. "̂*^  ̂The interaction points to form a

- 17-
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dimer are not known. Some points of interaction have been proposed, but they are 

widespread, and provide little understanding of how dimers are formed.

1.3.6. Rhodopsin

Before the structure of rhodopsin became available, there were no crystallographic 3D  

structures of any GPCR. The first structure of a seven transmembrane helix structure that 

was resolved was that of bacteriorhodopsin^''^"’^̂  (pdb: 1AP9). This protein shares the  

similarity of all GPCRs that it has seven transmembrane helices, but lacks the attachment 

of the G-protein and most of the residues that are highly conserved among GPCRs. 

However, due to the structure and positioning of the transmembrane helices it is useful in 

homology modelling.

Until very recently, the only known crystallographic structure that have been determined 

for this class of proteins w at that of bovine rhodopsin (Fig 1.8). Several crystal structures 

have been published with different resolutions.

.  1F88, 2.8 A, June 2000'^^’

•  1L9H, 2.60 A, March 2002^^^^

• IGZM , 2,65 A, May 2002'^^^

• 1U19, 2.2 A, July 2004 '̂'®^

Figure 1.8: Crystal structure of rhodopsin viewed from the side (left) and the top (right). In the 
side view, the bottom part of the model reaches into the intracellular part and the top part into the

extracellular compartments.
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Th e  structure o f rhodopsin consists of a bundle o f seven transm em brane helices th a t  

surround the  photoreactive chrom ophore, 11-cis retinal. Retinal is m ade in th e  retina from  

Vitam in A. Isom erization  o f ll-d s -re t in a l into all-^ra/75-retinal by light induces a 

conform ational change in the  opsin th a t activates the associated G protein and triggers a 

second m essenger cascade.

One d ifference betw een rhodopsin and other GPCRs is th a t rhodopsin acts via a photo

induced conform ational change, while o ther GPCRs act via binding of an agonist.

How ever, it is believed th a t this activation mechanism involves similar principles.^^°^ 

A nother issue to consider is th e  fact th a t despite a ligand being bound, the rhodopsin 

receptor is still in an inactive state, w hereas the active state is m ore interesting for 

research purposes.

W hile this thesis w as being w ritten  the crystal structure of the  P2-AR has been 

published'^^^ which will a ffect the research In the area of GPCRs in the future.

1.4. Current AR computational models
Several papers have been published th a t model adrenoceptors or ligands binding to  these  

receptors. These models have been generated using a variety o f techniques. One  

possible approache is the  developm ent of a pharm acophore model. A pharm acophore is 

the minim al structural requirem ent for activity. As pharm acophores do not require 3D  

models of the receptor, but are based on a set of ligands, they can be easily generated  

because there  are known ligands with binding affinities and selectivity for each o f the  

adrenoceptor subtypes. The developm ent of QSAR models is a d ifferent approach and do 

not necessarily need a 3D model e ither. However in the case o f 3D-QSAR a 3D  model of 

the adrenoceptor can be used. A nother approach is the developm ent o f 3D structural 

models of the receptors. Usually these consist of homology models with a ligand data set 

used in docking experim ents. The resulting ligand-protein com plexes can then be used for 

further study of protein-ligand interactions using MD simulations for the  understanding of 

the activity of know drugs or the design o f new ligands.

1.4.1. Pharmacophore models
A pharm acophore is an ensem ble o f steric and electronic features tha t is necessary to 

ensure the optim al supram olecular interactions w ith a specific biological ta rg e t and to 

trigger (o r block) its biological response. Usually they describe part o f the m olecule as
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hydrophobic or aromatic and identify hydrogen bond donors or acceptors and ionisable 

groups. Pharmacophores can be used to select compounds from a database for further 

screening. As pharmacophores attempt to describe interactions that are needed for a 

ligand to interact with a receptor, not all compounds that fit this pharmacophore actually 

bind to the receptor. Althought pharmacophore models can be validated by comparing 

them to activity, they usually do not correlate very well. Still, they can be used to describe 

essential features of ligands, to show activity and are a usefull tool to search databases. 

There have been several pharmacophore models published for the oi-adrenoceptor, but 

few of them are selective for the qia, Qib and Qid subtypes. This is due to the few  

compounds that are known to be subtype specific. Thus, these pharmacophore models 

are based on sets of ligands with limited structural variety limiting the quality of the 

generated pharmacophores and therefore limiting the utility of these pharmacophores for 

the development of structurally similar ligands.

1.4.1.1. General Qi -AR pharmacophore models.

A pharmacophore model for ai-AR is given by Barbaro^^^  ̂ et al based on pyrizadinone 

inhibitors. This model however is not Oi-AR subtype specific (Fig. 1.10, Table 1.4). The 

model they derive using the program Catalyst makes use of a positive ionisable nitrogen 

(P I), hydrophobic regions (HY) and hydrogen bond acceptors (HBA). Despite the lack of 

subtype specificity there are some requirements derived from this pharmacophore model 

that should be considered as essential for good oi-AR antagonists:

1. A basic, positive ionisable nitrogen (P I), Fig. 1.10) accessible to the receptor and 

easily protonable at physiological pH is required. Although not part of the 

pharmacophore, it is thought that this nitrogen interacts with T M -III.

2. The phenyl ring occupies both the hydrophobic regions H Y l and HY2 features (Fig. 

1.10) of the pharmacophore. This suggests that both H Y l and HY2 might 

constitute a unique and large hydrophobic pocket. HY3 is considered an additional 

pharmacophore feature, but not a necessity.

3. A polar group at the other end of the molecule relative to the arylpiperazine 

moiety corresponds to a hydrogen bond acceptor (HBA, Fig. 1.10).
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HY2

HY3

HY1
HBA

Figure 1.10: Pharmacophore model of the a r  
HBA is the hydrogen bond acceptor 

(green), HY is a hydrophobic region (blue) 
and PI is a positive ionisable feature (red).

Table 1.4: Pharmacophore model for the a r  
AR.

Feature Distance

(A )
PI-H Y l 6.69

PI-HY2 6.17

PI-HBA 5.62

PI-HY3 9.78

1.4.1.2. Qia-AR pharmacophore

The specific qia pharmacophore hypothesis of Bremner et using Catalyst for 

antagonists consists of three features including a positive charge in the middle of the 

system (Fig 1.11, Table 1.5), a hydrogen bond acceptor group and an aromatic ring 

system at opposite ends of the molecules. This pharmacophore model is not very good for 

compounds with weak Qia affinity. To design this pharmacophore model, four selective 

Qia-AR antagonists have been used. The correlation coefficient obtained was 0.35 which is 

described as very poor.

Figure 1.11: Pharmacophore by Bremner et 
of Qia-AR with KMD-3213 mapped onto 

it (C=black, H=white, 0=red, N=blue, 
F=green, red=positive ion (P), 

green=hydrogen bond acceptor (HBA), light 
brown=aromatic ring system ( A ) )

Table 1.5: Features of the pharmacophore 
by Bremner et ai. (P=positive charge, 

HBA=hydrogen bond acceptor, A=Aromatic ring 
centre)

Feature Angle
P-A 5.5°

P-HBA 7.1°

A-P-HBA 100°

Another q m  pharmacophore hypothesis has been published by MacDougall et al̂ '̂*̂  which 

is very limited as it only states properties that have a high significance for the ligand- 

protein interaction (Fig. 1.12). To design this pharmacophore model, a training set of 27 

Qi -AR antagonists has been used and four different features have been derived (Table 

1.6) using Catalyst. Four features were derived being a hydrogen bond acceptor (HBA), 

hydrophobic group (Hal), Aromatic hydrophobic group (Har) and a positive ionisable
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group (P I). Unfortunately, no distances between the groups are published. The correlation 

coefficient that was obtained with the training set was 0.95 which is very good.

Figure 1.12: Pharmacophore by MacDougall e f  5/^'’’ for the Qia-AR. (red=positive ion, blue is 
hydrophobic part, green^hydrogen bond acceptor)

Another Qia-AR pharmacophore was developed by Li et ah”  ̂ using the program Catalyst. 

I t  is based on 30 compounds in the training set and 15 compounds in the validation set 

(Fig. 1.13, Table 1.6). The resulting pharmacophore consists of a hydrogen bond 

acceptor, a hydrogen bond donor, a hydrophobic group, a positive charged group and an 

aromatic ring centre.They found a correlation of 0 .94 with the training set and a 

correlation of 0 .84 with the validation set which can be described as good.

f
r

Figure 1.13: The pharmacophore of Li et al with 
Silodosin (a) and Tamsulosin (b) aligned.^^^' Red 

is a positive ionisable group (P I), orange is an 
aromatic ring (R), blue is a hydrophobic part (H) 

and violet is a hydrogen bond donor (HBD).

Table 1.6: Features of the Qia-AR 
pharmacophore by Li et al.̂ ^̂ ’ HBA is a 

hydrogen-bond acceptor, HBD is a hydrogen 
bond donor, H is a hydrophobic group, PI is a 

positive charge and R is an aromatic ring 
center.

Property Distance or 
angle

PI-R 5.82 A
P-HBD 9.08 A

PI-H 7.53 A
R-PI-HBD 125°

HBD-R 13.27 A
HBD-H 3.95 A

H-R 10.87 A

Three different pharmacophore models have been described here for the Qia-AR which all 

use similar features such as hydrogen bond donor/acceptor, positive charged ion and an
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aromatic ring centre. Tine correlation of these models with their training set was usually 

very good, but correlation with the validation set ranges from poor to good. This suggests 

that the design of a pharmacophore model based on a set of known compounds is 

feasible, but applying this model to a larger database is not necessary valid. Therefore, 

pharmacophore models based on larger dataset should be used and care should be taken 

when applying a model based on a limited data set.

I .4 .I.3 . Oib-AR pharmacophore

The qib pharmacophore hypothesis of Bremner et al̂ ^̂  ̂ consists of four features including

a hydrogen bond donor group (HBD) and a hydrophobic group (H ) as well as an aromatic

ring system (A) and a positive charge (P) (Fig. 1.14, Table 1.7). To design the

pharmacophore model three selective Qib-AR antagonists have been used. The obtained

correlation coefficient was 1.00 but this number is due to the number of compounds.

Table 1.7; Features of the Qib-AR 
pharmacophore by Bremner et al. (P=positive 

charge, ,A=Aromatic ring centre, 
H=Hydrophobic group, HBD=Hydrogen 

bond) donor)

Feature Angle
P-A 6.2°
P-H 7.8°

P-HBD 4.9°
H-P-HBD 57°
A-P-HBD 52°

Figure 1.14: Pharmacophore by Bremner et 
of the Qib-AR with KMD-3213 mapped 

onto it (C=black, H=white, 0=red, N=blue, 
F=green, purple = hydrogen bond donor 

(HBD), blue = hydrophobic group (H), 
red=positive ion (P), light brown ̂ aromatic 

ring system (A))

Another ais pharmacophore hypothesis has been published by MacDougall et al̂ '̂’  ̂ which 

is very basic as it only states properties that have a high significance for the ligand- 

protein interaction (Fig. 1.15). To design the pharmacophore model 21 Oi-AR antagonists 

have been used and the pharmacophore was derived using Catalyst. The correlation 

coefficient obtained, is 0.95 within the training set.
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Figure 1.15: Pharmacophore by I'lacDougaii et for the Qib-AR,
(blue is hydrophobic part, green=hydrogen bond acceptor)

The pharmachophore model described first, is not good because too few ligands have 

been used for designing this model. The model described second has used more 

compounds but its weakness is in the number of descriptors that are used which are only 

a hydrogen bond acceptor and two hydrophobic regions. There is no mention of positive 

ionisable groups which are known to play a role in binding to adrenoceptors.

I.4 .I.4 . Qid-AR pharmacophore

The Qid pharmacophore hypothesis of Bremner et al̂ ^̂  ̂ consists of a positive ion feature 

and an aromatic ring. It  also included a hydrophobic group and a hydrogen bond 

acceptor. However, they only used three compounds for making their pharmacophore 

model and produced little predictive values for the ligands in their validation set (Fig. 

1.16, Table 1.8). To design the pharmacophore model, only four selective Qia-AR 

antagonists have been used. The correlation coefficient is 0.14 which is described as no 

correlation and limits the applicability of this pharmacophore model.

Figure 1.16: Pharmacophore by Bremner et 
of Qid-AR with KMD-3213 mapped onto 

it (C=black, H=white, 0=red, N=blue, 
F=green red=positive ion (P), 

green= hydrogen bond acceptor (HBA), blue 
= hydrophobic group (H)).

Table 1.8: Features of the Qid 
pharmacophore by Bremner etal (P^positive 

charge, HBA=hydrogen bond acceptor, 
H=Hydrophobic group)

Feature Angle
P-H 5.4°

P-HBA 4.5°
H-P-HBA 47°
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Another Qiq-AR pharmacophore hypothesis has been published by MacDougall et al'̂ "*̂  

which is limited as it only states properties that have a high significance for the ligand- 

protein interaction (Fig. 1.17). To design the pharmacophore model, twenty aio-AR 

antagonists have been used and the pharmacophore was derived using Catalyst. The 

correlation coefficient is 0.91 with the training set which is described as very good.

Figure 1.17: Pharmacophore by MacDougall^ '̂’' et al for the Qib-AR. (red=positive ion, blue is 
hydrophobic part, green=hydrogen bond acceptor)

Another Oid pharmacophore hypothesis has been published by Romeo e / ' T h i s  model 

gives an overview of the location of the centres of the different features of the 

pharmacophore and the positions of these features relative to each other (Fig. 1.18, Table 

1.9). To design the pharmacophore model sixteen Qid-AR antagonists have been used.

The correlation coefficient is 0.91 within the training set and is described as very good.

HBA2

HY3

HBA1

Figure 1.18: Pharmacophore by Romeo et 
of the Qid-AR. HY is a hydrophobic 

group (blue), HBA is a hydrogen bond 
acceptor (green) and PI is a positive ionisable 

group (blue).

Table 1.9: Features of the Qid 
pharmacophore by Romeo et al. (HY = 

hydrophobic group, PI = positibe ionisable 
group, HBA = hydrogen bond acceptor).

Feature Distance/angle
HY1-HY2 4.1 A
HYl-PI 7.5 A

HY1-HBA2 11.30 A
HYl-HBAl 12.6 A
HY1-HY3 16.5 A
HY2-PI 5.9 A

HY2-HBA2 8.0 A
HY2-HBA1 10.8 A
HY2-HY3 13.7 A
PI-HBA2 4.6 A
PI-HBAl 5.2 A
PI-HY3 9.4 A

HBA2-HBA1 4.5 A
HBA2-HY3 5.7 A
HBA1-HY3 5.5 A

HY1-HY2-PI 94.6°
HY2-PI-HBA2 97.8°

PI-HBA2-HBA1 69.8°
HBA2-HBA1-HY3 62.3°

HY2-PI-HY3 124.4°
HY2-HBA2-HBA1 117.4°
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Three Qid-AR pharmacophore models have been presented of which the first model by 

Bremner is probably the worst because of the use of only four compounds for designing 

the model. The other two use more compounds and show good correlation with the 

training although no validation set was used. However, the two models do show similarity 

with the same features being used and a similar positioning of the positive ionisable 

group, the hydrogen bond acceptor and two hydrophobic groups. The model by Romeo et 

al, mentions an extra hydrogen bond acceptor which is probably due to the selection of 

compounds used to generate the pharmacophore model.

1.4.2. Quantitative structure activity relationship models

Several (3D) quantitative structure activity relationships (QSAR) studies have been 

performed on adrenoceptor ligands. QSAR studies allow the prediction of an activity based 

on a set of properties of the ligands. 3D-QSAR extends these properties in space, such as 

hydrophobicity and electrostatic fields. These field can then be used to select favourable 

and non-favourable fields for functional groups. Most of the studies focus on one type of 

compounds using the same scaffold structure and adding different functional groups to 

this scaffold. Several papers describe 3D-QSARs for the but there are limited

papers published which have developed ai-AR subtype selective QSAR models^^ '̂^ \̂ Due 

to our interest in subtype selectivity only the papers which have developed an orAR  

subtype selective QSAR model are commented upon.

1.4.2.1. 3D-QSAR on sertindole-like antagonists

A 3D-QSAR study has been performed on sertindole (Fig. 1.19) and sertindole-like 

antagonists by Balle etaP^.

The 3D-QSAR models have been designed with the use of 2 probes that interact with the 

ligand on each point of a 3D-grid. The probes that are used are methyl to describe the 

steric fields and water to show the electrostatic interaction. The resulting interaction fields 

are shown in the form of 3D contour maps. The C3 contour (Fig. 1.20) maps shows that

H

Figure 1.19: Structure of Sertindole.
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the binding pocket of Qia-AR is able to accommodate larger substituents in the area 

corresponding to the indole 6-position compared to the other two receptor subtypes. An 

unfavourable interaction (positive interaction energy, i.e., steric repulsion) between a 

substituent in the molecule and the probe in areas with negative coefficients is predicted 

to lead to increased affinity (increased p/C value). The areas of p/C positive steric 

interactions occupy similar positions in space, and the size of these areas increases from 

Qia-AR over Qiq-AR to Qib-AR.

b) Qib-AR contour mapa) Qia-AR contour map

c) Qid-AR contour map d) orA R  contour map

Figure. 1.20: Contour maps around the scaffold structure of sertindole-like compounds for the 
different Oi-AR subtypes^^®' showing positive coefficients(red) and negative coefficients (blue)

for the steric field.

The electrostatic contour maps (Fig. 1.21) shows that the distinct areas of negative 

coefficients (blue) must represent specific electrostatic interactions with the hydrogen 

bond donating component of the probe. A favourable interaction (negative interaction 

energy, i.e., electrostatic attraction) between a possible substituent in the molecule and 

the probe in these areas is predicted to lead to increased affinity (increased p/C value). 

The 'orthd nitrogens of the pyrazoles are involved in binding to Qia-AR and Oid-AR 

receptors whereas nitrogens in the 'meta' position are involved in binding to Qib-AR 

receptor.
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a) Qia-AR contour map

c) Oid-AR contour map d) OrAR contour map

Figure 1.21: Contour maps around the scaffold structure of sertindole-like compounds for the 
different orAR subtypes^^®  ̂ showing positive coefficients(red) and negative coefficients (blue)

for the electrostatic field.

1.4.2.2. 3D-QSAR on dihydropyridine antagonists.

A 3D-QSAR study has been performed on dihydropyridine derived antagonists for the a r  

AR by Li e f  using the program SOMFA. They found that S-(+)-Niguldipine (Fig. 1.22) 

has a higher affinity for the Qia-AR than the other ai-AR subtypes. Therefore, this class of 

dihydropyridine derivates (Fig. 1.22) could be used as a lead to find new antagonists 

which are selective for Qia-AR antagonists.

UiO

Figure. 1.22: Structure of S-(+)-Niguldipine (left) and the scaffold (right) 
used for 3D-QSAR compound comparison

b) Oib-AR contour map
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The 3D-QSAR nnodels were produced by making use of two descriptors, electrostatic 

potential and shape, which leads to two different plots. Their results indicated that the 

electrostatic contribution is of high importance (Fig. 1.23). A preference for electropositive 

groups was observed around the substituent R3 and R4 at the dihydopyridine ring and 

around the <9/t/7c»and meta position at the phenyl ring. A preference for electronegative 

groups was observed around the position at the phenyl ring, and around the substituent 

R2 at the dihydropyridine ring.

Figure. 1.23; The electrostatic potential master grid around S-(+)-Niguldipine from two 
different viewpoints. Red represents a favourable positive potential of a unfavourable 

negative charge. Blue represents a favourable negative potential or an unfavourable positive
charge.

In the map corresponding to steric factors (Fig. 1.24), they found a preference for a 

favourable steric interaction around the substituent R2 at the dihydropyridine ring, and 

around the postion at the phenyl ring. Simultaneously, an unfavourable steric interaction 

was found around the substituent R3 and R4 at the dihydropyridine ring, and around the 

ortho and the meta position at the phenyl ring. In the area of substituent X neighbouring 

to a phenyl ring, steric interactions may be expected to enhance activities.

Figure. 1.24: The shape master grid around S-(+)-Niguldipine from two different viewpoints. 
Red represents areas of favourable steric interaction, blue represents areas of unfavourable

steric interaction*^^
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1.4.3. Docking/MD models

Several models have been developed for the Oi-AR subtypes that make use of homology 

modelling, docking, scoring and MD simulations. Some of these models were developed 

before the crystal structure of rhodopsin was determined and the crystal structure of 

bacteriodopsin was used. Bacteriodopsin shares the same 7 transmembrane helices as in 

GPCRs, but does not belong to the family of GPCRs. We would expect the models based 

on rhodopsin to be more accurate. An overview of the models that have been generated 

for the different Oi-AR subtypes is given next.

I.4 .3 .I. Alpha lA  models

Pedretti et designed a homology model for the Qia-AR based on bovine rhodopsin 

and docked noradrenaline and WB-4101 into this receptor. Analysis of the noradrenaline- 

AR complex showed that Asp̂ °® has a strong electrostatic interaction with the ammonium 

group of noradrenaline. Ser̂ ®® and Ser̂ ^̂  form a H-bond with both hydroxyl groups of the 

cathecol ring in which also Ser̂ ®̂ takes part. Ser̂ ®̂  interacts with the yC»̂ r<5-hydroxyl group, 

while Ser̂ ®® interacts with the /77efa-hydroxyl group. Gln̂ ^̂  forms H-bonds with the a- 

hydroxyl group. In this model noradrenaline is located in a site lined by two hydrophobic 

regions being Phê ®̂  and Phê ®̂  interacting with the cathecol ring and by aromatic 

residues in which Trp̂ ®̂  and Phê ®® play key roles (Fig. 1.25).

Analysis of WB-4101 (Fig. 1.25) shows that Asp °̂  ̂ plays a key role forming strong 

electrostatic interaction with the ammonium group. The benzodoxane system forms a tt- tt 

interaction with Phe^^  ̂ while the phenyloxy ring is inserted in an aromatic pocked lined by 

Phê ®®, phe^®  ̂ Phe °̂®, Phê ^̂  and Tyr^^ .̂ Cys“ ° forms a hydrogen bond with the oxygen 

atom at position 1 of the benzodioxane moiety and Gln̂ ^̂  establishes a H-bond with a 

methoxyl group of the phenyloxy ring. An overview of the interactions of noradrenaline 

and WB-4101 is given in Fig. 1.26.

Figure 1.25: Structure of WB-4101
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Figure 1.26: Interaction of the the Qia-AR with norepinphrene (left) and WB-4101 (right) by
pedretti

Leonardi studied the positioning of BMY 7378 in the Qia-AR and found that the

Gln̂ ^̂  of the extracellular loop connecting TM -I and T M -II (ECL-II), which is directed 

towards the putative ligand binding pocket, exerts a steric hindrance and prevents most 

of the ligands from interacting with Asp °̂ .̂ As a consequence, the protonated nitrogen 

atom of the two fragments has a preference for interaction with either Glû ^̂  or Glu °̂ .̂ A 

low interaction energy is characterized by the formation of a salt bridge between the 

positively charged nitrogen atom of the ligand and the Glu °̂  ̂of the receptor.

Evers e t performed successful docking of a ligand set of 23.000 compounds into the 

Qia-AR. To generate the homology model based on bovine rhodopsin, they designed 100 

different models with compound 1 docked into it.

Table 1.10: Two of the ligands that Evers ef a/used for docking as shown in
Fiq. 1.26

compound Ki[nM] Structures
1

HO— -----y ,-----V N —

2 3.6

N '^ N H  NH 

• ■ 6 "  ,
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By using mutation data and QSAR studies they identified which residue of the binding 

pocket in each of the homology models has the best contact with the compound. These 

positions of the residues from the different homology models were then combined into a 

final model. This model was then further used via a high-throughput screen. They 

established that the residues that are involved in binding are mainly located in TM -II, TM- 

I I I ,  TM-V and TM-VI, TM -VII (Fig. 1.27) and their results showed that a high throughput 

screen with a homology model based on rhodopsin is possible. The docking of some of 

the different compounds (Table 1.10) is shown in Fig. 1.28.

661 TM6
655 /1 5 2

HO
HO 5.46 

TM5 
.5  42HO,264

TM2 HO.

3 32260
3 28 
TM3

TM4

Figure. 1.27; Proposed binding pocket of the Qia-AR with compound 1 docked by Evers

Figure. 1.28: Docking of different compounds into the Qia-AR showing the residues that interact 
with compound 1 (a) and compound 2 (b) by Evers etal- '̂^\
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Our group^®^  ̂ has previously studied the activation of the Qm -AR by docking adrenaline 

and noradrenalin in the adrenoceptor followed by MD simulation. The interaction between 

the compound and the adrenoceptor should lead to an agonist-activated conformation. It  

was found that there may be be two new residues involved in binding of agonists being 

Thr̂ "̂̂  and Cyŝ ^® which have not been described earlier in literature. A structural change 

was also observed, in which TM -V moves away form T M -II I  and increased flexibility about 

a Pro kink, which facilitates a movement of TM -V I. A change in the interactions of Asp^ '̂* 

of the conserved DRY motif could cause Arg^ '̂* to move out of the TM helical bundle and 

change the orientation of residues in IC L -I-II and IC - II I- IV  allowing for increased affinity 

of coupling to the G-protein. The position of adrenaline and noradrenaline in the Qia-AR is 

given in Fig 1.29.

Figure. 1.29: Docking of adrenaline (top) and noradrenalin (bottom) in the Cia-AR as predicted by
Kinsella etalS^^^

Our group has earlier also studied the effect of docking antagonists in different positions 

in the OiA-adrenoceptor. It  was found that different families of ligands induce 

different conformations of the adrenoceptors due to the size and interactions of the 

protein with the ligand. For this study, three antagonists were used, doxazosin.

A <lrc iu linc

in>-io2

N vn h im ia .iM
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tamsulosin and compound 3 (Fig. 1.30). Tliese antagonists were docked into the Qia-AR 

followed by a MD simulation of 1 ns. This gave rise to three different conformations of the 

adrenoceptor and can subsequently be used to explore three possible binding modes of 

each family of antagonists. These conformations were used to dock the ligands from our 

dataset, containing compound 4, 5, 6 (Fig. 1.30) into the adrenoceptor followed by a MD 

simulation of 0.5 ns to optimise the ligand-protein complex.

,^ N H ;

O OMe

Figure 1.30: Ligands used by Kinseila et for doxasosin (dox), tamsulozin (tam ) and
compounds 3, 4, 5 and 6.

I t  was found that a number of ionic interactions with Ile^^®, Asn^^^ Glu^®° and Ser̂ ®® 

occurred in TI^-V. However, the binding site analysis showed that one class of antagonists 

is not directly suitable for screening of another structural class. To obtain novel 

antagonists there has to be a degree of flexibility in the receptor. An overview of the 

three ligand-protein complexes generated for docking of their ligand data set is given in 

Fig. 1.31. These complexes were subjected to a MD simulation giving rise to new 

conformations of the receptor with the binding pocket in three different positions being 

upper (doxazosin), middle (tamsulosin) and lower (compound 6). Each of the three 

conformations was used for docking of compound 4, 5 and 6. The interaction of three 

ligands with each of these conformations is shown in Fig. 1.32.
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Figure. 1.31: Docking of doxazosin ( a + b ) , tamsulosin (c+d ) and compound 3 (e+ f) in the Qia-

- 35 -



Chapter 1: Introduction

<'om(XHMHi 9

Vsp-lO b

Uki- M)

^sp•IOh

f t  A m v IT O
U»-l«o

a) Compound 4, upper b) Compound 4, middle

ite -rs

Ik-178

c) Compound 4, lower d) Compound 5, upper

S « I9 2

KM

CJIu-l8ft

C«>mpi<und II

e) Compound 5, middle f) Compound 5, lower

-36  -



Chapter 1: Introduction

CcNiipoiuid l<i

Scr-l*)!!

StfT-IJW

U e .n 8  Cilrt-177

A sp-106

g) Compound 6, upper h) Compound 6, middle

Abp IO(i

Compound 16

A m v IT 'I ^  ^  C iln-177

U lu-!80

Figure 1.32: Docking of compound 4 (a,b,c), 
compound 5 (d,e,f) and compound 6 (g,h,i) in 
the Qia-AR in different conformations based on 

doxazosin (upper conformation) tamsulosin 
(middle conformation) and compound 3 (lower 

conformation)/®^'

i) Compound 6, lower

Several models that describe interaction with the Qib-AR have been described in this 

chapter. As shown previously by our group, it is not clear which conformation is adapted 

for each compound, since three different binding modes were found for each compound. 

A different conformation also leads to different interactions with the receptor. It has 

become clear that residues such as Asp °̂®, and Glu^®°, Ser̂ ®®, Ser̂ ®̂  are commonly 

involved in binding.

1.4.3.2. Alpha IB  models

The interaction between an antagonist and the Oib-AR model has been studied by 

Leonardi modelling the placement of BMY 7378 in the Qib-AR. They found that

there is a tendency of the two phenylpiperazines to cluster in the outer part of the 

receptor instead of approaching Asp^ '̂ .̂This is similar in the qia-AR. Despite the presence 

of Glŷ ®® (qib-AR) instead of a glutamine (qia-AR) on this position that would favour the
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ligand entrance into the binding site, negatively charged amino acids in ECL-II and ECL- 

I I I ,  i.e. Asp^®  ̂ Glû ®'' and Asp̂ ^̂  form an attractive surface for the positively charged 

nitrogen to interact with an agonist or an antagonist. However, because only one ligand is 

used, it is impossible to derive Cib-AR specific interactions compared to the Oia-AR and 

Qid 'A R .

I.4.3.3. Alpha ID  models

The interaction of ligands with the Qid-AR model was studied by Bautista etaP^'‘ who 

developed a two state-model consisting of an inactive and an active model. This was 

achieved by developing a homology model of the Qid-AR based on rhodopsin and the 

docking of agonist adrenaline and antagonist BI^Y7378. They used the neutral and 

protonated form of the ligand to deterimine the importance of protonation in ligand 

binding. On these four complexes an MD simulation of 1 ns followed giving rise to an 

active state (adrenaline-bound) and an inactive state (BMY7378 bound). These two states 

were used to redock adrenaline and BMY7378 giving rise to ligand-active receptor and 

ligand-inactive receptor complexes.

They found that in the case of the amine being protonated there is an increase in 

hydrogen bonding and aromatic interactions. Protonated adrenaline forms a H-bond with 

Asp̂ ^̂  and has aromatic residues Trp^^^ Trp^^^ Phê ®® and Phê ®® within 3 A. Protonated 

BMY7378 forms H-bonds with Trp^^  ̂ and Lyŝ ^̂  and has aromatic residues Trp^^^ Trp254, 

Phê '̂’, Phê ®"* and Phê ®® within 3 A. The interaction of adrenaline with Qid-AR is shown in 

Fig. 1.33. The interaction of BMY7378 with the Qid-AR is shown in figure 1.34. It  can be 

seen that only when adrenaline is in its protonated form docked in the active receptor, 

does it interact with an aspartic acid. For noradrenaline there is no interaction shown with 

an aspartic acid, which questions if the correct orientation has been obtained. There are 

ten different residues which play a role in binding in multiple models. These residues are 

Trp^^^ Trp” ^ Lyŝ ®̂, Trp^®\ Phe^®  ̂ Phe^®  ̂ Phe^®  ̂ Phê ®®, and Tyr̂ ®̂  making these

residues most likely to be involved in binding. It  can be noted that most of these residues 

are either Trp, Tyr or Phe, suggesting that interaction with these types of mostly aromatic 

residues is a necessity for binding. However other residue types should still play an 

important role in ligand selectivity as different binding profiles are observed in the 

different models. One conclusion that can be drawn from their work is that protonation of 

the ligand plays an important role in binding to the Qid-AR.
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Figure 1.33: Docking of adrenalin into the Qid-AR. The conformations are given for the docked 
complex of the protonated ligand in either the inactive (left) or the active (right) aio-AR^®®\
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Figure 1.34: Docking of BMY 7378 into the Qid-AR. The conformations are given for the docked 
complex of the neutral and protonated ligand in either the inactive or the active aiD-AR^®®\

Leonardi et studied the positioning of BMY 7378 in the different arARs. Their work 

suggested that the phenypiperazine moiety docks into a site formed by the TM -III, TM-IV, 

TM-V, TM-VI and ECL-II, but the spiro-cyclic ring of the ligands dock Into a site formed by 

TM-I, TM-II, TM -III and TM-VII. Furthermore, they found that the binding site of the 

imide moiety does not allow for the simultaneous involvement of the two carbonyl oxygen 

atoms of BMY7378 in H-bonding interactions. Their docking also suggested that the 

second and third extracellular loops may act as selectivity filters for the substituted 

phenylpiperazines. In particular, the positions in ECL-II-III adjacent to the disulfide- 

bridged cysteine are suggested to contribute to selective binding of the phenylpiperazine 

derivates, in particular, those that hold the 2,5-dichloro substitution on the phenyl ring. 

For the Qid-AR it appears that the abilities of the ligands to penetrate into the receptor 

binding sites, i.e., to approach Asp̂ ®̂ were better compared with the Qia-AR and Qib-AR. 

For the two different functional groups, the lowest interaction energy was obtained by 

ligands involved in charge-assisted H-bonds with Asp̂ ®̂. The different behaviour of the 

Oid-AR compared to the other two ai-AR subtypes may be due at least in part, to the
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synergistic effects of a Phe '̂'  ̂ and Gly "̂'̂  of tlie  E C L -II-III. T lie lack of a negatively 

charged amino acid at Phe '̂'  ̂ and a bulky side chain at Gly '̂*  ̂ favours the entrance of the 

ligand BMY-7378 into the receptor structure.

I.4.3.4. Subtype comparison.

It  is clear that a number of residues, such as Asp °̂® in Qia-AR, which are involved in 

binding of ligands are aligned in all three subtype of the oi-AR. Most of these have been 

identified via mutation studies (chapter 1 .2 .5 .). These residues can be used for 

identification of the binding pocket, but can not explain the binding of each ligand to a 

subtype. There are a number of residues which are involved in binding of a limited 

number of ligands, which are not necessarily structurally similar. Therefore, based on the 

studies that have been described in literature, the phenomenon of subtype specific 

binding has not be explained and more research is needed.

1.5. Thesis objectives
Chapter two gives an overview of the methods we have used to investigate the binding of 

antagonists to the Qia-AR, qib-AR and qiq-AR. As the introduction shows, there are many 

methods that can be used to investigate the binding of ligands following either a ligand- 

based or structure-based drug design. W e have selected a structure-based drug design 

(SBDD) approach because it provides more information about how ligands interact with 

the protein, which can be usefull when designing the next generation of subtype selective 

Qi -AR inhibitors. Therefore, a selection of SBDD methods has been made including 

homology modelling, ligand optimization, docking, scoring and molecular dynamics.

Chapter three gives an overview of the homology models that have been generated and 

describes these different models. In this introduction, information about the binding 

pocket is described via mutation studies which can be used in the homology modelling 

process. Furthermore, in this introduction several models are described which have made 

use of homology models of ai-ARs.

Chapter four describes the ligand optimization. I t  is clear from the pharmacophore studies 

that a positive ionisable group is favourable for ligands to bind to the adrenoceptor and 

therefore a proton affinity study has been performed.
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In chapter five, the molecular dynamics simulations are described. Due to time constraints 

full conversion to an active or inactive state can not be obtained. But an optimization of 

the binding of the ligand to the receptor should occur. The binding of several ligands to 

the the different Oi-AR subtypes is described in our introduction.
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Chapter II.

Methodology: An overview of protein modelling, 

ligand optimization, virtual screening and 

molecular dynamics simulation.

Computers in the future may weigh no more than 1.5 tons. 

Popular Mechanics (1949)
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2.1. Protein modelling

Several methods are available for modelling proteins such as topology prediction for 

identifying the residues included in the transmembrane helices, homology modelling for 

designing a 3D model of a protein and protein analysis for determining the quality of the 

generated homology models. Molecular dynamics can be used to examine the dynamic 

motion while docking can be used for positioning a ligand in the binding pocket of a 

receptor allowing further study of ligand-protein interactions once a protein structure has 

been obtained.

2.1.1. Topology prediction
Topology prediction is a method by which the transmembrane helices and the loops 

connecting the helices can be located within the amino-acid sequence. This can be useful 

for assisting in the alignment of the sequences of a known crystal structure with a protein 

of an unknown structure because it gives a strong indication of where helices and loops 

are located and therefore which parts should be aligned.

Every topology prediction method such as Dense Alignment Surface (DAS)^®^ ,̂ 

Transmembrane prediction with a Hidden Markov Model (TMHMM)^^°^ and 

Transmembrane prediction (TMpred)^^^^ uses several measurements such as 

hydrophobicity and anisotropic temperature. The transmembrane helices contain a higher 

concentration of hydrophobic amino acids.

The anisotropic temperature gives a measure of the mobility/uncertainty of a given atomic 

position. Usually, this value is higher for the loops due to their conformational flexibility. 

The reliability of the prediction is limited and therefore, these methodologies provide only 

an indication of where the different helices and loops are located.

2.1.2. Homology modelling
Homology modelling can be used when there is no known three dimensional (3D) 

structure of the protein under study. The principle of homology modelling^^^^ is to build a 

3D structure based on the crystal structure of a protein family member. The assumption 

in this process is that all proteins from a certain family share a number of strongly 

conserved residues and therefore the same basic structure.

The process of homology modelling can be divided in several steps:
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1. Select a reference protein with a known 3D structure, belonging to the same 

family as the target protein.

2. Align the sequences of the target protein with the reference protein.

3. Generate several models for the target protein, the homology model, using the 

structure of the reference protein as a scaffold or template.

4. Assess the quality of the homology models for selection of one model.

5. Optimise the extra- and intra-cellular loops.

6. Assess the quality of the homology model for selection of one model.

A good source of reference protein structures for the first step is the Research 

Collaboratory for Structural Bioinformatics (RCSB) protein data bank ('www.rcsb.org’) 

which holds most protein crystal structures. The selection of a reference protein should be 

a protein which is a family member, ideally with a good resolution where the full structure 

is resolved. The known structure can be obtained via X-ray, NMR or computer based 

models. The higher the similarity to the reference structure, the more likely structural 

features are shared amongst the two structures.

The second step is obtaining the residues which possess a similar position in the amino 

acid sequence of the target protein and that of the reference 3D structure. A similar 

position in the amino acid sequence means a similar position in both reference and target 

protein. When residues are similar throughout a family of proteins, they are said to be 

conserved and are expected to play an important role in the function of the protein. There 

are on-line tools such as ClustalW^^^  ̂ and T-coffee^^'’  ̂ that assist in the identification of 

conserved residues and using these, it is possible to generate an initial alignment. These 

tools use statistics for comparing the two sequences providing a good starting alignment, 

but do not necessarily result in an optimal alignment. For this reason, a manual inspection 

of the alignment should follow to verify a correct alignment or changes in the alignment 

should be made accordingly.

Another source of information is mutation data. Mutation data are obtained by 

experimentally changing an amino acid and observing any change in the function of the 

protein. I f  such a change causes the loss of a function the assumption is made that this 

amino acid plays an important role in fulfilling this function. I t  is assumed that residues 

which play an important role and are conserved amongst a family of proteins, play an 

important role in each family member and, therefore, they must be aligned correctly.

In the third step homology models are generated for the target protein based on the 

reference structure. Using similarities between the amino acid sequence of the target 

protein and the reference protein the modelling program derives 3D features from the
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reference crystal protein structure which are then implemented in the newly created 

homology models. The reliability of making a good homology model increases when the 

sequence of the reference and the target protein share more conserved and aligned 

residues.

In the fourth and sixth steps the analysis of the homology model is performed. Analysis 

should be performed after the generation of the initial model and after each loop 

optimisation for the selection of a model for further optimisation. This is performed using 

a number of different protein analysis programs to obtain a range of validations (section 

2.1 .3 .) and derive a consensus from these findings.

In the fifth step, the loops of the protein are optimized. The similarity in the alignment 

between the crystal structure of the protein and the target protein is usually lower in the 

loop-regions. This difference can be due to the type of residues in the amino acid 

sequences and/or the length of the loop. For short loops this is not a major issue because 

they have limited conformational flexibility. For longer loops that have no similarity with 

the target protein and can consist of more than 30 amino acids, the prediction of a 

realistic conformation can be difficult. The modelling protocol generates several different 

loop possibilities and protein analysis tools are used to select the best one.

We have used MODELLER^^^  ̂ to generate our homology models. This program determines 

features from the reference structure based on the similarities in the alignment between 

the sequences of the template protein and the target protein. The features consist of 

spatial restraints derived from the reference structure including Ca-Ca distances, main- 

chain N -0  distances, main-chain and side-chain dihedral angles. The dicision on which on 

which spatial restraints to use from the reference structure is based on statistical analysis 

of a database with high quality 3D structures. These restraints are expressed as 

probability density functions (pdf) and are combined to give a molecular pdf.

A model is produced which satisfies the constraints using a conjugate gradient technique 

to implement the molecular pdf in the model. This initial model is further optimized using 

a molecular dynamics /  simulated annealing technique resulting in a large number of 

models.

A separate loop optimization can be performed by restraining the end positions of the 

loop and optimising the loops by using a molecular dynamics /  simulated annealing 

procedure. The process is initiated by making a few random initial loops. The initial loop 

conformation is randomized by ~ 5  A in each direction. The loops are first optimized 

considering only the loop atoms, and then the interactions of the loop and the rest of the
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system are included. This interaction is based on atomistic distance dependent statistical 

potentials for non-bonded interactions/^^

2.1.3. Protein analysis

The quality of the developed models must be examined to determine which will be used 

for further studies with, e.g. the Ramachandran plot^^ \̂ residue environment analysis^^^  ̂

and non-bonded interaction analysis.^̂ ®̂  These methods can be used individually for 

scoring the homology models, but since they examine different aspects, none of the 

programs can give a definitive answer. However, when using all three, a consensus for 

selection of the best model can be achieved.

2.1.4. Geometrical validation

A geometrical analysis of a protein model can be performed by analysing bond lengths 

and bond angles. This includes main-chain bond lengths and angles, dihedral angles, 

chirality, non-bonded interactions, main-chain hydrogen-bond energies and disulfide bond 

separation length. An example of this is the program Procheck.^^^  ̂ Procheck has 

acceptable ranges for features derived

from high quality crystal structures Rainachandran Plot

(resolution of 2.00 A or better, and an R 

factor of 20% or better). The output gives 

an ovePi/iew of amino acids that do not 

meet the criteria and therefore are likely to 

be poorly modelled.

Particular importance is placed on the 

relation of the phi/psi dihedral angles in 

the form of the Ramachandran plot as 

illustrated in fig. 2.1. The angle denoted 

phi describes rotation about the C(alpha)-N 

bond of the amino acid, and the angle psi 

denotes rotation about the bond linking the

alpha carbon and the carbonyl carbon. The colours in the plot show the different 

classifications in which a residue can be placed. The darkest regions are the most 

favourable regions and the lightest region is the disallowed region. The phi-psi torsion 

angle is measured for each amino acid and is placed on this plot and based on it

apdb
ISO '

t

c

_riJ
£

-135

Fig 2.1: Example of a Ramachandran plot for 
the estrogen receptor (3ERT).
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placement classified as favourable (red), additional allowed (dark yellow), generously 

allowed (light yellow) or disallowed (white).

2.1.5. Environmental validation

Environmental validation determines the accuracy of a 3D protein model by comparing 

the residues position to its surroundings, computed from its atomic coordinates. These 

findings are compared with known protein structures and a score is given. The program 

Verify3D^^^^ makes use of this type of validation.

The criteria used in enviromental evalution are derived from high quality 3D models in 

which every residue is characterized by its environment and represented by a row of 20 

numbers which make up its profile. These numbers are the preferences (called 3D-1D  

scores) of each of the 20 different possible amino acids which are known for this 

environment. The environment of the residues is defined by the following parameters; the 

area of the residue that it is not solvent accessible, the fraction of side-chain area that is 

covered by polar atoms (0  and N) and the local secondary structure. The secondary 

structure is the local segment such as a-helices of proteins in 3D, but does not take into 

account the postion of atoms that make up that structure.

As the environment for the residues is statistically determined, a comparison between the 

measured environments and an optimal environment derived from the sequence can be 

determined. The sum over all residue positions, of the 3D-1D scores for the amino acid 

sequence of the protein is the 3D profile score. As the 3D-1D score for each residue is a 

statistical number, the compatibility of the amino acids with their sequence can be 

assessed by plotting their 3D-1D score against their sequence number and the average 

3D-1D score can be derived. An advantage of using 3D profiles for testing models is that 

the profiles have not themselves been used in the determination of the structure.

2.1.6. Non-bonded atomic interaction validation

Atomic interaction validation scores of proteins can be based on the number of non

bonded atomic interactions. Interactions between different types of atoms are not 

randomly distributed in a region and, therefore, a quality assessment can be based on 

this distribution. An example of this method is the program Errat̂ ®̂̂  which produces a 

confidence value as to which residue can be regarded as incorrectly positioned.

Within the non-bonded atomic interaction validation three atoms types are monitored: 

carbon (C), nitrogen (N ) and oxygen (0 )  and hence there are six different combinations
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of interactions (CC, CN, CO, NN, NO and 0 0 ) .  Tlie number of interactions of eacli 

combination is obtained in a nine-residue sliding window along the backbone of the 

protein, where four residues are included on each side of the centre in the analysis. 

Reference values have been obtained from known crystal structures. For example, the 

ERRAT methodology has been validated on 96 crystal structures of proteins which meet 

the following criteria: a resolution of 2.5 A or better, an R-factor of less than 25% , a 

monomeric or homo-oligomeric structure, the exclusion of prosthetic groups and good 

geometry defined by o), the dihedral angle made by the peptide bond less than ±1Sfrom  

ideal. The number of nonbonded interactions is determined with restrictions being applied 

to those interactions: the distance between the two atoms in space is less than a preset 

limit, typically 3.5 A and atoms within the same residue or those that are covalently 

bonded to each other are not considered. For each protein, the fractions of the number of 

interactions are calculated (Eq. 2.1). Example f(CC) presents the fraction of all 

interactions that are of type CC.

/(C C ) = ------------------------   (2.1)
« (r  + + ^co + + ^oo

Where /  is the fraction of atomic interactions and n is the number of interactions for 

each CC, CN, CO, NN, NO or 0 0 . One limitation of this method is that it can not detect 

severe errors such as misalignments of amino acid with respect to the true position in the 

fold.̂ ®̂̂  The approach is sensitive to the method used for atomic refinement such as 

molecular dynamics and refined structures show improved scoring. This could result in an 

inability to identify incorrect model structures that have been extensively refined without 

experimental constraints.

2.1.7. Optimization of hydrogen bond networic

The position of the hydrogens can not be obtained in crystal models as they do not 

appear in X-ray electron density plots. The positions of the hydrogens on the homology 

model can be optimized by modelling the different positions and selecting one based on 

the total hydrogen bond energy.^^^  ̂This procedure also predicts the different ionization 

states of His, Asp and Glu residues in proteins. In addition, the sidechains of His, Gin and 

Asn are allowed to change by 180 degrees to compensate for crystallographic 

misassignments and allowing the correct positioning of the hydrogens which are bonded 

to these residues. A force field is used to find the optimal hydrogen bonding pattern and a 

definition of the degrees of freedom and the constraints. The force field that is used is
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designed for hydrogens only and is an approximation to the effects that can influence the 

preferred geometry of hydrogen bonds such as electrostatic intersections and steric 

effects.

The residues His, Gin and Asn are difficult to model on X-ray electron density plots 

because it can be difficult to differentiate between oxygens and nitrogens if the resolution 

is not good, which can result in the wrong positioning of the side-chains. Therefore, these 

residues should be allowed to flip the side-chains for two conformations to be examined.

For this, an energy penalty of 1.2 kcal mol'^ is subtracted from the interaction energy to 

increase the certainty of modelling the correct conformation.

The N and 0  atoms in His, Glu and Asp can be either donor or acceptor, depending on the 

presence of a bound hydrogen atom. I f  a hydrogen atom is present on one of these 

atoms, the carrying atom is only regarded as a donor, if it is absent, the atom is treated  

as an acceptor. An energy penalty of 4.5 kcal mol'^ is subtracted from the interaction 

energy if one hydrogen atom is present. In this way, only evidence that suggests a strong 

hydrogen bond is used in the hydrogen optimisation process and limits the possibility of 

modelling a hydrogen bond when it should not be there.

For many of the hydrogen bond donors (backbone N, Arg side chain etc.) accurate 

coordinates of the hydrogen atom can be calculated by using simple geometric 

construction: hydrogen atoms are placed at ideal triangular or tetrahedral positions. Other 

hydrogen atoms (alcoholic OH, lysine NH3, N-terminal NH3) are free to move on a circle, 

using a fixed bond angle within the functional group. Hydrogen atoms connected to water 

molecules make a H-O-H angel of 110°, but the orientation of the molecule is free. In all 

cases hydrogen atoms are placed at a distance of 1.0 A from the donor atom. An 

implementation of this method is performed by the program WHAT IF.̂ ®°̂

2.2. Ligand optimization techniques
Ligands have to be subjected to conformational search to find the minimum energy 

conformation and atomic charges can be derived using a variety of methods, a selection 

of which is described below.
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2.2.1. Conformational search

A conformational search can be performed by either a systematic or a random approach. 

With the systematic approach, each dihedral angle or bond angle is rotated in each step 

until all different angles have been rotated 360° and all conformations are sampled. Each 

conformation can be followed by a minimization using conjugate gradient to obtain the 

closest minima. The disadvantage of this method is that it is very time consuming and 

scales as n". An alternative is the random approach where a random change is made 

(using Monte Carlo algorithms) to the current conformation and hence the system can 

move from one region of the potential energy surface to another in a single step. This 

newly obtained conformation is then optimised using the conjugate gradient method. If 

the optimised conformation has not been previously found, it is stored. If the 

conformation has been found, it will be discharged. This procedure is continued until a set 

number of iterations has been performed.

2.2.2. Ab initio methods, Hartree-Focl<

The term ab initio \s used to describe quantum mechanical techniqueŝ ®̂ '®̂  ̂ (QM), which 

are formulated without experimental data. QM methods attempt to solve the Schrodinger 

equation (Eq. 2.2) and can be used to produce a detailed electron distribution of a 

molecule. To solve the Schrodinger equation the wavefunction (^^) is needed which, 

when operated upon by the Hamiltonian (//), returns the energy of the solution multiplied 

by the particle energy {E).

Hy/ = Ey/ (2.2)

According to the Born Oppenheimer approximation the motion of electrons can be 

decoupled from the motion of nuclei based on the assumption that electrons move so fast 

that they see nuclear centres of mass as fixed. This assumption reduces the problem to 

solving the electronic Schrodinger equation for a set of nuclear geometries (Eq. 2.3).

(2-3)

- 51 -



Chapter 2: Methodology

For an atom that contains a single electron, the Hamiltonian can be written as the kinetic 

energy of the electrons and potential energy of the nuclei and electron interaction (Eq.

The kinetic energy depends upon the mass m, Plancks constant fi and the second 

derivative, the Laplacian of the wavefunction. The potential energy depends upon

the distance r, between the electron and the nucleus as given by the Coulomb equation, 

where Z is the nuclear charge. The Schrodinger equation can be solved exactly for a one- 

electron system. However, when there is more than one electron, there needs to be an 

electron-electron repulsion term which precludes the exact solution for the Schrbdinger 

equation. Therefore, more approximations need to be introduced.

Within the framework of the approximations used in the Hartree-Fock (HF) approach^® '̂®^  ̂

a molecular wavefunction is calculated and various molecular properties are determined. 

The electronic wavefunction (» /)  is described by the motion of the electrons as the 

product of the probability distribution of each electron (Eq. 2.5). The exact wavefunction 

can not be determined, and the energy resulting from an approximation to the true 

wavefunction will always be greater than the true energy. A better wavefunction has a 

lower energy and, therefore, the approximation with the lowest energy is choosen as the 

electronic wavefunction.

The Pauli Exclusion Principle states that the wavefunction must be antisymmetric with 

respect to the electron interchange and the Hartree wavefunction has to satisfy this 

statement. A Hartree product can be made antisymmetric by adding and subtracting all 

possible permutations. The resulting HF-wavefunction is the determinant of the system of 

/Velectrons and /Vspin orbitals, termed a Slater determinant (Eq. 2.6) which gives the 

antisymmetric wavefunction for N  indistinguishable particles.

2.4).

2m
(2.4)

¥  { x , . . . . X ^ )  =  (x, )Xj  (X2 )Xk  (^3 )..... Xn ) (2.5)
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ziM • X n { ^ x )

Z i i x i )  ■■ ■ xÂ i)

Z i ( x n )

Each electron is represented as a response to the average potential of the rest of the 

electrons in the energy expression. This energy expression can be written in a compact 

form that recognises three types of interaction that produce the total electronic energy of 

the system. The Fock operator,/, (Eq. 2.7), is an one-electron Hamiltonian, comprising

of a core Hamiltonian term a Coulomb operator J/7; and an exchange operator

K,(l) (Eq 2.8):

/=1

/ , ( 1) = £ ^ ,)2 ,(1) (2.8)
>=1

The core Hamiltonian (Eq. 2.9) is the average kinetic energy and the potential energy for 

the electrostatic attraction between the nuclei and the electron. The Coulomb operater 

(Eq. 2.10) is the potential energy for the electrostatic repulsion between two charge 

distributions. The exchange operater (Eq. 2.11) is based on the requirement that 

should be anti-symmetric with respect to the permutation of the coordinates of any two 

electrons and is the additional term acquired by using the Slater determinant.

1 ^  7
/ / - ( ] )  = _ (2.9)

2 =̂1

J ^ { \ ) = \ d r , x , { \ )  —  X,(X) (2.10)
r,2

K , m =  j d r , z , m — X.(2) (2-11)

A systematic way of varying the MO can be introduced and is achieved by representing 

the MOs as a linear combination of basis functions. The basis functions are similar to 

atomic orbitals and the method is referred to as a linear combination of atomic orbitals 

(LCAO). Therefore each molecular orbital can be written as a summation, where v/,is a 

molecular orbital, ĉ , is a coefficient and cp̂ is the basis functions which corresponds to the 

atomic orbital (Eq. 2.12).
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K

(2.12)

The HF equations form a set of pseudo-eigenvalue equations as the Focl< operator 

depends on all the occupied I^Os. The derivation of the HF equations for a closed shell 

system is known as the Roothan-Hall equations (Eq. 2.13).

Where F  is the matrix representation of the Fock operator, c is the matrix of coefficients 

Cf,„ S is the overlap matrix between two atomic orbitals and E is a matrix of energy 

eigenvalues. An iterative procedure is used and the SCF procedure is implemented. First, 

a set of trial solutions for the HF eigenvalue equations are obtained. The HF equations are 

solved, giving a second set of solutions, which are used in the next iteration. This method 

gradually refines the structures that correspond to lower total energies until the point is 

reached at which the results for all the electrons are unchanged and the structure is self- 

consistent.

The HF energy is not as low as the true energy of the system because the Fock operator 

treats each electron as though it is moving in a time averaged potential field due to other 

electrons. However, as the motion of electrons is correlated, they tend to avoid each 

other more than the HF theory suggests and hence HF overestimates electron-electron 

repulsion.

2.2.3. Density Functional Theory

The basis for density functional theorŷ ®̂ '®®'®̂  ̂ (DFT) is that the ground state electronic 

energy can be determined from the electron density p(r), where the energy E, is a unique 

function Cif p(r) (Eq. 2.14)

The term Vext(r), is based on the interaction of the electrons with an external potential, 

which is due to the Coulomb interaction with the nuclei. The term F[p(r)], is the sum of 

the kinetic energy of the electrons and the contribution from the electron-electron

FC  =  SCE (2.13)

E[p{r)] = 1 [r)p{r)dr  +  F\p{r)] (2.14)
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interactions. Kohn and Sham, introduced the approximation of F[p(r)]as  the sum of the 

kinetic energy EKE[p(r)], the Hartree electrostatic energy EH[p(r)]ax\6 the contributions 

from exchange and correlation Exc{p(r)]^^- 2.15).

EKE[p(r)]\s defined as the kinetic energy of a system of non-interacting electrons (N) with 

the same density p ( r )  as the real system (Eq. 2.16). The Hartree electrostatic energy, 

EH[p(r)], is derived from the interaction between two charge densities, p{r{) or pivi), 

which is summed over all possible pairwise interactions (Eq. 2.17).

Combining these two terms and adding the electron-nuclear interaction provides the full 

expression for the energy of a N-electron system within the Kohn-Sham scheme (Eq. 

2.18). This equation acts to define the exchange-correlation energy functional E x c [ p ( r ) ] ,  

which contains contributions due to exchange and correlation and a contribution due to 

the difference between the true kinetic energy of the system and EKF.[p(r)].

The exchange-correlation functional̂ "̂̂ '̂ '̂̂ ®̂  E x c [ p ( r ) ]  is key to the DFT approach and this 

contribution was initially obtained through the local density approximation (LDA). The LDA 

is based on the uniform gas model in which the electron density is constant throughout all 

space. Unfortunately, the LDA approximation is known to be inadequate in some cases 

and, therefore, extensions have been developed.

Besides the density, the gradient of the density should also be included in the functional 

expressions. If  the function depends on the gradients then the functional is referred to as 

being 'gradient-corrected'. These gradient corrections are typically divided into separate

F\p{r)] = [p{r)] + E„ \p{r)] + [/?(r)] (2.15)

(2.16)

(2.17)

(2.18)
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exchange and correlation term s i.e. Ex[p(r)] the  exchange functional and Ec[p(r)] th e  

correlation functional/®®^

The gradient correction to the  exchange functional proposed by Becke is popular (B88),' 

while the  correction functional of Lee, Yang and Parr (LYP)" is widely used.

One potentially attractive option is to add a correlation energy derived from DFT (e.g. the  

LDA approximation) to the  HF energy. The most common form has been launched under 

the  acronym "B3LYP" and is an empirical mixture of exact exchange, Becke's gradient 

correction for exchange B88, the  Lee-Yang-Parr (LYP) correlation functional (with the  

gradient term ) and the  standard  local correlation functional due to Vosko, Wilk and Nusair 

(VWN) (Eq. 2.19).

= A E f  + (1 -  A ) E ‘f ^  + + (a  -  C )E ^^^  (2.19)

The constan ts  A, 5 and C a re  determined by fitting, and have values of/4=0.20, 5=0 .72  

and C=0.81.

2.2.4. Basis sets
An approximation needed in all quantum  mechanical m ethods is the  choice of a basis 

set(®3'®9<90) which is required to crea te  the  wavefunction. Two types of basis functions are 

normally used for molecular calculations, the  Slater type orbital (STO) and the Gaussian 

type orbital (GTO). Slater type orbitals are physically more realistic, but some of the  

integrals can not be solved analytically. Therefore Slater orbitals are often replaced by 

functions based on Gaussians. A Gaussian expansion contains two parameters: the 

coefficient and the  exponent. When in molecular orbital calculations both of these  

param eters  a re  allowed to vary they are uncontracted or primitive Gaussian type orbitals 

(PGTO). The Gaussian function has the  form exp(-ar^) w here a  is the  radial extent or 

spread of the  Gaussian. QM calculations use basis functions comprising integral powers of 

X, y  and z multiplied by the  exponent (Eq. 2.20).

x > '’z"exp(-or^) ^2.20)

A minimal basis se t  is a representation th a t  contains ju s t  the  num ber of functions tha t  are 

required to accom m odate  all the  filled valence orbitals in each atom. A basis se t  which
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doubles the number of functions in the minimal basis set is described as a double zeta 

(DZ) basis. The doubling of the core orbitals, unlike the valence orbitals, does not has a 

significant effect on the chemical properties and these vary only slightly from one 

molecule to the next. Therefore a less computational alternative can be used. A variation 

of the DZ type basis only doubles the number of valence orbitals, producing a split 

valence (SV) basis.

In the 6-3IG basis set, the core orbitals are a contraction of six PGTOs. The inner part of 

the valence orbitals is a contraction of three PGTOs and the outer part of the valence is 

represented by one PGTO. The 6-31G has the same number of contracted basis functions 

as the 3-21G set but because there are more PGTOs used, the representation of each 

function is better.

As atoms are brought closer together, a polarization effect occurs, resulting in distortion 

in their electron density. This can be simulated by adding in basis functions of higher 

angular momentum than the valence orbitals. For example, the spherical Is  orbital on 

hydrogen can be distorted by mixing in an orbital with p symmetry. Similarly, the p 

orbitals can be polarised if an orbital of d symmetry is mixed in. When a polarisation 

function is introduced to basis sets it is usually denoted using an asterisk Thus 6- 

31G*, refers to a 6-3IG basis set with polarisation functions on heavy atoms. The addition 

of another asterisk as in 6-31G** indicates the additional use of polarisation functions on 

hydrogen and helium. A deficiency of the basis set arises as Gaussian basis functions are 

rather low far from the nuclei. To compensate, highly diffuse functions can be added to 

the basis set, indicated by (+). A single -i- indicates an additional single set of diffuse s- 

and p- type Gaussian functions, while indicates that the diffuse functions are included 

for hydrogen as well as for heavy atoms.

2.2.5. Semi-empirical techniques

Further approximations to the HF model can be made leading to semi-empirical 

methodŝ ®̂ '®̂ '̂ ^̂ . For these calculations only the valence electrons are included while the 

core electrons are subsumed into the nuclear core. Furthermore, the computation of a 

large number of the integrals in the HF-SCF calculation is simplified by either neglecting 

them or replacing them with parameterised equations that can be calculated more easily. 

The central assumption of semi-empirical methods is the zero differential overlap 

approximation (ZDOA), in which the overlap between pairs of different orbitals is set to 

zero for all volume elements. I f  the ZDOA is applied to all orbital pairs then the Roothan-

- 5 7 -
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Hall equations (Eq. 35) for a closed shell molecule are considerably simplified. However, 

the major contributors to bond formation are the electron-core interactions between pairs 

of orbitals and the nuclear cores. Therefore, these interactions are not subjected to the 

ZDOA approach. The core integrals are parameterised to experimental results, 

compensating for the ZDOA to some extent.

The semi-empirical methods depend on the exact number of integrals that are neglected 

and how the parameterisation is performed. The Austin Model 1 (AMI) and Parametric 

Method Number 3 (PM3) methods have been developed to improve earlier semi-empirical 

methods, which had a tendency to overestimate repulsions between atoms separated by 

distances approximately equal to the sum of their van der Waals (vdw) radii.

The AMI model is a semi-empirical method based on the Modified Neglect of diatomic 

Differential Overlap method (MNDO). The approach for MNDO is to reproduce 

experimental data. This was achieved by modifying the parameterization based on 

experimental data instead of using calculations. I f  there is a differential overlap between 

atomic orbitals on different atoms, the term is excluded. All of the parameters are 

monatomic. The AMI method has a small modification to the MNDO method in which 

Gaussian functions are added to modify the core-core interactions to try to compensate 

for the excessive repulsion between atoms at close distance. This increases the number of 

parameters per atom from 7 in MNDO to between 13 and 16 in AMI depending on the 

number of Gaussians used. This made the parameterization process much more difficult 

although a significant improvement over the standard MNDO was achieved.

2.2.6. Polarizable continuum model

Quantum chemistry calculations can be performed in gas phase but also in solvent.

Instead of using actual solvent molecules the effects of solvation can be mimicked with 

the use of a solvation model such as the polarizable continuum mode!^”  ̂ (PCM). The 

cavity surface is divided into a large number of small surface elements, and there is a 

point charge associated with each surface element. These point charges represent the 

polarisation of the solvent. In the PCM model, a cavity surface is determined from the 

van der Waals radii of the atoms. The fraction of each atom's van der Waals sphere which 

contributes to the cavity is then divided into a number of small surface elements of 

calculatable surface area. A point charge for each surface element is then calculated from 

the electric field gradient based on the solute alone (Eq. 2.21).
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Where q, is the point charge, f is  the dielectric constant of the solvent mediunn, E, is the 

electric field gradient and AS is the area of the surface element. These point charges can 

then be used in the calculation of the electrostatics of the ligand atoms.

2.2.7. Proton affinities

Depending on the pH of the environment, ligands with many N atoms can be protonated 

at the different nitrogens.^®'*  ̂ It  is, however, likely that at physiological pH only one of 

these nitrogens is actually protonated. The most likely one can be determined by the 

difference in enthalpy between the neutral and protonated stated. Computationally, this 

can be determined by calculating the Gibbs free energy of the neutral state and each of 

the protonation states where one of the nitrogens is protonated. The unprotonated free 

energy can then be subtracted from the free energy of the protonated state giving the 

proton affinity of that state. This can be performed for each protonation state and the 

state that gives the largest differences between the Gibbs free energies (largest PA) is the 

protonation site that is most likely to occur.

2.2.8. Calculation of the p/G
The p/G is the acid dissociation constant and represents the balance between the ligand in 

neutral and protonated state. The pÂ  has an influence on solubility, membrane 

permeation and binding to proteins. The p/G can be determined by calculating the gibbs 

free energies of the ligand in gas and solvent phase in neutral and protonated form.^®  ̂®®̂ 

The following thermodynamic cycle (Fig. 2.2) is used to obtain the aqueous solvation free 

energy (AG°^)  which is needed to calculate the p/G-
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AG°gas(A)

(gas) >  A (gas) + in'"

AGs°(AH^) AGs°(A) AGs°(H^)

AH”̂ (aq) A (aq) + (aq)

AG°aq(A)

Figure 2.2: Tliermodynamic cycle for protonation of a ligand.

From this thermodynamic cycle, equation 2.22 can be derived to obtain AG°^.

A G ; (A) = AG° (A) + AG” ( / / " )  + AG^, (A) -  AG“ (A H ^ )
(2.22)

AG°(A) and AG °(A / / * )  can be obtained from our calculations by subtracting the gas- 

phase free energy from the PCi^-phase free energy. The AG° ( / / * )  is a known 

experimental value and can be taken from the literature. It was originally defined as 

263.8 kcal mor^^^°°\ but later corrected to 265.9 kcal moi"\ AG°^^(A) can be obtained 

using equation 2.23.

Where G°^^{AH^) is the free energy from the protonated state and G°„, ( / / ^ ) i s  the free 

energy from the neutral state. G °^,(//^)is the free energy from the positive charged

hydrogen and can be taken using the Sackur-Tetrode equation^^°^^ resulting in a value of 

-6.28 kcal mol \

After AG“̂  has been obtained, the p/Gcan be derived from this cycle using equation 

2.24.

A G l = G l i A H ^ ) - G l { A ) - G l X H ) (2.23)

/? r ( ln lO ) (2.24)
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Where, R is the universal gas constant and T  is the temperature. The value of the 

universal gas constant is 0 .0019872159 kcal K'̂  mol'^ and the temperature is 298 Kelvin at 

which the free energies are determined.

A PCM model can be used to mimic the solvent effect of water, but a more accurate 

interaction can be obtained when explicit water molecules are introduced. This can be 

performed by adding a limited amount of explicit water molecules in addition to the PCM 

solvent model. When we introduce water molecules into the scheme the following scheme 

arises (Fig. 2 .3).

AG°gas(A-H20)

AH^-HzOCgas) ---------------- ►A-HzOCgas) + (gas)

AGs°(AH-H20) AGs°(A-H20)

i
AH^-HzO (aq) ^  A'HzO (aq) + (aq)

agV ( a -H20)
Figure 2.3: Thermodynamic cycle for protonation including one explicit water molecule.

The equations that are used to derive the pKa are similar to the previous scheme (Fig. 

2.2).

2.3. Virtual Screening
Virtual screening^^° '̂^°^  ̂ is the combination of docking and scoring. In the docking process 

the ligand is placed in the binding pocket of the receptor. This ligand-receptor complex 

can then be scored to determine the interaction between the ligand and the receptor. 

Virtual screening is commonly used to select active compounds from a database. The  

resulting ligand-protein complex also allows the determination of the interaction between  

the ligand and the receptor and provides a visual representation.
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2.3.1. Grid based docking

Grid-based dockinĝ °̂®̂  consists of a grid procedure where a database of grid interaction 

points is created and a docking procedure where different ligand protein conformations 

are analysed.

In the grid procedure (Fig. 2.4), a protein or 

a part of the protein which is of interest, is 

embedded in a three-dimensional grid and a 

probe atom placed at each grid point. Grid 

point spacing can vary from 0.2 A to 1.0 A. 
although the default is 0.375 A (a quarter of 

the length of a carbon-carbon single bond).

The energy of interaction of this single atom 

with the protein is assigned to the grid point.

An affinity grid is calculated for each type of atom in the ligand, typically carbon, oxygen, 

nitrogen and hydrogen, as well as a grid of electrostatic potential. The energetics of a 

particular ligand configuration is then obtained by interpolation of affinity values of the 

eight grid points surrounding each of the atoms of the ligand. The electrostatic interaction 

is evaluated similarly, by interpolating the values of the electrostatic potential and 

multiplying by the charge on the atom of the ligand.

With the protein static throughout the simulation, the ligand is moved randomly in the 

space around the protein. At each step in the simulation, a small random displacement is 

applied to each of the degrees of freedom of the ligand: translation of its center of 

gravity, orientation and rotation around each of its dihedral angles. This displacement 

results in a new configuration, whose energy is evaluated using the grid interpolation 

procedure. This new energy is compared to the energy of the preceding step. If  the new 

energy is lower, the new configuration is immediately accepted. If  the new energy is 

higher, then the configuration is accepted or rejected based upon the probability 

expression (Eq. 2.25) which itself is dependent on a defined temperature.

( ^ )
P{hE) = e (2.25)

Where P is the probability of acceptance, a£ is the difference in energy from the 

previous step, ke is the Boltzmann constant and T is the temperature.

At high temperatures, almost all steps are accepted. At lower temperatures, fewer high 

energy structures are accepted. After a specified number of acceptances or rejections, the 

next cycle begins with a lower temperature. One software package that makes use of 

grid-based docking is Autodock.'^^^

{ l id

Figure 2.4: Representation of the autogrid 

method̂ °̂̂ ^
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2.3.2. Sphere-based docking

The first step of spliere based docl<ing^ °̂^  ̂ processes is to identify the potential binding 

site. Within this binding site, points are identified where ligand atoms could be located 

when it binds to the protein, by using spheres. To identify possible atom positions a set of 

overlapping spheres is generated which fill the potential binding site. The sphere centers 

attempt to capture the shape characteristics of the active site but with using a minimum 

number of points and without having bias of previously known ligand binding modes.

To position the ligand in the active site, the sphere centers are paired with the ligand 

atoms and several sets of atom-sphere pairs are generated. To limit the number of 

possible sites of atom-sphere pairs a longest distance heuristic approach is employed.

This means that the (long) inter-sphere distances are roughly equal to the corresponding 

(long) ligand inter-atomic distances. A set of atom-sphere pairs is used to calculate an 

orientation of the ligand within the binding site. To orientate the entire ligand within the 

active site, both a translation vector and a rotation matrix are calculated which minimizes 

the rmsd of the (transformed) ligand atoms and matches the sphere centers of the 

sphere-atom set.

For the evaluation of the orientation of the ligand in the binding site a shape scoring 

function and a function approximation of the ligand-protein binding energy is used. All 

evaluations are performed using a scoring grid to minimize the overall computational 

time. This is performed by placing the protein in a grid and placing a probe at each grid 

point. A different probe is used for each atom type in the ligand and the interaction of the 

probe with the protein can be determined at each grid point. The interaction of one ligand 

atom with the protein can be determined via interpolation of the surrounding probe 

atoms. Interpolation of all ligand atoms can be used to score the full ligand-protein 

interaction.

The shape scoring function is an empirical function resembling the van der Waals 

attractive energy. The shape score is determined by the position of each ligand atom on 

the shape scoring grid. The ligand-protein binding energy is taken to be approximately 

the sum of the van der Waals attractive/dispersive and Coulombic electrostatic energies. 

To generate the energy score, the ligand atom terms are combined with the receptor 

terms from the nearest grid point, or combined with receptor terms from a virtual grid



Chapter 2: Methodology

point witli interpolated receptor values. The score is the sum of over all ligand atonns for 

these combined terms.

For the energy score, the orientation of the ligand may be varied slightly to minimize the 

energy score. After the initial orientation and scoring of the ligand, a grid-based rigid body 

simplex minimization is used to locate the nearest local energy minimum. The sphere 

centers themselves are simply approximations to possible atom locations. The orientation 

generated by the sphere-atom pairing, although reasonable, may not be minimal in 

energy. An example of sphere-based docking is the docking program Dock.^ °̂^^

2.3.3. Scoring ligand-protein interaction

Once ligand-protein complexes have been obtained, these can be assessed to evaluate 

the binding between the ligand and the receptor and for this purpose scoring functions 

have been designed. With a good docking algorithm and a good scoring method it is 

possible to dock sets of ligands into the receptor and evaluate them and therefore make a 

selection of which ligand would be a 'good' drug or a 'poor' drug.

Several fast and simplified methods have been designed for 'easy' scoring. A drawback of 

these scoring functions, which are usually implemented in docking software, is that they 

make various assumptions and simplifications in the evaluation of modelled complexes 

and do not fully account for a number of physical phenomena that determine molecular 

recognition, e.g. entropic effects.^^°®  ̂Therefore the idea has arisen to combine different 

scoring functions, something that has become known as consensus scoring.^ °̂®^

The different scoring methods can be divided into three classes: forcefield based, 

knowledge based and empirical based.^ °̂^^

- Forcefield based: apply classical molecular mechanics energy functions.

Empirical based: estimate the binding free energy by the summing interaction

terms derived from weighted structural parameters.

- Knowledge-based: represent the binding affinity as a sum of protein-ligand

atom pair interactions.
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2.3.4. Force-field based scoring

Most forcefield scoring functions consider a single protein conformation, resulting in a 

fixed protein energy and, therefore, make it possible to omit the calculation of internal 

protein energy, which simplifies the scoring of a ligand-receptor complex. Molecular 

mechanics force-fields usually quantify the sum of two energies. These two are the 

receptor-ligand interaction energy and internal ligand energy (such as steric strain 

induced by binding). Force-field scoring functions are based on a variety of force field 

parameter sets, but different scoring functions use different parameter sets. For example, 

G-Score^^^°^ is based on the Tripos force field but Autodock is based on the AMBER force 

field, however, the resulting parameters are usually similar.

Interactions between ligand and receptor are most often described by van der Waals and 

electrostatic energy terms. The van de Waals energy term is given by a Lennard Jones 

potential function. The parameters of the Lennard Jones potential vary depending on the 

desired 'hardness' of the potential. Higher terms, such as a 12-6 Lennard Jones potential 

of D-Score,^“ ^̂ result in increasingly repulsive potentials and will be less forgiving for close 

contacts between receptor and ligand atoms. I f  lower terms are used, such as the 8-4  

potential of G-score, the potential becomes softer. Electrostatic terms are accounted for 

by a Coulombic formulation with a distance-dependent dielectric function that lessens the 

contribution from charge-charge interactions. The functional form of the internal ligand 

energy is typically very similar to the protein-ligand interactions energy, and also includes 

van der Waals contributions and/or electrostatic terms.

Some force-field scoring functions have some major limitations. This is because they were 

originally formulated to model enthalpic gas-phase contributions to structure and 

energetics, and do not include any solvation and entropic terms. Forcefields like AMBER, 

CHARMM and OPLS were developed for biomolecular simulations and include the 

polarization effects of the solvent environment. However, force-field in scoring functions 

do not tend to describe this effect as the role of solvent in the binding pocket is largely 

unknown. Force-fleld based scoring is further complicated by the fact that it generally 

requires the introduction of cut-off distances for the treatm ent of non-bonded 

interactions.
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2.3.5. Empirical scoring functions

These scoring functions are designed to reproduce experimental data, such as binding 

energies, and/or conformations, as a sum of several parameterized functions. The design 

of empirical scoring functions is based on the idea that binding energies can be 

approximated by a sum of individual terms which are not correlated to each other. The  

coefficients of the various terms are obtained from regression analysis using 

experimentally determined binding energies and, potentially, X-ray structural information. 

The functional forms are often simpler than force-field scoring functions, although many 

of the individual contributing terms have counterparts in the force-field molecular 

mechanics terms. The appeal of empirical functions is that their terms are often simple to 

evaluate, but they are based on approximations similar to force-field functions. A 

disadvantage of these methods is their dependence on the molecular data sets used to 

perform regression analysis and fitting. This often yields different weighting factors for 

the various terms. As a consequence, terms from differently fitted scoring functions 

cannot be combined easily into a new scoring function.

In empirical scoring functions, terms accounting for non-bonded interactions can be 

implemented in rather different ways. For example, in the early formulation, the

hydrogen-bonding term is separated into neutral hydrogen bonds and ionic hydrogen 

bonds, whereas ChemScore^“ ^̂  does not differentiate between different types of 

hydrogen bonds. Furthermore, the LUDI function calculates hydrophobic contributions on 

the basis of a representation of molecular surface area, whereas ChemScore evaluates 

contacts between hydrophobic atom pairs. F-Score adds an additional term to account for 

aromatic interactions.

Empirical scoring functions can include non-enthalpic contributions such as the so-called 

ro terterm , which approximates entropy penalties on binding from a weighted sum of the 

number of rotatable bonds in ligands. ChemScore implements ligand rotational entropy in 

a more complicated form that describes the molecular environment surrounding each 

rotatable bond. More complex functions begin to address solvation and desolvation 

effects. However, terms currently used to approximate entropy or desolvation energy 

provide only incomplete descriptions of these effects on protein-ligand binding. Other 

scoring functions that are empirically based are X-Score^“ ’̂ and F-Score^ '̂^^
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2.3.6. Knowledge-based scoring functions

Knowledge-based scoring functions are designed to reproduce experimental structures 

rather than binding energies. These experimental structures are usally ligand-bound 

crystal structures. In knowledge-based functions, protein-ligand complexes are modelled 

by using relatively simple atomic interaction-pair potentials. A number of atom-type 

interactions are defined depending on their molecular environment. As is in common with 

empirical methods, knowledge-based scoring functions attempt to implicitly capture 

binding effects that are difficult to model explicitly. Popular implementations of such 

functions include the potential of mean force (e.g. in and DrugScore^“ ^̂ ), which

also includes solvent-accessibility corrections to pair-wise potentials.

A major advantage of many knowledge-based scoring functions is their computational 

simplicity. This allows fast and efficient screening of a single complex and, thus, is 

suitable for screening a large compound database. A disadvantage of this method is that 

their derivation is essentially based on information that is implicitly encoded in limited sets 

of protein-ligand complex structures. Therefore, these methods are not always 

representative of the studied ligand-receptor complex.

2.3.7. Consensus scoring

Each of the scoring functions usually works well for a limited set of protein-ligand 

complexes. However, by combining several scoring functions into a consensus score^“ ^̂ 

the accuracy and reliability of scoring ligand-protein complexes can be improved. The 

different approaches to consensus scoring are:

Voting (intersection). Pass-fail criteria are established for each method whereby a cut-off 

determines a pass or a fail. The final score is based on how many passes a molecule has. 

These pass-fail criteria are often arbitrary. Good overall enrichment can be achieved but 

often at the cost of low recovery rates.

Coarse quantHes (positions in ranges) voting. Each scoring function casts a vote if the 

score falls in the top quantile of the range of values obtained for that scoring function 

across the dataset of interest. The consensus score is the total number of votes received. 

When using a single criterion, there is a large number of tied scores, which can be 

overcome by also referencing another criterion.

Rani< voting. Each method has a predefined number of votes for activity and the top 

ranking compounds using each scoring function are assigned those votes. Performance 

depends on how many votes each method receives.
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Simple sum ranks (rank-sum, also related to average rank, rank-by-rank). Entries are 

ranked using each scoring function and the ranks are added up (in case of average ranks, 

this sum is divided by the number of properties).

Deprecated sum-ranks. Entries are ranked based on each scoring function the worst rank 

for each entry is dropped and the sum of the ranks is calculated from the remaining 

ranks.

Worst-best rank. Compounds are ranked based on each scoring function and each entry is 

assigned the second worst rank from these. In case of a higher number of scoring 

functions, the third or fourth worst rank might be used.

Weighted sum ranks. Ranks from each method are weighted, with the weight reflecting 

the importance of the given method. The sum of the weighted ranks is then used as the 

final score.

Regression schemes (muiti-iinear regression, non-linear regression). The total score is 

expressed as the linear (or nonlinear) combination of the individual scores. The 

coefficients are fitted, so that the performance (enrichment, binding energy, etc.) of the 

equation is optimal.

Unfortunately there is no consensus-scoring function which is regarded as best 

performing. Therefore, the best method can only be found by experiment and should be 

validated using a validation set that contains experimental data.

2.3.8. Ligand-protein interaction plot

The hydrogen bonds and hydrophobic interactions between the ligand and the protein can 

be easily determined using distance measurements'^^®  ̂ Between the hydrogen atom (H), 

the donor atom (D) and the hydrogen acceptor (A). Furthermore, an angle can be 

measured between hydrogen and acceptor by including the atom attached to the acceptor 

(AA). The criteria that can be used for a hydrogen bond between the ligand and the 

protein are an H-A distance of < 2.7 A, the D-A distance is < 3.3 A, the D-H-A angle is > 

90° and the H-A-AA angel is > 90°, where the AA atom is the one attached to the 

acceptor, usually preceding it along the amino acids chain. The non-bonded hydrophobic 

contacts between are determined just for carbon atoms that are less than 3.9 A apart.

This method has been implemented in the program LIGPLOT^” ®̂ and produces a 2D-plot 

between the ligand and the protein. This program works by reading the 3D coordinates 

and identifies the hydrogen bonds and the hydrophobic interactions. Then the rotatable
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bonds are identified, the ring groups are flattened, the structure is unrolled, cleaned up 

and a 2D plot is created.

2.4. Protein simulation
A basic protein simulation procedure consists of several steps including energy 

minimisation, equilibration and dynamics. The minimisation is applied to obtain a stable 

point with a minimum of potential energy. This structure needs to be brought up to the 

temperature of interest and, hence, an equilibration period of dynamics is performed 

using molecular dynamics^^®^ where a restraint is placed on the protein backbone and 

gradually released in several steps to allow the protein to come to equilibration in its 

environment. The last step is to perform a molecular dynamics run to observe the time- 

dependent properties of an atomistic model which can be the mo\/ement of a protein over 

time.

2.4.1. Forcefields

Once a structure has been determined, the energetics of conformations, molecular 

binding and the dynamics of the system can be examined. To do this, a force field̂ ^̂ ^̂  

which represents the energetics of interactions of the atoms within our system is needed. 

The energy for a given nuclear configuration can be calculated by writing the total energy 

as a function of nuclear coordinates. In general the energy is the sum of bond, valence 

angle, torsional and non-bonded interactions terms (Eq. 2.28).

E to t Ebond Eangle Etorsion Ey/dWaals+elec (2.28)

These terms are characterised by several analytical functions, examples of which are 

below (Eq. 2.29).

E „ =  1  K , { R , - R , y +  I .  K , ( 0 „ - @ „ y +  I  ^ i[ l+ c o s (« ( l> - j. ) ]  +
bonds angles dihedrals J.

N N

Z Z
(=1 j = i + \

(2.29)

Where K are the harmonic constants, R„ is the bond length, 0  ,j is the bond angle, Ro and 

0  „ are reference values, v„ is the torsional barrier to rotation, O is the torsion angle, y 

is the phase factor, A and B are atom constants, q is the atomic charge and is the 

environment dielectric constant.
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The bonded terms represent the energy penalty for distorting away from an equilibrium 

distance using a harmonic function. The angle term similarly uses a harmonic term to give 

rise to a penalty for deviation from the equilibrium angle. The torsional potential gives rise 

to the energy as a function of the torsional angle and is hence cyclic. The periodicity of 

this function is given by n, which can be adjusted to give minima every 180 (n=2), 120 

(n=3) etc. Torsional angles are particularly important in proteins where this is the primary 

flexibility for conformational change.

The non-bonded interactions are characterized by the electrostatic and the van der Waals 

interactions and calculation is generally time consuming. The van der Waals term consists 

of a short range repulsive and a longer range attractive component and are described 

using the 6-12 Lennard-Jones form. The interaction between point charges is given by the 

Coulomb potential. In order to treat the long range nature of the electrostatic interactions 

within a periodic system, the Ewald sum method is used (section 2.4.4.4.).

Several force fields have been derived for DNA and proteins, e.g. Assisted Model Building 

with Energy Refinement (AMBER)^^^ \̂ Chemistry at HARvard using Molecular Mechanics 

(CHARMM)^^”  ̂or the Groningen machine for Chemical Simulations (GROMACSy^^"*  ̂

GROMACS uses a united atom force field where hydrogen atoms are treated implicitly, but 

AMBER and CHARMM allow an all-atom force field where hydrogen atoms are treated 

explicitly.

2.4.2. Energy minimisation

The lowest energy positions of the atoms corresponds to a stable state of the system and, 

therefore, provides an ideal starting point for molecular dynamics. With structural energy 

minimization the geometry is adjusted until a stationary point on the potential surface is 

found. The minimisation technique algorithms^^^°  ̂differ from each other in the way in 

which they use the gradient of the energy as well as in their robustness and search 

efficiency.

The steepest descent method uses the first derivative to determine the search direction 

towards the minimum. It  is combined with a line search which optimises the potential 

energy along the search direction. This continues until a minimum is found (gradient is 

zero) (Eq. 2.26).

where S, = -g ,  l\g,\ (2.26)
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Where are the coordinates, x* is the distance along the search direction determined

from line optimization, 5  ̂ is the gradient unit vector and is the gradient at point k.

The drawback of this method is that a line optimisation can re-optimise the same 

directions as a previous line optimisation and hence 'spoil' previous steps. Because of this, 

the rate of convergence is also slow near the minimum. With the conjugate gradient 

method (Eq. 2.27) each line search is not along the current gradient but along the line 

constructed so that it is conjugated to the previous search direction.

y,  = - f t  + where r ,  = (2-27)
Sk-\  ■ Sk-\

Where is the direction, is the gradient at point k, is the scalar constant, is

the previous direction and is the previous gradient at point k . The gradients at each

point are orthogonal but the directions are conjugate and hence subsequent line 

optimisations do not spoil previous line optimisations.

2.4.3. Molecular dynamics simulation
To solve the time dependent motion, Newton's second law of Motion for updating the 

momentum (velocities) requires the forces on the used atoms (Eq. 2.30).

F ,=m^a ,  (2.30)

Where F  is the force, m is the mass and a  is the acceleration of atom /. The primary 

requirement of any program is thus to calculate the forces on the atoms. The

force on the atoms can be calculated by the derivative of the potential energy with 

respect to the atom positions which is equated directly to the acceleration. The potential 

energy for each atom is calculated using the force field.

The equations are integrated using a Verlet Leapfrog algorithm using Vi time steps. The 

positions at time fare  used to calculate the accelerations. Analysis of the trajectory can 

be performed using root-mean-square deviation (RMSD) which is an average distance 

measurement of a selection of residues/atoms between different frames. The difference in 

distance between the starting frame and the frames in the trajectory can be plotted 

against the time step of each frame and a movement over time plot is created. Other
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features th a t can be measured along the MD trajectory are potential, kinetic and total 

energy.

2.4.3.1 Verlet Leap frog algorithm

The position, velocity and acceleration needs to be updated a fter each step. Several 

m ethods are available of which the Verlet leap frog algorithm  is com m only used.'^^^^In the  

Verlet leap frog algorithm  (Fig. 2 .5 ) the position of all atom s is perform ed a t half tim e  

steps w ith respect to the velocity and is numerically equivalent to the original Verlet 

schem e. The  positions a t tim e t  are used to calculate the accelerations a t t. The  velocity is 

updated from  t-'ASt to t+V 2St using the  accelerations a t tim e t. This will effectively be the  

average accelerations over the  velocities tim e step. The  velocities can then be used to  

update the  positions in a similar w ay for t to t+ S t.

Position 

Vetocity 

A cce ^s tio n

Figure 2.5: Overview of the Verlet leap frog algorithm.

2A.3.2. Periodic boundaries and minimum image convention

W ith periodic boundaries conditions^^^^^ (PBC) the simulation cell is surrounded by images 

of itself. W hen an atom  leaves on one side o f the  box, it enters the simulation box on the  

other side. Because there  are no walls a t the boundary and there are no surface atoms, 

the size o f the  simulation box should be large enough to prevent the protein within the  

box having an interaction with itself via the  PBC. To  perform  the short range interaction  

cutoff a m ethod called th e  m inim um  im age convention^^^^^ is used which ensures th a t  

each atom  does not interact w ith the  sam e atom e tw ice. An atom  cannot interact w ith an 

atom  tha t is m ore than half o f the lattice vector aw ay and tha t is the m axim um  range for 

the cutoff.
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2.4.4.3. Ewald summation

In most MD simulations and energy minimisations, tine long-range interactions (Coulomb 

interactions) are the most time consuming. Ewald summation^^^®^ was introduced as a 

technique to sum the long range interactions between particles and all of their images in 

an infinite array of periodic cells. Long range interactions are evaluated as sums that 

converge extremely slow. The principle behind the Ewald sum is to convert the 

summation of the potential energy into two series, each of which converges much more 

rapidly and a constant term (Eq. 2 .31). This is done by considering each charge to be 

surrounded by a neutralizing charge distribution of equal magnitude but of opposite sign.

A Gaussian charge distribution is commonly used.

+ V "  + U ^  (2 .31 )

The sum over point charges is now converted to a sum of the interactions between the 

charges plus the neutralizing distributions. This part is the real space sum U'' (Eq. 2 .32)

V ' (2.32)
"  ^J,n

Where n is an integer, q is the charge, a  is the width of the Gaussian distribution, erfc is 

the complementary error function and r„  is the distance. A second charge distribution is 

added to the system which exactly counteracts the first neutralizing distribution. This 

summation is performed in the reciprocal space and is termed U ” (Eq. 2 .33).

1 ^  e x p ( - ( ;zw /a )“ + 2 ; z z w - ( r , - r  ))

The self-term U ‘ is a correction term that cancels out the interaction of each of the 

introduced artificial Gaussian counter-charges with itself (Eq. 2 .34).

(2.34)
\  /= i

The particle Mesh Ewald Summation^^^^^ (PMES) method divides the potential energy into 

Ewald's standard direct and reciprocal sums and used the conventional Gaussian charge 

distributions. The direct sum is evaluated explicitly using cutoffs while the reciprocal sum 

is approximated using Fast Fourier Transform (FFT) with convolutions on a grid where 

charges are interpolated in the grid points. PME does not interpolated but rather
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evaluated the forces by analytically differentiating the energies and therefore reducing the 

amount of memory that is needed.
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Chapter I I I

Homology Modelling: The Use of an Intermediate 

Amino Acid Sequence in Homology Modelling of 

the ai-Adrenoceptors

There are many methods for predicting the future. For example, 

you can read horoscopes, tea leaves, tarot cards, or crystal balls. 

Collectively, these methods are known as 'nutty methods'.

Or you can put well-researched facts into sophisticated computer models, 

more commonly referred to as 'a complete waste of time'.

Scott Adams (1957-) The Dilbert Future
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3.1 Introduction
In this chapter the design of homology models for the a w , Qib- and qiq-ARs will be 

described and discussed. Homology models need to be produced because there are no 

crystal structures available for these receptors. Until recently, the only known crystal 

structure of a GPCR was that of bovine rhodopsin. Recently, the structure of the P2-AR 

has been resolved^̂ ^  ̂which has a higher sequence identity to that of the orARs, making 

this a better template structure for the generation of homology models. However, at the 

time of our research this structure was not available and the best option was to use the 

crystal structure of bovine rhodopsin. The generated homology model can then be used 

as a starting point for the study of ligand-protein interactions.

One essential feature of homology modelling is the assumption that proteins with similar 

amino acid sequences have similar structural features. This allows models to be based on 

the structure of related proteins and these structural features will then be translated into 

the new model. The issue that always arises is how similar structures need to be in order 

to generate high-quality models. There are several residues known to be conserved 

amongst all GPCRs. It is commonly accepted that conserved residues are structurally 

similar and share similar functions. We have taken some of these features and analysed 

them in a MD simulation. Two of these features are an ionic lock and a salt bridge. As 

they play a role in stabilisation and activation of the receptor, they should give some 

indication about the stability of the protein. However, there are few reference values 

available to these structural features of GPCRs which can confirm the correctness of our 

homology models. Still, measuring these features does allow the comparison between the 

different homology models and the known crystal structures and therefore can be used as 

a quality assessment of the generated adrenoceptors.

Several different homology models of the three ai-adrenoceptors have been generated by 

Pedretti Leonardi Evers etaP"^\ Kinsella and Bautista etal!^^''

These are described in section 1.5 of the introduction. However, all of these have taken 

the standard approach for the generation of their homology models. Some of these 

studies have performed MD simulations on these models but always within a limited time- 

scale of less than 2 ns.

One of the new aspects to our research is that we have taken different approaches to the 

design of homology models. We have taken different methods for generating homology

- 7 6 -



Chapter 3: Homology modelling

models and compared them to each other. One approach is by using an intermediate 

amino-acid sequence and building an intermediate model using this sequence. The other 

approach is to change the alignment and allow other residues within the sequence of the 

adrenoceptor and rhodopsin to be aligned. Finally an approach can be taken by combining 

the two methods. To evaluate the structures several protein analysis tools have been 

used and also MD simulations were performed to evaluate the structural behaviour of the 

adrenoceptors over time. These simulations were performed in a solvent mimic as 

modelling the phospholipid bilayer is difficult to do correctly and requires considerably 

more time.

3.2. Computational approach
The modelling approach that was taken is shown in Fig 3.1.

An alignment was made between the amino acid sequence

of rhodopsin and the ai-AR subt\/pes. This was initially made

with ClustalW^^^°  ̂ and subjected to manual inspection to

confirm that the residues that are conserved among most of

the GPCRŝ ^̂ ^̂  had been aligned. Using this alignment,

Modeller^^^  ̂ was used to generate 500 different models.

From the selected model the two loops that were longer

than 15 amino acids and did not have a disulphide bond
Figure. 3.1: Flowchart for 

( IC L -III- IV  and ICLV-VI) were optimized using the loop the generation of homology

optimization function in Modeller. There w ere 100 models nnodels

generated and the best model was selected using protein assessment tools. To validate 

the homology models after the generation of the complete model and after each loop 

optimisations, the same protein analysis tools have been used.

Three protein quality assessment programs were used to select the best model. 

ProCheck^^®  ̂ was used to perform a stereochemical check. Using a Ramachandran plot 

every amino acid is classified as having a favoured, additionally allowed, generously 

allowed or disallowed conformation. Verify3D^^^^ was used to assess the environment of 

the residues and gives a score of the percentage of amino acids with a favourable 

surroundings such hydrophobic or hydrophilic environment and solvent accessibility. 

Errat̂ ^®̂  was used to determine the ratio of non-bonded interactions between carbon, 

nitrogen and oxygen of each residue in the model and a score is given for the percentage 

of amino acids with a favourable ratio of non-bonded interactions. For each model these

Align sequences

Generate models

Select model

Loop optmization

Select model
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assessments were performed and a consensus of which model has the highest quality has 

been derived. Each model was assessed after the initial generation of the model and after 

the loop optimisation. After each step in the homology modelling process, the best model 

was selected and taken into the next step.

Two different alignment approaches (Fig. 3.2) and two methods for producing a 

homology model have been investigated. First was the optimal alignment of the amino 

acid sequence between the adrenoceptor and rhodopsin. Using this alignment a homology 

model was generated (direct). Secondly, an intermediate approach was taken by not 

aligning these two sequences directly, but by creating an intermediate step using the 

sequence of the adrenoceptor and mutating several amino acids to that of the 

corresponding amino acid in rhodopsin (mutation). This gives the intermediate sequence 

a higher similarity to rhodopsin and could function as a better template for the 

adrenoceptor. The selection of amino acids to be mutated was made such that sequence 

similarity was maintained along the transmembrane residues. Two criteria were used for 

the selection of residues to be mutated: firstly, no stretch of more than 4 different amino 

acids lacking similarity in the alignment and secondly, the mutation results in an even 

spread of identical residues along the whole aligned sequence.

Instead of using the initial alignment (no-gap), another approach was taken by 

introducing gaps in the amino acids sequences (Fig. 3.2) of the adrenoceptor and 

rhodopsin to obtain an alignment which had a higher amino acid similarity (gap). There 

were three transmembrane helices (TM-II, TM-IV and TM-VII) that would allow for the 

introduction of gaps, creating a residue alignment with a higher similarity. Gaps were not 

introduced in the loops due to the difference in length which automatically results in a 

limited quality of alignment for these structures. This change of alignment results in a 

different relationship between the amino acid sequence of the adrenoceptor and the x-ray 

structure of -hodopsin. A final approach was taken by combining the method where an 

intermediate sequence is introduced and the method where gaps are introduced in the 

residue chain.
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TM-I
r h o d o p s in  l a a y m f l l i m l g f p i n f l t l y v t

a i A  LG V IL G G L IL F G V L G N IL V IL S V

a i B  V G L V L G A F IL F A IV G N IL V IL S V

a i D  LG V ILG G LY M FG VLG N ILV ILS V

a i A  MUt L G V IL G G L IL F G V L G N IL V IL S V

a i B  MUt L G L V L G A F IL F G IV G N IL V IL S V

a iD  MUt VGVFLAAYMLMGFAGNLLVILSV

TM-II
r h o d o p s in  il l n l a v a d l f m v f g g f t t t l y t s

a i A  y i v n l a v a d l l l t s t v l p f s a if e

aiB  f i v n l a m a d l l l s f t v l p f s a a l e

a I D  f iv n l a v a d l l l s a t v l p f s a t m e

a i A  M U t Y IVNLAVADLLLTFG VLPFSLYFE

a iB  M Ut FIVNLAM ADLLLSFTVLTTSAYLE

a i D  M U t FIVNLAVADLLLSFGGLPFSLYME

TM-III
r h o d o p s in  l e g f f a t l g g e i a l w s l w l a i

a i A  IW A A V D V LC C TA S IM G LC IIS I

a i B  IW A A V D V LC C TA S ILS LC A IS I

a i D  VW AAVDVLCCTASILSLCTISV

a i A  MUt IW A F V D V L C C T IA IM G L C IIS I

a i B  MUt IW A A F A V LG C T A S ILS LC A IS I

a i D  M Ut LW AAVDVLCCTASILSLCVLSV

TM-IV
r h o d o p s i  n a im g v a f t w v m a l a c a a p p l v g w s r

a i A  GLMALLCVWALSLVISIGPLFGWRQ

a i B  A ILA LLSVW VLSTVISIG PLLG W KE

a i D  AAAILALLW W ALW SVG PLLG W KE

a i A  M U t GLMALACVWALSLVIAIGPLFGWRQ

a i B  M U t A ILG VLSVW VLSLVIAIG PLLG W KE

a i D  M U t AAAILALLW W ALAVSVGPLLGW KE

TM-V
r h o d o p s in  i y m f w h f i i p l i v i f f c y g q l

aiA l f s a l g s f y l p l a i i l v m y c r v

aiB  LFSSLG SFYIPLAVILVM YC R V

a i D  VFSSVCSFYLPMAVIVVMYCRV

a i A  MUt LF S A W S F Y LP LA IILV M Y C R V

a i B  M Ut LFM SLVHFYIPLAVILVM YCRV

a iD  MUt IF S S W H FY LP M A V IW M Y C R V

TM-VI
r h o d o p s i  n m v i i m v i a f l i c w l p y a g v a f y i f

a i A  TLG IW G CFVLC W LPFFLVM PIG S

a i B  TLG IW G M FILC W LP F FIA LP LG S

a iD  TLAIW G VFVLC W FPFFFVLPLG S

a i A  M U t M LGIW GCFLLCW LPFFLVM PIGS

a i B  M U t M LG IW G M FILC W LP F F IA LP LF S

a iD  M U t MLAIW GVFVLCW FPFFFVLPLGS

TM-VII
r h o d o p s i  n m t ip a f f a k t s a v y n p v iy im m n

a i A  FK IV FW LG Y LN S C IN P IIY PC S S

a i B  FKW FW LGYFNSCLNPIIYPCSS

a i D  FKVIFW LGYFNSCVNPLIYPCSS

a i A  MUt FK IV FW FFY LN SC IN P IIY P C M S

a i B  M Ut FK W PALG aFNSC LN PIIYPCM S

a iD  MUt FKVIFW FFYFNSCVNPLIY IM SS

TM-II (gap)
r h o d o p s i  n 

aiA  
a i B  

a ID
a i A  MUt 

a i B  MUt 

aiD  MUt

-ILLNLAVADLFM VFG G FTTTLYTS

Y -IV N LA V A D LL LT S T V LP F S A IF E

F-IV NLAM AD LLLS FTVLPFS AA LE

F-IVNLAVAD LLLSATVLPFSATM E

Y -IV N LA V A D LLLTFG V LP FS LY FE

F-IV N LAM AD LLLS FTVLTTSA Y LE

F-IVNLAVADLLLSFG G LPFSLYM E

TM-VI (gap)
r h o d o p s i  n m v i i m v i a f l i c w l p y a g v a f y i f t

aiA  t l g i w g c f v l c w l p f f l v m - p i g s

aiB  t l g i w g m f i l c w l p f f i a l - p l g s

aiD TLAIW G V FV LC W FP FFFV L-P LG S

a i A  MUt M LG IW G C FLLC W LPFFLVM -PIG S

a i B  MUt M L G IW G M F IL C W L P F F IA L -P L F S

a i D  MUt M LAIW G VFVLC W FPFFFVL-PLG S

TM-VII (gap)
r h o d o p s i  n f m t ip a f f a k t s a v y n p v iy im m n

a i A  F K IV F W LG Y LN S C -IN P IIY P C S S

a i B  FK W FW LG Y FN S C -LNP IIY P C SS

a iD  FKVIFW LGYFNSC-VNPLIYPCSS

a i A  M U t F K IV FW FF Y LN S C -IN P IIY P C M S

a i B  M U t F K W P A LG aFN S C -LN P IIY P C M S

a iD  M U t FK V IFW FFY FN S C -VN P LIY IM SS

Figure 3.2: Alignment of bovine rhodopsin with the different ai-adrenoceptor subtypes (qia, Oib 
and Qid) for the direct, mutation, no-gap and gap approach.

For each of the ai-AR subtypes (qia, Qib and Qid) four models were generated; direct- 

no-gap, direct-gap, mutation-no-gap and mutation-gap. For each of these models 

a molecular dynamics simulation was performed with a production run of 4 ns to establish
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the structural stability of the protein conformation over time. To prepare our homology 

models, the program WHAT was used to add hydrogens. There is literature reporting 

the protonation of the Asp in the strongly conserved E/DRY motif as a requirement for 

a c t i v a t i o n . W e  do not expect our model to convert to an active conformation 

during our MD simulation, but when in a further stage ligand-bound MD simulations are 

being performed they may be induced to a ligand-activated conformation. Therefore, to 

observe the stability of the receptor with a possibility of obtaining an active conformation, 

this amino acid was protonated (qia Asp^^ ,̂ Qib Asp^'’^  qid Asp^^^). The disulphide bond 

between T M -III and the extracellular loop-IV-V was also defined explicitly in our MD 

simulations. To simulate the phospholipid bilayer in which the adrenoceptor is normally 

positioned, a solvent bilayer mimiĉ ^̂ ^̂  was used (Fig. 3.3). This mimic represents the 

hydrophobicity of the phospholipids and still allows the use of water as a solvent for the 

intra- and extra-cellular compartments. The homology models were positioned in this 

multilayer box of solvent with the transmembrane helices covered in the chloroform layer 

representing the phospholipid bilayer, and the intra- and extra-cellular loops in the water 

layer that representing the extra- and intra-cellular space. The water (TIP3P) and 

chloroform molecules are part o f the AMBER package. The thickness of the chloroform 

layer was based on the transmembrane helices which should be completely immersed in 

the chloroform layer. An example of the positioning of Qiq-AR in the H2O/CHCI3/H2O 

bilayer mimic is shown in Fig. 3.3.

Figure 3.3: Positioning of the Qid-AR in the solvent model consisting 
of chloroform (blue) and water (red)
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A distance of 15 A between the protein and the edge of the simulation box was used to 

prevent interactions between receptor periodic images during the MD simulation. 

Furthermore, the whole system was charge neutralised by adding Cl- atoms using Amber. 

The MD simulations were performed using the Particle Mesh Ewald Molecular Dynamics 

(PMEMD) module of AMBER using periodic boundary conditions and PME for

evaluation of electrostatics. The ff99sb forcefield that was chosen is a modification of the 

original ff99 forcefield which prevents overstabilisation of the helices.^̂ '̂'̂  The structure 

was minimized using steepest descent for 10.000 steps, followed by a minimisation using 

conjugate gradient with a maximum of 50.000 steps. The system was heated over 20 ps 

to a temperature of 300 K using constant volume. The system was then equilibrated at 

constant pressure using 5 steps of 10 ps each with a restraint of 20, 15, 10, 5 and 0 kcal 

mol'^ on the protein. If  a stable energy level has been reached which shows only 

fluctuation around a particular energy level and not a change to a different energy level, 

the movement of the protein over time was simulated in a production run of 4 ns that has 

been performed at constant pressure (isotropic position scaling) and a temperature of 

300K (Langlevian dynamics) for each of the models. Snapshots of the adrenoceptors were 

obtained at 2 and 4 ns and an energy minimisation was performed on these structures.

To analyse our results, the quality of the homology models was scored using ProCheck, 

Verify3D and Errat as protein assessment tools. This scoring was performed on the initial 

model generated in the homology modelling process and on the conformations that were 

obtained after 2 ns and 4 ns of MD simulation. From the production phase of the MD 

simulation the RMSD over time from helix one to eight (Table 3.1) was extracted to 

examine the stability of the adrenoceptor models.

Table 3.1: Overview of the amino acids for transmembrane helix one to seven and helix eight that
were selected for the RMSD analysis of each of t he subtypes of the orAR.

Qia -AR Qib "AR Qid "AR

TM -I 27 - 51 4 6 - 6 9 9 7 - 1 2 1

TM -II 6 4 - 8 8 80 -  107 134 -  158

T M -III 97 -  127 1 1 6 -1 4 6 167 -  197

TM-IV 141 -  163 160 - 181 211 - 232

TM-V 185 -  208 202 -  227 253 -  278

TM-VI 274 -  296 291 - 317 338 - 360

TM -VII 317 -  334 3 3 2 -  359 380 -  398

TM -VIII 338 - 346 354 - 363 402 - 410
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Analysis of both an ionic lock*̂ ^̂  and salt bridge^^^^  ̂was performed to determine the 

stability of the protein and to observe any changes in conformation. One of the key 

events in the activation of family A GPCRs involves protonation of the aspartic acid in the 

highly conserved E/DRY motif. The hypothesis behind this activation is that there is an 

ionic interaction for the aw A R  between the Asp^“  and Glu^^  ̂ preventing the protein from 

moving into an active conformation by constraining the Arĝ "̂* into a lock. Protonation of 

the Asp^”  in T M -III  breaks this ionic interaction and allows the Arg^ '̂’ to shift out of the 

polar pocket leading to cytoplasmic exposure of buried sequences in the second and third 

intracellular loops allowing a conformational change to an active state.^^^  ̂The distances 

between the three residues should indicate if a stable conformation has been reached or 

indicate if a change to a conformation that represents a more active conformation takes 

place.

A salt bridge is described between an Asp in helix three and a Lys in helix seven^^^^  ̂

During agonist-dependent activation of the ai-AR, this salt bridge is disrupted to allow the 

protein to move into the active conformation. Measuring the distance between the 

sidechains of the Asp °̂® and Lys °̂®, for aw-AR should give an indication of the behaviour 

of this salt bridge. Because our MD simulations are performed without a ligand docked in 

the receptor, conversion to a different state is not likely and therefore limited change of 

the distance within the saltbridge should be observed.

Reference distances within the ionic lock can be obtained from the crystal structures of 

rhodopsin (p d b :lu l9 )  and the [32-AR (pdbiZrhl^^^^ (Table 3 .2) by measuring the 

distances between the sidechains of those residues. Rhodopsin has a Glutamic acid (E) 

positioned in the E/DRY motif while P2-AR has an Aspartic acid (D ) positioned in this 

motif. To avoid confusion of which oxygen of the carboxylate-group of the amino-acid 

interacts, the distances between the center carbon atoms of the carboyxlate-groups are 

measured.

Ta ble 3.2: Distances within the ionic lock for rhodopsin (left) and th
Rhodopsin P2-AR

Glu^^ -̂Arg^^^ 4.70 A Asp^^°-Arg^^^ 4.84 A
Glu^^ -̂Glu^^^ 7.20 A Asp^^°-Glu^^^ 14.80 A
Argi^^-Glu^”*̂ 4.29 A Asp^^ -̂Glu^^^ 13.02 A
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For the saltbridge there  is no Aspartic acid in T I^ - I I I  in rhodopsin and there  is also no 

Lysine positioned a t the top of T M -V II. This m akes the presence of this saltbridge in 

rhodopsin questionable. For the  P2-AR how ever, these tw o residues Lys and Asp are  

placed in the  sam e position as our homology models and therefore a reference distance 

o f 14.83  A betw een the sidechains of those tw o residues can be obtained. Sim ilar to the  

ionic lock, distances betw een the center carbon atom s o f the carboyxlate-groups are  

m easured.

3.3. Results

T h e  four d ifferent hom ology models generated for each of the three d ifferent a rA R  

subtypes (q ia -, Qib- and Qiq -AR) will be discussed below.

3.3.1. The Oia-AR homology model

Following the  Procheck stereochem ical analysis (Tab le  3 .3 ) little d ifference em erges  

betw een each o f the models. The  initial m utation-gap model has no residues classified as 

disallowed, but five residues classified as generously allowed. W hen sum m ing up both, it 

has the  highest num ber o f residues classified in these categories. The  other th ree  models 

provide similar scores with a variation o f only one residue classified m ore or less in the  

categories disallowed or generously allowed. O f those three  models, the m utation-no-gap  

model would be the most favourable. W hen observing the  models over tim e, the  direct- 

no-gap model provides the  best result. Both of the direct models showed an im provem ent 

of the Procheck score a fter 4  ns of MD simulation com pared to the  initial hom ology  

m odel. This is in contrast to both m utation models w here a worsening in score is obtained  

at 2 or 4  ns in comparison with the starting structure.

Verify3D  shows a larger range o f scores (Table 3 .3 ) for each model w ith a d ifference of 

~ 2 0 %  betw een the  models. T h e  best results for the  initial hom ology models are obtained  

for the  m utation-no-gap and the  direct-gap model. The  MD simulation appears to  result in 

a decrease of the Verify3D  score over tim e. The  decrease in score differs for each m odel. 

A fter 4  ns the m utation-no-gap and m utation-gap models obtain the  most favourable  

scores.

Errat (Table 3 .3 ) provides similar scores for all models with little variation a t the start of 

the MD sim ulation. The  m utation-no-gap model has the best score of all models. During 

the MD simulation there  is a strong increase in the score by Errat w ith d ifferent results
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obtained at 2 and 4 ns, the mutation-gap model obtaining the most favourable score. 

However, the large increase in score for favourable non-bonded interactions over a short 

period of time suggests that small changes in structure can have a large influence on the 

Errat score and therefore a selection based only on this score is not recommended.

Table 3.3: Analysis of the Qia-AR homology models performed with ProCheck, Verify3D and Errat

Direct, no gap Mutation, no gap

Initial 2 ns 4 ns Initial 2 ns 4 ns

ProCheck, favoured: 254 241 246 254 240 246

ProCheck, additional allowed: 24 39 32 24 38 30

ProCheck, generously allowed: 1 1 2 2 2 4

ProCheck, disallowed: 2 0 1 1 1 1

Verif/3D (%): 41.61 44.10 31.37 52.48 48.76 41.93

Errat (%): 67.00 85.39 87.84 70.10 85.05 83.46

Direct, gap Mutation, gap

Initial 2 ns 4 ns Initial 2 ns 4 ns

ProCheck, favoured: 256 239 231 259 242 243

ProCheck, additional allowed: 21 36 47 17 32 33

ProCheck, generously allowed: 2 2 1 5 3 2

ProCheck, disallowed: 2 4 2 0 4 3

Verify 3D: 53.42 42.86 33.23 48.76 47.52 40.06

Errat: 65.25 74.54 82.35 64.88 88.89 93.71

The RMSD analysis (Fig. 3.4) shows stable helices with some fluctuation for all of the 

models except the mutation-no-gap model. This model shows a drift of the helices, 

particularly after 2 ns. None of the helices that show movement stabilize after a set 

amount of MD simulation, but keep moving during the whole simulation. This indicates 

that the mutation-no-gap model, in comparison to the other models, does not reach a 

stable protein structure and therefore this homology model should not be selected. This is 

in agreement with ProCheck which also shows a decrease in quality of the model after 2 

ns.
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Figure 3.4: RMSD analysis of the MD simulation of the Qia-AR homology models. The RMSD for 
helix 1-8 is shown as a function of the production run of 4 ns. Structures were initially fit to the 
starting structure.

Analysis of the MD simulations can be performed by observing the distances within the 

ionic lock for the residues Asp^^ ,̂ Arg^ '̂' and Glu^®  ̂over time (Fig. 3 .5). The distances 

between Asp^“ -Glu^®  ̂ and Arg^ '̂’-Glu^^  ̂ are highly correlated and both show a similar 

pattern of movement over time. As a change in this ionic lock is needed for changing 

conformation, these data suggest that a conformational change does not occur during the 

MD simulation. The distance between Asp^^ -̂Arg^ '̂  ̂ shows no changes. However, the 

difference in distance of Asp^^ -̂Glu^^  ̂ and Arg^^ '̂-Glu^®  ̂shows a different pattern for the 

no-gap models (dir-no-gap and mut-no-gap) than for the gap (dir-gap and mut-gap) 

models. The final distance between Asp^^ -̂Glu^®  ̂ for the gap models is similar to that of 

the (32-AR, but for the no-gap models similar to that of rhodopsin. This indicates that the 

gap-models are more similar to the p2 -AR but it should be noted that the P2-AR is ligand 

bound with the partial inverse agonist carazolol and our homology models are not ligand 

complexed.
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Another feature that can be compared is a saltbridge between residue Asp °̂® and Lys^°^ 

(Fig. 3.6). This saltbridge contributes to the stability of the protein. The dir-no-gap mode! 

shows the most consistent distance between the two residues over time. The other three 

models (dir-gap, mut-no-gap and mut-gap) show changes in the distance of the salt 

bridge over time with the mut-gap model showing an increase of 4 A in distance between 

2 and 4 ns. All the models seem to produce a final saltbridge distance of less than 14.83 

which is observed for the p2-AR. However, all models show an interaction close to this 

distance during the MD simulation, concluding that all models are within this reference 

distance.

^ ^ D i r .  no-gap 

dir-gap 

mut-no-gap 

mut-gap
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Figure 3.6: Plot of the salt bridge over time between and Lys^309
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Taking all results together it can be summarized that the different scoring tools Procheck, 

VerifySD and Errat, do not provide a similar result for each model and therefore for the 

selection of the most favourable model more data must be used. Analyses of the helix 

movement during the MD simulation provides little clarity either, as with the exception of 

the dir-gap model, three models show a stable structure over time.

More interesting results can be obtained when analyzing structural features such as the 

ionic lock and the salt bridge that are known to exist in the adrenoceptor. It  is clear that a 

change in the alignment has an influence on these structural features of the homology 

model. The salt bridge shows the most stable behaviour in the direct-no-gap model 

making this the best choice of homology model. Given that there is no ligand bound to 

the receptor, either a very stable distance over time or an initial change in distance 

resulting in a stable distance afterwards can be expected.

3.3.2. The Qib-AR homology model

Procheck analysis (Table 3 .4) shows small differences between each of the models. At the 

start of the MD simulation the mutation-gap is the only model with no residues classified 

as disallowed. But taking both disallowed and generously allowed residues into account 

this would not be the best model as the combined number is higher than either the 

mutation-no-gap or the direct-gap model. During the MD simulation the stereochemistry 

worsens for the direct-no-gap and mutation-gap model, but improves for the mutation- 

no-gap model. The mutation no-gap model is the only model that after 4 ns showed no 

residues classified as either disallowed or generously allowed and also has the lowest 

number of residues assigned as additional allowed.

VerifySD (Table 3 .4 ) shows that the initial homology models of both direct and mutation 

alignment models obtain a similar score, but during the MD simulation an increase of this 

score is observed for the direct models, while a decrease of this score is observed for the 

mutation models. This could suggest a better optimization of the positioning of the side- 

chains for the direct models during the MD simulation. The best score for the initial 

homology model is obtained by the mutation-no-gap model and after 4 ns of MD 

simulation with the direct-gap model.

Errat provides similar scores (Table 3 .4) for all models with little variation for the initial 

homology model. The direct models (gap and no-gap) obtain slightly better scores than 

the mutation models with the direct-gap model being the most favourable according to
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Errat. During the MD sinnulation there is a strong increase in the Errat score and after 4 ns 

of MD simulation, the direct-gap model obtains the highest score indicating a higher 

percentage of favourable non-bonded interactions.

Table 3.4: Model analysis of Qib-AR. Model analysis performed with ProCheck, Verify3D and Errat 
on the initial homology models and after a MD simulation of 2 and 4 ns.____________________

Direct, no gap Mutation, no gap

Initial 2 ns 4 ns Initial 2 ns 4 ns

ProCheck, favoured: 252 246 242 261 255 257

ProCheck, additional allowed: 34 38 43 27 31 33

ProCheck, generously allowed: 2 2 2 1 4 0

ProCheck, disallowed: 2 4 3 1 0 0

Verify3D (%): 42.46 35.69 49.54 50.15 34.46 31.69

Errat (%): 68.35 90.00 90.32 62.94 89.40 89.69

Direct, gap Mutation, gap

Initial 2 ns 4 ns Initial 2 ns 4 ns

ProCheck, favoured: 261 244 254 262 236 235

ProCheck, additional allowed: 27 44 34 24 51 52

ProCheck, generously allowed: 1 1 1 4 1 1

ProCheck, disallowed: 1 1 1 0 2 2

Verify3D (%): 37.85 49.85 51.08 37.23 29.23 21.54

Errat (%): 68.99 96.48 94.643 63.26 89.15 93.47

All of the four homology models show a different pattern of behaviour when analysing the 

RMSD of the helices (Fig. 3 .7). The direct-no-gap model shows a stable structure with 

little helical change except helix four. This helix undergoes a conformational change at 1.5 

ns but stabilizes afterwards for the rest of the MD simulation. This suggests that a stable 

conformation of the homology model has been obtained after 2 ns. The mutation-no-gap 

model exhibits a stable conformation of the protein with none of the helices making large 

movements after the start of the MD simulation. The direct-gap model shows a stable 

structure with little change except a movement of helix 1. This helix makes a 

conformational change at the start of the production run but stabilizes after 1 ns for the 

remainder of the MD simulation. This suggests that a stable conformation of the 

homology model has been obtained after 1 ns. The mutation-gap model shows a stable 

conformation with no large movement of any of the helices over time.

- 8 8 -



Chapter 3: Homology modelling

2

T im * (n^

a) direct, no-gap

-H e lix  1 

• Helix 2 

Helix 3 

Helix 4 

-H e lix  5 

-H e lix  6 

-H e lix  7 

-H e lix  8 1

Helix 1 

Helix 2 

Helix 3 

Helix 4 

Helix 5 

Helix € 

Helix 7 

Helix 8

Heiix 1 

Helix 2 

Helix 3 

Helix 4 

Helix 5 

Helix 6 

Helix 7 

Helix 6

b) mutation, no-gap

6

5

4

I
2

1

0
30 1 2 4

-H e lix  1 

Helix 2 

Helix 3 

Helix 4 

-H e iix  5 

-H e lix  6

c) direct, gap d) mutation, gap

Figure 3.7: 
8 is shown 
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RMSD analysis of MD simulation of the Oib-AR homology models. The RMSD for helix 1- 
as a function of the production run of 4 ns. Structures were initially fit to the starting

The ionic lock (Fig. 3 .8) is stable for the direct-no-gap and the direct-gap model, with only 

small changes in distance observed. The mutation-no-gap and mutation-gap model show 

larger changes. The distance for Asp '̂* -̂Arg '̂*  ̂ converges to ~ 9  A for all models except the 

direct-gap model. The distance for Asp̂ '̂ -̂Glû ®® converges to ~  12 A and the distance 

between Arg^̂ ' -̂Glu^®® to ~ 5  A for all of the models, except the mutation-gap model. The 

comparison of these distances with the crystal structure of rhodopsin and the P2 -AR 

shows for the distance between Asp^''^-Glu^®^ a similarity to rhodopsin (7 .2  A) for the 

mutation-gap model and the other three models, a Asp̂ '̂ -̂Glû ®® distance similar to that of 

the Pa-AR (14.8  A). However, for the distance between Arg '̂^ -̂Glu^^  ̂ the models dir-no- 

gap and dir-gap are similar to rhodopsin, but no models relate to the distance observed 

for the P2-AR. The combination of these two findings suggests that none of our homology 

models correspond to both the distances observed in the crystal structures.
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The analysis of the salt bridge betw een residue Asp^^  ̂ and Lys^^' (Fig. 3 .9 ) shows th a t all 

of the models except the  m utation-no-gap model converge tow ards a larger distance of 

the saitbridge during the MD simulations. Large fluctuations o f this distance are observed 

during the production run. Both o f the m utation models show some m ovem ent during the  

MD sim ulation, but overall show little m ovem ent. The models d ir-no-gap and dir-gap  

would com e closest to the  distance of 14.83 observed in the  p2-AR.
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Figure 3.9: Salt bridge between residue Asp^̂  ̂ and Lyŝ ^̂  for the different Oib-AR homology
models.
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Taking all results together we can summarize the following about the different models 

generated for the Q ib -A R : analysis with Procheck, VerifySD and Errat shows little 

differences in scores assigned to each model. The different scoring tools do not provide a 

similar result for each model and therefore for the selection of the most favourable model 

more data should be used. Analyses of helical movement during the MD simulation 

provides little clarity as well, as all of the runs (except model dir-gap) show a stable 

structure during the simulation with both of the direct models having one helix moving 

significantly. This helix movement however results into a stable conformation.

Other results can be obtained when analyzing structural features such as the ionic lock 

and the salt bridge within the homology models. A convergence to a similar distance 

within the ionic lock and salt bridge is observed for most models. Some models do not 

show the ability to change the conformations of these features. But in contrast, the 

direct-no-gap model shows this convergence for both the ionic lock and the saltbridge 

suggesting that this model has good behaviour during the MD simulation. Therefore the 

direct-no-gap model was selected.

3.3.3. The Qid-AR homology model

Analysis with Procheck at the start of the MD simulation (Table 3 .5) shows that all the 

models have none or only one residue classified as disallowed. Both the gap models 

(direct and mutation) have a higher number of residues classified as generously allowed, 

compared to the no-gap models. During the MD simulation, the score for all models 

seems to worsen with an increase of the number of residues classified as disallowed rising 

to two for each model. The mutation models show a stronger increase in residues 

classified as generously allowed, making the direct models more favourable.

Verify3D (Table 3 .5) shows a larger difference between the scores assigned to each 

model but no model obtains the best score consistently over each of the three time steps. 

The initial homology model with the best result is the direct-gap model. During the MD 

simulation the scores decrease for all models except the direct-no-gap model which 

obtains the most favourable score after 4  ns of MD simulation. The direct-gap model 

obtains the worst score after 4 ns of MD simulation. This decrease in score indicates that 

the positioning of the sidechains is not optimal for the direct-gap model.

Errat (Table 3 .5) provides similar scores for all models with little variation at the start of 

the MD simulation and exhibiting the same trend during the MD simulation. The mutation-
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no-gap model obtains the best score for the initial homology model, but the direct-no-gap 

model obtains the best score after 4 ns of MD simulation. During the MD simulation a 

significant increase in the Errat score is observed for all of the models as stabilising 

interactions allowed.

Table 3.5: Model analysis of the Qid-AR. Model analysis performed with ProCheck, Verify3D and 
Errat on the initial homology models and after a MD simulation of 2 and 4 ns.________________

Direct, no gap Mutation, no gap

Initial 2 ns 4 ns Initial 2 ns 4 ns

ProCheck, favoured: 258 249 246 274 255 248

ProCheck, additional allowed: 30 38 42 15 33 37

ProCheck, generously allowed: 1 1 0 1 0 3

ProCheck, disallowed: 1 2 2 0 2 2

VerifySD (% ): 48.17 51.22 50.3 52.13 42.68 43.29

Errat (% ): 55.17 91.97 90.81 61.69 81.76 84.14

Direct, gap Mutation, gap

Initial 2 ns 4 ns Initial 2 ns 4 ns

ProCheck, favoured: 254 244 248 260 253 249

ProCheck, additional allowed: 30 42 39 26 32 35

ProCheck, generously allowed: 6 2 1 4 3 4

ProCheck, disallowed: 0 2 2 0 2 2

Verify3D (% ): 58.23 45.12 29.57 57.32 41.46 46.95

Errat (% ): 55.03 86.20 89.29 57.05 86.23 85.28

All of the four homology models exhibit a stable helical RMSD pattern (Fig. 3 .10). The 

direct-no-gap model shows a stable structure with little helical change except for helix 

eight. This helix makes a conformational change from the start of the production run up 

to 2 ns but stabilizes afterwards for the rest of the MD simulation. Helix eight is not a 

transmembrane helix and this movement is likely to be due to an adjustment in the 

bilayer mimic, suggesting an overall stable conformation of the homology model. The 

mutation-no-gap model shows a stable conformation with none of the helices making 

large movements after the start of the MD simulation. The dlrect-gap model shows a 

stable structure suggesting that a stable conformation of the homology model has been 

obtained after 2 ns. The mutation-gap model shows a very stable conformation with no 

large movement of any of the helices over time. The RMSD analysis does not show any 

significant differences in RMSD behaviour between the direct and mutation models or
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between the no-gap and gap models. It  does show that all four models obtain a stable 

structure during the MD simulations.
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Figure 3.10: RMSD analysis of MD simulation of the Qid-AR homology models. The RMSD for helix 
1-8 is shown as a function of the production run of 4 ns. Structures were initially fit to the starting 
structure.

Distances within the ionic lock between Asp^® -̂Arg^ '̂ -̂Glu ‘̂’  ̂ are different for each model 

with the direct-no-gap model having the largest distances for Asp^^ -̂Arg^^"* (~ 8  A ), Asp^® -̂ 

Glû '̂  ̂ (~ 1 4  A) and Arg^®‘‘-Glu^‘̂  ̂ (~ 7  A) compared to the other three homology models 

which show shorter distances, Asp^^ -̂Arg^ '̂* (~ 5 -7  A ), Asp^^ -̂Glu '̂*  ̂ (~ 9  A) and Arĝ ®"̂ - 

Glu^“̂  ̂ (~ 4  A ). For each model, convergenc to similar distances is observed over time (Fig. 

3.11). During the MD simulation, the distance between Asp^^ -̂Arg^®'' converges to ~9-12  

A, the distance between Asp^® -̂Glu '̂^  ̂ to ~ 1 1  A and the distance between Arg^®‘̂ -Glu^‘’  ̂ to 

approx. 4 A. All the models therefore converge to a similar conformation of the ionic lock 

and hence, this criteria can not be used for selection of the model. Compared to the 

crystal structure of rhodopsin all of the distances observed for Asp^^^-Glu^^'^are longer in 

the homology models and but are similar for the distance between Arg^®''-Glu '̂* .̂

Compared to the crystal structure of |32-AR, all of our homology models show shorter 

Asp^^^-Glu^'^^and Arg^^'*-Glu^'‘̂  distances.
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The salt bridge between Asp̂ ^® and Lyŝ ®̂  during the MD simulation (Fig. 3 .12) shows 

different distances at the start of the MD simulation for all models with the direct models 

having a significant shorter distance than the mutation models between those two 

residues. During the MD simulation a convergence to a distance of ~ 18  A is seen for all 

models except the direct-gap model which shows an unchanged distance of ~ 4  A 
throughout the MD simulation. This indicates that the direct-gap model is in either a 

stable state or is not able to move to a different state.

 Dtf-no-gap

 Dir-gapB
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Mut-gapS  10
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Figure 3.12: Plot of the distance of the salt bridge between Asp̂ ^̂  and Lyŝ ®̂  for the different Qid- 
AR homology models during 4 ns of MD simulation.

Taking all results together we can summarize that analysis with Procheck, Verify3D and 

Errat show little differences in scores assigned to each model. Analyses of the helix
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movement during the I ÎD simulation provides little clarity as well, as most of the runs 

(except model dir-gap) show stable transmembrane helices over time. When analyzing 

structural features such as the ionic lock and the salt bridge a convergence of the 

distances within these structural features occurs for most models. Within the ionic lock, all 

models converge to the same distance, but for the salt bridge all models except the 

direct-gap model converges to a similar distance. The combination of limited structural 

movement and the convergence to similar distances in the ionic lock and saltbridge leads 

us to believe that the three models direct-no-gap, mutation-no-gap and mutation-gap, 

despite having different starting structures evolve into a similar structure when a MD 

simulation is performed. Therefore the most straightforward method which generates the 

direct-no-gap models should be selected.

3.3.4. Comparison of the homology models, the crystal structure of 
rhodopsin and the p-adrenergic receptor.

The initial homology models of the three ai-AR subtypes are very similar (Fig. 3 .13), with 

all of the helices showing similar positions. This can be expected as they all use rhodopsin 

as a template and the residues that are conserved amongst the adrenoceptor and 

rhodopsin are mainly found in the transmembrane helices. The largest difference between 

the homology models is observed in the extracellular loop between TM -IV  and TM -V (ECL- 

IV -V ). This is due to the limited similarity with rhodopsin but also due to the difference in 

length of the loop between the three subtypes. A manual alignment of the 3d structures 

was performed because the difference in loops makes the application of automated 

alignment more difficult.
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Figure 3.13: Manual alignment of the three direct-no-gap homology models showing Qia-AR (red) 
Qjb-AR (yellow) and Qid-AR (blue) seen from the side (left) and the top (right)

The initial homology model and the model obtained after 4 ns of the Qia-AR (Fig. 3 .14), 

Qib-AR (Fig 3 .15) and Qid -AR (Fig 3 .16) were aligned to observe the structural differences 

that have accumulated during the MD simulation. For all the three adrenoceptors, a 

movement in T M -I is observed in which the extra-cellular part of this helix moves 

outwards. These movements suggest a widening of the binding pocket. For the Qib-AR 

(Fig 3.15) a movement of T M -III  is obsen/ed in contrast to the other two AR-models. 

Furthermore, the extra- and intra-cellular loops of all models move during the MD 

simulation. Due to the poor similarity with the template model rhodopsin and the in 

general being more flexible loops, this was expected.
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Figure 3.14: Manual alignment of the Qia-AR for the homology model (red) and after being 
subjected to 4 ns of MD simulation (yellow) seen from the side (left) and from the top (right).
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Figure 3.15: Manual alignment of the Qib-AR for the homology model (red) and after being 
subjected to 4 ns of MD simulation (yellow) seen from the side (left) and from the top (right).
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Figure 3.16: Manual alignment of the Qid-AR for the homology model (red) and after being 
subjected to 4 ns of MD simulation (yellow) seen from the side (left) and from the top (right).

The structure of the three a rA R  subtypes are similar to each other, but also to bovine 

rhodopsin (Fig. 3 .17) as the overlay of the Qib-AR and rhodopsin shows. For clarity the 

Qia-AR and Qid-AR were not included in this picture, but figure 3.13 shows that the three 

AR models are similar. This similarity between the oi-ARs and rhodopsin is expected 

because rhodopsin was used as the template in their construction. The largest difference 

between the homology models and the crystal structure of rhodopsin is observed in ECL- 

IV-V. This is due to the limited similarity with rhodopsin but also because a separate loop 

optimization has been performed which is not based on a template structure.
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Figure 3.17: Manual alignment of rhodopsin (purple) with the direct-no-gap homology model of 
ciib-AR (yellow). Because the structures of the three Oi-AR are similar, for visualisation purposes

only the Oib-AR is shown.

Several crystal structures of the P2 -adrenoceptor have been recently published.̂ ^̂ '̂ ^®̂  As 

crystal 'pdb:2RHl' has the full structure of the Pz-AR, a structure alignment with the 

direct-no-gap models, was made by overlaying the crystal structure and the homology 

model manually (Fig. 3.18). The positioning of most helices within both structures is 

similar, with the exception of TM -I and T M -III. In the crystal structure of (32-AR, these two 

helices are pointing outwards from the centre of the protein when compared to the 

homology models of the Oi-ARs. The inwards positioning of TM -I and T M -III decreases 

the volume of the binding pocket and, therefore, make successful docking more difficult. 

The loops are considerably different, especially the longer loops of ECL-IV-V and the ICL- 

V-VI. The ECL-IV-V shows the formation of a helix in the crystal structure of the 32-AR, 

whereas our homology models do not. This is because this helix is not observed in 

rhodopsin on which our homology models are based. The intracellular loop between TM-V 

and TM-VI of the P2 -AR and our homology model show no conformational similarity. This
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is because there is a great variety of the length of this loop and of residues within this 

loop amongst the different adrenoceptor subtypes.

Figure 3.18; Alignment o f the homology model of the Qib-AR (yellow) and the crystal structure of 
the P2*AR (purple) seen from the side (le ft) and from the top (right).

The alignment of the initial homology model and the model obtained after 4 ns of MD 

simulations has shown a movement of TM -I. A similar change was observed when 

comparing the crystal structure of the P2-AR with that of the three initial homology 

models. The alignment of the aw A R obtained after 4 ns of MD simulation and the P2-AR 

(Fig. 3 .19) shows that the adrenoceptor model has moved to a structure more similar to 

that of P2-AR. The positions of TM-I in both structures do not align as in the (32-AR it is 

still pointed more outwards that the Qia-AR. The position of T M -III has converged to as 

similar position as in the p2-AR. The space within the binding pocket formed within TM -I, 

TM -II, T M -III, TM-VI and TM -VII is still larger in the [32-AR than in the Qia-AR. This could 

be because there is a ligand bound in the P2-AR, but not in our adrenoceptors. However, 

most helices are positioned in a similar position, suggesting that a more correct oi-AR 

conformation has been obtained. The extracellular loop ECL-IV-V appears to adopt a helix 

conformation in the P2-AR, something which is not observed in the qia-AR. The intracelllar 

loop between TM-V and TM -VII is shown to be different in the Qia-AR and 32-AR. 

Furthermore, this loop is different within each adrenoceptor and, even with a known 

crystal structure of the P2-AR, would be hard to predict.
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Figure 3.19: Alignment o f the model of Qia-AR obtained after 4ns of MD simulation (yellow) and 
the crystal structure of the 32‘ AR (purple) seen from the side (le ft) and from the top (right).

3.4. Conclusions
The analysis of the generated homology models and the models obtained after 2 and 4 ns 

of MD simulation indicates that according to the protein assessment tools, the quality of 

the homology model does not always improve during the MD simulation. After 4 ns of MD 

simulation ProCheck classifies more amino acids as disallowed or generously allowed. One 

of the reasons for this could be that the ProCheck method is based on crystal structures 

which are likely to be in a more static form than models extracted from a MD simulation. 

VerifySD does not differentiate between the initial homology models and the models 

extracted from the MD simulation. However, it does not provide a similar score for all the 

models after performing a MD simulation. For different models, changes in the scores are 

variable. We are not able to determine any cause for this change in score. When scoring 

the initial model and the model extracted from the MD simulation with Errat, the latter 

obtains a significantly higher score. An explanation for this increase in score is that the 

Errat method is based on non-bonded interactions. The forcefield used during the MD 

simulation describes the non-bonded interactions and uses them to predict the movement
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of the atoms, thereby, optimizing the non-bonded interactions in the model. This leads to 

a state that is favoured by Errat.

The RMSD analysis of the helices does not reveal much in terms of quality of the 

homology models, although serious drifts of helix conformations are easily identified. 

Hence, this method can be used to rule out structures lacking conformational stability. 

However, the RMSD analysis is not able to determine the quality of models that exhibit 

generally structural behaviour over time.

We found that known structural features such as an ionic lock or a salt bridge are better 

ways to assess protein stability. I t  is observed in several of the MD simulations that 

distances between certain residues optimize to a set distance. This could be used as a 

tool for assessing the homology model. However, it is hard to obtain the correct reference 

value for this measurement as no crystal structures of the modelled ai-ARs are available. 

Some reference values can be derived from the crystal structures of bovine rhodopsin and 

the Pz-AR. However, these differ considerably between the two structures and there is no 

clear similarity of either one with the results obtained from the MD simulation of our 

homology models.

The comparison of the different models showed that a good result was always obtained 

with the direct-no-gap approach which is the most commonly used approach in homology 

modeling. However, it should be kept in mind that the different methods presented in this 

chapter can lead to different structures with different properties and alternative models 

can be generated when the conventional approach produces models with an error.

Our results obtained with ProCheck, Verify3D and Errat show that the mutation model can 

lead to a model with increased scores. The initial generated homology models and the 

conformation of these models obtained after the MD simulation show the same trend. The  

analysis of the trajectories of the MD simulations give very limited results that can be 

used to assess the quality of the models

The comparison of our homology models to rhodopsin shows very similar positioning of 

the helices. Some structural differences such as the ionic lock do not always match, but 

this could be due to a structural difference between rhodopsin and the adrenoceptor. The 

comparison with the crystal structure of the pz-AR shows a difference in the positioning of 

helix T M -I and T M -III  which is likely to have on effect on further studies using these
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hom ology models w hen this model is to be used for docking o f antagonists. The  binding 

pocket in our hom ology models is sm aller w hen com paring them  to  the binding pocket of 

the  32-AR. MD simulations show a widening o f this binding pocket, but do not converge  

fully to the structure of the  P2-AR. This suggests th a t for generation homology models of 

the  Qi-ARs the pz-AR would m ake a better tem plate  then rhodopsin, the a r  and Pz-AR do 

not necessarily share an exact similar structure.

T h e  quality o f homology models of GPCRs is always questionable due to the  lim ited  

sim ilarity betw een the  GPCR itself and rhodopsin (less than 30 % ). However, taking  

different approaches and optimizing loops separately a reasonable result can be obtained. 

Further, conform ations are obtained by running a MD simulation and observing a stable  

conform ation. W hile w e have shown tha t there  are m ultiple ways of generating hom ology  

models, a straightforw ard approach appears to be the m ost successful. T h e  discovery of 

the  crystal structure of the P2 -AR will also contribute significantly to increase the quality of 

hom ology models of GPCRs and in particularly adrenoceptors.

The  initial hom ology models th a t have been generated in this research will be used for 

docking o f antagonists followed by MD simulations of the  complexes. This allows the  

identification of the  correct binding of the  antagonists to  the d ifferent adrenoceptor 

subtypes as the  MD simulation should optim ize the interaction betw een ligand and 

receptor. I t  also allows the study of conform ational changes of the receptors upon binding 

of an antagonist.
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4.1 Introduction
In this chapter we will describe and discuss the optimization of the studied ligands. From 

these optimized ligands, the proton affinities and the acid dissociation constant (p/G) can 

be determined. The proton affinities can be used to determine which nitrogen is 

protonated. The p/G is a physicochemical property which can influence the binding of the 

ligand, solubility and membrane permeation. As a ligand to interact with the adrenoceptor 

it needs to be protonated as it has shown to bind more strongly.^®^  ̂ Ionized compounds 

are also more soluble which is beneficial for drugs. However, ionized compounds are less 

able to penetrate membranes, which make it more difficult to reach the target receptor.

It  is important that we obtain minimum energy conformations and the correct protonation 

state for these ligands to accurately model the interaction with the different ai-AR  

subtypes. These optimized conformations can then be used to derive accurate charges. I f  

charges and protonation state are not correctly modelled, this will give rise to incorrect 

ligand-protein interactions and, therefore, result in less than optimal docking and 

molecular dynamics studies.

One of the most important steps in the present work was to perform an extensive 

conformational search followed by a thorough optimization of a large number of possible 

conformations. This step is time consuming and often simplified by limiting the number of 

conformations that are optimized. However, the correct minimum energy conformation 

should allow a better modelling of ligand-protein interactions and, therefore, this is an 

important step. We have chosen an approach that selects a number of low energy 

conformations based on structural flexibility and allows further refinement of each 

conformation. From the collection of optimized conformers the minimum energy 

conformation can be selected. This minimum energy structure can, then, be used for a 

proton affinity study where the preference of a nitrogen to be protonated can be 

calculated. Given that most ligands at physiological pH are protonated, knowledge of this 

state is crucial as it has an important effect on the interaction with the target protein.

A number of ligands are known to interact with the oi-adrenoceptors, both agonists and 

antagonists. The natural agonists for the adrenoceptor are adrenaline and noradrenaline. 

These are relatively small molecules and, therefore, allow a quick optimization. More 

complicated structures are observed for the antagonists. And several of them are known 

to interact with the Oi-ARs, some of them being in clinical use. For four of these
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compounds (prazosin, alfuzosin, doxazosin and terazosin) there are experimental p/Tg data 

availablê ®®̂  and therefore they make a good validation set for our methodology. To 

complete our dataset, more antagonists were taken from the literature/^^^

Similar work has been carried out previously in our group̂ ®̂  ̂ using a number of ligands, 

similar to the dataset used in the present work. However, for simulating the solvation 

effect of water the Onsager model was used, which gave poor results. Instead, in this 

work, a PCM solvent model is used. The advantage of the Onsager solvent model is that it 

works more quickly. However, it is also less accurate as shown for some compounds.^^®^

To maintain a high standard of accuracy in our research, we use a PCM model to mimic 

the aqueous environment.

The effect of the addition of one explicit water molecule in addition to the PCM model has 

additionally been studied for our ligand data set. A similar study, where one or two 

explicit water molecules have been added to an Onsager solvent model has been 

performed by Campillo et As B3LYP/6-31G* calculations are time consuming we 

limit our experiments by including one explicit water molecule in addition to the ligand in 

both gas phase and PCM.

4.2. Methodology
A selection of antagonists has been taken from the work of Bremner eta/Ŝ '̂> The agonists 

adrenaline and noradrenaline were added to give a total of 28 compounds (Table 4.1, Fig. 

4.1) covering a wide range of binding affinities for the different ai-ARs subtypes. Of these 

ligands, only six compounds, adrenaline, noradrenaline, prazosin, alfuzosin, doxazosin and 

terazosin have a known p/G v a l u e . T h e s e  compounds will serve as a validation set for 

the determination of computational p/G values.
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Table 4.1: Affinity constants for the different compounds in our data set for each Oi-AR subtype.
Ligand / r i  (nM) Q ia /Ti (nM) a iB /Ti (nM) O iD Reference

1 Adrenaline - - - -

2 Noradrenaline - - - -

3 Prazosin 0.2 0.25 0.32 137
4 Cyclazosin 12 0.13 3.2 138
5 Abanoquil 0.04 0.08 0.04 139
6 REC-15/2615 1.9 0.3 2.6 140
7 Alfuzosin 10 10 3.16 141
8 Doxazosin 3.16 1.0 4.0 141
9 Terazosin 6.3 2.0 2.5 141
1 0 BMY-7378 250 630 6.3 141
1 1 SNAP-8719 294 191 1.6 142
1 2 NAN-190 2.0 15 0.8 143
13 WAY-100635 144 186 63 143
14 RS-100,975 1.0 79 100 141
15 Uropidil 288 1320 1660 143
16 Phentolamine 1.6 7.9 7.9 144
17 SKF-104856 44 63 5.2 143
18 Discretamine 616 360 25 145
19 Corynanthine 142 517 253 146
2 0 WB-4101 0.16 2.5 0.25 137
2 1 KMD-3213 0.04 20 2.0 139
2 2 Benzoxathian 0.2 4.0 0.4 147
23 RS-17053 0.6 16 16 141
24 JHT-601 0.4 1.2 1.2 141
25 Spiperone 7.9 0.5 13 148
26 Indoramin 4.0 40 160 141
27 SNAP-1069 16 200 790 141
28 A-131701 0.22 6.95 0.97 137
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Figure 4.1: Structures of the ligands in our dataset with a letter indication for the different 
nitrogens.
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These ligands were subdivided into six different groups based on their structural 

similarity. Structural groups used for this classification were the following: catechol; 

aminopyrimidine; phenylpiperazine; position of N atoms in an aliphatic chain; 

aminophenyl and piperidine (Fig. 4.2). Hence, a common scaffold was determined and 

can subsequently be used to derive the site of protonation for similar ligands. The ligand 

A-131701 (28 ) was not placed in any of the groups due to its structural difference form 

the other ligands.

(O.S.C) Group 6
Group 5

Figure 4.2: Overview of the different scaffolds of group 1 (1,2), group 2 (3-9), group 3 (10- 15), 
group 4 (16- 19), group 5 (20-24) and group 6 (25-27)

To evaluate the different conformations a random conformational search using a Monte 

Carlo method (Chapter 2.2.1.) was performed with Sybyl7.2^^ °̂  ̂ applying the minimisation 

method conjugate gradient, a maximum iterations set of 1000, a gradient of 0.0005, 

using the Tripos force-field and the Gasteiger-Huckel charges to sample different 

conformations of the ligands. This gives rise to 200-1500 different conformations for each 

compound. Each conformation was further optimised using Gaussian03^^^^  ̂with the AMI 

semi-empirical method. From each conformation the energy and the dihedral angles were 

extracted to determine unique conformations. Two different approaches were used, with 

the one selected based on the number of dihedral angles that could account for ligand 

flexibility. When the molecule had five or less rotatable dihedral angles, each pair of 

dihedrals was plotted against each other, which led to the formation of clusters. Each 

dihedral angle of the minimized structures produces either two, four, six or eight possible 

angles. From each cluster the lowest energy conformation was selected.
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With more than five dihedral angles accounting for flexibility in the ligand, the energy was 

plotted against one dihedral angle giving rise to several dusters of which the lowest 

energy conformation was selected. The selection of lowest energy conformations gave 

rise to a smaller set of 10-25 conformations for each compound.

Each of the selected A M I conformations was further optimised with Gaussian03 using the 

B3LYP hybrid method with the 6-31G * basis set. From the different optimized 

conformations the electronic energies were extracted and the conformation with the 

lowest energy was selected. To determine the physiological protonation state, each of the 

nitrogens of this ligand was individually protonated. Optimization of the neutral and the 

different protonated conformations was performed using B3LYP/6-31G* level of theory in 

gas phase and in the PCM solvent model.

Additionally, vibrational frequency calculations were performed at the B3LYP/6-31G* level, 

to characterise the stationary points as minima. The variation in zero-point energies (ZPE) 

and thermal corrections from zero degrees to 298K have been considered in the 

calculations. No scaling factor for the ZPE values has been taken into account.

An alternative strategy was pursued by adding one explicit water molecule*^^^  ̂ (Fig. 4 .3 )  

to the ligands interacting through hydrogen bonds. For the unprotonated state the 

hydrogen of the water molecule was orientated towards the nitrogen of the ligand. As an 

explicit water molecule has a different effect on the ligand than the PCM model, this 

should explore if it is possible to find a different minimum energy conformation and, 

hence, a more accurate p/G- I f  multiple nitrogens were present in the ligand, multiple 

calculations were performed each time, with the water molecule orientated towards a 

different nitrogen. For the protonated form, the oxygen of the water molecule was 

orientated towards the hydrogen that was responsible for the protonation of the nitrogen.

Figure 4.3: Positioning of the water molecule that was added for the unprotonated state (left) 
and the protonated state (right) of the ligand.
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4.3. Results

The results are subdivided into several sections describing firstly the conformational 

search followed by the determination of proton affinities in gaseous phase or using the 

PCM solvent model. Next is the study of the addition of explicit water molecules and their 

effect on the energy. The last section shows the use of minimum protonation energies of 

each ligand to derive p/G values.

4.3.1. Conformational search

An example of a compound with five or less dihedral angles rotated is prazosin (3). This 

compound has three dihedral angles which are mainly responsible for conformational 

changes (Fig. 4.4).

Dihedral 1

OMe Dihedral 3

OMe

Dihedral 2

Figure 4.4: Dihedral angles of prazosin that have 
the largest influence on different conformations

These three dihedral angles can be plotted against each other giving rise to three 

different plots (Fig. 4.5). Each plot contains 10-12 clusters representing different 

conformations. One conformation was chosen from each cluster based on energy. Using 

this approach, some conformations will be sampled twice in the different plots. For 

prazosin 20 unique low energy conformations were found which were then used for 

further optimization using B3LYP/6-31G* level of theory.
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Figure 4.5: Plot of tiie different dihedral angels 
of AMI optimized conformations of prazosin (3) 
showing dihedral one vs dihedral two (a), 
dihedral one vs dihedral three (b) and dihedral 
two vs three (c).

A different approach was taken when there were more than five dihedral angles to be 

rotated in the molecule. If  the approach of selecting a conformation from clusters formed 

by two dihedral angles would have been taken, it would result in a significant increase in 

the number of low energy conformations. If  each of these conformations needs to be 

optimized using B3LYP/6-31G* either considerable more computer power or time is 

needed and this is not feasible. Therefore, an alternative approach was taken by plotting 

each of the flexible dihedral angles against the AMI energy of the conformation. An 

example is the study of the conformational space of the compound SNAP-1069 (27) 

which has eight main dihedral angles (Fig. 4.6) accounting for flexibility.

Dih. 6 
Dih. 4 \  Dih. 8

Dih. 1 o  J
'N \  ^ D ih . 5 
H \

Dih. 3 Dih. 7
Dih. 2

Figure 4.6: Dihedral angles (Dih) of SNAP-1069 that have 
the largest influence on different conformations
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Each dihedral angle is plotted against the energy giving rise to two, four or eight different 

clusters (Fig. 4 .7). The lowest energy conformations can be sampled from each cluster. 

For SNAP-1059 18 low energy conformations were found which are used for further 

optimization using B3LYP/6-31G* level of theory.
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Figure 4.7: Plot of the AM I energy vs dihedral angles of A M I optimized conformationhs of (a) 
SNAP-1069 (2 8 ) showing dihedral one, (b) dihedral two, (c) dihedral three, (d) dihedral four, (e) 
dihedral five, (f) dihedral six, (g) dihedral seven and (h) dihedral eight.
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4.3.2. Determination of the proton affinities (PAs)

The proton affinity for each compound was calculated as the difference in energy 

between the neutral and protonated species. The natural agonists adrenaline (1) and 

noradrenaline (2) only have one nitrogen in the molecular structure making this the 

protonation site of the ligand. The PAs (Table 4.2) show a decrease in energy of ~9 kcal 

mol'^ for the 298 K thermally corrected structures compared to the 0 K structure. This 

observation is made for both the gas phase structures and the PCM solvent optimized 

structures. The difference between the gas phase optimizations and PCM optimizations at 

both OK and 298K is ~53 kcal mol'^ for adrenaline and ~57 kcal mol'^for noradrenaline.

Table 4.2: Proton affinities of the ligands in group 1 that share the following structure.

In Vacuo PCM
Ligand Nitrogen PA (0 K) 

(kcal mol'^)
PA (298 K) 
(kcal mol'^)

PA (0 K) 
(kcal mol'^)

PA (298 K) 
(kcal mol‘ )̂

1 Adrenaline N^ 241.460 232.452 294.153 285.410

2 Noradrenaline Na 236.386 227.517 293.547 284.490

The results in the second group (compounds 3 to 9) for the gas phase and the (PCM) 

solvent models at 0 K and 298 K show similar PA results for six out of seven compounds 

with the nitrogen Nc being favoured for protonation (Table 4.3). The difference with the 

second nitrogen favoured for protonation ranges from 5 to 15 kcal moi'^ with an average 

of 8 kcal mor^ difference in PA to the second favoured site for protonation. The smallest 

difference is observed for prazosin with a PA difference of ~5 kcal mol'^ for nitrogen Nc 

over NZ?. Alfuzosin (7) is the only compound in this group showing different protonation 

states for the gas phase and the PCM phase. There is a protonation preference for 

nitrogen Ne>in the gas phase with a difference of ~5 kcal mol'^ to nitrogen Nc and a 

preference for nitrogen Ncin the PCM phase with a difference of ~8 kcal mol \  The 

compounds in this group have consistent preference for protonation of nitrogen Ncin the 

PCM solvent phase. Considering that solvation effects are always present, we can assure 

that the PCM results would be the most accurate, and that we consider nitrogen Nc as the 

most likely atom to be protonated. The PAs show similar results when comparing the 0 K 

and 298 K structures with a decrease of ~8 kcal mol'^ in energy for the optimized 

structures in the gaseous phase and a decrease of ~9.5 kcal mol'^ for the PCM optimized 

structures. The difference between the gas phase optimizations and PCM optimizations at 

0 K is ~38.5 kcal mof^ and for 298K is ~37 kcal mol'\ It should be noted that the
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difference in energy is larger between the gaseous phase and PCM phase optimized 

structures than between the 0 K and 298 K optimized structures. Given the consistency of 

the results in this group there is a clear trend that the nitrogen Ncis the selected nitrogen 

for protonation when the ligand is in water.

Table 4.3: Proton affinities of the ligands in group 2 that share the following scaffold.
Na ....... .

In Vacuo PCM
Ligand Nitrogen PA (0 K) 

(kcal mol'^)
PA (298 K) 
(kcal mol'^)

PA (0 K) 
(kcal mol'^)

PA (298 K) 
(kcal mol'^)

3 Prazosin N^ 222.469 214.060 270.265 262.704
NZ? 243.707 236.572 285.860 279.347
Nc 255.563 247.284 292.424 284.190
Nd 242.683 234.559 279.994 270.742
Ne 230.405 222.357 270.233 262.769

4 Cyclazosin N^ 224.478 216.691 271.350 261.717
N^ 248.149 240.949 287.140 278.598
Nc 256.518 249.086 293.372 284.450
N£7' 247.398 239.826 281.055 270.209
Ne 234.646 227.064 268.566 257.652

5 Abanoquil N<3 226.873 218.266 275.196 265.278
Nc 261.089 253.601 295.961 286.278
Nd 249.045 241.329 284.717 274.285

6 REC-12/2615 Na 224.401 216.906 275.125 265.409
Nc 257.639 250.580 295.805 286.760
Nd 240.281 232.972 280.879 271.497
Ne 229.809 221.131 267.851 257.296

7 Alfuzosin Na 242.348 233.337 272.797 263.841
NZ? 253.210 244.899 285.778 275.863
Nc 259.609 250.370 292.897 283.574
Nĉ 240.401 230.232 276.492 265.827
Ne 264.739 255.979 270.279 261.386

8 Doxazosin N5 220.986 212.982 270,136 260.212
NZ? 241.922 235.143 285.573 276.800
Nc 253.238 245.850 292.106 282.901
Nd 240.063 232.391 279.256 269.623
Ne 214.491 207.571 259.571 251.264

9 Terazosin N^ 223.322 215.122 270.409 260.857
NZ? 244.894 237.520 286.000 275.500
Nc 255.960 247.951 292.509 283.207
No' 243.513 234.885 280.273 268.483
Ne 222.436 214.468 265.257 255.813
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There is an overall preference for nitrogen Ncto be protonated for all of the compounds 

in group 3 (compounds 10 to 15) when observing the PCM based models (Table 4.4).

The compounds NAN-190 (12) and RS-100,975 (14) show a preference for nitrogen N^ 

in the gas phase state. Compound WAY-100635 (13) shows a preference for nitrogen Nc 

in most cases except for the calculated gas phase at 298 K. For these compounds in the 

gas phase only a difference of less than 3 kcal mol'  ̂ is observed for favouring nitrogen Na 

over NZ?. In the PCM phase the difference for NAN-190 (12) is ~2 kcal mol'^ for nitrogen 

N^over Na making nitrogen NZ?the preferred site for protonation. For RS-100,975 (14) a 

difference of 10 kcal mol'^ is observed favouring nitrogen NZJOver N a  This means that 

solvent stabilizes the protonation of nitrogen NZ?. A different result is obtained for uropidil 

(15) which shows a preference for nitrogen NZ>in all calculations except in the PCM phase 

at 298 K where a preference is shown for nitrogen N<?. This difference is only 0.03 kcal 

mol'  ̂ and, therefore, both protonation states are likely to be present.

A lower energy for the 298 K structure is observed in comparison with the 0 K structure 

with a decrease of ~8.5 kcal mol'^ for the gas phase structures and a decrease of ~ 8  kcal 

mol'^ for the PCM structures. The energy difference between the gas phase and the PCM 

phase results in an increase of ~41 kcal moP  ̂ for the 0 K and 298 K structures.
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Table 4.4: Proton affinities of the ligands in group 3 that share the following structure.(> ^  r-Nâ  Nb-(CH2)n-^Nj
Nd

In Vacuo PCM
Ligand Nitrogen PA (0 K) 

(kcal mol'^)
PA (298 K) 
(kcal nnor^)

PA (0 K) 
(kcal mol'^)

PA (298 K) 
(kcal mol'^)

10 BMY-7378 Na 249.995 240.630 288.687 278.739
NZ? 252.369 244.520 289.460 279.813
Nc 199.264 192,131 246,072 239.813

11 SNAP-8719 N^ 236.618 238.179 280,565 271.229
NZ? 246.721 238.179 285.197 277.923
Nc 199.694 192,0159 246,502 240.781

12 NAN-190 N^ 251.097 242.523 288.769 281.538
NZ? 248.902 239,408 293.257 283.774
Hd 205.436 198,216 249.873 243.177

13 WAY-100635 Na 252.037 243.570 288.515 277.488
NZ7 252.914 242.145 291.298 280.208
Nc 221.316 213.84 263,116 253.703
Nô 236.563 228.221 280,802 271.215

14 RS-100,975 N<? 247.873 237.938 283,089 274.435
NZ? 246.789 236.465 293.074 283.924
Nc 193.337 189.165 247.358 241.374
Nd 192.761 185.989 246.329 238.110

15 Uropidil Ua 244.154 232.956 288.182 277.802
NZ? 245.650 236.086 288.621 277.775
Nc 245.647 236.068 268.193 258.735
Nd 213.702 207.286 251.832 246.325
Ne 215.971 209.393 255.647 247.701
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The next set of compounds is presented in group 4 and they show a consistent 

preference of nitrogen N ^to be protonated in both the gaseous phase and in the PCM 

solvent model. SKF-104856 (17) and discretamine (18) have only one nitrogen which can 

be protonated and phentolamine (14) and corynanthine (19) have multiple nitrogens but 

a difference of 19-20 kcal mol'^ is oberserved for nitrogen N^over making nitrogen NZ? 

most stable for protonation. The PAs show a decrease of ~9 kcal mol'^ in energy for the 

298 K systems with for the PCM compared to the 0 K optimized systems. The difference is 

observed for gas phase and PCM phase optimized structures. The difference between the 

gas phase optimizations and PCM optimizations is ~46 kcal mol'^ for both 0 K and 298 K 

optimizations. Despite the limited number of compounds in this group and only two of 

them having multiple nitrogens, the large energy difference clearly indicates that nitrogen 

NZ? is the one to be protonated.

N -COn
V -N b

In Vacuo PCM
Ligand Nitrogen PA (0 K) 

(kcal mor^)
PA (298 K) 
(kcal mol'^)

PA (0 K) 
(kcal mol'^)

PA (298 K) 
(kcal mol'^)

16 232.998 224.508 277.289 267,282
Phentolamine 251.400 243.819 297.845 289,646

Nc 226.855 218.379 275.349 266,484
17 SKF-104856 NZ? 241,628 231,907 290,342 280,446
18 Discretamine NZ? 247.875 238,342 292,057 281,995
19 Corynanthine 220.995 212,018 265,580 256.866

NZ? 249,115 239,970 294,331 285.864

- 119 -



Chapter 4: Liaand ODtimization

The ligands in group 5 (compounds 20-24) show consistent results at 0 K or 298 K either 

in gas phase or in the PCM solvent model with all compounds showing a preference for 

nitrogen Naas the choice for protonation (Table 4.6). WB-4101 (20), Benzoxathian (22) 

and JHT-601 (24) only have one nitrogen which can be protonated. KMD-3213 (21) 

shows a difference of ~ 7 kcal mol-1 favouring nitrogen N<?over Not RS-17053 (23) 

shows a difference of ~28 kcal mol"  ̂favouring nitrogen Naover NZ?, making this site the 

favourable for protonation. The PAs exhibit similar results when comparing the 0 K and 

298 K results with a decrease of ~10 kcal mol'^ in energy for the gas phase models and a 

decrease of ~11.5 kcal mol'^ for the PCM optimized structures. The difference between 

the gas phase optimizations and PCM optimizations is ~42 kcal mol'^ for the 0 K 

optimizations and ~40 kcal mol'^ for the 298K optimizations. Given the difference of 

energy with other protonated nitrogens, there is a clear indication that the nitrogen Ncis 

preferred for protonation when the ligand in water.

Table 4.6: Proton affinities of the ligands in group 5 that share the following scaffold.

(
-  Na -  (Ar) C J

(O.S.C)

In Vacuo PCM
Ligand Nitrogen PA (0 K) 

(kcal mol'^)
PA (298 K) 
(kcal mor^)

PA (0 K) 
(kcal mor^)

PA (298 K) 
(kcal mol'^)

20 WB-4101 Na 250.263 240.258 290.796 278.861
21 KMD-3213 Na 252.085 241.291 291.709 281.651

Nb 226.458 217.626 268.800 260.857
Nc 234.746 223.785 283.150 274.548

22 Benzoxathian Na 247.342 237.515 290.045 278.808
23 RS-17053 Na 258.415 246.965 296.308 283.921

NZ? 220.614 209.703 265.945 255.771
24 JHT-601 Na 248.951 239.922 287.727 275.692
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The ligands in the group 6 (compounds 25-27) show consistent results at 0 K or 298 K in 

both the gas phase and PCM solvent model (Table 4.7). The difference in PA between 

nitrogen Ncover other nitrogens ranges from 13 to 24 kcal mol'  ̂ resulting in nitrogen Nc 

being selected for protonation. Despite there only being a few ligands in this group this is 

a consistent result.

When comparing the 0 K and 298 K structures with a decrease of ~8.5 kcal mol'^ in 

energy for the gas phase models and a decrease of ~10.5 kcal mol'  ̂for the PCM 

optimized structures. The difference between the gas phase optimizations and PCM 

optimizations is ~41 kcal mol'^ for both the 0 K optimizations and ~39 kcal mol'^ for the 

298 K optimizations. Given the difference in PA, nitrogen Nc over other nitrogens and the 

consistency of the results in this group there is a clear trend that nitrogen Ncis the 

selected for protonation when the ligand is in a hydrophilic solvent environment.

Table 4.7: Proton affinities of the ligands in group 6 that share the following structure.

' X
- \  Nd 

Nc(Ar)

In Vacuo PCM
Ligand Nitrogen PA (0 K) 

(kcal mol'^)
PA (298 K) 
(kcal mol'^)

PA (0 K) 
(kcal mor^)

PA (298 K) 
(kcal mol'^)

25 Spiperone N<3 218.103 209.634 264.1829 254.838
N^ 237.021 226.811 282.262 271.806
Nc 256.006 245.402 295.970 284.107

26 Indoramin NZ> 226.712 221.899 269.901 258.482
Nc 246.319 238.07 293.399 282.711
Nd 233.925 225.921 267.821 256.155

27 SNAP-1069 Nb 224.348 214.604 267.241 257.232
Nc 259.298 250.037 297.398 287.106

The structure of A-131701 (28) shares little similarity with any other of the compounds in 

our set of ligands. When looking at the results of of A-131701 (Table 4.8), a preference 

for protonation is shown in nitrogen N^with a difference of ~8 kcal mol-1 over Noland 

more than 34 kcal mol'^ over NZ?and Ncin the PCM phase. Simitar results are obtained for 

all calculations. A decrease of ~9 kcal moP̂  from 0 K to 298 K and a decrease of ~42 kcal 

mol'^ from gas phase to the PCM models is in agreement with results obtained for other 

ligands in this dataset.
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Table 4.8: Proton affinities of compound 28.

H V n c H  ^

H

In Vacuo PCM
Ligand Nitrogen PA (0 K) 

(kcal mol'^)
PA (298 K) 
(kcal mol'^)

PA (0 K) 
(kcal mol'^)

PA (298 K) 
(kcal mol'^)

28 A-131701 255.920 246.610 292.967 278.554
211.770 203.449 253.975 244.491

Nc 190.463 183.243 237.840 229.634
Nd 227.025 219.492 280.990 270.205

The ligands that have been used in our dataset have different structures. When observing 

the PAs in each group of ligands, we were able, to identify which nitrogen is most likely to 

be protonated, with the exemption of uropidil (15) which shows a small difference in PA 

when comparing two protonation states and therefore both protonation states could 

occur. The structural difference of the compounds does not allow the comparison of 

protonation states of all the ligands and, therefore, no general rule can be formulated for 

determining the favoured protonation site in all ligands. However, our results show that 

there is clear indication that in structurally similar ligands, the same nitrogen is preferred 

for protonation. Therefore, the assumption can be made that ligands which are grouped 

according to their similarity in structure, as described in this chapter, have the same 

preferred nitrogen for protonation. This can be used when modelling a serie of similar 

compounds, as only for a limited number the protonation state needs to be determined, 

which, when similar results are obtained, can be applied to all similar compounds.

4.3.3. Addition of water

A different approach to the calculation of PA has been taken by introducing one explicit 

molecule of water properly orientated, interacting with a selection of molecules from our 

set, and performing calculations at B3LYP/6-31G* level in gas phase and with the PCM 

solvation model. The addition of this water molecule was performed to investigate if 

explicit water molecules can influence the PA values. Water molecules can form H-bonds 

with the nitrogen or hydrogen attached to the nitrogen when protonated and, therefore, 

could change the PA of the ligand. The results obtained for PAs are shown in table 5.9. In 

general, very good agreement is found between the results with an explicit water 

molecule and without it, and in all cases (except for compound 13), the same nitrogen is 

preferred to be protonated. The results obtained with the PCM solvation model and the
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explicit water molecule show, as expected, larger PAs than in the gas phase but, in 

general, very similar to the PAs obtained without the water of molecule and the PCM 

solvation model.

The decrease in energy when correcting from 0 K to 298 K is ~9 kcal mol'  ̂ in the gas 

phase and the PCM models. The difference between the gas phase and the PCM model is 

an average of ~40 kcal mol'  ̂ for the 0 K models and ~31 kcal mol'  ̂ for the 298 K models. 

This is in agreement with the optimizations without the use of an explicit water molecule.

Table 4.9; Proton affinities derived from the B3LYP/6-31G* calculations using the inclusion of an 
explicit water molecule ___________________________________________________

In Vacuo + explicit 

water molecule

PCM + explicit water 

molecule

Ligand Nitrogen PA (0 K) PA (298 K) PA (0 K) PA (298 K)
(kcal mor )̂ (kcal mof )̂ (kcal moP̂ ) (kcal mol'̂ )

1 Adrenaline Na 248.079 241.907 294.823 289.007
2 Noradrenaline Na 244.395 237.786 294.409 288.230
9 Terazosin Na 234.640 226.439 279.736 273.159

NZj 252.827 245.029 290.216 280.686
Nc 260.036 252.864 294.969 288.170
Hd 253.356 245.755 285.604 275.113
Ne 236.443 228.122 273.344 267.680

13 WAY-100635 N<3 268.789 255.463 291.164 282.102
NZ? 259.571 251.228 293.452 284.103
Nc 233.658 225.224 271.087 263.172
Nd 245.630 238.044 286.387 277.143

16 Phentolamine Na 248.626 236.940 285.084 274.589
NZj 259.545 253.383 299.673 294.325
Nc 227.768 222.055 279.197 271.229

17 SKF-104856 NZ? 251.315 242.978 293.426 285.922
18 Discretamine Nb 256.196 247.716 294.925 286.954
23 RS-17053 Na 262.237 253.710 297.570 285.655

Nb 231.710 220.573 275.425 265.584
24 JHT-601 Na 256.197 247.710 293.488 285.360
25 Spiperone Na 229.988 221.595 269.097 261.147

NZ? 247.202 239.017 286.626 278.063
Nc 261.242 250.664 296.462 285.547

As mentioned, the addition of a water molecule does not change the preferred nitrogen 

for protonation and this comparison has been summarized in table 4.10. The proton 

affinity values itself appear to be higher for the ligands with the explicit water molecule. 

However, there is not a fixed amount of energy that can be added to the ligand-water 

complex suggesting that the water molecule does have an effect on the conformation of 

the ligand. Our work shows that the influence of a water molecule does not yield a
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different protonation state of the ligand and, therefore, the PCM is as reliable for 

determining which nitrogen is most likely to be protonated.

Table 4.10: Comparison between the PCM model and the water + PCM model (combo) (298 K)
Ligand no. Name Protonated

nitrogen
(PCM)

PA PCM 
(kcal mol'^)

Protonated
nitrogen
(combo)

PA combo 
(kcal mol'^)

1 Adrenaline N.5 285.410 Na 289,007
2 Noradrenaline N<5 284,490 288,230
9 Terazosin Nc 283.207 Nc 288,170
13 WAY-100635 Nb 280.208 Nc 284.103
16 Phentolamine NZ? 289.646 Nc 294.325
17 SKF-104856 Na 280,446 N^ 285.922
18 Discretamine N^ 281.995 Na 286.954
23 RS-17053 Na 283,921 Nc 285.655
24 JHT-601 N^ 275,692 Nc 285.360
25 Spiperone Nc 284,107 Nc 285.547

4.3.4. Determination of the p/G of the ligands studied

The acidity of the ligands, and therefore their p/G, is critical in the ligand-receptor 

interaction. However, the experimental determination of the p/G is not always possible 

and there are computational alternatives to determine this parameter. To validate our 

prediction of the p/G we have selected several compounds for which an experimental pA'̂  

had been previously determined (Table 4.11). These compounds include adrenaline and 

noradrenaline and four compounds which are currently commercially available as 

antagonists for the oi-adrenoceptor. Applying the thermodynamic scheme in chapter 

2.2.8. and using the energies obtained at 298 K for the different states (neutral, 

protonated, gas, PCM) the p/G has been calculated. The results in table 4.11 and figure 

4.5 show both the computed and experimental p/G values and the correlation between 

them. In general, the computed values are slightly higher than the experimental ones. 

Prazosin (3) shows the largest difference between experimental p/G and the computed 

p/G. When excluding this compound from our validation set, a noticeable increase in the 

correlation coefficient (R )̂ was be observed (Fig. 4.5).

One limitation of this validation set is that the range of p/G values covered by the six 

compounds is limited. This is because these compounds are commercially in use for 

treatment of BPH and, therefore, have p/G values within a favourable range to provide 

physicochemical properties that allow the ligand to be distributed and still allow the 

interaction with the Oia-ARs in the prostate. Therefore, care should be taken with 

compounds that have p/G values outside the range that is covered in our validation set.
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Our results clearly indicate that acceptable values of p/G are obtained using this 

theoretical method.

Table 4.11: Overview of the experimental^^ '̂ and computationa p/G values.
Experimental p/G Computational p/G

1 Adrenaline 8.59 9.70
2 Noradrenaline 8.58 9.03
3 Prazosin 7.0 8.81
7 Alfuzosin 8.1 8.36
8 Doxazosin 6.9 7.86
9 Terazosin 7.1 8.09
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Figure 4.5: The correlation plot for all six compounds shown in the left. The correlation plot 
for all compounds except Prazosin (3) is show in the right. For each plot, a trendline is added 
with the correlation coefficient (R )̂.

For all of the compounds in our dataset we have determined the p/G value using the free 

energies of the neutral and protonated conformations. These results are presented in 

table 4.12 which show a considerable range of p/G values. This range exceeds that of the 

p/G values used in our validation set, but these values provide a good indication of the 

acid dissociation constant. The higher the '()Ka, the more acid and they will be easily 

protonated. Most compounds show a pA'a ranging from 7 to 9 and, therefore, these 

compounds or the ones with higher p/cacan be treated as protonated at physiological pH. 

Five compounds BMY-7378 (10), uropidil (15), WB-4101 (20), benzoxathian (22), JHT- 

601 (24) and A-131701 (28) have a lower p/G- However, these compounds are still 

potent against the ai-ARs meaning that their low pKa does not limit their ability to 

interact with their target. Considering that the natural agonist and four ligands which are 

in clinical use have a p/G ranging from 7 to 8.6, it is likely that other properties, such as
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solubility and mennbrane penetration, require optimization of p/Gto be effective in clinical 

use.

Table 4.12: Predicted p/G values for the compounds in our dataset using computational methods.

Compound
no.

Preferred nitrogen for protonation 
(N p )

Name Predicted
p/G

Proton 
affinity 
(kcal mol'^)

1
2 OH

O H ^

Adrenaline
Noradraline

9.70
9.03

285.410
284.490

3
4
5
6
7
8 
9

Prazosin
Cyclazosin
Abanoquil

REC-15/2615
Alfuzosin
Doxazosin
Terazosin

8.81
9.00
10.34
10.69
8.36
7.86
8.09

284.190
284.450
286.278
286.760
283.574
282.901
283.207

10
11
12
13
14
15

,---- * y ^  y— N

\  /  ^  N p -(C H 2 )„ ^ N  ' ^ N

(10-14)
/ ------\  \  ^

^  __ ^ N p -(C H 2 )„^ N  ' ^ N

~  (15)

BMY-7378
SNAP-8719

NAN-190
WAY-100635
RS-100,975

Uropidil

5.60 
4.21 
8.50 
5.89
8.61 
4.11

279.813
277.923 
283.774 
280.208
283.924 
277.802

16
17
18 
19

N ^On
) - N p

N ^ C O n

Phentolamine
SKF-104856
Discretamine
Corynanthine

12.81
6.06
7.20
10.04

289.646
280.446
281.995
285.864

20
21
22
23
24

O  ̂
^(C H 2)„,N p-(A r)C ^

WB-4101
KMD-3213

Benzoxathian
RS-17053
JHT-601

4.90
6.95
4.86
8.61
2.58

278.861
281.651
278.808
283.921
275.692

25
26 
27

X N-(Ar)
N '---- '

Spiperone
Indoramin
SNAP-1069

8.75
7.72
10.95

284.107
282.711
287.106

28 A-131701 4.67 278.554

The results in table 4.13 show that for the three compounds which have the p/G 

determined with all three methods, there is little correlation with the p/C obtained with 

explicit water molecules and the experimental or the PCM p/G values. When comparing 

the explicit water p/G values with the experimental ones there is a large difference 

between the two sets of values. Comparing the explicit water p/G values with the PCM
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values there are three trends that are visible. The first observation is that the p/G 

calculated with an explicit water molecule shows p/C values that are not realistic (negative 

value) for terazosin (9) and phentolamine (18). The second observation is that the p/G 

values obtained with calculations including the explicit water molecule are larger than 

those obtained using the PCM model. The last observation is that the range of p/G values 

calculated with the combined PCM-explicit water molecule is limited. This is clearly 

illustrated by JHT-601 (24) which produces a value of 2.58 for the PCM model and 9.67 

for the combined PCM-water molecule approach.

One explanation for this difference between the PCM models and the models which 

include an explicit water molecule could be that a different conformation of the ligand is 

obtained due to the inclusion of that explicit water molecule. This could lead to a larger 

difference in the solvent-exposed surface of the protonated chemical group and, 

therefore, give a change in the electrostatic contribution to the hydration free energy. It is 

difficult to exactly show these contributions, but if one water molecule can change the 

conformation of the ligand, it is likely that multiple water molecules( '̂*^  ̂ need to be added 

to obtain the correct conformation of the ligand.

Table 4.13: p/G values of the calculations with an explicit water molecule as compared to 
experimental values and the computational values obtained with an implicit solvent model PCM

Ligand p/G (experimental) p/G (PCM) p/G (explicit water)
1 Adrenaline 8.59 9.70 12.34
2 Noradrenaline 8.58 9.03 11.77
9 Terazosin 7.1 8.09 -15.37
13 WAY-100635 - 5.89 8.74
16 Phentolamine - 12.81 -22.77
17 SKF-104856 - 6.06 10.07
18 Discretamine - 7.20 10.83
23 RS-17053 - 8.61 9.88
24 JHT-601 - 2.58 9.67
25 Spiperone - 8.75 9.80
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A note can be made on the calculation of the In this chapter a complex model has 

been used which could be simplified. When correlating the PA and p/G values, a linear 

relation can be observed (Fig. 4.6) and the p/^can be determined using Eq. 4.1:

292
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PA= 1.363 p /C +272.18
(r^-1)

Com putational pKa

Fig 4.6: Correlation between computed PA and pA'̂ .

pKa = -  (Eq. 4.1)
1.363

The PApcM is the largest proton affinity obtained from the calculations in the PCM solvent 

model and means that gas phase calculations are not neccesary to obtain the p/G. For the 

determination of PAs, solvent based calculations are preferred as solvent can influence 

the preferred protonation site, as shown in our calculations. The number -272.18 and

1.363 are not randomly choosen, but are actually used in our calculations. The value - 

272.18 represents the free energy assiociated with . This value can be determined

substracting the which is calculated to be -6.28 kcal mol'^ from AG° { H ^ ) which is

experimentally determined to be 265.98 kcal m ol'\ The value 1.363 is the result of RT 

In(lO) where R is the universal gas constant and the T  = 298 K.

4.4. Conclusions
Methods for determining the proton affinity and p/G have been around for some time and 

our results confirm the applicability of these methods. Similar work has been carried out 

previously by our group̂ '̂̂ '®®̂  and now we find improved results for the proton affinitieŝ ®"*̂
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but different results for the p/G values/^^' We have made an extensive conformational 

search and optimization to find the minimum energy conformation to be more stable 

(lower energy) minimum.

The determination of the proton affinity shows in several cases different results when 

optimizing in gas phase or using the PCM solvent model. Due to the fact that ligands, 

when interacting with a receptor are normally not in the gas phase but in an aquous 

environment, the determination of the proton affinity is to be considered more reliable 

when using the PCM solvent model. The proton affinities obtained at 0 K and 298 K gives 

different values, but show similar favoured protonation states.

Lower protonation energies were obtained for the models at 298 K compared to these at 

0 K, with a decrease of ~8-10 kcal mol"  ̂ for the gas phase calculations and a decrease of 

~8-12 kcal mol'^ for the PCM ones. In addition, an increase in energy of the PCM models 

was observed compared to the gas phase models with the increase being ~41-46 kcal 

mol'^ for both the 0 K and 298 K structures.

The preferred nitrogen for protonation in each ligand according to the proton affinities 

differs in each group of compounds and therefore is is difficult to derive a general rule to 

determine which nitrogen in all ligands will be protonated. Within one group, consistent 

results for a preferred nitrogen for protonation were observed. This suggests that when a 

larger group of structurally similar ligands needs to be studied, the site for protonation of 

these molecules can be determined by examining only a small number of these, and then 

select this nitrogen for protonation for all ligands within the group.

The protonation of ligands that target the arARs is commonly accepted as is shown by 

different pharmacophore models (Chapter 1.4.1.)^^ '̂^^  ̂ and an MD study.̂ ®̂  ̂To what 

extent these ligands protonate can be determined using the p/G which we have 

evaluiated.

The addition of an explicit water molecule to our calculations did not improve the 

accuracy of either PA or p/G. The same nitrogen for protonation was preferred with or 

without the explicit water molecule, although different proton affinity values were 

obtained. However, when the the p/G was determined, different values were obtained and 

the addition of one explicit water molecule gave results that were less well correlated to
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experimental pA'a. Because PA and pÂa are correlated, this should not be observed and 

this shows that the PCM model provides more reliable results.

The addition of the water molecule does not provide a consistent change in energy on the 

ligand, because the proton affinities were not consistently higher or lower. This leads to 

the conclusion that the addition of one single explicit water molecule does not improve 

the optimization of the conformation and the energies associated with this conformation. 

Further studies to improve this situation could be performed by adding multiple water 

molecules.

The determination of p/G values can be performed using the scheme presented in the 

methodology chapter of this thesis. The results that were obtained showed good 

correlation with experimental values despite having reference compounds which were 

limited in number and in p/G range. The accurate prediction of the pA'̂  confirms that we 

have found good minima for the ligands. Using these minima it is easy to derive accurate 

charges for each compound and hence, use these ligands in docking and molecular 

dynamics simulation studies when complexed with the adrenoceptor models.



Chapter V

Molecular Dynamics: Simulation Of Antagonist 

Bound ai-Adrenoceptor Antagonist Bound 

Complexes In A Phospholipid Membrane Mimic.

What happens if a big asteroid hits Earth? Judging from 

realistic simulations involving a sledge hammer 

and a common laboratory frog, we can assume 

it will be pretty bad.

Dave Barry (1947 - )
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5.1. Introduction
The interaction between a number of ligands and the three adrenoceptor subtypes Qia- 

AR, Qib-AR and Qid-AR will be described and discussed in this chapter. Understanding of 

the interaction between the antagonist and the receptor is key to the development of new 

drugs in a structure based drug design approach.

The homology models as developed in chapter 3 provide a starting point for docking 

studies for the ligands which have been optimized in chapter 4. The homology models 

that were generated using the direct method and a set of 12 antagonists based on their 

binding affinity were selected. The docking of the ligands into each of the adrenoceptor 

subtypes is not a straightforward process as different ligand-protein complexes can be 

obtained. Therefore, a careful selection of complexes needs to be made.

The docking of multiple conformations in the homology models allows the generation of 

different ligand-protein complexes. Analysis based on the Autodock energy score, a visual 

inspection of the complex and a plot which shows the interaction between the antagonist 

and the adrenoceptor subtype allows the selection of a complex. This complex can be 

further optimized using a MD simulation. If  analysis of the trajectory highlights unwanted 

effects such as the destabilisation of the protein in the form of helices drifting away far 

from its starting structure or the ligand being forced out of the protein, this shows that 

the initial complex is not correct and needs optimization. A different starting antagonist- 

AR complex was then selected and optimized in an MD simulation.

Several research projects have been undertaken before by our group (Kinsella et al^ '̂®^  ̂

and other groups such as Pedretti Leonardi et Evers etal "̂'̂  and Bautista et

to simulate the behaviour of a ligand-AR complex. However, most of these studies 

either use a limited time-scale of one or two ns for the IMD simulation or model only the 

interaction of a ligand with one subtype or use very few ligands, which limits their ability 

to derive common features of interaction.

In this research, longer MD simulations of 5 ns have been introduced for the three 

different Oi-AR subtypes and twelve antagonists which are structurally different and cover 

a range of binding affinities for each subtype, have been used.
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5.2. Methodology
As several homology nnodels have been generated, a selection from these models was 

made. Two approaches for selecting the model can be taken; selection of the best model 

for each of the adrenoceptor subtype or selections of a similar model for each subtype of 

the adrenoceptor. The second approach was taken as the direct-no-gap model showed 

good results when analyses were performed and never showed a significant error when 

compared to some of the other models.

We have a dataset containing 28 optimized ligands. Due to limitations of time and 

computer power a selection form this dataset had to be made. The criteria that were used 

for the selection of the ligands were, firstly, the ligands should cover a range of binding 

affinities for each of the adrenoceptor (Table 5.1) and secondly, there should be 

structural diversity among the selected ligands (Fig. 5.1).

The range of binding affinities should allow the study of the effect of weak and strong 

binders in terms of interaction with the receptor. The structural diversity of the ligands 

should allow the study of how similar or different antagonists interact with the 

adrenoceptor. Also this could produce different conformations of the adrenoceptor as it is 

not uncommon for a receptor to adopt a different binding pocket conformation when a 

different ligand is used.̂ ®̂ ^

Table 5.1: Overview of the ligands in the dataset with activity data for the different adrenoceptor 
subtypes^_______________________________ _____________ _____________ _____________

Ligand K\  (nM ) OiA K\  (nM ) Qib K\  (nM ) Qid Reference
4 Cyclazosin 12 0.13 3.2 137
7 Alfuzosin 10 10 3.16 141
10 BMY-7378 250 630 6.3 141
11 SNAP-8719 294 191 1.6 142
12 NAN-190 2.0 15 0.8 143
13 WAY-100635 144 186 63 143
14 RS-100,975 1.0 79 100 141
15 Uropidil 288 1320 1660 143
18 Discretamine 616 360 25 145
19 Corynanthine 142 517 253 146
21 KMD-3213 0.04 20 2.0 139
27 SNAP-1069 16 200 790 141
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Figure 5.1: Antagonists that were docked in the three Oi-ARs and subjected to MD simulation.

Docking was performed using Autodock.^^^^ A centre for the grid procedure was choosen 

by selecting the middle o f several residues (Table 5.2) that are known to interact with 

adrenoceptor antagonists.^^^'^®^ Despite Autodock making use of ligand flexibility during 

the docking procedure there is still an interest in docking different conformations into the 

adrenoceptor which generate different ligand-protein complexes. Different conformations 

are taken from our ligand optimisation scheme. These ligands were subsequently similarly 

protonated and charges were calculated and added. ESP-charges were taken from the 

B3LYP/6-31G* optimized ligands and subsequently copied to each of the different 

conformations.

Table 5.2: Residues used as center for docking

Qia-AR Qib"AR Oid"AR
Asp̂ “ Asp'̂ ^ Asp̂ ®̂
Ilê «̂ Val̂ ^̂ Ile'̂«
Ser̂ ®® Servos Ser̂ '«
Ser̂ ^̂ Ser̂ '̂ Ser'®'Trp285 Trp307 Trp36i
Phe288 Phê °̂ Phê ®̂
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Each conformation was docl<ed and ten different possible ligand-receptor complexes were 

generated. For each initial conformation, the lowest energy conformer was selected 

leading to the same number of ligand-protein complexes as we had conformations. 

Analysis was further performed using manual inspection and by dermining the hydrogen 

bonds and hydrophobic interactions using the program LigPLot.^^®^ Manual inspection was 

used to observe if the ligand was positioned in the binding pocket. LigPlot was used to 

provide a schematic overview of the non-bonded interactions and hydrogen bonds 

between the ligand and the receptor. Based on those three binding parameters: binding 

energy, manual inspection and interaction with amino acids, a plausible ligand-protein 

complex was selected. I f  no plausible complex could be achieved, the ligand would be re

docked into the adrenoceptor but with the centre for autogrid randomly positioned in a 

different place in the binding pocket.

The ligand-protein complex was subjected to an MD simulation. To simulate the 

phospholipid bilayer in which the adrenoceptor is normally located a solvent mimic was 

used. The homology models were positioned in a multilayer of solvent consisting of water, 

chloroform and water. In this mimic the chloroform represents the lipophilic area of the 

phospholipid bilayer and the water represents the extra- and intra-cellular space. The 

thickness of the chloroform layer was based on the transmembrane helices which should 

be completely in the chloroform layer with the intra- and extracellular loops surrounded 

by water (Fig. 5 .2). A distance of 15 A was kept around the protein to be occupied with 

solvent to prevent interaction of the receptor with its periodic images during the MD 

simulation. The molecular dynamics simulations were performed using the Particle Mesh 

Ewald Molecular Dynamics (PMEMD) module of AMBER MD package using

periodic boundary conditions. The forcefield that was chosen was the ff99SB which is a 

modification of the original ff99 forcefield with adjustment to prevent the overstabilisation 

of helices.^^ '̂*  ̂The structure was minimized using steepest descent for 10000 steps, 

followed by a minimisation using conjugate gradient with a maximum of 50000 steps. The 

system was heated over 20 ps to a temperature of 300 K at constant volume. The system 

was then equilibrated at constant pressure using 5 steps of 10 ps each with a restraint of 

20, 15, 10, 5 and 0 kcal mol'^ on the protein. I f  a stable energy has been reached, 

showing only fluctuation around a particular energy, the movement of the protein over 

time was simulated in a production run of 4 ns at constant pressure and a temperature of 

300K (Langlevian dynamics) for each of the models.
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Figure 5.2; The system for the MD simulation showing the Oia-AR complexed 
With alfuzosin surrounded by water (red) and chloroform (blue).

Analysis of the thermal stability of the complexes was performed by extracting the kinetic, 

potential and total energy from the MD simulation. Succesfull equilibration was 

established when these energies were stable over time. Analysis on the trajectory after 

equilibration was performed to observe the influence of the ligand on the structure of the 

homology model. This was achieved by measuring the helixes movement (RMSD) and 

observing the distances within two features of the adrenoceptors, the ionic lock and a salt 

bridge (Table 5 .3). To avoid confusion of which oxygen of the carboxyiate-group of the 

amino-acid interacts, the distances between the center carbon atoms of the carboyxiate- 

groups are measured.

Table 5.3: Residues involved in the (left) ionic lock and (right) salt bridge for the three different Oi- 
ARs.

Ionic lock

Qia-AR Asp^^^ Argi^'’ Glu'^'

Qib’ AR Asp'^' Arg'^' Glu'^'

Qid 'AR Asp^^^ Arg'^^ Glu^^^

Salt bridge

Qia-AR Asp °̂® Lys'°'

Qib-AR Asp^^^ Lys'''

Qid -AR Aspi'® Lys'«'
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To determine the interaction of the ligand with the protein, a snapshot was taken after 5 

ns of MD simulation followed by an energy minimization and analysis using the program 

LigPlot to determine hydrogen bonds or hydrophobic interactions.

The results of our docking/MD studies have been subdivided into four sections. First, the 

docking of the antagonists in each of the awARs is discussed. Second the MD simulation, 

third, the obtained structure after MD simulation and fourth the discussion of the ligands 

in each of the three binding pockets.

5.3. Docked structures
To analyze the docking of the ligand in the homology models, scoring tests have been 

performed on each complex using three functions: London dG, Affinity dG and Alpha HB. 

London dG estimates the free energy of binding. Affinity dG the enthalpic contribution to 

the free energy and Alpha HB is the contribution of both. A low energy score given by 

each scoring function represents a strong binding interaction. In addition, a ranking of the 

compounds according to their scores can be made. These scores and ranks were 

compared to the experimental binding affinities (/(Q to verify if the initial models are 

suitable for docking studies. Furthermore, as hydrogen bonds are commonly formed in 

protein-ligand interactions, they were determined to establish if all ligands form strong 

interactions with specific residues in the receptor.

5.3.1. aiA-Adrenoceptor

The scoring of the docked ligands in the Qia-AR homology models (Table 5.4) shows no 

correlation with their binding affinity (Table 5.5) when either the scores are compared to 

the binding affinities or when a comparison between the ranking of the binding affinities 

and ranking of the scores is made. Uropidil (15) shows scores which are different to the 

range covered by the other compounds and therefore should be regarded as wrong.

These results are expected as scoring functions are useful for differentiating between 

active and non-active compounds, but are known to lack accuracy when ranking a set of 

active compounds, as is the case in our dataset. The misscoring of uropidil (15) is likely 

due to an unfavourable interaction between the ligand and the protein.
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Table 5.4: Scoring and ranking using London dG, Affinity dG and Alpha HB for each compound 
docked in the homology model of Qia-AR._____________ _________________________________

Score Ranking

Ligand (nM)

London 
dG (kcal 
mor')

Affinity 
dG (kcal 
mol' )̂

Alpha 
HB (kcal 
mol'^) K, rank

London
dG

Affinity
dG

Alpha
HB

4 12 -14.45 -3.53 -103.80 5 2 1 3
7 10 -20.36 -2.34 -108.08 4 1 6 2

10 250 -10.98 -0.89 -90.37 9 9 7 7
11 294 -10.21 -0.67 -89.84 11 11 8 8
12 2 -11.73 -3.12 -90.50 3 7 4 6
13 144 -12.64 -3.28 -112.59 8 3 3 1
14 1.0 -11.46 0.19 -100.95 2 8 9 5
15 288 0.28 66.19 58.59 10 12 12 12
18 616 -11.85 -3.41 -82.29 12 6 2 10
19 142 -11.88 1.11 -75.45 7 5 10 11
21 0.04 -11.91 1.40 -103.70 1 4 11 4
27 16 -10.81 -2.90 -88.27 6 10 5 9

Table 5.5: Correlation (R^) for each scoring function and ranking with the experimental K, values 
for the docking in the homology model of Oia-AR._______________ __________________

Scoring method Correlation with score/rank Correlation (R )̂
London dG score 0.125

rank 0.182
Affinity dG score 0.048

rank 0.016
Alpha HB score 0.116

rank 0.298

When analyzing the formed H-bonds (Table 5.6), it can be seen that only Trp̂ ®̂  seems to 

be common to most of the interactions established with the different ligands, but only in 

four out of twelve complexes. In case of uropidil (15) and SNAP-1069 (27) two H-bonds 

are formed. Although uropidil has two H-bonds formed with the Qia-AR, it is a weak 

binder and therefore other interactions (e.g. hydrophobic) can be important as well for 

good binding to the qia-AR.

Table 5.6: Residues involved in the formation of h-bonds with Oia-AR antagonists.
Residue Ligand
Thr®® SNAP-1069 (27)
Arg'-’^ NAN-190 (12), RS-100,975 (14)
Ser'“ KMD-3213 (21)
Ser̂ ^̂ Alfuzosin (7), Uropidil (15)
Trp̂ ®̂ Uropidil (15), Discretamine (18), KMD-3213 (21), SNAP-1069 (27)
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Furthermore, H-bonding with Asp̂ °̂  is not observed, but is l<nown to play an important rol 

in activation. As shown in the homology modelling chapter, the crystal structure of the p2- 

AR indicates that the size of the binding pocket in our homology models is likely to be 

smaller than the size of the actual Qia-AR. Therefore, a tighter fit of the ligand in the 

binding site is expected. This shows that the binding between the antagonists and the 

Qia-AR is not optimal, but does provide a starting point for MD studies which leads to 

further optimization of the interactions in the ligand-protein complex.

5.3.2. QiB-Adrenoceptor

The scoring of the docked ligand in the Qib-AR homology models (Table 5.7) shows no 

correlation with their binding affinity (Table 5.8) when either the scores itself are 

compared or a ranking of the scores is compared. Examples of inaccurate scoring are 

cyclazosin (4 ) and BMY-7378 (10). Cyclazosin (4) is a strong binder, corretly predicted 

according to London dG and Alpha HB, but affinity dG predicts it as a weak binder. BMY- 

7378 (10) is a weak binder, correctly predicted by London dG and Alpha HB, but 

incorrectly according to Affinity dG.

Table 5.7: Scoring and ranking using London dG, Affinity dG and Alpha HB for each compound 
docked in the homology model of Oib-AR.______________ ___________________________________

Score Ranking

Ligand
K,
(nM)

London 
dG (kcal 
mor^)

Affinity 
dG (kcal 
mol'^)

Alpha 
HB (kcal 
mor') K, rank

London
dG

Affinity
dG

Alpha
HB

4 0.13 -13.88 -4.81 -117.14 1 1 9 3
7 10 -12.10 -3.71 -104.59 2 9 11 6

10 630 -11.68 -6.34 -90.90 11 10 5 10
11 191 -13.35 -7.29 -127.90 7 3 3 1
12 15 -12.67 -8.80 -117.83 3 7 1 2
13 186 -12.27 -5.72 -86.57 6 8 8 12
14 79 -13.20 -5.76 -113.82 5 4 7 4
15 1320 -11.59 -6.11 -93.35 12 11 6 8
18 360 -12.73 -4.66 -90.52 9 5 10 11
19 517 -12.72 -7.87 -104.52 10 6 2 7
21 20 -11.54 -1.86 -92.87 4 12 12 9
27 200 -13.44 -7.25 -109.66 8 2 4 5
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Table 5.8: Correlation (R^) for each scoring function and ranking with the experim ental K\ values 
for the docking in the homology model of Qib-AR._________________ _____________________

Scoring method Correlation with score/rank Correlation (R^)
London dG score 0.216

rank 0.053
Affinity dG score 0.047

rank 0.132
Alpha HB score 0.184

rank 0.200

Eight residues of the Qib-AR are shown to form H-bonds with the antagonists (Table 5.9). 

I^ost of these show only the formation of a hydrogen bond with one or two antagonists, 

suggesting that different poses have been obtained. The residue Ser̂ ®̂  is commonly 

involved in binding as it forms H-bonds with 5 antagonists, which suggests that this 

residue is important in binding of ligands to the Qib-AR.

Table 5.9: Residues involved in the formation of h-bonds with Oib-AR antagonists.
Residue Ligand
Val®" RS-100,975 (14)
Lys'^' Discretamine (18)
T y rie i RS-100,975 (14)
Ser̂ ®̂ BMY-7378 (10), SNAP-8719 (11), NAN-190 (12), RS-100,975 (14),

SNAP-1069 (27)
Ser̂ ®® RS-100,975 (14), Discretamine (18)
Trp̂ ®̂ Uropidil (15)
Phê ®® Cyclazosin (4 ), Afluzosin (7)
Lys'«^ WAY-100635 (13), SNAP-1069 (27)

Similar to our docking in the Qia-AR, binding to Cyŝ ®̂  is observed, meaning that a similar 

positioning of the ligands is obtained in both models.

5.3.3. aiD-Adrenoceptor

The scoring of the docked ligand in the aio-AR homology models (Table 5.10) shows no 

correlation with their binding affinity (Table 5.11). The obtained scores also are 

inconsistent with each other. For example, discretamine (18) is a medium binder, but is 

ranked strongest according to London dG, medium by Affinity dG and as a weak binder by 

Alpha HB. This limits the use of scoring functions for predicting binding affinity by using 

the homology model directly for docking studies.
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Table 5.10: Scoring and rani<ing using London dG, Affinity dG and Alpha HB for each compound 
docked in the homology model of aip-AR.______________ ____________________________________

Score Ranking

Ligand
K
(nM)

London 
dG (kcal 
mol'^)

Affinity 
dG (kcal 
mol'^)

Alpha 
HB (kcal 
mol'^) rank

London
dG

Affinity
dG

Alpha
HB

4 3.2 -12.43 -7.14 -144.22 5 6 4 1
7 3.16 -12.10 -3.97 -134.24 4 10 12 2

10 6.3 -12.18 -5.84 -111.47 6 8 8 8
11 1.6 -13.87 -9.34 -122.78 2 2 1 4
12 0.8 -12.10 -5.67 -113.24 1 11 9 6
13 63 -12.68 -9.29 -132.50 8 5 2 3
14 100 -12.79 -5.02 -84.51 9 4 10 12
15 1660 -12.14 -6.06 -116.50 12 9 7 5
18 25 -14.08 -6.10 -96.48 7 1 6 11
19 253 -11.85 -4.49 -108.21 10 12 11 10
21 2.0 -13.11 -6.83 -112.41 3 3 5 7
27 790 -12.32 -8.08 -108.43 11 7 3 9

Table 5.11: Correlation (R^) for each scoring function and ranking with the experimental / (  values 
for the docking in the homology model of aip-AR.________________ ___________________

Scoring method Correlation with score/rank Correlation (R )̂
London dG score 0.095

rank 0.074
Affinity dG score 0.000

rank 0.016
Alpha HB score 0.008

rank 0.010

The Qid-AR forms H-bonds via five residues (Table 5.12). Compared to the Qia-AR and 

qib-AR there is much more consistency in the number of antagonists that form H-bonds 

with a particular residue, suggesting that the ligands bind similarly in the qid-AR. Lyŝ ''̂  

forms H-bonds with three antagonists, Ser̂ ®̂  with three and Trp̂ ®® with seven. The results 

for docking in the Qiq-AR are much more consistent and possibly could lead to better or 

similar optimization during the MD simulation.

Table 5.12: Residues involved in the formation of h-bonds with aip-AR antagonists.
Residue Ligand
Cys®̂ Discretamine (18)
Lys'^' BMY-7378 (10), SNAP-8719 (11), NAN-190 (12)
Ser'^^ Alfuzosin (7)
Ser̂ '® WAY-100635 (13), RS-100,975 (14), RS-100,975 (15)
Trp268 Cyclazosin (4), SNAP-8719 (11), NAN-190 (12), WAY-100635 (13), 

Discretamine (18), KMD-3213 (21), SNAP-1069 (27)
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In  this m odel, similar to the Qia-AR  and Qib-AR, H-bonding with Asp^^  ̂ in the Qid -AR  is not 

observed. Furtherm ore Ser^®  ̂ shows only interactions with one antagonsist. T h e  residue 

Trp^®® interacts with seven antagonists which is m ore than for the Qia-AR  (Trp^^^ 4  

ligands) and the Qib-AR  (Trp^®^ 1 ligand). This could even suggest tha t the binding 

pockets o f the  Qia-AR and Qid -AR  are m ore similar com pared to the Qib-AR.

5.3.4. Binding modes in the ai-Adrenoceptor
Scoring the initial complexes can not be used for predicting binding affinity, but some 

inidication of how ligands bind can still be derived. Several residues in all three Oi-ARs are  

shown to be involved in binding which are

and These residues, except have been m entioned in

the literature and can be linked back to our theoretical binding pocket derived for 

agonists, but not for antagonists (chapter 1 .2 .5 .). This suggests tha t most residues tha t 

are involved in binding in agonists are also involved in binding o f antagonists. Residue 

AspA-io6/B-i25/D-i76 jg |^pQwn to be com m on in binding of ligands and the form ation of a H- 

bond is likely to be a key interaction of activation/inhibition o f the  oi-ARs. This is not 

observed in our docked structures. Still, several known interactions have been observed  

and furth er optim ization o f the binding betw een antagonist and Oi-AR is likely to  occur 

during MD simulations.

5.4. Molecular dynamics simulations

To m onitor the stability o f the protein-ligand com plex during the MD sim ulation, the  

RMSD o f the  helices as a function of tim e was m onitored. This gives an indication o f the  

stability of the  protein and can show conform ational changes associated with the  

dynamical optim ization o f the binding pocket of ligand-protein interactions. A fter 5 ns of 

MD sim ulation, a snapshot o f the  ligand-protein complex was taken and overlayed with  

the crystal structure o f 32-AR, the crystal structure of which was determ ined during this 

work, to determ ine similarity. This analysis was perform ed because the P2-AR is more  

closely related to the ai-A R s than is rhodopsin, and the final MD models would be 

expected to show a greater structural sim ilarity to tha t o f the Pz-AR than rhodopsin. 

Furtherm ore, distances within the ionic lock and salt bridge can be measured and plotted  

against tim e to m onitor changes in conform ation.
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5.4.1. QiA-Adrenoceptor

RMSD analysis of the helices (example in Fig. 5 .3) shows small changes (< 3  A) for the 

helices meaning that the complexed Qia-ARs have a stable conformation. Similar 

observations are made in all ligand-aiA-AR complexes. There is a change fo rT M -I where 

the upper part of the helix moves outwards of the centre of the protein. This is observed 

in most of the cases. In addition, the top part of T M -IV  and TM-V moves outward, while 

the bottom part stays fixed in its position. Helix T M -V III also moves which is likely to be 

an adjustment to the solvents as it is bordered between water and chloroform. The 

movement of TM -IV  and TM-V can be explained as a widening of the binding pocket 

which provides the ligand with a larger binding pocket. A similar observation can be made 

in the uncomplexed Qia-AR homology model. The movement of T M -I, TM -IV  and TM -V  

can be explained when it is aligned to the crystal structure of the pz-AR (Fig. 5 .4), since it 

occupies a similar position. However, there is no perfect fit and each ligand bound 

complex obtains a slightly different conformation after 5 ns of MD simulation which is 

known as a ligand-induced conformation. This suggests that homology models based on 

rhodopsin do converge to a conformation similar to the crystal of the Pz-AR, but small 

differences occur due to the influence of the ligand.

2 3 4 5 (nsj

b) Discretamine (18)
a) Alfuzosin (7)
Figure 5.3; RMSD helix movement of the Qia-AR complexed with (a) alfuzosin and (b) discretamine 
during a 5 ns MD simulation.
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Figure 5.4: Alignment of alfuzosin-aiA-AR complex (purple) after 5 ns of MD simulation with the 
crystal structure of 32-AR (yellow).

Looking at the ionic lock, the distance between Asp^^  ̂ and Arg^ '̂' appears to either stay 

stable or increase during the MD simulation (example in Fig. 5 .5). The starting distance is 

4 A, increases to 7, 8 or 9 A and then it then usually stabilizes, compared to 4 .84  A in the 

p2 -AR and ~4 .5  A in the Oia-AR homology model after MD. The distance between Asp^^  ̂

and Glû ®̂  increases over time for most of the MD simulations. I t  can be observed that the 

distance between Asp^^  ̂ and Arĝ "̂* changes to either 8 A to 10 A or more than 14 A. A 

change of more than 14 A suggests a change to a different conformation of the Oia-AR, 

compared to 14.8 A in the PrAR and ~ 9  A in the Qia-AR homology model after MD. The 

distance between Arĝ '̂̂  and Glu^®  ̂ either stays stable, increases or fluctates. When there 

is an increase in the distance, this change is from 6 A to either 8 A or more than 9 A, 
compared to 13.02 A in the P2 -AR and ~ 7  A in the Qia-AR homology model after MD.

Changes in the ionic lock occur in most of the simulations, but can not be linked to the 

strength of antagonists binding affinities. I t  can be observed that an increase in any of 

the distances within the ionic lock occurs in most cases. This means that a different 

conformation is obtained.
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c) WAY-100,635 (13) d) Uropidil (15)
Figure 5.5: Examples of behaviour of the ionic lock between Asp̂ ^̂ , Arĝ '̂* and Glû ^̂  in the Qia-AR 
for (a) cyclazosin, (b) discretamine, (c) WAY-100,635 and (d) uropidol, showing the different 
patterns of distances between the three residues that have been observed in the MD simulations.

The salt bridge between Asp̂ °̂  and Lyŝ °̂  shows four different types of behaviour during 

the MD sinnulation (Fig. 5.6). The distance can either stay stable (4 ), increase (7, 12 , 13, 

14, 18, 19 and 30 ), fluctuate (10  and 21 ) or decrease (11). There limited correlation 

between this behaviour and the binding affinity. For example, SNAP-8719 (11) can be 

regarded as a weak binder with a /C value of 294, and shows a decrease in the distance of 

the salt bridge.

The distance of the salt bridge after 5 ns appears to vary between 13 A and 18 A which 

except for SNAP-8719 (11) is an increase in the distance compared to the start of the MD 

simulation. Most compounds show an increase in the in the salt bridge distance, only 

three compounds having a salt bridge of less than 15 A, three compounds in the range of 

15-17 A and six compounds having a salt bridge longer than 17 A. This compares to a 

distance of 14.83 A in the crystal structure of the P2-AR and ~ 12 A in the uncomplexed 

homology model after MD simulation. These data suggest that a longer distance of the 

salt bridge could be linked to the antagonist inhibited state of the Qia-AR. However, the 

different patterns of behaviour of the salt-bridge between Asp̂ °̂  and Lyŝ °® can not be
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linked to any weak or strong binding antagonists. Furthermore, it could even be assumed 

that after binding of the ligand, the role of the salt bridge in stabilizing the Qia-AR plays a 

less significant role than in the unbound state as a ligand-induced conformation is 

obtained.
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c) KMD-3213 (21) SNAP-8719 (11)
Figure 5.6: Examples of behaviour of the salt bridge between Asp °̂  ̂and Lyŝ °̂  in the Qia-AR fo r . 
selection of compounds showing (a) stable, (b) increase, (c) fluctuation or (d) decrease in the 
distance between the residues Asp̂ °® and Lyŝ °̂ .

5.4.2. QiB-Adrenoceptor

The RMSD plots of the helices during the MD simulation (examples in Fig. 5.7) show 

stable proteins, with a change of less than 2 A observed for most complexes. Similar 

observations are made in most ligand-ais-AR complexes However, some helices such as 

the case in complexes with cyclazosin (4 ), alfuzosin (7 ) and SNAP-8719 (11) show a 

significant movement of one helix. In each case a different helix moves. Visualization 

shows that this is due to the repositioning of the ligand in the receptor and not a drift of 

the helix. A similar observation to the a^-AR is made where an opening of the binding 

pocket occurs by the outwards shift of TM-IV and TM-V. However, TM-I occupies a similar 

position at the start and at the end of the MD simulation.
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T im e (ns)

a) Alfuzosin (7) b) WAY-100635 (13)
Figure 5.7: Helix RMSD of the Qib-AR interacting with (a) alfuzosin and (b) WAY-100635 during 5 
ns o f MD simulation.

Alignnnent o f the  connplexed structures of the  Qib-AR a fter 5 ns o f MD sinnulation to the  

crystal structure of P2 -AR (Fig. 5 .8 ) shows m ost of the helices, except T M -I are aligned. 

This is observed in m ultiple cases and suggests tha t the binding pocket is similar to th a t  

of the  P2-AR.

Figure 5.8: Alignment of alfuzosin-OiB-AR complex (purple) with the crystal structure of 32-AR 
(yellow) seen from the (left) side and (right) top.

Th e  interaction betw een Asp '̂^  ̂ and Arĝ "̂  ̂ shows e ither a stable distance or a decreased  

one (Fig. 5 .9 ). T h e  range o f distances covered a fter the MD sim ulation is 6 to 9 A with the  

m ost com m on distance being ~ 7  and ~ 8  A com pared w ith  a distance of 8 .7  A for the  

initial hom ology m odel. This can be com pared to 4 .8 4  A in the  p2 -AR and ~ 9  A in the Qib- 

AR homology model a fter MD.

T h e  interaction betw een Asp "̂*  ̂ and Glu^®® (Fig. 5 .9 ) during the  MD simulation shows three  

different patterns w ith either a stable distance, a decrease and for one case (21) an 

increase in distance. W hen there  is an increase in the  distance betw een the  tw o residues.
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the range of final distances is 10 to 17 A compared to a starting distance of ~12 .3  A. The 

phases of minimization, heating and equilibration can reduce this distance to ~ 1 0  A or 

increase it to ~ 1 4  A. The most common distance after five ns of MD simulation is ~10  or 

~11  A. This is an increase when compared to 4 .84  A in the Pz-AR and ~ 9  A in the Qib-AR 

homology model after MD.

The interaction between Arĝ "*̂  and GIû ®̂  (Fig 5 .9) shows two different kinds of behaviour 

during the MD simulation. All of the models show a decrease of this distance of ~1  A 
during minimization, heating and equilibration. The production runs show either a stable 

or an increase of the Arg '̂'  ̂ and Glû ®̂  distance over time (Fig. 5 .12). The range of 

distances after 5 ns goes from 4 to 9 A with a stable distance of 4 A being the most 

common. This can be compared to 13.02 A in the (32-AR and ~ 4 .5  A in the Qib-AR 

homology model after MD.

-Asp142-Arg143

Asp142-Glu289
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b) Corynanthine (19) d) SNAP-1069 (27)
Figure 5.9: Examples of behaviour of the ionic lock between Asp '̂'^, Arg^''^ and Glû ®̂  in the Qib-AR 
for (a) cyclazosin, (b) SNAP-8719, (c) Corynanthine and (d) SNAP-1069 showing the different 
patterns of distances between the three residues that have been observed in the MD simulations.

A change in the ionic lock is associated with conformational changes, but, generally, it can 

not be correlated to the activity of the antagonists, although different behaviour of the 

ionic lock is observed for each antagonist.
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The distance of the salt bridge between Asp^^^ and Lys^^  ̂ in the Qid-AR increases for most 

o f the antagonists, except for SNAP-8719 (11). Four different patterns of distance change 

(Fig. 5.10) can be observed: a steadily increase over time, a strong increase at the start 

o f the MD simulation followed by a stabilisation, a fluctuation of the salt bridge and a 

decrease in distance during the MD simulation. The distance o f the salt bridge after 5 ns 

appears to result in range of 13 A and 20 A compared to a starting distance of 14 A. This 

compares to a distance of 14.83 A in the crystal structure of the Pz-AR and ~16 A in the 

uncomplexed homology model after MD simulation. These data suggest that an Increase 

in distance, compared to the starting structure, of the salt bridge during a MD simulation 

o f the complexed Qib-AR is expected after the binding o f the antagonist as it is observed 

for eleven out of twelve compounds.
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Figure 5.10: Examples of behaviour of the salt bridge between Asp^^  ̂Lys^^  ̂ in the Qib-AR or a 
selection of compounds showing (a) a strong increase followed by stabilization, (b) a descrease 
followed by stabilization, (c) an increase over time and (d) a fluctuation in the distance of the ionic 
lock.
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5.4.3. QiD-Adrenoceptor

Helix RMSD analysis of the Qid-AR antagonist bound structures shows stable proteins with 

limited movement of the helices which can be regarded as optimization (example in Fig. 

5.11). Individual helices appear to move specifically in reaction to the binding of a ligand. 

The overall movements are similar to that of the Qia-AR and Qib-AR with the binding 

pocket formed by T M -III ,  TM -IV , TM-V and TM -V I opening up. There is also a movement 

of T M -I as observed for the qia-AR. Alignment with the 32-AR (Fig. 5.12) shows similar 

structures, although not as similar as observed for the Qia-AR. Despite this, the overlay of 

Qid'AR with 32-AR show that Qid-AR moves towards a conformation that is more similar to 

Pz-AR than it is to rhodopsin.

Hein 1 

Helot 2 

Heltx 3 

Hela 4 

Helot 5 

Helix 6 

Helot 7 

Helot 8

Helot 1 

Helot 2 

Helot 3 

Helot 4 

Helot 5 

Helot 6 

Helot 7 

Helot 8

a) BMY-7378 (10) b) WAY-100635 (13)
Figure 5.11: Helix RMSD analysis of the Qiq-AR complexed with (a) BMY-7378 and (b) WAY-100635 
during a 5 ns MD simulation.

Figure 5.12: Alignment of alfuzosin-OiA-AR complex (purple) with the crystal structure of P2-AR 
(yellow) seen from the (left) side and (right) top.
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The interaction between and Arg^ '̂* shows either a stable or a decrease in distance 

(Fig. 5 .13). The range of distances covered after the MD simulation is 6 to 10 A with the 

most common distance being 7 A. This can be compared to 4.84 A in the p2 -AR and ~ 8  A 
in the Qid-AR homology model after MD.

The interaction between Asp^^  ̂ and Glû "*̂  (example in Fig. 5 .13) shows three different 

patterns with either a stable distance during the trajectory, an increase in distance or a 

decrease in distance over time. When there is an increase in the distance between the 

two residues, the range of final distances is 10 to 16 A compared to a starting distance of 

8 A. The most common distance after five ns of MD simulation is 11 or 12 A. This can be 

compared to 14.8 A in the P2 -AR and ~ 1 2  A in the Qib-AR homology model after MD.

The interaction between Arg*®"* and Glû "*̂  (example in Fig. 5 .13) shows only two different 

kinds of behaviour. All of the models show a decrease of distance of ~1  A during 

minimization, heating and equilibration followed by a production run that shows either a 

stable distance or an increase of the distance over time. The range of distances after 5 ns 

is from 4 to 9 A with either 4, 7 or 9 A being the most common distances. There is no 

convergence in the final distance in the protein-ligand complexes. This can be compared 

to 13.02 A in the P2 -AR and ~ 4 .5  A in the Qib-AR homology model after MD. The different 

patterns of behaviour in the ionic lock show no correlation to weak, medium or strong 

binding antagonists.
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Fig 5.13: Examples of behaviour of the ionic lock between Asp̂ "̂* and Glu'*'"’ in the Qid-AR for 
(a) Way-100635, (b) RS-100,975, (c) KMD-3213 and (d) Discretamine showing the different 
patterns of distances between the three residues that have been observed in the MD simulations.

The distance of the salt bridge between Asp^^  ̂ and Lyŝ ®̂  in the Qid-AR increases for most 

of the antagonists except SNAP-8719 (11) and NAN-190 (29). Three different patterns of 

changes in the distance can be obsen/ed (example in Fig. 5.14): a steady increase over 

time, a strong increase at the start of the MD simulation followed by a stabilisation of this 

distance and a stable distance during the MD simulation. The distance of the salt bridge 

after 5 ns appears to fall in range of 15 A and 22 A compared to a starting distance of 15 

A. The most common distance after the MD simulation was found to be 20 A. This 

compares to a distance of 14.83 A in the crystal structure of the p2-AR and ~15 A in the 

uncomplexed homology model after MD simulation. These data suggest that a longer 

distance of the salt bridge is correlated to the binding of the antagonist as it is observed 

for eleven out of twelve compounds.
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Figure 5.14; Examples of behaviour of the salt bridge between Asp̂ ^® Lyŝ ®̂  in the Qid-AR for a 
selection of compounds showing (a) increase, (b+d) increase followed by stabilization and (c) 
decrease of the distances over time.

Two interesting cases are NAN-190 (12) and WAY-100635 (13). NAN-190 (12), which is 

the most potent Qiq-AR antagonist shows a gradual decrease in the salt bridge distance 

and WAY-100635 (13), which is selective for Oid-AR even though it has a medium binding 

affinity, shows an increase in the salt bridge distance. However the initial homology 

model has a distance of 15.3 A between Asp^^  ̂and Lys^®  ̂ Examination of the plot shows 

that the complex with NAN-190 (12) an initial increase to 21 A which occurs during 

energy minimization, heating and equilibration. The production run shows a decrease of 

this distance but it is still is larger than in the starting structure. The complex with WAY- 

100635 (13) shows an opposite pattern with a decrease during the phases of 

minimization, heating and equilibration. The production run shows an increase in distance 

from its starting point resulting in a distance that is equal to the starting distance between 

the two residues.
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5.4.4. Dynamics of ai-ARs
During the IMD simulation several changes occur in the oi-ARs. The conformation changes 

form a Yhodopsin-like' conformation to a '(32-AR-like' conformation. This is expected 

because the ai-ARs share a higher sequence similarity to the Pz-AR than is is to 

rhodopsin. This also shows that MD simulations are suitable for optimizing ligand-receptor 

complexes.

Changes such as in the ionic lock and the saltbridge can not be linked to common 

processes such as antagonist-binding but are more likely to be ligand specific. They still 

can be used to determine if a different conformation has been obtained.

5.5. Final structures
After the 5 ns of MD simulation a snapshot of the antagonist complexed oi-AR subtypes 

was taken and subjected to energy minimization. The residues that are involved in 

binding of the antagonists to the receptor can be determined using LigPlot. A binding 

pocket for each ligand can be derived and by comparing the binding pockets for the 

different antagonists, a common binding pocket for each of the Oi-AR subtypes was 

derived. A score for the interaction between the ligand and receptor can be obtained 

using London dG, Affinity dG and Alpha HB. In addition, a ranking, based on the scores 

can be made. These ranks and score were compared to the available experimental A[ 

values.

5.5.1. QiA-Adrenoceptor

Residues in T M -III ,  TM-V, TM -V I, T M -V II and ECL-IV-V are found to be involved in the 

binding of our set of a rA R  antagonists (Table 5.13). The residues Asp^“ , Val^°^ Cys“ °, 

Ile^^®, Ser̂ ®®, Ser^®^ Tyr^®^ Phê ®® and Tyr^^® are found to be the main residues involved in 

binding of most of the ligands and can be regarded as the binding pocket of the Qia-AR.

Hydrogen bonding between the receptor and the antagonists occurs with the residues 

Asp^°®, Cys“ °, Ile^^®, Ser^®^ and Tyr^®^ Of these, Asp^°^ is most commonly involved in 

hydrogen bonding with 8 out of 12 antagonists showing this interaction. Out of the other 

four, three show a hydrophobic interaction. Therefore, this Asp °̂® can be regarded as 

essential in interation with antagonists. In comparison with the initial complexes, before
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MD Simulation, this interaction is not observed and suggests that IMD simulation optimizes 

the interaction between ligand and receptor.

As hydrogen bonding via the protonated nitrogen is expected, the interaction with a 

specific residue can be determined. In most cases this interaction is with Asp̂ °̂ . 

Discretamine (18) and corynanthine (19), which are structurally related, form hydrogen 

bonds with Cys“ °. These two antagonists have a significant different structure than the 

other ligands as they have no long aliphatic chains, but consist of connected rings, which 

make them conformationally restricted and therefore more rigid. The compound 

Cyclazosin (4 ) interacts with Ser̂ ®® and WAY-100635 (13) with Ser̂ ^̂ . The only 

compound that does not form a hydrogen bond via its protonated nitrogen is NAN-190 

(12), although a non-bonded interaction with Asp̂ °® is observed. Perhaps a longer MD 

simulation could show the formation of a hydrogen bond.

Compared to the literature (chapter 1.2.5) we find similarities in the antagonist binding 

pocket with the interacting residues: Asp “̂ , Cys“ °, Ilê ^®, Phe^^  ̂ Phê ®®, Phê ^̂  and 

Tyr^^ .̂ Interaction of the residues Gln̂ ^̂ , Asn̂ ^® and Phê °® are not observed in our ligand- 

protein complexes. The interaction with the binding pocket described in literature, despite 

the lack of antagonists interaction with some residues, suggests that the ligands are well 

positioned in the binding pocket of our MD optimized complexes. This is an improvement 

compared to our initially generated complexes obtained before MD simulation. A number 

of those residues are shown, in the literature, to interact with agonists, but according to 

our studies, they also take part in interactions with antagonists.
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Table 5.13: Overview of the residues of the Qia-AR which are involved in binding of the selection of 
compounds via (1 ) hydrogen bonds or via (2) hydrophobic interactions with the residue. Ligands 
are coloured by strong binders (green), medium binders (orange) and weak binders (blue).________

TM-III ECL-IV-V TM-V
Ala
103

Asp
106

Val
107

Cys
110

Thr
111

lie
114

Met
115

Arg
166

lie
178

Tyr
184

Val
185

Phe
187

Ser
188

Ala
189

Gly
191

4 1 2 2 1 1
7 2 1 2 1 2 2

10
11

1
1

2
1 1

2

12 2 1 2 2
13 2 2 2 2 2
14 1 2 2 2 2 2 1 2
15
18
19

1
2

2
2
2

2
1
1 2

2
1 2 1

2
21 1 2 2 2
27 1 2 2 2 2 2 2

TM -V TM-V! TM-VII
Ser Phe Tyr Pro Phe Val Tyr Phe Phe Met Lys Phe Trp Tyr
192 193 194 196 281 282 285 288 289 292 309 312 313 316

4 1 2 2 2
7 2 2 , 2

10 2 2 2 2 2 2
11 1 2 2 2 2 2 2 2
12 2 2 2 2 2 2
13 1 2 2 2 2 2 2 2
14 2 2 2
15 2 2
18 2 2 2 2
19 2 2 2 2
21 2 2 1 2 2 2
27 1 2 2

When connparing the scores and ranks for each compound docked in the Qia-AR to the 

experinnental binding affinites (Table 5.14) it can be observed that there is no correlation 

between the two (Table 5.15). The three scoring functions do not provide a consistent 

result which indicates a weak or strong binder. Some compounds are identified as active, 

such as SNAP-1069 (2 1 ) with a A[ of 0.04 nM being ranked as a strong binder by all three 

scoring functions.
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Table 5.14: Score and ranking for each compound in the Oia-AR after 5 ns of MD simulation.
Score Ranking

Ligand
K
(nM)

London 
dG (kcal 
mor^)

Affinity 
dG (kcal 
mol'^)

Alpha 
HB (kcal 
mol'^) / (  Rank

London
dG

Affinity
dG

Alpha
HB

4 12 -13.64 -8.88 -142.02 5 6 4 5
7 10 -13.42 -6.63 -141.73 4 8 11 6

10 250 -13.43 -8.28 -139.27 9 7 8 7
11 294 -15.49 -11.63 -119.84 11 2 1 10
12 2 -11.44 -8.32 -109.01 3 11 7 11
13 144 -12.51 -10.93 -147.30 8 10 2 2
14 1.0 -15.13 -6.80 -144.58 2 4 10 3
15 288 -16.56 -8.25 -143.31 10 1 9 4
18 616 -12.67 -8.78 -128.86 12 9 5 8
19 142 -9.86 -6.24 -95.80 7 12 12 12
21 0.04 -15.47 -10.24 -160.89 1 3 3 1
27 16 -14.35 -8.71 -120.79 6 5 6 9

Table 5.15: Correlation (R^) for each of the scoring function and ranking with the experimental Ki 
values.

Scoring method Correlation with score/rank Correlation (R^)
London dG score 0.000

rank 0.001
Affinity dG score 0.045

rank 0.044
Alpha HB score 0.016

rank 0.099

Based on the similarity between the binding described in literature and the identified 

interaction, we can conclude that MD simulation has generated more realistic 

conformations of the protein-ligand interactions, resulting in the identification of 

interactions between ligand and protein. Using our findings a common binding pocket for 

the Qia-AR can be derived consisting of Asp °̂ ,̂ Cys^ °̂, Ilê ^®, Ser̂ ®̂ , Tyr^® ,̂ Asp °̂®, Val^° ,̂ 

Cys“ °, Ile^^^ Ser̂ ®®, Ser̂ ®̂ , Tyr^®̂ , Phê ®® andTyr^^®. Scoring these complexes show no 

correlation with experimental data.

5.5.2. OiB-Adrenoceptor

Residues in all of the helices except TM -I, TM -II and ECL-VI-V are found to be involved in 

the binding of Qib-AR antagonists (Table 5.16). However, there is only one residue in TM- 

IV which binds to one antagonist, suggesting that this residue does not play a major role 

in the binding pocket and, therefore, the Qib-AR binding pocket consists of residues from 

T M -III, TM-IV, TM-V, TM-VI and ECL-IV-V.
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The residues Asp^^  ̂Thr^^° and Ser °̂  ̂ are commonly found to interact via hydrogen bond 

with the antagonists. Besides this, residues Cyŝ ®̂, Lyŝ ®̂  Glu^°° Tyr“ ^ Alâ ®"* and Tyr̂ ^® 

are also capable of forming a hydrogen bond with one of the antagonist. These eight 

residues form the common binding pocket of the Qib-AR. WAY-100635 (13) and SNAP- 

1069 (27) show H-bonding interaction with Asp^^  ̂ KMD-3213 (21) shows two possible 

interactions with Cyŝ ^̂  and Thr^^°. Alfuzosin (7) and BMY-7378 (10) show a hydrogen 

bond with Ser °̂ .̂ SNAP-8719 (11) forms a hydrogen bond with Glu“ °. Six ligands (4, 12, 

14, 15, 18 and 19) show no formation of a hydrogen bond via the protonated nitrogen. 

Cyclazosin (4) is the best ligand and maybe this indicates other binding modes.

Residues that play an important role in binding via non-bonded interactions are Asp^^  ̂

Val̂ ^®, Cys^^  ̂Tyr^“ , Ser^°^ Phe^^°, Phe^“ , Trp^^  ̂and Tyr^̂ ®. The residue Phe^ °̂ is 

involved in binding to all ligands, suggesting that this residue is essentia! in the 

interactions with antagonists. Several residues show interaction with only one or two 

antagonists which questions if these residues are involved in the binding to a class of 

compounds or just to a particular antagonist.

There does not appear to be a residue which is specifically involved in the binding of 

ligands with a low binding affinity or a high binding affinity. This suggest that the binding 

pocket of the Qib-AR consists of several residues commonly involved in binding but very 

few that are responsible for selective binding properties of antagonists.

Compared to the literature (chapter 1.2.5) we find similarities in the antagonist binding 

pocket with the interacting residues: Asp^^  ̂ Cys^^  ̂ Val^^^ Phe^ °̂, Phê '̂’ and 

Tyr̂ ^®. Interaction of the residues Thr^^®, Phê ^̂  and Phe^ °̂ are not observed in our ligand- 

protein complexes. According to the data about the binding pocket found in the literature, 

it seems that the ligands are well positioned. Because we have optimized our complexes 

with MD simulations a good ligand-protein complex is obtained. Similar to the Qia-AR, 

several residues that are supposed to be agonist specific, according to our studies, take 

part in interaction with antagonists.
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Table 5.16: Overview of the residues of the Qib-AR which are involved in binding of the selection of 
compounds via (1) hydrogen bonds or via (2) hydrophobic interactions with the residue. Ligands

TM-III
• / /  *■ 

TM-IV ECL-IV-V TM-V
Asp
125

Val
126

Cys
129

Thr
130

He
133

Me
176

Trp
184

Lys
185

Asn
190

Gly
196

Val
197

Glu
199

Glu
200

Tyr
203

Ala
204

4 2 2 2 2 2 1
7 2 2 1 2

10 2
11 2 1 2
12 2 1 2 2 2 2
13 1 2 2 2 2
14 1 2 2 2
15 2 2 2 2 2 2
18 2 2 2 2 2 2 ;
19 2 2 1
21 1 2 1 1 2 1 2 1 1
27 1

TM-V TM-VI TM-VI 1
Phe Ser Ser Phe Phe Trp Phe Phe Ala Leu Gly Lys Phe Trp Tyr
206 207 208 212 303 307 310 311 313 314 317 331 334 335 338

4 1 2 2 2 2 2 1 ,
7 2 1 2 2 2 2 2

10 1 2 2 2 2 2
11 2 2
12 2 2 2 2 2 2
13 2 2 2 2 2 2 2
14 2 2 2 2
15 2 2 2 2 2 2
18 2 2 2
19 2 2 2 2 2 2
21 2 2 2 2 2 2 2
27 2 2 2 2 2 2

When comparing the scores for each compound docked in the Qib-AR to the experimental 

binding affinites (Table 5.17) it can be observed that there is no correlation between both 

(Table 5.18). When ranking the experimental binding affinities and the scores (Table 

5.17), no correlation is obtained either (Table 5.18). The three scoring functions do not 

provide a consistent indication which antagonist is a weak or strong binder, although 

cyclazosin (4 ) is scored as a strong binder, suggesting that strong binders can be 

identified. KMD-3213 (2 1 ) shows much better scores than any of the other ligands. This 

is likely due to an overestimation of a binding interaction.
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Table 5.17: Score and ranking for each compound in the Oib-AR after 5 ns of MD simulation.
Score Ranking

Ligand
K,
(nl^)

London 
dG (kcal 
mol'^)

Affinity 
dG (kcal 
mor')

Alpha 
HB (kcal 
mor^) K\ Rank

London
dG

Affinity
dG

Alpha
HB

4 0.13 -14.43 -9.42 -187.73 1 3 2 2
7 10 -14.46 -6.13 -132.56 2 2 10 5
10 630 -10.77 -8.03 -119.23 11 11 5 10
11 191 -14.09 -7.98 -148.83 7 4 6 4
12 15 -13.12 -8.46 -125.36 3 7 3 7
13 186 -13.85 -8.31 -156.81 6 5 4 3
14 79 -12.09 -5.80 -124.70 5 8 11 8
15 1320 -11.89 -5.49 -123.70 12 9 12 9
18 360 -11.67 -7.95 -112.08 9 10 7 11
19 517 -13.38 -7.00 -140.96 10 6 8 6
21 20 -20.41 -12.70 -188.79 4 1 1 1
27 200 -10.00 -6.54 -111.61 8 12 9 12

Table 5.18: Correlation (R^) for each of the scoring function and ranking with the experimental Ki 
values.

Scoring method Correlation with score/rank Correlation (R )̂
London dG score 0.403

rank 0.685
Affinity dG score 0.428

rank 0.441
Alpha HB score 0.385

rank 0.622

Based on our data, a common binding pocket can be derived consisting of Asp^^^Thr^^°, 

Ser^°^ Asp^^̂  Val^^  ̂Cys^^  ̂Tyr^°^ Ser̂ ° ,̂ Phe^ °̂, Phe^“ , Trp̂ ^̂  and Tyr̂ ®̂. As a whole, no 

correlation is found between the scoring and experimental data, but some strong binders 

are well described by these scorings, which is in contrast to the Qia-AR, where this this 

identification of strong binders is not obtained.

5.5.3. QiD-Adrenoceptor

Residues In all of the helices except TM-I and ECL-VI-V are found to be involved in the 

binding of Qid-AR antagonists (Table 5.19). However, those residues in TM-II and TM-IV 

only bind to one antagonist each. This would suggest that they do not play a major role in 

defining the binding pocket and therefore the binding pocket is formed by residues in TM- 

III, TM-IV, TM-V, TM-VI and ECL-IV-V.

The residue Asp̂ ®̂ is commonly found to interact with seven out of twelve antagonists to 

interact via the formation of a hydrogen bond to the Qid-AR. This makes this residue
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important in binding of antagonists, winich is similar to tlie  Qia-AR. In addition, residues 

Thr^®^ Ile^^®, G\u^ \̂ Ser̂ ^®, Ser^®^ Phe^^^ Trp^^S Leû ®®, and Tyr^®  ̂show the 

formation of a hydrogen bond with one or two antagonists.

Regarding the interaction with the antagonist protonated nitrogen, the most common 

hydrogen bond that is formed, with residue Asp^^^ is observed in six cases. Three other 

cases show hydrophic intraction with this residue and could potentially lead to the 

formation of a hydrogen bond if longer MD simulations are performed. This suggests that 

the most likely interaction for strong binders is to occur via the formation of a hydrogen 

bond between the protonated nitrogen and Asp^^®. One different hydrogen bond is formed 

with residue Ser̂ ^® for discretamine (18).

Residues that play an important role in binding via non-bonded interactions are Asp^^^ 

Cys'®°, Ala“ ^  Ser̂ ^®, Trp^®', Leû ®® and Tyr^^l Especially Cys'®° and Trp^^' show 

interaction with a large number of antagonists, making these residues important in 

binding. These seven residues can be regarded as the common antagonist binding pocket 

for the Qid-AR. There are other residues that show interaction with only one or two 

antagonists meaning that they are not essential for antagonist activity.

Considering the six best compounds in terms of affinity (4, 7, 10, 11, 12 and 21) 

interactions with Cys^®°, Ala^^^ and Trp^®  ̂ seem to be significant for the antagonist 

binding.

Compared to the data in the literature (Chapter 1.2.5) similarities are found in the 

antagonist binding pocket with the interacting residues: Asp^^^ Cys^®°, Gly^'’^  Ilê "̂ ®, 

Thr249, Phe^®^ Phê ®̂  and Tyr^^l Interaction of the residues Thr̂ ®®, Phe^^  ̂ and Phe^^° are 

not observed in our ligand-protein complexes. Similar to Qia-AR and Qib-AR agonist- 

specific residues also interact with antagonists.
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Table 5.19: Overview of the residues of the Qid-AR which are involved in binding of the selection of 
compounds via (1) hydrogen bonds or via (2) hydrophobic interactions with the residue. Ligands 
are coloured by (green) strong binders, (orange) medium binders and (blue) weak binders._______

TM-III ECL-III-IV TM -IV
Vai Trp Asp Val Cys Cys Thr Ser lie Val Pro Lys Pro
149 172 176 177 179 180 181 183 184 227 231 236 241

4 1 2 2
7 2 2 1 2

10 1 2 2 2
11 1 2
12 2 2 2 2
13 2 2 1 2 2 2
14
15 1 2 2 1
18 2 2
19 1 2
21 1 2
27 2

TM-IV TM-V
Phe Gly lie Thr Glu Glu Tyr Ala Ser Ser Ser Phe Phe
245 247 248 249 250 251 254 255 258 259 262 263 357

4 2 2 2 1 2
7 2 2 2 1 2 2

10 2 2 2
11 2 2 2 2 2
12 2 2 1 2 2
13
14 2 2 2 2 1
15 2 2 2
18 2 1 2 2
19 2 2 2
21 2 2 2 2
27 2 2 2 2

ECL-V-VI TM-VI
Val Cys Trp Phe Phe Leu Gly Trp Gly Tyr Phe
358 360 361 364 365 368 371 389 391 392 393

4 2 2 2
7 2

10 2 2 2 2
11 2 2 2 2 2 2
12 2 2
13 2 2 2 2 1 1 2
14 2
15 2 1 2
18 2 2 2
19 2 2 2 2
21 2 2 1
27 2
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When comparing the scores and ranl<s for each compound docked in the Qid-AR to the 

experimental binding affinites (Table 5.20) it can be observed that there is no correlation 

between the two (Table 5.21). The three scoring functions do not provide a consistent 

result that indicates which antagonist is a weak or strong binder. However, two weak 

binders RS-100,975 (14) and SNAP-1069 (27) are ranked low. Unfortunately the dataset 

is too small and there are too many inconsistencies to validate this model as being able to 

filter out weak binding ligands.

Table 5.20: Score and ranking for each compound in the Qip-AR after 5 ns of MD simulation.
Score Ranking

Ligand
K
(nM)

London 
dG (kcal 
mor')

Affinity 
dG (kcal 
mol'^)

Alpha 
HB (kcal 
mol'^) Rank

London
dG

Affinity
dG

Alpha
HB

4 3.2 -16.79 -8.41 -154.82 5 1 5 2
7 3.16 -11.65 -5.87 -145.23 4 9 10 3

10 6.3 -15.29 -9.44 -131.56 6 3 3 7
11 1.6 -15.15 -9.90 -140.20 2 4 1 5
12 0.8 -11.05 -8.44 -128.80 1 10 4 8
13 63 -15.06 -9.57 -169.50 8 6 2 1
14 100 -10.76 -5.08 -113.12 9 11 11 10
15 1660 -15.08 -7.70 -138.43 12 5 8 6
18 25 -12.69 -5.89 -106.85 7 8 9 11
19 253 -13.25 -8.38 -144.20 10 7 6 4
21 2.0 -16.27 -8.37 -127.76 3 2 7 9
27 790 -8.91 -4.18 -93.98 11 12 12 12

Table 5.21: Correlation (R^) for each of the scoring function and ranking with the experimental Ki 
values.

Scoring method Correlation with score/rank Correlation (R^)
London dG score 0.008

rank 0.082
Affinity dG score 0.058

rank 0.233
Alpha HB score 0.027

rank 0.022

Based on the final complexes obtained from the I^D simulations, a common binding 

pocket can be derived and consists of Asp̂ ®̂, Cyŝ ®°, Ilê "̂ ®, Asp̂ ^̂ , Cyŝ ®°, Ala^” , Ser̂ ®̂, 

Trp^®\ Leû ®̂ and Tyr̂ ®̂ . The scoring of our complexes as a whole, shows no correlation 

with experimental data.

- 163 -



I

Chapter 5: Molecular dynamics simulations

5.5.4. Binding of antagonstist in optimized iigand-Oi-AR complexes

For the Qia-AR, Qib-AR and Qid-AR different binding pockets have been derived and were 

aligned to each other (table 5.22). These binding pockets are similar, but there is a 

number of residues that show subtype specific interaction. This suggests that the mode of 

binding of each ligand to the different oi-AR subtypes is similar. Therefore, functional 

groups attached to a 'core' part of the ligand can explain ligand-subtype specificity.

Table 5.22: Residues that form the general binding pockets of the three Oi-AR subtypes. The 
shaded residues shows the residues which are aligned in each of the three ai-AR subtypes.

Oia -A R Qib ”A R Qid "AR

Hydrogen bond Asp'°® Asp'^5 Asp'^^

Cys“ ° Thri3o Cys^®°

Ile'^«

Ser^®2 Ser^°^
Tyr285

Hydrophobic Asp °̂® Asp^“ Asp^̂ ®

interaction V al'°' Val̂ ^®

Cys“ ° Cys^^^ Cys^®°

Ile^^« Tyr203 Ala^^'
S e r i8 8 Ser^°^ Ser^'«

Ser̂ ®̂
Tyr285

Phe288 Phe^^°

Phe^“

Trp3^5 Trp36i

Leu'®«
Tyr3i6 Tyr^38 Tyr^52

Scoring of the different complexes has been performed but shows no correlation with 

experimental data. Scoring functions are known to be inaccurate and, therefore, using a 

small dataset, a correlation between the experimental binding affinity and the 

computational scores should not be expected.
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5.6. Comparison of binding of ligands in qia-AR, Qib-AR and 

Qid “AR.

A comparison of how each of the twelve ligands bind to each of the orAR subtypes has 

been nnade based on the formation of H-bonds and hydrophobic interactions using a 2D 

plot. If  possible, functional groups of the ligand and residues of the Oi-AR subtype which 

can account for selectivity of the ligand for each ai-AR subtype were identified.

5.6.1. Binding of Cyclazosin
Cyclazosin (4) is a compound with a medium binding affinity to the Qia-AR ( / (  =12 nM), a 

strong binding affinity for the Qib-AR (/C=0.13 nM) and a medium-strong binding affinity 

for the Qid-AR (A[ =3.2 nM). The correlation of the scores with the experimental data is 

limited as it is only correctly predicted by Alpha HB (Table 5.23).

Table 5.23: Ranks (experimental and computated) and scores (computed) for the binding affinity 
of Cyclazosin (4) to the three orAR subtypes. ______________________ ___________________

Rank
(exp)

Score
London
dG

Score
Affinity
dG

Score 
Alpha HB

Rank
London
dG

Rank
Affinity
dG

Rank 
Alpha HB

Qia-AR 3 -13.64 -8.88 -142.02 2 2 3
Qib'AR 1 -13.43 -9.42 -187.73 3 1 1
Qid'AR 2 -16.79 -8.41 -154.82 1 3 2

In each receptor (Fig. 5.15), three H-bonds are formed with this ligand. Only Ser̂ ®® can 

be aligned in the Qib-AR (Ser^°^) and Qid-AR (Ser^^®). The other two resdidues involved in 

H-bonding are subtype specific. The protonated nitrogen interacts with Ser̂ ®® in the qia- 

AR and Asp̂ ®̂ in the Qid-AR. For the Qib-AR, no interaction with the protonated nitrogen is 

observed and suggests that cyclazosin (4) binds different in Oib-AR. The Qib-AR does 

interact through Ser^°  ̂with the other nitrogen in the piperazine group which is not 

observed for the a^-AR and Qid-AR. Furthermore, the nitrogen of the NH2 group of the 

pyrimidine ring, shows interactions with each of the three oi-ARs, although with non- 

aligned residues.The methoxy oxygen atoms do not form H-bonds. The oxygen positioned 

between the pyrazine and furan group shows interaction with all three receptors, 

although with three different residues.

The Qia-AR, compared to the other two subtypes shows a limited number of non-bonded 

interactions. The residue Met^^  ̂ (ou-AR) interacts with the ligand, but no Met residues of 

the other Oi-AR subtypes show interaction. The residue Trp̂ ®  ̂ in the Qia-AR, and Trp̂ ®̂  in
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the Qid-AR interact with the ligand, but the Qib-AR shows no similar interaction is shown 

in the qib-AR. The cyclohexane ring attached to the piperazine show most hydrophobic 

interactions in the Qiq-AR.

This compound is potent for each of the three Oi-AR subtype and in each modelj which 

can be linked to the large number of observed interactions, suggesting that this model is 

correct. Our models show a different binding of the cyclazosin (4 ) for the Qib-AR 

compared to the Qia-AR and qid-AR.

A«p106 

A . ^

Cys 110

a)

Ligund lx>nd 

Non-ligand bond 

#  - o  Hydrogen bond and its Icngtl)

H i s 5.' Non-ligand residuc^ involved in hydrophobic 
contact(s)

hydroplwbic contacK s)

Figure 5.15: Analysis of binding of cyclazosin 
(4) to (a) Qia-AR, (b) Qib-AR and (c) Qid-AR 

with Ligplot

Cyt 129

b)

Ph*212

M fl204

Ser207

^  Ph«310
Glu 200

Val 126

Tyr338 W .

Trp335

Trp38d

3ph«2-
%n\

c)

Glu 251

Asp 176

lie 248

C y W L«u368

Ala 255
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5.6.2. Binding of Alfuzosin

Alfuzosin (7 ) is a compound with a strong binding affinity to the Qia-AR {K =10 nM) and 

the Qib-AR (A[ =10 nM) and a strong binding affinity for the Qid-AR (/^ =3.16 nM). This 

compound is not selective for any of the adrenoceptors as the difference in binding 

affinities is limited and there is strong interaction with all three Oi-AR subtypes. The 

correlation between the computed scores and the experimental binding affinity is not 

predicted correctly by any of the three scoring functions (Table 5.24), although Alpha HB 

predicts the strongest affinity correct. Because Qia-AR and Qib-AR have similar binding 

affinities, a ranking is likely not to perform well.

Table 5.24: Ranks (experimental and computated) and scores (computed) for the binding affinity 
of Alfuzosin (7) to the three Qi -AR subtypes. ______________________ ___________________

Rank
(exp)

Score
London
dG

Score
Affinity
dG

Score 
Alpha HB

Rank
London
dG

Rank
Affinity
dG

Rank 
Alpha HB

Qia-AR 2 -13.42 -6.63 -142.02 2 1 2
Qib'AR 2 -14.46 -6.13 -132.56 1 2 3
aiD-AR 1 -11.65 -5.87 -145.23 3 3 1

Two residues in each AR subtype are involved in binding which are aligned, being for Qia- 

AR Thr“  ̂ and Ser̂ ®̂ , for Qib-AR, Thr^^° and Ser^°^ for aio-AR Thr̂ ®̂  and Ser̂ ^̂  (Fig. 5.16). 

This Ser residue is aligned, for the Qia-AR and Qib-AR, but they show different 

interactions, where in the Qia-AR, a H-bond is formed with the NH2 group attached to the 

quinazoline group whereas, in the Qib-AR, the aligned serine residue forms a H-bond with 

the nitrogen on the quinazoline group (the protonated nitrogen). Furthermore, a residue 

in the Qia-AR (Thr) and Qib-AR (Ser) shows interaction with the nitrogen in the chain that 

link the rings in the molecule. The Qid-AR only forms hydrogen bonds with the nitro group 

of the quinazoline ring and not with the protonated nitrogen.

There is a number of other residues showing hydrophobic interactions with alfuzosin (7) 

which differ for each subtype. For example, the residue Cys“ ° does not interact with the 

ligand in the Qia-AR but similar residues in the Qib-AR, Cys^^  ̂ and in the Qid-AR, Cyŝ ®°, 

do show interaction with alfuzosin (7).

Summarizing, in the case of the alfuzosin (7) complexes, for the Qia-AR and Qib-AR a 

similar binding mode is observed which is different to Qid-AR. Given the H-bonds formed 

in each adrenoceptor and the number of hydrophic interaction the binding of alfuzosin (7)
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can be explained. Given the potency of alfuzosin (7 ) this model should be used in further 

studies.
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v » l/ /
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Figure 5.16: Analysis o f binding of alfuzosin (7) 
to (a ) Qia-AR, (b ) Qib-AR and (c) Qid -AR  with 

Ligpiot

b)

Leu 314.

204
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Thr130

206

Cys 180

T!>r181

Trp361

Phe263

Ser262

VW 177
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5.6.3. Binding of BMY-7378

BMY-7378 (10) is a compound with a weak binding affinity to the Qia-AR (/([ =250 nM) 

and Qib-AR (A[ =630 nM) and a strong binding affinity for the Qid-AR (Af =6.3 nM). This 

compound is selective for the Qid-AR with a 250-fold stronger affinity over the Qia-AR. 

Ranking for experimental binding affinity is not correctly predicted by any of the three 

scoring functions (Table 5.25).
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Table 5.25: Ranks (experimental and computated) and scores (computed) for the binding affinity 
of BMY-7378 (10) to the three orAR subtypes. _________________________________________

Rank
(exp)

Score
London
dG

Score
Affinity
dG

Score 
Alpha HB

Rank
London
dG

Rank
Affinity
dG

Rank 
Alpha HB

aiA'AR 2 -13.43 -8.28 -139.27 2 2 1
Qib'AR 3 -10.77 -8.03 -119.23 3 3 3
Qid -AR 1 -15.29 -9.44 -131.56 1 1 2

Formation of a hydrogen bond between the ligand with the three adrenoceptor subtypes 

(Fig. 5.17) is observed with the protonated nitrogen in the pyrazine group. This nitrogen 

interacts with residue Asp °̂® for the Qia-AR, Ser^°^ for the Qib-AR and Asp^^® for the Qiq- 

AR. Both aspartic acid residues in the Qia-AR and Qid-AR are aligned.

Furthermore, a H-bond is formed with Ser^^^ in the Qiq-AR. Thus, based on H-bonding, 

the stronger affinity to the Qid-AR can be explained. I t  can be observed that the rings 

formed by carbon 19-20-21-22 and 14-15-16-17-18 show a hydrophobic interaction with 

the Qia-AR and aio-AR but not with the Qib-AR. Furthermore there are more residues 

showing hydrophobic interactions with the phenyl rings in the Qib-AR complex and very 

little interaction with the rest of the ligand.

The binding of BMY-7378 (10) to the Qib-AR can be explained by the small number of 

interactions established. The selectivity for the Oid-AR subtype could be explained not 

only because the H-bond formed with Asp^^®, but also because the H-bond with Ser^^ .̂ 

Moverover, more non-bonded interactions are observed in the Oid-AR complex with BMY- 

737.
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Figure 5.17: Analysis of binding of BMY-7378 
(10) to (a) aiA-AR, (b) Qib-AR and (c) Qid-AR 

with Ligplot
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5.6.4. Binding of SNAP-8719

SNAP-8719 (11) is a compound with a weak binding affinity to the Qia-AR (/c[ =294 nM) 

and Qib-AR {K, =191 nM) and a strong affinity for the Qid-AR (A[ =1.6 nM). Therefore, this 

compound is selective for the qid-AR. The ranking of the experimental binding affinties is 

correctly predicted by London dG (Table 5.26). However, it is not predicted by the other 

two scoring functions.
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Table 5.26: Ranks (experimental and computated) and scores (computed) for the binding affinity 
of SNAP-8719 (11) to the three Oi-AR subtypes. __________ __________ __________ ________

Rank
(exp)

Score
London
dG

Score
Affinity
dG

Score 
Alpha HB

Rank
London
dG

Rank
Affinity
dG

Rank 
Alpha HB

Qia-AR 3 -11.44 -8.32 -119.84 3 2 3
Qib-AR 2 -14.09 -7.98 -148.83 2 3 1
Qiq -AR 1 -15.15 -9.90 -140.20 1 1 2

H-bonds are formed with the Qia-AR via Asp^°^ Cys^^°, Ser̂ ®® and Ser̂ ®̂ . For the Oib-AR 

via Glu^°° and the aio-AR via Asp^̂ ®. Asp °̂® (qia-AR) and Asp^^^ (qid-AR) are aligned in 

both receptors and also interact with the same nitrogen which is protonated. This 

protonated nitrogen interacts in the Qib-AR via residue Glu^°°.

Considering the common H-bonds formed between SNAP-8719 (11) and acidic residues 

such as Asp^°^ ( q ia -A R ) , GIu^°° ( q ib -A R ) and Asp^^® ( q id -A R ) ,  the selectivity for the Q id -A R  

could only be explained by the large number of hydrophobic interactions formed in the 

bindig pocket of this subtype (Fig 5.18c). I t  should be noted that the Ois-AR has a limited 

number residues showing hydrophobic interactions.
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Figure 5.18: Analysis of binding of SNAP-8719 
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5.6.5. Binding of NAN-190

NAN-190 (12) is a compound with a strong binding affinity to the Qu-AR {K, =2.0 nM), a 

medium binding affinity for the Qib-AR {K̂  =15 ni^) and a strong binding affinity for the 

Qid-AR =0.8 ni^). This compound shows a better activity foroiA-AR (7.5) than the Qib- 

AR, it can be regarded as non-selective for the Qia-AR because of the potency for the Qib- 

AR, resulting in little difference in clinical use. The ranks of experimental binding affinities 

are incorrectly predicted by all three scoring functions (Table 5.27), limiting their use in 

practice.
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Table 5.27: Ranks (experimental and computated) and scores (computed) for the binding affinity 
of NAN-190 (12) to the three Qi-AR subtypes. __________^__________________________

Rank
(exp)

Score
London
dG

Score
Affinity
dG

Score 
Alpha HB

Rank
London
dG

Rank
Affinity
dG

Rank 
Alpha HB

Qia-AR 2 -11.44 -8.32 -109.01 2 3 3
Qib-AR 3 -13.12 -8.46 -125.36 1 2 2
Qiq -AR 1 -11.05 -8.44 -128.80 3 1 1

For each AR subtype, only one H-bond is observed with NAN-190 (12). For the awAR 

and Qid-AR this is via an oxygen and for the Qib-AR via a nitrogen (Fig. 5.19). None of the 

Qi-AR subtypes show interaction with the protonated nitrogen.

Several hydrophobic interactions are also involved in the three complexes and very few 

residues are specific for NAN-190. The phenyl rings on both ends of the molecule show 

hydrophobic interaction in each of the three ai-AR subtypes. With a potent compound, 

more H-bonds, especially with the protonated nitrogen would be expected. Although a 

number of hydrophobic interactions are observed these structures, further refinement is 

needed.
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5.6.6. Binding of WAY-100635

WAY-100635 (13) is a compound with a weak binding affinity to the Qia-AR {K, =144 nM) 

and Oib-AR (A[ =186 nM) but has a medium binding affinity for the Qid-AR (/([ =63 nM). 

There is limited correlation between the ranking of the experimental binding affinities and 

the computed ranks (Table 5.28), although, the best ranked affinity is identified by 

London dG and Alpha HB.

- 174 -



Chapter 5: Molecular dynamics simulations

Table 5.28: Ranks (experimental and computated) and scores (computed) for the binding affinity 
of WAY-100635 (13) to the three Qi-AR subtypes.__________ __________ __________ ________

Rank
(exp)

Score
London
dG

Score
Affinity
dG

Score 
Alpha HB

Rank
London
dG

Rank
Affinity
dG

Rank 
Alpha HB

Qia-AR 2 -12.51 -10.93 -147.30 3 1 3
Qib-AR 3 -13.85 -8.31 -156.81 2 3 2
Qid 'A R 1 -15.06 -9.57 -169.50 1 2 1

The protonated nitrogen of ligand WAY-100635 forms a H-bond with the Qia-AR via 

residue Ser^^^ with the Qib-AR via residue Asp̂ ^̂  and with the Qid-AR via residue Asp̂ ®̂ 

(Fig. 5.20). The two aspartic acid residues occupy the same position in the Qib-AR and 

qid-AR. The Qid-AR shows in contrast to the other two the formation of a hydrogen bond 

with an oxygen via residue Glŷ ^̂  and Tyr̂ ®̂ .

A common hydrophobic interaction is observed via Cys“ ° in the Qia-AR which corresponds 

to Cyŝ ^̂  in the Qib-AR and Cyŝ ®° in the qid-AR. Furthermore, several hydrophobic 

interactions are found among the whole ligand with each of the three subtypes 

suggesting no functional group to be subtype specific.

The binding of WAY-100635 to all three Oi-ARs is explained by the hydrogen bond that is 

formed with the protonated nitrogen and the large number of hydrophobic interactions 

with the ligand. The limited potency of the compound is due to the lack of hydrogen 

bonds. Limited selectivity is because each Oi-AR forms a common H-bond and a number 

of hydrophobic interactions with the whole ligand and, therefore, no functional groups are 

specifically involved in binding to a specific ai-AR.
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5.6.7. Binding of RS-100,975

RS-100,975 (14) is a compound with a strong binding affinity to the Qia-AR (/^ =1.0 nM), 

a medium binding affinity for the aie-AR (A[ =79 nM) and a weak binding affinity for the 

Cid-AR {Kt =100 nM). The compound is selective for Qia-AR as it binds 79-100 fold stonger 

compared to the other two Oi-AR subtypes. The ranking of the experimental binding 

affinities are correctly predicted by all three scoring functions (Table 5.29).
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Table 5.29: Ranks (experimental and computated) and scores (computed) for the binding affinity 
of RS-100,975 (14) to the three Oi-AR subtypes.

Rank
(exp)

Score
London
dG

Score
Affinity
dG

Score 
Alpha HB

Rank
London
dG

Rank
Affinity
dG

Rank 
Alpha HB

Qia -AR 1 -15.13 -6.80 -144.58 1 1 1
Qib -AR 2 -12.09 -5.80 -124.70 2 2 2
Qid 'AR 3 -10.76 -5.08 -113.12 3 3 3

Interaction of RS-100,975 (14) with the three ai-AR subtypes (Fig. 5.21) is observed via 

H-bonding. The protonated nitrogen in the piperazine group interacts only with the Qia-AR 

via residue Asp^“ . The Qib-AR and Qid-AR show no interaction via this nitrogen but 

through one of the nitrogens in the pyrinnidine ring with the Qib-AR via Asp^^® and Qid-AR 

via Phê ®̂ .

There is a common hydrophobic interaction via the residue Ser̂ ®® (awAR), Ser^°^ (qib-AR) 

and Ser̂ ^® (qid-AR) which are aligned residues. There is no interaction with the 

trifluoromethyl group. The Qib-AR has a limited number of hydrophobic interactions. 

However, there is still an interaction with Asp^^^ which is also described to interact with 

other ligands.

The Qid'AR shows a limited number of residues that have hydrophobic interactions with 

RS-100,975 (14), but, especially interaction with Cyŝ ®° is not observed. Also the 

formation of a H-bond with Asp^^®, as shown for most ligands, is not observed. This 

suggests that the binding of RS-100,975 (14) to the Qid-AR needs further optimization.
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5.6.8. Binding of Uropidil

Uropidil (15) is a compound with a weal< binding affinity for the Qia-AR (/([ =288 nM), Qib- 

AR (A[ =1320 nM) and the Cid-AR (/^ =1660 nM). Despite the general poor affinites of this 

compound, it has been described as the first Oia-AR selective antagonist. The correlations 

between experimental binding affinity ranks and the ranks by the scoring functions is 

limited (Table 5.30), although, London dG and Affinity dG predict the best affinity for the 

Oia-AR correctly.
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Table 5.30: Ranks (experimental and computated) and scores (computed) for the binding affinity 
of uropidil (15) to the three Qi-AR subtypes. _____________________________________

Rank
(exp)

Score
London
dG

Score
Affinity
dG

Score 
Alpha HB

Rank
London
dG

Rank
Affinity
dG

Rank 
Alpha HB

Oia-AR 1 -16.56 -8.25 -134.31 1 1 2
aiB-AR 2 -11.89 -5.49 -123.70 3 3 3
Qid-AR 3 -15.08 -7.70 -138.43 2 2 1

H-bonding was observed in the a^-AR via residues Asp^°^ Arĝ ®® and Ser̂ ^®, is not 

observed in the Qib-AR, but are formed in the Qib-AR via Asp̂ ^®, Thr̂ ®̂  and Trp^^^ (Fig 

5.22). H-bonding with the protonated nitrogen is only observed in the Qia-AR via Asp^° .̂ 

The oxygens attached to the pyrimidine group form H-bonds bonds with the Qia-AR 

(Arĝ ®®) and Qid-AR (Trp^^^).

Both the Qia-AR and Qid-AR show interaction with large parts of the ligand which can 

explain the binding of uropidil (15). More H-bonds are observed in the a^-AR than in the 

two other Oi-AR subtypes which can explain the selectivity of uropidil (15).

Although uropidil (15) binds weakly to the Qib-AR a number of interactions would be 

expected as the compound is not completely inactive. It can be assumed that given the 

number of residues that show interaction, residues that interact with this ligand have 

been identified, but binding is not necessarily fully optimized as H-bonding is expected.
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The ligand-protein conformations obtained after 5ns of MD simulation allow the 

identification of the ligand-protein interactions. This enables the identification of the 

interactions that are responsible for a ligand binding to a receptor. In addition, when a 

limited number of interactions are observed, although the ligand is known to bind 

strongly, then an incorrect ligand-protein complex can be identified. When trying to 

predict the binding affinity with scoring functions, in general, poor results are obtained. 

Because scoring functions are commonly used to assess ligand-protein complexes, it 

should be suggested that scoring functions are better in the classification of binders and 

non-binders. Therefore, using these protein ligand interaction plots provides more insight 

into binding than scores.
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5.6.9. Binding of Discretamine

Discretamine (18) is a compound with a poor binding affinity to the au-AR (A[ =616 nM) 

and Qib-AR (/([ =360 nM) and a nnediunn binding affinity for the Qid-AR (A[ =25 nM). This 

connpound is selective for the aip-AR. None of the scoring functions rank the binding 

affinities correctly (Table 5.31).

Table 5.31: Ranks (experimental and computated) and scores (computed) for the binding affinity 
of discretamine (18) to the three Oi-AR subtypes._____________________________________

Rank
(exp)

Score
London
dG

Score
Affinity
dG

Score 
Alpha HB

Rank
London
dG

Rank
Affinity
dG

Rank 
Alpha HB

ciia'AR 3 -12.67 -8.78 -128.86 2 1 1
Qib-AR 2 -11.67 -7.95 -112.08 3 2 3
Qid -AR 1 -12.69 -5.08 -113.12 1 3 2

The protonated nitrogen shows the fornnation o f hydrogen bonds (Fig. 5.23) with the qia- 

AR via residue Cys“ ° and the Qid-AR via residue Ser̂ ^®. The formation of a hydrogen bond 

with Qib-AR is not observed. There are common interactions via three aligned residues in 

the Qia-AR (Asp^°®, Cys“ ° and Tyr^^®) in the Qib-AR (Asp^^^ Cyŝ ^® and Tyr^^®) and in the 

Qid-AR (Asp^'^ Cys'®°, Tyr^^^).

The limited number of H-bonds and the similarity in the residues that are involved in 

binding of discretamine (18) in each of the three adrenoceptors can not explain the 

difference in binding affinities. Therefore, an optimal conformation for ligand-protein 

interaction is likely not obtained, which could limit the use of these structures in future 

studies.
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5.6.10. Binding of Corynanthine

Corynanthine (19) is a compound with a weak binding affinity for the Qia-AR (A[ =142 

nM), qib-AR (/^ =517 nM) and Qid-AR (A[ =253 nl^). This compound is not selective to any 

of the three ai-ARs. There is no correlation between the ranking of the scoring functions 

and the ranking of the experimental binding affinities (Table 5.32).
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Table 5.32: Ranks (experimental and computated) and scores (computed) for the binding affinity 
of corynanth

Rank
(exp)

Score
London
dG

Score
Affinity
dG

Score 
Alpha HB

Rank
London
dG

Rank
Affinity
dG

Rank 
Alpha HB

Qia -AR 1 -9.86 -6.24 -95.80 3 3 3
Qib'AR 3 -13.38 -7.00 -140.96 1 2 2
Qid 'A R 2 -13.25 -8.38 -144.20 2 1 1

Two nitrogens form a hydrogen bond with the adrenoceptors (Fig. 5.24). The protonated 

nitrogen shows the formation of a H-bond with Qia-AR via the residue Asp^^° and with the 

qid-AR via the residue Asp^^^.The Qib-AR shows interaction via the other nitrogen in 

corynantine (19) and forms a H-bond with Glu^°°.

None of the oxygens show interactions with any residues of the adrenoceptors either via a 

hydrogen bond or via hydrophobic interactions. The benzene ring of the indole system 

shows hydrophic interaction with all three ai-AR subtypes.

The binding profiles to the three ai-AR subtypes suggest that interaction via the 

protonated nitrogen is important for binding to the Qia-AR and qid-AR. Furthermore, there 

is a number of other residues showing hydrophobic interactions with the same functional 

group of the ligand. The weak binding of corynanthine (19) to each arAR  can be 

explained by only one H-bond being formed in each receptor and the limited number of 

hydrophobic interactions.
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5.6.11. Binding of KMD-3213

KMD-3213 (21 ) is a compound with a very strong binding affinity to the Qia-AR {K, =0.04 

nM), a medium binding affinity for the Qib-AR {K, =20 nM) and a strong binding affinity for 

the Qid-AR {K, =2.0 nM). This compound can be regarded as Qia-AR selective due to its 

50-fold stronger binding affinity over the other receptors and a relative weak binding 

affinity to the Qib-AR and Qid-AR, and in fact, is the antagonist with the best Af towards 

any ai-AR subtype. There is no correlation between the ranking of the scoring functions 

and the ranking of the experimental binding affinities (Table 5.33).
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Table 5.33: Ranks (experinnental and computated) and scores (computed) for the binding affinity 
of Cyclazosin (4) to the three Oi-AR subtypes. ______________________ ___________ ________

Rank
(exp)

Score
London
dG

Score
Affinity
dG

Score 
Alpha HB

Rank
London
dG

Rank
Affinity
dG

Rank 
Alpha HB

Qia-AR 1 -15.47 -10.24 -160.89 3 2 2
Qib'AR 3 -20.41 -12.70 -188.79 1 1 1
Qid 'AR 2 -16.27 -8.37 -127.76 2 3 3

All of the three subtypes interact via the protonated nitrogen (Fig. 5.25): Qia-AR via 

Asp^“ , aiB-AR via Thr^^° and Cys^^  ̂ and Qid-AR via Asp^̂ ® and Tyr^® .̂ Futhermore, H- 

bonding is observed via the CONH2 group for Qia-AR and aie-AR. In the Qia-AR complex, 

the amide group only acts as a hydrogen bond donor, but in the Qib-AR complex it acts as 

a hydrogen bond donor and acceptor to three residues. Furthermore, H-bonding with the 

alcohol group is observed for the Qib-AR, but not for the other two a rA R  subtypes. This 

could inditate why the binding affinity is better for the Qia-AR and Qid-AR

The CF3 group shows interactions with the Qib -A R , but not with the Qia -A R  and Q id -AR  

which could not explain a higher binding affinity to the Qia-AR and qid-AR. This model 

identifies interactions that make the ligand bind to each of the ai-AR subtypes.
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5.6.12. Binding of SNAP-1069

SNAP-1069 (27) is a compound with a medium binding affinity to the Qia-AR (A[ =16 nl^), 

and a weak binding affinity for the Qib-AR (Af =200 nM) and qiq-AR {K, =790 nM). This 

compound is selective for the Qia-AR. The three scoring functions provide the same 

ranking, but this ranking does not match the ranking of the experimental binding affinities 

(Table 5.34).
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Table 5.34: Ranks (experimental and computated) and scores (computed) for the binding affinity 
of SNAP-1069 (27) to the three Oi-AR subtypes. ______________________ ___________________

Rank
(exp)

Score
London
dG

Score
Affinity
dG

Score 
Alpha HB

Rank
London
dG

Rank
Affinity
dG

Rank 
Alpha HB

Q ia ’ AR 1 -14.35 -8.71 -120.79 2 2 2
Q ib 'A R 2 -20.41 -12.70 -188.79 1 1 1
O id -AR 3 -8.91 -4.18 -93.98 3 3 3

The formation of a H-bond between the ligand and the adrenoceptors (Fig. 5.26) is 

observed in the connplexes with Oia-AR and Qib-AR. In the Qia-AR two H-bonds are 

observed where the Asp̂ °® interacts with the protonated nitrogen and Ser̂ ®® interacts with 

the other nitrogen in SNAP-1069 (27 ). The Qib-AR does not interact with the protonated 

nitrogen, but Asp^^  ̂ interacts with the other nitrogen in SNAP-1069 (27 ). For the Qid-AR 

no H-bonds are observed.

In the complex with Qia-AR two H-bonds are formed with Ser̂ ®® and Asp̂ °® and many 

hydrophobic interactions are established. In the complex with Oib-AR only one H-bond is 

observed with Asp^^  ̂ond other residues establish hydrophobic interaction with other parts 

of the molecule. No H-bonds are observed in the complex with Qid-AR. Further 

optimization of the Qid-AR complex is needed.

The strong binding for Qia-AR can be explained by the number H-bonds and hydrophobic 

interactions, which, compared to the Oib-AR and Qid-AR are larger in number.
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5.7. Selection of models for virtual screening
Based on the binding modes of the ligands as described in the previous section, ligand- 

protein complexes can be selected when an correlation between the interactions and the 

binding affinites has been obtained, for use in further studies. As it has become evident, 

not all models have converged to a state that represents an optimal binding of the 

antagonist-AR complex. However using the following criteria several models show an 

interaction which can be described as an optimized antagonist-adrenoceptor complex The  

criteria are: (1 ) the presence of hydrogen bonds, especially with the protonated nitrogen, 

(2) the hydrophobic interaction with a number of residues and (3 ), the number of 

observed interactions need to correspond to the binding affinity. Four different structures
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of each subtype are proposed which are most likely to be succesfull in further research. 

The four models that represent optimal binding in all three Oi-AR sybtypes are the 

receptors complexed with cyclozosin (4 ), alfuzosin (7), BMY-7378 (10) and WAY-100635

For the Qia-AR a common interaction within all four antagonists (Fig 5.27) is observed 

with Asp̂ °®. In three cases this is a hydrogen bond and in the other case (WAY-100635) 

hydrophobic interaction occurs. Furthermore, strong interactions with the residues Val °̂ ,̂ 

Cys“ °, Tyr̂ ®̂  and Phê ®® are observed. It can also be noticed that there are a number of 

residues which interact with only one or two antagonists, determining selectivity. Thus, H- 

bond interactions with both Asp “̂  and Trp̂ ®̂  together, could determine the Qia-AR 

selectivity, since, those are present at the same time and only in the Qia-AR complexes.

Figure 5.27: Binding of (a) cyclazosin (4 ) , (b) alfuzosin (7), (c) BMY-7378 (10) and (d) WAY- 
100635 (13) to the aiA-AR.
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For the Qib-AR (Fig. 5.28) common interactions for binding of four antagonists are 

observed via Cyŝ ®̂, Ser °̂  ̂ and Phe^ °̂. Residues that show interaction with three out of 

four antagonists are Ala^°^ Phe^“  and Tyr^^®, suggesting they play an important role in 

binding. Hydrogen bonds are formed with residue Ser °̂  ̂ in three cases. In contrast to the 

qia-AR where the protonated nitrogen interacts mainly with Asp^°^ the Qib-AR forms this 

interaction mainly with Ser °̂ .̂ This suggests a different binding mode in which the 

interaction with a Ser (qib-AR), instead of an Asp (qia-AR and qid-AR), in which the Ser is 

not aligned to the Asp residue, allowing the rest of the ligand to interact with different 

residues, therefore, obtaining receptor selectivity. It can be suggested that targeting 

Alâ °'̂  and Tyr̂ ^® simultaneously can also introduce Ois-AR selectivity.
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Figure 5.28: Binding of (a) cyclazosin ( 4 ) , (b) alfuzosin (7), (c) BMY-7378 (10) and (d) WAY- 
100635 (13) to theOiB-AR.
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For the Qid-AR (Fig. 5.29) common interactions that are involved are Asp^^  ̂ Ala^^^ Phe^ '̂‘ 

and Leû ®®. Hydrogen bonds are formed commonly via residue Asp̂ ®̂ and are also 

observed via residue Thr^®^ Glu^^S Ser^®  ̂ Glŷ ^̂  and Tyr^®  ̂ suggesting that residue Asp̂ ®̂ 

is common in forming a hydrogen bond with an antagonist, and several other hydrogen 

bonds can be formed which, in addition to non-bonded interactions, contribute to the 

binding affinity. The binding mode for the Qid-AR is similar to the Qia-AR. It  can be 

suggested that targeting Alâ ^̂  and Tyr̂ ®̂  simultaneously can introduce aip-AR selectivity.
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Figure 5.29: Binding of (a) cyclazosin (4 ) , (b) alfuzosin (7), (c) BMY-7378 (10) and (d) WAY- 
100635 (13) to the Qid-AR.
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5.8. Conclusions
In  earlier times, the  interaction between a ligand and the target receptor has been 

described as a lock and key mechanism. However, it soon becam e clear that the ligand- 

protein interaction is a dynamic process. This is also observed in our d ifferent interaction 

models. There  are several residues which appear to be key to interaction with these 

residues and can alm ost be described as a necessity for binding of each ligand to  the  

receptor to occur. Besides these, there appear to be m any other residues involved in the  

binding of a ligand which are ligand-specific, but not Oi-AR subtype specific. For each 

ligand in our dataset a num ber of residues w ere identified tha t can interact with this 

ligand. Because o f a small set of compounds that w ere  selected, this proposition can not 

be fully established.

During the MD simulation a conform ational change o f the adrenoceptor occurs which can 

be attributed to tw o factors. First, because our model is based on bovine rhodopsin, an 

optim ization will occur to th a t of the adrenoceptor state. Second, the ligand has an effect 

on the  conform ation and each final structure can be considered as an antagonist-induced  

conform ation. During the  MD simulation, the binding pocket opens up with the top part of 

the helices T M -IV  and T M -V  moving aw ay form  the centre. This allows a better fit o f the  

ligand in the binding pocket. Another conform ational change can be observed fo r T M - I,  

m ainly in the Qia-AR and Qid-AR, w here this helix moves aw ay from  the centre of the  

protein. A similar conform ation is observed in the recently obtained crystal structure of 

the P2 -AR. A lignm ent o f the ligand-induced conformations o f the Oi-AR with tha t of the  

crystal structure o f the |32-AR show similarity in the positioning of the helices. This 

suggests th a t the P2 -AR would m ake a b etter tem plate  for the  design of homology 

models, but it also m eans th a t homology models based on bovine rhodopsin are capable 

of converging to the  native state of the receptor.

W e have identified a binding pocket w ith the residues which are im portant for interaction  

for each o f the three  Oi-AR subtypes. These consist o f a hydrogen bond with one residue 

and a hydrophobic interaction w ith  several residues. W hen these three binding pockets 

are com pared (Tab le  5 .3 5 ) it can be observed tha t they are very similar with only a few  

residues being d ifferent in each binding pocket. These general binding pockets can be 

used to  identify w here a ligand will bind, and some residues could give some indication of 

ligand selectivity.
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Table 5.35: Residues that form the general binding pockets of the three orA R  subtypes. The 
shaded residues shows the residues which are aligned in each of the three Oi-AR subtypes.

Oia-AR Qib"AR Qid”A R
Hydrogen bond Aspi°^ Asp̂ ^̂ Asp̂ ^̂

Cys^ °̂ Thri3o Cys'«°

Ile'^« Ilê '*®

Ser̂ ®®

Ala'°^

Ser'^^ Ser °̂^

Tyr^ss Jyr338 Tyr392

Hydrophobic Asp̂ °® Asp̂ ®̂ Asp̂ ®̂

interaction Val °̂^ Val̂ ®̂

Cys“ ° Cyŝ ^̂ Cyŝ ®°

Ile'^« Tyr203 Ala'^'

Ser̂ ®® Ser °̂^ Ser"'«

Ser̂ ®̂
Tyr285

phe288 Phe^ °̂

Phe^''

Trp'^' T rp 36i

Leu '̂«

Tyr^is Tyr338 Tyr^^2

Although, most of the residues that form the common binding pocket are similar, a 

different binding mode was observed for the Qib-AR compared to the Oia-AR and qid-AR. 

The protonoted nitrogen usually interacts with an Asp located In TM-III, in the Qia-AR and 

Qid-AR, whereas, in the Qid-AR it interacts with a Ser which is located in TM-V.

The MD simulations have been shown to optimize the binding between the antagonist and 

the receptor to an antagonist induced conformation. However, full optimization is not 

always obtained when performing a 5 ns simulation. Based on the interaction via 

hydrogen bonds and the number of residues which show hydrophobic interactions, four 

AR-complexed antagonists cyclazosin (4), alfuzosin (7), BMY-7378 (10) and WAY-100635 

(13), have reached a close to optimal binding for each subtype. Based on these binding 

profiles four different binding pockets are created which can be used in further studies.
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Chapter 6: Discussion and further studies

6.1. Summary

A detailed structure based drug design study has been performed on the three orAR  

subtypes. The aim of this work was to obtain models of the three AR subtypes Qia-AR, 

qib-AR and Qid-AR and identify binding interactions that can be used in the discovery of 

antagonists that are selective for Qia-AR and Qid -AR, with application in the treatment of 

BPH. A computational protocol was developed which integrated the prediction of the 

structure of each of the three ai-AR subtypes, optimization of ligands that are known to 

bind to these receptors and the performance of MD simulations to optimize the interaction 

of antagonist- ai-AR complexes.

Homology modelling was used to develop 3D models of the three subtypes of ai-AR. 

These models are based on the alignment of the aminoacid sequences of bovine 

rhodopsin and those of the three adrenoceptor subtypes. Several different alignment 

approaches within the homology modelling framework were investigated to explore the 

possibilities of increasing the quality of the resulting homology models. Initially, models 

were created using the 'standard' method of aligning the amino acid sequence of the 

adrenoceptor and that of rhodopsin. The second approach involved an intermediate step 

implementing a new amino acid sequence. This new sequence is essentially that of the 

adrenoceptor sequence with several residues mutated to the corresponding ones in the 

rhodopsin sequence. This sequence is then used to generate an intermediate model by 

aligning it to the rhodopsin sequence. This intermediate model is subsequently used for 

alignment with the adrenoceptor sequence to generate the final oi-adrenoceptor models. 

Another approach was taken by changing the alignment between rhodopsin and the 

adrenoceptor sequence. As a result, 'gaps' of non-aligned residues occur in the alignment. 

This increases the similarity between the sequences of rhodopsin and the adrenoceptors 

when they are aligned. Following the four approaches, models were generated for all of 

the Oi-AR subtypes (aiA-AR, Qib-AR and Qid-AR). Each model was subjected to a 

molecular dynamics (MD) simulations with a production run of 4 ns. Models were 

extracted at 2 and 4 ns and analyzed using several protein assessment tools. Our 

research shows that the standard method leads to very acceptable results and there is 

always a model generated with limited errors. In addition, the standard method always 

provides stable structures during MD simulations. Models that make use of an 

intermediate mutated amino acid sequence were shown to improve or decrease, 

depending on the case, the quality of a homology model and, therefore, the standard 

approach is the preferred method.
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The Stability of the homology models also validates the used of the membrane mimic 

consisting of water/chloroform /water layers to mimic the normal environment of 

membrane bound receptors. However, it should be noted that we have performed 

relatively short MD simulations with a production run of 4  ns. Longer MD simulations for 

other proteins have been published (100 ns) but performing these with the solvent mimic 

has not been validated. Therefore, if these longer simulations would be used a large 

number of artefacts could be introduced resulting in an incorrect interpretation of the 

results.

As part of modelling, an extensive ligand optimization protocol and the study of the 

interactions between the antagonists and the aiA-, aiB- and aio-adrenoceptors an 

extensive ligand optimization were performed. W e have further optimized the minimum  

energy conformation of each ligand, determined their proton affinity and were able to 

derive accurate charges. As part of this process we determined the acid dissociation 

constants (p/G) for each antagonist. Firstly, a conformational search was performed 

followed by DFT calculations using B3LYP/6-31G* level of theory. For each group of 

ligands there was a preferred nitrogen to be protonated. Based on this protonation state, 

we calculated the p/G for a set of 29 ligands. Of these ligands, six have a known p/G and 

comparison between the experimental and computational values showed good correlation. 

This leads us to believe that our methods are accurate for determining the protonation 

state and p/G. In addition, we tried an alternative method using explicit water molecules 

with the polarizable continuum model (PCM) solvent model. This resulted in different 

energies compared to the calculations without the explicit water molecules. The obtained 

p/G values did not correlate as well with the experimental p/G values as the PCM 

calculations alone.

For examining the interaction between antagonists and adrenoceptor subtypes we have 

selected twelve antagonists which cover a range of binding affinities for each of the three 

Qi -ARs and are structurally different. Each ligand was docked individually into the three 

AR-subtypes giving rise to 36 complexes. All of these complexes, embedded in a 

membrane mimic model consisting of water/chloroform /water were subjected to a MD 

simulation of 5 ns. This membrane model was shown to provide stable homology models 

in MD simulations and, therefore, can also be used in ligand-protein complex simulations.
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The docking of the ligands into the adrenoceptors is not a straightforward task as 

different modes of binding can be considered. Therefore, the docking of multiple 

conformations of each ligand was performed producing a number of ligand-protein 

complexes. From these ligand-protein complexes one was selected and was subjected to 

a MD simulation.

The docking was performed using different conformations of the ligand, which were taken 

from the conformational search in the ligand optimization step. This produced a number 

of conformations that needed to be assessed for binding. Three parameters were used for 

this analysis: visual inspection. Autodock score and an interaction analysis using LigPlot. 

The visual inspection allowed the elimination of complexes that did not bind properly, e.g. 

a ligand that sticks out of the receptor. This is not necessarily shown in the binding score 

by Autodock, and interaction with a number of other residues can still be observed. 

Because we used a static protein in the docking process, a fully optimized binding of the 

antagonist to the adrenoceptor will not be obtained. Therefore, a large difference in 

binding probably indicates a different binding mode with a theoretical preference for the 

lowest energy complex. A small difference in energy indicates a different fit of the ligand 

in the receptor with no preference for either of these two binding possibilities, and it could 

converge to the same ligand-receptor complex when refined further with MD simulations. 

The LigPlot analysis allows the identification of existing interactions between the 

antagonists and the adrenoceptor subtypes. The starting structure is important as it 

provides a basis for interaction in the MD simulation. Therefore, docking of each ligand 

into each ai-AR subtype needs to be carefully analyzed and a consensus based on the 

three observations needs to be derived to select a ligand-receptor complex.

When performing the analysis of the MD simulation several structural features were 

monitored such as the positioning of the helices, the behaviour of an ionic lock and the 

behaviour of a salt bridge. The ionic lock plays a role in activation/deactivation of the 

receptor and the salt bridge a role in the stability of the receptor.

RMSD analysis of the helices has shown conformational changes in the binding pocket 

with the helices T M -IV  and TM -V influencing the shape of the binding pocket the most. 

Another change that was observed was the position of TM -I which move outward of the 

binding pocket. These conformational changes corresponded to a structure that shows 

more similarity to the 32-AR than bovine rhodopsin on which the homology models are 

built. This conformational change is likely due to two causes. The first is that our
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adrenoceptors are based on tine crystal structure of bovine rhodopsin which has a lower 

sequence sim ilarity than the 32-AR. This m eans tha t the  structure of the P2-AR is more  

sim ilar to  th a t o f the  a i-A R  and when MD simulations are  perform ed, a structural 

convergence to  the Pz-AR is expected. How ever, this e ffect is not fully observed for the  

uncom plexed receptors, suggesting th a t the binding o f a ligand allows the receptor to 

evolve to  a d ifferent conform ation. Secondly, d ifferent conform ational changes and 

conform ational states w ere  observed w hen structurally d ifferent ligands w ere  docked into 

the  sam e receptor. This suggests tha t there  is a ligand-induced conform ation and, 

there fo re , one crystal structure can not take into account th e  binding o f all its possible 

binders. H ow ever, the  obtained structure can be used to screen similar ligands. In  our 

study, w e  have optim ized several ligand-protein com plexes which allow the screening o f a 

diverse dataset.

Observations fo r the  ionic lock show a change in the distances betw een the  th ree  residues 

involved (q ia -AR; Asp^^^-Arg^^^-Glu^®^ Qib-AR: Asp^'*^-Arg^'*^-Glu^®^ and Qid -AR; Asp^®^- 

Arg^®‘‘-Glu^‘’^). This suggests th a t a conform ational change occurs upon com plexation and 

a m ovem ent to a d ifferent conform ational state is observed. A change in the  ionic lock is 

known to occur in the receptor activation process, but because w e  are modelling  

antagonists a conform ational change to an active state should not occur, but a ligand- 

induced conform ational change was expected. T h e  sam e result can be noted for the  salt 

bridge (au -A R ; Asp^“ -Lys^^^ Qib-AR: Asp^^®-Arg^^^ and Qid -AR: Asp^^^-Lys^®^). Because of 

the limited tim escale of the MD simulation (5  ns) a full convergence to a ligand induced 

conform ation is not expected. This conform ational change o f the protein does not mean  

th a t on optim ized binding betw een ligand and receptor has not occurred and, there fo re , 

these models are suitable for screening virtual libraries.

More im portant is the interaction of the  ligand w ith  the  receptor which can be studied  

using the  program  LigPlot which identifies residues th a t form  hydrogen bonds w ith  the  

ligand or establish hydrophobic interactions. W hen com paring the  ligand-protein  

interactions in the  initial docked hom ology models and a fter 5 ns o f MD sim ulation a 

different interaction pattern is observed. Especially the  interaction betw een the  

protonated nitrogen and the aspartic acid becomes evident in the structures obtained  

a fter the  MD simulation and shows the  im portance o f optim ization. Analysis o f all 12 

com plexes for the  three o i-AR-subtypes showed th a t m ost o f the  residues involved in 

binding are located in T M - I I I ,  T M -IV , T M -V , T M -V I and ECL-IV-V. This was observed for 

each subtype and a general binding pocket for the  three  subtypes was derived based on
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the number of ligands showing interaction with a particular residue. This allowed the 

definition of a binding pocket for each subtype. These three binding pockets are 

remarkably similar with only 3 residues of difference between each binding pocket. I t  was 

observed that the different oi-AR-subtypes interact differently with the protonated 

nitrogens. In the Qia-AR and Qib-AR this interaction is observed with an Asp, whereas, in 

the qib-AR this interaction is observed with a Ser. This suggests that a different binding 

mode exists for the Qib-AR compared to the Qia-AR and Qiq-AR which can be further 

exploited in structure based drug design and indicates that antagonists that target the 

qia-AR and Qid-AR selectively is possible.

To select adrenoceptor models which can be used in receptor subtype-specific drug 

design, models need to have the ability to identify interactions with a range of ligands. 

Based on the formation of hydrogen bonds and other interactions with different residues 

and based on the similarity to other bound ligands, a selection of four antagonists was 

made which were likely to have a close to optimal interaction with each of the three 

subtypes Qia-AR, Qib-AR and Qiq-AR. Due to the structural difference of these four ligands, 

these models represent different binding modes which is confirmed by the different 

residues that are involved in each binding pocket. This allows screening of compounds 

which bind in a different binding mode and can initiate the discover/ of a new class of 

qia/d-AR selective antagonists.
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6.2 Further studies
With the publication of the crystal structure of the pz-AR the molecular modelling of the 

interactions between GPCRs and their ligands will change dramatically. Until now, most 

AR models were based on the bovine rhodopsin crystal structure and are, due to the 

higher amino acid sequence identity, likely to be replaced by models built on the P2-AR. 

Although, similarity to the p2*AR is higher, structural optimization is likely to be needed as 

related proteins are not copies of each other.

Another way of improving existing models is performing the MD simulations in a 

phospholipid bilayer which should be more accurate.^^^^^ Several bilayer models are 

available and, therefore, selection of the optimal will be crucial. Consensus on which 

bilayer model would perform best has not been achieved and each model will have its 

advantages and drawbacks. The advantage of solvent-based models, as used in our 

study, is that the calculations are quick to perform compared to phospholipid bilayers. A 

comparison of the effect of the phospholipid and solvent models on the adrenoceptor 

structure could be made.

A feature which is largely unexplored is the formation of dimers. We know this exists for 

several GPCRs, but there is little understanding of how exactly it is manifested. The  

knowledge of which receptors dimerize in homo- or hetero-form and which residues are 

involved in connecting those receptors is unknown. To examine dimers, several 

configurations could be simulated, but a determination of which configuration is 

favourable is unlikely due to the lack of reference data. I t  can also be questioned if this 

approach would produce better results than the approach taken in this thesis and, 

therefore, other approaches may be considered first.

In this thesis several models have been presented for ligand-protein interaction. Although 

every model in this study can be used for further studies, we suggest four antagonists- 

c iia / b/ d -A R  complexes which show a known h-bond with an aspartate mentioned in 

literature. These complexes can be further refined using Quantum Mechanics/Molecular 

Mechanics (QM /M M ) to obtain a very accurate ligand-protein complex. This is a 

combination of methods that treat different parts of the systems at different levels of 

theory. Quantum mechanics can model chemical reactions and, therefore, the part of 

interest is subjected to this method. MM methods are much quicker to perform and.
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therefore, used on the rest of the structure and provides a biochemical background for a 

reaction/interaction to occur.

Four binding pockets have been proposed in each of the three ai-AR subtypes which 

could be used for virtual screening studies. Firstly, the twelve compounds that were used 

in our MD simulations should be docked to observe if it is possible to reproduce the 

binding that is shown for each simulation with one docking run. Furthermore, a small 

dataset (28 compounds) is available from our ligand optimization which could be used as 

an initial dataset to validate the use of the complexed-structures in docking studies. We 

have taken an extended approach in optimization of our ligand dataset which, due to 

restrictions of time, is not possible on larger datasets. This problem needs to be solved by 

replacing this with a quick optimization method of the new and larger ligand dataset. A 

program that is commonly accepted for converting 3D structures is Corina.^^^^^

Docking studies should be performed using a larger dataset. To expand the dataset, two 

considerations should be made. There are more known ligands which interact with the 

different oi-ARs and can be added to the dataset. Also, inactive compounds should be 

added which are known as d e c o y s . A  database design strategy needs to be employed 

to ensure that it contains enough active and inactive compounds which cover a significant 

amount of structural diversity. When docking and retrieving the active ligands is succesful 

the screening of a large database such as can be performed. Due to the large

size of the ZINC database, it is recommendable to select properties beneficial to the Qia- 

AR and filter out compounds.

The scoring of ligand-protein complexes would be a large part of this virtual screening. 

Numerous functions are available, but the reliability of these is limited. Therefore, a 

number of scoring functions should be used and these should be combined into 

consensus scoring functions.

Finally, a new approach that can taken is the use of protein-ligand interaction 

fingerprints.^^^®'^^^  ̂These fingerprints do not score the ligand-protein complex according to 

a binding energy, but use the interaction with selected residues as a determination for 

differentiation between binders and non-binders. These methods do require a crystal 

structure as a reference for interacting residues. The obtained complexes from our MD 

simulations provide these reference ligand-protein interactions.
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