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Sum m ary

This thesis is a collection of essays in applied tim e series econometrics, focusing particularly 
on the role of random  field regression. The thesis is introduced in Chapter 1, which discusses 
the  m otivation for the thesis and outlines its structure.

T he second chapter discusses nonlinear econometric modelling. It introduces the concept 
of nonlinearity and discusses its im portance in economics and econometrics. It also provides 
a treatm ent of several approaches to modelling nonlinearity in economics, before giving an 
account of the approach to nonlinear econometric modelling proposed by Hamilton (2001). It 
then  describes some of the m ethods of nonlinear optim isation th a t may be used in the G a u s s  

com puter program  provided by Ham ilton for the  im plem entation of his methodology. The 
performance of this program is investigated using d a ta  relating to Ham ilton’s examples, two 
versions of the G a u s s  software and a range of alternative nmnerical optim isation options. 
The impact of c;hanges in initial param eter estim ates and the use of pairs of optim isation algo
rithm s are also examined. The effects of changes in the sample da ta  on the results produced 
by H am ilton’s procedure are explored. Finally, a discussion of the ])ublished connnents made 
by Hamilton (2005) on this work are included. The results of this study suggest some clear 
conclusions, which will be of value to those contem plating working with Ham ilton's method.

C hapter 2 also highlights H am ilton’s (2001) LM-type test, which is likely to be little 
known, due to the technical nature  of the original paper detailing the methodology and also 
because the test is embedded within th a t methodology. C hapter 3, continuing on the theme 
of nonlinearity in economics and econometrics, and the approach put forward by Hamilton, 
investigates the properties of several tests for neglected nonlinearity in time series, using 
M onte Carlo simulation m ethods. This study  is motivatetl by the LM-type test proposed 
by Hamilton. The com parative properties of th is test, as an integral part of Hamilton's 
framework and indeed as a stand-alone test for nonlinearity, have yet to be fully explored. 
Therefore, this chapter investigates the com parative properties of the Hamilton test and 
some well-known alternatives, by applying them  to some model si)ecifications commonly 
encountered in empirical research. H am ilton’s LM-tyj)e test is evaluated across a range of 
param eters and data, and com{)ared w ith the Durbin-W atson (1950) bounds test, Ramsey’s 
(1969) R e s e t  test, the Harvey-Collier (1977) V'-test and three tests put forward by Dahl 
and Gonzalez-Rivera (2003). The results from this chapter confirm the powerful na tm e of 
the Ham ilton test and its variants, particularly  the A^p test of Dahl and Gonzalez-Rivera. 
Interestingly, however, it is also shown th a t Ram sey’s (1969) R e s e t  test is powerful by 
comparison to the random  field-based tests.

C hapter 4 provides the background theory required for the remaining chapters of the 
thesis. As the remaining chapters compare and contrast the resvilts of modelling tinie-series 
relationships using the Hamilton (2001) m ethodology with a variety of alternative methods, 
they are introduced here. These alternative m ethods share the connnon tra it th a t they 
exploit the concept of (co)integration in modelling economic relationships. Three approaches 
to  modelling economic relationships are com pared with H am ilton’s approach; the Engle- 
Granger (1987) 2-Step procedure, Johansen’s (1988, 1991) vector autoregressive approach 
and common factor (COMFAc) analysis (Hendry and Mizon, 1978). Chapter 4 reviews each
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of these m ethods in tu rn . A ttention is also given to the work of Dolado, Gonzalo, and Mayoral 
(2002) on fractional integration and Johansen’s (2002) small sample correction, which may 
offer further insight into the im plem entation, application and results of some of the above 
methods.

C hapters 5, 6 and 7 draw attention to the lim itations of the standard  unit root-cointegration 
approach to economic and financial modelling, and to  some of the alternatives based on 
the idea of fractional integration, long memory models and the random  field regression ap
proach to nonlinearity. C hapter 5 examines a well-known dem and for money dataset for 
Denmark and Finland, which relates to  an area of economics where cointegration is com
monly employed. C hapter 6 explores purchasing power parity for Irish da ta  by investigating 
the behaviour of the Irish exchange ra te  in respect to Germany and the U nited Kingdom. 
Purchasing power parity  is another area of economic theory which has often been empirically 
investigated using the / ( l ) / / ( 0 )  framework. In each chapter, standard  unit root testing pro
cedures and tests of cointegration are employed to explore the relationships outlined. This is 
followed by consideration of the possibility of fractional integration and nonlinearity in eac:h 
cfise.

The findings of s tandard  unit root testing and cointegration analyses prove somewhat 
confusing in both  cases, suggesting perhaps th a t the / ( l ) / / ( 0 )  framework is not the most 
appropriate in either case. Fractional integration analyses confirm this finding. Strong evi
dence of nonlinearity is foimd in both these applications, using Ham ilton’s (2001) test. T hat 
methodology siiggests some clear conclusions regarding the variables which contribute to tha t 
nonlinearity.

Chapter 7 examines issues surrounding the testing of fractional integration anti nonlin
earity in relation to the forward exchange rate anomaly of Fama (1984). The behaviour of 
three exchange rates and prem ium s is investigated in term s of fractional integration and non- 
linearity. The findings provide some support for / ( I )  exchange rates bu t suggest fractionality 
for premiums, mixed evidence on cointegration, and a strong possibility of time-wise nonlin
earity. Significantly, when the nonlinearity is modelled using a random  field regression, the 
forward anomaly disappears.

The results from these illustrative case studies not only offer interesting insights into the 
specific areas of money dem and, purchasing power parity and the forward exchange rate 
anomaly, bu t they also offer conclusions th a t should aid practitioners in applied tim e series 
econometrics. Sjjecifically, these studies draw atten tion  to the issues of stationarity , non- 
stationarity, s truc tu ra l breaks and nonlinearity in economics and econometrics, and outline 
methodologies and modelling apjjroaches, at the frontier of current econometric thinking, 
th a t can be used by practitioners to  explore and b e tte r understand these issues.

C hapter 8 concludes the  thesis by offering a sum m ary of the findings and by outlining 
avenues for future research.
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M odels are, for th e  m ost p a r t, ca rica tu res of reality, b u t if th ey  are good, th en , 

like good ca rica tu res , th ey  portray , though  p erh ap s in a d isto rted  m anner, som e 

of th e  featu res of th e  real world. T he m ain role of m odels is no t so m uch to  

explain and  to  p red ic t - though  u ltim ate ly  these are the  m ain functions of science 

- as to  po larize th in k in g  and  to  pose sh arp  questions.

Mark Kac, Some Mathematical Models in Science.

It m ust be em pluisized th a t  a coin tegration  analysis cannot be th e  final aim  of an  

econom etric investigation , h u t it is our im pression th a t as an  in te rm ed ia te  s tep  

a coin tegration  analysis is a useful tool in th e  process of gaining m id erstan d in g  

of the  re la tion  betw een d a ta  and  theory, which should help in build ing a relevant 

econom etric m odel.

Soren .loiiansen.
Likelihood Based Inference in Cointegrated Vector Autoregressive Models.

In short, th e  p ap e r proposes a single encom passing fram ew ork for non linear m od

elling, offering a new tes t for nonlinearity , m ethods to  infer w hat th e  non linear 

function  looks like, an d  c:hecks of w hether it is adequately  described by som e 

particu la r m odel.

James D. Hamilton,
A Parametric Approach to Flexible Nonlinear Inference.
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1.1 Foreword

This thesis, a collection of related essays in applied tim e series econometrics, has modest 
aims. It sets out to  explain and explore H am ilton’s (2001) nonlinear modelling framework, a 
relatively new and potentially im portant approach to applied econometric modelling, includ
ing his proposed test for nonlinearity. It will also consider the concept of long memory tim e 
series and a ttem p t to establish what these alternative modelling approaches have to offer, 
by comparison to a standard  analysis of nonstationary  data. This is achieved by consider
ing three illustrative case studies where such standard  analysis has been routinely employed. 
These aims are further elaborated upon in tlie subsecjuent sectif)ii and in each respective 
chapter. The structu re  of the thesis will also be outlined briefly here.

1.2 M otivation

N onstatiouary d a ta  have played a key role in economic modelling for the jjast two decades. 
T he seminal works of Nelson and Plosser (1982) and Engle and Granger (1987) highlighted the 
prevalence of nonstationarity, particularly  in macroeconomic time series. The autoregressive- 
integrated-m oving average, or A r [MA, approac;h put forward by Box and Jenkins (1976), 
provided an early framework for modelling nonstationary data. W ith further developments 
in this area, including an understanding of spurious regression and its likely c;auses (see, 
for example. G ranger and Newbold, 1974), a large theoretical and applied literature grew 
up. S tandard  approaches to dealing with nonstationary tim e series were introduced and the 
concept of cointegration and error-correction became staples of macroeconomic modelling.

Despite the attractiveness of this apj)roach, its ability to combine long-run and short-run 
dynamics, and its ability of overcome the socalled  sptu'ious regression, the methodologies 
th a t built up in this area are not without their potential pitfalls. A conunon concern in all 
api)lied re.search is sample size. As cointegration is concerned with long-run relationships, 
th a t concern is particularly relevant. This issue has recently been addressed by a small sample 
correction to the popular Johansen (1988, 1991) j)rocedure and has shown the potential for 
incorrect inferences where sample sizes are small. The prim ary concern, however, is tha t 
these m ethods are strictly applicable to unit root processes, cis ojjposed to the closely related 
nonstationary  ])rocesses. To classify series requires suitable testing. Two imm ediate prot^lems 
are evident. An early test for imit roots, the augmented Dickey-Fuller (1979, 1981) test, is 
known to have low power. This procedures tests the null hyjjothesis tha t the series under 
exam ination is nonstationary against the alternative tha t it is stationary. The low power, 
therefore, often manifests itself in failing to  reject nonstationarity, wdien in fact the series 
in question is stationary. These issues have been addressed to some degree by new testing 
procediires, bvit generally, test power has rem ained low. One reason for this low power is 
th a t it is difficult to statistically distinguish between nonstationary series and nonlinear but 
sta tionary  series. S tructural change in a series may also lead to incorrect inferences regarding 
nonstationarity.

A further issue relates to the definition of nonstationarity  and unit roots themselves, as so 
often used in the applied literature. Unit root and cointegration tests offer a framework to test
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for noiistatioiiarity when series are integrated precisely to integer order; unity  for example. 
T h a t is, the series is generated by a unit root process. A series can exhibit nonstationarity, 
however, if its order of integration lies between 0.5 and 1.5. This introduces the  concept 
of fractional integration, so far little used in apjjlied research. A series can, however, be 
considered to  be long memory and sta tionary  if the order of integration lies between zero 
and 0.5. These im portan t issues rem ain less well known than the standard  / ( l ) / / ( 0 )  analysis 
and they can make m odelling nonstationary  d a ta  far more challenging th an  it m ay a t first 
appear.

Another concern, briefly alluded to already, is nonlinearity. It can be very difficult to 
distinguish between a nonlinear series and a nonstationary series. T ha t is, a  series may be 
sta tionary  w'ith a nonlinear d a ta  generating process, but testing procedures cannot distinguish 
this from nonstationarity. The presence of struc tu ra l breaks adds further complications, m ak
ing what may otherwise be sta tionary  series nonstationary. ‘ The result can he a modelling 
effort directed towards nonstationary  data, when in fact it should be directed to  m odelling the 
nonlinearity or s truc tu ra l breaks. The relative attractiveness of the cointegration framework, 
against the potentially  more complex nonlinear or stationary with breaks case, goes some 
way to explaining why this approach is often neglected. This is reinforced by the availability 
of pre-progrannned com puting routines which make the former ai>proach very accessible.

Recent developm ents in tim e series econometrics may offer a solution to  some of these 
problems. The field of fractional integration has developed greatly, with several procedures 
available to  test w hether a series is integrated to integer order or fractionally. The field of 
fractional cointegration, although not touched upon in this thesis, is also growing."^ Finally, 
developments have also been m ade in the area of modelling nonlinearity, a notable example 
being tha t of Ham ilton (2001). This offers a potentially powe^rful alternative to the s tan 
dard  approach, when the appearance of unit roots is actually due to s truc tu ra l change or 
nonlinearity.

The aims of the  thesis are to  exj)lore these issues and to highlight the possible deficiencies 
in the standard  7 ( l) / / ( 0 )  framework, by considering the possible alternatives of fractional 
integration, small samples and nonlinearity. The thesis will initially explore the alternative 
m ethods, particularly  th a t of Ham ilton (2001), before proceeding to illustrative case studies 
to  evaluate these recent (leveloi)ments.

1.3 Structure

After the brief in troduction of C hapter 1, which discussed the m otivation for the thesis, 
Chaj)ter 2 will begin w ith a discussion of nonlinear econometric modelling, outlining some

'See, for exam ple. Perron (1989).
growing literature on fractional cointegration exists, encompassing both theoretical aspects and em

pirical applications. Much of the theoretical literature considers issues relating to testing and inference in 
fractionally cointegrated .systems; see, for exam ple, Kim and F-’hillips (2000), Martin (2001), Davidson (2002), 
published in special edition of the Journal of E conom etrics dedicated to long memory and nonlinear tim e se
ries, flualde and Robinson (2002), Chen and Hurvich (2003a, 200.3h), Gil-Alana (200.3), Robinson and Hualde 
(2003), Velasco (2003), D ittm ann (2004), and Robinson and lacone (2005). The concept o f fractional coin- 
tegration has been applied to a wide range o f topics; see, for example, Cheung and Lai (1993b), Baillie and 
Bollerslev (1994), Lien and Tse (1999), Liu and Chou (2003), Masih and Masih (2004), and Caporale and 
Gil-Alana (2005).
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approac;hes th a t are popular in the apj)liecl literature. It will also introduce the concept of 
nonlinearity and will discuss its im portance in economics and ec:onometrics. It will then 
give an account of the approach to nonlinear econometric modelling proposed by Ham ilton 
(2001), the focus of this chapter. The theory behind this framework will be outlined, as will 
its test for nonlinearity. The issue of the applicability of this api^roach in the presence of 
nonstationarity  will also be discussed. The im plem entation of this methodology will then 
be discussed, as will some of the m ethods of nonlinear optim isation th a t may be used in 
the G a u s s  conijjuter program  provided l)y Hamilton. The performance of this program  will 
be reported on, in term s of com putational issues and da ta  sensitivity: the former detailing 
the im pact of changes in initial param eter estim ates and the use of pairs of optim isation 
algorithm s and the la tte r the effects of changes in the sample d a ta  on the results produced 
by H am ilton’s procedure. Finally, the published connnents m ade by Ham ilton (2005) on 
this work will be discussed. The chapter will conclude with recom m endations for those 
contem plating working with the m ethod.

Continuing on the  them e of nonlinearity in economics and econometrics, and the approach 
put forw’ard by Ham ilton (2001), C hapter 3 will investigate the ])roperties of several tests for 
neglected nonlinearity in tim e series, using M onte Carlo simulation m ethods. This study  is 
m otivated by the LM-type test proposed by Ham ilton and previously introduced in C hapter 
2. This chapter will begin with a description of each of the seven tests to be used in the 
com parative study, with an emphasis being placed on those less well-known tests. The design 
of the M onte Cark) experiments, which set out to  investigate the (X)niijarative properties of 
these tests by api)lying them  to some model specifications commonly encomitered in empirical 
research, will be outlined. Some basic but necessary m aterial on hypothesis testing will also 
be included for completeness. The results from the simulation study will then be discussed 
a t some length. The conclusion will outline the hndings of the study  and offer a com parative 
evaluation of the Hamilton test for nonlinearity.

C hapter 4 will serve only to provide the background theory requirt'd for the rem ain
ing chapters of this thesis. As the remaining chapters compare and contrast the results of 
modelling time-series relationships using the Ham ilton (2001) methodology with a variety 
of alternative m ethods, the alternatives will be introduced here, although a brief treatm ent 
of stationarity , nonstationarity  and unit root j)rocesses will be offered initially. The alter
native m ethods to  be introduced share the common tra it th a t they exploit the concept of 
(co)integration in modelling economic relationships. Three approaches to modelling these 
relationshi])s w'ill be compared with Ham ilton’s: the Engle-Granger (1987) 2-Step approach, 
Johansen’s (1988, 1991) vector autoregressive approach and connnon factor (COMFAC) analy
sis, as described by Hendry and Mizon (1978). Chaj)ter 4 will review each of these m ethods 
in tu rn . A ttention will also be given to the work of Dolado, Gonzalo, and Mayoral (2002), on 
fractional integration and Johansen’s (2002) small sample correction, which may offer further 
insight into the im plem entation, application and results of some of the above m ethods.

C hapters 5, 6 and 7 will draw attention to the  lim itations of the standard  unit root- 
cointegration ajjproacli to  economic and financial modelling, and to the potential of some of 
the alternative m ethods based on the idea of fractional integration, long memory models and 
the random  field regression approach to nonlinearity; i.e., the m ethods introduced in previous
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chapters. C hapter 5 examines a well-known dem and for money dataset for Denm ark and 
Finland, which relates to an area of economics in which cointegration is conniionly employed. 
C hapter 6 explores purchasing power parity for Irish data  by investigating the  behaviour of 
the Irish exchange rate  in respect to  Germany and the United Kingdom. Purchasing power 
parity  is another area of economic theory which has often been empirically investigated using 
the / ( l ) / / ( 0 )  framework. The s truc tu re  of these chapters will be very similar. In each chapter, 
a brief account of the dem and for money and purchasing power parity, respectively, will be 
offered. S tandard  unit root testing  procedures and tests of cointegration will then  be employed 
to  explore the relationships outlined. Finally, the possibility of fractional integration and 
nonlinearity in each case will be explored. Each chapter will conclude w ith a sum m ary of the 
findings.

C hapter 7 will examine the issues surrounding the testing of fractional integration and 
nonlinearity in relation to the  forward exchange rate anomaly of Fam a (1984), for three 
exchange rates and prem iums. T he structure will be similar to th a t of chapters 5 and 6. 
After a brief introduction to  the anomaly, standard  unit root and cointegration tests will 
be applied. Tests for fractional integration will also be carried out, before exploring the 
relationship with H am ilton’s (2001) methodology, to consider the possibility of nonlinearity.

It is hoped tha t the results from these illustrative case studies may offer interesting insights 
into the specific arefis of money dem and, purchasing power i)arity and forw'ard exchange rate 
anomaly, but they may also offer guidance tha t could aid practitioners in using tim e series in 
applied economic research. C hap ter 8 will conclude the thesis by offering a sum m ary of the 
findings and by outlining avenues for future research.'^

'^The analysis carried out in this thesis uses a number of software environments, namely, E VIEW S v. 5.1, 
C a u s s  V .  3 and v. 5, JMulTi v. 4.12, M i c r o f i t  v . 4.11, O x v. 3.4 and R a t s  v . 5. It has been typeset in 
using MiKTeX v. 2.4; see, for exam ple, Kopka and Daly (2004), Lamport (1994) and M ittelbach, Goosens, 
Braams, Carlisle, and Rowley (2004).
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Chapter 2

The Hamilton Random Field 
Regression M ethodology and its 
Implementation

Research carried out in the course of writing this chapter has led to the publication of 'Investigating Non- 
linearity: A Note on tlie Irnplenientation of Ham ilton’s Random Field Regression Model' by Bond, I)., M..J. 
Harrison, and E..J, O ’Brien, in Studies in Nonlinear Dynamics and Econometrics, 9, Article 2, Septem ber 2005, 
and also Trinity Economic Papers, Nos. 12 (2001?) and 4 (2005). See also the response from .J.D. Hamilton. 
’Comments on 'Investigating Nonlinearity” in Studies in Nonlinear Dynamics and Econometrics, 9, Article 
3, September 2005. The Bond, et al. (2005a) paper was pre.sented at the .3"  ̂ International Association for 
S tatistical Com puting World Conference on C om putational S tatistics and D ata Analysis, Limassol, Cyprus, 
28‘'‘-31"‘ October 2005.
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2.1 Introduction

As discussed in Chapter 1, this thesis is concerned with apphetl tinie-series niodelhng of 
macroeconomic and financial data, and some of the issues involved therein. One of these 
issues is the presence of nonlinear relationships among economic variables. This chapter will 
introduce the importance of nonlinear models in economics and econometrics, and will briefly 
discuss some tests and methodologies used in practical apj)lications. Those methods include 
approaches based on time-varying parameters, threshold and smooth transition autoregressive 
processes, regime-switching models and smoothing splines. The issue of a nonlinear modelling 
strategy is also touched upon.

Attention is then turned to a new and potentially important techniciue, which is the 
main focus of this chapter. Hamilton (2001) proposed an approacli to nonlinear modelling 
of economic relationships that jirovides a single flexible parametric framework for testing for 
nonlinearity, drawing inference about the form of nonlinearity and a-ssessing the adecjuacy of 
the description of nonlinearity provided by specific models. This approach treats functional 
form as the outcome of a latent stochastic process. This latent process is modelled using a 
relatively new Gaussian random field concept that generalises Brownian motion to k dimen
sions. From the practicing economist’s viewpoint, the iniportanc:e of Hamilton's approacli lies 
in the valuable insights it can provide for model construction and the resulting enhancement 
of the forecasting ability of economic models.

How'ever, the new' methodology has been little used to date and its full potential rem.ains 
to be established. As Hamilton (2001. p. 552) pointed out, its usefulness for particular 
sample sizes and nonlinearities is a m atter for empirical investigation. Yet. citing his own 
three examples and the Monte Carlo studies by Dahl (2002), he suggested that the method 
holds much promise.

The main purpose of this chapter is to address a number of prac;tical issues that arise 
when using the Hamilton (2001) ap{)roach. The first of these concerns c(jmputation and 
reports on exjjerience gained with Hamilton’s software to implement the method. It appears 
that the numerical optimisation involved is not an entirely straightforward matter, either 
when using Hamilton’s dataset or alternative samples. Thus while the Hamilton case study 
is the primary focus, this finding may have more general relevance for proc:edures that employ 
similar optimisation techniques. The second issue concerns the sensitivity of the method to 
changes in data. Experiments suggest that minor data changes can have implications for 
computation and big effects on the results.

The structure of the chapter is as follows. Section 2.2 discusses the importance of nonlinear 
models in economics and Section 2.3 introduces some techniques c;onnnonly used for modelling 
them. Section 2.4 introduces the Hamilton (2001) method, while sections 2.5, 2.6 and 2.7 
consider the findings of this research. Specifically, issues relating to the comi)utational and 
data sensitivity matters are reported. Section 2.8 contains comments on the reply to this 
work offered by Hamilton (2005), while Section 2.9 concludes.
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2.2 N onlinear M odels in Econom ics and Econom etrics

The main goal of this chapter is to consider the m ethod of Ham ilton’s (2001) flexible nonlinear 
inference, its theory and im plem entation. Before doing so, however, the im portance of nonlin
earity  in economics is very briefly explored. It is generally accepted th a t nonlinearity occurs 
naturally  in economics and th a t many economic theories suggest a nonlinear relationship. 
Many relationships of interest, be they from the field of macroeconomics, microeconomics or 
financial economics, have naturally  occurring thresholds, constraints and boundaries, which 
may result in nonlinearities. A plausible nonlinear specification may sometimes be suggested 
by economic theory. These are often incomplete, however, and may not fit the  d a ta  well. 
Also, even when theory may indicate nonlinearity in a given relationship, it may offer no in
sight into the form of th a t nonlinearity. Finally, theory may say nothing about a nonlinearity 
whatsoever. As a result of these difficulties, linear models are often assumed to  be adequate. 
A known nonlinear sijecification may be linearised, thereby avoiding further complications 
in analytical or empirical estim ation, or as has often been the case, a nonlinear model is 
approxim ated by a linear model. ̂  Modelling in this way has proven to be quite successful. 
Problem s, however, have been known to arise when this approach is adopted. Tests of such 
approxim ated specifications frequently reject param eter constancy, pointing perhaps to  struc- 
tiu'al breaks. A connnon, btit unsatisfactory solution has been to build a dum m y variable 
into the specification to allow for such a break. It is preferable, however, in such cases to 
specify an equation th a t allows for nonlinearities in the param eters.

Advances in recent decades have been m ade which allow for the use of nonlinear specifica
tions. Much work has been done in the field of nonlinear tim e series analysis. In tandem  with 
this, low cost com putational power has become widely available to the applied researcher, 
m aking suc:h m ethods accessible. As nonparam etric and sem iparam etric estim ation m ethods 
have become com putationally feasible, they have also become incretisingly popular, despite 
the criticisms matle against them , some of which will be outlined briefly in the next section. 
Such developments have insj)ired fm ther advances in statistical techniques and have been 
applied throughout economics, econometrics and finance."^

Considering this, when should a nonlinear specification be used? From an ec'onomic and

' A l l  excellent exam ple is th e  Phillip.s curve, which is p e rh ap s  one of th e  m ost well-known, if no t controversial, 
exam ples of non linearity  in economics. Phillips (1958) p roposed  th e  following form of th e  re la tionsh ip  betw een 
wage ra tes and  unem ploym ent

y + a = bx'^,

whic:h can be linearised easily to  becom e

log {y + a) =  log b + c log x.

The preferred specification,

was not used. It is widely assum ed th a t th is  was due to  a  lack of available com puting  pow er. Instead , the 
loglinear equation  above was estim ated  by O ls w ith ju s t four observations. T he  original 52 observations were 
aggregated  over in tervals to  p roduce ju s t six observations, o f w hich four were used.

■^See, for exam ple, L iitkepohl, T erasv irta , and  VVolters (1999), w ho exam ined  th e  stab ility  of G erm an money 
dem and . Lee. Kim, and  N ewbold (2005), w ho explored spu rious regression in th e  con tex t of non linearity  and 
Taylor, Peel, and  Sarno  (2002), w ho re-as.sessed purchasing  pow er parity  in light of non linear behaviour in 
exc;hange rates.
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econometric theory point of view, the choice is clear. A linear specification should only 
be used if theory suggests a  linear relationship, or a relationship that could he reasonably 
approxim ated by a linear model, w ithout elim inating essential elements of th a t model. This 
of course asstmies tha t theory provides some indication of the nature of the relationship. 
It is far more likely tha t the nonlinear relationships suggested by economic theory will be 
vague at best. Granger and Terasvirta (1993) suggested a strategy for nonlinear modelling. 
In deciding on the variables to  include, they advocate both  the simple-to-general approach, 
suggested by Box and .lenkins (1976) in the context of linear modelling, and also the general- 
to-specific approach of Hendry.^ Having tested for, and found nonlinearity, ‘there appears to 
be no simple answer’ to the question of which nonlinear model should be used.'* In fact, it is 
recommended tha t a variety of models be considered and th a t economic theory, vague as it 
may be, must play an im portan t role, where possible. In addition, the decision-making process 
can be guided by post-estim ation misspecification testing. Such post-estimation testing is 
useful for inferring whether a given nonlinear form is appropriate. Note tha t although some 
tests for nonlinearity test a null of linearity against a specific nonlinear alternative, the 
m ajority test against a nonspecific alternative.^ The issue of testing will be discussed in 
greater depth in C hapter 3. A linear model may also be considered if the nonlinear model is 
difficult to work with and it is felt th a t the linear alternative may be useful or instructive. 
Finally, an exploratory d a ta  analysis approach may be taken, allowing the data  to guide the 
final specification of the model. The role played by economic theory cannot be understated.

Despite the obvious a ttrac tion  of using nonlinear models, as outlinexl above, difficulties 
may still arise. The chosen specification will, therefore, be one of the vast array of alternative 
nonlinear models, selected perhaps more for analytical convenience than prior theoretical 
considerations. Of course, as with all model specifications, any nonlinear model rem ains a 
simphfication and can be expected to fail from tim e to time.

Given this brief overview of why nonlinear modelling may be preferable, the next sec:tion 
will give consideration to  some of those m ethods successfully employed in economics and 
econometric:s.

2.3 M ethods for M odelling N onlinearity

This section reviews some of the m ethods available in the field of nonlinear econometric 
modelling, including both param etric and nonparam etric techniques. The m ethods to be 
considered are time-varying param eters, threshold autoregressions, models of regime switch
ing, sm ooth transition autoregressions and sm oothing splines. Only brief consideration is 
given to the nonparam etric approaches. These m ethods, as Hamilton (2001) pointed out, 
sacrifice many of the benefits of param etric methods.® Nonparam etric m ethods j)resent prob
lems in inference, he it Bayesian or classical in nature, and are not readily adaptable to the

^See, for example, Gilbert (1986).
■^Granger and Teriisvirta (1993), p. 166.
'^Terasvirta (1994), for exam ple, proposed a test for nonliriearity which tests the null of linearity against 

the alternative of a sm ooth transition autoregression ( S t a r ) model.
®Hamilton (2001). p. 537. In light of this, it is felt nonparametric approaches such as kernels, wavelets and 

nearest neighbour are beyond the scope of this review.
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hypothesis testing or model simplification required for mviltivariate modelling. W hat follows 
is a brief description of each method.

2.3.1 T im e varying param eters

Sims (1993) outlined a model with time-varying param eters. His m otivation for such a study  
stem m ed from the work of L itterm an (1986), who forecast macroeconomic variables using a 
small Bayesian vector autoregressive model. Sims updated  L itte rm an’s model, allowing for 
the nonnorm ality of forecast errors, and more im portantly, for time-varying variances and 
time-varying autoregressive coefficients.^ His model takes the form

k r m

^i{t) =  ~  +  1 , 1)
j = i  Ls=i

given a time series of /c-vectors, Xi(^), determ ined by a sta te  vector /3{t] i , j , s ) ,  an equation 
disturbance and where i =  1, 2 , . . . ,  the num ber of equations in the vector autoregres
sion. The f3's and w’s are stochastic processes, with distributions th a t are conditional on the 
initial values of the Xs, for the other observed Xs. T he model has substantial tim e variation 
in its coefficients, which as previously outlined, and as illustrated by Sims, may be im portant 
in modelling aggregate macroeconomic variables.

Time-varying param eter models, in many respects encompass a broad range of approaches, 
.some of which will be considered in the following subsections. As a result, these m ethods 
are widely used, for example, Koopman and Oonis (2003), who used them  for modelling tax 
revenues.

2.3 .2  T hreshold  autoregressive processes

The threshold autoregressive (T af{) model w'as first proposed by Tong (1978). This class of 
model encompasses features such as limit cycles, am plitude dependent frequencies and jum p 
phenomena.^ A time series V/ is a self-exciting T ar  process if it follows the model

V'j =  -f  x ;  +  o'i’ \  (2 .2 )
i=  1

r j - i  < Yt-d < Tj, (2.3)

where j  = and d is a positive integer. The thresholds are

—CX3 •t— ro <  r i  <  . . .  <  r .̂ oc. (2.4)

■̂ Sini.s (1993), p. 179.
limit cycle can be defined as an attracting set to which orbits or trajectories converge and upon which 

trajectories are periodic (Guckenheiiner and Holmes, 1997, p. 150-154). A m plitude dependent frequencies 
relate to asymmetric cyclical behaviour, where the period of the cycle is dependent upon the am plitude of 
the oscillation, i.e., the period is lower when the am plitude o f the oscillation is lower; see. for example, Tong 
(1990). A jump is defined ;is a point of discontinuity (.Jeffreys and Jeffreys, 1988, p. 26). .Jump phenomena  
encompass, among others, models of regime switching.
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For each j ,  a seciuence of m artingale  differences satisfying''*

= 0 ,  (2.5)

s u p E  ^ |a p y |F t _ i ^  <  oc, (2.6)

for som e (̂  >  2, w ith  F t- \  th e  cr-field^° generated  by =  1 , 2 , . . . ;  j  =  1 , . . . ,  A:|.

Such a process p artitio n s th e  one-dim ensional E uclidean space into k  regimes and follows 

a  linear autoregressive m odel in each regime. T h e  overall process Fj is nonlinear when there  

are  a t least two regim es w ith  different linear m odels. As j)reviously s ta ted , th e  m odel can 

con tain  ce rta in  features th a t  can n o t be cap tu red  by a linear tim e series, such as lim it cycles, 

am p litu d e  dependen t frequencies and  ju m p  phenom ena. O utline approaches to  m odelling 

such Taf{ processes can be found in T say (1989) and  Tong and  Lim (1980).

T a r  m odels have been used w idely in em pirical economics. T hese m odels have been used 

by E nders and  G ranger (1998), to  exam ine th e  te rm  s tru c tu re  of in terest rates, by C aner 

an d  Hansen (1998), to  explore unem ploym ent, and  P esaran  and  P o tte r  (1997), to  m odel US 

o u tp u t.

2.3 .3  R egim e sw itch ing m odels

M any variables undergo periods in wdiicli th e  behav iour of the  series seems to  be cjuite d ra 

m atic . T his can be seen hy  exam ining  any sufficiently long m acroeconom ic or financial tim e 

series. Variables can be considered to  go th rough  behavioural phases or regimes. A change in 

such a  regim e canno t be seen as th e  outcom e of a perfectly  foreseeable, determ inistic  event. 

T h e  change itself m ust be viewed as th e  ou tcom e of a random  process.

It can be  said th a t  the  outc:ome of th is  ran d o m  process is influenced by the unobserved 

random  variable Sj, which is th e  s ta te  or regim e th a t th e  process was in at tim e t. Sinc:e s* 

can  only take on d iscrete values, a su itab le  m odel m ust be selected. T he sim plest tim e-series 

m odel for a discrete-vahietl ran d o m  variable is a M arkov chain.'*

Briefly, M arkov chains can be defined as follows. Let St be a random  variable th a t

stochastic process {V'(f), t e T} is said to be a martingale difference process relative to the increiising 
sequence of a-fields T>i C P 2 C • • • C C • • • , if

• Y(t) is a random variable relative to Vt\
• E (IV'(f)l )̂ < oo; and

• E{Y{t) \Vt- i )  = 0, t e T .  (Spanos, 1986, p. 147).

'°Given the conditions

• = Q — and

• A, B A \ JB
a collection J- of subsets of a nonempty set H satisfying the.se conditions is called an algebra or Held. Further, 
a collection T  of subsets of a nonempty set Vl satisfying

• A ^ T , A  = Q. — A ^ T  and
• A j e J ^ , j  = 1, 2, 3 ,...,  G T

is defined as a cr-algebra or cr-field. (Bierens, 2004, p. 4).
''See Hamilton (1994), Chapter 22, for an excellent treatment of this topic.
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can assum e only an integer value 1,2, S uppose th e  p ro b ab ility  th a t  St ecjuals som e

p artic u la r  value j  depends on the  p ast only, th ro u g h  to  th e  m ost recen t value, s j_ i ,  stich th a t

P { s t  =  j \ s t - \  =  i, St - 2  =  k , . . . }  =  P { s t  =  j \ s t - i  =  i }  ^  Pij. (2.7)

Such a process is called an 7V-state M arkov chain w ith  tran s itio n  p robab ilities  {pi j } ,  i , j  =  

1 , 2 , . . . ,  N T h e tran s itio n  probabiH ty pij  gives th e  p ro b ab ih ty  th a t  s ta te  i will be followed 

by s ta te  j .  For exam ple, a  sim ple first-order autoregressive tim e-series m odel of a regim e 

sw itching specification takes th e  form

Yt =  Cst +  (2 .8)

w here St is norm ally  and  identically  d is trib u ted  (n .i.d .) w ith  a zero m ean and  variance 

and  w here b o th  th e  constan t and  autoregressive te rm s m ay vary  w'ith different s ta tes, St- 

M arkov chains are useful for several reasons. A p erm an en t regim e change can be m od

elled by a tw o-sta te  M arkov chain. O n th e  o ther hand , unusual, short-lived  events can also 

be accoun ted  for. F urtherm ore , th e  M arkov chain is a flexiljle tool, as th e  s{)ecification is 

consisten t w ith  a  broad  range of outcom es. G ranger and  T e rasv irta  (1993) discussed the  

use of regim e sw itching m odels and  M arkov chains and  ou tlined  several stud ies th a t have 

emi)loyed these m ethods.

2 .3 .4  Srnooth-transition  regressions

G ranger, Teriisvirta, and  A nderson (1993) {)roposed a class of m odels know'n a,s sm ooth  t ra n 

sition  regressions (S t r ), which are fu rth e r discussetl by T e r ^ v i r ta  (1994).^ ’ T heir m otivation  

follows th e  argum ents presented previously. T hey  acknowledge th a t  econom ic re lationships 

m ay be nonlinear, b u t recognise th a t  th ere  i s  no generally  accepted  class of nonlinear m odels 

th a t  can be applied to  explore re la tio n s’ i.e., to  em ploy in ex p lo ra to ry  or specification search 

form s of modelling.^''’ T his, th ey  believe, is due to  the  w ide varie ty  of a lte rna tive  nonlin

ear m odels available, and  a lack of experience in deciding w hich of these m odels is m ost 

ap p ro p ria te .

Their class of St r  m odels take th e  form

n  =  a i  +  p [ X t  +  0 (Z j)(a 2  +  /3.^X^) +  cj, (2.9)

w here 0 <  4>{Z) <  1 and  Z  is th e  ‘in d ica to r’ variable, a  linear com bination  of th e  com ponents 

of X (. T h e  m odel is seen to  be a  sm ooth  tran sitio n  between th e  m odel

Yt = ai + f3[Xt + et, ( 2 . 10)

^^Hamilton (1994), p. 678.
‘̂̂ Granger and Tera-svirta (199.3), p. 141-145.

’ ^Attention here i.s initially limited to the class of models termed sm ooth transition regressions ( S t r ). 
Tera-svirta (1994) refers to the more general sm ooth transition autoregressive ( S t a r ) models.

'■^Granger, et al. (1993), p. 311.
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when 4>{Z) =  0, and the alternative linear model

+  « 2 ) +  {Pi + +  £■(! (2 . 11)

when (p{Z) = 1.

These two models can be viewed as having very different properties. One could be sta
tionary while the  other is nonstationary, for example. These models coiild be considered 
to  represent two distinct regimes. The models, therefore, ‘thus represent a sm ooth regime- 
switching s itua tion ’.̂ ® The S t h  representation can be w ritten as:

(2 .12 )

where £t is indejjendently and identically d istributed, cf ~  i.i.d.((), o"^), Zf =  (w ;,X () and 
Wt  =  (1 , Vj - i , . . . ,  yt_p)^ The transition fvuiction G{j , c , s t )  determines the degree of mean 
reversion and is itself a fimction of 7 , the slope coefficient, c the location param eter and 
St the transition variable. Normally St is set to be a lagged value of Yt- Several choices 
of specification for the transition function, G,  are available. Its form is often taken to be 
exponential:

G  ( 7 , c, St) = 1 -  exp - 7  (.S( -  c) (2.13)

and the resultant model is known as the Exj)onential Smooth Transition Autoregressive 
(E s t a k ) model. This results in a synnnetrical transition function. An asynnnetric logistic 
function, and hence the LsTAR model, cordd also be considered:

G ( 7 , c, St) =  [1 +  exp  [ - 7  {st -  c)]] - 1 (2.14)

A more general alternative to the EsTAR model is the L s t a h 2 model:

G{'y,c,st) = 1 +  exp -"11
k = l

(2.15)

The use of the Ls t a r 2 model overcomes the problem  th a t as 7  dc, Ecjuation (2.12), where 
G{'y,c, s t )  is described by E([uation (2.13), ‘becomes practically linear, for the transition 
function equals zero at st = c and unity elsewhere’.'^

As with the o ther m ethods considered in this brief review, S t r  models have been widely 
used in the empirical literature, not ju st w ithin the fields of economics and econometrics. For 
example. Bacon and W ^tts (1971) used S t r  technicjues to model chemical data; Liitkepohl. 
et al. (1999) applied them  in the context of Germ an money demand.

2.3.5 Sm oothing splines

‘Spline sm oothing is a natural solution to the  regression problem when one is given a set of 
regression functions, but one also wants to hedge against the possibility th a t the true model

^®Granger, et al. (1993), p. .313.
'^Terasvirta (2004), p. 224.
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is not exactly in the span of the given regression functions’.̂ * Deviations of the true model 
from the span of the fvmctions given are easily derived from spline theory.

Following W'ahba (1978), consider the equation

^  {ti) = g{ti) + £i i = l , 2 , . . . n ,  U e T ,  (2.16)

where £; ~  n.i.d.(0, cr^I„) and g{-) is some ‘smooth’ function defined on some index set T.  
The function g{-) can be satisfactorily estimated by cubic polynominal smoothing splines, 
when T  is an interval of the real hue, and given the realisation y =  {yi, ■ ■ ■ ,ynY of Y =

Splines can be considered to be an alternative to fitting a specified set of regression 
functions, when the true nature of g{-) is actually in the range of the specified regression 
function. It can be shown that sjjline smoothing is an extension of Gauss-Markov regression, 
given the specified regression fmictions. Wahba (1978) claimed ‘that spline smoothing is an 
appropriate solution to the problem arising when one w'ants to fit a given set of regression 
functions to the data, but in so doing, also hedge against model errors, that is, against the 
possibility that the true model g is not exactly in the span of the given set of regression 
fmictions’. W a h b a  showed that spline smoothing may also lead to a measure of deviation 
of the trtie function g, from the range of the regression fmictions. This deviation can be 
estimated from the data. This measure of deviation can also be viewed as a bandwidth 
parameter, controlling the smoothness of the estimated fimction. Using this ap])roach to 
nonparametric regression, the bandwidth parameter may be estimated from the data. Poirier 
(1976) discus,sed smoothing splines and their applications in economics.

2.4 The H am ilton M ethodology  

2.4.1 Introduction

In an imijortant paper, Hamilton (2001) proposed an ap])roacli to nonlinear modelling of 
economic- relationships that provides a single flexible parametric framework for testing for 
nonlinearity, drawing inference about the form of nonlinearity and assessing the adeciuacy 
of the description of nonlinearity provided by specific models. Following Wecker and Ansley 
(1983), the approach treats frmctional form as the ovitcome of a latent stocluistic process that 
is part of the data-generating process; that is, the conditional expectation function associated 
with a regression model is thought of as being generated randomly {)rior to the generation 
of the data. This latent j)rocess is modelled using a Gaussian random field concept that 
generalises Brownian motion to k dimensions, and the parameters of the process are estimated 
by maximum likelihood.

**W ahba (1978), p. 364.
' ‘■̂ A cubic polynom ial sm ooth ing  spline is defined as a sm ooth ly  jo ined  piecewise polynom ial of degree n. 

For exam ple, if t i , t 2 , ■ ■. , t„  a re  a set of n  values in th e  interval a,h,  such th a t  a < t i  < h  < ■ ■ ■ < tn < b, 
th en  a  cubic sp line is a  function  g such th a t  on each of th e  in tervals . , { t n , h ) ,  g is a  cubic
polynom ial and . secondly, th e  polynom ial pieces fit together a t th e  po in ts ti in such a way th a t  g itself and  its 
first and  second derivatives a re  continuous a t  each ti and  hence on th e  whole o f a,h.  (E veritt, 2002, p. .'JSG.)

■̂“W ahba (1978), p. ,'564.
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The method is a good deal more than an exploratory data or data-siiioothing device, 
although in this regard alone, it may prove very useful. From the practicing economist’s 
viewpoint, its importance lies in the valuable insights it can provide for model construction 
and the resulting enhancement of the forecasting ability of economic models. However, this 
modelling framework has not been widely used to date and its full potential remains to be 
established.^^ As Hamilton (2001, p. 552) pointed out, its usefulness for particular sample 
sizes and nonlinearities is a m atter for empirical investigation. Yet, citing his own three 
examples and the Monte Carlo studies by Dahl (2002), he suggested that the method holds 
much promise.

The aims of the remainder of this chapter are modest and the focus intentionally narrow. 
The main purpose is to address a niunber of practical issues that arise when using the Hamil
ton (2001) framework. The first of these concerns computation: issues concerning Hamilton’s 
software, which implements the method, are d o c u m e n t e d . I t  appears that the nmnerical 
optimisation involved is not an entirely straightforward matter, either when using Hamil
ton’s data set or alternative samples. It should be stressed at the outset that this is a result 
of difficulties with numerical oj)timisation and not the Hamilton method itself. Thus while 
the Hamilton case study is the primary focus, this finding may have more general relevance 
for procedures that employ similar optimisation technicjues. The second issue concerns the 
sensitivity of the method to changes in data. Experiments suggest that minor data changes 
can have implications for computation and big effects on the results. Another aim, given the 
length and difficulty of the original paper, is to provide a concise and reasonably accessible 
account of Hamilton’s methodology for nonspecialist practitioners, though the nature of the 
subject m atter is such that it is not possible to avoid some tc'chnicalities.

2.4.2 T he m odel

Consider the nonlinear regression denoted by^^

''/f =  M(xt) +  ?t, ^ = l , 2 , . . . , r ,  (2.17)

where yi is scalar, X( =  [xj(] is a A;-vector of observations on the explanatory variables at
time t, St. is a stochastic disturbance w'ith zero mean and constant variance, independent of
lagged values of X( and yt, and //.(x) denotes the contlitional expectation function E(;y|x). 
The nature of //(x) is fimdamental to Hamilton’s (2001) approach and is considered to be

^’There are, however, some notable exceptions. Dahl and Gonzalez-Rivera (200.'}) further developed and 
evaluated the test for nonlinearity proposed by Hamilton (2001), which will be discussed in some detail in 
Chapter 3. Dahl and Hyileberg (2004) investigated the forecasting performance of flexible nonlinear regression 
m odels for US unemployment and industrial production. Dahl, Gonzalez-Rivera, and Qin (2005) studied the 
performance of nonlinear models when additive random fields are employed. Hamilton (200.'5) used his propo.sed 
framework to model the relationship between oil-price changes and G dp growth, lin a lly , Kim, Osborn, and 
Sensier (2005), used this flexible approach to explore nonlinearities in the monetary policy rule of the US 
Federal Reserve.

^^The program is written in G auss and can be freely downloaded from
h t t p :/ /w e b e r .u c sd . e d u /~ jh a m ilto / .

^^To facilitate cro,ss-reference to the original paper, the notation used in this section is similar to that used 
by Hamilton (2001).
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cleteriniiieci by
=  ao +  a ' x  + X r n { g Q x ) ,  (2.18)

where «o and A are scalar parameters, a  =  [a;] and g  =  [gi] are A;-vectors of parameters, 
rri{-) is a realisation of a stochastic process with a contimious path called a random field and 

0  denotes the Hadamard product, i.e., elem ent-by-element m ultiplication. The realisation of 

m (-), and hence /i(x ), is assumed to be generated by nature, prior to and independently of, 

all of the observations. Given this fixed /i(x ), the values for et and x  ̂ are then generated and 

yt,  is determined acconling to the Equation (2.17).

T he interpretation of the parameters in Ecjuation (2.18) is particularly important for the 

understanding and application of H am ilton’s (2001) m ethod. In particular, the scalars A and 

gi, i =  1, 2 , . . . ,  k, characterise the relationship between m(-) and the conditional expectation  

function /i(.Ti, X2 , . .  •, x^.). Specifically, A is a measure of the overall ‘weight’ of the process 

ni{-) in the conditional expectation, while the magnitudes of the gi indicate the degree of 

nonlinearity associated with their respective x ,. Thus A =  0 indicates that m(-) makes no 

contribution and the conditional expectation is linear, in which case Ecjuation (2.17) is the 

familiar general linear model. Similarly, =  0 implies that the conditional expectation  

is linear in Xi, while gi ^  0 signifies that it is nonlinear in Xi. If all of the gi —> 0, the 

coutril)ution of m{-) to the conditional expectation, hence to yt,  becomes indistinguishable 

from that of oq; if all of the gi oo, the contribution to yt is indistinguishable from that of 

£f. The standard interpretation applies to i =  0 , 1 , . . .  , k.

The key component in Equation (2.18), on which the interpretation of the gi dejjends, 
is the random realisation rn{-). Its nature and role require exjilanation before the practical 

m atters of estim ation and testing are considered. First, consider a uniform orthogonal grid in 

R*'’, bounded in the direction of each of the k standard bfisis vectors or Cartesian co-ordinates 

by some lower value ( i j  and some upper value hj, j  =  1, 2, . . . ,  Let the set of all nodes 

in the grid be A,v, where — 1 is the number of grid intervals in each direction and is 

therefore the number of distinct points in Aj\[. For each point x  6  A \’, let e(x) ~  A^(0,1) 
and be independent of e(z) for all x  z; let =  {z G : (x  — z )'(x  — z) <  1},
i.e., the set of all points in A;\[ whose distance from x  is less than or equal to unity; and 

let nAr(x) denote the number of points in 5 a t(x ). Hamilton (2001, p. 540) then defines the 

scalar process m ,v(x) aŝ ''’

m A r ( x )  =  [ n A ' ( x ) ] “ 2 ^  e ( z ) .  ( 2 . 1 9 )

z £ B a , ( x )

Taking the limit of Ecjuation (2.19) as the grid partition becom es finer, i.e., as » oc 

and the interval length in each direction of the grid tends to zero, the notion of a continuous 

sc;alar-valued /c-dimensional random field emerges. The stochastic nature of this is sucdi that

^ 'B y  uni for m  it is m eant that th e  intervals defined by th e  grid are o f equal length  in th e  d irection o f each  
o f  th e  k co-ord in ates, and the num ber o f intervals in each d irection  is the sam e. N o te  th a t th is does not im ply  
th at the intervals in different d irection s have to  be th e  sam e length  un less the a j  are equal and th e  bj  are 
equal for all j .

■̂'’T h is  processes is illustrated  for k  =  2 , a \  =  a -2 =  0, bi =  5 , 6 2  =  3, and  equal interval len gths in H am ilton  
(2001 , p. 541), so  th a t the num ber o f  intervals in each d irection  is not th e  sam e, as required by the defin ition  
o f  /I AT given  here.
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for any x  €  A ! \ f ,m (x )  ~  A^(0,1). The similarity to standard Brownian motion is ajjparent.

For arbitrary points x  and z in the correlation between m (x) and m (z) is zero if the 

distance between x  and z is greater than 2. If this distance is not greater than 2, it can be 

shown, though the proofs are difficult,'^*’ that

Hk{h)  = Covk  (m (x), m (z)) =  (2-20)

where — +  ̂ ^G fc_ 2 (/i, 1), is one-half the distance between x  and z,

/c =  2, 3 , . . .  and the initial values are Go(/i, 1) =  1 —/i and G i(/i, 1) =  — /i^ ) 2  —  ̂sin(/i). 
Equation (2.20) can be calculated recursively, but fortunately its values for A: =  1 to 5 inclusive 

are provided in Table I of Hamilton (2001, p. 542) and are included in his program, although  

the option to  calculate recursively is available. It is this covariance that provides the means 

by which the (ji govern the curvature of ^i(x) in Equation (2.18); see the illustrative case of 
/c =  1 in Hamilton (2001, p. 540).

2.4 .3  E s t im a t io n

Assuming normahty of the £(, it follows from equations (2.17), (2.18) and (2.20) that

y  ~  (X/3, C +  a^ Ir) , (2.21)

where y  is the T-vector of observations on the dependent variable in Equation (2.17), X  

is the T  X {k +  1) matrix of observations on the k  explanatory variables and a cohunn 

of ones associated with the intercept, j3 =  (̂ ’ +  l)-vector of parameters of
the linear com ponent of the conditional expectation. C =  is a T x T  variance-
covariance matrix whose typical element is X^Covk {m{g  0  X;), rn{g © x^)), and hts is one-half
the distance between g  © x  ̂ and g  © x*. The likelihood function follows straightforwardly 

from Equation (2.21) as

ln /(y ; /3 ,3 ,A ,(T ‘')  =  hi(27r) -  ^ In |C +  a ''lr | -  ^ (y  -  X /3 )'(C +  a ' l r ) - ' ( y - X ^ ) .  (2.22)

Maxinnuii likelihood j)rovides the basis for inference concerning the parameters /3, g, X and 

a-'. Hamilton (2001) showed that the procedure is valid for regressors that are deterministic

or lagged values of the dependent variable. However, in the interests of simplifying the

calculations. Equation (2.22) is rewritten. Defining C =  letting i/; =  [/3', be the 

[k +  2)-vector of parameters of the linear part of the model and 0  =  \ g ' be the [k -|- 1)- 
vector of jjarameters of the nonlinear component, and setting W  (X ;0 )  =  -t- !/■, where

C* =  A“ ^C, the right-hand side of Equation (2.22) can be written a,s

ln(27T) In |W (X ; 0 )| -  ^ ( y  -  X /3)'W (X ; 0 ) - '  (y  -  X/3). (2.23)

The values o f the elements of ip that maximise Equation (2.23) for given 6  can then be

^®See Lemma 2.1 and Theorem 2.2 in Hamilton (2001, p. 541). Note also that the details relating to 
Equation (2.20) are expressed slightly differently than in Ham ilton’s (2001) lemma and theorem.
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calculated analytically as

(3{e) = [X'W(X;0)-iX]-iX'W(X;0)-iy, (2.24)

and
o \ d )  =  ^ [ y  -  X ^ ( 0 ) ] 'W (X ;e ) - '[ y  -  X/3(0)]. (2.25)

Thus Equation (2.22) may be concentrated as

m  y, X ) =  ln(27T) -  I \ n d \ e )  -   ̂In |W (X ; 0)| - (2.26)

The numerical m aximisation of Equation (2.26), therefore, gives the maximum  likelihood 
estim ate of 0, which through equations (2.24) and (2.25) yields the estim ate of i/j.

2.4.4 Bayesian analysis

This subsection introduces the Bayesian aspects of the Hamilton (2001) methodology. Before 
doing so, however, a brief review of the Bayesian approach to inference is offered.

Consider the vector of param eters estim ated for a sample of ob.ser vat ions, such tliat 
1? =  and, for example, Zt ~  n.i.d. and Z =  {z\,  Z2 , ■ ■ ■, The classical
statistical approach assmnes th a t a true value of exists. This is unknown and invariant, 
and i) reijresents its sample estim ate, and is a random  variable.

The Bayesian viewpoint considers to be a random  variable, imj^lying a degree of un- 
c:ertainty about i?. This uncertainty can be described in term s of a probability distribution. 
Inform ation held before the observation of da ta  forms a prior density, /{'&),  and probabil
ity statem ents regarding made prior to observation, can be m ade in term s of this prior 
density. The sample likelihood can be defined as /  (Z|i?). The joint density of Z and is 
/ ( Z , i ? )  =  /  (Z|i9) /  (t?). The posterior density / ( t? |Z )  =  / ( Z , i ? )  / ( Z ) “ \  relates to sta te 
m ents about 1? after Z has been observed.

Returning to  the Hamilton (2001) approach, recall th a t i/) =  [/3^ o'" and 6 ~  [g'. are 
vectors of the linear and nonlinear param eters, respectively. Since the elements of 6 become 
unidentified as yi oo, the use of a nondiffuse prior is necessary in order for the j)osterior 
distribution to  be well defined.

^^Thi.s exposition  closely follows H am ilton (1994), C h ap te r 12.
‘̂ '^CJonsider yt ~  n .i.d. th e  sam ple likelihood of which is

w here an d  ly a re  p a ram ete rs  th a t describe the n a tu re  and  quality  of th e  p rio r in form ation . As * 0, th e  
q u a lity  of prior in form ation  becom es ever poorer and  th e  Bayesian e s tim a te  of y,  w here y  =  
approaches its classical co u n te rp a rt. As v  ^  oo, th e  p rio r is known as a diffuse prior, in w hich case th e  prior 
in form ation  is d isregarded  (H am ilton . 1994, C h ap te r 12).

w here 1 is a  vector of Is. P rio r inform ation ab o u t /x is con ta ined  w ith in  its p rio r d is trib u tio n , n  ^  N  [rn. j v ) ,
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A prior for each of cr (3 and 6  is r e q u i r e d . T h e  prior cUstribution of a   ̂ is given by

(2.27)

where =  0.25 and ^ =  {i>Sy)/2 for s^, the sample variance of y.  Similarly, the prior 

distribution of /3 is defined  as

p ( / 3  I cr 2)  =
(27TCT^)'

2 exp (2.28)

where M  =  T'(X'X) a { k +  l)-square matrix, and m  is a matrix whose first element is the 

sample mean of yt- F inally , the prior for 6  is lognormal and given by

fc+i
P ( 9 ) = n '/2?r6'i

exp
In {Oi) +  In ( J k s \

(2.29)

Given these prior dist;ril)utions, the posterior conditional distribution for /3 is

- 1/ ( / 3  I a - \ Y T , d )  =  2 exp
{ 2na ‘̂ ) 2 2 a ‘̂

(/3 -  n i* ) 'M * - ‘ i P - m *

where Yy- =  (yr , x'̂ ,, y / r - i ,  x V _ p . . . , y i ,  x'l), M* =  ( M " ' +  X ' W ‘X ) ' and 

M* ( M - ^ m  +  X ' W - ^ ) -  Also, the posterior conditional distribution for a   ̂ is

c*iy*
f  I Y r , 0 )  =  —— cr"̂ (̂‘'*"‘>exp ,\ / p L J

(2.30)

m  =

(2.31)

where v* =  +  {T/ 2)  an(J ^* =   ̂+  | ( y  -  X m )'[W (X ;0 ) +  X M X '] ' (y  -  X m ) .  Finally, it

can lie shown that the joiint distribution of y  and d is given by

f { e , y \  X ) =  / ( y  I e , X) - p( 0 ), (2..32)

where
f { y \ e \ x )  =

(27r)^/2F(i/)^^
- | W ( X ; 0 )  +  XM X'r'/"'^.'J* I ' ■ ’ / I (2.33)

How then can the coniditioual exj)ectation function £ ' [/<(x)|Y; ] be estim ated? Consider 

the random vector whoise distribution, conditional on 9  and Y ^ , is f  {(,\6, Y t )- It can be 

shown that the posterior probability that (, falls into a region C  is as follows. An indepen
dently and identically disttributed sample of . . . ,  is drawn from an arbitrary density 

function, I {d) .  For each generate from /  Y r ) ,  and calculate

P r  (C G C I Y t ) (2.34)

standard  prior is used for a  . See DeGroot (1970), p. 251.
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where C  is some region containing C, [̂( (̂j)gc'] =  0 when ^  C  aiud 1 otherwise, and

where I (0'-^^) is an arb itrary  im portance density. Finally, it can be shown, conditional on ip 
and 6,  th a t

/t(x) I -0 ,0 , Y r  ~  iV ( ^ T ( x  I i p , d )  , p r { x , x  | t/’.,6»)), (2.36)

where = E  [/f(x |Y r)] and p r (z , w)  = E  [^r(z) — //(z)] [i^t(w ) — //(w)]. The posterior
mean can be calculated, therefore, from

2.4.5 T estin g  for non linearity

The form of the model used in H am ilton’s (2001) approach, Equattion (2.18), suggests th a t 
a simple m ethod of testing for nonlinearity is to test the hypothes;is th a t A =  0, or =  0. 
Ham ilton shows th a t if A"̂  =  0, and the nonlinear model is estimatted, then  for fixed g,  the 
maximum likelihood estim ator X  ̂ is consistent for the true value off zero and asym ptotically 
normal. Thus a test based on the use of standard  normal tables is siuggested. However, given 
the m aximum  likelihood approach to estim ation and the linearity lof Equation (2.17) under 
the null hypothesis tha t Â  =  0, an obvious and perhaps more apipealing w'ay of testing is 
to use the Lagrange multiplier principle, which requires only a sim ple linear regression to 
be estinuited. Under the assum ption of normality, Hamilton derives the appropriate  score 
vector of first derivatives and the associated information m atrix  aU'd proposes a form of Lm 
test for practical application. The procedure has four steps. Set cji =  2 / excl udi ng the 
c:onstant term  whose variance is zero. This (ji is approxim ately tb e  mean of the lognormal 
Bayesian prior used by Hamilton as the initial vahie for 0;, i = 1, 2 , . . .  Calculate the
T x  T  m atrix, H, whose typical element is ///,. © X( — g © x^H), i.e., the fmiction Hf;{htit)
defined in Equation (2.20). Use O ls  to estim ate the standard  linear regression y  =  X/3 +  e 
and obtain the usual residuals, e, and the standard  error of estimate;, a  =  {T — k — l ) ~ 2  \ /e ' e.  
Finally, com pute the statistic

S > [ 2 f r ( [ M r H M T t - l ) - > M r ( r ( M , H ) | 2 ) ] ’ ' " '

where M t- =  I7' -  X (X 'X )“ *X' is tlie familiar synimetric i<lempoteiit matrix.
As Ag {9 ) ~  x i  under the luill hyjjothesis, linearity (A  ̂ =  0) w(ould be rejected if Xfi(g)  

exceeded the critical value, Xia> chosen level of significance;, In the former case
the alternative nonlinear specification given by equations (2.17) and ((2.18) would be preferred. 
The identification of a specific form of nonlinearity is greatly aide^d by the estim ate of the

'̂ '’See Subsection 2.4.4.
Hamilton (2001) cienoted his LM-type test statistic by û \ in this and sub)sequent chapters, this test is 

denoted by A §(g), following Dahl and Gonzalez-Rivera (2003).
'^^For example, a t the 5 per cent significance level, the null would be rejected if A f,(ff)> 3 .84 .
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conditional ex p ec ta tio n  //(x ) and, specifically, the  gi an d  T he m a tte r  is explained in 

H am ilton  (2001, Section 5) and  to  som e ex ten t in th e  following subsection. It is illu s tra ted  

in the  th ree  exam ples in his Section 7 and  a t several po in ts  in th e  rem ainder of th is thesis.

2.4.6 Inference and m odelling

T hus far, consideration  has been given to  th e  theo re tica l aspects of th e  H am ilton (2001) 

m ethodology. T h e  rem ainder of th is  ch ap te r is ded ica ted  to  th e  issues arising  from  the  p rac

tical ajjp lication  of th e  procedure. H am ilto n ’s suggested new approach , a  fram ew ork for 

m odelling non linear re la tionsh ips, is a th ree -step  procedure  th a t  ‘proposes a  single encom 

passing fram ew ork for nonlinear m odelling, offering a new test for nonlinearity , m ethods to  

infer w ha t th e  non linear function looks like and  checks of w hether it is adecjuately describe^d 

by som e p a rticu la r m odel’.

T h e  first s tage  of th e  th ree -step  procedure  is to  te s t for nonlinearity  in th e  d a ta . Testing 

for non linearity  has been described in Subsection 2.4.5. As has been previously no ted  in 

Subsection 2.4.2, if th e  tru e  re la tionsh ip  is linear, th en  g  is unidentified. At th is  po int, the  

im plem entation  of th e  jirocedure, using th e  softw are provided, m ay be a source of som e confu

sion. If th e  tru e  re la tionsh ip  is indeed linear, th e  tes t s ta tis tic  of the  L agrange M ultip lier (Lm) 

test for non linearity  should, for a  given level of significance, be sta tis tica lly  insignificant.'^'^ 

Even if th is  is th e  case, however, the  G a u s s  procedure continues to  a tte m p t to  estim ate  G. 

E xperience has show n th a t in such cases, th e  itera tive  process recjuired to  es tim ate  6  often 

fails. W hile th is  m ay lead to  th e  belief th a t  the  p rogram  has encom itered one of th e  m any 

im plem entation  issues to  be  outlined  la te r in th is chap te r, th is  is clearly no t th e  case. Should 

th e  procedure  no t fail, th e  estim ates o b ta in ed  for 9  m ay not necessarily be s ta tis tica lly  in

significant. W ith o u t flue care and  a tten tio n , therefore, th e  applied researcher m ay infer a 

nonlinear specification when in fact th e  d a ta  should be m odelled w ith  a linear form. T he 

resu lt of th e  non linearity  tes t m ust, therefore, be evaluated  before tu rn in g  a tten tio n  to  the  

resu lts of the  op tim isation .

T h e  es tim atio n  of 6  from  th e  concen tra ted  likelihood function  in Eciuation (2.26), dis

cussed in S ubsection 2.4.3, provides estim ates for g  and  ( .  T hese are im p o rtan t elem ents 

of the  assum ed underly ing  nonlinear re la tionsh ip , and  are  th e  elem ents which co n trib u te  to  

th e  nonlinearity . G iven th e  estim ation  of 6,  estim ates for -ip, whose elem ents, ft,, describe 

th e  hnear aspects  of th e  rela tionship , can easily be foim d from ecjuations (2.24) and  (2.25). 

As noted  in S ubsection 2.4.2, th e  estim ates of gi and  Q describe th e  re la tionsh ip  between 

m(-) and  th e  cond itional m ean function /t(x ). N ot only does the  G a u s s  procedure re tu rn  

estim ates for gi, and  it also re tu rn s  th e  e s tim a tes’ asym pto tic  s ta n d a rd  erro rs and  th e  

square roo ts  of th e  posterio r Bayesian variances, given by E {[9i — £'(/9i|Y/’)]'^|Y/’}. T he 

Bayesian analysis was discussed previously in Subsection 2.4.4.

T h e  estim atio n  of 6  and  is necessary for th e  second stage of th e  procedure . Those 

estim ates can  only  assist, however, in inferring a su itab le  nonlinear specification to  m odel

^^Ilamilton (2001), p. 538. It should be noted that the use of the sam e data sample for testing and estimation  
calls into question the underlying assumption o f independence.

' '̂*This conditionality stem s from the probability o f the test making a Type 1 error, i.e., the chosen level of 
significance for the test.
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th e  re la tionsh ip  in question . C onsider th e  case of a  m odel w ith two ex p lan a to ry  variables, 

and  assum e th a t  th e  Lm test for non linearity  rejects th e  hypothesis of a  linear re la tionsh ip . 

Fvirther, assum e th a t a t  least one of th e  ex p lan a to ry  variables co n trib u tes  to  th e  underly ing  

nonlinearity . H aving o b ta in ed  es tim ates  of 0  and  ip, and  where, for exam ple, gi  is fovuid to  

be  s ta tis tica lly  significant and  g2  is no t, consider the  conditional ex p ecta tio n  function  w ith 

respect to  x \ ,  holding X 2 constan t, given by

E [ h {x i , X 2 ) \ Y t ],  (2.39)

w here X2  is th e  sam ple m ean of th e  ex p lan a to ry  variable X2 - P lo ttin g  th is  function  m ay allow 

th e  researcher to  infer th e  correct nonlinear specification. For m ore com plex exam ples, a 

sim ilar procedure  is followed. F irs t, th e  Lm test is used to  exam ine w hether th e  re la tionsh ip  

betw een th e  d ependen t and  independen t variables is nonlinear. Second, having e s tim ated  6 

and  a conventional p aram etric  specification is inferred from the  flexible nonlinear inference 

procedure . T h e  th ird  and  final s tage of th is  process is to  re-test the  inferred  specification  using 

th e  Lm test as a m isspecification test, to  confirm  th a t th e  correct form has been chosen. W here 

m ore th a n  one gi is found to  be s ta tis tica lly  significant, p lo tting  the  conditional ex p ecta tio n  

func:tion m ay not be s tra igh tfo rw ard . For two significant c/j, H am ilton (2001) used contour 

p lots, a lthough  surface p lo ts m ay be equally  useful here. For th ree  significant gi, th e  use of 

th e  conditional ex p ecta tio n  function is abandoned  altogether.'*^ In som e circum stances, it 

m ay be s tra igh tfo rw ard  for th e  researcher to  infer a conventional s])ecification from  th e  plot 

of the  conditi(jnal expecta tion , should  th a t  plot be sensible. It m ay be, however, th a t  th is 

])rocess will be  far from  trivial!

2 .4 .7  N onlin ear inference and non stationarity

A n u n d erstan d in g  of th e  general cdiaracteristics of any m ethodology is fundau ien ta l. O nly  by 

u n d erstan d in g  th e  app licab ility  and  shortcom ings of any techniciue, m ay it be ap p ro p ria te ly  

utilised. H am ilto n ’s (2001) proposed fram ew ork is indeed flexible; it litis been show n th a t  

’th e  class of nonlinear functions es tim ated  consisten tly  is qu ite  flexible’, regardless of w hether 

th e  ex p lan a to ry  variables are  d iscre te  or continuous values.'*® It has also been shown th a t  it 

is possible to  ob ta in  consisten t es tim ato rs  of th e  conditional m ean, even u nder fairly general 

m issi)ecification. By using an  a lte rn a tiv e  covariance specification, which will be  d iscussed fur

th e r in C h ap te r  3, D ahl and  G onzalez-R ivera (2003) showed th a t  th e  problem  of unidentified 

nuisance p aram eters  can  be overcome. However, ‘given a p articu la r sam ple size or Ruiction, 

th e  usefulness of om ’ approach  is a  m a tte r  for enipiric:al investigation’.'̂ ^

W hile it is th e  aim  of th is  ch ap te r and  indeed th is  thesis to  em pirically  investigate  this 

technique, one final consideration  regard ing  its  applicability  is necessary. T h is  thesis is con

cerned w ith  m odelling d a ta  w hich m ay be (fractionally) in teg ra ted  and  possibly co in tegrated , 

b u t also d a ta  which m ay contain  s tru c tu ra l breaks or la ten t nonlinearity , and  possib ly  both .

'̂■’ For details, see Flamilton’s (2001) three examples, p. 559-564.
■^®llamilton (2001), p. 551. It is assiiined th a t the term coii.sistently' is used in the usual sense. T h a t is, an 

estim ator is said to be consistent when the probability limit of a sequence of estim ators is equal to the true 
population param eter (Hamilton. 1994, p. 181).

^■^Hamilton (2001), p. 552.
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The issues of structural breaks and latent nonlinearity are not troubling. Exploratory data 
analysis should highlight the existence of breaks and the practicing economist should not 
have difficulty detecting them in many cases. Latent nonlinearity is even less of a concern, 
as the Hamilton (2001) framework is designed to detect it, and studies to date suggest the 
technique is powerful.'^*

W hat may be troubling, however, is the performance of the Hamilton methodology where 
the data are integrated to some degree. Lee, et al. (2005) addressed the issue of si)urious non
linear regression in econometrics. Specifically, they assessed the performance of a variety of 
nonlinearity tests, including Hamilton’s (2001) LM-type test, introduced in Subsection 2.4.5. 
Lee, et al. used the follow'ing two independent random walk variables,

Vt  =  2 / t - i  +  £ y t ,

Xt = -Ct-i + £xt  ̂ (2.40)

where Eyt ~  i.i.d.(0, fr^), ~  i.i.d.(0, a^). The tests under examination were employed to
test whether ijt and Xt were nonlinearly related for various simulated samples, ranging in size 
from T  =  50 to T  =  10,000. The results present startling evidence of spurious nonlinear 
regression. Of particular interest here, the Hamilton LM-type test performs poorly. For the 
smallest sample size of T = 50, the test rejects linearity in over 50 jjer cent of cases against 
a nominal size of 5 per cent. Worryingly, rather than converging to its distril)ution, 
the statistic Xfjig) diverges to infinity as the sample size increases, i.e., its rate of rejection 
of the null of linearity converges to 100 per cent. They concluded by warning that ‘when 
interpreting nonlinear test results in favour of nonlinearity, applied economists should weigh 
the evidence against the persistence structure of the time series under investigation’.'̂ ’̂* These 
results suggest that care should be taken applying the Hamilton methodology to persistent 
or integrated data. This may lead to incorrect inferences regarding nonlinearity and possibly 
result in misdirected modelling efforts.

This is a pertinent warning that highlights some of the potential difficulties faced in ap
plied research. Tests for nonlinearity appear to have low power against sj)urious nonlinearity. 
It is well known that tests for unit roots perform badly in the presence of nonlinearities and 
or structural breaks, i.e., unit root tests may incorrectly infer that stationary series with 
nonlinearities or breaks are nonstationary. Together, these results suggest that attemjjts 
to untangle the issues of stationarity, nonlinearity and structural instability are less than 
straightforward.

2.5 Com putational issues

The implementation of Hamilton’s (2001) methodology is straightforward, in principle, given 
the on-line availability of Hamilton’s program code. In practice, however, difficulties beyond 
those outlined in Subsection 2.4.6, may await the unwary. These difficulties relate to the 
nonlinear optimisation algorithms in the O p t m u m  procedure of G a u s s , which is at the heart

'^*See C hapter 3 for further details .
'^®Lee, et al. (2 0 0 5 ), p. 306.
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of Ham ilton’s program . Indeed, initial a ttem pts to run the program using G a u s s  5 failed 
completely and no nonlinear estim ates were obtained. It was this experience th a t m otivated 
the research contained in this chapter.

The m ethods of nonlinear oj^timisation are familiar to  many econometricians. The partic
ular algorithms available in the G auss  O p t m u m  procedure are some of the m ost well known. 
However, to understand fully the issues raised in the following sections, a brief description of 
numerical optim isation and the relevant algorithm s used in G auss is provided in the  following 
subsection.'^*^

2.5.1 N onlinear op tim isa tion

T h e  O p t m u m  p rocedure  in G auss  maximises a  function, for example Ecjuation (2.26),

0(0; y, X ), by minimising the negative of the function with respect to its vector of param eters, 
in this case 6. Given the derivatives of this objective fmiction with respect to  6, i.e., the 
gradient vector, which is numerically computed, and initial values for 6, obtained as described 
in Siibsection 2.4.4, the O p t m u m  procedure advances iteratively, com puting a direction, d, 

and a step length, s, at each iteration. The (juantity sd  is a vector of values th a t is added 
to the current estim ate of 6, and therefore has the same dimension as 6, and s is a scalar. 
Thus, given a value for d  the current estim ate, (?, is updated as

e + = e  +  sd;  (2.41)

hence s may be interpreted as changing the ra te  of descent of the objective function in the 
given direction. How d  and .s are conijjuted will be described in turn , concentrating on the 
former.

Defining Q to be the A' +  1 gradient vector and Ti. to be a { k  +  1) x [ k  +  1) .synnnetric 
m atrix, a standard  m ethod of calculating d  is from

d  =  H “ ' a .  (2.42)

However, as numerical m atrix  inversion may be challenging, the O p t m u m  procedure avoids 
it by comjjuting d  as the solution of the eciuation

' ^ d  =  g, (2.43)

which is thought to be numerically more reliable. W hile Q is calculated in a standard  m anner, 
H may be calculated in different ways (let)ending on which algorithm is selected. Several 
approaches are available in O PT M U M .

The S t e e p e s t  D e s c e n t  algorithm  simply sets H =  Ia,+i, the identity m atrix  of order 
A;-|- 1. Wliile this is com putationally  undem anding and therefore attractive, the descent may 
be slow' and require m any iterations before convergence. The P k c g  or Polak and Ribiere 
(1969) conjugate gradient m ethod is a development of the S t e e p e s t  D e s c e n t  m ethod tha t

^''Further details on numerical optim isation may be found in the texts by Brent (197.3), Greene (2003), 
Murray (1972) and the C a u ss  reference manual Optimization,  Aptech Systems, Inc., 2001, especially chapters 
2 and 3.
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also uses only th e  g rad ien t b u t u p d a te s  th e  d irection  as

d +  =  +  r d ,  w here r =  . (2.44)

T here  a re  several m ore com plex m ethods. T h e  N e w t o n  algorithm  eq u a tes H  to  the  

Hessian of th e  objective function , w hich m ay be com puted  num erically  as th e  g rad ien t of 

th e  grad ien t. U nfortunately , th is  co m p u ta tio n  is generally a  form idable num erical problem  

and , as it is requ ired  a t each ite ra tio n , m akes th e  algorithm  slow and  possib ly  unreliable. 

However, w hen it works sm oothly, th e  N e w t o n  algorithm  m ay converge in fewer ite ra tio n s 

th a n  o th er m ethods.

T h e  large co m p u ta tio n al p roblem s associated  w ith the  calculation of th e  H essian in th e  

N e w t o n  m ethod  are  avoided by ce rta in  so-called quasi-N ew ton algorithm s. T hese s ta r t  w ith  

an  in itia l es tim ate  of th e  Hessian and  em ploy u p d a tes  th a t add inform ation a t each ite ra tio n  

w ithou t recjuiring th e  calcu lation  of second derivatives. A lthough they  generally  need m ore 

ite ra tio n s  to  achieve c:onvergence th a n  th e  N e w t o n  m ethod, their num erical efficiency m eans 

th a t  th ey  are usually  faster and , fu rtherm ore , ten d  to  be m ore robust to  th e  c;oudition of th e  

m odel and  d a ta . T h e  O p t m u m  p rocedure  contains th ree  such algorithm s: th e  B f g s  m ethod  

due to  B royden (1967), F le tcher (1970), G oldfarb  (1970) and  Shanno (1970). th e  D ff’ m ethod  

of D avidon (1968) and  F le tcher and  Powell (1963) and B f g s -SC , which is a m odified B f (;s 

algorithm  in which th e  form ula for th e  com p u ta tio n  of th e  u p d a te  of th e  Hessian estim ate  

has been changed to  m ake it scale free. In all th ree  cases, th e  OPTM UM  im plem entation  

of th e  a lgorithm  uses the  C holesky factorisation  of the  approx im ation  to  th e  Hessian in 

Ecjuation (2.43), i.e., H  =  C'C, before so lution for d . T h e  B f g s  algorithm  is th e  default 

choice in O p t m u m , w hile th e  o th e r five are available as op tions.’*̂

T h e  O p t m u m  procedure  in G.-\USS 5 also includes a  num ber of m ethods for com puting  

th e  s tep  length , s. T h e  defau lt m eth o d  is called S t e p b t , whicli is described in Dennis and  

S chnabel (1983). It first a t te m p ts  to  fit a q u ad ra tic  to  th e  objective function and  com putes 

an  estim ate  of s th a t  m inim ises th e  cjuadratic. If th a t fails, it tries a cubic function, whicli 

is ra th e r  m ore versatile  in cases w here th e  objective function  is not well app rox im ated  by a 

(juadratic.

If S t e p b t  fails, th en  B r e n t  is used, a technique due to  B rent (1972) th a t evahuites 

th e  objective function  a t a secjuence of tes t values for ,s, determ ined  by ex trap o la tio n  and 

in terpo la tion  using th e  inverse of th e  ‘golden ra tio ’, namely, the  constan t =  0.61803.

T h is  m ethod  is generally  m ore efficient th an  S t e p b t  b u t requires significantly m ore function 

evaluations.

If, in tu rn , B r e n t  fails, th en  a  procedure  called H a l f  is used. D enoting th e  objective 

function by F  ( ^  + s d ^ , th is  m ethod  first sets s =  1. If F  ^0 - I -  ,sd^ <  F  ^0 ^ , then  s is set

to  1; if no t, th en  s =  0.5 and  F  (^6 +  sd ^  is tried . T he a ttem p ted  step  length  is halved each 

tim e th e  ob jective function fails to  decrease. W hen th e  function  does decrease, s is set to

^*It should be noted that all of the m ethods discu.ssed here are locally but not globally convergent. W hile not 
considered here, a range of globally convergent optim isation techniques is available. These include sm oothing  
(hornotopy) m ethods, response surface techniques, simulated annealing and genetic algorithms. Further details 
can be found in Horst and Pardalos (1995), Pinter (1996) and Neumaier (2004). For econometric applications 
see, for example, M addala and Nelson (1974), Goffe (1996), Jerrell and Campione (2001), and Tucci (2002).
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its current value. This m ethod usually requires the fewest function evaluations but is most 
likely to fail to find the step length th a t decreases the objective function.

Finally, if H a l f  fails, a final search for a random  direction th a t decreases the objective 
function is implemented. The radius of the random  search is fixed via an im portant global 
variable in OPI’MUM called _oprteps, the  default value of which is 0.01. It is, however, 
possible to specify any positive value for _oprteps.

2.5.2 Com putations and results

The com putations and results in this subsection and the following section relate to Ham ilton’s 
(2001) Exam ple 3 concerning the post-war US Phillips curve. No results for the test statistic in 
Equation (2.38), the LM-type test for nonlinearity, are given here as they derive from a simple 
ordinary least scjuares regression, which is unprobleniatical. However, they were checked for 
all of the cases considered and, w ithout exception, the null of linearity was rejected.

Noting th a t an O l s  regression of inflation (ttj) on unemployment {ut),  lagged infla
tion (7Tt_i) and a time trend {t) reveals statistically  insignificant evidence of an inflation- 
unemployment trade-off using annual d a ta  for the period t  = 1949 to 1997, Hamilton (2001, 
Section 7) investigated the use of a nonlinear relation like tha t defined in ecjuations (2.17) 
and (2.18), of the specific form

TTt =  +  S t .  (2.45)

As previously noted, however, it w'as initially not possible to replicate H am ilton’s results 
using G.^lJSS 5 and Ham ilton’s original data: the numerical optim isation associated with the 
m aximisation of Ecjuation (2.26) failed. The original da ta  is included here, for reference, as 
Table A .l.‘‘^

A lter n a tiv e  a lgorith m s and s te p  len g th s

Exam ination of Ham ilton’s (2001) G a I'SS  program  revealed th a t it employs the B f g s  algo
rithm  and relies on the default value of _ o p rtep s . It had also been iniplenientetl by Hamilton 
using an earlier version of G a u s s . Indeed, it was possible to reproduce his results using G a u s s  

3 w ithout any modification of the program , although for his reported value of g2 of 0.16, a 
value of -0.16 was recorded, when rounded to two decimal places, like all of his results. 
However, when using G .4U SS 3 with different algorithm s, by suitable and straightforward 
adjustm ents of the program code, the results, when they were produced using Ham ilton’s 
data, were not always similar to those reported by Hamilton. Table A.4 shows the results 
of all six optim isation procedures available in G a u s s . In this table, algorithm s 1, 2, 3, 4, 5 
and 6 refer to the S t e e p e s t  D e s c e n t , B f g s , B f g s - s c , D f p , N e w t o n  and P r c g  methods, 
respectively; and the (ji and a j refer to the param eters in the nonlinear and the linear com
ponents of the conditional expectation function, respectively. The values of i =  1 ,2 ,3  relate 
to Ut, TTf-i and t, respectively, while ao is the constant.

■*̂ AI1 tab les and  figures referred to  in th is  an d  subsequen t ch ap te rs  can  be found in th e  relevant appendices. 
"*'^This difference in sign is of no consequence for th e  nonlinear inference, a.s bo th  positive and negative 

values im ply th e  identical value of gf ,  and  therefore  o f th e  likelihood function.
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T he resu lts for B fgs  (algorithm  2) in Table A .4, ob ta in ed  iising the  program  in unm odified 

form, are those corresponding  to  H am ilton ’s (2001) published results and are included as a 

convenient reference. A p a rt from  th e  one difference in sign for ^2i they  are identical to  his. 

However, it was found th a t  B f g s - sc  (a lgorithm  3) and  P r c g  (algorithm  6) fail for H am ilto n ’s 

data-set, S t e e p e s t  D e s c e n t  (a lgorithm  1) p roduces noticeably  different num erical resu lts 

from  H am ilton ’s, N e w t o n  (algorithm  5) p roduces very sim ilar results except for th e  sign on 

th e  nonlinear p a ram ete r es tim ate  g-2 , and  D f p  (a lgorithm  4) replicates th e  resu lts of B f g s , the  

H am ilton  case. D espite th e  big num erical differences in th e  results p roduced using algorithm  

1, th e  high s ta tis tica l significance of rem ains an d  th e  inference concerning non linearity  

would be basically  th e  sam e as th a t  d raw n by H am ilton.

Following an  am oun t of experim en ta tio n  involving straigh tforw ard  m odification of th e  

program  code to  u tilise different values of - o p r te p s ,  H am ilton’s (2001) resu lts were even tu 

ally reproduced  using G a u s s  5. It should be  no ted  th a t not all values of _ o p r te p s  proved 

successful and  led to  resu lts. Table A .5 contains th e  resu lts for w hat was the  m ost success

ful value for th is  p a ram eter, nam ely, - o p r te p s  =  0.00001, while Table A .6 gives resu lts for 

certa in  o th er _ o p r te p s  values, nam ely, 0.001, 0.1 and  1.0. As can be seen from  Table A .5, 

th e  results from  G a u s s  5, algo rithm  2, are identical to  those of H am ilton p roduced  by th e  

sam e algorithm  in G a u s s  3. T h e  resu lts from  G a u s s  5, algorithm s 1 and 5 are sim ilar in ab 

so lu te term s to  those given by a lgorithm  2, b u t th e re  are  some sign changes on g 2  and  ^3. In 

con trast to  w hat was fom id using G a u s s  3, th ere  are surprising ly  large num erical differences 

betw een th e  resu lts  from  algorithm s 4 and  6 and  those from algorithm  2 when using GauSS  

5. D espite these various changes across some a lgorithm s and the  two versions of Gal'SS, gs 
rem ains th e  m ost s ta tis tica lly  significant of th e  non linear param eter estim ates, though  g -2 is 

m arginally  significant for m ost of th e  algorithm s and  _ o p r te p s  values. A lgorithm  3 failed in 

all experim ents due  to  a problem  w ith  the  C holesky decom])osition,'*‘ and it was concluded 

th a t  th is m ay be due to  a j)rogram  erro r in th e  G a u s s  software, W'hich rem ains to  be inves

tigated . T h e  num bers of ite ra tio n s  used by th e  a lte rn a tiv e  algorithm s are, in relative term s, 

liroadly in line w ith  w hat was saitl ab o u t re la tive efficiencies in Subsection 2.5.1.

In itia l p aram eter  e s tim a te s

It is well known th a t  th e  in itia l e stim ates of p a ram ete rs  are  often critical for convergence of 

num erical op tim isa tio n  procedures. T he in itia l es tim ates  for th e  gi param eters  in H am ilto n ’s 

(2001) program , as have been used previously in tes tin g  for nonlinearity, are gi =  ? ,

w here s'f is th e  sam ple variance o f ex p lan a to ry  variable X i^ '^  W hile there  is no inform ation  

in H am ilton’s p ap e r concerning th e  in itia l value of C, exam ination  of his p rogram  revealed 

th e  s ta r t  value C, — 0.5. I t was decided to  investigate th e  effect of clianges in th e  in itia l value 

of C, using th e  S t e e p e s t  D e c e n t  algorithm , w hich, according to  Schoenberg (2001, p. 14), 

is th e  least affected of th e  algo rithm s by choice of s ta r tin g  values, and  which was th e  only 

algorithm  no t to  have failed in our earlier experim ents.

Using - o p r te p s  =  0.00001 and  a  range of s ta r t  values for from 0.1 to  1.5, inclusive, in

'‘‘‘The G a u s s  diagnostic message produced was Cholesky downdate failed.
‘'■’’See Subsection 2.4.5.
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steps of 0.1, it was found that failures occurred for the lower values of 0.1, 0.2 and 0.3, but 
that all other values of C, produced results. In all successful cases, the number of iterations of 
algorithm 1 was 150, the default maximum in the code. There was considerable variability 
in the final estimates of the g, parameters and their standard errors, although ^3 was always 
statistically significant. The results for these ctises are given in Table A.7.

A lgorithm  sw itching

In order to capitalise on the characteristics of the various optimisation algorithms, and thereby 
economise on the number of iterations, and to examine whether the variability in parameter 
estimates noted in the previous subsection could be reduced, the investigation of the effects 
of different start values was extended to consider the use of an algorithm switching procedure 
involving two different methods, as described by Schoenberg (2001). This procedure begins 
with algorithm 1, STEEPEST DESCENT, which is robust to initial conditions, i.e., initial 
parameter values and a step length of imity."*® If the fmiction fails to imjjrove by the default 
amount of 0.01, then a switch to algorithm 2, B f g s  with step length Be^ENT takes place. 
The use of algorithm 5 ( N e w t o n )  was also explored as the second of the algorithms.*'*  ̂

Again, the procedure fails for initial values of of 0.1, 0.2 and 0.3, but produces estimates 
f(jr all other start values of C examined. Considerably fewer iterations are involved in obtaining 
the final estimates. A maximum of 29 iterations for initial = 0.6, 0.7 and 0.8, and a minimum 
of 11 iterations for initial C =  1-1 were required. Fewer iterations are required in all cases 
but one when the second algorithm is chosen to be N e w t o n .  Greatly reduced variability is 
observed in the final estimates and their standard errors across all Ccises, and these estimates 
are very close to Hamilton’s (2001) original results as given in Table A.5. Indeed, to three 
decimal j)laces, the absolute values of the estimates and their standard errors are identical, 
except for the case of Sq, where the differences are none the less very small. Details of the 
results for the two versions of the algorithm switching experiment for the odd start values of

are pre,sented in tables A .8 and A.9. Results for the even start values, which are similar to 
those containexl in the tables, were omitted for brevity.

2.6 Sensitivity to  D ata

This section reports on the performance of the program, the G a u ss  algorithms, and the re
sults protluced, when various small changes are made to the dataset used in Hamilton’s (2001) 
Example 3. Three types of change were considered. The first deleted observations at the start

^°Although in this case, both the algorithm and step-lerigth method switch, OPTMUM can switch just the 
algoritlun, allowing the step-length to be clio.sen in the usual way (.see Subsection 2.5.1).

^^This switching is controlled by the value assigned to the global variable _opdfct. If the function fails 
to improve by the percentage .opdfct, OPTMUM switches to the secondary search method. Its default =  
0.01. This methodology can pair any two algorithms together, although algorithms 1, 2 and 5 are usually 
recommended, given their respective characteristics.

^^The advantages of such an approach are apparent. The OPTMUM optimisation proce.ss can be started 
without strong demands on either the condition or starting points of the model, given the characteristics of 
the S t e e p e s t  D e s c e n t  method, and can then switch to more efficient methods, in this case B fgs  or N e w t o n , 
that are more demanding, after the function is closer to the minimum. This switching algorithm technique 
offers the potential to overcome various problems encountered en route to the optimisation of 0 .
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of the dataset and the second deleted observations at the end, thus giving successively smaller 
samples. The third added new observations to create successively larger, somewhat updated 
samples. The additional observations on the US unemployment data and the US consumer 
price index were obtained from the US Bureau of Labor Statistics.'*^ Checks confirmed that 
the observations for the period 1949 to 1997, also available from this website, were identical 
to those ill Hamilton’s dataset. In line with Hamilton’s treatment, no re-scaling of the data 
was undertaken.

In all, ten alternative samples were created. Hamilton’s (2001) original dataset is des
ignated as dataset 1. Deleting the first observation {t = 1949) from Hamilton’s data gives 
dataset 2; deleting the first and second observations gives dataset 3; deleting the first, second 
and third observations gives dataset 4. Similarly, deleting the last observation {t = 1997) 
gives dataset 5: deleting the last two observations gives dataset 6; deleting the last three 
observations gives dataset 7. Finally, adding the observation for 1998 gives tlataset 8; adding 
the two observations for 1998 and 1999 gives tlataset 9; adding the three observations for 
1998, 1999 and 2000 gives dataset 10; and adding the four observations for 1998 to 2001, 
inclusive, gives dataset 11.

For each of the 10 alternative samples, Hamilton’s (2001) program was implemented using 
G a u s s  5 and the values for _oprteps of 0.00001, 0.001, 0.1 and 1.0, which were referred to 
in Subsection 2.5.2. The G a I'SS 3 implementation was also used with datasets 2, 5, 7, 
8 and 11. A large volume of results was therefore j^roduced and the relevant details are 
tabulated in tables A.10 to A.25. Table A .10 summarises the nonlinear estimates given by 
the G a u s s  3 implementation using dataset 2. These results are typical; three of the six 
nonlinear optimisation algorithms fail, and of those that did not fail, there are considerable 
differences in the results produced. The results from G a u SS 3 for datasets 5, 7, 8 and 11 
are contained in tables A .11, A.12, A .13 and A.14, respectively. The level of program failure 
in each case is at least as great as that observed using dataset 2, and the variation in the 
nonlinear estimates remain considerable in some cases.

As shown by Table A .10, algorithm 2, which is Hamilton’s (2001) default method, as well 
as algorithms 3 and 4, fail in G a u s s  3. The api)arent reason is that after one or several 
iterations, the algorithm encountered a nonpositive definite matrix.'^’ Of the methods that 
worked, algorithm 1 and 6 give similar results but algorithm 5 gives very different results 
from these, including different signs for all of the gi coefficients.'^* These differences are 
noteworthy, as is the fact that algorithm 2 fails for all of the modified data sets examined, as 
can be seen in tables A. 11 to A. 14.

The results of the G a u s s  5 implementation using datasets 2 to 11, inclusive, are contained 
in tables A. 16 to A.25, respectively. The information from these tables on the success and 
failure of the algorithms is summarised in Table A .15, for convenience. This Table includes 
similar information for Hamilton’s (2001) data (datiiset 1), for comparison. From a total 
of 264 program runs, 102 or 39 per cent failed to produce nonlinear estimates. At the

■*®http: //www. b i s  . g o v / .
®°One or other of two G au ss diagnostic messages were obtained in this event. The first wa.s Negative of 

Hessian is not positive definite', the second was Matrix not positive definite.
■'’'A lthough as previously noted, the sign on the gi parameters is unimportant, as it is gf  that is relevant.
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extremes, algorithm  3 ( B f g s - s c ) failed in all cases, in line w ith previous findings, while 
algorithm  1 (S t e e p e s t  D e s c e n t ) was successful in all cases. These la tte r cases all required 
the  maximum  number of iterations perm itted  by the program.®^ Algorithm  5 ( N e w t o n ) was 
the most efficient, converging after the least immber of iterations, bu t it failed in 10 out of 44 
runs, i.e., in 23 per cent of cases. Wbrryingly, algorithm  2 ( B f g s ), the default in Ham ilton’s 
program , failed in 28 out of 44 runs or 64 per cent of cases.

As found in the case of G a u s s  3, there are many differences in the nonlinear estim ates 
obtained from a given dataset when different algorithm s converge using G a u s s  5, including 
some sign changes. Furtherm ore, there are also some big changes in numerical param eter 
estim ates, again including some sign changes, when m arginal changes in the original dataset, 
such as the addition or deletion of ju st one observation, are made. Of particular interest is 
the case of the results obtained using dataset 11 and algorithm  2, where the addition of four 
ex tra  observations leads to radically different conclusions concerning uonlinearity than those 
in H am ilton’s example. In this case, all tliree gi are foimd to be significant, in comparison to 
ju st ^3 using the original da ta  with this algorithm . The implications for inference regarding 
the da ta  in this case are obvious, implying tha t ttj is now nonlinear in not ju st t, as before, 
l)ut in and 7T(_i also. This appears to be an exception, however, as the relatively high 
statistical significance of is generally m aintained across the range of experiments tha t have 
l)een conducted.

Finally, the algorithm switc:hing procedures, outlined previously, were also applied to 
datasets 1 to  11, inclusive. Interestingly, while there were a few cases of failure, this procedure 
appears to offer increased efficiency and somewhat improved numerical stability in the final 
numerical param eter estimates. These results can be found in tables A .26 and A.27. Note 
th a t the algorithm  switching procedure has been shown in Subsection 2.5.2 to  be somewhat 
robust to initial param eter estim ates. Given the increased efficiency and stabihty  noted here, 
these m ethods seem to offer the best approach to  nm nerical optim isation in this context.

2.7 Further R esults: H am ilton’s E xam ple 1 and 2

The com putations and results reviewed thus far have related solely to  Ham ilton’s (2001) 
Exam ple 3, concerning the US Phillips curve. It is believed, however, th a t the issues outlined 
in Subsec:tion 2.5.2 may be common to any im plem entation of the Ham ilton approach. To 
examine if this Wcis indeed the case, H am ilton’s Examples 1 and 2 were reconsidered in light of 
the issues raised on the im plem entation of the methodology, namely, alternative algorithms, 
initial param eter estimates, algorithm  switching and sensitivity to data.

H am ilton’s (2001) Exam ple 1 and Exam ple 2 rely on random ly generated data. Example 
1 makes use of a simj)le threshold model, defined by

Ut = 0.6xul[j,j(>o] +  +  £t, (2.46)

■̂ T̂he number of permissible iterations is controlled by the G auss parameter _opmiter, which defaults to 150 
in Hamilton’s (2001) program. It was found through suitable experimentation that increasing the maximum 
number of iterations to 250, for those algorithms that reached the original maximum of 150, did not alter the 
results obtained to three places of decimals.
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w here xu ~  n .i .d .(0 ,100), l[xit>o] =  0 w hen xa < 0 and  1 o therw ise, et ~  n .i.d. (0 ,1) i =  1,2, 
t =  1 , . . . , T ,  and the  num ber of observations, T = 100. For E xam ple 2, a m ore e labo rate  

specification is used, namely,

Vt =  ^  +  2xi(X2(1[xk>0] l[a:2!>0] +  0.7X3j +  £(, (2.47)

w here xu  ~  n .i.d .(0 ,4 ) ,  et ~  n .i.d .( 0 , 1) i =  1 ,2 ,  3, f =  1 , . . . ,  T , and  again, T  =  100. In  bo th  

cases, th e  null of linearity  is correctly  re jected  by H am ilto n ’s L m  test, w ith  test s ta tis tics  of 

\ ^ { g )  =  2 3 2 .93  and Xf j { g )  =  64 .39 ,  respectively, far in excess of th e  5 p er cent critical value 

of X f f i g )  =  3 .84 .  In Exam ple 1, gi  is found to  be significant, and  in E xam ple 2, gi  and g 2 are 

found to  co n trib u te  to  th e  nonlinearity . I t should be  m ade clear a t th is  po int th a t  as the  Xu 
were random ly  generated  for b o th  exam ples, the  resu lts  p resen ted  for th e  rem ainder of th is 

section re la te  to  a fixed sam ple of xu for each exam ple, generated  exactly  as in H am ilton. 

In th is  way, th e  resu lts presented here are  d irec tly  com parable. For th is  reason, the  results 

for H am ilto n ’s Exam ple 1 and E xam ple 2, fovmd using algorithm  2, G a u s s  3 and shown in 

tab les A .28 an d  A .29, differ slightly from  those rep o rted  in his paper. T hese differences stem  

solely from th e  random  generation of th e  observations on the  xu- T h e  particu la r sam ples of 

d a ta  used here  can be found in tab les A .2 and  A .3.

Tables A .28 and A .29 present th e  resu lts  for th e  fixed sam ple of tla ta  using G a u s s  'A and 

th e  six available algorithm s. As w ith  previous findings, the  various algorithm s re tu rn  .some 

sm all num erical differences in th e  p a ram ete r estim ates and  som e sign changes. As before, 

th e  a lgorithm  BFCiS-SC fails com pletely for b o th  exam ples. T h e  high level of signihcance for 

g i  and  therefore, th e  inference concerning non linearity  rem ains th e  sam e however, regardless 

of which of th e  five functioning a lgorithm s were chosen. Tables A .30 and  A .31 show the 

reisults for th e  various algorithm s in G a u s s  5. A sim ilar p a tte rn  em erges here; desp ite  using 

a range of values for _ o p r te p s  and  th e  six algorithm s, th e  resu lts rem ain  largely unchanged, 

ap a rt from som e sm all num erical differences and  som e sign changes. Again, B f c : s - s c  fails 

com pletely. Also, th is experim en tation  gives fu rth e r confirm ation of th e  relative efficiencies 

of th e  algorithm s, given the  num ber of ite ra tio n s  refjuired for convergence. These findings 

confirm  those  of Subsection 2.5 .2 , w'here th e  choice of algorithm  was found not to  affect the 

s ta tis tica l inference of the  m ethodology.

T h e  effect of altering  th e  in itial value of the  p a ram e te r has alm ost no im pact, again 

beyond crea ting  sm all num erical differences and  sign changes, unlike th e  case of Exam ple 3, 

m entioned in Subsection 2.5.2. T hese resu lts  can be seen for E xam ples 1 and 2 in tables 

A.32 and  A .33, respectively, w here once again. S t e e p e s t  D e sc ;e n t , the  algorithm  m ost 

ro b u st to  in itia l conditions is em ployed, an d  in each case, converges after the  m axim um  

150 i t e r a t i o n s . I t  should be no ted  th a t  th e  p rog ram  failed to  p roduce estim ates in bo th

^^Iii these cases, the optim isation algorithm gave results after 150 iterations, the default maximum in the 
program. To investigate if the algorithm had actually converged to an optimum or simply stopped at the 
maximum, the optim isation was repeated with a maximum of 300 iterations. In every case, the optimisation  
converged before reaching this maximum and interestingly, the estim ates were very similar to those produced 
after 150 iterations. Observing the optim isation iteration-by-iteration in each case confirmed that before 150 
iterations were complete, the algorithm had converged to a sm all neighbourhood. As the iterations progressed, 
the algorithm sim ply moved around that neighbourhood. T he numerical values obtained from any of these 
iterations were very close, and so the results for 150 iterations are reported here. These results were confirmed
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exam ples for (̂  =  0.1 and  0.2, and  in the  case of E xam ple 1, th e  g rea test num erical differences 

in p aram ete r estim ates  were observed for =  0.3. As was th e  case w ith  E xam ple 3, w here 

estim ates were produced , th e  inference regard ing  th e  non linearity  is unchanged  by th e  in itia l 

values of

Tables A .34 to  A .37 rep o rt on th e  m ethod  of a lgorithm  sw itching, previously  in troduced , 

for E xam ple 1 an d  2, in the  con tex t of varying th e  in itia l p a ram eter es tim ate  of C- I t should be 

no ted  th a t  for E xam ple 1 and  2, for =  0.5, th e  ‘d e fau lt’ se ttin g  for th e  a lgorithm  sw itching 

technicjues p ro d u ce  very sim ilar p aram ete r estim ates  to  those p roduced  using  G auss  3 in 

tallies A .28 an d  A .29, although  in all cases, fewer ite ra tio n s  were required . Also, regardless 

of th e  algo rithm  pairing  used in th e  sw itching procedure , or th e  in itia l value of (  chosen, the  

p a ram ete r estim ates  are very sim ilar to  th e  original resu lts. A lthough th ere  was no instab ility  

in th e  resu lts  found in Table A .28, these resu lts  confirm  th a t w here algo rithm  sw itching is 

used, estim ates converge to  th e  sam e resu lts. T h is  confirm s th e  previous findings th a t  th e  

algo rithm  sw itching procedure is the  m ost su itab le  for th is op tim isation  problem .

F inally  th e  issue of d a ta  sensitiv ity  was addressed , looking ju s t a t E xam ple 1. Six d a tase ts  

were c reated  for th is  purpose, w ith  d a tase t 1 den o tin g  th e  original fixed sam ple for E xam ple 1. 

D eleting th e  first two observations from x n  gives d a ta se t 2; deleting th e  last tw'o observations 

gives d a ta se t 3; deleting  th e  first five observations gives d a ta se t 4; deleting  the  last five 

observations gives d a ta se t 5; deleting th e  first ten  observations gives d a ta se t 6; deleting 

th e  last ten  observations gives d a tase t 7. For th e  purposes of th is analysis, =  0.5 and 

_ o p r te p s =  0.00001. By con trast to  the  resu lts  of E xam ple 3, the  resu lts  are rem arkably  

sim ilar across all da tase ts , and  are not no ticeably  different from the  original results. T hese 

resu lts can be found in tab les A .38 to  A .43. T hese resu lts m ust be viewed w ith caution , 

however, and  th e  concerns ou tlined  in considering E xam ple 3, which is based  on real d a ta , 

should  l)e bou rn e  in m ind, cis th e  apj)lied researcher is unlikely to  be confronted w ith  a datciset 

and  m odel specification such as th a t found in E xam ple 1.'^

2.8 C om m ents on ‘Investigating N onlinearity’

As noted  previously, research carried  ou t in th e  course of w riting  th is  ch ap te r appears as ‘In 

vestigating  N onlinearity : A N ote on the  E stim a tio n  of H am ilton ’s R andom  Field Regression 

Mode l ’. I n  his accom panying reply, ‘C onniien ts on ‘Investigating  N onlinearity” , H am ilton

by Hamilton (2005).
"’‘Although they do not arise in the context of the exam ples considered here, two further potential difficulties 

should he noted when using the O p t m u m  optimisation procedures. The first relates to the scaling of the data. 
Several of the optim isation algorithms calculate the Hessian matrix. A .scaling problem may arise if this 
matrix is not balanced, i.e., when the sum of the columns, or rows, are cjuite unequal. As the elem ents of 
the principal diagonal of the Hessian matrix determ ine to a large extent these sums, OPTMUM may fail to 
converge if the elem ents of the diagonal are unequal in magnitude. As a method for scaling the elem ents of 
the Hftssian may not be apparent, it is often sufficient to ensure that the data used in the model are of about 
the same m agnitude. A .second problem relates to conditioning. A matrix may be ill-conditioned if it is poorly 
scaled or if the model in question is mi.sspecified. If the Hessian matrix is poorly conditioned, its elements 
may be small. W hen its inverse is c:alculated, as may be necessary for a given algorithm, its elements may 
be very large. I’he search direction may, therefore, fail to  function appropriately in the presence of such large 
munbers. Model re-specification may be necessary in this case.

^'^Bond, D, M..J. Harri.son. and E.J. O'Brien (2005a): “Investigating Nonlinearity: A N ote on the Estimation  
of Hamilton's Random Field Regression Model,” Studies in N onlinear D ynam ics and Econornelrics, 9, Article
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(2005) addressed some of the issues raised here. This section briefly (iiscusses these very 
useful connueiits.^^’

Ham ilton begins by discussing ninnerical optim isation. W hile this is discussed in Sec
tion 2.5, it is worthwhile bearing in mind the ‘inherently bum bling nature’. N u m e r i c a l  
optim isation algorithm s may only be expected to find local extrem a, and under conditions 
of flat, near-fiat or bimodal likelihood surfaces, among others, the algorithm s may run into 
serious difficulties in converging.

Table A.4 is highlighted to illustrate some of the potential difficulties with the optim isation 
in this context. As Hamilton (2005) pointed out, it is not appropriate to accept the estim ates 
of the optim isation if its convergence has been halted by reaching the maximum permi.ssible 
num ber of iterations. He considers the case of algorithm s 2 ( B f g s ) and 4 ( D f p ). In the later 
case, it is noted th a t it takes 172 iterations to  reach the  very same results as algorithm  2. 
T he estim ates contained in Table A.4, however, are only marginally different from those of 
algorithm  2. They certainly would not be a source of concern. For both algorithms, it has 
been noted previously th a t extending the num ber of permissible iterations to 250 made little 
difference, as seen in the case of algorithm 4.

Algorithm  1 (STEEPEST D e s c e n t ), however, does not converge to the results found by 
the other ‘successful’ algorithms, even when 250 iterations are perm itted. Given what is 
known about the relative strengths and weaknesses of this m ethod, and the potentially dif
ficult likelihood surfac:e, these results are not surprising. In fact, by studying the behaviour 
of algorithm  1 through its numerical search, it is apparent th a t it converges to a neighbour
hood, before wandering aimlessly around it, failing to converge to a point. Hamilton (2005) 
acknowledged th a t by controlling the operation of algorithm  1 more carefully, through the 
param eter _ o p rtep s , great improvements can be made, and convergence can be achieved.

Hamilton (2005) rejjeated the starting  value experim ent for algorithm  2, reporting the 
results in Table 1.'̂  ̂ He noted tha t ‘this exercise uncovers tha t this was but one of several 
local m axim a’ and not the ‘single m axim um ’ suggested previously, and tha t the ‘nonconc:ave 
slope of the likelihood surface in the valleys and saddles separating the local hills may account 
for the difficulties some of the algorithms had in m aking their way to the top of any hill’.'^ 
This could explain the observed beliaviovir of algorithm  1, noted in the previous paragraph.^^

An issue th a t has not been raised thus far in this thesis, bu t will feature in later chapters, is 
the difficulty concerning estim ates of the param eter th a t are clo.se or equal to zero. Recall 
th a t C =  Hamilton (2005) found this situation analogous to the ‘pile-up’ phenomenon

2 .

should be noted th a t Hatiiilton (2005) is based on earlier versions of the work contained in CJhapter 2 
of this thesis and Bond, et al. (2005a). Hamilton has not, therefore, had the opportunity  to respond to the 
experim ents regarding algorithm switching, for instance. There are also some discreiJancies in cross-referencing 
between the articles, as a result.

®^Hamilton (2005), p. I.
’’̂ Hamilton (2005), p. 4.
^^Hamilton (2005), p. 3.
®°The potential for the failure of optim isation procedures given certain likelihood surface characteristics is 

docum ented in the literature. For example, useful insights into two possible difHculties are provided by Warnes 
and Ripley (1987) and M ardia and W atkins (1989). For instance, the likelihood function may be multimodal 
and the global maximum may not correspond to sensible values of the param eters, or the likelihood function 
may have a  very flat ridge with a tmmber of local maxima (VVarnes and Ripley, 1987, p. 640-641).
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seen in the time-series literature (see, for example, DeJong and Whiteman, 1993).**̂  This 
m atter does not arise with Hamilton’s (2001) original data, but with the derivative samples 
generated. It is also apparent in the applications to be found in later chapters, where it will 
be given further consideration.

A further issue, again to be raised later in this thesis, concerns the alternative covariance 
function suggested by Dahl and Gonzalez-Rivera (2003), which replaces Hamilton’s (2001) 
sjiecification

Hk{h) = Covk (m (x),m (z)) =  (2.20)
( j f c - l lO ,  1)

with

{ f l  _  i f  I f  <  1
 ̂ ’ (2.48)

0 i f / i * > l .
CJiven the focus of this chapter, and the vast array of results gathered and presented, this 
alternative specification was not considered. Its advantages are noted, however, and it is 
introduced more carefully in Chapter 3. It is utilised routinely thereafter. Hamilton recognises 
that this specification ‘may avoid at least some of the problems identified’.

The final comments concern data sensitivity. No mention is made of the most striking 
result: that with the addition of four extra observations, inference regarding the form of 
nonlinearity is radically changed. Rather, the case where just one observation (the first) 
is deleted, referenced previously as dataset 2, is considered. Hamilton does not ‘deny that 
it shakes one’s confidence in the inference that emerges’, although the suggestion that this 
anomaly may be due to that observation’s influential nature remains unconvincing.®'^ The 
fact remains that this method, ais with all methods, can be sensitive to the data.

2.9 C onclusion

This cliapter has given a brief review of nonlinear economic modelling. The motivation for, 
and several methods of modelling nonlinear economic relationships have been introduced and 
discussed. Most importantly, a new approach to nonlinear econometric modelling, proposed 
by Hamilton (2001), has been described.

An account of this new approach has been given, as has a brief description of some of 
the methods of nonlinear optimisation that may be used in the G a u s s  computer program

®'The pile-up problem results from the fact th a t sampling d istributions of moving average param eters can 
be observed to pile-up around imitv when the true param eter is close to  th a t value. De.Jong and W hitem an 
(199.3), citing Ansley and Newbold (1980), Cooper and Thompson (1977), Cryer and Ledolter (1981), Harvey 
(1981). and Sargan and Bhargava (1983) note th a t 'sam phng distributions of maximum likelihood estimators 
of dom inant moving average param eters "pile-up” at unity when the true param eters are less than unity but 
lie near the boundary of the invertiblility region'. In the context of the Hamilton (2001) methodology, the 
random Held can be seen as a generalised moving average process. Hamilton (2005) pointed out th a t for a 
moving average process with an order of unity, the maximum autocorrelation of the process is 0.5. If the 
sample autocorrelation of a dataset is greater than 0.5, maximum likelihood estim ates of the moving average 
param eters can pile-tip around unity, implying th a t cr̂  =  0. In practical terms, the pile-up phenomenon 
clearly undermines the param etric interpretation of any inference. Viewed as a param etric model of the 

data-generating process, cr =  0 would imply th a t there is no error term  in Equation (2.17), which is hardly a 
defensible position’ (Hamilton, 2005, p. 5),

®^Hamilton (2005), p. 5.
*’'M4amilton (2005), p. 7.
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provided by Hamilton (2001) for the im plem entation of his methodology. The perforrnaiice 
of this program  has been investigated using da ta  relating to H am ilton’s three examples, 
using not only random ly generated data, bu t also d a ta  concerning the US Phillips curve, two 
versions of the  G a u s s  software, a range of alternative niunerical optim isation options and 
alternative values for the G a u s s  param eter ^ o p rtep s  and model param eter starting  values. 
T he perform ance of algorithm  switching procedures has also been examined. Finally, the 
effects of changes in the sample d a ta  on the results produced by H am ilton’s procedure have 
been explored. The focus has designedly been on the G a u s s  im plem entation of the procedure 
and, while several changes in the G a u s s  programs have been investigated, no attem pt has 
been m ade at modification of H am ilton’s m ethodology per se.

The results presented suggest some clear conclusions, which will hopefully be of value 

to those contem plating working with H am ilton’s (2001) method. First, different algorithms 

used for the numerical optim isation have different chances of success.®"  ̂ H am ilton’s choice of 

the B f g s  algorithm fails in over 60 per cent of the cases exam ined in the study of Example 

3, while the less com putationally efficient S t e e p e s t  D e s c e n t  m ethod succeeds in all cases. 

Secondly, when different algorithms work, they may produce significantly different numerical 

results, including different signs for parameter estim ates. Thirdly, the use of procedures 

that employ two algorithms and a switching criterion appears to produc:e far more consistent 

estim ates than any one algorithm used on its own. Algorithm switching is also less sensitive to 

the choice of initial parameter estim ates. Fourthly, minor changes in data can have significant 
effects, both in terms of whether an algorithm operates or not and, in the case of it operating, 
the numerical results it produces. For example, it is interesting to note that if Hamilton’s 

Exam ple 3 data had just one less observation at either end of the sample, or one more 

observation at the end, his version of the program would have failed to produce nonlinear 

estim ates, not only with G a u ss  3 but al.so with G a u ss  5 and all of the values of _oprteps  

used in this study. Moreover, if his dataset had contained the four additional observations for 

1998 to 2001 (dataset 11), while the program would have produced results, all three nonlinear 

parameter estinuites would have been significant, in contrast to just ^3 as found in his original 
study (dataset 1). Thus his inferences concerning the form of nonlinearity would also have 

been different. However, despite the sensitivity of results to choice of algorithm, initial values 

and data changes, the statistical significance of the nonlinear parameter estim ates, hence the 

inference about the form of nonlinearity, generally seems to be little affected according to 

the findings that have been reported here. For the simulated datasets used in Exanij)les 1 
and 2 , the sensitivity of results to choice of algorithm and size of sample is less pronounced 

than has been found using the real data of Example 3. Given the on-line availability of 

H am ilton’s program and of the data used, it is a straightforward m atter to replicate all of 

these f i n d i n g s . T h i s  chapter is only the beginning of the work advocated by Hamilton to

®'*As previously noted, only locally convergent numerical optimi.sation algorithms have be applied here. I’he 
use of globally convergent procedures may offer some relief to the difficulties encountered with tuimerical 
optim isation in the context of random field regression, as docum ented in this chapter and Hamilton (2005). 
T he u.se of such m ethods represents and interesting and potentially fruitful agenda for future research.

®®hi addition to Ham ilton’s (2001) original code, which as previously mentioned is available from his website, 
an annotated version of the code and all datasets used in this chapter and in Bond, et al. (2005a) are available 
from the website o f Studies in N onlinear D ynam ics and Econometrics-, h ttp ://w w w .b e p r e ss .c o m /sn d e /.
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establish the usefulness of his new methodology, and empirical investigations continue, in this 
thesis and beyond.

Hamilton (2005) offered some insight into the difficulties which may have caused the nu
merical instability of the algorithms revealed in this study. His findings seem to confirm 
that ‘difficult’ likelihood surfaces make convergence challenging. Another possibility is that 
difficulties exist within Hamilton’s (2001) methodology, and that the use of the alternative 
covariance functions for specifying the random field regression model may help to reduce nu
merical instability,®® as may different procedures for estimating the parameters of Hamilton’s 
random field regression model, such as the recently proposed tw'o-step method of Dahl and 
Ĉ in (20U4), which promises imique identification and good convergence properties. The lat
ter constitutes an interesting agenda for future research, while the former is introduced more 
formally in Chapter 3, and routinely taken into consideration thereafter. Finally, Hamilton 
(2005) introduced the phenomenon known as ‘pile-up’. While issues relating to this have not 
bt'en discussed in this chapter, they are of considerable importance, and will be raised again 
in Chapter 5.

W ith regard to the implementation of the Hamilton (2001) random field regression method
ology, which this chapter addresses, the main recommendation is to employ an algorithm 
switching approach sTipj)lenieiited as necessary by changes of the G a u s s  _oprteps parame
ter, the starting value of (̂ , and using both the Hamilton and the Dahl and Gonzalez-Rivera 
(2003) covariance specifications. On the basis of the evidenc:e provided here and supple
mented in later chapters, such an approach is more efficient than the use of single algorithms 
and appears to be less susceptible to numerical instability and failure.

®®See Dahl and Gonzalez-Rivera (200.3).
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Chapter 3

Testing for Nonlinearity: A N ote  
on the Power of Random Field  
LM -Type Approaches

Researcli carried out in the course of writing this chapter is forthcoming as ‘Testing for Nonlinearity: A Note 
on the Power of Random Field LM-Type Approaches' by M.J. Harrison and E..J. O ’Brien, T rinity Economic 
Papers.
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3.1 Introduction

111 light of th e  discussion in C h ap te r 2 on th e  im portance of iion linearity  in economics and  

econom etrics, th e  focus here sw itches to  tes tin g  for nonlinearity . In m ost i)ractical app li

cations, te s tin g  for lin earity /n o n lin earity  serves two purposes. T h e  first is to  estab lish  the  

presence of nonlinearity , i.e., to  decide if a p a rticu la r d a tase t is best m odelled w ith  a nonlin

ea r specification. If such tes tin g  fails to  reject linearity, su b jec t to  th e  power of th e  test(s) 

em ployed, th e  p u rsu it of a  nonlinear m odel would be futile. Secondly, post-estim ation  te s t

ing can d e term in e  w hether or no t th e  chosen nonlinear m odel adequate ly  represents the  d a ta  

generating  process. In b o th  cases, such tes tin g  can be an  in tegral p a r t of m odel building.

T his ch ap te r investigates th e  p roperties  of several tests  for neglected nonlinearity  in tim e 

series, using M onte C arlo  sim ulation  m ethods.^ T h is  s tu d y  is m otiva ted  by th e  LM -type 

te s t p roposed by H am ilton (2001), in troduced  in C h ap te r 2. T h e  com parative  p roperties  of 

th is  test, as an  in tegral p a r t of H am ilto n ’s framew'ork, and  indeed as a s tand -a lone test for 

nonlinearity , have yet to  be fully understood . T he goal of th is  ch ap te r is to  fu rth e r explore 

them .

T h e  p ro p erties  of th is  test have been stud ied  to  som e degree, b u t rem ain to  be fully 

estab lished . D ahl (2002), for exam ple, found th a t  th e  H am ilton (2001) test was powerful by 

com parison to  existing tes ts  based  on spline sm ooth ing  and  neural networks. T h e  aim  of th is 

ch ap te r is to  com pare th e  H am ilton  tes t w ith  som e well-known a lte rn a tiv e  tests, by apjilyiiig 

th em  to som e m odel specifications com m only encountered  in em pirical researc:h. Not only 

are these p ro p erties  of considerable im p o rtan ce  for th e  overall H am ilton  m ethodology, having 

im plications for th e  applicab ility  of th is ‘com plete to o l’ for nonlinear m odelling, Init they  are 

also im p o rtan t as they  assess th e  w orth  of th is  LM-ty])e test as a s tan d  alone tes t for neglected 

nonlinearity  in tim e series. C h ap te r  2 has highlighted tlu ' test, which is likely to  be little  

know n, due to  th e  technical n a tu re  of th e  original p ap er detailing  the  m ethodology, and  also 

because th e  test is em bedded  w ith in  th a t m ethodology. M any apj)lied researchers m ay not 

be fam iliar w ith  th e  tes t for these reasons.

Here, th e  H am ilton (2001) LM -type test will be  evaluated  across a range of m odel spec

ifications, p a ram ete rs  and  d a ta , and  will be com pared  w ith  several o th er tests, namely, the  

D urb in-W atson  (1950) bounds tes t, R am sey’s (1969) R e s e t  test, the  H arvey-Collier (1977) 

■0-test and th ree  tes ts  p u t forw ard by D ahl and  G onzalez-R ivera (2003). T h e  D urbin-W atson  

an d  R e s e t  te s ts  are widely know n, a lthough  m ore so as tests  for au toco rre la tion  and  func

tional niisspecification, respectively. T hese tests, however, m ay also be  effective in testing  

for nonlinearity , as au to co rre la tio n  and  m isspecification m ay indeed resu lt from la ten t non- 

linearity. T h e  H arvey-C ollier te s t, based on recursive residuals, m ay be less well known and  

certa in ly  seem s little  used.

T h e  rem ain ing  th ree  tests, D ahl and  G onzalez-R ivera’s (2003) A ^p (g ), and  g o p  tests, 

are derivatives of H am ilton ’s (2001) LM -type test, denoted  Each will be in troduced

'For an excellent introduction to Monte Carlo simulation in the social sciences, see Mooney (1997).
^The notation used here is that of Dahl and Gonzalez-[?ivera (2003) and follows that used in Chapter 

2. The  ̂ signifies that full knowledge of the parametric nature of the covariance function is assumed. The 
alternative is signifying that no assumption about the covariance function is made. The subscript h  signifies 
that the Hessian of the information matrix is used. The alternative is o p  signifying that the outer product of

40



in Section 3.2. These tests exploit the features of the Ham ilton framework and may offer a 
superior performance.

This chapter proceeds a.s follows. Section 3.2 introduces the various tests in some detail, 
particularly  where those tests may be unfamiliar. Section 3.3 outlines the design of the 
M onte Carlo experim ent, including details of the model specifications, param eters and d a ta  
employed. Section 3.4 provides the necessary theoretical background. Section 3.5 presents 
the results and offers a discussion of these findings and Section 3.6 concludes.

3.2 T he T ests

This section will introduce the various tests th a t will be investigated in this study. Some 
will be very familiar to the practicing economist: specifically, Ram sey’s (1969) R e s e t  test 
and Durbin and W atson’s (1950) bounds test. The Durbin-W atson procedure is designed 
to detect serial correlation in the disturbances of a regression model, based on the residuals 
of tha t model. Any serial correlation detected in the residuals, however, may result from 
serially correlated disturbances or ‘they may also be sym ptom atic of some other type of 
misspecification. In particular, it should be clear . . .  th a t positive serial correlation can be 
€'xpected when the functional form is inappropriate’.'̂  The remaining tests are likely to be 
unfam iliar and so will be introduced here. The intention here is to just outline the natu re  of 
each test. This section proceeds by looking at the more familiar tests of Durbin and W atson, 
R e s e i ' and Harvey and Collier (1977), before reviewing the newer tests: H am ilton’s X f / i g )  

test, introduced in C hapter 2, and the tests derived from this by Dahl and Gonzalez-Rivera 
(2003), namely, the X . Q p { g ) ,  X q p  and ( j o p  tests.

There are m any more tests th a t could have been considered here .’ The m otivation for 
including those chosen, however, is straightforw ard. R e s e t , the (/-statistic and the Harvey- 
Collier (1977) approach are all available in connnonly used econometric software jjackages. 
W ith the exception of the Harvey-Collier test, these procedures are well known and routinely 
reported, m aking them  attractive to the practicing economist. It seems appropriate, therefore, 
to include them  here. The rem aining tests, the X f j i g )  test and its derivatives, are themselves 
the motivation for this chapter, the aim of which is to empirically evaluate them . Comparing 
the performance of each of these tests will certainly provide results th a t will be of interest to 
the practitioner.'^

the score function is used.
■'Harvey (1990), p. 157.
'o th er  tests of note include that o f Harrison and Keogh (1985), who proposed a test ba.sed on disturbance 

estimators: McLeod and Li (1983), who applied the Ljung-Box statistic to the squared residuals of an A rm a  
model: the Bispectral test, which exploits the result that a properly normalised bispectrum of a linear tim e  
series is constant and zero under normality, over all frequencies (Priestley, 1988); the Brock, Dechert, and 
Scheinkman (1987) test, ba.sed on the notion of the correlation integral, which is known to have power against 
a range of nonlinear stochastic process, despite being a test of independence (CJranger and Terasvirta, 1993, p. 
3G); Keenan’s (1985) adaptation of the R e s e t  test; T say’s (1986) F -test, also biised on R e s e t ; and W hite’s 
(1989) neural network test of nonlinearity.

■’Many others have compared the relative performance of tests of nonlinearity. Lee, W hite, and Granger 
(1993), for example, examined the performance of several of the tests mentioned here. More recently, Dahl and 
C!onzalez-Rivera (2003) and Lee, Kim, and Newboid (2005) have undertaken similar studies, more detailed  
discussions of which will follow in later sections.
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3.2.1 T h e D urbin-W atson  bounds test

The Durbiii-W atsoii (1950) bounds test does not test directly a hypothesis of hnearity against 
an alternative of nonlinearity, luilike the other tests considered in this study. The test c:an, 
however, be used in this regard, for reasons previously outlined. Tliis study  not only reveals 
the potential for testing in the presence of nonlinearity, it should also reveal something about 
the behaviour of the test across a wide range of specifications. The test is based on O ls 
residuals, which can be very useful in detecting misspecificatioii th a t results from a latent 
nonlinear functional form or otherwise. Variation in observations not captured by some linear 
model will be captured by the residuals. Those residuals may then depart from their expected 
random  distribution. The fi-statistic exploits this characteristic of the residuals, although it 
is be tter known as a test for first-order autoregression in the disturbances. Given the model

yt = +  St, (3.1)

where ~  n.i.d.((), and t = 1 , . . . ,  T , the d-statistic is defined as

rf =  (3.2)
E f = i

where St are the O ls  resithials from Ecjuation (3.1). W hen Equation (3.1) is correctly spec
ified, the distribution of d  is centred arotnid 2, and d  tends towards 0 in the presence of 
positive autocorrelation, and tow'ards 4 in the presence of negative autocorrelation. It can be 
shown th a t d  ~  N{ 2 , 4 / T)  with a range of [0,4], which results from the fact th a t d  2(1 - P ) ,  
where p is the autoregressive param eter. The distribution of d depends ou the exjjlauatory 
variables, xt ,  which results in exact points of significance being unavailable. Upper and lower 
bomids, however, have been j)rovided by Durbin and Watson. These bounds allow the null 
hypothesis of no autocorrelation be tested against the alternativ'e of either positive or neg
ative autocorrelation, as follows. The null of i>ositive autocorrelation is rejected if d  <  f/^, 
where df^ is the lower bound, and the null is not rejected if d  > d ^ ,  where d y  is the upper 
bound, for a given level of significance. If d i  <  d  <  d y ,  the test is inconclusive. For the null 
of negative autocorrelation, the same procedure is followed, although the decision criteria in 
this case are d  >  i  — d ^ ,  d  <  A — d y ,  and 4 ~  d y  < d  < 4 — d i ,  respec^tively, for a given level 
of significance.

As Harvey (1990) pointed out, serial correlation in the residuals does not imply serially 
correlated disturbances. So while values of d close to 0 may suggest serial correlation in the 
disturbance term s, it may also result from misspecification and possibly neglected nonlinear
ity. T h a t is, an inapprojjriate or inadequate functional form may lead to serially correlated 
residuals. It should be noted th a t this test is not valid if the model to be tested includes 
lagged de])endent variables.

3.2.2 T h e H arvey-C ollier te st

The i/^-test proposed by Harvey and Collier (1977) is another test based on residual analysis, 
although it employs recursive residuals, which as the authors note may ‘exhibit a very different
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pattern of behaviour to the O l s  resichials under functional inisspecification’.® In some cases, 
this test is more powerful than the previously considered Durbin-Watson (1950) bounds test J  
Before considering the test, consider first the recursive residuals. Given the model

yt =  Xf/3 +  £(, (3.1)

where i =  1 , . . . ,  T, Xj is a fc-vector of observations, (3 is a vector of coefficients and et is the 
disturbance term where St n.i.d.(0, a" )̂.* The T  — k recursive residuals are defined by

=
y t  -  x ' iA -

1 'I
2

(3.3)

where t = k + l , . . .  ,T ,  f3t is the O ls estimate of j3 obtained from the first t observations and 
X( is a  ̂X /c matrix of full rank consisting of the first t sets of observations on the independent 
variables. Under the null hypothesis of Ecjuation (3.1), i.e., of no functional misspec:ification, 
the recursive residuals share the properties of the true disturbances. Given i>, the arithmetic 
mean of the recursive residuals, the statistic

( T - f c - l ) - ‘ ^ [I't -
t = k + l

( T - k ) - i  ^ I ' t , (3.4)
t—A.' “H1

follows a f-distribution with {T — k — 1) degrees of freedom under the null hypothesis. If the 
null hypothesis is true, ^  should be close to zero. A two-sided t test is then normally carried 
out. although a one-sided test may be sometimes appropriate.''*

3.2.3 R a m sey ’s R E SE T  test

Ramsey's (1969) regression specification error test, or RESET, is cis well known as the Durbin- 
Watson (1950) test and is widely used as a specification test. Its choice here as a test for 
neglected nonlinearity is clear: a nonlinear data generating process modelled linearly is a 
misspecification. In principle, the procedure tests the null of linearity in the independent 
variables against an unsi)ecified alternative of nonlinearity. The R e s e t  test is valid asymp
totically, and may even be so in finite samples, depending on the model in question. Given 
a model like Equation (3.1),

!jt = x[f3 + £t, (3.1)

'’Harvey and Collier (1977), p. 104.
^Harvey and C’ollier (1977), p. 10-4, suggested that when the 'form of niisspecification is such that the 

correct' functional form of the niisspecified variable is a concave or a convex function o f the variable actually 
included in the regression', that this test is 'more powerful than the Durbin-VVatson and von Neumann tests’.

'^The Harvey and C^ollier (1977) test is limited in practice to cases with either one explanatory variable, or 
where nuiltiple explanatory variables are assumed to have the sam e form of nonlinearity. W hile this may not 
be problematical in som e cases, it is not a desirable ciuality.

^Thanks to Curt Wells. University o f Lund, for making available his recursive residual G a u s s  code, w ithout 
which, the task of programming the Harvey and Collier (1977) test would have been considerably more arduous. 
His website can be found at h ttp : //w w w .n e k .lu .s e /n e k c w e /.
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the test is carried out by estimating the O l s  parameters /3 and s] regressing

h

it = x'/3 + ijjj yl + ut, (3.5)

where yt =  x{/3. The null hypothesis of no rnisspecification is

^0  : '02 =  • • • =  •0/1 =  0, (3.6)

and the test statistic is

Bh =   r. ^ ^ ------------ . (3.7)
Y 7 t = i ^ l { T - k - h + l )  ■

which has an ajjproximate F{h—l, T')-distribution, where k is the dimension of x^. In practice 
h = 2 is generally found to be sufficient and it is this value that is employed in this study.

Keenan (1985) proposed an adaptation of the R e s e t  test that attem pts to avoid multi-
collinearity between y / and Xf.̂ ’̂ The proposed test uses just yî . Rather than regressing
Eciuation (3.5), the equation

yf = x ',0 + ut, (3.8)

is regressed to obtain the residuals lij =  ŷ  ̂— x',</). The regression

et = uta + iyt, (3.9)

provides the sum of s(}uared residuals, =  Yli=h+l allows for test
ing the null hypothesis, o =  0.

Tsay (1986) projjosed a further adaj)tation of R E S E T  to increase its pow’er, suggesting that 
vech(x(;xj) be used instead of Vt  ̂ where vech(A) denotes the half-stacking vec;tor of
the matrix A, using elements on or below the diagonal ouly.^' In practice, the hypothesis to
be tested is ecjuivalent to that found in Equation (3.6).'^ These revised versions of R e s e t

are not considered in this simulation study. As noted, their comparative performance versus 
R e s e t  has already been assessed. Also, a major attraction of the standard R E S E T  test 
is the fact tha t it is widespread and routinely reported, making it easily accessible. Any 
comparative study of these variant tests and the random field methods, pending the results 
of this study, is left for future research.

'°T h is  m ultico llinearity  arises from th e  fact th a t  ipj y /  for j  = 2 , . . .  , h  tends to  be highly co rre la ted  w ith
X ( .

“ T say  (2002), p. 157.
'^L uukkonen , Saikkonen, and  T erasv irta  (1988) ex tended  th is  te s t by augm enting  vech(xfx5) w ith  cubic 

term s.
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3.2 .4  H am ilton ’s LM test

The Xfi(g)  test was introduced in C hapter 2. It warrants, therefore, but a brief mention liere. 
Rec:all the form of the model used in H am ilton’s (2001) approach,

yt =  rto +  +  Xm{g  © xj) +  et, (3.10)

where t =  1,2, This suggests th a t a simple m ethod of testing for nonlinearity is to
check if A is zero or not. Hamilton shows th a t if =  0, and the nonlinear model is estim ated, 
then for fixed g,  the maximum likelihood estim ator A  ̂ is consistent for the true value of zero 
and asym ptotically normal. Hamilton proposes a form of Lm test for practical application 
and the procedure has four steps, as follows:

Set (ji =  —̂ =f, where sf  is the variance of explanatory variable Xj, excluding the

constant term  whose variance is zero.

• Calculate the T x T  m atrix. H, whose typical element is ||xj — Xs||), i.e., the
function defined in Equation (2.20).

• Use O ls to estim ate the standard  linear regression y =  X/3 +  e and obtain the usual 
residuals, e, and standard  error of estim ate, =  {T — k —

• Finally, compute the statistic

X£ ^ ______________
a 4 [ 2 ^ r ( [ M7  H M r - ( T - A : - l ) - i M r ^ r ( M 7  H) ] 2 ) ] ’ ' " ’

where M /’ =  ly  — X(X^X)~'*X' is the familiar sym m etric idenipotent m atrix.

As A ^(y) ~  xf  under the null hypothesis, linearity (A"̂  =  0) would be rejected if Xfj{g) 
exceeded the critical value, for the chosen level of significance. In this case the alternative 
nonlinear specification given by Equation (3.10) would be preferred.

The performance of the Xf/{g) test has been assessed by Dahl (2002). In a simulation 
study, this test wtis compared to those of Cox and Koh (1989), Cox, Koh, W ahba, and 
Yandell (1988) and the neural network tests of Lee, et al. (1993) and Terasvirta, Lin, and 
G ranger (1993), which like the Xfj{g)  test, require no prior knowledge of the functional form. 
The Hamilton (2001) test was found to perform  very well in finite samples. Its size and 
power properties where good when compared to the ‘most popular and powerful tests in the 
litera tu re’, including the neural network tests, m entioned above.

Dahl and Gonzalez-Rivera (2003), however, identified several areas where the Xfjig)  te s t’s 
performance may suffer. These are discussed in detail in the next section. More recently, Lee, 
et al. (2005) assessed the performance of a variety of nonlinearity tests, including the \  fj{g) 
test. They present worrying evidence of spurious nonlinear regression, when the variables in 
(}uestion are random  walks. The Xff(g) test performs poorly. They find th a t the test rejects 
the true null of linearity in over 50 per cent of cases examined, against a nominal size of 5 
per cent, for a sample size of T  =  50. R ather than  converging to its distribution, the test

’ Dahl (2002), p. 282.
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sta tis tic  diverges to  infinity  as th e  sam ple size increases. A lthough none of the  sim ulated  

d a ta  used in th is ch ap te r can be charac terised  as a  random  walk, th e  findings of Lee, e t al. 

(2005) have serious im plications for th e  p rac tica l application  of th e  test. T his issue will be 

addressed  fu rth e r in la te r chapters.

3.2.5 The A^p(g), A^p and gop tests

Studies have show n th e  excellent p ro p erties  of th e  Xfj ig)  test. D ahl (2002), for exam ple,

foimd th a t  th e  te s t ‘perform s well in finite sam ples’ and  ‘has good size and  power p roperties  

when com pared  to  som e of th e  m ost p o p u la r and  powerful tests  in th e  lite ra tu re ’. S e v e r a l  

ciuestions m ay be raised ab o u t its  perfo rm ance in ce rta in  circum stances. Specifically, as the  

num ber of variables in th e  m odel u nder consideration  increases, so too  does th e  num ber of 

nuisance param eters . As H ansen (1996) showed, dealing w ith  m iidentified nuisance param e

ters  by assum ing  fidl knowledge of th e  param eterised  stochastic  process th a t determ ines the  

random  field m ay have adverse effects on th e  power of th e  test. Also, the  test relies upon 

a specific specification of th e  variance-covariance function of the  random  field. D ahl and 

G onzalez-R ivera (2003) no ted  th a t  w here a lte rn a tiv e  variance-covariance functions are m ore 

app ropria te , th e  perform ance of th e  Xfj{g)  tes t m ay suffer.

To offset th e  po ten tia l for decreased perform ance in the  s itu a tio n s ou tlined  above, Dahl 

and  G onzalez-R ivera (2003) proposed a  tro ika  of tests  th a t  are  robust to  th e  specification 

of the  variance-covariance function of th e  random  field and  th a t encompfiss a broad  class of 

variance-covariance functions. T h eir tes ts  a re  also unaffected by incTeasing dim ensionality, 

as they  are free of th e  problem  of unidentified  nuisance param eters. T heir tests, therefore,

‘aim  to generalise and  com plem ent th e  H am ilton  (2001) s ta tis tic ’.

T he issue of nuisance p aram ete rs  was touched  upon very briefly in C h ap te r 2, Sec

tion 2.8.'® It is ap p ro p ria te  to  expand  th is  discussion here, as it is relevant to  th e  \ Qp{ g ) ,  

\ q p  and  goP  tests , and  to  the  app lica tions undertaken  in subsequent chapters. Recall the 

fundam ental m odel used in H am ilto n ’s (2001) fram ew ork, as shown in E([uation (3.10). Dahl 

and  G onzalez-R ivera (2003) rec;ognisetl th e  p o ten tia l for nuisance param eters  in th is  m odel. 

T h a t is, im der th e  null of H q: =  0, th e  p a ram ete r vector g  becom es unidentified, while

th e  num ber of nuisance p aram eters  increases w ith  th e  dim ensionality  of x . A lternatively, 

consider th e  null of H^. g  =  0/;, th e  m o tiva tion  for which will be in troduced  shortly. In th is 

case, A becom es im identified and  yt will be nonergod ic .'^  U nder th e  null, therefore, th e  test 

m ay not have a well-defined asy m p to tic  d is trib u tio n .

Two solu tions to  th is  p roblem  are p roposed  by D ahl and G onzalez-R ivera (2003). T he 

first considers th e  random  field based on th e  L\  norm , or Minkowski distance, as op{)osed 

to  the  L '2  norm , or E uclidean  d istance, used by H am ilton (2001). T h is has the  advan tage of

‘‘‘Dahl (2002), p. 282.
'■’’Dahl and Gonzalez-Rivera (2003), p. 162.
*®Davies (1977, 1987) was one of the first to analyse the problem of unidentified nuisance parameters. 

He suggested viewing test statistics as functions of unidentified parameters. Andrews and Ploberger (1994) 
derived asym ptotic tests for problems where unidentified nuisance parameters are present under the alternative 
hypothesis but not under the null.

‘^Ergodicity is the property that the eventual distribution of the states of a system  is independent of the 
initial state (Everitt, 2002, p. 132).

46



sim plifying tes ts  for neglected nonlinearity , as th is m easure is a linear function of the  nuisance 

p aram eters , unlike the  L 2 m easure, which is non linear in th e  nuisance parameters.^®

T h e d isadvantage of th is approach  is th a t  such a  random  field is nonisotrophic, i.e., the  

c:ovariance function m ay be unw ieldy to  eva lua te  in m odels of large dim ension. T he approach 

does suggest, however, an a lte rn a tiv e  covariance function , itself based on an isotrophic random  

field. T h a t function  is

 ̂  ̂ ’ (2.48)
0 if /i* >  1,

w here h* =  (x,z) .
As H am ilton (2005) confirm ed, th e  issue of nuisance p aram ete rs  m ay be  overcome by 

using th is a lte rna tive  covariance function.^® He experim en ts  w ith  th is  new specification and 

finds th a t th e  pile-up problem , no ted  briefly in C h ap te r 2, Section 2.8, m ay be avoided by 

em ploying th e  D ahl and G onzalez-R ivera (2003) approach .

T h e  tro ika of tests, developed from th e  tes t, are based on th is  approach. Dahl

and  G onzalez-R ivera conduct an extensive M onte C arlo  s tu d y  to  investigate the  j)roperties 

of th e ir te s ts  and  find th a t  they  are infleed effective in detec ting  neglected nonlinearity. T hey  

ou t-perfo rm  th e  Xfj{g)  s ta tis tic ’s power in a range of m odels, for b o th  sm all and m oderate  

sam ples s i z e s . I n  addition  to  th e  sim ulation  study, an  em pirical app lica tion  suggests th a t 

by avoiding th e  problem  of nuisance p aram eters , th e  te s t ’s perform ances are com paratively 

b e tte r  th an  others. Interestingly, D ahl and  G ouzalez-R ivera (2003) rep o rted  th a t these tests  

o u t-perfo rm  th e  well-known T say  (1986) tes t for nonlinearity , suggesting perhaps th a t it 

is b e tte r  to  view an unobserved nonlinear function  as random  anti not determ inistic, the  

approac:h taken  by T say (1986).

Recall from Subsection 3.2.4 th e  m odel being used by H am ilton (2001), as shown in 

E (iuation (3.10). T he j)aranieters A and  g  are fundam en tally  im p o rtan t, as th ey  characterise

''^Recall from Subsection  2 .4 .2  and above, tlie  m odel and framework o f  H am ilton (2001). Dahl and  
CJonzalez-Rivera (200.3) replaced the set B n  ( x ) w'ith th e  se t (x ) . For each point x  €  A n ,  B n  (x )  —
{z  €  A n  : |x  — z \'l <  1}, and is the random  field w ith  a  m oving  average representation:

mjv (x )  =  ( x ) ] “ 5 ^  e (z ) ,

w here (x )  i.s th e  num ber of po in ts in B n  ( x ) .  It can be show n th at the correlation betw een ;n* (x ) and  
;ri* (z ) equals zero if th e  L i d istan ce  betw een x  and z  is greater th an  or ecjual to  tw'o. T h is covariance function, 
illustrated  for th e  cases k  =  1 .2  is:

H *  Cv x  I — /  * ~  ~H i ( x „ x , )  -  if/i?, > 1 ,

H 2 ( x ( , X s )  =  I 0̂ ■ h t s)^  +  ~  h*ts) niin {|a;u -  x is l ,  |a;2 t -  a:2 s |}  i f <  1,
if >  1,

w liere ( x f .x , ) .
‘^H am ilton (2005), p. 6.
“ Cliven tlie  range of issues h igh lighted  in C h apter 2, and very m uch in keeping w ith  th e  findings therein, it 

w ould seem  prudent that the applied  researcher consider both  th e  H am ilton (2001) and Dahl and G onzalez- 
H ivera (200.3) covariance functions in em pirical app lica tion s. It add s another elem ent to  th e  prescribed actions, 
d eta iled  in C hapter 2, for tho.se con tem p latin g  use o f th e  H am ilton  framework: u.se th e  algorithm  sw itching  
m eth odology , pairing S T E E P E S T  D e s c e n t  w ith  both  B f g s  and N e w t o n , for a  range o f values for (  and  
-o p r te p s , if  recjuired, and also for both  covariance functions. Such investiga tion s should  allow for greater  
understand in g  o f th e  results obtained .

^’T h e  m odels considered had bilinear, neural netw ork and sm o o th  transition  autoregressive specifications.
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th e  re la tionsh ip  between m (-)  an d  th e  cond itional expecta tion  fvniction //, (xi,;C 2 ,

T h is re la tionsh ip  is exploited by H am ilton, w ho uses it to  tes t for nonlinearity. Should A =  0, 

m  (•) m akes no co n tribu tion  to  E q u atio n  (3.10), and  th e  conditional expecta tion  is linear. T he 

p aram ete r can, therefore, be used as a  te s t for nonlinearity. D ahl and  G onzalez-R ivera 

(2003) used th is  feature, b u t also m ake use of ano ther. If  =  0, the  con tribu tion  of rn (■) to  

th e  conditional expecta tion  is ind istingu ishab le  from  oqi hence, once again, th e  m odel is 

linear. T herefore, g  =  0  also serves as a  te s t for nonlinearity. W h at follows is a m ore detailed  

outline of each of these tests.

The Xppi g)  test

T h e Xfi ig)  te s t for non linearity  is based on th e  H essian of the  log likelihood function, w ith  

Cfc (x f ,x s )  =  Hfc(/i), w here h =  (xf ,x^) .  T h e  gi are fixed, as m entioned in th e  previous

subsections.'^^ T h e  Xppi g )  test is derived from  th e  loglikelihood function

l { ( i , \ \ g , a ^ ) =  (3.11)

iog(27T) -  1 log lA'^C, +  c j H r \ - \ { y -  m '  (A 'C , +  aHr)~'  (y -  X /3),

w here f l o o R  =  D ahl and  G onzalez-R ivera (2003) showed th a t th e  .score

functions of E quation  (3.11) are

■5 (A^) \x2 = 0 . g  =  (' -̂ 2̂)

S (^'^) lA2=0.g =

where Xi =  vec(C i.), x-2 =  v e c (I r )  and  u  =  vec(l-/’ — ee'ja'^). L etting  x  =  (x i : X'j), the  Lm 

test s ta tis tic  is
£  7 ’̂  U 'x ( x 'x ) “  ̂X'U 2/1  ̂ /o 1

Aop(ff) =  ^ ---------------------  xn l ) -  (- -̂14)

As w ith th e  (g) test, th e  \ Q p { g )  s ta tis tic  is ob ta in ed  easily. T h e  m odel is estim ated  

under th e  null, providing estim ates of e =  y  — (X 'X ) ” 'X 'y  and =  T^^e'e .  T hen , 

V is ob ta ined  from  th e  least squares aux ilia ry  regression of u  =  0iX i +  (p2 ^ 2  +  using 

u  =  v e c ( l7  — e e ' / a ^ ) .  T he tes t s ta tis tic  is )^Qp{g) =  where i?^ is th e  uncen tred

/?̂ , defined as =  1 — u ' D / u ' u .  T h e \ Q p { g )  is no t asym ptotically  d is trib u ted . As there  

are observations in th e  aux iliary  regression, th e  \ Q p i g )  test can be transfo rm ed  to  an  

asym pto tically  d is trib u ted  x ^ ( l)  by m ultip ly ing  th e  by instead  of T.

The Xq p  test

Fixing g  in th e  previous te s t is equivalent to  assum ing  com plete knowledge of the  covari

ance function of th e  random  field. T h is  te s t does not depend on the  p aram eterisa tio n  of 

th e  covariance function and  avoids th e  problem  of m iisance param eters. T h is is achieved by

^^Thanks to Christian M. Dahl and Gloria Gonzalez-Rivera for making the G a u s s  code for their \ op{ g ) ,  
Xqp and gop tests available. It can be found at h ttp ://w w w .k ran nert.p urdu e.ed u /facu lty /d aih lc/.

‘̂̂ For further details, see Chapter 2. Subsection 2.4.5.

48



replacing x i =  vec(Cfc) in E quation  (3.12) w ith  a  T aylor app rox im ation  of x i ,  as ou tlined  be

low, in th e  auxiliary  regression. ‘Using th e  Taylor app rox im ation  cap tu res  th e  characteristics 

of a w ide class of unknow n b u t continuous and  differentiable real-valued nonlinear finictions, 

vec(C /t)’.̂ '* Using th e  covariance function

=  |  (2-48)
I 0  if h*, >  1 ,

w here =  \(1l^ { g Q y . t , g Q ^ s )  =  n s  =  - X s i | ,  \xt2 ~  Xs2 \, ■ ■ ■, \ x t k - x s k \ }  , and
^2k  (2k
^ j = 0  I j

’’ 2k

given th a t  (1 — =  X]?=o Ci)Ks (“ 1) ^̂ tlie  aux iliary  regression can be w ritten  as

U fs — 0 2 X ( s .2  "1“ ^ ts  — 4*
j=0

2kE ; ^‘2^ts,2 +  l t̂si (3.15)

w here l(/,*^<i) is an  ind ica to r function th a t  can be  app rox im ated  by the  logistic function 

l(/i*^<i) ~  (1 + e x p ( — ( 1  — h*g)))~^, for fixed 7  > >  0. R a th e r th an  j)roceeding as in the 

case of th e  XQp{g)  test, a second Taylor expansion is considered, w here th e  norm  depends 

on g  and  the  logistic approx im ation  of th e  ind ica to r fm iction. T h a t gives

Uts =  <̂ 0 +  X] [)irts4 +  ^2 EE yUJjrts^rtsj (3.16)
i = \  i=^

+03 EEE
i = l  j > i  t >j

k k  k

+  ̂ 2 k + 2  E E - E  HitJj ■ ■ ■ ■ ■ ■ T' ts.m +  <̂’2 '^2 ,ts  +
i = l  j > i  m

w here 4>j is p roportiona l to  (f)\, and  the  subindex  fs, re la ting  to  li, X2 and u, refers to  the 

ts^̂ ' row in the  vector, for t , s  =  1,2, . . . , 7" ,  and  gi and  rts,i are the  en tries in g  and 

rt.s, respectively. E s tim a tin g  th is auxiliary  regression by O ls ,  w ith  regres.sors

added, is the  basis for th e  Xq p  test, which has th e  sam e Lm te.st s ta tis tic  as th e  \ Q p { g ) .  i.e., 

Ecuiation (3.14), b u t using th e  auxiliary  regression ou tline  above. T h is has a d is trib u tio n  

of 1 -I- ‘̂ l^grees of freedom . T h e  au th o rs  argue th a t if a  covariance function of

th e  form  in Ecjuation (2.48) is u.sed, it encom passes a  very w ide class of covariance functions. 

G iven th a t th e  p rac titio n er is unlikely to  know th e  tru e  covariance function, th is  is particu la rly  

useful.

T he (jop  test

T h e  g o p  te s t is based on sim ilar m odels, b u t here th e  random  field has the  variance-covariance 

s tru c tu re

Cfc (x(, X5 ) =  C k  ( x t , x s )  -I- Cfc (Ofc, Os) -  Cfc (xj, Ofc) -  Cfc (Ok, X s ) . (3.17)

’D ahl and  G onzalez-R ivera (200.3), p. 152.
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N ote th e  covariance function is th a t  given by Eqviation (2.48) and  the  loghkehhood function 

is as before, w ith  the  exception th a t  replaces C/t and  f t p G R  =  +  a ^ lr -  P roceeding

as in tlie case of AQp(g), th e  score functions, for fixed A, Ho'.g =  0, and  fio6 'fl|g=o =  

can  be w ritten  as

s i 9 i ) \ \ ^ , a = o  =  i =  l , 2 , . . . k ,  (3.18)

s (cr‘̂ ) |A2.g=o =  - ^ x ^ + i u ,  (3.19)

w here Xj =  vec^C^.^ /% i l  g=0 ) for i =  1, 2 , . . . ,  fc, Xfc+i =  v e c (I r )  and  u =  vec ( I t  — ee'/a'^).  

T h e  or g o p  test, is ^T^B?  ~  X^{k),  using th e  from  th e  auxiHary regression

k ^

'̂ Hs — 'y  ̂4̂ 1̂ 13̂  “I" (pk+l^k+l.ts ^ts) (3.20)
2 = 1

w here rts.i =  —k  (|x(j — Xgi\ — \xti\ — |x si|), for s =  1, 2 , . . .  , 7", and  where is uncentred .

3.3 T he D esign of th e M onte Carlo E xperim ents

To assess th e  perform ance of th e  seven tes ts  ou tlined  in Section 3.2, a M onte C arlo sim ulation 

was undertaken . Five m odels were used. T hese  a re  sm nm arised  in Table 3.1. T he first was 

th e  null linear m odel yt =  a  +  j3xit +  £u- T h is  null case ca lib ra tes each of th e  tests  by 

o b ta in in g  th e  em pirical power and  size in each case. T h e  second m odel is th e  (juadratic 

specihcation , yt  =  a  +  Bxu +  3xf i  +  St, w here a ,  0,  £t and  Xn are as in the  null case. T he 

th ird  m odel is th e  correlated  erro r m odel, yt  =  o  +  3xi t  +  fit, w here =  P^u- i +  - it- For 
each of these th ree  m odels, «  =  1, /i =  {0.25, 0.50, 0.75}, su  ~  N{i ) , ( rf ) ,  x \ t  is a linear 

tim e tren d , x u  =  20t . /T,  X2 t is generated  from  a random  uniform  d is trib u tio n . X‘2t ~  U { 1 , 10) 

and  finally, x:u is generated  from a ran d o m  norm al d is trib u tio n , .T3/, ~  A^ (̂5.5, 2.25'^).'^'’ A 

sim ilar m odel, here called th e  .square specification, was also included. T his was used by 

D ahl and  G onzalez-R ivera (2003) and  m akes a  usefiil com parative tool. T he square m odel is 

yt =  x ‘î  +  et, w here xu  for i =  1, 2 , 3 is as above, and  also x^t =  O.Ga'u-i +  S(, ct ~  A^(0,1) 

an d  et ~  N { 0 , a ‘f ) .  T he final m odel specification is ad ap ted  from  H am ilton ’s (2001) Exam ple 

1.^^ T h is is a sim ple threshold  regression, yt  =  0 .6x jtl[^ ,j>5 5] +  i).2xjt  +  w here i =  2 ,3 , 

j  =  1 ,2 ,3 , l[i-j> 5.5] =  0 when xu <  5.5 an d  1 otherwi,se, and  St ~  A^(0,1). T his examj)le is 

included to  allow direct com parison to  H am ilton , in apply ing  th e  o th er tests  for nonlinearity. 

S u n n n ary  details  of a f  for each case are provided in Table 3.1. Pull details of the  design of 

th e  M onte C arlo  sim ulation can be found in A ppend ix  B .l,  Table B .l.

In alm ost all cases, 20,000 rep lications were undertaken , for sam ple sizes of T  =  25,

■̂’’T h ese  rnoriients and param eters were chosen for their  relevance in app lied  econom etrics, hy ensuring that 
th e  m odels to  be investigated  had the reasonably  h igh /i^ -va lu es often  encountered  in research, although  
it should  be noted  that the residuals o f  all m odel sp ec ifica tion s are invariant to  0 . T he generated d ata  
app roxim ates well to  m any slow ly changing econ om ic tim e  series, particu larly th e  trend series and the ordered  
norm al and uniform  d istr ibutions, w hich are used for several o f th e  tests.

^®Hamilton (2001), p. 559. A s noted  in Su bsection  3 .2 .2 , th e  H arvey-C ollier (1977) test is lim ited in practice  
to  b ivariate cases. Therefore, it is not app lied  to  th e  H am ilton sp ecification  in th e  sim ulation .
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75, 125, 175 and 225. In the case of Dahl and Gonzalez-Rivera (2003) tests, however, both 
asymptotic and bootstrapped p-values are available for each test. The asymptotic values were 
recorded, as above, for 20,000 replications, but the bootstrapped values were also recorded. 
These were based on 1,000 replications, however, as the bootstrapped p-values were in turn 
based on 100 re-samj)les and the computational demands of this process are very considerable. 
Section 3.5 presents the results obtained from this study. Finally, consideration was also given 
to some features of the Durbin-Watson (1950) bounds test and the Harvey-Collier (1977) test. 
For the latter, observations should be ordered by the explanatory variable, prior to testing. 
This may also apply in the case of the Durbin-Watson test, depending on circmnstances. 
Simidations were undertaken for these tests using both ordered and unordered data.^^

Table 3.1: M odels analysed in the M onte Carlo study.

Null y t  =  a  +  3 x i t  +  Sit Si t  ~  N{( ) , a f )

Q uad ra tic j/( =  a  +  , 3xi t  +  3 x f t  +  Sit Eit  ~  N { 0 , a ' i )

C orre la ted  E rror y ,  =  a  +  3 x i t  +  t i t

f-it =  p ( i t -  1 +  - il Sit  ~  N ( 0 , t r f )

H am ilton yt  =  O.ficcjt l|x ., >.'5.5 | +  0.2.Tj( +  €l 

i  =  2 .3 , i  =  1 ,2 .3

£t  ~  N ( 0 ,  1)

X u  =  2 0 t / T
X2t = U ( 1 , W )
x:it =  N  (5.5. 2.25^)

a f  =  1.5 
a'i =  0.4 
(r'i =  0.3

S<)uare yt  =  x f ,  +  Ut f i t  ~  J V ( 0 , a f )

x i t  =  2 0 t / T  
X2t  =  f / ( l .  10)
X i t  =  N  (5.5.2.25'^)
X4t =  0 .6a :i(-i +  St

=  1
(jf =  25 

rrf =  100 
£, ~  N ( 0 .  1)

In all cases, a  =  1 and  3  =  {0.25, 0.50, 0.75}.

3.4 H ypothesis Testing

To explain the various concepts used in the remainder of this chapter, a brief treatment of
hypothesis testing is p ro v id ed .C o n s id e r  the random variable X  defined on the probability
space {S, T .  P{-)) and some model 0), S S 0 } , where ^  is a cr-fiekl generated
by X  and x is a random sample from /(.r; 6).

For hypothesis testing, consider the null hypothesis to be Hq: 9 € 0q , i.e., if 9 lies in some 
subset 0() of 0 ,  where the sample data x G Co, Hq is accepted. If x G Ci, that hypothesis is

^^The (iAUSS code for th is  sim ulation  can be found in A ppendix  B.2.
^**This tre a tm e n t d raw s heavily upon and  follows closely th a t  of Spanos (1986).
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rejecteci. The sets Cq and Ci, also known as the acceptance and rejection regions, res{)ectively, 
are defined by the given test statistic. More formally, the nvdl and alternative hypotheses can 
be expressed as

H o : 0 e @ o ,  0 0  C 0 ,  (3.21)

or 0 6  0 1  =  0 - 0 0 . (3.22)

In this chapter, only simple hypotheses are used, i.e., where /(x ; 0) is specified completely if 
0 G 0 0  or 6» € 0 1  are known. Such hypothesis testing gives rise to two i)ossibilities for error, 
entitled Type I and Type II errors. The probability of a Type I error is defined as

P r ( x  € Ci; 0 G 0o ) =  «, (3.23)

whilst the probability of a Type II error is

P r  (x G Co; 0 G 0 ] )  =  a  (3.24)

Arising from this framework and of particular interest here are the following dehnitions:^'^

Definition 1. The probability of rejecting H q when false at some point Oi G 0 i ,  i.e., 
Pr  (x G Ci; 9 = 0\) is called the power of the test at 6̂ =  0i.

Definition 2. V  {9) = Pr  (x G Ci), 0 G 0  is called the power function of the test dehned by 
the rejection region Cj.

Definition 3. n  = max^g©„ V {9) is defined to be the size, or the significance level, of the 
test.

Definition 4. A test of Ho:9 G 0o  against H \ \ 9 ^  0 i  a.s defined by some rejection region 
C\ is said to be imiformly most powerful test of size a  if

1. niax0e©o P  (0 ) =  cv;

2. V{9)  = V* {9) for all 9 G 0 i ;

where V* {9) is the power function of any other test of size n.

These concepts, particularly size and power, will be used throughout the remainder of 
this chapter.

3.5 R esu lts and D iscussion

The results of the sinmlation study can be found in Appendix B .l. A key to the ])arameter 
specifications, a more detailed version of Table 3.1, can be fomid in Table B .l. The remainder 
of Appendix B .l contains the individual results for each test. The simulated sizes, in terms 
of percentage frequencies of rejection of the null hypothesis for the Durbin-Watson (1950)

2®Spanos (1986), p. 290-291.
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bomicls test, may be found in tables B.2 to B.6 for the unordered cases and tables B.7 to 
B .l l  for the ordered cases. Results for the Harvey-Collier (1977) test can be foimd in Table 
B.12 for the unordered case and Table B.13 for the ordered case. The results of Ram sey’s 
(1969) R esf:t  test can be found in Table B.14 and for H am ilton’s (2001) A ^(g) test in 
Table B.15. Tables B.16 to  B.21 contain the results of the X Q p { g ) ,  \ q p  and g o p  tests. 
To analyse the results of the study outlined in Section 3.3, the performance of each test 
will be discussed before comparing relative performance. Of particular interest here is the 
com parative perform ance of the A^(g) test to the well-known tests, bu t also to the more 
recent X Q p { g ) ,  X q p  and g o p  tests.

3.5.1 The Durbin-W atson test

To explore the im portance of ordering on the Durbin-W atson (1950) bounds test, results 
are reported for unordered da ta  and also for d a ta  ordered by increasing m agnitude of the 
exj)lanatory variable. The empirical size and pow'er of the test are reported for both  d < d i ,  
the rejection region, but also for d i  < d < dy,  the so-called zone of indecision. Given the 
design of the experim ents here, only positive autocorrelation is considered.

The size of the test with unordered data  is found to  be very much dependant on T,  which 
can be seen from Table B.2. The rate of rejection of the null increases from above 1 per cent 
towards 5 i>er cent with increasing sample size, T.  The size is close to or above 4 per cent 
in many cases. The results for the cjuadratic specification, which can be found in Table B.3, 
show- tha t the test is powerful when Xt is a tim e trend, with full jjower observed for d < d[  ̂

in every case. For xt  ~  U and Xt  ~  N,  however, the power in the m ajority of cases is zero for 
both  d <  d[  ̂ and d <  d y .  Very similar results are seen for the scjuare specification, as show'n 
in Table B.4. Power is very high when Xt is trended, over 90 per cent in all cases, bu t very 
low for the other c:ases, with the exception of X4t-

As the Durbin-W atson (1950) test is explicitly a test for serial correlation, it could be 
expected to perform  well for the autoregressive specification.'^' The test does indeed perform 
well, as can be seen from the results in Table B.5. For higher values of p and 7’, power 
is frequently observed to be 100 per cent for d. < d i .  For p =  0.1, however, power never 
exceeds 41 per cent, regardless of T.  The inverse relationship between the size of d < d^ 
and d < dy,  observed previously, holds true for power in this case. Finally, for the Hamilton 
(2001) specification, the results of which can be seen in Table B.6, the power is very low for 
both  d <  d[̂  and d < dy,  regardless of T.

The size of the test with ordered tlata appears to be less variable, although still somewhat 
dependant on T.  The size of d < d^ generally approxim ates to 5 per cent, as shown by Table 
B.7. As with the unordered data, the quadratic specification where da ta  is trended, reported 
in Table B.8, has full power for d < d^, but the test now also has full power for Xt ~  U 
and Xt ~  N.  The effect of ordering is clear. The same can be said of the ordered square 
specification, the results of which can be found in Table B.9. Although the test is still sensitive

*”Two sets of results are reported for the A op(g), X g p  and g o p  tests. T he first are ba.sed oti a.symptotic 
;>-vahies, while the second are based on bootstrapped p-values.

'^'As previously noted, however, latent nonhnearity or misspecification may result in serially correlated 
errors.
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to T  and a^,  powers of 100 per cent are observed in many cases.
Interestingly, the ordering of data for the autoregressive specification, as shown in Table 

B.IO, appears to have a negative impact on the rate of rejection of the null hypothesis, 
although power still depends on p and T when data is ordered. For the larger values of T, 
this fall may not be significant enough to warrant concern. Finally, the power for the ordered 
Hamilton (2001) specification, as shown in Table B .ll,  has greatly improved and is above 
94 per cent for all cases where T  > 75. It appears, therefore, that ordering the data, where 
permissible, greatly improves the power of the Durbin-Watson (1950) test across a range of 
models. This is particularly noteworthy as such ordering approximates the data examined 
here to many economic time series, which are slowly changing. This result is misurprising 
given the fact that the Durbin-Watson test is a test for first-order autoregression. Unordered 
normally or uniformly distributed data is not well characterised by an autoregressive process 
and the Durbin-Watson test statistic will, therefore, be close to 2. Ordering the data, however, 
may reveal a degree of autocorrelation, which may be picked up l)y the ("/-statistic.

3.5.2 T he Harvey-Collier test

Despite its obvious potential, the Harvey-Collier (1977) test appears little used. Although 
the concept of recursive residuals, on which this test proc-edure is based, is familiar to many 
economists, the test itself remains little known. Its absence from most econometric software 
is evidence of this fact.' '̂  ̂ An obvious drawback of this test is its limited applicability to 
multivariate models. It is applicable in a midtivariate context if all variables are assumed to 
have the same form of nonliuearity. Should this not be the case, it can be used in nniltivariate 
cases, but requires that a decision be made regarding which independent variable to test. 
This limits the tests practical applicability and also rules out the possibility of testing for 
multivariate nonlinearity. These draw-backs may go some way to explaining this test’s under
utilisation in the l i t e r a t u r e . I n  the context of this study, the final model specification was 
omitted for this test, as it is multivariate. Table 3.1 provides further details.

An integral part of the Harvey-Collier (1977) test is that the data should be ordered. 
That is, the observations are ordered on the explanatory variable in increasing order of 
m a g n i t u d e . T o  explore the importance of this step, the sinnilation was undertaken for both 
unordered and appropriately ordered data. The results for these two cases can be found in 
tables B.12 and B.13, respectively.

For both the unordered and ordered data, the size of the Harvey-Collier (1977) test is 
close to 5 per cent in all cases, as expected. There is no obvious relationshij) between the size 
of the test and the sample size, T,  or the variance of the disturbance,

The results for the quadratic specification are certainly interesting. For unordered data, 
where Xt ^  U and Xt ~  N,  the test luis almost no power. The power is noticeably above the 
size in under 25 per cent of cases considered here. In general, no pattern emerges regarding

notable exception is the software R which includes routines to carry out the Harvey-Collier (1977) te.st.
^^It should be noted that of all the tests u.sed in this simulation, the Harvey-Collier (1977) was the fiistest. 

W hile this fact may be of little value in many practical applications, in the context of a Monte Carlo study, 
it certainly is noteworthy.

'̂‘Harvey (1990), p. 157.
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saini)le size or parameter values. By contrast, for the ordered data, the power of the test is 
100 per cent in all but three cases anti these are for the smallest samjile size. Similar results 
can be observed when Xt is a time trend and hence intrinsically ordered; the test has full 
power, i.e., 100 per cent, regardless of sample size or parameter values. As the nonlinearity 
here is so stark, this is not unexpected.

For the so-called square specification, the power is very low for Xt ~  U and xt  ~  N.  
Only hi one case is the power notably above the size. Where Xt is a time trend and therefore 
ordered, however, the test generally has full power, with just one case being marginally below 
100 per cent. Power is also low for the x t̂ specification, with lower powers foimd for higher 
values of . Again, sample size appears to have little effect. This contrasts greatly with 
the results for ordered data, however. The power is very much greater in all cases. In some 
instances, it is low for small sample sizes, but improves greatly with T. Only in the case of 
the X4( with large o"̂  is the power low for all 2\

A very clear pattern emerges for the autoregressive specification with unordered data. 
Power increases with both sample size and the autoregressive parameter p, although in no 
case does it exceed 35 per cent and for p =  0.1 the power is not noticeably greater than 
the size, regardless of T.  A very similar pattern emerges when xt  is a time trend. For the 
Xt ~  U and xt  ~  N  cases, however, power a[)proximates to the size in almost all cases, 
regardk^ss of parameter values, although some sensitivity to sample size is evident. These 
results are interesting as the autoregressive specification is essentially linear. It could be 
argued, however, that the autoregressive error constitutes a rnisspecification or nonlinearity. 
This is certainly not picked up by the test using ordered data, with the exception of the cases 
where data is trended. The Harvey-Collier (1977) test appears to be robust to autoregressive 
residuals. On the other hand, of course, it has no pow-er to detect them. Once again, the 
imj)ortance of ordering is clear.

3.5 .3  R a m sey ’s R E SE T  test

The results for the R e s e t  test can be found in Table B.14. The size of this test is very 
close to 5 per cent for all cases, regardless of T  or other parameter values. For the (juadratic 
specification, it has full power in every case. This is misurprising given the nature of the 
miss])ecification here. This test also performs very well for the scjuare specification. For X4 t: 
power increases with T,  but decreases with For all but the highest value of a^, pow'er is 
100 per cent for T =  225. For the trending data, like the quadratic case, which has a very 
similar specification, power is 100 per cent for all parameters. A similar pattern is found for 
Xt ~  U and Xt ~  N , with powder being 100 per cent in many cases. Only where is high 
does power fall, although it increases towards 100 per cent with increasing T.

The autoregressive specification reveals similar results to the Harvey-Collier (1977) test. 
For the trending data, power incretises with p and T  to a maximum of approximately 65 per 
cent. For lower values of p, power is close to size. For the remainder, where xt ^  U and 
Xt ~  N,  power is close to size in most cases. Once again, if this specification is considered 
linear, the RESET test is robust to autoregressive errors where xt ^  U and Xt ~  N.  If this 
specification is viewed as a misspecification, this test fails to pick it up tmder such conditions.
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The reverse is true for the trending data.
Finally, the results of the Hamilton (2001) specification, the simple threshold model, also 

show a clear pattern. The R e s e t  test clearly has power in iletecting nonlinearity of this form. 
Where x\t  and X2t are ~  U and ~  N , respectively, the power is over 90 per cent for T  = 225. 
Although low for small sample sizes, the power increases steadily with T.  Only when x\t  
is distributed either uniformly or normally and X2t is trended, does the power fall. In both 
cases, power is less the 80 per cent for T  = 225. Given that the R e s e t  test is routinely 
available in most econometric packages, its performance here is particularly noteworthy.

3.5.4 H am ilton’s LM test

Before comparing the performance of this test with the preceding results, the performance of 
the Xfiig) test is reported. These results can be found in Table B.15.

The size of the test is close to 5 per cent, although in the majority of cases, the size is 
below 5 per cent. Size appears to be effected somewhat by sample size. For the quadratic 
specification, the pow'er of the test is 100 per cent in all cases. The power is generally very 
high for the square specification with trended data and also when xt ~  U and Xt ~  N.  The 
notable exceptions are for the smaller sample sizes {T = 25, 75) and for the largest variance of 
the disturbances {a^ = 400). Even in these cases, the power exceeds 70 j)er cent for T  > 125.

As with the Harvey-Collier (1977) and R e s e t  tests, a clear pattern emerges for the 
autoregressive specification. For the trended data, the power approaches 100 per cent for 
T  = 225 and p = 0.9. For the lowest value of p (0.1), the power does not exceed 10 per cent. 
These results do not deperid on the otlier parameter values. For Xt ~  U and Xt ~  N.  the 
power is approximately ecjual to size. In a small number of cases, it exceeds 10 per cent, but 
no obvious pattern is evident. As with tests previously examined, the \ f j {g)  test is robust to 
autoregressive errors, except where the data is time trending. Finally, for the Hamilton (2001) 
specification, the power of the test is high. For all cases where T  > 75, the jjower is above 90 
per c:ent and increases with T  to 100 per cent for T  = 225. Where T  = 25, the power ranges 
from 28 per cent to 39 per cent, which is quite low, although perhaps untroubling given the 
very small sample size and the considerable improvement as T  increases. Next these results 
are compared with the performance of the three tests considered previously.

It is clear from the Durbin-Watson (1950) test results that the test is not very j:>ow'erful 
for some of the models used here, when data remains unordered. The Xff{g) test clearly 
performs better. It is worth comparing, however, the performance cjf the Durbin-Watson test 
using ordered data with \  fi{g) test. For the (luadratic and square specifications, the power 
of the \^i{g)  test is marginally better, but the differences are small. Comparisons for the 
autoregressive specification are difficult to make. If, on the one hand, autoregressive errors are 
to be view^ed as a form of nonlinearity, the Durbin-Watson test out-performs the Xfj{g) test by 
some way, perhaps unsurprisingly given that the Durbin-\\%tson is a test for autocorrelation. 
If autoregressive errors are not view'ed as nonlinearity, no meaningful comparison can be 
made as the tests have different objectives. In the case that the autoregressive specification 
is viewed as a linear model with autocorrelated errors, the \ ^ { g )  test is sensitive to high values 
of p combined with trending data, i.e., it frequently rejects the null of linearity in favour of
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the alternative. Finally, both tests perform  very well on the Hamilton (2001) specification, 
with very small differences in power between them . Choosing which test is more powerful, 
given the above confusion is difficult, bu t it does appear th a t the \  test is slightly more 
powerful.

Only the results obtained using ordered d a ta  for the Harvey-Collier (1977) test are used 
here. For the quadratic  specification, the results for the \  and Harvey-Collier tests are 
almost identical, w ith the Harvey-Collier test reporting power in several cases ju st below 100 
per cent, while the \  test records full power in every case. Both tests re tu rn  very similar 
results for the square specification with xn-  For the remaining cases, the Harvey-Collier test 
appears to be m arginally more powerful. This is particularly noticeable when the sample 
size is small and is high, although the power of both tests tends towards 100 per cent as 
sample size increases, regardless of other param eters. For the autoregressive specification, 
the Harvey-Collier test again appears to be somewhat more powerful than  the Xfjig)  test. 
For trending data , the powers a tta ined  by the Harvey-Collier test are considerably lower then 
the Xfi [g) test. For the remaining cases, the power of both tests is not significantly greater 
than  their respective sizes. As previously stated , the Hamilton (2001) specification, being 
nuiltivariate, was not included in the Harvey-Collier sinudations, so no comparison can be 
made here. Given this drawback and ignoring the results of the trended autoregressive case, 
there is little difference between the performance of these tests in the cases explored here. 
The greater applicability of the X^{g)  test may be the deciding factor.

Consider next the com parative performance of the Xfi(g)  and RESET tests. Both tests 
prove effective in testing the (juadratic; specification, with full power observexl in every case. 
As with the Harvey-Collier (1977) test, RESET proves to be marginally b e tte r for the scjuare 
specification, although as previously noted, both tests perform very well. The differences 
here are snudl, with R e s e t ’s pow'er increasing faster w'ith T.  Again, R e s e t ’s power is lower 
for the trended autoregressive case than  tha t of the Xf^{g) test and there is little difference 
in the rem aining cases. For the Hamilton (2001) specification, the Xf/ig)  test is considerably 
better. For T  >  75, its power is above 90 per cent, regardless of all o ther param eters. The 
R e s e t  test is sensitive to the inclusion of trended data  for X2t and in these cases power 
remains below 80 per cent for maximimi T.  In the remaining cases, the power increases 
steadily with T,  from ju st less than  60 per cent when T  =  75, to over 90 per cent when 
T  =  225. By contrast, the Xfi(g)  te s t’s power is above 90 per cent for all cases when T >  75. 
If the results, excluding the trended autoregressive cases, are reviewed, while there is little 
real difference, the superior performance of the Xf]{g) test for the threshold specification 
may once again make it preferable, as the results for the other specifications are very close. 
However, given th a t Keenan (1985), Tsay (1986) and Luukkonen, et al. (1988) all proposed 
potentially more powerful variants of the R e s e t  test, it would be interesting to  compare their 
relative performance to  th a t of the Xfj{g)  test. If those tests are indeed more powerful than  
R e s e t , they may well be more powerful than  the Xf/{g)  test for the models considered here. 
This remains to  be exjjlored by future research.
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3.5.5 T h e  Xopio)^ ^ o f  !Jo p  tests

The results for the three tests proposed by Dahl and Gonzalez-Rivera (2003) are reported 
in tables B.16 to B.21. As with the Xfj{g) test, the individual performance of each test will 
be first assessed before reviewing the comparative performance. These tests will be assessed 
relative to the Xf]{g) test, which itself has been compared with the Durbin-Watson (1950), 
Harvey-Collier (1977) and R e s e t  tests, but also to the simulation results obtained by Dahl 
and Gonzalez-Rivera (2003). As noted in Section 3.3, both asymptotic and bootstrapped p- 
values were recorded for all three tests. In the analysis which follows, primary consideration 
will be given to the bootstrapped 7>vahies. Unlike the results presented thus far, which are 
based on 20,000 Monte Carlo replications, the bootstrapped p-values were obtained using 
1,000 Monte Carlo replications with 100 re-samples for bootstrapping.

The bootstrajjped p-values for the A^p test can be found in Table B.16. The size is 
approximately 5 per cent, although values as low as 3.5 per cent are observed. The test's 
power is 100 per cent for all cases of the ciuadratic specification. For the scjuare specification 
with X4t, the power decreases with o"̂ , but increases with T.  For the remaining cases, the 
power is 100 per cent, except where =  400. Power, however, is above 90 i>er cent in tho.se 
cases where T  > 125. For the autoregressive specification a familiar i)atteru emerges. When 
Xt is trended, the power approaches 100 per cent as T  and p increase. For the remainder of the 
cases, power is not dissimilar to size. The power is high for the Hamilton (2001) sijecihcation. 
It is at its lowest, 36.9 per cent, for T  =  25, but is above 97 per cent for all cast's when T  > 75. 
Interestingly, the results for the asymptotic p-values are not dissimilar, with the exception 
of the size, as seen in Table B.17. The size is generally found to be between 1 jjer c:ent and 
2 per cent, but the power results are very close indeed to those found in Tal)le B.16. This 
could have im portant implications, given the computationally intensive and time consuming 
nature of obtaining bootstrap[)ed p-values.

Results for the bootstrapped />vahies of the Xop{g)  test can be found in Table B.18. The 
size of this test is once again approximately 5 per cent, but with some degree of variat)ility, 
shown by a size in once case of 7 per cent. For the quadratic specification, in all but one 
case, power is 100 per cent and in every case above 99 per cent. The i)ower of the scjuare 
specification with x,u is very sensitive to when =  1, power is 100 per cent for T  > 75, 
which falls to approximately 5 per cent for = 400, for all T.  For the remaining cases, 
power is 100 per cent for all but one where data is trended. For Xt ^  U and xt  ~  N.  power 
is 100 per cent for the lowest value of a' ,̂ but it is again sensitive where > 25. In these 
cases, power increases to 81 per cent and 71 per cent, respectively, for maxinnun T  and

The quadratic specification yields similar results. Power increases with p to approxi
mately 100 per cent for maxinnun T  and p, for trended data. For p = 0.1, however, power 
approximates to size. For the remainder of cases, the power also approximates to size. Fi
nally, for the Hamilton (2001) specification, power is above 98 per cent for all cases where 
T  > 125 and above 75 per cent for T  > 75. For T  = 25, powers below 10 per cent are 
observed. Once again, the asymptotic p-values, which can be found in Table B.19 tally well 
with the bootstrapped results, again with the exception of size, but now also for the case of 
the autoregressive specification where ~  {7 and Xt ~  N.
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The final test examined was the gop  test, the bootstrapped  results of which can be foiuid 
in Table B.20. The size of the test was found to be approxim ately 5 per cent. Curiously, as 
shown in Table B.21, the size of the test is zero in every case, when asym ptotic p-values are 
used. This remains to be explained and highlights the necessity for using the boo tstrapped  
p-values. For the quadratic  specification, power was 100 per cent in all bu t two cases and 
was above 67 per cent in all cases. For the square specification, the results are sim ilar to the 
other tests. The power of the test is sensitive to and T.  For T  =  225, however, jjower is 
above 90 per cent for all cases except for x t̂ when =  400. The pa tte rn  observed in other 
tests is again found here for the autoregressive specification. For the trended data , the  power 
is high for larger values of p and T.  For the other cases, pow'er approxim ates to  size. Finally, 
for the Ham ilton (2001) specification, the power is low for small sample sizes, b u t increases 
steadily, to  lie above 89 per cent in all cases where T >  125.

By contrast with the \Qp{g)  and A^p tests, the asym ptotic p-values of the gop  test, 
whicli can be found in Table B.21, seem much less reliable. The size is found to be 0 per cent 
and although most cases for the (juadratic specification tally with the boo tstrapped  results, 
for T  =  25, the power is 0 per c:ent. The same can be said for the rem aining specifications; 
while some results are sim ilar, many are not. In this case, the asym ptotic p-values seem very 
unreliable.

Of the three tests, the test performs best in term s of power, acTOSs the range of spec
ifications and data  used here. It outperform s the Xppig)  test for the cjuadratic specification, 
although as previously noted, the differences are very small. It outi)erforms the  gop  test 
in the square specification, where there are some notable differences in power for the small 
sample sizes. Even larger differences are seen between the A^p and the Xppig)  test. The gop  
test apj)ears to perform best on the trending data  of the autoregressive specification, and for 
other da ta  its power is close to size. Once again, however, if the autoregressive specification is 
considered to be a linear model, all three tests are sensitive to high values of p combined with 
trended data. Finally, for the Hamilton (2001) specification, the A^p test clearly outperform s 
the \Qp{g)  test, again w ith some notable differences in power at T  =  25. Once again, these 
differences are even larger when conij)ared to the gop  test. Overall, therefore, the A^p test 
is the most powerful, in term s of the da ta  and specifications used here, of the three tests 
proposed by Dahl and Gonzalez-Rivera (2003).

Having established this fact, ju st the A^p test performance will be compared to  the \  fi{g) 
test. It should be noted, of course, tha t the p-values reported in the Hamilton (2001) case 
were asym ptotic and not bootstrapped.'^® The empirical sizes of the two tests appear to 
be equivalent. The perform ance on the ((uadratic specification is identical. Slight differences 
emerge for the sqvuire specification. W hile there is little difference in power with xm,  for other 
da ta  types, the A^p test is less sensitive to cr̂  and T.  The tests perform com parably with 
the autoregressive specification, although the power of the Xff{g) test api)ears to  be more in 
line with its size for untrended data . Finally, the A^p test performs best for the Ham ilton 
specification, although the differences are very small and only noticeable for T <  75.

Overall, therefore, it is judged th a t the A^p test is the most powerful over the range of

■*®Dahl and Gonzalez-Rivera (2003) have made G auss code available to compute bootstrapped ;>values for 
the \  test. It was not used in this study.
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specifications and da ta  used. It outperform ed the Xf j { g )  test, which in tu rn  outperform ed, 
although in some cases only ju st, the Durbin-W atson (1950), Harvey-Collier (1977) and 
R e s e t  tests. These results very nmch confirm the findings of Dahl and Gonzalez-Rivera 
(2003), th a t the X q p  test performs well across a range of models. They too find th a t the A^p 
is more powerful than either the Xfj  and Interestingly, they report tha t the g o p  test
is particularly  successful with bilinear models. Such models have not been included here.

3.6 C onclusion

This chapter has assessed the power of several tests of nonlinearity, some well known, across 
a range of specifications often encountered in economics and econometrics. These results 
present some clear conclusions.

The well-know'n tests of Durbin and W atson (1950), Harvey and Collier (1977) and R e s e t  

are powerful against missjjecification and nonlinearity, particularly when the former tests are 
applied to ordered data. This is particidarly  noteworthy as such ordering approxim ates the 
d a ta  examined here to  many economic tim e series, which are slowly changing. Given the 
relative simplicity of these tests and their wide availability, with the exception of Harvey- 
Collier (1977), these results certainly endorse their use.

The Xf,  {g)  test does offer a more powerful solution, but this increased power is small 
and given its more complex natu re  and lack of widespread availability, it may remain tmder- 
utilised. Of the three tests proposed by Dahl and Gonzalez-Rivera (2003), the Xq ,̂ test 
appears to be most powerful across the range of specifications examined here. This of course 
refers to powers based on bootstrapped  p-values. Interestingly, there does not appear to 
be a large difference between the powers obtained from the bootstrapjjed  p-values and the 
asym ptotic p-values, despite the relatively small sample sizes used. This is not the c'ase for 
the ( j op  test, where asym ptotic and bootstrapped  p-values differ considerably. Also, the Xq p  

test appears to be somewhat more powerful than  Xf j { g )  test, although recall th a t the powers 
for this test are based on the asym ptotic p-values. All of the random  field-based tests appear 
to be sensitive to a linear model specification with autocorrelated errors, i)articularly in the 
case of trended data.

Avenues for further research would be to  compare the performance of the bootstrapped  
X f i ( g )  test with its asym ptotic ecjuivalent; to  consider the performance of the Keenan (1985), 
Tsay (1986) and Luukkonen, et al. (1988) tests, adaptations of R e s e t , against the random  
fiekl m ethods discussed here; and to  consider a wider range of model specifications and data, 
including uonnorm al d istributions, to gain a greater understanding of the properties of these 
tests.
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Chapter 4

Theories and Concepts

This chapter is based on m aterial taken from Banerjee, Dolado, G albraith, and Hendry (1993), Davidson 
and MacKinnon (2004), Enders (1995), Fran.ses (1998), Greene (2003), Hamilton (1994), Johan,sen (1996) and 
Stewart and Gill (1998).
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4.1 Introduction

The aim of this chapter is to provide the bac:kgromid theory required for the remaining 
chapters of this thesis. Those remaining chapters aim to compare and contrast the resuhs 
of modelhng time-series relationships using the Hamilton (2001) methodology, as outlined in 
Chapter 2 and further discussed in Chapter 3, with a variety of alternative methods. These 
alternative methods share the common trait that they exploit the concept of (co)integration 
in modelling economic relationships. Naturally, this work follows on from the work of Chapter 
2, which investigated in detail the implementation of the Hamilton procedure. Chapters 5, 
6 and 7 will further this work by evahiating this procedure’s potential as a modelling tool. 
Three approaches to modelling economic relationships will be compared with Hamilton’s: 
the Engle-Granger (1987) 2-Step approach, Johansen’s (1988, 1991) vector autoregressive 
(V a r ) approach and connnon factor (CoM FAC) analysis.^ This chapter will review eac;h 
of these methods in turn. Attention will also be given to the work of Dolado, Gonzalo, and 
Mayoral (2002) and Johansen (2002), which may offer further insight into the implementation, 
apjjlication and results of .some of the above methods. To illustrate all of the above-mentioned 
methods, three case studies will be u.sed in the remaining chapters: the demand for money in 
Chapter 5, the theory of purchasing power parity in Chapter 6 and the forward exchange rate 
anomaly in Chapter 7. Background theory and information on data used will be supplied as 
nec;essary.

The structure of this chapter is as follows. Section 4.2 will provide the background theory 
necessary for the subseciuent chapters. The concepts and definitions outlined here will be 
used routinely throughout the remainder of the chapter and, indeed, the remainder of the 
thesis. Section 4.3 provides details on the three methodologies to be used in this study: the 
Engle-Granger (1987) 2-Step approach, Johansen's (1988, 1991) V a r  approach and COMFAC' 

analysis. Sections 4.4 and 4.5 outline the more recent develojMnents of Dolado, et al. (2002) 
and Johansen (2002). This work has yet to be given textbook treatment and is, therefore, 
quite detailed, although vumecessary technicalities are avoided. It should be stres.sed from 
the outset tha t the intention here is to give just an overview of these new techniques.

4.2 Stationarity, N onstationarity  and U nit R oot P rocesses

This section introduces briefly some key concepts that will be referred to routinely in the 
remainder of this chajjter. It is felt prudent, therefore, to give these concepts a brief treatment 
at the outset. The section begins by introducing stationarity and nonstationarity. Tests for 
stationarity are then considered, before the introduction of the concei)t of cointegration.

4.2.1 C oncep ts and defin itions

To begin, define a stochastic process as an ordered sequence of random variables, {x(6’, t), s E 
S,  t £ T}, such that for each t. G T,  x(-, t) is a random variable on the samj)le space S,  and 
for each s € S,  x(s, ■) is a realisation of a stochastic process on the index set T . Given a

'See, for example, Hendry and Mizon (1978).
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stochastic process, it can be said that such a process is strictly stationary if, for any subset 

{t i ,  t.2 , . . . ,  t„) of T  and any real number /i, such that ti +  h & T ,  i =  1, 2, . . . ,  n, there 

exists
F (x (^ i) , x{ t„))  =  F  {x{t i  +  h),  x { t 2  +  h), x{tn +  h ) ) , (4.1)

where F (-) is the joint distribution function of the n-values. Strict stationarity implies that 

all existing moments of the process are tim e invariant. Also, the process is said to be weakly 

stationary, second order stationary, or covariance stationary, if

E  [x(^j)] =  E  [x{ti +  h)] =  m  <  oo,  (4.2)

E  [(3:(^i))^] =  E  [{x{ti +  h ) f ]  =  /i2 <  oo, (4.3)

E  [x{t i)x{t j )] =  E  [x{ti +  h)x{ t j  +  h)] =  Hij <  oo, (4.4)

where ^ii, /f-2 cuid /fjj are constant over t, for all t E T ,  and h, such that tr +  h £  T , for 

{r =  i, J)."

The concept of stationarity is necessary for understanding integration. An integrated  

process can be defined as a process with no determ inistic conij)onent and which has a sta

tionary and invertible autoregressive moving average (A rm a ) representation after differencing 

(I times, but which is not stationary after differencing only rf — 1 times. Such a process is 

said to be integrated to order d, denoted xt  ~  I{d)-  A time series may be integrated, or 

alternatively, it may be near-integrated or fractionally integrated. The concept of fractional 
integration was put forward by Granger and .Joyeux (1980) and Hosking (1981). A simple 

fractionally integrated time-series model can tlefined as

{ I -  L f  tjt =  Et for ( X  ri <  1, (4.5)

where L is the lag operator, defined cxs

=  Xt-n,  (4.6)

and (1 — Ly^ can be expanded infinitely as

=  I -  dL +  d[d -  l )L^ -  ^̂  d{d -  \ ) {d  -  2)L^ +  . . .

-t" d[d — I ) . . .  [d — j  +  , (4.7)

which reduces to 1 for d  =  0 and (1 — L) for fZ =  1. W hen 0 < d <  0.5, the tim e series is 

said to be stationary with long memory, and when 0.5 <  f/ <  1, it is said to be nonstationary 

with long memory.^ Baillie (1996) and Parke (1999) give an account of long memory and 

fractional integration in economics and econometrics.

^Banerjee, et al. (1993), Clhapter 1.
^More formally, series can be classified as stationary with anti-persistence when —0.5 <  d <  0, stationary 

with long memory when 0 <  d <  0.5, nonstationary with long memory when 0.5 <  t/ <  1 and nonstationary 
with strong long memory when 1 <  d <  1.5. See, for example, Tsay and Chung (2000) for further details.



4.2 .2  T estin g  for unit roots

An I{d)  series that becomes stationary by differencing once contains exactly one unit root. 
Many economic time series may contain an exact unit root in the logarithmic transformations 

routinely applied to such series. Otherwise, roots very close to, but slightly greater than unity, 
imply nonstationary series that are not I{d)  for any d. Roots slightly less than unity generate 

near-integrated series. Such processes will tend to be difficult to distinguish from those with  

a root of exactly unity, particularly in moderately sized samples. Roots substantially greater 

than unity are characterised by explosiveness in the series. Following Banerjee, et al. (1993), 
consider the following data generating process

?yt =  p y t - i + £ t ,  (4.8)

where yo =  0 and £t ~  i.i.d.(0, a'l).  The null hypothesis H^\p  =  po for |po| <  li be tested  

by regressing Equation (4.8), and by considering the ^-statistic, defined by

, _  P -  PO
S e ( /?)’ ^

which has, asymptotically, a standard normal distribution. For po =  1, however, this result 

is no longer valid. The distribution of the f-statistic given that po =  1, is not a.syniptotically 

normal or symmetric. Dickey and Fuller (1979, 1981) reported the critical values required for 

the following three models:

v t  =  p \ y t - \ + s u  (4.10)

y t  =  P'l  +  P 2 V t - i  +  (4.11)

y t  =  P3 +  73  ̂+  p s y t - i  +  (4.12)

Clearly, the first model contains no trend or intercept term, the second contains an intercept, 
/*2 , and the third contains both an intercept, /<3 , and a trend, t. Introducing the difference 

operator A , where A x t  = x t  — x t - i ,  equations (4.10), (4.11) and (4.12) can be rearranged as,

Ayt  =  (4.13)

^ y t  =  P 2  +  4 > 2 y t - i  +  ^ t ,  (4.14)

‘̂ y t  =  /i.3 +  ( P s y t - i  +  i z t  +  S t ,  (4.15)

where =  p; — 1 and St ~  i-i.d. (O, crH). The Dickey-Fuller (Df )  test consists of regressing 

one of these equations and considering the resultant f-statistic

^Df =  ^ - , (4-16)
SE{(f)i )

where the null and alternative hy])otheses are Ho'.cpi =  0 and Hi:(j)i < 0, respectively. T he  

D f  test, however, assumes w hite noise disturbances. The test can be extended to allow for 

some forms of serial correlation, thereby becom ing the augmented Dickey-Fuller ( A d f )  test.
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The model

Ijt =  // +  7 y s - i  +  +  • • • +  - ' t p A y t - p  +  6t (4.17)

is transform ed by first-differencing to give

p - i

= /i + ^
j = i

(4.18)

where — ~ Y ^ k - j + i l k  find 7 * =  (X]f=i72) “  1- The lim iting distribution of the D f  and 
A d f  tests is nonstandard and depends on the determ inistic term s in the model, bu t does 
not depend on ipj. The same critical values are, therefore, applicable to both tests. Those 
critical values have been sim ulated by Fuller (1976), Davidson and MacKinnon (1993) and 
M acKinnon (1996). In these tests, the num ber of lagged differences of yt may be based on 
model selection criteria, such as the Akaike (1973), H annan and Quinn (1979) or Schwarz 
(1978) information criteria. For series with more than  one unit root, the Pantu la (1989) 
principle may be apj)lied.‘*

In testing for unit roots with the D f  procedure, the question arises as to which of the 
equations (4.13), (4.14) or (4.15) should be used. Although estim ating Equation (4.15), the 
most general model, might seem ai)propriate, it reduces the power of the test unnece.ssarily if 
either //3 or t are not pre.sent in the d a ta  generating process. This may lead to nonrejection of 
the null of a unit root, when in fact the process is stationary. Also, different critical values for 
the D f  procedure api>ly, depending on the model mider consideration. It is crucial, therefore, 
th a t the d a ta  generating process being considered is suitably modelled by the choice of D f 

equation.
Dolado, Jenkinson, and Sosvilla-Rivero (1990) suggested a m ethod for overcoming the 

potential for misspecification in the D f  regression, when the form of the data  generating 
process is unknown.^ Firstly, estim ate Ecuiation (4.15). If this rejects the null of a unit 
root, conclude th a t the series is trend stationary. If the test cannot reject the null, test 
the significance of the trend term , by imposing the unit root in the D f  equation. If the 
trend is significant, re-test for the presence of a unit root using the standardised normal 
distribution.^ If the trend is not found to be significant, estim ate Ecjuation (4.14) and re-run 
the D f  unit root test. If the null is rejected, again, it can be concluded that there is no unit 
root. Otherwise, test the significance of the intercept. As before, if it is significant, re-test 
using the standardised normal critical values. If it is not significant, estim ate Ecjuation (4.13) 
and test for a unit root in the normal m anner.

Consideration here has been limited to ju st the DF-type testing of unit roots. A lternative 
test procedures do exist. A popular alternative is the m ethod suggested by Phillips (1987) and 
Phillips and Perron (1988), whose tests generalise the D f framework. W hereas the D f test

*Pantula (1989) suggested a  technique for testing unit roots with the Dickey-P\iller test, where the .series in 
question is l {d)  and d is .some positive unknown integer. In other words, the series may contain one or more 
unit roots. The procedure suggests differencing the series as many times a,s is necessary to make it stationary 
(th is will of course imply differencing the series d times, but recall d is unknown!). If tiie hypothesis of a 
luiit root is rejected, as expected if in fact d is some positive integer, then the d — n-differenced series are 
sequentially tested for unit roots, where ri =  1, 2, . . .  , until the hypothesis of a unit root cannot be rejected.

'^This exposition follows closely th a t which can be found in Enders (1995).
'’This result is due to Savin and Nankervis (1985).
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assumes that errors are statistically uiicorrelated and have constant variance, the Phillips and 
Perron test relaxes these assumptions. The same critical values apply to both procedures, 
however. The A df generalised least squares test, attributable to Elliot, Rothenberg and 
Stock (E rs) (1996), allows for very general fornnilations of the error term. Kwiatkowski, 
Phillips, Schmidt, and Shin (Kpss) (1992) proposed a test in which the null is stationarity, 
in contrast to the other methods mentioned here. Leybourne and McCabe (1994, 1999) 
proposed a variant of this test that corrects for any serial correlation in the data generating 
process. Hall (1989) suggested an approach based upon an instrumental variables estimation. 
Bhargava’s (1986) testing methodology employs von Neumann-type ratios. Ng and Perron 
(Np) (2001) proposed a battery of tests based on those of Bhargava (1986) and Phillips and 
Perron.^ Excellent reviews of some of these methods may be found in Dolado, et al. (1990), 
Phillips and Xiao (1998) and Bierens (2001).

A consistent estimate of the zero frequency residual sjjectrum is required to carry out each 
of the K pss , E rs and Np tests. Two classes of estimators are typically available, namely, 
spectral and moment estimators. Several estimates are available within each class. For 
example, the moment, or kernel sum-of-covariance class of estimators, as they are also known, 
are made up of the Bartlett (1950), Parzen (1961) and Quadratic spectral kernel estimators.^ 
For spectral estimation, either the Newey and West (1994) or Andrews (1991) automatic 
bandwidth parameter selection methods may be u.sed. Several autoregressive spectral density 
estimators are available within the spectral class, including O ls- and GLS-based estimators. 
The usual selection criteria can be used to choose the appropriate lag length in these cases.

Seeisonal U n it R o o ts

riie illustrative examples that are contained within the subsequent chapters of this thesis 
employ a variety of data, many of which are (quarterly in periodicity. This raises the possibility 
that the variables therein could be seasonally integrated. This concept is directly analogous 
to that of integration and can be formally defined as®

The nonstationary stochastic j)rocess yt, observed at S  equally spaced time inter
vals per year, is said to be seasonally integrated of order d, denoted yt SI{d), 
if is stationary, invertible Arm.A. process.

Considering the quarterly case, as this will be the most relevant hei'e, svich seasonally inte
grated data may have standard, nonstandard and complex miit roots. This can be seen by 
considering the Dickey-Fuller type test for the quarterly case:

[I -  L'^) yt = + £t, (4.19)

where L is the usual lag operator, (l — L' )̂ can be rewritten as (1 — L) (1 -|- L) (l -f- L^). The
roots of (l — are 1, —1 and ±i, and represent the standard, nonstandard and complex

fuller description of these tests has not be included here for compactness. Some of the tests are
implemented in Chapter 5, but only as supplem entary procedures, thus warranting this omission.

*See. for example, Andrews (1991) or Priestley (1981).
^Following the definition of Ghysels and Osborn (2001).

is the seasonal differencing operator, defined as A s s  ( l  — L®), w’here L  is the lag operator.
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unit roots, respectively. Alternatively, those roots can be view as representing the zero, tt 
and 7t/ 2  sjiectral frequencies.

Several tests have been developed to examine d a ta  for seasonal luiit roots for various 
v'alues of S . Tests include those by Dickey, Hasza, and Fuller (1984), Osborn, Chui, Smith, 
and Birchenhall (1988) and Hylleberg, Engle, Granger, and Yoo (1990), widely known tis the 
H e g y  test. Testing in this thesis will be undertaken with the H e g y  test, not least because 
the test can be easily carried out using the software JMulTi, further details of which can be 
found in Liitkepohl and Kratzig (2004). W hat follows is a brief description of th a t method.

T h e H eg y  test, for the case of cjuarterly observations, is based on the m odel

p

^AVt — +  7T42:3,f_2 +  + St, (4.20)
j = l

where

■2u =  L  +  +  L'^) jjt,

Z'2t =  — —  L  +  —  L ' ^ )  i j t ,

z , t  =  -  { I  -  L^)  y t .  (4.21)

Testing for regular, semi-annual and cjuarterly roots involves testing the null hypotheses 
— 0, Hq:tt2 =  0 and Hq-.tth =  7T4 =  0, resjjectively, using t- and F -type  tests. JMulTi 

tests these hypotheses along with H o : t t 2  =  =  t t 4  =  0  and H q - . t t i  =  7T2 =  tt.'j =  7T4 =  0 .
Critical values for these tests are provided by Franses and Hobijn (1997). Ecjuation (4.20) 
can be estim ated by O ls  and p, the num ber of lagged differences, can be determ ined by the 
usual inform ation criteria.

Determ inistic term s can be included in Ecjuation (4.20). In fact, Ghysels and Osborn 
(2 0 0 1 ) rec:onnnend that both a linear trend and seasonal dunnny variables should be included 
when testing the SI{1)  null hypothesis. Caution must be taken, however, when using this 
methodokigy. The F 1234 test, in the notation used by Liitkej)ohl and K ratzig (2004), that 
which tests the hy])othesis Hq-.tti =  7T2 =  7T3 =  7T4 =  0 , should not be viewed as a test for 
seasonal integration against an alternative of sta tionarity  a t all frequencies. Rejection of the 
null may be due to stationarity  at one or more, but not all, of the frequencies. Also, da 
Silva Lopes and Montanes (1999) showed th a t ‘asym ptotically the H eg y  test statistics can 
distinguish between a structu ral break in the determ inistic seasonal com ponent and seasonal 
unit roots, bu t th a t empirically the presence of a struc tu ra l break will reduce the power of 
these tes ts ’.

Finally, the concept of fractional integration or near integration, also discussed in this 
thesis, can be applied to seasonal processes; see, for example, Rodrigues (2001) and Rodrigues 
and O sborn (1999). As this is tleemed beyond the  scope of this thesis, no further consitleration 
is warrantetl. Next, consider the concept of cointegration.

’*Ghysels niid O sborn  (2001), p. 74.
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4.2 .3  C ointegration

A n n-vector tim e series Xj is said to  be co in teg rated  if each of th e  series taken ind iv idually  is 

/ ( I ) ,  th a t  is, n o n sta tio n ary  w ith a  u n it roo t, while som e linear com bination of all th e  series, 

a 'x i ,  is s ta tionary , or /(()), for som e nonzero n -vecto r a .  C oin tegration  im plies th a t  a lthough  

m any developm ents can  cause p erm an en t changes in ind iv idual elem ents of Xj, th ere  is som e 

long-run equilibrium  rela tion  tying th e  ind iv idual com ponen ts together, represen ted  by the  

linear com bination a^x j. T h e  co in tegrating  vector is no t unicjue, for if q 'x ^  is s ta tionary , th en  

so is 6 a 'x (  for any  nonzero scalar b\ if a  is a co in teg rating  vector, th en  so too  is ba.  W hen 

referring to  th e  co in tegrating  vector, an  a rb itra ry  norm alisa tion  m ust be m ade. Usually, th e  

first elem ent of q  is transfo rm ed  to  m iity. If th e re  are  m ore th an  two variables contained  

in Xj, th en  th ere  m ay be two nonzero n-vectors a i  and  cx-2 , such th a t QiXj  and  are

b o th  sta tionary , w here a i  and  a 2 are  linearly  ind ep en d en t. Indeed there  m ay be r  <  n

linearly  independen t n-vectors, ( a i ,  a2 i  •••j  ctfc) such th a t  A 'x f is a s ta tio n a ry  n-vector

A  =  [ a ;  a'.  ̂ . . .  a 'J .

M ore formally, consider the  definition offered by B anerjee, e t al. (1993), ad ap ted  from 

Engle and  G ranger (1987):

T h e  com ponents of th e  vector X( are  said  to  be co in tegrated  of order d, b, deno ted  

Xj ~  CI{d,  h), if Xf ~  I{d)  and  th ere  exists a nonzero  vector a  such th a t  a ' x t  ~

I{d  — h), d  > b > 0. T he vector a  is called th e  co in tegrating  vector. If X( haa 

n > 2 com jjonents, th en  th ere  m ay be m ore th a n  one coin tegrating  vector a .  If 

there  exists exactly  r  linearly in tlependent co in teg rating  vectors w ith r  <  n  — 1,

th en  these can be g athered  into an  n x r m a trix  A . T h e  rank  of A  will be r  and

is called th e  co in tegrating  rank.*^

In  recent decades, th e  concejit of co in tegration  has becom e increa.singly im p o rtan t in e c o  

nom ics and  econom etrics. Several im p o rtan t econom ic re la tionsh ips have been em pirically  

explored in a co in tegration  fram ework, including th e  dem and  for m oney function and  p u r

chasing power parity, b o th  of which will be exam ined m ore closely in la ter chap ters. Engle 

and  G ranger (1987) ou tlined  several exam ples w here co in tegrating  relationships have been 

or are likely to  be found. Various p rocedures ex ist to  test for th e  presence of s ta tio n a ry  

linear com binations of in teg ra ted  variables. Som e of these tes ts  will be outlined la te r in th is 

chapter.

4 .2 .4  Error-correction rep resen tation

Given th a t co in tegration  im plies a long-run re la tionsh ip  ty ing  individual com ponents to 

gether, it is straigh tfo rw ard  to  view th is  in term s of erro r correction. An erroi’-correction  

m odel is a dynam ic m odel w here th e  sh o rt-ru n  dynam ics are influenced by the  deviations 

from  long-run ecpiilibrium . As such, error-c;orrection m odels are very useful in represen ting  

co in tegrating  relationsh ips. C onsider th e  au toregressive d is trib u ted  lag model, or A d l (1, 1),

Vt  — «o +  o i y t - i  +  +  P i X t - i  +  S t ,  (4.22)

^^Banerjee, et al. (199.3), p. 145.
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where et ~  i.i.d.(0, cr^) and |a i |  <  1. Treating {yt, Xt) as jointly  stationary, assume also tha t 
all change in the above model has ceased. The long-run values are given by the  unconditional 
e'xpectations. Let y* =  E{yt)  and x* = E{xt)  for all t. Equation (4.22) then  becomes

y* = ao + aiy* + f3ox* + pxx*, (4.23)

or

(1 -  « l )

which is equivalent to

E{yt) = ko + k iE {x t ) ,  (4.25)

where ky is the long-run m ultiplier of y with respect to x.  By further m anipulation Equa
tion (4.22) becomes

=  rt() (fti -  l)(y f- i  -  k i x t - i )  + ( h ^ x t  + S f  (4.26)

In general, an ADL(m, n; p) can be defined as:

rn p n

yt — f>0 +  ^  (^iyt+i +  ^  +  St- (4.27)
2=1 j = l  i= 0

Such models were used by Sargan (1964), Hendry and Anderson (1977) and Davidson, 
Hendry, Srl)a, and Yeo (1978), as a way of capturing adjustm ents in a dependent variable 
which depended not on the level of some explanatory variable, but on the extent to whic'h the 
dependent variable deviated from an equilibrium relationship with the exi>lanatory variables.

A generalised  error-correction m odel (E cm ) corresponding to  the AoL(m , n; p) m odel 

w ith  p  exogenous variables x i , . . . ,  Xp,  by step s sim ilar to  tlio.se used in the specific case  

al)ove, allow s the direct specification o f a general dynam ic regression m odel in the form o f an 

E cm , for (r <  m ):

r  /  p  \  p p r

^ y t  =  fto  +  X !  yt- i -  Xj t-i  +  l i j iAx j t  +
i=i \  j=i )  j=i j=i i=i

p  n 7n

PjiXjt-i + ^  aiyt- i  + St, (4.28)
j = l i = r + I  i = r + l

where r/i =  — 1, 7/j =  for i = 2 , . . .  , r  with r =  n iin (m ,n ). Also, Qi  =  a i  — 1 -|-/ijo +  Pjit

Cji ~  “I” — 2 , . . . ,  r  and =  (^xji—i Xjt—i—i)-

The E cm  is simply a linear transform ation of the A dl model. In the E cm  fornnilation, 
however, param eters describing the extent of short-nui adjustm ent to  disequillibrium  are 
innnediately provided by the regression.
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4.3 T esting for C ointegration

Having reviewed the concej)ts of integration and cointegration, attention now turns to testing  

for cointegration. An exposition of three frequently used m ethods now follows.

4.3 .1  T he E ngle-G ranger 2-step  m ethod

As suggested by its name, this single-equation m ethod of testing for cointegration has two 

steps. T he first is to test the variables of interest for unit roots, to establish that the variables 

are indeed integrated to the same order. The D f  test discussed in Subsection 4.2.2 can be 

used for this purpose. If the evidence from this test suggests that the variables are integrated  

to different orders, or not at all, then the specification of the model should be reconsidered, 

perhaps by modelling in differences. T he second step, given that all the series are fomid to 

have unit roots, is to consider whether or not they are cointegrated. This can be done by 

exam ining the residuals of a static O l s  regression.

Following Davidson and MacKinnon (2004), consider the model

Xf =  D(</) +  X<2/3 +  (4.29)

where D f is a deterministic row vector that may not have any elem ents, Xf is a A>vector 

of / ( I )  variables, X( =  [x^Xj2], an<l X( is the regressand. Estim ates of (3 can be obtained  

from Ecjuation (4.29) by O ls . If the variables cointegrate, then this estim ate will be super- 

consistent and the estim ated residuals will be superconsistent estim ators ‘of the particular 

linear combination of the elements of X^ that is 7 (0 )’.'^ If the variables do not cointegrate, 
however, the residuals will be / ( I ) .

There are two reasons why the estim ates of (3 may not be consistent. First, since both  

sides of the Ecjuation (4.29) contain 7(1) variables, the problem of spurious regression may 

a r i s e . S e c o n d ,  consistency is unlikely here, as the proposed approach involves estim ating  

the parameters of an ordinary simultaneous equation model by O l s . It is, however, an 

extraordinary result that in this case, neither of these considerations is a prol)lem. In fact, as 

shown by Stock (1987), not only is /3, the O l s  estim ator of /3, consistent, it is superconsistent 

in that its asym ptotic variance is 0 { \ /T '^ )  rather than 0 ( 1 / 7 ’), as in the usual case, when 

the null hypothesis of no cointegration is rejected.^® Consequently, such regressions may not 

be spurious. T he next step, therefore, is to estim ate the cointegrating vector(s) by O l s .

Under the assumption of cointegration, the residuals from Equation (4.29), Pj, are esti
m ates of the ecjuilibrium errors. As such, they should be 7(0). An obvious approach would 

be to apply the familiar D f  test to these residuals. The D f  critical values are inappropri

ate, however, for these estim ated errors. Estim ates of the appropriate critical values for the 

test are given by Engle and Granger (1987), Engle and Yoo (1987), Phillips and Ouliaris 

(1990) and Davidson and MacKinnon (1993). If autocorrelation in the equilibrirmi errors is

'■^Davidson and M acK innon (2004), p. 636.
'■*H am ilton  (1994), p. 557, offers a useful defin ition  o f sp u riou s regression. C onsider a  regression o f th e  form  

yt =  xJ/3 +  U(, for which elem en ts o f yt and X( m ight be nonstationary. If there doe.s not ex ist som e population  
value for /3 for w hich the residual ut =  yt —  xjcp is /(O ), then  O ls m ay produce spurious results.

■̂'’See also, for exam ple, D avidson and M acK innon (1993).
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suspected , th en  an  augm ented  Engle-G ranger ( A e g ) tes t can be  apphed . H aving ob ta ined  

residuals from  E quation  (4.29), th e  A e g  tes t is perform ed by ru n n in g  th e  regression

p
A v t  =  +  - y ' v t - i  +  (4.30)

j = i

w here p  is chosen to  remove serial correlation and  th e  asy m p to tic  d is trib u tio n  of th e  test 

depends on k .  If th e  null hypothesis of 7 ' =  0 canno t be re jected  aga inst th e  a lte rna tive  

7 ' <  0, th en  it is concluded th a t th e  variables are no t c o i n t e g r a t e d .T w o  fu rth e r single- 

ecjuation approaches w arran t a  m ention and  due to  their co m p u ta tio n a l sim plicity  will be 

considered in la te r analyses. T hey  are th e  ECM and co in tegrating  regression D urbin-W atson  

tests  for co in tegration . T h ey  are briefly in troduced  here.

T h e error-correction  m ech an ism  test

An a lte rn a tiv e  single-equation approach  to  testing  for co in tegration  is the  error-correction  

m echanism  (E cm ) tes t, p u t forw ard by Banerjee, Hendry, and  S m ith  (1986). C onsider again 

th e  E c m  m odel in Ec}uation (4.28). If th e  variables are not co in tegrated , th e  coefficients of 

th e  error-correction  te rm s Yl'i=i Vi { v t - i  — Y l ’j= \  m ust be zero. E s tim a tin g  th e  ECM
m odel by O l s  gives a  su itab le  test s ta tis tic  in th e  form  of th e  i-s ta tis tic  for //j =  0 . E ricsson 

and  M acK innon (2002) provided su itab le  critical values for th is  te s t, along w ith  p rogram s to 

com pute  them . D avidson and  M acK innon (2004) suggested th a t th e  E c m  te s t has g reater 

power th an  th e  E ngle-G ranger approach. T hese test proc:echues share  th e  disadvantage, 

liow'ever, th a t  th ey  b o th  depend  on the  choice of the  regressor.

T h e co in teg ra tin g  regression  D u rb in -W atson  te s t

T h e final single-ecjuation m ethod  considered here is th e  co in teg ra ting  regression D urbin- 

W 'atson ( C r d w ) te s t. T h is test, p roposed by Sargan and  B hargava (198.3), is com puted  in 

th e  sam e way as th e  D urbin-\V at,son f/-statistic . Given th a t  r/ ss 2 (1 — p ) ,  and  th a t u nder the 

mill hypothesis of no co in tegration  p  =  I,  th e  C fiu w  tes ts  th e  null hypo thesis th a t  Hq: p  =  I, 

as ojjposed to  the  usual D urb in-W atson  d  test th a t Hq: p  =  0, w here

C h o w  =  (4,31)
E t= i  ^ i\

and Vit are th e  O ls  residuals from  th e  co in tegrating  regression. A lthough th is  m eth o d  is 

m ade easy by th e  ro u tin e  rep o rtin g  of the  f/-statistic by m ost econom etric softw are, it is not 

w ithou t its lim ita tions. T h e  tes t s ta tis tic  depends on th e  nm nber of regressors. T h e  bounds 

of th e  critica l values cQiange as the  num ber of regressors increases. Also, th e  null of a random  

walk in th e  residuals is tested  aga inst an  a lte rna tive  of a s ta tio n a ry  first-o rder autoregressive 

process. T h is  is ra th e r restric tive . F u rth e r details can be found in B anerjee, e t al. (1993).

’*’It should be noted that errors of T ype I and II can be made, regardless o f whether the null hypothesis of 
no cointegration is rejected or not.
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4 .3 .2  Joh an sen ’s m axim um  likelihood approach

Before detailing the nature of Johansen’s (1988, 1991) test for cointegration, it is necessary 

to introduce some further background material. System s of multiple equation models can be 

considered as being a collection of single-equation models. These can be written as vector 

autoregressive (V a r) processes. In vector notation, the n-dim ensional, autoregressive process, 

X t, where X< =  ( x i f , . . .  ,Xkt)' can be written as^^

X t  =  H i X f  +  . . .  +  nfcXt_^. +  +  St, (4.32)

for i =  1 , . . . ,  T  and where £t  ~  n.i.d(0, f t ) ,  D j is a deterministic term containing a constant, 

trend and seasonal dummies, and Hj are k x k coefficient matrices.

E(}uation (4.32) can be written in error-correction form, to give

k - l
A X t  =  n x ^ _ i  +  ^  r ,A X f_ , +  CI>D( +  £t, (4.33)

i=\

for t =  1 , . . . , T ,  hxed values of X_f c+i , . . . ,  Xq, and where £t ~  i.i.tl., II =  H i — 1,

Fj =  — Yl j=i+\  r  =  I — Ti. The characteristic polynomial for this equation is

k- i
A{z)  =  (1 -  2)1 -  n ,  -  ^  r , ( l  -  z ) z \  (4.34)

Z =  1

Using this characteristic polynomial, Eciuation (4.33) can be expressed as

A { L ) X ,  =  - n X t  +  ( r  +  n )  A X t  +  A**{L)A'^X,,  =  e* +  $ D f ,  (4.35)

where

A**{z) =  (4,35)
[I -  z y

and 4 (1 ) =  —n  — r .  In the presence of unit roots, II  has to be singular and it can be
represented as II  =  a /3', for some n x r matrices, a  and /3.

Ecjuation (4.33) can, therefore, be rewritten as

k - l
A X t  =  a f 3 ' X t - i  +  5 ];  (4.37)

i=l

for t =  I , . . .  , T,  and where describe the short-term dynamics, and the efi'ects

of levels depends on a/3'. By further refinement, Etjuation (4.37) can be rewritten as

=  olP'Tiu  +  +  £t,  (4.38)

for  ̂ =  1 , . . . ,  T, and where Zot =  A X t ,  =  Xf _ i  and Z-2t- of dimension n(A’ — 1) -|- m, is
the stack of variables A X < _ i , . . . ,  A X t - k + i  and D^. is the n x {n{k — 1) rn) matrix of

parameters of Z2t, i.e., consisting of F j , . . . ,  Ffc_i and <5.

Following closely Johansen (1996).
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The loglikehhood for this equation is

l o g L ( ^ , a , / 3 , f i )  =  (4.39)
T

-  ^ r i o g  (fi) -   ̂ (Z,w -  a /3 'Z u  -  (Zot -  a /3 'Z u  -  ^Z2t) •
t = i

Finally, defin ing M y  =  T~^ YlJ=i i j  =  0, 1 ,2 , R()( = Zot -  M o tM 2 2 ^Z2 (, R u  =
Z if -  M i 2 M 2 2 ^Z2 f,, and Sjj =  T~^ ^^1=1 -  M j 2 M ^ 2*M 2 j ,  for i , j  =  0 ,1 ,  allows

for testin g  the h yp oth esis H { r )  : n =  af 3' , as it can b e show n th at th e  m axim isation  o f the  

likelihood function  is equivalent to  solv ing  the equation

lA S i i - S io S o o 'S o i l  =  0, (4.40)

for the eigenvalues 1 >  Ai >  . . .  >  A„ >  0 and for th e  eigenvectors V  =  { Vi , . . .  ,V„) .  T he  

m axim ised loglikelihood function  is then given by

L n u /J  ( Hi r ) )  =  |Soo|n[^=i ( l  -  A ,) . (4.41)

T his leads to the so-called Trace sta tistic , the likelihood ratio function Q { H{ r ) \ H{ n ) ) ,  for 

H( r )  in H{ n ) ,
n

- 2 \ o g Q { H { r ) \ H { n ) )  =  - T  ^  log ( l  -  A ,) , (4.42)
i=r -{-1

and the M axim al eigenvalue test for H{ r )  in H { r  +  1),

- 2 1 o g Q ( / / ( r ) | / f ( r  +  l ) )  =  - T l o g  ( l  -  A ,+ i)  . (4.43)

It is possib le  that the two different, but related, test procedures will conflict in their findings.

T he critical values for the Trace and the M axim al eigenvalue sta tistic  defined in eciua- 

tions (4.42) and (4.43) depend  upon n — r.  w hether E quation (4.37) contains an intercei)t or 

trend and w hether there are restrictions im posed upon these. T h e d istribution  o f th e  Trace 

sta tistic  is derived untler the h yp oth esis that there are r cointegrating vectors and te sts  Hr  

w ithin H„.  T he testin g  proceeds in sequence from tjo, r/i , . . . ,  i ju- i -  T h e num ber o f co in tegrat

ing vectors selected  is r -I- 1 w here th e  last significant sta tistic  is ijp. T h e te s t ’s d istrib u tion  is 

not the conventional d istribution  because X ( is a nm ltivariate 7(1) process. T h e  M axim al 

eigenvalue test, alternatively, tests  Hr  w ith  Hr+i -

B(jth are d istributed  as functionals o f m ultivariate W iener processes. T here are no ana

lytical form s o f the d istributions, but critical values can be obtained by sinnilation.^* T h ey  

are available in tab u lated  form, from  am ong others, Johansen (1988, 1991), O sterw ald-L enm n  

(1992) and Pesaran, Shin, and Sm ith  (1996). Pesaran, et al. com puted  these critical values 

using stoch astic  sim ulation  techniciues. T h ey  include cases w ith  and w ith ou t in tercepts and

approx im ation  for th e  T race .statistic has been p u t forw ard by Johan.sen (1988) as

Trace =  h \ ^  (2m^)  , (4.44)

w here h =  0.85 — 0 .58 / (2m ^), for ?n = n  — r.
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trends, and the cases where restrictions are imposed upon them. This simulation includes 

up to twelve endogenous / ( I )  variables and five exogenous / ( I )  variables in the vector error- 
correction model ( V e c m ). In large samples, the critical values do not depend on the order of 

the V a r  or on the stochastic properties of the /(()) exogenous variables. Osterwald-Lenum, 

following Johansen’s approach, also computes the critical values for the Trace and Maximal 
eigenvalue statistics. In this case, up to eleven endogenous / ( I )  variables but no exogenous 

/ ( I )  variables are included. These critical values, like Johansen’s, differ from those offered 

by Pesaran, et al. as they do not consider restrictions to the intercept or trend terms.

Finally, in a cointegrating vector, for unrestricted intercepts and trends, X ( will be trend 

stationary when the rank of II  is full. But if it is rank deficient, the solution for X f will 

contain quadratic trends. For unrestricted intercepts and no trends, a rank deficiency in II  

will result in X f containing linear deterministic trends. To avoid these situations, the choice of 

restricted intercepts and no trends or unrestricted intercepts and restricted trends is normally 

made. However, this results in the cointegrating vectors containing a determ inistic trend in 

the first case and intercepts in the second case.

4 .3 .3  C om m on factor analysis

Connnon factor analysis (COMFAC) is perhaps less well known than the above methods. A 

more detailed account, therefore, is given here. For exposition, the two variable case is 

considered first, followed by a more generalised account.

Consider a linear regression Ad l ( 1 ,  1) equation relating ijt to the variable Xt,

yt =  (■4-45)

where |/ii| < I, ^  i.i.d.(0,a"^) and is serially uncorrelated. The lag operator, L, allows
Ecjuation (4.45) to be rewritten <is

yt  =  f h L y t  + lo^t +  l iLxf  +  uu  (4.46)

or

[ I -  (3],L) yt =  (70 +  7 1 Xt +  ut. (4.47)

In this ecjuation, both variables are nmltiplied !)y polynomials in the lag ojjerator. If para

meter 7 i =  —/̂ î7o, then Equation (4.47) becomes

(1 -  [i\L) yt =  7o(l -  (^\L)xt +  Vt- (4.48)

Now yt and xt have a common factor (1 — /iiL ). These polynomials have a conunon root of
corresponds to what Hendry and Mizon (1983) referee! to as the latent root of equation

1̂ 1 ~  /^i| =  Dividing both sides of Equation (4.48) by their common factor gives
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or

yt =  loXt +  ut, (4.50)

where

or finally,

Ut =  f i i u t - i  +  i/f. (4.52)

This shows that ut is generated by a first order autoregressive A r ( 1) process. If the restriction  

7 i =  —A 70 is satisfied for Equation (4.45), with one period lagged variables, then the 

polynomials in L have a common root. This root can be thought of as the serial correlation  

coefficient of a first-order autoregressive error process, when Ecjuation (4.45) is a static model. 

Therefore, ut being A r (1 ) is a convenience, not a nuisance.^® In Equation (4.50), only /?i, 70 

and need to be estim ated, as opposed to of f3\, 7 0 , 71 and a'  ̂ in Equation (4.45). Estim ation  

of this equation, however, requires Cochrane-Orcutt, maximum likelihood, or an ecjuivalent 
method. The benefit of estim ating from Equation (4.50) rather than Equation (4.45), when 

7 i =  —/^i7 o is a valid assumption, is the improved efficiency of the estim ates. T he validity 

of such a c:onnnon root restriction could be tested, as in Sargan (1964), by comparing the 

goodness of fit of Equation (4.45) with that of E<iuation (4.50). Equation (4.45) is more 

general than Ecjuation (4.50) and it is likely, therefore, that dynamic behaviour cannot be 

accurately smnmarised by A r  errors. In many cases a connnon factor may not be found.

When 7 i 7  ̂ —/^i7 o, and beginning from

=  70-Tt +  ««, (4.53)

a significant value of the Durbin-W atson ^/-statistic, calculated from the O l s  residuals Uf , will 
often be observed. This results from the fact that Ecjuation (4.50), with a nonzero connnon  

root, will be a better ai)proximation to Ecjuation (4.45) than Ecjuation (4.53), where the root 

has been restricted to zero. A notable case of a model with one period lags and a common  

root, which has become important in empirical work is Equation (4.48) where /?i =  1, which 

gives a sim ple regression model in first differences

A yt  =  7 oAxf +  (4.54)

Transforming trending series by differencing to approximately stationary series has been 

discussed by Box and Jenkins (1976). Granger and Newbold (1974) suggested that when 

dealing with the levels of trending variables, the danger of spurious regression ‘is especially  

large when the warning of a significant d-statistic has been ignored’ and to circumvent this 

problem they also proposed the use of differenced variables.

W hile at times this is approach is acceptable, i.e., when there is a (»m nion unit root, in

‘®See H endry unci Mizon (1978). 
^°Henclry an d  Mizon (1978), p. 552.
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other situ ation s, it m ay cause serious problem s. T h e m odel in differences

A yt  =  7oAxf +  wt,  (4.55)

w here zut =  A e t ,  solves th e  problem  o f p oten tia lly  spurious fits, but replaces it w ith  the  

problem  o f an error process w ith  a root o f m inus u n ity .O v e r -d if fe r e n c in g , however, a linear 

regression m odel w ill result in th e  first-order serial correlation coefficient o f  th e  errors being  

close to  —0.5. A  sim ilar problem  can arise also w ith  seasonal differences, using  ( l  — L'*), to  

rem ove seasonality. ‘If th e  true m odel is that in E quation (4.55), and the ten ta tive  h yp oth esis  

is that o f E quation  (4 .45), then  there is a latent root w ith  a value o f zero and the CoMP’AC 

approach should  detect th is and allow the redundant dynam ics or autocorrelation  to  be 

elim in ated ’. T h i s  problem  m ay b e avoided by testin g  the hypothesis that th e  m odel should  

be form ulated in differences. T h is could be done by testin g  the hyp oth esis o f a unit root 

against the a lternative o f a m odel which contains lagged values o f yt and xt  w ith  unrestricted  

coefficients.

T his h yp oth esis can be tested  by first testin g  for a com m on root in the a lternative m odel, 

and if th is is not rejected, by then  testin g  th at the root is unity. T h is is a jo int h yp oth esis, 

testin g  first for a conm ion root, and then that the root is im ity. T h is approach w ill be valid  

even if the variables are ’sp u riou sly ’ related in levels and unrelated in differences. C onsider

^ y t  =  7 o A x t -h (A  -  l ) y t - i  +  (70 +  7 i)j^ t-i +  (4.56)

If E(juation (4.54) is a valid m odel for any value o f 7 0 , the coefficients o f  y t - i  and ;r(_i 

m ust both  be zero in Ecjuation (4 .56). In term s o f hypothesis testin g , th e  conm ion root 

im plies 71  =  —/?i7 o, and if that is a unit root, and if 3i =  1 also, Ecjuation (4.56) becom es  

Efiuation (4 .54). T esting th is com p osite  hypothesis, therefore, o f a unit root can be achieved  

by testing  the jo in t significance o f the coefficients o f the lagged variables in Ecjuation (4 .56). 

It can be show n that î t hi E quation  (4.56) are w hite  noise errors.

A difference m odel, like E quation  (4.54) can be reform ulated an a m odel in levels, like 

E quation (4 .45), w ith  param etric restrictions o f [3i =  1 and 7 0  =  —7 1 . T h e  error term  will 

be unaffected by th is. T herefore, ‘if differencing is a valid solution to  the sjjurious regression  

problem , then so  m ust be the inclusion o f lagged values of all v a r i a b l e s A s  m entioned  

previously, however, it is not alw ays appropriate to  take the eciuation in differences, as there  

m ay not be com m on factors. G iven the restriction f5\ -h 7 0  +  7 i =  1, th e  autoregressive  

distril)uted lag m odel takes on an error-correction form. T esting th is restriction  is equivalent 

to  testing  for a cointegrating relationship.

For the m ore general case, consider

P ( L ) y t  =  l { L ) x t  +  S{L)zt  +  Uu ('1.57)

where and S{L)  are scalar polynom ials in the lag operator, L,  o f  orders p, q and r,

Since -cat =  As* is a moving average witli a coefficient of —1.
Hendry and Mizon (1978), p. 553.
Hendry and Mizon (1978), p. 554.

76



respectively. p{L),  'y(L) and 6{L) may have at most I common roots, where I =  min(p, q, r). 
If there are n <  I connnon roots, ‘then there exists a polynomial p{L)  of order n, common to 
P{L),'y{L)  and Then it can be shown that

0{L)  =  p{ L) f i \ L) ,  -i{L) =  p i i y r i L ) ,  S{L) =  p{L)6*{L),  (4.58)

or
[P{L)--i {L)-.6{L)] =  p{L) [,d*{L)n*{L):6*{L) ] , (4.59)

where f 3 * { L ) ,  7*(L) and 6*{L) are polynomials of order {p — n), [q — n) and (r — n) respec
tively. Using Equation (4.59), Equation (4.57) becomes

p{L)0*{L)yt  =  p { L y r { L ) x t  +  p{L)5*{L)zt +  (4.60)

or
[5*{L)yt =  j*{L)xt  +  6*{L)zt +  ut, (4.61)

where
p{L)ut =  Vf (4.62)

The number of parameters from the general model of Ecjuation (4.57) is reduced by a factor 
of 2n (or kn for k regressors), which greatly improves efficiency. If it can be shown that 
p{L)  has a factor of A =  (1 — L), where p{L)  =  (1 — L)p*{L),  then Etjuation (4.61) can be 
rewritten to give

f r { L ) Ay t  =  7 *iL)Axt  +  6*{L)Azt  +  ih, (4.63)

where

p^L)ut  =  ,yt. (4.64)

In practice, the orders of the lag polynomials will not be known. To overcome this, two 
approaches could be adojjted 'both being two-stage decision procedures which commence 
from the most general unrestricted model which it seems reasonable to consider’.'̂ ® Using
these techniques allows for the a priori specification of the longest lags. The common factor
techniciue could be applied to the model as specified a priori, followed by simplification can 
through testing for zero roots from the set of n connnon roots. The Wald test is then 
used to test the connnon factor restrictions. In smnmary, the CoMFAC approach works 
as follows. The t:oefficients and their variance matrices in the general unrestricted form 
of Equation (4.57) are estimated, by O l s . These results are denoted by b and V . The 
restrictions in Eciuation (4.59) are equivalent to recjuiring a vector nonlinear function of b, 
say f(b), to be zero. The asymptotic variance matrix of f(b ) is S =  J'V J where J =  d i / d h ' , 
and f (b ) 'S - 'f (b )  will, therefore, have a distribution in large samples when the f(b ) =  0
restrictions are valid, with degrees of freedom ec{ual to the number of restrictions tested.
Having completed the review of methods of testing for cointegration, attention now turns to 
the concept of fractional integration and the work of Dolado, et al. (2002).

^■̂ Hendry and iMizon (1978), p. 554.
■̂"'Hendry and Mizon (1978), p. 555.
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4.4 A Fractional D ickey-Fuller Test for U nit R oots

Many tim e series, be they economic series or otherwise, are not well represented by either 
stationary, /(O), or nonstationary, / ( I ) ,  processes. To overcome the potential difficnlties 
presented by this fact, and to capture the effects of the persistence properties of long memory 
processes, the class of fractionally integrated processes has proven useful. A fractionally 
integrated process is denoted FI{d) ,  where the order of integration, d, is extended to  include 
any real number. A lthough unit root tests have been shown to be consistent under the 
alternative hypothesis of an FI{d)  process, their power is quite low. This lack of power 
has been the motivation for various approaches to take this alternative into consideration, 
using W ald-type and Lagrange M ultiplier (Lm) tests. These approaches are a ttrib u tab le  to 
Geweke and Porter-H udak (1983), Fox and Tacjqu (1986), Sowell (1992), Robinson (1994) 
and Tanakci (1999). Many of these tests have been unsatisfactory, however, suffering from a 
lack of power.

Dolado, et al. (2002) projjosed a simple W ald-type test in the tim e domain, which, unlike 
those m ethods mentioned, has acceptable power p r o p e r t i e s . T h i s  m ethod is a generali
sation of the well-known Dickey-Fuller test, introduced in Subsection 4.2.2, and considers 
the hypothesis of FI{do)  against FI{d\ ) ,  where d\ < do. This test is referred to by the 
authors as a fractional Dickey-Fuller (F d f ) test and they concentrate on the case of do = 1 
and 0 <  fii <  1. As the F df test is a W ald-type test, the value of d is required under the 
alternative, to make the testing procedure feasible. Therefore, for general hypotheses, the 
pre-estimation of d under the alternative is necessary for the im plem entation of this test.

The F d f  test has several obvious advantages. It is a simple generalisatiiiu of the well- 
known Dickey-Fuller test. Unlike Lm tests, no assum ptions are required about the form of 
the density function, greatly incTCfising the robustness of this m ethod. Finally, it has been 
shown th a t the test fares very well in finite samples, in term s of  both power and size.^^

4.4.1 The fractional Dickey-Fuller test

As introduced in Subsection 4.2.2, the D f test statistic  is based upon the statistical signifi
cance of param eter 4) in the following model,

Ayt = 4)yt-i + St- (4.65)

If Et is i.i.d. and cj) = 0, then yt is a random  walk process. If alternatively d> < 0, then yt is a 
stationary  Ar (1)  process. The regression model in Ecjuation (4.65) can be generalised to test 
the null hypothesis th a t a series is FI{do)  against the alternative th a t it is FI{d\ ) ,  where do,

^®Dolado, et al. (2002), p. 1963-1964.
Further details can also be found in Dolado, Gonzalo. and Mayoral (2005a).
Dolado, Gonzalo, and Mayoral (2005b) proposed a test which considers the hypothesis of F I  (do),  for 

0 <  cZo <  1 against F l ( d i ) ,  for dj =  0, for processes that may be subject to structural breaks at known or 
unknown dates. This test, the S b - F d f  test, may be more appropriate in certain circum stances, regardless of 
breaks. Ideally, both the F d f  and S b- F d f  test should be used to test series, as both the d =  0 and d =  1 
hypotheses are tested against 0 <  d <  1. Given the very recent nature of this proposed test, it w'ill not be 
included here. It is recognised, however, as an area o f future research w'ith rich potential.
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d\ € M, by testing the significance of <j) in the regression

=  (4.66)

where =  (1 — LY'^ anti et is an /(O) process.^® When 0 =  0, Ecjuation (4.66) becomes 
=  £■«) implying that yt is FI{do). This allows the formulation Ho'.d) =  0 and Hi'.cf) < 0, 

where H q implies yt is FI{do), and H\ implies yt is FI[d\).  Dolado, et al. (2002) restricted 
their analysis to the specific case where d,Q = \, namely, yt is / ( I )  under the null hypothesis, 
and FI{d\),  where 0 < di < 1, under the alternative. This is chosen for its empirical relevance 
in the literature. In principle, this framework could be extended to deal with more general 
cases.

4.4.2 The test and its asym ptotic properties

In the case where do = 1 and w'here {ej} is a sequence of zero mean i.i.d. random variables 
with unknown variance and finite fourth order moment, the O ls  estimators of 4>, 4>ols 
and its ^-ratio, , Jire

and
f- =  (Jggj

....

where the variance of the residuals, 67- is

5 2  ^  Zi^ y t - $ O L s

It can be shown under the null hypothesis that yt is a random walk, 4>ols is consistent 
estimator of 0 =  0 and ^ols converges to its true value at a rate of when 0 < di < 0.5,
(TlogT')a when di = 0.5, and at the standard rate T 2 when 0.5 < di < 1. Asymptotic 
distributions mider this null have been derived. If the data generating process is defined 
as A'^iyt = £«l(t>o), where d\ 6 [0. 1) and l(i>o) =  0 when t. < 0, and 1 otherwise, the 
test statistic based ujion ^ols or the f-ratio of 0ols hi the regression of Ayt on A'^^yt-i is 
consistent for any value of d\ € [0, 1).'̂ ’̂ This guarantees the consistency of the proposed 
tests, even when under the alternative an incorrect value of di is employed to implement the 
procedure, insofar as d^ G [0,1). The standard or nonstandard asymptotic behaviour of the 
previous test statistics depend on the distance between the null and alternative hypothesis.

The jjroposed test, simulated for a random walk and a series of F I  processes, with order of 
integration d\ G [0,0.9) and two sample sizes, was found to perform very well in both size and 
power, by comparison to several other procedures, including the standard D f test, the Geweke

should be noted th a t Equation (4.66) is 'an unbalanced regression where regressand and regressor have 
been differenced in agreement with their degree of integration under tfie null and the alternative hypothesis, 
respectively’ (Dolado, et al., 2002, p. 1966).

“ Doiado, et al. (2002), p. 1969-1971.
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and Porter-H udak (1983) test and the L m test proposed by Tanaka (1999). In practice, the

the vahie of d\,  it was found th a t the power of the F d f  test decreases when vahies of d\ larger 
than  dj are selected, particularly  when d\  >  0.7. This is to be expected, as the alternative is 
now close to the null. In general, however, it is found th a t the procedure is robust, in finite 
samples, to  misspecification in d i, and th a t the desirable qualities of the test do not depend 
on an accurate choice of d\  under the alternative.

An estim ate of the memory param eter dy, under the alternative hypothesis, is required to 
implement the F d f  test. Generally, this value is unknown and must be estim ated, therefore, 
particularly when a composite alternative hypothesis is being posed, which is always the case 
in practice. A substantial literature exists on the estim ation of the order of integration, d\,  
in FI{d\ )  models, in both the tim e and frequency domains. If a T 2-consistent estim ator of 
d\ is used, the asym ptotic distril)ution of the f-ratio of 0o ls under the null is A^(0,1).

Under the null hypothesis tha t yt is a random  walk, the test statistic, the ^-ratio of cf>OLs 
for d\,  associated with the param eter cj) in the regression

where c > 0 and is a fixed value in a neighbourhood of zero, such th a t (1 — c) is close to 
unity, and denotes weak convergence. This result suggests th a t when a pre-estim ated 
value of d\ is used to implement the PD F test, the associated critical vahies are those from 
a Â’(0 ,1) d istribution, given th a t the value of d\ satisfies Equation (4.71). If. however, the 
value of d\ is assumed known, a priori, and d\  € [0,0.5), the test then has a nonstandard 
distribution imder the null. As will be seen later, nonstandard critical values are available 
from the authors for suc:h cases.

Dolado, et al. (2002) rec^onnnended the use of a param etric estim ator of d\.  Their reason
ing is th a t sem iparam etric estim ators often converge at a rate slower than  T^.  In principle, a 
7^2 rate of convergence is required for feasible use of the PDF test. They further suggest using 
a time domain, as opposed to frequency domain, param etric estim ator. W ithin th a t c:lass, 
they reconnnended the use of M ayoral’s (2003) general minimum distance ( G m d ) estim ator. 
Briefly, consider the AliFIMA(/j,  do, q) model

where ^o{L)  and 0o(L ) are autoregressive and moving average polynomials of order p  and

true value of di,  d\,  is unknown under the alternative hypothesis. Under misspecification of

Atjt =  -h at, (4.70)

where d\ has been chosen according to

d'r if f/j’ <  1 — c
1 — c if f/7’ >  1 — c.

(4.71)

is asym ptotically distributed as

(4.72)

(4.73)
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q, respectively, and  £t is a  sec^uence of i.i.cl. random  variables w ith  zero m ean and  unknow n 

variance, N ote th a t  in th is  m odel do =  m o  +  S. ‘T h e  integer mo =  [(io +  w here [-J 

denotes integer p a rt, is the  num ber of tim es th a t  yt  m ust be differenced to  achieve s ta tio n a rity  

(therefore mo >  0). T he p a ram ete r S, th e  fractional p a r t, lies in the  interval (—0.75,0 .5), in 

such a  way th a t, for a given do, 6 =  do — [do +  Also, A =  (do,i/;') G w here

■0 is a vector of autoregressive and  m oving average p aram eters . All possible values of A are 

con tained  w ith in  th e  set A. G iven th a t  th e  es tim ated  residuals of th is process are et(A ), let 

th e  sam ple i** au toco rre la tion  of th e  residuals be

T h e  general niiiiinm m  d istance estim ato r is given by

Afc =  arg  minVke  (A, y ) , (4.75)
A eA

w here
k

V , e { \ y )  =  J 2 p , ( X ) { i f .  (4.76)
i —1

T he au th o rs  have m ade available the  M a t l a b  program  to  im plem ent th is  estim ato r, b u t 

th is  has yet to  be generalised, and so is lim ited  in its applicability . T h is  m ay render it use

less for th e  app lications in la te r chapters. A lte rna tive  estim ato rs are considered, therefore. 

Four estim ato rs were chosen p rim arily  because these estim ato rs were freely available. T hese 

were the  Geweke and  P o rte r-H u d ak  ( G p h ) (1983) and  R obinson (1994) nonparam etric  m eth 

ods, and th e  param etric  m ethods a ttr ib u ta b le  to  Sowell (1992) and  B eran (1995).'^'^ T hese 

procedures will be in troduced  in due course.

T h e  F d f  test, using th e  G m d estim ato r of d i ,  perform s very well. Rejjlacing th e  tru e  

value of di  w ith  an  es tim ated  value, c/i, was found to  have little  effect on th e  size and  power 

p roperties  of the  test. Also, by com paring  th e  em pirical d istrib u tio n s of th e  f-ratio  of 4>OLa 

for di  and a A^(0,1) d is trib u tio n , for various sam ple sizes, it was found th a t  th ey  approx im ate  

to  a s tan d ard ised  norm al varia te  very well.

4.4.3 The augm ented fractional Dickey-Fuller test

To broaden  th e  applicab ility  of th e  test, th e  framew'ork ou tlined  above has been expanded  

to  allow for serial correlation  in th e  d is tu rb an ce  term s. A lthough som e series m ay behave 

a.s fractional w hite noise processes, it is desirab le  to  consider series w here th is m ay n o t be 

so, i.e., w here there  m ay be serial correlation  in th e  erro r term s. By following th e  A d f  

approach , it can be shown th a t  ‘th e  asy m p to tic  d is trib u tio n  of th e  f-ratio  rem ains valid in 

th e  presence of serial correlation , as long as a sufficient nm nber of lags of A^'^yt  are  included 

in th e  regression’.’̂ '̂

'^'Mayoral (2003), p. 4.
Estim ation procedures for all o f these m ethods are available in Doornik and Ooms (1999) O x package, 

A r f i m a , while the nonpararnetric procedures are also available in R a t s .

“ Dolado, et al. (2002), p. 1980.
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The fractional augm ented Dickey-Fuller ( F a d f ) test im itates the Dickey-Fuller approach 
in the context of an autoregressive integrated moving average A r f i m a  process. Consider 
again Eciuation (4.65)

^ y t  = H t - i  + ut, (4.65)

where now a{L)ut  =  et, an autoregressive process of order p, such th a t a{L)  =  1 — a i L  — 
. . .  — apU ’ has all its roots outside the unit circle. The A d f  test is based on the regression

p

^V t  = 4>Vt-\+ ' ^ Q i ^ y t - i  + £t- (4-77)

U nder th e  null, Dickey and  Fuller (1981) proved th a t  th e  asym pto tic  d is trib u tio n  of th e  t- 

ra tio  of (fioLn, is identical to  th a t ob ta in ed  in th e  absence of serial correlation. Im ita tin g  th is  

process, th e  regression for th e  F a d f  tes t, w here ut is an  A r(p )  process is

p

^V t  =  Qi^yt- i  +  (4-78)
1 = 1

As in Ecjuation (4.66), the null and alternative hypotheses of a unit root and F I {d i )  process 
can be considered in term s of 0, when (/> =  () and 4> < 0, respectively. The f-ratio is com puted 
from the estim ation of Ecjuation (4.78). The asym ptotic distribution of the ^-ratio of oi>()Ls 
for d\ is identical to th a t derived mider the assum ption of uncorrelated disturbances.

The performance of this more general framework of the F a d f  test, with a FI{d \ )  process 
with an A r(1 )  error structure^'^ and different values of d\ and a  indicate th a t the test is 
very well-behaved in term s of size. The power of the test is, by and large, dependent on 
how close the polynomial a{z)  is to having a unit root. Only small changes in the ])ower 
are observed when the value of di is misspecified. This indicates th a t the test is robust to 
misspecification of d{. Also, and as in previous cases, the asym ptotic distribution of the /-ratio  
with an estim ated di is identical to th a t obtained with a known di,  where a '/"a-consistent 
estim ator of di is employed. The d istribution of the /-ratio  of 0o ls f«r î*<l 'in 1) 
distribution are compared, when the d a ta  generating process is an A him a(1 , 1,0) and di has 
been estim ated using IMayoral’s (2003) G m d  estim ator. As before, the approxim ation to an 
A^(0,1) distribution works well in the finite samples considered. Also, it can be shown that 
the power loss due to the pre-estim ation of di is minimal, although it happens to be larger 
than  th a t obtained under identically and independently d istributed error term s. Next, !)rief 
consideration is given to the alternative estim ators mentioned previously, the G p h  (1983), 

Robinson (1994), Sowell (1992) and Be'ran (1995) esthnators.

Tlie s t ru c tu re  in ciuestion was 

where

A d ?Zi 'yt =  Ut ,

Ut  — Q U t - l  + £ t ,

and  where St  ~  n.i.d.(0, 1).
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4 .4 .4  E stim atin g  th e  order o f fractional in tegration

As previously noted, Dolado, e t al. (2002) recom m ended th e  use of th e  G m d  estim ato r of d \ .  

W hile th is is available from  th e  au th o rs, it is however, no t w idely applicable. For th is reason, 

four a lternative , m ore widely used and , therefore, m ore read ily  available, estim ation  m ethods 

are  described in th is  ch ap te r and  used la te r in th e  thesis; th ey  are the  nonparam etric  m ethods 

of Geweke and  P o rte r-H u d ak  (1983) and  R obinson (1994), and  the  param etric  m ethods of 

Sowell (1992) and  B eran  (1995). Each m ethod  is briefly described below.

Geweke and Porter-Hudak (1983)

T h e  concept of fractional in teg ra tion  has been previously  in troduced  in th is chap ter. O ne of 

th e  m ost com m only used frequency dom ain estim ato rs  of d, th e  order of fractional in tegra

tion , is th e  m ethod  of Gew'eke and  P o rte r-H u d ak  (1983). C onsider th e  long m em ory m odel 

proposed  by G ranger and  Joyeux (1980) and  H osking (1981). T his m odel is of th e  form

(1 -  l Y X t  = eu  (4.79)

w here d  E  (—0.5, 0.5) and  £t  is serially m icorre lated . N ote th a t  th is m odel is s ta tio n a ry  and 

long memory, since d  lies betw een —0.5 and  0.5. Such a m odel was in itially  considered as 

som e tim e series ap p eared  to  have unbounded  sp ec tra l densities a t th e  frequency A =  0. T he 

sjjec tra l density  of Xt ,  given Ecjuation (4.79), can  be  defined as’̂'"’

/(A ; f  |1 -  exp^" f  ̂  sin-  ̂ f  • (4.80)2n J ' ' ' \ 2 tt J  { \ 2

Geweke and  P orte r-H u d ak  referred to  th is  as a  sim ple in teg ra ted  process. T h is is generalised 

to  becom e a general in teg ra ted  series,

{ l - L f X t  = ut,  (4.81)

w here iit is a s ta tio n a ry  linear process, w ith  a sp ec tra l density  function /u(A ), if th e  spec tra l 

density  is of th e  form  /(A ;rf)/„ (A ), w here /u(A ) is a  positive continuous fim ction bounded  

above and away from  zero on th e  in terval [—vr, T h e  concern is now to estim ate  d  for

th e  general in teg ra ted  series. T he sp ec tra l density  function  of X t  is

/ ( A ) =  { 4 s in ^ (A )} -" /« (A ). (4.82)

T aking  n a tu ra l logarithm s gives

In { /(A )} =  - f n n |4 s i n - ^  + \ n { f u { X ) } .  (4.83)

'̂ '’The conventional spectral density notation is used here. The spectral density of the time series Xt  is 
/(A ) =  Hx(s) exp( — i \ s ) ,  where Rj: is the autocovariance function of Xt-

'^®Geweite and Porter-Hudak (199.3), p, 222.
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In a sample of size T, the harm onic ordinates are given by = 27rj/7r, where j  =
0, . . .  , T  — 1, and the periodograni of these ordinates is /(A j,t’). In evaluating Equa
tion (4.83) a t it can be shown th a t

In {/(A j-r)} =  { |4 s in ^  ^ ^  { /(A~ r ) } '

Ignoring the term  In { /u(Aj ,t )} i which becomes negligible where the harm onic frequencies 
are close to  zero, Equation (4.84) can be rew ritten as

Yt = a t -  dXt  + et, (4.85)

where Yt = hi {/(Aj,T)}, o« =  ^iie mean of £i, where St = In | ^j |  and

Xt  = In |4 s in ^  analogy to  a simple linear regression is obvious. Estim ating d
is equivalent to estim ating the coefficient of the explanatory variable. Geweke and Porter- 
Hudak show that for d < 0, the estim ator is consistent and the conventional interpretation of 
the standard  error of the coefficient is aj^propriate asymptotically.'^^ They provide empirical 
evidence th a t this result remains true  for d > 0.

Recall that for the test procedure above, d G [—!).5, 0.5]. W hat about the case where 
d  >  0.5? By differencing a fractionally integrated series by integer values, the original series 
c:an be transform ed suitably. Since in m any applications d % 1, it is usual to operate the GP!I 
procedure on the first difference of a series, although appropriate differencing in the sj)irit of 
the Pantu la (1989) principle may indicate the required order of differencing.

R ob in son  (1994)

Robinson (1994) considered the 'discretely averaged periodogram, where the averaging is 
done over a neighbourhood of the origin which slowly degenerates to zero as sample size T  
increases’. B y  m anipulating averaged periodograms, an estim ate of the param eter H  =  
d + ^.  the param eter of interest here, can be obtained. It is shown that this estim ate is 
consistent for the nonparam etric fimction L{X),  and also gives a consistent estim ate of G.  
where L{X) = GM{X) ,  G >  0, A/(A) is a known function and G is unknown. L{X)  is a slowly 
varying function at infinity, a positive m easurable function, satisfying

'} ^ 1  as A —> c», for all t > 0. 
L(A)

(4.86)

The average periodogram vmder consideration here is

f A

where

F { X ) =  [  f {O)d0,  (4.87)
Jo

f { X ) r ^ L { \ ) X ^ - ‘̂^ as A - » 0 + .  (4.88)
A

^^Geweke and Porter-H udak (1983), p225. 
'^^Robinson (1994), p. 516.
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Various estim ates of F { \ )  exist, including

r\  

lo

w here

F ( A ) =  f \ { 6 )  
Jo

(19 0 <  A <  7T, (4.89)

w

I {X)  =  \ w { X ) \ \

T
(A) =  (2 7 rr)“ ^/^ {xt  -  /i) exj) i t \

t = l

and
[TA/27r]

F  =  2 ^ / r  Y .  /(A  
j= i

j j '

(4.90)

(4.91)

(4.92)

w here [rA/27r] denotes th e  integer p a r t and  Xj =  2TTjjT,  and

/(A) = H A ) | ^
V

;(A) =  ( 2 7 r T ) - i / ^ ^ x t exp i t\

(4.93)

(4.94)
t = i

In th e  m odel

/(A) = a
1 — exp i \ 1 - 2 H  |6(exp''^)|

|a(exp'-^)| 2 ’ — TT <  A <  7T, (4.95)

a sem iiia ram etric  estim ate  of H  would be useful, as it would allow for th e  estim ation  of 

th is frac tional A e?IMA, or A r f i m a , model. Geweke and  P o rte r-H u d ak  (1983) proposed a 

closed form  sen iiparam etric  es tim ate  of H ,  which assum ed the  function  L { \ )  was constan t. 

R obinson pre.sents a new sen iiparam etric  es tim ato r of H ,  which u nder certa in  conditions, is 

consisten t. It can  be shown th a t for any q >  0,

2 ( 1 - / / ) ; M V ^  _  2 ( 1 - / / )

F(A) ~  ^ L ( l/A )   ̂

as A 0 + . A n estim ate  of d  can be derived, therefore, from

(4.96)

log
H j n q  =  1 -

F (g A „)/F (A „ ,J

2 log q
(4.97)

w here F (A ,„) is a special case of th e  general class of w eighted periodogram  sp ec tru m  esti

mates.'^^ R obinson s lu w s th a t under ce rta in  conditions

T h e j)roof of th is  resu lt requires no knowledge of th e  functional form  of L(A).

(4.98)

^Robinson (1994), p. 518.
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W hereas the  G ph estim ator required d G [—0.5, 0.5], here d is constrained to be d G 

[—1.5, 0.5]. Tlie same approach is taken, however, to ensure the series under investigation 
fits this constraint.

Exact Meiximum Likelihood

Sowell (1992) derived an unconditional exact likelihood function for a stationary, fractionally 
integrated and normally distributed tim e series, and provides recursive procedures to  estim ate 
th a t function.

To understand the procedure, consider the stationary, fractionally integrated and normally 
d istribu ted  tim e series given by

(4.99)

where $ (L ) and 0 (L) are lag polynomials, and assume, amongst other things, th a t d < ^. 
The autocovariance fimction, required for evaluation of the likelihood function, can be written
clS ^

7 (.s) =  EztZt -s  = ^  [  f z  (A) e'^^dX. (4.100)

The spectral density of Zt,

/ , ( A)  =  ( l - c u ) - " ( l - u ; - ‘) " ' / u ( A ) (4.101)

where uj = exp*"', can be calculated by first calculating the spectral density of ut =  (1 — L)'^ Zi, 
fu  (A). Substitu tion of fu (A) into f z  (A) gives

f z W  =
l = - q j = l

■?P 1

(4.102)

The autocovariance function, 7 (s), can now be calculated by substitu ting  in the function for 
f z  (A), to  give

C  {d, h, p) =  

1 .
27t J o

(4.103)
,;2p

{ l — pe  {I — p  ̂e uj)
X ( 1̂ -  (1 - dX.

Using this ecjuation, anil several others derived from it, the term s of C  (ci, h, p) can be recur
sively estim ated. M irroring issues raised in C hap ter 2, appropriate s ta rt values are required 
for this procedure, as it depends on a numerical optim isation algorithm. Pre-estim ation of d 
with the m ethod of Geweke and Porter-H udak (1983) or a grid search m ethod are suggested 
in this case.

N onlinear Least Squares

Unlike the estim ators of the fractional param eter discussed thus far, Beran (1995) proposed 
an estim ator th a t is not restricted to the sta tionary  range, i.e., —^ < d <  | ,  but rather to
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any real ci >  — A simple algorithm  to estim ate d was suggested.

Beran (1995) generalised the definition of fractional integration used here thus far, to 
include param eters for fractional stationarity  and nonstationarity. To illustrate, consider the 
Gaussian tim e series X t  for which

0(L)(1 -  L)^ {(1 -  i r x t  -  //} =  ^P{L)et, (4.104)

where L  is the lag operator, /.i is the expected value of Xt ,  et ~  i.i.d.(0, a^), and (p{x) =
are polynomials with unit roots outside the unit circle.

Also, m  > 0 is an integer and 6 6 5 )- The difference of X t  is a stationary  fractional
autoregressive integrated moving average, or A rim a(p , 5, g). The differencing param eter, 
d =  rn + 6, is the difference required to render X t  a stationary  A rm a(p , g).

W here fi is unknown, the difference of Xt  is sta tionary  with expected value /,t and 
therefore

Utirn) = {1 -  Xt ,  (4.105)

where Ut is a sta tionary  fractional A rim a(/;, <5, r/) with mean /t. Let

=  (cr'^rf,(^i....,cf)p,7/^l,...,V ’g) =  {cTc,v) , (4.106)

the unknown param eter vector. Since Ut is ergodic, the sample mean is

1 ^
U = - ------  ^  Ut, (4.107)

I  — rn
t = m -\-1

and adjustetl residuals can l>e definefl by

t - i

e t i v )  = Y . ^ ' ' j ( ^ * H U t - j - U ) ,  (4.108)
j = 0

where rj* =  {d — rn, (pi , . . .  ,(f)p,ipi.. . . ,  =  {6,4>i,. . . ,  (f)p, ipi , . . .  ,ipq), which for the popula
tion can be w ritten a.s

0 0

(t iv) = ^ ( i j  iv*) [Ut-j -  n ) . (4.109)
j = Q

can be estim ated by maximum likelihood, using the minimised sum of squared residuals

T

S { v )  = ^ e ^ t i v ) , (4 .110)
t=2

with respect to r/, giving

( ^ ) , (4.111)

where et (rj) is defined as the adjusted residual above. It can Ije shown th a t '& converges to 
the true  value of

Practically, Beran (1995) suggested an api)roach to  estim ating d. For p = q = 0, evaluat
ing S{d) = '^e 't  estim ates =  d, for a fine grid of d-values. In cases where niiii {p, q) ^  0, d
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can be estim ated by evaluating St =  ^jZ.Qhj  ((5) {Ut~j ~  U),  again for a sufficiently fine grid 
of d = m  + (5. The A rm a  param eters a'^, (j)\, . . . ,  cpp, ip], . . . ,  ipq can be estim ated for the series 
6 i , . . . ,  e„, and d is the vahie of d which minimises a'j. Doornik and Oonis (1999) implemented 
this approach, which they call nonlinear least squares in their Ox package A r f i m a .  In fact, 
all four of the m ethods outlined above are available in the O x A r f i m a  packcxge.

4.4 .5  Im plem enting th e  fractional D ickey-Fuller test

Thus far, the theoretical underpinnings and properties of the F df and Fa df  tests have 
been reviewed. This section very briefly summ arises the steps necessary to actually test for 
fractional integration using this m ethod.

1. An estim ate must be made of the order of fractional integration, di, of the series of 
interest. St^veral m ethods are available for estim ating the param eter di.  Dolado, et al.
(2002) advocated a generalised mininmm distance estim ator a ttribu tab le  to Mayoral
(2003). Since no general estim ator is available here, alternatives are used, as outlined 
above.

2. Having estim ated d\,  a regression of the forni"̂ *’

p
^ y t  =  /< +  (4.112)

1

where A^‘ can l>e expanded as

= yt -  d \  y t - i  + ^ (h{(h  -  i ) y t - 2  -  ̂ ''1(^/1 -  1)(<'̂  -  ‘̂ )y t- : i + ■ • •

+  <h (d[ — I ) . . .  {di — j  + l ) y t - j  + • ■ ■ (4.113)

is estim ated to obtain d).

3. The F.\DF test is carried out by examining the f-ratio of for d\,  which is the test
sta tistic  of interest, testing the hypothesis H{)\ FI[do  =  1) against H[)\ FI {di )  where
0 < rTi < 1.

Recall th a t when a pre-estim ated value of d\ is u.sed to implement the F d f  or F a d f  test, the 
associated critical values are those from a A"((), 1) distribution. If, however, the value of di 
is assumed known, a priori, and d\  € [0,0.5), the test then has a nonstandard  distribution 
under the luill. Critical values are available from Dolado, et al. (2002), Appendix B, Tables 
X, XI, XIII, p. 2003-2004.

4.5 Johansen’s Sm all Sam ple C orrection

As outlined previously in this chapter, Johansen’s (1988, 1991) Trace test is commonly used 
in exploring cointegrating relationships in economic data. It has come to  be a standard

■*”The inclusion of an intercept and trend term, as in the standard Dickey-Fuller procedure, depends on the 
data.
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method of analysis, with many econometric software packages including standard routines 
for carrying out this procedure. In his more recent paper, however, Johansen (2002) high
lighted the potentially poor small-sample properties of this method. This confirms several 
earlier studies, as outlined by Kennedy (2003), which highlight the potential small-sample 
deficiencies of Johansen’s test for cointegration. Cheung and Lai (1993a) pointed to several 
finite-sample shortcomings. A large sample size, in the order of 100 observations, is needed 
for reliable inference. Even then the procedure produces outliers, particularly when the er
rors are not distributed independently normal, and so rejects the null of no cointegration too 
often. Hansen, Kim, and M ittnik (1998) found that the statistics for testing cointegrating 
relationships have fat tails and suggested a correction to the critical values. Zhou (2000) sug
gested a Ijootstrapping alternative which solves the problem. Johansen (2002) recommended 
a correction to the asymptotic critical values, which may greatly improve the accuracy of 
inferences made when using the technique. In the following sections, notation closely follows 
tha t of the original paper and that introduced in Subsection 4.3.2.

4 .5 .1  T he correction  factor

Consider the vector autoregressive model

f c - l

AXf =  n x ,._ i  +  r,AXi_i +  ^  +  eu (4.114)
i= l  !=0

where t = I, . . .  ,T ,  X( is an n-dimensional process, II  and F are matrices of coefficients, 
n  =  IIj — I. F; =  — I l j ,  is a trend term, is a deterministic term, and
St has the usual properties. This model is frequently employed in the analysis of economic 
data. It can be shown that if X« is a uonstationary process, and that if II  =  a/9 ', where a  
and (3 are n x r, then /3'X( — E[/3'X.t] is stationary. If this is in fact the case, X;, is said to 
cointegrate, with cointegrating vector /3.

To implement Johansen’s (1988, 1991) Trace test, consider the null hypotheses I I  =  a/3' 
and T  =  a p ' .  where, as above, a  and /3 are nx;-, and p is 1 x r .  Anderson’s (1951) technique 
of reduced rank regression is employed to derive the likelihood ratio test, and to estimate the 
parameters, assmning Gaussian errors. Johansen (1988, 1996) and Ahu and Reinsel (1990) 
derived the a.symptotic distribution of the hkelihood ratio, —21ogLR. It is foimd to be a 
nonstandard distribution, which can be expressed as a Brownian motion. It can be tabulated 
by simulation, as a function of n — r and n^. For further details, see Subsection 4.3.2

It is widely known that the small sample properties of the Trace test are different from 
its asymptotic properties. This has been confirmed by s i m u l a t i o n . A i m  and Reinsel (1990) 
and Reiniers (1992) corrected for such small samples using a method based on degrees of 
freedom. However, the distribution in question, that of the likelihood ratio test statistic, 
depends on T  and 9, where 0 is a function of the parameters under the null hypotheses. As 
T  —> DO the dependence on 9 disappears, but not uniformly. So, if 9 is close to a bomidary of 
cointegrating projjerties, any approximation may be {)oor. As the Trace test is so widely used 
in inferring cointegrating rank, where cointegrating rank, /y(Il), may be defined as the number

''^See Cheung and Lai (1993a), Toda (1995), Haug (1996) and Gonzalo and Pitarakis (1999).
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of linearly independent cointegrating relations, improving the asymptotic approximation is 
im portant. One potential, but unattractive solution, is to simulate the exact distribution 
each time, using the estimated parameter values and generating identically and independently 
distributed Gaussian errors. Althoiigh this will give the same limiting distribution, it may 
not improve approximation due to its nommiform convergence.

Johansen (2002) suggested a correction factor which will improve the finite sample prop
erties of the likelihood ratio test. Using a Bartlett (1937) c o r r e c t io n ,th e  expectation of 
the L r  test statistic is found, and then corrected to have the same mean as the limiting 
distribution. Given II = a/3' and T =  exp', let 9 denote the parameters of Equation (4.114). 
The B artlett correction can be implemented by approximating

Ee [-21ogLR (n = a/3',T = ap'|AX()] , (4.115)

a function of 9 and T.  This result is expressed in terms of the L r test of II* =  0, Y* =  0 in 
the model for

AX* =  n*X^_i + T*r<^ +  + e l  (4.116)
i=0

Note tha t when II* = 0, then Fj =  0 since Fj =  — 11 .̂ If II* =  0, T* =  0, then

/ (r ,  Uh, «rf) = E [ - 2 iogLR(n* = 0 ,T* = 0 I  x;)],  (4.117)

where the function /(•) is an approximation of Efjuation (4.115) when II* =  0, T* =  0 and 
rih =  n — r. This function can be tabulated by simulation, as it depends only on T, rih and 
rid- An approximation of Equation (4.115) can be found, and takes the form

f { T ,  rib n,y) (l + r - '5 ( 0 ) ) ,  (4.118)

where h{0) is to be defined [see Equation (4.124)]. Given this, the correction factor can be 
shown to be

f{rib , r?,rf) 1
f ( T ,  rih, n,i) ^  T-^b { d y ^ '

where

(4.119)

Definin

f{nb, rid) =  lim f { T,  rib, rid)- (4.120)
T  ̂ o c

/ ' r ’ \  ribj r i d )  / 4 I Q - I X
a [ I , rib, rid) = ----------r " ’ (4.121)f[nb, rid)

the c:orrection factor becomes

a{T,  rib, rid) ( l  +  ( s  )  )  '
(4.122)

^^Bartlett corrections are scalar transformations of the likelihood ratio statistic. They improve the L r 
statistic by transforming its distribution under the null hypothesis from a of order 0(1) to a of order 
0(l/T).  F'or a useful review, see Cribari-Neto and Cordeiro (1996).
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The Bartlett correction, where observations are identically and independently distributed, 
often offers an excellent improvement of fit.^^ This may not hold true in the presence of unit 
roots. According to Jensen and Wood (1997), the Dickey-Fuller test, in a univariate situa

tion, cannot be corrected by B arlett’s m ethod. At this point, it is important to point out 
that the correction factor suggested above is based upon the model in Equation (4.114) and 

makes the idealised assum ptions that the errors are identically and independently distrib

uted and Gaussian, and that the lag length and cointegrating rank are correctly specified. 
W hen applying this correction, it is important that these assumptions are carefully met. In 

Johansen’s own words, ‘the calculation is useful as a complement to the asym ptotic analysis 

since it . . .  dem onstrates that an uncritical use of asym ptotic tables can be m isleading’.'̂ '̂  

Under the null hypothesis that II =  a/3' and T  =  a p ', the model in Ecjuation (4.114) 

becomes
f c - l  n j - l

A X t =  a (/3 'X j_ i +  p'e<‘ ) +  ^  ^  +  -t, (4.123)
i=l 1=0

recalling that a  and j3 are n x r  and p is 1 x r. The expansion of the expectation of the 

likelihood ratio test of II =  a(3' and T  =  exp' in Ecfiiation (4.114) is derived, under the 

assumi)tion that X t is an / ( I )  process, with cointegrating rank r, given by Equation (4.123). 
A corollary of this gives the correction factor for the likelihood ratio test. Assum ing that Xj 

is an / ( I )  process with cointegrating rank r given by Ecjuation (4.123), the correction factor 

for the test of Ecjuation (4.123) in Equation (4.114), i.e., the test for cointegrating rank r in 

the vector autoregressive model Equation (4.114), is given by Equation (4.122) where

h{B) =  Cl (1 -h h{rih, n,i)) -|- (nbC2 +  2 (c,3 -t- n,/C|)) '1 ̂

-  2tr
j=o

OC

Note that S ,  ip and -ij)j are variance and long-run coefficient parameters, where

c \  =

C2 = t r { i n y - y e - y ^^ } ,
C3 =  t r { \ } ,  (4.125)

and

V0 =  d e ' ' E - \  (4.126)

00

V = + 1)} + V  7(m + 1 ) '^ - Vm-
rn= i)

Note that is the variance of y t ,  which is a function of X (, and that 96'  and are

'’^See, for exam ple, Bartlett (1937) and Lawley (1956). 
"'^.lohan.sen (2002), p. 1931.
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the long-run variances of yet and where yt  =  yet +  y,/,t. Fuller details can be found in 
Johansen.'*®

To implem ent the correction, /{rih, rid): o(^6i nd), (j{nb, nd)  ̂ h'{nb, rid) k{ni,, rid, j )  
m ust be calculated. As these are complicated functions, Johansen (2002) tabu lated  them  by 
sim ulation, for values of rid =  0) Ij 2. These estim ates may be found in Tables I and li.'**' 
Given these tabulated  sim ulation values, the proposed correction factor becomes

4.5 .2  Im p lem en tin g  th e  sm all sam ple correction

T he previous section details the theory behind the small sample correction. As stated , to 

implement the correction, / ( n t ,  rid), d̂)  ̂ !j{f>b, f>d), f>{'i-b) '><l) k{rn„ rid, j )  nuist be
calculated. This would certainly appear to involve considerable effort and is not straightfor
ward. Johansen, Hansen, and Fachin (2002), in an unpublished jjaper w ritten to accompany 
Johansen (2002), outlined the calculations required to estim ate the correction factor. Source 
code for the econometric software R a t s  is inchided."^^ recjuiring the user to supply ju st the 
following: the num ber of observations, T, n and r, the dimensions of a  and /3, values for the 
m atrices a ,  /3, f t  and Fj, where i =  1, 2, . . . ,  k — I, the num ber of m atrices included in 
to ta l and the type of model to be estimated."*^ The R a t s  code protluces an estim ate of the 
small sample correction given this information, which can then be applied to the Trace test 
statistic  in (juestion.

^®.Johansen (2002), p. 1933-1938.
.Johansen (2002), p. 1939.

"*^This code is available from h ttp ://w w w .m a th .k u .d k /~ s jo /.
"**Like any new procedure, irnpleinenting the correction may l>e less than .straightforward. Although the 

R a t s  code supplied by Johansen, et al. (2002) greatly simplifies the procedure, som e issues remain. I’he 
small sam ple correction requires several inputs. These are the matrices a .  f3. F i, i =  1, . . . ,  k — I and fl. 
These estim ates are obtained after the appropriate number of cointegration vectors have been selected in the 
usual manner. To obtain the correction factor, the vectors a  and /3 must have the same dim ensions. While 
this may not appear to be problematical in many cases, the situation where a restricted constant or trend is 
included in the cointegrating V a r  is noteworthy. In such circum stances, an a  vector of dim ension n x r  will 
be accompanied by a /9* vector of dimension (n -I- 1) x  r. Evaluating the correction factor in this case requires 
the upper n x r  elem ents o f (3* to be taken. This n x r  upper, /3, is used in calculating the correction factor.

(4.127)

where
b{6) =  c i( l  -h h{nb, rid)) +  {ubCa +  2{cs -|- nrfCi))^^-- - ^ —

nfb
(4.128)
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Chapter 5

The Demand for Money

Research carried out in the course of writing this chapter appear as ‘Demand for Money: A Study in Testing 
Time Series for Long Memory and N onlinearity’ by Bond, D., M..I, Harrison, and E..J. O 'Brien, in The Eco
nomic and Social Review, 38, 2007. Also published as ‘Testing for Long Memory and Nonlinear Tim e Series: 
A Demand for Money S tudy ’ in Trinity Economic Papers, No. 21 (2005). It was presented at the 20*̂ ‘ Irish 
Economic Association Animal Conference, Bunclody, Co. Wexford, 28*^-30*^ April 2006.
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5.1 Introduction

The im portance of the concepts of sta tionarity  and regime stability in economic and financial 
time-series modelling is well established. However, recent concerns about the interrelationship 
between these two concepts, and the associated problems for applied work, have ensured that 
they rem ain a significant focus for research. Early studies, such as those by Bhattacharya, 
G upta, and W^ymire (1983) and Perron (1989), highlighted the difficulty of distinguishing 
between tim e series generated by difference stationary  processes and those generated by 
nonlinear bu t sta tionary  processes. Since then, an increasing research emphasis has been on 
the problem of distinguishing between long memory and nonlinearity. The developing interest 
in long memory models has been stinm lated, in particular, by a growing awareness of the 
lim itations of the simple / ( l ) / / ( 0 )  framework. For example, Baillie and Bollerslev (2000) and 
M aynard and Phillips (2001) showed how the low power of familiar unit root tests, such as 
those introduced by Dickey and Fuller (1981), could lead to incorrect inference in the Fama 
(1984) regression model of the relationship between future spot and forward exchange rates, 
and how the empirical work could be set in a framework of fractional integration using a 
long memory model. Long memory models and fractional (co)integration are now popular in 
several other areas of the applied literature; see, for example, Gil-Alana (2003), Liu and Chou 
(2003), D ittm anu (2004) and Masih and Masih (2004). A m ajor problem with such models 
is tha t it is not easy to distinguish them  empirically from models with regime switching or 
more general nonlinearities; see, for example, Diebold and Inoue (2001).

In the theoretic:al literature, two main strands of discussion have developed. The first is 
th a t of testing for difference sta tionarity  when the processes are in fact nonstationary; see 
Perron and Qu (2004) for references. The second concerns testing for struc tu ra l breaks when 
long memory is a possibility; see Nunes, Kuan, and Newbold (1995), K rannaer and Sibbertsen 
(2002) and Hsu (2001). Recent work by Mayoral (2005) and Dolado, Gonzalo, and Mayoral 
(2005b) has developed specific tests for difference stationarity  against the alternative of sta
tionarity  w'ith a struc tu ra l break. All of these studies use conventional param etric techniciues 
for either modelling or testing for nonlinearities. The recent development of random  field re
gression has also {)rovided a suite of tests for structural breaks, nonlinearity and time-varying 
param eters; for example, chapters 2 and 3 discuss tests suggested by Ham ilton (2001) and 
Dahl and Gonzalez-Rivera (2003). The strength  of this alternative approach is th a t it does 
not rely on any functional form being specified prior to estimation.

The purpose of this chapter is to compare the performance of traditional integration 
analysis, the fractional integration approach and random  field regression-based inference, 
all introduced in previous chapters of this thesis, using a standard  economic model and a 
well-known time-series dataset. The discussion is structured as follows. In Section 5.2, the 
theoretical background to money dem and is briefly explained. The d a ta  used in this study  is 
described and the standard  7 ( l) / / ( 0 )  analysis is then conducted in sections 5.3 and 5.4. The 
imivariate analysis of the series, using the augmented Dickey-Fuller (A d f ) testing strategy 
proposed by Dolado, Jenkinson, and Sosvilla-Rivero (1990) is implemented to  determ ine 
whether the individual series are trend stationary  or difference stationary. The Engle-Granger 
(1987) error-correction (E c m ), the Johansen (1988, 1991) vector autoregression (Va h ) and
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the common factor approaches are used to investigate the possibihty of cointegration, with the 
augm ented Engle-Granger (AEG)  test, the cointegrating regression Durbin-W atson ( C r d w ) 

test of Sargan and Bhargava (1983) and the EcM test (hie to Banerjee, Hendry, and Sm ith 
(1986) being used in the former case. The p-values from M acKinnon (1996), M acKinnon, 
Haug, and Michehs (1999), Ericsson and M acKinnon (2002) and standard  normal tables are 
used, as appropriate. The effect of applying Johansen’s (2002) small sample correction is also 
examined. This correction is based on the B artle tt (1937) correction and assumes th a t the 
errors are normal, independent and identically distributed, as described in Section 4.5 of the 
previous chapter.

Having conducted the standard  cointegration analysis, the long memory and fractional 
integration analysis is undertaken in Section 5.5. Inference is problem atical here, as none 
of the usual procedures are appropriate. The classical asym ptotics of the /(O) case do not 
apply when tim e series are fractionally integrated and neither does the standard  cointegration 
approach. In the 7(1) case, conventional tests depend on the statistics converging to known 
functionals of Brownian motion. W hen d ^  I, however, these are replaced by functionals 
of fractional Brownian motion. Taking the approach of testing for 7(1) against I{d)  is also 
problem atical, since tests such as the A d f  test of Dickey and Fuller (1981), while consistent, 
have very low power; see Diebold and Rudebusch (1991) and Hassler and VVolters (1994). 
Furtherm ore, the precision with which the param eters are estim ated hinges on the correct 
specification of the model; see Hauser, Potscher, and Reschenhofer (1999). The situation 
becomes even more comjjlex w'hen the concej)t of fractional cointegration is entertained. A s  

Phillips (2003, p. c30) pointed out. ‘The proVjlems presented by these models of fractional 
cointegration seem considerably more complex than the 7 (l)/7 (0 ) . . .  case th a t is now conunon 
in applications’. Only m iivariate analysis is a ttem pted , therefore. In particular, it seems 
unlikely tha t the series in either of the two ctises considere'd all have the same level of fractional 
integration. The ‘over differenced’ APiFlMA model, using Ayt  ra ther than  yt, is estim ated, 
as recommended by Sm ith. Sowell, and Zin (1997), to avoid the problems associated with 
drift. Four estim ates off/ are calculated using the Doornik and Ooms (1999) A r f i m a  package, 
namely, Sowell’s (1992) exact maximiun likelihood ( E m l ) estim ator, B eran’s (1995) nonlinear 
least squares ( N l s ) estim ator, the m ethod of Geweke and Porter-H udak (1983) (G ph) and 
Robinson’s (1994) Gaussian seniiparanietric (GSF^) estim ator, all previously introduced in 
C hapter 4. The fact th a t the first of these requires d < 0.5 is another reason for using the 
‘over-differenced’ model. The estim ates of d are then used in the fractional Dickey-Fuller 
( F d f ) and frac:tional augm ented Dickey-Fuller (F a d f ) tests, w ith the Sclwarz (Bayesian) 
information criterion (S ic) being used as the basis for the choice of the lag length for the 
test. In Section 5.6, the random  field regression approach is applied to the two cases, using 
the G a u s s  code provided by Hamilton (2001). Finally, in Section 5.7, the results of the 
analysis are discussed and some practical conclusions drawn.

5.2 T he D em and for M oney

To investigate the aj)plication of bo th  the new long memory tests and the random  field 
approach, a standard  applied economics problem, namely, the estim ation of a dem and for
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money function, is considered in this section. Tlie well-known datasets for Denm ark and 
Finland, provided by Johansen and Juselius (1990), are used. The well docum ented instability 
of the dem and for money function in many countries has led to several studies th a t place the 
analysis of money dem and in the / ( l ) / / ( 0 )  framework; see, for example, Astley and Haldane 
(1997), Fiess and M cDonald (2001), M ark and Sul (2003) and Choi and Saikkonen (2004).

Following Johansen and Jusehus (1990), a simple demand for money function can be 
specified for Denm ark and Finland as

m t  =  a  +  (3iyt +  h P t  +  P i k  +  +  £t, (5.1)

where rrit is the logarithm  of some m easure of money demand, y t  is the logarithm  of real 
income, p t  is the logarithm  of the inflation rate, i t  is the deposit interest ra te  and bf is the 
bond rate  at tim e t .  For Finland, 3^ is assumed to be zero as no da ta  are available. There 
is a wealtli of empirical evidence to support this framework. Regardless of the m easure of 
money suj>ply used, the negative effect of interest rates has been widely confirmed, as has the 
positive effect of real spending and the positive effect of the real cost of transactions; see, for 
example, Gokifeld (1973, 1976), Goldfeld and Sichel (1990), Fair (1987) and M ulligan and 
Sala-i-M artin (1996).

5.3 D ata and Prelim inary A nalysis

The component factors of money dem and have long been known to exhibit nonstationary  
behaviour, and hence modelling the dem and for money has commonly been placed in the 
/ ( I )//(()) franiew'ork. Two datasets, provided by Johansen and Juselius (1990) are used. 
The first, for Denm ark, samples the period 1974 to 1987, a total of 55 quarterly  observations. 
The variables include a m easure of money dem and, proxied by M 2 ,  in logarithm ic form, 
m D e n . i  income, as the logarithm  of gross domestic product, and the inflation
rate, again in logarithm ic form, pP®". The costs of holding real money balances is proxied 
by the bond rate, 5^^", and the deposit rate,

The Finnish d a ta  samples the period 1958 to 1984, a total of 106 quarterly  observations. 
It consists of four variables. The dem and for money is proxied by the logarithm  of A/1, 
m p n  .i 'pjjg logarithm  of real income is included as y f ' ’". To proxy the cost of holding 

money l^alances, both the inflation rate, p f ”', and the marginal rate of interest of the Bank 
of Finland, are used. The d a ta  can be found in Appendix C .l; Table C .l contains the 
d a ta  for Denmark, while the d a ta  for Finland can be found in Table C.2.^

To begin, each of the d a ta  series were plotted. These plots can be found in A ppendix 
C.2: figures C .l to  C.4 for Denm ark and figures C.5 to C.7 for Finland. Table C.3 gives 
the results of the Dolado, et al. (1990) unit root testing strategy for the Danish and Finnish 
variables, respectively.^ For Denm ark, all of the d a ta  series appear to be / ( I ) .  In all bu t

’A/2 is defined as the sum of ctirrency in circulation and In cheque accounts, itself a  definition of A/1, plus 
consumer tim e deposits, m oney-m arket deposits and some other items.

■^The bank deposit rate for interest bearing deposits, which are in fact, a  large part of A/2.
^See previous definition of A/2.
^These d a ta  can also be downloaded from S0ren .Johansen’s website at h ttp ://w w w .m a th .k u .d k /~ s jo /.
^See Chapter 4 for an introduction to the m ethod of Dolado, et al. (1990).
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one case, the constant and trend terms are fonnd to be insignificant; in the remaining case, 
the standard normal probabiHties are nsed. For the Finnish data, however, only the m f 
and variables seem to be / ( I ) ,  thongh the inference is marginal for In the case of
Finland’s mf*” variable, the constant in the A d f  test is only marginally insignificant, but 
if it is treated as significant, the A d f  test still supports the null of a luiit root, with a test 
statistic of -0.760 and an associated p-value of 0.826. By contrast, the unit root null is rejected 
decisively for Finland’s and if'"  series. It is notew'orthy, though, that if, for these last 
two variables, the Akaike information criterion ( A l c )  is used instead of the SiC, the choice of 
lag lengths for the A d f  tests, and the test results, are different: the suggestion then is that, 
like and the Finnish price and interest rate variables are also / (I) .  To ensure that 
those series found to be / ( I )  were in fact integrated to order one, the first differences of those 
series were tested for nonstationarity. Each series was fomid to be stationary after differencing 
once, indicating that each of those series were indeed / (I ) .  These results generally confirm 
the earlier findings of Johansen and Juselius (1990) and Johansen (1996).®

Although the data are cfuarterly, the issue of possible seasonal integration has been ig
nored up to this point. A  more detailed examination of the issue of seasonal unit roots was 
undertaken, using the procedures of Hylleberg, Engle, Granger, Yoo (1990), following the 
procedures outlined in Ghysels and Osborn (2001).^ Table C.4 contains the results for Den
mark. These results generally confirm the findings of the A d f  tests discussed previously and 
there is little evidence of seasonal integration. For rri t ,  with and without an intercept and 
a time trend, there is some evidence that 7T2  ^  0, suggesting a seasonal unit root, at the 5 
per cent significance level. But at the 10 per cent level, where the critical value is —1.59, the 
null of no seasonal unit root can not be rejected. In cases where seasonal dummies have been 
included in the test specification, the evidence suggests that only nonseasonal unit roots are 
present in n i t -  For the remaining variables, the H e g y  tests finds no seasonal integration; the 
results of the standard A d f  tests are confirmed, with all series being found to be / ( I ) .

The results for Finland can be found in Table 0 .5 . There is some evidence here of seasonal 
integration in n i t  aiid y t ,  regardless of whether seasonal dunmiy variables are included in the 
test specification or not. For both of these variables, the null of tt ^  0 is rejected, and 
with intercept and trend, F 2 3 4  is only marginally significant in both cases. The remaining 
hypotheses can not be rejected, suggesting therefore, that if there is seasonal integration in 
these variables, it is semi-annual in nature. While it appears that p t  and i t  are not seasonally 
integrated, there is mixed evidence as to whether they are even I  ( I ) .  This very much confirms 
the previous findings of the A d f  tests.

To investigate fm'ther, the K l ’SS, E rs  and N p  alternative miit root tests were conducted.^ 
While the latter two tests have as their null hypothesis that the series has a unit root, the 
first has the null that the series is stationary and the alternative hypothesis that it has a unit 
root. For the Danish data, the additional tests broadly confirm the previous findings. In only 
a few cases does the K p s s  test fail to reject the null hypothesis of stationarity. One case is

®The D an ish  data-set introduced by Johansen and Jusehus (1990) was su bseq uently  used by .Johan.sen 
(1996).

'T h e  so-called  H e g y  te st  o f H ylleberg, et al. (1990) was d iscussed  in C hapter 4. O ther te s ts  are availab le  
to  test for seasonal in tegration , including O sborn, Chui, S m ith . B irchenhall (1988).

'^These te s ts  were briefly introduced in C hapter 4.
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th a t of the money dem and variable, rr it, when Parzen kernel estim ation is used and no trend 
is specified. The other is th a t of the income variable, i jt , when a trend is allowed for in the 
specification. In this la tte r case, the result holds for any of the spectral estim ation m ethods, 
bu t not for the moment estim ators. For the Finnish data, the results are less clear. For all 
variables, the Np test, which it has been argued has better power than  standard  7 ( l) / / ( 0 )  
tests, tends to reject the rmll hypothesis of a unit root. This is often supported by the Kf^ss 
and E r s  tests. Details of the  results have been om itted for compactness.

5.4 Testing for C ointegration

5.4.1 The Engle-Granger 2-Step m ethod

On the assum ption th a t the variables are / ( I ) ,  which seems to be a far safer assum ption to 
make for Denmark than  for Finland, the Engle-Granger two-step approach to cointegration 
gives the estim ated levels models, and associated A e C! and C r d w  test results for the O ls 

residuals, presented in Table C.tt. Using the 5 per cent significance level, there is little evidence 
for both countries th a t a cointegrated money dem and relationship might exist. Only in the 
case of Finland, when p t  and i t  are ignored in view of the fact tha t they seem to be /(O) using 
the Dolado, et al. (1990) procedure and the supplem entary unit root checks, is coiutegration 
of rrit and y i  suggested by the A kc  and CfiDW tests, but even then only marginally.

The estim ates of parsimonious error-correction models, using the lag of the residuals from 
the levels regression models as the error-correction terms, are given in Table C.7. The models 
are statistically acceptable in the sense th a t they are supjjorted by a range of mi.sspecification 
diagnostics. Only in the ctise of the eciuations for Finland is thei'e a marginal suggestion of 
heteroscedcisticity. However, with values around 0.5, the fits are (juite poor and there is 
a high incidence of insignificance of the estim ated coefficients. In particular, the coefficient 
on the error-correction term  is highly insignificant for Denmark, while the coefficients are 
perversely signed, albeit significantly, for the three cases relating to Finland. The EcM 
test decisively rejects cointegration in all cases. Even in the one case for Finland in which 
the A e g  and C kdvv tests suggest the possibility of cointegration, the E c;m test rejection is 
unambiguous.

5.4.2 Johansen’s m axim um  likelihood approach

The Danish d a ta  have been used extensively by Johansen and it is clear from his various 
results th a t the argum ent th a t there is a cointegrating money dem and relationship depends 
largely on the V a r  specification and the test statistic  used; see Johansen (1988), Johansen 
and Jaselius (1990) and Johansen (2002). Table C.8 gives a sunnnary of the results th a t can 
be obtained for Denm ark using Johansen’s apjjroacli and a V a r  lag length of one, as suggested 
by the SiC and the adjusted likelihood-ratio test. See tables C.9 and C.IO for further details. 
A s can be seen, a range of specifications concerning intercepts and trends was examined for

®The AlC and unadjusted likelihood-ratio test suggested a lag length of two. The choice of lag length one 
has the advantage of economising on degrees of freedom.
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variants of the model with and without centred seasonal diinimy variables. Examination 
of the various V a r  estimates suggested that the sjjecification with restricted intercepts and 
trends was the most appropriate, although for comparison, the case for unrestricted intercept 
and trend is included also.^^ Moreover, given that the data used were quarterly, the variant 
with seasonal dummies, sc,, i =  1, 2, 3, was also preferred. There is variability in the suggested 
number of cointegrating relationships across the range of specifications used, and between the 
Trace test and the Maximal eigenvalue test used to ascertain this number. The sur{)rise is 
that despite the results from the static cointegrating regressions and error-correction models, 
which overwhelmingly point to no cointegration, all of the results in Table C.8, except one, 
suggest at least one cointegrating vector. In the case of the preferred specification, the 
suggestion is of one cointegrating relationship, in contrast to the outcome produced by the 
Engle-Granger (1987) approach.

For the Finnish data, the summary results of the Johansen procedure on the full model 
are given in Table C .ll .  There is similar variability in the number of cointegrating relation- 
shijjs suggested for the different specifications and tests to that noted for Denmark, though 
it is not quite as marked. The preferred specification is again that with restricted intercepts 
and trends, although the case with unrestricted intercept and unrestricted trends is also 
considered, and seasonal duimuies, for which case the number of cointegrating relationships 
indicated is two, again in stark contrast to the earlier indi(;ations of no coiutegration. As Jo
hansen and Juselius (1990) have pointed out. the inter{)retation of the findings for the Finnish 
data poses particular problems. Accordingly, two alternative reduced models for Finland were 
also investigated: one taking pt to be /(()) in the V a r  analysis and the other treating both 
Pt  and i t  as /(O). The smnmary results for these cases are given in Table C.12 and Table 
C.13, respectively. Table C.12 contains consistent indications of a single cointegrating vector 
across all V a r  specifications and tests, though once again this finding contradicts the indi
cations from the A e g ,  C r d w  and ECM tests. Slight variability in the results for different 
specifications and tests is seen in Table C.13, but in this case no cointegration is suggested 
for the preferred specification. This finding conflicts with the corresponding A e g  and C r d w  

results, which indicate a possibility of cointegration, but it is in agreement with the EcM test 
result. Tables C.14 and C.15 provide information on the choice of the V a r  specification in 
this ca.se.

The Johan.sen (2002) biiis-correction factor was calculated only for the two variants of the 
preferred V a r  specification in the case of Denmark, and for the preferred specification of the 
full and the two reduced models in the case of Finland. Table C.16 and C.17 for the alternative 
specification, presents the Danish results. Although the correction factor relates only to the 
Trace test, details of the Maximal eigenvalue test are also given. The corresponding results 
for the full Finnish model and the two reduced versions are given in tables C.18 to C.23,

th is co n tex t, an intercept is d en o ted  by c, a  trend term  by t and cen tred  seasonal dum m y v'ariables by 
sc i, i =  1, 2, '.i.

" in  a  co in tegratin g  vector, for unrestricted  in tercep ts and trends, X t  w ill be trend stationary  w hen the  
rank o f  I I  is full. But if it is rank deficient, the so lu tion  for X t  will con ta in  quadratic trends. For unrestricted  
in tercep ts and no trends, a  rank deficiency in I I  w ill result in X i  con ta in ing  linear d eterm in istic  trends. To 
avoid th ese  s itu ation s , th e  use o f restricted  in tercep ts and no trends, or unrestricted  in tercep ts and restricted  
trends is th e  norm al practice. H owever, th is  results in the co in tegratin g  vectors conta in ing  a d eterm in istic  
trend in th e  first case and in tercep ts in th e  second case.
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inclusive. Interestingly, when the adjusted critical value is used for the Trace test, the result 
for Denmark changes to one suggesting no cointegrating relationships, in accordance with 
the A e g , C r d w  and ECM test findings. Thus there is conflict between the Trace test and 
the Maximal eigenvalue test in the case considered, the la tte r indicating one cointegrating 
relationship. The correction factors are close to unity for the Finland cases, probably due 
to  the larger sample size. Even so, the outcom e for the full Finnish model is similar to th a t 
for Denmark; the modified Trace test indicating the reduced number of one cointegrating 
relationship, while the Maximal eigenvalue test indicates two. However, the correction has 
no effect in the cases of the two reduced models. In particular, as the correction would increase 
the critical value of the Trace statistic, and as the test statistic  for the second reduced model 
already lies w'ell below the uncorrected critical value, as can be seen from Table C.23, the 
correction factor was not even com puted for this final case. The conclusion suggested by the 
modified Johansen procedure rem ains th a t the nm nber of cointegrating vectors is one and 
zero for the first and second reduc;ed Finnish models, respectively.

It can be seen from these various results th a t the traditional analysis is somewdiat con
fusing. Exam ination of the Danish d a ta  seems to siiggest tha t all variables are 7(1) and, 
using the Engle-Granger (1987) 2-step procedure, tha t cointegration does not hold and error- 
correction models are not appropriate. Yet, using the original Johansen Vaf? approach, there 
are strong indications of cointegration, which are only challenged if a bias-corrected Trace 
test is undertaken. The Finnish d a ta  give rise to some similar findings, although in contrast 
to the Danish case, unit root tests suggest th a t some of the series are possibly not / ( I ) .  W hen 
allowance is m ade for this possibility, the Engle-Granger approach marginally supports coin
tegration. However, when the Johansen technique is applied in this case, it gives contrary 
results, whether or not a modified Trace test is used, indicating tha t there is no cointegration.

5.4 .3  C om m on factor analysis

The final test for cointegration to be considered in this chapter is the connnon factor approach, 
as outlined in C hapter 4. In considering the money dem and relationship, the ecjuation to be 
estim ated is

To find a cointegrating relationship, the connnon factor approach must first find evidence of 
connnon roots in the specified data , then th a t those connnon roots are indeed unity, i.e., imit 
roots, and finally, th a t the specification is in term s of an error-correction model. The first 
restrictions to consider, those th a t test for common factors are.

(5.2)

7i + lolh = 0, 

<̂ i +  <̂ o/3i =  

m + r/oA = 0,
/Lii +  =  0.

(5.3)

(5.4)

(5.5)

(5.6)
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Only when each of these restrictions is found to  be significant, i.e., when the restriction is 
rejected, should the tests of restrictions for vuiit roots and an error-correction specification 
be carried out. For simplicity, only the common factor restrictions, as outlined above, will 
be tested in this case. These tests are sufficient to indicate if a cointegrating relationship is 
possible, allowing for comparison with the alternative m ethods. The full C)LS estim ates of 
Ecjuation (5.2) can be found in Table C.24. The estim ated equation was

=  2.55 -h 0.70 -j- -  0.21 -  0.60pP'"" -  0.62
( 0 .67 ) ( 0 .08 ) ( 0 . 18 ) '  ( 0 . 17 ) ( 0 . 58 ) ( 0 .5 8 )

-  0 . 8 7 -  0.23bPlf  +  0.36if" "  -  0 . 2 6 +  i t ,  (5.7)
( 0 .38 ) ( 0 .45 ) ( 0 .64 ) ( 0 .6 4 )

where standard  errors are given in parenthesis. Table C.25 shows the results for the test of 
each individual common factor restriction plus the test of joint significance for all restrictions.

As can be seen from these results, three of the individual test results are insignificant. One 
of the results, however, is significant, as is the test of joint restrictions, rejecting therefore, the 
restriction. Since all four restrictions m ust be valid, it can be assumed th a t Ecjuation (5.2) 
does not contain common factors for all variables. These findings suggest th a t cointegration 
cannot be ruled out in the case of Denmark.

r iie  COMFAC analysis for Finland began by looking at the most general specification for 
money demand, tha t is, including all of the variables introduced to date. Recall, however, 
th a t the variables, / ; f a n d  if*", are likely to be stationary. As before, several models were 
estim ated here; a full model including all variables and two reduced models, excluding i f '"  
and p f “". To test this most general specification, the following ecjuation was estim ated

m p "  =  -0.2,3 +  0.81rnf2'i +  0.60 yf*'" -  0.41 yf.7 -  0.91/ ; f ‘" -  0.03pf_‘7
( 0 . 10) ( 0 .0 6 ) (0 .0 9 ) '  ( 0 . 10) '  ( 0 .4 3 ) ( 0 .4 2 )

+  0.35 i f "  -  0.33 if? /  +  i f  (5.8)
( 0 . 13) ( 0 . 13)

Results ill full can be found in Table C.26. The common factor restrictions were tested, 
producing the results found in Table C.27. As can be seen, two of these restrictions prove 
to be significant, along with the test of joint restrictions, once again suggesting th a t a coin- 
tegrating relationship cannot be ruled out. Recall th a t the details of these restrictions have 
l)een introduced previously, in C hapter 4, and above. Given the evidence th a t i f " ' may be 
stationary, the relationship w ithout this variable was estim ated, giving

m f '"  =  -0 .2 3  +  0.81 mfl'? +  0.68y f '"  -  0 .48yf_T -  0.91 +  0.09pf_"/ +  i f  (5.9)
( 0 .0 9 ) ( 0 .06 ) ( 0 .09 ) ( 0 . 10) ( 0 .4 4 ) ( 0 .43 )

These results can be found in Table C.28. Once again, one of the common factor restrictions
tested here w'ere found to be significant, as was the joint test of restrictions, as can be seen
from Table C.29. Again, cointegration cannot be ruled out.

Finally, ju st the money dem and and income variables were included in the estim ation, 
producing

m f '"  =  -0 .1 8  +  0.80 mfJV +  0.73 i /f '"  -  O M y p ?  -H i f  (5.10)
( 0 .0 8 ) ( 0 .06 ) ( 0 .0 9 ) '  ( 0 . 10)
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Full resu lts  for th is  estim ation  are available in T able C.30. T h e  com m on factor restric tion  

proved to  be m arginally  significant, as can  be seen from  Table C.31, once again re jecting  th e  

re s tric tio n  and  failing to  reject th e  possib ility  of coin tegration . Overall, it m ust be concluded 

th a t  in th e  th ree  specifications considered, the  COMFAC approach  canno t reject th e  possib ility  

of coin tegration  in th e  F innish  d a ta .

5.5 Testing for Fractional Integration

Having raised concerns over th e  s ta n d a rd  / ( I ) / /( () )  analysis, th e  next step  is to  consider th e  

possib ility  of fractional integration.^^ T able C.32 gives th e  resu lts of th e  fractional analysis 

for th e  D anish d a ta . For each variable, a  range of estim ates of d  is provided, as well as th e  

resu lts of th e  F d f  and  Fadp" tests. T he correspond ing  resu lts for the  F innish  d a ta  are given 

in T able C.33.

T h e  previous s ta n d a rd  analysis generally  found th e  D anish d a ta  to  be / ( I ) .  From  T able 

C.32, it can be seen th a t  th e re  is m ixed evidence in su p p o rt of th e  d a ta  l)eing / ( I ) ,  som ew hat 

in con trad ic tion  to  th e  previous findings. It is possible, if ju s t the  param etric  es tim ato rs  

of d  a re  considered, to  argue th a t  th e  D anish  bt variable is fractionally  in teg ra ted . T h e  

n o n p aram etric  and  sen iiparam etric  es tim ato rs  sugge^st th e  series in cjuestion m ay be / ( I ) .  For 

th e  F inn ish  d a ta , it would ap p ear th a t  th ree  of th e  four variables are fractionally  in teg ra ted , 

nam ely, ni t ,  Pt H- It will be recalled th a t  un it roo t te s ts  decisively rejected th e  m iit root 

null for th e  la tte r  two variables. T he resu lts  for F in la n d ’s yt variable also give ind ications 

th a t it is fractionally  in tegra ted , b u t th e  F a d f  resu lt in th is case has the  w rong logical sign. 

Overall, th e  investigation of fractional in tegra tion  suggests th a t th e  F innish  d a ta  series are 

not g enerated  by / ( I )  processes b u t th a t  th e  D anish d a ta  m ay be.

5.6 N onlinear Inference

In light of the  possibility  th a t  th e  em erging difficulties m ay be re la ted  to  p aram ete r in s tab il

ity or som e o ther type of nonlinearity , of w hat m ay be s ta tio n a ry  d a ta  generating  processes, 

H am ilto n ’s (2001) random  field approach  Wcis used to  explore th e  likely form of th e  two m o d 

els, an d  th is leads to  som e in teresting  resu lts. H am ilto n ’s L m test s ta tis tics  for n on linearity  

for the  D anish  and  F inn ish  m odels were 15.34 and  123.81, respectively, which are significantly  

g rea ter th an  th e  5 j)er cent critical Xi value of 3.84, again suggesting th a t  the  m odels should  

not be sim ply linear.

'^A.s Parke (1999) pointed out, 'a growing body of empirical evidence supports the notion that important 
economic data series might be fractionally integrated’. Evidence of such long memory behaviour has been found 
in business-cycle indicators, price indices, asset prices and exchange rate volatility; see for exam ple, Geweke 
and Porter-Hudak (1983), Diebold and Rudebusch (1989), Sowell (1992), Ding, Granger, and Engle (1993), 
Baillie, Bollerslev, and Mikkelsen (1996), Baillie, Chung, and Tieslau (1996), Andersen and Bollerslev (1997), 
Breidt, Crato, and de Lima (1998), and Andersen, Bollerslev, Diebold, and Labys (1999). Several explanations 
of long memory in economic data have been put forward. Granger (1980) suggested that fractional integration  
may arise from data aggregation. Liu (1995) suggested that regime-sw'itching in stock market volatility may 
result in fractional processes. Apart from Parke (1999), Baillie (1996) offered an excellent survey of fractional 
integration.
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Given the prior behef is that the nonhnear relation

rrhDen _  J  ^yDen^ ^Den^ f^Den  ̂ -Den) ^  (5

may well explain the variations in real money demand, those variables in Equa
tion (5.11) were analysed using Hamilton’s (2001) methodology. The results of the flexible 
nonlinear inference, which can also be found in Table C.34, with the nonlinear optimisation 
making use of the algorithm switching method S t e e p e s t  D e s c e n t - N e w t o n , C = 1-0 and 
converging after 46 iterations, were

=  7.34 +  0.78i/f"" +  0.13pP"” -  0 . 1 1 -  0.07if""  (5.12)
(1.14) (0 .19) (0 .06) (0 .04) (0.06)

+ 0.01
( 0 .01 )

5.38m ( 3.41 yP®", 6.49pP"", 0 . 0 0 0 0 0 3 - 0 . 0 0 0 0 2 i ) + i/j
(4.01) V (2-34)' (1..39) (0 .57) (0 .51) '

where standard errors are given in parenthesis. Clearly, only contributes significantly 
to the noiiliuearity in the estimated relation above. The conditional expectation function, 
E  yP"", , was plotted, therefore, as a function o f i n  Figure C.8.^^
This represents the demand for money one would expect for any price level, if the income, 
bond and deposit rates were ecjual to their average values for the sample period in cjuestion. 
The Hamilton (2001) results from the Danish data are rather disappointing, in so much as 
both (T and Q estimates are not statistically significant on the basis of an a,symptotic /-test. 
It could be argued, along the lines of Dahl and Gonzalez-Rivera (2003), that this is due to 
nuisance parameter problems, given that under the null of linearity, the gt parameters are 
unidentified. If the statistical insignificance of a  and is ignored, the significant coefficient of 
P t in the linear and the nonlinear components of the Danish model strongly suggests that this 
inflation variable is the prime sourc:e of any parameter instability. This is interesting given 
that .Tohausen and Juselius (1990) excluded this variable from their analysis as ‘it ditl not 
enter significantly into the cointegration relation for money dem and’ (.Johansen and Juselius, 
1990, p. 172).

In the case of Finland, the results in Table C.34 are more satisfying. Both a and 
are statistically significant, in agreement with the implied value of A in the Lm test, and 
suggesting that there is significant nonlinearity in the money demand relationship. In the 
Finnish case, it is the income variable, yt, tha t proves significant in both the linear and 
nonlinear parts of the model and, therefore, that needs to be investigated further. As before, 
it was assumed that a nonlinear relationship of the form

rn = (5.13)

described the Finnish data. The test for nonlinearity overwhelmingly rejected the null of 
linearity. The results of the nonlinear analysis, for S t e e f ê s t  D e s c e n t - N e w t o n , (̂  =  1.5

is defined as =  (m ^ '" . x^ , x V_i ,  x 'J , where x^  =
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and where convergence was achieved after 33 iterations, were

=  -0 .5 5  +  O . r S i p ^  -  0 .8 3 p f'"  +  0 . 8 7 ( 5 . 1 4 )
( 0 .35 ) (0 . 17) ( 0 .4 6 ) ( 0 .0 8 )

0.05
( 0 .005 )

1.29m ( 2 .2 4 i f ” , O .O lp f™ , 4.79^/"'" ) +  lyt
( 0 .31 ) \ ( 2 - 17) ( 0 ..36 ) ( 0 . 75 )'  '

From this equation, it is clear th a t only is significant, in both  the linear and nonlinear
elements of the relationship. Therefore, the conditional expectation function E

was plotted as a function of which represents the dem and for money ex
pected for any income level, if the inflation and interest rate were equal to their average
values. This plot is shown in Figure C.9. This, together with the respective plot for Den
mark, hint at the possibility of a piecewise linear regression being an adecjuate model for the 
money dem and relationships. Looking at Figure C.8, it was necessary to a ttem pt to infer the 
nature  of the nonlinearity found in Equation (5.12). The conditional expectaticm function 
in Figure C.8 suggests tha t breaks occur in the data, at approxim ately —0.44 and 0.26, for 

as a function of In the case of Denmark, such a model is

rrit =  a  -h d \ y t  +  02Pt +  /̂ 3 {pt ~  P \ )  D \ t  -f (3^ {pt — P2 ) D ‘2t +  I h U  +  (5.15)

Pi = - 0 .4 4 ,  D xt =  (), P t < P i ,

D u  =  1, P t >  P \ ,

(5.16)

P2 =  0.26, D2t =  0, Pt <  p2,

02 t  =  1, P t >  P2-

For Finland, Figure C.9 suggests a break at 4.3 for m f a s  a function of y / '”'. An alternative 
model is, therefore,

n it = n: -I- (ji'it +  32Pt +  Ih V t  + I h  iv t  ~  y \ )  D u  +  St, (•'>•17)

yi =  4.3, D u  =  0, yt <  y i ,

D u  =  1, yt >  y \ -

In both of the above equations, et is a white noise error. The resulting O ls  estim ates, with 
standard  errors given in parentheses, are

r ri t  =  6 . 6 6 -f 0 . 9 3 y, +  0 . 5 4 p ( - 0.65 (p* -  p i )  D u +  1.25 { p t  ~  P 2 ) /^2t +  0 . 6 1 i f -  1.486t,  (5.19)
( 0 .6 7 ) ( 0 . 11 ) ( 0 . 14) ( 0 . 16) ( 0 . 17 ) ( 0 . 58 ) ( 0 .3 1 )

and

rnt =  1.77 +  0.31 h  -  0.32p^ +  0.30?* +  0.88 {yt -  yi) D u ,  (5.20)
( 0 . 27 ) ( 0 . 12) ( 0 .4 6 ) ( 0 . 0 6 ) ( 0 .0 9 )

for Denm ark and Finland, respectively. In both cases the ex tra  nonlinear term s are highly 
significant. Furtherm ore, the values are about 0.95 for both  equations and the mis- 
specification diagnostics for nonnormality, heteroscedasticity and functional form are also

is defined as m f'"  =  { m p ’' , x'r, m p : \ ,  x ^ - i ,  . . . ,  m [ ' ’' ■ x 'l), where x'r =  { i p "  p p "  y p " } .
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satisfactory . However, th ere  are significant ind ications of first-order au to co rre la tio n  from 

th e  D urb in -W atson  tes t, as well as fou rth -o rder au toco rre la tion  from  th e  re levant L agrange 

m ultip lier te s t. F u rth e r details can be found in tab les C .35 and  C.36. M oreover, when the  

H am ilton (2001) te s t for nonlinearity  is applied  to  these revised ecjuations, th e  sam ple values 

of th e  Lm s ta tis tic s  for the  D anish and  F innish  m odels a re  42.99 an d  18.35, respectively, 

which are  still h igher th a n  th e  critical Xi value of 3.84. T h is  finding co n trad ic ts  th e  indi

cations provided by th e  first d iagnostic te s t for non linearity  ( R e s e t ) , w hich suggests th a t  a 

piecewise linear functional form  is ap p ro jjria te  for b o th  countries. T h o u g h  th e  su b stan tia l 

fall in th e  value of th e  H am ilton tes t s ta tis tic  for the  F inn ish  d a ta  is encouraging , H am ilton ’s 

m ethod  suggests th a t  b o th  m odels are still no t adequately  specified.

A lthough fittin g  piecewise linear regressions to  th e  m oney dem and  functions of D enm ark 

and  F in land  failed to  m odel th e  nonlinearity  effectively, it was encouraging  to  no te  th e  droj) 

in value of th e  L m s ta tis tic , in b o th  cases, b u t particu la rly  in th e  case of F in lan d . W ith  th a t 

in m ind, and  also recalling th e  n a tu re  of th e  re la tionsh ip  betw een r n f a n d  from  Figure 

C.9, an  a tte m p t was m ade to  fit a STAFi m odel to  th e  F inn ish  d a ta . ''’’

Following T erasv irta  (2004), and  using L iitkepohl and K ra tz ig ’s (2004) JM ulTi software, 

th e  first s tep  was to  cHscover th e  tran sitio n  variable.^® T h e  resu lts  of th e  S'l’R tes ts  for 

non linearity  can  be found in Table C.37. T hey  clearly ind icate  th a t /yf ex h ib its  th e  strongest 

nonlinearity , in agreem ent w ith  th e  findings of the  H am ilton  (2001) approach , and  th a t 

th is, therefore, shotild be th e  tran sitio n  variable in the  fitted  S t r  m odel. A ttem p ts  to  fit 

such a m odel for all variables failed to  p roduce reasonable resu lts. As before, therefore, the  

relationshij) was sim plified, w ith  ju s t being included as th e  in d ep en d en t variable. T his 

has little  im pact on th e  tests  for Hnearity, although even sm aller /^-values are  repo rted . An 

m n 'estric ted  LS'I’R m odel was fitted , therefore, p roducing  th e  resid ts

m f " ' =  0.54 +  0.61 y P ’̂ +  (5.21)
(0.37) (0.09)'

( -2 .9 4  +  O .G 5,yp") f  1 +  exp ( -  f 4 0 . 7 2 ( ; / f ” ' -  4 .28^  +  S f
V( 0. 40 )  ( 0 . 1 0 ) '  J \  1  V(35.32)'  V V  (0.01)7 j y

A plot of ac tu a l and  fitted  valuers for th is ecjuation can be found in F igure C.IO. Interestingly, 

when th e  residuals of th is  regression are tested  for non linearity  w ith  H am ilto n ’s (2001) L m 

te s t, th e  tes t s ta tis tic  falls to  1.63 (x^ =  2.67), w ith a />vahie of 0 .10.'^  T h is  suggests th a t 

th is  m odel m ay indeed effectively captiu 'e  th e  non linearity  ev ident from  previous testing.

5.7 C onclusion

T his ch ap te r has draw n a tten tio n  to  som e of th e  p itfalls involved in using th e  conventional 

/ ( l ) / / ( 0 )  fram ew ork for econom ic and  financial m odelling of tinie-series d a ta , an approach

'■^See C h a p te r 2 for a  b rief overview of Star  modelling.
'‘'Given the nonlinear analysis undertaken to this point, it was deemed likely to be i/f 
'^As with the case of the piecewise linear regressions de.scribed above, the Hamilton L m test is applied 

following Hamilton (2001), where et are the residuals and M t  is the projection matrix from the estim ated  
equation, in this case, Equation (5.21), while H  is calculated from the original explanatory variables (Hamilton, 
2001, p. 561). On a cautionary note, it is uncertain how the Hamilton L m test performs on the residuals of 
such a nonlinear specification.
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involving well-known unit root tests and the cointegration testing and modelling procedures 
of Engle and Granger (1987), Johansen (1988, 1991) and the CoMFAC approach, that has 
been applied widely during the last decade or so. The practical difficulties of untangling 
the issues of stationarity, fractional integration, nonlinearity and parameter instability have 
been highlighted. This chapter has briefly discussed some of the recent research directed at 
resolving these problems and providing alternative, or at least complementary, approaches to 
modelling, previously outlined in this thesis.

This chapter has i)resented a case study intended to illustrate the application of these 
newer technicjues and contrast their findings with those of the standard cointegration mod
elling approach. The study used the data previously analysed by Johansen and Juselius 
(1990) in connection with demand for money fimctions in Denmark and Finland. The results 
obtained from the various techniques exemplify the problems with the standard approach 
and the alternative conclusions that might be reached by using different techniciues. The 
findings, using the standard approach, were as follows.

Though A d f  tests, implemented using the procedure of Dolado, et al. (1990), appear 
to suggest imit roots for most variables, they are sensitive to the sjjecification of the test 
ecjuation and the information criterion used to choose lag length in the case of some variables, 
especially for Finland. Tests of seasonal integration confirm the /(I)  natiu’e of the Danish 
variables, as no evidence of seasonal integration is found. In the case of the Finnish variables, 
however, the sensitivity observed in the A d f  tests is mirrored in the mixed resvilts. There 
are indications that some of the variables are /(I) , some are /(O), and that some may be 
seasonally integrated, but these findings very much depend on the specification of the tests. 
When the matter of unit roots was explored fiuther, using the E r s , K p s s  and N P  tests, unit 
roots for the Danish variables tended to be confirmed but not for the Finnish variables.

Proceeding on the assumption that all variables are /(I),  the Engie-Granger (1987) 2-step 
procedure does not support cointegration in general, a result that is confirmed by C r d w  tests 
and E c m  tests conducted in an error-correction framework for the money demand relationshij) 
for each country. However, the Engle-Granger approach does suggest cointegration for the 
version of the Finland model that treats two of the variables, pt and it, as /(()).

Using the Johansen (1988, 1991) approach without its small sample bias-correction factor, 
there is considerably stronger evidence of cointegration in the case of Denmark, though the 
number of cointegrating vectors suggested varies, depending on the Vak specification chosen. 
For the preferred V.-\R specification, one cointegrating vec:tor is suggested for Denmark. The 
picture that emerges for Finland is similar, although for the version of the model that treats 
the Pt and it variables as /(O), the Johansen method suggests no cointegration, contradic:ting 
the finding of the Engle-Granger (1987) procedure in this case.

The Johansen (2002) correction factor has a marked effect on the result in the case of the 
small sample of data for Denmark, with the modified Trace test agreeing with the conclusion 
from the Engle-Granger (1987) procedure that there is no cointegrating demand for money 
relationship. However, it was noted that the modified Trace test provides a different signal 
from the Maximal eigenvalue test, which indicates cointegration. As might be expected, the 
Johansen correction has no effect on the findings for Finland, which are based on a much 
larger sample.
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Interestingly, the common factor approach cannot rule out the possibility of cointegration 
in either the Danish or Finnish samples, including the reduced Finnish models. Given the 
contradictory evidence provided by the Engle-Granger (1987) and Johansen (1988, 1991) 
approaches, this adds further weight to the contradictory evidence regarding cointegration in 
these data.

These results are puzzling, not w ithstanding the relatively small size of the Danish sample 
used and the known low power of unit root tests. In particular, the contradictory results 
from the Engle-Granger (1987), Johansen (1988, 1991) and CoMFAC procedures concerning 
the  existence of cointegrating relationships, in the case of both  countries, is curious.

Checking for fractional integration by means of a range of estim ators of the fractional 
integration param eter, as well as the new F d f  and Fa d f  tests of Dolado, et al. (2002), 

confirms the 7(1) natu re  of the Danish variables and the lack of a unit root for the variables 
in the case of Finland. It is difficult to say why the bias-corrected Johansen technicjue fails 
to  find cointegration in the former case and yet suggests it in the latter.

Assuming th a t the Finnish d a ta  are not / ( I ) ,  and hence can not be simply cointegrated, 
w hat type of model is appropriate? The possibility of sta tionarity  with regime shifts or some 
other kind of nonlinearity arises. This was explored for both countries by the Ham ilton (2001) 
methodology, w'hich may be ap{)ropriate for general, imknown forms of nonlinearity. This 
m ethod produces strong eviflence of structural change/nonlinearity, if underlying stationarity  
is entertained, although no consideration was given to sample effecit, as outlined in Chapter 
2, in these cases. An a ttem p t to re-specify the money dem and equations as j)iecewise linear 
regressions, however, which was suggested by exam ination of the data, was not very successful. 
In the case of Finland, where the plot of the conditional expectation function clearly suggests a 
sm ooth transition model might be effective, fitting a S t a r  model produced more satisfactory 
results. Were this alternative approach to l)e preferred, further work remains necessary to 
find an adequate nonlinear functional form, particularly for Denmark.

In conclusion, the messages from this first applied study appear to be tha t, first, standard  
/ ( l ) / / ( 0 )  modelling strategies for economic and financial tim e series are fraught with dangers. 
Secondly, com plem entary procedures designed to investigate the  possibilities of fractional 
integration and nonlinearity are available and relatively easy to implement. Thirdly, fractional 
integration analysis may confirm the existence of unit roots, btit may also suggest fractional 
integration of different degrees for different variables. This is a complicated situation that 
raises challenges for modelling. Fourthly, and recalling th a t unit root tests may often indicate 
tha t a unit root exists when a series is stationary  but sul:)ject to level shifts, a general analysis 
of nonlinearity, such as tha t offered by the Hamilton (2001) procedure, may be an attractive 
option th a t can lead to acceptable alternative models. The moral would seem to be that 
reliance on any one approach may not be a sensible practice in applied work, and that 
practitioners would be well advised to consider using a range of alternative m ethods and 
selecting models according to the balance of the wider body of evidence produced.
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Chapter 6

Purchasing Power Parity: The Irish 
Experience

[Research carried out in the course of writing this chapter appears as 'Purchasing Power Parity: The Irish 
Experience Re-visited’ by Bond, D., M.,1. Harrison, and E.J. O ’Brien, in Trinity Economic Papers, No. 15 
(2006). It has been subm itted  to tlie Working Paper Series o f  the European Central Bank and the 5*^ I n f i n i t ! 

Conference on International Finance, Dublin, Ireland, l l '^ -1 2 ‘  ̂ June 2007.
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6.1 Introduction

T he tlieory of purchasing power parity  (Ppf^) has become a m ajor area of research in apphecl 
econometrics. In part, this is due to the crucial role of the concept in the theory of both 
exchange rates and international finance. Recent surveys include Taylor and Taylor (2004), 
Sarno and Taylor (2002) and Rogoff (1996). The analysis has generally kept pace with 
developments in econometric time-series analysis. Two m ajor areas of current research are 
the mean reversion characteristics of the real exchange rate and the nonlinear representation 
of the real exchange rate.^ However, the m ainstream  literature in the area has as yet to 
fully utilise two develoj)ments in econometric theory; long memory models and random  field 
inference. These developments could provide useful tools for investigating bo th  the mean 
reversion and nonlinearity in P p p  analysis.

From the econometric literature it is clear th a t nonstationarity  and nonlinearity may be 
closely related. It has been well known for many years th a t it is difficult to statistically  
distinguish between difference stationary  series and nonlinear bu t sta tionary  series.'^ Recent 
works in the area include Lee, Kim, and Newbold (2005) and Hong and Phillips (2005). In
creasingly, the analysis uses the fractional integration framework rather than  the 'knife-edge’ 
/ ( l ) / / ( 0 )  approach,'^ to consider the effects nonlinearity has on sta tionarity  tests. This ap
proach has been followed by Diebold and Inoue (2001) and Perron and Qu (2004). Hsu (2001) 
and K rannner and Sibbertsen (2002) have used the reverse approach, considering the effects 
of nonstationarity  on tests for nonlinearity. Recent work by Gil-Alana (2004), Mayoral (2005) 
and Dolado, Gonzak), and Mayoral (2005b) have tested explicitly for difference stationarity  
and nonlinearity. However, in most cases the form of the nonlinearity needs to be known.

The aim of this chapter is to use two recent developments in econometric theory discussed 
in Bond, Harrison, and O 'Brien (2007), to explore tlie tinie-series characteristics of simple 
empirical inter])retations of P p p  using Irish, German and United Kingdom data. The first of 
these developments is the Dolado, Gonzalo, and Mayoral (2002) fractional augm ented Dickey- 
Fuller test (F a d f ) and the second is H am ilton’s (2001) m ethod of random  field estim ation to 
investigate nonlinearity. Both of these developments have been discussed at length in previous 
chapters of this thesis. The rem ainder of this chapter is structured  as follows. In Section 
6.2, the background to  the theory of P p p  and the notation to  be used here will be briefly 
explained. Section 6.3 contains a description of the data  and some prelim inary analysis. 
Sections 6.4 and 6.5 test for cointegration and fractional integration, respectively, employing 
the techniques, including the Dolado, et al. F a d f  test, outlined in C hapter 4 and utilised in 
the previous case study  in C hapter 5. Section 6.6 considers the results of using H am ilton’s 
random  field methodology and Section 6.7 concludes by considering how the m ethodology 
might assist in the development of the general disctission of the theory of Ppp.

'See, for example, Cashin and M cDerm ott (2004) and Sarno (2005).
^See, for example, Perron (1989), Harrison and Bond (1992), Teverosky and Taqqu (1997) and Diebold 

and Inoue (2001).
^.Jensen (1999)
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6.2 Purchasing Power Parity

l l i e  theo ry  of PPP is, according to  W right (1994), ‘one of the  leading app lica tions of coin

tegra tion  analysis in applied  econom etrics’. A sim ple sta tem en t of th e  purchasing  power 

parity  hypothesis is th a t  na tio n al price levels should  be equal when expressed in a  com m on 

cvirrency. M ore form ally, if st is th e  logarithm  of th e  nom inal exchange ra te , pt an d  Pi are 

the  logarithm s of th e  dom estic and  foreign price levels, respectively, and  qt is th e  logarithm  

of the  real exchange ra te  in period  t, th en

qt =  s t - p t + p l ,  (6 .1)

for all t  = 1 , 2 , . . .  , T .  I t follows th a t  qt m ust be s ta tio n a ry  for long ru n  PF’P to  hold, as 

n o n sta tio n arity  in qt w ould im ply p erm an en t dev iations from parity, thereby  re jecting  th e  

theory.'* M ost of th e  em pirical stud ies of P P P  have e ith er been concerned w ith  te s tin g  w hether 

qt has a m ean reversion tendency  over tim e or w hether st ,  pt  and p i  move to g eth er over tim e.

This la tte r  work has generally  been concerned w ith  m odels whose sim plest form  is:

St =  ao +  (3\pt +  + (I, (6-2)

w here ft  w hite noise. E arly  works w'ere concerned w ith  w hether the  estim ated  values of th e  

p aram eters  of various versions of Fxiuation (6.2) were as predicted; see, for exam ple M acD on

ald and Taylor (1992). As aw'areness of tinie-series dynam ics increased, th e  issue changed 

to  one of w hether E q u a tio n  (6.2) is co in tegrated . P ap ers  such as those by T h o m  (1989), 

W right (1994) and  K enny and  M cG ettigan  (1999) took  such an approach w ith  Irish  d a ta . 

The resid ts of these Irish  stud ies have been som ew hat confusing. In som e cases th e  th eo ry  of 

P p p  could not be accep ted , w hereas in o thers  in could not be rejected. Nonrejec'tion seem ed 

m ost conunon when o th e r variables were included in th e  m odel or w here prices re la ted  to  the  

traded  sector. For exam ple, W right considered th e  inclusion of in terest ra te  differentials, and 

K enny and  M cG ettigan  d istingu ished  betw een prices in th e  trad ed  anfl n o n trad ed  sectors. An 

alte rna tive  argm nent th a t  has been gaining ground  in th e  lite ra tu re  is th a t  of th e  possib ility  

th a t the  re la tionsh ip  is in fact nonlinear. T he argm nent is th a t nonlinearities arise  because 

of tran sac tio n  costs in in te rn a tio n a l arb itrage, as discussed in Sarno (2005).

In recent years th e  em phasis has generally  shifted  from  considering m odels of th e  form 

of E quation  (6.2), to  considering d irec tly  th e  behav iour of tlie  real exchange rate .

W ith in  th e  / ( I ) / /( () )  fram ew ork, m ost of the  early  stud ies failed to  reject th e  hypothesis 

of real exchange ra te s  being 7(1) for recent periods of flexible exchange ra tes . T h is  failure 

to  reject th e  possib ility  of u n it roo ts  in th e  real exchange ra te  series, {qt},  im plies a lack 

of m ean reversion w hich underm ines th e  P p p  hypothesis. T he exp lanation  given for th is 

nonrejection is th e  recognised low power of trad itio n a l u n it root tests, such as th e  s ta n d a rd  

Dickey-Fuller test. To overcom e th is  problem , two general approaches have been adoj)ted. 

T h e  flrst has been th e  construc;tion and  use of long series of exchange ra te  d a ta  an d  m ore

■*When specified as in Equation (6.1), qt must be stationary for P pp to hold in the long run. In terms of 
the nominal exchange rate, as in Equation (6.2), the theory of P p p  allows for persistent deviations in £(. See, 
for example, Enders (1995) and Sarno and Taylor (2003).
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‘pow erful’ asy m p to tic  tests.^ T h e  second, using panel d a ta , a tte m p ts  to  e s tim ate  th e  h a lf life 

of th e  m ean reversion on th e  real exchange rate.®

E m pirically, it is well know n th a t  th e  theo ry  of P i’P does not hold in th e  sh o rt run.^ 

N aturally , th is  does n o t d e tra c t from  th e  above theory. It is expected  th a t  som e dev iation  

from  th e  m ean will occur, b u t th a t  in th e  long-run th is deviation  will be  s ta tionary . T h ere  

is, however, conflicting evidence as to  w hether P p p  holds in th e  long run . D ornbusch (1976) 

and  A inzenm an (1986), using sticky price m odels, perm ited  susta ined  dev iations from p a rity  

b u t typically  m ain ta ined  P p p  as a  valid long-run hypothesis. O n th e  o th e r hand , Roll (1979) 

and  A lder an d  L ehm an (1983) suggested  P P P  is v io lated  in th e  long run , using m odels based 

on efficient in te rn a tio n a l cap ita l m arkets.

As previously  m entioned, for th e  case of Ireland, several stud ies have been und ertak en . 

T hom  (1989) failed to  find co in teg rating  re la tionsh ips for Irish  and  U nited  S ta tes, and  Irish 

and  G erm an d a ta , b u t does find it for Irish  and  U nited  K ingdom  d a ta , a lthough  only w hen 

coefficient restric tions are im posed on th e  m odel. W right (1994), by add ing  th e  sh o rt-te rm  

in terest ra tes  for G erm any, Ire land  and  th e  U nited  K ingdom , foim d evidence for co in tegration  

in b o th  cases. T h is  s tu d y  loosely follows th a t  work.

To investigate the  usefulness of b o th  the  F a u f  and  rantlom  field approaches to  u n d e r

s tan d in g  th e  issues su rro u n d in g  P P P , th is  chap ter a}>plies th e  teclmicjues to  d a ta  for Ireland  

and  G erm any  and  Ireland  and  th e  U nited  K ingdom . T h e  specification for th e  ex p lan a to ry  

m odel used is th a t  of W right (1994), namely,

St — +  PiPt  +  ihPt  +  ((>-'̂ )

w here it and  if are th e  dom estic and  foreign in terest ra tes, respectively.

To plac;e th e  long m em ory and  random  field analysis in to  contex t, the  s tan d a rtl / ( ! ) / / ( ( ) )  

analysis using th e  A d f  tes t is conducted . T he s tra teg y  of Dolado, Jenkinson , and  Sosvilla- 

R ivero (1990), to  d eterm ine w hether the  .series are tren d  s ta tio n a ry  or difference s ta tionary , is 

adop ted . T h e  lag length  for th e  A d f  test is determ ined  using th e  m odifted Akaike in form ation  

criterion  (M a i c ), which Ng and  P erron  (20(J1) showed to  be a generally  b e tte r  decision 

criterion , as it takes account of th e  persistence found in m any series.^

T rad itional co in tegration  analysis is then  applied to  th e  naive P P P  m odel of Eciua- 

tion  (6.2). F irstly , th e  E ngle-G ranger (1987) 2-step approac:h is applied  using th e  lag of 

residuals of th e  levels regression m odel as th e  error-correction  term . T h en  th e  Jo h an sen  

(1988, 1991) V a r  approach  and  th e  connnon factor approach  are applied  to  th e  d a ta . T h e  

effects of app ly ing  Jo h an se n ’s (2002) sm all sam ple correction factor is also investigated .

Following on from  th is  trad itio n a l analysis, th e  issue of fractional in teg ra tion  is inves

tigated.''* Following th e  approaches ou tlined  in chap ters  4 and  5, a consisten t p a ram etric

'’Taylor (2002).
®Cashin and M cDermott (2004).
’’Thom (1989).
*̂ A tim e series characterised by 'lagged effects' resulting from, for example, long memory, may be considered 

to be a persi.stent tim e series.
®Cheung and Lai (1993b, 2001) explored the fractionally integrated and long memory properties o f pur

chasing power parity and real exchange rate mean reversion. Robinson and lacone (2005) also considered 
purchasing power parity in term s o f fractional cointegration.
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estim ate of d, as suggested by Dolado, et al. (2002), is obtained and used for the F a d f  test. 
Again, the ‘over differenced’ A r f i m a  model, where Ayt  is used rather than  yt, is estim ated, as 
recoumiended by Smith, Sowell, and Zin (1997), to avoid the problems associated w ith drift. 
Two param etric estim ates of d  are calculated using the Doornik and Ooms (1999) A r f i m a  

package, namely, the exact m aximum  likelihood ( E m l ) estim ator, using the algorithm  sug
gested by Sowell (1992) (the algorithm  requires th a t d < 0.5, which is another reason for using 
the ‘over-differenced’ model), and an approxim ate maximum likelihood estim ator based on 
the conditional sum of squared naive residuals, developed by Beran (1995) and term ed by 
Doornik and Ooms (1999) a nonlinear least scjuares (N ls )  estim ator. Again, as in C hap ter 5, 
two nonpararnetric estim ators are also employed; the m ethod of Geweke and Porter-H udak 
(1983) (Gph) and Robinson’s (1994) Gaussian sem iparam etric (Gsp) estim ator. T he esti
m ates of d are then used in the F a d f  test, with the M a i c  being used as the criterion on 
which to  set the lag length of the test.

Finally, the analysis then turns to an investigation of the possibility of nonlinearity in the 
models. The param eters from the random  field model are estim ated, using the G a u s s  code 
provided by Hamilton (2001) and adapted  as explained earlier in C hapter 2.

6.3 D ata  and Prelim inary Analysis

For the analysis of the theory relating to  Ireland and Germany, five data  series are used. 
The exchange rate is m easm ed in Deutsche Marks per Irish pound. Both the
Irish and German price variables, and are the respective producer jjrice indices for 
m anufacturing industries. These three variables are all taken in logarithms. Also included, 
following Wright (1994), are variables for both the Irish and German short-term  (three m onth) 
interest rates, and respectively. These series samj)le the period 1975 to  2003, a to ta l 
of 115 cjuarterly observations. As with the previous case, five da ta  series are used for the 
Ireland and United Kingdom study. The exchange rate,  ̂ jg naturally  m easured in
Pounds sterling per Irish Pound. Euro c;urrency is converted with the relevant exchange rate 
where necessary. The Irish price variable is as before. The United Kingdom price variable, 

is the producer price index for m anufacttn’ing. These three variables are all taken in 
logarithms. Also included are short-term  Irish and United Kingdom interest rates, and 

. As before, these series are (juarterly and sample the period from 1975 to 2003, a to tal 
of 115 observations. These d a ta  series can be found in Appendix D .l, tables D .l and D.2. 
They are plotted in figures D .l, D.2 and D.3, which can be found in the A ppendix D.2.^° 

The preliminary results of the basic unit root analysis are given in Table D.3. The Dolado, 
et al. (1990) testing strategy was adoj)ted and in nearly all cases the existence of a trend  or 
drift could not be rejected, so the probabilities given in Table D.3 are mainly from the 
standard  normal distribution. In the few cases where the existence of a trend or drift could 
be rejected, the ])robabilities given are from M acKinnon (1996). These results generally seem 
to suggest that most series are / ( I ) .  The Irish price level may be /(O), as the test sta tistic  is 
significant at the 5 per cent level, using standard  normal critical values. The Germ an price

'”Onlv the results of unit root tests are considered for these series, although it should be noted from figures 
D. l ,  D.2 and D..3 that there is lim ited graphical evidence of unit roots.
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series is just m arginally insignificant a t the 5 per cent level, again using standard  normal 
critical values, although in this case the results suggest it is / ( I ) .

Tests for seasonal unit roots are included in tables D.4 and D.5.^^ Interestingly, these 
results suggest th a t the Irish Germ an exchange rate is stationary. No evidence of unit roots 
a t any frecjuency was found. In general, results for the rem ainder of the series suggest the 
series are in fact 7(1) and th a t no seasonal integration is present. The exception to  this is 
the Irish price level. As with standard  A df tests, evidence again suggests th a t the series is 
7(0) and th a t it is not seasonally integrated, in almost all specifications examined. Given the 
strong prior belief th a t price series are generally 7(1), despite some evidence to the contrary, 
this assiunption will be m aintained throughout the rem ainder of the chapter. The same 
approach is taken w ith the Irish G erm an exchange rate, as the A df test suggests th a t it is 
7(1).

6.4 Testing for C ointegration

6.4.1 T he E ngle-G ranger 2 -S tep  m eth od

The results of applying the trad itional Eugle-Granger (1987) analysis to the explanatory 
models is given in tables D.6 and D.7. Table D.6 reports the findings of the standard  levels 
analysis and in all cases the trad itional A eg test fails to reject the hypothesis tha t the 
estim ated residuals of the model have an unit root. The CUDW test confirms these findings.

Despite these negative findings regarding cointegration, Table D.7 gives the results of 
trying to  estim ate a parsimonious error-correction model using the first lag of the residual 
from the  corresponding levels model as the error-correction term. In all cases, the results of 
the analysis confirm the previous tindings. W hile the coefficients of the error-c'orrection term s 
have the  'r igh t’ sign, the ^-ratios are low. The ECM test also rejects cointegration in all cases. 
Drojjping the insignificant constant term s has minimal effect on the results. Interestingly, in 
all four model specifications, lags of the dependent and independent variables were highly 
insignificant suggesting a fairly quick adjustm ent process. These results are broadly in line 
with Thom  (1989).

6.4.2 Joh an sen ’s m axim um  Ukelihood approach

Tables D.8 to D.15 provide details of the V afi selection and specification for the four models 
under consideration: Ireland and Germany, and Ireland and the United Kingdom both  with 
and w ithout interest rates. Table D.16 summarises the Johansen (1988, 1991) analysis of the 
d a ta  for all models, while more detailed results are given in tables D.17 to D.20. Table D.17 
shows evidence of one cointegrating vector for Ireland and Germany, when interest rates are 
excluded. Im portantly, this result is overturned when the small sample correction is applied; 
based on the Trace test, no evidence of cointegration is found. One cointegrating vector 
is found when interest rates are included, as shown in Table D.18. In this case, however,

" A s  in Clhapter 5 , these tests were carried out using the so-called H ec;y  test, a ttribu tab le  to  Hylleberg, 
Engle, Granger, and Yoo (1990). See C hapter 4 for further details.

'^W right (1994) encovnitered a similar problem with the Irish price index and the Irish Germ an exchange 
rate, and made similar assumptions.
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the small sample correction has no impact on this result. Both the Trace and Maximal 
eigenvalue tests find evidence for one cointegrating vector. Tables D.19 and D.20 present 
the results for Ireland and the United Kingdom. As with the previous case, the finding of 
one cointegrating vector in the specification without interest rates is overturned by the small 
sample correction. Two cointegrating vectors are found, however, when the interest rates are 
included and this result is unaffected by the small sample correction, which strangely is less 
than 1! These results indicate that there is little evidence of cointegration in a traditional PPP  

specification, but that the introduction of interest rate differentials appears to be significant. 
These findings are very similar to those of Wright (1994). Overall, however, as in other 
studies, this attem pt to place the P p p  analysis in a coiiitegrating framework is not entirely 
satisfactory.

6.4.3 Com mon factor analysis

To complete this final stage of the conventional analysis, two specifications were examined 
for the P p p  hypothesis, as was the case with both the Engle-Granger (1987) and Johansen 
(1988, 1991) approaches. For Ireland and Germany, the specification including the short-term 
interest rates was estimated as follows

D M / I R X  ^  ^  g g  _  o _ 4 4 p j ’-e Q A 3p l 'L \  +  0.73p ? ^ ^  -  0.82pfi^[
( 0 .30 ) ( 0 .04 ) '  ‘  ( 0 . 22 ) ( 0 . 21 ) ( 0 .55 ) ( 0 . 54 )

+ 0.59£ -  -  0.86E -  +  O.IHE -  + O M E  -  +  it,  (6.4)
( 0 .001 ) ( 0 .001 )  ( 0 .005 ) ( 0 .005 )

where standard errors are given in parenthesis. Full results can be found in Table D.21. As in 
Chapter 5, just the common factor restrictions w'ere tested. The results, which can be fountl 
in Table D.22, show that the imposed restrictions cannot be rejected, thereby excluding the 
possibility of cointegration among these variables.

The second specification for Ireland and Germany, without the interest rates, was esti
mated as follows,

D M / I R £  ^  ^  _  Q_4g J rp  ^  (3 4 7  Ir_e ^  ()_^4pG er _  0 , 9 3 p^ej- ^  5 )
( 0 . 26 ) ( 0 .04 ) * ( 0 .21 ) ( 0 . 208) ( 0 . 44 ) ( 0 .43 )

The full results may be found in Table D23. Once again, the tests of common factor re
strictions i)rove to be insignificant, as is clear from Table D.24. There is no evidence of 
cointegratioii in this case. It can be concluded, therefore, that no evitlence of cointegra
tion can be found using the COMFAC approach, for Ireland and Germany, regardless of the 
inclusion of interest rate variables.

Next, attention was turned to the data for Ireland and the United Kingdom. Two spec
ifications were again estimated and the C om  FAC restrictions then tested. As before, no evi
dence of cointegration was found with this method. The first specification, including prices
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and sh o rt-te rm  in terest ra te s  was es tim ated  as

S t g £ l i R £  ^  -  1.06pf"^ +  l . O d p l L ^  +  O M p V ^  -  0 .5 7 p P f
( 0 .09 ) ( 0 .05 ) ( 0 ..30) ( 0 . 27 ) ( 0 . 48 ) ( 0 .48 )

+  O.OOSif"'  ̂ -  0.0(J4i/l'i -  0.002i^^'^' -  0.58^; -  SiVJi + i f  (6.6)
( 0 .002 ) ( 0 .002 ) (0 .003 ) ( 0 .003 )

T h e full O ls resu lts can  be found in T able D.25. T h e  tes ts  of the  com m on factor restric tions 

can be found in Table D.26. A gain, th e  restric tions prove to  be insignificant, excluding  th e  

possibility  of co in tegration  in th is  case. T h e  second specification, inchiding ju s t  prices as 

independen t variables, was estim ated  as

S t g £ I I R £  ^  ^  ^ ^ ^ ^ S ^ g £ / I R £  _   ̂ / r e  ^  +  0 .38p^^ ' -  0.38p[{5 +  £t-
(0 .09 ) (0 .05 ) ( 0 .29 ) ( 0 . 27 ) (0 . 46) ( 0 . 45 )

(6.7)

T hese resid ts are available in T able D.27. T h e  resu lts  of the  tests  of restric tions, in Table 

D.28 are sim ilar to  th e  previous resu lts. T h e  restric tions are insignificant, a lthough  one of 

th e  two is m arginally  significant at th e  10 per cent level, which suggests th a t  th e re  is no 

coin tegration  in th is case. As has been th e  case for all CoMFAC analysis in th is  ch ap te r, it 

is again found th a t th ere  is no evidence of coin tegration  in the  Ireland and  U nited  K ingdom  

Pf’I’ d a ta , regardless of th e  inclusion of in terest differentials. T his confirm s th e  findings of 

the  Engle-G ranger (1987) approach  and  th e  Johansen  (1988, 1991) resu lts excluding  in terest 

rates.

6.5 Testing for Fractional Integration

Table D.33 gives th e  resu lts  of th e  sim ple fractional analysis. For each series, four different 

estim ates of d  are given to g eth er w ith  th e ir s ta n d a rd  errors and  F a d f  value. T h e  F.ADF test 

is only m eaningful if fi <  1 and  th e  p robab ilities to  be applied to  th e  test s ta tis tic s  are the  

s tan d a rd  norm al ones. T h e  resu lts  a re  in teresting  and  would seem to im ply th a t  th e  only 

series th a t  is likely to  be fractionally  in teg ra ted  is Irish in terest ra tes. W hile all th e  estim ates 

of d  for th e  nom inal exchange ra te  betw een Ire land  and  th e  U nited  K ingdom  are less th an  

one in all cases, th e  F a d f  tes t fails to  reject th e  null hypothesis of a  u n it roo t. For all o th er 

series, th e  estim ates of d  gave conflicting values and  th e  F a d f  test only gave s tro n g  evidence 

of fractional in teg ra tion  in the  case of th e  Irish  G erm an  exchange ra te . T his suggests th a t  

th e  conflicting evidence on co in tegration  canno t readily  be a ttr ib u ta b le  to  fractionality .

6.6 N onlinear Inference

To account for th e  possib ility  of {)aram eter instab ility , or som e o ther ty p e  of nonlinearity , 

H am ilton’s (2001) random  field ajjp roach  was used to  explore the  likely form  of th e  two P f’F 

m odels exam ined th u s far, and  th is  leads to  som e in teresting  results. H am ilton ’s L m te s t 

s ta tis tics  for non linearity  for th e  Irish  G erm an  case were 575.04 and  180.03, for th e  m odels 

w ith  and  w ithou t in terest ra tes, respectively, which are significantly g reater th a n  th e  5 per
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cent critical x f  value of 3.84. This clearly suggests the  models should not be simply linear.
Nonlinear estim ates were obtained for both  models, using the S t e e p e s t  D e s c e n t - 

N e w t o n  algorithm switching technique, an initial value of C =  0.5, Ham ilton’s (2001) covari
ance specification, with convergence being achieved in both  cases after 36 iterations. Results 
can be found in Table D.34. For the model w ithout interest rates, both a  and (,' are sig
nificant, and both price variables are found to be nonlinearly significant, i.e., they are both 
found to contribute to the nonlinearity found previously. For the specification with interest 
rates, both price variables are again nonlinearly significant, as is the German interest rate. 
In this case, is marginally insignificant, but as A and a  are highly significant here, this may 
be evidence of the ‘pile-up’ problem  associated with mmierical optim isation, alluded to in 
C hapter 2. This may signal th a t the covariance structu re  used for the random  field, if not 
the normality assum ption itself, may not be entirely appropriate  here.

Given the difficulties associated with plotting a conditional likelihood function w'ith three 
nonlinearly significant variables, the cross plot of the Irish Germ an exchange rate against the 
Irish price series and the G erm an price and interest series is considered instead. It is clear 
from Figure D.4 that a num ber of regime shifts are evident in the data. W hether we consider 
a model with ju st prices, or the augm ented model with interest rates, the struc tu ra l shifts 
remain. The difficulty in this case is to find an appropriate modelling strategy for this. I 'h is 
issue will be mentioned again later in this section.

For the Irish United Kingdom c;ase, the same approach was taken. In this ca^e the 
nonlinearity test statistic;s were 650.72 and 205.00, for both  the standard  and augmented 
model. Once again, both values significantly exceed the critical value, suggesting a non
linear model may be appropriate. The same strategy was employed, using the S t e e p e s t  

D e s c e n t - N e w t o n  algorithm  switching technique, an initial value of (̂  =  0.5, H am ilton’s 
(2001) covariance sjjecdfication. Convergence was achieved after 42 and 19 iterations, respec
tively.

Interestingly, both price variables are found to be nonlinearly significant in the standard  
model, as are a  and This m irrors the results of the Irish G erm an case. For the augmented 
model, both price series are again nonlinearly significant, although in this case, it is the Irish 
interest tha t is nonlinearly significant. The United Kingdom interest rate  is not. As before, 

is marginally insignificant, bu t both  A and a  are highly significant. As in the German case, 
it is not possible to obtain a graphical representation of the conditional likelihood fmiction 
here, so once again, simple cross-plots are relied upon. A lthough these plots, which can be 
found in figures D.5 to D.7, also show some evidence of distinct regimes, they are certainly 
less clear than  the German case. In fact in the  case of the Irish interest rate, no obvious 
pattern  emerges.

Most strikingly, perhaps, is the fact tha t when nonlinearity is modelled by means of a 
random  field, the coefficients on the domestic and foreign prices in the specifications with 
and w ithout interest rates, are not statistically  significantly different from their -1 and 1 
values under purchasing power parity  theory. This finding contrasts with the findings in 
the earlier Irish studies by, for example, Thom  (1989) and W right (1994), both of whom 
reported cointegrating vectors, corresponding to  the vector of variables st, pt and pi,  th a t 
were markedly different from (1, -1, 1).
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Having founci strong evidence of nonlinearity in all of these models, and which variables 
may be instrum ental in causing th a t nonlinearity, the question remains how to model tha t 
uonlinearity. In neither the German nor the United Kingdom case does the da ta  suggest an 
obvious approach, nor is there a theoretical framework w ithin which to work. Given the likely 
complexity of finding and fitting suitable models to  the relationships discussed here, it is felt 
th a t such work is beyond the scope of this illustrative exercise. The fact remains, however, 
th a t strong evidence of nonlinearity is fovmd in these cases, and to better understand the 
phenomenon of purchasing power parity, efforts should be directed to exploring this in both 
economic and econometric term s. This is left for future research.

6.7 Conclusion

This chapter has explored the well-known economic concept of purcluising power parity for 
Ireland, Germ any and the United Kingdom. Very much in keeping with the overall themes 
explored in this thesis, and the conclusions of C hapter 5, this chapter has shown the potential 
for difficulties in placing the study of PE’f’ in the / ( l ) / / ( 0 )  framework. It has shown also, 
tha t in this case, these difficulties cannot be overcome by moving to a fractional integration 
framework. There was strong evidence of nonlinearity among the data  and perhaps this 
should be the approach taken to model this type of relationshij).

S tandard  A d f  tests, implemented using the procedure of Dolado, et al. (1990), suggested 
th a t m ost of the variables here have unit roots. There was some doubt over this finding for 
the logarithm  of the Irish price level, bu t following Wright (1994), and given the strong prior 
th a t price levels are / ( I ) ,  this was assiuned to be the case. There was no evidenc;e of seasonal 
integration in the variables: in fact. H e g y  tests generally confirmed the findings of the A d f  

tests.
Under the reasonable assum ption th a t all of the variables were / ( I ) ,  the Engle-Granger 

(1987) approach was empk)yed to test for cointegration. In both the standard  models, and 
the models augmented with interest rates, no evidence of cointegration was found for either 
Germ any or the United Kingdom. This result was confirmed by the CFtUW test, the estim ation 
of error-correction models and by the error-c:orrection test of cointegration.

The Johansen (1988, 1991) approach found evidence of one cointegrating vector in both 
the Germ an and United Kingdom standard  models. Applying Johansen’s (2002) small sam 
ple correction overturned this finding, however, confirming the earlier results of the Engle- 
G ranger (1987) approach of no cointegration. For the models augmented with interest rates, 
one cointegrating vector was again found for each case, t:>ut the correction fac;tor had no 
bearing on either, thus contradicting the  results of the Engle-Granger procedure. The results 
thus far confirmed the findings of Thom  (1989) and Wright (1994).

Interestingly, the common factor approach found no evidence whatsoever of cointegration. 
This was very much in agreement w ith the findings of the Engle-Granger (1987) methodology 
and the results of the Johansen (1988, 1991) w'hen ju st prices were included as independent 
variables.

L ittle evidence of fractional integration was found in the series, with only Irish interest 
rates having fractional estim ates significantly different from 1. Unlike the results in C hapter
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5, tliis suggests that the conflicting evidence on cointegration cannot readily be attributable 
to fractionality.

Testing for nonlinearity with Hamilton’s (2001) LM-type test uncovered strong evidence 
of nonlinearity in both the German and United Kingdom models. Evidence from the random 
field regressions suggested that both the price and interest variables play a strong role in 
this nonlinearity. Moreover, if the nonlinearity is modelled using a random field regression, 
they show, importantly, that the Irish experience vis-a-vis Germany and the United Kingdom 
accords well with purchasing power parity theory. Examination of simple cross plots revealed 
evidence of shifts in regime for those variables found to contribute to the nonlinearity. No 
attem pt was made to model such iionlinearity in this case, although this is an interesting 
avenue for future research.

In conclusion, therefore, it would seem that despite the apparent 7(1) nature of the 
data, the standard and augmented PPF> models do not fit well into the cointegration and 
error-correction framework. As the series do not appear to exhibit fractional integration, 
entertaining the notion of fractional cointegration would not further the modelling effort. In 
fact, evidence suggests that these models are highly nonlinear and that such nonlinearity 
derives from both the prices and interest rates. These findings very much depend on the 
validity of the Hamilton (2001) methodology for 7(1) variables. As mentioned in Chapter 
2, Lee, et al. (2005) have fomid the Hamilton LM-type test to be susceptible to spurious 
nonlinearity, when applied to nonstationary variables. Despite such reservations, given the 
evidence presented in this chapter, efl'orts to model purchasing power parity should perhaps 
be directed to captviring this nonlinearity.
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Chapter 7

Some Empirical Observations on 
the Forward Exchange R ate  
Anom aly

Hesearch carried out in the course of writing this chapter lias led to  the publication of 'Some Empirical 
Observations on the Forward Exchange Flate Anomaly’ by Bond, D., M.J. Harrison. N. Hession, and E..J. 
O ’Brien, in Trinity Economic E’apers No. 2 (2006). It was presented a t the 26*^ Conference on Applied S ta
tistics in Ireland. Killarney, Co. Kerry, 17*̂ ‘-19*^ May 2006 and the 4*  ̂ I n f i n i t i  Conference on International 
Finance, Dublin. Ireland, 12‘^ -i3 ‘  ̂ June 2006.
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7.1 Introduction

This chapter will examine the forward exchange rate  anomaly. It is the final siibstantive 
chapter of this thesis and the th ird  and last application of the methodologies discussed in 
chapters 2, 3 and 4. As the focus here will be deliberately narrow, it is somewhat shorter 
than  chapters 5 and 6.

T he forward exchange rate  anomaly arises from the failure of the forward rate  unbiased
ness (F r u ) property; i.e., the fact th a t the results of empirical studies suggest th a t foreign 
exchange m arkets are so inefficient at forecasting the future movements of exchange rates th a t 
they system atically predict these movements in the wrong direction. A substantial literature 
exists on both the anomaly and the risk premium, stem m ing prim arily from the seminal paper 
by Fama (1984), although excellent surveys are also provided by Hodrick (1987) and Engel 
(1996). Recently, following develoinnents in econometric theory, tw'o approaches have been 
taken to  investigate the forward exchange rate anomaly. The first views the anomaly as the 
outcom e of possible nonlinearity in (economic and financial relationships. This nonlinearity 
can be modelled by using sm ooth transition regressions, which have been briefly mentioned 
in c:hapters 2 and 5. The second approach a ttem pts to explain the anomaly in term s of 
fractional integration, previously introduced in C hapter 4.

The aim of this chapter is to use two recent developments in ec;onometric theory, intro
duced in earlier chapters, to explore the forward exchange rate  anomaly. The first of these is 
the Ham ilton (20(31) m ethod of nonlinear inference, based on random  field regression. This 
was introduced and discussed at considerable length in C hapter 2. The second is the Dolado, 
Gonzalo, and Mayoral (2002) fractional augm ented Dickey-Fuller ( F a d f ) test, th a t was intro
duced in C hapter 4. Both m ethods have also been applied in chapters 5 and 6. where further 
discnissions can be found. These m ethods may otter further insight into the understanding (jf 
the anomaly.

The (-liapter will proceed as follows. In Section 7.2 the forward exchange rate anomaly will 
be discussed and the notation used will be explained. A review of the a ttem pts at explaining 
the anomaly will also be given. In Section 7.3, the data, for the cross-exchange rates for 
the A ustralian dollar and sterling, the Canadian dollar and sterling, and the Japanese yen 
and sterling, will be presented and discussed. A prelim inary analysis of the d a ta  will also be 
completed. Sections 7.4 and 7.5, respectively, will consider tests for integration, cointegration 
and nonlinearity, employing the Dolado, et al. (2002) F a d f  test and the Hamilton (2001) 
random  field model. Finally, Section 7.6 will offer a brief sunnnary and conclusion, which 
will consider how the results reported relate to  the general discussion of the forward exchange 
ra te  anomaly.

7.2 T he Forward E xchange R ate A nom aly

The forward exchange rate anomaly has played a central role in the theory of foreign ex
change m arket efficiency. Consider, as a starting  point, the covered interest rate  parity (CiP)
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hypothesis of international macroeconomics, which sta tes tha t

f t , k  - s t  =  it .k -  it.fc, (7.1)

where st  and f t ,k  are the (logarithm) spot and forward exchange rates a t tim e t, k  is the 
length of the forward contract and it_k and are the k  periods to  m aturity  nominal interest 
rates available on similar domestic and foreign assets, respectively. The validity of the CiP 
hypothesis is generally accepted.^

Closely linked to  the ClP hypothesis is the uncovered interest ra te  parity (UlP) condition, 
th a t can be seen as a central parity condition for foreign exchange m arket efficiency:

E t { ^ t + k  ~  ^t)  — H.k ~  h .k i  (7-2)

or

Et{AkS t+K- )  =  H.k -  i*t.k̂  (7.3)

where Et{- )  denotes the expectation based on information available at tim e t  and A .̂ =  \  — L^ ,  

with L  being the usual lag operator. Making use of Equation (7.1) in Equation (7.3) gives

E t i ^ k S t + k )  =  f t , k  -  (7.4)

and therefore

E t { s t + k )  =  f t ,k-  (7.5)

Equation (7.5) is also known as the forward rate  imbiaaedness hypothesis. Simple tests of the 
CiP and FF{L’ hypotheses consist of inference on the coefficients of the following regressions:

A k ’'^t+k =  Oi +  Li\{f t .k — ■“'’t) +  fl.t+A,-! (7.6)

and

>̂ t+k =  <'1̂2 +  +  f2.«+fc) (7.7)

where f i j + k  and f-2 . t+k  are hypothesised white noise error terms.
Under the UlP anrl F ru hypotheses, a; =  0 and 3i =  1, i =  1,2.  Early analysis, such as 

Frenkel (1976),  used Ecjuation (7.7) and the results appeared encouraging, with estim ates of 
02 being found to be close to 1. However, the results also had m ost of the hallm arks of the 
spurious regression problem alluded to in C hapter 4.^ Therefore, most of the next round of 
empirical work used Equation (7.6) as its basis, with the seminal work being th a t of Fama 
(1984).  Findings, based on a large variety of currencies and tim e periods, generally failed 
to accept the UlP hypothesis and the efficient m arket hyjjothesis; see, for example, Hodrick 
(1987),  Lewis (1995) and Engel (1996).  The estim ates of obtained were usually negative 
and insignificantly different from zero. This negative estim ate for fii is the main feature of 
the forward exchange rate anomaly; it implies th a t the more the  forward currency is at a 
prem ium  in the forward market the less the home currency is predicted to depreciate.

'See Sarno and Taylor (2003), Chapter 2 for a survey of evidence.
^See also Phillips (1986).
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Ill recent years, two interrelated tojjics, which may have considerable relevance to the 
investigation of the forward ra te  anomaly, have a ttrac ted  miu;h attention. The first, deriving 
m ainly from economic theory, is the possibility of nonlinearity in economic and financial 
relationships and its investigation using variations of the smoothed transition regression model 
of Granger and Terasvirta (1993).^ The second, based mainly on econometric theory, is the 
role of time-series dynamics and, in particular, the possibility of fractional integration in 
explaining the  anomaly.^

These developm ents m irror in several ways the developments in econometric theory deal
ing with nonstationarity  and nonlinearity of tinie-series processes. As m entioned in C hapter 
6, it has been well known for many years th a t it is difficult to distinguish statistically  between 
difference sta tionary  series and nonlinear bu t sta tionary  series. Recent research has not only 
considered the  effects of nonhnearity on unit root tests such as the augm ented Dickey-FuUer 
test, bu t also the  reverse scenario; the effect of nonstationarity  on tests for nonlinearity.

The em pirical investigation of the forward exchange rate  anomaly has been handicapped 
by a lack of appropriate  econometric procedures. As discussed in C hapter 5, inference can be 
problem atical in the fractionally integrated environm ent, as none of the normal procedures 
are ajjpropriate. T he classical asym ptotics of the 7(0) case do not apply when the series 
are fractional and neither does the conventional 7(1) ai)proac^li. Early tests of fractional 
integration were based on the frecjuency dom ain approach of Robinson (1994).'’ In this 
ajjproach, a seniiparanietric test statistic is calculated for various values of d and inferenc:e is 
m ade on the tabu la ted  results. For further details and an application of the m ethodology to 
the  forward ra te  anomaly, using the Canadian US dollar exchange rate.®

Testing for nonlinearity in a context of nonstatioiiarity  is also problem atical. In Gil-Alana 
(2004), an a ttem p t was made to extend the sem iparam etric approach of Robin.son (1994) but 
th is requires knowledge of the form of the nonlinearity. O ther rec:ent {>apers by Dolado. 
et al. (2005b) and Mayoral (2005), considered testing for fractional integration against the 
alternative of sta tionarity  and nonlinearity in the form of s tructural breaks.

In this chapter, the usefulness of two recent tests in helping to explain the forward ex
change rate anom aly are investigated. The first is the fractional augm ented Dickey-Fuller 
( F a d f ) test introduct'd by Dolado, et al. (2002), which is a siniple-to-implenient param etric 
test;^ and the second is the random  field regression-based approach to testing for nonlinear
ities introduced by Hamilton (2001), discussed at length in C hapter 2 and lused throughout 
th is thesis. T he strength  of H am ilton’s approach, unlike others, is tha t it does not rely on 
any functional form being specified prior to  estim ation.

7.3 Data

To investigate the usefulness of both the Dolado, et al. (2002) F adf test and the Hamilton 
(2001) random  field regression ajjproach in helping explain the forward exchange ra te  anoni-

^See, for exam ple, Sarno, Valente and Hyginus (2006), Baillie and Kilig (2006) and Sarno (2005).
■*See Baillie and Bollerslev (2000), Maynard and Phillips (2001) and Gil-Alana (2002).
®See Gil-Alana and Robinson (1997, 2001),
®See G il-Alana (2002).
^See Chapter 4 for a full discussion of this test procedure.
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aly, this chapter appHes tlie two techiiiciues to  the cross-exchange rates for the A ustrahan 
dollar and sterling, the Canadian dollar and sterling, and the Japanese yen and sterling.

These d a ta  were taken from Thomson Financial’s D atastream  service and are provided in 
A ppendix E .l , tables E .l, E.2 and E.3 for Australia, C anada and Japan , respectively. Ju st 
the relevant d a ta  are provided here: the exchange rate, the logarithm  of the spot rate and 
the logarithm  of the spot rate  3-month future. The rem aining series exam ined here can all be 
derived from these. Specifically, the logarithm  of the forward rate  (3 m onths) is simply the 
logarithm  of the relevant exchange rate, the forward prem ium  is the difference between the 
logarithm  of the forward ra te  and the logarithm  of the spot rate, and the spot premium is 
the difference between the forward prem ium  and the logarithm  of the spot rate. In each case, 
the d a ta  used are daily series for the following periods:* 31*^ December 1996 to  16‘*' June 
2005, inclusive, for the A ustralian exchange rate and logarithm  of the spot rate, and for all 
of the Japanese series; 31**‘ December 1996 to 18^’* March 2005, inclusive, for the Australian 
logarithm  of the spot rate 3-months future; 30^^ December 1994 to 16̂ *' June 2005, inclusive, 
for the C anadian exchange rate and the logarithm  of the spot rate  and 30*̂ '' December 1994 
to  18 '̂' M arch 2005, inclusive, for the Canadian logarithm  of the spot ra te  3-nionths future. 
For illustration, the relevant da ta  series are plotted in A ppendix E.2, figures E .l to E.6.

7.4 T esting for (C o)integration

For purjioses of comparison, the study sta rts  with the standard  / ( l ) / / ( 0 )  analysis, using 
the A d f  test and using the m ethodology of Dolado, et al. (1990), to  determ ine whether the 
series are trend  stationary  or difference stationary.® The lag lengths for the A d f  test were 
determ ined by means of the modified Akciike information criterion ( M a i c ), which Ng and 
Perron (2001) have shown to be a generally better decision criterion than  the standard  A lC , 

as it takes account of the persistence found in many series. As well as testing  the individual 
exchange rate  and exchange premium series, unit root tests were also carried out on the 
ordinary least sc[uares residuals from a num ber of sta tic  regressions to assess the  possibility 
of cointegration.

The results of the preliminary miit root tests are given in Table E.4. The Dolado, et al. 
(1990) testing stra tegy  failed to support the existence of a trend or drift in all cases, so the 
p-v'ahies given in Table E.4 are those provided by M acKinnon (1996). A clear picture emerges 
from Table E.4. In all three cases considered, the A df test does not suggest rejection of the 
null hypothesis of a unit root in the forward exchange rate, the spot ra te  and the forward 
premium, but it does point to clear rejection of the unit root null for all three spot premiums.

Following this analysis, the issue of fractional integration was investigated with the 
Dolado, et al. (2002) F a d f  test, which itself requires a consistent param etric estim ate of 
the param eter d. Following i)revious chapters, two param etric estim ates of d are calculated, 
using the AFiFIMA package of Doornik and Ooms (1999). The first is Sowell’s (1992) exact 
m aximum likelihood ( E m l ) estim ator, which requires th a t d <  0.5. As discussed in Chapter

^Although daily series are available, the data in Appendix E .l show only every fifth observation. The daily 
series were analysed throtighout this chapter, with the exception of the random field regressions, where weekly 
data were used to reduce the com putational burden.

*^See Chapter 4 for further details of Dolado, et al. (1990).
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4, estim ates of d  are ob ta ined  from th e  first differences of series, for th is reason. T h e  o ther 

e s tim a to r is B e ra n ’s (1995) nonhnear least squares es tim ato r (N ls ) ,  w hich is based  on the 

cond itional sum  of squared  naive resichials. T h e  n o n p aram etric  es tim ato rs  of Geweke and  

P o rte r-H u d ak  (1983) (G p h ), and  th e  sem iparam etric  es tim ato r discussed in R obinson  (1994), 

a re  also com puted . B o th  of these com plem entary  approaches are also available in th e  D oornik 

an d  O om s A r f i m a  package. T he p aram etric  E m l estim ates of d  are th en  used in th e  F a d p " 

te s t, w ith  th e  M a i c  again being used to  set th e  lag leng th  of th e  test. To investigate th e  

resu lts  of M aynard  and  P h ilhps (2001) and  Zivot (2000), equations (7.6) and  (7.7) were es

tim a ted  and  th e  order of in tegra tion  of th e  respective es tim ated  error term s e x p l o r e d .F o r  

E q u atio n  (7.7), b o th  St and  st+k are regressed on /^ jt, following M aynard  and  Phillips.

Table E .5 contains th e  resu lts of th e  fractional in teg ra tion  analysis. T h e  F a d f  tes t fails 

to  re ject th e  null hypothesis th a t  the  sp o t and  forw ard ra te s  are / ( I )  aga inst th e  a lte rn a tiv e  

of fractional in tegra tion , in agreem ent w ith  th e  findings of Heravi and  P a tte rso n  (2005). 

However, from  th is tab le  it can be seen th a t in all cases, it is unlikely th a t  th e  forward 

p rem ium  is e ith e r / ( I )  or /(O). W hereas the  A d f  te s t c:ould not reject th e  / ( I )  hypothesis, 

th e  F a u f  te s t clearly re jects it, if th e  E m l es tim ate  of d  is used for the  a lte rn a tiv e  hypothesis. 

It therefore seem s very likely th a t  th e  forw ard prem ium  is I{d.), w here 0 < d < 1. T h e  weight 

of evidence from  th e  p aram etric  es tim ato rs  is th a t  d  is a round  0.5.

E stim a tio n  of th e  value of d for th e  sj)ot p rem ium  proved in teresting. G iven th e  A d f  

resu lts in Table E .4, it would seem reasonable to  assvune th a t d is close to  zero. However, 

b o th  p a ram etric  and  sem iparam etric  estim ates of d  are close to  unity. T h e  converse seems 

to  be tru e  for th e  forw ard prem iinn, for which Table E .4 suggests a value of d  close to  one, 

while th e  correspond ing  resu lts in T able E.5 suggest a m uch lower value of d. T h e  values 

of d  o b ta in ed  for th e  forw ard prem ium  are m ore in line w ith  those rep o rted  by Baillie and 

Bollerslev (1994), th an  those found by M aynard  an d  PhilliiJS (2001).

T lie resu lts  for th e  s tan d a rd  regression m odels of ecjuations (7.6) and  (7.7) are p resen ted  in 

Table E .6. T h e  es tim ated  coefficients are generally in hue w ith  the  corresponding  re su h s from 

j)revious s tud ies and  it can be concluded from th e  standarci E ngle-G ranger (1987) approach  

th a t  m ost of th e  levels regressions m ay co n stitu te  a  co in tegrating  regression. T h ere  are  clear 

con trad ic tions, however, between th e  E ngle-G ranger p rocedure  and th e  resu lts of th e  Cr^DW 

test; for th e  regressions st on ft,k^ the  C r d w  tes t re jects th e  null of no co in tegration  for all 

th ree  currencies, in d irec t con trad iction  to  the  E ngle-G ranger approach. T h is  s itu a tio n  is 

reversed for th e  rem ainder of regressions, w ith  th e  C r d w  tes t faihng to  re ject th e  null of 

no co in tegration , while the  A e g  tes t finds evidence of coin tegration  in all cases. Table E.7 

p resen ts es tim ates  of d  ob ta ined  from th e  four a lte rn a tiv e  m ethods of estim ation  ajiplied to

^'^Maynard and Phillips (2001), using both parametric and nonparametric estim ation, found evidence of 
nonstationary long-memory behaviour of the forward premium. They went on to show how the implied im
balance in the traditional Fama-type regressions leads to nonstandard limiting distributions for the estim ators 
and the test statistics. T he slope and coefficients converge to zero, the t statistic diverges and its left-tailed 
lim iting distribution appears consistent with the forward rate anomaly. They also showed that regression in 
the levels would be fractionally cointegrated, with nonstationary residuals and a slope coefficient estim ate that 
is consistent, but with a t statistic that diverges. If the forward premium is indeed a long memory process, 
then the sim ple F ru  hypothesis must be rejected. Zivot (2000) showed that if St  and f t , \  are cointegrated, the 
cointegrating model for s t + i  and ft.\ is not a sim ple finite-order ECM and that estim ating a first-order E c m  for 
S( + i and /t , i  can lead to mistaken inferences concerning the exogeneity of the spot rate and the unbiasedness 
of the forward rate.
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the residuals from the regressions reported in Table E.G. The results obtained are broadly in 
line with the theory given in M aynard and Phillips (2001), as previously mentioned. W hile 
estim ates of d  for the residuals of all three St on ft^k regressions are generally small, those 
from the o ther two regressions are considerably larger in the three cases. Correspondingly, 
the F df and Fadf tests clearly reject the 7(1) null in favour of the alternative of fractional 
integration for the residuals of all regressions of St on ft^k for the residuals of the Canadian 
dollar-sterling regression of St+k on Jt^k- This latter rejection of the null appears to agree 
with the corresponding result in Table E.G. However, in the case of Table E.7, the indication 
is clearly th a t the alternative is 0.5 <  rf < 1, rather than  0 <  d <  0.5, though 7(0) is the 
conclusion from the Engle-Granger type analysis. There is one case of clear disagreement 
between the findings of the unit root test in Table E.6 and the corresponding result in Table 
E.7. This is the Japanese yen-sterling regression of ^ k ^ t + k  on { f t . k  ~  st}, for which the 
standard  vmit root test strongly stiggest rejection of the unit root null, while the fractional 
tests indicate nonrejection. Given th a t the Dickey-Fuller test is well known to have low jjower 
in distinguishing between series th a t are / ( I )  and I { d ) ,  where d  is less than  but close to unity, 
this is somewhat puzzling, as the estim ates of d, in this case are all very close to unity. This 
c;ase further underlines the difficulties in relying on one approach or procedure.

7.5 N onlinear Inference

Finally, the random  field regression approach is applied to the data. To do this, the G auss 
program  code provided by Ham ilton (2001) is used. Giv'en the large size of the dataset, the 
approach of Hansen and Hodrick (1980) is adopted to ease the considerable com putational 
t)urden involved in the random  field analysis. Weekly d a ta  points are chosen, using every 
Hfth observation.

The results from the Hamilton (2001) analysis are given in Table E.8. In producing these 
results, tw'o variants of equations (7.G) and (7.7) were used. After some exploratory checking 
of cross-plots, a time trend was included in both equations, and they were estimated with and 
without a constant. For computational reasons, some re-scaling of the data was midertaken 
and an algorithm-switching strategy was used in the numerical optimisation. Specifically, the 
observations on the exi)lanatory variable ft,k were scaled up by a factor of ten in the case of 
the Canadian dollar-sterling data, while switching between the G auss algorithms S teef^ est  
D e s c e n t  and N ew  to n  was used, along with selected initial values of ranging from 0.1 to 
1.9, and the default value of the G auss parameter _oprteps; see Chaj)ter 2 for further details 
on the computational aspects of the Hamilton (2001) methodology. Furthermore, both the 
original Hamilton covariance matrix and the Dahl and Gonzalez-Rivera (2003) forms of the 
covariance matrix for the random field were ut i l i s e d . De s p i t e  the extensive experimentation 
in the approach to the calculations, it did not prove jjossible to obtain nonlinear estimates 
for the premium ecjuations in the Australian dollar-sterling and the Japanese yen-sterling 
cases. In the c:ases in which the nonlinear estimation was successful, the number of iterations 
recjuired to determine the maximum likelihood estimates ranged from G to 28.

^\See cliapters 2 and 3 for further details.
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T h ere  is overw hehning evidence of nouH uearity in these m odels, w ith  th e  H am ilton  (2001) 

L agrange m ultip lier te s t s ta tis tic s  rang ing  from 381.46 to  5925.76. As can be seen from  

Table E .8, th e  non linearity  in th e  eciuations is consistently  associated  w ith  th e  tim e variable, 

which h as a s ta tis tica lly  significant coefficient in the  nonlinear com ponent of all of th e  m odels 

successfully estim ated . I t should be n o ted  hov/ever, th a t  ft^k ’̂Iso has a  s ta tis tica lly  significant 

coefficient in th e  nonlinear com ponent in the  case of Jap an , whic:h suggests th a t  vuilike the  

o ther cases, th e  non linearity  here m ay be associated  w ith  b o th  ft,k

A fea tu re  of th e  H am ilton (2001) resu lts  is th e  high significance of th e  a  and  C, estim ates  in 

th e  equa tions for exchange ra tes , and th e  con trasting  lack of significance of these estim ates  in 

th e  C an ad ian  do llar-sterling  prem ium  equations, even though th e  la t te r  estim ates are m uch 

bigger num erically. It seem s reasonable to  assum e th a t  these p a rtic u la r  insignificant resu lts 

are re la ted  to  w h a t, in th e  tinie-series lite ra tu re , is known as th e  ‘p ile -u p ’ phenom enon as

sociated  w ith  num erical op tim isation , and  th a t th is  m ay signal th a t  th e  covariance s tru c tu re  

used for th e  random  field, if not th e  no rm ality  assum j)tion itself, m ay no t be en tire ly  a p p ro 

priate.^"^ Recall th a t  th is problem  was also encountered  in C h ap te r 6, th e  s tu d y  of purchasing  

power j)arity.

However, th e  m ost significant aspect of th e  H am ilton (2001) analysis is th a t  it shows th a t  

when non linearity  is allowed for by m eans of a random  field in th e  e^xchange ra te  ecjuation, the  

in tercep t is no t significantly  different from  zero and  the  slope coefficient is es tim ated , w ith  

g reat precision, to  l>e un ity  in each of th e  cases considered, in accordance w ith  exchange ra te  

theory. Sim ilarly, in th e  C anad ian  do llar-sterling  exchange pren iiiun  ecjuation, th e  in tercep t 

and slope are not significantly different from zero and  unity, respectively, th ough  as the  

s tan d a rd  erro rs a re  larger in th is  case, th e  resu lt is not qu ite  as s trik in g  tis it is for th e  ra te  

equations. M odelling non linearity  using the  H am ilton m ethod  seem s to  rem ove th e  forw ard 

anom aly.

7.6 C onclusion

T his ch ap te r has focused on th e  well-known foreign exchange ra te  anom aly, b rough t to  prom i

nence by F ania (1984). It has given b rief descrip tions of the  anom aly  and  th e  m ain  early  

aj)proaches th a t  were used in try in g  to  explain it. In particu la r, it has draw n a tten tio n  to  

the  theo re tica l work by Dolado, et al. (2002) on tes tin g  for fractional in tegra tion , an d  th a t  

of H am ilton  (2001) on random  field regression and nonlinear inference, as developm ents th a t  

offer re levant new ap{)roaches to  th e  s tu d y  of th e  anom aly. Finally, to  assess th e  usefulness of 

these tw o new m ethods, th e  chap te r rep o rts  on an  investigation of th e ir app lica tion  to  th ree  

sets of exchange ra te  and  exchange prem ium  d a ta . T h e  m ain findings a re  as follows.

In all th ree  cases considered, th e  s ta n d a rd  / ( I ) //( () )  approach to  tes tin g  for u n it ro o ts  and  

co in tegration  suggests th a t  spo t and  forw ard exchange rates, as well as th e  forw ard exchange 

prem ium , behave as n o n sta tio n a ry  7(1) series, and  th a t  the  spo t p rem iiun  is /(O). T here  are 

m ixed findings on th e  possib ility  of co integration; th is  possib ility  is clearest in th e  C anad ian  

do llar-ste rling  case.

^^See C hapter 2, DeJong and W hitem an (1993), and Hamilton (2005) for further details.
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W hile th e  resu lts of th e  fractional in tegra tion  analysis accord w ith  th e  finding th a t  spo t 

and  forw ard ra te s  are / ( I ) ,  th ey  co n trad ic t those of th e  s tan d a rd  analysis w ith  regard  to  th e  

properties  of th e  exchange prem ium s. W hereas th e  A d f  test suggests th a t  d = \  for th e  

forw ard prem ium , E m l  an d  o th er estim ates ind icate  a  value closer to  d =  0.5, and  th e  F d f  

and  F a d f  te s ts  give a  s tro n g  rejection  of th e  im it root null hypothesis. Sim ilarly, rejection 

of the  u n it roo t null in th e  s ta n d a rd  analysis suggests th a t  th e  sp o t p rem ium  m ay be tre a ted  

as /(O), while fractional p a ram ete r estim atio n  ind icates th a t  d is fairly close to  unity. T h is 

la tte r  conflict is very puzzling and  deserves a tten tio n  in any fu tu re  research, p erh ap s using 

the  new te s t of Dolado, et al. (2005b), which would perm it testin g  of th e  null hypo thesis th a t  

a  series is /(O) aga inst th e  a lte rn a tiv e  th a t  it is fractionally  in tegrated .

Sim ilar d iscrepancies em erge betw een th e  outcom es of s tan d a rd  u n it ro o t tes t an d  th e  

fractional analysis when th e  o rd in ary  least squares residuals from a varie ty  of regressions are 

exam ined. T h e  F d f  and  F a d f  te s ts  ten d  to  su p p o rt the  s ta n d a rd  tests  w ith  regard  to  their 

finding th a t  th e  u n it roo t null should be rejected  for th e  residuals, b u t th e  fractional analysis 

suggests th a t  0 <  d <  1, calling into cjuestion th e  s tan d a rd  conclusion th a t  th e  residuals m ay 

be deem ed to  be /(O).

T here  are strong  ind ications of tim e-dependen t nonlinearity  when th e  d a ta  are sub jected  

to  exam ination  using th e  H am ilton  (2001) nonlinearity  test and  random  field regression p ro

cedure, though  in two of o u r cases nonlinear estim ates for th e  prem ium  eciuation could not 

be ob tained . T h is m a tte r  also deserves fu rth e r investigation in fu tu re  r e s e a r c h . I t  is of con

siderable in terest th a t in all cases w hen th e  non linearity  is successfully m odelled by m eans 

of a random  field, exchange ra te  theo ry  is confirm ed and  th e  forw ard ra te  anom aly  removed. 

T h is key finding adds weight to  th e  earlier work on the  relevance of non linearity  or p a ram ete r 

in stab ility  to  th e  forw ard anom aly  deba te , referred  to  in Section 7.2. It po in ts  clearly to  the  

]>ossibility th a t  th e  kind of re la tionsh ips th a t have been estim ated  are nonlinear.

^^See Bond, Harrison, and O ’Brien (2005a) for a detailed discussion of Hamilton algorithm failures.
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This thesis has discussed a variety of issues in apphed tim e series econometrics. Specif
ically, it has considered some of the problems associated with modelling stationary, non- 
stationary  and nonlinear data , and the difficulties in distinguishing between them . The 
Hamilton (2001) framework for exploring nonlinearity has been examined, as has the L m- 
type test for nonlinearity, proposed therein. The concept of fractional integration has been 
highlighted and discussed, and its potential in further developing modelling strategies has 
been explored. Johansen’s (2002) small-sample Trace test correction has also been employed. 
These technicjues have been applied to three case studies: the dem and for money in D enm ark 
and Finland, purchasing power parity  for Ireland, Germany, and the United Kingdom, and 
the forward exchange ra te  anomaly for the currencies of Atistralia, Canada, Japan , and the 
United Kingdom. W hat follows is a more detailed sunm iary of each chapter.

After a short introductory  chapter which discussed the motivation behind this thesis. 
C hapter 2 began by giving a brief review of nonlinear economic modelling. The m otivation 
for, and several m ethods of, modelling nonlinear economic relationships were introduced and 
discussed. Most im portantly, a new approach to nonlinear econometric modelling, proposed 
by Hamilton (2001), was introduce'd. An account of this new approach was given, as was a 
brief description of some of the m ethods of nonlinear optim isation th a t may be used in the 
G a u s s  com puter program  provided by Hamilton for the im plem entation of his methodology. 
T he performance of this program  was investigated using da ta  relating to H am ilton’s three 
examples, using not only random ly generated tlata, but also tla ta  concerning the U S  Philliijs 
ciu've, two versions (jf the G a u s s  software and a range of alternative numerical optim isa
tion options, including the G a u s s  param eter _op rteps, and param eter starting  values. The 
performance of algorithm  switching procedures was also examined. Finally, the effects of 
changes in the sample data  on the results produced by Ham ilton's procedure were (explored. 
T he focus was designedly on the G a u s s  implem entation of the procediue and. while several 
changes in the G a u s s  proc-edures were investigated, no a ttem p t was made at m odification 
of Ham ilton’s methodology. The results presented suggested some clear conclusions, which 
will hopefully be of value to  those contem plating working w ith H am ilton’s m ethod. Different 
algorithm s used for the numerical optim isation have different chances of success. H am ilton’s 
choice of the Broyden, Fletcher, Goldfarb and Shanno algorithm  fails in over (iO per cent of 
the cases examined in the study  of his Example 3, while the less com putationally efficient 
S t e e p e s t  D e s C'ENT m ethod succeeds in all cases. W hen different algorithm s work, they may 
{jroduce significantly different numerical results, including different signs for param eter esti
mates. The use of procedures th a t employ two algorithms and a switching criterion appears 
to result in less variation in the param eter estimates, when compared to any one algorithm  
used on its ow'n, and to be less sensitive to the choice of initial param eter estim ates. M inor 
changes in d a ta  can have significant effec;ts, both in term s of whether an algorithm  operates or 
not and, in the case of it operating, the numerical results it produces. Despite the sensitivity 
of results to choice of algorithm , initial values and da ta  changes, the statistical significance 
of the nonlinear param eter estim ates, hence the inference about the form of nonlinearity, 
generally seems to  be little affected according to the findings th a t have been reported.

For the sim ulated datasets used in Examples 1 and 2, the sensitivity of results to choice 
of algorithm  and size of sam ple was less pronounced than  has been found using the real

132



(lata of Example 3. Hamilton (2005) offered some insight into the difficulties which may 
have caused the nmiierical instability of the algorithms revealed in this study. His findings 
seem to confirm that ‘difficult’ likelihood surfaces make convergence challenging. Another 
possibility is that difficulties exist within Hamilton’s methodology, and that the use of the 
alternative covariance functions for specifying the random field regression model may help 
to reduce numerical instability, as may different procedures for estimating the parameters of 
Hamilton’s random field regression model. These m atters constitute an interesting agenda for 
future research. Finally, Hamilton (2005) drew attention to the phenomenon known as ‘pile- 
up’. While issues relating to this were not discussed in Chapter 2, they are of considerable 
importance, and were discussed in Chapter 5. With regard to the implementation of the 
Hamilton random field regression methodology, the main reconmiendation of Chapter 2 is to 
employ an algorithm switching approach supplemented as necessary by changes of the G a u s s  

-o p rtep s  parameter, the starting value of C, and using both the Hamilton and Dahl and the 
Gonzalez-Rivera’s (2003) c:ovariance specifications. On the basis of the evidence provided 
here and supplemented in later chapters, such an approach is more efficient than the use of 
single algorithms and appears to be less susceptible to numerical instability and failure.

Chapter 3 assessexi the power of several tests of nonlinearity, some of which are well 
known, across a range of specifications often encountered in economics and econometrics. 
The results provide some clear evidence regarding the comparative power of these tests. The 
well-known tests of Durbin and Watson (1950), Harvey and Collier (1977) and Ramsey (1969) 
are powerful against misspecification and nonlinearity, particularly when the former tests are 
applied to ordered data. Given the relative simplicity of these tests and their wide availabil
ity, with the exce{)tion of the Harvey-Collier test, these results certainly endorse their use in 
applied research. The LM-type test, proposed by Hamilton (2001), does offer a more powerful 
solution, but the increase in power is small, and given its more complex nature and lac'k of 
widespread availability, it may remain under-utilised. Of the three tests proposed by Dahl 
and Gonzalez-Riv(Ta (2003), the A^p test appeared to be most powerful across the range of 
specifications examined here, particularly when the test was implemented with bootstrapped, 
as opposed to asymptotic, p-values. Interestingly, there does not aj)pear to be a large dif
ference between the powers obtained from the bootstrapped p-v'alues and the asymptotic 

values, despite the relatively small sample sizes used. The exception to this was the gop 
te’st, where asymptotic and bootstrapped p-values differed considerably. Also, the A^p test 
appeared to be somewhat more powerful than Hamilton’s A^ test, although the powers for 
this test are based on the asymptotic />values. Once again, however, differences in power are 
small, suggesting perhaps that Ramsey’s R e s e t  should be favoured over the random field 
methods. Avenues for further research would be to compare the performance of the boot
strapped A^ test with its asymptotic equivalent; to consider the performance of the Keenan 
(1985), Tsay (1986) and Luukkonen, Saikkonen, and Terasvirta (1988) tests, which are adap
tations of R e s e t , against the random field methods discussed here, as these are potentially 
more powerful than the R e s e t  procedure and perhaps, therefore, more i)owerfvil than the 
random field apj)roaches. It would also be interesting to consider a wider range of model 
specifications and data, including nonnormal distributions, to gain a greater understanding 
of the properties of these tests.
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C h ap te r 4 in troduced  th e  necessary theo re tical m ateria l for th e  rem aining chap ters. It 

contained s ta n d a rd  trea tm e n ts  of th e  concepts of s ta tio n a rity  and nonsta tionarity , tes tin g  for 

m iit roots, co in tegration  and  th ree  approaches to  testing  for it, namely, th e  E ng le-G ranger 

(1987) 2-step m eth o d , Jo h an se n ’s (1988, 1991) V a r  tests  and  th e  COMFAC approach . C on

sidera tion  was also given to  th e  fractional augm ented  Dickey-Fu.ller test p roposed  by Dolado, 

Gonzalo, and  M ayoral (2002) and  Jo h an sen ’s (2002) sm all sam ple correction to  th e  Trac:e 

test. Given th e  relatively  recent n a tu re  of these topics, th is  chap ter aim ed to  give ju s t  an  

account of these procedures.

C h ap te r 5 drew  a tten tio n  to  some of th e  pitfalls involved in using th e  conventional 

/ ( l ) / / ( 0 )  fram ew ork for econom ic and financial m odelling of tim e-series d a ta , an  approach  

involving well-known u n it roo t te s ts  and th e  co in tegration  testing  and  m odelling procedures 

of Engle and G ranger (1987), Johansen  (1988, 1991) and  CoMFAC analysis th a t  have been 

applied widely in applied  economics. T h e  practic;al difficulties of un tang ling  th e  issues of 

sta tionarity , fractional in teg ra tion , non linearity  and  param eter instab ility  were h ighlighted.

These issues were h ighlighted by p resenting  a case s tu d y  in tended  to  illu s tra te  th e  ap p li

cation  of these newer techniciues and  to  co n tra s t their findings w ith those of th e  s ta n d a rd  

cointegration m odelling approach . T he s tu d y  used th e  d a ta  previously analysed by Jo h an sen  

and  Juselius (1990) and  Johan.sen (1996) in connection w ith  dem and for m oney functions 

in D enm ark and  F in land . T h e  resu lts ob ta in ed  from  the  various teclmiciues exem plify the  

problem s w ith  th e  s tan d a rd  approach  and  th e  a lte rn a tiv e  conclusions th a t  m ight be reached 

liy using different techniques. T h e  findings were as follows.

T hough A d f  tests, im plem ented  using th e  procedure  of Dolado, Jenkinson , and  Sosvilla- 

R ivero (1990), ap p ear to  suggest un it ro o ts  for m ost variables, they are sensitive to  th e  

si)ecification of th e  test equ a tio n  and  the  in fo rm ation  criterion  used to  choose lag leng th  in 

th e  case of som e varialjles, especially  for F in land . W'hen the  m a tte r  of un it roo ts  was explored 

fu rther, using th e  Elliot, R o thenberg , and Stock (1996), Kwiatkowski, Phillips, Schm idt, and  

Shin (1992), an d  Ng and  P erron  (2001) tests , u n it roo ts for the  D anish variables ten d ed  to  

be confirm ed b u t no t for th e  F inn ish  variables.

P roceeding on th e  assum ption  th a t all variables are / ( I ) ,  th e  E ngle-G ranger (1987) 2- 

s tep  procedure does not su p p o rt co in tegration  in general, a resu lt th a t is confirm ed by Ec'M 

tests  conducted  in an  erro r-correction  fram ew ork for the  m oney dem and re la tionsh ip  for each 

country. However, the  E ngle-G ranger ajjproach does suggest co in tegration  for th e  F in lan d  

m odel th a t tre a ts  bo th  th e  inflation and  deposit ra te  variables as /(O).

Using th e  Jo hansen  (1988, 1991) approach  w ithou t sm all sam ple b ias-correction  for th e  

Trace test, th e re  is considerab ly  stronger evidence of co in tegration  in th e  case of D enm ark , 

though  the  num ber of co in teg rating  vectors suggested varies, depending  on th e  Vaf? specifi

cation  chosen. T h e  p ic tu re  th a t  em erges for F in lan d  is sim ilar, although for th e  m odel th a t  

tre a ts  th e  inflation and  dej)osit ra te  variables as 1 ( 0 ) ,  the  Johansen  (1988, 1991) m eth o d  

suggests no co in tegration , co n trad ic tin g  th e  finding of th e  Engle-G ranger (1987) proc;edure 

in th is case.

T he Johansen  (2002) correction  factor has a m arked effect on the  resu lt in th e  case of 

th e  sm all sam ple of d a ta  for D enm ark; the  m odified trace  tes t agreeing w ith  th e  conclusion 

from  the  E ngle-G ranger (1987) procedure th a t  th e re  is no coin tegrating  dem and  for m oney
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relationship. The Johansen correction has no effect on the findings for Finland, which are 
based on a much larger sample. These results are puzzling, and in particular, the contradic
tory  results from the Engle-Granger and Johansen (1988, 1991, 2002) procedures concerning 
the existence of cointegrating relationships, in the case of both  countries, is curious.

The coiinnon factor approach failed to reject the possibility of c:ointegration in either the 
Danish or Finnish samples, including the reduced Finnish models. This adds further weight 
to  the contradictory evidence regarding cointegration in these data.

Checking for fractional integration by means of a range of estim ators of the  fractional 
integration param eter, as well as the new fractional Dickey-Fuller and fractional augm ented 
Dickey-Fuller tests of Dolado, et al. (2002), confirms the  7(1) na tu re  of the Danish variables 
and the lack of a unit root for the variables in the case of Finland.

Assuming th a t the Finnish da ta  are not / ( I ) ,  and hence can not be simply cointegrated, 
the possibility of stationarity  with regime shifts or some other kind of uonlinearity arises. 
This Wcis explored, for both countries, by the Ham ilton (2001) procedure, which is more ap
propriate  for general, miknown forms of nonlinearity. This m ethod produced strong evidence 
of struc tiu ’al change/nonlinearity, if m iderlying sta tionarity  is entertained. However, an a t
tem pt to re-specify the money dem and equations as piecewise linear regressions, which was 
suggested by examination of tlie data, was not very successful. Clearly, further work would 
be necessary to find an adecjuate nonlinear functional form, were this alternative approach 
to be preferred.

The messages from this study appear to be as follow’s. The standard  / ( ! ) / / ( ( ) )  modelling 
strategies for economic and financial tim e series a{>pear to be fraught with dangers. Fractional 
integration analysis, which is relatively easy to implement, may confirm the existence of unit 
roots, but may also suggest fractional integration to different degrees for different variables, 
riiis  is a complicated situation th a t raises challenges for modelling. Rec alling th a t unit root 
tests may often indicate tha t a unit root exists when a series is stationary  but subject to level 
shifts, a general analysis of uonlinearity, such as tha t offered by the Hamilton (2001) proce
dure, may be an attractive option th a t can lead to acc;eptaV)le alternative models. It wovdd 
sc^em th a t the reliance on any one approach may not be a sensible practice in applied work, 
and th a t practitioners would be well advised to consider using a range of alternative m ethods 
and selec:ting models according to the balance of the wider body of evidenc:e produc:ed.

Chai)ter 6 examined the testing of purchasing power parity using Irish data . Tests for 
fractional integration and nonlinearity were used to investigate the behaviour of the Irish 
exchange rate for Germany and the United Kingdom. This chapter, much like Chapter 5, 
showed the potential for difficulties in placing the study  of purchasing power parity  in the 
7 ( l) / / ( 0 )  framework. It also show'ed th a t in this case these difficulties cannot be overcome 
by moving to a fractional integration framework. In fact, there was strong evidence of non- 
linearity in the data. This suggests th a t perhaps a nonlinear approach should be taken to 
model this type of relationship.

S tandard  augmented Dickey-Fuller tests, im plem ented using the procedure of Dolado, 
et al. (1990), suggested th a t most of the variables here have unit roots. A lthough there 
was some doubt over this finding for the Irish j)rice level, this was assumed to  be the case. 
There was no evidence of seasonal integration in the variables. Under the assumi)tion tha t



all of the variables were / ( I ) ,  the Engle-Granger (1987) approach was employed to test for 
cointegratioii, bu t no evidence of cointegration was foiind for either Germany or the United 
Kingdom. This result was confirmed by the estim ation of error-correction models and ECM 

tests of cointegration.
The Johansen (1988, 1991) approach found evidence of one cointegrating vector in both 

the German and United Kingdom standard  models. Applying Johansen’s (2002) small sample 
correction overturned this finding, however. For the models augmented with interest rates, 
one cointegrating vector was again found, bu t the correction factor had no bearing in this 
case, thus contradicting the results of the Engle-Granger (1987) approach. Interestingly, the 
conmion factor apj)roach found no evidence whatsoever of cointegration.

Little evidence of fractional integration was found in the series, with only Irish interest 
rates having an estim ated param eter of fractional integration significantly different from 1. 
Unlike the results in C hapter 5, this suggests th a t the conflicting evidence on cointegration 
cannot readily be attribu tab le  to fractionality. Testing for nonlinearity with H am ilton’s 
(2001) LM-type test uncovered strong evidence of iionlinearity in both the German and United 
Kingdom models. Evidence from the random  field regressions suggested tha t the price and 
interest variables play a strong role in this nonlinearity. Exam ination of simple cross plots 
revealed evidence of shifts in regime for those variables found to contribute to the nonlinearity. 
No attem pt was made to model such nonlinearity in this Ccise, although this is an interesting 
avenue for future research.

It would seem, therefore, th a t despite the apjjarent / ( I )  nature of the data, the s tan 
dard and augmented PPP models do not fit well into the cointegration and error-correction 
framework. As the series do not appear to exhibit fractional integration, entertaining the 
notion of fractional cointegration would not further the modelling effort. In fact, evidence 
suggests that these PF'P relationships are highly nonlinear, and tha t such nonlinearity derives 
from both the prices and interest rates. Efforts to model i>urcliasing pow'er parity should be 
directed to capturing this nonlinearity.

Chapter 7 focused on the well-known foreign exchange rate anomaly, brought to prom i
nence by Fama (1984). It gave a brief description of the anomaly, the main early api)roaches 
th a t were used in trying to explain it, and how" fractional integration and nonlinearity un
derlie some recent a ttem pts at explanation, using both long memory time-series models and 
tests for nonlinearity. In particular, it has drawn atten tion  to the theoretical work by Dolado, 
et al. (2002) on testing for fractional integration, and th a t of Hamilton (2001) on random  
field regression and nonlinear inference, as developments th a t offer relevant new approaches 
to  the study of the anomaly. Finally, to illustrate and assess the usefulness of these two 
new methods, the chapter reported on an investigation of their application to three sets of 
exchange rate and exchange prem ium  data. The main hndings were as follows.

In all three cases considered, the standard  7 ( l) / / ( 0 )  approach to testing for unit roots 
and cointegration suggested th a t spot and forward exchange rates, as well as the forward 
exchange premiiun, behave as nonstationary 7(1) series, and th a t the spot i)remium is 7(0). 
Furtherm ore, there were mixed findings on the possibility of cointegration; the possibility was 
clearest in the Canadian dollar-sterling case. W hile the results of the fractional integration 
analysis accorded with the finding th a t spot and forward rates were / ( I ) ,  they contradicted

136



those of the  s tan d a rd  analysis w ith  regard  to  th e  p ro p erties  of th e  exchange preniivniis. 

W liereas th e  A d f  tes ts  suggested th a t  d = 1 for th e  forw ard prem ium , E m l an d  o ther 

estim ates ind icated  a vahie closer to  d =  0.5, and  th e  F d f  and  F a d f  te s ts  gave a  s trong  

rejection of th e  u n it roo t null hypothesis. Sim ilarly, rejection of th e  u n it roo t null in the 

s tan d a rd  analysis suggested th a t  th e  spo t p rem ium  m ay be trea ted  as /(O), while fractional 

p aram ete r estim ation  ind icated  th a t d  is fairly close to  unity. T h is  la tte r  conflict is very 

jnizzling and  deserves a tten tio n  in any fu tu re  research, p erh ap s using th e  new te s t of Dolado, 

Gonzalo, and  M ayoral (2005b), which would p erm it tes tin g  of th e  null hypothesis th a t  a 

series is /(O) against the  a lte rn a tiv e  th a t it is fractionally  in tegra ted . S im ilar discrepancies 

em erged betw een th e  outcom es of s ta n d a rd  u n it roo t te s ts  and  th e  fractional analysis when 

th e  o rd inary  least squares residuals from  a  variety  of regressions were exam ined. T h e  F d f  

and F a d f  te s ts  tended  to  su p p o rt th e  s tan d a rd  tes ts  w ith  regard  to  th e ir finding th a t  the  

m iit root null should be rejected  for th e  residuals, b u t th e  fractional analysis suggested 

th a t 0 <  fi <  1, calling into cjuestion th e  s tan d a rd  conclusion th a t the  residuals m ay be 

deem ed to  be /(O). T here  were strong  ind ications of tim e-dependen t non linearity  w hen the  

d a ta  are sub jected  to  exam ination  using th e  H am ilton  (2001) non linearity  tes t and  random  

field regression procedure, though  in two of our cases, nonlinear estim ates for th e  pren iim n 

ecjuation could not be ob tained . T h is  m a tte r  also deserves fu rth e r investigation  in fu tu re  

research to  develop th e  findings of B ond, H arrison, an d  O ’B rien (2005a), concerning the  

failure of the  H am ilton algorithm . It is of considerable in terest th a t  in all cases w hen the  

nonlinearity  was successfully m odelled by m eans of a random  field, exchange ra te  th eo ry  was 

confirm ed and  the  forw ard ra te  anom aly  removed. T h is  key finding adds weight to  th e  earlier 

work on th e  relevance of non linearity  or p aram ete r in stab ility  to  th e  forw ard anom aly  debate . 

It i)oints clearly  to  th e  possib ility  th a t  th e  kind of re la tionsh ips th a t  have been es tim ated  are 

nonlinear.

In conclusion, th is thesis has outlined  m ethods for m oilelling nonlinearity , and  in p a rticu 

lar, the  new approacli a t tr ib u ta b le  to  H am ilton (2001). It has discussed th e  im plem entation  

of th is  procedure and  explored th e  power of its in tegral te s t for nonlinearity . It has high

light etl th e  p o ten tia l difficulties associated  w ith th e  s ta n d a rd  / ( l ) / / ( 0 )  fram ework, and  has 

used the  H am ilton approach , in tan d em  w ith  o th er recent developm ents in tes tin g  for frac

tional in tegra tion  and  coin tegration , to  com pare m odelling strateg ies, using as illustra tive  

c;ase stud ies th e  dem and  for money, purchasing  power parity , and  the  forw ard exchange ra te  

anom aly. T h is work has offered clear insights into th e  difficulties th a t  m ay be encoun tered  in 

num erical op tim isation , regardless of th e  procedure  or p rogram  in which it is used, and  has 

co n trib u ted  fu rth e r to  th e  u n d erstan d in g  of th e  H am ilton  m ethodology. It has ascertained  

th e  power of a range of random  field-based tes ts  for non linearity  aga inst several well-known 

tests. T h e  problem s of relying on any one approach  to  m odelling, a  cen tra l them e of this 

thesis, have been clearly ou tlined  in th ree  case stud ies. T hese stud ies have also co n trib u ted  to 

th e  u n d ers tan d in g  of th e  areas of m oney dem and , purchasing  power parity , and  th e  forw ard 

exchange ra te  anom aly.
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A .l  D ata  for H am ilton ’s Exam ples

T ab le A .l :  D a ta  for H a m ilto n ’s (2001) E xam p le  3.

Ut TTt Ik n Ut

1048 3.8 3.0 1966 3.8 3.5 1984 7.5 3.9
1949 5.9 -2.1 1967 3.8 3.0 1985 7.2 3.8
1950 5.3 5.9 1968 3.6 4.7 1986 7.0 1.1
1951 3.3 6.0 1969 3.5 6.2 1987 6.2 4.4
1952 3.0 0.8 1970 4.9 5.6 1988 5.5 4.4
1953 2.9 0.7 1971 5.9 3.3 1989 5.3 4.6
1954 5.5 -0.7 1972 5.6 3.4 1990 5.5 6.1
1955 4.4 0.4 1973 4.9 8.7 1991 6.7 3.1
1956 4.1 3.0 1974 5.6 12.3 1992 7.4 2.9
1957 4.3 2.9 1975 8.5 6.9 1993 6.8 2.7
1958 6.8 1.8 1976 7.7 4.9 1994 6.1 2.7
1959 5.5 1.7 1977 7.1 6.7 1995 5.6 2.5
1960 5.5 1.4 1978 6.1 9.0 1996 5.4 3.3
1961 6.7 0.7 1979 5.8 13.3 1997 4.9 1.7
1962 5.5 1.3 1980 7.1 12.5 1998 4.5 1.6
1963 5.7 1.6 1981 7.6 8.9 1999 4.2 2.7
1964 5.2 1.0 1982 9.7 3.8 2000 4.0 3.4
1965 4.5 1.9 1983 9.6 3.8 2001 4.8 1.6

Source: h t t p : / / w w w . b l s . g o v / .

T able A .2: D a ta  for H a m ilto n ’s (2001) E xam p le  1.

XI ^2 Xl ^ 2 Xl X2

1 -1.496 6.446 14 2.330 -30.162 27 21,.392 -13.275
2 10.780 -3.349 15 7.583 15.786 28 -10.061 -1.464
3 1.292 -13.326 16 -6.042 2.789 29 -4.808 3.554
4 -13.721 1.057 17 6.664 4.697 30 -2.069 -7.897
5 -1.710 -5.035 18 7.061 -12.153 31 -1.749 -8.883
6 21.174 3.378 19 4.436 20.871 32 12.357 -17.726
7 9.814 -1.193 20 2.684 -11.124 33 -0.082 4.900
8 0.062 -6.746 21 13.161 -6.302 34 3.163 -1.763
9 0.997 -5.987 22 3.012 14.675 35 -0.055 1.623

10 3.393 11.574 23 -4.022 26.122 36 0.798 -8.917
11 11.553 7.599 24 10.679 5.702 37 4.418 11.649
12 18.400 12.391 25 11.823 14.381 38 11.070 -24.143
13 -16.851 9.096 26 -0.234 5.186 39 12.252 8.078

Continued on next page.
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41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Xl X2 •'Cl ^2 Xi X2

0.733 2.749 61 6.452 6.521 82 6.195 -13.680
-5.691 -20.963 62 4..305 17.726 83 -7.320 20.653
-9.451 -20.542 63 8.908 -0.187 84 -0.712 5.740
-1.506 -5.739 64 10.301 -4.572 85 6.259 6.612

-10.855 8.069 65 16.945 0.629 86 -6.585 -4.628
-9,493 -11.404 66 1.942 5.272 87 -20.608 17.380
20.376 10,213 67 0.580 16,792 88 -8.588 1,660

0.179 6,106 68 0.901 10,418 89 -0.247 4.028
-2.044 -4.997 69 -8.067 10.618 90 3.399 -11.128
2.039 -5.677 70 3.531 -21.965 91 -2.327 4.502

-4.391 -16,671 71 1.484 -9.801 92 8.782 6.354
-14.555 -3,992 72 16.703 -6.006 93 -0.311 23.368

-8.492 -14.156 73 -3.149 -9.161 94 3.547 -25.837
3.047 9.015 74 2.736 6.730 95 0.683 -1.138

-7.127 -3.087 75 13,615 -12.554 96 -18.421 -16.145
-9.599 10.729 76 -18,257 3.661 97 -7.658 -0.321

-23.986 3.794 77 1.114 -0.135 98 -6.609 -5.254
7.778 -2.436 78 16.268 4.419 99 0.666 -9.137
0.897 7.265 79 -16.1.30 4.878 100 1.479 5.199

-2.747 15.277 80 23.938 10.156
0.239 -3.764 81 -16.481 7.123

T able A .3: D a ta  for H a m ilto n ’s (2001) E xam p le  2.

■Tl ■C2 ,ri 2’2

1 -6.696 1.659 0.101 17 3.189 3.624 -0.008
2 -0.772 3.193 0.516 18 -0.352 2.480 2.949
3 -0.502 1.476 -0.162 19 -3.397 -1.941 -2.709
4 0.472 -4.107 1.235 20 -2.175 -1.574 -1.328
5 -0.441 -2..305 1.069 21 1.055 -1.457 -1.217
6 0.293 1.869 -0.058 22 3.109 -0.051 -3.784
7 1.235 -0.483 3,499 23 5.398 -1.166 2.970
8 -0.039 1,704 0,206 24 -2.545 1.781 -4.032
9 3.982 1.524 3.212 25 0,647 -0.744 0.625

10 0.302 0.524 -1.084 26 0,877 2,354 0.478
11 0.208 0.492 -0.551 27 4.210 -2.416 2.432
12 2.8.30 2.108 2.106 28 -2.153 1,648 0.681
13 -1.707 -1.318 0.464 29 -0.727 0.228 -0.390
14 3.277 -0.857 -1.732 30 0.682 0.064 0.475
15 -0.565 -0.691 -1.189 31 0.258 3.323 -1.187
16 0,323 3.961 0.201 32 2.608 -0.383 -0.706

Continued on next page.
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33

34

35

36

37

38

39

40

41
42

43

44

45

46

47

48

40

50

51
52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

,Tl X'2 X:i X i  X2 X3

- 1.582 - 2.581 0.486

- 0.505 - 0.849 2.601

0.354 0.958 0.533

1.120 1.070 - 1,661

- 0.664 - 1.062 0,874

- 0.982 1.261 1,898

- 4.550 0,707 1,346

1.039 - 3,511 - 1,461

0.709 - 2,427 - 0,421

1.431 2,226 2,464

- 0,229 - 0,708 2,218

- 3.533 - 1,932 - 1,955

- 0.175 - 0,176 - 1,629

- 1,605 2,082 - 0.407

- 4.787 0,699 - 3.491

- 0.309 - 3,005 2.496

1.564 - 4,833 0.582

0.057 - 2,830 1.530

0,553 - 3,132 0.535

- 1.117 - 0,559 3.703

5.332 - 0.924 - 3.975

- 0.537 0.628 - 1.922

0.693 - 2.306 - 2.304

3.949 - 2.756 - 1,629

- 0.580 - 2.684 6,955

1.761 - 1.452 1,270

3.703 - 0.805 0,341

0..391 2.937 - 2.207

- 0,455 - 1,230 5.471

- 1,866 2,371 - 2.227

- 2,833 2,302 - 1.052

1.568 1.451 - 3.363

- 0,354 - 0,631 - 2.324

- 1,122 1.511 1.854

2.217 - 0.125 - 0.377

1.987 0.432 - 0.021

- 0.296 - 2.564 - 0.741

2.574 - 1.470 - 0.235

- 2.204 0,531 - 0.075

0.168 - 0,513 0.358

- 1.085 - 3,269 - 0.625

1.128 - 3,206 - 0.973

- 1.764 - 1.627 - 0.503

- 3.498 - 1.441 - 3.605

0.891 0.285 0.465

0.355 1.905 - 1.792

- 1.481 - 0,088 - 1.099

- 3.269 - 0,052 0.047

0.364 1,693 0,325

0.073 3,624 0.350

1.476 - 0,108 - 2,133

1.773 0,470 - 1,425

- 0.119 1,059 - 1.009

0.029 0,564 - 1,821

1..385 2.147 3,289

- 0.523 - 1.541 0,793

0.985 - 3.997 4,155

- 5.002 - 0.965 0,884

- 2.190 - 1.004 - 2,068

0.887 2.413 - 2,624

- 0.309 0.669 - 0,615

- 0.903 - 1.911 0,359

- 0.407 - 0.595 0,936

1.792 - 1.011 0,182

- 1.222 - 3,166 1,078

- 1.450 3,823 - 1.402

1,026 - 1.537 - 1,014

- 0.611 - 3.249 - 2.840

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86
87

88
89

90

91

92

93

94

95

96

97

98

99

100
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T able A .4: D a ta se t  1 (H a m ilto n ’s U S P h illip s curve d a ta ), G A U S S  3 resu lts.

Algorithm Iterations .91 92 m (Ml rti (>2 C a

I; St e epest  D escent 150 Coellicient ().08!) 0.127 0.072 -51.903 -0.873 0.406 0.030 1.827 1.431
Standard error 0.1 10 0.071 0.016 153.654 0.431 0.253 0.078 1.019 0.355

2: B fgs 28 C’oeflicient 0.1.12 -0.155 0.136 -88.482 -0.922 0.436 0.049 2.017 1.237
Standard error 0.167 0.078 0.032 127.436 0.455 0.232 0.065 1.294 0.441

3; B fgs-sc 1 Coefficient - - - - - - - - -

Standard error - - - - - - - - -

4: D fp 150 CoefHdent 0.14:5 -0.155 0.1.36 -88.728 -0.919 0.437 0.049 2.036 1.240
Standard error 0.1f)8 0.077 0.031 126.952 0.457 0.231 0.064 1.283 0.440

5; N ewton 17 Coefficient 0.142 0.155 0.1,36 -88.482 -0.922 0.436 0.049 2.047 1.237
Standard error 0.167 0.078 0.032 127.214 0.455 0.232 0.065 1.294 0.441

6: P rcg 11 Coefficient - - - - - - - - -

Standard error - - - - - - - - -

Note: a dash (-) denotes no estim ate due to algorithm faihire.



T able A .5: D a ta se t  1 (H a m ilto n ’s U S  P h illip s  curve d a ta ), G A U S S  5 resu lts , _oprteps =  0 .00001 .

A l g o r it h m It e r a t i o n s .91 .92 a i « 2 c (T

1: S t e e p e s t  D e s c e n t 150 Coefficient 0 .1 4 4 0 .1 5 7 -0 .1 3 5 -8 9 .0 8 3 -0 .9 1 2 0 .4 4 0 0 .0 1 9 1 .988 1 .256
Standard error 0 .1 7 0 0 .0 7 8 0 .0 3 3 126 .027 0 .4 5 6 0 .2 3 0 0 .0 6 4 1 .228 0 .4 3 2

2: B f g s 28 Coefficient 0 .1 4 2 -0 .1 5 5 0 .1 3 6 -8 8 .4 8 3 -0 .9 2 2 0 .4 3 6 0 .0 4 9 2 .0 4 7 1.237
Standard error 0 .1 6 7 0 .0 7 8 0 .0 3 2 127 .113 0 .4 5 5 0 .2 3 2 0 .0 6 5 1.294 0 .441

3: B f g s - s c 1 C^oellicient - - - - - - - - -

Stauflard error - - - - - - - - -

4: D f p 150 Coefficient -0 .051 0.1151 0.541 -1 2 3 .1 4 1 -0 .6 5 4 0 .4 1 8 0 .0 6 6 7 .0 1 0 0 .3 6 5
Standard error 0..'}82 0 .1 2 7 0 .2 0 2 108 .257 0 .3 3 5 0 .3 3 6 0 .0 5 6 1 0 .033 0 .5 0 2

5: N e w t o n 15 Coefficient 0 .1 4 2 -0 .1 5 5 -0 .1 3 6 -8 8 .4 8 1 -0 .9 2 2 0 .4 3 6 0 .0 4 9 2 .0 4 7 1 .237
Standard error 0 .1 6 7 0 .0 7 8 0 .0 3 2 127 .058 0 .4 5 5 0 .2 3 2 0 .0 6 5 1 .294 0 .441

6: P r c g 150 Coefficient -2 .2 6 0 0.9.'50 -0 .0 7 8 -7 1 .0 9 3 -0 .4 2 9 0 .6 6 8 0 .0 3 8 4 .5 6 2 0 .491
Standard error 1.198 0 .4 7 3 0 .0 2 9 6 3 .1 5 4 0 .2 8 8 0 .1 2 9 0 .0 3 2 4 .7 8 2 0 .4 9 0

Note: a da.sh (-) denotes no estim ate due to algorithm failure.



Table A .6: D ataset 1 (H am ilton’s US Phillips curve data), G A U SS 5 results.

C oeffic ien t  E stimates <n .92 n-2 c (7

Algorithm _oprteps Iterations

1: St ee pe st  D escen t* 0.00001 150 Coefficient 0.141 0.1.57 -0.135 -89.083 -0.912 0.440 0.049 1.988 1.256
S tandard error 0.170 0.078 0,033 126.027 0.456 0.230 0.064 1.228 0.432

2: B fgs 0.00001 28 Coefficient 0.142 -0.155 0.136 -88.483 -0.922 0.436 0.049 2.047 1.237
Standard Error 0.167 0.078 0.032 127.113 0.455 0.232 0.065 1.294 0.441

0.001 2!) Coefficient 0.142 -0.155 0.1.36 -88.482 -0.922 0.436 0.049 2.047 0.441
Standard eiror 0.167 0.078 0.032 127.193 0.455 0.232 0.065 1.294 0.441

0.1 47 Coefficient - - - - - - - - -
Standard error - - - - - - - - -

1.0 20 Coefficient 0.142 -0.155 0.1.36 -88.482 -0.922 0.436 0,049 2.047 1.237
S tandard error 0.167 0.078 0.032 127.353 0.455 0.232 0,065 1.294 0.441

3: B fgs-sc* 0.00001 1 Coefficient - - - - - - - - -
S tandard error - - - - - - - - -

4: D fp 0.00001 150 Coefficient -0.051 0.131 0.541 -123.141 -0.654 0.418 0,066 7.010 0.365
S tandard error 0.382 0,127 0.202 108.257 0.335 0.336 0,056 10.033 0.502

0.001 150 Coeflicient -0.009 0.175 0.540 -111.722 -0.671 0,489 0,060 8.410 0.302
Standard error 0.360 0.081 0.134 87.365 0..321 0,199 0,045 15.513 0.545

0.1 150 Coefficient -0.005 0.150 0.55!) -114.967 -0.650 0,462 0,061 5.559 0.450
S tandard error 0.359 0.086 0.178 90.850 0.334 0,227 0.047 6.615 0.508

1.0 150 Coefficient - - - - - - - - -
Standard error - - - - - - - - -

5: N ew to n* 0.00001 15 Coefficient 0.142 -0.155 -0.136 -88.481 -0.922 0,436 0.049 2.047 1.237
S tandard error 0.167 0.078 0.032 127.058 0.455 0.232 0.065 1.294 0.441

6: P r c g * 0.00001 150 Coefficient -2.260 0.930 -0.078 -71.093 -0.429 0.668 0.038 4.562 0.491
S tandard error 1.198 0.473 0.029 63.154 0.288 0.129 0.032 4.782 0.490

Note: a  dash (-) denotes no estim ate due to algorithm faihire. 
* indicates same results for all values of _oprteps.



Table A .7: Effect o f in itial value o f C, D ataset 1 (H am ilton ’s US Phillips curve data) : single algorithm  (S teep est D escen t),
G A U SS 5 results.

V a ia ie  o f  C .91 .72 .7.1 (>o a i C a

0.4 Coefficient 0.141 0.155 0.136 -88.126 -0.927 0.434 0.049 2.082 1.225
S tandard error 0.165 0.077 0.032 128.072 0.455 0.233 0.065 1.336 0.447

0.5 C’oefficient 0.144 0.157 -0.135 -89.083 -0.912 0.140 0.049 1.988 1.256
Standard  error 0.170 0.078 0.033 126.027 0.456 0.230 0.061 1.228 0.432

0 .6 Coefficient 1.681 -1.078 0.081 -72.623 -0.431 0.670 0.039 1.986 1.026
S tandard  error 0 .8 8 6 1.211 0.037 63.130 0.284 0.129 0.032 1.593 0.644

0.7 Coefficient 0.140 0.155 0.136 -87.877 -0.9.30 0.433 0.049 2.107 1.218
Staiuiard error 0.164 0.088 0.033 128.815 0.457 0.243 0.065 1.375 0.452

0 .8 Coefficient 0.079 0.123 0.071 -45.273 -0.921 0.385 0.027 2.093 1.354
S tandard  error 0.125 0.072 O.Of!) 167.746 0.426 0.268 0.085 1.231 0.372

0.9 Coefficient 0.094 0.129 -0.072 -54.224 -0.849 0.416 0.031 1.715 1.467
S tandard  error 0.147 0.073 0.017 147.0.30 0.133 0.248 0.075 0.944 0.350

1.0 Coefficient 0.082 -0.123 0.071 -46.407 -0.907 0.390 0.028 2.026 1.373
S tandard  error 0.128 0.071 0.015 164.028 0.429 0.264 0.083 1.169 0.367

1.1 Coefficient 0,095 0.129 -0.072 -54.393 -0.847 0.417 0.031 1.706 1.470
S tandard  error 0.149 0.073 0.017 149.786 0.434 0.248 0.076 0.940 0.349

1.2 Coefficient 0.088 0.127 0.072 -51.0,34 -0.877 0.404 0.030 1.850 1.424
S tandard  error 0.136 0.071 0.016 153.303 0.428 0.254 0.078 1.030 0.35f)

1.3 Coefficient 0.154 0.160 -0.135 -92.380 -0.861 0.460 0.051 1.691 1..361
S tandard  error 0.191 0.101 0.034 117.212 0.463 0.227 0.060 0.962 0.399

1.4 Coefficient 0.158 0.162 -0.134 -93.275 -0.843 0.466 0.051 1.609 1.393
S tandard  error 0.197 0 .1 0 2 0.032 114.707 0.165 0.223 0.058 0.902 0.393

1.5 Coefficient 0.156 0.161 -0.135 -92.776 -0.854 0.463 0.051 1.656 1.374
S tandard  error 0.193 0.101 0.034 115.900 0.463 0.225 0.059 0.935 0.396

Note: in all cases, .o p rte p s  =  0.00001 and number of iterations =  150. Algorithm failed for initial values of (  = 0 . 1 .  0.2 and 0.3.



Table A .8: Effect o f in itial value o f c,, D ataset 1 (H am ilton’s US Phillips curve data): algorithm  sw itch ing (S teep est
D escen t/B F G S ), G A USS 5 results.

In it ia l  V a l u e  o f  ( It e r .a t io n s .91 .92 .93 no 0-1 fV2 (^3 c (T

0.5 28 (Coefficient 0.142 -0.155 0.136 -88.481 -0.922 0.436 0.049 2.047 1.237
S tandard error 0.1 «7 0.078 0.032 127.298 0.455 0.232 0.065 1.294 0.441

0.7 2!) C'oefficient 0.142 -0.155 -0.1.36 -88.481 -0.922 0.436 0.049 2.047 1.237
S tandard error 0.167 0.078 0.032 127.220 0.455 0.232 0.065 1.294 0.441

0.9 24 C^oeflicient 0.142 -0.155 0.1.36 -88.484 -0.922 0.436 0.049 2.047 1.237
S tandard error 0.167 0.078 0.032 127.885 0.455 0.232 0.065 1.294 0.441

1.1 18 Coefficient 0.142 -0.155 0.1.36 -88.482 -0.922 0.436 0.049 2.047 1.237
S tandard error 0.167 0.078 0.032 127.281 0.455 0.232 0.065 1.294 0.441

1.3 28 Coefficient 0.142 0.155 -0.1,36 -88.481 -0.922 0.436 0.049 2.047 1.237
Standard error 0.167 0.078 0.032 127.283 0.455 0.232 0.065 1.294 0.441

1.5 23 Coefficient 0.142 0.155 -0.1.36 -88.481 -0.922 0.436 0.049 2.047 1.237
Standard error 0.167 0.078 0.032 127.2.38 0.455 0.232 0.065 1.294 0.441

Note: algorithm failed for initial values of C = 0 . 1  and 0.3. In all cases. -Oprteps =  0.00001.



Table A .9: Effect o f in itial value o f C, D ataset 1 (H am ilton’s US Phillips curve data): algorithm  sw itch ing (S teep est
D escen t/N ew to n ), G AU SS 5 results.

I n i t i a l  V a l u e  o f  C I t e r a t i o n s .91 .92 .9.-! 0 () r t i rt-2 0.3 c (T

0.5 28 C'oefRcient 0.142 -0.155 0.136 -88.481 -0.922 0.436 0.049 2.047 1.237
Standard  error 0.167 0.078 0.032 127.371 0.455 0.232 0.065 1.294 0.441

0.7 25 Coefficient 0.142 -0.155 -0.136 -88.482 -0.922 0.436 0.019 2.047 1.237
Standard  error 0.167 0.078 0.032 127.198 0.455 0.232 0.065 1.294 0.441

0.9 21 Coefficient 0.142 -0.155 0.136 -88.482 -0.922 0.436 0.049 2.047 1.237
Standard error 0.167 0.078 0.032 126.874 0.455 0.232 0.064 1.294 0.441

1.1 11 Coefficient 0.142 -0.155 0.136 -88.482 -0.922 0.436 0.049 2.047 1.237
Standard error 0.167 0.078 0.032 127.673 0.455 0.232 0.065 1.294 0.441

1.3 24 Coefficient 0.142 0.155 -0.136 -88.482 -0.922 0.436 0.049 2.047 1.237
S tandard error 0.167 0.078 0.032 127.275 0.455 0.232 0.065 1.294 0.441

1.5 19 ( ’oefficient 0.142 0.155 -0.1.36 -88.481 -0.922 0.436 0.049 2.047 1.237
S tandard error 0.167 0.078 0.032 127.381 0.455 0.232 0.065 1.294 0.441

Note: algorithm failed for initial values of C = 0 . 1  and 0.3. In all cases. _oprteps =  0.00001.



T able A .10: D a ta se t 2, G A U S S 3 resu lts.

Algorithm 1t e r ..\tions .91 .92 .93 ao a i a2 0-3 c (7

1: Stee pe st  D escent 150 C\)eflicieiit -0.082 1.1/-;-') 0.220 -25.236 -0.833 0.239 0.017 3.497 0.803
Standard error 0.131 0.040 0.030 132.164 0.331 0.176 0.037 1.905 0.332

2: B fgs 54 C^oefticient - - - - - - - - -

Standard error - - - - - - - - -

3; B fGS-SC 1 C'oefiicient - - - - - - - - -

Standard error - - - - - - - - -

4; D f P 150 Coefficient - - - - - - - - -

Standard error - - - - - - - - -

5; N ewton 7 Coefficient 0.500 -1.283 -0.082 -38.335 -0.335 0.660 0.021 1.154 1.468
Standard error 0.365 0.805 0.037 0.678 0.280 0.135 0.035 0.678 0.451

6: P rcg 150 Coefficient 0.047 b 1 0.221 -28.182 -0.868 0.207 0.019 3.744 0.771
Standard error 0.162 0.033 0.045 140.213 0.311 0.172 0.071 1.914 0.311

Note: a dash (-) denotes no estim ate due to algorithm failure.



Table A .11: D ataset 5, G AU SS 3 results.

C o e f f i c i e n t  E s t i m a t e s  g i  g-z ,93  <^2 0 3  C  ^

Algorithm Iterations

1: S t e e p e s t  D e s c e n t 150 Coefficient 0 .1 5 3 -0 .1 5 6 -0 .1 4 0 -1 3 6 .1 9 7 -0 .9 8 4 0 .4 3 9 0 .0 7 3 1 .978 1 .236
Standard error 0 .1 7 2 0 ,0 7 8 0 .0 3 3 126 .625 0 .4 3 9 0 .221 0 .0 6 4 1 .259 0 .4 4 3

2: B f g s 62 Coefficient - - - - - - - - -

Standard error - - - - - - - - -

3; B f g .s- sc 1 Coefficient - - - - - - - - -

Standard error - - - - - - - - -

4: D f p 150 Coefficient - - - - - - - - -

Stanfiard error - - - - - - - - -

5: N e w t o n 11 Coefficient -0 .1 5 2 0 .1 5 5 0 .1 4 0 -1 3 6 .0 8 1 -0 .991 0 .4 3 6 0 .0 7 3 2 .0 2 5 1.221
Standard error 0 .1 6 9 0 .0 7 8 0 .0 3 2 127 .704 0 .4 3 9 0 .2 2 3 0 .0 6 5 1 .315 0 .451

6: P r c g 150 Coefficient -0 .1 1 6 -0 .151 0.141 -1 3 5 .4 4 5 -1 .0 2 9 0 .421 0 .0 7 3 2 .3 2 9 1 .129
Stan<lard error 0 .1 5 4 0 .0 7 6 0 .0 3 2 134.591 0 .444 0 .2 3 3 0 .0 6 8 1.794 0 .5 2 5

Note: a dash (-) denotes no estim ate due to algorithm failure.



T able A . 12: D a ta se t 7, G A U S S 3 resu lts.

C o e f f ic ie n t  E s t im a t e s .91 h .73 0-1 ^2 c (T

A lg o rith m I te ra tio n s

1: S t e e p e s t  D e s c e n t 150 C oefficient 1.538 -1.175 -0 .083 -103.345 -0.474 0.750 0.054 4.402 0.438
S ta n d a rd  e rro r 0.583 0.441 0.022 62.183 0.257 0.118 0.032 3.830 0.361

2: B f g s 26 C oefficient - - - - - - - - -

S ta n d a rd  e rro r - - - - - - - - -

3: B f g s - sc 1 C’oefficient - - - - - - - - -

S ta n d a rd  e rro r - - - - - - - - -

4: D f p 150 C oeffic ien t - - - - - - - - -

S ta n d a rd  e rro r - - - - - - - - -

5: N e w t o n 10 C oeffic ien t 0.137 -0.039 -0.128 -201.127 -0.991 0.391 0.106 5.063 0.575
S ta n d a rd  e rro r 0.122 0.044 0.017 166.789 0.471 0.163 0.085 6.120 0.576

6: P rcg 12 C oeffic ien t - - - - - - - - -

S ta n d a rd  e r ro r - - - - - - - - -

N o te : a  d a sh  (-) d e n o te s  no  e s t im a te  d u e  to  a lg o rith m  fa ih ire .



T able A .13: D a ta se t  8, G A U S S 3 resu lts.

C o e f f i c ie n t  E s t im a te s  <?i g-2 ,93 ao q2 a .3 C a-

Algorithm Iterations

1; S t e e pe st  D escent 150 Coefficient - - - - - - - - -

Standard  error - - - - - - - - -

2: B fgs 42 Coefficient - - - - - - - - -

Standard  error - - - - - - - - -

3; B fGS-SC 1 Coefficient - - - - - - - - -

Standard  error - - - - - - - - -

4; D fp 150 Coefficient 1.966 0.447 0.115 -60.980 -0.363 0.648 0.033 14.822 0.158
Standard  error 0.708 0.172 0.057 64.908 0.305 0.137 0.033 45.736 0.484

5: N ew ton 10 Coefficient 0.154 0.148 -0.138 -60.245 -0.875 0.453 0.034 2.135 1.202
Standard  error 0.177 0.082 0.039 125.218 0.495 0.236 0.063 1.387 0.452

6: PRCG 150 Coefficient - - - - - - - - -

Standard error - - - - - _ _

Note: a dash (-) denotes no estim ate due to  algorithm faihire.



T able A .14: D a ta se t  11, G A U S S 3 resu lts.

COEP’FICIENT E sTIM.ATES .91 .92 .9.1 a i «2 c (T

Algorithm Iterations

1: Ste e p e s t  D escent 150 (Coefficient -0.091 0.120 -0.070 -10.413 -0.871 0.411 0.009 1.977 1.318
Standard error 0.126 0.057 0.013 149.804 0.4.30 0.244 0.076 0.978 0.316

2: B fgs 27 C’oelTicient - - - - - - - - -
Standard error - - - - - - - - -

3: B fgs-sc 1 Coefficient - - - - - - - - -

Standard error - - - - - - - - -
4: D fp l.'iO Coefficient 1.895 0.386 0.127 -46.959 -0.307 0.639 0.025 7.190 0.316

Standard error 0.750 0.1.88 0.070 59.678 0.289 0.137 0.031 10.03:5 0.432
5: N ewton 14 Coefficient - - - - - - - - -

Standard error - - - - - - - - -

6; P rcg 150 Coefficient -0.144 -0.157 -0.069 -22.715 -0.776 0.439 0.015 2.331 1.203
Standard error 0.257 0.067 0.015 150.104 0.738 0.260 0.075 1.625 0.399

Note: a dash (-) denotes no estim ate due to algorithm failure.



Table A .15: Sum m ary (H am ilton’s U S Phillips curve data), G A U SS 5 results.

D ataset 1 2 3 4 5 6 7 8 9 10 11

A lgorithm

1: S t e e p e s t  D e sc e n t

_ o p rtep s

0.00001 150 S 150 S 150 S 150 S 150 S 150 S 150 S 150 S 150 S 150 S 150 S
0.001 150 s 1.50 S 150 S 150 s 150 S 150 s 150 s 1.50 S 150 S 1.50 s 150 S
0.1 150 s 150 S 150 S 150 s 150 S 150 s 150 s 1,50 S 150 s 1,50 s 150 S
1.0 150 s 150 S 150 S 150 s 150 S 150 s 150 s 1.50 S 150 s 1,50 s 150 S

2: B fgs 0.00001 28 s 45 P" 31 S 26 s 118 F 60 F 52 F 57 F 65 F 29 F 27 S
0.001 29 s 45 F 31 S 26 s 118 F 60 F 50 F 57 F 65 F 29 F 27 S
0.1 47 F 45 ¥ 31 S 26 s 118 F 60 F 46 F 57 F 65 F 29 F 27 S
1.0 20 s 45 F 31 S 26 s 118 F 60 F 32 S 57 F 65 F 29 F 27 s

4: D f p 0.00001 150 s 150 S 74 S 150 F 150 S 150 F 150 F 150 S 1,50 S 1.50 S 1,50 s
0.001 150 s 150 S 74 S 150 F 150 S 150 F 150 S 150 S K50 s 150 s 1,50 s
0.1 150 s 150 s 74 S 150 F 150 s 150 F 150 S 150 s 1,50 s 1,50 s 1.50 s
1.0 150 s 150 s 74 S 150 F 150 s 150 F 1.39 s 1,50 s 1,50 s 150 s 1.50 s

5: N ew to n 0.00001 15 s 23 F 8 s 18 S 36 I' 11 S 11 s 150 F 22 s 1,50 F 10 s
0.001 15 s 23 F 8 s 18 s 36 F 11 s 9 s 134 .s 22 s 39 s 10 s
0.1 15 s 23 F 8 s 18 s 36 1’ 11 s 9 s 16 s 22 s 15 s 10 s
1.0 15 s 23 F 8 s 18 s 36 I’ 11 s 9 s 13 s 22 s 15 s 10 s

6: P rcg 0.00001 150 s 150 S 150 s 88 F 150 s 150 F 1,50 F 1,50 s 1,50 F 1,50 s 150 s
0.001 150 s 150 s 150 s 150 s 150 s 1.50 F 1.50 F 150 s 1,50 F 150 s 1,50 s
0.1 150 s 150 s 150 s 150 s 150 s 1.50 S 1.50 F 150 s 150 F 1,50 s 1.50 s
1.0 150 s 150 s 150 s 150 F 150 s 150 s 150 F 150 s 150 s 150 s 150 s

Note: a lgorithm  3 (B fg s-SC), o m itted  from th e  tab le , failed in all cases. 
Key: S - success, P’ - failure.



Table A .16: D ataset 2, G A U SS 5 results.

C o e f f ic ie n t  E s t im .ates .91 .92 .9.3 rto rti «2 rt,-? C (T

A lgorithm -o p r te p s Ite ra tio n s

1: S t e e p e s t  D e .s c e n t * 0.00001 150 Coefficient O.OOO 2.QIC-  10 0.221 -26.144 -0.806 0.265 0.017 3.011 0.892
S tan d ard  error 0.154 0.044 0.032 130.494 0.357 0.194 0.066 1.654 0.356

2: B fg s* 0.00001 45 Coefficient - - - - - - - - -

S tan d ard  error - - - - - - - - -

3: B fGS-SC* 0.00001 1 Coefficient - - - - - - - - -

S tan d ard  erro r - - - - - - - - -

4: D f p * 0.00001 150 C^oefficient 0.111 0.001 0.447 -67.915 -0.603 0.257 0.038 113.968 0.022
S tan d ard  error 0.244 O.OfiO 0.093 97.525 0.372 0.180 0.050 2662.126 0.520

5: N e w t o n ’ 0.00001 23 Coeflicient - - - - - - - - -

S tan d ard  error - - - - - - - - -

6: P rcg 0.00001 150 Coefficient -0.043 5 .4 E - 5 0.222 -24.321 -0.883 0.174 0.017 6.401 0.491
S tan d ard  error 0.107 0.031 0.027 149.158 0.289 0.143 0.076 4.692 0.325

0.001 150 Coefficient -0.042 7.7E~fS 0.222 -24.257 -0.884 0.173 0.017 6.539 0.481
Standard error 0.106 0.031 0.027 146.673 0.288 0.142 0.074 4.881 0.326

0.1 150 Coefficient -0.041 6 .0 E - 5 0.221 -24.113 -0.885 0.172 0.017 6.700 0.471
Standard error 0.100 0.030 0.044 150.050 0.289 0.145 0.076 5.106 0.327

1.0 150 (Coefficient -0.032 2 .0 £ :-5 0.221 -23.576 -0.893 0.153 0.016 11.967 0.274
Standard error 0.111 0.028 0.036 151.022 0.281 0.137 0.077 15.682 0.347

Note: a  dash  (-) deno tes no e s tim a te  due  to  algorit hm  failure. 
* ind icates sam e resu lts  for all values of _ o p rtep s .



T able A .17: D a ta se t  3, G A U S S 5 resu lts.

C o effic ien t  E stim .̂ tes .91 ,<72 .93 do fV2 C a

Algorithm _oprteps Iterations

1: St e e p e s t  D escen t* 0.00001 150 Coefficient 0.171 - l . l f : - 9 0.143 -119.44 -0.857 0.524 0.064 1.632 1.214
Standard error 0.187 0.0.39 0.032 114.294 0.452 0.142 0.058 0.778 0.255

2: B fgs* 0.00001 31 Coefficient -0.298 -2.7 h:- 6 0.471 -100.439 -0.642 0.543 0.054 2.708 0.752
Standard error 0.242 0.104 0.079 80.059 0.331 0.231 0.011 3.676 0.791

3: B fgs-sc* 0.00001 1 Coefficient - - - - - - - - -

Standard error - - - - - - - - -

4; D f p * 0.00001 74 C’oefFicient 0.298 7.6/=;-6 0.471 -100.441 -0.642 0.543 0.054 2.710 0.751
S tandard error 0.212 0.111 0.079 80.090 0.331 0.231 0.041 3.686 0.792

5; N ew ton* 0.00001 8 C’oefficient 0.299 4 . 4 / V - 6 0.471 -100.438 -0.642 0.543 0.054 2.705 0.752
Standard error 0.242 0.108 0.079 80.0.34 0.331 0.230 0.041 3.664 0.789

6: P rcg 0.00001 150 Coefficient 0.119 4 .0 E -4 0.1.36 -109.930 -0.971 0.470 0.059 2.272 1.070
Standard  error 0.146 0.031 0.035 140.275 0.451 0.177 0.071 1.756 0..385

0.001 150 C’oefficient 0.107 -3 .0 /; -4 -0.137 -106.029 -1.000 0.455 0.058 2.481 1.029
Standard  error 0.154 0.0.33 0.035 149.642 0.471 0.215 0.076 2.607 0.520

0.1 150 (Coefficient 0.107 -6 .0 /; -4 0.137 -106.168 -0.100 0.455 0.058 2.473 1.031
Standarfl error 0.153 0.033 0.035 148.540 0.468 0.213 0.075 2.560 0.512

1.0 150 Coefficient 0.115 -2 .0 /; -4 0.137 -109.364 -0.979 0.467 0.059 2..302 1.065
Standard error 0.143 0.034 0.035 141.4.38 0.446 0.180 0.072 1.825 0.396

Note: a  dash (-) denotes no estim ate due to  algorithm failure. 
* indicates .same results for all values of .o p rte p s .



Table A. 18; D ataset 4, G A U SS 5 results.

C oeffic ien t  E stim .ates .91 h .9:! rto a i C(2 (̂ 3 c (T

Algorithm -o p rtep s Iterations

1: St e epest  D escen t* 0.00001 150 ( ’oeflicient 0.106 2 A E - ‘A -0.1.32 -191.748 - 1.003 0.408 0.101 2.997 0.870
Standard error 0.120 0.127 0.021 153.395 0,424 0.145 0.078 1.684 0.289

2: B fgs* 0.00001 26 Coefficient 0.281 -3. I f : - 6 0.458 -142.422 -0.614 0.445 0.075 92.029 0.024
Standard error 0.211 0.103 0.064 89.201 0.349 0.152 0.046 3360.837 0.894

.3: B fGS-SC* 0.00001 1 Coellicient - - - - - - - - -
S tandard error - - - - - - - - -

4: D f p * 0.00001 150 (Coefficient - - - - - - - - -
S tandard error - - - - - - - - -

5: N ew ton* 0.00001 18 C^oefficient 0.137 0.039 0.128 -201.126 -0.991 0.391 0.106 5.063 0.575
Standard error 0.122 0.014 0.017 166.279 0.471 0.163 0.085 6.120 0.576

6: P rcg 0.00001 88 Coellicient - - - - - - - - -
S tandard error - - - - - - - - -

0.001 150 Coeliicient 1.514 1.173 -0.087 -102.800 -0.474 0.751 0.054 4.273 0.450
Standard error 0.622 0.518 0.057 62.306 0.258 0.118 0.032 3.649 0.363

0.1 150 C’oelficient 1.465 1.190 0.084 -103.752 -0.473 0.751 0.054 3.725 0.513
S tandard error 0.598 0.539 0.061 63.237 0.259 0.118 0.032 2.901 0.371

1.0 150 Coefficient - - - - - - - - -
S tandard error - - - - - - - - -

Note: a  dash (-) denotes no estim ate due to  algorithm faihire. 
* indicates same results for all values of .o p rte p s .



Table A .19: D ataset 5, G A U SS 5 results.

C o effic ien t  E stim .ates .<71 h .93 rt2 0.3 c (T

Algorithm _oprteps Iterations

1: St e e p e s t  D escen t* 0.00001 150 Coefficient 0.157 -0.158 -0.140 -136.518 -0.965 0.446 0.073 1.852 1.280
Standard error 0.180 0.080 0.033 123.255 0.440 0.217 0.063 1.123 0.423

2: B fgs* 0.00001 118 Coefficient - - - - - - - - -

Standard error - - - - - - - - -

3: B fgs-sc* 0.00001 1 Coefficient - - - - - - - - -

Standard error - - - - - - - - -

4: D f p * 0.00001 150 Coefficient - - - - - - - - -

Standard error - - - - - - - - -

5: N ew ton* 0.00001 36 Coefficient - - - - - - - - -

Standard error - - - - - - - - -

6: P rCG 0.00001 150 Coefficient -0.1 16 0.151 -0.142 -135.371 -1.035 0.419 0.073 2.376 1.115
Standard error 0.153 0.07() 0.032 135.720 0.446 0.235 0.069 1.890 0.540

0.001 150 (Coefficient -0.147 0.152 -0.141 -135.525 -1.023 0.424 0.073 2.271 1.145
S tandard error 0.157 0.076 0.031 133.185 0.443 0.232 0.068 1.684 0.508

0.1 150 Coefficient -0.143 0.149 -0.142 -135.172 -1.052 0.412 0.073 2.546 1.070
Standard error 0.146 0.075 0.026 139.223 0.451 0.242 0.071 2.303 0.605

1.0 150 Coefficient -0.152 0.155 -0.140 -136.044 -0.993 0.436 0.073 2.039 1.216
Standard error 0.168 0.077 0.032 127.990 0.439 0.223 0.065 1.332 0.453

Note: a dash (-) denotes no estim ate due to  algorithm failure. 
* indicates same results for all values of _oprteps.



T able A .20: D a ta se t 6, G A U S S  5 resu lts.

C o effic ien t  Estimates .91 .92 .93 rtn n -2 c (T

Algorithm _oprteps Iterations

1: St e epest  D escen t* 0.00001 l.'iO C^oetlirient 0.151 -0.155 0.141 -143.357 -0.987 0.438 0.077 1.874 1.286
S tandard error 0.17!) 0.081 0.034 129.535 0.441 0.222 0.066 1.203 0.449

2: Bfgs* 0.00001 60 C’oeflicient - - - - - - - - -

Standard error - - - - - - - - -

3: B fgs-sc* 0.00001 1 C'oellicient - - - - - - - - -

Standard error - - - - - - - - -

4: Dfp* 0.00001 150 C/Oelficient - - - - - - - - -

Standard error - - - - - - - - -

5: N ew ton* 0.00001 11 (Coefficient 0.151 0.154 0.141 -143.253 -0.990 0.437 0.077 1.895 1.279
Standard error 0.177 0.081 0.034 130.389 0.441 0.223 0.066 1.228 0.453

6: P rcg 0.00001 150 Coefficient - - - - - - - - -

Standard error - - - - - - - - -

0.001 150 ('opfficient - - - - - - - - -

Standard error - - - - - - - - -

0.1 150 (^efficient -0.151 0.154 -0.141 -143.245 -0.990 0.437 0.077 1.897 1.278
Standard error 0.177 0.081 0.034 130.254 0.441 0.223 0.066 1.229 0.453

1.0 150 (Coefficient -0.151 0.154 -0.141 -143.251 -0.990 0.437 0.077 1.895 1.279
Standard error 0.177 0.081 0.034 130.267 0.441 0.222 0.066 1.228 0.453

Note: a dash (-) denotes no estim ate due to  algorithm failure. 
* indicates same restilts for all values of .o p rte p s .



Table A .21: D ataset 7, G AU SS 5 results.

C o effic ien t  E stimates .91 h .93 rt() Ct2 fv.i c (T

Algorithm -o p rtep s Iterations

1: Ste e p e s t  D escen t* 0.00001 150 Coefficient 0.155 0.150 0.143 -174.889 -1.032 0.418 0.093 1.889 1.283
Standard  error 0.189 0.083 0.034 136.196 0.450 0.225 0.069 1.258 0.465

2: B fGS 0.00001 52 C^oefficienf - - - - - - - - -

Standard  error - - - - - - - - -

0.001 50 Coefficient - - - - - - - - -

Standard  error - - - - - - - - -

0.1 46 Coefficient - - - - - - - - -

Standard  error - - - - - - - - -

1.0 32 Coefficient 0.159 -0.152 0.143 -174.902 -1.013 0.425 0.093 1.775 1.324
S tandard error 0.198 0.084 0.035 132.935 0.450 0.221 0.069 1.123 0.444

3: B fGS-SC* 0.00001 1 Coefficient - - - - - - - - -

Standard error - - - - - - - - -

4: D fp 0.00001 150 Coefficient - - - - - - - - -

Standard error - - - - - - - - -

0.001 150 Coefficient -0.1 f)3 -0,094 0.682 -187.177 -0.681 0.413 0.098 8.305 0.291
S tandard error 0.371 0.109 0.238 104.643 0.380 0.233 0.054 15.097 0.518

0.1 150 C’oeflicient -0.11() -0.137 0.565 -192.728 -0.780 0.419 0.101 7.017 0.356
S tandard error 0.36f) 0.098 0.280 125.823 0.372 0.275 0.065 10.953 0.537

1.0 139 Coefficient 0.159 -0.152 0.143 -174.902 -1.013 0.425 0.093 1.775 1.324
S tandard error 0.198 0.081 0.035 132.867 0.450 0.221 0.068 1.123 0.443

5: N ewton 0.00001 11 Coefficient 0.159 0.152 0.143 -174.902 -1.013 0.425 0.093 1.775 1.324
S tandard error 0.198 0.081 0.035 1.33.131 0.450 0.221 0.068 1.122 0.443

0.001 9 C^oefficient 0.159 0.152 0.143 -174.902 -1.013 0.425 0.093 1.775 1.324
Standard  error 0.198 0.084 0.035 1.33.131 0.450 0.221 0.068 1.122 0.443

6: P r c g * 0.00001 150 Coefficient - - - - - - - - -

Standard  error - - - - - - - - -

Note: a dash (-) denotes no estim ate due to  algorithm faihirc. 
* indicates same results for all values of -o p rtep s.



Table A .22: D ataset 8, G AU SS 5 results.

C oeffic ien t  E stimates .91 .92 .93 an a i C a

Algorithm _oprteps Iterations

1: St e epest  D escen t* 0.00001 150 C’oeflifient 0.101 -0.120 0.072 -27.747 -0.814 0.431 0.018 1.743 1,4.52
S tandard error 0.147 O.Ofi!) 0.015 146.613 0.457 0.243 0.074 0.918 0.345

2: B fc.s* 0.00001 57 C oeflicient - - - - - - - - -

Standard error - - - - - - - - -

3: B fGS-SC* 0.00001 1 (Coefficient - - - - - - - - -

S tandard error - - - - - - - - -

4: D f p * 0.00001 150 Coeflicient -2.013 0.453 -0.115 -60.304 -0.363 0.651 0.032 11.627 0.200
S tandard error 1.071 0.206 0.068 65.0,50 0.303 0.140 0.033 27.879 0.476

5: N ewton 0.00001 150 (Coefficient - - - - - - - - -

S tandard error - - - - - - - - -

0.001 134 (Coefficient 0.154 0.148 0.1.38 -60.245 -0.875 0.453 0.034 2.1,35 1.202
S tandard error 0.177 0.082 0.039 125.621 0.495 0.236 0,064 1.387 0.452

0.1 Hi (Coefficient -0.086 0.114 0.071 -14.095 -0.896 0.396 0.011 2.211 1.316
Standard error 0.118 0.059 0.015 164.111 0.448 0.261 0.083 1.281 0.372

1.0 13 C oeflicient 0.086 0.114 -0.071 -14.095 -0.896 0.396 0.011 2.211 1.316
Standard error 0.119 0.059 0.015 194.625 0.449 0.261 0.099 1.288 0.373

6: P r o g * 0.00001 150 Coefficient 0.117 0.087 -0.134 -57.145 -1.029 0.322 0.0,33 3.229 0.980
Standard error 0.1.32 0.110 0.023 160.908 0.609 0.383 0.082 5.990 1.151

Note: a dash (-) denotes no estim ate due to  algorithm failure. 
* indicates same results for all values of .o p rte p s .



Table A .23: D ataset 9, G A U SS 5 results.

C o effic ien t  E stimates .91 .92 .9.1 nn rti 0!2 c (T

.'Mgorithm _oprteps Iterations

1: St e epest  D escen t* 0.00001 150 Coefficient 0.105 -0.123 -0.072 -31.254 -0.809 0.431 0.019 1.736 1.437
S tandard error 0.146 0.067 0.015 137.396 0.449 0.239 0.070 0.915 0.334

2: B fgs* 0.00001 65 Coefficient - - - - - - - - -

Stanflard error - - - - - - - - -

3: B fgs-sc* 0.00001 1 Coefficient - - - - - - - - -

Standard  error - - - - - - - - -

4: D f p * 0.00001 150 Coeflicient 1.819 0.446 -0.122 -61.274 -0.363 0.646 0.033 18.626 0.125
S tandard  error 0.870 0.162 0.064 64.172 0..301 0.138 0.033 74.657 0.500

5: N ew to n* 0.00001 22 Coefficient 0.086 -0.116 -0.071 -19.980 -0.904 0..391 0.014 2.253 1.290
S tandard  error 0.114 0.057 0.015 147.587 0.436 0.259 0.075 1.274 0.362

6: P rcg 0.00001 150 Coefficient - - - - - - - - -

Standard error - - - - - - - - -

0.1 150 Coefficient - - - - - - - - -

Standard error - - - - - - - - -

1.0 150 Coefficient 0.081 -0.113 0.071 -16.504 -0.935 0.378 0.013 2.472 1.236
Standard  error 0.109 0,057 0.014 186.950 0.439 0.268 0.095 1.496 0.384

Note: a  dash (-) denotes no estim ate due to algorithm faihire. 
* indicates same results for all values of _oprteps.



T able A .24: D a ta se t  10, G A U S S 5 resu lts.

C o effic ien ts  E stim .ates .91 h .73 an rti 0:2 C a

Algorithm _oprteps Iterations

1: St e epest  D escen t* 0.00001 150 Coeflicient 0.170 -0.152 0.137 -62.455 -0.828 0.464 0.035 1.986 1.220
Standard error 0.191 0.071 0.039 113.734 0.494 0.217 0.058 1.131 0.396

2: B fGS* 0.00001 29 C'oeflicient - - - - - - - - -

Standard error - - - - - - - - -

3: B fGS-SC* 0.00001 1 Coefficient - - - - - - - - -

Standard error - - - - - - - - -

4: D f p * 0.00001 150 Coefficient 1.712 0.439 -0.121 -56.969 -0.342 0.642 0.031 7.573 0.303
S tandard error 1.555 0.198 0.061 68.276 0.296 0.144 0.035 14.237 0.567

5: N ewton 0.00001 150 C'oefficient - - - - - - - - -

S tandard error - - - - - - - - -

0.001 3!) Coefficient -0.089 -0.115 -0.072 -28.476 -0.904 0..39I 0.018 2.243 1.278
S tandard error 0.114 0.059 0.015 154.898 0.431 0.255 0.078 1.249 0.354

0.1 15 (Joellicient 0.161 -0.148 -0.138 -60.681 -0.872 0.447 0.035 2.267 1.135
Standard error 0.175 0.078 0.038 118.902 0.494 0.232 0.060 1.453 0.436

1.0 15 Coefficient -0.089 0.115 -0.072 -28.476 -0.904 0.391 0.018 2.243 1.278
S tandard error 0.114 0.059 0.015 155.825 0.431 0.255 0.079 1.248 0.354

6: P rcg* 0.00001 150 Coeflicient 0.088 0.1 14 -0.072 -27.608 -0.914 0.387 0.018 2.312 1.261
Standard Error 0.114 0.0()0 0.021 153.456 0.431 0.259 0.078 1.311 0.361

Note: a dash (-) denotes no estim ate due to  algorithm failure. 
* indicates same results for all vahies of _oprteps.



T able A .25: D a ta se t 11, G A U S S  5 resu lts.

C o effic ien t  E stim ates .91 .92 .9,-! fvn rti ^2 ^3 c (T

Algorithm _oprteps Iterations

1: St e e p e s t  D escen t* 0.00001 150 Coeflicient 0.108 0.127 0.071 -18.092 -0.780 0.450 0.013 1.555 1.480
Standard error 0.154 0.065 0.014 120.389 0.437 0.227 0.061 0.744 0.303

2: B fgs* 0.00001 27 Coeflicient 1.935 0.450 0.110 -46.994 -0.316 0.645 0.025 99.894 0.023
Standard error 0.661 0.158 0.046 58.592 0.287 0.135 0.030 3595.458 0.829

3: B fgs-SC* 0.00001 1 Copflicient - - - - - - - - -

Standard error - - - - - - - - -

4: D f p * 0.00001 150 Coefficient 1.935 0.450 0.110 -46.994 -0.316 0.645 0.025 92.147 0.025
Standard error 0.661 0.158 0.046 58.622 0.287 0.135 0.030 3319.922 0.899

5: N ew ton* 0.00001 10 Coellicient 0.1.36 0,127 0.136 -35.965 -0.957 0.404 0.022 2.561 1.073
Standard error 0.140 0.160 0.024 124.981 0.508 0.354 0.063 2.076 0.495

6: P r o g * 0.00001 150 Coellicient 0.085 -0,118 0.070 -6.998 -0.905 0.397 0.008 2.167 1.297
Standard error 0.123 0.061 0.027 132.466 0.427 0.254 0.067 1.107 0.325

Note: a dash (-) denotes no estim ate due to algorithm faihire. 
* indicates sam e results for all values of _oprteps.



Table A .26: Evaluating algorithm  sw itching (S teep est D escen t/B F G S ) w ith  eleven datasets, G A U SS 5 results.

TASET It e r a t i o n s 9i (12 h 0:0 rti rt.s c a

1 28 0 )ellic ien l 0.142 -0.155 0.136 -88.481 -0.922 0.436 0.049 2.047 1.237
S tan d ard  error 0.167 0.078 0.032 127.298 0.455 0.232 0.065 1.294 0.441

2 51 C\)efficieiit - - - - - - - - -

S tan d ard  erro r - - - - - - - - -

3 29 C'oefficient -0.161 6 .6 E - 7 0.143 -118.441 -0.880 0.515 0.063 1.730 1.188
Standar<l error 0.178 0.038 0.031 117.924 0.449 0.145 0.060 0.865 0.264

4 56 C’oeflicient - - - - - - - - -

S tan d ard  erro r - - - - - - - - -

5 20 C'oefKcient 0.152 -0.156 0.140 -1.36.081 -0.991 0.436 0.073 2.025 1.221
S tan d ard  erro r 0.169 0.078 0.032 127.940 0.439 0.223 0.065 1.315 0.451

6 28 Coefficient 0.151 -0.154 -0.141 -143.252 -0.990 0.437 0.077 1.895 1.279
S tan d ard  error 0.177 0.081 0.0.34 130.185 0.441 0.222 0.066 1.227 0.453

7 51 ( ’oelHcient - - - - - - - - -

S tan d a rd  erro r - - - - - - - - -

8 55 C oelTicient - - - - - - - - -

S tan d ard  erro r - - - - - - - - -

9 28 Coefficient 0.156 0.149 0.138 -61.034 -0.881 0.450 0.035 2.225 1.161
S tan d ard  error 0.173 0.080 0.038 122.477 0.490 0.234 0.062 1.437 0.444

10 29 Coefficient 0.090 -0.1 15 -0.072 -28.476 -0.901 0.392 0.019 2.243 1.278
S tan d ard  error 0.114 0.059 0.015 155.081 0.430 0.255 0.079 1.248 0.354

11 31 Coefficient 0.079 0.116 0.069 -2.441 -0.939 0.385 0.005 2.368 1.247
S tan d ard  erro r 0.112 0.061 0.026 76.025 0.424 0.265 0.039 1.280 0.338

N ote; a  dash  (-) deno tes no e s tim a te  due to  algorithm  failure. In all cases, _ o p rtep s  =  0.00001 and  C =  0.5.



Table A .27: E valuating algorithm  sw itching (S teep est D escen t/N ew ton ) w ith  eleven datasets, G A U SS 5 results.

D ataset It e r a t io n s .91 .92 .9.! rtl (>2 c (7

1 28 Coefficient 0.1 42 -0.155 0,136 -88.481 -0.922 0,436 0.049 2.047 1,237
S tan d a rd  error 0.167 0.078 0.032 127.371 0.456 0,232 0.065 1.294 0,441

2 37 C/oefficient - - - - - - - - -

S tan d a rd  erro r - - - - - - - - -

3 25 Coefficient -0.161 - 9 . 7 E - 9 0.143 -118.442 -0.880 0.515 0.063 1.7.30 1,188
S tan d a rd  error 0.178 0.038 0.031 117.894 0.450 0.145 0.060 0.865 0,264

4 32 Coefficient 1.543 -0.456 -0.124 -121.801 -0.475 0.728 0.064 172.707 0,012
S tan d a rd  error 0.395 0.195 0.052 71.61 1 0.286 0.1,30 0.037 .5065,979 0,.345

5 15 Coefficient 0.152 -0.156 0.140 -1.36.081 -0.991 0.436 0,073 2,025 1,221
S tan d a rd  error 0.169 0.078 0.032 127.768 0.439 0.223 0.065 1,315 0,451

6 24 Coefficient 0.151 -0.154 -0.141 -143.253 -0.990 0.437 0.077 1,895 1,279
S tan d a rd  error 0.177 0.081 0.034 130.413 0.441 0.223 0.0664 1,228 0,153

7 44 Coefficient - - - - - - - - -

S tan d a rd  error - - - - - - - - -

8 37 Coefficient - - - - - - - - -

S ta n d a rd  error - - - - - - - - -

9 23 Coefficient 0.156 0.149 0.138 -61.032 -0.881 0.450 0.035 2,225 1,161
S tan d ard  error 0.173 0.080 0.0.38 122.837 0,490 0.234 0.062 1,437 0,444

10 22 (Coefficient 0.090 -0.115 -0.072 -28.476 -0.901 0.3!)2 0.019 2,243 1,278
S tan d ard  error 0.114 0.059 0.015 151.061 0,431 0.255 0.076 1,248 0,354

11 25 Coeflicient - - - - - - - - -

S tan d ard  error - - - - - - - - -

Note: a  dash  (-) deno tes  no estim a te  due to  a lgorithm  failure. In all cases, .o p r te p s  =  0.00001 and  =  0.5.



T able A .28: E xam p le  1, G A U S S  3 resu lts.

C o e f f i c i e n t  E s t i m a t e s  g\ g-2 Ao a i  n 2

Algorithm Iterations

1: Ste e p e s t  D escent  150

2: B fgs 40

3: B fgs-sc 1

4: D fp  37

5: N ew ton  19

6: P rcg 150

Coeflicient 0.075 4 .1 E -6
Standard error 0.010 0.002
C^oeflicient 0.074 - 7 .8 / i - 11
Standard error 0.006 0.002
Coefficient - -

Standard error - -

Coefficient 0.074 2 .7 f :-9
Standard error 0.006 0.002
C’oefficient -0.074 •2A E-V 2
Standard error 0.006 0.002
C'oefficient 0.093 -2 .0 /? -4
Standard error 0.007 0.004

4.667 0.308 0.196 1.554 1.047
1.000 0.053 0.010 0.331 0.083
4.747 0..307 0.196 1.758 1.027
1.096 0.0.58 0.010 0.398 0.082

4.747 0.307 0.196 1.758 1.027
1.096 0.058 0.010 0..398 0.082
4.747 0.307 0.196 1.758 1.027
1.096 0.058 0.010 0.398 0.082
4.262 0.309 0.197 0.987 1.131
0.647 0.038 0.010 0.162 0.090

Note: a dash (-) denotes no estim ate due to algorithm failure.



Table A .29: E xam ple 2, G AU SS 3 results.

C o e f f i c i e n t  E s t i m a t e s  g-2 g-.i a n  (>i n 2  ^  a

Algorithm Iterations

1: St e e p e s t  D escent 150 Coefficient 0..329 0.329 3 .0 E -4 7.861 0.896 1.200 0.794 2.991 0.909
Standard error 0.041 0.040 0.015 1.088 0.281 0.356 0.070 0.563 0.124

2: B egs 45 Coefficient 0.325 0.321 3.3E-8 7.929 0.924 1.232 0.782 4.340 0.716
Standard error 0.045 0.034 0.013 1.242 0.315 0.399 0.066 1.176 0.143

3: B fgs-sc 1 Coefficient - - - - - - - - -

Standard error - - - - - - - - -

4: D fp 150 Coefficient 0.327 -0.318 2 .0 E -4 7.935 0.925 1.233 0.781 4.503 0.698
Standard error 0.047 0.043 0.013 1.257 0.320 0.403 0.066 1.294 0.148

5: N ew ton 15 Coefficient 0.325 -0.321 l . l E - 8 7.929 0.924 1.232 0.782 4.340 0.716
Standard error 0.045 0.034 0.013 1.242 0.315 0.399 0.066 1.176 0.143

6 :  P r c g 150 Coefficient 0.326 0.323 -5 .0 E -4 7.912 0.916 1.223 0.786 3.827 0.778
Standard error 0.040 0.035 0.013 1.192 0.303 0.385 0.067 0.884 0.131

Note: a dash (-) denotes no estim ate due to algorithm failure.



Table A.30: Exam ple 1, G AU SS 5 results.

C o e f f ic ie n t  E s t im .̂ tes f}\ h rtn a i c (T

A lgorithm _ o p rtep s Ite ra tions

1; St e e p e s t  D e s c e n t * 0.00001 150 Coefiicient 0.103 2 .0 E - 4 3.966 0.286 0.214 0.774 1.177
St an d ard  error 0.012 0.001 0.523 0.032 0.011 0.119 0.094

2: B f g s* 0.00001 20 ('oefficient 0.080 -3. I E - 9 4.387 0.276 0.213 1.549 1.042
S tan d ard  error 0.005 0.001 0.950 0.052 0.010 0.335 0.081

3: B fgs- s c * 0.00001 1 ( ’oeflicient - - - - - - -
S tan d ard  error - - - - - - -

4: D f p * 0.00001 41 Coefficient 0.080 - l .O E - 9 4.387 0.276 0.213 1.549 1.042
S tan d ard  error 0.005 0.001 0.950 0.052 0.010 0..3.35 0.081

5: N e w t o n * 0.00001 18 Coefficient 0.080 l.l/i-9 4.387 0.276 0.213 1.549 1.042
S tan d ard  error 0.005 0.001 0.950 0,052 0.010 0.335 0.081

6: P r c g * 0.00001 150 Coefficient -0.081 -7 .3E  —5 4.330 0.278 0.213 1.323 1.068
S tan d ard  error 0.021 0.002 0.882 0.047 0.010 0.295 0.083

Note: a da.sh (-) deno tes no estim a te  due  to  algorithm  failure. 
* ind icates sam e resu lts  for all values of _ o p rtep s .



Table A .31: Exam ple 2, G A U SS 5 results.

C o e f f ic ie n t  E s t im a t e s ffi f)2 rto a i n 2 a.-i c (T

A lg o rith m . o p r t e p s I te ra tio n s

1: S t e e p e s t  D e s c e n t * 0.00001 150 CoelTicient 0.398 0.334 -0.002 8.020 0.796 1..368 0.825 2.783 0.9.36
S ta n d a rd  e rro r 0.038 0.0()9 0.021 0.995 0.261 0.328 0.072 0.512 0.124

2: B f g s 0.00001 24 CoefTicient 0.394 0.321 - i . l E - 7 8.155 0.806 1.391 0.834 4.073 0.735
S ta n d a rd  e rro r 0.026 0.033 0.036 1.131 0.296 0.367 0.067 1.040 0.138

0.001 22 CoefTicient 0.394 0.321 l . l / T - 7 8.155 0.806 1.391 0.834 4.073 0.735
S ta n d a rd  e rro r 0.026 0.033 0.031 1.131 0.296 0.367 0.067 1.039 0.138

0.1 10 C’oefTicient 0.394 0.321 1 .7 /? - 6 8.155 0.806 1.391 0.834 4.073 0.735
S ta n d a rd  e rro r 0.026 0.033 0.037 1.131 0.296 0.367 0.067 1.040 0.138

1.0 53 C oeffic ien t 0.394 0.321 2 . 0 f ; - 7 8.155 0.806 1.391 0.834 4.073 0.735
S ta n d a rd  e rro r 0.026 0.033 0.037 1.131 0.296 0.367 0.067 1.040 0.138

3: B f g s - s c * 0.00001 1 C’oeflicient - - - - - - - - -

S ta n d a rd  e rro r - - - - - - - - -

4; D f p * 0.00001 22 O ie flic ien t 0.391 0.321 2 . 4 E - 6 8.155 0.806 1.391 0.834 4.073 0.735
S ta n d a rd  e rro r 0.026 0.033 0.036 1.131 0.296 0.367 0.067 1.040 0.1.38

5: N e w t o n * 0.00001 10 C oefficient -0.394 0.321 - 4 .2 E - 8 8.155 0.806 1.391 0.834 4.073 0.735
S ta n d a rd  e rro r 0.026 0.033 0.038 1.131 0.296 0.367 0 .067 1.040 0.1.38

6: P r c g * 0.00001 150 C/oefficient 0.394 -0.321 7 . 3 / J - 7 8.147 0.806 1.389 0.833 3.928 0.753
S ta n d a rd  e rro r 0.026 0.034 0.030 1.118 0.293 0.364 0.068 0.956 0.134

N ote : a  d a sh  (-) d e n o te s  no  e s t im a te  d u e  to  a lg o rith m  fa ilu re . 
* in d ic a te s  sa m e  re su lts  for a ll v a lu es o f . o p r t e p s .



Table A .32: Effect o f initial value o f (: single algorithm  (Steepest D escent), H am ilton’s exam ple 1, G A U SS 5 results.

Value of C .91 .92 no O'! c a

0..3 Cbeflicient 0..3.37 -0.010 3.669 0.289 0.214 1.042 1.118
Standard error 0.031 0.013 0.403 0.028 0.013 0.177 0.098

0.4 Coefficient 0.104 0.001 3.953 0.287 0.215 0.755 1.184
Standard error 0.010 0.006 0.514 0.032 0.011 0.115 0.095

0.5 Coefficient 0.f03 0.000 3.966 0.286 0.214 0.774 1.177
Standard error 0.012 0.001 0.523 0.032 0.010 0.119 0.094

0.6 C’oefficient 0.103 0.000 3.987 0.286 0.214 0.803 1.166
Standard error 0.015 0.001 0.538 0.033 0.011 0.125 0.093

0.7 C’oefficient 0.103 0.000 4.012 0.285 0.214 0.842 1.154
Standard error 0.010 0.001 0.552 0.0.34 0.011 0.133 0.092

0.8 Coefficient 0.102 0.000 4.053 0.284 0.214 0.911 1.134
Standard error 0.011 0.003 0.583 0.035 0.010 0.148 0.089

0.9 Coefficient 0.102 0.000 4.080 0.283 0.214 0.963 1.121
Standard error 0.010 0.003 0.606 0.037 0.010 0.161 0.088

1.0 Coefficient 0.101 0.000 4.115 0.281 0.214 1.037 1.105
Standard error 0.012 0.003 0.640 0.038 0.010 0.180 0.087

1.1 Coefficient 0.101 0.000 4.156 0.280 0.214 1.138 1.086
Standard error 0.013 0.002 0.685 0.041 0.010 0.208 0.085

1.2 Coefficient 0.101 0.000 4.182 0.279 0.214 1.211 1.074
Standard error 0.012 0.002 0.717 0.042 0.010 0.231 0.084

1.3 Coefficient 0.101 0.000 4.212 0.278 0.213 1.306 1.060
Standard error 0.007 0.002 0.758 0.045 0.010 0.263 0.083

1.4 Coefficient 0.101 0.000 4.239 0.277 0.213 1.404 1.048
Standard error 0.008 0.002 0.801 0.047 0.010 0.299 0.082

1.5 Coefficient 0.101 0.000 4.263 0.276 0.213 1.499 1.037
Standard error 0.006 0.002 0.843 0.049 0.010 0.338 0.082

Note: in all cases, .o p r tep s  =  0.00001 and number of iterations was 150. Algorithm failed for initial values o f (̂  =  0.1 and 0.2.



Table A .33: Effect o f in itial value o f single algorithm  (S teep est D escent), H am ilton’s exam ple 2, G A U SS 5 results.

I n i t i a l  V a l u e  o f  C .91 92 ,9.3 f>n 0:2 c (T

0.3 CoefRcient 0.397 0.330 0.002 8.046 0.798 1.373 0.826 2.934 0.907
Standard  error 0.036 0.052 0.021 1.010 0.266 0.334 0.071 0.550 0.123

0.4 Coefficient -0.395 -0.323 0.001 8.106 0.803 1.382 0.829 3.406 0.827
Standard  error 0.028 0.033 0.023 1.065 0.280 0.349 0,069 0.710 0.126

0.5 Coefficient 0.398 0.334 -0.002 8.020 0.796 1.368 0,825 2.783 0.936
S tandard  error 0.038 0.069 0.021 0.995 0.261 0.328 0.072 0.512 0.124

0.6 Coefficient 0.399 0.335 0.003 8.009 0.795 1.367 0.825 2.732 0.917
Standard  error 0.041 0.066 0.021 0.986 0.259 0.326 0,072 0.497 0.124

0.7 Coefficient -0.396 -0..327 -0.002 8.070 0.800 1.376 0.827 3.088 0.880
Standard  error 0.034 0.052 0.021 f.033 0.27f 0.339 0,070 0.601 0.124

0.8 Coefficient 0.399 0.335 -0.003 8.009 0.795 1.367 0,825 2.730 0.947
Standard  error 0.041 0.066 0.021 0.985 0.259 0.326 0.072 0.496 0.124

0.9 Coefficient 0.399 0.335 0.003 8.010 0.795 1.367 0.825 2.738 0.945
Standard  error 0.041 0.075 0.021 0.990 0.259 0.326 0.072 0.502 0.124

1.0 Coefficient 0.399 0.335 -0.001 8.009 0.795 1,367 0.825 2.733 0.916
Standard  error 0.041 0.066 0.020 0.986 0.259 0.326 0.072 0.497 0.124

1.1 Coefficient 0.398 0.334 -0.001 8.015 0.795 1.368 0.825 2.762 0.941
Standard  error 0.040 0.069 0.020 0.993 0.260 0.327 0.072 0.507 0.123

1.2 Coefficient 0.399 0.335 -0.001 8.009 0.795 1..367 0.825 2.733 0.946
S tandard error 0.041 0.066 0.020 0.986 0.259 0.326 0.072 0.497 0.124

1.3 Coefficient 0.399 0.335 -0.003 8.010 0.795 1..367 0.825 2.738 0.945
Standard  error 0.041 0.075 0.021 0.990 0.259 0.326 0.072 0.502 0.124

1.4 C’oefficient 0.399 0.335 -0.003 8.011 0.795 1..367 0.825 2.714 0.944
Standard  error 0.041 0.077 0.021 0.993 0.260 0.326 0.072 0.505 0,124

1.5 Coefficient 0.399 0.335 -0.003 8.011 0.795 1.367 0.825 2.744 0,944
Standard  error 0.041 0.077 0.021 0.993 0.260 0.326 0.072 0.505 0.124

Note: in all cases, _oprteps =  0.00001 and nurnbrr of itrrations was 150. .Algorithm failed for initial values of =  0.1 and 0.2.



Table A .34: Effect o f in itial value o f Exam ple 1, algorithm  sw itching (S teep est D escen t/B F G S ), G A U SS 5 results.

V.ALUE OF ( It e r .\t io n s .91 .92 rtn rti rt2 c 17

0.1 42 C'oeflirient 0.080 ().7 /i-1 0 4.387 0.276 0.213 1.549 1.042
Standard error 0.005 0.001 0.950 0.052 0.010 0.335 0.081

0.3 39 C'oeflicieiit 0.080 l .5 f : - 9 4.387 0.27(i 0.213 1.549 1.042
Standard error 0.005 0.001 0.950 0.052 0.010 0.335 0.081

0.5 37 ('oeflicient -0,080 -2.0/!:-10 4.387 0.27f) 0.213 1.549 1.042
Standard error 0.005 0.001 0.950 0.052 0.010 0.335 0.081

0.7 39 (loellic'ient -0.080 1 .7 /?-9 •1.387 0.276 0.213 1.549 1.042
Standar<l error 0.005 0.001 0.950 0.052 0.010 0.335 0.081

0.!) 38 Coeflicient -0.080 i . o f ; - i o 4.387 0.276 0.213 1.549 1.042
S tandard error 0.005 0.001 0.950 0.052 0.010 0.335 0.081

1.0 38 C’oefficient -0.080 -4 .5 /J -lO 4.387 0.276 0.213 1.549 1.012
S tandard error 0.005 0.001 0.950 0.052 0.010 0.335 0.081

1.1 44 Coellicient 0.080 -5 .8 f :-1 0 4.387 0.276 0.213 1.549 1.042
Standard error 0.005 0.001 0.950 0.052 0.010 0.335 0.081

1.3 44 Coeflicient -0.080 I.7 /S -9 4.387 0.276 0.213 1.549 1.042
Standard error 0.005 0.001 0.950 0.052 0.010 0.335 0.081

1.5 40 Coefficient 0.080 -5 .2 /?-11 4.387 0.276 0.213 1.549 1.042
Standard error 0.005 0.001 0.950 0.052 0.010 0.335 0.081

Note: in all cases, .o p rte p s  =  0.00001.



Table A .35: Effect o f in itial value o f Exam ple 1, algorithm  sw itching (S teep est D escen t/N ew to n ), G A U SS 5 results.

V a l u e  o f  C I t e r a t i o n s .71 .72 rto f'n C a

0.1 35 CVx'flicient -0.080 - I .! ) / - ;  -  10 4.,387 0.276 0.213 1..549 1,042
S tandard error 0.005 0.001 0.950 0.052 0.010 0.335 0.081

0..3 32 (Coefficient -0.080 9.7 E ~  13 4.387 0.276 0.213 1„549 1.042
S tandard error 0.005 0.001 0.950 0.052 0.010 0.335 0.081

0.5 32 C’oefficient 0.080 3 .0 £ -  13 4.,387 0.276 0.213 1 „549 1.042
S tandard  error 0.005 0.001 0.950 0.052 0.010 0.335 0.081

0.7 11 (loelficient -0.080 9 .0 E -1 3 4.387 0.276 0.213 1..549 1.042
S tandard  error 0.005 0.001 0.9,50 0.0,52 0.010 0.335 0.081

0.9 31 Coefficient 0.080 2 .0 /? -  13 4.,387 0.276 0.213 l„549 1.042
S tandard error 0.005 0.001 0,950 0.0.52 0.010 0.335 0.081

1.0 36 C'oefficient 0.080 3.1 E - 12 4.387 0.276 0.213 1 .,549 1.042
S tandard error 0.005 0.001 0.950 0.052 0.010 0,335 0.081

1.1 50 Coefficient -0.080 -2 .7 E -1 0 4.387 0.276 0.213 1„549 1.012
S tandard error 0.005 0.001 0.9,50 0.052 0.010 0„335 0.081

1.3 12 Coefficient 0.080 3 .7 E -1 2 4.387 0.276 0.213 1,549 1.042
S tandard error 0.005 0.001 0.9,50 0.052 0.010 0,335 0.081

1.5 ,36 Coeflicient -0.080 7 .2 f ; - l l 4.387 0.276 0.213 1 „549 1.042
S tandard error 0.005 0,001 0.9,50 0.052 0.010 0„335 0.081

Note: in all cases. _oprteps =  0.00001 and (■



Table A .36: Effect o f in itial value o f (,': Exam ple 2, algorithm  sw itching (S teepest D escen t/B F G S ), G A U SS 5 results.

I n i t i a l  V a l u e  o f  C I t e r a t i o n s  g i  ,92 « o  « i  « 2

0.1 55 Coeflicient 0.394 0.321 -1 .7 /S -7 8.155 0.806 1..391 0.834 4.073 0.735
S tandard error 0.026 0.033 0.036 1.131 0.296 0..367 0.067 1.039 0,138

0.3 38 Coelficient 0.391 0.321 7.6E — 7 8.155 0.806 1.391 0,8,34 4.073 0.735
S tandard error 0.026 0.033 0.0.36 1.131 0.296 0.367 0.067 1.039 0.138

0.5 33 Ooellicient 0.394 0.321 3 .6 /? -7 8.1.55 0.806 1..391 0.834 4.073 0.735
Standard error 0.026 0.033 0.035 1.131 0,296 0.367 0.067 1.0.39 0.138

0.7 33 C’oellicient -0.394 -0,321 5 .4 /-;-8 8.155 0,806 1,391 0.834 4.073 0.735
Standard error 0.026 0.033 0.037 1,131 0.296 0.367 0.067 1.040 0.138

0.9 34 C’oefficient 0.394 0.321 5 .1 /? -7 8.155 0,806 1.391 0.834 4.073 0.735
Standard error 0.026 0.033 0.0.36 1.131 0.296 0..367 0.067 1.040 0.1378

1.0 36 (Coefficient 0.394 0.321 -2 .0 /? -7 8.155 0.806 1.391 0.834 4.073 0.735
Standard error 0.026 0.033 0.036 1.131 0.296 0.367 0.067 1.040 0.138

1.1 34 Coefficient 0.394 0.321 -4 .3 /? -7 8.155 0.806 1.391 0.834 4.073 0.7.35
Standard error 0.026 0.033 0.034 1,131 0.2!)6 0..367 0.067 1.039 0.1.38

1.3 43 Coefficient 0.394 0.321 7 .2 /? -8 8.155 0.806 1,391 0.834 4.073 0.735
Standard error 0.026 0.03.3 0.036 1,131 0.296 0.367 0.067 1.039 0,138

1.5 34 Coefficient 0.394 0.321 -1 .5 /? -6 8,155 0.806 1.391 0.834 4.073 0,735
Standard error 0.026 0.03.3 0.035 1,131 0.296 0.367 0.067 1.040 0,1.38

Note: in all cases. _oprteps =  0.00001 and



Table A.37: Effect of initial value of (̂ : Example 2, algorithm switching (Steepest Descent/Newton), GAUSS 5 results.

Value of C Iterations .91 92 .9:i rtO Ol c (T

0.1 31 Coefficient 0.391 0.321 -1 .3 /? -6 8.155 0.806 1.391 0.834 4.073 0.735
Standard error 0.026 0.033 3.7/-:-2 1.131 0.296 0.367 0.067 1.040 0.138

0.3 28 CoefTicient 0.391 0.321 9.7 /-;-9 8.155 0.806 1.391 0.834 4.073 0.735
Standard error 0.026 0.03.3 3 ,6 f :-2 1.131 0.296 0.367 0.067 1.039 0.138

0.5 28 Coefficient 0.391 0.321 2. I f ; - 7 8.155 0.806 1.391 0.8.34 4.073 0.735
Standard error 0.026 0.0.33 3 .6 f ;-2 1.131 0.296 0.367 0.067 1.040 0.138

0.7 22 C^oefficient -0.391 -0.321 -4 .6 /? -8 8.155 0.806 I..391 0.834 4.073 0.735
Standard error 0.026 0.033 3 .7 f ;-2 1.131 0.296 0.367 0.067 1.040 0.138

0.9 28 (Coefficient 0.394 0.321 -1 .5 /? -7 8.155 0.806 1.391 0.834 4.073 0.735
Standard  error 0.026 0.03.3 3 .5 6 /?-2 1.131 0.296 0.367 0.067 1.039 0.138

1.0 29 Coefficient 0.391 0.321 -1 .2 /? -8 8.155 0.806 1.391 0.834 4.073 0.735
Standard error 0.026 0.033 3..54f;-2 1.131 0.296 0.367 0.067 1.039 0.138

1.1 30 Coefficient 0.391 0.321 6 .9 /? -8 8.155 0.806 1.391 0.834 4.073 0.735
Standard error 0.026 0.033 3 .6 5 f;-2 1.131 0.296 0.367 0.067 1.039 0.138

1.3 27 Coefficient 0.391 0.321 -1 .4 /? -6 8.155 0.806 1.391 0.834 4.073 0.735
Standard error 0.026 0.033 3.52/?- 2 1.131 0.296 0.368 0.067 1.0.39 0.138

1.5 32 C’oefficient 0.391 0.321 l ,8 f ; - 9 8.155 0.806 1.391 0.834 4.073 0.735
Standard error 0.026 0.033 3 .7 /? -2 1.131 0.296 0..367 0.067 1.039 0.138

Note: in all cases, _ o p r te p s  =  0.00001 and C.



Table A .38: R esults for all algorithm s, dataset 2, H am ilton’s Exam ple 1, G A U SS 5.

I n i t i a l  V a l u e  o f  C I t e r a t i o n s  <n g-2 no n i  <\2 C ^

1: S t e e p e s t  D e s c e n t  

2: B fc:s 

3: B f g s -SC 

4; D f p  

5: N e w t o n  

6: P r c g

7: S t e e p e s t  D e s c e n t / B fg s  

8: S t e e p e s t  D e s c e n t / N e w t o n

150 C'oellicient -0.115 -0.008
Standard error 0.008 0.008

22 Coeflicient 0.125 -0.009
Standard error 0.008 0.007

1 Coeflicient - -

Standard error - -

31 Coeflicient 0.125 -0.009
Standard error 0.008 0.007

11 Coefficient 0.078 0.005
Standard error 0.005 0.005

150 (^oeflicient 0.084 0.006
Standard error 0.020 0.007

36 Coefficient -0.078 -0.005
Standard error 0.005 0.005

25 Coefficient -0.105 -0.007
Stanifard error 0.006 0.006

4.173 0.281 0.215 1.336 0.997
0.690 0.041 0.014 0.274 0.091
4.282 0.278 0.216 1.941 0.894
0.846 0.051 0.017 0.540 0.103

4.282 0.278 0.216 1.941 0.894
0.846 0.051 0.017 0.540 0.103
4.537 0.272 0.214 2.037 0.929
1.109 0.059 0.015 0.551 0.094
4.313 0.279 0.213 1.261 1,032
0.790 0.043 0.013 0.257 0,088
4.537 0.272 0.214 2,037 0,929
1.109 0.059 0.015 0,551 0,094
4.323 0.276 0.215 1,905 0,920
0.918 0.053 0.015 0.520 0.097

Note: a dash (-) denotes no estimate due to algorithm faihire. In all cases, .oprteps =  0.00001 and C, = 0.5.



Table A .39: R esults for all algorithm s, dataset 3, H am ilton’s Exam ple 1, G A U SS 5.

I n itl \ l Va l u e  o f  C It e r .-\t io n s <j\ .92 (in <>i 02 C (T

1: St e e p e s t  D e sc e n t 150 Coefficient 0.101 3 .0 E - 4 3.952 0.287 0.215 0.761 1.190
S tan d ard  error 0.010 0.004 0.520 0.032 0.011 0.117 0.097

2: B fgs 25 Coefficient 0.080 4 .5 E - 1 0 4.384 0.276 0.214 1.572 1.043
S tan d ard  error 0.005 0.001 0.964 0.053 0.010 0.343 0.083

3: B fg s- sc 1 Coefficient - - - - - - -

S tan d ard  error - - - - - - -

4: D f p ()0 Coefficient 0.080 2 .7 E - 0 4.384 0.276 0.214 1.572 1.043
S tan d ard  error 0.005 0.001 0.964 0.053 0.010 0.343 0.083

5: N ew to n !) Coefficient 0.097 - 6 .5 E -1 0 4.266 0.276 0.214 1.468 1.047
S tan d ard  error 0.007 0.002 0.847 0.049 0.010 0.322 0.083

6: P rcg 150 Coefficient -0.081 - 1 .9 E - 5 1..330 0.278 0.214 1.343 1.070
S tan d ard  error 0.007 0.002 0.855 0.048 0.010 0.263 0.084

7: S t e e p e s t  D e s c e n t / B f g s 40 Coefficient -0.080 8 . I E - 1 1 4.384 0.276 0.214 1.572 1.043
S tan d ard  error 0.005 0.001 0.961 0.053 0.010 0.343 0.083

8: S t e e p e s t  D e s c e n t / N ew to n 38 C^oefficient 0.080 -8 .6 i i - 1 2 4.384 0.276 0.214 1.572 1.043
S tan d ard  error 0.005 0.001 0.964 0.053 0.010 0.343 0.083

N ote: a  dash  (-) deno tes no e s tim a te  due  to  algorithm  faihire. In all cases, .o p r te p s  =  0.00001 and  C =  0.5.



T able A .40: R e su lts  for all a lgorith m s, d a ta set 4, H a m ilto n ’s ex a m p le  1, G A U S S  5.

I n i t i a l  V a lu e  o f  C I t e r a t i o n s  <71 .72 no n-2 C ^

1: S t e e p e s t  D e s c e n t  

2: B f g s  

3: BF(5S-SC 

4: D fp  

5: N e w t o n  

6 : P r c g

7: S t e e p e s t  D e s c e n t / B f g s  

8 : S t e e p e s t  D e s c e n t / N e w t o n

150 f ’oeflicient - -

Standard error - -

34 C’oellicient 0.067 0.002
Standard error 0.002 0.004

1 (^oelficient - -

Standard error - -

103 Coellicient 0.067 0.002
Standard error 0.002 0.004

15 C’oeflicient 0.075 0.002
Standard error 0.005 0.004

42 Coefhrient - -

Standard error - -

46 Coellicient 0.067 -0.002
Standard error 0.002 ().004

33 C’oellicient 0.075 -0.002
Standard error 0.005 0.004

4.968 0.297 0.205 1.821 1.050
1.190 0.061 0.012 0.426 0.092

4.968 0.297 0.205 1.821 1.050
1.190 0.061 0.012 0.428 0.092
4.791 0.298 0.205 1.726 1.052
1.091 0.058 0.012 0.406 0.092

4.968 0.297 0.205 1.821 1.050
1.190 0.061 0.012 0.428 0.092
4.791 0.298 0.205 1.726 1.052
1.091 0.058 0.012 0.406 0.092

Note: a  dash (-) denotes no estim ate due to algorithm faihire. In all cases. _oprteps =  0.00001 and C =  0.5.



Table A .41: R esults for all algorithm s, dataset 5, H am ilton’s exam ple 1, G A U SS 5.

I n i t i a l  V a lu e  o f  C Iterations .71 52 oo rti «2 C (T

1: Ste e p e s t  D escent 150 C'oefficient 0.105 3 .0 E -1 3.806 0.290 0.217 0.750 1.200
S tan d ard  error 0.022 0.004 0.526 0.033 0.011 0.120 0.099

2; B fgs 32 Coefficient -0.080 -3 .5 E -1 0 4.356 0.277 0.215 1.569 1.048
S tan d ard  error O.O(K) 0.001 0.96!) 0.053 0.010 0.347 0.084

3: B fgs-sc 1 Coefficient - - - - - - -

S tan d ard  error - - - - - - -

4: D fp 83 ( ’oefficient 0.079 -2 .1 /i - lO 4.378 0.277 0.215 1.581 1.048
S tan d ard  error 0.008 0.001 0.989 0.054 0.010 0.355 0.084

5: N ew ton 13 Coefficient 0.080 -7. I E - 12 4.356 0.277 0.215 1.569 1.048
S tan d ard  error 0.00(> 0.001 0.969 0.053 0.010 0.347 0.084

6: P rcg 150 CJoefficient 0.102 4.2i<;-5 4.166 0.280 0.215 1.282 1.073
S tan d ard  error 0.010 0.002 0.754 0.045 0.010 0.259 0.087

7: St e e p e s t  D escen t / B fgs 32 Coefficient -0.080 -3 .9 E -  10 4.356 0.277 0.215 1.569 1.048
S tan d ard  error O.OOf) 0.001 0.969 0.053 0.010 0.347 0.084

8: St e e p e s t  D escen t /N ewton 18 C^oefficient -0.080 6 .4 £ -  10 4.356 0.277 0.215 1.569 1.048
S tan d ard  error O.OOfi 0.001 0.969 0.053 0.010 0.347 0.084

N ote: a  clash (-) deno tes no es tim a te  due  to  algorithm  failure. In all cases. _ o p rtep s  =  O.OOOOl and  C =  0.5.



Table A .42: R esults for all algorithm s, dataset 6, H am ilton’s exam ple 1, G A U SS 5.

I n i t i .^ l  V a l u e  o f  C , It e r .\t io n s .92 fVo r t i r t2 c (T

1: S t e e p e s t  D e s c e n t 150 C oeflicient 0.087 -0 .003 1.191 0..308 0.192 1.147 1.093
S ta n d a rd  e rro r 0.008 0.007 0.734 0.012 0.012 0.222 0.093

2: B fcis 17 C oellicien t 0.087 -0.003 4.288 0.308 0.192 1.498 1.012
S ta n d a rd  e rro r 0.008 O.OOf) 0.89f) 0.050 0.012 0.357 0.092

3: B f g s -sc 1 C'oefiicient - - - - - - -

S ta n d a rd  e rro r - - - - - - -

4: D f p 21 C oefficient -0 .087 -0.003 4.288 0.308 0.192 1.498 1.042
S ta n d a rd  e rro r 0.008 O.OOf) 0.806 0.050 0.012 0.357 0.092

5: N e w t o n 9 C'oefiicient -0 .087 0.003 4.288 0.308 0.192 1.498 1.042
S ta n d a rd  e rro r 0.008 0.006 0.806 0.050 0.012 0.357 0.092

6: P rc g 31 C \)eflicient - - - - - - -

S ta n d a rd  e rro r - - - - - - -

7: S t e e p e s t  D e s c e n t / B f g s 31 ( ’oeflicient 0.087 0.00.3 1.288 0.308 0.192 1.498 1.042
S ta n d a rd  e rro r 0.008 O.OOf) 0.896 0.050 0.012 0.357 0.092

8: S t e e p e s t  D e s c e n t / N e w t o n 27 ( ’oellicien t 0.078 0.002 4.383 0.308 0.191 1.549 1.044
S ta n d a rd  e rro r 0.012 0.0f)5 0.973 0.053 0.011 0.383 0.t)91

N ote : a  d a sh  (-) d e n o te s  no  e s t im a te  d u e  to  a lg o ritlim  fa ilu re . In all c ases, . o p r t e p s  =  0.00001 a n d  C =  0.5.



Table A .43: R esu lts for all algorithm s, dataset 7, H am ilton’s exam ple 1, G A U SS 5.

Initial V.alue of C It e r .ations .91 h fVo fVi 0 2 c (T

1: St e e p e s t  D escent 150 Coelficient 0.104 7.0/-;-4 3.908 0.289 0.216 0.765 1.202
Standard  error 0.012 0.000 0.533 0.033 0.012 0.123 0.102

2: B fgs 28 ( ’oefficient 0.077 -5 .4£ '^  11 4.393 0.277 0.214 1.580 1.053
S tandard error 0.00!) 0.001 1.000 0.054 0.011 0.363 0.087

3: B fgs-sc 1 CoefTirient - - - - - - -

Standard error - - - - - - -

4: D fp 35 C’oeflicient -0.080 6 .3 /T - ll 4.350 0.277 0.214 1.554 1,053
S tandard error O.OOfi 0.001 0.96fi 0.053 0.011 0.348 0.087

5: N ewton 10 C’oefficient 0.101 -5.3K -  12 4.211 0.278 0.214 1.443 1.056
S tandard error 0.008 0.002 0.830 0,048 0.011 0.325 0.089

6: P rcg 150 Coefficient 0.081 2.0 /!;-4 4.296 0.279 0.214 1..339 1.080
S tandard error 0.00() 0.002 0.860 0.048 0.011 0.268 0.089

7: Ste e p e s t  D escen t /B fgs 24 Coefficient 0.080 -1 .5 f :-9 4.350 0.277 0.214 1.554 1.053
S tandard error O.OOfi 0.001 0.966 0.053 0.011 0.348 0.087

8; Ste e p e s t  D escen t/N ewton 27 Coefficient 0.080 1.2/? -  11 4.350 0.277 0.214 1.554 1.053
S tandard error 0.006 0.001 0.966 0.053 0.011 0.348 0.087

Note: a dash (-) denotes no estim ate due to algorithm faihire. In all cases, .o p rtep s =  0.00001 and C =  0.5.
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B . l  Simulation Results

T able B .l :  K ey  to  s im u la tio n  sp ec ifica tion s.

N u m b e r  S p e c i f i c a t i o n P a r a m e t e r s

Null

yt =  \ +  0.25a;i( +  et 
2/t =  1 +  0 .5 x u  +  £t 

^( =  1 +  0 .7 5 x a  +  £f

j/( =  1 +  0.25x21 +  St

yt — I 0 .5 i2( +
!/t =  1 +  0.75a;2f +  £t

j/t =  1 +  0 .2 5 i3 ( +  £j

J/t =  1 +  0.5X3( +  £ f  

y t  =  I +  0.75X3* +  £|

Q uadratic

yt  — 1 “I" “1“ St

yt — i 0 .5 x i(  -f- 0 .5 x f( +  £f 

y( =  1 +  0. 75xi t  +  ().75a.’ij +  St

i/t =  I +  0 .2 5 i2 f +  0.25x21 +  St

yt =  I +  0 .5x2t  +  0.5x2t +  St 

yt =  I +  0.75x24 +  0.75a:i, +  £t

yt  =  1 +  0.25x34 “t" 0.25x3* s t

yt =  1 +  0.5x34 +  0.5x3* “I" St 

y i  =  I 0.75x34 +  0.75x3* - 4

Square

e* ~  AT(0,1.5) 

Et ~  N ( 0 , 4 )  

e* ~  A f(0 ,8)

£* ~  A f(0 ,0 ,4 )  

St ~  N (0 ,0 .7 )  

£* ~  N{Q,  1.6) 

S t  ~  N (0,0 . 3)  

s ,  ~  N (0 .0 .8 )  

£, ~  N ( 0 ,  1.5)

N ( 0 ,  1.5) 

^ ( 0 ,  4) 

N { 0 , S )  

N(0,0.1)  
iV (0 ,0 .7 )  

N { 0 ,  l.fi) 

N (0 .0 .:} )  

N{0.  0 .8 ) 

N { 0 .  1.5)

1 y  =  x1t  + ft f * ~  N ( 0 .  1) £ 4 ~ ^ ( 0 , 1 )

2 y  =  x |(  +  e* f t  ~  N ( 0 .  25) £* ~  Af(0, 1)

:i y  =  x |(  +  f t f t  ~  IV(0.  -100) £* ~  A '(0, 1)

1 y  =  X u  +  f t e * ~ iV ( 0 ,  1)

5 y  =  x' it  + ft f t  ~  N ( 0 ,  25)

6 y  =  xf* +  f t f t  ~  N (0 , 400)

7 y  =  X 2t +  f t e* ~  A^(0, 1)

8 y  =  x' it  +  f t f t  ~  yV(0,25)

9 y  — x \ t  +  f t f t  ~  N ( 0 , 4 0 0 )

10 y  =  2 : 3 4  +  f t f t  ~  iV(0, 1)

11 y  =  ®3t +  f t f t  ~  /V(0, 25)

12 y  =  x i t  +  f t f t  ~  Af(0, 100)

A utoregressive

1 (/( =  1  +  0 .25xi* +  f t f t  =  0 .1 e* -i +  £* £* ~  A^(0. 1.5)

2 yt  =  1 + 0.25x1* +  f t f t  =  0.5e*_ 1  +  £ 4 £ 4 ~  N ( 0 , 1.5)

3 yt  =  1 + 0.25x1* +  f t f t  =  0 .9 t* - i  +  £* S t ~  yv(0,1.5)

Cont inued on next  page.
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N u m b e r  S p e c i f i c a t i o n P a r a m e t e r s

4 j/( =  1 +  0 .5x it +  £( f t  =  O .le t- i +  St £( ~  N ( 0 , 4)
5 y t  =  I +  0 .5x i( +  £( f t  =  0 .5 e (-i +  e t e t  ~  Af(0,4)
6 y t  =  I +  0 .5x it +  et f t  =  0 .9e(-i +  et £( ~  jV (0, 4)
7 y t  =  I +  0.75a:i( +  ej t t  =  0 .l€ t_ l +  e t e t  ~  N { 0 , 8)
8 i/f =  1 +  0.75xi( +  t t t t  =  0 .5€ t-i +  e t e t  ~  A f(0,8)
9 y t  =  I +  0 .75xu  +  t t f t  =  0 .9et_i +  et £t  ~  A^(0 , 8)
10 y t  =  I +  0.25x2( +  t t f t  =  0 .le t-1 +  et e t  ~  7V(0,0.4)
11 y t  =  1 +  0.25x2( +  t t f t  =  0.5e(_i +  e t £t  ~  A^(0,0.4)
12 y t  =  \  +  0.25x21 +  f-t f t  =  0 .9e(_i +  e t £t  ~  Af(0 ,0 .4 )
13 y t  =  1 +  0 .5x 2( +  f t f t  =  0 .k ( _ i 4* St e t  ~  7V(0,0.7)
14 (/( =  ! +  0.5x2( +  t t f t  =  0 .5et_i +  et e , ~  yV(0,0.7)
15 y t  =  1 +  0 . 5 x 2 t  +  et f t  =  0.9€(_i +  et e t  ~  yV(0,0.7)
16 !/t =  1 -f 0.75X2( +  f t f t  =  0 .1e(_i +  e t £( ~  N { 0 ,  1.6)

17 =  1 +  0.75x2( +  f t f t  =  0.5e(_i +  £t e t  ~  N { 0 ,  1.6)
18 (/( =  1 +  0.75x21 +  f t f t  =  0 .9£(-i +  et £t  ~  A^(0 , 1.6 )
1!) (/( =  ! +  0.2.5x3( +  f t t t  =  0 .1e(_i +  et e t  ~  iV (0,0.3)
20 ijt ~   ̂ 0.25x3( +  f t f t  =  0 .5e(-i +  et e t  ~  N ( 0 , 0 . 3 )

21 i/( =  1 +  0.25x31 +  f t f t  =  0.9e(_i +  et e t  ~  iV(0, 0.3)
22 (/(  =  1 +  0.5x3( +  f t f t  =  0 . 1e(_i +  e t e t  ~  N  ( 0 , 0 . 8 )

2.3 y t  =  \  +  0 .5x 34 +  f t f t  =  0.5e(_i +  et e t  ~  N ( 0 , 0 . S )

24 I I I  =  1 +  0.5x3( +  t t f t  =  0 . 9 t t - i +  et e ,  ~  Af(0.0.8)
25 i /(  =  1 +  0.75x3( +  f t f t  =  O .le t-i +  e t e t  ~  N ( 0 ,  1.5)
26 y t  =  1 +  0 .75x 3f +  t t f t  =  0 .5 t(_ i +  £ ( e t  ~  N ( 0 ,  1.5)
27 y t  =  1 -i- 0 .75x 3f +  t f t t  =  0 .9 ti_ i +  £ ( £t  ~  N ( 0 ,  1.5)

H a m i l to n

1 y t  =  0 .6x 2( I | i 2,> 5.51 +  0 .2x 2( +  St et  ~  N ( 0 ,  1)
2 y t  —  0 .6X2( 1 |j:2 , >.5 5|  +  0 .2x 3f +  £f c ,  ~  N ( Q ,  1)
.3 y t  =  0 .6,'i;2( l | x 2 , 51 + 0 . 2 x k  + £ ( £f ~  Af(0, 1)
4 yt  =  0 .6X3f 1|x3,>5..5| + O .2.X3, + 5, £ (  ~  A^(0, 1)
5 y t  =  O.Cx3( l[j-3, i> 5.5| +  0 . 2x 1(2 +  St £ (  ~  yv(o, 1)

N ote: I l f  =  2 0 t / T .

X2t =  10).
X3t  =  N  (.5.5, 2.25'^).

X4t =  0 . 6 x i f - i  +  et.
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T able B .2: T h e D u rb in -W atson  te s t  - u nordered  null case.

S p e c i f i c a t i o n V a l u e  o f  d T  = 25 75 125 175 225

1 d < dt 1,685 3.080 3.410 3.845 3.600
dL < d < du 3.035 1.765 1.685 1.485 1.300

2 d < di 1.870 3.020 3.525 3.490 3.550
dt < d < du 3.140 2.045 1.655 1.375 1.205

3 d < dL 1.910 2.815 3.295 3.630 3.795
dL < d < du 3.190 2.150 1.660 1.355 1.265

4 d < dL 3.130 3.750 4.055 4.265 4.330
di < d < du 4.650 2.660 1.850 1.610 1.340

5 d < dL 2.975 3.495 4.015 3.920 4.215
dL < d < du 4.835 2.365 1.990 1.490 1.455

6 d < dL 3.270 3.890 4.265 4.100 4,070
dL < d < du 4.550 2.440 2.0.35 1.625 1.325

7 d < dL 3.035 4.095 4.050 1.080 3.945
di < d < du 4.845 2.460 1.835 1.590 1.345

8 d < dL 2.395 4.070 3.905 4.230 4.235
dL < d < du 4.355 2.490 1.875 1.500 1.385

9 d < dL 2.980 3.845 4.255 4.480 4.160
dL < d < du 5.160 2.420 1.990 1.580 1.400

Note: th is  tab le  contains th e  sim ulated  sizes of th is tes t. i.e.. th e  [jercentage 
fretjuencies of d < di and  dL < d < du ■
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Table B.3: T he D urbin-W atson test - unordered quadratic case.

S pe c if ic a t io n Va l u e  o f  d  T  = 25 75 125 175 225

1 d < dL 100.000 100.000 100.000 100.000 100,000
dL < d < du 0.000 0.000 0.000 0.000 0,000

2 d < dL 100.000 100.000 100.000 100.000 100.000
dL < d < du 0.000 0.000 0.000 0.000 0.000

3 d < d i 100.000 100.000 100.000 100.000 100.000
dL < d < du 0.000 0.000 0.000 0,000 0.000

4 d < dL 0.925 0.690 0,115 3.360 0.000
dL < d < du 5.865 1.400 0.140 2,765 0.000

5 d < dL 0.000 13.455 9.660 43,445 0.080
dL < d < du 0.000 18.265 11.200 16,280 0.180

6 d < dL 0.235 0.000 80.420 0,000 0.165
dL < d < du 2.000 0.000 10.735 0,000 0.380

7 d < dL 0.000 24.355 0.000 0,680 0,000
dL < d < du 0.000 25.745 0.000 1,055 0,000

8 d < dL 1.030 0.000 0.000 0,000 0.000
dL < d < du 2.870 0.000 0.000 0,000 0.000

9 d < dL 89.090 0.000 0.000 0,000 0.000
dL < d < du 10.840 0.000 0.000 0,000 0.000

Note: th is  tab le  con ta ins th e  sim ula ted  sizes o f th is  tes t, i.e., th e  percentage 
fre<|uencies of d < (II and  d t  < d < du ■

Table B.4; T he D urbin-W atson test - unordered square case.

S p e c i f i c .a t i o n V a l u e  o f  d  T  = 25 75 125 175 225

1 d < dL 1.480 40.885 91.440 99.620 100.000
dL < d < du 3.675 15.485 4.320 0.185 0.000

2 d <  dL 3.355 9.875 9.245 22.595 12.100
dL < d < du 5.640 4.670 3.635 5.080 3.140

.3 d < dL 2.130 3.580 3.780 3.990 4.795
dL < d < du 4.060 2.415 1.870 1.640 1.555

4 d < dL 100.000 100.000 100.000 100.000 100.000
dL < d < du 0.000 0.000 0.000 0.000 0.000

5 d < dL 100.000 100.000 100.000 100.000 100.000
dL < d < du 0.000 0.000 0.000 0.000 0.000

6 d < dL 99.175 100.000 100.000 100.000 100.000
dL < d < du 0.630 0.000 0.000 0.000 0.000

7 d < dL 0.000 0.000 0.000 0.000 0.000
dL < d < du 0.000 0.000 0.000 0.000 0.000

8 d <  dL 0.210 1.875 0.730 0.290 9.565
dL < d < du 0.790 1.935 0.530 0.190 3.045

9 d < dL 2.880 3.475 4.545 4.525 3.980
dL < d < du 4.500 2.380 2.195 1.735 1.160

10 d < dL 0.000 0.000 0.000 0.000 0.000
dL < d < du 0.110 0.000 0.000 0.000 0.000

11 d < dL 3.805 0.705 0.525 1.725 1.480
dL < d < du 5.740 0.875 0.370 0.875 0.935

12 d < dL 2.160 2.955 4.225 4.980 3.940
dL < d < du 3.700 1.975 1.660 1.800 1.415

N ote: th is  tab le  con ta ins th e  sim ula ted  sizes o f th is tes t, i.e., th e  percentage 
frequencies of  d < d i  and  dL < d < du  ■
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T able B .5: T h e  D u rb in -W atson  te s t  - unordered  au toregressive  case.

FIC,\TION V a lu e  of  d  T  = 25 75 125 175 225 4’ =  25 75 125 175 225

1 d < d t 4.660 14.585 23.290 30.875 37.260 15 95.410 100.000 100.000 100.000 100.000
d i  < d < du 6..500 6.1.30 5.900 5.565 5.250 2.405 0.000 0.000 0.000 0.000

2 d < di. 51.220 98.600 99.970 100.000 100.000 16 8.005 16.850 26.370 33.355 ,39.550
d t  < d < du 16.220 0.555 0.010 0.000 0.000 9.490 6.860 6.330 5.725 5.430

.3 d. < dL 91.610 100.000 100.000 100.000 lOO.OOO 17 64.620 99.050 99.985 100.000 100.000
dL < d < du 4.010 0.000 O.OOO 0.000 0.000 13.795 0.345 0.005 0.000 0.000

4 d < d t 4.635 14.330 23.195 .30.935 37.760 18 9().9.30 100.000 100.000 100.000 100.000
d i  < d < du 6.510 6.340 5.935 5.510 5.435 1.580 0.000 0.000 O.OOO 0.000

5 d < d t 51.365 98.550 99.975 100.000 lOO.OOO 19 7.3.50 17..385 26.470 33.060 .39.995
d i  < d < du 16.135 0.640 0.020 0.000 0.000 9.070 6.870 6.430 5.7.35 5.605

6 d < d t 91.550 100,000 100.000 100.000 100.000 20 60.035 98.950 99.995 100.000 100.000
dL < d < du 4.235 0.000 0.000 0.000 0.000 15.300 0.430 0.000 0.000 0.000

7 d < d t 4.400 14.220 23.280 30.070 37.790 21 95.745 100.000 100.000 100.000 100.000
d t  < d < dr; 6.725 6.120 5.880 5.965 5.415 2.280 0.000 0.000 0.000 0.000

8 d < dL 51.525 98.620 99.975 100.000 lOO.OOO 22 8..300 17.290 25.325 33.200 39.450
d i  < d < du 15.900 0.510 0.005 0.000 O.OOO 9.535 6.850 6.155 5.950 5.665

9 d < d i 91.350 100.000 100.000 100.000 100.000 23 65.405 98.915 99.980 100.000 100.000
dL < d < du 4.080 0.000 0.000 0.000 0.000 14.000 0.440 0.005 0.000 0.000

10 d < dL 6.840 17.100 25.815 33.375 40.580 24 94.790 100.000 100.000 100.000 100.000
d i  < d < du 8.4.35 6.970 6.110 5.825 5.680 2.810 0.000 0.000 0.000 0.000

11 d < dL 61.610 99.140 99.980 100.000 100.000 25 8.140 17..325 25.590 33.975 39.575
dL < d < du 14.515 0.405 0.005 0.000 0.000 8.780 6.825 6.645 5.825 5.440

12 d < dL 97.080 100.000 100.000 100.000 100.000 26 64.080 98.955 99.995 100.000 100.000
dL < d < du 1.650 0.000 0.000 0.000 0.000 13.810 0.465 0.000 0.000 0.000

13 d < dL 8.970 17.175 25.730 33.335 39.425 27 97.000 100.000 100.000 100.000 100.000
dL < d < du 9.775 6.985 6.015 5.935 5.745 1 .(>60 0.000 0.000 0.000 0.000

14 d < dL 
d i  < d < du

62.470
13.870

99.055
0.415

99.990
0.000

100.000
0.000

100.000
0.000

Note: th is  tab le  con ta ins th e  sim ula ted  sizes o f th is  te s t, i.e.. th e  percen tage frecpiencies of d  <  rft and  d i  < d < dij.



T able B .6: T h e  D u rb in -W atson  te s t  - unordered  H am ilton  case.

S h e c î f i c a t i o n V.VLLiE OF d T = 25 75 125 175 225

1 d <  dh 1.840 2.905 3.085 3.535 3.875
dL <  d < du 10.395 4.960 4.090 3.465 2.985

2 d <  d t 1.655 3.000 3.340 3.490 3.695
dL <  d < du 10.380 4.955 3.725 3.140 2,800

3 d <  dL 1.160 2.150 2.755 2.970 3.215
dL <  d < du 7.2.50 4.395 3.245 2,725 2.5.30

4 d <  dL 1.880 2.785 3.305 3.690 3.725
dL < d < du 10.715 5.185 3.895 3.050 3.005

5 d <  dL 0,920 2.270 2.895 2.860 2.750
dL < d < du 7.285 4.230 3.365 2.610 2,590

Note: this table contains the sim ulated sizes of this test, i.e., the percentage 
frequencies o( d <  d[, and d i  <  d < d u .
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T able B .7: T h e  D u rb in -W atson  te s t  - ordered  null case.

S p e c i f i c a t i o n V a l u e  o f  d T  = 25 75 125 175 225

1 d < di 1.835 2.845 3.480 3,470 3.530
dh < d < du 3.485 2.125 1,710 1,390 1.215

2 d < dL 1.765 2.965 3.420 3,340 3.575
dh < d < du 3.220 1.775 1,625 1,335 1.185

.3 d < di 1.725 2.935 3.500 3,635 3.665
dt < d < du 3.340 2,015 1.760 1,375 1.225

4 d < dL 1.925 3.070 3.395 3,455 3.855
dL < d < du 3.360 2.030 1.705 1,310 1.225

5 d < dL 1.805 2.920 3.455 3,725 3.535
dL < d < du 3.190 1.975 1 ..395 1.425 1.295

6 d < dL 1.870 2.810 3.475 3.645 3.485
dL < d < du 3.505 2.075 1.685 1.425 1.275

7 d < dL 1.735 3.025 3.380 3.555 3.470
dL < d < du 3.195 2.215 1,715 1.365 1.310

8 d < dL 1.815 2.910 3,405 3.575 3.605
dL < d < du 3.375 2.075 1,695 1.385 1.270

9 d < dL 1.700 3.075 3,415 3.450 3.565
dL < d < du 3.390 1.905 1,790 1.255 1.115

N ote: th is  tab le  con ta ins th e  sim ulated  sizes of th is tes t. i.e.. th e  percen tage 
fre<iuencies of d < d[̂  and  dc < d < dij.

T able B .8: T h e  D u rb in -W atson  te s t  - ordered  q u ad ratic  case.

S p e c i f i c a t i o n V a l u e  o f  d T  = 25 75 125 175 225

1 d < dL 100.000 100.000 100.000 100.000 100.000
dL < d < du 0.000 0.000 0.000 0.000 0.000

2 d < dL 100,000 100.000 100.000 100.000 100.000
dL < d < du 0,000 0.000 0.000 0.000 0.000

3 d < dL 100,000 100.000 100.000 100.000 100.000
dL < d < du 0,000 0.000 0.000 0.000 0.000

4 d < dL 100,000 100.000 100.000 100.000 100.000
dL < d < du 0,000 0.000 0.000 0.000 0.000

5 d < dL 100,000 100.000 100.000 100.000 100.000
dL < d < du 0,000 0.000 0.000 0.000 0.000

6 d < dL 100,000 100,000 100.000 100.000 100.000
dL < d < du 0,000 0.000 0.000 0.000 0.000

7 d < dL 99.120 100.000 100,000 100.000 100.000
dL <  t/ <  di; 0.670 0.000 0,000 0.000 0.000

8 d < dL 100.000 100.000 100,000 100.000 100.000
dL < d < du 0.000 0.000 0,000 0.000 0.000

9 d < dL 100.000 100.000 100,000 100.000 100.000
dL < d < du 0.000 0.000 0,000 0.000 0.000

N ote: th is  tab le  con tains th e  sim ula ted  sizes of th is tes t, i.e., th e  percen tage 
frequencies of d < dt an d  dL < d < du-
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Table B.9: T he D urbin-W atson test - ordered square case.

S p e c i f i c a t i o n V a l u e  o f  d  T  = 25 75 125 175 225

1 d < dL 99.900 100.000 100,000 100.000 100.000
d t  < d < du 0.095 0.000 0,000 0.000 0.000

2 d < d t 41.180 78.930 83,195 61.925 62.590
dL < d < du 16.465 5.700 3,880 5.145 4.915

3 d < dL 2.3.35 3.505 4,475 4.415 4.310
dL < il < du 3.725 2.150 2,120 1.615 1.450

4 d < dL 100.000 100.000 100,000 100.000 100.000
dL < d < du 0.000 0.000 0,000 0.000 0.000

5 d < dL 100.000 100.000 100,000 100.000 100.000
dL < d < du 0.000 0.000 0,000 0.000 0.000

6 d < dL 99.225 100.000 100,000 100.000 100.000
dL < d < du 0.590 0.000 0,000 0.000 0.000

7 d < dL 100.000 100.000 100.000 100.000 100.000
dL < d < du 0.000 0.000 0.000 0.000 0.000

8 d < dL 94.160 99.995 100.000 100.000 100.000
dL < d < du 3.820 0.005 0.000 0.000 0.000

9 d < dL 5.405 16.040 21.275 23.085 33.340
dL < d < du 6.140 6.120 5.240 4.765 4.925

10 d < dL 100.000 100.000 100.000 100.000 100.000
dL < d < du 0.000 0.000 0.000 0.000 0.000

11 d <  dL 95.045 99.975 100.000 100.000 100.000
dL < d < du 3.450 0,010 0.000 0.000 0.000

12 d < dL 4.405 12.615 26.910 22.975 64.080
dL < d < du 5.930 5,540 5.990 4.600 4.770

Note: th is  tab le  con ta ins th e  sim ulated  sizes of th is  tes t, i.e., th e  percen tage 
fre(iuencies of d < and  f//, < d < du-
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Table B.IO: T he Durbin-W atson test - ordered autoregressive case.

FIC’ATION V a l u e  o f  d T  = 25 75 125 175 225 T = 25 75 125 175

1 d < dt 4.780 14.920 22.680 .30.160 37,495 15 91.495 99.995 99,995 100.000 99.995
di < d < du 7.005 5.880 6.070 5.605 5,365 3.985 0.000 0,000 0.000 0.000

2 d < dL 51.540 98.605 99.980 100.000 100,000 16 4.745 14.460 22,725 31.160 37..395
dL < d < du 16.090 0.540 0.020 0.000 0,000 6.415 6.175 6.1.30 5.645 5.075

3 d < dh 91.305 100.000 100.000 100.000 100.000 17 .52.175 98.5.30 99.965 99.995 99.995
di < d < du 4.295 0.000 0.000 0.000 0.000 16.080 0.585 0.015 0.000 0.000

1 d < dh 4.695 14.580 22.865 .30.755 37..505 18 92.380 99.995 99.995 99.995 99.995
di < d < du 6.730 6.550 5.705 5.595 5.570 3.770 0.000 0.000 0.000 0.000

5 d < dL 51.325 98.540 99.970 100.000 100.000 19 4.780 14.660 23.700 30.855 36.765
di < d < du 16.530 0.610 0.015 0.000 0.000 6.595 6.310 5.735 5.385 5.520

6 d < dt 91.675 100.000 100,000 100.000 100.000 20 51..385 98.,540 99.980 99.995 99.995
dt < d < du 3.940 0.000 0.000 0.000 0.000 16.715 0.615 0.005 0.000 0.000

7 d < dL 4.880 14.705 23.110 30.770 37,615 21 92.840 99.995 99.995 99.995 99.995
dt < d < du 6.760 5.915 6.030 5.595 5.310 3..500 0.000 0.000 0.000 0.000

8 d < dL 51.195 98.465 99.965 100.000 100.000 22 4.485 14„5,50 23.090 30.400 37.240
dL < d < du 16.065 0.575 0.015 0.000 0.000 6.760 6.390 6.170 5.635 5.375

9 d < dL 91.270 100.000 100.000 100.000 100.000 23 53.275 98.675 99.965 99.995 99.995
dL < d < du 4.265 0.000 0.000 0.000 0.000 15.910 0.580 0.020 0.000 0.000

10 d < d.L 4.640 14.430 22.555 30.930 .36.940 24 92.100 99.995 99.995 99.995 99.995
dL < d < du 6.305 6,250 5.960 5.445 5.310 4.075 0.000 0.000 0.000 0.000

11 d < dL 51.545 98.640 99.985 99.995 99.995 25 4.690 14.350 23,135 31.275 37.240
dL < d < du 16.070 0.560 0.010 0.000 0.000 6.845 5.740 5.8,55 5.490 5.310

12 d < dL 91,890 99.995 99.995 99.995 99.995 26 52.9,50 98.530 99,970 99.995 99.995
dL < d < du 3.915 0.000 0.000 0.000 0.000 15.685 0.615 0.020 0.000 0.000

13 d < dL 4.765 14.835 22.800 31.095 37.395 27 91.790 99,995 99.995 99.995 99.995
dL < d < du 6.670 6.105 5.650 5.665 5.390 4.0,35 0,000 0.000 0.000 0.000

14 d < dL 
dt < d < du

51..130 
16.055

98.500
0,610

99.965
0.030

99.995
0.000

99.995
0.000

Note: this table contains the simulated sizes of this test, i.e., the percentage frequencies of d < di and dt < d < dii.



Table B . l l :  T he D urbin-W atson test - ordered H am ilton case.

Specification Value o f d  T  = 25 75 125 175 225

1 d < d L 28.740 94.130 99.725 99.980 100.000
d t  < d  < d u 33.850 3.505 0.155 0.015 0.000

2 d  < d t 29.360 94.275 99.665 99.980 99.995
d c  < d  < d u 33.725 3.500 0.190 0.015 0.005

3 d  < d i 28.130 94.115 99.645 99.985 100.000
d t  < d  < d u 33.830 3.395 0.210 0.010 0.000

J d  <  c/l 42.745 99.045 99.995 100.000 100.000
dL < d  < d u 33.845 0.635 0.000 0.000 0.000

5 d  < rfi 42.990 98.990 100.000 100.000 100.000
d t  < d  < d u 33.490 0.720 0.000 0.000 0.000

N ote: th is  tab le  con ta ins the  sim ulated  sizes of th is tes t, i.e., th e  percen tage 
frequencies of d  < d ^  and  d l < d  < d u  ■
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Table B.12: T he H arvey-Collier test - iinordered.

S p e c i f i c a t i o n  T = 25 75 125 175 225 T  = 25 75 125 175 225

Null 1 5.135 4.985 4.960 4.815 5.090 •Auto 1 5,8.50 6.205 6.670 6.330 6.570
2 5.205 4.815 5.005 5.080 4.810 2 10,690 12.605 13.270 14.470 14.425
3 4.915 4.925 4.875 4.935 5.135 3 22.980 27.300 28.205 28.650 29.510
4 4.645 4.860 4.875 5.175 5.100 4 5.685 6.110 6.360 6.460 6.300
5 5.025 5.150 5.140 5.010 5.170 5 10.340 12.260 13.070 13.930 14.820
6 4.700 4.950 4.865 5.1,55 5.025 6 22.840 27.765 27.985 29.085 29.340
7 5.115 4.870 4.995 5.170 4.925 7 5.825 6.035 6.605 6.430 6.,5.35
8 4.920 5.040 5.015 4.950 5.025 8 10.,520 12.515 13.225 14.420 13.920
9 5.385 5.005 4.840 5.070 4.995 9 23.230 27.245 28.590 29.215 28.910

10 6.700 6.710 6.605 6.600 6.9,35
11 13.495 15.070 15.7,55 16.005 15.7,50

Quad 1 100.000 100.000 100.000 100.000 100.000 12 26.7,50 30.895 ,32.310 31.895 ,32.515
2 100.000 100.000 100.000 100.000 100.000 13 6.6,55 7.030 6.180 6.460 6..505
3 100.000 100.000 100.000 100.000 100.000 14 10.905 15.640 15.3,50 16.0,30 15.835
4 5.075 88.760 0.000 47.360 0.080 15 27.900 30.970 31.125 .32.170 32.235
5 0.000 99.965 0.000 0.000 0.000 16 6.095 6.485 6.440 6.895 6.6,30
6 0.340 0.000 0.000 0.000 43.185 17 13.9,30 15.175 16.165 15.885 16.0,35
7 11.845 7.535 3,3.030 0.t)00 0.000 18 27.415 30.835 31.900 32.450 .32.940
8 0.665 0.000 0.000 0.000 0.000 19 6.315 6.675 6.525 6.750 6.705
9 0.010 0.000 0.000 0,000 97.255 20 13.230 14.,5,55 15.460 15.625 16.345

21 27.655 .30.125 31.715 ,32.315 32.530
22 5.980 6.405 6.595 6.820 6.980

Square 1 16.780 33.680 57.760 16.195 0.000 2,3 12.975 15.410 15.190 16.205 16.000
2 18.440 17.760 0.480 1.915 1..505 24 27.900 30.680 31.100 31.810 ,32.440
3 5.305 6.120 5.220 3.605 5.630 25 6.300 6.655 6.690 6.945 6.745
4 100.000 100.000 100.000 100.000 100.000 26 13.370 14.910 15.810 15.390 16.185
5 100.000 100.000 100.000 lOO.OOO 100.000 27 27.625 31.245 31.840 ,32.100 ,33.180
6 99.940 100.000 100.000 100.000 100.000
7 0.000 0.000 0.000 0.000 0.000
8 0.275 2.160 0.030 1.835 0.020
9 3.520 6.420 4.470 3..360 2.825

10 0.000 0.000 0.380 0.000 8.820
11 0.000 2.165 1.010 11.980 0.9,50
12 5.235 2.505 2.935 1.955 2.995

Note: this table contains the sim ulated sizes of this test, i.e.. the percentage fre(|iiencies of rejection of the null hypotheses.



T able B .13: T h e  H arvey-C ollier  te s t  - ordered .

S p e c if ic a t io n  T  = 25 75 125 175 225 T  = 25 75 125 175 225

Null 1 4.935 4.870 4.865 4.940 4.825 A uto 1 5.700 6.345 6.560 6.0,55 6.140
2 4.890 4.945 4.970 4.915 5.045 2 10.840 12.5.35 13.470 14.165 14..595
3 4.565 5.075 4.815 4.885 5.180 3 22.730 27.8.30 28.240 28.885 29.080
4 5.155 5.055 4.870 4.750 4.890 4 5.820 6.200 6.235 6.680 6.460
5 4.910 4.985 4.990 5.070 4.765 5 10.565 12.460 13.460 13.890 14.130
6 4.670 5.005 4.905 4.985 4.975 6 22.925 27.575 28.035 28.,505 29.270
7 5.065 5.170 5.200 5.105 4.680 7 6.050 6.590 6.355 6.570 6.285
8 5.220 4.880 5.080 5.0.30 5.205 8 10.490 12.8.35 13.240 13.865 14.1,50
9 4.940 4.980 5.060 5.115 5.160 9 23.125 27.555 28..385 28.670 29.715

10 4.635 4.725 4.990 4.965 5.280
11 6.165 6.190 5..390 4.980 5..360

Qua<l 1 99.540 100.000 100.000 100.000 100.000 12 3.555 5.780 7.175 1.730 5.280
2 100.000 100.000 100.000 100.000 100.000 13 5.520 5.525 4.835 5.280 5.070
3 99.980 100.000 100.000 100.000 100.000 14 6.605 7.915 4.220 4.235 5.2,30
4 100.000 100.000 100.000 100.000 100.000 15 11.090 4.005 3.8,30 4.235 4.680
5 100.000 100.000 100.000 100.000 100.000 16 5.155 5..300 4.715 5.160 5.290
6 100.000 100.000 100.000 100.000 100.000 17 5.370 5.830 5.305 4.425 5.890
7 100.000 100.000 100.000 100.000 100.000 18 3.775 1.495 10.260 4.260 6.795
8 100.000 100.000 100.000 100.000 100.000 19 5.075 4.700 5.015 5.175 4.8,50
9 99.995 100.000 100.000 100.000 100.000 20 6.430 4.960 4.570 4.645 4.885

21 8.505 3.720 2.905 2.265 3.805
22 5.095 4.785 4.995 4.670 4.780

Square 1 97.885 100.000 100.000 100.000 100.000 23 5.440 5.420 5.055 7.2,55 4.635
2 15.545 79.775 86.865 99.855 99.370 24 11.105 2.000 3.590 4.265 2.490
3 8.765 15.965 .33.865 20.685 24.620 25 5.065 5.360 5.1.55 4.955 5.185
4 100.000 100.000 100.000 100.000 100.000 26 4.890 4.040 5.195 4.525 4.645
5 100.000 100.000 100.000 100.000 100.000 27 8.215 3.555 6.290 4.,345 5.770
6 99.915 100.000 100.000 100.000 lOO.OfH)
7 100.000 100.000 100.000 100.000 100.000
8 87.560 100.000 100.000 100.000 100.000
9 38.160 51.755 76.450 88.425 96.785

10 100.000 100.000 100.000 100.000 100.000
11 72.585 100.000 100.000 100.000 100.000
12 25.250 49.305 86.505 !)0.205 95.990

Note; th is  tab le  con ta ins th e  sim ula ted  sizes of th is  te s t, i.e.. th e  percen tage fre(]uencies of rejection of th e  null hypotheses.



Table B.14: The R am sey R eset test.

Specification

CMII 75 125 175 225 T  = 25 75 125 175 225

Null 1 4.990 5.085 5.315 5.050 5.175 <\ulo 1 6.765 7.320 7.410 7.570 7.555
2 4.940 4.885 5.045 4.810 5.060 2 22.840 25.200 25.740 25.680 26.035
3 5.010 5.410 5.095 4.915 4.910 3 52.140 62.680 63.895 64.190 65.010
4 5.140 5.140 5.205 5.000 5.025 4 7.2.30 7.400 7.310 7.160 7.775
5 4.815 4.870 5.070 5.135 5.290 5 22.550 24.975 25.490 25.020 25.065
6 5.200 5.000 5.145 4.925 4.905 6 52.110 62.505 64.495 64.655 64.885
7 4.855 5.010 4.730 4.8.30 4.740 7 7.040 7.645 7.395 7.710 7.020
8 4.915 5.095 4.955 5.260 4.880 8 22.815 25.300 24.875 25.695 25.590
9 4.960 1.745 5.075 5.0)0 5.150 9 52.340 63.010 63.850 64.580 65.170

10 4.290 5.080 5.260 5.025 4.685
11 6.415 5.915 7.735 3.760 5.550

Quad I 100.000 100.000 100.000 100.000 100.000 12 2.575 2.610 3.265 6.925 9.235
2 100.000 100.000 100.000 100.000 100.000 13 4.515 4.980 4.860 4.970 5.045
3 100.000 100.000 100.000 100.000 100.000 14 6.260 7.575 2.955 5.790 3.800
4 100.000 100.000 100.000 100.000 100.000 15 1.955 10.645 4.475 5.290 4.305
5 100.000 IflO.OOO 100.000 100.000 100.000 16 4.9.30 4.615 5.085 5.180 4.605
6 100.000 lOO.OOO 100.000 100.000 100.000 17 7..390 4.280 4.705 5.705 3.650
7 100.000 lOO.OOO 100.000 100.000 100.000 18 2.900 5.245 0.400 6.595 2.970
8 100.000 100.000 100.000 100.000 100.000 19 4.965 4.755 4.790 5.195 4.650
9 100.000 100.000 100.000 100.000 100.000 20 2.825 7.465 5.040 3.220 4.415

21 1.345 1.505 12.4.35 9.950 5.810
22 4.615 4.760 5.130 5.135 4.865

Square 1 97.885 100.000 100.000 100.000 100.000 23 4.635 3.980 4.290 5.245 5.625
2 8.475 98.210 98.140 99.980 100.000 24 13.160 1.825 0.220 5.310 8.310
3 6.905 12.455 16.565 68.895 45.500 25 4.560 5.105 4.630 4.880 4.825
4 100.000 100.000 100.000 lOO.OfM) 100.000 26 2.450 8.240 5.440 6.580 5.270
5 100.000 100.000 100.000 100.000 100.000 27 2.895 10.040 0.920 1.140 10.600
6 100.000 100.000 100.000 100.000 100.000
7 100.000 100.000 100.000 100.000 100.000
8 100.000 100.000 100.000 100.000 100.000 11am 1 21.435 .56.1.35 79.200 90.840 96.205
9 13.735 67.475 83.745 97.690 99.555 2 22.655 58.685 80.305 91.740 96.920

10 100.000 100.000 100.000 100.000 100.000 .3 12.265 31.150 50.960 66.315 77.445
11 99.995 100.000 100.000 100.000 100.000 4 25.950 54.605 73.605 84.935 91.140
12 16.795 84.120 96.030 99.590 99.980 5 16.400 39.675 56.750 69.985 79.790

Note: this table contains the sinnilated sizes of this test, i.e., the percentage frequencies of rejection of the null hypotheses.



Table B.15: The \fj{g) test.

S p e c if ic a t io n  T = 25 75 125 175 225 T = 25 75 125 175 225

Null 1 4.570 5.075 4.555 4.895 5.105 <\uto 1 8.125 9.270 9.420 9.500 9.710
2 4.440 5.085 4.880 4.925 4.775 2 41.780 51.080 ,54.055 ,54.470 54.820
3 4.640 4.955 4.980 4.810 4,875 3 80.950 96.985 98.640 99.240 99.580
4 4.545 4.6.30 4.780 4.905 4.980 4 7.975 9.620 9.600 9.,580 9.870
5 4.585 4.875 5.080 5.055 4,815 5 41.965 ,50.755 ,53.600 ,54.405 ,54.625
6 4.690 4.740 5.035 5.080 4.885 6 81.1,50 97.005 98.805 99.270 99.510
7 4.480 4.920 4.905 4.805 4.535 7 8.140 9.2,30 9.850 9.705 9.220
8 4.545 4.795 5.050 4.865 4.960 8 41.945 51.245 53..385 53.880 54.925
9 4.115 4.915 5.005 4.995 4.820 9 81.185 96.945 98.705 99.2,50 99.565

10 4.560 4.600 4.970 4.880 5.045
11 3.195 5.2,50 2.975 3.645 5.840

Quad 1 100.000 100.000 100.000 100.000 100.000 12 4.210 4,2,50 1.260 10.035 6.975
2 100.000 100.000 100.000 100.000 100.000 13 4.600 5,445 4.630 4.885 5.125
3 100.000 100.000 100.000 ] 00.000 100.000 14 3.010 4.115 4.465 3.995 5.6,30
4 100.000 100.000 100.000 100.000 100.000 15 1.260 3.760 2.210 l.,555 4,465
5 100.000 100.000 100.000 100.000 100.000 16 4.475 4.820 4.925 5.180 5.000
6 100.000 100.000 100.000 100.000 100.000 17 3.555 5.170 4.240 5.,300 5.575
7 100.000 100.000 100.000 100.000 100.000 18 2.040 4.1,50 6.705 1,865 3.040
8 100.000 100.000 100.000 100.000 100.000 19 4.260 4.570 4.9,30 4,980 4.825
9 100.000 100.000 100.000 100.000 100.000 20 5.285 5.315 4.4.35 4.715 5.090

21 2.940 7.985 5.455 3.885 2.470
22 4.510 5.000 4.825 5.105 5.095

Square 1 100.000 100.000 100.000 100.000 100.000 2,3 5.820 5.165 5.115 3.,565 6.120
2 20.480 44.,365 95.745 97.665 97.175 24 1..340 4.955 2.105 1.975 3.980
3 4.740 8.315 8.215 16.325 22.330 25 4.1,50 4.945 4.410 5.195 4.965
4 100.000 100.000 100.000 100.000 100.000 26 1.655 6.040 3.940 4.290 4,885
5 100.000 100.000 100.000 100.000 100.000 27 7.845 1.995 14.585 4.975 8.800
6 99.995 100.000 100.000 100.000 100.000
7 100.000 100.000 100.000 100.000 100.000
8 99.530 100.000 100.000 100.000 100.000 Ham 1 28.,5.55 92.895 99.765 99.990 100.000
9 13.100 52.190 79.050 92.250 94.905 2 ,30.715 93.040 99.855 99.995 100.000

10 100.000 100.000 100.000 100.000 100.000 3 28.7,35 91.975 99.840 100.000 100.000
11 94.760 99.710 100.000 100.000 100.000 4 ,39.160 98.330 99.975 100.000 100.000
12 12.960 .34.385 70.200 95.050 96.905 5 36.8,30 98.395 99.995 100.000 100.000

Note; this table contains the simulated sizes of this test. i.e.. the percentage frequencies of rejection of the null hypotheses.



T able B .16: T h e  \ q p  te s t  - b o o tstra p p ed  values.

Specification  T  = 25 75 125 175 225 T  = 25 75 125 175 225

Null 1 4.500 5.400 5.100 3.900 6.300 Auto 1 8.100 9.800 8.,300 10.200 8.600
2 3.800 4.300 4.600 4.200 4.900 2 37.000 49.100 51.400 52..500 53.,500
3 5.400 5.100 4.500 4.900 4.900 3 74.800 96.800 99.300 99.900 99.600
i 4.100 4.700 5.000 4.100 4.<)00 4 6.400 8.900 9.600 8.900 8.700
5 3.800 3.800 3.500 4.900 4.400 5 39.800 50.600 53.200 51.700 54.500
6 5.000 5.100 4.300 5.100 4.900 6 75.800 96.900 99.200 99.600 99.700
7 4.700 4.500 5.800 1.700 5.000 7 7.400 6.700 9.500 9.900 10.700
8 5.000 5.400 1.200 5.400 3.,500 8 37.800 48.900 49.800 .54.200 52.700
9 4.700 5.900 3.300 4.100 4.900 9 75.600 98.,300 99.200 99.8(M) 9<).900

10 5.600 5..500 4.900 •1.500 5.800
11 3.500 4.900 6.100 ■1.600 5.200

Quad 1 100.000 100.000 100.000 100.000 100.000 12 6.700 2.,500 4..500 4.400 5.000
2 100.000 100.000 100.000 100.000 100.000 13 4.600 4.100 5.500 4.900 5.900
.3 100.000 100.000 100.000 100.000 100.000 14 5.600 9.400 3.400 4.000 5.000
4 100.000 100.000 100.000 100.000 100.000 15 0.700 13.300 1.300 2.900 6.100
,5 100.000 100.000 100.000 100.000 100.000 16 4.000 4.200 4.000 5.800 4.800
6 100.000 100.000 100.000 100.000 100.000 17 5.800 3.900 3.700 4.500 4.600
7 100.000 100.000 100.000 100.000 100.000 18 3.400 3.100 9.300 2.700 9,700
8 100.000 100.000 100.000 100.000 100.000 19 4.700 4.900 5.000 3.700 4.400
9 100.000 100.000 100.000 100.000 lOO.OOO 20 12.600 5.100 3.400 2.500 4.600

21 4.400 6..500 5.000 1.000 3.900
22 7.100 4.500 5.600 6.200 4..500

Square 1 99.500 100.000 100.000 100.000 100.000 23 3..300 4.000 5.400 4.000 4.700
2 25.500 61..300 79.000 100.000 99.900 24 8.300 7..500 4.900 1.900 7.100
3 9.700 13.400 10.200 31.600 24.500 25 5.800 5.000 4.800 3.900 4.900
1 100.000 100.000 100.000 100.000 H)0.000 26 4.200 3.300 4.000 3.900 8.000
5 100.000 100.000 100.000 100.000 100.000 27 0.900 12.000 1.700 2.500 10.100
6 100.000 100.000 100.000 100.000 100.000
7 100.000 100.000 100.000 100.000 100.000
8 100.000 100.000 100.000 loo.otm 100.000 Ham 1 36.900 97.800 100.000 100.000 100.000
9 27.200 57.900 91.800 94.200 97.900 2 .39.800 98.500 100.000 100.000 100.000

10 100.000 100.000 100.000 100,000 100.000 3 38.200 97.300 100.000 100.000 100.000
11 100.000 100.000 100.000 100.000 100.000 4 52.400 99.700 100.000 100.000 100.000
12 37.000 51.900 98.400 100.000 99.800 5 52.700 99.700 100.000 100.000 100.000

Note: this table contains the simulated sizes of this tost, i.e., the percentage fre(iiiencies of rejection of the null hypotheses.



T able B .17: T h e  X q p  te s t  - a sy m p to tic  j>-values.

S p e c i f i c a t i o n  T  = 25 75 125 175 225 T  = 25 75 125 175 225

Null 1 1.600 1.635 1.610 1.495 1.345 A uto 1 3.180 3.265 3.435 3.480 3.550
2 1.785 1.545 1.550 1.415 1.425 2 22.785 32.365 .34,125 35.805 .35.815
3 1.555 1.510 1.520 1.785 1.600 3 65.660 94.275 98,085 98.955 99.410
4 1.730 1.185 1.165 1.760 1.345 4 3.005 3.455 3,615 3.260 3.350
5 1.165 1.290 1.550 1.370 1.375 5 23.005 32.290 34,700 35.220 35.380
6 0.810 1.395 1.665 1.235 1.355 6 65.940 94.305 97.990 99.070 99.370
7 1.030 1.470 0.955 1.585 1.285 7 3.165 3.240 3.300 3.385 3.405
8 2.150 1.260 1.375 1.085 1.375 8 23.295 32.185 34.320 35.375 35.785
9 1.155 1.305 0.820 1.185 1.105 9 65.590 94.150 97.890 98.995 99.290

10 1.735 1.745 1,775 1.510 1.595
11 2.680 1.230 1.460 1.820 0.770

Q uad 1 100.000 100.000 100.000 100,000 100.000 12 0.290 1,060 0.890 1.720 0.455
2 100.000 100.000 100.000 100,000 100.000 13 1.730 1,270 1..345 1.435 1.505
3 100.000 100.000 100,000 100,000 100.000 14 3.920 0,965 1.570 1.515 1.540
4 100.000 100.000 100.000 100.000 100.000 15 0.810 0,205 3.555 0.915 0.340
5 100.000 100.000 100,000 100,000 100.000 16 1.100 1,585 1.745 1.485 1.350
6 100.000 100.000 100.000 100.000 100.000 17 0.660 1,805 1.655 2.260 1.040
7 100.000 100.000 100.000 100.000 100.000 18 0.155 2,105 1.505 0.665 0.125
8 100.000 100.000 100.000 100.000 100.000 19 1.645 1,265 0.975 1.005 1,080
9 100.000 100,000 100.000 100.000 100.000 20 1.570 1,265 2.455 1.485 1.440

21 0.350 3.965 2.405 0.215 1.435
22 1.135 0,920 1.925 1.230 0,940

Square 1 99.860 100.000 100.000 100.000 100.000 23 2.010 2,060 2.080 0.645 0.690
2 19.005 97.175 80.705 86.015 99.940 24 1.275 0.020 0.175 0.395 0,905
3 4.225 2.050 6.040 6.980 13.155 25 0.975 1.200 1.160 1.180 1.155
4 100.000 100.000 100.000 100.000 100.000 26 1.365 1.000 0.610 1.035 1.290
5 100.000 100.000 100.000 100.000 100.000 27 3.045 0.345 3.075 0.270 0.805
6 100.000 100.000 100.000 100.000 100.000
7 100.000 100.000 100.000 100,000 100.000
8 99.830 100.000 100.000 100,000 100.000 Ham 1 28.005 95.290 99.980 100.000 100.000
9 12.610 45.925 81.605 91,550 92.590 2 27.620 95,230 99.945 100.000 100.000

10 100.000 100.000 100.000 100,000 100.000 3 27.955 95.550 99.970 100.000 100.000
11 99.990 100.000 100.000 100,000 100.000 4 37.500 99.115 100.000 100.000 100.000
12 5.950 28.305 92.340 94.890 98.700 5 36.975 98.865 100.000 100.000 100.000

Note: th is  tab le  con ta in s th e  sim ula ted  sizes of th is  tes t. i.e.. th e  percen tage frequencies of rejection of th e  null hypotheses.



Table B.18: The \Qp[g) test - bootstrapped />-values.

S p e c i f i c a t i o n  T  = 25 75 125 175 225 T  = 25 75 125 175 225

Null 1 4.100 5.500 4.800 4.500 4.800 A uto 1 4.000 1.700 4.300 4.200 4.700
2 5.100 5.600 4.900 5.400 5.000 2 28.200 52.700 55.800 54.800 58.300
,3 3.900 4.600 4.500 3.400 6.000 3 76.200 99.500 100.000 99.900 99.900
4 5.300 5.100 6.600 5.800 3.700 4 2.900 3.900 4.200 3.700 5.000
5 5.600 3.800 5.000 4.700 4.900 5 28.400 50.200 53.600 54.700 58.300
6 5.200 5.000 4.900 5.000 5.300 6 74.600 99.000 99.700 99.900 100.000
7 7.000 3.600 5.300 5.700 5.300 7 4.400 4.800 4.600 5.700 4.000
8 5.100 5.100 5..300 4.300 5.900 8 30.200 46.800 ,55.600 56.600 .58.600
9 4.900 5..300 4.900 5.500 5.400 9 78.700 98.900 99.800 100.000 100.000

10 5.200 5.600 4.300 5.100 5.300
11 3.400 5.400 5.900 3.,500 4.300

Q uad 1 100.000 100.000 100.000 100.000 100.000 12 2.900 3.000 5.400 5.100 4.400
2 100.000 100.000 100.000 100.000 100.000 13 4.000 4.800 4.900 5.900 5.300
3 100.000 100.000 100.000 100.000 100.000 14 4.000 4.100 5.300 3.900 6..500
4 100.000 100.000 100.000 100.000 100.000 15 5.300 5.500 4.400 4.400 5.100
5 100.000 100.000 100.000 100.000 100.000 16 5.400 4.700 4.200 4.400 4.100
6 100.000 100.000 100.000 100.000 100.000 17 5.!)00 5.200 4.000 5.400 5..500
7 99.800 100.000 100.000 100.000 100.000 18 14.100 5.800 6.200 3.900 6.600
8 100.000 100.000 100.000 100.000 100.000 19 4.600 4..300 4.900 4.800 4.400
9 100.000 100.000 100.000 100.000 100.000 20 4.200 5..500 4.600 4.100 5.600

21 4.400 3.000 3.800 8.000 4.100
22 4.100 4.200 6.100 6.000 4.900

.Square 1 69.100 100.000 100.000 100.000 100.000 23 3.900 5.300 6.200 4.800 5.100
2 4.800 23.500 .53.900 79.200 92.500 24 6.500 3.600 5.000 4..500 4.300
3 4.000 5.200 4.400 5.800 5.300 25 4.000 5.500 4.800 5.400 5.000
4 100.000 100.000 100.000 100.000 100.000 26 5.500 1.600 4..300 4.700 4.300
5 100.000 100.000 100.000 100.000 lOO.OOO 27 6.200 9.000 3.900 5.200 4.400
6 99.700 100.000 100.000 100.000 100.000
7 100.000 100.000 100.000 100.000 100.000
8 62.400 100.000 100.000 100.000 100.000 1 l a m 1 8.600 76.700 98.400 100.000 100.000
9 3.900 38.900 59.200 77.300 80.800 2 11.200 79.900 98.400 100.000 100.000

10 100.000 100.000 100.000 100.000 100.000 3 7.900 78.400 99.200 100.000 100.000
11 70.600 100.000 100.000 100.000 100.000 4 17.200 92.900 99.900 100.000 100.000
12 3.700 13.200 61.600 63.100 71.000 5 15.200 93.100 99.900 100.000 100.000

N ote: th is  tab le  con ta ins th e  sim ula ted  sizes of th is  te s t, i.e.. th e  percen tage fre(iuencies of rejection of th e  null hypotheses.



Table B.19: The \Qp[g) test - asymptotic />-values.

S pecifica tion  T  = 25 75 125 175 225 T  = 25 75 125 175 225

Null 1 1.285 0.650 0.690 0,615 0.560 Auto 1 1,465 1.935 2.315 2.130 2.245
2 1.280 0.765 0.575 0,655 0.525 2 23,960 43.445 47.420 49.695 50.400
3 1.230 0.610 0.565 0.545 0.640 3 72,620 98.615 99.755 99.910 99.980
4 1.355 0.250 0.355 0.590 0.630 4 1.625 1.985 2.140 2.265 2.160
5 0.360 0.465 0.355 0.610 0.640 5 23,970 43.625 47.765 49.555 50.750
6 1.205 0.725 0.680 0.640 0.530 6 72.080 98.660 99.790 99.925 99.985
7 1.155 0.870 0.980 0.825 0.880 7 1.705 1.825 2.070 2.080 2.195
8 0.655 1.010 0.840 0.685 0.835 8 24.015 44.095 46.980 49.320 49.905
9 0.350 0.755 0.895 0.800 1.035 9 72.770 98.720 99.770 99.930 99.975

10 1.080 0.830 0.520 0.500 0.715
11 0.255 0.635 1.110 0.510 0.325

Qua<l 1 100.000 100.000 100,000 100.000 100.000 12 0.020 0.010 1.005 0.065 0.940
2 100.000 100.000 100,000 100.000 100,000 13 0.645 0.765 0.795 0.760 0.540
3 100.000 100.000 100.000 100.000 100.000 14 0.435 0.345 1.320 0.510 0.705
4 100.000 100.000 100.000 100.000 100.000 15 0.340 1.090 0.160 0.115 2.430
5 100.000 100.000 100,000 100.000 100,000 16 0.855 0.700 0.415 0.660 0.640
6 99.990 100.000 100,000 100.000 100,000 17 0.580 0.820 0.875 0.480 0.575
7 72.040 100.000 100,000 100.000 100,000 18 0.175 0.095 0.075 0.295 0.710
8 76.575 100.000 100,000 100.000 100,000 19 0.830 0.790 0.640 0.945 0.935
9 59.415 100.000 100,000 100.000 100,000 20 0.575 1.900 2.215 1.405 0.975

21 0.470 0.055 0.105 0.965 0.825
22 1,700 0.760 0.970 0.890 0.960

Square 1 86.745 100.000 100,000 100.000 100,000 23 0.510 0.705 1.000 0.930 1.195
2 6,050 19.300 49.470 96.045 75,595 24 0,160 0.555 1.675 0.530 0.295
3 0.910 1.295 1.240 2.415 3,435 25 0.845 1.085 0.955 0.770 0,865
4 100.000 100.000 100.000 100.000 100,000 26 0.570 0.865 0.975 1.875 1,105
5 100.000 100.000 100.000 100.000 100.000 27 0.405 2.655 1.270 1.815 0,865
6 99.015 100.000 100,000 100.000 100.000
7 100.000 100.000 100,000 100.000 lOO.OOO
8 74.635 100.000 100,000 100.000 100.000 llani 1 10.745 78.515 98.845 99.970 100,000
9 2.190 25.475 51,870 78.375 92.570 2 12.390 77.355 98.680 99.960 100,000

10 100.000 100.000 100,000 100.000 100,000 3 10.890 78.690 98.940 99.960 100,000
11 95.475 99.935 100,000 100.000 100,000 4 17.970 92.705 99.945 100.000 100,000
12 1.910 13.080 61,425 20.395 49,750 5 16.275 93.460 99.955 100.000 100,000

Note: this table contains the sinnilated sizes of this test. i.e.. the percentage frequencies of rejection of the null hypotheses.



Table B.20: T he gop  test - bootstrapped />-values.

S p e c if ic a t io n  T  = 25 75 125 175 225 T  = 25 75 125 175 225

Null 1 4.700 5.500 5.200 5.000 5.800 A uto 1 3,900 3.300 3,000 2,900 4.000
2 5.400 5.700 4.700 5.800 5.600 2 10,600 17.700 15,800 16,900 19..500
3 3.400 4.100 6.200 4.400 5.800 3 38,000 73.600 80,900 84,100 87.800
•4 fi.OOO 6.300 5.400 5.500 5.400 4 4,600 4.100 4,700 3,800 2..500
5 4.800 5.400 5.300 5.700 6.600 5 8,400 17.000 21.600 19,.500 22.000
6 5.000 5.700 4.200 3.500 5.700 6 36,100 71.700 79.800 85,800 86.900
7 5.600 5.400 4.800 5.100 4,600 7 3.700 3.800 2.400 3.400 2.700
8 5.200 4.600 5.000 5.000 4.800 8 10.600 17.400 17.800 18..500 17.900
9 4.600 4.700 4.300 5.000 5.200 9 35.800 73,800 81.200 84,600 86.000

10 4.700 5,500 3.900 4.500 5.600
11 4.400 4,200 5.000 5,200 4.400

Quad 1 100.000 100.000 100.000 100.000 100.000 12 2.000 2.200 4.700 6..300 6.800
2 100.000 100.000 100.000 100,000 100.000 13 4.300 4.300 5.700 5.900 4.600
.3 100.000 100.000 100.000 100.000 100.000 14 7.000 4.600 5..300 4.800 6.200
4 69.000 100.000 100.000 100,000 100.000 15 1.400 7.800 6.700 7.100 7.000
5 100.000 100.000 100.000 100,000 100.000 16 5.900 5.700 3.800 4.900 5..500
6 100.000 100.000 100.000 100,000 100.000 17 5.900 5.300 4.900 5.500 5.700
7 100.000 100.000 100.000 100,000 100.000 18 4.300 5.000 2.700 4.200 5..300
8 67.400 100.000 100,000 100.000 100.000 19 5.800 4.600 4.300 4..500 5.,500
!) 100.000 100.000 100.000 100.000 100.000 20 5.000 4.100 4.400 4.900 4.800

21 2.700 4.400 3,600 6..500 6.100
22 i.rjoo 6.000 5,000 5.200 5..300

Square 1 100.000 100.000 100.000 100.000 100.000 23 5,400 5.000 5,300 5.400 4..300
2 15.400 95.500 98.000 99.200 100.000 24 4,500 6.500 9,500 5.000 3..500
3 4.600 22.200 11.300 23.700 27.300 25 5,200 3.800 6,000 5.100 4.900
4 100.000 100.000 100.000 100.000 100.000 26 6,700 4.400 4,500 5.000 4..500
5 100.000 100.000 100.000 100.000 100,000 27 2.700 3.700 5,700 3.100 3.300
6 92.900 100.000 100.000 100.000 100,000
7 100.000 100.000 100.000 100.000 100,000
8 93.800 100.000 100.000 100.000 100,000 Ham 1 8.400 54.500 93,900 99.800 100.000
!) 3.600 20.700 64.500 71.000 90,100 2 7..500 58.000 94,700 99.900 100.000

10 100.000 100.000 100.000 100.000 100,000 3 8.000 45,400 89,000 98.,500 100.000
11 82.700 100.000 100.000 100.000 100,000 14.400 85,100 99,700 100.000 100.000
12 3..300 21.200 68.500 85.000 95,300 13.100 85,600 99,800 100.000 100.000

Note: this table contains the sim ulated sizes of this test, i.e., the percentage frequencies of rejection of the null hypotheses.
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Table B.21: T he g o p  test - asym ptotic /^-values.

S pecifica tion  T  = 25 75 125 175 225 T  = 25 75 125 175 225

Null 1 0.000 0.000 0.000 0.000 0.000 .\u to 1 0.000 0.000 0.000 0.000 0.000
2 0.000 0.000 0.000 0.000 0.000 2 0.000 0.250 0.475 0.635 0.725
3 0.000 0.000 0.000 0.000 0.000 3 0.000 27.870 42.055 48.305 51.960
4 0.000 0.000 0.000 0.000 0.000 4 0.000 0.000 0.000 0.000 0.005
5 0.000 0.000 0.000 0.000 0.000 5 0.000 0.265 0..500 0.685 0.760
6 0.000 0.000 0.000 0.000 0.000 () 0.000 28.540 41.490 47.885 52.125
7 0.000 0.000 0.000 0.000 0.000 7 0.000 0.000 0.000 0.000 0.000
8 0.000 0.000 0.000 0.000 0.000 8 0.000 0.315 0.495 0.680 0.775
9 0.000 0.000 0.000 0.000 0.000 9 0.000 28.515 42.180 48.550 51.625

10 0.000 0.000 0.000 0.000 0.000
11 0.000 0.000 0.000 0.005 0.000

Quad 1 0.000 100.000 100.000 100.000 100.000 12 0.000 0.000 0.000 0.000 0.000
2 0.000 100.000 100.000 100.000 100.000 13 0.000 0.000 0.000 0.000 0.000
3 0.000 100.000 100.000 100.000 100.000 14 0.000 0.000 0.000 0.000 0.000
4 0.000 100.000 100.000 100.000 100.000 15 0.000 0.000 0.000 0.000 0.000
5 0.000 100.000 100.000 100.000 100.000 16 0.000 0.000 0.000 0.000 0.000
6 0.000 100.000 100.000 100.000 100.000 17 0.000 0.000 0.000 0.000 0.000
7 0.025 100.000 100.000 100.000 100.000 18 0.000 0.000 0.000 0.000 0.000
8 0.000 100.000 100.000 100.000 100.000 19 0.000 0.000 0.000 0.000 0.005
9 4.1.30 100.000 100.000 100.000 100.000 20 0.000 0.000 0.000 0.000 0.000

21 0.000 0.000 0.000 0.000 0.000
22 0.000 0.000 0.000 0.005 0.000

Square 1 44.315 100.000 100.000 100.000 100.000 23 0.000 0.000 0.000 0.000 0.000
2 11.400 73.900 96.250 99.985 99.485 24 0.000 0.000 0.000 0.000 0.000
3 0.535 1.960 4.240 1.995 6.010 25 0.000 0.000 0.000 0.000 0.000
4 0.000 100.000 100.000 100.000 100.000 26 0.000 0.000 0.000 0.000 0.000
a 0.000 100.000 100.000 100.000 100.000 27 0.000 0.000 0.000 0.000 0.000
6 0.000 99.985 100.000 100.000 100.000
7 0.000 100.000 100.000 100.000 100.000
8 0.000 99.305 100.000 100.000 100.000 Ham 1 0.000 0.035 0.905 8.940 .36.155
9 0.000 0.055 0.355 2.300 9.030 2 0.000 0.010 0.905 10.560 .39.015

10 0.000 100.000 100.000 100.000 100.000 3 0.000 0.030 0.675 6.460 27.215
11 0.140 99.705 100.000 100.000 100.000 4 0.005 1.060 18.920 67.540 95.515
12 0.000 4.600 11.010 5.185 .59.220 5 0.005 0.905 18.205 65.980 94.985

Note: this table contains the simulated sizes of this test. i.e.. the percentaRe frecpiencies of rejection of the null hypotheses.



B.2 Sim ulation Code

This code, along with the other files, produces the Monte Carlo simulations vised in Chapter 
5. In its current set-up, it simulates datasets with five different sample sizes and uses 20, 000 
Monte Carlo trials, saving the results in a 20,000 x 5 matrix as an *. fmt file in the working 
directory.

M on te C arlo C ode  

new;
maxji = 225; min_n = 25;
The minimum num ber of observations to be used in the model is min_n and the maximum is max_n
stepji = 50;
The increment in num ber of observations between experiments is step .n  
n = min_n; 
mc_trials = 20000;
The num ber of Monte Carlo Trials per experiment
exp_n = (((maxji - min_n) / step_n) + 1);
exp_n denotes the to tal number of experiments 
resultsmatrix = zeros(mc_trials,exp_n) ;
The m atrix  where results from each simulation will be stored 
do while exp_n > =  1;
This loop com mand controls and repeats the Monte Carlo simulation until all experim ents are complete 

Enter the FIXED param eters HERE 

a = 0 ;
bl = ones(n, 1); 
b2 = 0.25;
/* b2 = 0.50; */
/ *  b2 = 0.75; */
x = (seqaCl, 1, n )  / n )  * 20; bO = 1.5; /* 4.0, 8.0, 1, 25, 400 * /
/* X = (rnduCn, 1) * 9) + 1; bO = 0.4; 0.7, 1.6, 1 25, 400 */
/* X = 5.5 + ((sqrt(5.0625)) * rndn(n, 1); bO = 0.3; 0.8, 1.5, 1 ,25, 400 * !

index = 1;
'['he index num ber for the Monte Carlo simulation 
resultsvector = zeros(mc_trials, 1);
This is the vector of results for each Monte Carlo experiment 
do until index > mc.trials;
A loop to carry out the test until rnc.trails number of sinuilations are complete

Enter the VARIABLE param eters HERE

e = a + (sqrt(bO) * rndn(n, 1));

Enter the Model Specification HERE 
y = b l + b 2 * x + e ;  /* Null */ 
y = bl + b2 * X + b2 * x“2 + e; /* Quadratic */
y = x'2 + e; xO = rndn(l, 1); eO = rndn(n, 1); x = recserar(eO, xO, 0.6); / *  
Square */
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y = b l + b 2 * x + u ;  e = a +  (sqrt(bO) * rndn(n, 1); eO = a + (sqrt(bO) * 
rndnd, 1); u = recserar(e,eO,rho); rho = 0.1, 0.5, 0.9; /* Autoregressive 
* /
y = 0.6 * x[., 1] .* (xl[., 1] •> 0) + 0.2 * x2[., 2] + rndn(n, 1); /* 
Hamilton */

E nter T esting  P rocedure  C ode H ER E  

resultsvector[index, 1] = result;
Collect the  resu lt from each te s t in to  th e  resu lts  vector for th a t  experim ent 
index = index + 1;
Increm ents th e  M onte C arlo  S im ulation  index num ber by 1 

endo;
C om pletes th e  M onte C arlo  sim ulation  for th e  given sam ple size, n 

resultsmatrix[1:mc_trials, 6-exp_n] = resultsvector;
Collects th e  resu lts of th e  experim en t in to  th e  resu lts m atrix  
if n < maxji; 
n = n + stepji;
If n is less th an  the  m axinnim , th e  sinu ila tion  moves to  th e  nex t experim ent w here n equals n plus its 

increm ent, s t e p j i  
else;
n = min_n; 
endif;
I'his stops th e  sim ulation  w hen n reaches its  preset m inim um  value 

expja = expji - 1;
Increm ents the  experim ent num ber while n <  m a x ji  

endo;
save resultsmatrix; 
clear all;

The Tests

T h e  Durbin-Watson Test 

_olsres = 1;
screen off; output off;
{vnam,m,slopes,stb,vc,stderr,sigma,cx,r2,resid,dwstat} = ols(0, y, x); 
OLS com m and, w ithou t p rin ted  results , to  estim a te  th e  D\V’ S ta tis tic  

screen on; output on;

T h e  Harvey-Colher Test

#include he;
{t} = recrsidb(zz); 
hcn_l[index, 1] = t;

The proc he is defined below: ^

proc (1) = recrsidb(zz); 
local

’T hanks to  C u rt W ells, Lund U niversity  for m aking his recursive residual code available.
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t,f1,f2,11,12,phitest,nl,r,m,n,j ,p,pl,b,bt,btl,z,yt,xt,xxt,xxtl,vv,vt,f t ; 
p = cols(zz);
The number of independent variables, including constant 

pi = p + 1;
The number of the dependent variable 
m = p;
n = rows(zz);
This reads length internally 
b = zeros(n, p ) ; 
vv = zeros(n, 1); 
z = ones(n, 1) ~  zz; 
r = (n - m ) ; 
nl = (n - r ) ;
The initial OLS estim ate
xxtl = inv(z[l:m, l:p]' * z[l:m, l:p]);
btl = xxtl * z[l:m, l:p]' * z[l:m, pi];
b[m, .] = btl';
j = m + 1;
I'he loop to calculate the b's and the recursive residuals
do until j >  n;
xt = z[j, l;p]; yt = z[j, pi];
ft = 1 + xt * xxtl * xt';
xxt = xxtl - xxtl * xt' * xt * xxtl / ft;
vt = yt - xt * btl;
bt = btl + xxtl * xt' * vt / ft;
Update and save
vv[j, 1] = Vt / sqrt(ft); 
b[j , .] = bt';
xxtl = xxt; 
btl = bt;
j = j + 1;
endo;
f 1 = vv [nl + 1:n, 1]; 
f2 = meanc(f1);
12 = sumc(f1);
11 = sximc((fl - f2)'2);
phitest = (((r - 1)"-1 * ll)'-0.5) * ((r)'-0.5) * 12; 
t = cdftc(phitest, r - 1);

T h e R a m sey  R e se t  T est

j = 1; /* or 2 or 3, depending on the model specification */
The number of colum ns of x 
r_old = zeros(1, 1) ; 
r_new = zeros (1, 1);
Initialises the two vectors for holding the R-squared values 
screen off; output off;
{vnam,in,b,stb,V C ,stderr,sigma,cx,rsq,resid,dwstat} = ols(0, y, x ) ; 
Run OLS on x and y 
screen on; output on; 
r_old = rsq;
Record the R-Squared value 
yhat = (bl ~  x) * b;
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y h a t2  = y h a t " 2 ;
Square those values 
x l  = X ~  y h a t2 ;  
s c r e e n  o f f ;  o u tp u t  o f f ;
{ v n a m , m , b , s t b , V C , s t d e r r , s i g m a , c x , r 2 , r e s i d , d w s t a t  } = o l s ( 0 ,  y ,  x l ) ;  
Recalculate R-squared for the new x vector, including the estimates of Yhat 
s c r e e n  on; o u tp u t  on; 
r_new = r 2 ;
Assign the new R-squared value
F = ( ( ( r_ n ew  -  r_ o ld )  /  1 ) )  /  ( (1  -  r_new) /  (n -  ( j  + 1 ) ) ) ;
Calculate the F-Statistic 
p = c d f f c CF ,  1,  (n -  ( j  + 1 ) ) ) ;
Calculate the probability associated with the F-Statistic 
r r n _ l [ i n d e x ,  1] = p;
Places the results in the vector res.l

T h e  \ ^ { g )  t e s t

This code is adapted from Hamilton (2001). The two inchided procs are unchanged.

k q o p t  = 2;
# i n c l u d e  d i s t 2 ;
# i n c l u d e  c o v a ry ;  
in d e x  = 1;
Index is the index for each Monte Carlo simulation 
lmn_l = z e r o s ( m c _ t r i a l s , 1 );
rhis is the vector of results for each Monte Carlo sinmlation 
do u n t i l  in d e x  >  m c _ t r i a l s ;
A loo[) to carry out the test until mc-trails number of simulations are complete 
n = rows ( x l ) ; 
k = c o l s  ( x l ) ; 
s c r e e n  o f f ;  o u tp u t  o f f ;
_ o l s r e s = l ;
{ v n a i n , i i i , s l o p e s , s t b , V C , s t d e r r , s i g m a , c x , r 2 , r e s i d , d w s t a t }  = o l s ( 0 ,  y ,  x l )  ; 
s c r e e n  on; 
o u t p u t  on;
OLS procedure to return the residuals required for the Hamilton (2001) LM test 
e = r e s i d ;
xw hole = o n e s ( n ,  1) ~  x l ;  
x s i g  = m e a n c ( x l ) ;
x s i g  = s q r t ( m e a n c ( ( x l  -  x s i g ' )  " 2 ) ) ;  
x s i g  = s q r t ( k )  * x s i g  /  2; 
s i g e  = e ' * e /  (n -  k -  1 ) ;  
s igO  = s i g e ;
xq = d i s t 2 ( x l ,  1 . /  x s i g  ) ;  
h t  = c o v a ry  (k ,  x q ) ;
mO = xwhole * in v p d (x w h o le '  * xw hole) * xw hole ';
mO = e y e (n )  -  mO;
aO = mO * h t  * mO;
z e t a  = aO -  mO * s u m c (d ia g ( a O ) ) /  (n  -  k -  1 ) ;
z e t a  = s q r t (2 * s u m c ( d i a g ( z e t a  * z e t a ) ) ) ;
z e t a  = (e '  * h t  * e -  s i g e  * s u m c (d ia g ( a O ) ) )  /  (s ig O  * z e t a ) ;  
p = c d f c h i c ( z e t a ' 2 , 1 ) ;
Computes the p-value of the Hamilton (2001) LM test
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lmn_l[index, 1] = p;
R etu rns th e  resu lts for each of th e  five experim ents

The proc dist2:

proc dist2(xmat, gam);
local iter, xc_tmp, nx, nk, xc;
nk = rows(gam);
nx = rows(xmat);
iter = 1;
xc = 0;
do until iter > nk;
xc_tmp = (xmat[.,iter] * gam [iter, 1]) .* ones(nx, nx); 
xc = xc + (xc_tmp - xc_tmpO 2; 
iter = iter + 1; 
endo;
retp(sqrt(xc)); 
endp;

The proc covary:

proc covary(kv, xmat);
local kodd, kO, GO, Gh, hoo, kb, xc, xrow, xcol, xall; 
xmat = xmat / 2;
Now th e  elem ents of x m a t co rrespond  to  ti in I'heorein 2.2 and  T able 1

xrow = rows(xmat);
xcol = cols(xmat);
xall = xrow * xcol;
xmat = reshape(xmat, 1, xall);
xmat = mine(xmat I ones(l, xall));
xmat = reshape(xmat, xrow, xcol);
Now th e  elem ents of x m a t are  no larger th an  unity
if kqopt == 1;
kb = kv - 1;
kodd = (kb 7. 2) ;
kodd is 1 if kb is odd  and  0 if kb is even
F irst calcu late  (JO =  CJ <  kb >  (0. 1)
if kodd == 0;
GO = 1;
T his is ( i <  0 >  (0, 1) 

elseif kodd == 1;
GO = (pi / 4);
T his is G <  I >  (0. 1) 
else;
"integer error; this line should not be executed";
"kodd is";; kodd;
end;
endif;
kO = kodd;
do until kO >= kb;
kO = kO + 2;
GO = (kO / (1 + kO)) * GO;
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endo;
Next calculate Gh =  G <  kb > (h, 1) 
if kodd == 0;
Gh = 1 - xmat;
This is G <  0 <  (h, 1) 
elseif kodd == 1;
Gh = (pi / 4) - 0.5 * xmat sqrt(l - xmat'2) - 0.5 * arcsin(xmat);
This is G < 1 >  (h, 1) 
else;
"integer error; this line should not be executed";
endif;
kO = kodd;
do until kO > =  kb;
kO = kO + 2;
Gh = (kO / (kO + 1)) * Gh - (xmat / (1 + kO)) .* (1 - xmat'2)‘(k0 / 2); 
endo;
hoo = Gh / GO; 
elseif kqopt == 2; 
if kv == 1; 
hoo = 1 - xmat; 
elseif kv == 2;
hoo = 1 - (2 / pi) * (xmat .* sqrt(l - xmat'2) + arcsin(xmat)); 
elseif kv == 3;
hoo = 1 - (3 / 2) * xmat + ( 1 / 2 )  * xmat'3;
elseif kv == 4;
hoo = 1 - (2 / pi) * ((2 * xmat / 3) .* ((1 - xmat*2)*1.5));
hoo = hoo - (2 / pi) * (xmat .* sqrt(l - xmat 2) + arcsin(xmat));
elseif kv == 5;
hoo = 1 - 1.5 * xmat + (1 / 2) * xmat'3 - (3 / 8) * xmat .* (1 - xmat'2)'2;
else;
"Table 1 only calculates the case for 5 variables or less";
"Change global parameter kqopt to 1";
end;
endif;
endif;
retp(hoo);
endp;

The Aq p test 

#include RFtestsNew;
{test, pa, pb} = Alambdatestbootc(y, xl, xl, 100); 
lan.l[index, 1] = pa;

The proc Xq p '

proc(3) = Alambdatestbootc(y, x, xnon, boot);
local nobs, xwhole, eps, SSRO, SSRl, sigmasq, uhat, vhat, xc, gam, Rsq, I, 
g;
local stat,iter,j ter,Z ,ttemp,indx,nx,auxwhole,yf,numb;
local beta, xtest, torg, tstar, epshat, epshatb, betab, sigmasqb, rejection.
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capT;
local p_asymp, p_boot;
capT = rows(x);
xtest = xnon;
tstar = zeros(boot, 1);
nobs = rows(y);
xwhole = ones(nobs, 1) ~  x;
beta = invpd(xwhole' xwhole) * (xwhole' y) ;
eps = y - xwhole * beta;
sigmasq = meanc(eps'2);
uhat = vec(eye(nobs) - (eps * eps') ./ sigmasq);
SSRO = uhat' uhat; 
iter = 1; 
nx = cols(xtest); 
do until iter > nx;
xc = xtest[., iter] .* ones(nobs, nobs); 
if iter == 1;
Z = vec(abs(xc - xc')); 
else;
Z = Z ~  vec(abs(xc - xc')); 
endif;
iter = iter + 1; 
endo;
Change here to include higher order terms for better approximation 
if nx > 1;
auxwhole = Z ~  remideKZ * ~  Z); 
else;
auxwhole = Z ~  Z'“2; 
endif;
numb = cols(auxwhole) + 1;
auxwhole = ones(nobs'2, 1) ~  auxwhole ~  vec(eye(nobs));
vhat = uhat - auxwhole * invpd(auxwhole' auxwhole) * (auxwhole' uhat);
SSRl = vhat' vhat;
Rsq = (SSRO - SSRl) / SSRO; 
torg = 0.5 * rows(Z) * Rsq; 
iter = 1; 
rejection = 0; 
do until iter > boot; 
locate 12, 1;
"LambdaA test boot# ";; iter;; " out of ";; boot;
epshatb = sqrt(sigmasq) * rndn(capT, 1);
y = xwhole * beta + epshatb;
betab = invpd(xwhole’xwhole)*xwhole’y;
epshat = y “ xwhole * betab;
sigmasqb = meanc(epshat"2);
uhat = vec (eye (nobs) - (epshat * epshat' ) ./ sigmasqb);
SSRO = uhat' uhat;
vhat = uhat - auxwhole * invpd(auxwhole' auxwhole) * (auxwhole' uhat);
SSRl = vhat' vhat;
Rsq = (SSRO - SSRl) / SSRO;
tstar [iter] = 0.5 * rows(Z) * Rsq;
rejection = rejection + (tstar[iter] >  torg);
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iter = iter + 1; 
endo;
p_asymp = cdfchic(torg, numb);
P-boot = ((1 + rejection) / (1+boot)); 
retpCtorg, p_asymp, p.boot); 
endp;

The proc remidel: 

proc(l) = remidel(x);
local colsx, rowsx, indx, c, jter, indxl, cs, precis;
precis = 10'(-5);
indxl = 0;
colsx = cols(x);
rowsx = rows(x);
cs = sumc(x);
indx = seqad, 1, cols(x));
c = indx ~  cs;
c = sortc(c, 2);
c = c';
jter = 1;
indxl = c [1,1];
do until jter == cols(x);
if c[2, jter + 1] > c[2, jter] + precis;
indxl = indxlIc[1,jter+1] ;
endif;
jter = jter + 1; 
endo;
indxl = sortc(indxl, 1); 
retp(x[., indxl']); 
endp;

The X p p i g ) test 
#include RFtestsNew;
{test, pa, pb} = ElambdatestbootcCy, xl, xl, 100); 
len_l[index, 1] = pa;

riie proc

proc(3)=Elambdatestbootc(y, x, xnon, boot);
local nobs, xwhole, eps, SSRO, SSRl, sigmasq, uhat, vhat, xc, gam, Rsq, I, 
g, stat;
local iter, jter, Z, ttemp, indx, nx, auxwhole, yf, hplus, hoo;
local beta, xtest, torg, tstar, epshat, epshatb, betab, sigmasqb, rejection;
local p.asymp, p_boot;
nobs = rows(y);
tstar = zeros(boot, 1);
xtest = xnon;
nx = cols(xtest);
xwhole = ones(nobs, 1) ~  x;
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beta = invpd(xwhole' xwhole) * (xwhole' y ) ; 
eps = y - xwhole * beta; 
sigmasq = meanc(eps“2 ) ;
uhat = vec(eye(nobs) - (eps * eps' ) ./ sigmasq);
SSRO = uhat' uhat; 
iter = 1;
do until iter > nx;
xc = xtest[., iter] .* ones(nobs, nobs); 
if iter == 1;
Z = vec(abs(xc - xc' )); 
else;
Z = Z ~  vec(abs(xc - xc' )); 
endif;
iter = iter + 1; 
endo;
gam = meanc(abs(xtest - meanc(xtest)' ));
gam = 2 ./ (nx * gam);
hplus = 0.5 * (Z * gam);
hoo = (1 - hplus)"(2 * cols(xnon));
I = (hplus .<= 1);
auxwhole = (hoo .* I) ~  vec(eye(nobs));
vhat = uhat - auxwhole * pinv(auxwhole' auxwhole) * (auxwhole' uhat); 
SSRl = vhat' vhat;
Rsq = (SSRO - SSRl) / SSRO; 
torg = 0.5 * rows(Z) * Rsq; 
iter = 1; 
rejection = 0; 
do until iter > boot; 
locate 12,1;
"LambdaE test boot# ";; iter;; " out of ";; boot;
epshatb = sqrt(sigmasq) * rndn(nobs, 1);
y = xwhole * beta + epshatb;
betab = invpd(xwhole' xwhole) * xwhole' y;
epshat = y - xwhole * betab;
sigmasqb = meanc(epshat'2);
uhat = vec(eye(nobs) - (epshat * epshat' ) ./ sigmasqb);
SSRO = uhat' uhat;
vhat = uhat - auxwhole * pinv(auxwhole' auxwhole) * (auxwhole' uhat);
SSRl = vhat' vhat;
Rsq = (SSRO - SSRl) / SSRO;
tstar[iter] = 0.5 * rows(Z) * Rsq;
rejection = rejection + (tstar[iter] >  torg);
iter = iter + 1;
endo;
p_asymp = cdfchic(torg, 1);
p_boot = ((1 + rejection) / (1 + boot));
retp(torg, p.asymp, p_boot);
endp;
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Th e  gop test

#include RFtestsNew;
{test, pa, pb} = gtestbootc(y, xl, xl, 100); 
gn_l[index, 1] = pa;

The proc gop'-

proc(3) = gtestbootcCy, x, xnon, boot);
local nobs, xwhole, eps, SSRO, SSRl, sigmasq, uhat, vhat, xc, gam, Rsq, I, 
g:
local stat, iter, jter, Z, ttemp, indx, nx, auxwhole, yf, numb;
local beta, xtest, torg, tstar, epshat, epshatb, betab, sigmasqb, rejection,
capT;
local p_asymp, p_boot;
xtest = xnon;
tstar = zeros(boot, 1);
nobs = rows(y);
xwhole = ones(nobs, 1) ~  x;
beta = invpd(xwhole' xwhole) * (xwhole' y) ;
eps = y - xwhole * beta;
sigmasq = meanc(eps'2);
uhat = vec(eye(nobs) - (eps * ep'’) ./ sigmasq);
SSRO = uhat' uhat; 
iter = 1; 
nx = cols(xtest); 
do until iter > nx;
xc = xtest[., iter] .* ones(nobs, nobs); 
if iter == 1;
Z = vec(abs(xc - xc' )) - vec(abs(xc)) - vec(abs(xc' )); 
else;
Z = Z ~  (vec(abs(xc - xc' )) - vec(abs(xc)) - vec(abs(xc' ))); 
endif;
iter = iter + 1; 
endo;
Change here to inchule higher order terms for better approximation  

if nx > 1;
auxwhole = Z ~  remidel(Z * ~  Z); 
else;
auxwhole = Z ~  Z“2; 
endif;
numb = cols(auxwhole);
auxwhole = auxwhole ~  vec(eye(nobs));
vhat = uhat - auxwhole * invpd(auxwhole' ’auxwhole) * (auxwhole' uhat);
SSRl = vhat' vhat;
Rsq = (SSRO - SSRl) / SSRO; 
torg = 0.5 * rows(Z) * Rsq; 
iter = 1; 
rejection = 0; 
do until iter > boot; 
locate 12, 1;
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"g-test boot# iter;;" out of boot;
epshatb = sqrt(sigmasq) * rndn(nobs, 1);
y = xwhole * beta + epshatb;
betab = invpd(xwhole' xwhole) * xwhole' y;
epshat = y - xwhole * betab;
sigmasqb = meanc(epshat"2);
uhat = vec(eye(nobs) - (epshat * epshat' ) ./ sigmasqb);
SSRO = uhat' uhat;
vhat = uhat - auxwhole * invpd(auxwhole' auxwhole) * (auxwhole' uhat);
SSRl = vhat' vhat;
Rsq = (SSRO - SSRl) / SSRO;
tstar[iter] = 0.5 * rows(Z) * Rsq;
rejection = rejection + (tstar[iter] > torg);
iter = iter + 1;
endo;
p_asymp = cdfchic(torg, numb);
p_boot = ((1 + rejection) / (1 + boot));
retp(torg, p_asymp, p_boot);
endp;
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A ppendix C

A ppendix to Chapter 5
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C .l D ata  used in C hapter 5

T able C .l:  M on ey  d em an d  d a ta , D enm ark .

n i t yt Pt bt i t

1974:1 11.633 5.904 - 0.619 0.155 0.094

1974:2 11.604 5.874 - 0.581 0.178 0.096

1974:3 11.582 5.838 - 0.543 0.171 0.096

1974:4 11.602 5.812 - 0.505 0.152 0.096

1975:1 11.586 5.804 - 0.487 0.134 0.089

1975:2 11.605 5.787 - 0.454 0.134 0.079

1975:3 11.653 5.833 - 0.441 0.128 0.076

1975:4 11.764 5.930 - 0.439 0.129 0.074

1976:1 11.753 5.938 - 0.404 0.141 0.072

1976:2 11.766 5.935 - 0.373 0.153 0.078

1976:3 11.781 5.932 - 0.358 0.161 0.080

1976:4 11.770 5.941 - 0.325 0.162 0.103

1977:1 11.746 5.928 - 0.310 0.167 0.097
1977:2 11.769 5.937 - 0.288 0.163 0.088

1977:3 11.750 5.957 - 0.264 0.169 0.095
1977:4 11.749 5.940 - 0.229 0.173 0.097

1978:1 11.705 5.932 - 0.212 0.172 0.099

1978:2 11.703 5.931 - 0.197 0.176 0.088

1978:3 11.703 5.972 - 0.185 0.171 0.081
1978:4 11.704 5.969 - 0.163 0.182 0.077
1979:1 11.679 5.963 - 0.139 0 . 170 0.075

1979:2 11.708 5.987 - 0.121 0.169 0.077

1979:3 11.676 5.985 - 0.087 0.178 0.086

1979:4 11.686 5.977 - 0.059 0.180 0.101
1980:1 11.642 5,985 - 0.036 0.191 0.109

1980:2 11.635 5.945 - 0.009 0.197 0.121
1980:3 11.609 5.902 0.014 0.192 0.121

1980:4 11.658 5.902 0.033 0.183 0.107

1981:1 11.628 5.897 0.062 0.185 0.105

1981:2 11.629 5.894 0.104 0.193 0.109

1981:3 11.604 5.884 0.126 0.203 0.111

1981:4 11.629 5.895 0.151 0.192 0.109

1982:1 11.602 5.902 0.174 0.203 0.107

1982:2 11.604 5.924 0.198 0.211 0.111

1982:3 11.595 5 . 9.50 0.220 0.209 0.111

1982:4 11.604 5.929 0.246 0.197 0.110

1983:1 11.617 5.916 0.259 0.161 0.106

1983:2 11.688 5.939 0.270 0.138 0.087

1983:3 11.727 5.932 0.285 0.142 0.083

1983:4 11.781 5.974 0.301 0 . 1.34 0.085

Continued on next page.
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rrit y t Pt h  it

1984:1 11.798
1984:2 11.842
1984:3 11.840
1984:4 11.924
1985:1 11.903
1985:2 11.927
1985:3 11.971
1985:4 12.026
1986:1 12.051
1986:2 12.076
1986:3 12.056
1986:4 12.072
1987:1 12.028
1987:2 12.040

5.964 0.316
6.001 0.331
5.991 0.343
5.969 0.356
6.014 0.371
6.003 0.383
6.045 0.387
6.081 0,393
6.096 0.398
6.090 0.413
6.099 0.418
6.081 0.428
6.061 0.447
6.064 0.458
6.051 0.468

0.134 0.085
0.142 0.083
0.145 0.085
0.141 0.092
0.132 0.090
0.120 0.088
0.107 0.080
0.104 0.076
0.098 0.072
0.098 0.068
0.112 0.068
0.114 0.075
0.119 0.077
0.117 0.076
0.119 0.0751987:3 12.015

Source: h t t p : / /www.math.ku.dk/~sjo/.
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Table C.2: M oney dem and data, Finland.

rrit yt Pt it nit y t Pt 'k

1958:02 2.849 3.837 0.015 0.173 1969:01 3.135 4.420 0.000 0.068

1958:03 2.828 3.903 0.000 0.101 1969:02 3.194 4.444 0.009 0.068

1958:04 2.908 3.897 0.000 0.132 1969:03 3.196 4.490 0.000 0.068

1959:01 2.934 3.847 0.000 0.070 1969:04 3.333 4.519 0.000 0.072

1959:02 2.986 3.916 0.000 0.065 1970:01 3.411 4.491 0.018 0.082

1959:03 3.007 3.986 0.015 0.065 1970:02 3.460 4.537 0.000 0.151

1959:04 3.016 3.984 0.014 0.065 1970:03 3.452 4.562 0.009 0.231

1960:01 2.954 3.956 0.014 0.065 1970:04 3.530 4.619 0.009 0.185

1960:02 3.003 3.990 0.000 0.161 1971:01 3.297 4.510 0.026 0.079

1960:03 3.042 4.049 0.014 0.243 1971:02 3.280 4.575 0.025 0.118

1960:04 3.034 4.053 0.000 0.163 1971:03 3.308 4.570 0.024 0.093

1961:01 3.059 4.066 0.000 0.110 1971:04 3.451 4.632 0.008 0.082

1961:02 3.035 4.089 0.000 0.122 1972:01 3.437 4.603 0.008 0.075

1961:03 3.087 4.146 0.000 0.117 1972:02 3.485 4.623 0.031 0.075

1961:04 3.101 4.125 0.027 0.148 1972:03 3.501 4.044 0.015 0.075

1962:01 3.059 4.108 0.000 0.175 1972:04 3.607 4.716 0.015 0.075

1962:02 3.039 4.096 0.027 0.229 1973:01 3.509 4.689 0.029 0.075

1962:03 3.075 4.157 0.000 0.242 1973:02 3.581 4.692 0.035 0.075

1962:04 3.107 4.159 0.013 0.240 1973:03 3.494 4.704 0.054 0.096

1963:01 3.138 4.101 0.013 0.211 1973:04 3.668 4.810 0.026 0.231

1963:02 3.128 4.170 0.013 0.171 1974:01 3.496 4.745 0.044 0.168

1963:03 3.128 4.200 0.013 0.189 1974:02 3.553 4.809 0.036 0.148

1963:04 3.200 4.197 0.012 0.171 1974:03 3.536 4.752 0.057 0.090

1964:01 3.068 4.179 0.060 0.137 1974:04 3.689 4.881 0.017 0.138
1964:02 3.073 4.178 0.023 0.169 1975:01 3.647 4.762 0.059 0 . 1,30

1964:03 3.085 4.193 0.011 0.178 1975:02 3.664 4.816 0.036 0.175

1964:04 3 . 1.35 4.260 0.000 0.197 1975:03 3..566 1.758 0.044 0.162

1965:01 3.099 4.222 0.011 0.183 1975:04 3.783 4.808 0.028 0.246
1965:02 3.091 4.220 0.022 0.135 1976:01 3.641 4.695 0.045 0,179

1965:03 3.079 4.277 0.000 0.068 1976:02 3.636 4.773 0.013 0.178

1965:04 3.111 4.293 0.011 0.068 1976:03 3.580 4.767 0.039 0.159

1966:01 3.025 4.200 0.011 0.068 1976:04 3.647 4.843 0.021 0.167

1966:02 3.083 4.276 0.011 0.115 1977:01 3.629 4.695 0.040 0.141

1966:03 3.041 4.299 0.021 0.220 1977:02 3.645 4 . 7.33 0.035 0.152

1966:04 3.117 4..342 0.010 0.294 1977:03 3.586 4,730 0.026 0.166

1967:01 3.027 4.294 0.010 0.068 1977:04 3.595 4.802 0.011 0.181

1967:02 3.047 4 . 3)5 0.010 0.122 1978:01 3.599 4.699 0.015 0.171

1967:03 2.994 4.322 0.010 0.092 1978:02 3.693 4.763 0.018 0 .0 9 1

1967:04 3.007 4.313 0.029 0.121 1978:03 3.663 4.739 0.014 0.087

1968:01 2.992 4.306 0.038 0.092 1978:04 3.694 4.843 0.007 0.093

1968:02 3.047 4.333 0.018 0.068 1979:01 3.661 4.772 0.028 0.081

1968:03 3.074 4.381 0.000 0.068 1979:02 3.789 4.842 0.020 0.080

1968:04 3.181 4.392 0.009 0.068 1979:03 3.753 4.817 0.017 0.081

C on tin u ed  on next page.
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m  y t  P t i t  rnt y t P t H

1979:04 3.813 4.890 0.019 0.112
1980:01 3.725 4.785 0.035 0.116
1980:02 3.771 4.837 0.043 0.139
1980:03 3.713 4.867 0.026 0.148
1980:04 3.745 4.922 0.026 0.153
1981:01 3.722 4,800 0.031 0.163
1981:02 3.733 4.875 0.032 0.122
1981:03 3.733 4.869 0.018 0.124
1981:04 3.788 4.937 0.013 0.140
1982:01 3.706 4.803 0.033 0.131

1982:02 3.813 4.891 0.025 0.129
1982:03 3.822 4.891 0.007 0.128
1982:04 3.850 4.968 0.021 0.141
1983:01 3.804 4.835 0.019 0.134
1983:02 3.863 4.923 0.037 0.140
1983:03 3.852 4.936 0.013 0.145
1983:04 3.826 4.981 0.027 0.155
1984:01 3.783 4.866 0.004 0.161
1984:02 3.830 4.960 0.019 0.154
1984:03 3.825 4.952 0.015 0.152

Source: h ttp :  / / www.math.k u . d k / ~ s j o / .
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c.2 Figures from C hapter 5
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Figure  C .l :  The log of real money balances, Denmark.
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Figure  C.2: The log of real income, Denmark.
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Figure C.3: The log of prices, Denmark.
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Figure C.4: The bond and deposit rates, Denmark.
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F ig u re  C .5 : The logs of real money balances and real income, Finland.
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F ig u re  C .6 : The inflation rate, Finland.
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Figure C.7: The iiiargiiial rate of interest, Finland.
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Figure C.8: Plot of conditional expectation function, Denmark.
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Figure C .9: Plot of conditional expectation function, Finland.
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Figure C.IO: Plot of actual versus fitted, smooth transition model, Finland.
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c.3 Prelim inary A nalysis

Table C.3: U nit root tests , Denm ark &; Finland.

V a r ia b l e T e s t  S t . \ t i s t i c  
(probability)t

C o n s t a n t T r e n d L a g  L e n g t h  
USING S ic

D e n m a r k  (T  = 55)

m i 1.123 Not significant Not significant 2
(0.930)

y t 0.776 Not significant Not significant 0
(0.878)

Pt 0.437 significant significant 0
(0.664)t

i t -0 .616 Not significant Not significant 0
(0.446)

bt -0 .982 Not significant Not significant 1
(0.288)

F i n l a n d  (T  =  106)

m t 1.720 Not significant Not significant 4
(0.979)

y t -1.951 Significant Not significant 4
(0.0.54)t

Pt -4 .200 n /a n /a 1
(0.006)

i t -4 .874 n /a n/a. 0
(0.001)

jM acKinnon (1996) one-sided values. 
Inormal probability.
Note: n /a  denotes not applicable.
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Table C.4: Seasonal unit root tests, Denm ark (T = 55).

V a r i a b l e T e s t  S t a t i s t i c s  
[critical values]

L a g  L e n g t h

^TTl ^7T2 F u F '2M -^1234

H e g y  test w ithout deterministic term s

n i t 0.858 -1 .734 11.871 9.138 7.034 1
1-1.911 1-1.9,3] [3.111 [2.781 [2..551

y t 1.124 -4 .245 22.988 65.781 54.536 0
1-1.911 1-1 .93 ] [3.111 [2.78[ [2.5.5]

Pt 0.204 -5 .893 33.861 1579.675 1236.130 0
I - 1 .9 I I 1 -1 .93 ] 13.11] [2.781 [2.55]

i t -0 .622 -4 .492 18.312 80.487 61.219 0
1-1.911 1-1.9,3] 13.111 [2.781 [2..5.5]

l>t -0 .472 -4 .141 26.199 118.904 91.335 0
1-1.911 [-1 .931 [3.111 [2.78] 12..55]

H e g y  test w ith intercept and time trend

rrit -2.091 -1 .609 8.529 6.576 8.185 1
1-3,401 [ -1 .9 3 ] I3.0.'5l [2.741 [4.19]

y t -2 .670 -4 .537 25.627 73.599 56.780 0
1 -3 .40 ] [-1 .931 13.0.51 12.74] [4.191

Pt 0.520 -4 .949 21.503 66.969 59.789 0
1 -3 .40 ] [-1.9,31 13.05] 12.74] 14.191

i t -2 .193 -4 ,637 18.264 84.322 64.529 0
1 -3 .40 ] [-1.9.31 [3.0.5] 12.74] 14.191

l>i -1 .764 -4 .046 26.614 119.292 90.462 0
1 -3 .40] [-1 .931 [3.0.51 12.741 [4.191

H e g y  test with intercept and seasonal dummy variables

n i t -1 .526 -4.941 20.533 158.129 121.698 0
1-2 .S 4] [-2 .831 ]6.57] [5.9.5] 15..561

y t -2 .059 -4 .254 24.068 68.422 51.575 0
1 -2 .84 ] [-2.8.31 16..57] 15.95] 15..561

Pt -1 .471 -2 .963 8 .1 2 1 10.644 9.709 12
1-2.841 [-2 .831 16.57] 15.9.5] 15..56]

i t -2 .131 -4 .280 19.913 88.446 67.476 0
[-2 .841 [-2 .8 3 ] 16.571 15.951 15..56]

bt -0 .878 -4 .062 18.668 25.239 22.767 1
[-2 .841 [ -2 .8 3 ] 16-571 [5.9.51 [5..56I

H e g y test with intercept , time trend and seasonal dummy variables

n il -1 .899 -4 .881 20,416 152.703 114.532 0
[ - 3 . .TO] 1 -2 .82 ] [6.551 [5.93[ [6.31[

y t -2 .596 -4 .314 24.731 70.139 54.095 0
[ -3 .3 9 ] 1 -2 .82 ] [6..5.51 [5.9.31 [6.31]

P t -0 .046 -2 .877 7.664 10.062 7.586 12
[ -3 .3 9 ] 1 -2 .82 ] [6.5.51 [5.9.31 ]6.31]

i t -2 .153 -4.221 19.550 86.066 65.846 0
[ -3 .3 9 I 1 -2 .82 ] [6..5.5I [5.93[ [6.31[

ht -1 .585 -4 .174 19.909 26.622 25.432 1
[ -3 .3 9 [ 1 -2 .82 ] [6..551 [5.93[ [6.31]

Note: critical values for the 5 per cent level of significance,
taken from Franses and Hobijn (1997).
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T able C .5: S easonal u n it root te s ts , F in land  (T =  106).

V a r i a b l e T e s t  S t a t i s t i c s  
[c r i t i c a l  v a l u e s ]

L a g L e n g t h

^TTl ^7T2 F 3 4 F ‘2 M ^1234

H e g y  t e s t  w i t h o u t  d e t e r m i n i s t i c t e r m s

n i t 1.700 -1 .000 4.093 3.084 2.965 5
[-1 .911 [ - 1 .9 3 ] 13.11] [2.78| [2..5.5I

>Jt 2.852 -0 .659 4.265 2.949 4.472 1
[-1 .911 [ - 1 .9 3 ] 13.11] [2.781 12..55I

P i -1 .026 -3.0.39 20.725 18.094 13.762 0
1-1.911 [ - 1 .9 3 ] [3.11] [2.78] 12.5.5]

i t -0 .810 -4 .848 39.543 60.993 45.886 0
1 - 1 .91| [ -1 .9 3 ] [3.11] |2.78[ 12..55]

H e g y t e s t  w i t h i n t e r c e p t a n d  t i m e  t r e n d

n i t -2..321 -0 .958 3.652 2.755 3.7,50 5
I-.3.401 1 -1 .9 3 ] [3.0.51 [2.741 [4 .19]

y t -1 ,565 -0.661 4.295 2.971 2.824 1
I-.3 .40I 1 -1 .93] [3.0.51 [2.74] [4 .19]

P i -2 .755 -3 .103 22.263 19.295 15.910 0
[ -3 .4 0 1 [ - 1 .9 3 ] 13.05] [2.741 [4.191

i t -3 .813 -5 .124 43.777 68.029 54.867 0
[ -3 .4 0 1 [ - 1 .9 3 ] 13.0.5] [2.741 [4.19]

H E G Y  t e s t  w i t h  i n t e r c e p t  a n d  s e a , s o n a l  d u m m y  v a r i a b l e s

n i t -0.691 -3 .942 52.354 65.165 49.482 0
1-2 .84 ] [ - 2 .8 3 ] [6.57] [5.9.5] [5 .56]

y t -1 .831 -1 .715 14.251 10.436 9.045 1
1-2 .84 ] 1-2.8,3] [6.57] 15.95] [5.56]

p t -2 .747 -3 .209 26.482 22.466 18.551 0
1-2 .84 ] [-2 .8 3 ] 16..571 15.95] [5..56]

i i -3 .973 — 5.425 43.500 78.001 62.712 0
[ -2 .8 4 ] [ -2 .8 3 ] ie.57] [5.95] [5..56]

H e g y  t e s t  w i t h  i n t e r c e p t ,  t i m e  t r e n d  a n d  s e a s o n a l  d u m m y  v a r i a b l e s

m t -2 .106 -4 .020 54.344 67.671 51.739 0
[ -3 .3 9 ] [-2 .8 2 I 16.5.5] ]5.93| [6.311

!Jt -1.611 -1.681 14.382 10.493 8.591 1
[-3 .391 [-2 .821 [6.5.5] |5.9,3j 16.311

P t -2 .928 -3 .215 27.126 22.926 18.710 0
1- 3 .39] 1 -2 .82 ] [6.5,5] 15.93] 16.31]

i i -3 .960 -5.401 43.077 77.244 62.095 0
1 -3 .39 ] 1 -2 .82] [6.5.5] 15.93] [6.31]

Note; critical values for the 5 per cent level of significance,
taken from F’ranses and Hobijn (1997).
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C.4 Testing for C ointegration  

C .4 .1  T h e  E n g le -G ra n g er  2 -S te p  m e th o d

Table C.6: Engle-G ranger levels m odels, Denm ark Finland.

C o e f f i c i e n t s
(<-statis t ics)

Va r i a b l e D e n m a r k  ( T  =  55) F in l a n d  ( T  = 106)

Full Full R educed 1 R educed 2

c 4.472 -0 .841 -0 .7 8 4 -0 .7 6 6
(.5 .178) ( -6 ..5 .5 2 ) ( - 6 .1 0 4 ) ( - 6 . 4 4 8 )

y t 1.283 0.928 0.926 0.921
(9 ,13 .'j) (3 1 .9 8 8 ) (3 1 .3 0 0 ) (3 5 .0 2 1 )

p t 0,004
(0.122)

-0 .3 6 6
( -0 . .5 5 2 )

-0 .2 5 4
( - 0 . 3 7 7 )

-

i t 0.569
(0 .70 .5)

0.375
(2 .2 8 5 )

- -

ht -2 .6 0 1
( - 7 . 3 7 0 )

• * ■

0.926 0.926 0,922 0.922
te s t on residuals -3.:301 -3..541 -3 .4 7 3 -3 .461

1 -4 .6 9 4 ] 1 -4 .2 0 4 ] [ -3 .8 2 4 ] [ - 3 .3 9 5 ]

C'r d w  tes t 0.737 0.418 0.399 0.398
11.19] ]0..5«| [0.48] [0.38]

Note: 5 p e r  c e n t  A e g  a n d  C r d w  c r i t ica l  va lues  in sq u a re  b racke ts .
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Table C.7: Error-correction m odels, D enm ark &: Finland.

C o e f f i c i e n t s
(f-statistics)

Variable D en m a rk  (T  =  55) F in la n d  (T  = 106)

Pull Full Reduced 1 Reduced 2

C 0.008 0.004 0.004 0.004
(0 .6 5 7 ) (0 .8 5 2 ) (0 .7 9 5 ) (0 .8 0 7 )

AtUf-] -0 .088 -0 .166 -0 .158 -0.161
( - 0 . 7 1 0 ) ( - 1 . 8 7 3 ) ( - 1 . 7 7 9 ) ( - 1 . 8 0 6 )

A n it—i 0.387 0.093 0.099 0.098
(2 .8 6 1 ) (0 .9 7 8 ) (1 .0 2 8 ) (1.021)

•^yt 0.497 0.502 0.502 0.501
(2 .8 1 5 ) (4 .4 1 2 ) (4 .3 6 7 ) (4 .3 7 1 )

Apt -0 .233 -0 .416 -0 .392 -0 .372
( - 0 . 4 4 9 ) ( - 1 . 2 1 8 ) ( - 1 . 1 4 0 ) ( - 1 . 0 8 4 )

A i( -1 .137 0.247 0.222 0.221
( - 1 . 7 0 0 ) (2 .0 5 8 ) (1 .8 1 7 ) (1 .8 1 4 )

Aht -0 .860
( - 1 . 7 4 4 )

- - -

E cm -0 .009 0.175 0.154 0.157
( - 0 . 0 8 2 ) (2 .8 5 2 ) (2..571) (2 .6 3 6 )

0.198 0.532 0.525 0.526
Ec’M test critical values -4 .231 -4.011 -4.011 -4.011

Serial correlation
10.9894] (l.OOOl (1.000] (l.OOOj

5.119 6.460 5.187 5.553
10.2751 10.1671 10.269] (0 .235]

F’linctional form x ”( l ) 1.443 0.322 0.372 0.371
(0.2301 10.5701 10..542] (0 .542(

Normality ,\'^(2) 3.457 1.114 1.202 1.264
| 0 . 1781 10.573] 10.548] (0 .532]

Heteroscedasticity x^( l ) 0.099 3.804 3.929 4.072
(0.7531 10.051] |0 .0 4 7 ] (0 .044]

Note: for diagnostics and EcM test, p-values in square brackets.
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C .4 .2  J o h a n se n ’s m ax im u m  lik e lih o o d  ap p roach

Table C.8: N um ber o f cointegrating relations by m odel, Denm ark.

T e s t  T y p e N o I n p t s  

N o T r e n d s
R e s t ’d  I n p t s  U n r e s t ' d  I n p t s  U n r e s t ’d  I n p t s  

N o T r e n d s  N o T r e n d s  R e s t ’d  T r e n d s

U n r e s t ’d  I n p t s  

U n r e s t ’d  T r e n d s

0.05 and 0.10 significance levels, excluding seasonal dummies

Trace 3 4 3 3 3 4 3 3 1 2
Max. Eig. 1 2 3 3 3 4 3 3 0 1

0.05 and 0.10 significance levels, including seasonal dummies

Trace 4 4 3 3 3 3 2 3 1 2
Max. Eig. 1 2 2 3 2 3 2 3 1 1

Note: critical values based on Osterwald-Lenum (1992).

Table C.9: Testing the order o f the V AR, Denmark.

Based on 52 observations from 1974Q4 to 1987Q3. Order of V a r  =  3. List of variables 
included in the unrestricted VAFi: List of deterministic

variables: c, t, s c i, SC2 , sc^.

O r d e r Li, A ic S b c L r  T e s t P r o b . A d j u s t e d  
L r  T e s t

P r o b .

3 916.641 816.641 719.079
2 892.844 817.844 744.672 X" (25) = 47.594 0.004 29.289 0.252
1 863.031 813.031 764.250 X" (50) = 107.221 0.000 65.982 0.061
0 605.546 580.546 556.155 X" (75) = 622.190 0.000 382.886 0.000
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Table C.IO: Test o f restrictions for determ inistic variables, Denm ark.

Based on 53 observations from 1974 Q3 to 1987 Q3. Order of V a r  =  2.

V.ARiABLE /  S t a t i s t i c M a x . L l 
WITHOUT V a r i a b l e

M a x . L l 
WITH V a r i a b l e

L r  T e s t P r o b .

c 895.691 883.467 x" (5 )  = 24.449 0.000
t 895.691 887.774 11 15.834 0.007

SCl 895.691 866.470 (5) = 58.443 0.000
SC2 895.691 888.423 X  ̂ (5 )  = 14.537 0.013
SC3 895.691 875.185 (5) = 41.013 0.000

SCl +  SC2 +  SC3 895.691 857.987 X' (15) = 75.408 0.000

Note: Max. Ll - Maximised value of loglikelihood.

Table C .l l :  N um ber o f cointegrating relations by m odel, Finland m odel 1.

T e s t  T y p e No I.NPTS
No T r e n d s

R e s t ’d  In p t s  U n r e s t ' d  I n p t s  
No T r e n d s  No T r e n d s

U n r e s t ’d  I n p t s  
R e s t ' d  T r e n d s

U n r e s t ’d  I n p t s  
U n r e s t ’d  T r e n d s

0.05 and 0.10 significance levels, excluding seasonal duniniies

Trace 
Max. Eig.

3 4 
2 4

2 4 2 2 
2 2 2 2

2 2 
2 2

2 2 
2 2

0.05 and 0.10 significance levels, including seasonal dummies

Prace 
Max. Eig.

3 4 
3 4

3 4 2 2 
2 4 2 2

2 2 
2 2

2 2 
2 2

Note: critical values based on Osterw'ald-Lemim (1992).

Table C.12: N um ber o f cointegrating relations by m odel, Finland m odel 2.

T e s t  T y p e No iNPTS 
No T r e n d s

R e s t ' d  I n p t s  U n r e s t ' d  I n p t s  
No T r e n d s  No T r e n d s

U n r e s t ' d  In p t s  
R e s t ’d  T r e n d s

U n r e s t ’d I n p t s  
U n r e .s t ' d  T r e n d s

0.05 and 0.10 significance levels, excluding seasonal dummies

'I’race 
Max. Eig.

1 1 
1 1

1 1 1  1 
1 1 1  1

1 1 
1 1

1 1 
1 1

0.05 and 0.10 significance levels, including seasonal dummies

Trace 
Max. Eig.

1 1 
1 1

1 1 1  1 
1 1 1  1

1 1 
1 1

1 1 
1 1

Note: critical values based on Osterwald-Lenum (1992).
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T able C .13: N u m b er  o f  co in teg ra tin g  re la tion s by m od el, F in land  m odel 3.

T e s t  T y p e No I n p t s  
No T r e n d s

R e s t ' d  I n p t s  U n r e s t ' d  I n p t s  
No T r e n d s  No T r e n d s

U n r e s t ' d  I n p t s  
R e s t ’d  T r e n d s

U n r e s t ' d  I n p t s  
U n r e s t ' d  T r e n d s

0.05 and 0.10 significance levels, excluding seasonal dummies

Trace 
Max. Eig.

0 1 
0 1

0 1 0  0 
0 0 0 0

0 0 
0 0

0 0 
0 0

0.05 and 0.10 significance levels, including seasonal dummies

Trace 
Max. Eig.

1 1
1 1

1 2  0 0 
1 1 0  0

0 0 
0 0

0 0 
0 0

Note: critical values based on Osterwald-Lenurn (1992).

Table C .14: T estin g  th e  order o f  th e  V A R , F in land .

B ased on 103 observations from  1959 Q1 to  1984 Q3. O rder of V a r  =  3. List of variables 
included  in th e  un restric ted  V a r :  m f Pt " ' ,  i f ' " -  List of determ in istic  variables: c,

t ,  S C l ,  .SC-2, S Q i .

O r d e r Ll A i c S b c L r  T e s t P r o b . A d j u s t e d  
I -R  T e s t

P r o b .

3 942.320 874.320 784.739
2 926.526 874.526 806.023 (16) = 31.588 0.011 26.374 0.049
1 888.360 852.360 804.935 (.'52) = 107.920 0.000 90.108 0.000
0 709.097 689.097 662.749 X" (48) = 466.447 0.000 389.460 0.000

T able C .15: T est o f  re str ic tio n s  for d e term in istic  variab les, F in land .

Based on 104 observations from  1958 Q4 to  1984 Q3. O rder of V a r  =  2.

V.a r i a b l e  /  S t a t i s t i c M a x . L l 
WITHOUT V a r i a b l e

M a x . L l 
WITH V a r i a b l e

L r  T e s t  
x'̂

P r o b .

c 936.354 929.002 x'̂  (4) = 14.704 0.005
t 936.354 929.992 II 12.724 0.013

SC l 936.354 895.711 x" (4) = 81.285 0.000
SC2 936.354 922.702 II 27.303 0.000
SC3 936.354 927.038 X'̂  (4) = 18.631 0.001

SC l 4- SC2 + SC3 936.354 882.676 x"(12) = 107.356 0.000

Note: Max. Ll - Maximised value of loglikelihood.
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Table C.16: Johansen’s cointegration w ith  restricted  trends, D enm ark.

54 observations from 1974 Q2 to 1987 Q3. Order of V a r  =  1. List of variables included in 
the cointegrating vector: List of 7(0) variables included in

the V a r :  s c i ,  SC2 , sc^.

C o i n t e g r a t i o n  R a n k  T e s t  ( T r a c e )

H y p o t h e s e s T r . \ c e  0.05 C r i t i c a l  
S t a t i s t i c  V a l u e

0.10 CJr i t i c a l  
V a l u e

M o d i f i e d  0.05 
C r i t i c a l  V a l u e

r =  0 r >  1 112.297 87.170 82.880 138.391
r <  1 r >  2 86.394 63.000 59.160 100.019
r <  2 r >  3 40.821 42.340 39.340 67.219
r <  3 r =  4 16.447 25.770 23.080 40.913
r <  I r =  5 3.644 12.390 10.550 19.670

C o i n t e g r a t i o n  R a n k  T e s t  ( M a x i m a l  E i g e n v a l u e )

H y p o t h e s e s M a x i m a l  E i g e n v a l u e  
S t a t i s t i c

0.05 C r i t i c a l  
V a l u e

0,10 C’r i t i c a l  
V a l u e

r =  0 r =  1 55.903 37.860 35.040
r <  1 r =  2 45.573 31.790 29.130
r <  2 r =  3 24.374 25.420 23.100
r <  3 r =  4 12.802 19.220 17.180
r <  4 r =  5 3.644 12.390 10.550

Note: th e  correction  factor is 1.588.
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Table C .17: J o h a n se n ’s co in teg ra tio n  w ith  u n restr ic ted  tren d s, D enm ark .

54 observations from 1974 Q2 to 1987 Q3. O rder of V a r  =  1. List of variables included in 
the coiutegrating vector: iP®". List of /(()) variables inchided in

the V a r : sci, sc-j, sc^.

COINTEGR.ATION RANK T e ST (TR A C E )

H y p o t h e s e s T rac ' e  0 .0 5  C r it i c a l  
S t a t i s t i c  V a l u e

0 .1 0  C r it i c a l  
V a l u e

M o d i f i e d  0 .0 5  
C r i t i c a l  V a l u e

r =  0 r  >  1 111.641 8 2 .2 3 0 7 7 .5 5 0 1 12 .820

r <  1 r >  2 5 5 .8 0 9 5 8 .9 3 0 5 5 .0 1 0 8 0 .8 5 2
r <  2 r  >  3 2 9 .8 4 3 :?9.330 :?6.280 53 .961
r <  3 r =  4 7 .6 4 0 2 3 .8 3 0 2 1 .2 3 0 3 2 .6 9 5
r <  1 r  =  5 0 .0 9 4 11.540 9 .7 5 0 15 .833

COINTF-GRATION RANK T E S T  (MAXIMAL EIGENVALUE)

H y p o t h e s e s M a x i m a l  E i g e n v a l u e  
S t a t i s t i c

0 .0 5  C r i t i c a l  
V a l u e

0 .1 0  C r i t i c a l  
V a l u e

r =  0 r  =  1 5 5 .831 3 7 .0 7 0 3 4 .1 6 0
r <  1 r =  2 2 5 .9 6 6 3 1 .0 0 0 2 8 .3 2 0
r  <  2 r  =  3 2 2 .2 0 3 2 4 .3 5 0 2 2 .2 6 0
r  <  3 r =  4 7 .5 4 6 18 .330 16 .280
r  <  4 r  =  5 0 .0 9 4 1 1 .540 9 .7 5 0

Note: the correction factor is 1 .372 .
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Table C.18: Johansen’s cointegration  w ith  unrestricted trends, Finland m odel 1.

104 observations from 1958 Q4 to 1984 Q3. Order of VAFt =  2. List of variables included in 
the cointegrating vector: m f ”', y[̂ ,̂ jf '" -  List of /(O) variables inchided in the V a f i:

S C i ,  SC-2, S C 3 .

C’o i n t e g r . \t i o n  R a n k  T e s t  ( T r a c ;e )

FFy p o t h e s e s T r a c e

S t a t i s t i c

0.05 C r i t i c a l  

V a l u e

0.10 C r i t i c a l  

V a l u e

M o d i f i e d  0.05 
C r i t i c a l  V a l u e

r =  0 r > 1 85. F52 58.930 55.010 63.998
r <  1 r >  2 42.629 39.330 36.280 42.712
r <  2 r > .3 F2.209 23.830 2F.230 25.879
r < 3 r =  4 2.247 11.540 9.750 12.532

C’O I NT E GRAT I ON FIANK T E S T  ( M A X I M A L  EI IGENVALUE)

FFy p o t h e s e s M a x i m a l  E i g e n v a l u e  

S t .a t i s t i c

0.05 C r i t i c a l  
V a l u e

0.10 C r i t i c a l  

V a l u e

r =  0 r =  1 42.523 31.000 28.320
r <  1 r =  2 30.419 24.350 22.260
r <  2 r =  3 9.963 18.330 16.280
r <  3 r =  4 2.247 11.540 9.7.50

Note: tFie correction Factor is 1.086.
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Table C .19: J o h a n sen ’s co in teg ra tio n  w ith  restr ic ted  tren d s, F in lan d  m odel 1.

104 observations from 1958 Q4 to 1984 Q3. Order of V a r  =  2. List of variables iiichuled in 
the cointegrating vector: t. List of /(()) variables iiichuled in the

V a r : st’i, ,sc‘2 , SC3 .

Co i N T E GR . J i T I O N  R A N K  T e ST ( T r .ACE)

H y p o t h e s e s T r a c e

S t a t i s t i c

0 .0 5  C r i t i c a l  

V a l u e

0 .1 0  C' r i t i c a l  

V a l u e

M o d i f i e d  0 .0 5  
C’r i t i c a l  V a l u e

r =  0 r >  1 88.886 63.000 59.160 66.320
r <  1 r >  2 45.261 42.340 39.340 44.571
r <  2 r >  3 14.771 25.770 23.080 27.128
r <  3 r =  1 4.722 12..390 10.550 13.043

C o i n t e g r a t i o n  R a n k  T e s t  ( M a x i m a l  E i g e n v a l u e )

H y p o t h e s e s M a x i m a l  E i g e n v a l u e  

S t a t i s t i c

0 .0 5  C r i t i c ’AL 
V a l u e

0 .1 0  C r i t i c a l  
V a l u e

r =  0 r =  1 43.625 31.790 29.L30
r <  1 r =  2 30.490 25.420 23.100
r <  2 r =  3 10.049 19.220 17.180
r <  3 r =  4 4.722 12.:J90 10.550

N ote: the correction factor is 1.053.
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Table C.20: Johansen’s cointegration w ith  unrestricted  trends, Finland m odel 2.

104 observations from 1958 Q4 to  1984 Q3. O rder of V a r  =  2. List of variables included in 
th e  co in tegrating  vector: y f P t " ^ -  L ist of /(()) variables included in th e  V a r :

S C i ,  SC‘2 ,  S Q i

C o i n t e g r a t i o n  R a n k  T e s t  ( T r a c e )

H y p o t h e s e s T r a c e

S t a t i s t i c

0 .0 5  C r i t i c a l  
V a l u e

0 .1 0  C r i t i c a l  
V a l u e

M o d i f i e d  0 .0 5  
C r i t i c a l  V a l u e

r =  0 r >  1 43.818 39.330 36.280 40.309
r <  1 r >  2 10.798 23.830 21.230 24.423
r <  2 r =  '.i 2.052 11.540 9.750 11.827

C o i n t e g r a t i o n  R a n k  T e s t  ( M a x i m a l  E i g e n v a l u e )

H i T’OTHESES M a x i m a l  E i g e n v a l u e  
S t a t i s t i c

0 .0 5  C r i t i c a l  
V a l u e

0 .1 0  C r i t i c a l  
V a l u e

r =  0 r =  1 33.020 24.350 22.260
r <  1 r =  2 8.746 18.330 16.280
r <  2 r =  3 2.052 11.540 9.750

N ote: th e  correction Factor is 1.025.
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T ab le C .21: J o h a n sen ’s co in teg ra tio n  w ith  restr ic ted  tren d s, F in land  m odel 2.

104 observations froni 1958 Q4 to 1984 Q3. O rder of V a r  =  2. List of variables included in 
the cointegrating vector; m f " ' ,  p f ' " ,  List of /(()) variables included in the V a r :

i f " ' ,  . S C I ,  SC2, SC3.

C o i n t e g r .-\t i o n  R a n k  T e s t  ( T r a c e )

H y p o t h e s e s T r a c e

S t a t i s t i c

0.05 C r i t i c a l  
V a l u e

0.10 C r i t i c a l  

V a l u e

M o d i f i e d  0.05 
C r i t i c a l  V a l u e

r =  0 r >  1 47.635 42.340 39.340 43.712
r <  1 r >  2 13.784 25.770 23.080 26.605
r <  2 r =  3 5.025 12.390 10.550 12.791

C o i n t e g r a t i o n  F^a n k  T e s t  ( M a x i m a l  E i c j e n v a h ' e )

H y p o t h e s e s M a x i m a l  E i g e n v a l u e  
S t a t i s t i c

0.05 C r i t i c a l  
V a l u e

0.10 C r i t i c a l  
V a l u e

r =  0 r =  1 .33.851 25.420 23.100
r <  1 r =  2 8.758 19.220 17.180
r <  2 r =  3 5.025 12..390 10.550

Note: the correction factor is 1.032.
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T able C .22: J o h a n sen ’s co in tegra tion  w ith  u n restr ic ted  tren d s, F in land  m odel 3.

104 observations from 1958 Q4 to  1984 Q3. O rder of V ah =  2. List of variables included in 
th e  co in tegrating  vector: m f L i s t  of /(()) variables included in the  Var: p f '" ,  i f ” *,

S C i ,  SC2,  SC3.

C o i n t e g r a t i o n  R a n k  T e s t  ( T r a c e )

H y p o t h e s e s T r a c e 0 .0 5  C r i t i c a l 0 .1 0  C r it i c a l

S t a t is t ic V a l u e V a l u e

r  =  0  r  >  1 8 .8 2 4 2 3 .8 3 0 2 1 .2 3 0
r  <  1 r  =  2 0 .3 0 0 1 1 .540 9 .7 5 0

C o i n t e g r a t i o n  R a n k  T e s t  ( M a x im a l  E ig e n v a l u e )

K y p o t h e s e s M a x im a l  E ig e n v a l u e 0 ,0 5  C r i t i c a l 0 .1 0  C r it i c a l

S t a t is t ic V a l u e V a l u e

r =  0  1 =  1 8 .5 2 4 18,.3.30 16 .280
r <  1 r  =  2 0 ,3 0 0 11 .540 9 .7 5 0

T able C .23: J o h a n sen ’s co in tegra tion  w ith  restr ic ted  tren d s, F in land  m odel 3.

104 observations from 1958 CJ4 to  1984 Q3. O rder of Vaf{ =  2. List of variables included in 
th e  coin tegrating  vector: r n f " ' ,  y f '" ,  t .  List of 7(0) variables included in the  Vak:

6'C i,  SC2, SC;?.

C o i n t e g r .a t i o n  R a n k  T e s t  ( T r a c e )

H y p o t h e s e s T r a c e 0 .0 5  C r i t i c a l 0 .1 0  C r i t i c a l

S t a t i s t i c V a l u e V a l u e

1 = 0  r  >  1 9 .7 3 2 2 5 .7 7 0 2 3 .0 8 0
r <  1 r =  2 0 .3 2 8 1 2 .390 10.-550

C o i n t e g r a t i o n  R a n k  T e s t  ( M a x i m a l  E i g e n v a l u e )

H y p o t h e s e s M a x i m a l  E i g e n v a l u e  0 .0 5  C r i t i c a l 0 .1 0  C r i t i c a l

S t .a t i s t i c V a l u e V a l u e

r  =  0  r  =  1 9 .4 0 4 1 9 .220 17 .180
r <  1 r  =  2 0 .3 2 7 9 1 2 .3 9 0 1 0 .550
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C .4 .3  C om m on  factor an a ly sis

Table C.24: COM FAC m odel, Denm ark.

Dependent variable is mP®". 54 observations used for estimation from 1974 Q2 to 1987 Q3.

R e g r e s s o r C o e f f ic i e n t S t a n d a r d  ERftoR T - R . \ t io P r o b .

c 2.550 0.668 3.820 0.000
m f_T 0.700 0.080 8.712 0,000

0.401 0.183 2.194 0.034
j/P-T -0.206 0.173 -1.195 0.239

-0.597 0.581 -1.027 0.310
D en

P t - l 0.616 0.578 1.067 0.292
b d e n -0.874 0.381 -2.293 0.027
Lclen
^ t - \ -0.227 0.453 -0.502 0.618
■Den 0.365 0.641 0.570 0.572
■Den
^t-1 -0.260 0.643 -0.405 0.688

R -squared 0.980 
S.E. of regression 0.024 
Mean of dependen t variable 11.757 
R esidual sum  of .squares 0.024 
.-\kaike info, criterion 121.505 
D urb in 's  /i-sta tistic  -4.228 [0.000]

R-bar-s<iuared 
F -s ta t. F  (9, 44)
S.D. of dependen t variable 
E quation  loglikelihood 
Schwarz Bayesian criterion

0.976 
244.793 [O.OOOj 

0.153 
131.505 
111.560

1 'e s t  S t a t is t ic s L,\i V e r s i o n P r o b . F  V e r s i o n P r o b .

A:Serial correlation (4) =  20.977 0.000 F  (4. 40) =  6.352 0.000
B: Functional form (1) =  0.725 0.394 F  (1. 43) =  0.585 0.448
C iN orm ality X ' (2) =  11.446 0.003 Not a[)plicable -
D : H eteroscedast ici ty (1) =  0.022 0.883 F ( 1 . 5 2 ) =  0.021 0.886

Note: />values in square brackets.
A :Lagrange m ultiplier tes t of residual serial correlation .
B :R a m se y ’s  R e s e t  te s t  u s in g  th e  sq u a r e  o f  th e  f itte d  v a lu es.
C:FJased on a te s t of skew ness and  kurtosis o f residuals.
D :Based on the regression of squared  residuals on squared  fitted  values.
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Table C .25: W ald te s ts  o f  restr ic tio n s, D en m ark .

54 observations used for estim ation from 1974 Q2 to 1987 Q3.

R e s t r i c t i o n ( s ) f o r  W a l d  T e s t W a l d  S t a t l s t i c P r o b .

7i + 7o/3i =  0 x^(l) = 0.485 0.486
(5i +  5o(3i =  0 x^(l) = 1.231 0.267
rji +  7?o/3i =  0 x"(l) = 9.149 0.002
Ml +  /xo/3i =  0 x"(l) = 0 .9491B -4 0.992

71 + 7o/3i =  0,
<5i + &o(3i = 0,
m + rjoPi = 0,
m  +  nodi =  0 x^(4) = 14.984 0.005

Table C .26: C O M FA C  m od el 1, F in lan d .

Dependent variable is 105 observations tised for estim ation from 1958 Q3 to 1984 Q3.

R e g r e s s o r C o e f f i c i e n t S t a n d a r d  E r r o r T - R . a t i o P r o b .

C -0.227 0.096 -2.374 0.020
mfJ? 0.813 0.057 14.172 0.000

0.603 0.094 6.409 0.000
-0.408 0.103 -3.964 0.000

PP " -0.907 0.427 -2.125 0.0.36
F i nPt- l -0.034 0.422 -0.080 0.937

■Fin
‘ t 0.348 0.127 2.738 0.007
■Fin -0.328 0.128 -2.560 0.012

R-scjuared 0.976 R-bar-squared 0.974
S.E. of regression 0.050 F -sta t. F (7, 97) .564.952 [0.000]
Mean of dependent variable 3.391 S.D. of dependent variable 0.312
Residual sum of squares 0.243 Equation loglikelihood 169.712
•4kaike info, criterion 161.712 Schwarz Bayesian criterion 151.096
D urbin’s /i-statistic -1.160 [0.246]

T e s t  S t a t i s t i c s L m V e r s i o n P r o b . F  V e r s i o n P r o b .

A:Serial correlation (4) = 8.487 0.075 F  (4, 93) = 2.045 0.094
f}:Functional form (1) = 0.774 0.379 F  (I, 96) = 0.713 0.400
C;Normality (2) = 0.366 0.833 Not applicable - -
D:Heteroscedasticity x (1) == 0 .2 9 E -4 0.996 F  (1, 10.3) = 0 .2 8 E -4 0.996

Note: p-values in square brackets.
AiLagrange multiplier test of residual serial correlation.
B:Ram sey’s R e s e t  test using the square of the fitted values.
C:Bcised on a test of skewness and kurtosis of residuals.
DiBased on the regression of squared residuals on squared fitted values.
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Table C .27: W ald te s t  o f  r e str ic tio n s , m odel 1, F in land.

105 observations used for estim ation from 1958 Q3 to 1984 Q3.

R e s t r i c t i o n (s) fo r  t h e  W ald T est W ald Statistic P r o b .

71 +  7o/3i =  0 x"(l) = 7.783 0.005

d'l +  6o0i = 0 = 2.768 0.096

Vi + Vo0i =  0 x"(l) = 0.209 0.647

71 +  7o/?i =  0,
<̂i +  do/?i =  0,
ni + io3 i = 0 X"(2) = 8.910 0.031

Table C .28: C O M FA C  m od el 2, F in land .

Dependent variable is 105 ol)servations used for estim ation from 1958 Q3 to 1984 Q3.

R eg r ess o r C o e f f ic ie n t St a n d a r d  E rr o r T-R atio f^ROB.

c

.vf-i
p f "
pfri

-0.231
0.809
0.676
-0.477
-0.910
0.090

0.093
0.058
0,093
0.104
0,441
0,427

-2,494
14,067
7,274
-4,610
-2,063
0,211

0.014
O.OOO
0.000
0.000
0.042
0.833

R-squared
S.E. of regression
Mean of dependent variable
Residual sum of squares
Akaike info, criterion
D urbin's /i-statistic

0.974 
0.052 
3.391 
0.264 

159.225 
-1.689 [0.091]

R-bar-squared 0.973 
F -sta t. F  (5, 99) 739.501 [0.000] 
S.D. of dependent variable 0.312 
Equation loglikeliliood 165.225 
Schwarz Bayesian criterion 151.263

T est  S tatistics L m V ersion P r o b . F  V e r s i o n  F^rob.

A:Seriai correlation 
B:Functional form 
C':Normality 
U: Heteroscedasticity

X  ̂ (4) 
X  ̂ (1) 
X  ̂ (2)
x'̂  (1)

8.359 
0.606 
2.611 

=  0 .1 3 E -3

0.079
0.436
0.271
0.991

F  (4, 95) =  2.054 0.093 
F ( l ,  9 8 ) =  0.569 0.452 
Not applicable
F ( l ,  103 ) =  0 .1 3 F -3  0.991

Note: ;>values in square brackets.
AiLagrange multiplier test of residual serial correlation.
B.'Ramsey’s R e s e t  test using the  square  of the  f itted values.
C:Based on a test of skewness and kurtosis of residuals.
D:Based on the regression of squared residuals on squared fitted values.
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Table C .29: W ald  te s t  o f  restr ic tion s, m od el 2, F in lan d .

105 observations used for estimation from 1958 Q3 to 1984 Q3.

R e s t k i c t i o n ( s ) f o r  t h e  W a l d  T e s t W a l d  S t a t i s t i c P r o b .

71 +  7o/3i =  0 x"(i) = 6.266 0.012

(5i +  &o0\ =  0 x"(l) = 1.890 0.169

7i +  lo ( i\ =  0,
<5i +  =  0 X \ 2 )  = 6.642 0.036

T able C .30: C O M FA C  m odel 3, F in land .

Dei)endent variable is 105 observations used for estimation from 1958 Q3 to 1984 Q3.

R e g r e s s o r C o e f f i c i e n t S t a n d a r d  E r r o r T - R . \ t i o P r o b .

C -0.175 0.085 -2.072 0.041
0.80;i 0.0.58 13.837 0.000
0.731 0.086 8,525 0.000
-0.544 0.098 -5.535 0.000

R-.squared 0.973 R-bar-squared 0.972
S.E. of regression 0.0.52 F -sta t. F  (3. 101) 1202.000 [0.000]
Mean of dependent variable 3.391 S.D. of dependent variable 0.312
Residual sum of scpjares 0.276 Elquation loglikelihood 162.923
.\kaike info, criterion 158.923 Schwarz Bayesian criterion 1.53.615
D urbin 's /i-statistic -1.638 [0.101]

T e s t  S t a t i s t i c s L.m V e r s i o n P r o b , F  V e r s i o n I’ r o b .

A:Serial correlation X'̂  (4) = 8.598 0,072 F  (4, 97) =  2,163 0.079
B:Functional form X  ̂ (I) = 1.195 0,274 F  (1, 100) =  1,151 0,286
C.':Norniality X  ̂ (2) = 1,545 0,462 Not a{)plicable -

DTleteroscedasticity x'  ̂ (1) = 0 .3 7 E -4 0,995 F  ( 1 , 1 0 3 ) =  0 ,3 7 F -4 0.995

Note: p-values in square brackets.
A:Lagrange multiplier test of residual serial correlation.
B:Ramsey"s R e.SET test using the square of the fitted values.
C'iBased on a test of skewness and kurtosis of residuals.
D: Based on the regression of squared residuals on squared fitted values.
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T able C .31: W ald te s t  o f  restr ic tion s, m od el 3 , F in land .

105 observations used for estim ation from 1958 Q3 to  1984 Q3.

R e s t r k 't i o n ( s ) f o r  t h e  W a l d  T e s t  W a l d  S t a t i s t i c  P r o b .

- n + - , , „ 3 i = 0  X^(l) =  -5-309 0.069
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C.5 T esting for Fractional Integration

Table C.32: Fractional integration analysis, D enm ark.

E ml N ls G ph Gsp p D F f p A D Ff

rrit 1.159 1.176 1.168 0.993 -0.850 -1.490
( 0 . 1 2 3 ) ( 0 . 1 3 3 ) ( 0 . 17 1 ) ( 0 . 0 9 6 )

y t 0.360 0.577 1.23 1.08 -0.076 2.267
( 0 .2 8 1 ) ( 0 .2 7 6 ) ( 0 . 17 1 ) ( 0 .0 9 6 )

Pt 0.741 0.674 0.994 0.870 0.077 -1.569
( 0 . 3 0 1 ) ( 0 .2 3 1 ) ( 0 . 17 1 ) ( 0 .0 9 6 )

i t 0.574 0.521 1.171 1.084 -0.223 -1.125
( 0 . 2 7 5 ) ( 0 .2 6 0 ) ( 0 . 17 1 ) ( 0 . 9 6 2 )

bt 0.738 0.727 1.377 1.275 2.339 -2.191
( 0 . 2 7 8 ) ( 0 .2 1 8 ) ( 0 . 171 ) ( 0 .0 9 6 )

Note: standard errors in parentheses.
fBased on the E m l estim ate of d .

Table C.33: PYactional integration analysis, Finland.

E m l N l .s G ph G.SP Fopf F.ADpf

IT lt 0.778 0.762 0.830 0.590 -2.94 -2.046
( 0 .0 9 0 ) ( 0 .0 9 0 ) ( 0 . 1 1 2 ) ( 0 . 0 6 9 )

y t 0.559 0.570 0.745 0.523 1.250 8.502
( 0 .0 8 4 ) ( 0 .0 8 6 ) ( 0 . 11 3 ) ( 0 . 6 9 3 )

P t 0.236 0.210 0.410 0.394 -6.45 -2.63
( 0 .0 9 9 ) ( 0 ,0 9 6 ) ( 0 . 11 4 ) ( 0 . 1 1 3 )

i t 0.621 0.622 0.759 0.796 -2.73 -3..54
( 0 . 1 0 8 ) ( 0 . 1 0 3 ) ( 0 . 1 1 2 ) ( 0 . 0 6 9 )

Note: standard errors in parentheses. 
fBased on the E m l  estim ate of d.
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C.6 N onlinear Inference

T able C .34: H am ilton  A n a lysis, D en m ark  F in lan d .

D e n m a r k  F i n l a n d

E s t i m a t e s  
(s tan d ard  errors)

Linear
c 7.338 -0 .5 5 4

(1 .1 4 2 ) (0 .3 4 8 )

y t 0.781 0.877
(0 .1 9 0 ) (0 .0 7 9 )

Pt 0.129 -0 .8 2 6
(0 .0 6 1 ) (0 .4 .56)

it -0 .0 6 6 0.133
(0 .0 6 3 ) (0 .1 7 1 )

bt -0 .111
(0 .0 .19)

N on-linear
a 0.009 0.0.50

( 0 .0 0 6 ) (O .O O .'i)

c 5.376 1.289
( 4 .0 1 4 ) (0 .3 1 1 )

y t 3.412 4.791
(2 .33.5) (0 .7 4 8 )

Pt 6.490 0.009
( 1 .3 9 4 ) (0..360)

it -0 .00002 2.238
( 0 .5 1 0 ) ( 2 .1 6 7 )

bt 0.00000.3
(0 ..’i6 9 )
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Table C.35: P ost-H am ilton  p iecew ise linear regression, D enm ark.

Dependent variable is 55 observations used for estimation from 1974 Q1 to 1987 Q3.

R e g r e s s o r C o e f f i c i e n t St .andard E rror T-R.-\tio P r o b .

p P '”

6.664
0.926
0.539

0.6709
0,110
0.144

9.933
8.424
3.742

0.000
0.000
0.000

D u -0.652 0.157 -4.159 0.000
( . . D e n  ^ D e n * \

-  P2  ) 1.252 0.173 7.240 0.000
b O e n

■Den
‘ f

-1.475
0.612

0.311
0.583

-4.742
1.049

0.000
0.299

R-squared 0.966 
S.E. of regression 0.030 
Mean of dependent variable 11.754 
Residual sum of squares 0.043 
Akaike info, criterion 111.605 
I)\V’-statistic 0.938

R-bar-squared 
F -sta t. F  (6, 48)
S.D. of dependent variable 
Equation loglikelihood 
Schwarz Bayesian criterion

0.961 
224.489 [0.000] 

0.152 
118.605 
104.580

T e s t  S t a t i s t i c s Lm V e r s i o n P r o b ,  F  V e r s i o n f’ ROB.

A:Serial correlation 
B:Functional form 
CiNormality 
D: Heteroscedast ic: i ty

x '  (4) =  23.521 
x ' ( l ) =  1.660 

(2) =  2.806 
x '  (1) =  0.021

0,000 F  (4, 44) =  
0.198 F ( l , 4 7 )  =  
0.246 Not applicable 
0.886 F  (1, 53) =

8.219
1.462

0.020

0,000
0,233

0.888

Note: p-values in square brackets.
A:Lagrange multiplier test of residual serial correlation.
B:Ramsey's R e.SET test using the square o f the fitted values.
C;Based on a test of skewness and kurtosis of residuals.
D:Hased on the regression of squared residuals on squared titted values.
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Table C.36: P ost-H am ilton  piecew ise linear regression, Finland.

Dependent variable is m p ” . 106 observations used for estimation from 1958 Q2 to 1984 Q3.

R e g r e s s o r  C o e f f i c i e n t  S t a n d a r d  E r r o r  T - R a t i o  P r o b .

c 1.771 0.268 6.611 0.000
i f '" 0.310 0.115 2.691 0.008
pp" -0.324 0.164 -0.698 0.487

0.297 0.064 4.630 0.000
-yr’'')o, 0.879 0.085 10.350 0.000

R-squared 0.964 R-bar-.squared 0.963
S.p]. of regression 0.061 f - s ta t .  F  (4. 101) 675.355 [0.000]
Mean of dependent variable 3.386 S.D. of dependent variable 0.315
Residual sum of squares 0.376 Equation loglikelihood 148,649
Akaike info, criterion 143.649 Schwarz Bayesian criterion 136.990
DW '-statistic 0.971

T e s t  S t a t i s t i c s L m V e r s i o n P r o b . F  V e r s i o n P r o b .

A:Serial correlation II 29.723 0.000 F  (4, 97) = 9.4.50 0.000
BiF’unctional form (1) = 1.937 0.164 F  (1, 100) = 1.861 0.176
C:Normality II 3.123 0.210 Not applicable - -

D : Heteroscedasticity x" (1) = 0 .2 5 E -3 0.987 F  (1, 104) = 0 .24£ ;-3 0.988

Note: ;;-values in square brackets.
A;Lagrange multiplier test of residual serial correlation.
B : R a m .s e y ’s  R e s e t  t e s t  u s i n g  t h e  s q u a r e  o f  t h e  f i t t e d  v a lu e s .
C: Based on a test of skewness and kurtosis of residuals.
D:Based on the regression of squared residuals on sciuared fitted values.
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C .7 Sm ooth Transition R egression

Table C.37: ST R  tests  of linearity

P  V a l u e s  o f  F - t e s t  f o r  H y p o t h e s e s
M o d e l  T r a n s i t i o n

Va r i a b l e Ho H o4 H q3 H o2

^Fin 1 .02£ '-3 7.52E--4 1.19E--1 1 .92E -1
1 6 .6 8 E - 2 9.73E--1 2.31E--2 9 .1 6 E - 2

2 .4 7 E -1 5 1.23E--6 7.76E--3 2 .4 6 F -1 0

2 yP^ 3 .0 5 F - 1 5 3.52E--6 1.64E--1 5 .4 6 F -1 2
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A ppendix D

Appendix to Chapter 6
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D .l  D ata used in C hapter 6

T able D .l ;  P u rch asin g  pow er parity  d ata , Ireland.

p D M ef d r e pD M ef p ‘r
d r e

1975:1 1.061 0.000 3.318 10.377 1985:1 0.472 - 0.204 4.432 14.413

1975:2 0.973 0.000 3.374 9.577 1985:2 0.472 - 0.235 4.436 12.313

1975:3 1.021 0.000 3.388 10.270 1985:3 0.454 - 0.194 4.438 10.183

1975:4 0.998 0.000 3.418 11.417 1985:4 0.448 - 0.150 4.431 10.790

1976:1 0.911 0.000 3.472 9.420 1986:1 0.435 - 0 . 1.30 4 . 4.30 15.227
1976:2 0.852 0.000 3.523 10.050 1986:2 0.437 - 0.106 4.425 10.230

1976:3 0.737 0.000 3.564 11.137 1986:3 0.332 - 0.072 4.419 10.580
1976:4 0.721 0.000 3.611 14.493 1986:4 0.328 - 0.052 4.413 14.047

1977:1 0.742 0.000 3.666 11.967 1987:1 0.311 - 0.082 4.425 13.810

1977:2 0.721 0.000 3.704 8.047 1987:2 0.315 - 0.095 4.433 10.917

1977:3 0.723 0.000 3.723 7.100 1987:3 0.316 - 0.110 4.444 9.543

1977:4 0.719 0.000 3.731 5.493 1987:4 0.304 - 0.111 4.450 9.063

1978:1 0.652 0.000 3.757 6.180 1988:1 0.314 - 0.153 4.459 8.667

1978:2 0.680 0.000 3.784 7.913 1988:2 0.319 - 0.146 4.471 7.687

1978:3 0.670 0.000 3.809 9.363 1988:3 0.315 - 0.167 4.488 7.810

1978:4 0.643 0.000 3.820 10.817 1988:4 0.316 - 0.183 4.494 8.020
1979:1 0.673 - 0.008 3.867 12.273 1989:1 0.311 - 0.180 4.513 8.230

1979:2 0.658 - 0.059 3.902 11.457 1989:2 0.307 - 0.129 4.526 9.710

1979:3 0.644 - 0.028 3.918 13.560 1989:3 0.310 - 0.130 4.534 10.283
1979:4 0 . 641 - 0.036 3.932 14.547 1989:4 0.301 - 0.031 4.527 11.917

1980:1 0.655 - 0.112 3.972 16.430 1990:1 0.313 - 0.010 4.515 12.207

1980:2 0.649 - 0.104 4.002 16.713 1990:2 0.316 - 0.082 4.511 11.123

1980:3 0.653 - 0.141 4.018 14.743 1990:3 0.316 - 0.089 4.511 11.000

1980:4 0.642 - 0.229 4.041 12.780 1990:4 0.305 - 0.082 4.499 10.897

1981:1 0.625 - 0.255 4.096 12.790 1991:1 0.313 - 0.108 4..504 11.000
1981:2 0.622 - 0.243 4.149 14.407 1991:2 0.313 - 0.091 4.519 10.167

1981:3 0.620 - 0.139 4.179 16.363 1991:3 0.313 - 0.086 4.522 10.073

1981:4 0.600 - 0.189 4.200 17.253 1991:4 0.305 - 0.067 4.525 10.470

1982:1 0.573 - 0.215 4.233 17.897 1992:1 0.309 - 0.070 4.532 10.523

1982:2 0.566 - 0.216 4.261 18.260 1992:2 0.310 - 0.084 4.541 10.167

1982:3 0.555 - 0.228 4.284 15.727 1992:3 0.295 0.044 4.535 12.583

1982:4 0.529 - 0.145 4.295 13.423 1992:4 0.296 0.075 4.527 24.000

1983:1 0.479 - 0.128 4.307 14.510 1993:1 0.218 0.002 4.555 15.897

1983:2 0.476 - 0.212 4.321 13.590 1993:2 0.220 - 0.044 4.576 7.473

1983:3 0.469 - 0.233 4.346 12.740 1993:3 0.177 - 0.047 4.593 6.607

1983:4 0.458 - 0.245 4.362 11.760 1993:4 0.219 - 0.049 4.590 6..500

1984:1 0.447 - 0.200 4.381 12.690 1994:1 0.204 - 0.033 4.591 6.120

1984:2 0.448 - 0.207 4.396 12.523 1994:2 0.213 - 0.015 4.592 5.767

1984:3 0.461 - 0.197 4.407 13.293 1994:3 0.213 - 0.011 4.587 5.917

1984:4 0.467 - 0.154 4.415 14.417 1994:4 0.203 - 0.010 4.589 5.917

Continued on next page.
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p I r e , / r e p D M
e f p ‘r

4 Ire

1995:1 0.135 0.003 4.601 6.523 1999:3 0.239 -0 .196 4.658 2.703

1995:2 0.149 0.029 4.602 6.730 1999:4 0.239 -0 .237 4 .667 3.430

1995:3 0.159 0.023 4.605 6.153 2000:1 0.239 -0.274 4.690 3.543

1995:4 0.163 0.035 4.611 5.583 2000:2 0.239 -0 .220 4.709 4.260

1996:1 0.172 0.031 4.608 5.107 2000:3 0.239 -0 .278 4.722 4.737

1996:2 0.215 0.028 4.605 5.110 2000:4 0.239 -0.233 4,735 5.020

1996:3 0.222 0.024 4.595 5.700 2001:1 0.239 -0 .240 4.725 4.747

1996:4 0.290 -0 .010 4.591 5.757 2001:2 0.239 -0 .266 4.740 4.593

1997:1 0.297 -0 .038 4.586 5.777 2001:3 0 .239 -0 .237 4.733 4.267

1997:2 0.297 -0 .097 4.601 6.233 2001:4 0.239 -0.259 4.727 3.443

1997:3 0.273 -0 .103 4.608 6.220 2002:1 0.239 -0.251 4.738 3.,363

1997:4 0.271 -0 .145 4.617 6.137 2002:2 0.239 -0.193 4.733 3.447

1998:1 0.252 -0 .210 4.644 5.920 2002:3 0.239 -0.222 4.707 3.357

1998:2 0.255 -0 .175 4.638 6.253 2002:4 0.239 -0.191 4.701 3.107

1998:3 0.246 -0 .128 4.628 5.897 2003:1 0.239 -0.133 4.671 2.683

1998:4 0.241 -0 .112 4.608 3.633 2003:2 0.239 -0 .129 4.635 2.367

1999:1 0.239 -0 .167 4.622 3.093 2003:3 0.239 -0 .123 4.624 2.140

1999:2 0.239 -0 .183 4.645 2.637

T able D .2: P u rch asin g  pow er p arity  d a ta , G erm any &: U K .

,,G er JU  K  ,:OerPt Pt h :U K't ,X le r  -Ger ,;U KPt Pt h H

1975:1 4.146 3.127 6 .627 9.800 1979:4 4.292 3.768 9.330 15.1.37

1975:2 4.149 3.182 4.920 9.390 1980:1 4.317 3.820 9.157 16.197

1975:3 4.149 3.211 4.157 10.430 1980:2 4.336 3.861 10.197 15.933

1975:4 4.153 3.246 4.133 11.057 1980:3 4.337 3.877 9.217 14.663

1976:1 4.165 3.288 3.797 8.780 1980:4 4.345 3.896 9.577 13.443

1976:2 4.179 3.318 3.843 10.643 1981:1 4 .367 3.926 11,247 11.910

1976:3 4.191 3..360 4.530 11..393 1981:2 4 .387 3.959 13.160 11.540

1976:4 4.191 3.408 4.823 13.990 1981:3 4.405 3.978 12.787 14.037

1977:1 4.205 3,466 4.740 10.423 1981:4 4.413 4.000 11.227 14.697

1977:2 4.211 3.512 4.447 7.460 1982:1 4 .426 4.024 10.200 12.847

1977:3 4.211 3.541 4.187 6.340 1982:2 4.438 4.038 9.263 12..357

1977:4 4.211 3.555 4.087 5.733 1982:3 4.446 4.055 8.880 9.973

1978:1 4.211 3.578 3.517 5.917 1982:4 4 .450 4.072 7.170 9.293

1978:2 4.217 3.595 3.613 8.2.50 1983:1 4.445 4.089 5.700 10,667

1978:3 4.217 3.614 3.717 9.110 1983:2 4.449 4.108 5.367 9.543

1978:4 4.221 3.630 3.953 11.137 1983:3 4.458 4.121 5.720 9.237

1979:1 4.238 3.656 4.170 11.920 1983:4 4.466 4.124 6.320 8.843

1979:2 4.260 3.694 5.973 12.013 1984:1 4.475 4.142 5.977 8.697

1979:3 4.278 3.742 7.273 13.350 1984:2 4.481 4.164 6.023 8.713

Continued on next page.
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pG er p iJ K ,;Ger
H

M K
H Pt

p U K ,-G'er M K

1984:3 4.483 4.174 5.990 10.423 1994:2 4.582 4.563 5.287 4.867

1984:4 4.491 4.193 5.953 9.353 1994:3 4.585 4.569 5.013 5.473

1985:1 4.501 4.220 6.140 12.527 1994:4 4.590 4.574 5.277 5.690

1985:2 4.506 4.228 5.847 11.890 1995:1 4.601 4.593 5.110 6.137

1985:3 4..504 4.233 4.947 11.000 1995:2 4.606 4.603 4.600 6.437

1985:4 4.500 4.234 4.860 11.110 1995:3 4.607 4.609 4.403 6.573

1986:1 4.492 4.238 4.607 11.563 1995:4 4.606 4.614 4.013 6.330

1986:2 4.481 4.240 4.600 9.497 1996:1 4.607 4.626 3.440 5.893

1986:3 4.474 4.240 4.597 9.510 1996:2 4.606 4.631 3.337 5.717

1986:4 4.470 4.248 4.737 10.630 1996:3 4.605 4.631 3.263 5.523

1987:1 4.472 4.264 4.203 10.027 1996:4 4.607 4.636 3.180 6.050

1987:2 4.474 4.272 3.817 8.650 1997:1 4.609 4.639 3.197 5.910

1987:3 4.476 4.278 3.967 9.527 1997:2 4.610 4.638 3.180 6.253

1987:4 4.478 4.286 4.143 8.520 1997:3 4.615 4.642 3.237 6.850

1988:1 4.480 4.296 3.423 8.373 1997:4 4.616 4.642 3.687 7.047

1988:2 4.488 4.308 3.647 8.230 1998:1 4.614 4.642 3.533 6.930

1988:3 4.494 4.317 5.107 11.047 1998:2 4.613 4.642 3.607 7.117

1988:4 4.503 4.324 5.147 12.197 1998:3 4.610 4.640 3.510 7.0.50

1989:1 4.516 4.340 6.267 12.403 1998:4 4.605 4.636 3.527 6.120

1989:2 4.526 4.354 6.840 13.040 1999:1 1.600 4.637 3.093 5.080

1989:3 4.526 4.363 7.190 13.367 1999:2 4.604 4.645 2.637 4.850

1989:4 4.529 4.376 8.177 14.497 1999:3 4.611 4.645 2.703 5.003

1990:1 4..530 4.392 8.363 14.460 1999:4 4.617 4.647 3.430 5.360

1990:2 4.534 4.414 8.300 14.473 2000:1 4.627 4.651 3.543 5.813

1990:3 4.541 4.426 8.393 14.283 2000:2 4.634 4.660 4.260 5.920

1990:4 4.550 4.443 8.897 12.960 2000:3 4.044 4.662 4.737 5.823

1991:1 4.554 4.454 9.173 12.093 2000:4 4.649 4.663 5.020 5.660

1991:2 4.557 4.473 9.107 10.887 2001:1 4.649 4.657 4.747 5..367

1991:3 4.565 4.476 9.243 10.073 2001:2 4.6.56 4.660 4.593 5.017

1991:4 4.567 4.481 9.463 10.070 2001:3 4.653 4.658 4.267 4.640

1992:1 4.571 4.490 9.613 9.943 2001:4 4.647 4.652 3.443 3.907

1992:2 4..579 4..503 9.763 9.483 2002:1 4.650 4.651 3.363 3.917

1992:3 4.580 4.504 9.720 9.177 2002:2 4.655 4.658 3.447 3.957

1992:4 4.578 4.511 8.973 6.527 2002:3 4.656 4.659 3.,357 3.770

1993:1 4.579 4.525 8.323 5.340 2002:4 4.656 4.660 3.107 3.787

1993:2 4.579 4.542 7.677 5.217 2003:1 4.663 4.667 2.683 3.563

1993:3 4.578 4,545 6.827 5.133 2003:2 4.660 4.670 2.367 3.440

1993:4 4..575 4.549 6.353 4.900 2003:3 4.658 4.672 2.140 3.460

1994:1 4.579 4.557 5.880 4.830
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D .2 Figures from C hapter 6
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Figure D .l:  The logs of the DM-IRi,’ and sterhng-IRi.' exchange rates.
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Figure D.2: The logs of the Irish, German & UK price indices.
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D .3 Prelim inary A nalysis

Table D.3: U nit root tests, Ireland, G erm any U K .

Variables A df p-value No. of Lags

I r e la n d  k  G e rm a n y

Nominal exchange rate -1.119 0.266 7
Irish price level -2.155 0.034 4
German price level -1.933 0.056 2
Irish interest rate -1.085 0.250* 2
German interest rate -0.936 0.309* 1

Ireland & United  K ingdom

Nominal exchange rate -1.221 0.203* 0
Irish price level -2.155 0.034 4
UK price level -1.722 0.088 8
Irish interest rate -1.085 0.250* 2
UK interest rate -0.645 0.436* 10

JTreiid and constant not included. MacKinnon (1996) j)-values used.
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Table D.4: Seeisonal unit root tests, Ireland (T =  115).

V a r i a b l e T e s t  S t a t ist ic s  
[critical values]

Lag L e n g th

^TTl ^7T2 Fm F'2ZA F\2M

H eg y  te st w ith o u t determ in istic  term s

D M / I R l -3 .387 -5 .912 76.246 146.904 187.824 0
(-1 .911 1-1.9,3] |3.11[ 12.78] 12..5.5I

S t g £ / I R £ -1 .135 -7 .138 38.512 100.853 75.700 0
1-1.911 1 -1 .93] [3.111 12.78] 12..551

p 'r 0.007 -2 .734 6.017 7.025 5.273 5
1-1.911 1-1.9.3] [3.111 12.78] [2..5,5[

i ' r -1 .116 -7.391 26.652 83.998 63.790 0
1-1.911 1 -1 .93] [3.111 12.78] [2..5,5[

H eg y  test w ith  intercept and tim e trend

^ D M / { R l -3.(i01 — 5.662 78.263 139.566 122.428 0
[-3 .4 0 ] 1-1.9,3] [3.0.51 12.74] [4.19]

S t g £ / I H l -2 .182 -7 .145 38.661 100.673 76.893 0
1-3 .40] 1 -1 .93] [3.0.51 [2.74] [4.19]

p 'r -2.681 -8.,505 35.030 286.926 :!00.699 0
1-3.401 [-1.9.3] [3.0.51 [2.74] [4.19]

i ‘r -3 .128 -7 .580 27.510 87.094 68.631 0
1-3 .40] [-1 .9 3 ] 13.0.51 [2.74] 14.19]

H egy  test w ith  intercept and seasonal dum m y variables

D M / I R l -3 .664 -6.191 68.397 140.843 163.697 0
[-2 .8 4 ] 1 - 2 .83[ [6.57] 15.95] [5..561

S t g £ / 1 R l -2 .230 -6 .970 40.925 104.682 80.297 0
1-2 .84] ]-2 .8 3 [ [6.57] 15.9.51 [.5..56I

p 'r -4 .024 -4 .189 7.296 11.596 12.768 9
1-2.841 1-2.831 16..57] 15.95[ [5..56I

-1 .637 -7 .158 28.355 85.939 64.681 0
1-2.841 [-2 .8 3 ] I6..57] [5.951 ]S,.56]

H e g y test w ith  intercept. tim e trend and .seasonal dum m y variables

D M / I R £Gt -3 .455 -6 .117 71.072 144.389 126.485 0
1-3..39] 1 -2 .82] I6..5.5] [5.93] 16.31]

S t g £ / I R £ -2 .187 -6 .939 40.556 103.587 79.099 0
1 -3 .39] 1 -2 .82] [6.5.5] 15.93] 16.31]

p 'r -3 .014 -4 .159 7.165 11.394 11.136 9
1 -3 .39] 1-2.821 [6.55] ]5.93] [6.31]

■Ire -3 .140 -7 .280 29.053 88.190 69.457 0
1 -3 .39] 1-2.821 16..55] 15.9.31 [6.31]

Note: critical values for the 5 per cent level of significance,
taken from Franses and Hohijn (1997).
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Table D.5: Se2isonal unit root tests, Germ any &: U K  (T =  115).

Va r ia b le T est  Sta tistic s  
[critical vakies]

L ag L en g th

^Tri ^7T2 F 34 ^234 Fixu

H eg y  te s t w ithou t de term in istic term s

1.914 -9.041 28.933 658.690 8.54.313 0
(-1 .911 1-1 .93] 13.11] (2.78) 12..55]

0.052 -2 .578 2.063 3.856 2.892 11
1-1.911 1-1 .93] 13.11] 12.78) 12..5.5]

■Ger -0 .965 -6 .215 58.522 336.624 253.665 0
[ -1 .9 1 ] 1-1.9.3] 13.11] (2.78) 12..5.5]

-0 .645 -2 .916 15.890 16.685 12.699 7
1 -1 .91] 1-1.9.3] [3.11] (2.78) 12.,55]

H eg y  te s t w ith in tercep t and  tim e trend

-2 .245 -8.781 28.696 503.000 389.947 0
1 -3 .40] 1-1.9.3] (3.05] (2,74) 14.19)

-2 .733 -2.641 1.956 3.902 4.998 11
1-3 .40] 1-1.9.3] 13.0.5] 12.74) (4.19)

i ? " -2 .572 -6.341 57.309 341.586 259.467 0

i ' / x
1 -3 .40] 1 -1 .93 ] (3.05] (2.74] (4.19)

-3 .096 -3 .454 25.908 26.385 23.100 3
1 -3 .40] 1-1.9.3] (3.05) (2,74( (4.19)

H ec:y test w ith in tercep t and  seasonal dunnny  variables

P ? " -2 .698 -7 .826 33.473 535.983 550.008 0
1-2.841 1-2 .83 ) )6.57) |5.95] )5..56(

P\”^ -3 .786 -3 .053 26.872 25.902 30.411 3
1 -2 ,84 ) 1-2 .83 ) )6..57) |5.95] )5..56]

^ G e r -2 .071 -6 .408 53.398 352.151 264.977 0
i U K

1-2.841 I-2 .8 .3) 16.57) 15.95] )5.56]

-1 .769 -3 .453 27.257 27.694 21.619 3
1 -2 .84 ) 1-2 .83 ) 16.57) 15.95] I5..56]

H egy tes t w ith in tercep t. tim e trend and  seasonal dum m y variiables

P?‘^ -2 .117 -7 .884 32.493 537.680 416.800 0
1 -3 .39 ] 1-2 .82 ) 16..55) 15.9,3] 16.31]

P’/'-' -2 .849 -3 .036 26.622 25.6,54 24.598 3
( -3 .3 9 ) 1-2 .82 ] 16.55) 15.93] 16.31]

-2 .560 -6 .437 52.446 348.839 264.975 0
1-3..39] 1 -2 .82 ] 16..5.5] 15.93] 16.31]

-3 .108 -3 .393 27.830 27.972 24.318 3
1 -3 .39] 1 -2 .82] I6 ..55] 15.93] 16.31]

Note: critical values for the 5 per cent level of significance,
taken from Franses and Hobijn (1997).

279



D .4

D .4 .1

T esting for C ointegration  

T h e  E n g le-G ra n g er  2 -s tep  m e th o d

Table D.6: Engle-G ranger levels m odels, Ireland, Germ any UK.

V.ARIABLES I r e l a n d - G e r m a n y  I r e l a n d - U n i t e d  K i n g d o m

Constant 2.854 1.804 0.859 0.833
( 0 ..5 4 9 ) ( 0 ..5 7 5 ) ( 0 . 1 0 8 ) (0 . 1 0 8 )

F’ r ic e  levels
Irish -0 .568 -0 .672 -0 .875 -1 .029

( 0 .0 8 3 ) (0 .0 8 1 ) ( 0 . 1 1 1 ) ( 0 . 1 2 3 )

F o re ig n 0.007 0.329 0.670 0.825
( 0 . 2 0 0 ) (0 .2 0 3 ) (o.oy.5) ( 0 . 11 0 )

I n t e r e s t  r a t e s
Irish 0.005 0.007

( 0 .0 0 2 ) ( 0 .0 0 3 )

F o re ig n 0.002 -0.003
( 0 .0 0 3 ) ( 0 .0 0 3 )

A e g  t e s t  o n  r e s id u a l s -2 .475 -2 .835 -2.6.53 -2.728
1-.3.817] | - 4 ..'5398 | | - 3 .8 1 7 2 | [ - 4 ..5 4 0 ]

C’r d w  t e s t 0.186 0.245 0.239 0.250
|0.48| |0 .6 8 | 10.481 10.081

Note: standard  errors in parentheses. 5 per c e n t  A ec; a n d  C'r d w  c r i t i c a l
v a lu e s  in  s q u a r e brackets.

Table D.7: Error-correction m odels, Ireland, Germ any & UK

V'a r i a b l e s I r e l a n d -CIe r .m a n y  I r e l a n d - U n i t e d  K i n g d o m

C.'onstant -0 .004 -0 .004 0.004 0.001
( - 0 .0 0 3 ) ( - 0 .0 0 3 ) ( 0 .0 0 .5 ) ( 0 .0 0 4 )

A Price levels
Irish -0 .686 -0 .667 -1 .105 -1 .020

(0 . 1.5 7 ) ( 0 . 1 6 4 ) ( 0 . 2 8 2 ) (0 .2 8 4 )

Foreign 1.021 0.927 0.831 0.715
( 0 .4 2 8 ) ( 0 ..5 0 2 ) ( 0 .3 6 1 ) (0 .3 5 7 )

A Interest Rates
Irish 0.0004 0.005

(0 .0 0 1 ) ( 0 .0 0 1 )

Foreign 0.001 0.00006
( 0 .0 0 4 ) ( 0 .0 0 3 )

E c:m -0 .108 -0 .107 -0.1.33 -0.124
(0 .0 3 9 ) ( 0 .0 4 0 ) ( 0 .0 4 9 ) (0 .0 5 2 )

E c m  test critical values -3 .244 -3 .787 -3 .244 -3 .787
[0 . 134 ] [0 .3 2 6 ] [0 . 1 4 8 ] [0.4441

Note: standard errors in parentheses, p-values in square brackets.
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D .4 .2  J o h a n se n ’s m a x im u m  lik e lih o o d  ap p roach

Table D.8: Testing the order o f  the V A R , Ireland-Germany.

Based on 112 observatioiiH from 1975 (J4 to 2003 Q3. O rder of V a r  =  3. List of variables 
included in the unrestricted V a r : List of determ inistic variables: c,

S C i ,  S C 2 ,  S C 3 .

O r d e r L l A ic S bc L r  T e s t P r o b . A d j u s t e d  
L r  T e s t

P r o b .

3 1099.100 1060.100 1007.100
2 1090.G00 1060.600 1019.800 (9) = 17.093 0.047 15.109 0.088
1 1046.300 1025.300 996.717 X 00 II 105.708 0.000 93.430 0.000
0 384.828 372.828 356.517 x" (27) = 1428.600 0.000 1262.800 0.000

Table D.9: Test o f restrictions for determ in istic  variables, Ireland-Germ any.

Based on 113 observations from 1975 Q3 to 200i? Q3. Order of V a r  =  2.

V'AHiABLE /  S t a t i s t i c  M a x . L l M a x . L l L r T e s t  P r o b .
W I T H O U T  V a r i a b l e  w i t h  V a r i a b l e  y 2

c 1090.500 1086.000 X  ̂ (3) = 9.037 0.029
t 1090..500 1087.900 X  ̂ (3) = 5.340 0.149

s c i 1090.500 1080..300 IIX 20.433 0.000
S C -2 1090.500 1089.100 X'-* (3) = 2.967 0.397
S C 3 1090.500 1089.600 X" (3) = 1.847 0.605

S C l +  SC-2 + S C 3 1090.500 1074.200 X̂  (9) = 32.586 0.000

Note: M ax.  L l - M ax im ised  va lue  o f  loglikelihood.
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Table D.IO: T estin g  th e  order o f  th e  V A R  in c lu d in g  in terest rates, 
Ireland-G erm any.

B ased on 112 observations from 1975 Q4 to  2003 Q3. O rd e r of V a r  =  3. List of variables 
included in th e  u n restric ted  V a r : i f ^ '  - L ist of determ in istic

variables: c, t, sc i, SC2 , sc-s.

O r d e r L l A ic SBC L r  T e s t P r o b . A d j u s t e d  
L r  T e s t

P r o d .

:5 838 .307 7:}8,307 602.382
2 822.812 747.812 645.869 X'' (25) = 30.989 0.189 25.456 0.437
1 765.700 715.700 647.737 X" (50) = 145.215 0.000 119.284 0.000
0 61.762 :i6.762 2.781 x "  (75) = 1553.100 0.000 1275.800 0.000

T able D . l l :  T est o f  restr ic tio n s for d e term in istic  variab les inclu d in g  in terest  
rates, Ireland-G erm any.

Based on 113 observations from 1975 Q3 to  2003 Q3. O rder of V a r  =  2.

V.\Ri.\BLE /  S t a t i s t i c M a x . L l 
w i t h o u t  Va r i a b l e

M a x . L l 
WITH Va r i a b l e

L r T e s t P r o b .

C 819.268 812.776 X^ (5) = 12.985 0.024
t 819.268 808.274 (5) = 21.988 0.001

SC\ 819.268 805.464 X^ (5) = 27.609 0.000
fiC-2 819.268 816.1.56 X^ (5) = 6.223 0.285
SC:) 819.268 818.418 X'  ̂ (5) = 1.701 0.889

s c i + SC- 2  +  scri 819.268 798.479 X'' (15) = 41.579 0.000

N ote: M ax. L l - M axim ised value o f loglikeliliood.

T ab le D .12: T estin g  th e  order o f  th e  V A R , Ireland-U K .

B ased on 112 observations from 1975 Q4 to  2003 Q3. O rder of Y a h  =  3. List of variables 
included in th e  u n restric ted  V a r : 1 ^  List of determ in istic  variables: c, t,

S C \ ,  S C 2 ,  S Q i -

O r d e r L l A ic S bc X'̂ L r  T e s t P r o b . A d ju s t e d  
L r  T e s t

P r o b .

3 1029.700 987.726 930.637
2 1021.:500 988.296 943.440 X'̂  (9) = 16.860 0.051 14.753 0.098
1 984 .437 960.437 927.815 II

00^

MX 90 .578 0.000 79.256 0.000
0 ;596.519 381.519 ,361.1150 X" (27) = 1266.400 0.000 1108.100 0.000
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T able D .13: T est o f  restr ic tion s for d e ter m in is t ic  variab les, Ireland-U K .

Based on 113 observations from 1975 Q3 to 2003 Q3. Order of Var  =  2.

V a r ia b l e  /  S ta tistic M a x . L l 
w it h o u t  Va r ia b l e

M a x . L l 
WITH Va r ia b l e

L r T e st P r o b .

c 1024.900 1015.500 II

(N

18.751 0.000
t 1024.900 1019.000 X  ̂ (3) = 11.882 0.008

S C l 1024.900 1012.600 (3) = 24.600 0.000
SC-2 1024.900 1023.200 (3) = 3.371 0.338
S C 3 1024.900 1023.400 X  ̂ (3) = 3.083 0.379

S C l  +  S C -2 +  S C 3 1024.900 1005.100 II

04

39 .667 0.000

Note: Max. Lh - Maximised value o f loglikeliliood.

T able D .14: T esting  th e  order o f  th e  V A R  in c lu d in g  in terest rates, Ireland-U K .

Based on 112 observations from 1975 Q4 to 2003 Q3. Order of V a r  =  3. List of variables 
included in the unrestricted V a R: ■ List of deterministic

variables: c, t ,  sc i, SC2 , 6X3 .

O r d e r L l A 10 S bc X^ L r T e st P r o b , A d ju s t e d  
L r T est

P r o b .

3 691.636 594.636 458.711
2 682.069 607.069 505.126 X  ̂ (25) = 25.132 0.455 20.644 0.712
1 633.013 583.013 515.050 X'̂  (50) = 123.246 0.000 101.238 0.000
0 -98.878 -123.878 -157 .860 X" (75) = 1587.000 0.000 1303.600 0.000

T ab le D .15: Test o f  restr ic tion s for d e ter m in is t ic  variab les includ ing in terest  
rates, Irelan d -U K .

Based on 113 observations from 1975 Q3 to 2003 Q3. Order of V a r  =  2.

V.ARi.ABLE /  S t a t ist ic  M a x . L l M a x . L l L r T e st  P r o b .
WITHOUT Va r ia b l e  w it h  Va r ia b l e

c 682.180 666.472 II

04

31.416 0.000
t 682.180 667.005 X" (5) = 30.349 0.000

S C l 682.180 668.940 X" (5) = 26.479 0.000
SC 2 682 .180 679.107 X" (5) = 6.145 0.292
sca 682 .180 681 .229 X'̂  (5) = 1.902 0.863

S C l  -1- SC 2  -1- SC3 682 .180 662.219 II 39.921 0.000

Note: Max. Ll - Maximised value of loglikelihood.
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Table D.16: N um ber o f cointegrating relations by m odel, Ireland, G erm any &
U K .

T est  T y p e
No l.NPTS 

No T r e n d s
R e s t ’d I n p t s  
No T r e n d s

U n r e s t ' d  I n p t s  U n r e s t ’d I n p t s  
No T r e n d s  R e s t ' d  T r e n d s

U n r e s t ’d In p ts  
U n r e s t ' d T rends

lYace 1 1

Ir e l .and &• CJe r m .xny 
excluding interest rates

1 0 0
Max. Kig. 1 1 1 0 0

Trace 2 2

1r e l ..\nd  & C:e r m . \ny 
including interest rates

2 1 1
Max. Kig. 2 2 1 1 1

Trace 1 1

Ir e l .and & U n it e d  K incjdom 
excluding ititerest rates

1 1 1
Max. Eig. 1 1 1 1 0

Trace 2 2

Ir elan d  & U nit e d  K incjdom 
including interest rates

2 2 3
Max. Eig. 0 1 1 2 1

Note: 0.05 per cent critical values ba.sed on O sterwald-Lenum (1992).
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Table D .17: Johansen’s cointegration , Ireland-Germ any.

113 observations from 1975 Q3 to 2003 Q3. O rder of V a r  =  2. List of variables inclucled in 
the cointegrating vector: ■, c. List of 7(0) variables included in the V a r :

S C j j SC2 5 SC3 .

C o in t e g r a t io n  R a n k  T e s t  ( T r a c e )*

H y p o t h e s e s T r a c e

S t a t is t ic

0 .0 5  C r it ic a l  
V a l u e

0 .1 0  C r it ic a l  
V a l u e

M o d if ie d  0 .05  
C r it ic a l  Va l u e

r  =  0 r  >  1 39.203 34.870 31.930 45.680
r  <  1 r  > 2 13.347 20.180 17.880 -

r < 2  r  =  3 5.903 9.160 7.5.30 -

C’OINTEGRATION R a NK TEST (MAXIMAL EIGENVALUE)*

H y p o t h e s e s M a x i m a l  E i g e n v a l u e  0 .0 5  C r i t i c a l  
S t .a t i s t i c  Va l u e

0 .1 0  C’r i t i c a l  
V a l u e

r  =  0 r  =  1 25.856 22.040 19.860
r  <  1 r =  2 7.444 15.870 13.810
r < 2  r  =  3 5.903 9.160 7.530

tC o in t e g r a t io n  w i th  re s t r ic te d  in te rc e p t s  a n d  no  t r e n d s  in 
Note :  t h e  co rrec t ion  fac to r  is 1.310.

th e  Va r .
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Table D.18: Johansen’s cointegration  including interest rates, Ireland-Germ any.

113 observations from 1975 Q3 to  2003 Q3. O rder of V a r  =  2. List of variables iiichided in 
the  coin tegrating  vector: ■, t .  List of 7(0) variables included in

th e  V a r :  sc i, s c < 2 ,  s e n .

C'OINTEGR.ATION R.4NK T e S T  (Tr .A C E)^

H y p o t h e s e s T r . a c e  0 .0 5  C r i t i c a l  0 .1 0  C r i t i c a l  
S t a t i s t i c  V a l u e  V a l u e

M o d i f i e d  0 .0 5  
C ' r i t i c a l  V a l u e

r  =  0 r  >  1 1 11 .587 8 7 .1 7 0 8 2 .8 8 0 9 8 .3 2 8
r < 1 r  >  2 5 7 .2 9 8 6 3 .0 0 0 5 9 .1 6 0 -

r < 2 r > 3 3 1 .4 4 8 4 2 .3 4 0 3 9 .3 4 0 -

r < i r  >  4 15.809 2 5 .7 7 0 2 3 .0 8 0 -

r  <  4 r  =  5 6 .0 5 7 12.:590 10.550 -

C o i n t e g r a t i o n  R a n k  T e s t  ( M a x im a l  E ic je n v a l u e )^

H y p o t h e s e s  M a x im a l  E ig e n v a l u e 0 .0 5  C r i t i c a l 0 .1 0  C r it i c a l

S t a t is t ic V a l u e V a l u e

r  =  0 r = 1 5 4 .2 9 0 3 7 .8 6 0 3 5 .0 4 0
r < 1 r = 2 2 5 .8 5 0 3 1 .7 9 0 2 9 .1 3 0
r < 2 r =  3 15 .639 2 5 .4 2 0 2 3 .1 0 0
r  <  3 r  =  4 9 .751 19 .220 17.180
r  <  4 r  =  5 6 .0 5 7 12..390 10.550

fCointegration with unrestricted intercepts and restricted trends in the Va r . 
Note: the correction factor is 1.128.
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Table D.19: Johansen’s cointegration , Ireland-U K .

113 observations from  1975 Q3 to  2003 Q3. O rder of V a r  =  2. List of variables included in 
th e  co in tegrating  vector:  ̂ t -  List of / (O ) variables included in th e  V a r :

S C i, SC'2, SC3.

C’OINTEGRATION RANK T e ST ( T r ACE)^

H y p o t h e s e s T r . \c e 0 .0 5  C r i t k ; a l 0 .1 0  C r it ic . \l M o d i f i e d  0 .0 5
S t a t i s t i c Va l u e Va l u e C r i t i c a l  Va l u e

r  =  0 r  >  1 57.532 42.340 39.340 70.030
r  <  1 r > 2 21.695 25.770 23.080 -

r < 2  r = 'i 4.788 12,390 10,550 -

C’OINTEGRATION' RANK T eST (MAXIMAL EIGENVALUE)^

H y p o t h e s e s M a x i m a l  E i g e n v a l u e  0 .0 5  C r i t i c ; a l 0 .1 0  C r i t i c a l
S t a t i s t i c Va l u e V.-klue

r  =  0 r  =  I 35.838 25.420 23,100
r  <  1 r  =  2 16.907 19.220 17.180

IIVI 4 .788 12.390 10.550

jC 'o i i i teg ra t ion w ith  u n r e s t r i c t e d  in terce[)ts  a n d  r e s t r ic te d  t r e n d s  in t h e  V a r .
N ote : th e  co rre c tio n  fa c to r is 1.654.
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T ab le D .20: J o h a n sen ’s co in tegra tion  in c lu d in g  in terest ra tes, Irelan d -U K .

113 observations from 1975 Q3 to  2003 Q3. O rd e r of V a r  =  2. List of variables included in 
th e  co in teg rating  vector:  ̂ ^ i r e ^  , t .  List of /(O) variables included

in th e  V a r :  s c i ,  S02, sc^.

C o i n t e g r a t i o n  R a n k  T e s t  ( T r a c e )^

H y p o t h e s e s T r a c e  0 .0 5  C’r i t i c a l  
S t a t is t ic  V a l u e

0 .1 0  C r i t i c a l  
Va l i .'e

M o d i f i e d  0 .0 5  
C’r i t i c a l  V a l u e

r  =  0 r  >  1 127 .997 8 7 .1 7 0 8 2 .8 8 0 8 5 .4 2 7
r < 1 r  >  2 7 7 .194 6 3 .0 0 0 5 9 .1 6 0 6 1 .7 4 0
r < 2 r  >  3 4 1 .6 6 5 4 2 .3 4 0 3 9 .3 4 0 4 1 .4 9 3
r  <  3 r > -1 2 1 .1 0 3 2 5 .7 7 0 2 3 .0 8 0 -

r  <  4 r  =  5 4 .7 0 7 1 2 .3 9 0 10 .550 -

C o i n t e g r a t i o n  R a n k  T e s t  ( M a x i m a l  E i g e n v a l u e )^

H y p o t h e s e s  M a x i m a l  E i g e n v a l u e 0 .0 5  C’r i t i c a l 0 .1 0  C r i t i c a l

S t a t i s t i c V a l u e V a l u e

r  =  0 r  =  1 5 0 .8 0 3 3 7 .8 6 0 3 5 .0 4 0
r  <  1 r  =  2 3 5 .5 3 0 3 1 .7 9 0 2 9 .1 3 0
r  <  2 r  =  3 2 0 .5 6 2 2 5 .4 2 0 2 3 .1 0 0
r < 3 r  =  4 16.395 1 9 .2 2 0 17 .180
r  <  4 r  =  5 4 .7 0 7 1 2 .3 9 0 10 .550

f C o in t e g r a t io n  w ith  u n r e s t r i c t e d  in t e r c e p t s  a n d  r e s t r i c t e d  t r e n d s  in  t h e  V a r . 
N o te ;  t h e  c o r re c t io n  f a c to r  is 0 .9 8 0 .
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D .4 .3  C om m on factor analysis

Table D .21: C O M FA C  m od el, Ireland-G erm any.

Dependent variable is 114 observations used for estimation from 1975 Q2 to 2003
Q3.

R e g r e s s o r C o e f f i c i e n t S t a n d a r d  E r r o r T - R . \ t i o P r o b .

c 0.519 0.304 1.705 0.091
D M / I R l 0.891 0.044 20.414 0.000

p ' r -0.444 0.220 -2.020 0,046
p I- \ 0.433 0.215 2.020 0.046

0.727 0.546 1.331 0.186
p ? - i -0.824 0.542 -1.522 0.131

■Ire 0 .5 9 E -3 0.001 0.452 0.652
- 0 .8 6 £ - 3 0.001 -0.675 0.501

: C e r 0 .1 8 £ -3 0.005 0.039 0.969
■Oer 0 .3 8 E -3 0.005 0.085 0.933

Fi-squared 0.987 R-bar-squared 0,986
S.FI. of regression 0.024 F -sta t, F (9, 104) 895,1 12 [0,000]
Mean of dependent variable 0,404 S,D, of dependent variable 0,207
Residual sum of squares 0,061 Equation loglikelihood 267,268
Akaike info, criterion 257,268 Schwarz F3ayesian criterion 243,587
D urbin 's /j-statistic -0,206 [0,837]

T e s t  S t a t is t ic s L.m V e r s io n F’ r o b , F V e r s i o n F^r o b ,

. '\ :S e r ia l  c o r r e la t io n (4) =  2,887 0,577 F  (4, 100) =  0,650 0,628
F 5 :ln in c tio n a l fo rm (1) =  1,7.30 0,188 F  ( 1 . 1 0 3 ) =  1,587 0,211
t ': N o r m a l i ty (2) =  137,414 0,000 N o t a p p l ic a b le -

D: 1 le te ro -s c e d a s t  ici ty (1) =  8,974 0,003 F  ( 1 , 1 1 2 ) =  9,570 0,002

Note: />values in square brackets.
A:Lagrange multiplier test of residual serial correlation.
BiRamsey's FIe s e t  test using the square o f  the fitted values.
C:Ba-sed on a test of skewness and kurtosis of residuals.
D:Basecl on the regression of sciuared residuals on squared fitted values.
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Table D.22: W ald tests o f restrictions, Ireland-G erm any

114 observations used for estim ation from 1975 Q2 to 2003 Q3.

R e s t r i c t i o n ( s ) f o r  W a l d  T e s t W a l d  S t a t i s t i c P r o b .

7 i  +  7 o/3i =  0 X ^(1) = 0 .741 0 .3 8 9
+  d'o/3i =  0 x " ( l )  = 2 .3 4 7 0 .1 2 6

rii +  r]oPi =  0 x = ( l )  = 0 .1 1 2 0 .7 3 8
m  +  HO01 =  0 x ^ ( l )  = 0 .1 1 9 0 .7 3 0

71 +  l o d i  =  0,
i5i +  do<3i =  0,
Vi +  ^001 =  0,
m  +  n o 0 i  =  0 X "(4) = 2 .8 6 6 0 .5 8 0

Table D.23: COM FAC m odel including interest rates, Ireland-Germ any.

Dependent variable is . 114 observations used for estim ation from 1975 Q2 to 2003
Q3.

R e g r e s s o r C o e f f i c i e n t S t a n d a r d  E r r o r T - R . a t i o P r o b .

C
D M / I R t

e t - i
p ' r
p ! - i

0 .491

0 .8 9 1
-0 .4 7 9
0 .4 6 5
0 .8 4 0
-0 .9 2 7

0 .261

0 .0 3 9
0 .2 0 8
0 .2 0 4
0 .4 4 4
0 .4 3 0

1 .882
2 2 .8 3 4
-2..305
2 .2 8 4
1.891

-2 .1 5 7

0 .0 6 3

0 .0 0 0
0 .0 2 3
0 .0 2 4
0 .0 6 1
0 .0 3 3

R-squared 0 .9 8 7 R-bar-squared 0 .9 8 7
S.E. of regression 0 .0 2 4 F -sta t. F  (5 . 108) 1 6 6 4 .5 0 0  [0.000]
Mean of dependent variable 0 .4 0 4 S.D. of dependent variable 0 .2 0 7
Residual sum of squares 0 .0 6 2 Equation loglikelihood 2 6 6 .9 7 5
Akaikc info, criterion 2 6 0 .9 7 5 Schwarz Bayesian criterion 2 5 2 .7 6 6
D urbin’s /i-statistic -0 .2 3 4  [0.815]

T e s t  S t .^t i s t i c s L m V e r s i o n P r o b . F  V e r s i o n P r o b .

A:Serial correlation x" (4 ) =  2 .7 2 0 0 .6 0 6 F  (4 , 104) =  0 .6 3 5 0 .6 3 8
B: Functional form x" (1 ) =  1.554 0 .2 1 3 F  ( 1 . 1 0 7 ) =  1 .479 0 .2 2 7
C: Normality X^ (2 ) =  139 .058 0 .0 0 0 Not api)licable -
f): Meteroscedasticity x'-* (1 ) =  8 .9 9 6 0 .0 0 3 F  ( 1 , 1 1 2 ) =  9 .5 9 5 0 .0 0 2

Note: p-values in square brackets.
A:Lagrange m ultiplier test of residual serial correlation.
BiRarnsey’s R e s e t  test using the square of the fitted values.
C:Based on a  test of skewness and kurtosis of residuals.
DiBased on the regression of squared residuals on squared fitted values.
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T ab le D .24: W ald te s ts  o f  re str ic tio n s, in c lu d in g  in terest ra tes, 
Ireland-G erm any.

114 observations used for estim ation from 1975 Q2 to 2003 Q3.

R e s t r i c t i o n ( s ) f o r  W a l d  T e s t W a l d  S t a t is t ic P r o b .

71 +  l o P i  =  0 x " ( i )  = 0 .9 9 5 0 .3 1 8
(5i -l- &o0\ =  0 X ^ ( l )  = 3 .5 7 5 0 .0 5 9

71 +  7o/3i =  0,
(5i -I- (5o/3i =  0 x \ ‘l )  = 4 .2 3 3 0 .1 2 0

T able D .25: C O M FA C  m od el, Irelan d -U K .

Dependent variable is ]^]^4 observations used for estim ation from 1975 Q2 to
2003 Q3.

R e g r e s s o r  C o e f f i c i e n t  S t a n d a r d  E r r o r  T - R a t i o  R r o b .

c 0.117 0.094 1.250 [0.214]
S I g l / I R l
t - \ 0.879 0.052 17.047 0.000

p 'r -1.058 0.296 -3.571 0.001
p {-\ 1.057 0.274 3.860 0.000
p't” ' 0.544 0.476 1.142 0.256
P t - l -0.570 0.475 -1.199 0.2.33
j i r e
‘ f 0.005 0.002 2.760 0.007
■I r e  *(-1 -0.004 0.002 -2.375 0.019
■ U K -0.002 0.003 -0.487 0.627
A I K
' f - 1 - 0 .5 8 E - 3 0.003 -0.170 0.865

R-sqiiared 0.885
S.E. of regres.sion 0.0.33
Mean of dependent variable -0.108
Residual sum of squares 0.112
,\kaike info, criterion 223.265
D urbin 's /j-statistic -0.476 [0.634]

R-bar-squared 
F -sta t. F  (9, 104)
S.D. of dependent variable 
Eciuation loglikelihood 
Schwarz Bayesian criterion

0.875 
88.806 [0.000] 

0.093 
233.265 
209.584

T e .s t  S T .v n sT ic s L m V e r s io n P r o b . F  V e r s io n P r o b .

A:Serial correlation (4) = 3.213 0.523 F  (4, 100) =  0.725 0.577
B:Functional form (1) = 1.537 0.215 F  ( 1 , 1 0 3 ) =  1.408 0,238
C':Normality X" (2) = 18.595 0.000 Not applicable -
L): 1 leteroscedasticity X  ̂ (1) = 1.749 0.186 F ( L 1 1 2 ) =  1.745 0.189

Note: p-values in square brackets.
A:Lagrange multiplier test of residual serial correlation.
B : R a m s e y ’s  R e s e t  t e s t  u s i n g  t h e  sc iu a re  of t h e  f i t t e d  v a lu e s .
C:Based on a test of skewness and kurtosis of residuals.
D:E5a.sed on the regression of squared residuals on squared fitted values.
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T able D .26: W ald te s ts  o f  re str ic tio n s, Irelan d -U K .

114 observations used for estim ation from 1975 Q2 to 2003 Q3.

R e s t r i c t i o n ( s ) f o r  W a l d  T e s t W a l d  S t a t i s t i c P r o b .

71 +  7 o/3i =  0 X^(l) = 3.533 0.060
<̂'i +  <̂ o/3i = 0 X^(l) = 1.261 0.261
r/i +  rjo0i =  0 X^(1) = 0.002 0.965
A*i +  Po/3i =  0 X^(1) = 1.343 0.246

7i +  7o/?i =  0,
<5i 4- d'o/3i =  0,
r/i +  r/o^i = 0 ,
Ml +  Ai()j3i =  0 X"(4) = 5.512 0.239

T able D .27: C O M FA C  m odel in clu d in g  in terest ra tes, Irelan d -U K .

Dependent variable is ]^];4 observations used for estim ation from 1975 Q2 to
2003 Q3.

R e g r e s s o r C o e f f i c i e n t S t a n d a r d  E r r o r T - R a t i o P r o b .

C 0.147 0.091 1.619 0.108
S t g £ / l R l

® t - l 0.870 0.048 17.992 0.000
p 'r -1.152 0.287 -4.014 0.000

1.113 0.273 4.083 0.000
0.381 0.463 0.824 0.412
-0.377 0.452 -0.834 0.406

R-squared 0.875 R-bar-squared 0.869
S.E. of regression 0.034 F -sta t. F  (5, 108) 150.6.33 [0.000]
Mean of dependent variable -0.108 S.D. of dependent variable 0.093
Residual sum of .sciuares 0.121 Equation loglikelihood 228.393
Akaike info, criterion 222.393 Schwarz Bavesian criterion 214.185
D urbin’s /j-statistic 0.381 [0.703]

T e s t  S t a t i s t i c s L m V e r s i o n P r o b . F  V e r s i o n P r o b .

AiSerial correlation x" (•!) = 2.973 0.562 F  (4. 104) = 0.696 0.596
B;Functional form X  ̂ (1) = 5.100 0.024 F  (1. 107) = 5.011 0.027
C: Normality X'̂  (2) = 18.910 0.000 Not applicable - -
D Jleteroscedasticity X  ̂ (1) = 1.420 0.233 F  (1, 112) = 1.413 0.237

Note; ;>values in square brackets.
A:Lagrange multiplier test of residual serial correlation.
B:Ram sey’s R e s e t  test using the square of the fitted values.
C:Based on a test of skewness and kurtosis of residuals.
D:Based on the regression of squared residuals on squared fitted values.
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T able D .28: W ald te s ts  o f  restr ic tion s, inclu d in g  in terest ra tes, Irelan d -U K .

114 observations used for estim ation from 1975 Q2 to 2003 Q3.

R estr ic t !on(s) for Wald T est Wald Statistic P rob .

71 +  7 0 , =  0 x'^(i) = 2.880 0.090
=  0 x " ( l)  = 0.431 0.511

~ri +  7o/3i =  0,
Si + d'o/3i =  0 X^(2) = 3.503 0.173
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D .5 T esting for Fractional Integration

Table D .29: Fractional integration analysis, Ireland, Germ any & U K .

Va r i a b l e s E ml N ls G ph  

F a d f {

G s p

C o m m o n  S e r i e s

1.46 1.50 1.01 0.89
I r is h  p r ice  level ( 0 .0 4 .3 ) ( 0 .0 7 0 ) ( 0 . 11 ) ( 0 . 0 7 )

- - - 4.5
0.79 0.78 0.97 0.80

I ris h  in te re s t  r a te ( 0 . 1 0 0 ) ( 0 . 10 0 ) ( 0 . 10 ) ( 0 .0 6 )

-3.22 -3.21 -3.35 -3.23

I r e l a n d  &  G e r m a n y

1.49 1.89 0.94 0.82
N o m in a l  e x ch a n g e  ra te (O.L%")) ( 0 .0 9 7 ) ( 0 . 11 ) ( 0 .0 7 )

- - -5.48 -5.51
1.46 1.57 1.022 0.918

CJe r m .^N p r ice  level ( 0 .0 4 5 ) ( 0 ,0 9 4 ) ( 0 . 1 1 ) ( 0 .0 7 )

- - - 2.89
0.69 0.65^ 1.12 1.03

G e r m .\N in te res t  r a te s ( 0 . 2 4 0 ) ( 0 .2 .3 0 ) ( 0 . 1 1 ) ( 0 .0 7 )

-1.49 -1.48 - -

I r e l a n d  &  U n i t e d  K i n g d o m

0.95 0.95 0.88 0.91
N o m in a l  e x ch a n g e  ra te ( 0 .0 8 6 ) ( 0 .0 8 7 ) ( 0 . 1 1 ) ( 0 .0 7 )

-1.60 -1.60 -1.608 -1.60
1.48 1.55 0.99 0.87

U K  price  level ( 0 .0 2 3 ) ( 0 .0 6 4 ) ( 0 . 1 1 ) ( 0 .0 7 )

- - 5.03 4.69
1.07 1.08 1.00 0.94

U K  in te re s t  r a te ( 0 .0 9 4 ) ( 0 .0 9 6 ) ( 0 . 1 1 ) ( 0 .0 7 )

■ - - -2.53

fT rend  and  co n stan t not included. M cK innon (1996) p-vaiues used.
{Based on th e  E m l  estim ato r of d.
- ind icates F’a d f  tes t no t applicable. 
Note: s ta n d a rd  errors in parentheses.
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D .6 N onlinear Inference

T able D .30: H am ilton  an a ly sis , Ireland , G erm any &: U K .

I r e l a n d  &  G e r m a n y  I r e l a n d  &  U n i t e d  K i n g d o m

E s t i m a t e s  
(standard errors)

Linear
c 0.332 0.769

p'r ( 1 .4 8 8 ) ( 1 .1 2 1 )

-0 .8 9 6 -0 .8 3 6

P ? "
( 0 .1 9 1 ) ( 0 .1 5 2 )

0.892 0.724
■Ire

(0..TO2) (0 .3 9 0 )

-0 .0 0 0 4
(0 .0 0 2 )

•G e r 0.007
(0 .0 0 5 )

Nonlinear
a 0.019 0.010

(0 .0U 2) (0 .0 0 4 )

c 3.987 5.859
(0 .8 1 7 ) (2 ..551)p'r 4.265 4.609
(0 .3 7 5 ) (1 .1 0 3 )

P ? " 11.068 16.971
(0 .7 3 3 ) (3 .0 2 1 )

: I r eft -0 .0 3 2
(0 .0 2 3 )

■Ger -0 .1 4 6
( 0 ,0 5 2 )

C 1.176 0.907

p ' r
(0 .7 5 1 ) (0 .2 1 3 )

-1 .4 3 9 -1 .0 9 3
(0 .3 0 8 ) (0 .2 3 9 )

1.164 0.882
(0 .3 2 0 ) (0 .2 1 8 )

■Ire 0.009
( 0 .0 0 4 )

iUK -0 .0 0 9
(0 .0 0 4 )

a 0.021 0.009
(0 .0 0 3 ) (0 .0 0 4 )

c 9.572 8.148
(2 .1 0 9 ) (4 .3 6 8 )

p'r 0.480 2.777
(0 .1 1 6 ) (1 .2 1 4 )

p V -1 .8 6 4 10.454
(0 .0 4 4 ) (1 .8 4 6 )

i'r 0.118
(0 .0 3 9 )

- 2 . 2 6 E -
(0 .0 4 0 )
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A p pend ix  E

A ppend ix  to  C hap te r  7
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E .l D ata  used in C hapter 7

T able E .l:  Forw ard exch an ge  rate  an om aly  d a ta , A u stra lia .

D a t e Aus L a s r L a s t D a t e Aus L a s r L a s t

03/01/97 2.152 0.330 0.323 10/10/97 2.187 0.343 0,405
10/01/97 2.150 0.333 0.318 17/10/97 2.192 0.343 0,401
17/01/97 2.132 0.329 0.324 24/10/97 2.317 0.367 0.399
24/01/97 2.103 0.324 0.322 31/10/97 2.365 0.376 0.384
31/01/97 2.099 0.323 0.316 07/11/97 2.430 0.384 0.388
07/02/97 2.128 0.328 0.318 14/11/97 2.426 0.388 0.384
14/02/97 2.115 0.326 0.325 21/11/97 2.398 0.383 0.384
21/02/97 2.080 0.318 0.321 28/11/97 2.446 0.391 0.389
28/02/97 2.101 0.323 0.332 05/12/97 2.453 0.393 0.390
07/03/97 2.031 0.308 0.331 12/12/97 2.479 0..397 0.394
14/03/97 2.006 0.303 0.337 19/12/97 2.537 0.407 0.401
21/03/97 2.040 0.310 0.343 26/12/97 2,528 0.406 0.399
28/03/97 2.083 0.319 0.347 02/01/98 2..508 0,402 0.405
04/04/97 2.112 0.325 0.349 09/01/98 2,487 0,.398 0.406
11/04/97 2.065 0.315 0.3.56 16/01/98 2.457 0.393 0.416
18/04/97 2.105 0.324 0.357 23/01/98 2..500 0.401 0.406
25/04/97 2.088 0.320 0.356 30/01/98 2.371 0.378 0.409
02/05/97 2.073 0.315 0.342 06/02/98 2.445 0.391 0.413
09/05/97 2.079 0.318 0.333 13/02/98 2,421 0.387 0.415
16/05/97 2.112 0.325 0.329 20/02/98 2,417 0..386 0,413
23/05/97 2.124 0.328 0.327 27/02/98 2,402 0..383 0,419
30/05/97 2.143 0.332 0..341 06/03/98 2.430 0..388 0,427
06/06/97 2.136 0..331 0.336 1.3/03/98 2.461 0.,394 0,442
13/06/97 2.170 0.338 0.344 20/03/98 2.490 0.399 0,440
20/06/97 2.194 0.343 0.353 27/03/98 2.483 0.398 0,440
27/06/97 2.221 0.348 0.350 03/04/98 2.506 0.402 0,432
04/07/97 2.245 0..353 0.346 10/04/98 2.532 0.406 0,425
11/07/97 2.271 0.358 0.345 17/04/98 2.566 0.412 0,414
18/07/97 2.252 0.355 0.342 24/04/98 2.544 0.408 0,425
25/07/97 2.247 0.354 0.365 01/05/98 2.538 0.407 0,427
01/08/97 2.200 0.345 0.377 08/05/98 2.553 0.410 0,432
08/08/97 2.147 0.334 0.384 15/05/98 2.581 0.414 0,435
15/08/97 2.151 0.335 0.387 22/05/98 2.568 0.412 0,440
22/08/97 2.134 0.332 0.391 29/05/98 2.587 0.416 0,471
29/08/97 2.195 0..344 0.392 05/06/98 2.709 0.4.35 0,463
05/09/97 2.158 0.337 0.397 12/06/98 2.7,36 0.439 0,450
12/09/97 2.216 0.348 0,395 19/06/98 2.663 0.428 0,454
19/09/97 2.219 0.349 0.393 26/06/98 2.731 0.439 0.463
26/09/97 2.204 0.346 0.406 03/07/98 2.647 0.426 0.455
03/10/97 2.199 0.345 0.402 10/07/98 2.639 0.424 0.445

Continued on next page.
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D a t e  A u s  L a s r  L a s t  D a t e  A u s  L a s r  L a s t

17/ 07/98 2.600 0.418 0.430
24/07/98 2.653 0.427 0.434
31/07/98 2.677 0.430 0.430
07/08/98 2.700 0.434 0.420
14/ 08/98 2.713 0.436 0.418
21/ 08/98 2.790 0.448 0.412
28/ 08/98 2.923 0.468 0.416
04/09/98 2.834 0.455 0.426
11/09/98 2.781 0.447 0.429
18/09/98 2.839 0.456 0.429
25/09/98 2.875 0.461 0.438
02/ 10/98 2.849 0.457 0.433
09/ 10/98 2.774 0.446 0.417
16/ 10/98 2.682 0.431 0.418
23/ 10/98 2.712 0.436 0.412
30/ 10/98 2.676 0.430 0.420
06/ 11/98 2.611 0.419 0.405
13/ 11/98 2.592 0.416 0..398
20/ 11/98 2.561 0.411 0.410
27/ 11/98 2.596 0.416 0.409
04/ 12/98 2.686 0.458 0.412
11/ 12/98 2.704 0.434 0.410
18/ 12/98 2.698 0.431 0.412
25/ 12/98 2.735 0.438 0.409
01/01/99 2.704 0 .4.33 0.401
08/01/99 2.584 0.413 0.412
15/01/99 2.600 0.416 0.403
22/01/99 2.605 0.417 0.394
29/ 01/99 2.609 0.418 0.388
05/ 02/99 2.508 0.400 0.388
12/ 02/99 2.517 0.402 0.385
19/ 02/99 2.549 0.407 0.386
26/ 02/99 2.576 0.412 0.391
05/03/99 2.558 0.409 0.394
12/ 03/99 2.566 0.410 0.384
19/03/99 2.581 0.412 0.384
26/ 03/99 2.552 0.407 0.381
02/ 04/99 2.526 0.403 0.374
09/04/99 2.548 0.407 0.370
16/04/99 2.492 0.397 0.374
23/ 04/99 2.473 0.394 0.388
30/04/99 2.427 0.386 0.396
07/05/99 2.438 0..387 0.393
14/05/99 2.4.30 0.386 0.395
21/05/99 2.419 0.384 0.405

28/ 05/99 2.449 0.389 0.400
04/ 06/99 2.452 0.390 0.398
11/ 06/99 2.418 0.384 0.397
18/ 06/99 2.434 0.386 0.400
25/ 06/99 2.398 0.380 0.402
02/ 07/99 2.354 0.372 0.402
09/ 07/99 2.331 0.368 0.398
16/ 07/99 2.372 0.375 0.406
23/ 07/99 2.423 0.385 0.413
30/ 07/99 2.479 0.395 0.405
06/ 08/99 2.471 0.393 0.410
13/ 08/99 2.460 0.391 0.402
20/ 08/99 2.535 0.404 0.403
27/ 08/99 2.509 0.400 0.405
03/ 09/99 2.486 0.396 0.403
10/ 09/99 2.490 0.397 0.404
17/ 09/99 2.500 0.398 0.399
24/ 09/99 2.512 0.401 0.399
01/ 10/99 2.521 0.402 0.392
08/ 10/99 2.515 0.401 0.401
15/ 10/99 2.574 0.411 0.393
22/ 10/99 2.552 0.407 0..393
29/ 10/99 2.571 0.411 0.398
05/ 11/99 2.542 0.406 0.400
12/ 11/99 2.507 0.399 0.405
19/ 11/99 2.532 0.401 0.406
26/ 11/99 2.531 0.404 0.415
03/ 12/99 2.525 0.403 0.414
10/ 12/99 2.547 0.406 0.412
17/ 12/99 2.501 0.399 0.412
24/ 12/99 2.503 0.399 0.418
31/ 12/99 2.461 0.392 0.417
07/ 01/00 2.496 0..398 0.420
14/ 01/00 2.450 0.390 0.425
21/ 01/00 2.487 0.396 0.425
28/ 01/00 2.518 0.402 0,428
04/ 02/00 2.511 0.400 0,416
11/ 02/00 2.532 0.404 0.413
18/ 02/00 2.536 0.405 0.416
25/ 02/00 2.581 0.412 0.412
03/ 03/00 2.596 0.415 0.416
10/ 03/00 2.569 0.410 0.408
17/ 03/00 2.587 0.413 0.399
24/ 03/00 2.621 0.419 0.401
31/ 03/00 2.627 0.420 0.401

Continued on next page.
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D a t e  A us  L a s r  L a s t D a t e  A us LASPt L a s t

07/ 04/00 2.643 0.422 0.408
14/ 04/00 2.654 0.124 0.409
21/ 04/00 2.657 0.425 0.413
28/ 04/00 2.682 0.428 0.410
05/ 05/00 2.574 0.411 0.409
12/ 05/00 2.616 0.418 0.411
19/ 05/00 2.599 0.415 0.402
26/ 05/00 2.609 0.416 0.413
02/ 06/00 2.599 0.415 0.401
09/ 06/00 2.570 0.410 0,410
16/ 06/00 2.493 0.397 0.408
28/ 06/00 2.519 0.401 0,419
30/ 06/00 2.522 0.402 0,426
07/ 07/00 2.568 0.410 0.433
14/ 07/00 2..569 0.410 0.441
21/ 07/00 2.584 0.412 0.443
28/ 07/00 2.560 0.408 0.441
04/ 08/00 2.576 0.411 0.444
11/ 08/00 2.595 0.414 0.433
18/ 08/00 2.537 0.404 0.438
25/ 08/00 2.572 0.410 0.428
01/ 09/00 2.539 0.404 0.431
08/ 09/00 2.564 0.409 0.421
15/ 09/00 2.562 0.408 0.434
22/ 09/00 2.651 0.423 0.425
29/ 09/00 2.733 0.436 0.430
06/ 10/00 2.702 0.431 0.422
13/ 10/00 2,756 0.440 0.428
20/ 10/00 2.739 0.437 0,424
27/ 10/00 2.768 0.442 0,428
03/ 11/00 2.761 0.441 0,426
10/ 11/00 2.735 0.437 0.430
17/ 11/00 2.745 0.438 0.442
24/ 11/00 2.684 0.428 0.440
01/ 12/00 2.671 0.426 0.442
08/ 12/00 2.656 0.424 0,459
15/ 12/00 2.703 0.432 0,466
22/ 12/00 2.664 0.425 0,460
29/ 12/00 2.691 0.430 0.465
05/ 01/01 2.624 0.419 0.465
12/ 01/01 2.659 0.425 0.453
19/ 01/01 2.640 0.422 0.451
26/ 01/01 2.683 0.429 0.452
02/ 02/01 2.661 0.425 0.440
09/ 02/01 2.701 0.432 0.432

16/ 02/01 2.733 0.437 0.432
23/ 02/01 2.775 0.443 0.435
02/ 03/01 2.787 0.445 0.448
09/ 03/01 2.877 0.459 0.427
16/ 03/01 2.894 0.462 0.423
23/ 03/01 2.879 0.460 0.436
30/ 03/01 2.908 0.464 0.441
06/ 04/01 2.899 0.463 0.433
13/ 04/01 2.833 0.453 0.445
20/ 04/01 2.777 0.444 0.441
27/ 04/01 2.814 0.450 0.448
04/05/01 2.765 0.442 0.440
11/05/01 2.722 0.435 0.443
18/ 05/01 2.720 0.435 0,436
25/ 05/01 2.7.34 0,437 0,435
01/ 06/01 2.780 0,448 0,436
08/ 06/01 2.635 0,421 0,445
15/ 06/01 2.657 0,425 0,452
22/ 06/01 2.727 0,436 0,470
29/ 06/01 2.766 0,442 0,481
06/ 07/01 2.773 0,443 0.473
13/ 07/01 2.757 0,441 0,462
20/07/01 2.821 0,451 0,452
27/ 07/01 2.818 0,450 0.451
03/ 08/01 2.757 0,440 0.458
10/ 08/01 2.773 0.443 0.451
17/ 08/01 2.697 0,431 0.442
24/ 08/01 2.729 0,436 0.437
31/ 08/01 2.757 0,441 0.439
07/ 09/01 2.816 0,450 0.439
14/09/01 2.850 0,455 0.445
21/ 09/01 3.000 0.477 0.457
28/ 09/01 2.977 0,474 0.457
05/ 10/01 2.927 0.467 0.448
12/ 10/01 2.897 0,462 0.441
19/ 10/01 2.834 0,453 0.447
26/ 10/01 2.857 0,456 0.438
02/ 11/01 2.884 0,460 0.446
09/ 11/01 2.842 0,453 0.445
16/ 11/01 2,744 0.438 0.443
23/ 11/01 2,725 0.435 0.442
.30/ 11/01 2,744 0 .4.38 0.438
07/ 12/01 2,775 0.443 0.433
14/ 12/01 2,801 0,447 0.434
21/ 12/01 2,844 0.454 0.428

Continued  on next page.
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D a t e  A u s  L a s r  L a s t  D a t e  A u s  L a s r  L a s t

28/ 12/01 2.844 0.454 0.426
04/01/02 2.782 0.444 0.432
11/01/02 2.771 0.443 0.430
18/01/02 2.791 0.446 0.429
25/01/02 2.731 0.436 0.427
01/02/02 2.777 0.443 0.436
08/02/02 2.776 0.443 0.429
15/02/02 2.774 0.443 0.424
22/ 02/02 2.788 0.445 0.417
01/03/02 2.742 0.438 0.414
08/03/02 2.726 0.435 0.405
15/ 03/02 2.716 0.434 0.412
22/ 03/02 2.681 0.428 0.419
29/ 03/02 2.671 0.426 0.432
05/04/02 2.704 0.432 0.439
12/04/02 2.692 0.430 0.444
19/04/02 2.686 0.429 0.454
26/04/02 2.680 0.428 0.465
03/05/02 2.731 0.436 0.461
10/05/02 2.688 0.429 0.458
17/05/02 2.648 0.422 0.451
24/ 05/02 2.625 0.418 0.449
31/05/02 2.591 0.412 0.449
07/06/02 2.553 0.406 0.461
14/06/02 2.644 0.421 0.450
21/ 06/02 2.618 0.417 0.451
28/ 06/02 2.723 0.434 0.457
05/ 07/02 2.7.36 0.436 0.458
12/ 07/02 2.788 0.444 0.456
19/ 07/02 2.848 0.453 0.450
26/07/02 2.914 0.464 0.445
02/ 08/02 2.928 0.465 0.450
09/08/02 2.860 0.455 0.444
16/08/02 2.822 0.450 0.448
23/08/02 2.803 0.447 0.449
30/08/02 2.815 0.448 0.442
06/09/02 2.867 0.456 0.447
13/09/02 2.842 0.453 0.446
20/09/02 2.851 0.454 0.453
27/09/02 2,861 0.456 0.453
04/ 10/02 2.879 0.458 0.453
11/ 10/02 2.849 0.454 0.445
18/ 10/02 2.819 0.449 0.437
25/ 10/02 2.812 0.448 0.439
01/ 11/02 2.814 0.448 0.448

08/ 11/02 2.811 0.448 0.443
15/ 11/02 2.815 0.449 0.435
22/ 11/02 2.809 0.448 0.426
29/ 11/02 2.777 0.443 0.416
06/ 12/02 2.812 0.448 0.416
13/ 12/02 2.818 0.449 0.432
20/ 12/02 2.864 0.456 0.422
27/ 12/02 2.862 0.456 0.418
03/ 01/03 2.843 0.453 0.419
10/ 01/03 2.768 0.441 0.413
17/ 01/03 2.743 0.437 0.409
24/ 01/03 2.761 0.440 0.411
31/ 01/03 2.810 0.448 0.407
07/ 02/03 2.767 0.441 0.395
14/ 02/03 2.734 0.436 0.401
21/ 02/03 2.669 0.425 0.395
28/ 02/03 2.603 0.414 0.406
07/ 03/03 2.618 0.417 0.394
14/ 03/03 2.669 0.425 0.400
21/ 03/03 2.654 0.423 0.399
28/ 03/03 2.622 0.417 0..397
04/ 04/03 2.608 0.415 0.389
11/ 04/03 2.605 0.415 0.395
18/ 04/03 2.574 0.409 0..387
25/ 04/03 2.589 0.412 0.384
02/ 05/03 2.552 0.406 0.395
09/ 05/03 2.495 0.396 0.396
16/ 05/03 2.506 0.398 0.387
23/ 05/03 2.501 0.397 0..383
30/ 05/03 2.522 0.400 0.392
06/ 06/03 2.523 0.401 0.393
13/ 06/03 2.507 0.398 0.384
20/ 06/03 2.499 0.397 0,385
27/ 06/03 2.487 0.395 0..387
04/ 07/03 2.457 0.389 0.388
11/ 07/03 2.486 0.394 0..381
18/ 07/03 2.465 0.390 0.385
25/ 07/03 2.446 0.387 0.384
01/ 08/03 2.471 0.391 0.381
08/ 08/03 2.475 0.392 0.372
15/ 08/03 2.426 0..383 0.369
22/ 08/03 2.427 0.384 0,372
29/ 08/03 2.451 0.388 0,376
05/ 09/03 2.469 0.391 0,370
12/ 09/03 2.429 0.384 0,374
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19/09/03 2.435 0.385 0.380
2fi/09/03 2 466 0.391 0.378
03/10/03 2.448 0.388 0.376
10/10/03 2.416 0.382 0.374
17/10/03 2.421 0.383 0.374
24/10/03 2.428 0.384 0.375
31/10/03 2.398 0.379 0.378
07/11/03 2.365 0.372 0.381
14/11/03 2.351 0.370 0.380
21/11/03 2.363 0.372 0.379
28/11/03 2.385 0.376 0.384
05/12/03 2.357 0.371 0.385
12/12/03 2.361 0.371 0.390
19/12/03 2.403 0.379 0.388
26/12/03 2.404 0.379 0.389
02/01/04 2.371 0.373 0.384
09/01/04 2.383 0.376 0.382
16/01/04 2.360 0.371 0.382
23/01/04 2.369 0.373 0.385
30/01/04 2.401 0.379 0.393
06/02/04 2.411 0.381 0.393
13/02/04 2.399 0.378 0.408
20/02/04 2.416 0.382 0.408
27/02/04 2.414 0.381 0.407
05/03/04 2.432 0.385 0.426
12/03/04 2.466 0.391 0.419
19/03/04 2.455 0.389 0.428
26/03/04 2.442 0.387 0.415
02/04/04 2.417 0.382 0.412
09/04/04 2.414 0.382 0.410
16/04/04 2.429 0.384 0.409
23/04/04 2.426 0.387 0.411
30/04/04 2.463 0.390 0.416
07/05/04 2.539 0.404 0.414
14/05/04 2.560 0.407 0.407
21/05/04 2.556 0.407 0.403
28/05/04 2.575 0.410 0.407
04/06/04 2.656 0.423 0.411

11/06/04 2.628 0.419 0.415
18/06/04 2.671 0.426 0.408
25/06/04 2.613 0.416 0.400
02/07/04 2.568 0.409 0.398
09/07/04 2.574 0.410 0.390
16/07/04 2.565 0.408 0.390
23/07/04 2.590 0.413 0.394
30/07/04 2.600 0.414 0.390
06/08/04 2.585 0.412 0.386
13/08/04 2.573 0.410 0.383
20/08/04 2.516 0.400 0.377
27/08/04 2.552 0.406 0.377
03/09/04 2.576 0.410 0.394
10/09/04 2.580 0.411 0.407
17/09/04 2.575 0.410 0.408
24/09/04 2.533 0.403 0.399
01/10/04 2.485 0.395 0.393
08/10/04 2.444 0.388 0.392
15/10/04 2.470 0.392 0.390
22/10/04 2.476 0.393 0.391
29/10/04 2.457 0.390 0.386
05/11/04 2.434 0.386 0.388
12/11/04 2.412 0.382 0.379
19/11/04 2.375 0.375 0.381
26/11/04 2.405 0.381 0.385
03/12/04 2.499 0.397 0.387
10/12/04 2.553 0.406 0.386
17/12/04 2.556 0.407 0.385
24/12/04 2.502 0.398 0..384
31/12/04 2.453 0.389 0.388
07/01/05 2.469 0.392 0.388
14/01/05 2.463 0.391 0.387
21/01/05 2.441 0.387 0.392
28/01/05 2.437 0.386 0.390
04/02/05 2.445 0.388 0.387
11/02/05 2.386 0.377 0.385
18/02/05 2.411 0.381 0.385
25/02/05 2.446 0.388 0.379
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04/03/05 2.435 0.386 0.381 29/04/05 2.451 0.389
11/03/05 2.433 0.385 0.375 06/05/05 2.441 0.387
18/03/05 2.423 0.383 0.372 13/05/05 2.4,38 0.386
25/03/05 2.428 0.384 20/05/05 2.423 0.383
01/04/05 2.450 0.388 27/05/05 2.400 0.379
08/04/05 2.443 0.387 03/06/05 2.402 0.380
15/04/05 2.461 0.390 10/06/05 2.384 0.376
22/04/05 2.452 0.389

Source: Thomson Financial D atastream .

Aus - Australia dollar-sterling exchange rate.
L a s r  - logarithm of Australian dollar-sterling spot rate.
I.A ST  - logarithm of Australian dollar-sterling spot 3-inonth rate.
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T able E.2: Forw ard exch an ge  ra te  anom aly  d ata , C anada.

D a t e C n d L c s r L o s t D a t e C n d L c s r L c s t

05/01/95 2.194 0.340 0.349 02/11/95 2.130 0.327 0.318
12/01/95 2.224 0.348 0.341 09/11/95 2.143 0.331 0.323
19/01/95 2.234 0.351 0.346 16/11/95 2.111 0.323 0.326
26/01/95 2.256 0.352 0.341 23/11/95 2.119 0,325 0.329
02/02/95 2.231 0.347 0.343 30/11/95 2.080 0.317 0.325
09/02/95 2.184 0.338 0.331 07/12/95 2.100 0..322 0.322
16/02/95 2.224 0.347 0.328 14/12/95 2.113 0.325 0.319
23/02/95 2.230 0.346 0.333 21/12/95 2.092 0.321 0.320
02/03/95 2.241 0.349 0.337 28/12/95 2.115 0.326 0.316
09/03/95 2.298 0.358 0.342 04/01/96 2.094 0.322 0.316
16/03/95 2.261 0.351 0.347 11/01/96 2.106 0.324 0.314
23/03/95 2.250 0.350 0.344 18/01/96 2.070 0.317 0.311
30/03/95 2.244 0.3,50 0..336 25/01/96 2.081 0.319 0.314
06/04/95 2.244 0.349 0.340 01/02/96 2.077 0.318 0.309
13/04/95 2.215 0.344 0.334 08/02/96 2.098 0.323 0.317
20/04/95 2.218 0.344 0.337 15/02/96 2.115 0.326 0.316
27/04/95 2.215 0.343 0.336 22/02/96 2.118 0.327 0.317
04/05/95 2.2M 0.343 0.336 29/02/96 2.096 0.322 0.319
11/05/95 2.131 0.322 0.338 07/03/96 2.094 0.322 0.326
18/05/95 2.125 0.327 0.324 14/03/96 2.082 0.319 0.321
25/05/95 2.196 0.341 0..321 21/03/96 2.089 0.321 0.325
01/06/95 2.192 0.341 0.315 28/03/96 2.072 0.317 0.322
08/06/95 2.189 0.340 0.317 04/04/96 2.071 0.317 0.327
15/06/95 2.203 0.342 0.321 11/04/96 2.048 0.312 0.328
22/06/95 2.213 0.343 0.325 18/04/96 2.047 0.312 0.327
29/06/95 2.184 0..341 0.327 25/04/96 2.058 0.314 0.329
06/07/95 2.189 0.340 0.324 02/05/96 2.038 0.310 0.330
13/07/95 2.172 0.337 0.323 09/05/96 2.078 0.319 0.325
20/07/95 2.180 0.338 0.322 16/05/96 2.063 0.316 0.329
27/07/95 2.169 0.336 0.332 23/05/96 2.077 0.318 0.328
03/08/95 2.180 0.339 0.327 30/05/96 2.096 0.322 0.329
10/08/95 2.155 0.334 0.332 06/06/96 2.098 0.323 0.331
17/08/95 2.092 0.319 0.324 13/06/96 2.089 0.321 0.329
24/08/95 2.094 0.321 0.325 20/06/96 2.104 0.324 0.331
31/08/95 2.081 0.319 0.320 27/06/96 2.103 0,324 0.330
07/09/95 2.075 0.317 0.323 04/07/96 2.117 0.327 0.329
14/09/95 2.118 0.327 0.324 11/07/96 2.128 0.329 0.326
21/09/95 2.125 0.328 0.324 18/07/96 2.110 0.325 0.332
28/09/95 2.136 0.330 0.327 25/07/96 2.1.34 0,330 0.331
05/10/95 2.112 0.325 0.323 01/08/96 2.133 0.330 0..340
12/10/95 2.104 0.324 0.324 08/08/96 2.121 0,327 0.339
19/10/95 2.099 0.322 0.321 15/08/96 2.131 0,329 0.343
26/10/95 2.152 0.334 0.316 22/08/96 2.119 0,327 0.352
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29/ 08/96 2.124 0.328 0.353
05/09/96 2.143 0.332 0.345
12/ 09/96 2.128 0.329 0.353
19/ 09/96 2.122 0.328 0.359
26/ 09/96 2.132 0.330 0.359
03/ 10/96 2.120 0.329 0.370
10/ 10/96 2.106 0.326 0.360
17/ 10/96 2.135 0.332 0.353
24/ 10/96 2.131 0.331 0.348
31/ 10/96 2.168 0.339 0.337
07/ 11/96 2.176 0..341 0.341
14/ 11/96 2.203 0.346 0.345
21/ 11/96 2.248 0.355 0.340
28/ 11/96 2.248 0.355 0.349
05/ 12/96 2.196 0..345 0.343
12/ 12/96 2.235 0.352 0.337
19/ 12/96 2.2.56 0.356 0.342
26/ 12/96 2.265 0.358 0.349
02/01/97 2.307 0.366 0.358
09/01/97 2.273 0.360 0.353
16/01/97 2.227 0..351 0.356
23/01/97 2.168 0.339 0.355
30/01/97 2.159 0..337 0.356
06/02/97 2.183 0..342 0.354
13/02/97 2.178 0.341 0.357
20/02/97 2.173 0.340 0.353
27/02/97 2.206 0.347 0..355
06/03/97 2.183 0.342 0.350
13/03/97 2.160 0.338 0.356
20/03/97 2.181 0.342 0.357
27/03/97 2.228 0.351 0..566
03/04/97 2.260 0.357 0.357
10/04/97 2.243 0.354 0.365
17/04/97 2.260 0.357 0.362
24/04/97 2.248 0.355 0.366
01/05/97 2.246 0.355 0.353
08/05/97 2.224 0.351 0.346
15/05/97 2.253 0.356 0..342
22/05/97 2.224 0.351 0..346
29/05/97 2.245 0.355 0..351
05/06/97 2.226 0.351 0..341
12/06/97 2.240 0.354 0.342
19/06/97 2.267 0.359 0.347
26/06/97 2.279 0.362 0.350
03/07/97 2.293 0.364 0.347

10/ 07/97 2.298 0.365 0.348
17/ 07/97 2.280 0.362 0.353
24/ 07/97 2.293 0.364 0.357
31/ 07/97 2.243 0.355 0.368
07/08/97 2.180 0.343 0.370
14/08/97 2.187 0.344 0.381
21/08/97 2.193 0.345 0.379
28/08/97 2.221 0.351 0.377
04/ 09/97 2.177 0.342 0.378
11/ 09/97 2.189 0.344 0.371
18/ 09/97 2.224 0.351 0.369
25/ 09/97 2.231 0.353 0.380
02/ 10/97 2.203 0.347 0.372
09/ 10/97 2.216 0.350 0.367
16/ 10/97 2.229 0.352 0.369
23/ 10/97 2.244 0.355 0.371
,30/ 10/97 2.328 0.371 0.379
06/ 11/97 2.349 0.375 0.379
13/ 11/97 2.369 0.379 0.370
20/ 11/97 2.387 0.382 0.373
27/ 11/97 2.365 0.378 0.370
04/ 12/97 2.364 0.377 0.370
11/ 12/97 2..341 0.373 0.364
18/ 12/97 2.349 0.372 0.375
25/ 12/97 2.381 0.380 0.374
01/ 01/98 2.338 0.372 0.376
08/ 01/98 2.299 0.365 0.376
15/ 01/98 2.324 0.369 0.384
22/ 01/98 2.373 0.378 0.380
29/ 01/98 2.379 0.380 0.380
05/ 02/98 2.370 0.377 0.379
12/ 02/98 2.344 0.373 0.373
19/ 02/98 2.315 0.367 0.374
26/ 02/98 2.322 0.369 0.376
05/ 03/98 2.324 0.369 0.377
12/ 03/98 2.323 0.369 0.378
19/ 03/98 2.348 0.374 0.386
26/ 03/98 2.367 0.377 0.390
02/ 04/98 2.355 0.375 0.386
09/ 04/98 2.372 0.378 0.383
16/ 04/98 2.418 0.386 0.385
23/ 04/98 2.371 0.378 0.390
30/04/98 2.377 0.379 0.392
07/05/98 2.356 0.375 0.394
14/ 05/98 2.348 0.373 0.393
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21/ 05/98 2.348 0,373 0.395
28/ 05/98 2..358 0,375 0,407
04/ 06/98 2.374 0,378 0,412
11/06/98 2.376 0,379 0,404
18/06/98 2.441 0,390 0,402
25/06/98 2.433 0„389 0,409
02/ 07/98 2.416 0,386 0,414
09/07/98 2.386 0,381 0,413
16/ 07/98 2.420 0,387 0,421
23/07/98 2.442 0,391 0.420
30/07/98 2.459 0,393 0.412
06/08/98 2.473 0,396 0.402
13/ 08/98 2.449 0,.392 0.410
20/08/98 2.473 0.396 0.415
27/08/98 2.593 0.415 0.411
03/09/98 2.576 0,413 0.407
10/09/98 2.531 0,405 0.408
17/09/98 2.560 0.410 0.412
24/09/98 2.544 0,408 0.416
01/ 10/98 2.596 0,416 0.414
08/ 10/98 2.637 0,423 0.398
15/ 10/98 2.624 0,421 0.402
22/ 10/98 2.612 0.419 0.400
29/ 10/98 2.588 0.415 0,400
05/ 11/98 2.515 0,402 0,394
12/ 11/98 2..550 0,408 0,386
19/ 11/98 2.572 0,412 0,389
26/ 11/98 2..523 0,404 0,380
03/ 12/98 2.545 0,408 0,393
10/ 12/98 2.557 0,409 0.394
17/ 12/98 2.572 0,412 0,394
24/ 12/98 2,587 0.414 0.393
31/ 12/98 2.548 0.408 0.388
07/01/99 2.489 0.397 0.379
14/01/99 2.526 0.403 0.383
21/01/99 2.501 0.399 0.379
28/01/99 2.510 0.401 0.378
04/02/99 2.447 0.389 0.375
11/02/99 2.416 0.384 0.373
18/02/99 2,429 0.386 0,376
25/02/99 2.410 0.382 0,372
04/03/99 2.451 0.390 0,377
11/03/99 2.474 0.394 0,372
18/ 03/99 2.473 0.393 0,366
25/ 03/99 2.463 0.392 0,367

01/ 04/99 2,412 0,.383 0,368
08/ 04/99 2,410 0,383 0,360
15/ 04/99 2,402 0,381 0,365
22/ 04/99 2,384 0,378 0,373
29/ 04/99 2„362 0,374 0,380
06/ 05/99 2,376 0.377 0,384
13/ 05/99 2,360 0.374 0,381
20/ 05/99 2,358 0.373 0,376
27/ 05/99 2„354 0„372 0,376
03/ 06/99 2,369 0,.375 0,378
10/ 06/99 2,341 0,370 0,382
17/ 06/99 2,322 0,366 0,376
24/ 06/99 2,327 0,367 0,382
01/ 07/99 2,316 0,365 0,.381
08/ 07/99 2,289 0,360 0,387
15/ 07/99 2,322 0,366 0,389
22/ 07/99 2,377 0,376 0,395
29/ 07/99 2,433 0,386 0.385
05/ 08/99 2,418 0„384 0.383
12/ 08/99 2,386 0,378 0.379
19/ 08/99 2,406 0,.381 0.377
26/ 08/99 2,383 0,377 0.374
02/ 09/99 2,407 0,382 0,372
09/ 09/99 2,411 0,383 0,381
16/ 09/99 2,396 0,380 0,378
23/ 09/99 2,4 11 0,383 0,376
30/ 09/99 2,415 0,384 0.370
07/ 10/99 2,425 0,386 0.377
14/ 10/99 2,450 0.390 0.380
21/ 10/99 2.487 0,396 0.377
28/ 10/99 2,410 0,.383 0,373
04/ 11/99 2,397 0,.381 0,366
11/ 11/99 2,374 0,376 0,367
18/ 11/99 2,363 0,374 0,367
25/ 11/99 2,368 0,375 0.371
02/ 12/99 2,360 0,374 0..361
09/ 12/99 2,392 0,.380 0.364
16/ 12/99 2,377 0,377 0.363
23/ 12/99 2,379 0,377 0..363
30/ 12/99 2,334 0,369 0.363
06/ 01/00 2,396 0,380 0.365
13/ 01/00 2,387 0,379 0.366
20/ 01/00 2,379 0,377 0.368
27/ 01/00 2,343 0,371 0.368
03/ 02/00 2,304 0,363 0.367
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10/ 02/00 2.322 0.367 0.357
17/ 02/00 2.331 0.369 0.349
24/ 02/00 2.331 0.369 0.346
02/ 03/00 2.289 0.361 0.350
09/ 03/00 2.301 0.363 0.351
16/ 03/00 2.318 0.366 0.344
23/ 03/00 2.323 0.367 0.344
30/ 03/00 2.320 0.366 0.351
06/ 04/00 2.293 0.361 0.353
13/ 04/00 2.323 0.367 0.350
20/ 04/00 2.322 0.367 0.343
27/ 04/00 2.327 0.368 0.347
04/ 05/00 2.310 0.364 0.345
11/ 05/00 2.234 0.350 0.348
18/ 05/00 2.224 0.347 0.346
25/ 05/00 2.217 0.346 0.343
01/ 06/00 2.224 0.347 0 .3.33
08/ 06/00 2.229 0.348 0.333
15/ 06/00 2.225 0..348 0.321
22/ 06/00 2.226 0.348 0.321
29/ 06/00 2.249 0.352 0.340
06/ 07/00 2.250 0.352 0.340
13/ 07/00 2.220 0.347 0.343
20/ 07/00 2.217 0.346 0.343
27/ 07/00 2.228 0.348 0.339
03/ 08/00 2.217 0.346 0.344
10/ 08/00 2.223 0.347 0.341
17/ 08/00 2.210 0.345 0.345
24/ 08/00 2.199 0.342 0.340
31/ 08/00 2.144 0.332 0.341
07/ 09/00 2.123 0.327 0.344
14/ 09/00 2.095 0.322 0.344
21/ 09/00 2.114 0.325 0.351
28/ 09/00 2.201 0.343 0.352
05/ 10/00 2.171 0.337 0.353
12/ 10/00 2.213 0.345 0.349
19/ 10/00 2.180 0.339 0.348
26/ 10/00 2.173 0.337 0.344
02/ 11/00 2.227 0..348 0..341
09/ 11/00 2.193 0.341 0.345
16/ 11/00 2.209 0.344 0.348
23/ 11/00 2.163 0.335 0.347
30/ 11/00 2.178 0.338 0.344
07/ 12/00 2.203 0.343 0..355
14/ 12/00 2.227 0.348 0.352

21/ 12/00 2.245 0.351 0.352
28/ 12/00 2.246 0.352 0.353
04/01/01 2.237 0.350 0.352
11/01/01 2.235 0.350 0.350
18/ 01/01 2.233 0.349 0.348
25/01/01 2.200 0.343 0.347
01/ 02/01 2.205 0.344 0.341
08/ 02/01 2.183 0.340 0.341
15/02/01 2.216 0.346 0,343
22/ 02/01 2.222 0.347 0.343
01/03/01 2.238 0.350 0.341
08/ 03/01 2.271 0.357 0..328
15/ 03/01 2.246 0.352 0.323
22/ 03/01 2.227 0.349 0.330
29/03/01 2.253 0.354 0.331
05/ 04/01 2,251 0.353 0.328
12/ 04/01 2.244 0.352 0.335
19/ 04/01 2.219 0..347 0,337
26/ 04/01 2.219 0..347 0,341
03/05/01 2.193 0.341 0,343
10/05/01 2.187 0.341 0,336
17/ 05/01 2.192 0.342 0,343
24/ 05/01 2.179 0..339 0,352
31/ 05/01 2.193 0.342 0,.351
07/06/01 2.110 0.325 0.355
14/ 06/01 2.122 0.328 0.358
21/ 06/01 2.156 0.334 0.,361
28/ 06/01 2.144 0.332 0.365
05/ 07/01 2.110 0.325 0.365
12/ 07/01 2.143 0.332 0.357
19/ 07/01 2.175 0.339 0.357
26/ 07/01 2.185 0.341 0.350
02/ 08/01 2.199 0.343 0.363
09/ 08/01 2.180 0.339 0..368
16/ 08/01 2.204 0.343 0.361
23/08/01 2.227 0.349 0.355
.30/08/01 2.235 0.350 0.354
06/09/01 2.257 0.355 0.348
13/09/01 2.293 0.358 0.355
20/09/01 2.295 0.361 0.359
27/09/01 2.321 0..367 0.362
04/ 10/01 2.308 0.365 0.364
11/ 10/01 2.253 0.354 0.362
18/ 10/01 2.268 0.357 0.360
25/ 10/01 2.246 0.353 0.360

C ontinued  on next page.

307



D a t e  C n d  L c s r  L c s t D a t e  C n d  L c s r  L c s t

01/ 11/01 2.317 0.367 0.352
08/ 11/01 2.314 0.366 0.355
15/ 11/01 2.265 0.357 0.357
22/ 11/01 2.252 0.354 0.356
29/ 11/01 2.238 0..352 0.358
06/ 12/01 2.236 0.348 0.353
13/ 12/01 2.257 0.356 0.352
20/ 12/01 2.271 0.358 0.352
27/ 12/01 2.311 0.366 0.355
03/ 01/02 2.291 0.362 0.359
10/ 01/02 2..301 0.364 0.360
17/01/02 2..305 0.365 0.357
24/ 01/02 2.267 0.358 0.357
31/ 01/02 2.237 0.352 0.358
07/ 02/02 2.253 0.355 0.360
14/ 02/02 2.259 0.356 0,355
21/ 02/02 2.257 0.356 0.350
28/ 02/02 2.259 0.356 0.350
07/ 03/02 2.238 0.352 0.350
14/ 03/02 2.254 0.355 0.354
21/ 03/02 2.244 0..353 0.361
28/ 03/02 2.262 0.356 0.365
04/ 04/02 2.279 0.360 0.369
11/ 04/02 2.276 0.359 0.371
18/ 04/02 2.270 0.358 0.383
25/ 04/02 2.266 0.357 0.396
02/ 05/02 2.277 0.359 0.394
09/ 05/02 2.277 0.359 0.385
16/ 05/02 2.254 0.355 0.382
23/ 05/02 2.224 0..349 0.378
30/ 05/02 2.238 0.351 0.379
06/ 06/02 2.227 0.349 0.388
13/ 06/02 2.259 0.355 0.387
20/ 06/02 2.292 0.362 0.390
27/ 06/02 2.296 0.362 0.393
04/ 07/02 2.330 0.369 0.396
11/ 07/02 2.357 0.374 0.394
18/ 07/02 2.420 0.385 0.391
25/ 07/02 2.477 0.395 0.385
01/ 08/02 2.459 0.392 0.387
08/ 08/02 2.418 0.385 0.385
15/ 08/02 2.387 0.379 0.399
22/ 08/02 2.361 0.374 0.397
29/ 08/02 2.413 0.384 0.386
05/ 09/02 2.452 0.391 0.389

12/ 09/02 2.454 0.391 0.390
19/ 09/02 2.439 0.388 0.396
26/ 09/02 2.452 0..391 0.393
03/ 10/02 2.492 0.398 0.405
10/ 10/02 2.480 0.396 0.398
17/ 10/02 2.435 0.388 0.392
24/ 10/02 2.409 0.383 0.393
31/ 10/02 2.443 0.389 0.400
07/ 11/02 2.446 0.385 0.398
14/ 11/02 2.485 0.396 0,393
21/ 11/02 2.485 0.397 0,383
28/ 11/02 2.435 0.388 0.374
05/ 12/02 2.445 0.389 0,372
12/ 12/02 2.446 0.390 0,376
19/ 12/02 2.475 0.395 0,365
26/ 12/02 2.466 0.394 0.365
02/ 01/03 2.507 0.400 0,366
09/ 01/03 2.494 0.398 0.358
16/ 01/03 2.461 0.392 0,359
23/ 01/03 2.468 0.394 0,362
30/ 01/03 2.513 0.401 0..360
06/ 02/03 2.487 0.397 0.349
13/ 02/03 2.460 0.392 0.349
20/ 02/03 2.395 0.380 0.346
27/ 02/03 2.356 0.373 0.355
06/ 0.3/03 2 ..3.58 0.373 0.346
13/ 03/03 2.382 0.377 0..354
20/ 03/03 2.314 0.365 0.351
27/ 03/03 2.303 0.363 0.352
03/ 04/03 2.313 0.365 0.349
10/ 04/03 2.288 0.360 0..351
17/ 04/03 2.289 0..360 0.345
24/ 04/03 2.322 0.366 0.355
01/ 05/03 2.284 0.359 0.354
08/ 05/03 2.230 0.349 0.355
15/ 05/03 2.232 0.349 0.348
22/ 05/03 2.231 0.349 0.347
29/ 05/03 2.268 0.356 0.344
05/ 06/03 2.220 0.347 0.337
12/ 06/03 2.253 0.353 0.337
19/ 06/03 2.264 0.355 0.341
26/ 06/03 2.248 0.352 0.351
03/ 07/03 2.235 0.350 0.351
10/ 07/03 2.254 0.353 0.344
17/ 07/03 2.217 0.346 0.345
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24/ 07/03 2.245 0.352 0.343
31/07/03 2.261 0.355 0.348
07/ 08/03 2.253 0.353 0.350
14/ 08/03 2.217 0.346 0.339
21/ 08/03 2.226 0.348 0.345
28/ 08/03 2.200 0.343 0.348
04/ 09/03 2.167 0.337 0.352
11/ 09/03 2.184 0.340 0.359
18/ 09/03 2.201 0.344 0.368
25/ 09/03 2.233 0.350 0.367
02/ 10/03 2.235 0.350 0.364
09/ 10/03 2.214 0.346 0.369
16/ 10/03 2.207 0.344 0.375
23/ 10/03 2.210 0.345 0.378
30/ 10/03 2.221 0.348 0.385
06/ 11/03 2.224 0.348 0.388
13/ 11/03 2.185 0.341 0.396
20/ 11/03 2.213 0.346 0.398
27/ 11/03 2.235 0.351 0.401
04/ 12/03 2.251 0.354 0.390
11/ 12/03 2.308 0.364 0.379
18/ 12/03 2.344 0.371 0.386
25/ 12/03 2.323 0.367 0.391
01/01/04 2.306 0.364 0.383
08/ 01/04 2.336 0.370 0.385
15/ 01/04 2.356 0.374 0..381
22/ 01/04 2.388 0.380 0.381
29/ 01/04 2.411 0.384 0.385
05/ 02/04 2.440 0.389 0.390
12/ 02/04 2.486 0..397 0.391
19/02/04 2.507 0.401 0.390
26/ 02/04 2.488 0..398 0.396
04/03/04 2.424 0.387 0.399
11/ 03/04 2.370 0.377 0.393
18/ 03/04 2.428 0.388 0.401
25/ 03/04 2.398 0.382 0.394
01/ 04/04 2.428 0.388 0..386
08/ 04/04 2.422 0.387 0.389
15/04/04 2.388 0.380 0.389
22/04/04 2.392 0.381 0.386
29/04/04 2.424 0.387 0.385
06/05/04 2,456 0.393 0.380
13/ 05/04 2.451 0.392 0.384
20/ 05/04 2.415 0.386 0.378
27/ 05/04 2.476 0.396 0.370

03/ 06/04 2.488 0.399 0,370
10/06/04 2.471 0.396 0,362
17/ 06/04 2.507 0.402 0,364
24/ 06/04 2.427 0.388 0,362
01/07/04 2.403 0,384 0,359
08/ 07/04 2.430 0,388 0.350
15/ 07/04 2.438 0,390 0.355
22/ 07/04 2.411 0,385 0.353
29/ 07/04 2.391 0,382 0.351
05/ 08/04 2.387 0,381 0.350
12/ 08/04 2.408 0,385 0.345
19/ 08/04 2.359 0,376 0.345
26/ 08/04 2.338 0.372 0.346
02/ 09/04 2.309 0.366 0.359
09/ 09/04 2.283 0.361 0.374
16/ 09/04 2.298 0.364 0.377
23/09/04 2.285 0..362 0.375
30/09/04 2.277 0.360 0.368
07/ 10/04 2.226 0.350 0.364
14/ 10/01 2.235 0.352 0.355
21/ 10/04 2.264 0.357 0.362
28/ 10/04 2.221 0,349 0.364
04/ 11/04 2.208 0,346 0.369
11/ 11/04 2.196 0,344 0.366
18/ 11/04 2.226 0,350 0.368
25/ 11/04 2.214 0,347 0.375
02/ 12/04 2.274 0,359 0.375
09/ 12/04 2.339 0,371 0.366
16/ 12/04 2.379 0,379 0.365
23/ 12/04 2.359 0,375 0..357
30/ 12/04 2.305 0„365 0.360
06/ 01/05 2..302 0,364 0..361
13/ 01/05 2.248 0.354 0,370
20/ 01/05 2.294 0.363 0,376
27/ 01/05 2.322 0.368 0,376
03/ 02/05 2.324 0.369 0,376
10/ 02/05 2.308 0.366 0,369
17/ 02/05 2.314 0.367 0,365
24/ 02/05 2.366 0.376 0,.365
03/ 03/05 2.366 0.376 0,354
10/ 03/05 2,304 0.365 0.360
17/03/05 2.297 0,.364 0,353
24/03/05 2,263 0,357
31/ 03/05 2.273 0,359
07/ 04/05 2.278 0„360
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14/04/05 2.324 0.369 19/05/05 2..307 0,366
21/04/05 2.354 0.374 26/05/05 2.295 0.363
28/04/05 2.375 0.378 02/06/05 2.254 0.355
05/05/05 2.357 0.375 09/06/05 2.274 0.359
12/05/05 2.316 0.367 16/06/05 2.244 0.353

Source: Thomson Financial D atastream .

C n d  - Australia dollar-sterling exchange rate.
L c s r  - logarithm of Canadian dollar-sterling spot rate.
L c .ST - logarithm of CJanadian dollar-sterling spot 3-month rate.
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T able E .3: Forw ard exch an ge ra te  an om aly  d a ta , Japan .

D a t e J a p L.JSR L j s t D a t e J a p L.ISR L j s t

03/01/97 156.685 2.199 2.141 31/10/97 160,100 2.211 2.208
10/01/97 154.252 2.192 2.125 07/11/97 159,039 2.209 2.211
17/01/97 154.711 2.193 2.118 14/11/97 154,748 2.196 2.215
24/01/97 156.887 2.201 2.121 21/11/97 155,084 2.196 2.215
31/01/97 155.521 2.197 2.1,30 28/11/97 153,133 2.193 2.206
07/02/97 151.781 2.186 2.120 05/12/97 153,908 2.193 2.206
14/02/97 152.182 2.187 2.131 12/12/97 153,477 2.193 2.206
21/02/97 152.259 2.187 2.136 19/12/97 154.437 2.195 2.212
28/02/97 151.228 2.186 2.123 26/12/97 158.028 2.205 2.209
07/03/97 145.397 2.166 2.131 02/01/98 159.541 2.209 2.214
14/03/97 141.839 2.155 2.128 09/01/98 159.787 2.210 2.218
21/03/97 139.588 2.149 2.132 16/01/98 159.105 2.208 2.213
28/03/97 140.468 2.152 2.124 23/01/98 1,59.196 2.208 2.207
04/04/97 136.983 2.142 2.131 30/01/98 159.304 2.208 2.196
11/04/97 131.829 2.126 2.142 06/02/98 160.786 2.212 2.201
18/04/97 129.430 2.117 2.149 13/02/98 162.0,50 2.216 2.206
25/04/97 133.844 2,131 2.144 20/02/98 160.159 2.211 2.210
02/05/97 132.700 2.129 2.149 27/02/98 157.989 2.205 2.216
09/05/97 130.193 2,122 2.166 06/03/98 158.738 2.207 2.228
16/05/97 1.34.130 2,1,34 2.177 13/03/98 158,129 2.205 2.226
23/05/97 1.35.487 2.137 2.171 20/03/98 161,419 2.214 2.222
30/05/97 132.593 2.129 2.178 27/03/98 1.59,754 2.210 2.226
06/06/97 132.450 2.127 2.182 0,3/04/98 160,898 2.213 2.234
13/06/97 133.779 2.1,32 2.196 10/04/98 162,313 2.216 2.233
20/06/97 133.551 2.131 2.207 17/04/98 161,052 2.213 2,231
27/06/97 131.565 2.130 2.200 24/04/98 159,330 2.208 2,224
04/07/97 133.406 2.132 2.205 01/05/98 1.55,090 2.197 2.225
11/07/97 137.475 2.144 2,200 08/05/98 157„330 2.203 2.216
18/07/97 137.9,38 2.146 2,199 15/05/98 159,468 2.209 2.223
25/07/97 1.38.113 2.146 2,199 22/05/98 159,296 2.208 2.224
01/08/97 143.030 2.162 2,208 29/05/98 162,996 2.218 2.224
08/08/97 144.546 2.166 2,211 05/06/98 166.294 2.227 2.234
15/08/97 149.626 2.181 2,199 12/06/98 165.775 2.226 2.233
22/08/97 146.550 2.172 2,196 19/06/98 164.724 2.223 2.234
29/08/97 150.362 2.184 2,194 26/06/98 166.720 2.228 2,233
05/09/97 150.585 2.184 2,193 03/07/98 170.164 2.237 2,241
12/09/97 156.427 2.200 2,193 10/07/98 168.8.59 2.233 2,240
19/09/97 157.410 2.204 2,196 17/07/98 166.187 2.226 2,2.50
26/09/97 154.766 2.197 2,202 24/07/98 165.665 2.225 2,256
03/10/97 157.306 2.202 2.209 31/07/98 163.967 2.221 2,264
10/10/97 156.131 2.200 2.211 07/08/98 163.9,36 2.221 2,274
17/10/97 155.623 2,198 2.211 14/08/98 164.945 2.223 2,263
24/10/97 157.479 2,203 2.205 21/08/98 165.700 2.225 2.271
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28/ 08/98 166.821 2.228 2.275
04/ 09/98 167.958 2.231 2.274
11/ 09/98 169.191 2.234 2.272
18/ 09/98 167.983 2.231 2.280
25/ 09/98 170.342 2.237 2.282
02/ 10/98 172.708 2.244 2.298
09/ 10/98 171.959 2.242 2.291
16/ 10/98 175.278 2.250 2.290
23/ 10/98 177.965 2.256 2.292
30/ 10/98 183.142 2.269 2.290
06/ 11/98 184.084 2.272 2.296
13/ 11/98 181.780 2.266 2.306
20/ 11/98 183.716 2.271 2.298
27/ 11/98 186.918 2.278 2.300
04/ 12/98 182.645 2.268 2.295
11/ 12/98 184.061 2.272 2.291
18/ 12/98 187.320 2.279 2.290
25/ 12/98 188.778 2.282 2..302
01/ 01/99 195.846 2.298 2.,307
08/ 01/99 192.630 2.291 2.311
15/ 01/99 193.639 2.293 2.313
22/ 01/99 193.819 2.292 2.315
29/ 01/99 194.622 2.295 2.316
05/ 02/99 198.586 2..304 2.312
12/ 02/99 199.516 2.306 2.288
19/ 02/99 197.255 2..301 2.272
26/ 02/99 196.649 2.300 2.279
05/ 03/99 192.568 2.291 2.279
12/ 03/99 192.520 2.291 2.267
19/ 03/99 193.2.33 2.292 2.269
26/ 03/99 197.756 2.305 2.282
02/ 04/99 198.492 2.304 2.280
09/ 04/99 202.550 2.313 2.280
16/ 04/99 201.230 2.310 2.286
23/ 04/99 201.893 2.311 2.288
30/ 04/99 203.094 2.314 2.283
07/ 05/99 201.239 2.310 2.288
14/ 05/99 191.042 2.288 2.263
21/ 05/99 185.278 2.275 2.278
28/ 05/99 186.053 2.277 2.281
04/ 06/99 186.058 2.277 2.287
11/ 06/99 179.208 2.261 2.277
18/ 06/99 182.528 2.269 2.285
25/ 06/99 186.666 2.278 2.292
02/ 07/99 185.890 2.276 2.290

09/ 07/99 187.110 2.279 2.296
16/ 07/99 191.428 2.289 2.295
23/ 07/99 191.674 2.289 2.294
30/ 07/99 189.983 2.280 2.303
06/ 08/99 187.326 2.280 2.313
13/ 08/99 179.482 2.201 2.329
20/ 08/99 185.024 2.274 2.,328
27/ 08/99 188.460 2.282 2.331
03/ 09/99 188.701 2.283 2.335
10/ 09/99 185.955 2.277 2.330
17/09/99 189.429 2.284 2.330
24/ 09/99 190.375 2.287 2.337
01/ 10/99 192.0.52 2.290 2.,3.32
08/ 10/99 193.602 2.294 2,3,39
15/ 10/99 194.026 2.295 2,3,33
22/ 10/99 193.954 2.295 2.322
29/ 10/99 197.557 2.303 2.317
05/ 11/99 201.930 2.313 2.317
12/ 11/99 210.676 2.332 2.302
19/ 11/99 211.081 2.33.3 2.315
26/ 11/99 208.904 2.328 2.324
0.3/ 12/99 212.589 2.330 2.318
10/ 12/99 209.325 2.329 2.,321
17/ 12/99 205.866 2.321 2,331
24/ 12/99 213.117 2.330 2,339
31/ 12/99 210.152 2.330 2,349
07/ 01/00 210.908 2.332 2,348
14/ 01/00 210.859 2.332 2,335
21/ 01/00 204.472 2.318 2,343
28/ 01/00 201.837 2.313 2.344
04/ 02/00 201.570 2.312 2.340
11/ 02/00 198.438 2.305 2.340
18/ 02/00 203.948 2.317 2..345
25/ 02/00 208.081 2.326 2 ,3.54
03/ 03/00 204.625 2,319 2.357
10/ 03/00 209.031 2.328 2..361
17/ 03/00 213.856 2.338 2.377
24/ 03/00 212.411 2..335 2.365
31/ 03/00 219.377 2.349 2.365
07/ 04/00 217.511 2.345 2 .3,56
14/ 04/00 214.200 2.3.38 2,359
21/ 04/00 214.999 2.340 2,363
28/ 04/00 216.627 2.343 2,369
05/ 05/00 210.7,38 2.344 2.375
12/ 05/00 215.142 2.,341 2.381
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19/05/00 218.151 2.347 2.370
26/05/00 220.478 2.351 2.375
02/06/00 222.401 2.355 2.360
09/06/00 225.856 2.362 2.341
16/06/00 225.053 2.360 2.347
23/06/00 230.090 2.370 2.357
30/06/00 225.901 2.362 2.359
07/07/00 224.456 2.359 2.347
14/07/00 225.097 2.361 2.309
21/07/00 227.082 2.364 2.302
28/07/00 229.817 2.370 2.296
04/08/00 231.658 2.373 2.281
11/08/00 2.33.511 2.376 2.309
18/08/00 228.900 2.,368 2.307
25/08/00 232.350 2.374 2.302
01/09/00 226.074 2.362 2.304
08/09/00 223.987 2.358 2.296
15/09/00 222.059 2.354 2.292
22/09/00 225.321 2.361 2.293
29/09/00 227.102 2.364 2.287
06/10/00 205.723 2.321 2.267
13/10/00 199.032 2.307 2.261
20/10/00 195.726 2.300 2.275
27/10/00 193.682 2.295 2.277
03/11/00 O

C 2.286 2.268
10/11/00 198.714 2.306 2.272
17/11/00 199.493 2..308 2.286
24/11/00 197.1.30 2.307 2.291
01/12/00 196.8.54 2.301 2.289
08/12/00 192.314 2.291 2.292
15/12/00 191.236 2.288 2.282
22/12/00 191.787 2.289 2.284
29/12/00 188.851 2.283 2.289
05/01/01 183.873 2.271 2.284
12/01/01 185.287 2.274 2.289
19/01/01 184..509 2.272 2.281
26/01/01 188.146 2.280 2.288
02/02/01 181.470 2.265 2.292
09/02/01 184.222 2.271 2.293
16/02/01 192.028 2.289 2.300
23/02/01 192..362 2.290 2.294
02/03/01 193.618 2.293 2.288
09/03/01 192.499 2.290 2.285
16/03/01 190.412 2.286 2.284
23/03/01 190.704 2.286 2.287

30/03/01 188.792 2.281 2.281
06/04/01 190.812 2.286 2.282
13/04/01 189.620 2.284 2.276
20/04/01 190.015 2.284 2.273
27/04/01 189.962 2.284 2.267
04/05/01 194.382 2.294 2.269
11/05/01 193.115 2.292 2.267
18/05/01 198.901 2.305 2.262
25/05/01 192.017 2.289 2.251
01/06/01 191.934 2.289 2.246
08/06/01 187.872 2.280 2.251
15/06/01 188.750 2.281 2.229
22/06/01 189.926 2.284 2.231
29/06/01 188.359 2.281 2.244
06/07/01 188.126 2.280 2.248
1.3/07/01 186.120 2.275 2.245
20/07/01 183.905 2.270 2.246
27/07/01 182.247 2.266 2.240
03/08/01 183.001 2.268 2.234
10/08/01 183.191 2.269 2.232
17/08/01 177.611 2.255 2.234
24/08/01 173.963 2.246 2.229
31/08/01 173.2.34 2.244 2.212
07/09/01 175.822 2.255 2.221
14/09/01 166.027 2.226 2.224
21/09/01 167.848 2.231 2.21G
28/09/01 172.702 2.244 2.217
05/10/01 175.4.53 2.251 2.226
12/10/01 174.962 2.249 2.241
19/10/01 173.953 2.247 2.237
26/10/01 169.129 2.235 2.242
02/11/01 170.171 2.237 2.241
09/11/01 167.782 2.231 2.246
16/11/01 169.079 2.234 2.240
23/11/01 166.289 2.227 2.252
.30/11/01 161.008 2.213 2.2.39
07/12/01 165.320 2.225 2.228
14/12/01 164.047 2.221 2.217
21/12/01 161.005 2.213 2.227
28/12/01 162.597 2.217 2.225
04/01/02 167.781 2.231 2.227
11/01/02 171.679 2.241 2.2.30
18/01/02 170.914 2.239 2.217
25/01/02 171.205 2.240 2.223
01/02/02 171.222 2.240 2.231
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08/ 02/02 173.228 2.245 2.225
15/ 02/02 172.902 2.244 2.216
22/ 02/02 175.683 2.251 2.198
01/ 03/02 167.741 2.231 2.202
08/ 03/02 166.593 2.228 2.206
15/ 03/02 163.235 2.220 2.208
22/ 03/02 165.125 2.224 2.202
29/ 03/02 164.773 2.223 2.199
05/ 04/02 164.773 2.224 2.207
12/ 04/02 165.569 2.226 2.209
19/ 04/02 162.708 2.218 2.209
26/ 04/02 165.739 2.226 2.220
03/ 05/02 167.795 2.232 2.215
10/ 05/02 163.956 2.222 2.214
17/ 05/02 160.644 2.213 2.216
24/ 05/02 155.575 2.199 2.207
31/ 05/02 158.407 2.207 2.190
07/ 06/02 157,860 2.205 2.186
14/ 06/02 157.788 2.205 2.177
21/ 06/02 155.725 2.199 2.178
28/ 06/02 157.053 2.203 2.195
05/ 07/02 159.313 2.209 2.200
12/ 07/02 161.719 2.215 2.194
19/ 07/02 159.150 2.208 2.192
26/ 07/02 163.306 2.220 2.195
02/ 08/02 160.510 2.212 2.200
09/08/02 159.8.39 2.210 2.185
16/ 08/02 160.427 2.212 2.189
23/ 08/02 155.946 2.199 2.194
30/ 08/02 152.832 2.190 2.194
06/ 09/02 151.494 2.187 2.204
13/ 09/02 149.078 2.180 2.208
20/ 09/02 148.752 2.179 2.216
27/ 09/02 154.891 2.196 2.226
04/ 10/02 157.117 2.203 2.234
11/ 10/02 155.258 2.197 2.240
18/ 10/02 154.309 2.195 2.239
25/ 10/02 152.551 2.190 2.236
01/ 11/02 154.879 2.196 2.232
08/ 11/02 151.003 2.185 2.225
15/ 11/02 152.980 2.191 2.232
22/ 11/02 153.605 2.192 2.222
29/ 11/02 155.728 2.198 2.224
06/ 12/02 156.637 2.201 2.242
13/ 12/02 160.892 2.212 2.242

20/ 12/02 163.872 2.220 2.243
27/ 12/02 167.758 2.230 2.248
03/ 01/03 169.918 2.236 2.255
10/ 01/03 171.102 2.239 2.253
17/ 01/03 170.923 2.239 2.248
24/ 01/03 169.958 2.236 2.244
31/ 01/03 167.764 2.230 2.243
07/ 02/03 167.437 2.229 2.242
14/ 02/03 167.955 2.231 2.243
21/ 02/03 166.306 2.227 2.244
28/ 02/03 166.879 2.228 2.231
07/ 03/03 172.622 2.243 2.229
14/ 03/03 172.779 2.243 2.226
21/ 03/03 173.749 2.246 2.236
28/ 03/03 172.466 2.242 2.244
04/ 04/03 177.194 2.254 2.244
11/ 04/03 176.478 2.252 2.248
18/ 04/03 171.989 2.241 2.243
25/ 04/03 173.442 2.245 2.246
02/ 05/03 172.652 2.243 2.250
09/ 05/03 171.462 2.240 2.244
16/ 05/03 174.408 2.247 2.238
23/ 05/03 169.516 2.235 2.239
30/ 05/03 168.955 2.234 2.243
06/ 06/03 165.671 2.225 2.235
13/ 06/03 166.676 2.228 2.242
20/ 06/03 169.745 2.236 2 .2.35
27/ 06/03 173.149 2.244 2.237
04/ 07/03 172.677 2.243 2.248
11/ 07/03 173.280 2.245 2.246
18/ 07/03 173.786 2.246 2.214
25/ 07/03 174.105 2.247 2.243
01/ 08/03 176.314 2.252 2.248
08/ 08/03 171.861 2.241 2.247
15/ 08/03 170.327 2.237 2.244
22/ 08/03 172.213 2.242 2.240
29/ 08/03 171.427 2.239 2.244
05/ 09/03 172.827 2.243 2.247
12/ 09/03 172.768 2.243 2.258
19/ 09/03 170.276 2.235 2.270
26/ 09/03 171.939 2.240 2.272
03/ 10/03 176.240 2.251 2.281
10/ 10/03 172.531 2.242 2.281
17/ 10/03 173.546 2.244 2.278
24/ 10/03 172.969 2.243 2.283

Continued on next page.
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31/ 10/03 176.149 2.251 2.275
07/ 11/03 175.514 2.249 2.278
14/ 11/03 173.676 2.244 2.279
21/ 11/03 172..331 2.241 2.281
28/ 11/03 173.703 2.244 2.282
05/ 12/03 174.427 2.246 2.274
12/ 12/03 180.719 2.258 2.259
19/ 12/03 183.917 2.269 2.273
26/ 12/03 187.247 2.272 2.278
02/01/04 189.245 2.281 2.284
09/ 01/04 188.997 2.281 2.274
16/ 01/04 187.872 2.278 2.276
23/ 01/04 189..306 2.281 2.275
30/ 01/04 186.174 2.274 2.272
06/02/04 187.044 2.276 2.273
13/ 02/04 188.699 2.280 2.270
20/ 02/04 189.283 2,281 2.257
27/ 02/04 188.664 2.280 2.260
05/ 03/04 184.347 2.270 2.259
12/ 03/04 181.097 2.262 2.265
19/ 03/04 185.553 2.273 2.268
26/03/04 186.801 2.276 2.262
02/04/04 188.667 2.280 2.265
09/04/04 185.976 2.274 2.262
16/04/04 186.723 2.276 2.260
23/ 04/04 186.072 2.274 2.264
30/ 04/04 184.456 2.270 2.276
07/05/04 185.645 2.273 2.270
11/ 05/04 184.1.55 2,270 2.262
21/ 05/04 179.186 2.258 2.259
28/ 05/04 179.596 2.259 2.257
04/ 06/04 179.489 2.259 2.263
11/ 06/04 182.765 2.267 2.270
18/ 06/04 182.617 2.266 2.274
25/ 06/04 179.911 2.260 2.284
02/ 07/04 181.015 2.262 2.284
09/07/04 180.659 2.261 2,287

16/ 07/04 180,443 2.261 2.288
23/ 07/04 181,023 2.262 2.285
30/ 07/04 185,213 2.272 2.281
06/ 08/04 182,940 2.267 2.280
13/ 08/04 178,246 2.255 2.279
20/ 08/04 179,697 2.259 2.286
27/ 08/04 180.166 2.260 2,279
03/ 09/04 182.824 2.266 2,290
10/ 09/04 184.745 2.271 2,288
17/ 09/04 186.408 2.275 2,285
24/ 09/04 189.861 2.283 2,283
01/ 10/04 190.885 2.284 2.281
08/ 10/04 190.874 2.287 2,285
15/ 10/04 191.132 2.286 2,279
22/ 10/04 190..362 2.284 2,281
29/ 10/04 189.364 2.282 2,289
05/ 11/04 188.577 2.280 2,296
12/ 11/04 188.613 2.280 2,293
19/ 11/04 191.108 2.286 2,278
26/ 11/04 186,202 2.274 2,266
03/ 12/04 194,148 2.292 2,270
10/ 12/04 192.487 2.289 2.274
17/ 12/04 191.918 2.287 2.269
24/ 12/04 189,946 2.283 2.275
31/ 12/04 189,202 2.281 2.270
07/ 01/05 189,901 2.283 2.270
14/01/05 187,328 2.277 2,276
21/ 01/05 189,266 2.281 2,276
28/01/05 192,645 2.289 2,281
04/02/05 195,339 2.295 2,280
11/02/05 194,261 2.292 2,273
18/ 02/05 187,712 2.277 2,281
25/ 02/05 183.721 2.268 2,283
04/ 03/05 185.825 2.273 2,287
11/ 03/05 187.195 2.276 2,288
18/ 0.3/05 185..301 2.272 2,300
25/ 03/05 187.211 2.276 2,293

Continued  on next page.
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01/04/05 185.112 2.271 2.297 13/05/05 186.6.36 2.275 2.279
08/04/05 185.687 2.273 2,287 20/05/05 191.076 2.285 2.277
15/04/05 187.919 2.278 2.274 27/05/05 192.005 2.287 2.266
22/04/05 188.793 2.280 2.281 03/06/05 192.096 2.288 2.262
29/04/05 188.887 2.280 2.289 10/06/05 194.504 2.293 2.267
06/05/05 183.458 2.268 2.285

Source: Thomson Financial Datastream .

J ap - Japanese yen-sterling exchange rate.
L j s r  - logarithm of Japanese yen-sterling spot rate.
L j s t  - logarithm of Japanese yen-sterling spot 3-month rate.
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E.2 Figures from C hapter 7
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F ig u re  E . l :  T h e  A u s tra l ia n  do lla r-s te r ling  exchange  ra te .
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F ig u re  E.2: T h e  logs of th e  A u s t ra l ia n  do lla r-s te r ling  s p o t  (L A SR ) an d  3 -m onth
(L A S T ) ra tes .
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F igure E.3: T lie  C anadian  d o llar -ster lin g  exch an ge  rate.
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F igu re  E.4: T h e  logs o f  th e  C an ad ian  d o llar-ster lin g  sp o t (L C SR ) and 3 -m on th
(L C S T ) rates.
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F ig u re  E.5: T h e  J a p a n e se  y e n -s te rlin g  exchange  ra te .
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F ig u re  E .6: T h e  logs o f th e  J a p a n e se  y en -s te rlin g  s p o t (L JS R ) an d  3 -m o n th
(L JS T ) ra te s .
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E.3 Results

T able E.4: U n it root te s ts , A u stra lia , C anada Japan .

V a r i a b l e s  A d f p-value No. of Lags

A u s t r a l i a n D o l l a r

Forward rate 0 089 0-711 0
Spot rate  0 085 0-710 2
Forward premium —1-315 0-175 20
Spot premium -4-521 0-000 2

C a n a d i a n  D o l l a r

Forward rate -0-143 0-635 8

Spot rate  -0-102 0-649 0
Forward premium -0-858 0-345 23
Spot premitim -5-446 0-000 0

J a p a n e s e  Y e n

Forward rate 0-623 0-851 7
Spot rate  0-581 0-842 5
Forward premium -0-373 0-550 24
Spot premium -4-424 0-000 5
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Table E.5: Fractional integration analysis, Australia, Canada Sc Japan.

V'a r i a b l e s E m l N l s G p h Gsp F d f | F A D p f

A u s t r a l i a n  D o l l a r

Forward rate 0.99 0.99 0.99 0.97 0.31 -1.07
( 0 . 0 17 ) ( 0 . 0 17 ) ( 0 .020 ) ( 0 . 01 .5 )

Spot rate 0.97 0.97 0.99 0.97 -0.42 -1.33
( 0 . 0 1 7 ) ( 0 . 0 17 ) ( 0 .020 ) ( 0 . 0 15 )

Forward i)reniiuni 0.56 0.59 0.21 0.38 -35.3 -27.3
( 0 . 0 28 ) ( 0 . 024 ) ( 0 . 020 ) ( 0 . 0 15 )

Spot premium 0.95 0.95 0.90 0.91 -1.03 -3.05
( 0 . 0 17 ) ( 0 . 017 ) ( 0 . 020 ) ( 0 . 0 15 )

C a n a d i a n  D o l l a r

Forw'ard rate 0.87 0.87 0.85 0.87 -0.30 -0.94
( 0 . 0 .')2 ) ( 0 ,0 .52 ) ( 0 . 018 ) ( 0 ,0 14 )

Spot rate 0,95 0.94 0.91 0.96 0.19 -0.30
( 0 .0 2 4 ) ( 0 .0 24 ) ( 0 . 018 ) ( 0 ,0 14 )

Forward premium 0.11 0.41 0.34 0.47 -42.9 -24.7
( 0 .0 0 9 ) ( 0 .0 09 ) ( 0 ,01 9 ) ( 0 .0 1 4 )

Spot premium 0.92 0.92 0.92 0.93 1.33 -3.69
( 0 .0 30 ) ( 0 . 0 30 )

•Ja p a n e s e

( 0 .019 )

Y e n

( 0 .0 1 4 )

Forward rate 0.99 0.99 1.01 0.97 0.16 -0.95
( 0 . 0 29 ) ( 0 . 0 29 ) ( 0 .020 ) ( 0 . 0 15 )

Spot rate 1.03 1.03 1.01 0.97 0.12 0.96
( 0 . 0 17 ) ( 0 . 0 17 ) ( 0 ,020 ) ( 0 . 0 15 )

Forward premium 0.65 0.67 0.45 0.60 -35.0 -22.3
( 0 . 0 28 ) ( 0 . 026 ) ( 0 . 020 ) ( 0 . 0 15 )

Spot premium 0.95 0.95 0.99 0.97 -3.42 -4.23
( 0 . 0 3 2 ) ( 0 . 032 ) ( 0 . 02 0 ) ( 0 . 0 15 )

Note: standard  errors in parentheses.
tBa-sed on the E m l  estim ator of d.
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T able E .6: E n gle-G ranger leve ls  m od els , A u stra lia , C anada & Japan .

R e g r e s s i o n s O' P C r d w A e g ^

A u s t r a l i a n  D o l l a r

on f t . k -0 .0 0 2 0.995 0.998 0.508 No
(0 .0 0 0 3 ) (0 .0 0 1 ) 10.20]

s t + k  on f t . k 0.117 0.717 0.628 0.040 Yes
(O .O O .'i) (0 .00 .5) |0 .2 0 |

A k S t + k  on { f t , k -  S(} -0 ,0 0 1 2.289 0.026 0.071 Yes
(0 .0 0 1 ) (0 .3 0 1 ) |0 .2 0 )

C a n a d i a n  D o l l a r

St  on f t , k -0 ,0 0 4 1.014 0.997 0.321 No
(0 .0 0 0 4 ) (0 .0 0 1 ) 10.20]

S t + k  on f t , k 0.096 0.738 0.532 0.037 Yes
(0 .00 .5) (0 .0 1 3 ) |0 .2 0 ]

■ ^ k S t + k  on {/(,*■ — S f } -0 .0 0 2 -1 .9 6 7 0.026 0.059 Yes
(0 .0 0 0 4 ) (0 .2 3 1 ) [0.20]

•Ja pa n ese  Y en

S t  on f t . k -0 .0 0 7 1.005 0.999 0.459 No
(0 .0 0 1 ) (0 .0 0 1 ) |0 ,20]

S t + k  on f t . k 0.386 0.832 0.724 0.027 Yes
(0 .02 .5) (0 .0 2 5 ) 10.20]

^ k S t  + k  on [ f t . k -  St} -0 .0 0 8 -0 .9 1 7 0.002 0.028 Yes
(0 .0 0 3 ) (0 .4 7 0 ) [0.20]

N ote: s ta n d a rd  errors in parentheses. C r d w  critical values in square  brackets.
fYes - significant a t 5 per cent level. No - no t significant a t 5 per cent level.
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Table E.7: Fractional integration analysis, residuals, A ustralia , C anada &:
Japan.

R egressions E ml N ls C ph G sp F d f |  Fad f |

A ustralian Dollar

S t  on f t . k  

+ on f , , k  

A k S t t - k  on { f t . k  -  .S(}

S t  on f t . k

S t  + k on f t . k

A k S i i - k  on { f t . k  -  «(}

S t  on f t . k

•Sffjfc on f t . k

A k S t ^ - k  on { f t . k  -  S(}

0.34 0.34 0.23 0.39 -38-56 -25-70
(0 .0 1 ) (0 .0 1 ) (0 .0 2 0 ) (0 .0 1 5 )

0.97 0.97 0.89 0.91 -0-32 -2-90
(0 .0 2 ) (0 .0 2 ) (0 .0 2 0 ) (0.01 .5)

0.84 0.84 0.80 0.85 -6-17 -5-23
(0 .0 2 ) (0 .0 2 ) (0 .0 2 0 ) (0.01 .5)

C anadian Dollar

0.21 0.22 0.06 0.14 -48-57 -34-57
(0 .0 2 ) (0 .0 2 ) (O .O IS) (0 .0 1 4 )

0.85 0.85 0.60 0.67 -23-34 -11-26
(0.0.3) (O.O.'J) ( 0 .0 1 7 ) (0 .0 1 4 )

0.91 0.91 0.84 0.88 -5-62 -3-64
(0 ,0 2 ) (0 .0 2 ) (0 .0 1 8 ) (0 .0 1 4 )

J apanese Y en

0.47 0.50 0.33 0.43 -38-36 -25-47
(0 .1 6 ) (0 .1 4 ) (0 .0 2 1 ) (0 .0 1 5 )

0.77 0.77 0.99 0.98 2-45 -2-53
(0 .0 7 ) (0 .0 7 ) (0 .0 2 0 ) (0 .0 1 5 )

0.95 0.95 0.99 0.98 2-90 -2-31
(0 .0 3 ) (0-0.3) (0 .0 2 0 ) (0 .0 1 5 )

Note: standard  errors in parentheses. 
tBa.sed on the Em l estim ator of d .
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Table E.8: H a m ilto n  an a ly sis , A u stra lia , C an ada & Japan .

R a t e s P r e m i u m s

E s t i m a t e s
(standard  errors)

A u s t r a l i a

Linear
c - 0 .0 0 2

(0 .002)

f , . k L 009 1.004
(0 .005) (0 .001)

t -0 .0 0 0 7 -0 .0 0 0 7
(0 .0002) (0 .0002)

N onlinear
a 0.001 0.001

(0.0000.5) (0 .00005)

c 0.422 0.436
(0 .092) (0 .093)

f t . k 2.460 2.240
(7 .523) (5 .609)

t L 810 1.873
(0.44:j) (0 .429)

C a n a d a

Linear Linear
c -0 ,0 0 1 c 2.741

(0 .002) (6 .090)

f t . k L004 1.003 f t . k  — St 1.305 1,267
(0 .004) (0 .002) (0 .578) (0 .580)

t 0.0002 0.0001 t - 0 .2 4 6 0,503
(0 .0003) (0 .0002) (2 .144) (0 .727)

Nonlinear Nonlinear
a 0.001 0.001 rr 0.128 0.060

(0 .00002) (0 .00002) (0 .967) (0 .538)

c 1.974 - 1 .6 2 9 c 84,867 182.803
(0 .245) (0 .192) (639 .699) (1649.346)

f t . k -0 .0 0 0 1 -0 .0 0 0 2 f t . k  — St - 0 ,0 1 4 - 0 ,0 1 5
(0 .064) (0 .064) (0 .036) (0 .034)

t 1.169 1.866 t - 1 2 ,8 9 3 12,888
(0 .102) (0 .152) ( 0 .5 9 9 ) (0 .598)

•1a  PAN

Linear
c 0.00.3

(0 .010)

f t . k 1.001 1.003
(0 .005) (0 .0003)

t -0 .0 0 0 4 - 0 .0 0 0 4
(0 .0003) (0 .0003)

N onlinear
a 0.0005 0,0005

(0 .00002) (0 .00002)

C - 1 .5 7 1 - 1 .5 6 8
(0 .216) (0 .219)

f t . k 6.771 6.864
(1 .420) (1 .959)

t 1.637 1.640
(0 .125) (0 .176)
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