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Summary

This thesis is a collection of essays in applied time series econometrics, focusing particularly
on the role of random field regression. The thesis is introduced in Chapter 1, which discusses
the motivation for the thesis and outlines its structure.

The second chapter discusses nonlinear econometric modelling. It introduces the concept
of nonlinearity and discusses its importance in economics and econometrics. It also provides
a treatment of several approaches to modelling nonlinearity in economics, before giving an
account of the approach to nonlinear econometric modelling proposed by Hamilton (2001). It
then describes some of the methods of nonlinear optimisation that may be used in the GAUSS
computer program provided by Hamilton for the implementation of his methodology. The
performance of this program is investigated using data relating to Hamilton’s examples, two
versions of the GAUSS software and a range of alternative numerical optimisation options.
The impact of changes in initial parameter estimates and the use of pairs of optimisation algo-
rithms are also examined. The effects of changes in the sample data on the results produced
by Hamilton’s procedure are explored. Finally, a discussion of the published comments made
by Hamilton (2005) on this work are included. The results of this study suggest some clear
conclusions, which will be of value to those contemplating working with Hamilton’s method.

Chapter 2 also highlights Hamilton’s (2001) LM-type test, which is likely to be little
known, due to the technical nature of the original paper detailing the methodology and also
because the test is embedded within that methodology. Chapter 3, continuing on the theme
of nonlinearity in economics and econometrics, and the approach put forward by Hamilton,
investigates the properties of several tests for neglected nonlinearity in time series, using
Monte Carlo simulation methods. This study is motivated by the LM-type test proposed
by Hamilton. The comparative properties of this test, as an integral part of Hamilton’s
framework and indeed as a stand-alone test for nonlinearity, have yet to be fully explored.
Therefore, this chapter investigates the comparative properties of the Hamilton test and
some well-known alternatives, by applying them to some model specifications commonly
encountered in empirical research. Hamilton’s LM-type test is evaluated across a range of
parameters and data, and compared with the Durbin-Watson (1950) bounds test, Ramsey’s
(1969) RESET test, the Harvey-Collier (1977) v-test and three tests put forward by Dahl
and Gonzélez-Rivera (2003). The results from this chapter confirm the powerful nature of
the Hamilton test and its variants, particularly the /\(’%P test of Dahl and Gonzalez-Rivera.
Interestingly, however, it is also shown that Ramsey’s (1969) RESET test is powerful by
comparison to the random field-based tests.

Chapter 4 provides the background theory required for the remaining chapters of the
thesis. As the remaining chapters compare and contrast the results of modelling time-series
relationships using the Hamilton (2001) methodology with a variety of alternative methods,
they are introduced here. These alternative methods share the common trait that they
exploit the concept of (co)integration in modelling economic relationships. Three approaches
to modelling economic relationships are compared with Hamilton’s approach: the Engle-
Granger (1987) 2-Step procedure, Johansen’s (1988, 1991) vector autoregressive approach

and common factor (COMFAC) analysis (Hendry and Mizon, 1978). Chapter 4 reviews each
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of these methods in turn. Attention is also given to the work of Dolado, Gonzalo, and Mayoral
(2002) on fractional integration and Johansen’s (2002) small sample correction, which may
offer further insight into the implementation, application and results of some of the above
methods.

Chapters 5, 6 and 7 draw attention to the limitations of the standard unit root-cointegration
approach to economic and financial modelling, and to some of the alternatives based on
the idea of fractional integration, long memory models and the random field regression ap-
proach to nonlinearity. Chapter 5 examines a well-known demand for money dataset for
Denmark and Finland, which relates to an area of economics where cointegration is com-
monly employed. Chapter 6 explores purchasing power parity for Irish data by investigating
the behaviour of the Irish exchange rate in respect to Germany and the United Kingdom.
Purchasing power parity is another area of economic theory which has often been empirically
investigated using the I(1)/1(0) framework. In each chapter, standard unit root testing pro-
cedures and tests of cointegration are employed to explore the relationships outlined. This is
followed by consideration of the possibility of fractional integration and nonlinearity in each
case.

The findings of standard unit root testing and cointegration analyses prove somewhat
confusing in both cases, suggesting perhaps that the I(1)/I(0) framework is not the most
appropriate in either case. Fractional integration analyses confirm this finding. Strong evi-
dence of nonlinearity is found in both these applications, using Hamilton’s (2001) test. That
methodology suggests some clear conclusions regarding the variables which contribute to that
nonlinearity.

Chapter 7 examines issues surrounding the testing of fractional integration and nonlin-
earity in relation to the forward exchange rate anomaly of Fama (1984). The behaviour of
three exchange rates and premiums is investigated in terms of fractional integration and non-
linearity. The findings provide some support for I(1) exchange rates but suggest fractionality
for premiums, mixed evidence on cointegration, and a strong possibility of time-wise nonlin-
earity. Significantly, when the nonlinearity is modelled using a random field regression, the
forward anomaly disappears.

The results from these illustrative case studies not only offer interesting insights into the
specific areas of money demand, purchasing power parity and the forward exchange rate
anomaly, but they also offer conclusions that should aid practitioners in applied time series
econometrics. Specifically, these studies draw attention to the issues of stationarity, non-
stationarity, structural breaks and nonlinearity in economics and econometrics, and outline
methodologies and modelling approaches, at the frontier of current econometric thinking,
that can be used by practitioners to explore and better understand these issues.

Chapter 8 concludes the thesis by offering a summary of the findings and by outlining

avenues for future research.
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Models are, for the most part, caricatures of reality, but if they are good, then,
like good caricatures, they portray, though perhaps in a distorted manner, some
of the features of the real world. The main role of models is not so much to
explain and to predict - though ultimately these are the main functions of science

- as to polarize thinking and to pose sharp questions.

Mark Kac, Some Mathematical Models in Science.

It must be emphasized that a cointegration analysis cannot be the final aim of an
econometric investigation, but it is our impression that as an intermediate step
a cointegration analysis is a useful tool in the process of gaining understanding
of the relation between data and theory, which should help in building a relevant

econometric model.

Soren Johansen,

Likelihood Based Inference in Cointegrated Vector Autoregressive Models.

In short, the paper proposes a single encompassing framework for nonlinear mod-
elling, offering a new test for nonlinearity, methods to infer what the nonlinear
function looks like, and checks of whether it is adequately described by some

particular model.

James D. Hamilton,

A Parametric Approach to Flexible Nonlinear Inference.
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Chapter 1

Introduction



1.1 Foreword

This thesis, a collection of related essays in applied time series econometrics, has modest
aims. It sets out to explain and explore Hamilton’s (2001) nonlinear modelling framework, a
relatively new and potentially important approach to applied econometric modelling, includ-
ing his proposed test for nonlinearity. It will also consider the concept of long memory time
series and attempt to establish what these alternative modelling approaches have to offer,
by comparison to a standard analysis of nonstationary data. This is achieved by consider-
ing three illustrative case studies where such standard analysis has been routinely employed.
These aims are further elaborated upon in the subsequent section and in each respective

chapter. The structure of the thesis will also be outlined briefly here.

1.2 Motivation

Nonstationary data have played a key role in economic modelling for the past two decades.
The seminal works of Nelson and Plosser (1982) and Engle and Granger (1987) highlighted the
prevalence of nonstationarity, particularly in macroeconomic time series. The autoregressive-
integrated-moving average, or ARIMA, approach put forward by Box and Jenkins (1976),
provided an early framework for modelling nonstationary data. With further developments
in this area, including an understanding of spurious regression and its likely causes (see,
for example, Granger and Newbold, 1974), a large theoretical and applied literature grew
up. Standard approaches to dealing with nonstationary time series were introduced and the
concept of cointegration and error-correction became staples of macroeconomic modelling.

Despite the attractiveness of this approach, its ability to combine long-run and short-run
dynamics, and its ability of overcome the so-called spurious regression, the methodologies
that built up in this area are not without their potential pitfalls. A common concern in all
applied research is sample size. As cointegration is concerned with long-run relationships,
that concern is particularly relevant. This issue has recently been addressed by a small sample
correction to the popular Johansen (1988, 1991) procedure and has shown the potential for
incorrect inferences where sample sizes are small. The primary concern, however, is that
these methods are strictly applicable to unit root processes, as opposed to the closely related
nonstationary processes. To classify series requires suitable testing. T'wo immediate problems
are evident. An early test for unit roots, the augmented Dickey-Fuller (1979, 1981) test, is
known to have low power. This procedures tests the null hypothesis that the series under
examination is nonstationary against the alternative that it is stationary. The low power,
therefore, often manifests itself in failing to reject nonstationarity, when in fact the series
in question is stationary. These issues have been addressed to some degree by new testing
procedures, but generally, test power has remained low. One reason for this low power is
that it is difficult to statistically distinguish between nonstationary series and nonlinear but
stationary series. Structural change in a series may also lead to incorrect inferences regarding
nonstationarity.

A further issue relates to the definition of nonstationarity and unit roots themselves, as so

often used in the applied literature. Unit root and cointegration tests offer a framework to test

2



for nonstationarity when series are integrated precisely to integer order; unity for example.
That is, the series is generated by a unit root process. A series can exhibit nonstationarity,
however, if its order of integration lies between 0.5 and 1.5. This introduces the concept
of fractional integration, so far little used in applied research. A series can, however, be
considered to be long memory and stationary if the order of integration lies between zero
and 0.5. These important issues remain less well known than the standard I(1)/I(0) analysis
and they can make modelling nonstationary data far more challenging than it may at first
appear.

Another concern, briefly alluded to already, is nonlinearity. It can be very difficult to
distinguish between a nonlinear series and a nonstationary series. That is, a series may be
stationary with a nonlinear data generating process, but testing procedures cannot distinguish
this from nonstationarity. The presence of structural breaks adds further complications, mak-
ing what may otherwise be stationary series nonstationary.! The result can be a modelling
effort directed towards nonstationary data, when in fact it should be directed to modelling the
nonlinearity or structural breaks. The relative attractiveness of the cointegration framework,
against the potentially more complex nonlinear or stationary with breaks case, goes some
way to explaining why this approach is often neglected. This is reinforced by the availability
of pre-programmed computing routines which make the former approach very accessible.

Recent developments in time series econometrics may offer a solution to some of these
problems. The field of fractional integration has developed greatly, with several procedures
available to test whether a series is integrated to integer order or fractionally. The field of
fractional cointegration, although not touched upon in this thesis, is also growing.? Finally,
developments have also been made in the area of modelling nonlinearity, a notable example
being that of Hamilton (2001). This offers a potentially powerful alternative to the stan-
dard approach, when the appearance of unit roots is actually due to structural change or
nonlinearity.

The aims of the thesis are to explore these issues and to highlight the possible deficiencies
in the standard I(1)/1(0) framework, by considering the possible alternatives of fractional
integration, small samples and nonlinearity. The thesis will initially explore the alternative
methods, particularly that of Hamilton (2001), before proceeding to illustrative case studies

to evaluate these recent developments.

1.3 Structure

After the brief introduction of Chapter 1, which discussed the motivation for the thesis,

Chapter 2 will begin with a discussion of nonlinear econometric modelling, outlining some

'See, for example, Perron (1989).

2A growing literature on fractional cointegration exists, encompassing both theoretical aspects and em-
pirical applications. Much of the theoretical literature considers issues relating to testing and inference in
fractionally cointegrated systems; see, for example, Kim and Phillips (2000), Martin (2001), Davidson (2002),
published in special edition of the Journal of Econometrics dedicated to long memory and nonlinear time se-
ries, Hualde and Robinson (2002), Chen and Hurvich (2003a, 2003b), Gil-Alana (2003), Robinson and Hualde
(2003), Velasco (2003), Dittmann (2004), and Robinson and Iacone (2005). The concept of fractional coin-
tegration has been applied to a wide range of topics; see, for example, Cheung and Lai (1993b), Baillie and
Bollerslev (1994), Lien and Tse (1999), Liu and Chou (2003), Masih and Masih (2004), and Caporale and
Gil-Alana (2005).



approaches that are popular in the applied literature. It will also introduce the concept of
nonlinearity and will discuss its importance in economics and econometrics. It will then
give an account of the approach to nonlinear econometric modelling proposed by Hamilton
(2001), the focus of this chapter. The theory behind this framework will be outlined, as will
its test for nonlinearity. The issue of the applicability of this approach in the presence of
nonstationarity will also be discussed. The implementation of this methodology will then
be discussed, as will some of the methods of nonlinear optimisation that may be used in
the GAUSS computer program provided by Hamilton. The performance of this program will
be reported on, in terms of computational issues and data sensitivity: the former detailing
the impact of changes in initial parameter estimates and the use of pairs of optimisation
algorithms and the latter the effects of changes in the sample data on the results produced
by Hamilton’s procedure. Finally, the published comments made by Hamilton (2005) on
this work will be discussed. The chapter will conclude with recommendations for those
contemplating working with the method.

Continuing on the theme of nonlinearity in economics and econometrics, and the approach
put forward by Hamilton (2001), Chapter 3 will investigate the properties of several tests for
neglected nonlinearity in time series, using Monte Carlo simulation methods. This study is
motivated by the LM-type test proposed by Hamilton and previously introduced in Chapter
2. This chapter will begin with a description of each of the seven tests to be used in the
comparative study, with an emphasis being placed on those less well-known tests. The design
of the Monte Carlo experiments, which set out to investigate the comparative properties of
these tests by applying them to some model specifications commonly encountered in empirical
research, will be outlined. Some basic but necessary material on hypothesis testing will also
be included for completeness. The results from the simulation study will then be discussed
at some length. The conclusion will outline the findings of the study and offer a comparative
evaluation of the Hamilton test for nonlinearity.

Chapter 4 will serve only to provide the background theory required for the remain-
ing chapters of this thesis. As the remaining chapters compare and contrast the results of
modelling time-series relationships using the Hamilton (2001) methodology with a variety
of alternative methods, the alternatives will be introduced here, although a brief treatment
of stationarity, nonstationarity and unit root processes will be offered initially. The alter-
native methods to be introduced share the common trait that they exploit the concept of
(co)integration in modelling economic relationships. Three approaches to modelling these
relationships will be compared with Hamilton’s: the Engle-Granger (1987) 2-Step approach,
Johansen’s (1988, 1991) vector autoregressive approach and common factor (COMFAC) analy-
sis, as described by Hendry and Mizon (1978). Chapter 4 will review each of these methods
in turn. Attention will also be given to the work of Dolado, Gonzalo, and Mayoral (2002), on
fractional integration and Johansen’s (2002) small sample correction, which may offer further
insight into the implementation, application and results of some of the above methods.

Chapters 5, 6 and 7 will draw attention to the limitations of the standard unit root-
cointegration approach to economic and financial modelling, and to the potential of some of
the alternative methods based on the idea of fractional integration, long memory models and

the random field regression approach to nonlinearity; i.e., the methods introduced in previous
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chapters. Chapter 5 examines a well-known demand for money dataset for Denmark and
Finland, which relates to an area of economics in which cointegration is commonly employed.
Chapter 6 explores purchasing power parity for Irish data by investigating the behaviour of
the Irish exchange rate in respect to Germany and the United Kingdom. Purchasing power
parity is another area of economic theory which has often been empirically investigated using
the I(1)/1(0) framework. The structure of these chapters will be very similar. In each chapter,
a brief account of the demand for money and purchasing power parity, respectively, will be
offered. Standard unit root testing procedures and tests of cointegration will then be employed
to explore the relationships outlined. Finally, the possibility of fractional integration and
nonlinearity in each case will be explored. Each chapter will conclude with a summary of the
findings.

Chapter 7 will examine the issues surrounding the testing of fractional integration and
nonlinearity in relation to the forward exchange rate anomaly of Fama (1984), for three
exchange rates and premiums. The structure will be similar to that of chapters 5 and 6.
After a brief introduction to the anomaly, standard unit root and cointegration tests will
be applied. Tests for fractional integration will also be carried out, before exploring the
relationship with Hamilton’s (2001) methodology, to consider the possibility of nonlinearity.

It is hoped that the results from these illustrative case studies may offer interesting insights
into the specific areas of money demand, purchasing power parity and forward exchange rate
anomaly, but they may also offer guidance that could aid practitioners in using time series in
applied economic research. Chapter 8 will conclude the thesis by offering a summary of the

findings and by outlining avenues for future research.?

*The analysis carried out in this thesis uses a number of software environments, namely, EVIEWS v. 5.1,
GAUss v. 3 and v. 5, JMulTi v. 4.12, MICROFIT v. 4.11, OX v. 3.4 and RATS v. 5. It has been typeset in IXTEX
using MiKTeX v. 2.4; see, for example, Kopka and Daly (2004), Lamport (1994) and Mittelbach, Goosens,
Braams, Carlisle, and Rowley (2004).






Chapter 2

The Hamilton Random Field
Regression Methodology and its

Implementation

Research carried out in the course of writing this chapter has led to the publication of ‘Investigating Non-
linearity: A Note on the Implementation of Hamilton’s Random Field Regression Model’ by Bond, D., M.J.
Harrison, and E.J. O'Brien, in Studies in Nonlinear Dynamics and Econometrics, 9, Article 2, September 2005,
and also Trinity Economic Papers, Nos. 12 (2003) and 4 (2005). See also the response from J.D. Hamilton,
‘Comments on ‘Investigating Nonlinearity” in Studies tn Nonlinear Dynamics and Econometrics, 9, Article
3, September 2005. The Bond, et al. (2005a) paper was presented at the 3"? International Association for
Statistical Computing World Conference on Computational Statistics and Data Analysis, Limassol, Cyprus,
28'"-31°" October 2005.



2.1 Introduction

As discussed in Chapter 1, this thesis is concerned with applied time-series modelling of
macroeconomic and financial data, and some of the issues involved therein. One of these
issues is the presence of nonlinear relationships among economic variables. This chapter will
introduce the importance of nonlinear models in economics and econometrics, and will briefly
discuss some tests and methodologies used in practical applications. Those methods include
approaches based on time-varying parameters, threshold and smooth transition autoregressive
processes, regime-switching models and smoothing splines. The issue of a nonlinear modelling

strategy is also touched upon.

Attention is then turned to a new and potentially important technique, which is the
main focus of this chapter. Hamilton (2001) proposed an approach to nonlinear modelling
of economic relationships that provides a single flexible parametric framework for testing for
nonlinearity, drawing inference about the form of nonlinearity and assessing the adequacy of
the description of nonlinearity provided by specific models. This approach treats functional
form as the outcome of a latent stochastic process. This latent process is modelled using a
relatively new Gaussian random field concept that generalises Brownian motion to & dimen-
sions. From the practicing economist’s viewpoint, the importance of Hamilton’s approach lies
in the valuable insights it can provide for model construction and the resulting enhancement

of the forecasting ability of economic models.

However, the new methodology has been little used to date and its full potential remains
to be established. As Hamilton (2001, p. 552) pointed out, its usefulness for particular
sample sizes and nonlinearities is a matter for empirical investigation. Yet, citing his own
three examples and the Monte Carlo studies by Dahl (2002), he suggested that the method

holds much promise.

The main purpose of this chapter is to address a number of practical issues that arise
when using the Hamilton (2001) approach. The first of these concerns computation and
reports on experience gained with Hamilton’s software to implement the method. It appears
that the numerical optimisation involved is not an entirely straightforward matter, either
when using Hamilton’s dataset or alternative samples. Thus while the Hamilton case study
is the primary focus, this finding may have more general relevance for procedures that employ
similar optimisation techniques. The second issue concerns the sensitivity of the method to
changes in data. Experiments suggest that minor data changes can have implications for

computation and big effects on the results.

The structure of the chapter is as follows. Section 2.2 discusses the importance of nonlinear
models in economics and Section 2.3 introduces some techniques commonly used for modelling
them. Section 2.4 introduces the Hamilton (2001) method, while sections 2.5, 2.6 and 2.7
consider the findings of this research. Specifically, issues relating to the computational and
data sensitivity matters are reported. Section 2.8 contains comments on the reply to this
work offered by Hamilton (2005), while Section 2.9 concludes.
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2.2 Nonlinear Models in Economics and Econometrics

The main goal of this chapter is to consider the method of Hamilton’s (2001) flexible nonlinear
inference, its theory and implementation. Before doing so, however, the importance of nonlin-
earity in economics is very briefly explored. It is generally accepted that nonlinearity occurs
naturally in economics and that many economic theories suggest a nonlinear relationship.
Many relationships of interest, be they from the field of macroeconomics, microeconomics or
financial economics, have naturally occurring thresholds, constraints and boundaries, which
may result in nonlinearities. A plausible nonlinear specification may sometimes be suggested
by economic theory. These are often incomplete, however, and may not fit the data well.
Also, even when theory may indicate nonlinearity in a given relationship, it may offer no in-
sight into the form of that nonlinearity. Finally, theory may say nothing about a nonlinearity
whatsoever. As a result of these difficulties, linear models are often assumed to be adequate.
A known nonlinear specification may be linearised, thereby avoiding further complications
in analytical or empirical estimation, or as has often been the case, a nonlinear model is
approximated by a linear model.! Modelling in this way has proven to be quite successful.
Problems, however, have been known to arise when this approach is adopted. Tests of such
approximated specifications frequently reject parameter constancy, pointing perhaps to struc-
tural breaks. A common, but unsatisfactory solution has been to build a dummy variable
into the specification to allow for such a break. It is preferable, however, in such cases to
specify an equation that allows for nonlinearities in the parameters.

Advances in recent decades have been made which allow for the use of nonlinear specifica-
tions. Much work has been done in the field of nonlinear time series analysis. In tandem with
this, low cost computational power has become widely available to the applied researcher,
making such methods accessible. As nonparametric and semiparametric estimation methods
have become computationally feasible, they have also become increasingly popular, despite
the criticisms made against them, some of which will be outlined briefly in the next section.
Such developments have inspired further advances in statistical techniques and have been
applied throughout economics, econometrics and finance.?

Considering this, when should a nonlinear specification be used? From an economic and

' An excellent example is the Phillips curve, which is perhaps one of the most well-known, if not controversial,
examples of nonlinearity in economics. Phillips (1958) proposed the following form of the relationship between
wage rates and unemployment

y+a= bz,

which can be linearised easily to become

log (y + a) = logb + clog x.

1 dz
=bz’ +k —
y+a T + (.r’” dt)’

was not used. It is widely assumed that this was due to a lack of available computing power. Instead, the
loglinear equation above was estimated by OLs with just four observations. The original 52 observations were
aggregated over intervals to produce just six observations, of which four were used.

“See, for example, Liitkepohl, Teriisvirta, and Wolters (1999), who examined the stability of German money
demand, Lee, Kim, and Newbold (2005), who explored spurious regression in the context of nonlinearity and
Taylor, Peel, and Sarno (2002), who re-assessed purchasing power parity in light of nonlinear behaviour in
exchange rates.

The preferred specification,




econometric theory point of view, the choice is clear. A linear specification should only
be used if theory suggests a linear relationship, or a relationship that could be reasonably
approximated by a linear model, without eliminating essential elements of that model. This
of course assumes that theory provides some indication of the nature of the relationship.
It is far more likely that the nonlinear relationships suggested by economic theory will be
vague at best. Granger and Terésvirta (1993) suggested a strategy for nonlinear modelling.
In deciding on the variables to include, they advocate both the simple-to-general approach,
suggested by Box and Jenkins (1976) in the context of linear modelling, and also the general-
to-specific approach of Hendry.? Having tested for, and found nonlinearity, ‘there appears to
be no simple answer’ to the question of which nonlinear model should be used.* In fact, it is
recommended that a variety of models be considered and that economic theory, vague as it
may be, must play an important role, where possible. In addition, the decision-making process
can be guided by post-estimation misspecification testing. Such post-estimation testing is
useful for inferring whether a given nonlinear form is appropriate. Note that although some
tests for nonlinearity test a null of linearity against a specific nonlinear alternative, the
majority test against a nomspecific alternative.” The issue of testing will be discussed in
greater depth in Chapter 3. A linear model may also be considered if the nonlinear model is
difficult to work with and it is felt that the linear alternative may be useful or instructive.
Finally, an exploratory data analysis approach may be taken, allowing the data to guide the
final specification of the model. The role played by economic theory cannot be understated.

Despite the obvious attraction of using nonlinear models, as outlined above, difficulties
may still arise. The chosen specification will, therefore, be one of the vast array of alternative
nonlinear models, selected perhaps more for analytical convenience than prior theoretical
considerations. Of course, as with all model specifications, any nonlinear model remains a
simplification and can be expected to fail from time to time.

Given this brief overview of why nonlinear modelling may be preferable, the next section
will give consideration to some of those methods successfully employed in economics and

econometrics.

2.3 Methods for Modelling Nonlinearity

This section reviews some of the methods available in the field of nonlinear econometric
modelling, including both parametric and nonparametric techniques. The methods to be
considered are time-varying parameters, threshold autoregressions, models of regime switch-
ing, smooth transition autoregressions and smoothing splines. Only brief consideration is
given to the nonparametric approaches. These methods, as Hamilton (2001) pointed out,
sacrifice many of the benefits of parametric methods.® Nonparametric methods present prob-

lems in inference, be it Bayesian or classical in nature, and are not readily adaptable to the

3See, for example, Gilbert (1986).

*Granger and Teriisvirta (1993), p. 166.

"Terdsvirta (1994), for example, proposed a test for nonlinearity which tests the null of linearity against
the alternative of a smooth transition autoregression (STAR) model.

SHamilton (2001), p. 537. In light of this, it is felt nonparametric approaches such as kernels, wavelets and
nearest neighbour are beyond the scope of this review.
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hypothesis testing or model simplification required for multivariate modelling. What follows

is a brief description of each method.

2.3.1 Time varying parameters

Sims (1993) outlined a model with time-varying parameters. His motivation for such a study
stemmed from the work of Litterman (1986), who forecast macroeconomic variables using a
small Bayesian vector autoregressive model. Sims updated Litterman’s model, allowing for
the nonnormality of forecast errors, and more importantly, for time-varying variances and

time-varying autoregressive coefficients.” His model takes the form
k
Xi(t) =D [ DXt — )8t d,8) + Bty +1,1) | +ult;i), (2.1)

given a time series of k-vectors, X;(t), determined by a state vector 3(t;1, j, s), an equation
disturbance u(t;i) and where i = 1, 2,..., the number of equations in the vector autoregres-
sion. The B’s and u’s are stochastic processes, with distributions that are conditional on the
initial values of the Xs, for the other observed Xs. The model has substantial time variation
in its coeflicients, which as previously outlined, and as illustrated by Sims, may be important
in modelling aggregate macroeconomic variables.

Time-varying parameter models, in many respects encompass a broad range of approaches,
some of which will be considered in the following subsections. As a result, these methods
are widely used, for example, Koopman and Ooms (2003), who used them for modelling tax

revenues.

2.3.2 Threshold autoregressive processes

The threshold autoregressive (TAR) model was first proposed by Tong (1978). This class of
model encompasses features such as limit cycles, amplitude dependent frequencies and jump

phenomena.® A time series Y; is a self-exciting TAR process if it follows the model

P
Vi=oy +Y oY, +a?, (2.2)
i=1
Moy 2 30 = Ty (2.3)
where j = 1,...,k and d is a positive integer. The thresholds are
—PO IS T £ 05 < Ty — 00 (2.4)

"Sims (1993), p. 179.

®A limit cycle can be defined as an attracting set to which orbits or trajectories converge and upon which
trajectories are periodic (Guckenheimer and Holmes, 1997, p. 150-154). Amplitude dependent frequencies
relate to asymmetric cyclical behaviour, where the period of the cycle is dependent upon the amplitude of
the oscillation, i.e., the period is lower when the amplitude of the oscillation is lower; see, for example, Tong
(1990). A jump is defined as a point of discontinuity (Jeffreys and Jeffreys, 1988, p. 26). Jump phenomena
encompass, among others, models of regime switching.

i}



For each j, {aﬁj )} is a sequence of martingale differences satisfying”

E (aﬁj)m_l) =0 (2.5)
©m 9
S%pE la;’ |°|Fi=1) < o0, (2.6)
for some 6 > 2, with F;_; the o-field'” generated by {agj_)iﬁ [ 10 R 1 — B e ,k}

Such a process partitions the one-dimensional Euclidean space into k regimes and follows
a linear autoregressive model in each regime. The overall process Y; is nonlinear when there
are at least two regimes with different linear models. As previously stated, the model can
contain certain features that cannot be captured by a linear time series, such as limit cycles,
amplitude dependent frequencies and jump phenomena. Outline approaches to modelling
such TAR processes can be found in Tsay (1989) and Tong and Lim (1980).

TAR models have been used widely in empirical economics. These models have been used
by Enders and Granger (1998), to examine the term structure of interest rates, by Caner
and Hansen (1998), to explore unemployment, and Pesaran and Potter (1997), to model US

output.

2.3.3 Regime switching models

Many variables undergo periods in which the behaviour of the series seems to be quite dra-
matic. This can be seen by examining any sufficiently long macroeconomic or financial time
series. Variables can be considered to go through behavioural phases or regimes. A change in
such a regime cannot be seen as the outcome of a perfectly foreseeable, deterministic event.
The change itseltf must be viewed as the outcome of a random process.

It can be said that the outcome of this random process is influenced by the unobserved
random variable s;, which is the state or regime that the process was in at time . Since s;
can only take on discrete values, a suitable model must be selected. The simplest time-series
model for a discrete-valued random variable is a Markov chain.!!

Briefly, Markov chains can be defined as follows. Let s; be a random variable that

9A stochastic process {Y (t), t € T} is said to be a martingale difference process relative to the increasing
sequence of o-fields Dy C Dy C --- C Dy C ---, if

e Y(t) is a random variable relative to Dy;
o E(|Y(t)]?) < oo; and
e E(Y(t)|Di-1) =0, t € T. (Spanos, 1986, p. 147).

Given the conditions
e AcF,A=Q— A€ Fand
e A, Be F, AUBE€ F,

a collection F of subsets of a nonempty set €2 satisfying these conditions is called an algebra or field. Further,
a collection F of subsets of a nonempty set 2 satisfying

e AcF,A=Q—- A€ Fand
o A;eF,5=1,2,3,...,U14; € F

is defined as a g-algebra or o-field. (Bierens, 2004, p. 4).
"'See Hamilton (1994), Chapter 22, for an excellent treatment of this topic.
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can assume only an integer value 1,2,..., N. Suppose the probability that s; equals some

particular value j depends on the past only, through to the most recent value, s;_;, such that

P{St:j

St—1 = ’i,St_z = k, .o } = P{St = j|8t_1 = l} = Dij- (27)

Such a process is called an N-state Markov chain with transition probabilities {p;;}, i,j =
1,2,...,N.'2 The transition probability pi; gives the probability that state ¢ will be followed
by state j. For example, a simple first-order autoregressive time-series model of a regime

switching specification takes the form

)/t = CS( + ¢Sc)/t—l + 5t7 (2'8)

where £, is normally and identically distributed (n.i.d.) with a zero mean and variance o2,

and where both the constant and autoregressive terms may vary with different states, s;.

Markov chains are useful for several reasons. A permanent regime change can be mod-
elled by a two-state Markov chain. On the other hand, unusual, short-lived events can also
be accounted for. Furthermore, the Markov chain is a flexible tool, as the specification is
consistent with a broad range of outcomes. Granger and Terasvirta (1993) discussed the
use of regime switching models and Markov chains and outlined several studies that have

employed these methods.!?

2.3.4 Smooth-transition regressions

Granger, Terasvirta, and Anderson (1993) proposed a class of models known as smooth tran-
sition regressions (STR), which are further discussed by Terisvirta (1994).'* Their motivation
follows the arguments presented previously. They acknowledge that economic relationships
may be nonlinear, but recognise that there ‘is no generally accepted class of nonlinear models
that can be applied to explore relations’ i.e., to employ in exploratory or specification search

15

forms of modelling."”> This, they believe, is due to the wide variety of alternative nonlin-

ear models available, and a lack of experience in deciding which of these models is most
appropriate.

Their class of STR models take the form
Y = a1 + B1 X + 6(Zi) (a2 + BoXy) + &, (2.9)

where 0 < ¢(Z) < 1 and Z is the ‘indicator’ variable, a linear combination of the components

of X;. The model is seen to be a smooth transition between the model

Y = a1+ 81X + &y, (2.10)

2Hamilton (1994), p. 678.

¥ Granger and Terasvirta (1993), p. 141-145.

" Attention here is initially limited to the class of models termed smooth transition regressions (STR).
Terasvirta (1994) refers to the more general smooth transition autoregressive (STAR) models.

'SGranger, et al. (1993), p. 311.
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when ¢(Z) = 0, and the alternative linear model
Y; = (a1 + ag) + (B1 + B2) X¢ + &, (2.11)

when ¢(Z) = 1.

These two models can be viewed as having very different properties. One could be sta-
tionary while the other is nonstationary, for example. These models could be considered
to represent two distinct regimes. The models, therefore, ‘thus represent a smooth regime-

switching situation’.!® The STR representation can be written as:

}/t = Lp/Zt + HIZtG(")/, C, St) + Efs (212)

where £, is independently and identically distributed, z; ~ i.i.d.(0,0%), Z; = (w}, X}) and
W =0 Y. Yt_p)'. The transition function G(7,c, s;) determines the degree of mean
reversion and is itself a function of v, the slope coefficient, ¢ the location parameter and
s¢ the transition variable. Normally s; is set to be a lagged value of Y;. Several choices
of specification for the transition function, GG, are available. Its form is often taken to be

exponential:
G(v,¢8) =1—exp {—’7 (s¢ — (-)2} : (2.13)

and the resultant model is known as the Exponential Smooth Transition Autoregressive
(EsTAR) model. This results in a symmetrical transition function. An asymmetric logistic

function, and hence the LSTAR model, could also be considered:
G(v,¢,8) =[1+exp[—y (st — )] " (2.14)

A more general alternative to the ESTAR model is the LSTAR2 model:

G (v,¢,8) = |1 +exp

2 -1
- H (st — ('A')” ; (2.15)

k=1

The use of the LSTAR2 model overcomes the problem that as v — oo, Equation (2.12), where
G (7, ¢, s¢) is described by Equation (2.13), ‘becomes practically linear, for the transition
function equals zero at s; = ¢ and unity elsewhere’.!

As with the other methods considered in this brief review, STR models have been widely
used in the empirical literature, not just within the fields of economics and econometrics. For
example, Bacon and Watts (1971) used STR techniques to model chemical data; Liitkepohl,

et al. (1999) applied them in the context of German money demand.

2.3.5 Smoothing splines

‘Spline smoothing is a natural solution to the regression problem when one is given a set of

regression functions, but one also wants to hedge against the possibility that the true model

16Granger, et al. (1993), p. 313.
"Terasvirta (2004), p. 224.
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is not exactly in the span of the given regression functions’.!® Deviations of the true model
from the span of the functions given are easily derived from spline theory.

Following Wahba (1978), consider the equation
Y(tl) — g(ti) + €; = 125wt € T (216)

where €; ~ n.i.d.(0,0%I,) and g(-) is some ‘smooth’ function defined on some index set 7.
The function g(-) can be satisfactorily estimated by cubic polynominal smoothing splines,
when 7 is an interval of the real line, and given the realisation y = (y1,...,yn) of ¥ =
(¥it1),. .. Y (Ea)) 2

Splines can be considered to be an alternative to fitting a specified set of regression
functions, when the true nature of g(-) is actually in the range of the specified regression
function. It can be shown that spline smoothing is an extension of Gauss-Markov regression,
given the specified regression functions. Wahba (1978) claimed ‘that spline smoothing is an
appropriate solution to the problem arising when one wants to fit a given set of regression
functions to the data, but in so doing, also hedge against model errors, that is, against the
possibility that the true model g is not exactly in the span of the given set of regression
functions’.? Wahba showed that spline smoothing may also lead to a measure of deviation
of the true function g, from the range of the regression functions. This deviation can be
estimated from the data. This measure of deviation can also be viewed as a bandwidth
parameter, controlling the smoothness of the estimated function. Using this approach to
nonparametric regression, the bandwidth parameter may be estimated from the data. Poirier

(1976) discussed smoothing splines and their applications in economics.

2.4 The Hamilton Methodology

2.4.1 Introduction

In an important paper, Hamilton (2001) proposed an approach to nonlinear modelling of
economic relationships that provides a single flexible parametric framework for testing for
nonlinearity, drawing inference about the form of nonlinearity and assessing the adequacy
of the description of nonlinearity provided by specific models. Following Wecker and Ansley
(1983), the approach treats functional form as the outcome of a latent stochastic process that
is part of the data-generating process; that is, the conditional expectation function associated
with a regression model is thought of as being generated randomly prior to the generation
of the data. This latent process is modelled using a Gaussian random field concept that
generalises Brownian motion to & dimensions, and the parameters of the process are estimated

by maximum likelihood.

"“Wahba (1978), p. 364.

YA cubic polynomial smoothing spline is defined as a smoothly joined piecewise polynomial of degree n.
For example, if t,t2,...,t, are a set of n values in the interval a,b, such that a < t; <t; < .- <t, <b,
then a cubic spline is a function g such that on each of the intervals (a,t1), (ti,t2),...,(tn,b), g is a cubic
polynomial and, secondly, the polynomial pieces fit together at the points t; in such a way that g itself and its
first and second derivatives are continuous at each t; and hence on the whole of a,b. (Everitt, 2002, p. 356.)

2OWahba (1978), p. 364.
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The method is a good deal more than an exploratory data or data-smoothing device,
although in this regard alone, it may prove very useful. From the practicing economist’s
viewpoint, its importance lies in the valuable insights it can provide for model construction
and the resulting enhancement of the forecasting ability of economic models. However, this
modelling framework has not been widely used to date and its full potential remains to be
established.?! As Hamilton (2001, p. 552) pointed out, its usefulness for particular sample
sizes and nonlinearities is a matter for empirical investigation. Yet, citing his own three
examples and the Monte Carlo studies by Dahl (2002), he suggested that the method holds

much promise.

The aims of the remainder of this chapter are modest and the focus intentionally narrow.
The main purpose is to address a number of practical issues that arise when using the Hamil-
ton (2001) framework. The first of these concerns computation: issues concerning Hamilton’s
software, which implements the method, are documented.?? It appears that the numerical
optimisation involved is not an entirely straightforward matter, either when using Hamil-
ton’s data set or alternative samples. It should be stressed at the outset that this is a result
of difficulties with numerical optimisation and not the Hamilton method itself. Thus while
the Hamilton case study is the primary focus, this finding may have more general relevance
for procedures that employ similar optimisation techniques. The second issue concerns the
sensitivity of the method to changes in data. Experiments suggest that minor data changes
can have implications for computation and big effects on the results. Another aim, given the
length and difficulty of the original paper, is to provide a concise and reasonably accessible
account of Hamilton’s methodology for nonspecialist practitioners, though the nature of the

subject matter is such that it is not possible to avoid some technicalities.

2.4.2 The model

Consider the nonlinear regression denoted by?3
,I/t:,LL(Xt)‘}-Et, =02 T, (217)

where y; is scalar, x; = [z is a k-vector of observations on the explanatory variables at
time t, £; is a stochastic disturbance with zero mean and constant variance, independent of
lagged values of x; and y;, and p(x) denotes the conditional expectation function E(y|x).

The nature of u(x) is fundamental to Hamilton’s (2001) approach and is considered to be

2!There are, however, some notable exceptions. Dahl and Gonzalez-Rivera (2003) further developed and
evaluated the test for nonlinearity proposed by Hamilton (2001), which will be discussed in some detail in
Chapter 3. Dahl and Hylleberg (2004) investigated the forecasting performance of flexible nonlinear regression
models for US unemployment and industrial production. Dahl, Gonzalez-Rivera, and Qin (2005) studied the
performance of nonlinear models when additive random fields are employed. Hamilton (2003) used his proposed
framework to model the relationship between oil-price changes and GDP growth. Finally, Kim, Osborn, and
Sensier (2005), used this flexible approach to explore nonlinearities in the monetary policy rule of the US
Federal Reserve.

22The program is written in TAUSS and can be freely downloaded from
http://weber.ucsd.edu/~ jhamilto/.

2o facilitate cross-reference to the original paper, the notation used in this section is similar to that used
by Hamilton (2001).
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determined by
pu(x) = ap + a’x + dm(g ® x), (2.18)

where ap and A are scalar parameters, a = [o;] and g = [g;] are k-vectors of parameters,
m(-) is a realisation of a stochastic process with a continuous path called a random field and
 denotes the Hadamard product, i.e., element-by-element multiplication. The realisation of
m(-), and hence u(x), is assumed to be generated by nature, prior to and independently of,
all of the observations. Given this fixed p(x), the values for £; and x; are then generated and
yt, is determined according to the Equation (2.17).

The interpretation of the parameters in Equation (2.18) is particularly important for the
understanding and application of Hamilton’s (2001) method. In particular, the scalars A and
gi, 1 =1,2,... k, characterise the relationship between m(-) and the conditional expectation
function pu(xy, xz9,...,x). Specifically, A is a measure of the overall ‘weight’ of the process
m(-) in the conditional expectation, while the magnitudes of the g¢; indicate the degree of
nonlinearity associated with their respective z;. Thus A = 0 indicates that m(:) makes no
contribution and the conditional expectation is linear, in which case Equation (2.17) is the
familiar general linear model. Similarly, g; = 0 implies that the conditional expectation
is linear in x;, while g; # 0 signifies that it is nonlinear in z;. If all of the g; — 0, the
contribution of m(-) to the conditional expectation, hence to y;, becomes indistinguishable
from that of «ag; if all of the g; — oo, the contribution to y; is indistinguishable from that of
£¢. The standard interpretation applies to «y, i =0,1,..., k.

The key component in Equation (2.18), on which the interpretation of the g; depends,
is the random realisation m(-). Its nature and role require explanation before the practical
matters of estimation and testing are considered. First, consider a uniform orthogonal grid in
R*, bounded in the direction of each of the k standard basis vectors or Cartesian co-ordinates
by some lower value a; and some upper value b;, j = 1,2, e k.?t Let the set of all nodes
in the grid be Ay, where N — 1 is the number of grid intervals in each direction and Nk is
therefore the number of distinct points in Ay. For each point x € Ay, let e(x) ~ N(0,1)
and be independent of e(z) for all x # z; let By(x) = {z € Ay : (x —2)(x —2z) < 1},
i.e., the set of all points in Ay whose distance from x is less than or equal to unity; and
let ny(x) denote the number of points in By(x). Hamilton (2001, p. 540) then defines the

scalar process my(x) as?

mN(x):[nN(x)]_% Z e(z). (2.19)

z€ By (x)

Taking the limit of Equation (2.19) as the grid partition becomes finer, i.e., as N — oo
and the interval length in each direction of the grid tends to zero, the notion of a continuous

scalar-valued k-dimensional random field emerges. The stochastic nature of this is such that

By uniform it is meant that the intervals defined by the grid are of equal length in the direction of each
of the k co-ordinates, and the number of intervals in each direction is the same. Note that this does not imply
that the intervals in different directions have to be the same length unless the a; are equal and the b; are
equal for all j.

25This processes is illustrated for k = 2,a; = a2 = 0,b; = 5,b, = 3, and equal interval lengths in Hamilton
(2001, p. 541), so that the number of intervals in each direction is not the same, as required by the definition
of An given here.
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for any x € Ay, m(x) ~ N(0,1). The similarity to standard Brownian motion is apparent.
For arbitrary points x and z in R¥, the correlation between m(x) and m(z) is zero if the
distance between x and z is greater than 2. If this distance is not greater than 2, it can be

shown, though the proofs are difficult,?® that

= Gk_l(h, 1)

Hy(h) = Covg (m(x), m(z)) G (0.0)

(2.20)

where G_1(h,1) = — Z (1- h)k_g1 +k—;—1Gk_2(h, 1), h is one-half the distance between x and z,

k =2,3,... and the initial values are Go(h,1) = 1-h and G (h,1) = %—%h(l—lﬂ)é — 5 sin(h).
Equation (2.20) can be calculated recursively, but fortunately its values for k£ = 1 to 5 inclusive
are provided in Table I of Hamilton (2001, p. 542) and are included in his program, although
the option to calculate recursively is available. It is this covariance that provides the means
by which the g; govern the curvature of u(x) in Equation (2.18); see the illustrative case of
k =1 in Hamilton (2001, p. 540).

2.4.3 Estimation

Assuming normality of the £, it follows from equations (2.17), (2.18) and (2.20) that
y ~ N (X3,C + o°Ir), (2.21)

where y is the T-vector of observations on the dependent variable in Equation (2.17), X
is the 7' x (k + 1) matrix of observations on the k explanatory variables and a column
of ones associated with the intercept, 8 = [ag, ']’ is the (k + 1)-vector of parameters of
the linear component of the conditional expectation, C = [/\QH,\,(I;,H)] is a T x T variance-
covariance matrix whose typical element is A*Covy, (m(g © x;), m(g © xs)), and h is one-half
the distance between g © x; and g © x,. The likelihood function follows straightforwardly

from Equation (2.21) as
2 T L 2 1 / Br xel
nfly: 0.9, o) = ——2-111(271')—5 In|C+o IT|—§(y—Xﬁ) (C+oIp) (y—XB). (2.22)

Maximum likelihood provides the basis for inference concerning the parameters 3, g, A and
o2, Hamilton (2001) showed that the procedure is valid for regressors that are deterministic
or lagged values of the dependent variable. However, in the interests of simplifying the
calculations, Equation (2.22) is rewritten. Defining ¢ = g letting ¥ = [ﬁ',02]/ be the
(k + 2)-vector of parameters of the linear part of the model and 8 = [g’, (]’ be the (k + 1)-
vector of parameters of the nonlinear component, and setting W (X; 0) = ¢2C* + I, where
C* = \72C, the right-hand side of Equation (2.22) can be written as

1

T ]‘ 2 1 X / . =1 - -
5 In(27) 5 Ino 5 In |W(X;80)| = (y - XB)W(X;0) '(y — XB). (2.23)

The values of the elements of 1 that maximise Equation (2.23) for given 6 can then be

26See Lemma 2.1 and Theorem 2.2 in Hamilton (2001, p. 541). Note also that the details relating to
Equation (2.20) are expressed slightly differently than in Hamilton’s (2001) lemma and theorem.

18



calculated analytically as
B(0) = [X'W(X;6)"'X] ' X'W(X;6) y, (2.24)

and

52(8) = ly ~ XBO) W(X;0)"'[y - XB(0)]. (225)

Thus Equation (2.22) may be concentrated as

#(0;y,X) = —g In(27) — 3 Inz2(0) — %m [W(X;0)

: (2.26)

-5
The numerical maximisation of Equation (2.26), therefore, gives the maximum likelihood
estimate of @, which through equations (2.24) and (2.25) yields the estimate of 1.

2.4.4 Bayesian analysis

This subsection introduces the Bayesian aspects of the Hamilton (2001) methodology. Before

doing so, however, a brief review of the Bayesian approach to inference is offered.

Consider the vector of parameters 9, estimated for a sample of observations, such that
= (/L.Uz)/ and, for example, z; ~ n.i.d. (/L.O’z) and Z = (21, 292,..., Z'[').27 The classical
statistical approach assumes that a true value of 9 exists. This is unknown and invariant,
and 9 represents its sample estimate, and is a random variable.

The Bayesian viewpoint considers 9 to be a random variable, implying a degree of un-
certainty about 1. This uncertainty can be described in terms of a probability distribution.
Information held before the observation of data forms a prior density, f (), and probabil-
ity statements regarding 19, made prior to observation, can be made in terms of this prior
density. The sample likelihood can be defined as f (Z|9). The joint density of Z and 9 is
f(Z,9) = f(Z|9) f (¥). The posterior density f (9|Z) = f(Z,9) f (Z)™", relates to state-
ments about ¥ after Z has been observed.

Returning to the Hamilton (2001) approach, recall that 1 = [,B', (1_2]’ and 0 = [g'. (] are
vectors of the linear and nonlinear parameters, respectively. Since the elements of 8 become
unidentified as g; — oo, the use of a nondiffuse prior is necessary in order for the posterior

distribution to be well defined.2®

“TThis exposition closely follows Hamilton (1994), Chapter 12.
*Consider y; ~ n.i.d. (i, 0?), the sample likelihood of which is

2 1 1 /
; 0%) = ——— ——y— gl (7 — ) b
fly | m o) Tra?) T P 52 (y = n1) (y — p1)
where 1 is a vector of 1s. Prior information about j is contained within its prior distribution, u ~ N (m, a’/v),
B ~ (= m)’
" @ro/n) 72 exp[ 2%/ |’

where m and v are parameters that describe the nature and quality of the prior information. As v — 0, the
quality of prior information becomes ever poorer and the Bayesian estimate of y, where y = (1/7) ZaT:1 Yt
approaches its classical counterpart. As v — oo, the prior is known as a diffuse prior, in which case the prior
information is disregarded (Hamilton, 1994, Chapter 12).

Filg: 02)
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A prior for each of 0—2, 3 and 8 is required.?’ The prior distribution of ¢~2 is given by

oy _ & o1 =2 :
plo™ )= F(—V—)O' v=1) exp [-¢077], (2.27)
where v = 0.25 and £ = (VSE)/Q for s;ﬁ, the sample variance of y. Similarly, the prior

distribution of 3 is defined as

1 1 —1

—i5 =1l I ap—1

p(B|o = —|M]| 2 ex [— —m) M ﬂ—m}. 2.28

(B 107) = Mt e | 75 (8 — m) M (8 - m) (228)
where M = T'(X’X)"!, a (k+ 1)-square matrix, and m is a matrix whose first element is the

sample mean of y;. Finally, the prior for @ is lognormal and given by

- 2
p(0) = ﬁ . i [m(ei) o <\/ZTZ>} . (2.29)

ex
e Vor 2

Given these prior distrributions, the posterior conditional distribution for 3 is

5 1 1 r = / *—1 * ¢
f(Blo7%Yr,0) = ————|M*|"zexp [*17 (B—m*)M" (B—m )] . (2.30)
(2mo2) 2 20

where Y7 = (yr, X7, Wr-1, Xp_q,---, Y1, %)y M* = (M +X'W‘1X)7I and m* =
M* (M‘lm + X’W“ly).. Also, the posterior conditional distribution for o2 is

F? | ¥2,0) = g D e 7077, (231)

where v* = v + (T'/2) and £* = £ + $(y — Xm)/[W(X;6) + XMX']~!(y — Xm). Finally, it

can be shown that the joiint distribution of y and € is given by

[0y |X)=f(y]0,X) p), (2.32)
where L) e
e Y ] 1—1/2 o
fiy |0, %)= Gn) T (e (W (X;0) + XMX'| . (2.33)

How then can the comditional expectation function E [1(x)[Y 7] be estimated? Consider
the random vector ¢ whosse distribution, conditional on @ and Y, is f (¢|@,Yr). It can be
shown that the posterior probability that ( falls into a region C' is as follows. An indepen-
dently and identically disttributed sample of 81, ..., 8N) is drawn from an arbitrary density
function, 7(6). For each @Y, generate (V) from f (¢|6Y), Y1), and calculate

Z;'V:I O ec)W (69, Y7)

il ol e Zf’zl w (00),Y7)

(2.34)

29 A standard prior is used for 2. See DeGroot (1970), p. 251.
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where C' is some region containing ¢, 6[<< nec) = 0 when ¢ ) ¢ C and 1 otherwise, and

f (89, y|X)

G0 (2.35)

w (9(j)7YT) =
where I (H(j )) is an arbitrary importance density. Finally, it can be shown, conditional on
and 0, that

M(X) | $,0,Yr ~ N (fT (X | P, 0) y PT (X,X | 11),0)) ) (236)

where {r(x) = E [u(x|Yr)] and pr(z,w) = E [¢7(2z) — pu(2z)] [ér(w) — p(w)]. The posterior

mean can be calculated, therefore, from

ZJVZI ér (x| ¢(J),9(j)) w (a(j), Yr)

Z;.V:lw(g(j),YT)

Elu(x) | Yr] =

: (2.37)

2.4.5 Testing for nonlinearity

The form of the model used in Hamilton’s (2001) approach, Equation (2.18), suggests that
a simple method of testing for nonlinearity is to test the hypothesis that A = 0, or A\? = 0.
Hamilton shows that if A*> = 0, and the nonlinear model is estimated, then for fixed g, the
maximum likelihood estimator A2 is consistent for the true value off zero and asymptotically
normal. Thus a test based on the use of standard normal tables is suggested. However, given
the maximum likelihood approach to estimation and the linearity of Equation (2.17) under
the null hypothesis that A> = 0, an obvious and perhaps more appealing way of testing is
to use the Lagrange multiplier principle, which requires only a simple linear regression to
be estimated. Under the assumption of normality, Hamilton deriwes the appropriate score
vector of first derivatives and the associated information matrix and proposes a form of LM
test for practical application. The procedure has four steps. Set g; = 2/ \/Tsf excluding the
constant term whose variance is zero. This g; is approximately thie mean of the lognormal
Bayesian prior used by Hamilton as the initial value for #;, i = 1, 2,...,k.3° Calculate the
T x T matrix, H, whose typical element is Hj, (%Hg DX —g® xsll), i.e., the function Hy(hys)
defined in Equation (2.20). Use OLS to estimate the standard linear regression y = X3 + €
and obtain the usual residuals, €, and the standard error of estimate:, 0 = (T'—k—1)~ 3 Ve'e.

Finally, compute the statistic

» [e'He — & %tr(MpH))?
ot [2tr (MrHMp — (T — k — 1)~ !Mygptr(MrH)]2)]’

Ai(9) (2.38)

where My = Iy — X(X'X) !X’ is the familiar symmetric idempotent matrix.3!

As \E(g) - x4 under the null hypothesis, linearity (A?> = 0) would be rejected if A5 (g)
exceeded the critical value, X%,av for the chosen level of significance:, a.?? In the former case
the alternative nonlinear specification given by equations (2.17) and ((2.18) would be preferred.

The identification of a specific form of nonlinearity is greatly aided by the estimate of the

0See Subsection 2.4.4.

*'Hamilton (2001) denoted his LM-type test statistic by v%; in this and subsequent chapters, this test is
denoted by Af;(g), following Dahl and Gonzalez-Rivera (2003).

#2For example, at the 5 per cent significance level, the null would be rejected if \E(g) > 3.84.
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conditional expectation u(x) and, specifically, the g; and E . The matter is explained in
Hamilton (2001, Section 5) and to some extent in the following subsection. It is illustrated

in the three examples in his Section 7 and at several points in the remainder of this thesis.

2.4.6 Inference and modelling

Thus far, consideration has been given to the theoretical aspects of the Hamilton (2001)
methodology. The remainder of this chapter is dedicated to the issues arising from the prac-
tical application of the procedure. Hamilton’s suggested new approach, a framework for
modelling nonlinear relationships, is a three-step procedure that ‘proposes a single encom-
passing framework for nonlinear modelling, offering a new test for nonlinearity, methods to
infer what the nonlinear function looks like and checks of whether it is adequately described
by some particular model’.33

The first stage of the three-step procedure is to test for nonlinearity in the data. Testing
for nonlinearity has been described in Subsection 2.4.5. As has been previously noted in
Subsection 2.4.2; if the true relationship is linear, then g is unidentified. At this point, the
implementation of the procedure, using the software provided, may be a source of some confu-
sion. If the true relationship is indeed linear, the test statistic of the Lagrange Multiplier (Lm)
test for nonlinearity should, for a given level of significance, be statistically insignificant.??
Even if this is the case, however, the GAUSS procedure continues to attempt to estimate 6.
Experience has shown that in such cases, the iterative process required to estimate 6 often
fails. While this may lead to the belief that the program has encountered one of the many
implementation issues to be outlined later in this chapter, this is clearly not the case. Should
the procedure not fail, the estimates obtained for & may not necessarily be statistically in-
significant. Without due care and attention, therefore, the applied researcher may infer a
nonlinear specification when in fact the data should be modelled with a linear form. The
result of the nonlinearity test must, therefore, be evaluated before turning attention to the
results of the optimisation.

The estimation of €@ from the concentrated likelihood function in Equation (2.26), dis-
cussed in Subsection 2.4.3, provides estimates for g and (. These are important elements
of the assumed underlying nonlinear relationship, and are the elements which contribute to
the nonlinearity. Given the estimation of 6, estimates for v, whose elements, «;, describe
the linear aspects of the relationship, can easily be found from equations (2.24) and (2.25).
As noted in Subsection 2.4.2, the estimates of ¢g; and ¢ describe the relationship between
m(-) and the conditional mean function p(x). Not only does the GAUSS procedure return
estimates for g;, ¢ and «y, it also returns the estimates’ asymptotic standard errors and the
square roots of the posterior Bayesian variances, given by E {[92- - E(@ierp)]zlYT}. The
Bayesian analysis was discussed previously in Subsection 2.4.4.

The estimation of 8 and 1 is necessary for the second stage of the procedure. Those

estimates can only assist, however, in inferring a suitable nonlinear specification to model

33Hamilton (2001), p. 538. It should be noted that the use of the same data sample for testing and estimation
calls into question the underlying assumption of independence.

34This conditionality stems from the probability of the test making a Type I error, i.e., the chosen level of
significance for the test.
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the relationship in question. Consider the case of a model with two explanatory variables,
and assume that the LM test for nonlinearity rejects the hypothesis of a linear relationship.
Further, assume that at least one of the explanatory variables contributes to the underlying
nonlinearity. Having obtained estimates of @ and 1, and where, for example, g; is found to
be statistically significant and g, is not, consider the conditional expectation function with

respect to x1, holding x9 constant, given by
E [p(z1, T2) [Y7], (2.39)

where Ty is the sample mean of the explanatory variable xo. Plotting this function may allow
the researcher to infer the correct nonlinear specification. For more complex examples, a
similar procedure is followed. First, the LM test is used to examine whether the relationship
between the dependent and independent variables is nonlinear. Second, having estimated 6
and v, a conventional parametric specification is inferred from the flexible nonlinear inference
procedure. The third and final stage of this process is to re-test the inferred specification using
the LM test as a misspecification test, to confirm that the correct form has been chosen. Where
more than one g; is found to be statistically significant, plotting the conditional expectation
function may not be straightforward. For two significant g;, Hamilton (2001) used contour
plots, although surface plots may be equally useful here. For three significant g;, the use of
the conditional expectation function is abandoned altogether.?> In some circumstances, it
may be straightforward for the researcher to infer a conventional specification from the plot
of the conditional expectation, should that plot be sensible. It may be, however, that this

process will be far from trivial!

2.4.7 Nonlinear inference and nonstationarity

An understanding of the general characteristics of any methodology is fundamental. Only by
understanding the applicability and shortcomings of any technique, may it be appropriately
utilised. Hamilton’s (2001) proposed framework is indeed flexible; it has been shown that
‘the class of nonlinear functions estimated consistently is quite flexible’, regardless of whether
the explanatory variables are discrete or continuous values.?® It has also been shown that it
is possible to obtain consistent estimators of the conditional mean, even under fairly general
misspecification. By using an alternative covariance specification, which will be discussed fur-
ther in Chapter 3, Dahl and Gonzélez-Rivera (2003) showed that the problem of unidentified
nuisance parameters can be overcome. However, ‘given a particular sample size or function,
the usefulness of our approach is a matter for empirical investigation’.3”

While it is the aim of this chapter and indeed this thesis to empirically investigate this
technique, one final consideration regarding its applicability is necessary. This thesis is con-
cerned with modelling data which may be (fractionally) integrated and possibly cointegrated,

but also data which may contain structural breaks or latent nonlinearity, and possibly both.

% For details, see Hamilton’s (2001) three examples, p. 559-564.

% Hamilton (2001), p. 551. It is assumed that the term ‘consistently’ is used in the usual sense. That is, an
estimator is said to be consistent when the probability limit of a sequence of estimators is equal to the true
population parameter (Hamilton, 1994, p. 181).

#THamilton (2001), p. 552.
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The issues of structural breaks and latent nonlinearity are not troubling. Exploratory data
analysis should highlight the existence of breaks and the practicing economist should not
have difficulty detecting them in many cases. Latent nonlinearity is even less of a concern,
as the Hamilton (2001) framework is designed to detect it, and studies to date suggest the
technique is powerful.

What may be troubling, however, is the performance of the Hamilton methodology where
the data are integrated to some degree. Lee, et al. (2005) addressed the issue of spurious non-
linear regression in econometrics. Specifically, they assessed the performance of a variety of
nonlinearity tests, including Hamilton’s (2001) LM-type test, introduced in Subsection 2.4.5.

Lee, et al. used the following two independent random walk variables,

Yt = Yt—1 + Eyty
Tt = Tg—1 + Eaxt, (2.40)

where £, ~ i.i.(l.((),()';), ept ~ 1.4.d.(0,02). The tests under examination were employed to
test whether y; and x; were nonlinearly related for various simulated samples, ranging in size
from 1" = 50 to 1" = 10,000. The results present startling evidence of spurious nonlinear
regression. Of particular interest here, the Hamilton LM-type test performs poorly. For the
smallest sample size of 1" = 50, the test rejects linearity in over 50 per cent of cases against
a nominal size of 5 per cent. Worryingly, rather than converging to its y? distribution,
the statistic A5 (g) diverges to infinity as the sample size increases, i.e., its rate of rejection
of the null of linearity converges to 100 per cent. They concluded by warning that ‘when
interpreting nonlinear test results in favour of nonlinearity, applied economists should weigh
the evidence against the persistence structure of the time series under investigation’.?” These
results suggest that care should be taken applying the Hamilton methodology to persistent
or integrated data. This may lead to incorrect inferences regarding nonlinearity and possibly
result in misdirected modelling efforts.

This is a pertinent warning that highlights some of the potential difficulties faced in ap-
plied research. Tests for nonlinearity appear to have low power against spurious nonlinearity.
It is well known that tests for unit roots perform badly in the presence of nonlinearities and
or structural breaks, i.e., unit root tests may incorrectly infer that stationary series with
nonlinearities or breaks are nonstationary. Together, these results suggest that attempts
to untangle the issues of stationarity, nonlinearity and structural instability are less than

straightforward.

2.5 Computational issues

The implementation of Hamilton’s (2001) methodology is straightforward, in principle, given
the on-line availability of Hamilton’s program code. In practice, however, difficulties beyond
those outlined in Subsection 2.4.6, may await the unwary. These difficulties relate to the

nonlinear optimisation algorithms in the OPTMUM procedure of GAUSS, which is at the heart

38See Chapter 3 for further details.
Lee, et al. (2005), p. 306.
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of Hamilton’s program. Indeed, initial attempts to run the program using GAUSS 5 failed
completely and no nonlinear estimates were obtained. It was this experience that motivated
the research contained in this chapter.

The methods of nonlinear optimisation are familiar to many econometricians. The partic-
ular algorithms available in the GAUSS OPTMUM procedure are some of the most well known.
However, to understand fully the issues raised in the following sections, a brief description of
numerical optimisation and the relevant algorithms used in GAUSS is provided in the following

subsection.?

2.5.1 Nonlinear optimisation

The OpPTMUM procedure in GAUSS maximises a function, for example Equation (2.26),

?(0;y, X), by minimising the negative of the function with respect to its vector of parameters,
in this case . Given the derivatives of this objective function with respect to @, i.e., the
gradient vector, which is numerically computed, and initial values for 8, obtained as described
in Subsection 2.4.4, the OPTMUM procedure advances iteratively, computing a direction, d,
and a step length, s, at each iteration. The quantity sd is a vector of values that is added
to the current estimate of @, and therefore has the same dimension as @, and s is a scalar.

Thus, given a value for d the current estimate, 5, is updated as
6, =6+ sd; (2.41)

hence s may be interpreted as changing the rate of descent of the objective function in the
given direction. How d and s are computed will be described in turn, concentrating on the
former.

Defining G to be the k£ + 1 gradient vector and H to be a (k+ 1) x (k + 1) symmetric

matrix, a standard method of calculating d is from
d=H"lg. (2.42)

However, as numerical matrix inversion may be challenging, the OPTMUM procedure avoids

it by computing d as the solution of the equation
Hd =G, (2.43)

which is thought to be numerically more reliable. While G is calculated in a standard manner,
‘H may be calculated in different ways depending on which algorithm is selected. Several
approaches are available in OPTMUM.

The STEEPEST DESCENT algorithm simply sets H = I, the identity matrix of order
k+ 1. While this is computationally undemanding and therefore attractive, the descent may
be slow and require many iterations before convergence. The PRcG or Polak and Ribiere

(1969) conjugate gradient method is a development of the STEEPEST DESCENT method that

“OFurther details on numerical optimisation may be found in the texts by Brent (1973), Greene (2003),
Murray (1972) and the GAuss reference manual Optimization, Aptech Systems, Inc., 2001, especially chapters
2 and 3.



also uses only the gradient but updates the direction as

A

i (2.44)

d; =G4 +rd, wherer =

There are several more complex methods. The NEWTON algorithm equates H to the
Hessian of the objective function, which may be computed numerically as the gradient of
the gradient. Unfortunately, this computation is generally a formidable numerical problem
and, as it is required at each iteration, makes the algorithm slow and possibly unreliable.
However, when it works smoothly, the NEWTON algorithm may converge in fewer iterations
than other methods.

The large computational problems associated with the calculation of the Hessian in the
NEWTON method are avoided by certain so-called quasi-Newton algorithms. These start with
an initial estimate of the Hessian and employ updates that add information at each iteration
without requiring the calculation of second derivatives. Although they generally need more
iterations to achieve convergence than the NEWTON method, their numerical efficiency means
that they are usually faster and, furthermore, tend to be more robust to the condition of the
model and data. The OpTMUM procedure contains three such algorithms: the BFGs method
due to Broyden (1967), Fletcher (1970), Goldfarb (1970) and Shanno (1970), the Drp method
of Davidon (1968) and Fletcher and Powell (1963) and BrGs-sc, which is a modified BrGs
algorithm in which the formula for the computation of the update of the Hessian estimate
has been changed to make it scale free. In all three cases, the OpPTMUM implementation
of the algorithm uses the Cholesky factorisation of the approximation to the Hessian in
Equation (2.43), i.e., H = C'C, before solution for d. The Bras algorithm is the default
choice in OPTMUM, while the other five are available as options.*!

The OpTMUM procedure in GAUSS 5 also includes a number of methods for computing
the step length, s. The default method is called STEPBT, which is described in Dennis and
Schnabel (1983). It first attempts to fit a quadratic to the objective function and computes
an estimate of s that minimises the quadratic. If that fails, it tries a cubic function, which
is rather more versatile in cases where the objective function is not well approximated by a
quadratic.

If STEPBT fails, then BRENT is used, a technique due to Brent (1972) that evaluates
the objective function at a sequence of test values for s, determined by extrapolation and
interpolation using the inverse of the ‘golden ratio’, namely, the constant NF’%” = 0.61803.
This method is generally more efficient than STEPBT but requires significantly more function
evaluations.

If, in turn, BRENT fails, then a procedure called HALF is used. Denoting the objective
function by F (§+ sd), this method first sets s = 1. If F (5-}- .s-d) < F (5) then s is set

to 1; if not, then s = 0.5 and F (54— sd) is tried. The attempted step length is halved each

time the objective function fails to decrease. When the function does decrease, s is set to

411t should be noted that all of the methods discussed here are locally but not globally convergent. While not
considered here, a range of globally convergent optimisation techniques is available. These include smoothing
(homotopy) methods, response surface techniques, simulated annealing and genetic algorithms. Further details
can be found in Horst and Pardalos (1995), Pinter (1996) and Neumaier (2004). For econometric applications
see, for example, Maddala and Nelson (1974), Goffe (1996), Jerrell and Campione (2001), and Tucci (2002).
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its current value. This method usually requires the fewest function evaluations but is most
likely to fail to find the step length that decreases the objective function.

Finally, if HALF fails, a final search for a random direction that decreases the objective
function is implemented. The radius of the random search is fixed via an important global
variable in OPTMUM called _oprteps, the default value of which is 0.01. It is, however,

possible to specify any positive value for _oprteps.

2.5.2 Computations and results

The computations and results in this subsection and the following section relate to Hamilton’s
(2001) Example 3 concerning the post-war US Phillips curve. No results for the test statistic in
Equation (2.38), the LM-type test for nonlinearity, are given here as they derive from a simple
ordinary least squares regression, which is unproblematical. However, they were checked for
all of the cases considered and, without exception, the null of linearity was rejected.

Noting that an OLS regression of inflation (7;) on unemployment (u;), lagged infla-
tion (m—1) and a time trend (¢) reveals statistically insignificant evidence of an inflation-
unemployment trade-off using annual data for the period t = 1949 to 1997, Hamilton (2001,
Section 7) investigated the use of a nonlinear relation like that defined in equations (2.17)

and (2.18), of the specific form
me = (g, Teo1,t) + ¢ (2.45)

As previously noted, however, it was initially not possible to replicate Hamilton’s results
using GAUSS 5 and Hamilton’s original data: the numerical optimisation associated with the
maximisation of Equation (2.26) failed. The original data is included here, for reference, as
Table A.1.%2

Alternative algorithms and step lengths

Examination of Hamilton’s (2001) GAUSS program revealed that it employs the Bras algo-
rithm and relies on the default value of _oprteps. It had also been implemented by Hamilton
using an earlier version of GAUSS. Indeed, it was possible to reproduce his results using GAUSS
3 without any modification of the program, although for his reported value of gs of 0.16, a
value of -0.16 was recorded, when rounded to two decimal places, like all of his results.!3
However, when using GAuss 3 with different algorithms, by suitable and straightforward
adjustments of the program code, the results, when they were produced using Hamilton’s
data, were not always similar to those reported by Hamilton. Table A.4 shows the results
of all six optimisation procedures available in GAUSS. In this table, algorithms 1, 2, 3, 4, 5
and 6 refer to the STEEPEST DESCENT, Bras, Bras-sc, DFp, NEWTON and PRCG methods,
respectively; and the g; and «; refer to the parameters in the nonlinear and the linear com-
ponents of the conditional expectation function, respectively. The values of i = 1,2, 3 relate

to us, m—1 and t, respectively, while o is the constant.

“2All tables and figures referred to in this and subsequent chapters can be found in the relevant appendices.
“3This difference in sign is of no consequence for the nonlinear inference, as both positive and negative
values imply the identical value of g7, and therefore of the likelihood function.
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The results for Bras (algorithm 2) in Table A.4, obtained using the program in unmodified
form, are those corresponding to Hamilton’s (2001) published results and are included as a
convenient reference. Apart from the one difference in sign for go, they are identical to his.
However, it was found that BFGS-sc (algorithm 3) and PRCG (algorithm 6) fail for Hamilton’s
dataset, STEEPEST DESCENT (algorithm 1) produces noticeably different numerical results
from Hamilton’s, NEWTON (algorithm 5) produces very similar results except for the sign on
the nonlinear parameter estimate go, and DFP (algorithm 4) replicates the results of BFGs, the
Hamilton case. Despite the big numerical differences in the results produced using algorithm
1, the high statistical significance of g3 remains and the inference concerning nonlinearity
would be basically the same as that drawn by Hamilton.

Following an amount of experimentation involving straightforward modification of the
program code to utilise different values of _oprteps, Hamilton’s (2001) results were eventu-
ally reproduced using GAuss 5. It should be noted that not all values of _oprteps proved
successful and led to results. Table A.5 contains the results for what was the most success-
ful value for this parameter, namely, _oprteps = 0.00001, while Table A.6 gives results for
certain other _oprteps values, namely, 0.001, 0.1 and 1.0. As can be seen from Table A.5,
the results from GAUSS 5, algorithm 2, are identical to those of Hamilton produced by the
same algorithm in GAUSS 3. The results from GAUSS 5, algorithms 1 and 5 are similar in ab-
solute terms to those given by algorithm 2, but there are some sign changes on g, and g3. In
contrast to what was found using GAUSS 3, there are surprisingly large numerical differences
between the results from algorithms 4 and 6 and those from algorithm 2 when using GAUSS
5. Despite these various changes across some algorithms and the two versions of GAUSS, g3
remains the most statistically significant of the nonlinear parameter estimates, though go is
marginally significant for most of the algorithms and _oprteps values. Algorithm 3 failed in

M and it was concluded

all experiments due to a problem with the Cholesky decomposition,
that this may be due to a program error in the GAUSS software, which remains to be inves-
tigated. The numbers of iterations used by the alternative algorithms are, in relative terms,

broadly in line with what was said about relative efficiencies in Subsection 2.5.1.

Initial parameter estimates

It is well known that the initial estimates of parameters are often critical for convergence of
numerical optimisation procedures. The initial estimates for the g; parameters in Hamilton’s

g -, . " . B . e S Bl . R 2
(2001) program, as have been used previously in testing for nonlinearity, are g; = 7L—~§
%

where s? is the sample variance of explanatory variable z;.%> While there is no information
in Hamilton’s paper concerning the initial value of (, examination of his program revealed
the start value ¢ = 0.5. It was decided to investigate the effect of changes in the initial value
of ¢, using the STEEPEST DECENT algorithm, which, according to Schoenberg (2001, p. 14),
is the least affected of the algorithms by choice of starting values, and which was the only
algorithm not to have failed in our earlier experiments.

Using _oprteps = 0.00001 and a range of start values for ¢ from 0.1 to 1.5, inclusive, in

#The Gauss diagnostic message produced was Cholesky downdate failed.
45See Subsection 2.4.5.
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steps of 0.1, it was found that failures occurred for the lower values of 0.1, 0.2 and 0.3, but
that all other values of { produced results. In all successful cases, the number of iterations of
algorithm 1 was 150, the default maximum in the code. There was considerable variability
in the final estimates of the g; parameters and their standard errors, although g3 was always

statistically significant. The results for these cases are given in Table A.7.

Algorithm switching

In order to capitalise on the characteristics of the various optimisation algorithms, and thereby
economise on the number of iterations, and to examine whether the variability in parameter
estimates noted in the previous subsection could be reduced, the investigation of the effects
of different start values was extended to consider the use of an algorithm switching procedure
involving two different methods, as described by Schoenberg (2001). This procedure begins
with algorithm 1, STEEPEST DESCENT, which is robust to initial conditions, i.e., initial
parameter values and a step length of unity.*® If the function fails to improve by the default
amount of 0.01, then a switch to algorithm 2, BFGs with step length BRENT takes place.*”
The use of algorithm 5 (NEWTON) was also explored as the second of the algorithms.*®
Again, the procedure fails for initial values of ¢ of 0.1, 0.2 and 0.3, but produces estimates
for all other start values of ( examined. Considerably fewer iterations are involved in obtaining
the final estimates. A maximum of 29 iterations for initial ¢ = 0.6, 0.7 and 0.8, and a minimum
of 11 iterations for initial ¢ = 1.1 were required. Fewer iterations are required in all cases
but one when the second algorithm is chosen to be NEWTON. Greatly reduced variability is
observed in the final estimates and their standard errors across all cases, and these estimates
are very close to Hamilton’s (2001) original results as given in Table A.5. Indeed, to three
decimal places, the absolute values of the estimates and their standard errors are identical,
except for the case of ag, where the differences are none the less very small. Details of the
results for the two versions of the algorithm switching experiment for the odd start values of
C are presented in tables A.8 and A.9. Results for the even start values, which are similar to

those contained in the tables, were omitted for brevity.

2.6 Sensitivity to Data

This section reports on the performance of the program, the GAUSS algorithms, and the re-
sults produced, when various small changes are made to the dataset used in Hamilton’s (2001)

Example 3. Three types of change were considered. The first deleted observations at the start

46 Although in this case, both the algorithm and step-length method switch, OPTMUM can switch just the
algorithm, allowing the step-length to be chosen in the usual way (see Subsection 2.5.1).

“TThis switching is controlled by the value assigned to the global variable _opdfct. If the function fails
to improve by the percentage _opdfct, OPTMUM switches to the secondary search method. Its default =
0.01. This methodology can pair any two algorithms together, although algorithms 1, 2 and 5 are usually
recommended, given their respective characteristics.

*®The advantages of such an approach are apparent. The OPTMUM optimisation process can be started
without strong demands on either the condition or starting points of the model, given the characteristics of
the STEEPEST DESCENT method, and can then switch to more efficient methods, in this case BFGs or NEWTON,
that are more demanding, after the function is closer to the minimum. This switching algorithm technique
offers the potential to overcome various problems encountered en route to the optimisation of 6.
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of the dataset and the second deleted observations at the end, thus giving successively smaller
samples. The third added new observations to create successively larger, somewhat updated
samples. The additional observations on the US unemployment data and the US consumer
price index were obtained from the US Bureau of Labor Statistics.? Checks confirmed that
the observations for the period 1949 to 1997, also available from this website, were identical
to those in Hamilton’s dataset. In line with Hamilton’s treatment, no re-scaling of the data

was undertaken.

In all, ten alternative samples were created. Hamilton’s (2001) original dataset is des-
ignated as dataset 1. Deleting the first observation (¢ = 1949) from Hamilton’s data gives
dataset 2; deleting the first and second observations gives dataset 3; deleting the first, second
and third observations gives dataset 4. Similarly, deleting the last observation (¢t = 1997)
gives dataset 5; deleting the last two observations gives dataset 6; deleting the last three
observations gives dataset 7. Finally, adding the observation for 1998 gives dataset 8; adding
the two observations for 1998 and 1999 gives dataset 9; adding the three observations for
1998, 1999 and 2000 gives dataset 10; and adding the four observations for 1998 to 2001,
inclusive, gives dataset 11.

For each of the 10 alternative samples, Hamilton’s (2001) program was implemented using
GAuUss 5 and the values for _oprteps of 0.00001, 0.001, 0.1 and 1.0, which were referred to
in Subsection 2.5.2. The GAuss 3 implementation was also used with datasets 2, 5, 7,
8 and 11. A large volume of results was therefore produced and the relevant details are
tabulated in tables A.10 to A.25. Table A.10 summarises the nonlinear estimates given by
the GAUSS 3 implementation using dataset 2. These results are typical; three of the six
nonlinear optimisation algorithms fail, and of those that did not fail, there are considerable
differences in the results produced. The results from GAuss 3 for datasets 5, 7, 8 and 11
are contained in tables A.11, A.12, A.13 and A.14, respectively. The level of program failure
in each case is at least as great as that observed using dataset 2, and the variation in the
nonlinear estimates remain considerable in some cases.

As shown by Table A.10, algorithm 2, which is Hamilton’s (2001) default method, as well
as algorithms 3 and 4, fail in GAUss 3. The apparent reason is that after one or several
iterations, the algorithm encountered a nonpositive definite matrix.’” Of the methods that
worked, algorithm 1 and 6 give similar results but algorithm 5 gives very different results

I These differences are

from these, including different signs for all of the g; coefficients.?
noteworthy, as is the fact that algorithm 2 fails for all of the modified data sets examined, as
can be seen in tables A.11 to A.14.

The results of the GAUSS 5 implementation using datasets 2 to 11, inclusive, are contained
in tables A.16 to A.25, respectively. The information from these tables on the success and
failure of the algorithms is summarised in Table A.15, for convenience. This Table includes
similar information for Hamilton’s (2001) data (dataset 1), for comparison. From a total

of 264 program runs, 102 or 39 per cent failed to produce nonlinear estimates. At the

Yhttp://www.bls.gov/.

*°One or other of two GAUSS diagnostic messages were obtained in this event. The first was Negative of
Hessian is not positive definite; the second was Matrix not positive definite.

1 Although as previously noted, the sign on the g; parameters is unimportant, as it is g that is relevant.
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extremes, algorithm 3 (BFGs-sc) failed in all cases, in line with previous findings, while
algorithm 1 (STEEPEST DESCENT) was successful in all cases. These latter cases all required
the maximum number of iterations permitted by the program.®? Algorithm 5 (NEWTON) was
the most efficient, converging after the least number of iterations, but it failed in 10 out of 44
runs, i.e., in 23 per cent of cases. Worryingly, algorithm 2 (BrGs), the default in Hamilton’s
program, failed in 28 out of 44 runs or 64 per cent of cases.

As found in the case of GAUSS 3, there are many differences in the nonlinear estimates
obtained from a given dataset when different algorithms converge using GAUSS 5, including
some sign changes. Furthermore, there are also some big changes in numerical parameter
estimates, again including some sign changes, when marginal changes in the original dataset,
such as the addition or deletion of just one observation, are made. Of particular interest is
the case of the results obtained using dataset 11 and algorithm 2, where the addition of four
extra observations leads to radically different conclusions concerning nonlinearity than those
in Hamilton’s example. In this case, all three g; are found to be significant, in comparison to
just gz using the original data with this algorithm. The implications for inference regarding
the data in this case are obvious, implying that 7; is now nonlinear in not just ¢, as before,
but in u; and m_; also. This appears to be an exception, however, as the relatively high
statistical significance of g3 is generally maintained across the range of experiments that have
been conducted.

Finally, the algorithm switching procedures, outlined previously, were also applied to
datasets 1 to 11, inclusive. Interestingly, while there were a few cases of failure, this procedure
appears to offer increased efficiency and somewhat improved numerical stability in the final
numerical parameter estimates. These results can be found in tables A.26 and A.27. Note
that the algorithm switching procedure has been shown in Subsection 2.5.2 to be somewhat
robust to initial parameter estimates. Given the increased efficiency and stability noted here,

these methods seem to offer the best approach to numerical optimisation in this context.

2.7 Further Results: Hamilton’s Example 1 and 2

The computations and results reviewed thus far have related solely to Hamilton’s (2001)
Example 3, concerning the US Phillips curve. It is believed, however, that the issues outlined
in Subsection 2.5.2 may be common to any implementation of the Hamilton approach. To
examine if this was indeed the case, Hamilton’s Examples 1 and 2 were reconsidered in light of
the issues raised on the implementation of the methodology, namely, alternative algorithms,
initial parameter estimates, algorithm switching and sensitivity to data.

Hamilton’s (2001) Example 1 and Example 2 rely on randomly generated data. Example

1 makes use of a simple threshold model, defined by

Yy = U.6.’lful[1.“>0] + 0.2x9; + &4, (2.46)

92The number of permissible iterations is controlled by the GAUSS parameter _opmiter, which defaults to 150
in Hamilton’s (2001) program. It was found through suitable experimentation that increasing the maximum
number of iterations to 250, for those algorithms that reached the original maximum of 150, did not alter the
results obtained to three places of decimals.
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where z;; ~ n.i.d.(0, 100), liz;,>0) = 0 when x;; < 0 and 1 otherwise, &; ~ n.i.d.(0,1) i = 1,2,
t =1,...,7, and the number of observations, 7" = 100. For Example 2, a more elaborate

specification is used, namely,
Y =95+ 2-’L’1¢l72¢1[],“>0]1[129>0] + 0.7z3; + €4, (247)

where z;; ~ n.i.d.(0,4), &, ~ n.i.d.(0,1) 1 =1,2,3, t =1,...,T, and again, 7' = 100. In both
cases, the null of linearity is correctly rejected by Hamilton’s LM test, with test statistics of
AE(g) = 232.93 and Ag(g) = 64.39, respectively, far in excess of the 5 per cent critical value
of )\g(g) = 3.84. In Example 1, g; is found to be significant, and in Example 2, g; and g, are
found to contribute to the nonlinearity. It should be made clear at this point that as the
were randomly generated for both examples, the results presented for the remainder of this
section relate to a fixed sample of x;; for each example, generated exactly as in Hamilton.
In this way, the results presented here are directly comparable. For this reason, the results
for Hamilton’s Example 1 and Example 2, found using algorithm 2, GAUSS 3 and shown in
tables A.28 and A.29, differ slightly from those reported in his paper. These differences stem
solely from the random generation of the observations on the x;;. The particular samples of
data used here can be found in tables A.2 and A.3.

Tables A.28 and A.29 present the results for the fixed sample of data using GAUSS 3 and
the six available algorithms. As with previous findings, the various algorithms return some
small numerical differences in the parameter estimates and some sign changes. As before,
the algorithm BFas-sc fails completely for both examples. The high level of significance for
g1 and therefore, the inference concerning nonlinearity remains the same however, regardless
of which of the five functioning algorithms were chosen. Tables A.30 and A.31 show the
results for the various algorithms in GAUSS 5. A similar pattern emerges here; despite using
a range of values for _oprteps and the six algorithms, the results remain largely unchanged,
apart from some small numerical differences and some sign changes. Again, Bras-sc fails
completely. Also, this experimentation gives further confirmation of the relative efficiencies
of the algorithms, given the number of iterations required for convergence. These findings
confirm those of Subsection 2.5.2, where the choice of algorithm was found not to affect the
statistical inference of the methodology.

The effect of altering the initial value of the parameter ¢ has almost no impact, again
beyond creating small numerical differences and sign changes, unlike the case of Example 3,
mentioned in Subsection 2.5.2. These results can be seen for Examples 1 and 2 in tables
A.32 and A.33, respectively, where once again, STEEPEST DESCENT, the algorithm most
robust to initial conditions is employed, and in each case, converges after the maximum

150 iterations.”® It should be noted that the program failed to produce estimates in both

3In these cases, the optimisation algorithm gave results after 150 iterations, the default maximum in the
program. To investigate if the algorithm had actually converged to an optimum or simply stopped at the
maximum, the optimisation was repeated with a maximum of 300 iterations. In every case, the optimisation
converged before reaching this maximum and interestingly, the estimates were very similar to those produced
after 150 iterations. Observing the optimisation iteration-by-iteration in each case confirmed that before 150
iterations were complete, the algorithm had converged to a small neighbourhood. As the iterations progressed,
the algorithm simply moved around that neighbourhood. The numerical values obtained from any of these
iterations were very close, and so the results for 150 iterations are reported here. These results were confirmed
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examples for ¢ = 0.1 and 0.2, and in the case of Example 1, the greatest numerical differences
in parameter estimates were observed for ¢ = 0.3. As was the case with Example 3, where
estimates were produced, the inference regarding the nonlinearity is unchanged by the initial
values of (.

Tables A.34 to A.37 report on the method of algorithm switching, previously introduced,
for Example 1 and 2, in the context of varying the initial parameter estimate of (. It should be
noted that for Example 1 and 2, for ( = 0.5, the ‘default’ setting for (, the algorithm switching
techniques produce very similar parameter estimates to those produced using GAUSS 3 in
tables A.28 and A.29, although in all cases, fewer iterations were required. Also, regardless
of the algorithm pairing used in the switching procedure, or the initial value of ¢ chosen, the
parameter estimates are very similar to the original results. Although there was no instability
in the results found in Table A.28, these results confirm that where algorithm switching is
used, estimates converge to the same results. This confirms the previous findings that the
algorithm switching procedure is the most suitable for this optimisation problem.

Finally the issue of data sensitivity was addressed, looking just at Example 1. Six datasets
were created for this purpose, with dataset 1 denoting the original fixed sample for Example 1.
Deleting the first two observations from z;; gives dataset 2; deleting the last two observations
gives dataset 3; deleting the first five observations gives dataset 4; deleting the last five
observations gives dataset 5; deleting the first ten observations gives dataset 6; deleting
the last ten observations gives dataset 7. For the purposes of this analysis, ( = 0.5 and
_oprteps= 0.00001. By contrast to the results of Example 3, the results are remarkably
similar across all datasets, and are not noticeably different from the original results. These
results can be found in tables A.38 to A.43. These results must be viewed with caution,
however, and the concerns outlined in considering Example 3, which is based on real data,
should be bourne in mind, as the applied researcher is unlikely to be confronted with a dataset

and model specification such as that found in Example 1.7

2.8 Comments on ‘Investigating Nonlinearity’

As noted previously, research carried out in the course of writing this chapter appears as ‘In-
vestigating Nonlinearity: A Note on the Estimation of Hamilton’s Random Field Regression

Model’.”” In his accompanying reply, ‘Comments on ‘Investigating Nonlinearity”, Hamilton

by Hamilton (2005).

> Although they do not arise in the context of the examples considered here, two further potential difficulties
should be noted when using the OpPTMUM optimisation procedures. The first relates to the scaling of the data.
Several of the optimisation algorithms calculate the Hessian matrix. A scaling problem may arise if this
matrix is not balanced, i.e., when the sum of the columns, or rows, are quite unequal. As the elements of
the principal diagonal of the Hessian matrix determine to a large extent these sums, OPTMUM may fail to
converge if the elements of the diagonal are unequal in magnitude. As a method for scaling the elements of
the Hessian may not be apparent, it is often sufficient to ensure that the data used in the model are of about
the same magnitude. A second problem relates to conditioning. A matrix may be ill-conditioned if it is poorly
scaled or if the model in question is misspecified. If the Hessian matrix is poorly conditioned, its elements
may be small. When its inverse is calculated, as may be necessary for a given algorithm, its elements may
be very large. The search direction may, therefore, fail to function appropriately in the presence of such large
numbers. Model re-specification may be necessary in this case.

*Bond, D. M.J. Harrison, and E.J. O’Brien (2005a): “Investigating Nonlinearity: A Note on the Estimation
of Hamilton’s Random Field Regression Model,” Studies in Nonlinear Dynamics and Econometrics, 9, Article
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(2005) addressed some of the issues raised here. This section briefly discusses these very
useful comments.?%

Hamilton begins by discussing numerical optimisation. While this is discussed in Sec-
tion 2.5, it is worthwhile bearing in mind the ‘inherently bumbling nature’.?” Numerical
optimisation algorithms may only be expected to find local extrema, and under conditions
of flat, near-flat or bimodal likelihood surfaces, among others, the algorithms may run into
serious difficulties in converging.

Table A.4 is highlighted to illustrate some of the potential difficulties with the optimisation
in this context. As Hamilton (2005) pointed out, it is not appropriate to accept the estimates
of the optimisation if its convergence has been halted by reaching the maximum permissible
number of iterations. He considers the case of algorithms 2 (Bras) and 4 (DFp). In the later
case, it is noted that it takes 172 iterations to reach the very same results as algorithm 2.
The estimates contained in Table A.4, however, are only marginally different from those of
algorithm 2. They certainly would not be a source of concern. For both algorithms, it has
been noted previously that extending the number of permissible iterations to 250 made little
difference, as seen in the case of algorithm 4.

Algorithm 1 (STEEPEST DESCENT), however, does not converge to the results found by
the other ‘successful” algorithms, even when 250 iterations are permitted. Given what is
known about the relative strengths and weaknesses of this method, and the potentially dif-
ficult likelihood surface, these results are not surprising. In fact, by studying the behaviour
of algorithm 1 through its numerical search, it is apparent that it converges to a neighbour-
hood, before wandering aimlessly around it, failing to converge to a point. Hamilton (2005)
acknowledged that by controlling the operation of algorithm 1 more carefully, through the
parameter _oprteps, great improvements can be made, and convergence can be achieved.

Hamilton (2005) repeated the starting value experiment for algorithm 2, reporting the
results in Table 1.7 He noted that ‘this exercise uncovers that this was but one of several
local maxima’ and not the ‘single maximum’ suggested previously, and that the ‘nonconcave
slope of the likelihood surface in the valleys and saddles separating the local hills may account
for the difficulties some of the algorithms had in making their way to the top of any hill’.?"
This could explain the observed behaviour of algorithm 1, noted in the previous paragraph.®’

An issue that has not been raised thus far in this thesis, but will feature in later chapters, is
the difficulty concerning estimates of the parameter o2 that are close or equal to zero. Recall

that ¢ = g Hamilton (2005) found this situation analogous to the ‘pile-up’ phenomenon

2.

6Tt should be noted that Hamilton (2005) is based on earlier versions of the work contained in Chapter 2
of this thesis and Bond, et al. (2005a). Hamilton has not, therefore, had the opportunity to respond to the
experiments regarding algorithm switching, for instance. There are also some discrepancies in cross-referencing
between the articles, as a result.

*THamilton (2005), p. 1.

*®Hamilton (2005), p. 4.

*9Hamilton (2005), p. 3.

59The potential for the failure of optimisation procedures given certain likelihood surface characteristics is
documented in the literature. For example, useful insights into two possible difficulties are provided by Warnes
and Ripley (1987) and Mardia and Watkins (1989). For instance, the likelihood function may be multimodal
and the global maximum may not correspond to sensible values of the parameters, or the likelihood function
may have a very flat ridge with a number of local maxima (Warnes and Ripley, 1987, p. 640-641).
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seen in the time-series literature (see, for example, DeJong and Whiteman, 1993).5" This
matter does not arise with Hamilton’s (2001) original data, but with the derivative samples
generated. It is also apparent in the applications to be found in later chapters, where it will
be given further consideration.

A further issue, again to be raised later in this thesis, concerns the alternative covariance
function suggested by Dahl and Gonzalez-Rivera (2003), which replaces Hamilton’s (2001)
specification

Gi-1(h, 1)

Hi(h) = Covg (m(x), m(z)) = G (0.0 (2.20)

with
(I=p 0 =1,

5 f i O
i (%) 0 if h* > 1.

(2.48)
Given the focus of this chapter, and the vast array of results gathered and presented, this
alternative specification was not considered. Its advantages are noted, however, and it is
introduced more carefully in Chapter 3. It is utilised routinely thereafter. Hamilton recognises
that this specification ‘may avoid at least some of the problems identified’.5?

The final comments concern data sensitivity. No mention is made of the most striking
result: that with the addition of four extra observations, inference regarding the form of
nonlinearity is radically changed. Rather, the case where just one observation (the first)
is deleted, referenced previously as dataset 2, is considered. Hamilton does not ‘deny that
it shakes one’s confidence in the inference that emerges’, although the suggestion that this

anomaly may be due to that observation’s influential nature remains unconvincing.®® The

fact remains that this method, as with all methods, can be sensitive to the data.

2.9 Conclusion

This chapter has given a brief review of nonlinear economic modelling. The motivation for,
and several methods of modelling nonlinear economic relationships have been introduced and
discussed. Most importantly, a new approach to nonlinear econometric modelling, proposed
by Hamilton (2001), has been described.

An account of this new approach has been given, as has a brief description of some of

the methods of nonlinear optimisation that may be used in the GAUSS computer program

“'The pile-up problem results from the fact that sampling distributions of moving average parameters can
be observed to pile-up around unity when the true parameter is close to that value. DeJong and Whiteman
(1993), citing Ansley and Newbold (1980), Cooper and Thompson (1977), Cryer and Ledolter (1981), Harvey
(1981), and Sargan and Bhargava (1983) note that ‘sampling distributions of maximum likelihood estimators
of dominant moving average parameters “pile-up” at unity when the true parameters are less than unity but
lie near the boundary of the invertiblility region’. In the context of the Hamilton (2001) methodology, the
random field can be seen as a generalised moving average process. Hamilton (2005) pointed out that for a
moving average process with an order of unity, the maximum autocorrelation of the process is 0.5. If the
sample autocorrelation of a dataset is greater than 0.5, maximum likelihood estimates of the moving average
parameters can pile-up around unity, implying that ¢ = 0. In practical terms, the pile-up phenomenon
‘clearly undermines the parametric interpretation of any inference. Viewed as a parametric model of the
data-generating process, o = 0 would imply that there is no error term in Equation (2.17), which is hardly a
defensible position’ (Hamilton, 2005, p. 5).

52Hamilton (2005), p. 5.

%*Hamilton (2005), p. 7.



provided by Hamilton (2001) for the implementation of his methodology. The performance
of this program has been investigated using data relating to Hamilton’s three examples,
using not only randomly generated data, but also data concerning the US Phillips curve, two
versions of the GAUSS software, a range of alternative numerical optimisation options and
alternative values for the GAUSS parameter _oprteps and model parameter starting values.
The performance of algorithm switching procedures has also been examined. Finally, the
effects of changes in the sample data on the results produced by Hamilton’s procedure have
been explored. The focus has designedly been on the GAUSS implementation of the procedure
and, while several changes in the GAUSS programs have been investigated, no attempt has

been made at modification of Hamilton’s methodology per se.

The results presented suggest some clear conclusions, which will hopefully be of value
to those contemplating working with Hamilton’s (2001) method. First, different algorithms
used for the numerical optimisation have different chances of success.’ Hamilton’s choice of
the Bras algorithm fails in over 60 per cent of the cases examined in the study of Example
3, while the less computationally efficient STEEPEST DESCENT method succeeds in all cases.
Secondly, when different algorithms work, they may produce significantly different numerical
results, including different signs for parameter estimates. Thirdly, the use of procedures
that employ two algorithms and a switching criterion appears to produce far more consistent
estimates than any one algorithm used on its own. Algorithm switching is also less sensitive to
the choice of initial parameter estimates. Fourthly, minor changes in data can have significant
effects, both in terms of whether an algorithm operates or not and, in the case of it operating,
the numerical results it produces. For example, it is interesting to note that if Hamilton’s
Example 3 data had just one less observation at either end of the sample, or one more
observation at the end, his version of the program would have failed to produce nonlinear
estimates, not only with GAUSS 3 but also with GAuss 5 and all of the values of _oprteps
used in this study. Moreover, if his dataset had contained the four additional observations for
1998 to 2001 (dataset 11), while the program would have produced results, all three nonlinear
parameter estimates would have been significant, in contrast to just g3 as found in his original
study (dataset 1). Thus his inferences concerning the form of nonlinearity would also have
been different. However, despite the sensitivity of results to choice of algorithm, initial values
and data changes, the statistical significance of the nonlinear parameter estimates, hence the
inference about the form of nonlinearity, generally seems to be little affected according to
the findings that have been reported here. For the simulated datasets used in Examples 1
and 2, the sensitivity of results to choice of algorithm and size of sample is less pronounced
than has been found using the real data of Example 3. Given the on-line availability of
Hamilton’s program and of the data used, it is a straightforward matter to replicate all of
65

these findings.”” This chapter is only the beginning of the work advocated by Hamilton to

64 As previously noted, only locally convergent numerical optimisation algorithms have be applied here. The
use of globally convergent procedures may offer some relief to the difficulties encountered with numerical
optimisation in the context of random field regression, as documented in this chapter and Hamilton (2005).
The use of such methods represents and interesting and potentially fruitful agenda for future research.

5%In addition to Hamilton’s (2001) original code, which as previously mentioned is available from his website,
an annotated version of the code and all datasets used in this chapter and in Bond, et al. (2005a) are available
from the website of Studies in Nonlinear Dynamics and Econometrics: http://www.bepress.com/snde/.
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establish the usefulness of his new methodology, and empirical investigations continue, in this
thesis and beyond.

Hamilton (2005) offered some insight into the difficulties which may have caused the nu-
merical instability of the algorithms revealed in this study. His findings seem to confirm
that ‘difficult’ likelihood surfaces make convergence challenging. Another possibility is that
difficulties exist within Hamilton’s (2001) methodology, and that the use of the alternative
covariance functions for specifying the random field regression model may help to reduce nu-
merical instability,’® as may different procedures for estimating the parameters of Hamilton’s
random field regression model, such as the recently proposed two-step method of Dahl and
Qin (2004), which promises unique identification and good convergence properties. The lat-
ter constitutes an interesting agenda for future research, while the former is introduced more
formally in Chapter 3, and routinely taken into consideration thereafter. Finally, Hamilton
(2005) introduced the phenomenon known as ‘pile-up’. While issues relating to this have not
been discussed in this chapter, they are of considerable importance, and will be raised again
in Chapter 5.

With regard to the implementation of the Hamilton (2001) random field regression method-
ology, which this chapter addresses, the main recommendation is to employ an algorithm
switching approach supplemented as necessary by changes of the GAUSS _oprteps parame-
ter, the starting value of ¢, and using both the Hamilton and the Dahl and Gonzalez-Rivera
(2003) covariance specifications. On the basis of the evidence provided here and supple-
mented in later chapters, such an approach is more efficient than the use of single algorithms

and appears to be less susceptible to numerical instability and failure.

%6See Dahl and Gonzalez-Rivera (2003).
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Chapter 3

Testing for Nonlinearity: A Note
on the Power of Random Field

LM-Type Approaches

Research carried out in the course of writing this chapter is forthcoming as ‘Testing for Nonlinearity: A Note
on the Power of Random Field LMm-Type Approaches’ by M.J. Harrison and E.J. O’Brien, Trinity Economic

Papers.
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3.1 Introduction

In light of the discussion in Chapter 2 on the importance of nonlinearity in economics and
econometrics, the focus here switches to testing for nonlinearity. In most practical appli-
cations, testing for linearity /nonlinearity serves two purposes. The first is to establish the
presence of nonlinearity, i.e., to decide if a particular dataset is best modelled with a nonlin-
ear specification. If such testing fails to reject linearity, subject to the power of the test(s)
employed, the pursuit of a nonlinear model would be futile. Secondly, post-estimation test-
ing can determine whether or not the chosen nonlinear model adequately represents the data
generating process. In both cases, such testing can be an integral part of model building.

This chapter investigates the properties of several tests for neglected nonlinearity in time
series, using Monte Carlo simulation methods.! This study is motivated by the LM-type
test proposed by Hamilton (2001), introduced in Chapter 2. The comparative properties of
this test, as an integral part of Hamilton’s framework, and indeed as a stand-alone test for
nonlinearity, have yet to be fully understood. The goal of this chapter is to further explore
them.

The properties of this test have been studied to some degree, but remain to be fully
established. Dahl (2002), for example, found that the Hamilton (2001) test was powerful by
comparison to existing tests based on spline smoothing and neural networks. The aim of this
chapter is to compare the Hamilton test with some well-known alternative tests, by applying
them to some model specifications commonly encountered in empirical research. Not only
are these properties of considerable importance for the overall Hamilton methodology, having
implications for the applicability of this ‘complete tool” for nonlinear modelling, but they are
also important as they assess the worth of this LM-type test as a stand alone test for neglected
nonlinearity in time series. Chapter 2 has highlighted the test, which is likely to be little
known, due to the technical nature of the original paper detailing the methodology, and also
because the test is embedded within that methodology. Many applied researchers may not
be familiar with the test for these reasons.

Here, the Hamilton (2001) LM-type test will be evaluated across a range of model spec-
ifications, parameters and data, and will be compared with several other tests, namely, the
Durbin-Watson (1950) bounds test, Ramsey’s (1969) RESET test, the Harvey-Collier (1977)
Y-test and three tests put forward by Dahl and Gonzélez-Rivera (2003). The Durbin-Watson
and RESET tests are widely known, although more so as tests for autocorrelation and func-
tional misspecification, respectively. These tests, however, may also be effective in testing
for nonlinearity, as autocorrelation and misspecification may indeed result from latent non-
linearity. The Harvey-Collier test, based on recursive residuals, may be less well known and
certainly seems little used.

The remaining three tests, Dahl and Gonzalez-Rivera’s (2003) /\(E)P(g). )\SP and gop tests,
are derivatives of Hamilton’s (2001) LM-type test, denoted /\[f}(g).2 Each will be introduced

"For an excellent introduction to Monte Carlo simulation in the social sciences, see Mooney (1997).

2The notation used here is that of Dahl and Gonzalez-Rivera (2003) and follows that used in Chapter
2. The ¥ signifies that full knowledge of the parametric nature of the covariance function is assumed. The
alternative is *, signifying that no assumption about the covariance function is made. The subscript y signifies
that the Hessian of the information matrix is used. The alternative is o p signifying that the outer product of
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in Section 3.2. These tests exploit the features of the Hamilton framework and may offer a
superior performance.

This chapter proceeds as follows. Section 3.2 introduces the various tests in some detail,
particularly where those tests may be unfamiliar. Section 3.3 outlines the design of the
Monte Carlo experiment, including details of the model specifications, parameters and data
employed. Section 3.4 provides the necessary theoretical background. Section 3.5 presents

the results and offers a discussion of these findings and Section 3.6 concludes.

3.2 The Tests

This section will introduce the various tests that will be investigated in this study. Some
will be very familiar to the practicing economist: specifically, Ramsey’s (1969) RESET test
and Durbin and Watson’s (1950) bounds test. The Durbin-Watson procedure is designed
to detect serial correlation in the disturbances of a regression model, based on the residuals
of that model. Any serial correlation detected in the residuals, however, may result from
serially correlated disturbances or ‘they may also be symptomatic of some other type of
misspecification. In particular, it should be clear ... that positive serial correlation can be
expected when the functional form is inappropriate’.?> The remaining tests are likely to be
unfamiliar and so will be introduced here. The intention here is to just outline the nature of
each test. This section proceeds by looking at the more familiar tests of Durbin and Watson,
RESET and Harvey and Collier (1977), before reviewing the newer tests: Hamilton’s )\ﬁ(g)
test, introduced in Chapter 2, and the tests derived from this by Dahl and Gonzalez-Rivera
(2003), namely, the A\5.(g), A3p and gop tests.

! The motivation for

There are many more tests that could have been considered here.
including those chosen, however, is straightforward. RESET, the d-statistic and the Harvey-
Collier (1977) approach are all available in commonly used econometric software packages.
With the exception of the Harvey-Collier test, these procedures are well known and routinely
reported, making them attractive to the practicing economist. It seems appropriate, therefore,
to include them here. The remaining tests, the /\g(g) test and its derivatives, are themselves
the motivation for this chapter, the aim of which is to empirically evaluate them. Comparing
the performance of each of these tests will certainly provide results that will be of interest to

the practitioner.”

the score function is used.

YHarvey (1990), p. 157.

*Other tests of note include that of Harrison and Keogh (1985), who proposed a test based on disturbance
estimators; McLeod and Li (1983), who applied the Ljung-Box statistic to the squared residuals of an ARMA
model; the Bispectral test, which exploits the result that a properly normalised bispectrum of a linear time
series is constant and zero under normality, over all frequencies (Priestley, 1988); the Brock, Dechert, and
Scheinkman (1987) test, based on the notion of the correlation integral, which is known to have power against
a range of nonlinear stochastic process, despite being a test of independence (Granger and Terasvirta, 1993, p.
36); Keenan’s (1985) adaptation of the RESET test; Tsay’s (1986) F-test, also based on RESET; and White's
(1989) neural network test of nonlinearity.

SMany others have compared the relative performance of tests of nonlinearity. Lee, White, and Granger
(1993), for example, examined the performance of several of the tests mentioned here. More recently, Dahl and
Gonzalez-Rivera (2003) and Lee, Kim, and Newbold (2005) have undertaken similar studies, more detailed
discussions of which will follow in later sections.
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3.2.1 The Durbin-Watson bounds test

The Durbin-Watson (1950) bounds test does not test directly a hypothesis of linearity against
an alternative of nonlinearity, unlike the other tests considered in this study. The test can,
however, be used in this regard, for reasons previously outlined. This study not only reveals
the potential for testing in the presence of nonlinearity, it should also reveal something about
the behaviour of the test across a wide range of specifications. The test is based on OLS
residuals, which can be very useful in detecting misspecification that results from a latent
nonlinear functional form or otherwise. Variation in observations not captured by some linear
model will be captured by the residuals. Those residuals may then depart from their expected
random distribution. The d-statistic exploits this characteristic of the residuals, although it

is better known as a test for first-order autoregression in the disturbances. Given the model

yr = x83 + &1, (3.1)

where g4 ~ n.i.d.(0,0?) and t = 1,..., T, the d-statistic is defined as

T ~ ~ 2
d = =2 <°T _:2“1) , (3.2)
t=1%t

where £; are the OLS residuals from Equation (3.1). When Equation (3.1) is correctly spec-
ified, the distribution of d is centred around 2, and d tends towards 0 in the presence of
positive autocorrelation, and towards 4 in the presence of negative autocorrelation. It can be
shown that d 2 N(2,4/T) with a range of [0, 4], which results from the fact that d ~ 2(1—p),
where p is the autoregressive parameter. The distribution of d depends on the explanatory
variables, x;, which results in exact points of significance being unavailable. Upper and lower
bounds, however, have been provided by Durbin and Watson. These bounds allow the null
hypothesis of no autocorrelation be tested against the alternative of either positive or neg-
ative autocorrelation, as follows. The null of positive autocorrelation is rejected if d < dj,
where dj, is the lower bound, and the null is not rejected if d > d;;, where d;; is the upper
bound, for a given level of significance. If d; < d < dy;, the test is inconclusive. For the null
of negative autocorrelation, the same procedure is followed, although the decision criteria in
this case are d >4 —dj, d < 4—dy, and 4 —dy < d < 4 —dp, respectively, for a given level
of significance.

As Harvey (1990) pointed out, serial correlation in the residuals does not imply serially
correlated disturbances. So while values of d close to 0 may suggest serial correlation in the
disturbance terms, it may also result from misspecification and possibly neglected nonlinear-
ity. That is, an inappropriate or inadequate functional form may lead to serially correlated
residuals. It should be noted that this test is not valid if the model to be tested includes

lagged dependent variables.

3.2.2 The Harvey-Collier test

The 1-test proposed by Harvey and Collier (1977) is another test based on residual analysis,

although it employs recursive residuals, which as the authors note may ‘exhibit a very different
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pattern of behaviour to the OLS residuals under functional misspecification’.® In some cases,
this test is more powerful than the previously considered Durbin-Watson (1950) bounds test.”

Before considering the test, consider first the recursive residuals. Given the model
ye = X3 + e, (3.1)

wheret =1,..., T, x; is a k-vector of observations, 3 is a vector of coefficients and £, is the

disturbance term where £; ~ n.i.d.(0,02).8 The T — k recursive residuals are defined by

Ut — xiﬂtq (3.3)

= ’

1
(1 +X2 ( Q_IXt_l)_lxt) .

wheret =k+1,...,T, ﬁt is the OLS estimate of 3 obtained from the first t observations and
X is a t x k matrix of full rank consisting of the first ¢ sets of observations on the independent
variables. Under the null hypothesis of Equation (3.1), i.e., of no functional misspecification,
the recursive residuals share the properties of the true disturbances. Given v, the arithmetic

mean of the recursive residuals, the statistic

i i i
p=|T-k-)"1Y m-2|(T-0t Y u (3.4)

t=k+1 t=k+1

follows a t-distribution with (7" — k — 1) degrees of freedom under the null hypothesis. If the
null hypothesis is true, ¢» should be close to zero. A two-sided t test is then normally carried

. . . C
out, although a one-sided test may be sometimes appropriate.’

3.2.3 Ramsey’s RESET test

Ramsey’s (1969) regression specification error test, or RESET, is as well known as the Durbin-
Watson (1950) test and is widely used as a specification test. Its choice here as a test for
neglected nonlinearity is clear: a nonlinear data generating process modelled linearly is a
misspecification. In principle, the procedure tests the null of linearity in the independent
variables against an unspecified alternative of nonlinearity. The RESET test is valid asymp-
totically, and may even be so in finite samples, depending on the model in question. Given
a model like Equation (3.1),

ye = %0 + &1, (3.1)

®Harvey and Collier (1977), p. 104.

"Harvey and Collier (1977), p. 104, suggested that when the ‘form of misspecification is such that the
‘correct’ functional form of the misspecified variable is a concave or a convex function of the variable actually
included in the regression’, that this test is ‘more powerful than the Durbin-Watson and von Neumann tests’.

“The Harvey and Collier (1977) test is limited in practice to cases with either one explanatory variable, or
where multiple explanatory variables are assumed to have the same form of nonlinearity. While this may not
be problematical in some cases, it is not a desirable quality.

?Thanks to Curt Wells, University of Lund, for making available his recursive residual GAUss code, without
which, the task of programming the Harvey and Collier (1977) test would have been considerably more arduous.
His website can be found at http://www.nek.lu.se/nekcwe/.
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the test is carried out by estimating the OLS parameters 3 and Z; and regressing

)

m

h
L =xB+ > b G+, (3.5)
Jj=2

where y; = xi,@ The null hypothesis of no misspecification is
H():'(ﬁ‘z:...:thZO, (36)

and the test statistic is

(ZtT:I th - Zthl ’7t2> /(h—1)

Ry = —
Zthl il —k—h+1)

(3.7)

which has an approximate F'(h—1,T)-distribution, where k is the dimension of x;. In practice

h = 2 is generally found to be sufficient and it is this value that is employed in this study.

Keenan (1985) proposed an adaptation of the RESET test that attempts to avoid multi-

10" The proposed test uses just y?. Rather than regressing

collinearity between atj and x;.
Equation (3.5), the equation

?7[2 = X} + uy, (3.8)

is regressed to obtain the residuals ii; = 7, — x}¢. The regression

€t = Ut + 1y, (3.9)

provides the sum of squared residuals, Z{:k+1 (Er — W )z — ZfzkH 72, and allows for test-

ing the null hypothesis, o = 0.

Tsay (1986) proposed a further adaptation of RESET to increase its power, suggesting that
vech(x;x}) be used instead of Z;'l:‘z Vj 77, where vech(A) denotes the half-stacking vector of
the matrix A, using elements on or below the diagonal only.!! In practice, the hypothesis to
be tested is equivalent to that found in Equation (3.6).!? These revised versions of RESET
are not considered in this simulation study. As noted, their comparative performance versus
RESET has already been assessed. Also, a major attraction of the standard RESET test
is the fact that it is widespread and routinely reported, making it easily accessible. Any
comparative study of these variant tests and the random field methods, pending the results

of this study, is left for future research.

'%This multicollinearity arises from the fact that v; g/ for j = 2,...,h tends to be highly correlated with
Xt.
1 Tsay (2002), p. 157.
2Luukkonen, Saikkonen, and Terisvirta (1988) extended this test by augmenting vech(x;x,) with cubic
terms.
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3.2.4 Hamilton’s LM test

The /\g(g) test was introduced in Chapter 2. It warrants, therefore, but a brief mention here.

Recall the form of the model used in Hamilton’s (2001) approach,
Y = ag + a'x; + Am(g © x;) + &4, (3.10)

where t = 1,2,...,7. This suggests that a simple method of testing for nonlinearity is to
check if \ is zero or not. Hamilton shows that if A> = 0, and the nonlinear model is estimated,
then for fixed g, the maximum likelihood estimator X2 is consistent for the true value of zero
and asymptotically normal. Hamilton proposes a form of LM test for practical application

and the procedure has four steps, as follows:

e Set g; = \/%, where s? is the variance of explanatory variable z;, excluding the
o2

constant term whose variance is zero.

e Calculate the 7' x T matrix, H, whose typical element is Hy, (3 [|%; — X4|), i.e., the
function Hy(h) defined in Equation (2.20).

e Use OLS to estimate the standard linear regression y = X3 + € and obtain the usual

residuals, €, and standard error of estimate, 62 = (' — k — 1)~ le’e.
e Finally, compute the statistic

i [€'Heé — 5 *tr(MrH)J?
19 = 53 [2tr (M7HMyp — (T — k — 1)~ 'Mptr(M7H)2)]’

(2.38)

where My = Ip — X(X'X) " 'X’ is the familiar symmetric idempotent matrix.

As /\Z(g) 2 x? under the null hypothesis, linearity (A? = 0) would be rejected if A% (g)
exceeded the critical value, for the chosen level of significance. In this case the alternative
nonlinear specification given by Equation (3.10) would be preferred.

The performance of the A% (g) test has been assessed by Dahl (2002). In a simulation
study, this test was compared to those of Cox and Koh (1989), Cox, Koh, Wahba, and
Yandell (1988) and the neural network tests of Lee, et al. (1993) and Terasvirta, Lin, and
Granger (1993), which like the A¥(g) test, require no prior knowledge of the functional form.
The Hamilton (2001) test was found to perform very well in finite samples. Its size and
power properties where good when compared to the ‘most popular and powerful tests in the
literature’, including the neural network tests, mentioned above.'?

Dahl and Gonzalez-Rivera (2003), however, identified several areas where the /\5(9) test’s
performance may suffer. These are discussed in detail in the next section. More recently, Lee,
et al. (2005) assessed the performance of a variety of nonlinearity tests, including the /\,b;(g)
test. They present worrying evidence of spurious nonlinear regression, when the variables in
question are random walks. The /\g(g) test performs poorly. They find that the test rejects
the true null of linearity in over 50 per cent of cases examined, against a nominal size of 5

per cent, for a sample size of 7' = 50. Rather than converging to its x? distribution, the test

“Dahl (2002), p. 282.
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statistic diverges to infinity as the sample size increases. Although none of the simulated
data used in this chapter can be characterised as a random walk, the findings of Lee, et al.
(2005) have serious implications for the practical application of the test. This issue will be

addressed further in later chapters.

3.2.5 The \5,(g9), \&p and gop tests

Studies have shown the excellent properties of the A5 (g) test. Dahl (2002), for example,
found that the test ‘performs well in finite samples’ and ‘has good size and power properties
when compared to some of the most popular and powerful tests in the literature’.!* Several
questions may be raised about its performance in certain circumstances. Specifically, as the
number of variables in the model under consideration increases, so too does the number of
nuisance parameters. As Hansen (1996) showed, dealing with unidentified nuisance parame-
ters by assuming full knowledge of the parameterised stochastic process that determines the
random field may have adverse effects on the power of the test. Also, the test relies upon
a specific specification of the variance-covariance function of the random field. Dahl and
Gonzalez-Rivera (2003) noted that where alternative variance-covariance functions are more
appropriate, the performance of the /\ﬁ(g) test may suffer.

To offset the potential for decreased performance in the situations outlined above, Dahl
and Gonzalez-Rivera (2003) proposed a troika of tests that are robust to the specification
of the variance-covariance function of the random field and that encompass a broad class of
variance-covariance functions. Their tests are also unaffected by increasing dimensionality,
as they are free of the problem of unidentified nuisance parameters. Their tests, therefore,
‘aim to generalise and complement the Hamilton (2001) statistic’.!®

The issue of nuisance parameters was touched upon very briefly in Chapter 2, Sec-
tion 2.8.16 It is appropriate to expand this discussion here, as it is relevant to the /\gp(g).
)\SP and gop tests, and to the applications undertaken in subsequent chapters. Recall the
fundamental model used in Hamilton’s (2001) framework, as shown in Equation (3.10). Dahl
and Gonzalez-Rivera (2003) recognised the potential for nuisance parameters in this model.
That is, under the null of Hy: A2 = 0, the parameter vector g becomes unidentified, while
the number of nuisance parameters increases with the dimensionality of x. Alternatively,
consider the null of Hy: g = 0, the motivation for which will be introduced shortly. In this
case, A becomes unidentified and y; will be nonergodic.!” Under the null, therefore, the test
may not have a well-defined asymptotic distribution.

Two solutions to this problem are proposed by Dahl and Gonzalez-Rivera (2003). The
first considers the random field based on the L; norm, or Minkowski distance, as opposed

to the Ly norm, or Euclidean distance, used by Hamilton (2001). This has the advantage of

14Dahl (2002), p. 282.

Dahl and Gonzalez-Rivera (2003), p. 162.

Davies (1977, 1987) was one of the first to analyse the problem of unidentified nuisance parameters.
He suggested viewing test statistics as functions of unidentified parameters. Andrews and Ploberger (1994)
derived asymptotic tests for problems where unidentified nuisance parameters are present under the alternative
hypothesis but not under the null.

1"Ergodicity is the property that the eventual distribution of the states of a system is independent of the
initial state (Everitt, 2002, p. 132).
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simplifying tests for neglected nonlinearity, as this measure is a linear function of the nuisance
parameters, unlike the Ly measure, which is nonlinear in the nuisance parameters.'®

The disadvantage of this approach is that such a random field is nonisotrophic, i.e., the
covariance function may be unwieldy to evaluate in models of large dimension. The approach
does suggest, however, an alternative covariance function, itself based on an isotrophic random

field. That function is ‘
[i-B5* =i,

C* (h*) =
e =1 ¢ iR > 1,

(2.48)
where h* = 1dy, (x,z).

As Hamilton (2005) confirmed, the issue of nuisance parameters may be overcome by
using this alternative covariance function.!” He experiments with this new specification and
finds that the pile-up problem, noted briefly in Chapter 2, Section 2.8, may be avoided by
employing the Dahl and Gonzélez-Rivera (2003) approach.?’

The troika of tests, developed from the /\g (g) test, are based on this approach. Dahl
and Gonzalez-Rivera conduct an extensive Monte Carlo study to investigate the properties
of their tests and find that they are indeed effective in detecting neglected nonlinearity. They
out-perform the /\Z(g) statistic’s power in a range of models, for both small and moderate
samples sizes.?! In addition to the simulation study, an empirical application suggests that
by avoiding the problem of nuisance parameters, the test’s performances are comparatively
better than others. Interestingly, Dahl and Gonzalez-Rivera (2003) reported that these tests
out-perform the well-known Tsay (1986) test for nonlinearity, suggesting perhaps that it
is better to view an unobserved nonlinear function as random and not deterministic, the
approach taken by Tsay (1986).

Recall from Subsection 3.2.4 the model being used by Hamilton (2001), as shown in

Equation (3.10). The parameters A and g are fundamentally important, as they characterise

"Recall from Subsection 2.4.2 and above, the model and framework of Hamilton (2001). Dahl and
Gonzdlez-Rivera (2003) replaced the set By (x) with the set By (x). For each point x € Ax, By (x) =
{z € Ay : |x — z|'t <1}, and m}y is the random field with a moving average representation:

my (x) =[x (0] S e(a),
z€BY, (x)

where nj (x) is the number of points in By (x). It can be shown that the correlation between m* (x) and
m” (z) equals zero if the L; distance between x and z is greater than or equal to two. This covariance function,
illustrated for the cases k = 1,2 is:

" 1-hy ifBL <1,
H e %) = { B ifh:“ > 1,

. 1—hi)2+ (1= kL) min{|ze — 214, |T2e — 25|} if hY < 1,
H; (x:,x:) = { E) hl ( e el ;f l‘i} ; 1

where hj, = %d[,] (%2,%35)

"Hamilton (2005), p. 6.

20Given the range of issues highlighted in Chapter 2, and very much in keeping with the findings therein, it
would seem prudent that the applied researcher consider both the Hamilton (2001) and Dahl and Gonzalez-
Rivera (2003) covariance functions in empirical applications. It adds another element to the prescribed actions,
detailed in Chapter 2, for those contemplating use of the Hamilton framework: use the algorithm switching
methodology, pairing STEEPEST DESCENT with both BrGs and NEwWTON, for a range of values for ¢ and
_oprteps, if required, and also for both covariance functions. Such investigations should allow for greater
understanding of the results obtained.

2!The models considered had bilinear, neural network and smooth transition autoregressive specifications.
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the relationship between m () and the conditional expectation function pu (1, x9, ..., ).
This relationship is exploited by Hamilton, who uses it to test for nonlinearity. Should A = 0,
m () makes no contribution to Equation (3.10), and the conditional expectation is linear. The
parameter A\? can, therefore, be used as a test for nonlinearity. Dahl and Gonzélez-Rivera
(2003) used this feature, but also make nse of another. If g = 0, the contribution of m (+) to
the conditional expectation is indistinguishable from «g, and hence, once again, the model is
linear. Therefore, g = 0 also serves as a test for nonlinearity. What follows is a more detailed

outline of each of these tests.??

The M5, (g) test

The /\E,(g) test for nonlinearity is based on the Hessian of the log likelihood function, with
Ci (x¢,xs) = Hg(h), where h = %dL2 (x¢,x5). The g; are fixed, as mentioned in the previous

subsections.?® The /\g p(g) test is derived from the loglikelihood function

1(B,)3%,g,0%) = (3.11)

]

T 1 ‘ 1 ‘ i
~ log(2m) — 5 log IN2Ck + o2Ip| — == X8) (A2C + o?I7) ' (y — X3),

where Qpar = ACj + o?Ip. Dahl and Gonzélez-Rivera (2003) showed that the score

functions of Equation (3.11) are

‘ 1= ™ Ao
S (/\2) |/\2:().g = —@X{u, (312)

, e ot
S (U ) |/\2:0-9 = —Fx-‘zu. (-}13)

where X; = vec(Cy), X2 = vec(Ir) and u = vec(Ip — ee’/o?). Letting X = (X; : X2), the LM

test statistic is ) i
T2 u'% (X'%) " 'a :
or(9) B) i vl h ( )

As with the )\g(g) test, the )\gp(g) statistic is obtained easily. The model is estimated
under the null, providing estimates of & = y — (X’X)™' X'y and 2 = T'€’€. Then,
v is obtained from the least squares auxiliary regression of U = ¢X| + ¢9X9 + V. using
u = vec(Iy —€€’/52). The test statistic is A5,(g) = %T2R2. where R? is the uncentred
R?, defined as R? = 1 — 0'D/0'tG. The A\5,(g) is not asymptotically distributed. As there
are T? observations in the auxiliary regression, the /\g p(g) test can be transformed to an

asymptotically distributed x?(1) by multiplying the R? by T instead of 7.

The /\gp test

Fixing g in the previous test is equivalent to assuming complete knowledge of the covari-
ance function of the random field. This test does not depend on the parameterisation of

the covariance function and avoids the problem of nuisance parameters. This is achieved by

*Thanks to Christian M. Dahl and Gloria Gonzélez-Rivera for making the GAuss code for their A5 (g),
A3p and gop tests available. It can be found at http://www.krannert.purdue.edu/faculty/dahlc/.
ZFor further details, see Chapter 2, Subsection 2.4.5.
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replacing x; = vec(Cy) in Equation (3.12) with a Taylor approximation of X, as outlined be-
low, in the auxiliary regression. ‘Using the Taylor approximation captures the characteristics
of a wide class of unknown but continuous and differentiable real-valued nonlinear functions,

vec(Cy)".?* Using the covariance function

(L —#ed® HhE =1

CLihL) = ‘S 2.48

£ 0, oy (249

where hj, = $dr, (9 © x¢, g © x,) = lrisg, Tis = {|®a — a1l |De2 = Boal; - o« 5 |Tee — 21|}, and
given that (1 — ;‘S)Qk = ZJ?’;O (Qk)h (=1)77, the auxiliary regression can be written as

o~ ~ ~ 2k *17 ] ~
Us = O1X¢ts,1 + GoXts2 + Vis = @ E (j )htsj (=17 Lihz <1) + G2Xes2 + sy (3.15)
Jj=0

where 1(;s <1y is an indicator function that can be approximated by the logistic function
Lipy,<1) = (1 +exp(—y(1— hi))) "', for fixed 4 >> 0. Rather than proceeding as in the
case of the )\g p(g) test, a second Taylor expansion is considered, where the norm depends

on g and the logistic approximation of the indicator function. That gives

Uts = 060‘}‘051291”” +ézzzgzyﬂ“m il'ts,j (3'16)

=1 921

k & &
+¢3 Z Z Z 9igjgiTts,iTts jTtsl + - - -
J2i 2]

1=

k k k
+ ok 42 g § cee § 9igj - - - 9mTtsiTtsj---Ttsom + 02T ts + Vts,

i=1 j>i m

where ¢; is proportional to ¢, and the subindex ts, relating to u, Xy and v, refers to the

tst" row in the vector, for t,s = 1,2,..., T, and ¢; and ry; are the i h” entries in g and

ris, respectively. Estimating this auxiliary regression by OLs, with Z“’j’z ("ti;l) regressors
added, is the basis for the )‘OP test, which has the same LM test statistic as the /\(E)P(g), ie.,
Equation (3.14), but using the auxiliary regression outline above. This has a x? distribution
of 1 + Zﬂ‘“ (Hi i ) degrees of freedom. The authors argue that if a covariance function of
the form in Equation (2.48) is used, it encompasses a very wide class of covariance functions.
Given that the practitioner is unlikely to know the true covariance function, this is particularly

useful.

The gop test

The gop test is based on similar models, but here the random field has the variance-covariance

structure

Cr (x¢,Xs) = Cg (X1, Xs) + Cp (Og, 05) — Cy, (x1,04) — Cp (Op, Xs) - (3.17)

#IDahl and Gonzélez-Rivera (2003), p. 152.
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Note the covariance function is that given by Equation (2.48) and the loglikelihood function
is as before, with the exception that ék replaces Cy and Qpar = /\2(~3k + 0°I7. Proceeding
as in the case of )\(E)P(g), the score functions, for fixed A, Hy:g = 0, and Qpirlg—0 = a?Ip,
can be written as

D)

S ,
s (9i) [r2,g=0 = —%gxi'm f=1,2 .5 (3.18)
‘ o ‘
= (UZ) Ix2,g=0 = —T‘QX;QHU» (3.19)

where x; = 8ve(:<(~3k) /0gi| g=0, fori =1,2,...,k, Xg41 = vec(IT) and u = vec (IT — es’/az).

The TR?, or gop test, is %TQR2 ~ x%(k), using the R? from the auxiliary regression

k
Ut = ) GiFtai + Ohs1Tks1,ts + Dis, (3.20)
i=1

where 75 = —k (|24 — xsi| — |24i| — |2 sil), for t,s =1,2,..., T, and where R? is uncentred.

3.3 The Design of the Monte Carlo Experiments

To assess the performance of the seven tests outlined in Section 3.2, a Monte Carlo simulation
was undertaken. Five models were used. These are summarised in Table 3.1. The first was
the null linear model vy = « + Bz + =;. This null case calibrates each of the tests by
obtaining the empirical power and size in each case. The second model is the quadratic
specification, y; = o + [xy + .3;1??, + =4, where «, 3, 4 and x;; are as in the null case. The
third model is the correlated error model, y; = o + x4 + €4, where €;; = pe;y— + =44 For
each of these three models, « = 1, 8 = {0.25, 0.50, 0.75}, £ ~ N(0, (712) Ty 1s a linear
time trend, x1; = 20t/T, x9; is generated from a random uniform distribution, x9; ~ U(1, 10)
and finally, x3; is generated from a random normal distribution, zs; ~ N(5.5.2.252).25 A
similar model, here called the square specification, was also included. This was used by
Dahl and Gonzalez-Rivera (2003) and makes a useful comparative tool. The square model is
Yy = ;lf‘ft + €, where zj; for i = 1,2,3 is as above, and also x4 = 0.6z + ¢, & ~ N(0,1)
and ¢ ~ N (0, af). The final model specification is adapted from Hamilton’s (2001) Example
1.26 This is a simple threshold regression, y; = 0.6zitl(;,,>5.5 + 0.2zt + €¢, where i = 2,3,
J =123, 1,555 = 0 when x;y < 5.5 and 1 otherwise, and £, ~ N(0,1). This example is
included to allow direct comparison to Hamilton, in applying the other tests for nonlinearity.
Summary details of o7 for each case are provided in Table 3.1. Full details of the design of
the Monte Carlo simulation can be found in Appendix B.1, Table B.1.

In almost all cases, 20,000 replications were undertaken, for sample sizes of 7" = 25,

%These moments and parameters were chosen for their relevance in applied econometrics, by ensuring that
the models to be investigated had the reasonably high R*-values often encountered in research, although
it should be noted that the residuals of all model specifications are invariant to J. The generated data
approximates well to many slowly changing economic time series, particularly the trend series and the ordered
normal and uniform distributions, which are used for several of the tests.

26Hamilton (2001), p. 559. As noted in Subsection 3.2.2, the Harvey-Collier (1977) test is limited in practice
to bivariate cases. Therefore, it is not applied to the Hamilton specification in the simulation.
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75, 125, 175 and 225. In the case of Dahl and Gonzilez-Rivera (2003) tests, however, both
asymptotic and bootstrapped p-values are available for each test. The asymptotic values were
recorded, as above, for 20,000 replications, but the bootstrapped values were also recorded.
These were based on 1,000 replications, however, as the bootstrapped p-values were in turn
based on 100 re-samples and the computational demands of this process are very considerable.
Section 3.5 presents the results obtained from this study. Finally, consideration was also given
to some features of the Durbin-Watson (1950) bounds test and the Harvey-Collier (1977) test.
For the latter, observations should be ordered by the explanatory variable, prior to testing.
This may also apply in the case of the Durbin-Watson test, depending on circumstances.

Simulations were undertaken for these tests using both ordered and unordered data.?”

Table 3.1: Models analysed in the Monte Carlo study.

Null Yt = a+ BTit + €it it ~ N(0,07)
Quadratic Yyt = a+ Bzrit + J.t‘f, + €t git ~ N(O, o"f)
Correlated Error Yyt = a+ Bxit + €t

it = PEit—1 + Eit it ~ N(0,0?)
Hamilton Yyt = 0.6zit1z,,>5.5) + 0.2zt + &4 ee~ N(0,1)

i=23,j=123

Dy = 20#/'[‘ oi=15
w2 = U (1,10) o5 =04
w3y = N (5:5,2.25%) o2 =03
Square Yo = T + €t €it ~ N(0,02)
Ty = 206/T af =4l
z2 = U (1, 10) 02 =25
z3¢ = N (5.5,2.25%) o2 = 400
xat = 0.6x14-1 + ¢ e ~ N(0,1)

In all cases, & = 1 and 3 = {0.25,0.50,0.75}.

3.4 Hypothesis Testing

To explain the various concepts used in the remainder of this chapter, a brief treatment of
hypothesis testing is provided.?® Consider the random variable X defined on the probability
space (S, F, P(-)) and some model ® = {f(x; 6), 0 € ®}, where F is a o-field generated
by X and x is a random sample from f(z; ).

For hypothesis testing, consider the null hypothesis to be Hy: 0 € @y, i.e., if 6 lies in some

subset ®¢ of @, where the sample data x € Cy, Hy is accepted. If x € (', that hypothesis is

2TThe GAUss code for this simulation can be found in Appendix B.2.
**This treatment draws heavily upon and follows closely that of Spanos (1986).



rejected. The sets Cp and C1, also known as the acceptance and rejection regions, respectively,
are defined by the given test statistic. More formally, the null and alternative hypotheses can

be expressed as

Hy: 6 € 6y, 0, C O, (3.21)
H1:6¢ O, or fe® =06 —0,. (3.22)

In this chapter, only simple hypotheses are used, i.e., where f(x; ) is specified completely if
0 € ©p or § € ®; are known. Such hypothesis testing gives rise to two possibilities for error,

entitled Type I and Type II errors. The probability of a Type I error is defined as
Pr(x € Cy; 0 € ©g) = q, (3.23)
whilst the probability of a Type II error is

Pr(xeCy € ©)) =4 (3.24)

. . . g . . . o e, 0 20
Arising from this framework and of particular interest here are the following definitions:?”

Definition 1. The probability of rejecting Hj, when false at some point #; € O, i.e.,
Pr(x € Cy; 6 = 6,) is called the power of the test at § = 6.

Definition 2. P (§) = Pr(x € (1), § € © is called the power function of the test defined by

the rejection region C|.

Definition 3. o = maxgpe@, P (#) is defined to be the size, or the significance level, of the

test.

Definition 4. A test of Hy:0 € ©( against Hy:0 € © as defined by some rejection region

C is said to be uniformly most powerful test of size « if
1. maxgco, P (0) = o;
2. P(6)=P*(0) for all § € Oy;
where P* () is the power function of any other test of size «.

These concepts, particularly size and power, will be used throughout the remainder of

this chapter.

3.5 Results and Discussion

The results of the simulation study can be found in Appendix B.1. A key to the parameter
specifications, a more detailed version of Table 3.1, can be found in Table B.1. The remainder
of Appendix B.1 contains the individual results for each test. The simulated sizes, in terms

of percentage frequencies of rejection of the null hypothesis for the Durbin-Watson (1950)

#YSpanos (1986), p. 290-291.



bounds test, may be found in tables B.2 to B.6 for the unordered cases and tables B.7 to
B.11 for the ordered cases. Results for the Harvey-Collier (1977) test can be found in Table
B.12 for the unordered case and Table B.13 for the ordered case. The results of Ramsey’s
(1969) RESET test can be found in Table B.14 and for Hamilton’s (2001) A5 (g) test in
Table B.15. Tables B.16 to B.21 contain the results of the \5,(g), /\8}) and gop tests.°
To analyse the results of the study outlined in Section 3.3, the performance of each test
will be discussed before comparing relative performance. Of particular interest here is the
comparative performance of the A5 (g) test to the well-known tests, but also to the more

recent A\ ,(g), A4, and gop tests.
OP OP g

3.5.1 The Durbin-Watson test

To explore the importance of ordering on the Durbin-Watson (1950) bounds test, results
are reported for unordered data and also for data ordered by increasing magnitude of the
explanatory variable. The empirical size and power of the test are reported for both d < dj,,
the rejection region, but also for d;, < d < di/, the so-called zone of indecision. Given the
design of the experiments here, only positive autocorrelation is considered.

The size of the test with unordered data is found to be very much dependant on 7', which
can be seen from Table B.2. The rate of rejection of the null increases from above 1 per cent
towards 5 per cent with increasing sample size, T'. The size is close to or above 4 per cent
in many cases. The results for the quadratic specification, which can be found in Table B.3,
show that the test is powerful when z; is a time trend, with full power observed for d < d,
in every case. For x; ~ U and x; ~ N, however, the power in the majority of cases is zero for
both d < dj, and d < di;. Very similar results are seen for the square specification, as shown
in Table B.4. Power is very high when x; is trended, over 90 per cent in all cases, but very
low for the other cases, with the exception of x4;.

As the Durbin-Watson (1950) test is explicitly a test for serial correlation, it could be
expected to perform well for the autoregressive specification.?' The test does indeed perform
well, as can be seen from the results in Table B.5. For higher values of p and T, power
is frequently observed to be 100 per cent for d < dj. For p = 0.1, however, power never
exceeds 41 per cent, regardless of 7. The inverse relationship between the size of d < dj,
and d < dy/, observed previously, holds true for power in this case. Finally, for the Hamilton
(2001) specification, the results of which can be seen in Table B.6, the power is very low for
both d < dy, and d < dy, regardless of T

The size of the test with ordered data appears to be less variable, although still somewhat
dependant on 7. The size of d < dj, generally approximates to 5 per cent, as shown by Table
B.7. As with the unordered data, the quadratic specification where data is trended, reported
in Table B.8, has full power for d < dp, but the test now also has full power for x; ~ U
and x; ~ N. The effect of ordering is clear. The same can be said of the ordered square

specification, the results of which can be found in Table B.9. Although the test is still sensitive

Two sets of results are reported for the A5 p(g), Aop and gop tests. The first are based on asymptotic
p-values, while the second are based on bootstrapped p-values.

31 As previously noted, however, latent nonlinearity or misspecification may result in serially correlated
errors.



to T and o2, powers of 100 per cent are observed in many cases.

Interestingly, the ordering of data for the autoregressive specification, as shown in Table
B.10, appears to have a negative impact on the rate of rejection of the null hypothesis,
although power still depends on p and 7" when data is ordered. For the larger values of 7T',
this fall may not be significant enough to warrant concern. Finally, the power for the ordered
Hamilton (2001) specification, as shown in Table B.11, has greatly improved and is above
94 per cent for all cases where T' > 75. It appears, therefore, that ordering the data, where
permissible, greatly improves the power of the Durbin-Watson (1950) test across a range of
models. This is particularly noteworthy as such ordering approximates the data examined
here to many economic time series, which are slowly changing. This result is unsurprising
given the fact that the Durbin-Watson test is a test for first-order autoregression. Unordered
normally or uniformly distributed data is not well characterised by an autoregressive process
and the Durbin-Watson test statistic will, therefore, be close to 2. Ordering the data, however,

may reveal a degree of autocorrelation, which may be picked up by the d-statistic.

3.5.2 The Harvey-Collier test

Despite its obvious potential, the Harvey-Collier (1977) test appears little used. Although
the concept of recursive residuals, on which this test procedure is based, is familiar to many
economists, the test itself remains little known. Its absence from most econometric software
is evidence of this fact.’? An obvious drawback of this test is its limited applicability to
multivariate models. It is applicable in a multivariate context if all variables are assumed to
have the same form of nonlinearity. Should this not be the case, it can be used in multivariate
cases, but requires that a decision be made regarding which independent variable to test.
This limits the tests practical applicability and also rules out the possibility of testing for
multivariate nonlinearity. These draw-backs may go some way to explaining this test’s under-
utilisation in the literature.?® In the context of this study, the final model specification was
omitted for this test, as it is multivariate. Table 3.1 provides further details.

An integral part of the Harvey-Collier (1977) test is that the data should be ordered.
That is, the observations are ordered on the explanatory variable in increasing order of
magnitude.?* To explore the importance of this step, the simulation was undertaken for both
unordered and appropriately ordered data. The results for these two cases can be found in
tables B.12 and B.13, respectively.

For both the unordered and ordered data, the size of the Harvey-Collier (1977) test is
close to 5 per cent in all cases, as expected. There is no obvious relationship between the size
of the test and the sample size, T', or the variance of the disturbance, o2.

The results for the quadratic specification are certainly interesting. For unordered data,
where z; ~ U and x; ~ N, the test has almost no power. The power is noticeably above the

size in under 25 per cent of cases considered here. In general, no pattern emerges regarding

32 A notable exception is the software R which includes routines to carry out the Harvey-Collier (1977) test.

331t should be noted that of all the tests used in this simulation, the Harvey-Collier (1977) was the fastest.
While this fact may be of little value in many practical applications, in the context of a Monte Carlo study,
it certainly is noteworthy.

34 Harvey (1990), p. 157.



sample size or parameter values. By contrast, for the ordered data, the power of the test is
100 per cent in all but three cases and these are for the smallest sample size. Similar results
can be observed when z; is a time trend and hence intrinsically ordered; the test has full
power, i.e., 100 per cent, regardless of sample size or parameter values. As the nonlinearity
here is so stark, this is not unexpected.

For the so-called square specification, the power is very low for xy ~ U and x; ~ N.
Only in one case is the power notably above the size. Where x; is a time trend and therefore
ordered, however, the test generally has full power, with just one case being marginally below
100 per cent. Power is also low for the x4 specification, with lower powers found for higher
values of 02. Again, sample size appears to have little effect. This contrasts greatly with
the results for ordered data, however. The power is very much greater in all cases. In some
instances, it is low for small sample sizes, but improves greatly with 7". Only in the case of
the x4 with large o2 is the power low for all 7.

A very clear pattern emerges for the autoregressive specification with unordered data.
Power increases with both sample size and the autoregressive parameter p, although in no
case does it exceed 35 per cent and for p = 0.1 the power is not noticeably greater than
the size, regardless of 1. A very similar pattern emerges when x; is a time trend. For the
xy ~ U and xy ~ N cases, however, power approximates to the size in almost all cases,
regardless of parameter values, although some sensitivity to sample size is evident. These
results are interesting as the autoregressive specification is essentially linear. It could be
argued, however, that the autoregressive error constitutes a misspecification or nonlinearity.
This is certainly not picked up by the test using ordered data, with the exception of the cases
where data is trended. The Harvey-Collier (1977) test appears to be robust to autoregressive
residuals. On the other hand, of course, it has no power to detect them. Once again, the

importance of ordering is clear.

3.5.3 Ramsey’s RESET test

The results for the RESET test can be found in Table B.14. The size of this test is very
close to 5 per cent for all cases, regardless of 1" or other parameter values. For the quadratic
specification, it has full power in every case. This is unsurprising given the nature of the
misspecification here. This test also performs very well for the square specification. For x4,
power increases with 7', but decreases with o2. For all but the highest value of o2, power is
100 per cent for T = 225. For the trending data, like the quadratic case, which has a very
similar specification, power is 100 per cent for all parameters. A similar pattern is found for
x; ~ U and 2; ~ N, with power being 100 per cent in many cases. Only where o is high
does power fall, although it increases towards 100 per cent with increasing 1.

The autoregressive specification reveals similar results to the Harvey-Collier (1977) test.
For the trending data, power increases with p and 7" to a maximum of approximately 65 per
cent. For lower values of p, power is close to size. For the remainder, where x; ~ U and
xy ~ N, power is close to size in most cases. Once again, if this specification is considered
linear, the RESET test is robust to autoregressive errors where z; ~ U and z; ~ N. If this

specification is viewed as a misspecification, this test fails to pick it up under such conditions.

95



The reverse is true for the trending data.

Finally, the results of the Hamilton (2001) specification, the simple threshold model, also
show a clear pattern. The RESET test clearly has power in detecting nonlinearity of this form.
Where 21, and z9; are ~ U and ~ N, respectively, the power is over 90 per cent for 7" = 225.
Although low for small sample sizes, the power increases steadily with 7. Only when z;
is distributed either uniformly or normally and z9; is trended, does the power fall. In both
cases, power is less the 80 per cent for 7" = 225. Given that the RESET test is routinely

available in most econometric packages, its performance here is particularly noteworthy.

3.5.4 Hamilton’s LM test

Before comparing the performance of this test with the preceding results, the performance of
the /\g(g) test is reported. These results can be found in Table B.15.

The size of the test is close to 5 per cent, although in the majority of cases, the size is
below 5 per cent. Size appears to be effected somewhat by sample size. For the quadratic
specification, the power of the test is 100 per cent in all cases. The power is generally very
high for the square specification with trended data and also when x; ~ U and x; ~ N. The
notable exceptions are for the smaller sample sizes (17" = 25, 75) and for the largest variance of
the disturbances (o2 = 400). Even in these cases, the power exceeds 70 per cent for 7' > 125.

As with the Harvey-Collier (1977) and RESET tests, a clear pattern emerges for the
autoregressive specification. For the trended data, the power approaches 100 per cent for
T =225 and p = 0.9. For the lowest value of p (0.1), the power does not exceed 10 per cent.
These results do not depend on the other parameter valiues. For xy ~ U and x; ~ N, the
power is approximately equal to size. In a small number of cases, it exceeds 10 per cent, but
no obvious pattern is evident. As with tests previously examined, the /\‘{[(g) test is robust to
autoregressive errors, except where the data is time trending. Finally, for the Hamilton (2001)
specification, the power of the test is high. For all cases where 1" > 75, the power is above 90
per cent and increases with 1" to 100 per cent for 1" = 225. Where 1" = 25, the power ranges
from 28 per cent to 39 per cent, which is quite low, although perhaps untroubling given the
very small sample size and the considerable improvement as 1" increases. Next these results
are compared with the performance of the three tests considered previously.

It is clear from the Durbin-Watson (1950) test results that the test is not very powerful
for some of the models used here, when data remains unordered. The A} (g) test clearly
performs better. It is worth comparing, however, the performance of the Durbin-Watson test
using ordered data with /\,E[(g) test. For the quadratic and square specifications, the power
of the )\g(g) test is marginally better, but the differences are small. Comparisons for the
autoregressive specification are difficult to make. If, on the one hand, autoregressive errors are
to be viewed as a form of nonlinearity, the Durbin-Watson test out-performs the A% (g) test by
some way, perhaps unsurprisingly given that the Durbin-Watson is a test for autocorrelation.
If autoregressive errors are not viewed as nonlinearity, no meaningful comparison can be
made as the tests have different objectives. In the case that the autoregressive specification
is viewed as a linear model with autocorrelated errors, the A (g) test is sensitive to high values

of p combined with trending data, i.e., it frequently rejects the null of linearity in favour of
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the alternative. Finally, both tests perform very well on the Hamilton (2001) specification,
with very small differences in power between them. Choosing which test is more powerful,
given the above confusion is difficult, but it does appear that the )\f,(g) test is slightly more

powerful.

Only the results obtained using ordered data for the Harvey-Collier (1977) test are used
here. For the quadratic specification, the results for the /\g(g) and Harvey-Collier tests are
almost identical, with the Harvey-Collier test reporting power in several cases just below 100
per cent, while the /\f{(g) test records full power in every case. Both tests return very similar
results for the square specification with z4. For the remaining cases, the Harvey-Collier test
appears to be marginally more powerful. This is particularly noticeable when the sample
size is small and o is high, although the power of both tests tends towards 100 per cent as
sample size increases, regardless of other parameters. For the autoregressive specification,
the Harvey-Collier test again appears to be somewhat more powerful than the /\fE,(g) test.
For trending data, the powers attained by the Harvey-Collier test are considerably lower then
the )\g(g) test. For the remaining cases, the power of both tests is not significantly greater
than their respective sizes. As previously stated, the Hamilton (2001) specification, being
multivariate, was not included in the Harvey-Collier simulations, so no comparison can be
made here. Given this drawback and ignoring the results of the trended autoregressive case,
there is little difference between the performance of these tests in the cases explored here.

The greater applicability of the A% (g) test may be the deciding factor.

Consider next the comparative performance of the /\f‘}(g) and RESET tests. Both tests
prove effective in testing the quadratic specification, with full power observed in every case.
As with the Harvey-Collier (1977) test, RESET proves to be marginally better for the square
specification, although as previously noted, both tests perform very well. The differences
here are small, with RESET’s power increasing faster with 7. Again, RESET’s power is lower
for the trended autoregressive case than that of the /\g(g) test and there is little difference
in the remaining cases. For the Hamilton (2001) specification, the /\Z(g) test is considerably
better. For 1" > 75, its power is above 90 per cent, regardless of all other parameters. The
RESET test is sensitive to the inclusion of trended data for z9; and in these cases power
remains below 80 per cent for maximum 7. In the remaining cases, the power increases
steadily with 7', from just less than 60 per cent when 1" = 75, to over 90 per cent when
T = 225. By contrast, the /\E(g) test’s power is above 90 per cent for all cases when 1" > 75.
If the results, excluding the trended autoregressive cases, are reviewed, while there is little
real difference, the superior performance of the A% (g) test for the threshold specification
may once again make it preferable, as the results for the other specifications are very close.
However, given that Keenan (1985), Tsay (1986) and Luukkonen, et al. (1988) all proposed
potentially more powerful variants of the RESET test, it would be interesting to compare their
relative performance to that of the A5 (g) test. If those tests are indeed more powerful than
RESET, they may well be more powerful than the )\}E{(g) test for the models considered here.

This remains to be explored by future research.
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3.5.5 The \5,(g), \5p and gop tests

The results for the three tests proposed by Dahl and Gonzalez-Rivera (2003) are reported
in tables B.16 to B.21. As with the A& (g) test, the individual performance of each test will
be first assessed before reviewing the comparative performance. These tests will be assessed
relative to the Al (g) test, which itself has been compared with the Durbin-Watson (1950),
Harvey-Collier (1977) and RESET tests, but also to the simulation results obtained by Dahl
and Gonzdlez-Rivera (2003). As noted in Section 3.3, both asymptotic and bootstrapped p-
values were recorded for all three tests. In the analysis which follows, primary consideration
will be given to the bootstrapped p-values. Unlike the results presented thus far, which are
based on 20,000 Monte Carlo replications, the bootstrapped p-values were obtained using

1,000 Monte Carlo replications with 100 re-samples for bootstrapping.

The bootstrapped p-values for the )\gp test can be found in Table B.16. The size is
approximately 5 per cent, although values as low as 3.5 per cent are observed. The test’s
power is 100 per cent for all cases of the quadratic specification. For the square specification
with x4, the power decreases with o2, but increases with 7. For the remaining cases, the
power is 100 per cent, except where o2 = 400. Power, however, is above 90 per cent in those
cases where T' > 125. For the autoregressive specification a familiar pattern emerges. When
x¢ is trended, the power approaches 100 per cent as 1" and p increase. For the remainder of the
cases, power is not dissimilar to size. The power is high for the Hamilton (2001) specification.
It is at its lowest, 36.9 per cent, for 7' = 25, but is above 97 per cent for all cases when 1" > 75.
Interestingly, the results for the asymptotic p-values are not dissimilar, with the exception
of the size, as seen in Table B.17. The size is generally found to be between 1 per cent and
2 per cent, but the power results are very close indeed to those found in Table B.16. This
could have important implications, given the computationally intensive and time consuming

nature of obtaining bootstrapped p-values.

Results for the bootstrapped p-values of the Agl,(g) test can be found in Table B.18. The
size of this test is once again approximately 5 per cent, but with some degree of variability,
shown by a size in once case of 7 per cent. For the quadratic specification, in all but one
case, power is 100 per cent and in every case above 99 per cent. The power of the square
specification with x4 is very sensitive to o?; when o2 = 1, power is 100 per cent for T' > 75,
which falls to approximately 5 per cent for 02 = 400, for all 7. For the remaining cases,
power is 100 per cent for all but one where data is trended. For x; ~ U and z; ~ N, power
is 100 per cent for the lowest value of o2, but it is again sensitive where o > 25. In these
cases, power increases to 81 per cent and 71 per cent, respectively, for maximum 7" and o?.

The quadratic specification yields similar results. Power increases with p to approxi-
mately 100 per cent for maximum 7" and p, for trended data. For p = 0.1, however, power
approximates to size. For the remainder of cases, the power also approximates to size. Fi-
nally, for the Hamilton (2001) specification, power is above 98 per cent for all cases where
T > 125 and above 75 per cent for 7' > 75. For 1" = 25, powers below 10 per cent are
observed. Once again, the asymptotic p-values, which can be found in Table B.19 tally well
with the bootstrapped results, again with the exception of size, but now also for the case of

the autoregressive specification where x; ~ U and xy ~ N.
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The final test examined was the gop test, the bootstrapped results of which can be found
in Table B.20. The size of the test was found to be approximately 5 per cent. Curiously, as
shown in Table B.21, the size of the test is zero in every case, when asymptotic p-values are
used. This remains to be explained and highlights the necessity for using the bootstrapped
p-values. For the quadratic specification, power was 100 per cent in all but two cases and
was above 67 per cent in all cases. For the square specification, the results are similar to the
other tests. The power of the test is sensitive to o and 7. For T = 225, however, power is
above 90 per cent for all cases except for x4 when o2 = 400. The pattern observed in other
tests is again found here for the autoregressive specification. For the trended data, the power
is high for larger values of p and T". For the other cases, power approximates to size. Finally,
for the Hamilton (2001) specification, the power is low for small sample sizes, but increases
steadily, to lie above 89 per cent in all cases where 1" > 125.

By contrast with the )\gp(g) and )\ép tests, the asymptotic p-values of the gop test,
which can be found in Table B.21, seem much less reliable. The size is found to be 0 per cent
and although most cases for the quadratic specification tally with the bootstrapped results,
for 17" = 25, the power is 0 per cent. The same can be said for the remaining specifications;
while some results are similar, many are not. In this case, the asymptotic p-values seem very
unreliable.

Of the three tests, the )\g[) test performs best in terms of power, across the range of spec-
ifications and data used here. It outperforms the /\gp(g) test for the quadratic specification,
although as previously noted, the differences are very small. It outperforms the gop test
in the square specification, where there are some notable differences in power for the small
sample sizes. Even larger differences are seen between the /\g,, and the )\gp(g) test. The gop
test appears to perform best on the trending data of the autoregressive specification, and for
other data its power is close to size. Once again, however, if the autoregressive specification is
considered to be a linear model, all three tests are sensitive to high values of p combined with
trended data. Finally, for the Hamilton (2001) specification, the )\8}, test clearly outperforms
the /\gp(g) test, again with some notable differences in power at 1" = 25. Once again, these
differences are even larger when compared to the gop test. Overall, therefore, the /\f‘) p test
is the most powerful, in terms of the data and specifications used here, of the three tests
proposed by Dahl and Gonzalez-Rivera (2003).

Having established this fact, just the /\ép test performance will be compared to the A% (g)
test. It should be noted, of course, that the p-values reported in the Hamilton (2001) case
were asymptotic and not bootstrapped.®® The empirical sizes of the two tests appear to
be equivalent. The performance on the quadratic specification is identical. Slight differences
emerge for the square specification. While there is little difference in power with x4, for other
data types, the /\g p test is less sensitive to 0% and T. The tests perform comparably with
the autoregressive specification, although the power of the )\f,(g) test appears to be more in
line with its size for untrended data. Finally, the /\é p test performs best for the Hamilton
specification, although the differences are very small and only noticeable for 1" < 75.

Overall, therefore, it is judged that the )\é p test is the most powerful over the range of

%5 Dahl and Gonzalez-Rivera (2003) have made GAUSS code available to compute bootstrapped p-values for
the A (g) test. It was not used in this study.
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specifications and data used. It outperformed the A5 (g) test, which in turn outperformed,
although in some cases only just, the Durbin-Watson (1950), Harvey-Collier (1977) and
RESET tests. These results very much confirm the findings of Dahl and Gonzélez-Rivera
(2003), that the /\gp test performs well across a range of models. They too find that the /\?)P
is more powerful than either the /\f{ and /\(E) p(g). Interestingly, they report that the gop test

is particularly successful with bilinear models. Such models have not been included here.

3.6 Conclusion

This chapter has assessed the power of several tests of nonlinearity, some well known, across
a range of specifications often encountered in economics and econometrics. These results
present some clear conclusions.

The well-known tests of Durbin and Watson (1950), Harvey and Collier (1977) and RESET
are powerful against misspecification and nonlinearity, particularly when the former tests are
applied to ordered data. This is particularly noteworthy as such ordering approximates the
data examined here to many economic time series, which are slowly changing. Given the
relative simplicity of these tests and their wide availability, with the exception of Harvey-
Collier (1977), these results certainly endorse their use.

The /\,E,(g) test does offer a more powerful solution, but this increased power is small
and given its more complex nature and lack of widespread availability, it may remain under-
utilised. Of the three tests proposed by Dahl and Gonzalez-Rivera (2003), the /\‘(‘31, test
appears to be most powerful across the range of specifications examined here. This of course
refers to powers based on bootstrapped p-values. Interestingly, there does not appear to
be a large difference between the powers obtained from the bootstrapped p-values and the
asymptotic p-values, despite the relatively small sample sizes used. This is not the case for
the gop test, where asymptotic and bootstrapped p-values differ considerably. Also, the /\(§ p
test appears to be somewhat more powerful than /\f?}(g) test, although recall that the powers
for this test are based on the asymptotic p-values. All of the random field-based tests appear
to be sensitive to a linear model specification with autocorrelated errors, particularly in the
case of trended data.

Avenues for further research would be to compare the performance of the bootstrapped
/\f,(g) test with its asymptotic equivalent; to consider the performance of the Keenan (1985),
Tsay (1986) and Luukkonen, et al. (1988) tests, adaptations of RESET, against the random
field methods discussed here; and to consider a wider range of model specifications and data,
including nonnormal distributions, to gain a greater understanding of the properties of these

tests.
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Chapter 4

Theories and Concepts

This chapter is based on material taken from Banerjee, Dolado, Galbraith, and Hendry (1993), Davidson
and MacKinnon (2004), Enders (1995), Franses (1998), Greene (2003), Hamilton (1994), Johansen (1996) and
Stewart and Gill (1998).
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4.1 Introduction

The aim of this chapter is to provide the background theory required for the remaining
chapters of this thesis. Those remaining chapters aim to compare and contrast the results
of modelling time-series relationships using the Hamilton (2001) methodology, as outlined in
Chapter 2 and further discussed in Chapter 3, with a variety of alternative methods. These
alternative methods share the common trait that they exploit the concept of (co)integration
in modelling economic relationships. Naturally, this work follows on from the work of Chapter
2, which investigated in detail the implementation of the Hamilton procedure. Chapters 5,
6 and 7 will further this work by evaluating this procedure’s potential as a modelling tool.
Three approaches to modelling economic relationships will be compared with Hamilton’s:
the Engle-Granger (1987) 2-Step approach, Johansen’s (1988, 1991) vector autoregressive

I This chapter will review each

(VAR) approach and common factor (COMFAC) analysis.
of these methods in turn. Attention will also be given to the work of Dolado, Gonzalo, and
Mayoral (2002) and Johansen (2002), which may offer further insight into the implementation,
application and results of some of the above methods. To illustrate all of the above-mentioned
methods, three case studies will be used in the remaining chapters: the demand for money in
Chapter 5, the theory of purchasing power parity in Chapter 6 and the forward exchange rate
anomaly in Chapter 7. Background theory and information on data used will be supplied as
necessary.

The structure of this chapter is as follows. Section 4.2 will provide the background theory
necessary for the subsequent chapters. The concepts and definitions outlined here will be
used routinely throughout the remainder of the chapter and, indeed, the remainder of the
thesis. Section 4.3 provides details on the three methodologies to be used in this study: the
Engle-Granger (1987) 2-Step approach, Johansen's (1988, 1991) VAR approach and COMFAC
analysis. Sections 4.4 and 4.5 outline the more recent developments of Dolado, et al. (2002)
and Johansen (2002). This work has yet to be given textbook treatment and is, therefore,
quite detailed, although unnecessary technicalities are avoided. It should be stressed from

the outset that the intention here is to give just an overview of these new techniques.

4.2 Stationarity, Nonstationarity and Unit Root Processes

This section introduces briefly some key concepts that will be referred to routinely in the
remainder of this chapter. It is felt prudent, therefore, to give these concepts a brief treatment
at the outset. The section begins by introducing stationarity and nonstationarity. Tests for

stationarity are then considered, before the introduction of the concept of cointegration.

4.2.1 Concepts and definitions

To begin, define a stochastic process as an ordered sequence of random variables, {z(s,t), s €
S, t € T}, such that for each t € 7, x(-,t) is a random variable on the sample space S, and

for each s € S, z(s,-) is a realisation of a stochastic process on the index set 7. Given a

'See, for example, Hendry and Mizon (1978).
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stochastic process, it can be said that such a process is strictly stationary if, for any subset
(t1, to, ..., t) of T and any real number h, such that t; + h € T7,i=1, 2, ..., n, there
exists

F(z(t1), z(t2), ..., z(tn)) = F (z(t1 + h), z(t2 +h), ..., z(tn + b)), (4.1)

where F'(-) is the joint distribution function of the n-values. Strict stationarity implies that
all existing moments of the process are time invariant. Also, the process is said to be weakly

stationary, second order stationary, or covariance stationary, if

Elz(t:)] = Elz(ti+h)]=m <oo, (4.2)
E[(z(t))?] = E [(z(t:i+h))*] = p2 < oo, (4.3)
Elz(t:)z(t;)] = Elz(ti +h)z(t; + k)] = pij < oo, (4.4)

where 11, po and p;; are constant over t, for all ¢ € 7, and h, such that ¢, + h € 7, for
(T‘ =1, J)z

The concept of stationarity is necessary for understanding integration. An integrated
process can be defined as a process with no deterministic component and which has a sta-
tionary and invertible autoregressive moving average (ARMA ) representation after differencing
d times, but which is not stationary after differencing only d — 1 times. Such a process is
said to be integrated to order d, denoted x; ~ I(d). A time series may be integrated, or
alternatively, it may be near-integrated or fractionally integrated. The concept of fractional
integration was put forward by Granger and Joyeux (1980) and Hosking (1981). A simple

fractionally integrated time-series model can defined as

(1— L)%y = & for 0 < d <1, (4.5)
where L is the lag operator, defined as

L".I.'l{ =T ny (4())
and (1 — L)? can be expanded infinitely as
d 1 g 3
{il=L) = 1—(1L+-2—’ d(d—-1)L* — 3 dd-1)(d—-2)L° + ...
(-1 e

+—j'—d(d—1)...((1—.}+1)LJ+..., (4.7)
which reduces to 1 for d = 0 and (1 — L) for d = 1. When 0 < d < 0.5, the time series is
said to be stationary with long memory, and when 0.5 < d < 1, it is said to be nonstationary

with long memory.? Baillie (1996) and Parke (1999) give an account of long memory and

fractional integration in economics and econometrics.

“Banerjee, et al. (1993), Chapter 1.

#More formally, series can be classified as stationary with anti-persistence when —0.5 < d < 0, stationary
with long memory when 0 < d < 0.5, nonstationary with long memory when 0.5 < d < 1 and nonstationary
with strong long memory when 1 < d < 1.5. See, for example, Tsay and Chung (2000) for further details.
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4.2.2 Testing for unit roots

An I(d) series that becomes stationary by differencing once contains exactly one unit root.
Many economic time series may contain an exact unit root in the logarithmic transformations
routinely applied to such series. Otherwise, roots very close to, but slightly greater than unity,
imply nonstationary series that are not I(d) for any d. Roots slightly less than unity generate
near-integrated series. Such processes will tend to be difficult to distinguish from those with
a root of exactly unity, particularly in moderately sized samples. Roots substantially greater
than unity are characterised by explosiveness in the series. Following Banerjee, et al. (1993),

consider the following data generating process

Yt = pyt—1 + &, (4.8)

where yo = 0 and £; ~ i.i.d.(0, 02). The null hypothesis Hy:p = pp for |pg| < 1, can be tested

by regressing Equation (4.8), and by considering the t-statistic, defined by

~

P — Po
toLs, = —, 4.9
°4 = 5w(p) o
which has, asymptotically, a standard normal distribution. For py = 1, however, this result
is no longer valid. The distribution of the t-statistic given that py = 1, is not asymptotically
normal or symmetric. Dickey and Fuller (1979, 1981) reported the critical values required for

the following three models:

Yt = prys-1 + €¢, (4.10)
Yt = p2 + p2yt-1 + &, (4.11)
Yt = p3 + 3t + p3ye—1 + & (4.12)

Clearly, the first model contains no trend or intercept term, the second contains an intercept,
S )
p2, and the third contains both an intercept, u3, and a trend, t. Introducing the difference

operator A, where Az, = xry — x4, equations (4.10), (4.11) and (4.12) can be rearranged as,

Ayr = P1y1—1 + &, (4.13)
Ayt = pg + ¢ayt—1 + &, (4.14)
Ay = p3 + d3yi—1 + 73t + &, (4.15)

where ¢; = p; — 1 and &, ~ i.i.d. (0,02). The Dickey-Fuller (DF) test consists of regressing
one of these equations and considering the resultant ¢-statistic

¢i — 1 .
ki et 2 (4.16)
' SE(¢; )

where the null and alternative hypotheses are Hy:¢; = 0 and Hi:¢; < 0, respectively. The
DF test, however, assumes white noise disturbances. The test can be extended to allow for

some forms of serial correlation, thereby becoming the augmented Dickey-Fuller (ADF) test.
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The model
Yt = p+vYs—1 + NAY—1 + ... + AY—p + &4, (4.17)

is transformed by first-differencing to give

p—1
Aye = p+ ¥ y-1+ Z ©jAy—j + e, (4.18)
j=1
where p; = =377 . v and v* = (327_; %) — 1. The limiting distribution of the DF and

ADF tests is nonstandard and depends on the deterministic terms in the model, but does
not depend on ;. The same critical values are, therefore, applicable to both tests. Those
critical values have been simulated by Fuller (1976), Davidson and MacKinnon (1993) and
MacKinnon (1996). In these tests, the number of lagged differences of y; may be based on
model selection criteria, such as the Akaike (1973), Hannan and Quinn (1979) or Schwarz
(1978) information criteria. For series with more than one unit root, the Pantula (1989)
principle may be applied.*

In testing for unit roots with the DF procedure, the question arises as to which of the
equations (4.13), (4.14) or (4.15) should be used. Although estimating Equation (4.15), the
most general model, might seem appropriate, it reduces the power of the test unnecessarily if
either j3 or t are not present in the data generating process. This may lead to nonrejection of
the null of a unit root, when in fact the process is stationary. Also, different critical values for
the DF procedure apply, depending on the model under consideration. It is crucial, therefore,
that the data generating process being considered is suitably modelled by the choice of DF
equation.

Dolado, Jenkinson, and Sosvilla-Rivero (1990) suggested a method for overcoming the
potential for misspecification in the DF regression, when the form of the data generating

process is unknown.” Firstly, estimate Equation (4.15). If this rejects the null of a unit
root, conclude that the series is trend stationary. If the test cannot reject the null, test
the significance of the trend term, by imposing the unit root in the DF equation. If the
trend is significant, re-test for the presence of a unit root using the standardised normal
distribution.® If the trend is not found to be significant, estimate Equation (4.14) and re-run
the DF unit root test. If the null is rejected, again, it can be concluded that there is no unit
root. Otherwise, test the significance of the intercept. As before, if it is significant, re-test
using the standardised normal critical values. If it is not significant, estimate Equation (4.13)
and test for a unit root in the normal manner.

Consideration here has been limited to just the DF-type testing of unit roots. Alternative
test procedures do exist. A popular alternative is the method suggested by Phillips (1987) and

Phillips and Perron (1988), whose tests generalise the DF framework. Whereas the DF test

*Pantula (1989) suggested a technique for testing unit roots with the Dickey-Fuller test, where the series in
question is (d) and d is some positive unknown integer. In other words, the series may contain one or more
unit roots. The procedure suggests differencing the series as many times as is necessary to make it stationary
(this will of course imply differencing the series d times, but recall d is unknown!). If the hypothesis of a
unit root is rejected, as expected if in fact d is some positive integer, then the d — n-differenced series are
sequentially tested for unit roots, where n = 1, 2, ..., until the hypothesis of a unit root cannot be rejected.

®This exposition follows closely that which can be found in Enders (1995).

5This result is due to Savin and Nankervis (1985).



assumes that errors are statistically uncorrelated and have constant variance, the Phillips and
Perron test relaxes these assumptions. The same critical values apply to both procedures,
however. The ADF generalised least squares test, attributable to Elliot, Rothenberg and
Stock (ERs) (1996), allows for very general formulations of the error term. Kwiatkowski,
Phillips, Schmidt, and Shin (Kpss) (1992) proposed a test in which the null is stationarity,
in contrast to the other methods mentioned here. Leybourne and McCabe (1994, 1999)
proposed a variant of this test that corrects for any serial correlation in the data generating
process. Hall (1989) suggested an approach based upon an instrumental variables estimation.
Bhargava’s (1986) testing methodology employs von Neumann-type ratios. Ng and Perron
(NP) (2001) proposed a battery of tests based on those of Bhargava (1986) and Phillips and
Perron.” Excellent reviews of some of these methods may be found in Dolado, et al. (1990),
Phillips and Xiao (1998) and Bierens (2001).

A consistent estimate of the zero frequency residual spectrum is required to carry out each
of the Kpss, ERS and NP tests. Two classes of estimators are typically available, namely,
spectral and moment estimators. Several estimates are available within each class. For
example, the moment, or kernel sum-of-covariance class of estimators, as they are also known,
are made up of the Bartlett (1950), Parzen (1961) and Quadratic spectral kernel estimators.®
For spectral estimation, either the Newey and West (1994) or Andrews (1991) automatic
bandwidth parameter selection methods may be used. Several autoregressive spectral density
estimators are available within the spectral class, including OLS- and GLs-based estimators.

The usual selection criteria can be used to choose the appropriate lag length in these cases.

Seasonal Unit Roots

The illustrative examples that are contained within the subsequent chapters of this thesis
employ a variety of data, many of which are quarterly in periodicity. This raises the possibility
that the variables therein could be seasonally integrated. This concept is directly analogous

to that of integration and can be formally defined as’

The nonstationary stochastic process y;, observed at S equally spaced time inter-
vals per year, is said to be seasonally integrated of order d, denoted y; ~ SI(d),

if szy,, is a stationary, invertible ARMA process.'"

Considering the quarterly case, as this will be the most relevant here, such seasonally inte-
grated data may have standard, nonstandard and complex unit roots. This can be seen by

considering the Dickey-Fuller type test for the quarterly case:
(1 & L4) Yt = TYt—4 + E¢, (4.19)

where L is the usual lag operator. (1 — L‘i) can be rewritten as (1 — L) (1 4+ L) (1 + L?). The

roots of ( 1— L4) are 1, —1 and =+, and represent the standard, nonstandard and complex

TA fuller description of these tests has not be included here for compactness. Some of the tests are
implemented in Chapter 5, but only as supplementary procedures, thus warranting this omission.

8See, for example, Andrews (1991) or Priestley (1981).

?Following the definition of Ghysels and Osborn (2001).

1A is the seasonal differencing operator, defined as A, = (1= LS), where L is the lag operator.
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unit roots, respectively. Alternatively, those roots can be view as representing the zero, 7

and 7/2 spectral frequencies.

Several tests have been developed to examine data for seasonal unit roots for various
values of S. Tests include those by Dickey, Hasza, and Fuller (1984), Osborn, Chui, Smith,
and Birchenhall (1988) and Hylleberg, Engle, Granger, and Yoo (1990), widely known as the
HecGy test. Testing in this thesis will be undertaken with the HEGY test, not least because
the test can be easily carried out using the software JMulTi, further details of which can be
found in Liitkepohl and Kratzig (2004). What follows is a brief description of that method.

The HEGY test, for the case of quarterly observations, is based on the model

P
Agye = mi210-1 + Tozag-1 + Maz3e—1 + Tazse—2 + Y 0 Aqye_j + 21, (4.20)
j=1

where

2= (1+L+L*+ L%y,
Zot = — (1 —~L+L*- L:j) Yt
23t = — (]. = Lz) Yt (421)

Testing for regular, semi-annual and quarterly roots involves testing the null hypotheses
Hy:m =0, Hy:mo = 0 and Hy:mg = w4 = 0, respectively, using t- and F-type tests. JMulTi
tests these hypotheses along with Hy:mg = m3 = m4 = 0 and Hp:mp = w9 = w3 = m4 = 0.
Critical values for these tests are provided by Franses and Hobijn (1997). Equation (4.20)
can be estimated by OLS and p, the number of lagged differences, can be determined by the

usual information criteria.

Deterministic terms can be included in Equation (4.20). In fact, Ghysels and Osborn
(2001) recommend that both a linear trend and seasonal dummy variables should be included
when testing the S7(1) null hypothesis. Caution must be taken, however, when using this
methodology. The Fjo34 test, in the notation used by Liitkepohl and Kratzig (2004), that
which tests the hypothesis Hy:my = m = w3 = w4 = 0, should not be viewed as a test for
seasonal integration against an alternative of stationarity at all frequencies. Rejection of the
null may be due to stationarity at one or more, but not all, of the frequencies. Also, da
Silva Lopes and Montanes (1999) showed that ‘asymptotically the HEGY test statistics can
distinguish between a structural break in the deterministic seasonal component and seasonal
unit roots, but that empirically the presence of a structural break will reduce the power of

these tests’. 1!

Finally, the concept of fractional integration or near integration, also discussed in this
thesis, can be applied to seasonal processes; see, for example, Rodrigues (2001) and Rodrigues
and Osborn (1999). As this is deemed beyond the scope of this thesis, no further consideration

is warranted. Next, consider the concept of cointegration.

" Ghysels and Osborn (2001), p. 74.
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4.2.3 Cointegration

An n-vector time series x; is said to be cointegrated if each of the series taken individually is
I(1), that is, nonstationary with a unit root, while some linear combination of all the series,
a’xy, is stationary, or I(0), for some nonzero n-vector ar. Cointegration implies that although
many developments can cause permanent changes in individual elements of x;, there is some
long-run equilibrium relation tying the individual components together, represented by the
linear combination a’x;. The cointegrating vector is not unique, for if a’x; is stationary, then
so is ba'x; for any nonzero scalar b; if ¢ is a cointegrating vector, then so too is bae. When
referring to the cointegrating vector, an arbitrary normalisation must be made. Usually, the
first element of « is transformed to unity. If there are more than two variables contained
in x¢, then there may be two nonzero n-vectors a; and aw, such that ajx; and abx; are
both stationary, where a; and as are linearly independent. Indeed there may be r < n
linearly independent n-vectors, (a, as, ..., aj) such that A’x; is a stationary n-vector
A=l a) ... ag].

More formally, consider the definition offered by Banerjee, et al. (1993), adapted from
Engle and Granger (1987):

The components of the vector x; are said to be cointegrated of order d, b, denoted
xy ~ CI(d, b), if x; ~ I(d) and there exists a nonzero vector a such that a’x; ~
I(d —b), d > b> 0. The vector a is called the cointegrating vector. If x; has
n > 2 components, then there may be more than one cointegrating vector a. If
there exists exactly r linearly independent cointegrating vectors with r < n — 1,
then these can be gathered into an n x r matrix A. The rank of A will be r and

is called the cointegrating rank.'?

In recent decades, the concept of cointegration has become increasingly important in eco-
nomics and econometrics. Several important economic relationships have been empirically
explored in a cointegration framework, including the demand for money function and pur-
chasing power parity, both of which will be examined more closely in later chapters. Engle
and Granger (1987) outlined several examples where cointegrating relationships have been
or are likely to be found. Various procedures exist to test for the presence of stationary
linear combinations of integrated variables. Some of these tests will be outlined later in this

chapter.

4.2.4 Error-correction representation

Given that cointegration implies a long-run relationship tying individual components to-
gether, it is straightforward to view this in terms of error correction. An error-correction
model is a dynamic model where the short-run dynamics are influenced by the deviations
from long-run equilibrium. As such, error-correction models are very useful in representing

cointegrating relationships. Consider the autoregressive distributed lag model, or ADL(1,1),

Yt = ap + a1Ye—1 + Poxt + Prxe—1 + €, (4.22)

"2Banerjee, et al. (1993), p. 145.
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where £, ~ i.i.d.(0, 02) and |a;| < 1. Treating (y;, ¢) as jointly stationary, assume also that
all change in the above model has ceased. The long-run values are given by the unconditional

expectations. Let y* = E(y;) and 2* = E(z) for all t. Equation (4.22) then becomes

y* = ao + ary* + fox* + i1, (4.23)
or .
=D AT — o R (424)
which is equivalent to
E(yt) = ko + k1 E(x:), (4.25)

where £ is the long-run multiplier of y with respect to z. By further manipulation Equa-

tion (4.22) becomes
Ay = ap + ((kl = 1)(yt—-1 — klélfg_.l) + BoAxy + &4. (426)

In general, an ADL(m, n; p) can be defined as:

D n

Yyt = oo + Z(Yﬂ/t+z a5 Z Z d]z Tjt—i + €t- (4'27)

=1 —1 i=0

Such models were used by Sargan (1964), Hendry and Anderson (1977) and Davidson,
Hendry, Srba, and Yeo (1978), as a way of capturing adjustments in a dependent variable
which depended not on the level of some explanatory variable, but on the extent to which the

dependent variable deviated from an equilibrium relationship with the explanatory variables.

A generalised error-correction model (EcM) corresponding to the ADL(m, n; p) model
with p exogenous variables xy,...,x,, by steps similar to those used in the specific case
above, allows the direct specification of a general dynamic regression model in the form of an
EcM, for (r < m):

Ayt i QO+ZTh Yt—i ijt i +ZH]()Ath+ZZCJ1I;t i

J=1a=1

m

+Z Z Bjitjt—i + Z QiYt—i + &, (4.28)

j=1i=r+1 i=r+1

wheren; = a; —1, n; = a; for i = 2,...,r with r = min(m, n). Also, {;1 = oy — 14 Bjo + Fj1,

Cji = q; + /jjia 1=2,...,7and Al’jt‘i = (T'jt—i — Ijt~i—l)~

The ECM is simply a linear transformation of the ADL model. In the EcM formulation,
however, parameters describing the extent of short-run adjustment to disequillibrium are

immediately provided by the regression.
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4.3 Testing for Cointegration

Having reviewed the concepts of integration and cointegration, attention now turns to testing

for cointegration. An exposition of three frequently used methods now follows.

4.3.1 The Engle-Granger 2-step method

As suggested by its name, this single-equation method of testing for cointegration has two
steps. The first is to test the variables of interest for unit roots, to establish that the variables
are indeed integrated to the same order. The DF test discussed in Subsection 4.2.2 can be
used for this purpose. If the evidence from this test suggests that the variables are integrated
to different orders, or not at all, then the specification of the model should be reconsidered,
perhaps by modelling in differences. The second step, given that all the series are found to
have unit roots, is to consider whether or not they are cointegrated. This can be done by
examining the residuals of a static OLS regression.

Following Davidson and MacKinnon (2004), consider the model
x¢ = Dy + Xp28 + 11, (4.29)

where D; is a deterministic row vector that may not have any elements, X; is a k-vector
of I(1) variables, X; = [x; X2, and x; is the regressand. Estimates of 3 can be obtained
from Equation (4.29) by OLs. If the variables cointegrate, then this estimate will be super-
consistent and the estimated residuals will be superconsistent estimators ‘of the particular
linear combination of the elements of X; that is 1(0)".'® If the variables do not cointegrate,
however, the residuals will be I(1).

There are two reasons why the estimates of 3 may not be consistent. First, since both
sides of the Equation (4.29) contain I(1) variables, the problem of spurious regression may

4" Second, consistency is unlikely here, as the proposed approach involves estimating

arise.
the parameters of an ordinary simultaneous equation model by OvLs. It is, however, an
extraordinary result that in this case, neither of these considerations is a problem. In fact, as
shown by Stock (1987), not only is ,(5, the OLS estimator of 3, consistent, it is superconsistent
in that its asymptotic variance is O(1/T?) rather than O(1/T), as in the usual case, when
the null hypothesis of no cointegration is rejected.!> Consequently, such regressions may not
be spurious. The next step, therefore, is to estimate the cointegrating vector(s) by OLS.
Under the assumption of cointegration, the residuals from Equation (4.29), v, are esti-
mates of the equilibrium errors. As such, they should be 7(0). An obvious approach would
be to apply the familiar DF test to these residuals. The DF critical values are inappropri-
ate, however, for these estimated errors. Estimates of the appropriate critical values for the
test are given by Engle and Granger (1987), Engle and Yoo (1987), Phillips and Ouliaris

(1990) and Davidson and MacKinnon (1993). If autocorrelation in the equilibrium errors is

"*Davidson and MacKinnon (2004), p. 636.

“Hamilton (1994), p. 557, offers a useful definition of spurious regression. Consider a regression of the form
Yt = X33+ u¢, for which elements of y; and x; might be nonstationary. If there does not exist some population
value for 3 for which the residual u; = y: — x;¢ is 1(0), then OLS may produce spurious results.

®See also, for example, Davidson and MacKinnon (1993).
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suspected, then an augmented Engle-Granger (AEG) test can be applied. Having obtained

residuals from Equation (4.29), the AEG test is performed by running the regression

p
Ai/\t = Dt¢ + ’7ll7t_1 + (S‘Ai/\g_ i + E¢, (430)
J J
Jj=1

where p is chosen to remove serial correlation and the asymptotic distribution of the test
depends on k. If the null hypothesis of v/ = 0 cannot be rejected against the alternative
7" < 0, then it is concluded that the variables are not cointegrated.'® Two further single-
equation approaches warrant a mention and due to their computational simplicity will be
considered in later analyses. They are the ECM and cointegrating regression Durbin-Watson

tests for cointegration. They are briefly introduced here.

The error-correction mechanism test

An alternative single-equation approach to testing for cointegration is the error-correction
mechanism (EcM) test, put forward by Banerjee, Hendry, and Smith (1986). Consider again
the EcM model in Equation (4.28). If the variables are not cointegrated, the coefficients of
the error-correction terms Y ._, n; (yt_i = Z?:x .z:jt_i) must be zero. Estimating the Ecwm
model by OLS gives a suitable test statistic in the form of the t-statistic for 7; = 0. Ericsson
and MacKinnon (2002) provided suitable critical values for this test, along with programs to
compute them. Davidson and MacKinnon (2004) suggested that the ECM test has greater
power than the Engle-Granger approach. These test procedures share the disadvantage,

however, that they both depend on the choice of the regressor.

The cointegrating regression Durbin-Watson test

The final single-equation method considered here is the cointegrating regression Durbin-
Watson (CRDW) test. This test, proposed by Sargan and Bhargava (1983), is computed in
the same way as the Durbin-Watson d-statistic. Given that d ~ 2 (1 — p), and that under the
null hypothesis of no cointegration p = 1, the CRDW tests the null hypothesis that Hy: p = 1,

as opposed to the usual Durbin-Watson d test that Hy: p = 0, where

ZT 172 ot
=1 it

and v;; are the OLS residuals from the cointegrating regression. Although this method is

CRDW =

made easy by the routine reporting of the d-statistic by most econometric software, it is not
without its limitations. The test statistic depends on the number of regressors. The bounds
of the critical values change as the number of regressors increases. Also, the null of a random
walk in the residuals is tested against an alternative of a stationary first-order autoregressive

process. This is rather restrictive. Further details can be found in Banerjee, et al. (1993).

%1t should be noted that errors of Type I and II can be made, regardless of whether the null hypothesis of
no cointegration is rejected or not.
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4.3.2 Johansen’s maximum likelihood approach

Before detailing the nature of Johansen’s (1988, 1991) test for cointegration, it is necessary
to introduce some further background material. Systems of multiple equation models can be
considered as being a collection of single-equation models. These can be written as vector
autoregressive (VAR) processes. In vector notation, the n-dimensional, autoregressive process,

X;, where X; = (z1¢,...,Tx) can be written as!”

Xt = H]Xt =g o Hkxt_k + (I)D( + &4, (432)

fort =1,...,T and where g; ~ n.i.d(0, €2), D, is a deterministic term containing a constant,
trend and seasonal dummies, and IT; are k x k coefficient matrices.

Equation (4.32) can be written in error-correction form, to give

k—1
AX, =TIX; ) + » TiAX ; + ®D; +ey, (4.33)

=1

fort = 1,..., 7T, fixed values of X_f,1,...,Xp, and where g; ~ i.i.d., II = Zf:l II; — 1,

L, =- f:i+1 II; and I' =1 - Zf;ll I';. The characteristic polynomial for this equation is
k-1 ‘
A(z) = (1-2)I-TL, - Y Ty(l-2)7. (4.34)

Using this characteristic polynomial, Equation (4.33) can be expressed as

A(L)X; = —IIX; + (T + II) AX; + A*(L)A%X; = g + Dy, (4.35)
where .
A(z) — A(1) —A(1)(z — 1)
Art(z) = . 4.36
(%) - (436)
and A(l) = —II — T'. In the presence of unit roots, Il has to be singular and it can be
represented as IT = a@’, for some n x r matrices, a and 3.
Equation (4.33) can, therefore, be rewritten as
k-1
AX;=af'X; 1+ TiAX, ;+dD; +e, (4.37)
i=1
for t =1,...,T, and where I'1,...,I',_; describe the short-term dynamics, and the effects
of levels depends on a3’. By further refinement, Equation (4.37) can be rewritten as
Zoo = af'Zy + $Zy + &, (4.38)
for t =1,...,T, and where Zo; = AXy, Z1; = X¢—1 and Zgy, of dimension n(k — 1) + m, is

the stack of variables AX;_1,...,AX; 41 and Dy. ¥ is the n x (n(k — 1) + m) matrix of

parameters of Zoy, i.e., consisting of I'y, ..., 'y, and .

"Following closely Johansen (1996).
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The loglikelihood for this equation is

log L (¥, a,3,9) = (4.39)
T
1 1 N
t=1

Finally, defining M;; = g Z;rzl z“zgt, fori,j =0,1,2, Rot = Zot — MOtM2_21Z2t, Ry =
Zy, — MisMy) Ziy, and Sy = T~ Y RyRj;' = Mij — MiaMgy) My;, for i, j = 0, 1, allows
for testing the hypothesis H(r) : I = a3, as it can be shown that the maximisation of the

likelihood function is equivalent to solving the equation
IAS11 — S10S50 So1| = 0, (4.40)

for the eigenvalues 1 > A\ > ... > A, > 0 and for the eigenvectors V = (v3,...,v,). The
maximised loglikelihood function is then given by

Lz2T (H(r)) = [Soo|IIT (1 - Xi) . (4.41)

mazx t=1

This leads to the so-called Trace statistic, the likelihood ratio function Q (H(r)|H(n)), for
H{r) in H(n);
n
~2log Q (H(r)|H(n)) = T Y} log (1 E Xl-), (4.42)
i=r+1

and the Maximal eigenvalue test for H(r) in H(r + 1),
—2logQ (H(r)|H(r + 1)) = —T'log (1 - /A\,.H) : (4.43)

It is possible that the two different, but related, test procedures will conflict in their findings.

The critical values for the Trace and the Maximal eigenvalue statistic defined in equa-
tions (4.42) and (4.43) depend upon n — r, whether Equation (4.37) contains an intercept or
trend and whether there are restrictions imposed upon these. The distribution of the Trace
statistic is derived under the hypothesis that there are r cointegrating vectors and tests H,
within H,,. The testing proceeds in sequence from g, 71, ..., Mn—1. The number of cointegrat-
ing vectors selected is r + 1 where the last significant statistic is 7. The test’s distribution is
not the conventional x? distribution because X; is a multivariate I(1) process. The Maximal
eigenvalue test, alternatively, tests H, with H, ..

Both are distributed as functionals of multivariate Wiener processes. There are no ana-
Iytical forms of the distributions, but critical values can be obtained by simulation.'® They
are available in tabulated form, from among others, Johansen (1988, 1991), Osterwald-Lenum
(1992) and Pesaran, Shin, and Smith (1996). Pesaran, et al. computed these critical values

using stochastic simulation techniques. They include cases with and without intercepts and

" An approximation for the Trace statistic has been put forward by Johansen (1988) as
Trace = hx? (2m?), (4.44)

where h = 0.85 — 0.58/ (2m?), for m =n — r.
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trends, and the cases where restrictions are imposed upon them. This simulation includes
up to twelve endogenous I(1) variables and five exogenous I(1) variables in the vector error-
correction model (VECM). In large samples, the critical values do not depend on the order of
the VAR or on the stochastic properties of the I(0) exogenous variables. Osterwald-Lenum,
following Johansen’s approach, also computes the critical values for the Trace and Maximal
eigenvalue statistics. In this case, up to eleven endogenous I(1) variables but no exogenous
I(1) variables are included. These critical values, like Johansen's, differ from those offered

by Pesaran, et al. as they do not consider restrictions to the intercept or trend terms.

Finally, in a cointegrating vector, for unrestricted intercepts and trends, X; will be trend
stationary when the rank of IT is full. But if it is rank deficient, the solution for X; will
contain quadratic trends. For unrestricted intercepts and no trends, a rank deficiency in I
will result in X; containing linear deterministic trends. To avoid these situations, the choice of
restricted intercepts and no trends or unrestricted intercepts and restricted trends is normally
made. However, this results in the cointegrating vectors containing a deterministic trend in

the first case and intercepts in the second case.

4.3.3 Common factor analysis

Common factor analysis (COMFAC) is perhaps less well known than the above methods. A
more detailed account, therefore, is given here. For exposition, the two variable case is

considered first, followed by a more generalised account.

Consider a linear regression ADL(1, 1) equation relating y; to the variable x;,
O 1 O ./
Yt = B1ye—1 + Y0T¢ + 11T4-1 + v, (4.45)

where 31| < 1, 14 ~ i.i.d.(0,02) and is serially uncorrelated. The lag operator, L, allows

Equation (4.45) to be rewritten as
yt = B1Lyt + voxr + 1Lay + v, (4.46)

(0] &
(1 = ;31L) Yt = (’*/() + ”)’1L) T + 1. (447)

In this equation, both variables are multiplied by polynomials in the lag operator. If para-

meter v; = — 3170, then Equation (4.47) becomes
(1—=751L)y: = vo(1 — B1L)xy + vy. (4.48)

Now y; and x; have a common factor (1 — 31 L). These polynomials have a common root of
,3% 3 corresponds to what Hendry and Mizon (1983) refered to as the latent root of equation

A1 — £1| = 0. Dividing both sides of Equation (4.48) by their common factor gives

1%
w=om+ =, (1.49)
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or

Yt = Yot + ug, (4.50)
where
U
Ut — =y 4.51
‘= T AD) S
or finally,
ue = Brug—1 + 1t (4.52)

This shows that wu; is generated by a first order autoregressive AR(1) process. If the restriction
v = —170 is satisfied for Equation (4.45), with one period lagged variables, then the
polynomials in L have a common root. This root can be thought of as the serial correlation
coefficient of a first-order autoregressive error process, when Equation (4.45) is a static model.
Therefore, u; being AR(1) is a convenience, not a nuisance.!® In Equation (4.50), only 31, Yo
and o2 need to be estimated, as opposed to of 31, 70, 71 and o2 in Equation (4.45). Estimation
of this equation, however, requires Cochrane-Orcutt, maximum likelihood, or an equivalent
method. The benefit of estimating from Equation (4.50) rather than Equation (4.45), when
v1 = —170 is a valid assumption, is the improved efficiency of the estimates. The validity
of such a common root restriction could be tested, as in Sargan (1964), by comparing the
goodness of fit of Equation (4.45) with that of Equation (4.50). Equation (4.45) is more
general than Equation (4.50) and it is likely, therefore, that dynamic behaviour cannot be

accurately summarised by AR errors. In many cases a common factor may not be found.

When ~; # —3170, and beginning from
Yt = Yot + ug, (4.53)

a significant value of the Durbin-Watson d-statistic, calculated from the OLS residuals u;, will
often be observed. This results from the fact that Equation (4.50), with a nonzero common
root, will be a better approximation to Equation (4.45) than Equation (4.53), where the root
has been restricted to zero. A notable case of a model with one period lags and a common
root, which has become important in empirical work is Equation (4.48) where 3, = 1, which

gives a simple regression model in first differences
Ay = YAxy + vy, (4.54)

Transforming trending series by differencing to approximately stationary series has been
discussed by Box and Jenkins (1976). Granger and Newbold (1974) suggested that when
dealing with the levels of trending variables, the danger of spurious regression ‘is especially
large when the warning of a significant d-statistic has been ignored’ and to circumvent this

problem they also proposed the use of differenced variables.?’

While at times this is approach is acceptable, i.e., when there is a common unit root, in

See Hendry and Mizon (1978).
*OHendry and Mizon (1978), p. 552.
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other situations, it may cause serious problems. The model in differences
Ayt = voAzt + wy, (4.55)

where w; = Agy, solves the problem of potentially spurious fits, but replaces it with the
problem of an error process with a root of minus unity.?! Over-differencing, however, a linear
regression model will result in the first-order serial correlation coefficient of the errors being
close to —0.5. A similar problem can arise also with seasonal differences, using (1 — L4), to
remove seasonality. ‘If the true model is that in Equation (4.55), and the tentative hypothesis
is that of Equation (4.45), then there is a latent root with a value of zero and the COMFAC
approach should detect this and allow the redundant dynamics or autocorrelation to be
eliminated’.?? This problem may be avoided by testing the hypothesis that the model should
be formulated in differences. This could be done by testing the hypothesis of a unit root
against the alternative of a model which contains lagged values of y; and z; with unrestricted
coefficients.

This hypothesis can be tested by first testing for a common root in the alternative model,
and if this is not rejected, by then testing that the root is unity. This is a joint hypothesis,
testing first for a common root, and then that the root is unity. This approach will be valid

even if the variables are ‘spuriously’ related in levels and unrelated in differences. Consider
Ayt = Az + (81 — Dye—1 + (Yo + 11)xe—1 + 1. (4.56)

If Equation (4.54) is a valid model for any value of vy, the coefficients of y;; and z;_,;
must both be zero in Equation (4.56). In terms of hypothesis testing, the common root
implies v1 = — 170, and if that is a unit root, and if 5, = 1 also, Equation (4.56) becomes
Equation (4.54). Testing this composite hypothesis, therefore, of a unit root can be achieved
by testing the joint significance of the coefficients of the lagged variables in Equation (4.56).
It can be shown that v, in Equation (4.56) are white noise errors.

A difference model, like Equation (4.54) can be reformulated as a model in levels, like
Equation (4.45), with parametric restrictions of 3; = 1 and 79 = —v;. The error term will
be unaffected by this. Therefore, ‘if differencing is a valid solution to the spurious regression
problem, then so must be the inclusion of lagged values of all variables’.?? As mentioned
previously, however, it is not always appropriate to take the equation in differences, as there
may not be common factors. Given the restriction 3, + vy + 71 = 1, the autoregressive
distributed lag model takes on an error-correction form. Testing this restriction is equivalent
to testing for a cointegrating relationship.

For the more general case, consider
B(L)ye = v(L)xe + 6(L)z + 1, (4.57)

where 3(L),v(L) and 6(L) are scalar polynomials in the lag operator, L, of orders p, ¢ and r,

21Since w; = Ae; is a moving average with a coefficient of —1.
*?Hendry and Mizon (1978), p. 553.
ZHendry and Mizon (1978), p. 554.
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respectively. B(L), v(L) and 6(L) may have at most [ common roots, where | = min(p, q, r).
If there are n < [ common roots, ‘then there exists a polynomial p(L) of order n, common to
B(L),~(L) and §(L)".?* Then it can be shown that

B(L) = p(L)B*(L), (L) =p(L)y*(L),  o(L) = p(L)6*(L), (4.58)

[B(L):v(L):6(L)] = p(L) [B*(L):y*(L):6%(L)], (4.59)

where 3*(L), v*(L) and 6*(L) are polynomials of order (p — n), (¢ — n) and (r — n) respec-
tively. Using Equation (4.59), Equation (4.57) becomes

p(L)B*(L)yr = p(L)y*(L)xy + p(L)6* (L)2t + w1, (4.60)
or
B*(L)ys = v*(L)x¢ + 6" (L) 2z + uy, (4.61)
where
p(L)us = . (4.62)

The number of parameters from the general model of Equation (4.57) is reduced by a factor
of 2n (or kn for k regressors), which greatly improves efficiency. If it can be shown that
p(L) has a factor of A = (1 — L), where p(L) = (1 — L)p*(L), then Equation (4.61) can be
rewritten to give

B*(L)Ay, = v*(L)Axy + 6" (L) Az + uy, (4.63)

where
p (L)uy = vy. (4.64)

In practice, the orders of the lag polynomials will not be known. To overcome this, two
approaches could be adopted ‘both being two-stage decision procedures which commence
from the most general unrestricted model which it seems reasonable to consider’.?> Using
these techniques allows for the a priori specification of the longest lags. The common factor
technique could be applied to the model as specified a priori, followed by simplification can
through testing for zero roots from the set of n common roots. The Wald test is then
used to test the common factor restrictions. In summary, the COMFAC approach works
as follows. The coefficients and their variance matrices in the general unrestricted form
of Equation (4.57) are estimated, by OLS. These results are denoted by b and V. The
restrictions in Equation (4.59) are equivalent to requiring a vector nonlinear function of b,
say f(b), to be zero. The asymptotic variance matrix of f (B) is S = J'VJ where J = 0f /ob/,
and f(B)’g—lf(E) will, therefore, have a y? distribution in large samples when the f(b) = 0
restrictions are valid, with degrees of freedom equal to the number of restrictions tested.
Having completed the review of methods of testing for cointegration, attention now turns to

the concept of fractional integration and the work of Dolado, et al. (2002).

%"Hendry and Mizon (1978), p. 554.
*Hendry and Mizon (1978), p. 555.
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4.4 A Fractional Dickey-Fuller Test for Unit Roots

Many time series, be they economic series or otherwise, are not well represented by either
stationary, I(0), or nonstationary, I(1), processes. To overcome the potential difficulties
presented by this fact, and to capture the effects of the persistence properties of long memory
processes, the class of fractionally integrated processes has proven useful. A fractionally
integrated process is denoted F'I(d), where the order of integration, d, is extended to include
any real number. Although unit root tests have been shown to be consistent under the
alternative hypothesis of an FI(d) process, their power is quite low. This lack of power
has been the motivation for various approaches to take this alternative into consideration,
using Wald-type and Lagrange Multiplier (LM) tests. These approaches are attributable to
Geweke and Porter-Hudak (1983), Fox and Taqqu (1986), Sowell (1992), Robinson (1994)
and Tanaka (1999). Many of these tests have been unsatisfactory, however, suffering from a
lack of power.?°

Dolado, et al. (2002) proposed a simple Wald-type test in the time domain, which, unlike
those methods mentioned, has acceptable power properties.?” This method is a generali-
sation of the well-known Dickey-Fuller test, introduced in Subsection 4.2.2, and considers
the hypothesis of FI(dy) against FI(d,), where d; < dy. This test is referred to by the
authors as a fractional Dickey-Fuller (FDF) test and they concentrate on the case of dy = 1
and 0 < d; < 1. As the FDF test is a Wald-type test, the value of d is required under the
alternative, to make the testing procedure feasible. Therefore, for general hypotheses, the
pre-estimation of d under the alternative is necessary for the implementation of this test.

The FDF test has several obvious advantages. It is a simple generalisation of the well-
known Dickey-Fuller test. Unlike LM tests, no assumptions are required about the form of
the density function, greatly increasing the robustness of this method. Finally, it has been

shown that the test fares very well in finite samples, in terms of both power and size.?®

4.4.1 The fractional Dickey-Fuller test

As introduced in Subsection 4.2.2, the DF test statistic is based upon the statistical signifi-

cance of parameter ¢ in the following model,
Ayt = dyr—1 + &t (4.65)

If g; is i.i.d. and ¢ = 0, then y; is a random walk process. If alternatively ¢ < 0, then y; is a
stationary AR(1) process. The regression model in Equation (4.65) can be generalised to test

the null hypothesis that a series is F'I(dy) against the alternative that it is F'I(d;), where dy,

ZDolado, et al. (2002), p. 1963-1964.

“"Further details can also be found in Dolado, Gonzalo, and Mayoral (2005a).

*Dolado, Gonzalo, and Mayoral (2005b) proposed a test which considers the hypothesis of FI(dy), for
0 < do < 1 against FI(d,), for di = 0, for processes that may be subject to structural breaks at known or
unknown dates. This test, the SB-FDF test, may be more appropriate in certain circumstances, regardless of
breaks. Ideally, both the FDF and SB-FDF test should be used to test series, as both the d = 0 and d = 1
hypotheses are tested against 0 < d < 1. Given the very recent nature of this proposed test, it will not be
included here. It is recognised, however, as an area of future research with rich potential.
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d; € R, by testing the significance of ¢ in the regression
APy, = pA% Yy, ) + ¢, (4.66)

where A% = (1 — L)® and £ is an 1(0) process.?” When ¢ = 0, Equation (4.66) becomes
A%y, = ¢, implying that y; is F1I(dp). This allows the formulation Hy:¢p = 0 and H;:¢p < 0,
where Hy implies y; is FI(dy), and H, implies y; is FI(d;). Dolado, et al. (2002) restricted
their analysis to the specific case where dy = 1, namely, y; is (1) under the null hypothesis,
and FI(d,), where 0 < d; < 1, under the alternative. This is chosen for its empirical relevance
in the literature. In principle, this framework could be extended to deal with more general

cases.

4.4.2 The test and its asymptotic properties

In the case where dy = 1 and where {z;} is a sequence of zero mean i.i.d. random variables
with unknown variance o2 and finite fourth order moment, the OLS estimators of ¢, (E()LS
and its t-ratio, t(g(m, are

= ZLT:Q Ay Ay,

PoLs = = 4.67
v ZtT:z(A(l’il/t-l)z ( )

and = y
D oima Ay A®y g
g = — 2 (4.65)
i y i ‘ 2
St (Zia(a%y-1)?)
where the variance of the residuals, bf is
g A o 3 s_A([], B 2
S.IZ —_ Z( y' POLS .(/f 1) ’ (469)

T

It can be shown under the null hypothesis that y; is a random walk, gg()w is a consistent
estimator of ¢ = 0 and (,B()LS converges to its true value at a rate of T4 when 0 < d; < 0.5,
(T log T)é when d; = 0.5, and at the standard rate T3 when 0.5 < d; < 1. Asymptotic
distributions under this null have been derived. If the data generating process is defined
as A’Ifyt = etl>0), where dj € [0,1) and L(t~0p = 0 when ¢ < 0, and 1 otherwise, the
test statistic based upon (E()LS or the t-ratio of ag()m in the regression of Ay, on Ady,_y is

consistent for any value of d; € [0, 1).30

This guarantees the consistency of the proposed
tests, even when under the alternative an incorrect value of d; is employed to implement the
procedure, insofar as d; € [0,1). The standard or nonstandard asymptotic behaviour of the
previous test statistics depend on the distance between the null and alternative hypothesis.
The proposed test, simulated for a random walk and a series of F'I processes, with order of
integration dj € [0,0.9) and two sample sizes, was found to perform very well in both size and

power, by comparison to several other procedures, including the standard DF test, the Geweke

1t should be noted that Equation (4.66) is ‘an unbalanced regression where regressand and regressor have
been differenced in agreement with their degree of integration under the null and the alternative hypothesis,
respectively’ (Dolado, et al., 2002, p. 1966).

*Dolado, et al. (2002), p. 1969-1971.
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and Porter-Hudak (1983) test and the LM test proposed by Tanaka (1999). In practice, the
true value of d;, dj, is unknown under the alternative hypothesis. Under misspecification of
the value of dy, it was found that the power of the FDF test decreases when values of d; larger
than d] are selected, particularly when d] > 0.7. This is to be expected, as the alternative is
now close to the null. In general, however, it is found that the procedure is robust, in finite
samples, to misspecification in d;, and that the desirable qualities of the test do not depend

on an accurate choice of d; under the alternative.

An estimate of the memory parameter d;, under the alternative hypothesis, is required to
implement the FDF test. Generally, this value is unknown and must be estimated, therefore,
particularly when a composite alternative hypothesis is being posed, which is always the case
in practice. A substantial literature exists on the estimation of the order of integration, d,
in FI(d;) models, in both the time and frequency domains. If a T'%-consistent estimator of

dy is used, the asymptotic distribution of the t-ratio of 5()” under the null is N(0,1).

Under the null hypothesis that y; is a random walk, the test statistic, the t-ratio of (E()u

for dy, associated with the parameter ¢ in the regression
Ay = 6AM Y1 + ay, (4.70)

where d; has been chosen according to

= Ip  ifdp<1-
I ‘ (4.71)
1l—c ifdpr>1-c¢,
is asymptotically distributed as
@W<m)l;Nm4y (4.72)

where ¢ > 0 and is a fixed value in a neighbourhood of zero, such that (1 — ¢) is close to
unity, and — denotes weak convergence. This result suggests that when a pre-estimated
value of d; is used to implement the FDF test, the associated critical values are those from
a N(0,1) distribution, given that the value of d, satisfies Equation (4.71). If, however, the
value of d; is assumed known, a priori, and d; € [0,0.5), the test then has a nonstandard
distribution under the null. As will be seen later, nonstandard critical values are available

from the authors for such cases.

Dolado, et al. (2002) recommended the use of a parametric estimator of d;. Their reason-
ing is that semiparametric estimators often converge at a rate slower than T3. In principle, a
T3 rate of convergence is required for feasible use of the FDF test. They further suggest using
a time domain, as opposed to frequency domain, parametric estimator. Within that class,
they recommended the use of Mayoral’s (2003) general minimum distance (GMD) estimator.

Briefly, consider the ARFIMA(p, dy, q) model
Bo(L)A° (A™0y; — po) = Op(L)zy, (4.73)
where ®y(L) and ©y(L) are autoregressive and moving average polynomials of order p and
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q, respectively, and £; is a sequence of i.i.d. random variables with zero mean and unknown
variance, 0. Note that in this model dy = mg + §. ‘The integer mo = |do + 1/2], where |- ]
denotes integer part, is the number of times that y, must be differenced to achieve stationarity
(therefore mgy > 0). The parameter §, the fractional part, lies in the interval (—0.75,0.5), in
such a way that, for a given do, § = do — |do + 1/2]".3! Also, XA = (do,9’) € RPTIHL where
1) is a vector of autoregressive and moving average parameters. All possible values of A are
contained within the set A. Given that the estimated residuals of this process are e;(\), let

the sample i*" autocorrelation of the residuals be

T il
Bt o

The general minimum distance estimator is given by

Pe(n) (1)

i = argminVie (A, y), (4.75)
where
k
Vie (A y) = D ey (8)% (4.76)
i—1

The authors have made available the MATLAB program to implement this estimator, but
this has yet to be generalised, and so is limited in its applicability. This may render it use-
less for the applications in later chapters. Alternative estimators are considered, therefore.
Four estimators were chosen primarily because these estimators were freely available. These
were the Geweke and Porter-Hudak (GpPH) (1983) and Robinson (1994) nonparametric meth-
ods, and the parametric methods attributable to Sowell (1992) and Beran (1995).%2 These
procedures will be introduced in due course.

The FDF test, using the GMD estimator of d;, performs very well. Replacing the true
value of d; with an estimated value, (IA,I. was found to have little effect on the size and power
properties of the test. Also, by comparing the empirical distributions of the ¢-ratio of Cg()LS
for (71 and a N (0, 1) distribution, for various sample sizes, it was found that they approximate

to a standardised normal variate very well.

4.4.3 The augmented fractional Dickey-Fuller test

To broaden the applicability of the test, the framework outlined above has been expanded
to allow for serial correlation in the disturbance terms. Although some series may behave
as fractional white noise processes, it is desirable to consider series where this may not be
so, i.e., where there may be serial correlation in the error terms. By following the ADF
approach, it can be shown that ‘the asymptotic distribution of the t-ratio remains valid in
the presence of serial correlation, as long as a sufficient number of lags of A%y, are included

in the regression’.?3

31 Mayoral (2003), p. 4.

32Estimation procedures for all of these methods are available in Doornik and Ooms (1999) OX package,
ARFIMA, while the nonparametric procedures are also available in RATS.

*¥Dolado, et al. (2002), p. 1980.
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The fractional augmented Dickey-Fuller (FADF) test imitates the Dickey-Fuller approach
in the context of an autoregressive integrated moving average ARFIMA process. Consider
again Equation (4.65)

Ayt = dyt—1 + w, (4.65)

where now «a(L)u; = &4, an autoregressive process of order p, such that (L) = 1 — a L —

... — apLP has all its roots outside the unit circle. The ADF test is based on the regression

P
Aye=dye—1+ Y GAy—i + . (4.77)

=1

Under the null, Dickey and Fuller (1981) proved that the asymptotic distribution of the ¢-
ratio of $OLS, is identical to that obtained in the absence of serial correlation. Imitating this

process, the regression for the FADF test, where u; is an AR(p) process is

p
Ayr = pA%y, 1 + Z GiAY—i + €t (4.78)

i=1

As in Equation (4.66), the null and alternative hypotheses of a unit root and FI(d;) process
can be considered in terms of ¢, when ¢ = 0 and ¢ < 0, respectively. The t-ratio is computed
from the estimation of Equation (4.78). The asymptotic distribution of the t-ratio of ¢¢s

for d, is identical to that derived under the assumption of uncorrelated disturbances.

The performance of this more general framework of the FADF test, with a F'I(d;) process
with an AR(1) error structure®® and different values of d, and « indicate that the test is
very well-behaved in terms of size. The power of the test is, by and large, dependent on
how close the polynomial a(z) is to having a unit root. Only small changes in the power
are observed when the value of d; is misspecified. This indicates that the test is robust to
misspecification of dy. Also, and as in previous cases, the asymptotic distribution of the t-ratio
with an estimated d; is identical to that obtained with a known d,, where a T'2-consistent
estimator of d; is employed. The distribution of the t-ratio of &m for JI and an N(0,1)
distribution are compared, when the data generating process is an ARIMA(1,1,0) and d; has
been estimated using Mayoral’s (2003) GMD estimator. As before, the approximation to an
N(0,1) distribution works well in the finite samples considered. Also, it can be shown that
the power loss due to the pre-estimation of d; is minimal, although it happens to be larger
than that obtained under identically and independently distributed error terms. Next, brief
consideration is given to the alternative estimators mentioned previously, the GpH (1983),
Robinson (1994), Sowell (1992) and Beran (1995) estimators.

34The structure in question was
d*
A lyt = Ut,

where
Ut = Qut—1 + £,

and where ; ~ n.i.d.(0, 1).
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4.4.4 Estimating the order of fractional integration

As previously noted, Dolado, et al. (2002) recommended the use of the GMD estimator of d;.
While this is available from the authors, it is however, not widely applicable. For this reason,
four alternative, more widely used and, therefore, more readily available, estimation methods
are described in this chapter and used later in the thesis; they are the nonparametric methods
of Geweke and Porter-Hudak (1983) and Robinson (1994), and the parametric methods of
Sowell (1992) and Beran (1995). Each method is briefly described below.

Geweke and Porter-Hudak (1983)

The concept of fractional integration has been previously introduced in this chapter. One of
the most commonly used frequency domain estimators of d, the order of fractional integra-
tion, is the method of Geweke and Porter-Hudak (1983). Consider the long memory model

proposed by Granger and Joyeux (1980) and Hosking (1981). This model is of the form
(1- L)X, =&, (4.79)

where d € (—0.5, 0.5) and £, is serially uncorrelated. Note that this model is stationary and
long memory, since d lies between —0.5 and 0.5. Such a model was initially considered as
some time series appeared to have unbounded spectral densities at the frequency A = 0. The

spectral density of X;, given Equation (4.79), can be defined as®>

a® 65 i &= )
flxd) = <2 ) 11— exp* |72 = (T) {45&112 <§>} . (4.80)
s 27

Geweke and Porter-Hudak referred to this as a simple integrated process. This is generalised

to become a general integrated series,
(1- L)X, = u, (4.81)
where wu; is a stationary linear process, with a spectral density function f,(\), if the spectral

density is of the form f(\;d)f,(A), where f,(A) is a positive continuous function bounded

above and away from zero on the interval [—7, 7].3¢ The concern is now to estimate d for

the general integrated series. The spectral density function of X; is

g ; —
FA) = (%) {4sin?(0)} ¢ £, (0. (4.82)

Taking natural logarithms gives

In{f(\)} =In {;’—;} —dln {4sin2 (%)} +In{f.(N)}. (4.83)

% The conventional spectral density notation is used here. The spectral density of the time series X; is
SN =32 Re(s)exp(—iAs), where R, is the autocovariance function of X.
% Geweke and Porter-Hudak (1993), p. 222.
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In a sample of size T, the harmonic ordinates are given by X\ r = 27j/7, where j =
0, ... , T'—1, and the periodogram of these ordinates is I(\; 7). In evaluating Equa-
tion (4.83) at \; r, it can be shown that

1mu&jn=m{§}-mn%gﬁ(¥f0}+muung+m{%%%%.pma

Ignoring the term In { f,(X\; 7)}, which becomes negligible where the harmonic frequencies

are close to zero, Equation (4.84) can be rewritten as
Y;, =0t — dXt + £3, (485)

where V; = In {I(A\; 1)}, o4 = ln{%} plus the mean of ¢;, where ¢, = In {%E—')\\J]%} and

2
is equivalent to estimating the coefficient of the explanatory variable. Geweke and Porter-

X¢=1In {45111Z (—J—T) } The analogy to a simple linear regression is obvious. Estimating d

Hudak show that for d < 0, the estimator is consistent and the conventional interpretation of
the standard error of the coefficient is appropriate asymptotically.3” They provide empirical
evidence that this result remains true for d > 0.

Recall that for the test procedure above, d € [-0.5, 0.5]. What about the case where
d > 0.57 By differencing a fractionally integrated series by integer values, the original series
can be transformed suitably. Since in many applications d ~ 1, it is usual to operate the GprH
procedure on the first difference of a series, although appropriate differencing in the spirit of

the Pantula (1989) principle may indicate the required order of differencing.

Robinson (1994)

Robinson (1994) considered the ‘discretely averaged periodogram, where the averaging is
done over a neighbourhood of the origin which slowly degenerates to zero as sample size T’

increases’.8

By manipulating averaged periodograms, an estimate of the parameter H =
d+ % the parameter of interest here, can be obtained. It is shown that this estimate is
consistent for the nonparametric function L()), and also gives a consistent estimate of G,
where L(A) = GM(X), G > 0, M () is a known function and G is unknown. L(\) is a slowly
varying function at infinity, a positive measurable function, satisfying

L(tX)

m —1 a X— oo, forall ¢>0. (4.86)

The average periodogram under consideration here is
A
BiA) = / f(0)do, (4.87)
0

where

ﬂ»~L§M“M as A — 0. (4.88)

37Geweke and Porter-Hudak (1983), p225.
#*Robinson (1994), p. 516.
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Various estimates of F'(\) exist, including

~ A ~
F(\) = / 1(0)do 0<A<m, (4.89)
0
where
I = [@)*, (4.90)
T
@A) = (2rT)2 D" (24 — p)exp™, (4.91)
=1
and
[TA/2]
F=2m/T ¥ I() (4.92)
j=1

where [T'A/27] denotes the integer part and \; = 27; /T, and

I\ = [w(\)]?, (4.93)
T o
w(A) = (277)72D " zpexp'™ . (4.94)
=1

In the model

1-2H }b(expi’\)|2

s —rT <A<, (4.95)
|a(exp™)|

0’2 i\
FO) = 2= |1 - exp

a semiparametric estimate of H would be useful, as it would allow for the estimation of
this fractional ARIMA, or ARFIMA, model. Geweke and Porter-Hudak (1983) proposed a
closed form semiparametric estimate of H, which assumed the function L(\) was constant.
Robinson presents a new semiparametric estimator of H, which under certain conditions, is

consistent. It can be shown that for any ¢ > 0,

F(g)) qzu—mlz((ll//q;)) _ 20-H). (4.96)

as A — 0+. An estimate of d can be derived, therefore, from

log | F'(gAm)/F(Am)

Hypy=1-
s 2log q

: (4.97)

where F'(A,,) is a special case of the general class of weighted periodogram spectrum esti-

C . . 0 yie
mates.?® Robinson shows that under certain conditions
= p
Hy,— H, as T —o0. (4.98)

The proof of this result requires no knowledge of the functional form of L(\).

*Robinson (1994), p. 518.
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Whereas the GPH estimator required d € [—0.5, 0.5], here d is constrained to be d €
[—1.5, 0.5]. The same approach is taken, however, to ensure the series under investigation

fits this constraint.

Exact Maximum Likelihood

Sowell (1992) derived an unconditional exact likelihood function for a stationary, fractionally
integrated and normally distributed time series, and provides recursive procedures to estimate
that function.

To understand the procedure, consider the stationary, fractionally integrated and normally

distributed time series given by

m

®(L)(1-L)z =0 (L)=, (4.99)

where ®(L) and ©(L) are lag polynomials, and assume, amongst other things, that d < %

The autocovariance function, required for evaluation of the likelihood function, can be written

as
L[ As
v(8) = Ezizp_g = — Fo (X)) €22dA, (4.100)
271' 0
The spectral density of z,
BN = =2~ RN, (4.101)

where w = exp’®, can be calculated by first calculating the spectral density of u; = (1 — L)'I 24,
fu (A). Substitution of f, (A\) into f, (A) gives

2p 1

q p 0 =
f) =033 )G (1 i]pjw)_ (1—/)—* ) x (1=w)™ (1 —w™) Wt
;W

l=—q j=1
(4.102)
The autocovariance function, v (s), can now be calculated by substituting in the function for

f-(N), to give
Cld, I, p) = (4.103)
2r 2p ) —d . —d .
o B : ‘ X (1 — (J_l’\) (1 - el’\) g By
2 o [T=pe™  T=plePw)

Using this equation, and several others derived from it, the terms of C' (d, h, p) can be recur-

sively estimated. Mirroring issues raised in Chapter 2, appropriate start values are required
for this procedure, as it depends on a numerical optimisation algorithm. Pre-estimation of d
with the method of Geweke and Porter-Hudak (1983) or a grid search method are suggested

in this case.

Nonlinear Least Squares

Unlike the estimators of the fractional parameter discussed thus far, Beran (1995) proposed

an estimator that is not restricted to the stationary range, i.e., —% <d< %, but rather to
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any real d > —%. A simple algorithm to estimate d was suggested.
Beran (1995) generalised the definition of fractional integration used here thus far, to
include parameters for fractional stationarity and nonstationarity. To illustrate, consider the

Gaussian time series X; for which
$(L)(1 — L)’ {(1 = L)"X; — p} = p(L)ey, (4.104)

where L is the lag operator, p is the expected value of X;, € ~ i.i.d.(0,02), and ¢(x) =

5»':0 ¢z’ and P(z) = ?:0 ;a7 are polynomials with unit roots outside the unit circle.
Also, m > 0 is an integer and J € (—%, %) The m!" difference of X, is a stationary fractional

autoregressive integrated moving average, or ARIMA(p,d,q). The differencing parameter,
d = m + 9, is the difference required to render X; a stationary ARMA(p, q).
Where y is unknown, the m!* difference of X, is stationary with expected value p and

therefore
Ui(m)=(1-L)" X, (4.105)

where U, is a stationary fractional ARIMA(p, 0, q) with mean p. Let
9= (af.d,cbl ..... Ops wl....,wq) — (\Uf.n), (4.106)

the unknown parameter vector. Since U, is ergodic, the sample mean is

T

, 1

= e— > U, (4.107)
t=m+1

and adjusted residuals can be defined by

ee(m) =Y _a;(n") (Ui—; - 0), (4.108)
j=0
where n* = (d — m, ¢1,...,¢p, Y1, .+, q) = (0,01,...,0p,%1,...,1¢q), which for the popula-
tion can be written as o
ee(m) =) a;(m*) (Ui—j — ). (4.109)
=0

Y can be estimated by maximum likelihood, using the minimised sum of squared residuals

T
S(m) =Y e (n), (4.110)
t=2
with respect to m, giving
-~ 1
=——5(n), 4.111
V=775 (1) ( )

where ¢; (1) is defined as the adjusted residual above. It can be shown that 9 converges to
the true value of 9.
Practically, Beran (1995) suggested an approach to estimating d. For p = ¢ = 0, evaluat-

ing S(d) = Y e? estimates 9, = d, for a fine grid of d-values. In cases where min (p,q) # 0, d
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can be estimated by evaluating e; = Z;;B bj (8) (Up—j — U ). again for a sufficiently fine grid
of d = m+ 6. The ARMA parameters 02, ¢1,. .., Gp, U1, ...,y can be estimated for the series
€1,...,6n, and d is the value of d which minimises 2. Doornik and Ooms (1999) implemented
this approach, which they call nonlinear least squares in their OX package ARFIMA. In fact,

all four of the methods outlined above are available in the OX ARFIMA package.

4.4.5 Implementing the fractional Dickey-Fuller test

Thus far, the theoretical underpinnings and properties of the FDF and FADF tests have
been reviewed. This section very briefly summarises the steps necessary to actually test for

fractional integration using this method.

1. An estimate must be made of the order of fractional integration, (ix, of the series of
interest. Several methods are available for estimating the parameter dA,]. Dolado, et al.
(2002) advocated a generalised minimum distance estimator attributable to Mayoral
(2003). Since no general estimator is available here, alternatives are used, as outlined

above.

2. Having estimated d;, a regression of the form™’

R p
Ay = p+ oAMy, 1 + Z GAyt—i + 7t + &, (4.112)

i=1

where A4l can be expanded as

1 1
Ay, = y—dy g1+ 21 di(dy — 1)ys—2 — 3 dildy — 1)(d — 2)ye-z + <+
(—1) . B
+ i di(di—1)...(d1 =3+ Dye—j+... (4.113)

is estimated to obtain ¢.

3. The FADF test is carried out by examining the t-ratio of 5()“- for (71. which is the test
statistic of interest, testing the hypothesis Hy: FI(dy = 1) against Hy: FI((IA,I) where
0<d <1.

Recall that when a pre-estimated value of d; is used to implement the FDF or FADF test, the
associated critical values are those from a N(0,1) distribution. If, however, the value of d;
is assumed known, a priori, and d; € [0,0.5), the test then has a nonstandard distribution
under the null. Critical values are available from Dolado, et al. (2002), Appendix B, Tables
X, XI, XII1, p. 2003-2004.

4.5 Johansen’s Small Sample Correction

As outlined previously in this chapter, Johansen’s (1988, 1991) Trace test is commonly used

in exploring cointegrating relationships in economic data. It has come to be a standard

40The inclusion of an intercept and trend term, as in the standard Dickey-Fuller procedure, depends on the
data.
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method of analysis, with many econometric software packages including standard routines
for carrying out this procedure. In his more recent paper, however, Johansen (2002) high-
lighted the potentially poor small-sample properties of this method. This confirms several
earlier studies, as outlined by Kennedy (2003), which highlight the potential small-sample
deficiencies of Johansen’s test for cointegration. Cheung and Lai (1993a) pointed to several
finite-sample shortcomings. A large sample size, in the order of 100 observations, is needed
for reliable inference. Even then the procedure produces outliers, particularly when the er-
rors are not distributed independently normal, and so rejects the null of no cointegration too
often. Hansen, Kim, and Mittnik (1998) found that the x? statistics for testing cointegrating
relationships have fat tails and suggested a correction to the critical values. Zhou (2000) sug-
gested a bootstrapping alternative which solves the problem. Johansen (2002) recommended
a correction to the asymptotic critical values, which may greatly improve the accuracy of
inferences made when using the technique. In the following sections, notation closely follows

that of the original paper and that introduced in Subsection 4.3.2.

4.5.1 The correction factor

Consider the vector autoregressive model

k—1 ng—1
AX, =TIX; |+ Yt + ) TiAX i+ Y it' + 2, (4.114)

=i i=0
where t = 1, ... T, X; is an n-dimensional process, IT and I" are matrices of coefficients,
Il = Zf:l IL-LT; = - Z;‘:Hl IT;, t"4 is a trend term, ®,t' is a deterministic term, and

£; has the usual properties. This model is frequently employed in the analysis of economic
data. It can be shown that if X; is a nonstationary process, and that if IT = a/3’, where «
and 3 are n x r, then 3'X; — E[3'X,] is stationary. If this is in fact the case, X, is said to
cointegrate, with cointegrating vector (3.

To implement Johansen’s (1988, 1991) Trace test, consider the null hypotheses II = a3’
and ¥ = ap’, where, as above, a and 3 are nxr, and p is 1 xr. Anderson’s (1951) technique
of reduced rank regression is employed to derive the likelihood ratio test, and to estimate the
parameters, assuming Gaussian errors. Johansen (1988, 1996) and Ahn and Reinsel (1990)
derived the asymptotic distribution of the likelihood ratio, —2log LrR. It is found to be a
nonstandard distribution, which can be expressed as a Brownian motion. It can be tabulated
by simulation, as a function of n — r and ngy. For further details, see Subsection 4.3.2

It is widely known that the small sample properties of the Trace test are different from
its asymptotic properties. This has been confirmed by simulation.*! Ahn and Reinsel (1990)
and Reimers (1992) corrected for such small samples using a method based on degrees of
freedom. However, the distribution in question, that of the likelihood ratio test statistic,
depends on 7" and 6, where 6 is a function of the parameters under the null hypotheses. As
1" — oo the dependence on f disappears, but not uniformly. So, if # is close to a boundary of
cointegrating properties, any approximation may be poor. As the Trace test is so widely used

in inferring cointegrating rank, where cointegrating rank, p(IT), may be defined as the number

#See Cheung and Lai (1993a), Toda (1995), Haug (1996) and Gonzalo and Pitarakis (1999).
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of linearly independent cointegrating relations, improving the asymptotic approximation is
important. One potential, but unattractive solution, is to simulate the exact distribution
each time, using the estimated parameter values and generating identically and independently
distributed Gaussian errors. Although this will give the same limiting distribution, it may

not improve approximation due to its nonuniform convergence.

Johansen (2002) suggested a correction factor which will improve the finite sample prop-
erties of the likelihood ratio test. Using a Bartlett (1937) correction,? the expectation of
the LR test statistic is found, and then corrected to have the same mean as the limiting
distribution. Given IT = a3’ and ¥ = ap’, let 6 denote the parameters of Equation (4.114).

The Bartlett correction can be implemented by approximating
Eg[-2logLRr (I = af',T = ap'|AX,)], (4.115)

a function of # and 7. This result is expressed in terms of the LR test of IT* = 0,Y* = 0 in

the model for X,

ng—1

AXF =TI"X;  + T+ Y ®ft + <], (4.116)
i=0
Note that when IT* = 0, then I'; = 0 since I'; = — ZI;:HI II;. If IT* = 0, Y* = 0, then
F(T, np, ng) = E[-2log LR (IT* =0, Y* =0 | X})], (4.117)

where the function f(-) is an approximation of Equation (4.115) when IT* = 0, Y* = 0 and
ny = n — r. This function can be tabulated by simulation, as it depends only on 7', n; and

ng. An approximation of Equation (4.115) can be found, and takes the form
fF (T, npng) (1+T7'5(8)), (4.118)

where b(0) is to be defined [see Equation (4.124)]. Given this, the correction factor can be

shown to be

f(ny ,na) 1
. a— (4.119)
(T, mo ma) (14715 ()
where
£y, ng) = hm (T, ng; ma) (4.120)
T—o00
Defining

#T, npy Bg)

f(ng, ng) (4.121)

all. %y, Pgl =

the correction factor becomes
1

a(T, ny, ng) (1 +T-1p <§)) i (4.122)

42Bartlett corrections are scalar transformations of the likelihood ratio statistic. They improve the LR
statistic by transforming its distribution under the null hypothesis from a x? of order O(1) to a x?* of order
O(1/T). For a useful review, see Cribari-Neto and Cordeiro (1996).
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The Bartlett correction, where observations are identically and independently distributed,
often offers an excellent improvement of fit.#> This may not hold true in the presence of unit
roots. According to Jensen and Wood (1997), the Dickey-Fuller test, in a univariate situa-
tion, cannot be corrected by Barlett’s method. At this point, it is important to point out
that the correction factor suggested above is based upon the model in Equation (4.114) and
makes the idealised assumptions that the errors are identically and independently distrib-
uted and Gaussian, and that the lag length and cointegrating rank are correctly specified.
When applying this correction, it is important that these assumptions are carefully met. In
Johansen’s own words, ‘the calculation is useful as a complement to the asymptotic analysis

since it ...demonstrates that an uncritical use of asymptotic tables can be misleading’.**

Under the null hypothesis that II = a8’ and T = ap’, the model in Equation (4.114)

becomes

k—1 ng—1
AX, = a(BXi1 +pt") + ) TidX i+ ) it +&, (4.123)
=1 1=0

recalling that a and 3 are n x r and p is 1 x r. The expansion of the expectation of the
likelihood ratio test of IT = @’ and ¥ = ap’ in Equation (4.114) is derived, under the
assumption that X, is an I(1) process, with cointegrating rank r, given by Equation (4.123).
A corollary of this gives the correction factor for the likelihood ratio test. Assuming that X;
is an I(1) process with cointegrating rank r given by Equation (4.123), the correction factor
for the test of Equation (4.123) in Equation (4.114), i.e., the test for cointegrating rank r in

the vector autoregressive model Equation (4.114), is given by Equation (4.122) where

) g(ny,ng)

g

b(#) = c1(1+ h(np,ng))+ (npea + 2(c3 + ngey)

—2tr |27y | k(ny, ng, j). (4.124)

j=0

Note that X, 9 and 1); are variance and long-run coefficient parameters, where

c1 = t7'{VU}.
c2 = tr{ln, — Vo — Vy 1,
ey = tr{V} (4.125)
and
Vy=00'S""!, (4.126)
Vy = yy's]

o0
o0
V = '(/),E_lzmzowmt‘l‘{z_I’Y(TTL + 1)} + P! Z v(m + 1)’2“r¢m.

m=0

Note that ¥~! is the variance of y;, which is a function of X;, and that 6’ and 1)’ are

43Gee, for example, Bartlett (1937) and Lawley (1956).
4 Johansen (2002), p. 1931.
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the long-run variances of yg; and y,, where y; = yg + yy¢. Fuller details can be found in
Johansen.*®

To implement the correction, f(ny, ng), a(ny, ng), g(np, ng), h(ny, ng) and k(ny, nq, 7)
must be calculated. As these are complicated functions, Johansen (2002) tabulated them by
simulation, for values of ng = 0, 1, 2. These estimates may be found in Tables 1 and 11.6

Given these tabulated simulation values, the proposed correction factor becomes

a (T, np, ng) (1 4B (5)) ) (4.127)
where ( )
b(8) = c1(1 + h(no na)) + (mocz + 2(es + naer)) T (4.128)
b

4.5.2 Implementing the small sample correction

The previous section details the theory behind the small sample correction. As stated, to
implement the correction, f(ny, ng), a(ny, nq), g(np, nq), h(ny, ng) and k(ny, ng, j) must be
calculated. This would certainly appear to involve considerable effort and is not straightfor-
ward. Johansen, Hansen, and Fachin (2002), in an unpublished paper written to accompany
Johansen (2002), outlined the calculations required to estimate the correction factor. Source

d,*7 requiring the user to supply just the

code for the econometric software RATS is include
following: the number of observations, 7', n and r, the dimensions of a and 3, values for the
matrices a, 3, £ and I';, where 1 = 1, 2, ..., k — 1, the number of matrices included in
total and the type of model to be estimated.*® The RATS code produces an estimate of the
small sample correction given this information, which can then be applied to the Trace test

statistic in question.

45 Johansen (2002), p. 1933-1938.

46 Johansen (2002), p. 1939.

47 This code is available from http://www.math.ku.dk/~sjo/.

*8Like any new procedure, implementing the correction may be less than straightforward. Although the
RATs code supplied by Johansen, et al. (2002) greatly simplifies the procedure, some issues remain. The
small sample correction requires several inputs. These are the matrices a, 3, I';, i = 1, ..., K — 1 and Q.
These estimates are obtained after the appropriate number of cointegration vectors have been selected in the
usual manner. To obtain the correction factor, the vectors a and B must have the same dimensions. While
this may not appear to be problematical in many cases, the situation where a restricted constant or trend is
included in the cointegrating VAR is noteworthy. In such circumstances, an a vector of dimension n x r will
be accompanied by a 3" vector of dimension (n + 1) x r. Evaluating the correction factor in this case requires
the upper n x r elements of 3" to be taken. This n x r upper, 3, is used in calculating the correction factor.
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Chapter 5

The Demand for Money

Research carried out in the course of writing this chapter appear as ‘Demand for Money: A Study in Testing
Time Series for Long Memory and Nonlinearity’ by Bond, D., M.J. Harrison, and E.J. O’Brien, in The Eco-
nomic and Social Review, 38, 2007. Also published as ‘Testing for Long Memory and Nonlinear Time Series:
A Demand for Money Study’ in Trinity Economic Papers, No. 21 (2005). It was presented at the 20"" Trish

Economic Association Annual Conference, Bunclody, Co. Wexford, 28"-30*" April 2006.
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5.1 Introduction

The importance of the concepts of stationarity and regime stability in economic and financial
time-series modelling is well established. However, recent concerns about the interrelationship
between these two concepts, and the associated problems for applied work, have ensured that
they remain a significant focus for research. Early studies, such as those by Bhattacharya,
Gupta, and Waymire (1983) and Perron (1989), highlighted the difficulty of distinguishing
between time series generated by difference stationary processes and those generated by
nonlinear but stationary processes. Since then, an increasing research emphasis has been on
the problem of distinguishing between long memory and nonlinearity. The developing interest
in long memory models has been stimulated, in particular, by a growing awareness of the
limitations of the simple I(1)/1(0) framework. For example, Baillie and Bollerslev (2000) and
Maynard and Phillips (2001) showed how the low power of familiar unit root tests, such as
those introduced by Dickey and Fuller (1981), could lead to incorrect inference in the Fama
(1984) regression model of the relationship between future spot and forward exchange rates,
and how the empirical work could be set in a framework of fractional integration using a
long memory model. Long memory models and fractional (co)integration are now popular in
several other areas of the applied literature; see, for example, Gil-Alana (2003), Liu and Chou
(2003), Dittmann (2004) and Masih and Masih (2004). A major problem with such models
is that it is not easy to distinguish them empirically from models with regime switching or
more general nonlinearities; see, for example, Diebold and Inoue (2001).

In the theoretical literature, two main strands of discussion have developed. The first is
that of testing for difference stationarity when the processes are in fact nonstationary; see
Perron and Qu (2004) for references. The second concerns testing for structural breaks when
long memory is a possibility; see Nunes, Kuan, and Newbold (1995), Krammer and Sibbertsen
(2002) and Hsu (2001). Recent work by Mayoral (2005) and Dolado, Gonzalo, and Mayoral
(2005b) has developed specific tests for difference stationarity against the alternative of sta-
tionarity with a structural break. All of these studies use conventional parametric techniques
for either modelling or testing for nonlinearities. The recent development of random field re-
gression has also provided a suite of tests for structural breaks, nonlinearity and time-varying
parameters; for example, chapters 2 and 3 discuss tests suggested by Hamilton (2001) and
Dahl and Gonzalez-Rivera (2003). The strength of this alternative approach is that it does
not rely on any functional form being specified prior to estimation.

The purpose of this chapter is to compare the performance of traditional integration
analysis, the fractional integration approach and random field regression-based inference,
all introduced in previous chapters of this thesis, using a standard economic model and a
well-known time-series dataset. The discussion is structured as follows. In Section 5.2, the
theoretical background to money demand is briefly explained. The data used in this study is
described and the standard I(1)/1(0) analysis is then conducted in sections 5.3 and 5.4. The
univariate analysis of the series, using the augmented Dickey-Fuller (ADF) testing strategy
proposed by Dolado, Jenkinson, and Sosvilla-Rivero (1990) is implemented to determine
whether the individual series are trend stationary or difference stationary. The Engle-Granger
(1987) error-correction (EcM), the Johansen (1988, 1991) vector autoregression (VAR) and
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the common factor approaches are used to investigate the possibility of cointegration, with the
augmented Engle-Granger (AEG) test, the cointegrating regression Durbin-Watson (CRDW)
test of Sargan and Bhargava (1983) and the ECM test due to Banerjee, Hendry, and Smith
(1986) being used in the former case. The p-values from MacKinnon (1996), MacKinnon,
Haug, and Michelis (1999), Ericsson and MacKinnon (2002) and standard normal tables are
used, as appropriate. The effect of applying Johansen’s (2002) small sample correction is also
examined. This correction is based on the Bartlett (1937) correction and assumes that the
errors are normal, independent and identically distributed, as described in Section 4.5 of the
previous chapter.

Having conducted the standard cointegration analysis, the long memory and fractional
integration analysis is undertaken in Section 5.5. Inference is problematical here, as none
of the usual procedures are appropriate. The classical asymptotics of the I(0) case do not
apply when time series are fractionally integrated and neither does the standard cointegration
approach. In the I(1) case, conventional tests depend on the statistics converging to known
functionals of Brownian motion. When d # 1, however, these are replaced by functionals
of fractional Brownian motion. Taking the approach of testing for I(1) against I(d) is also
problematical, since tests such as the ADF test of Dickey and Fuller (1981), while consistent,
have very low power; see Diebold and Rudebusch (1991) and Hassler and Wolters (1994).
Furthermore, the precision with which the parameters are estimated hinges on the correct
specification of the model; see Hauser, Potscher, and Reschenhofer (1999). The situation
becomes even more complex when the concept of fractional cointegration is entertained. As
Phillips (2003, p. ¢30) pointed out, ‘“The problems presented by these models of fractional
cointegration seem considerably more complex than the I(1)/(0) ... case that is now common
in applications’. Only univariate analysis is attempted, therefore. In particular, it seems
unlikely that the series in either of the two cases considered all have the same level of fractional
integration. The ‘over differenced’ ARFIMA model, using Ay, rather than y;, is estimated,
as recommended by Smith, Sowell, and Zin (1997), to avoid the problems associated with
drift. Four estimates of d are calculated using the Doornik and Ooms (1999) ARFIMA package,
namely, Sowell’s (1992) exact maximum likelihood (EML) estimator, Beran’s (1995) nonlinear
least squares (NLS) estimator, the method of Geweke and Porter-Hudak (1983) (GpPH) and
Robinson’s (1994) Gaussian semiparametric (GspP) estimator, all previously introduced in
Chapter 4. The fact that the first of these requires d < 0.5 is another reason for using the
‘over-differenced” model. The estimates of d are then used in the fractional Dickey-Fuller
(FDF) and fractional augmented Dickey-Fuller (FADF) tests, with the Schwarz (Bayesian)
information criterion (S1C) being used as the basis for the choice of the lag length for the
test. In Section 5.6, the random field regression approach is applied to the two cases, using
the GAUSS code provided by Hamilton (2001). Finally, in Section 5.7, the results of the

analysis are discussed and some practical conclusions drawn.

5.2 The Demand for Money

To investigate the application of both the new long memory tests and the random field

approach, a standard applied economics problem, namely, the estimation of a demand for
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money function, is considered in this section. The well-known datasets for Denmark and
Finland, provided by Johansen and Juselius (1990), are used. The well documented instability
of the demand for money function in many countries has led to several studies that place the
analysis of money demand in the I(1)/1(0) framework; see, for example, Astley and Haldane
(1997), Fiess and McDonald (2001), Mark and Sul (2003) and Choi and Saikkonen (2004).
Following Johansen and Juselius (1990), a simple demand for money function can be

specified for Denmark and Finland as
me = a+ Pyt + Bopr + B3ie + Babe + £, (5.1)

where m; is the logarithm of some measure of money demand, y; is the logarithm of real
income, p; is the logarithm of the inflation rate, i; is the deposit interest rate and b; is the
bond rate at time ¢. For Finland, 34 is assumed to be zero as no data are available. There
is a wealth of empirical evidence to support this framework. Regardless of the measure of
money supply used, the negative effect of interest rates has been widely confirmed, as has the
positive effect of real spending and the positive effect of the real cost of transactions; see, for
example, Goldfeld (1973, 1976), Goldfeld and Sichel (1990), Fair (1987) and Mulligan and
Sala-i-Martin (1996).

5.3 Data and Preliminary Analysis

The component factors of money demand have long been known to exhibit nonstationary
behaviour, and hence modelling the demand for money has commonly been placed in the
I(1)/1(0) framework. Two datasets, provided by Johansen and Juselius (1990) are used.
The first, for Denmark, samples the period 1974 to 1987, a total of 55 quarterly observations.

The variables include a measure of money demand, proxied by M2, in logarithmic form,

mPe";! national income, as the logarithm of gross domestic product, y"; and the inflation
rate, again in logarithmic form, p/¢". The costs of holding real money balances is proxied

by the bond rate, b”", and the deposit rate, i”¢".?

The Finnish data samples the period 1958 to 1984, a total of 106 quarterly observations.

It consists of four variables. The demand for money is proxied by the logarithm of M1,

mf3 The logarithm of real income is included as y/™". To proxy the cost of holding
money balances, both the inflation rate, p/™, and the marginal rate of interest of the Bank

of Finland, if ™"

, are used. The data can be found in Appendix C.1; Table C.1 contains the
data for Denmark, while the data for Finland can be found in Table C.2.%

To begin, each of the data series were plotted. These plots can be found in Appendix
C.2: figures C.1 to C.4 for Denmark and figures C.5 to C.7 for Finland. Table C.3 gives
the results of the Dolado, et al. (1990) unit root testing strategy for the Danish and Finnish

variables, respectively.” For Denmark, all of the data series appear to be I(1). In all but

' M2 is defined as the sum of currency in circulation and in cheque accounts, itself a definition of M1, plus
consumer time deposits, money-market deposits and some other items.

“The bank deposit rate for interest bearing deposits, which are in fact, a large part of M2.

3See previous definition of M2.

*These data can also be downloaded from Sgren Johansen’s website at http://www.math.ku.dk/~sjo/.

®See Chapter 4 for an introduction to the method of Dolado, et al. (1990).
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one case, the constant and trend terms are found to be insignificant; in the remaining case,

the standard normal probabilities are used. For the Finnish data, however, only the m/ "

and y{" variables seem to be I(1), though the inference is marginal for y/". In the case of
Finland’s m{" variable, the constant in the ADF test is only marginally insignificant, but
if it is treated as significant, the ADF test still supports the null of a unit root, with a test
statistic of -0.760 and an associated p-value of 0.826. By contrast, the unit root null is rejected

" and if™ series. It is noteworthy, though, that if, for these last

decisively for Finland’s pf*
two variables, the Akaike information criterion (AI1C) is used instead of the Sic, the choice of
lag lengths for the ADF tests, and the test results, are different: the suggestion then is that,
like m/™ and yf™, the Finnish price and interest rate variables are also I(1). To ensure that
those series found to be I(1) were in fact integrated to order one, the first differences of those
series were tested for nonstationarity. Each series was found to be stationary after differencing
once, indicating that each of those series were indeed I(1). These results generally confirm
the earlier findings of Johansen and Juselius (1990) and Johansen (1996).°

Although the data are quarterly, the issue of possible seasonal integration has been ig-
nored up to this point. A more detailed examination of the issue of seasonal unit roots was
undertaken, using the procedures of Hylleberg, Engle, Granger, Yoo (1990), following the
procedures outlined in Ghysels and Osborn (2001).7 Table C.4 contains the results for Den-
mark. These results generally confirm the findings of the ADF tests discussed previously and
there is little evidence of seasonal integration. For my, with and without an intercept and
a time trend, there is some evidence that m # 0, suggesting a seasonal unit root, at the 5
per cent significance level. But at the 10 per cent level, where the critical value is —1.59, the
null of no seasonal unit root can not be rejected. In cases where seasonal dummies have been
included in the test specification, the evidence suggests that only nonseasonal unit roots are
present in m;. For the remaining variables, the HEGY tests finds no seasonal integration; the
results of the standard ADF tests are confirmed, with all series being found to be I(1).

The results for Finland can be found in Table C.5. There is some evidence here of seasonal
integration in m; and y;, regardless of whether seasonal dummy variables are included in the
test specification or not. For both of these variables, the null of 7 # 0 is rejected, and
with intercept and trend, Fb34 is only marginally significant in both cases. The remaining
hypotheses can not be rejected, suggesting therefore, that if there is seasonal integration in
these variables, it is semi-annual in nature. While it appears that p; and i; are not seasonally
integrated, there is mixed evidence as to whether they are even I(1). This very much confirms
the previous findings of the ADF tests.

To investigate further, the Kpss, ERS and NP alternative unit root tests were conducted.®
While the latter two tests have as their null hypothesis that the series has a unit root, the
first has the null that the series is stationary and the alternative hypothesis that it has a unit
root. For the Danish data, the additional tests broadly confirm the previous findings. In only

a few cases does the Kpss test fail to reject the null hypothesis of stationarity. One case is

5The Danish dataset introduced by Johansen and Juselius (1990) was subsequently used by Johansen
(1996).

"The so-called HEGY test of Hylleberg, et al. (1990) was discussed in Chapter 4. Other tests are available
to test for seasonal integration, including Osborn, Chui, Smith, Birchenhall (1988).

“These tests were briefly introduced in Chapter 4.
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that of the money demand variable, m;, when Parzen kernel estimation is used and no trend
is specified. The other is that of the income variable, y;, when a trend is allowed for in the
specification. In this latter case, the result holds for any of the spectral estimation methods,
but not for the moment estimators. For the Finnish data, the results are less clear. For all
variables, the NP test, which it has been argued has better power than standard I(1)/1(0)
tests, tends to reject the null hypothesis of a unit root. This is often supported by the Kpss

and ERS tests. Details of the results have been omitted for compactness.

5.4 Testing for Cointegration

5.4.1 The Engle-Granger 2-Step method

On the assumption that the variables are I(1), which seems to be a far safer assumption to
make for Denmark than for Finland, the Engle-Granger two-step approach to cointegration
gives the estimated levels models, and associated AEG and CRDW test results for the OLS
residuals, presented in Table C.6. Using the 5 per cent significance level, there is little evidence
for both countries that a cointegrated money demand relationship might exist. Only in the
case of Finland, when p; and i; are ignored in view of the fact that they seem to be I(0) using
the Dolado, et al. (1990) procedure and the supplementary unit root checks, is cointegration
of m; and y; suggested by the AEG and CRDW tests, but even then only marginally.

The estimates of parsimonious error-correction models, using the lag of the residuals from
the levels regression models as the error-correction terms, are given in Table C.7. The models
are statistically acceptable in the sense that they are supported by a range of misspecification
diagnostics. Only in the case of the equations for Finland is there a marginal suggestion of
heteroscedasticity. However, with R? values around 0.5, the fits are quite poor and there is
a high incidence of insignificance of the estimated coefficients. In particular, the coefficient
on the error-correction term is highly insignificant for Denmark, while the coefficients are
perversely signed, albeit significantly, for the three cases relating to Finland. The Ecwm
test decisively rejects cointegration in all cases. Even in the one case for Finland in which
the AEG and CRDW tests suggest the possibility of cointegration, the ECM test rejection is

unambiguous.

5.4.2 Johansen’s maximum likelihood approach

The Danish data have been used extensively by Johansen and it is clear from his various
results that the argument that there is a cointegrating money demand relationship depends
largely on the VAR specification and the test statistic used; see Johansen (1988), Johansen
and Juselius (1990) and Johansen (2002). Table C.8 gives a summary of the results that can
be obtained for Denmark using Johansen’s approach and a VAR lag length of one, as suggested
by the Sic and the adjusted likelihood-ratio test. See tables C.9 and C.10 for further details.”

As can be seen, a range of specifications concerning intercepts and trends was examined for

9The A1c and unadjusted likelihood-ratio test suggested a lag length of two. The choice of lag length one
has the advantage of economising on degrees of freedom.
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variants of the model with and without centred seasonal dummy variables.!® Examination
of the various VAR estimates suggested that the specification with restricted intercepts and
trends was the most appropriate, although for comparison, the case for unrestricted intercept
and trend is included also.!! Moreover, given that the data used were quarterly, the variant
with seasonal dummies, sc;, i = 1, 2, 3, was also preferred. There is variability in the suggested
number of cointegrating relationships across the range of specifications used, and between the
Trace test and the Maximal eigenvalue test used to ascertain this number. The surprise is
that despite the results from the static cointegrating regressions and error-correction models,
which overwhelmingly point to no cointegration, all of the results in Table C.8, except one,
suggest at least one cointegrating vector. In the case of the preferred specification, the
suggestion is of one cointegrating relationship, in contrast to the outcome produced by the
Engle-Granger (1987) approach.

For the Finnish data, the summary results of the Johansen procedure on the full model
are given in Table C.11. There is similar variability in the number of cointegrating relation-
ships suggested for the different specifications and tests to that noted for Denmark, though
it is not quite as marked. The preferred specification is again that with restricted intercepts
and trends, although the case with unrestricted intercept and unrestricted trends is also
considered, and seasonal dummies, for which case the number of cointegrating relationships
indicated is two, again in stark contrast to the earlier indications of no cointegration. As Jo-
hansen and Juselius (1990) have pointed out, the interpretation of the findings for the Finnish
data poses particular problems. Accordingly, two alternative reduced models for Finland were
also investigated: one taking p; to be I(0) in the VAR analysis and the other treating both
pt and i; as I(0). The summary results for these cases are given in Table C.12 and Table
C.13, respectively. Table C.12 contains consistent indications of a single cointegrating vector
across all VAR specifications and tests, though once again this finding contradicts the indi-
cations from the AEG, CRDW and EcM tests. Slight variability in the results for different
specifications and tests is seen in Table C.13, but in this case no cointegration is suggested
for the preferred specification. This finding conflicts with the corresponding AEG and CRDW
results, which indicate a possibility of cointegration, but it is in agreement with the ECM test
result. Tables C.14 and C.15 provide information on the choice of the VAR specification in
this case.

The Johansen (2002) bias-correction factor was calculated only for the two variants of the
preferred VAR specification in the case of Denmark, and for the preferred specification of the
full and the two reduced models in the case of Finland. Table C.16 and C.17 for the alternative
specification, presents the Danish results. Although the correction factor relates only to the
Trace test, details of the Maximal eigenvalue test are also given. The corresponding results

for the full Finnish model and the two reduced versions are given in tables C.18 to C.23,

"°Tn this context, an intercept is denoted by ¢, a trend term by t and centred seasonal dummy variables by
S8Ci 1t = 1,23,

"In a cointegrating vector, for unrestricted intercepts and trends, X; will be trend stationary when the
rank of IT is full. But if it is rank deficient, the solution for X; will contain quadratic trends. For unrestricted
intercepts and no trends, a rank deficiency in IT will result in X; containing linear deterministic trends. To
avoid these situations, the use of restricted intercepts and no trends, or unrestricted intercepts and restricted
trends is the normal practice. However, this results in the cointegrating vectors containing a deterministic
trend in the first case and intercepts in the second case.
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inclusive. Interestingly, when the adjusted critical value is used for the Trace test, the result
for Denmark changes to one suggesting no cointegrating relationships, in accordance with
the AEG, CRDW and EcM test findings. Thus there is conflict between the Trace test and
the Maximal eigenvalue test in the case considered, the latter indicating one cointegrating
relationship. The correction factors are close to unity for the Finland cases, probably due
to the larger sample size. Even so, the outcome for the full Finnish model is similar to that
for Denmark; the modified Trace test indicating the reduced number of one cointegrating
relationship, while the Maximal eigenvalue test indicates two. However, the correction has
no effect in the cases of the two reduced models. In particular, as the correction would increase
the critical value of the Trace statistic, and as the test statistic for the second reduced model
already lies well below the uncorrected critical value, as can be seen from Table C.23, the
correction factor was not even computed for this final case. The conclusion suggested by the
modified Johansen procedure remains that the number of cointegrating vectors is one and
zero for the first and second reduced Finnish models, respectively.

It can be seen from these various results that the traditional analysis is somewhat con-
fusing. Examination of the Danish data seems to suggest that all variables are I(1) and,
using the Engle-Granger (1987) 2-step procedure, that cointegration does not hold and error-
correction models are not appropriate. Yet, using the original Johansen VAR approach, there
are strong indications of cointegration, which are only challenged if a bias-corrected Trace
test is undertaken. The Finnish data give rise to some similar findings, although in contrast
to the Danish case, unit root tests suggest that some of the series are possibly not 7(1). When
allowance is made for this possibility, the Engle-Granger approach marginally supports coin-
tegration. However, when the Johansen technique is applied in this case, it gives contrary

results, whether or not a modified Trace test is used, indicating that there is no cointegration.

5.4.3 Common factor analysis

The final test for cointegration to be considered in this chapter is the common factor approach,
as outlined in Chapter 4. In considering the money demand relationship, the equation to be

estimated is

Den

De )
en Den e mbt—l

my o =c+ /31'nL£€{' + 70ytDe"' -+ "/1y£€1" + (5()[){)€" + nhp T + T]UthP"

+ poil®" + il + €. (5.2)

To find a cointegrating relationship, the common factor approach must first find evidence of
common roots in the specified data, then that those common roots are indeed unity, i.e., unit
roots, and finally, that the specification is in terms of an error-correction model. The first

restrictions to consider, those that test for common factors are,

7 + Y061 =0, (5.3)
R (5.4)
m +nob =0, (5.5)
p1 + poBr = 0. (5.6)
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Only when each of these restrictions is found to be significant, i.e., when the restriction is
rejected, should the tests of restrictions for unit roots and an error-correction specification
be carried out. For simplicity, only the common factor restrictions, as outlined above, will
be tested in this case. These tests are sufficient to indicate if a cointegrating relationship is
possible, allowing for comparison with the alternative methods. The full OLS estimates of

Equation (5.2) can be found in Table C.24. The estimated equation was

mpPe" = 2.55 + 0.70mP + 0.40y " — 0.21yP0 — 0.60pP°" — 0.62pPT

(067)  (0.08) (0.18) (0.17) (058t (0.58)
— 0.87bP" — 0.23b2°" + 0.36i0°" — 0. 261t T+ &, (5.7)
(0.38) (0.45) (0.64) (0.64)

where standard errors are given in parenthesis. Table C.25 shows the results for the test of

each individual common factor restriction plus the test of joint significance for all restrictions.

As can be seen from these results, three of the individual test results are insignificant. One
of the results, however, is significant, as is the test of joint restrictions, rejecting therefore, the
restriction. Since all four restrictions must be valid, it can be assumed that Equation (5.2)
does not contain common factors for all variables. These findings suggest that cointegration

cannot be ruled out in the case of Denmark.

The COMFAC analysis for Finland began by looking at the most general specification for

money demand, that is, including all of the variables introduced to date. Recall, however,

Fin Finare likely to be stationary. As before, several models were

-Fin

that the variables, p; " and i;

estimated here; a full model inc lu(hno all variables and two reduced models, excluding 7

Fm

and p; To test this most general specification, the following equation was estimated

my " = —0.23 + 0.81m{"} + 0.60y " — 0.41y["F — 0-9Lp ;"= 0.03p7
(0.10)  (0.06) (0.09) (0.10) ) (0.42)

+ 03545 — 0.3347% 4-¢ (5.8)

(0.13) (0.13)
Results in full can be found in Table C.26. The common factor restrictions were tested,
producing the results found in Table C.27. As can be seen, two of these restrictions prove
to be significant, along with the test of joint restrictions, once again suggesting that a coin-

tegrating relationship cannot be ruled out. Recall that the details of these restrictions have

been introduced previously, in Chapter 4, and above. Given the evidence that i/ ™ may be
stationary, the relationship without this variable was estimated, giving
md P =098 + 08l mE T 4 068y ™ — 0.48y 7 — 0917 + 0 ogpf"; +é. (5.9)

(0.09)  (0.06) (0.09) (0.10) (0.44)

These results can be found in Table C.28. Once again, one of the common factor restrictions
tested here were found to be significant, as was the joint test of restrictions, as can be seen

from Table C.29. Again, cointegration cannot be ruled out.

Finally, just the money demand and income variables were included in the estimation,
producing
Fin __ Fm Fin Fin 4
m; " =—0.18 + 0.80m; ‘T + 0 73y - 0. 543/t 1+ & (5.10)
(0.08)  (0.06) 09) (0.10)
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Full results for this estimation are available in Table C.30. The common factor restriction
proved to be marginally significant, as can be seen from Table C.31, once again rejecting the
restriction and failing to reject the possibility of cointegration. Overall, it must be concluded
that in the three specifications considered, the COMFAC approach cannot reject the possibility

of cointegration in the Finnish data.

5.5 Testing for Fractional Integration

Having raised concerns over the standard (1)/1(0) analysis, the next step is to consider the
possibility of fractional integration.'? Table C.32 gives the results of the fractional analysis
for the Danish data. For each variable, a range of estimates of d is provided, as well as the
results of the FDF and FADF tests. The corresponding results for the Finnish data are given
in Table C.33.

The previous standard analysis generally found the Danish data to be I(1). From Table
C.32, it can be seen that there is mixed evidence in support of the data being (1), somewhat
in contradiction to the previous findings. It is possible, if just the parametric estimators
of d are considered, to argue that the Danish b; variable is fractionally integrated. The
nonparametric and semiparametric estimators suggest the series in question may be I(1). For
the Finnish data, it would appear that three of the four variables are fractionally integrated,
namely, my, p; and i;. It will be recalled that unit root tests decisively rejected the unit root
null for the latter two variables. The results for Finland’s y; variable also give indications
that it is fractionally integrated, but the FADF result in this case has the wrong logical sign.
Overall, the investigation of fractional integration suggests that the Finnish data series are

not generated by I(1) processes but that the Danish data may be.

5.6 Nonlinear Inference

In light of the possibility that the emerging difficulties may be related to parameter instabil-
ity or some other type of nonlinearity, of what may be stationary data generating processes,
Hamilton’s (2001) random field approach was used to explore the likely form of the two mod-
els, and this leads to some interesting results. Hamilton’s LM test statistics for nonlinearity
for the Danish and Finnish models were 15.34 and 123.81, respectively, which are significantly
greater than the 5 per cent critical x7 value of 3.84, again suggesting that the models should

not be simply linear.

2 As Parke (1999) pointed out, ‘a growing body of empirical evidence supports the notion that important
economic data series might be fractionally integrated’. Evidence of such long memory behaviour has been found
in business-cycle indicators, price indices, asset prices and exchange rate volatility; see for example, Geweke
and Porter-Hudak (1983), Diebold and Rudebusch (1989), Sowell (1992), Ding, Granger, and Engle (1993),
Baillie, Bollerslev, and Mikkelsen (1996), Baillie, Chung, and Tieslau (1996), Andersen and Bollerslev (1997),
Breidt, Crato, and de Lima (1998), and Andersen, Bollerslev, Diebold, and Labys (1999). Several explanations
of long memory in economic data have been put forward. Granger (1980) suggested that fractional integration
may arise from data aggregation. Liu (1995) suggested that regime-switching in stock market volatility may
result in fractional processes. Apart from Parke (1999), Baillie (1996) offered an excellent survey of fractional
integration.
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Given the prior belief is that the nonlinear relation

TILtDe” _ f (ytDen’ ptDen then’ Den) + vy, (5‘11)

De", those variables in Equa-

may well explain the variations in real money demand, m
tion (5.11) were analysed using Hamilton’s (2001) methodology. The results of the flexible
nonlinear inference, which can also be found in Table C.34, with the nonlinear optimisation
making use of the algorithm switching method STEEPEST DESCENT-NEWTON, ¢ = 1.0 and

converging after 46 iterations, were

e = 7.84 +0,78y7" + 01807 — 01167 = Q07 17" (5.12)
(1.14) (0. 19) (0.06) (0.04) (0.06)

ol [o 38m (3 41yPer, 6.49pPe", 0.000003b°¢", —0. 00002zD<’"> - ut} :
(0.01) |(4.01) 2.34) (1.39) (0.57) 0.51)

where standard errors are given in parenthesis. Clearly, only p”" contributes significantly

to the nonlinearity in the estimated relation above. The conditional expectation function,
E 7} ! EtDe”. ZtDPn, ps |m?""] was plotted, therefore, as a function of pP*", in Figure C.8.13
This represents the demand for money one would expect for any price level, if the income,
bond and deposit rates were equal to their average values for the sample period in question.
The Hamilton (2001) results from the Danish data are rather disappointing, in so much as
both o and ( estimates are not statistically significant on the basis of an asymptotic {-test.
It could be argued, along the lines of Dahl and Gonzdlez-Rivera (2003), that this is due to
nuisance parameter problems, given that under the null of linearity, the g; parameters are
unidentified. If the statistical insignificance of o and Zis ignored, the significant coefficient of
p¢ in the linear and the nonlinear components of the Danish model strongly suggests that this
inflation variable is the prime source of any parameter instability. This is interesting given
that Johansen and Juselius (1990) excluded this variable from their analysis as ‘it did not
enter significantly into the cointegration relation for money demand’ (Johansen and Juselius,

1990, p. 172).

In the case of Finland, the results in Table C.34 are more satisfying. Both ¢ and E
are statistically significant, in agreement with the implied value of A in the LM test, and
suggesting that there is significant nonlinearity in the money demand relationship. In the
Finnish case, it is the income variable, y;, that proves significant in both the linear and
nonlinear parts of the model and, therefore, that needs to be investigated further. As before,

it was assumed that a nonlinear relationship of the form
Fin Fin Fin , Fin ‘
HiRid= f( s Pe s Yt ) + v, (5.13)

described the Finnish data. The test for nonlinearity overwhelmingly rejected the null of

linearity. The results of the nonlinear analysis, for STEEPEST DESCENT-NEWTON, ¢ = 1.5

Den Den Den ’ Den / Den

B mPe" is defined as mP*" = (mP*", xf, mP%, xr_q, ..., mP", x}), where xi = {yR°" pP=" bR°" iz°"}.
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and where convergence was achieved after 33 iterations, were

mi " = —0.55 + 0.1347" — 0.83p7" + 0.87yf ™ (5.14)
(0.35)  (0.17) (0.4 ) (0.08)

+ 0.05 [1 29m (2 AT 0.061pl "™, 4. 79y“"> +u,] .
(0.005) |(0.31) (2.17) (0 36) (0 75

Fim. § significant, in both the linear and nonlinear

elements of the relationship. Therefore, the conditional expectation function E [zt m,ﬁf L,

Fm] Fin

From this equation, it is clear that only y,

yf"m was plotted as a function of y;"*"*, which represents the demand for money ex-
pected for any income level, if the inflation and interest rate were equal to their average
values.'* This plot is shown in Figure C.9. This, together with the respective plot for Den-
mark, hint at the possibility of a piecewise linear regression being an adequate model for the
money demand relationships. Looking at Figure C.8, it was necessary to attempt to infer the
nature of the nonlinearity found in Equation (5.12). The conditional expectation function
in Figure C.8 suggests that breaks occur in the data, at approximately —0.44 and 0.26, for

Den D(’n

my " as a function of p; In the case of Denmark, such a model is

my = a+ By + Bope + B3 (pe — p1) Dt + Ba (pr — p2) Dot + Bsis + Bebe + 4 (5.15)

pr=-044, Dy =0, p<p,
Dy =1, pt>p1,

D2 = 0.26, th =10 Dt S P2,
Dgt —]s Pt > D3.

Fin

For Finland, Figure C.9 suggests a break at 4.3 for m, ;o

as a function of y;"". An alternative

model is, therefore,
my =« + Brig + g’jQ])t + By + 4 (y; — '!/l) Dy + =4, (5.17)

y1 =43, D=0, y <y,
D=1, y>uyr.

In both of the above equations, ; is a white noise error. The resulting OLS estimates, with

standard errors given in parentheses, are

my = 6.66 + 0.931 t+0()4p—()6<)(pt—p1)D11+12<)(pt p2) Dot +0.614;— 1.48b;, (5.19)

(0.67)  (0.11) (0.14) (0.16) (0.58)  (0.31)
and
me = 1.77 + 0.314; — 0.32p; + 0.30y; + 0.88 (y; — y1) D1, (5.20)
(0.27)  (0.12) (0.46) (0.06) (0.09)

for Denmark and Finland, respectively. In both cases the extra nonlinear terms are highly
significant. Furthermore, the R? values are about 0.95 for both equations and the mis-

specification diagnostics for nonnormality, heteroscedasticity and functional form are also

“mii" is defined as mp*" = (mp", x7, mf™, xr_q, ..., mi ", X}), where x7 = {if*" pF" yr"}.
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satisfactory. However, there are significant indications of first-order autocorrelation from
the Durbin-Watson test, as well as fourth-order autocorrelation from the relevant Lagrange
multiplier test. Further details can be found in tables C.35 and C.36. Moreover, when the
Hamilton (2001) test for nonlinearity is applied to these revised equations, the sample values
of the LM statistics for the Danish and Finnish models are 42.99 and 18.35, respectively,
which are still higher than the critical x? value of 3.84. This finding contradicts the indi-
cations provided by the first diagnostic test for nonlinearity (RESET), which suggests that a
piecewise linear functional form is appropriate for both countries. Though the substantial
fall in the value of the Hamilton test statistic for the Finnish data is encouraging, Hamilton’s
method suggests that both models are still not adequately specified.

Although fitting piecewise linear regressions to the money demand functions of Denmark
and Finland failed to model the nonlinearity effectively, it was encouraging to note the drop
in value of the LM statistic, in both cases, but particularly in the case of Finland. With that
in mind, and also recalling the nature of the relationship between m! and yf" from Figure
C.9, an attempt was made to fit a STAR model to the Finnish data.!

Following Terésvirta (2004), and using Liitkepohl and Kratzig's (2004) JMulTi software,
the first step was to discover the transition variable.!® The results of the STR tests for

F'in exhibits the strongest

nonlinearity can be found in Table C.37. They clearly indicate that y;
nonlinearity, in agreement with the findings of the Hamilton (2001) approach, and that
this, therefore, should be the transition variable in the fitted STR model. Attempts to fit
such a model for all variables failed to produce reasonable results. As before, therefore, the
relationship was simplified, with just y/"® being included as the independent variable. This
has little impact on the tests for linearity, although even smaller p-values are reported. An

unrestricted LSTR model was fitted, therefore, producing the results

m{™ = 0.54 +0()1 yfm 4 (5.21)
37

).
0. (0.09)°

-1
<—2.94 + 0.65 u{l"> (1 + exp {— (40 72/0,,) (q{ 4.28) }) + &.
(0.40) (0.10) (35.32 (0.01)

A plot of actual and fitted values for this equation can be found in Figure C.10. Interestingly,

Fin =
(

~

when the residuals of this regression are tested for nonlinearity with Hamilton’s (2001) Lm
test, the test statistic falls to 1.63 (x* = 2.67), with a p-value of 0.10.!'7 This suggests that

this model may indeed effectively capture the nonlinearity evident from previous testing.

5.7 Conclusion

This chapter has drawn attention to some of the pitfalls involved in using the conventional

I(1)/1(0) framework for economic and financial modelling of time-series data, an approach

"See Chapter 2 for a brief overview of STAR modelling.

'“Given the nonlinear analysis undertaken to this point, it was deemed likely to be v}

'"As with the case of the piecewise linear regressions described above, the Hamilton LM test is applied
following Hamilton (2001), where £; are the residuals and My is the projection matrix from the estimated
equation, in this case, Equation (5.21), while H is calculated from the original explanatory variables (Hamilton,
2001, p. 561). On a cautionary note, it is uncertain how the Hamilton LM test performs on the residuals of
such a nonlinear specification.

Pzn,
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involving well-known unit root tests and the cointegration testing and modelling procedures
of Engle and Granger (1987), Johansen (1988, 1991) and the COMFAC approach, that has
been applied widely during the last decade or so. The practical difficulties of untangling
the issues of stationarity, fractional integration, nonlinearity and parameter instability have
been highlighted. This chapter has briefly discussed some of the recent research directed at
resolving these problems and providing alternative, or at least complementary, approaches to
modelling, previously outlined in this thesis.

This chapter has presented a case study intended to illustrate the application of these
newer techniques and contrast their findings with those of the standard cointegration mod-
elling approach. The study used the data previously analysed by Johansen and Juselius
(1990) in connection with demand for money functions in Denmark and Finland. The results
obtained from the various techniques exemplify the problems with the standard approach
and the alternative conclusions that might be reached by using different techniques. The
findings, using the standard approach, were as follows.

Though ADF tests, implemented using the procedure of Dolado, et al. (1990), appear
to suggest unit roots for most variables, they are sensitive to the specification of the test
equation and the information criterion used to choose lag length in the case of some variables,
especially for Finland. Tests of seasonal integration confirm the I(1) nature of the Danish
variables, as no evidence of seasonal integration is found. In the case of the Finnish variables,
however, the sensitivity observed in the ADF tests is mirrored in the mixed results. There
are indications that some of the variables are I(1), some are I(0), and that some may be
seasonally integrated, but these findings very much depend on the specification of the tests.
When the matter of unit roots was explored further, using the Ers, Kpss and Np tests, unit
roots for the Danish variables tended to be confirmed but not for the Finnish variables.

Proceeding on the assumption that all variables are (1), the Engle-Granger (1987) 2-step
procedure does not support cointegration in general, a result that is confirmed by CRDW tests
and ECM tests conducted in an error-correction framework for the money demand relationship
for each country. However, the Engle-Granger approach does suggest cointegration for the
version of the Finland model that treats two of the variables, p, and i;, as I1(0).

Using the Johansen (1988, 1991) approach without its small sample bias-correction factor,
there is considerably stronger evidence of cointegration in the case of Denmark, though the
number of cointegrating vectors suggested varies, depending on the VAR specification chosen.
For the preferred VAR specification, one cointegrating vector is suggested for Denmark. The
picture that emerges for Finland is similar, although for the version of the model that treats
the p; and i; variables as I(0), the Johansen method suggests no cointegration, contradicting
the finding of the Engle-Granger (1987) procedure in this case.

The Johansen (2002) correction factor has a marked effect on the result in the case of the
small sample of data for Denmark, with the modified Trace test agreeing with the conclusion
from the Engle-Granger (1987) procedure that there is no cointegrating demand for money
relationship. However, it was noted that the modified Trace test provides a different signal
from the Maximal eigenvalue test, which indicates cointegration. As might be expected, the
Johansen correction has no effect on the findings for Finland, which are based on a much

larger sample.
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Interestingly, the common factor approach cannot rule out the possibility of cointegration
in either the Danish or Finnish samples, including the reduced Finnish models. Given the
contradictory evidence provided by the Engle-Granger (1987) and Johansen (1988, 1991)
approaches, this adds further weight to the contradictory evidence regarding cointegration in
these data.

These results are puzzling, not withstanding the relatively small size of the Danish sample
used and the known low power of unit root tests. In particular, the contradictory results
from the Engle-Granger (1987), Johansen (1988, 1991) and COMFAC procedures concerning
the existence of cointegrating relationships, in the case of both countries, is curious.

Checking for fractional integration by means of a range of estimators of the fractional
integration parameter, as well as the new FDF and FADF tests of Dolado, et al. (2002),
confirms the (1) nature of the Danish variables and the lack of a unit root for the variables
in the case of Finland. It is difficult to say why the bias-corrected Johansen technique fails
to find cointegration in the former case and yet suggests it in the latter.

Assuming that the Finnish data are not I(1), and hence can not be simply cointegrated,
what type of model is appropriate? The possibility of stationarity with regime shifts or some
other kind of nonlinearity arises. This was explored for both countries by the Hamilton (2001)
methodology, which may be appropriate for general, unknown forms of nonlinearity. This
method produces strong evidence of structural change/nonlinearity, if underlying stationarity
is entertained, although no consideration was given to sample effect, as outlined in Chapter
2, in these cases. An attempt to re-specify the money demand equations as piecewise linear
regressions, however, which was suggested by examination of the data, was not very successful.
In the case of Finland, where the plot of the conditional expectation function clearly suggests a
smooth transition model might be effective, fitting a STAR model produced more satisfactory
results. Were this alternative approach to be preferred, further work remains necessary to
find an adequate nonlinear functional form, particularly for Denmark.

In conclusion, the messages from this first applied study appear to be that, first, standard
I(1)/1(0) modelling strategies for economic and financial time series are fraught with dangers.
Secondly, complementary procedures designed to investigate the possibilities of fractional
integration and nonlinearity are available and relatively easy to implement. Thirdly, fractional
integration analysis may confirm the existence of unit roots, but may also suggest fractional
integration of different degrees for different variables. This is a complicated situation that
raises challenges for modelling. Fourthly, and recalling that unit root tests may often indicate
that a unit root exists when a series is stationary but subject to level shifts, a general analysis
of nonlinearity, such as that offered by the Hamilton (2001) procedure, may be an attractive
option that can lead to acceptable alternative models. The moral would seem to be that
reliance on any one approach may not be a sensible practice in applied work, and that
practitioners would be well advised to consider using a range of alternative methods and

selecting models according to the balance of the wider body of evidence produced.
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Chapter 6

Purchasing Power Parity: The Irish

Experience

Research carried out in the course of writing this chapter appears as ‘Purchasing Power Parity: The Irish
Experience Re-visited’ by Bond, D., M.J. Harrison, and E.J. O’Brien, in Trinity Economic Papers, No. 15
(2006). It has been submitted to the Working Paper Series of the European Central Bank and the 5" INFINITI

Conference on International Finance, Dublin, Ireland, 11t"-12¢" June 2007.
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6.1 Introduction

The theory of purchasing power parity (PpPpP) has become a major area of research in applied
econometrics. In part, this is due to the crucial role of the concept in the theory of both
exchange rates and international finance. Recent surveys include Taylor and Taylor (2004),
Sarno and Taylor (2002) and Rogoff (1996). The analysis has generally kept pace with
developments in econometric time-series analysis. Two major areas of current research are
the mean reversion characteristics of the real exchange rate and the nonlinear representation
of the real exchange rate.! However, the mainstream literature in the area has as yet to
fully utilise two developments in econometric theory; long memory models and random field
inference. These developments could provide useful tools for investigating both the mean

reversion and nonlinearity in PPp analysis.

From the econometric literature it is clear that nonstationarity and nonlinearity may be
closely related. It has been well known for many years that it is difficult to statistically
distinguish between difference stationary series and nonlinear but stationary series.? Recent
works in the area include Lee, Kim, and Newbold (2005) and Hong and Phillips (2005). In-
creasingly, the analysis uses the fractional integration framework rather than the ‘knife-edge’
I(1)/1(0) approach,® to consider the effects nonlinearity has on stationarity tests. This ap-
proach has been followed by Diebold and Inoue (2001) and Perron and Qu (2004). Hsu (2001)
and Krammer and Sibbertsen (2002) have used the reverse approach, considering the effects
of nonstationarity on tests for nonlinearity. Recent work by Gil-Alana (2004), Mayoral (2005)
and Dolado, Gonzalo, and Mayoral (2005b) have tested explicitly for difference stationarity

and nonlinearity. However, in most cases the form of the nonlinearity needs to be known.

The aim of this chapter is to use two recent developments in econometric theory discussed
in Bond, Harrison, and O’Brien (2007), to explore the time-series characteristics of simple
empirical interpretations of PPp using Irish, German and United Kingdom data. The first of
these developments is the Dolado, Gonzalo, and Mayoral (2002) fractional augmented Dickey-
Fuller test (FADF) and the second is Hamilton’s (2001) method of random field estimation to
investigate nonlinearity. Both of these developments have been discussed at length in previous
chapters of this thesis. The remainder of this chapter is structured as follows. In Section
6.2, the background to the theory of Ppp and the notation to be used here will be briefly
explained. Section 6.3 contains a description of the data and some preliminary analysis.
Sections 6.4 and 6.5 test for cointegration and fractional integration, respectively, employing
the techniques, including the Dolado, et al. FADF test, outlined in Chapter 4 and utilised in
the previous case study in Chapter 5. Section 6.6 considers the results of using Hamilton’s
random field methodology and Section 6.7 concludes by considering how the methodology

might assist in the development of the general discussion of the theory of Ppp.

'See, for example, Cashin and McDermott (2004) and Sarno (2005).

“See, for example, Perron (1989), Harrison and Bond (1992), Teverosky and Taqqu (1997) and Diebold
and Inoue (2001).

3 Jensen (1999)
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6.2 Purchasing Power Parity

The theory of Ppp is, according to Wright (1994), ‘one of the leading applications of coin-
tegration analysis in applied econometrics’. A simple statement of the purchasing power
parity hypothesis is that national price levels should be equal when expressed in a common
currency. More formally, if s; is the logarithm of the nominal exchange rate, p, and p; are
the logarithms of the domestic and foreign price levels, respectively, and ¢; is the logarithm

of the real exchange rate in period ¢, then
G = 8¢ — Pt + Py, (6.1)

for all t = 1,2,...,7T. It follows that ¢; must be stationary for long run PpPpP to hold, as
nonstationarity in ¢; would imply permanent deviations from parity, thereby rejecting the
theory.? Most of the empirical studies of PPpP have either been concerned with testing whether
gt has a mean reversion tendency over time or whether s;, p; and p; move together over time.

This latter work has generally been concerned with models whose simplest form is:
st = ap + Bipe + Bap; + €, (6.2)

where €, is white noise. Early works were concerned with whether the estimated values of the
parameters of various versions of Equation (6.2) were as predicted; see, for example MacDon-
ald and Taylor (1992). As awareness of time-series dynamics increased, the issue changed
to one of whether Equation (6.2) is cointegrated. Papers such as those by Thom (1989),
Wright (1994) and Kenny and McGettigan (1999) took such an approach with Irish data.
The results of these Irish studies have been somewhat confusing. In some cases the theory of
Ppp could not be accepted, whereas in others in could not be rejected. Nonrejection seemed
most common when other variables were included in the model or where prices related to the
traded sector. For example, Wright considered the inclusion of interest rate differentials, and
Kenny and McGettigan distinguished between prices in the traded and nontraded sectors. An
alternative argument that has been gaining ground in the literature is that of the possibility
that the relationship is in fact nonlinear. The argument is that nonlinearities arise because
of transaction costs in international arbitrage, as discussed in Sarno (2005).

In recent years the emphasis has generally shifted from considering models of the form
of Equation (6.2), to considering directly the behaviour of {¢:};2,, the real exchange rate.
Within the I(1)/1(0) framework, most of the early studies failed to reject the hypothesis
of real exchange rates being I(1) for recent periods of flexible exchange rates. This failure
to reject the possibility of unit roots in the real exchange rate series, {q;}, implies a lack
of mean reversion which undermines the Ppp hypothesis. The explanation given for this
nonrejection is the recognised low power of traditional unit root tests, such as the standard
Dickey-Fuller test. To overcome this problem, two general approaches have been adopted.

The first has been the construction and use of long series of exchange rate data and more

*When specified as in Equation (6.1), ¢; must be stationary for PPp to hold in the long run. In terms of
the nominal exchange rate, as in Equation (6.2), the theory of Ppp allows for persistent deviations in ¢;. See,
for example, Enders (1995) and Sarno and Taylor (2003).
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‘powerful’ asymptotic tests.> The second, using panel data, attempts to estimate the half life
of the mean reversion on the real exchange rate.’

Empirically, it is well known that the theory of Ppp does not hold in the short run.”
Naturally, this does not detract from the above theory. It is expected that some deviation
from the mean will occur, but that in the long-run this deviation will be stationary. There
is, however, conflicting evidence as to whether Ppp holds in the long run. Dornbusch (1976)
and Ainzenman (1986), using sticky price models, permited sustained deviations from parity
but typically maintained PPP as a valid long-run hypothesis. On the other hand, Roll (1979)
and Alder and Lehman (1983) suggested PpP is violated in the long run, using models based
on efficient international capital markets.

As previously mentioned, for the case of Ireland, several studies have been undertaken.
Thom (1989) failed to find cointegrating relationships for Irish and United States, and Irish
and German data, but does find it for Irish and United Kingdom data, although only when
coefficient restrictions are imposed on the model. Wright (1994), by adding the short-term
interest rates for Germany, Ireland and the United Kingdom, found evidence for cointegration
in both cases. This study loosely follows that work.

To investigate the usefulness of both the FADF and random field approaches to under-
standing the issues surrounding Ppp, this chapter applies the techniques to data for Ireland
and Germany and Ireland and the United Kingdom. The specification for the explanatory

model used is that of Wright (1994), namely,
st = ap + B1pe + PBop; + B3ie + Baif + €, (6.3)

where 7; and if are the domestic and foreign interest rates, respectively.

To place the long memory and random field analysis into context, the standard 1(1)/1(0)
analysis using the ADF test is conducted. The strategy of Dolado, Jenkinson, and Sosvilla-
Rivero (1990), to determine whether the series are trend stationary or difference stationary, is
adopted. The lag length for the ADF test is determined using the modified Akaike information
criterion (MAIC), which Ng and Perron (2001) showed to be a generally better decision
criterion, as it takes account of the persistence found in many series.®

Traditional cointegration analysis is then applied to the naive PpP model of Equa-
tion (6.2). Firstly, the Engle-Granger (1987) 2-step approach is applied using the lag of
residuals of the levels regression model as the error-correction term. Then the Johansen
(1988, 1991) VAR approach and the common factor approach are applied to the data. The
effects of applying Johansen’s (2002) small sample correction factor is also investigated.

Following on from this traditional analysis, the issue of fractional integration is inves-

tigated.” Following the approaches outlined in chapters 4 and 5, a consistent parametric

*Taylor (2002).

5Cashin and McDermott (2004).

"Thom (1989).

%A time series characterised by ‘lagged effects’ resulting from, for example, long memory, may be considered
to be a persistent time series.

9Cheung and Lai (1993b, 2001) explored the fractionally integrated and long memory properties of pur-
chasing power parity and real exchange rate mean reversion. Robinson and lacone (2005) also considered
purchasing power parity in terms of fractional cointegration.
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estimate of d, as suggested by Dolado, et al. (2002), is obtained and used for the FADF test.
Again, the ‘over differenced’” ARFIMA model, where Ay, is used rather than y;, is estimated, as
recommended by Smith, Sowell, and Zin (1997), to avoid the problems associated with drift.
Two parametric estimates of d are calculated using the Doornik and Ooms (1999) ARFIMA
package, namely, the exact maximum likelihood (EML) estimator, using the algorithm sug-
gested by Sowell (1992) (the algorithm requires that d < 0.5, which is another reason for using
the ‘over-differenced’” model), and an approximate maximum likelihood estimator based on
the conditional sum of squared naive residuals, developed by Beran (1995) and termed by
Doornik and Ooms (1999) a nonlinear least squares (NLS) estimator. Again, as in Chapter 5,
two nonparametric estimators are also employed; the method of Geweke and Porter-Hudak
(1983) (GpH) and Robinson’s (1994) Gaussian semiparametric (GsP) estimator. The esti-
mates of d are then used in the FADF test, with the MAIC being used as the criterion on
which to set the lag length of the test.

Finally, the analysis then turns to an investigation of the possibility of nonlinearity in the
models. The parameters from the random field model are estimated, using the GAUSS code

provided by Hamilton (2001) and adapted as explained earlier in Chapter 2.

6.3 Data and Preliminary Analysis

For the analysis of the theory relating to Ireland and Germany, five data series are used.

; DM/IRE . . .
T'he exchange rate e, / , is measured in Deutsche Marks per Irish pound. Both the

Ger

¢ and p;"®" are the respective producer price indices for

Irish and German price variables, p/”
manufacturing industries. These three variables are all taken in logarithms. Also included,

following Wright (1994), are variables for both the Irish and German short-term (three month)

i

interest rates, il"® and i{’*", respectively. These series sample the period 1975 to 2003, a total

of 115 quarterly observations. As with the previous case, five data series are used for the

: . F Stg£L/IRL . :
Ireland and United Kingdom study. The exchange rate, e, "~ HEE 2 naturally measured in

Pounds sterling per Irish Pound. Euro currency is converted with the relevant exchange rate

where necessary. The Irish price variable is as before. The United Kingdom price variable,

pYK . is the producer price index for manufacturing. These three variables are all taken in

logarithms. Also included are short-term Irish and United Kingdom interest rates, i,"® and

UK
U

,['tlrr’
. As before, these series are quarterly and sample the period from 1975 to 2003, a total
of 115 observations. These data series can be found in Appendix D.1, tables D.1 and D.2.
They are plotted in figures D.1, D.2 and D.3, which can be found in the Appendix D.2.1°
The preliminary results of the basic unit root analysis are given in Table D.3. The Dolado,
et al. (1990) testing strategy was adopted and in nearly all cases the existence of a trend or
drift could not be rejected, so the probabilities given in Table D.3 are mainly from the
standard normal distribution. In the few cases where the existence of a trend or drift could
be rejected, the probabilities given are from MacKinnon (1996). These results generally seem
to suggest that most series are I(1). The Irish price level may be I(0), as the test statistic is

significant at the 5 per cent level, using standard normal critical values. The German price

'90nly the results of unit root tests are considered for these series, although it should be noted from figures
D.1, D.2 and D.3 that there is limited graphical evidence of unit roots.
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series is just marginally insignificant at the 5 per cent level, again using standard normal

critical values, although in this case the results suggest it is 7(1).

' Interestingly, these

Tests for seasonal unit roots are included in tables D.4 and D.5.
results suggest that the Irish German exchange rate is stationary. No evidence of unit roots
at any frequency was found. In general, results for the remainder of the series suggest the
series are in fact I(1) and that no seasonal integration is present. The exception to this is
the Irish price level. As with standard ADF tests, evidence again suggests that the series is
I(0) and that it is not seasonally integrated, in almost all specifications examined. Given the
strong prior belief that price series are generally I(1), despite some evidence to the contrary,
this assumption will be maintained throughout the remainder of the chapter.'> The same
approach is taken with the Irish German exchange rate, as the ADF test suggests that it is

1(1).

6.4 Testing for Cointegration

6.4.1 The Engle-Granger 2-Step method

The results of applying the traditional Engle-Granger (1987) analysis to the explanatory
models is given in tables D.6 and D.7. Table D.6 reports the findings of the standard levels
analysis and in all cases the traditional AEG test fails to reject the hypothesis that the
estimated residuals of the model have an unit root. The CRDW test confirms these findings.

Despite these negative findings regarding cointegration, Table D.7 gives the results of
trying to estimate a parsimonious error-correction model using the first lag of the residual
from the corresponding levels model as the error-correction term. In all cases, the results of
the analysis confirm the previ