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Abstract

The present thesis mainly deals with the implementation of self interaction free density
functional methods in a numerically efficient density functional theory code SIESTA and
the application of the said methods in ab-initio electronic structure calculations. We
present calculations on the polarizability of molecular chains using explicity orbital de-
pendent density functional methods viz., exact exchange and self interaction corrected
(SIC) functionals, which address some long standing issues in the field. We show that
SIC functionals in fact perform better than the exact exchange functional at the KLI level
of approximation. We discuss the ASIC method which is an approximate self interaction
correction scheme that is computationally in-expensive. Results for finite systems as well
as extended systems are discussed. We then discuss the electronic and magnetic structure
of defective Hafnium Oxide systems where in we show that native Hafnium vacancies ex-
hibit spin polarized ground states with ferromagnetic inter-defect coupling. An extensive
study on Co doped ZnO is then presented mainly focusing on the possibility for intrinsic
ferromagnetism in the material arising from native defect induced perturbations to the elec-
tronic structure of doped Co. We show that a defect-dopant complex center formed form a
substitutional Co ion and an Oxygen vacancy can mediate long range ferromagnetic inter-
actions. However we attribute the experimentally observed signatures of ferromagnetism
to blocked superparamagnetic clusters. Finally we present ab-initio electronic transport
calculations on Mn, based single molecule magnets in a two terminal device set up. The
current-voltage (I-V) characteristics of the molecule for two different spin configurations
of the Mnj, center are studied. We show that a change in the local magnetic configuration
on the molecule can lead to a detectable change in the I-V characteristics.

il







Acknowledgements

Over the last four years, I received a lot of help and support from a large number of people,
without whom none of this research would have been possible.

First of all, I would like to thank my supervisor Prof. Stefano Sanvito. When I joined
his group four years ago, he had two other students and one postdoc based in the arches
underneath the Dart line that runs through Trinity college. Now, his group is one of the
largest in the School of Physics, and he has established himself as one of the leaders in
the field of computational materials science and molecular electronics. I have benefitted
greatly from his advice and teaching during my time in his research group.

Secondly, I need to thank our external collaborators Prof. Kieron Burke, formerly
of Rutgers in New Jersey and now based in University of California, Irvine, and Prof.
Alessio Filippetti from the University of Cagliari, Italy. Without the assistance of both of
these researchers the work described in this thesis could not have been performed. Alessio
developed the pseudo-SIC approximation on which the ASIC method, used in calculations
in this thesis, is based. We’ve had a number of useful discussions with Prof. Burke and
the calculations on molecular polarizabilities presented in this thesis were carried out in
collaborationwith him.

As I mentioned above, Stefano’s group has grown large, with a current total of ten
postgraduate students and two postdocs, as well as two former poststudents and two
former postdocs. However, there are a few former and current group members whose
assistance was vital to the work performed in this thesis. Alex Rocha was Stefano’s very
first student, and he did the bulk of the work of developing SMEAGOL, in collaboration
with groups in Lancaster, England and Oviedo, Spain. He has since graduated and is now
a postdoctoral researcher in his native Brazil. I have to specially thank Alex for letting me
be his housemate for about two years during which time we shared a great sea side house
in Howth owned by a nice old lady Mrs. Thompson who rented the place to Alex at a very
low rate. That was indeed a pleasant experience. I've had many a useful discussion with
Cormac Toher in issues having to do with self interaction corrections and such. He is only
slightly better than me at football so I've always enjoyed playing football with him. Miguel
Afonso Oliveira was a postdoc in our group for the best part of three years, during which
time he served as our system administrator, along with Tom Archer. They were both of
great help in solving my computer related problems I've also had many useful discussions
with Tom about density functional theory and on Dilute magnetic semiconductors. Ivan
Rungger has also recently been promoted to the role of system administrator, and both




his help with computers and discussions about physics were very useful.

Other members of our group who have been here almost as long as myself include
Maria Stamenova, Ruairi Hanafin, Will Lee and Akinlolu Akande. New members who have
just joined in the last year include Nadjib Baadji, Durga Sankar Kusanakurthi, Andrea
Droghetti and Nuala Caffrey. The former member of our group who has not yet been
mentioned is Nicola Jean, who still returns to Dublin on occasion to visit us and to do
some shopping.

It would not be possible to undertake research such as this without funding. The Science
Foundation of Ireland (Grant SFI02/IN1/I175) paid my fees and maintenance, and also
provided support for attending conferences. The calculations presented in this thesis were
performed in the Trinity Centre for High Performance Computing (TCHPC) and the Irish
Centre for High End Computing. The staff from TCHPC, particularly Jimmy Tang, Bob
Crosbie, Dermot Frost, Geoff Bradley and Jose Redojo also provided technical assistance
both on their cluster and visualisation suite, as well as on our own internal network.

Members from other groups who we've shared offices space with include Andy Wall and
Dave Kirwan, Claudia Gomes Rocha, Andrew Rowan, and Eireann Cosgriff.

Finally, I should thank my family, who have always been supportive at every stage of
my life.

Vi



Contents

Abstract

Acknowledgements

|

I

2

General Introduction

1.1 Dilute magnetic semiconductors . . . . . . . ..
1.2 Electron transport through magnetic molecules
1.3 Dissertationlayout. . « « « o ¢ o o o s o 5 oo

Theoretical tools

Theoretical and Numerical framework

2.1  The Quantum Many body problem . . . . . ..
2.2  Wavefunction methods . . . . . .. . ... ...
2.3 Density Functional theory . . . . . . . ... ..
2.3.1 The Hohenberg-Kohn theorem . . . . . .
2.3.2 The Kohn-Sham scheme . . ... .. ..
2.3.3 Approximate density functionals . . . . .
2.3.4 Interpretation of Kohn Sham eigenvalues
2.4 Computational Methods . . . . . ... .. ...
Bd] Baslsales .« - o « s 5 w05 66 5 50 Bwow
2.4.2 Pseudopotentials . . . . ... ... ..
243 TheSIESTAcode . . . . « « v « = ¢ « « s
244 Additionsto SIESTA . . « ¢ « 5 » v « « »
2.5 Electronic transport at the nanoscale . . . . . .
2.5.1 NEGF and SMEAGOL . . . .. ... ..
26 Conclpsions . . . « » « s v« % s v 60 0w 0 s & s &
Orbital dependent functionals
9l lbroraelien . « » » - 2+ s s a4 i » % 55 3§ §
3.2 Orbital dependent functionals . . . . . ... ..
3.3 The optimized effective potential . . . . . . ..

Vil

iii

DO =

oo

13
13
)
17
18
18
21
23
25
26
27
29
35
36



CONTENTS

CONTENTS

3.4
3.5
3.6

3.3.1 The exact exchange functional

332 TheSIGhmotionn)  ; « = « « s s « 5 v 5 # 3
Implementation in SIESTA . . . . . ... ... ...
Application: Polarizability of molecular chains
LGOS . s = s 0 v & 5« 2 § 5 A 6 & UK & & g

4 ASIC for molecules and solids

4.1
4.2
4.3

4.4

4.5

4.6

Introduction . . . . . . .. ... L.
Review of existing methods . . . . .. .. ... ..
Formalism and Implementation . . . ... ... ..
4.3.1 The ASIC potential . . . . .. ... .. ...
4.3.2 Implementation . . .. ... ... .. ....
433 TNolBl BRErey . o < s s s 2k s s wmns o5
434 ASICand LDA+U . ... ... .......
Results: Extended systems . . . . . . ... ... ..
4.4.1 Estimate of a for semiconductors
4.4.2 Wide-gap semiconductors: ZnO and GaN

4.4.3 Transition-metal oxide: MnO

Results: Molecules . . . . . . ... ... ......
4.5.1 Ionization potentials . . . .. ... .. ...
452 Electronaffinities . . . . . - . - ¢« « 5 « .
4.5.3 Vertical excitations . . . . .. ... ... ..
454 The HOMO-LUMOgap . ... .. ... ..
455 Fmal Remarks . . s « s 2o a0 v 5 09 5 = 5
Conclusions . . . . . . . . . . . ... ... .....

II Materials simulations

5 Ferromagnetism in HfO,

5.1 Imtroduction . . . . . . . . . .. ... ... .....
5.2 Computational Details . . . . ... ... .. ... ..
5.3 Defect free HfO, . . . . . . . . . . . .. ... ...
54 Oxygen Vacancies . . . . . . . . . . .. ... ....
5.5 Hafnium Vacancies . . . . .. . ..« oo oo .
5.6 Vy; in cubic and tetragonal Hafnia . . . . ... ..
5.7 Conclusions . . . . . . . . ... .. ... ...
6 ZnO:Co
Bl Joiraanrdion . « « « a5 5 0 v e m o 6w ow m s & & B M
6.2 Computational setup . . . . .. ... ... .. ...
6.3 Defect freeZnO . . . . . ... ... . ... .....
BA LolP) ... . csvsincspsanviannnsa



CONTENTS

CONTENTS

6.5 Nativedefects . . . v v v v v v o v s 6 0 v s oo o v 5 s

6.6 Donor-Co interactions . . ... . ... ........
6.6.1 Zn;-Co interaction . . . . . . . .. ... ...
6.6.2 Vop-Cointeraction. . . . . ... ... .....
6.6.3 H;-Cointeraction . .. ... .. ... ...,

6. Magnetio gaupliiE . « « « » 5 o « « 05 s ¢ 5 8 5 5 «
67 JerConlomabing . . » « « a5 55 « ¢ 5 % & »
6.72 menr Conligurations « « « s « « s » « 5 « 2 5 & »

6.8 Discussionon RTF . . . .. ... ... ... .....

60 Conbliol . « « » « 0 « 5 5 5 25 6 s %58 £ 3 8 v 8

IIT Electronic transport calculations

7 Transport through Mn,;, SMMs

iy |
7.2
7.3
74

7.5

7.6

Lo o « « o v » « % 2 98 6 4 % BB ww ¥ & B s
Dirtetal ropaErtles o 5 v s s r v e v s s 3w oaw s
Computational setup . . . . . . . ... ... ... ..
Ground state properties . . .. ... ... ... ...
7.4.1 Electronic structure of Mnof . . . . . . . . ..

7.4.2 Electronic structure of Mn;;TE

Tronspot PropetliEs .« + « s » = v 5 ¢ w2 5% 6 5 ® % »
7.5.1 Zero bias transmission . ... ... ......
7.5.2 IV Characteristics . . . . ... ... ... ..
COTCIHEIENS 2 2 o c %o 6l 3 G &5 B 6 5 S & &5 @05 %@

8 Conclusions and future work

A Publications stemming from this work

X






List of Figures

e Ot Of Ot on
=W N

o

ot
Nelle SR @)}

v O O Ov Ov Ot Ot C

,__*,_,_.._.
WD = O

S oo
W N =

6.4
6.5

All electron and pseudo wavefunctions . . . . . .. ... ... ... ... 28
Devicesetup m BMEAGOL: . . v « 5 55 5 6 5 95 v v s 5% 0 5w S0 58 5 2 K1
Localized molecular orbitals . . . . . .. . .. ... .00 52
Resporse potetitiald » . - « - 5 « o5 ¢ 6 55 4% 2 8.5 %8 5655 & v 0%k & & 8 54
At potenblal BIOME « o v % 5 5 5 b nH s BB EEE HE B EE S L R s 55
a and the band gapsof solids . . . . . ... ... ... ... 73
Band picaptate L B0L) . . 5 5 5 7 s 55 %5 28 v e s BN G EE Py e ks 8w 76
Bandistruchure 0 GaiN .ot e i R I R N = 77
Band gtroctme ol M) .0 20 . 5 Wi 6 x an b b vs s ks sl %5 78
HOMO eigenvalues and ionization potantials . . . . . . . . .. . ... ... 81
HOMO eigenvalues and electron affinities . . . . . . . ... ... ... ... 83
Charaimng of Udkle - "¢ + o 25 s viiv s ¥ B b o S @65 Dl e d Al w308 oo s 85
Band strictureand DOS for Hit@o\. . 4 . T s 0 ¢ o m a0 97
focal goommetey Al Ve « » » oo s s no5 5 9.8 5 % s 2% % % 0% dns w5 o 98
BB SHODT VG o c m e er 5 b el R S R e I A S - K 99
Yo denElle O-SUTIBEEE. . o o« % 5 s s s v v ss o7% & arwie wosl W 5 s o 100
DOS tor Vo with exctre dopliig « « « ¢ v v v o 5o w5 5 5 v w0 6 3% b x o w % ¢ L0l
DOS for ‘/]“" ................................... 103
Ve hole (dennily IS0-BUIIRGE o » o o « o « o w10 5 s B % % Sy s sl o0 5% 104
Magnetic moment localization plot . . . . . . .. ... ... 105
Magnetic moment on Vy¢ against O ion distance . . . . . . . . . .. .. .. 106
SO BIRLER AlETaBlIE w5 5 5 5o (v b o R e e B e e e e 108
Hafnium Vacancy in tetragonal Hafnium . . . . . .. .. ... ... .. .. 109
Hafnium Vacaney o cubic Halia « o .« o = 5 45 s « 55 s % w s 5 65 56 & 110
Magnetic moment decay with relaxation . . . . . ... ... ... ... .. 111
Banids and PDUS T0r ZB0) . . « ¢ 56 » o vn s 0 x'p s d 5 o om s 5 o 3 120
PEOB IO TR LS & < 4 5 2 o o % 3 8 W s s on dls & & 55 b 1 & @5 & 8% 3 122
LDOS for V() .................................. 125
Band structure of ZnO with native defects . . . . . . . ... .. ... ... 126
Lioeal geometry axound Zorand Hr . & « « 5 ¢ 2 ¢ 5 0 ¢ 6 26 5 0 ve 5 9w s 127

X1




LIST OF FIGURES

LIST OF FIGURES

6.6 Coand Znjinteraction . . . . . . . . . . i i i e e e e e e e e e 129
6.7 Co and Vg interaction . . . . . . . . . . .. .. ... 131
6.8 LDOS for Co+Vo . . . . v i i it e e e e e e e e e e 132
6.9 Coand Hyinteraction. . . . . . . . .. .. ... ... ... ......... 133
6.10 supercells for first NN Co-Co coupling . . . . . ... . ... ... .. ... 137
6.11 far configurations summary . . . . . . .. .. ... 187
6.12 supercells for near configurations with Zn; . . . . . .. .. ... ... ... 138
6.13 supercells for near configurations with Vo and Hy . . . . .. . ... .. .. 139
6.14 PDOS for two CoV centres . . . . . . . . . . . . ... ... ... ... .. 141
6.15 Schematic for CoV defect state . . . . . . . . . ... ... ... ... ... 142
0.16 Heqr conbienrations SUMINALY - & + 5 o 5+ & 5 555 65 5 & 5 5 » 45604 & s 143
6.17 phase diagram for ZnO:Co . . . . . . . . . ... oL 145
7.1 The Mn;3TE molecule . . . . . . .. . .. . ... . ... ... ....... 153
7.2 PDOS for Mnof . . . . . . o 157
7.3 Geometry of Mnjof . . . . . . . . . 158
7.4 PDOS for Mn,TE . . . . . . . . 159
7.5 Mngs e Device Region . . . . o o o v v b il b e e e e s arte el et 160
7.6 MnsTE Zero Bias . . . . . . . 0 0 i e e e e e e e e e e e e 163
7.7 Mn;5TE Current-Voltage curves . . . . . . . . . o v v v v v v v v v v v 165
7.8 Mn;»TE Transmission Vs Positive Bias . . . . . . . . . . ... . ... ... 166
7.9 Mn,TE Spatial charge distribution . . . . . .. .. ... ... ....... 168
7.10 Mn;oTE Transmission Vs Negative Bias 169

X1l



List of Tables

DD
s

W b

N O O N

Ut Ot

Ut Ot
L= W N =

> o
2

o o
W N

= =
b =t

Bealitig 6l e Itllo thethods - « -« » o + 5 ¢ » s b s mw v v 5 % 8 58 8 & 5 17
polarizabilities with local funetionals . . « . . « v 56 v v v v v v 0w 0 52
polarizabilities with SIC-DFT . . . . . . . . . (o i et o v v v o v a s 53
polarizabilities with X-Only SIC-DFT . . « . « « « « 5 v o o5 s+ 5 4 0 5 o » 53
polarizabilities with the Slater potential . . . . . . . . ... ... ... ... 55
Comparison between KS and experimental gaps . . . . . . ... ... ... 74
Coparison of valence band widths . . . . . . ... ... ... ... 75
Ionization potantials and HOMO eigenvalues . . . . . . ... ... ... .. 80
Electron affinities and HOMO eigenvalues . . . . . . . .. ... ... ... 82
T e A A T Tt R M i N 84
thital snorg el o B e e v s s T i [y B o B ] o e 84
HOMOCEURIO gam i A0 " v ss « s s v o'd grwm @ o s Wb 2 5% & & 87
Electronic configuration and basisset . . . . . . .. . ... ... 96
Eattice DATAINEteTEh & = = & o 5 & o e B & 5 & & AEE e @ G al s w0 98
Fix-spin energy differences . . . . . . . . . ... ... L o000 106
Magpelic coupling SHETHIAE . . « « » 2.5 5 5 & % & &4 % 5 » &b % %, # o 0 107
Miilliken analysis of O 1008 . « » « « 4 ¢ v v v v 5 va v 8 v 0% oa v o oo wn 112
Electronic Configuration and Baslsget . . . o « « o o 6 v 5 o 55 w5 5 4 o 118
AT L IE ¢ oo s ses B B W s % nk s A EE R P B A W 119
Table of Magnetic coupling energies . . . . . . . .. ... ... ....... 135
Electronic Configtitabion and BASIS BeL  « « « 4 s » s s s a5 o 5 w855 5 & 3 154
Miilliken analysisof Mnions . . . . . ... ... ... ... ......... 157

x1il




X1v



Chapter 1
General Introduction

Over the last two to three decades, the miniaturization of semiconductor based micro
electronic devices achieved through advances in device fabrication technology has powered
the growth of the information technology industry. Functional elements in state of the
art silicon based microchips currently extend a few tens of nanometers in size and even
smaller devices are envisaged for the near future. However the current trends in minia-
turization cannot be sustained indefinitely. As devices get smaller, stochastic as well as
quantum effects would inevitably start to have an increasing effect on the device properties
making them less reliable. Problems such as leakage currents due to electron tunneling
across ultra-thin SiO, layers in sub-10-nm metal-oxide-semiconductor transistors and the
superparamagnetic limit in magnetic recording media are well known. While microelec-
tronic devices will continue to improve into the immediate future, alternative paradigms
such as spintronics [1, 2, 3] and molecular electronics [4, 5, 6] with the potential to replace

conventional silicon based technologies are becoming increasingly more relevant.

The field of spintronics or spin-electronics is based on the idea of a new type of device
that relies on the electron’s intrinsic ‘spin’ degree of freedom to perform its function. More
generally such devices would expolit both the charge and the spin states of electrons in
conjunction to exhibit a whole range of exotic new functionalities. Since its inception
in the late 1980s with the discovery of the Giant magnetoresistance(GMR) effect [7, 8],
the field of spintronics has grown rapidly and is currently the single most active area of
research in solid state physics. The first generation of spintronic devices were based on
the giant magnetoresistance (GMR) effect which manifests as a significant change in the
electrical resistance of the device in the presence of an applied magnetic field. These GMR

based devices form the functional elements of modern hard drives and have revolutionized
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the magnetic data storage industry. More sophisticated magnetoresistive random access
memories (MRAMS) [3] are on the verge of mass production. However, both GMR devices
and MRAMS are built from ferromagnetic metals and this class of spintronic devices would
be restricted to applications in the data storage industry. On the other hand, if one could
build a spintronic device from a semiconductor, the possibilities are endless. Semiconductor
spintronic devices if integrated into currently existing semiconductor technologies would
lead to a whole new breed of multi-functional devices controllable by a wide variety of
external impulses such as optical, electrical and magnetic signals. Novel spintronic devices
such as the spin transistor [3] with the ability to combine logic and memory function while
being controlled either by electric or magnetic signals have been conceived. These devices
also offer other advantages over conventional semiconductor devices such as non-volatility,
lower power consumption, higher speeds and greater integration densisties. Furthemore
spintonic devices also hold the key to the practical implementation of futuristic quantum

computing algorithms that might lead to a new era of quantum information.

1.1 Dilute magnetic semiconductors

In order to be able to realize the wide range of possible spin-dependent phenomena in
semiconductor systems, effective and efficient means of electrically injecting strongly spin-
polarized currents into semiconductors are needed [3]. Dilute Magnetic Semiconductors
(DMS), in which a small percentage of magnetic transition metal atoms are introduced into
a non-magnetic host semiconductor lattice, are in principle ideally suited as spin-polarized
carrier sources for spin injection as they can be easily integrated into semiconductor de-
vices. However, the search for the ideal DMS material that would exhibit a ferro-magnetic
Curie temperature (T.) above 300K while simultaneously preserving the desireable prop-
erties of the host semi-conductor is ongoing [9, 10, 11]. The prototypical (II1I-V) DMS
material GaAs:Mn has been exhaustively studied, but the fact that the T, in this material
could not be pushed up above ~ 200 K [12, 13| has led physicists to look towards oxide
DMS materials following theoretical predictions [14] that Mn doped p-type ZnO would
exhibit a T. above room temperature. A great amount of experimental and theoretical
effort has since been put into studying a wide variety of transition metal (TM) doped
oxide semiconductors such as ZnO, TiOy, SnOy, CuyO, InyO3 ete [11]. In particular, Co
doped ZnO (Zn0O:Co) has also been investigated actively over the past five to six years

following early reports from Ueda et al. [15], of above 300K ferromagnetism in the ma-

2




General Introduction 1.1 Dilute magnetic semiconductors

terial. Unlike GaAs:Mn however, the Oxide based DMS have proven to be a lot more
difficult to understand [11]. While signatures of ferromagnetic behaviour at and above
300K have been widely reported, the origin of ferromagnetism in these oxide based DMS
is still actively debated. Conflicting reports of paramagnetic or even spinglass behavior in
these materials are also abundant (see reviews [9], [10] and references therein). Issues such
as in-homogeneity in the distribution of the magnetic dopants, the presence of secondary
phases, contaminants and even experimental measurement artefacts have been discussed
in this regard [11]. One of the fundamental problems with ferromagnetism in TM doped
oxide DMS materials is that the well established models for ferromagnetism in conventional
magnetic oxides such as aFe,O3, Y3Fes019 or DMS materials such as GaAs:Mn or InMn:As
cannot be invoked in their case. Within the traditional models for magnetism in solids,
ferromagnetism can result via one of two broad mechanisms: (1) In insulating compounds,
localized moments arising from partially filled d or f sub-shells of magnetic ions couple via
short range super exchange [16] or double exchange [17] type interactions. High temper-
ature magnetic order in this class of materials however requires a high concentration of
magnetic ions with strong inter-ion magnetic coupling. (2) In metallic or semi-conducting
systems, the interaction between localized spins and itinerant electrons can lead to the
formation of narrow spin split bands with the carriers mediating the ferromagnetism as
in the RKKY [18] or the mean-field Zener model [19, 14]. In particular, among the well
established magnetic semi-conductors, two slightly different classes can be identified. In
the concentrated magnetic semiconductors such as the Eu monochalcogenides [20] (EuO,
EuS, EuSe), the exchange interaction between the localized 4f states and the empty 6s/5d
conduction band states, produces an n-type semiconductor with a spin-split conduction
band. Meanwhile, in the p-type III-V dilute magnetic semiconductor materials [21] such
as GaAs:Mn and InAs:Mn, a spin-split valence band is formed because of the interaction
between the 3d states of the Mn dopants and the semi-delocalized 4p-hole states at the
top of the valence band. Crucially, one hole state is created at the top of the valence band
for each Mn dopant and so the carrier concentrations in these materials are enormous by
normal semiconductor standards. The dilute TM doped oxides differ form the I1I-V DMS
systems in two aspects. Firstly, the oxides are usually strongly n-type which means the car-
riers are confined to the conduction band and secondly the introduction of TM dopants by
itself does not create extra carriers. Therefore the carriers that interact with the magnetic
dopant must be derived from other donor defects in the system. In this scenario the donor

impurity band exchange (DIBE) [22] model relevant in highly defective systems was pro-
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posed as a possible mechanism for ferromagnetism in the dilute magnetic oxides. Within
this model, hydrogenic donor orbitals overlapping TM dopant cation sites are spin-splint
forming bound magnetic polarons. As the concentration of the donors is increased beyond
a certain critical threshold x4 at which the overlapping polarons percolate throughout the
sample, global ferromagnetism results [23]. However, the critical temperatures (T.) pre-
dicted within this model for realistic parameters are in the range of ~10K and therefore
cannot account for the observed ferromagnetic signatures above 300K. Still, experimental
trends accumulated over the years suggest a correlation between the presence of donor
type defects and ferromagnetism in these systems. In particular, annealing in vacuum or
oxygen deficient atmospheres [24] as well as exposing the samples to Zn vapours [25] or
even Hydrogen [26] is seen to boost the ferromagnetism. In order make sense of the vari-
ous experimental observations in these dilute TM doped oxides, an indepth investigation
of the interaction between the dopant ions and the various donor defects in these oxides
needs to be undertaken. If the TM doped oxides are to be established as genuine dilute
magnetic semiconductors then a spin-split impurity band with carriers that mediate the

ferromagnetism between the TM ions needs to identified in these materials [11].

A different problem closely related to ferromagnetism in dilute TM doped oxides is
that of ferromagnetism in semiconductors and insulators without any magnetic ions or
dopants. This phenomenon dubbed @ ferromagnetism [27] or phantom ferromagnetism
has received wide spread attention in the recent past following numerous reports of above
room temperature ferromagnetic signals being detected in systems which should not be fer-
romagnetic. Materials such as irradiated graphite, nonstoichiometric CaBg and thin films
of HfO, have been reported in this class of phantom ferromagnetic materials [27]. Observed
experimental trends point to intrinsic defects in these materials as being responsible for
the ferromagnetic signals. However these findings pose a challenge to our fundamental
understanding of magnetism as several questions regarding the identity of the intrinsic
defects and the mechanisms responsible for creating both the local magnetic moments on
the defects as well as the inter defect coupling remain unanswered. In the case of HfO,, a
mechanism similar to the DIBE model was proposed where by oxygen vacancies in HfO,
would lead to the formation of partially occupied Hf-5d orbitals in the conduction band
which would then spin-split due to inter ionic exchange interactions [28]. To date however,
no direct experimental evidence of a spin-split conduction band in ferromagnetic HfO, has
emerged. In the absence of any phenomenological model that can readily explain the ferro-

magnetism in these systems, one can approach the problem in a bottom-up manner within
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the m — J paradigm for ferromagnetism and look for the various individual contributing
factors necessary for long range order. Thus defect centres which can give rise to local
magnetic moments need to be identified. Then, the sign of the magnetic coupling as well
the variation of its strength with the distance between individual defect centres needs to
be determined. Last but not least the concentration of the defect centres needed for the
magnetic interactions to percolate though out the system needs to be established. In some
cases the observed phenomena might arise solely from surface or interfacial regions at which
the the defect composition might be different from that in the bulk of the material. The
fact that most instances of & ferromagnetism occur in thin film samples [27] points to that
possibility. Therefore surface sensitive characterization techniques need to be employed in

studying these systems.

While careful experiments can indeed lead to a full understand of the materials dis-
cussed above, it is often difficult to control and characterize precisely the defect composition
as well as the homogeneity of defect distribution in experimental samples. In such a sce-
nario, theoretical first principles electronic structure calculations emerge as a valuable tool
to investigate the electronic structure these materials at a very fundamental level. The
availability of high speed computers and sophisticated theoretical tools such as Density
functional theory (DFT) [29] make realistic simulations of Dilute magnetic semiconductors
feasible. The GaAs:Mn DMS system was thoroughly investigated using theoretical DFT
simulations and the mechanism for the observed ferromagnetism in GaAs:Mn is now rela-
tively well established (c.f [30] and references therein). However the oxide DMS materials
such as Zn0O:Co have proven to be problematic even for theoretical studies using con-
ventional Density functional methods. Approximate exchange-correlation (xc¢) functionals
routinely employed in density functional calculations fail to describe the wide-gap transi-
tion metal oxides accurately often severely underestimating the band gap in these systems
and in some cases even predicting metallic ground states [31]. One of the main reasons for
the failure of approximate xc functionals in this regard is the presence of the spurious self
interaction error (SIE) [32] which loosely described means that an electron feels part of its
own electrostatic potential and repels itself. Thus the energy levels of localized d and f
electrons for which the SIE is strongest, are too high resulting in an erroneous description
of these systems. Therefore one must employ more sophisticated xc functionals that are
free of the SIE in order to be able to adequately describe the oxide based DMS materials.
Among the main objectives of the research work presented in this thesis is the investigation

of density functional methods capable of describing these problematic DMS systems and
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then to study the materials themselves in an effort to explain the observed behaviour.

1.2 Electron transport through magnetic molecules

The study of electronic transport through nanoscale devices is a fascinating new branch of
modern solid state science. Initiated at the time when the first scanning tunneling micro-
scopes (STMs) [33] appeared this field has seen rapid growth mainly because of its potential
relevance to a multitude of technological disciples such as nano-scale electronics, genetic
medicine and chemical/biological detection and sensing. Because of the complexities one
encounters at the nanoscale, molecular electronics presents its own set of challenges both
form a fundamental theoretical perspective and a device engineering perspective. The rules
of Ohmic transport valid in all metallic and semiconductor based devices breakdown at the
nanoscopic level and transport across individual molecules or other atomic scale structures
is strongly influenced by quantum mechanical effects. Also, device fabrication is only pos-
sible under extremely controlled conditions and most experimental setups of today come
with a certain degree of uncertainty over the precise geometry of the device. The standard
set up for a molecular electronics device is to sandwich either a single molecule or an or-
ganic monolayer between metallic electrodes. This setup was first proposed by Aviran and
Ratner [4], but was accomplished experimentally only much later by Reed and cowork-
ers [34]. Molecular devices have since been shown to exhibit a multitude of interesting
features in their current-voltage characteristics such as negative differential resistance [35]
and rectification [36]. Also fully functional molecular transistor type devices [37], logic
gates [38, 39] and memories [40] have been realized in experiments and next generation
computing and data storage technologies based on such nanoscale devices have been pro-
posed [41, 42]. However, molecular electronics is still very much in its infancy and although
the large scale production of fully functional molecular devices remains some time away,
there is a growing body of experimental, theoretical and computational work investigating
the wide range of challenges posed by the field.

In recent times, the possibility of making electronic devices using organic molecules
has been the focus of intense research as the field of molecular electronics [4, 5, 6] aims to
provide a viable alternative to conventional semiconductor electronics. Organic electronic
devices offer the advantages of low-cost, low-temperature production through chemical
methods, instead of expensive high-temperature solid-state growth (e.g. molecular beam

epitaxy) and patterning (lithography) techniques. Furthermore, the rich chemistry of or-
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ganic systems affords endless possibilities of chemical synthesis, end-group and side-chain
engineering to conceptualize new kinds of devices and tune device properties. Of particular
relevance to the data storage industry in the on going effort towards ever increasing storage
densities are molecular spintronics devices. Prototypical in this class of devices are molec-
ular spin valves [43, 44] which essentially comprise of a non-magnetic organic tunneling
layer of molecules sandwiched between magnetic leads. Magnetoresistance effects of upto
about 18% have been demonstrated in these devices [43, 44]. However a different type of
stand-alone molecular spintronic device based on a novel class of molecules called Single
molecule magnets (SMMs) or molecular nanomagnets [45, 46] holds much promise. SMMs
are usually formed from a central cluster of transition metal and ligand ions surrounded
by carefully engineered organic functional groups and are characterized by a non-zero total
spin on the molecule. They exhibit remarkable physical properties such magnetic hystere-
sis [45] with entirely intra-molecular origins and magnetization reversal in external fields
due to quantum tunneling [47] between different spin states of the molecule. A variety
of such SMMs have been widely studied since the mid 1990s both from a fundamental
theoretical perspective as well as from the point of view of spintronic applications [46]. In
particular, molecules formed from a cluster of 12 Mn ions (Mnjs), have received a lot of
attention. These Mnjs molecules act as isolated spin systems with a high local spin (S
= 10) and a large intrinsic magnetic anisotropy barrier [45]. If such molecules could be
engineered so that the blocking temperature for their magnetization is above room tem-
perature, they could potentially be used as individual “bits” for data storage at terabit /in?
densities or by suitably exploiting their exotic spin physics, even as “qubits” for quantum
computing. Recently such molecules were successfully deposited as extended arrays on gold
surfaces with the possibility of individually addressing them in scanning probe microscopy
experiments [48]. One of the questions with direct related to these SMMs being used for
data storage is whether the electrical read out from these molecules is different for different
spin states of the molecule. Thus if information is written to the molecule in the form of a
particular spin state, can it then be “read” as an electrical signal? In this thesis we present
the first ab initio theoretical electronic transport calculations on these Mn;s based SMMs

that attempt to answer the question.
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1.3 Dissertation layout

The main focus of the work presented in this thesis is to study using first principles the-
oretical calculations, some problems of current interest in the field of spintronics. Some
widely debated issues regarding the phenomenon of ferromagnetism in dilute and disor-
dered wide-gap oxides are addressed. Advanced density functional theory (DFT) based
approximations, necessary to accurately model such wide-gap oxides and other materials
that are problematic for conventional DFT methods, are introduced and their implemen-
tation within an efficient numerical DFT platform is discussed. The electronic transport
properties, focusing in particular on the interplay between charge transport and the intra-
molecular spin degrees of freedom of a prototypical Mn;, molecular magnet are also pre-
sented.

For clarity, the thesis is mainly divided into three parts. In part I consisting of chap-
ters 2 to 4, the theoretical tools employed for various first principles calculations carried
out during the course of this work are discussed. Most of the computational coding and
implementation work carried out during the course of this research work is presented in
this part.

In chapter 2 we provide a general introduction to the many electron problem and briefly
discuss some of the ways of tackling it. An overview of Kohn-Sham density functional
theory [49] is then presented followed by a quick review of some of the more popular
numerical approaches to practical density functional calculations. We then discuss in some
detail the numerical framework within the density functional code SIESTA. The last section
in chapter 2 presents the general scheme for non equilibrium Green'’s functions (NEGF) [50]
based electronic transport calculations as implemented in the SMEAGOL [51] code.

Chapter 3 presents a discussion on orbital dependent exchange correlation function-
als [62]. In particular, the optimized effective potential method is reviewed with emphasis
on the Krieger-Li-lafrate approximation [53]. The exact exchange functional [52] and self
interaction corrected (SIC) [52] approximate functionals are discussed in this context and
some details of their implementation in the SIESTA [54] code are presented. As an appli-
cation of the methods developed, the long standing problem of polymer polarizabilities in
density functional theory is revisited and the performance of SIC functionals is analyzed
in that regard.

In chapter 4, a computationally efficient approximate self interaction correction scheme
based on atomic orbital based correction terms is presented. The implementation of this

approximate scheme (abbreviated ASIC) [55] within the SIESTA code is also discussed in
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detail. The scheme is also compared to other methods such as the fully self consistent SIC
scheme [32] and the LDA+U method [31] for treating strongly correlated systems. The
performance of ASIC in describing the electronic structure of various molecular as well as
solid state systems is then analyzed.

Part II of the thesis consisting of chapters 5 and 6, deals mainly with materials simu-
lations investigating ferromagnetism in wide-gap oxide systems.

In chapter 5 the problem of phantom ferromagnetism in un-doped Hafnium Oxide
(HfO,) [28] is investigated. First the electronic structure of oxygen vacancy defects is
discussed and the effect of introducing additional electron or hole doping into n-type HfO, is
also studied. Then, the case of p-type HfO, is considered by looking at Hafnium vacancies.
Some interesting differences in the electronic structure of Hafnium vacancies in the three
different crystalline phases of HfO, are discussed.

Chapter 6 presents a detailed study of the role of native n-type donor defects in the
ferromagnetism of Cobalt doped ZnO (Zn0O:Co). The ASIC method developed in chapter 4
is employed. Defects such as oxygen vacancies (Vp), interstitial Zn (Zn;) and Hydrogen
(H;) are analyzed for their effect on the electronic structure of substitutional Co ions.
Magnetic interactions between Co ions in clustered as well as spatially well separated
configurations are calculated in the presence of donor defects. A model based on donor
and dopant ion pair complexes capable of explaining the observed experimental trends in
Zn0:Co is proposed.

Part III of the dissertation is still somewhat related to magnetism but in the context
of electronic transport.

In Chapter 7 we study the electronic transport properties of a prototypical Mn;, based
magnetic molecule functionalized by organic thio-ether functional groups [48] and attached
to gold electrodes. Firstly the electronic structure of the molecule is studied using a semi-
local approximate GGA exchange correlation functional [56] as well as the more advanced
LDA+U method [31]. Differences in the electronic structure of the molecule in the two
approaches are discussed. Current-voltage characteristics as well as transmission coeffi-
cients calculated using the SMEAGOL code [51] are then presented. In particular, the
question of whether the local spin configuration of the molecule effects its current-voltage
characteristics, is addressed.

Finally, towards the end of the dissertation we draw some general conclusions on the
work presented in this thesis. We also highlight some issues and questions related to the

topics discussed in this work that need further theoretical investigation.
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Theoretical tools







Chapter 2

Theoretical and Numerical

framework

2.1 The Quantum Many body problem

The systems of interest in condensed matter physics and quantum chemistry consist es-
sentially of an ensemble of electrons and nuclei interacting via Coulombic forces. At the
molecular level or indeed at the nano-scale in condensed matter, one wishes to describe
the collective structure and mechanics of systems typically ranging between a few tens
to several hundreds of electrons and nuclei. However, no analytic solution exists for the
quantum many body problem involving any more than two particles and one must resort to
solving the problem numerically with the aid of high speed computers. Furthermore even
exact numerical solutions are computationally prohibitive except in the simplest of cases
involving only a few electrons. One is therefore forced to rely upon useful approximations
that help to simplify the problem as much as possible while not sacrificing the accuracy of
the final solution. Since electrons in most of the lighter elements and the chemically active
subset of valence electrons in heavier elements travel at speeds much slower than the speed
of light, they can be treated as non-relativistic. The nuclei meanwhile are much slower
than the electrons and can in fact be treated as classical particles to a good approxima-
tion. When one is interested in the steady state solution of a quantum system one must
solve the the time independent Schrodinger equation which takes the form of an eigenvalue

problem

HY = EV (2.1)
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where in H is the Hamiltonian operator, ¥ is the many body wave function and £ is
the energy of the system. For a non-relativistic Coulomb system consisting of a set of N,
electrons each of mass m, , moving under the influence of Ny nuclei with masses Z; and

position coordinates R, the full Hamiltonian operator takes the form

N . N ’
2 - hz ’ = hz ’ o8 GZIZ/
H=Y ——¥¢ 2

Z 2mev"+21: oM; R Z|R,—RJ1

I#J
Ne’NN 9 Ne 2
eZ; 1 e
_— (2.2)
; R Z;‘ Ity — 1,

where the first and second terms are the electronic and nuclear kinetic energy respectively.
The third term is the Coulombic interaction between the nuclei, the fourth term is the
Coulombic attraction between the electrons and nuclei while the fifth term is the electron-
electron interaction. r; denotes the position of the i electron. The many-body wave
function ¥ in equation 2.1 is a complex object being a function of the coordinates of all

the electrons and nuclei in the system, thus
v = \IJ(XI 5 X9y 0o Xy 0 XN s X| 5 Xz. X[ ...XN\,) (2(3)

Note that the electronic (nuclear) coordinates {x;} ({X;}) include both the position coor-
dinates {r;} ({R}) and the spin coordinates {s;} ({S;}). A major step towards simplifying
this object is 011('01111)&155(\,(1 in the Born-Oppenheimer (BO) approximation [57|. As the
nuclear masses are much heavier than the electron mass, and since the nuclei usually move
much slower than the electons, nuclear motion occurs over a much longer time scale in

comparison to electronic motion. In the reference frame of the electrons, the nuclei are

almost stationary and one can therefore separate the electronic and nuclear degrees of

freedom.

°({x;}) ® YN ({X;}) (2.4)

Thus one only needs to worry about the electronic degrees of freedom {x;} while the nuclear

coordinates {X;} enter merely as parameters in the electronic Hamiltonian.

= T({x:}) + Vee ({x:}) + Ve ({x:}; {X1})

—
S
o

—

14



Theoretical and Numerical framework 2.2 Wavefunction methods

where
L
Q—Tn,_vi' (2.6)

Pz} =

i

Vee({x:}) Z |r1 — rJ| (2.7)

- e e2Z;
Veesl {1} = Z l‘r—_—R—ll (2.8)
il ’

Note that V.,; can be easily generalized to also include additional external electric and
magnetic fields. Thus within the BO approximation, the Schrodinger equation for the
electronic system reduces to

Hev® = E({X;})v° (2.9)

and the energy of the electronic system is obtained as a parametric function of the nuclear

coordinates.

2.2 Wavefunction methods

In spite of the considerable simplification afforded by the BO approximation, the electronic
Hamiltonian in equation (2.5) still represents an interacting many-body problem whose so-
lution is not a trivial task. The presence of the electron-electron interaction Ve couples the
coordinates of all the electrons and the many electron wavefunction cannot be decomposed
into a product of single particle wavefunctions. Indeed if we consider the special case of
non-interacting electrons, the electronic Hamiltonian for N electrons reduces to a sum of

one particle Hamiltonians

] N Nn
Hno*n = Z l? m. Z lI' - R[|:| (210)

and the eigenfunctions ® of H,,, satisfying

Hn(mq) = En()'nq) (211)
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can be written as an anti-symmetrized product or Slater determinant of single particle

wavefunctions ¢

o1(x1)  ga(x1) .. dn(x1)
1 |oi(x2) @a(x2) ... on(x2) o
P1(xn) do(xn) ... On(XN)

@:

This takes into account the Pauli exclusion principle as the electrons are fermions. The
total energy in this case is simply a sum over the eigenvalues of the N occupied single
particle states and the total electron density is given by a sum over the N single particle
densities |¢}(r)|* where ¢’ represents the spatial part of the wavefunction ¢. For the more
general interacting problem the Slater-determinant eigenstates of H,w,,, form a complete

orthonormal basis in which to expand the many-body wavefunction.

The Schrodinger equation (2.9) for the ground state of a many electron system can
be mapped onto the wavefunction variational principle [59] which provides the following
prescription: to obtain the ground state energy and wavefunction, find the extremal point

of (U|H|W¥) subject to the constraint (¥|W) = 1, i.e., solve the following:

) 2 =1 2.13
Ty f ana

The Rayleigh-Ritz method then attempts to find the extrema of H within a restricted space
of wavefunctions. One of the earliest and more popular methods based on the above is the
Hartree-Fock (HF) approximation [57, 58] where in a single Slater determinant wavefunc-
tion ® that minimizes (®|H|P}/(P|P) is sought. The HF approximation describes light
atoms and small molecules adequately well and was widely used in the quantum chem-
istry community during the early years but falls short of the desired chemical accuracy.
Due to the single-determinant nature of the ground state wavefunction, HF theory can-
not describe electron correlations and one must seek to incorporate the correlation energy
through other means. In quantum chemistry calculations Moller-Plesset perturbation the-
ory (MP2,MP4) [60] and configuration interaction (CI)[60] are among the most commonly
used methods to calculate the correlation energy. In solid state physics, strong correlations
are handled by Green’s Function (GF) methods. Quantum Monte Carlo [61] also offers
an alternate method to directly tackle the many-particle wavefunction. However all of

the above methods are computationally demanding and exhibit poor scaling with system
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size which makes them prohibitive for large systems. Table 2.1 lists the typical scaling

behaviour with number of orbitals N for some commonly used ab initio methods.

Hartree Fock N® — N*
MP2 N°
MP4 N°®

Configuration Interaction | N®— N9
Density Functional Theory | N? — N?

Table 2.1: The typical scaling behaviour with number of orbitals N for some commonly
used ab initio methods is listed

For large scale molecular and solid state calculations where one needs to handle ex-
tended systems with hundreds of atoms, a completely different approach that significantly
reduces the number of variables involved is required. For the restricted but all important
class of ground state properties Density Functional theory (DFT) achieves exactly that by
replacing the many-body wavefunction W(x;, Xs,...Xxy) with the electron density n(r) as

the basic quantity of interest.

2.3 Density Functional theory

The foundations of modern DFT lie in the celebrated theorem of 1964 due to Hohenberg
and Kohn (HK) [62] in which they demonstrate that the problem of finding the many
electron wavefunction can be reduced to that of calculating just the equilibrium charge

density n(r). The charge density n(r) of an N electron system is defined by

= N Z /drgdrg dry | U (%1, Xg, .. xN)|? (2.14)

02,034

where o € {1, |} indicates the spin-coordinate and
n(r) = nl(r) + n' (2.15)

provided

(U0 = Z /drl,.drN|\I!(xl,... NEP=1 (2.16)

Also

> /n"(r)dr =N (2.17)
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2.3.1 The Hohenberg-Kohn theorem

The HK theorem can be summarized in the following three statements.

1. The ground-state density ng(r) uniquely determines the external potential V' = V'[ng] as
well as the ground-state wave function W[ng]. Therefore, any ground-state observable of a
many-particle system is a functional of its ground-state density.

2. The total energy functional for a given external potential V}
Ev,[n] = (¥[n)|T + Vie + Vo|¥[n)) (2.18)

is equal to the ground-state energy FEj if and only if the ground-state density ng is used in

equation 2.18. For all other densities n # ny the following holds
Ey < E\i, [‘n] (219)

Thus the ground-state energy is variational with respect to the density and the exact

ground-state density (ng) and energy (Fy) can be determined by solving the Euler-Lagrange
equation ‘
0

on(r)

Ey,[n] =0 (2.20)

3. The functional

F[n] = (¥[n)|T + V..|¥[n]) (2.21)
is a universal functional of the density for all systems as it is independent of the external
potential defining a particular system and only depends upon the form of the particle-
particle interaction V... Note that the HK theorem is valid for any given form of the
particle-particle interaction V., and in particular for the trivial case V., = 0 defining non-

interacting systems.

2.3.2 The Kohn-Sham scheme

Although the HK theorem establishes a one to one mapping between the external poten-
tial V, and the ground state density ng, it does not prescribe a way to actually obtain
one quantity given the other and vice versa. However, in 1965, Kohn and Sham [63]
proposed a clever way of mapping the interacting many body problem onto a system of
non-interacting particles moving under the influence of a ficticious effective potential that

produces the same ground state density and total energy as the interacting system. It is
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this mapping that forms the basis of all modern day practical DFT calculations. Thus in

the KS formalism one deals with a non-interacting Hamiltonian off the form
HXS =T 4V, (9.07)

where Vi(r) = Vi[n|(r) is the local KS effective single-particle potential that is uniquely
determined by the ground state density n(r). The KS orbitals are the one-particle orbitals

satisfying a set of one-particle Schrodinger like equations known as the KS equations

=
[%Vz + Vs(I‘)J Y = ey (2.23)

With (¢5|1);) = d;;, the ground state density can be constructed from the occupied subset

of KS orbitals as
(0= 3

i

hi(1)]* fi (2.24)

where f; € [0,1] is the occupation number usually given by f; = F(e; — €r) where F is

the Fermi distribution function and e is the Fermi energy or chemical potential chosen so

that

/dr n(r) =N (2.25)

is satisfied. The total KS energy can be written as
Fxs = Tg[n] + / dr n(r)Vegt(r) + Uee[n] + Erc[n] (2.26)

where :
R g 2.27

Tyn] = Vil 5— i) i ,

dn) =D (il V1) f (2.27)

1
is the non-interacting kinetic energy which can be shown to be a functional of the density.
The second term represents the interaction of the electrons with the external potential V.

The third term is the electro-static Hartree energy of the electronic density
1 n(r)n(r’)
Ueeln] = = [ dr | dv' ———= 2.28
= far farm 200 (225)

The last term is the so-called exchange-correlation (xc) energy F.,., whose exact functional
dependence on the electronic density is not known and must be approximated. It is defined

to include all the remaining contributions to the total energy that are omitted in the first
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three terms of equation 2.26. The KS effective potential Vi(r) is then given by

n(r’)

v —r'|

Vs[n](r) = Vege(r) + / dr’ + Vie[n](r) (2.29)

where V,..[n](r) is the exchange-correlation potential defined as the functional derivative of

the exchange-correlation energy with respect to the density

OE 0E;c[n]
on(r)

Note that the KS ground state energy can also be written as

Vieln](r) = (2.30)

Exs = Z €ifi + Ezc[n] - /drvyc[n](r) - % / ﬁ(i)_,—l(i) (2.31)

i

where in the last three terms are referred to as the double counting corrections to the
first term which represents a sum over the eigenvalues. As mentioned earlier the positions
of the atomic nuclei enter only as parameters into the electronic Hamiltonian. Once the
KS equations have been solved for a given arrangement of the atomic nuclei one can also
extract the forces acting on the (static) nuclei in their current configuration using the
Hellman-Feynman theorem [59]. Let r; be the position of the i"* electron and R; the

position of the static nucleus / with atomic number Z;. The BO Hamiltonian

N 2
. " —Z,p Z[ZJ( ;
ZTV L Xt ZZ\r —r! PRI SR

i=1 1 J# I J#£I

only has a parametric dependence on the positions R; and the force on nucleus I is simply

given by
—OF OH
— (Wi — 1/
OR; < ’ OR; >
i Zie*(r — Ry) ZiZ;e*(R — Ry) ,
— 1 e 2:33
/(m e T (2:33)

JA£T

Equation (2.33) can be used to calculate equilibrium geometries of molecules and solids

on the BO surface by varying all the R; until the energy is a minimum or equivalently

—9E _
or, — -
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2.3.3 Approximate density functionals

The KS formalism presented thus far is exact and completely general in that if the exact
functional dependence of E,. upon n(r) were known, the method would produce the exact
ground-state total energy and density of the interacting N electron problem. However
as the exact form of FE,. is unknown we resort to various levels of approximations while
incorporating the exchange-correlation energy. In fact one might even choose to use an
approximate density functional for the non-interacting kinetic energy 7Ti[n] as one could
then bypass the calculation of the KS orbitals entirely and directly minimize the total
energy over n(r). From a historical perspective, the so called first generation density func-
tional calculations approximated both Ti[n] and E,.[n] as in the Thomas-Fermi model [58].
Most practical KS calculations carried out these days come under the category of second
generation DFT where in one employs the exact functional for the non-interacting kinetic
energy (equation 2.27) and an approximate density functional for the xc energy. The total
xc energy is usually a fraction (~ 10%) of the total energy and therefore errors made in
approximating FE,. are expected to be less critical although certain physical quantities such

as bond dissociation energies in molecules have a crucial dependence on F,..

Present-day approximate xc functionals provide a satisfactory compromise between
accuracy and computational cost for most day to day applications, allowing much larger
systems to be treated than traditional ab initio methods, while retaining much of their
accuracy. The local spin density approximation (LSDA) [63, 64] has been very popular
among the solid state community over a long period of time. The LSDA xc energy is given
by

e /dr n(r) ez(n',n') (2.34)

where e,.(n', nt) is the exactly known [65] exchange-correlation energy per particle for a
homogenous electron gas of spin densities n'(r), n!(r). Note that e,. at any point in space
only depends upon the spin densities at that point and EL5P4 is therefore a local functional.
More recently, various flavours of the generalized gradient approximation (GGA) [66, 67,

68, 69] have become popular in quantum chemistry:
ESCAInT nl] = /dr f(nl,nt, vnl vnl) (2.35)

The GGAs include gradient corrections to the xc energy that are missing in the LSDA and

therefore also require as input the density gradients Vn'!(r), Vn!(r) at each point in space.
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They fall under the category of semi-local functionals. Both empirical and non-empirical
versions of LSDA and GGA exist and the choice of the functional usually varies from
application to application. LSDA is known to perfrom well in the solid state for a number
of metallic as well as semiconducting systems and usually reproduces bulk properties such
as lattice constants and bulk moduli within a few percent of experiments. GGAs are also
sometimes used in simulating bulk materials but are not known to afford any systematic
advantages over LSDA with regards to bulk properties and in some cases such as simple
metals do not do as well LSDA. However GGAs have had their biggest impact in quantum
chemistry in the accurate prediction of bond lengths, molecular geometries and reaction
paths in organic systems.

Still, there are several systems both in molecular as well as solid state physics for which
LSDA/GGA are either not accurate enough or even fail drastically. Such limitations of
LSDA/GGA will be discussed later in the context of orbital-dependent functionals but for
now it suffices to note that the search for ever more accurate approximations to E,. is of
central importance in DFT. In principle, one way in which to improve over LSDA/GGA
is by systematically adding more ingredients to the E¢“4 approximation to produce what
are known as meta-GGAs [59]. These are more sophisticated functionals that depend on
semi-local and non-local quantities such as the Laplacian of the spin densities V?n'!, V?n!

1
|

and the kinetic energy densities 7', 7' where

: I . 2 :
() = = ) fi |Viio(r)[? (2.36)

The larger the number of such ingredients in a functional, the heavier is its computa-
tional cost and in some cases (but not all), the greater is its accuracy. The so called third
generation of density functionals however, follow a different approach where in one employs
along with the exact expression for Ti[n] also the exact exchange energy expression which

is orbital-dependent:

1 Noce p 0 p () (2 )0 (1) i (1)

exac 1 7o rjo rJ]o 1o bt

fescily] = s g E /(/r/(/r ! Fa— - (2.37)
_U*I.II/:I' :

Thus only the correlation part of E,.[n| needs to be approximated in this approach. More-
over, the third generation functionals allow for both closed form expressions such as the
local and semi-local approximations as well as explictly orbital-dependent functionals for

the correlation energy FE,. and are thus more flexible in the construction of such approx-
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imations. Note that orbital-dependence of E,. in the third generation functionals makes
the calculation of the xc potential V,.[n|(r) more complicated. The general procedure to
construct V,.[n](r) for an orbital-dependent E,. functional is called the optimized effective
potential (OEP) [70] method or simply the optimized potential method (OPM) [71]. How-
ever, the solution of the full OEP integral equation is rather complicated to be practical,
and useful approximations to the OEP need to be considered. One such approximation due
to Krieger, Li and lafrate (KLI) [72] is discussed in a later chapter. One can also envisage
hybrid density functionals that include a fraction of the exact exchange energy mixed with

GGA exchange and correlation. A simple hybrid functional would takes the form
B = gl 4 (1 g BRS04 B (2.38)

where the constant a is either fitted empirically or estimated theoretically. A value of
a = 1/4 is commonly employed for molecules. The most popular among such functionals
is the B3LYP [73] functional widely used in quantum chemistry and more recently has
also found favour among solid state simulators. For a more indepth review of various
functional approximations we direct the reader to reference [59]. An alternate approach to
improving upon the local approximations LSDA /GGA is to incorporate certain corrections
into these functionals tailored to rectify a subset of problems. Thus one might adopt
the explicit Self Interaction Correction (SIC) scheme of Perdew and Zunger[65] which
seeks to correct for the spurious self interaction error (SIE) inherent to all local/semi-
local approximations to F,.. This scheme also belongs to the general class of orbital-
dependent potentials and is discussed in detail in subsequent chapters. For certain so called
“strongly correlated” solids in which localized electrons occupying atomic d and f shells
are poorly described in LSDA/GGA, the “Hubbard-U” correction due to Anisimov [74]
is also commonly employed. This method commonly referred to as LDA+U is based
on the Hubbard model and involves two parameters viz., the on-site coulomb repulsion
parameter U and the exchange parameter J which in-principle can be calculated [74]. For
an appropriate choice of the parameters this method affords a good description of transition

metal and rare-earth oxides.

2.3.4 Interpretation of Kohn Sham eigenvalues

As stated previously, the KS formalism provides a way of mapping an interacting N parti-

cle problem onto a ficticious non-interacting problem with the same ground state density
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and total energy. This process is facilitated by the set of KS equations (2.23) whose eigen-
vectors 1); produce the exact ground-state density via equation (2.24). Meanwhile the KS
eigenvalues ¢; are merely the Lagrange multipliers that help to impose the orthonormality
of the KS eigenvectors. Therefore the physical significance of the KS orbitals and eigenval-
ues needs to be established. It can be shown that the KS Slater determinant wavefunction
UHS is not the same as the true N particle wave function ¥ and strictly speaking, KS
orbitals cannot be equated to the molecular orbitals or the valence and conduction band
orbitals of the real physical system [75, 76]. The true meaning of the the KS eigenvalues

KS

was first discussed by Janak [77] who showed that the KS eigenvalue £/*° is equal to the

derivative of the total energy E with respect to the occupation number f; of the state 1.
oF ‘
Eg(s(flyf‘Zv--fia'-fN): o (239)
ofi
In contrast the real eigenvalues €] ¢al that correspond to the excitation energies of the real

system are defined by Koopman’s theorem to be

et =E(f1, fa, .-fir - fn) — E(f1, fo, . fi = 1, .. fn) (2.40)
o1 ¢ . N\
= g oL D) 241
.1
B / df €5 (f1, far - fi = 1+ f, .. fn) (2.42)
JO

However, it has also been shown [78] that although the KS eigenvalues in general do not
represent the true excitation energies of the system, there exists an exception to the rule
in the highest occupied molecular orbital(HOMO) of a finite system whose KS eigenvalue
eHOMO myust equal the negative of the first ionization energy of the real system. Thus only
the highest occupied orbital of a KS system has physical meaning. Nevertheless in prac-
tice KS eigenstates and band structures are routinely compared to experiment. Molecular
level orderings and orbitals shapes obtained from DFT are usually in agreement with those
obtained from wavefunction methods. Similarly valence band widths and band curvatures
at high-symmetry points in the Brillouin zone of simple semiconductors usually compare
favourably with experiment. From empirical experience, it is fairly well accepted that the
KS spectrum especially in the case of simple metals and semiconductors is a reasonably
good first approximation to the real excitation spectra. Also, in the case of molecules,

the KS eigenvalues predicted in standard semi-local approximations such as LSDA/GGA
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consistently under-estimate the excitation energies but the spectra obtained with more
advanced functionals are seen to be in good agreement with experiment. The interpreta-
tion of the predicted KS bandgap (HOMO-LUMO gap) in semi-conductors (molecules) is
also an issue that needs to be addressed [79]. The real optical bandgap of a semiconduc-
tor/molecule is given by

Eyed <E(N +1)— E(N) — [E(N) — E(N — 1)] (2.43)

N +1)—u(N semiconductor
_ )l Y=gV} | ) (2.44)
—EA+ 1P (molecule)

where g is the chemical potential and E.A, L.LP are the electron affinity and ionization
potential respectively. The KS bandgap given by E(ﬁz = RS, — kS differs from the
true gap by the derivative discontinuity A [79] in the xc energy E,. or equivalently the
discontinuity in the xc potential V.. Thus E;:;g = (E;Z;’ — A) and A being a positive
quantity, the KS gap is always smaller than the real bandgap. Notably, the size of the
derivative discontinuity A is usually unknown. Therefore one must be careful in DFT
calculations while extracting information that depends upon the size of the band gap or

the position of the un-occupied KS eigenstates.

2.4 Computational Methods

These days, a wide variety of numerical Kohn-Sham DFT implementations both commer-
cial as well as non-commercial are readily available for carrying out practical electronic
structure calculations. The choice of a particular implementation is usually dictated by
several factors such as the capabilities of the implementation, the desired level of accuracy
and the computational resources at ones disposal. The two most basic features of any
numerical DFT code that have a major bearing on its efficiency and accuracy are:

1. The basis set employed over which the KS eigenvectors, density and potential are ex-
panded.

2. The way in which the core electrons which reside in atomic shells close to the nuclei are

treated.
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2.4.1 Basis sets

Plane wave basis sets are extremely popular in solid state physics where in the validity
of Bloch’s theorem in a periodic potential naturally facilitates the expansion of the wave

function ¢;(r) as a Fourier expansion over a set of plane waves [80]
Yi(r) = Z ) g (2.45)
k

where the number of k vectors included in the summation is large enough to represent

1;(r) to the required degree of accuracy. Usually the quality of a plane wave basis set is

determined by a single parameter called the energy cutoff F.. = h;‘;lz which is equivalent

to a cutoff on the highest electronic kinetic energy. Thus if one wishes to describe localized
electronic states with large kinetic energies, a sufficiently large value of FE., is required
which translates into an increase in computational cost both in terms of time and memory.
However the availability of efficient fast fourier transform (FFT) techniques [81] has made
plane wave calculations practicable for relatively large solid state systems. For molecular
calculations in quantum chemistry, Gaussian type orbitals (GTOs) have long been very
popular for representing molecular wavefunctions and densities [60]. More generally, atom
centered analytic functions such as Slater type orbitals (STOs), or numerical atomic orbital
basis functions are also employed. Typically, eigenstates are expanded over a finite number

of atom centered basis functions

e =3 Gig, (2.46)
a

where ¢, can be a GTO, STO or any numerical function that decays radially outwards from
the nucleus. For finite systems lacking periodicity such as molecules, the use of planewave
basis sets is not computationally efficient. In contrast atom centered basis functions such
as GTOs/STOs capture the exponential decay of the electronic wavefunction into the
vacuum region much more effectively. Furthemore the quasi-localized nature of these basis
functions means that they have a finite effective interaction range. Thus two STOs that
are far apart in space have a vanishing interaction and Hamiltonian and overlap matrices
represented over such localized basis functions exhibit a great degree of sparsity for large
systems which can lead to substantial savings in computational resources. While GTOs
have traditionally been popular as most of the integrals involving GTOs are analytic, STOs

and numerical orbitals describe atomic wave functions better than GTOs and relatively
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fewer such functions are therefore necessary. Recent times have also seen the increased
use of direct space methods where in the KS equations are solved directly in real space by
expanding the orbitals over a fine numerical grid. Just as in plane wave calculations one
single parameter viz., the fineness of the grid determines the accuracy of the calculation.
Still a relatively large number of grid points are usually required in any simulation and one
has to handle very large matrices as a result. On the bright side these methods are easily

implemented on massively parallel architectures.

2.4.2 Pseudopotentials

The chemical behaviour of atoms in molecules and solids is almost exclusively determined
by interactions between the outer or valence electrons while the deeper lying core electrons
are usually part of closed shells and are chemically inactive. The core electrons are very
close to the nucleus and their energy levels are very deep and remain unperturbed in most
chemical environments. Therefore it is not necessary to explicity describe the core region
in electronic structure simulations. This is achieved through the pseudopotential [82, 83|
method which essentially involves eliminating the individual nuclear and core electron po-
tentials and replacing them by a single effective potential that describes their net effect
on the valence electrons. This effective potential is called the pseudopotential and offers
massive advantages both in terms of drastically reducing the number of electronic states in
the calculation and also reducing the number of basis functions required. This is absolutely
unavoidable for heavier elements as describing a large number of core electrons with very
high kinetic energies would be prohibitively expensive. Both empirical and ab initio pseu-
dopotentials are commonly employed but in what follows we shall only discuss the latter.
A pseudopotential needs to be calculated for each atomic species that one wishes to use in
a particular simulation. One starts by solving the atomic radial Schrodinger equation! in
the spherically symmetric potential V[p](r) for a particular valence shell {n, [}
1d*> I(l+1)

HAE _ | AE
T odr2 + o2 + Vipl(r) |rém” = emrdy (2.47)

where in V[p](r) is the KS effective potential for the density atomic density p(r)

VIAr) = ~ 2+ Valolr) + Vaelpl() (2.48)

'Note that atomic units are employed
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The real all-electron (AE) wave function 1/}¥ of valence electrons often fluctuates wildly in

the core region to maintain orthogonality with the core states. This is however replaced by

PS5

. which is smooth throughout but which matches

a nodeless pseudo (PS) wavefunction )
the real wavefunction outside a chosen matching radius r.. In the particular class of norm

conserving pseudopotentials, the following conditions are satisfied:
Up(r) =¢a°(r), >0 (2.49)

/ WES(r)Prdr = / WAB(r) Prdr (2.50)
0 0

The norm conserving pseudo-wavefunction for the 4s atomic wave function of a Zn atom is

shown in figure. 2.1. The pseudo-wavefunctions then also reproduce the same eigenvalues

r (Bohr)

Figure 2.1: The all-electron and pseudo wavefunctions for the 4s atomic state of a Zn
atom are shown. The PS wavefunction is constructed so as to match the AE wavefunction
outside r. and also to have the same norm.

PS

. is obtained, the pseudopotential is calculated by simply inverting

ac ohAE Rt
€nt as ¥~ . Once 9

the Schrodinger equation.

(1+1) 1 d®

,])‘S' ¢
— 1,7 (1) (251
272 2rpFS(r) dr? n )

/11[ (,) = fll[ =

However, in this form the pseudopotential includes the screening due to the valence elec-
trons and cannot be used in a solid state or molecular calculation where one needs to
treat the valence region self-consistently. Therefore the Hartree and exchange-correlation

potential from all of the valence electrons is subtracted from V;¥(r) to obtain the so called
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bare ion pseudopotential.
Vo (r) = Vi () = Vi lpuad) () = Vi [poat](r) (2.52)

where p,q is the valence electronic density. Note that a different pseudopotential is ob-
tained for each {n,(} shell. In the widely used non-local pseudopotential scheme due
to Klienman and Bylander (KB) [84] the different VTSS’I(T) are combined into one single
pseudopotential with a nl-independent part termed the local pseudopotential and a nl-
dependent part called the non-local part by means of special projector functions called
“KB projectors”. The scheme offers significant computational advantages by confining
the long range interactions in the pseudopotential to the nl-independent part as the ni-

dependent parts are usually short-ranged. Thus a representation such as

VIS (r) = Vigwai () +Z|xm (Xnil (2.53)

where the x,,; represent the KB projectors is commonly employed. For some atomic species
in which the core shells and valence shells are not well separated leading to a substantial
overlap between the core and valence electron density, the subtraction of V”"[pm[] in equa-
tion (2.52) is not exact owing to the non-linearity of the xc potential. In such cases one
has to carry additional core corrections [85] in the pseudopotential. The quality of a pseu-
dopotential is usually determined by two quantities namely its softness and transferability.
Softness refers to the smoothness of a pesudopotential. In general, the softer the pseudopo-
tential the easier it is to describe in planewave calculations. However, a pseudopotential
should ideally also be transferable in the sense that it should be accurate in a range of
chemical environments. The softness and transferability can usually be tuned by changing
the matching radius r.. Larger r.s tend to produce softer pseudopotentials but it might
sometimes be at the cost of transferability. In general, a pseudopotential must be tested

for its quality before it is extensively used in material simulations.

2.4.3 The SIESTA code

All of the density functional calculations and methodological implementations presented
in this thesis are carried out within the numerical framework of the SIESTA (Spanish Ini-
tiative for the Estimation of Systems with Thousands of Atoms) code [86, 87, 88]. SIESTA

belongs to the general class of pseudopotential-localized basis orbital implementations and
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in particular, uses norm-conserving pseudopotentials similar to the ones described earlier.
The main philosophy behind SIESTA was the development of a general purpose DFT
platform that makes efficient use of locality i.e., the weak dependence of the properties of
a region of the system to perturbations sufficiently far away from it, in order to achieve
favourable scaling with increasing system sizes. To this end, SIESTA employs a localized
basis set consisting of numerical atomic orbitals which are the product of a numerical radial

function and a real spherical harmonic. Thus for an atom [ located at R,

(bllmn(r) = ¢lln(r1) nm(fl) (254)
where r; = r — Ry, 7 = |r| and t = 7. The angular momentum (labelled by [,m) may

be arbitrarily large and, in general, there will be several orbitals (labelled by index n)
with the same angular dependence, but a different radial dependence, forming what is
conventionally called a multiple-( basis. The first among a group of such basis orbitals
termed the first-C orbital is constructed as an eigenfunction of the pseudo-atom within a
hard wall spherical potential of chosen radius r.. In other words, it is an angular-momentum
dependent numerical eigenfunction ¢;(r) of the atomic pseudopotential V;(r), for an energy
€, + 0¢; chosen so that the first node occurs at the desired cutoff radius r,.
( 1 d*  l(l+1)

o H(/'))(}),(r) = 5 = B lr) (2.55)

with the boundary condition ¢;(r.) = 0. (The indices / and n = 1 are omitted here for
simplicity). Thus SIESTA basis functions are also called pseudo atomic orbitals (PAOs).

)

Second and higher (-functions are constructed in the spirit of the “split valence” scheme.
For instance the second-C function ¢12<(fr) has the same tail as the first-C orbital (bllc(r) but

changes to a simple polynomial behaviour inside a ‘split radius’ r}

- rt (g — br?) if r<rf
& (r) = e J / (2.56)

(1¢ "
gi*lr)y if r>rf

where @; and b; are determined by imposing the continuity of value and slope at ;. Thus the
SIESTA basis functions exhibit the smooth exponential decay of atomic eigenfunctions but
are of finite extent being strictly zero beyond the cutoff radius r.. SIESTA also implements
polarization orbitals constructed from a perturbed atomic Hamiltonian in order to account

for the deformation induced by bond formation. The polarization orbital corresponding to
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a given pseudo atomic orbital ¢, (r) = ¢(r)Y;(r) is of the form

G1+1,m(r) = Nopp1 (r)Yipim(E) (2.57)

where N is a normalization constant. One of the main advantages of SIESTA is that a
relatively small number of basis functions are adequate to accurately describe the charge
density. A typical double zeta plus polarization (DZP) basis set might consist of about 16
to 23 PAOs per atom.

SIESTA features the standard KS one-electron Hamiltonian within the non-local pseu-

dopotential approximation

H=T+> Vo) + > VEP + Vilol(r) + Vaelol(r) (2.58)
I I
where T' = —%V'Z is the kinetic energy operator, I is an atom index, Vy(r) and V,.(r)

are the total Hartree and xc potentials, and V/*®(r) and V*# are the local and non-
local (Kleinman-Bylander) parts of the pseudopotential of atom I. The overlap matrix
S,y = (¢pu|¢py) and several parts of the Hamiltonian viz., kinetic energy and non-local
pseudopotential matrix elements are evaluated as two center integrals. A general two

center integral is of the form
AR) = (6l6) = [ Ewe - Ry (2.59)

where the integral is over all space and &, &, may be basis functions ¢y,,,, KB pseudopoten-
tial projectors X;mn, or more complicated functions centered on the atoms. The function

A(R) is then treated as a convolution and transformed into reciprocal space

AR) = [ GiR)pa(k)e ™ dk (2.60)
where (k) is the Fourier transform of £(r). Provided that the functions &£(r) can be
expanded over a finite number of spherical harmonics,

l7710,.r 1

Er) =" Y &m(r)Yim(®) (2.61)

=0 m=-1
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(the above holds true for all the atom centered functions in SIESTA), it can be shown that

A(R) may be transformed as

lear

AR) =) Z Aim(R)Yim(R) (2.62)

=0 m=-I

For each pair of functions &;5(r) the functions A;,(R) are calculated numerically on a
fine one dimensional grid for all values of R upto Rye. = r! + r? and stored in memory
once and for all. Here r!% are the cutoff radii of the two atom centered functions. Values
of S;n(R) for R in-between grid points are easily interpolated. The spherical harmonics

Y,m(f{) are easily obtained using standard special function algorithms.

Integrals involving other parts of the Hamiltonian such as the local pseudopotential V< (r)

the Hartree potential Vi [p](r) and xc potential V,.[p](r) are efficiently evaluated on a real-
space grid. The grid fineness is controlled by a single energy cutoft E,.,, which is equivalent
to the highest energy of planewaves that can be represented on the same grid. Before the
required integrals can be evaluated the electron density first needs to be represented on

the grid which is done as follows: Let v;(r) be the Hamiltonian eigenstates, expanded in

the PAO basis set
Gi(r) =) ducu (2.63)
H
where c,; = (p,|¢;) and ‘7’\;1 is the dual of ¢, such that ((,‘)”g“),,) = 0,,. We use the compact
notation u = {Ilmn} to index the basis orbitals as defined in equation (2.54). The electron

density is then given by

- Zfl- [1i(r)|? (2.64)

where n; is the occupation number of the state v;. By substituting (2.64) into (2.63) and
defining the SIESTA density matrix as

Puv = Z ('/zifi('iu (2()5)

i

where ¢;, = ¢}, the electron density can be written in terms of the basis orbitals as

Z P, (r)d.(r) (2.66)

2SIESTA actually replaces V/°°®(r) with the so called neutral atom potential via a clever partitioning
of the charge density but we neglect that detail during this discussion.
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Note that the conjugate ¢%(r) is used for generality although the PAOs are real functions.
Thus the density can be expanded on the real-space grid by interpolating the values of
the basis functions on grid points. Owing to the locality of the PAOs this operation
is relatively inexpensive and scales as O(N). Once the density p(r) is available on the
grid, the Hartree potential Vi [p](r) is calculated by solving the Poisson equation. Note
that SIESTA always assumes periodic boundary conditions (PBC) and a FFT Poisson
solver is therefore very efficient. For neutral isolated molecules the strictly finite nature
of the PAOs ensures minimal interaction between periodic images and the convergence of
Vi [p](r) with simulation cell size is rapid. For charged molecules and solid state supercells,
a uniform neutralizing background charge is applied and appropriate Madelung correction
terms are added to the total energy. Similarly, by knowing p(r) on the grid, the calculation
of Vielp](r) is straightforward especially for local and semi-local xc functionals such as
LSDA/GGA. Note that for GGAs, the density gradient at every point on the grid is
calculated using finite differences. The local pseudopotential potential V/“*(r) for each
atom I can be directly interpolated on the grid from look up tables. Thus the total grid
potential V9(r) = V/°(r) + Vy[p](r) + Vie|p](r) is collected and the matrix elements
V9(r)¢k(r)g,(r)dr? for each pair of non-zero PAOs ¢, , at every grid point are added to
the Hamiltonian matrix elements H,,. or? is the volume element of the grid.

Brillouin zone(BZ) integration over various k-point meshes is necessary in order to treat
solid state systems of small and moderately large unitcells and especially metals. As
mentioned earlier SIESTA always assumes periodic boundary conditions and therefore finite
as well as extended systems are treated on the same footing with regards to the evaluation of
matrix elements. For periodic systems the definition of the two and three center integrals
is easily generalized to include PAO basis functions outside the unitcell. Thus two and
three center integrals of the respective forms AP’} = (¢,|4;,) and Bﬁ,/:,, = <¢:IV|V<"(1‘)|¢Z> are

evaluated where in the primed quantities indicate PAOs not just centered in the unitcell
but over all space. Note however that due to the periodicity of the potential, r in BZ o
only needs to be within the unitcell. Furthermore the finite range of the PAOs means that
only a finite number of basis functions situated inside an auxiliary supercell spanning a
few lattice vectors in all 3 directions are ever required in the evaluation of AP’) and Bﬁ "
Once all the real matrix elements are thus calculated, the complex Hamiltonian in the

Bloch representation at a given k-point k in the BZ is accumulated as :

i) = -5 el BB (2.67)
( )

v'=v
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where (¢ = v) indicates that ¢, and ¢, are equivalent orbitals under lattice translation.
Note that ¢, and ¢, are centered in the unitcell. This yields a complex N x N matrix
eigenvalue problem, N being the number of basis functions in the unitcell, which needs
to be solved at every k-point in the sampled BZ. The resulting Bloch state expansion

coefficients ¢,/;(k) are used to construct the wavefunctions

Uik, r) =) e R g (r)e(k) (2.68)

W

where 7 is the band index and ¢,; = ¢, if (1 = p). The ¢;(k,r) are normalized in the

unitcell. The periodic electron density is then given by

or) =3 /B a9 (k. 1)k (2.60)

5 Z pu’u’¢;’¢p’ (270)
W'
and the density matrix
s =3 / Cpi ()i (K) iy (K ) e (Fe =) (2.71)
e Jag
is real and periodic such that p,, = p, provided (g = ¢/ and v = V'). In practice,

the integral in (2.71) is performed in a finite, uniform grid of k-points in the Brillouin
zone set up using the Monkhorst-Pack scheme [89]. Thus periodic supercells of bulk type
materials as well as systems such as metallic or semiconductor surfaces, nanowires and
nanotubes which are periodic in some directions while being finite in others can all be
handled conveniently.

Once the KS electronic ground state has been calculated for a given arrangement of the
atomic positions, the total energy of a system of electrons and (stationary) nuclei can be

calculated. Thus the KS total energy expression in SIESTA takes the form

oy J’ : y O r¢
B =3 Hypy - = / Via (1) plx)dr (2.72)
uv s
: ZiZ
+ [ eaele) = Vi plor + 3 172 (2.73)
IJ

I<J
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where I, .J are the atomic indices, R;; = |R; — Ry|, Z;, Z; are the valence ion pseudo-
atom charges and €,.(r)p(r) is the exchange-correlation energy density. The first term is
equivalent to a sum over the occupied eigenvalues and is called the band structure (BS)
term. Note that in practice, within SIESTA, some of the terms in above expression are
re-arranged for the sake computational efficiency and the final energy expression used is a
slightly modified form of equation (2.73) [86]. SIESTA also implements standard Hellman-
Feynman forces and stress tensors together with a Conjugate-Gradients (CG) [81] scheme
for geometry optimizations and fullscale Car-Parinello Molecular dynamics [90]. From the
perspective of large scale computation, SIESTA is also parallelized for distributed memory
architectures. The main layer of parallelism is over the orbital basis functions which are
distributed among different nodes in a multi-processor simulation although certain subrou-
tines also involve parallelism over grid points in the real-space mesh or over k-points in the
BZ. For a more complete description of the capabilites if SIESTA we point the reader to
the extensive published literature [86, 87, 8]

2.4.4 Additions to SIESTA

During the course of the research work presented in this thesis, we have implemented sev-
eral new functionalities within a development version of SIESTA, mostly in the context of
improved exchange-correlation functionals. Details of some of these additions are presented
in later chapters but we briefly list them below.

B Some previously unavailable semi-local LDAs and GGAs such as OLYP [91] , LB94 [92]
have been added to the xc modules of SIESTA.

B Explicity orbital-dependent functionals such as the exact exchange functional and the
self-interaction corrected LSDA /GGA functionals in the KLI [72] approximation have been
incorporated.

B A computationally efficient approximate self interaction correction scheme (ASIC) [94]
based on the idea of Fillipetti and Spaldin [93] has been integrated in the code.

B A new level of parallelism has been added in which the code is simultaneously paral-
lelized over both basis orbitals and k-points which improves the scalability of SIESTA for

medium to large scale solid state simulations.
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2.5 Electronic transport at the nanoscale

Theoretical calculations of the electronic transport properties of nanoscale devices are at
the forefront of modern computational physics. The rules of Ohmic transport valid in all
metallic and semi-conductor based devices breakdown at the nanoscopic level and trans-
port across individual molecules or other atomic scale structures is strongly influenced by
quantum mechanical effects. Therefore one needs to adopt a fully quantum mechanical
description for the electrons in such devices and transport needs to be described in terms
of wave function scattering and transmission probabilities. Among the various theoretical
treatments of the quantum transport problem the non-equilibrium Green’s function for-
malism (NEGF) [95, 96, 97, 98, 99] combined with an electronic structure method such
as density functional theory [58] is by far the most popular. The electronic transport cal-
culations presented in this work are performed within the framework of the SMEAGOL
program [98, 100, 101], in which an efficient NEGF algorithm is interfaced with the DFT
platform provided by the SIESTA code [88]. In the following section we present a brief
overview of the SMEAGOL algorithm focusing primarily on how a typical transport prob-

lem is set up and solved.

2.5.1 NEGF and SMEAGOL

The general set up used in SMEAGOL to model the transport properties of a nanoscale
device is presented in figure 2.2. The calculations described in this work consist typically
of a molecule sandwiched between two metallic electrodes. However the device region in
figure 2.2 could also represent a more general arrangement such as a nano constriction in a
metallic or semiconductor nanowire or even a multilayer tunnel junction. The electrodes,
usually referred to as leads, are treated as being semi-infinite and periodic in the direction
of electronic transport. Therefore the Hamiltonian describing the leads and the device
or scattering region is essentially infinite. However, unlike in normal solid state systems,
Bloch’s theorem cannot be invoked in this case as the presence of the scattering region
between the leads breaks the translational symmetry of the whole system and thus one
effectively has to treat an infinite yet non-periodic system. For this problem to be solved
numerically, the infinite system has to be mapped onto an effective finite system and
this is achieved within the NEGF formalism. As shown in figure 2.2 the whole device is
partitioned into three distinct regions viz., the left lead, the scattering region and the right

lead. The leads are further partitioned into so called principal layers defined so that each
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Scattering Region
H g heg Hpy

 Prinicipal layer

[ N J h [ N N J
Left Lead Right lead
kA
H;
Leads downfolded
into self-energies
————— e

Figure 2.2: A schematic representation of the device set up in SMEAGOL is presented.
The system is partitioned in three distinct regions the left lead, the scattering region and
the right lead. The leads are subsequently replaced by effective self energies that act on
the finite Hamiltonian Hy; of the scattering region.
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principal layer only interacts with two other principal layers one on either side of it. In
practice a certain number of principal layers on either side of the device are included in

the scattering region. Thus the Hamiltonian for the whole system can be written as

-

0 H, Hy H, 0
0 H, Hy Hwy 0
H= 0 Fr B DD (2.74)
0 Hpy Ho H, 0
0 H., Hy H 0

where in, Hj is the bulk Hamiltonian of each principal layer in the lead. H_; ; represent the
interactions between the principal layers. Hy, v and Hyg gu represent the semi-infinite
interaction matrices of the scattering region with the left and right leads respectively. H\y,
is the finite Hamiltonian of the scattering region. The electronic structure of principal
layers deep inside the leads however is the same as that in the bulk metal and is not
influenced by perturbations in the device region. Within this assumption, the leads can
be re-normalized out of the system and replaced by what are known as leads self energies
denoted ¥;, and i for the left and right leads respectively. These self energies which in in
general can be complex and non-Hermitian matrices encompass all of the information about
how the leads effect the scattering region. Note that the self energies are energy dependent
quantities and need to be evaluated for different values of the chemical potentials of leads.
In SMEAGOL, the scheme proposed by Sanvito et al is used to calculate ¥, ¥r and we
direct the reader to reference [102] for more details. One can then focus ones attention on
the region of interest which is the scattering region and in place of the infinite Hamiltonian
H in equation (2.74), consider a finite effective Hamiltonian for the scattering region given
by

Hgpr = Hy + 21 + 2R (2.75)

However, Hgpp is in general non-Hermitian as the number of particles inside the scattering
region is not conserved due to particale interchange between the scattering region and the
leads. As a result, one does not solve an eigenvalue problem but instead calculates the the

so called retarded Green’s function Gy for the scattering region defined as:

Gu(E) = [(lslf(l)(E +i6)Su — Hu — Z1, — Zg] ™! (2.76)
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where Sy is the overlap matrix for the scattering region. Having obtained Gy (F) one can

then calculate the lesser Green’s function G<(E) given by
G<(E) = iGu(TLf(E — pu) + Trf(E — pr)) G}y (2.77)

where in f represents the Fermi distribution and gy, (ur) is the chemical potential of the
left (right) lead and
ML =i(S, —%}), Tr=14(Zr—Zh) (2.78)

The density matrix of the scattering region is directly obtained form G<(F) as
1 o0

=5 » G<(E)dE (2.79)
Within a DFT based treatment of the problem, the density p obtained in equation (2.79)
can be used to calculate a new Hamiltonian for the scattering region Hy[p] and one can
thus enter a self consistent field (SCF) cycle until a converged solution is obtained. Note
that the leads self energies are only calculated at the beginning and do not change during
the SCF cycle. With a converged solution for p and Gy (FE) at hand, quantities of interest
such as the current and the transmission coefficients can be obtained. The expression for
the current [ is
&

[:
h

/ TrTLGUTRGMI(F(E — 1) — F(E — pw)) dE (2.80)
and that for the transmission coefficients is
T(E,V) = Tr[[L G} TrGu] (2.81)

where V' = (p1, — pr) is the potential bias applied to the system. From equations (2.80)
and (2.81) the current [ is simply the integral over energy of the transmission coefficients
T(E,V) in the region in which the Fermi functions of the leads are not equal to each other
(i.e., the bias window). The transmission coefficients T'( £, V') correspond to the probability
of an electron being transmitted from one side of the scattering region to the other at an

energy E.
Thus within the NEGF+DFT framework of SMEAGOL, the effects of finite bias that

cannot be deduced form zero bias calculations can be modelled self-consistently and accu-

rate transmission coefficients and I-V curves can be plotted. Furthermore, the SMEAGOL

39




2.6 Conclusions Theoretical and Numerical framework

code is specifically designed to treat large systems and is also efficiently parallelized to
run on distributed memory architectures. For a more detailed discussion about the capa-
bilites of SMEAGOL or indeed the NEGF formalism in general, we point the reader to

reference [103]

2.6 Conclusions

Among the various approaches to tackling the many electron problem, density functional
theory comes across as the most elegant and practical. The theory is in-principle exact and
the accuracy of modern day DFT calculations is only limited by the level of approximation
involved in the exchange correlation energy functional E,.[p(r)]. LSDA/GGA have been
long been the “work horse” functionals in solid state physics and quantum chemistry but
more advanced functionals are increasingly being adopted in day to day simulations.
SIESTA is a robust and numerically efficient Kohn-Sham density functional platform
ideally suited for large scale materials simulations. It uses a numerical atomic orbital basis
set that makes efficient use of locality to achieve favourable scaling. The code is capable
of handling both finite as well as periodic systems and is suited to large scale distributed
computing.
A combination of the non equilibrium Green’s functions formalism (NEGF) and
DFT is the most commonly used theoretical framework for practical electronic transport
calculations. SMEAGOL is an efficient NEGF algorithm that interfaces with the SIESTA
code and it can be used to calculate electron transport processes in a variety of systems,

from metal-molecule junctions, to nanowires and multilayer devices.
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Chapter 3

Orbital dependent functionals

3.1 Introduction

The local spin density approximation (LSDA) and the generalized gradient approximation
(GGA) in all its varying forms feature in a vast majority of Density functional theory
(DFT) [104] calculations carried out to date. While LSDA has long been the exchange-
correlation (xc) functional of choice in solid state physics, the GGAs since they first ar-
rived have rapidly taken over in quantum chemistry. The main reason for the popularity
of LSDA/GGA is that they seem to offer a useful compromise between accuracy and com-
putational cost for most day to day calculations such as lattice parameters, bulk moduli
and defect formation energies in solids and bond lengths, formation enthalpies in chem-
istry. These functionals belong to the class of local/semi-local functionals that only need
information about the electronic density in the immediate vicinity of the point in question.
This feature makes the evaluation of the xc potentials and energies for these functionals
trivially easy. However numerous situations in which local functionals fail to be accurate
enough or even fail catastrophically can be listed and its a list that keeps growing as physi-
cists and chemists investigate previously unexplored areas. Examples of some scenarios in
which LSDA/GGA fail to be accurate include [105]

a)Heavy atoms and large angular momenta such as d and f

b)Negative ions which are almost always predicted to be un-bound

c¢)Dispersion or van der Waals type forces

d)Strongly correlated oxides with localized 3d transition metal states.

Also quantities such as band gaps in semi-conductors and insulators are routinely under-
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estimated!. The eigenvalues of the highest occupied orbitals of molecules (HOMOs) must
equal the negative ionization potential (IP) of the molecule but LSDA/GGA consistently
underestimate IPs by about 3 to 4 eV. In most cases the source of the error can be traced
to one of two fundamental flaws in the local xc functionals

(1) Incorrect asymptotic behaviour. The LSDA/GGA xc potentials decay exponentially
1

insted of as — .
(2) Incomplete cancellation of the self interaction in the Hartree energy by its counterpart
in the exchange-correlation energy
Note that rectifying the latter usually corrects the former but not necessarily the other
way around.

When faced with one of the situations listed above one has to look towards a different
class of xc functionals commonly termed orbital dependent functionals (ODF). Orbital de-
pendent functionals come in various forms but if constructed correctly are free of problems

(1) and (2) listed above.

3.2 Orbital dependent functionals

As the name suggests, an orbital dependent xc functional in the context of Kohn-Sham
(KS) DFT is any functional that is explicitly dependent upon the Kohn-Sham orbitals.

The prototypical example of an ODF is the the exact exchange functional [105] of DFT

NU
N SN B (£) 03 ()30 () i ()

This form for the exchange energy guarantees exact cancellation with the self interaction
contained in the Hartree energy.

One of the basic requirements of the KS scheme is that the KS effective single particle
potential be a local multiplicative type potential which means a potential of the type

VES(r) that depends upon only one coordinate r. Therefore the xc potential in V.5(r)
must also be local. However, given the expression for the orbital dependent xc energy, the

corresponding xc potential is not readily available. This is because

0E;z.

=

(3.2)

'The bandgap error itself is not the problem but the lack of the derivative discontinuity
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but unlike LSDA/GGA, E,. is only an implicit functional of the density p?(r) and ex-
tracting V.7.(r) given ES**'[{¢;,}] is not a trivial task. Nevertheless, there does exist a
systematic prescription to construct V.7 (r) for an orbital dependent E,. and it is called
the optimized effective potential (OEP) method [118]. In the following we outline the
general OEP approach and a practical approximation to the OEP due to Krieger, Li,
and Tafrate (KLI) [119]. We then apply the KLI approximation to two orbital dependent
functionals viz., the exact exchange functional and the Self Interaction Correction (SIC)

functional.

3.3 The optimized effective potential

The exact total energy within the Kohn-Sham spin density functional formalism can be

written as
PjKS[/)I- /)l] = TS[{@W}] + J[P] + E;rr‘[/)rv PL] + /(lr/)(r)'(u,,,(r) (33)

where T is the non-interacting kinetic energy, J the Hartree energy and F,. is the xc

energy.

N,
Ts = Z Z(@H = %VQ

o=1,| i=1

il - e P0P() f
,]—2'//d d r—— (3.5)

The last term is the interaction energy FE,. of the electrons with the external potential
(nuclei).

The total electronic density is constructed as

)= 33 5, (1) ) (3.6)

o=1,| i=1
where the spin-orbitals ¢;, satisfy the KS equation
1 2 o
(_§V + Ve (T)) io (T) = €isPio (T) (3.7)
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and ) SE
p\r e ’
N /d . + Vet (T) + = (3.8)
w0 = A ot et G
The basic OEP equation is
=0 3.9
5V, (3.9)

OE[
which means that the OEP is obtained when the total energy is minimized. Also V§;p

must satisfy the KS equation i.e.,

(~5 V% + Vp(e)dio(r) = €i0io(x) (3.10)

Using the chain rule arguments from perturbation theory, equation (3.9) can be transformed

'y OF Pro (T) Pro (T o ;
Z/ wm"* Z ’{ S ¢ tee=0 (3.11)

o — €ko

as

IEKs

Soyy can be evaluated

where c.c indicates the complex conjugate. From equation (3.3),

and we get

I i T " w p(r") / 1 OE,, |
1 — —\7< Ir ———— 4 Yol ) F —————— 312
Z:./ ar [ zv =) '/(r r// - r/‘ t (1.1/(1 ) 1 7{ (I')(5()17( ) ( ) }
- , |
Pro (L) ko (T') o } |
X 8o ¢;,(r')dis(r)| =0 |
[; €ioc — €ko ( ) ) |
k#1

Using the KS equation (3.10), the above can be written in terms of V., as

i

L ; £ 2s plE | / L. 00
1 Jo - ! l = v(,r o \
Z/ . [‘O“ ) / N It —r'| it Piy (') 0io (1)

We then define the quantities

o . 7 [)(I’H
Vz‘(c)UEP( ) = Vogp(r) — / dr |—r//—)r’ — Vegt(T) (3.14)
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and .
il OF,.

¢, (1) 0¢io (1)
which leads us to equations (3.13) and (3.10) in their final form

w7 (r) = (3.15)

E:/ﬂrﬁﬁ57>—wL } {§:¢“ fzg)¢4ﬂ@An}=o (3.16)

)
k#1

( = lvz ot /dI'NM + 1 ert( ) + Vr(():l)( ))(bi(r(r) = Eio¢io(r) (317)

2 Ir" —r|

The Equations (3.16), (3.17) represent the full OEP equations. In principle one can
start from a guess for VP (r), obtain a set of orbitals {¢;, } and then solve equation (3.16)

for a new VOEP(r) and iterate until convergence. However the equation (3.16) is an integral
equation whose solution is computationally expensive and only systems with spherical
symmetry could be treated until recently. Krieger, Li, and lafrate put forward a scheme
called the KLI approximation [119], in which one avoids the infinite sum in equation (3.16)

and the optimized effective KLI potential can in fact be written directly as

N, - No—-1 ~—KLI =
; e (e Pic (O[V 1eos — B2)
VIl;ULI(r) — § : plﬂ(r)u’.rc(r) S Z : Teo,t xc (318)
' s pfx) = po(T)

The second sum in the above equation is restricted to run over all spin-orbitals except
the highest occupied spin-orbital which insures the correct asymptotic behavior of the

potential. 1'% denotes the orbital average

nﬁ=/wmx>wm (3.19)

=~ LT . ’ ) k . :
and V‘:m.i is obtained by solving the system of linear algebraic equations
g KLI S
Z ((Sij - Alzay)(vrcoz - E;:UC) = Vrca‘j - H‘;(({ (320)
i=1
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with 7=1,2,3...,N,-1. Furthermore, VS

zeoi TEPresents the orbital average

N io
Viwi= [ drpony LRl (3:21)

el
and the quantities M, are given by
Mg = /dr————pj"(r)p""(r) (3.22)
p°(r)

The first term in equation (3.18) is called the Slater term and the second term is referred
to as the response or the orbital-shift part. The OEP and KLI equations presented thus

far are completely general and can be used with any orbital dependent xc functional.

3.3.1 The exact exchange functional
The exact exchange functional (EXX) defined in equation (3.1) is reproduced here for
convenience.

*

I‘( ract / 1 1 — . 1 . / /(")m (r)(‘);ﬂ (r/)("")j"(r)(")ln(r’) 3 A)‘S)

Y o [{(,’),“7}‘— "EZZ. (I‘. ar ————’[-——]/T S (._,A.’
o i,j=1

The primary component that goes into building the optimized effective KLI potential is

simply u7(r) defined in equation (3.15). For the EXX functional we drop the subscript ¢

to indicate an exchange only functional and thus u'(r) is given by

uia<r): 1 (I')Z/dr,(b;a(r,)ﬁji(i,)’ jo(r) (324)

*
10

Once u!?(r) is calculated, VX (r) follows form equations (3.18-3.22)

3.3.2 The SIC functional

The methodology for the Self Interaction Corrected functionals is slightly more involved
and so we present the SIC functional in more detail. In what follows be briefly discuss
the SIC functional as originally proposed by Perdew and Zunger[115] and then explain the
generation of the SIC-KLI potential.

In DFT, the total energy functional E[p', p'] (p°, o =1, | is the spin density, p = 3__ p?)
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can be written as
Elp', p'] = Ts[o] + /d3r p(r)o(r) + Ulp] + Exlp', '] | (3.25)

where Ty is the kinetic energy of the non-interacting system, v(r) the external potential,
U the Hartree electrostatic energy and F,. the exchange and correlation (XC) energy.
This last term is not known exactly and various semilocal approximations to F,. are
commonly employed. For any such semilocal approximation (SLA) to E\., the SIC involves
subtracting directly the SI energy of all the occupied Kohn-Sham (KS) orbitals from the
total XC energy. Thus the SIC energy functional is defined as

occupied
EZ°HosY = B3 o', 01— > (Ulpg] + EsA[65,0)) . (3.26)

Employing the above functional and following the Levy minimization scheme, one arrives

at a set of single particle Kohn-Sham (KS) like equations for the orbitals ¢ with corre-

0,SIC

=] 1 e Tere) 7E NQ > Ve 1 < a
sponding eigenvalues €/ and occupation numbers p?

[ e
{--Q—VZ -+ ’Ugﬁm(r)} Qe = eZ‘SI(’ o (3.27)
such that
N© N
p7 =Y oae = pilen)’ (3.28)

o

% n(T)appearing in (3.27) however is orbital dependent and cannot

The effective potential v
be classified as a Kohn-Sham like potential. Several different approaches have been persued
in the literature [116, 117]to deal with v%; ,(r). The simplest approach is to solve equation
(3.27) directly under a normalization constraint on the orbitals with the resulting non-
orthogonal orbitals being subjected to an orthogonalization procedure. Apart from leading
to a non KS problem, the orbital dependent v ,(r) also leaves the Hamiltonian for the
unoccupied states in the system ambiguous as the SIC is only defined for occupied states.
Furthermore the SIC energy functional ESIC[{p?}] in equation (3.26) is not invariant under
unitary transformations of the set {¢7} of occupied orbitals. To obtain a SIC procedure
that is size consistent, one usually has to work with an auxiliary set of localized orbitals
{¢7} in constructing vZ ,(r). The set {¢7} is related to {¢3} in (3.27) by a unitary

transformation that is chosen so as to minimize ESIC[{p7}]. However, using the Optimized
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Effective Potential (OEP) method[118], the orbital dependent SIC potential vg; ,(r) can
conveniently be recast into a local multiplicative orbital independent potential with the
obvious advantage that the SIC problem can then be solved as a normal KS problem. The
Krieger-Li-lafrate (KLI) approximation [119] to the OEP while being computationally
easier to handle, retains most of the advantages of the full OEP and is well suited to the
SIC problem[120]. Thus within the KLI framework, the orbital independent effective SIC
Kohn Sham potential takes the form

Vics(r) = Vear(r) + vn () + v spale’, p11(r) + 07, 510(r) (3.29)

where in Veg(r),vp (r), v, g alp', p*](r) and v, g, (r) are the external, Hartree, the ap-

proximate XC and the SIC potential respectively. Furthermore, vj,. 4;~(r) can be written

as
. A7 [Avg e — C7] ‘
Vzes10(T) = Vsl Z S]( (3.30)
with -
S,o \ A ﬁ;’(r)ufgl('(r) o
P Gl g (3.31)
. SIC ; 7 (r)

being a Slater average over the orbital dependent u'§;.(r) defined as

o ESI i () J /) ( ) .
“S‘]('(r): _();)L—] /1 m (JJ_),)

Note that the orbital density p¢ appearing in equations (3.30-3.32) is calculated from the

auxiliary set of localized orbitals {17} instead of the canonical {¢7}. Both sets of orbitals of

course give the same total density p°. The orbital shift terms Av¥ (C” being a constant),

are obtained by solving the algebraic equation

N(T
Y (0 — MG A = 598, — o, with §=1,2,..,N° (3.33)
=1

where in

M = / dr (3.34)
/)”

Tsrc /drp] r)ugye(r) (3.35)
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and

=

—S 90 ~0 S,o
/”.rc{SIC‘ = /dr/’j (r)”u,s](j (336)

Furthermore, the following relations hold

NG
I = (3.37)
=
Ne
Z(ﬁ:igm —Ugc) =0 (3.38)
=

which means that the linear system in (3.33) is of rank (N — 1) and must be solved using
a least squares approach. Setting the constant C7 = Azrglop‘(’ (HO stands for the highest
occupied orbital) corresponds to the choice where by the HO orbital energy satisfies the

Janak theorem.

3.4 Implementation in SIESTA

The optimized effective potential method in the KLI approximation has been implemented
in a development version of the SIESTA[121]. In SIESTA, the molecular wave functions

¢is(r) are expanded over a localized pseudo-atomic orbital basis set ¢,
af — T~
hislr) = E ipPp(T) (3.39)
p

where C’{; = (Pp|this) are the expansion coefficients and ¢, is the dual of ¢, such that
(Pplg) = 6pq Once the coefficients C;, are available, the wave functions 1;,(r) are directly
represented on a real space mesh as the values of the basis functions ¢,(r) in space can be

readily interpolated form look-up tables. Potentials of the general form

Vi(r) = /drM (3.40)

v — 1’|

are obtained by solving the Poisson equation for the effective density p;;(r) = ¥} (r');, ().
Note that an EXX calculation requires N(N — 1)/2 such solutions required to build 4% in

equation (3.24) while a KLI-SIC calculation requires only N such solves to build v, in
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equation (3.32) where N is the number of occupied orbitals. For the KLI-SIC calculations,
the Pipek-Mezey [122] localization measure is employed to obtain the auxiliary set of
localized orbitals required to generate the SIC potential. Although strictly speaking, the
auxiliary set of orbitals should be chosen to maximize the orbital self-interaction energy,
most commonly used localization schemes such as the ones due to Edmiston-Ruedenberg,
Boys, von Niessen and Pipek-Mezey give similar results (see [120, 122] and references
therein). The Pipek-Mezey (PM) localization procedure in general seeks to minimize the
number of atoms over which a molecular orbital extends and is naturally suited to atomic
orbital basis sets. Thus, for an atom centered basis set {|u)}, one can define the Hermitian
operators,

Pa= P = S{lul + b al) (3.41)

where

) = Z Duvlv) (3.42)

such that (f1|v) = ¢, and S represents the atomic overlap matrix
S = {al¥) (3.43)
The atomic population operators for the set of n atoms {A} in the molecular system are

defined by
Ih W (3.44)
peA
where the summation is over the atomic orbitals (AO) that belong to the atom A. For a
set of N molecular orbitals {¢;}, one then seeks the N x N unitary rotation matrix U that

minimizes the population localization functional defined by

P} =D (il Pali))? (3.45)

i=1 A=1

The minimization is usually carried through a sequence of pairwise two by two rota-
tions [122] over the set of molecular orbitals and the overall procedure scales as N* with
the number of molecular orbitals N. Usually, the computational time spent during the
PM localization procedure is much smaller than that spent for calculating the orbital wise

electrostatic self-repulsion and exchange potentials form equation (3.40). However, the

convergence of the pairwise rotation algorithm can be slow for larger systems that exhibit
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a complex molecular orbital structure and one might need to employ a more sophisticated

unconstrained minimization algorithm.

3.5 Application: Polarizability of molecular chains from

SIC functionals

The problem of massive overestimation of the static polarizability and hyperpolarizabil-
ity of molecular chains in Density Functional calculations using standard LDA and GGA
approximations has been the subject of several recent investigations [106, 107, 108, 109,
110, 111, 112, 113, 114]. It has been shown that instrumental to the failure of conventional
local and semi-local XC functionals is the absence of a field counteracting term in the
response part of the XC potential [107, 108, 111] that ought to be present in the exact
XC potential. The Self Interaction error (SIE) inherent to all semi-local functionals is
a significant factor behind their poor performance in this regard. One way to improve
electrical response prediction within DFT that has been widely investigated thus far is
the EXX approach which completely avoids the SI problem by treating exchange exactly.
An alternate orbital dependent approach that can potentially tackle the problem is Self
Interaction Corrected (SIC) DFT [115], wherein the XC energy functional still employs a
semi-local approximate functional but incorporates an explicit correction for the Self In-
teraction Error (SIE). While SIC-DFT is definitely expected to improve the performance
of semi-local functionals to some degree, there exists indirect evidence in the EXX litera-
ture which suggests that SIC-DF'T may not be quite adequate to match high quality wave
function methods. The authors of references [107, 114] have shown that the KLI approx-
imation to exact exchange (X-KLI) which is in principle SI free falls short of matching
Hartree Fock (HF) and that a Density Functional treatment at the level of exact OEP
exchange (X-OEP) is needed. However, its difficult to predict exactly how well or how
poorly SIC-DFT will perform from the above and the quantitative accuracy of SIC-DFT
is still worth investigating.

To facilitate easy comparison with previous quantum Chemistry and EXX-DFT calcula-
tions [114] in the literature, we chose the widely studied test system consisting of linear
hydrogen chains made up of H atoms with alternating H-H distances of 2 and 3 ay. The
calculations are carried out using the localized orbital basis set SIESTA. An optimized
atomic orbital basis set consisting of double zeta s, triple zeta p and polarized s,p func-

tions was employed. The Pipek-Mezey [122] localization scheme was used to transform the
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Localized Orbitals Canonical Orbitals

Figure 3.1: The Pipek-Mezey localized molecular orbitals (left) and Kohn-Sham or-
bitals (right) for the occupied subspace of the Hg chain are shown.

canonical Kohn-Sham orbitals into the Localized Molecular Orbitals (LMOs) required to
calculate the SIC potential. The occupied LMOs for the Hg chain are shown in figure 3.1
along with the occupied KS orbitals. The static polarizability o = du, /0 F. was calculated
numerically using finite differences.

In Table 3.1 we list the calculated « for various semi-local approximate XC functionals.

Table 3.1: static polarizability a of hydrogen chains calculated using various approximate
semi-local XC functionals

a=ou./0F.,
Hy LDA PBE BLYP OLYP LB%
H, 3726 3562 3561 34.76 36.27
He 73.10 69.35 69.20 67.05  72.49
Hg 116.58 109.74 109.38 105.31 117.285
Hyp 166.36 155.31 154.42 148.49 169.46
Hy, 220.55 204.53 202.95 193.83 226.25

As one would expect the LDA [115] massively over estimates o compared to MP4 results
(see Table 3.2 below) with the result worsening with increasing chain length. The GGA
functionals such as PBE [123], BLYP [124, 125] and OLYP [126] are seen to marginally
improve over the LDA. The OLYP functional which features Handy and Cohen’s optimized
exchange functional [127], seems to be the best GGA for electrical response and provides
approximately a 5% improvement over the other GGAs. Also the LB94 functional [128]
which has built in the right asymptotic % behaviour in the tail of the XC potential, is seen to
be quite poor in fact performing slightly worse than the LDA. Table 3.2 presents a compar-

ison between «a calculated from the KLI-SIC method for various underlying approximate
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Table 3.2: comparison between static polarizability o of hydrogen chains calculated us-
ing the KLI-SIC method with different XC functionals, various exact exchange DFT and
wavefunction methods

o= 0pL, /0 F,
Hy SIC-LDA SIC-PBE SIC-BLYP SIC-OLYP EXX-KLI EXX-OEP HF MP4
H, 33.38 33.14 32.73 32.72 3311 32.2 32.00 " 29.5
Hg H8.56 58.07 56.99 56.81 60.64 56.6 96.4 51.6
Hg 86.94 86.48 84.42 83.97 91.56 84.2 82.3 759
Hio 117.28 116.16 112.64 112.54 124.87 NA NA NA
Hio 147.96 145.98 141.75 140.90 159.27 138.1 137.6 126.9

Table 3.3: DFT and SIC-DFT values of the static polarizability a of hydrogen chains for
the exchange only (X-only) LDA and OLYP functionals

a = 5.“2/5Fz
Hy LDAx OLYPx SIC-LDAx SIC-OLYPx
Hy  38.90 34.96 33.37 32.91
Hg 76.16 67.45 58.84 57.11
Hg 121.64 105.40 87.08 83.99
Hyp 173.89 148.07 116.77 112.45
His 231.360 193.31 147.188 140.46

XC functionals and other methods including X-KLI, X-OEP and MP4. The SIC-DFT
results for o are clearly much improved in comparison to the conventional LDA/GGA re-
sults. Also, the various SIC-GGAs are seen to perform better than SIC-LDA and the same
trend that is seen among the conventional GGA’s is reproduced for the SIC-GGAs with
SIC-OLYP doing better than the others. Overall, the best SIC-DFT results are within 2%
of the exact exchange X-OEP result. Surprisingly, all the SIC-DFT results are seen to be
slightly better than the KLI exact exchange results (X-KLI). In principle, the X-KLI po-
tential is SI free and there is no reason why it should under perform w.r.t SIC-DFT. Since
the X-KLI calculations were calculated at an exchange-only (X-only)level, the we carried
out separate X-only calculations for both the normal DFT and SIC-DFT functionals in
order to filter out the effect of correlation. Results for the LSDA and OLYP functionals
are listed in Table 3.3. Only in the case of conventional LDA does the correlation seem
to have a sizeable effect with X-only LDA doing worse than XC-LDA. The X-only OLYP,
SIC-LDA and SIC-OLYP results are seen to be very close to the corresponding full XC
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results and in fact for the longer chains, the X-only results are slightly better. Its worth
mentioning although the data is not presented that the same trend is seen with the other
GGAs. This suggests that overall, local correlation both within normal DFT and SIC-DFT
has a very minor effect on the polarizability.

At least part of the improvement in the electrical response afforded by orbital dependent
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Figure 3.2: V55'(2) = VE599%(2)—VES%(2) is plotted against z for (a) LDA, (b) SIC-LDA,
and (c¢) X-KLI. The applied external field is shown in (d)

methods can be traced to the so called induced depolarization field. Under an applied ex-
ternal electric field the XC potential in exact DFT exhibits a response term whose gradient
opposes the external field. However, with semi-local approximate functionals, the gradient
of the XC response term erroneously points in the same direction as the external field.
Orbital dependent XC potentials on the other hand include relevant non-local information
such as orbital polarization effects essential to correctly describe the XC response. Figure
3.2 plots AVx¢ defined as the difference between the XC potential with and with out the
external field AVxc(z) = VEZ%9%(2) — VIZ%(2) for LDA, SIC-LDA and X-KLI cases.
Clearly the LDA potential seems to respond along the applied field direction while AV«
for SIC-LDA and X-KLI clearly opposes the external field. Moreover, the gradient in AVyx¢
from SIC-LDA and X-KLI is seen to be quite similar suggesting that the depolarization
field is of comparable strength in both cases. Its also informative to look at the perfor-
mance of the KLI-SIC and X-KLI methods when the orbital shift terms in the potential
are dropped and only the Slater average potential is retained. Its obvious comparing the

«a values in table 3.4 with those from tables 3.2 and 3.3 that the bulk of the correction
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Table 3.4: Static polarizability a of hydrogen chains obtained from KLI-SIC and X-KLI
calculations where only the Slater term in the KLI potential is used (indicated by the
super-script S). Both XC and X-only results are shown for the SIC-LDAS and SIC-OLYPS

cases.

a=0d0u,/0F,
Hy SIC-LDA® SIC-OLYP® SIC—LDA‘;; SIC-OLYP; -KI1®
Hy 38,30 35.22 36.25 35:33 35.78
Hg 67.74 66.63 68.92 66.84 69.17
Hg 105.91 103.73 107.57 103.30 108.72
Hio 148.64 144.38 150.86 143.93 152.90
His 193.94 187.08 197.05 186.55 199.91

obtained in both KLI-SIC and X-KLI is due to the orbital shift terms in the potential.
However, most of the quantitative difference in a between KLI-SIC and X-KLI is already
seems to be present at the level of the Slater potential approximation. Figure 3.3 plots
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Figure 3.3: Vx¢(z) is plotted against z for SIC-OLYP® (solid line) and X-KLI®. The grey
inset plots the difference between the two potentials.

the of XC potential from SIC-OLYP® and the exchange potential from X-KLI® when no
external field is applied. Its apparent that SIC-OLYP potential exhibits higher peaks in the
inter-molecular space between H, units than X-KLI. This might explain the quantitative
difference in @ between the two cases. Its worth noting that the improved performance of
X-OEP over X-KLI can be attributed [114] to similar barriers in the inter-molecular region

which however arise from the response part of the X-OEP potential.
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3.6 Conclusions

Orbitals dependent functionals (ODFs) represent a class of advanced density functional
approximations usually constructed to overcome some of the shortcomings in local or
semi-local xc functionals. ODFs are capable of accurately describing a wider range of
physical systems including some where local functionals fail completely. An elegant way to
incorporate ODF's into Kohn-Sham density functional schemes is given by the optimized
effective potential (OEP) methodology. However, the full OEP equations are numerically
intensive to solve and approximations such as the one due to Krieger, Li and lafrate (KLI)
are commonly employed for handling larger physical systems.

We discuss two of the more popular ODFs viz., the exact exchange functional (EXX)
and the self interaction correction (SIC) functional and present their implementation within
the numerically efficient DFT platform of the SIESTA code. We then study the problem
of overestimation of the static polarizability in density functional theory and compare the
performance of SIC functionals and EXX functionals at the KLI level of approximation. We
find that SIC-DFT functionals do exhibit a field counteracting term in the response part of
the XC potential which is missing in LDA/GGA. As a result, the calculated polarizability in
SIC-DFT is much improved in comparison to normal LDA/GGA and is found to be within
a few percent of exact exchange(EXX) DFT results. The SIC-DFT results also exhibit a
systematic dependence on the flavour of the underlying LDA/GGA approximation with
the OLYP functional performing best among the various GGA functionals investigated.
We demonstrate that SIC functionals at the KLI level, in general, perform better than
X-KLI at computing the static polarizability of hydrogenic chains. This is an interesting
result in view of the considerably smaller computational overheads involved with the SIC
method in comparison to EXX. This work therefore opens the prospect of using SIC for

evaluating the electrical response of complex polymeric materials.
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Chapter 4

Atomic self-interaction correction for

molecules and solids

4.1 Introduction

Density functional theory (DFT), in both its static [130] and time-dependent [131] forms,
has become by far the most successful and widely used among all the electronic structure
methods. The most obvious reason for this success is that it provides accurate predictions
of numerous properties of atoms, inorganic molecules, bio-molecules, nanostructures and
solids, thus serving different scientific communities.

In addition DFT has a solid theoretical foundation. The Hohenberg-Kohn theorem [130]
establishes the existence of a unique energy functional E|[p] of the electron density p which
alone is sufficient to determine the exact ground-state of a N-electron system. Although the
energy functional itself is not known, several of its general properties can be demonstrated
rigorously. These are crucial for constructing increasingly more predictive approximations
to the functional and for addressing the failures of such approximations[132].

Finally, but no less important, the Kohn-Sham (KS) formulation of DFT [133] es-
tablishes a one to one mapping of the intrinsically many-body problem onto a fictitious
single-particle system and offers a convenient way for minimizing E[p]. The degree of
complexity of the Kohn-Sham (KS) problem depends on the approximation chosen for
the density functional. In the case of the local density approximation (LDA) [133] the
KS problem typically scales as N, where the scaling is dominated by the diagonalization
algorithm. However, clever choices with regards to basis sets and sophisticated numerical

methods make order-N scaling a reality [134, 135].
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The energy functional E[p', p'] (p°, 0 =1, | is the spin density, p = > p?) can be
written as
Elp', p'] = Ty[p] + /dgr p(r)o(r) + Ulp] + Exclp', p'] , (4.1)

where T is the kinetic energy of the non-interacting system, v(r) the external potential, U
the Hartree electrostatic energy and F,. the exchange and correlation (XC) energy. This
last term is unknown and must be approximated. The construction of an approximated
functional follows two strategies: empirical and “constraint satisfaction”.

Empirical XC functionals usually violate some of the constraints imposed by exact
DFT, and rely on parameterizations obtained by fitting representative data. One includes
in this category, XC functionals which borrow some functional dependence from other
theories. This is for instance the case of the celebrated LDA+U scheme [136, 137], where
the Hubbard-U energy takes the place of the LDA energy for certain “strongly correlated”
atomic orbitals (typically d and f shells). The method however depends on the knowledge
of the Coulomb and exchange parameters U and J, which vary from material to material,
and can also be different for the same ion in different chemical environments [138, 139].

In contrast the construction based on “constraint satisfaction” proceeds by developing
increasingly more sophisticated functionals, which nevertheless satisfy most of the prop-
erties of exact DFT [140]. It was argued that this method constructs a “Jacob’s ladder”
[141], where functionals are assigned to different rungs depending on the number of ingre-
dients they include. Thus the LDA, which depends only on the spin-densities is on the first
rung, the generalized gradient approximation (GGA) [142], which depends also on Vp7,
is on the second rung, the so-called meta-GGA functionals [143], which in addition to p”
and Vp? depend on either the Laplacian V?p? or the orbital kinetic energy density, are
on the third rung and so on. The higher its position on the ladder the more accurate a
functional becomes, but at the price of increasing computational overheads. Therefore its
worth investigating corrections to the functionals of the lower rungs, which preserve most
of the fundamental properties of DFT and do not generate massive additional numerical
overheads.

One of the fundamental problems intrinsic to the semi-local functionals of the first
three rungs is the presence of self-interaction (SI) [144]. This is the spurious interaction of
an electron in a given KS orbital with the Hartree and XC potential generated by itself.
Such an interaction is not present in the Hartree-Fock method, where the Coulomb self-
interaction of occupied orbitals is cancelled exactly by the non-local exchange. However

when using semi-local functionals such a cancellation is not complete and the rigorous
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condition for KS-DFT
Ulpg] + Exc[p3,0] =0 (4.2)

for the orbital density p? = [¢7|* of the fully occupied KS orbital ¢ is not satisfied. A
direct consequence of the self-interaction in LDA/GGA is that the KS potential becomes
too repulsive and exhibits an incorrect asymptotic behavior [144].

This “schizophrenic” (self-interacting) nature of semi-local KS potentials generates a
number of failures in describing elementary properties of atoms, molecules and solids.
Negatively charged ions (H™, O~, F~) and molecules are predicted to be unstable by LDA
[145] and transition metal oxides are described as small-gap Mott-Hubbard antiferromag-
nets (MnO, NiO) [146] or even as ferromagnetic metals (FeO, CoO) [146] instead of charge-
transfer insulators. Moreover the KS highest occupied molecular orbital (HOMO), the only
KS eigenvalue that can be rigorously associated to a single particle energy [147, 148, 149],
is usually nowhere near the actual ionization potential [144].

Finally XC functionals affected by SI do not present a derivative discontinuity as a
function of the occupation [147, 148]. Semi-local functionals in fact continuously connect
the orbital levels of systems of different integer occupation. This means for instance that
when adding an extra electron to an open shell N-electron system the KS potential does
not jump discontinuously by Iy — Ay where Iy and Ay are respectively the ionization
potential and the electron affinity for the N-electron system. This serious drawback is
responsible for the incorrect dissociation of heteronuclear molecules into charged ions [150]
and for the metallic conductance of insulating molecules [151].

The problem of removing the SI from a semi-local potential was acknowledged a long
time ago when Fermi and Amaldi proposed a first crude correction [152]. However the
modern theory of self-interaction corrections (SIC) in DFT is due to the original work of
Perdew and Zunger from almost three decades ago [144]. Their idea consists in removing
directly the self-Hartree and self-XC energy of all the occupied KS orbitals from the LDA
XC functional (the same argument is valid for other semi-local functionals), thus defining

the SIC functional as

occupied
EZCp", 011 = B 0 = ) (UleS] + ExPA[05,0)) . (4.3)

Although apparently simple, the SIC method is more involved than standard KS DFT.
The theory is still a density functional one, i.e. it satisfies the Hohenberg-Kohn theorem,

however it does not fit into the Kohn-Sham scheme, since the one-particle potential is
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orbital-dependent. This means that one cannot define a kinetic energy functional inde-
pendently from the choice of Ey. [144]. Two immediate consequences are that the 17 are
not orthogonal, and that the orbital-dependent potential can break the symmetry of the
system. This last aspect is particularly important for solids since one has to give up the

Bloch representation.

In this work we explore an approximate method for SIC to the LDA, which has the
benefit of preserving the local nature of the LDA potential, and therefore maintains all of
the system’s symmetries. We have followed in the footsteps of Filippetti and Spaldin [129],
who extended the original idea of Vogel and co-workers [153, 154, 155] of considering only
the atomic contributions to the SIC. We have implemented such a scheme into the localized
atomic orbital code SIESTA [156] and applied it to a vast range of molecules and solids.
In particular we have investigated in detail how the scheme performs as a single-particle

theory, and how the SIC should be rescaled in different chemical environments.

4.2 Review of existing methods

The direct subtraction proposed by Perdew and Zunger is the foundation of the modern SIC
method. However the minimization of the SIC functional (4.3) is not trivial, in particular
for extended systems. The main problem is that FE,. itself depends on the KS orbitals.
Thus it does not fit into the standard KS scheme and a more complicated minimization

procedure is needed.

Following the minimization strategy proposed by Levy [157], which prescribes to mini-
mize the functional first with respect to the KS orbitals ¢ and then with respect to the

occupation numbers p?, Perdew and Zunger derived a set of single-particle equations

-
{—5\72 = rugﬁ_,,(r)J U = e (4.4)

n
where the effective single-particle potential vg; ,(r) is defined as

V3 (r) = v(r) + u([p]; r) + vZ"PA ([0, p*]; 1) —
—u([pn);r) — 0% P2 ([0}, 0);T) (4.5)
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and

w([gl; ) / SIS (4.6)

r—r/|’

oZPA (ol ol 1) = ML() LDA[1 ] (4.7)

These are solved in the standard KS way for atoms, with good results in terms of quasi-
particle energies [144]. In this particular case the KS orbitals ¢/ show only small deviations
from orthogonality, which is re-imposed with a standard Schmidt orthogonalization.

The problem of the non-orthogonality of the KS orbitals can be easily solved by im-
posing the orthogonality condition as a constraint to the energy functional, thus obtaining

the following single-particle equation

5V 4] 2 = T eous, (4.)
m
Even in this case where orthogonality is imposed, two major problems remain: the orbitals
minimizing the energy functional are not KS-type and in general do not satisfy the system’s
symimetries.

If one insists in minimizing the energy functional in a KS fashion by constructing the
orbitals according to the symmetries of the system, the theory will become size-inconsistent,
or in other words it will be dependent on the particular representation employed. Thus
one might arrive at a paradox, where in the self-interaction of N hydrogen atoms arranged
on a regular lattice of large lattice spacing (in such a way that there is no interaction
between the atoms) vanishes, since the SIC of a Bloch state vanishes for N — oo. However
the SIC for an individual H atom, when calculated using atomic-like orbitals, accounts for
essentially all the ground-state energy error [144]. Therefore a size-consistent theory of
SIC DFT must look for a scheme where a unitary transformation of the occupied orbitals,
which minimizes the SIC energy is performed. This idea is at the foundation of all modern
implementations of SIC.

Significant progress towards the construction of a size-consistent SIC theory was made
by Pederson, Heaton and Lin, who introduced two sets of orbitals: localized orbitals ¢7
minimizing F3° and canonical (Kohn-Sham) de-localized orbitals ¥ [158, 159, 160]. The
localized orbitals are used for defining the densities entering into the effective potential
(4.5), while the canonical orbitals are used for extracting the Lagrangian multipliers €7:51€,

which are then associated to the KS eigenvalues. The two sets are related by unitary
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transformation ¢ = 3" M7 7. and one has two possible strategies for minimizing the
total energy.

The first consists in a direct minimization with respect to the localized orbitals ¢,
i.e. in solving equation (4.8) when we replace ¢ with ¢ and the orbital densities entering
the definition of the one-particle potential (4.5) are simply p? = |¢2]%. In addition the

following minimization condition must be satisfied

<¢Z|USIC bl(l¢m> S ’ (49)

where v51C = wu([p,];r) + vEPA(|

functional, which also constrains the orbitals to be orthogonal has been derived [161] and

1.0];r). An expression for the gradient of the SIC

n’

applied to atoms and molecules with a mixture of successes and bad failures [162, 163, 164].

The second strategy uses the canonical orbitals 1) and seeks the minimization of the
SIC energy by varying both the orbitals ¢ and the unitary transformation M. The corre-

sponding set of equations is

HIyg = (HE + AvgCO)s =) ea8I00 (4.10)

m

l‘ n = ZMHMO,” ) (1] 1)

Sl(‘ ZMRm ,Snl( qu ‘ (412)

where H{ is the standard LDA Hamiltonian (without SIC). Thus the SIC potential for
the canonical orbitals appears as a weighted average of the SIC potential for the localized
orbitals. The solutions of the set of equations (4.10) is somehow more appealing than that
associated to the localized orbitals since the canonical orbitals can be constructed in a way
that preserves the system’s symmetries (for instance translational invariance).

A convenient way for solving the equation (4.10) is that of using the so called “unified

Hamiltonian” method [158]. This is defined as (we drop the spin index o)

occup occup

Hy= Y PHoPi+ Y (P.HWQ + QHoPy) + QHoQ (4.13)

where P, = [17) (42| is the projector over the occupied orbital 47, and @ is the projector
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occup

n P,. The crucial point is that the diagonal elements

over the unoccupied ones Q = 1-5)_

7510 and their corresponding orbitals 17 are respectively eigenvalues and

o,SIC
nm

of the matrix e
eigenvectors of H,, from which the whole € can be constructed. Finally, and perhaps

most important, at the minimum of the SIC functional, the canonical orbitals diagonalize

0,SIC

oo, whose eigenvalues can now be interpreted as an analogue of the Kohn-

the matrix e

Sham eigenvalues [160].

It is also interesting to note that an alternative way for obtaining orbital energies is
that of constructing an effective SI-free local potential using the Krieger-Li-Iafrate method
[165]. This has been recently explored by several groups [166, 167, 168]

When applied to extended systems the SIC method demands considerable additional
computational overheads over standard LDA. Thus for a long time it has not encountered
the favor of the general solid state community. In the case of solids the price to pay for not
using canonical orbitals is enormous since the Bloch representation should be abandoned
and in principle infinite cells should be considered. For this reason the second minimization

scheme, in which the canonical orbitals are in a Bloch form, is more suitable. In this case
0.SIC __

nm

for each k-vector one can derive an equation identical to equation (4.10), where €
€7519(k) and n is simply the band index [169]. The associated localized orbitals ¢ for

instance can be constructed as Wannier functions and the minimization scheme proceeds

in a similar way to that done for molecules.

The problem here is that in practice, the cell needed to describe the localized states
¢ may be considerably larger than the primitive unit cell. This is not the case for ionic
insulators [169], where the localized orbitals are well approximated by atomic orbitals.
Such a simplification is however not valid in general. For example supercells as large as
500 atoms have been considered for describing the localized d shells in transition metals
oxides [170, 171, 172]. Despite these difficulties the SIC scheme has been applied to a vast
range of solid state systems with systematic improvement over LDA. These include, in
addition to transition metals monoxides [170, 172, 173], rare-earth materials [174], diluted
magnetic semiconductors [175], Fe3Oy4 [176], heavy elements compounds [177], just to name

a few.

In order to make the SIC method more scalable several approximations have been
proposed. One possibility is that of incorporating part of the SIC into the definition of the
pseudopotentials [178]. The idea consists in subtracting the atomic SI from the free atom,
and then transferring the resulting electronic structure to the definition of a standard

norm-conserving pseudopotential. This approximation is sustained by the fact that the
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transformation M, which relates canonical and localized orbitals does hardly mix core and
valence states [160]. Thus the SIC contribution to the total energy can be separated into
the contributions from the core and the valence and in first approximation the latter can be
neglected [179]. The benefit of this method is that translational invariance is regained and

the complicated procedure of minimizing M is replaced by a pseudopotential calculation.

A further improvement over the pseudopotential method was recently presented by
Vogel and co-workers [153, 154, 155] and then extended by Filippetti and Spaldin [129].
The method still assumes separability between the core and the valence contributions to
the SIC, but now the SIC for the valence electrons is approximated by an atomic-like
contribution, instead of being neglected. This atomic SIC (ASIC) scheme is certainly a
drastic approximation, since it implicitly assumes that the transformation M minimizing

the SIC functional leads to atomic like orbitals.

In the work of Vogel this additional contribution is not evaluated self-consistently for
the solid, while the implementation of Filippetti assumes a linear dependance of the SIC
over the orbital occupation. In spite of the approximations involved, the method has been
applied successfully to a range of solids including II-VI semiconductors and nitrites [153,
154, 129], transition metal monoxides [129, 180], silver halides [155], noble metal oxides
[181], ferroelectric materials [129, 182, 183], high-k materials [184] and diluted magnetic
semiconductors [185, 186]. Interestingly most of the systems addressed by the ASIC method
are characterized by semi-core d orbitals, for which an atomic correction looks appropriate,
and a similar argument is probably valid for ionic compounds as recently demonstrated for
the case of SiC [187].

Here we further investigate the self-consistent ASIC method [129] by examining both
finite and extended systems, and by critically considering whether a scaling factor, ad-
ditional to the orbital occupation, is needed for reproducing the correct single particle

spectrum.

4.3 Formalism and Implementation

In this section we derive the fundamental equations of the ASIC method, while looking
closely at the main approximations involved in comparison to the fully self-consistent SIC

approach. Our practical implementation is also described.
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4.3.1 The ASIC potential

The starting point of our analysis is the SIC Schrodinger-like equation (4.10) for the canon-
ical orbitals. Let us assume, as from reference [179], that the rotation M transforming
localized orbitals (to be determined) into canonical orbitals (see equation (4.11)) does
not mix core and valence states. We also assume that core electrons are well localized into
atomic-like wave-functions and that they can be effectively described by a norm-conserving

pseudopotential.

Let us now assume that M is known and so are the localized orbitals ¢¢ . In this case

O’SIC

the canonical orbitals diagonalize €7:>' and the equation (4.10) simply reduces to

(Hg + MASC)pg = 5510 (4.14)

with AvS1¢ defined in equation (4.12). The Hamiltonian HJ + AvS'C can be then re-written

in a convenient form as

HE + 8 = HS+ Y o5°P% , (4.15)

m

SIC

m

is the self-interaction potential for the localized orbital ¢?, and P? is the

m? m

where v

projector over the same state
Py (r) = ¢5,(r) /d"‘r’ U (T) 001 (') = ¢r () (i l0) - (4.16)

Two main approximations are then taken in the ASIC approach [153, 129]. First the
localized states ¢, are assumed to be atomic-like orbitals ®7 (ASIC orbitals) and the SIC

potential is approximated as
> CEPh = a Yy 95 C(r) Py, (4.17)
m m

with 975C(r) = u([pm];r) + v2PA([p] ,0];r) and p? = |®%|2, P2 is the projector of
equation (4.16) obtained by replacing the ¢’s with the ASIC orbitals ®, and « is a scaling
factor. Note that the orbitals ®,, are not explicitly spin-dependent and one simply has
¢ =, p? with p? the orbital occupation (pg, = 0,1). The factor a is an empirical
factor, which accounts for the particular choice of ASIC orbitals. This first approximation
is expected to be accurate for systems retaining an atomic-like charge density as in the

case of small molecules. It is also formally exact in the one-electron limit (for a = 1). In
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the case of extended solids the situation is less transparent, since in general the functions
minimizing E3¢ are Wannier-like functions [188].

The second approximation taken in the ASIC method is that of replacing the non-local
projector 13,‘,11’ with its expectation value. The idea is that the SIC potential for the canonical
orbitals AvS!C is formally a weighted average of the SIC potential for the localized orbitals
v3IC. For the exact SIC method the weighting factor is the non-local projector M,lm%.
This means that the SIC potential for a given canonical orbital v, is maximized in those
regions where the overlap with some of the localized orbitals ¢,, is maximum. In the ASIC
method such non-local projector is replaced more conveniently by a scalar. In the original
proposal by Vogel et al. [153, 154, 155] this was simply set to one. Here we consider the
orbital occupation p?, of the given ASIC orbital ®,,, i.e. we replace P,‘,’i with its expectation

value

P‘fi = < 771 = pm an l/) 77l‘l/)’l> ‘) (4'18)

where f7 is the occupation number of the Kohn-Sham orbital 7. The final form of ASIC

potential is then
Z SIC
/U;‘\Sl( =« lyr(:x P - (419)

m
Let us now comment on the empirical scaling factor . In reference [129] o was set

to 1/2 in order to capture eigenvalue relaxation. This choice however violates the one-
electron limit of the SIC potential, which is correctly reproduced for « = 1. We can

then interpret o as a measure of the deviation of the ASIC potential from the exact SIC
potential. Ultimately « reflects the deviation of the actual ASIC projectors |®)(®| from
the localized orbitals defining the SI corrected ground state. One then expects a to be
close to 1 for systems with an atomic-like charge density, and to vanish for metals, whose
valence charge density resembles that of a uniform electron gas [189]. Intermediate values
are then expected for situations different from these two extremes, and we will show that

a values around 1/2 describe well a vast class of mid- to wide-gap insulators.

4.3.2 Implementation

The final form of the SIC potential to subtract from the LSDA (local spin density approxi-
mation) one (equation (4.19)) is that of a linear combination of non-local pseudopotential-
like terms. These are uniquely defined by the choice of exchange and correlation potential

used and by ASIC orbitals ®,,. The practical way of constructing such potentials, i.e
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the way of importing the atomic SIC to the solid state, depends on the specific numerical
implementation used for the DFT algorithm. At present plane-wave and gaussian orbital
implementations are available [129, 153, 154, 155], while here we present our new scheme
based on the pseudo atomic orbital (PAO) [193] code SIESTA [156].

We start by solving the atomic all-electron SIC-LSDA equation for all the species
involved in the solid state calculation. Here we apply the original Perdew-Zunger (PZ-
SIC) formalism [144] and we neglect the small non-orthogonality between the Kohn-Sham
orbitals. Thus we obtain a set of SI corrected atomic orbitals ®,,, which exactly solve the
atomic SIC-LSDA problem. The atomic orbitals ®,, describing the valence electrons are
then used to define the ASIC potentials 7°1¢

35 (r) = u([pm]; ) + 02 P2 (o], 0; ) (4.20)

with p? = |®,,|>.

At the same time a standard LSDA calculation for the same atoms is used to construct
the pseudopotentials describing the core electrons. These are standard norm-conserving
scalar relativistic Troullier-Martins pseudopotentials [190] with nonlinear core corrections
[191]. Thus we usually neglect the SIC over the core states, when constructing the
pseudopotentials. This is justified by the fact that the eigenvalues for the SIC-LSDA-
pseudoatom, i.e. for the free atom where the effects of core electrons are replaced by LSDA
pseudopotentials but SIC is applied to the valence electrons, are in excellent agreement
with those obtained by all-electron SIC-LSDA calculations [153].

SIC( )

The final step is that of recasting the ASIC potentials v , which have a —2/r

asymptotic behaviour, in a suitable non-local form. This is obtained with the standard
Kleinman-Bylander [192] scheme and the final ASIC potential (equation (4.19)) is written

’Ym Vm
Vasic = Z | | (4.21)

where the ASIC projectors are given by

as

Yo (r) = a pg, 851 (1)@, (r) . (4.22)
and the normalization factors are
Cr = a p (@, 07 | @1,,) - (4.23)
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The orbital functions @/ are atomic-like functions with a finite range, which ensure
that the ASIC projectors 7,, do not extend beyond that range. These are constructed
in the same way as the SIESTA basis set orbitals, i.e. as solutions of the pseudo-atomic
problem with an additional confining potential at the cutoff radius reyo [193]. The choice
of the appropriate cutoff radius for the SIC projectors should take into account the two
following requirements. On the one hand it should be sufficiently large to capture most
of the SIC corrections. A good criterion [129] is that the SIC-LSDA contribution to the

orbital energy of the free atom
55gIC m = <(I);n|®;‘nslc'q)lm> (424)

is reproduced within some tolerance. On the other hand the cutoff should be reasonably
short so as not to change the connectivity of the matrix elements of the PAO Hamiltonian.
In other words we need to ensure that orbitals otherwise considered as disconnected in
evaluating the various parts of the Hamiltonian matrix are not considered connected for
the v{g matrix elements alone.

As a practical rule we set the cutoff radius for a particular orbital of a given atom to be
either equal to the longest among the cutoff radii of the PAO basis set for that particular
atom (typically the first ( of the lowest angular momentum), or, if shorter, the radius at
which 6¢d;,, < 0.1mRy. Typically, when reasonable cutoff radii (6 to 9 Bohr) are used,
we find that the atomic SIC-LSDA eigenvalues are reproduced to within 1 to 5 mRy for
the most extended shells and to within 0.1 mRy for more confined shells. Thus 0,
are rather well converged already for cutoff radii defined by a PAO energies shifts [156]
of around 20mRy, although usually smaller PAO energy shifts are necessary for highly
converged total energy calculations.

Finally the matrix elements of the SIC potential are calculated as usual over the STESTA
basis set. Additional basis functions Y,, are constructed from the confined localized atomic
orbitals described before using the split-norm scheme [193, 194, 195]. The density matrix

p? is represented over such basis p?  and the orbital populations are calculated as

[z

])771 = Z S”I/l/)zysl/l” ) (‘125)
pv

where S,,, is a matrix element of the overlap matrix. Note that in principle the orbital
population should be constructed for the atomic SIC orbital ®,,. However, we notice that

p?. is rather insensitive to the specific choice of orbital, once this has a reasonable radial
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range. For practical numerical reasons in the present implementation, we always use the
orbital populations projected onto the basis set sub-space consisting of the most extended
first-C orbitals of the atomic species involved. The matrix elements of the SIC potential

are simply

o Xl Vo A o
(Visic)w = Z< 4 C>'§' i) ) (4.26)

and the ASIC-KS equation takes the final form
| . .
—§V2 + vpp + u + vZSPA — ’UZSIC:l YZ = e25Cy7 (4.27)

with vpp the pseudopotential.

4.3.3 Total Energy

The energy corresponding to the SIC-LSDA functional is given by [144]

ESClp pt] = EYSPA[p pt] = Y “(U[p5] + ESEPM 5. 0)) (4.28)

where )
FVlotl= /d:‘r 5/),,(1')11,([/),1]:1’) : (4.29)
ELUSPA[7 0]) = /(131'p,,(r)é'}(‘f])/\([/)n];r) : (4.30)

with £5PA the LSDA exchange and correlation energy density. The orbital densities
entering in the SI term are those associated to the local orbitals ¢. As we have already
mentioned, this functional needs to be minimized with respect to the ¢’s, which are an
implicit function of the total spin density p?. In the ASIC approximation these orbitals
are not minimized, but taken as atomic functions. This means that in the present form the
theory is not variational, in the sense that there is no functional related to the KS equation
(4.27) by a variational principle. With this in mind we adopt the expression of equation

(4.28) as a suitable energy, where the orbital densities are those given by the ASIC orbitals

f)fn,(r) — p; I(Ijml2 . (4~31)

ELSDA

In our implementation the LSDA KS energy is directly available as calculated
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in the SIESTA code [156] and thus, only the second term of equation (4.28) needs to be

calculated. This is easily done by calculating both U and EXPA on an atomic radial grid

for each atomic orbital in the system.

4.3.4 ASIC and LDA+U

We now compare our ASIC method with another atomic-like correction to LSDA, namely
the LDA+U method [136, 137]. In LDA+U one replaces the LSDA exchange and corre-
lation energy associated to the “correlated” orbitals (d or f shells), with the Hubbard-U

energy. Thus the functional becomes

BPA[p(r)] = EYPALp(r)] + E°({p}] - E°[{p}) (432

where the Hubbard energy EV and the double counting term EP¢ depend on the orbital
populations p? of the correlated orbitals. Several forms for the LDA+U functional have
been proposed to date. A particularly simple and transparent one [138, 196/, which is also
rotationally invariant, redefines the U parameter as an effective parameter Usg = U — J

and the functional takes the form

EV-EP°= % 2, [pf,;:n =D DY 54 pé,;:,] (4.33)
I mo n

where in we separate out the index for the atomic position I from the magnetic quantum
number m, and introduce the off-diagonal populations plo = > f9 (3| PL2)p2) with
Pl — |®! ) (®!|. Note that the LDA+U functional is SI free for those orbitals that are

corrected.

Although a rotationally invariant form of the ASIC potential can be easily derived, we

assume here for simplicity that the system under consideration is rotationally invariant, or

Io

m, matrix. In

alternatively that we have carried out a rotation, which diagonalizes the p

this case the energy becomes simply

B — o= % Z pie[1— pl7] . (4.34)

Imo
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with p/? = plo Tt is then easy to compute the KS potential

pUDA+U _ (LSDA | Z Ug E _ pfna] f)é:b ? (4.35)

Imo

and the orbital energy

oF 1
lo __ __ IeLSDA lo
€m = 8p£ng = €m + Uest (5 - pm) g (436)

These need to be compared with the ASIC potential (equation (4.19)) and orbital

energy
I I LSDA Io g 11 | ~0SIC | g1
67’: = f'm(,y i Qp;(@n’l‘vzn ’CI)”;> ) (437)
where the last term follows from a&;ﬁ’ = C!7 and from equation (4.28). The main difference

between the ASIC and LDA+U method is in the way in which unoccupied states are
handled. In fact, while LDA+U corrects unoccupied states and pushes the orbital energies
upwards by ~ Uyg/2, ASIC operates only on occupied states, that are shifted towards lower
energies by CI”. This reflects the fact that the SIC is defined only for occupied KS orbitals.
An important consequence is that the opening of bandgaps in the electronic structures, one
of the main features of both the LDA+U and ASIC schemes, is then driven by two different
mechanisms. On the one hand in LDA+U, gaps open up since occupied and unoccupied
states are corrected in opposite directions leading to a gap of ~ Ugg. On the other hand
ASIC is active only over occupied states and gaps open only if occupied and unoccupied
bands have large differences in their projected atomic orbital content. Thus one should
not expect any corrections for covalent materials where conduction and valence bands are
simply bonding and antibonding states formed by the same atomic orbitals. This is for
instance the case of Si and Ge. In contrast ASIC will be extremely effective for more ionic

situations, where the orbital contents of conduction and valence bands are different.

Finally, by comparing the corrections to the orbital energy of a fully occupied state,
one finds

U = 2a (@, |07, |70 (4.38)

m

which establishes an empirical relation between the Hubbard energy and the ASIC cor-
rection. Since U is sensitive to the chemical environment due to screening [138], while all
the other quantities are uniquely defined by an atomic calculation, we can re-interpret the

parameter « as empirically describing the screening from the chemical environment within
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the ASIC scheme.

4.4 Results: Extended systems

The test calculations that we present in this work are for two classes of materials: extended
and finite. First we investigate how our implementation performs in the solid state. In
particular we discuss the role of the parameter « in determining the bandstructure of several
semiconductors, considering both the KS band-gap and the position of bands associated

with tightly bound electrons.

4.4.1 Estimate of « for semiconductors

The quasi-particle band gap F, in a semiconductor is defined as the difference between
its ionization potential / and electron affinity A. These can be rigorously calculated from
DFT as the HOMO energy respectively of the neutral and negatively charged systems.
This actual gap cannot be directly compared with the KS band-gap E;“", defined as the
difference between the orbital energy of the HOMO and LUMO states of the neutral system.
In fact, the presence of a derivative discontinuity in the DF'T energy as a function of the

electron occupation establishes the following rigorous relation [148, 197]

B, =E° + 85, (4.39)
with e .
A= lim ﬂ Ntw — ﬂ . (4.40)
w—0 on 0 |y =

This is valid even for the exact XC potential, and therefore in principle one has to give
up KS bandstructures as a tool for evaluating semiconductor band-gaps. The size of A,.
is however not known for real extended systems and the question of whether most of the
error in determining £, from E(']‘S is due to the approximation in the XC potential or due
to the intrinsic A,. is a matter of debate.

In general Sl-free potentials bind more than LSDA and one expects larger gaps. Sur-
prisingly, functionals based on exact exchange, provide KS gaps rather close to the exper-
imental values [198, 199]. The reason for such a good agreement is not fully understood,
but it is believed that the exact KS gaps should be smaller than the actual ones.

With this in mind, we adopt a heuristic approach and we use the KS band-gap as a
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quality indicator for interpreting the parameter a and for providing its numerical value
for different classes of solids. Here we investigate the dependence of E;(s over o and we
determine the value for a yielding the experimental band-gap. Assuming that A,. does
not vary considerably across the materials investigated, this will allow us to relate « to the
degree of localization in a semiconductor and to extract the value useful for ASIC to be
an accurate single-particle theory.

In figure 4.1 we present the band-gap of four representative semiconductors as a function
of « together with the value needed to reproduce the experimental band-gap. LSDA

corresponds to & = 0 and while o« = 1 accounts for the full ASIC. In general E;“ increases
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Figure 4.1: Calculated band-gap for NaCl, MgO,AIN and ZnO as a function of the param-
eter . a = 0 is the LSDA value and o = 1 accounts for complete atomic SIC. The lattice
parameters used for the calculations are either the equilibrium LSDA or the experimental
when available.

as « increases, as a result of the stronger SIC. The E;“(a) curve is almost linear with a
slope, which appears to be material-specific.

For the most ionic compound, NaCl, the experimental gap is reproduced almost exactly
by a = 1, i.e. by the full ASIC. This is somehow expected since the charge density of solid

NaCl is rather close to a superposition of the Na® and Cl~ ionic charge densities. In
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this case of strongly localized charge densities the ASIC approximation is rather accurate
yielding results substantially identical to those obtained with full self-consistent PZ-SIC
[169]. Indeed earlier calculations for LiCl [169] demonstrate that the SIC band-structure
is rather insensitive of the localized orbitals ¢ once these have an atomic-like form.

For the other compounds the localized orbitals ¢’s are not necessarily atomic-like func-
tions and deviations from « = 1 are expected. Interestingly we find that, for all the
materials investigated, a value of around 1/2 reproduces the experimental band-gap rather
accurately. As an illustration, in table 4.1 we compare the experimental band-gap EZ*P to
the calculated Eys for ASIC (o = 1) and LDA, for several semiconductors ranging from
ionic salts to wide-gap I1-VI and I1I-V semiconductors. We also report the value of o = a*

needed for EP = E}fs

Table 4.1: Experimental £ and KS E;<S band-gap (in eV) for a number of semicon-
ductors. E;“ are calculated with both LSDA and ASIC (a = 1). In the last column
we report the value of a = a* needed for B = E;“ The lattice parameters used for
the calculations are either the equilibrium LSDA or the experimental when available (in
A). RS=rocksalt, WZ=wurtzite, ZB=zincblende. The value for the experimental gaps are
from the literature: a [200], b [201], ¢ [202], d [203], e [204], f [205], g [206], h [207], ¢ [208]

Solid Structure V.l E.(]K_?'LSDA e
"LICl  RS(a=5.13)  94* 623 976 0.89
NaCl RS (a =5.63) 8.6" £.91 8.51 1.02
KCl RS (a =6.24) 8.5 4.90 8.51 0.99
MgO RS (a =4.19) 7.8¢ 4.86 9.36  0.65
CaO RS (a =4.74) 7.084 4.93 9.28 0.49
SrO RS (a =5.03) 5.89¢ 4.20 7.80  0.47
AIN  WZ (a=3.11, c=4.98) 6.20f 4.47 756  0.56
GaN WZ (a=3.16, ¢c=5.13) 3.39¢ 2.21 5.03  0.44
InN WZ (a=3.54, c=5.70) 0.7 0.09 2.09 045
Zn0 WZ (a=3.23, c=5.19) 3.43 0.85 513 0.57
7ZnS ZB (a =5.40) 3.78 2.47 490  0.53
ZnSe 7B (a =5.63) 2.82 .77 3.53  0.58

Clearly for all the strongly ionic compounds (LiCl, NaCl and KCl) the full ASIC cor-
rection o = 1 reproduces quite accurately the experimental gap and agrees with previous
self-consistent SIC calculations [209]. For all the other compounds a value of around 1/2 is
always adequate, confirming the initial choice of Filippetti and Spaldin. For these mater-
ilas we do not find any particular regularity. In general « is large when the experimental

gap is large, however there is no direct connection between o and the ionicity or covalency
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of a compound. In fact, the improvement of the band-gap is not simply due to a rigid
shift of the valence band, but usually corresponds to a general improvement of the whole
quasi-particle spectrum. Examples for ZnO and GaN will be presented in the next section.

As a further proof of this point in table 4.2 we present the valence band-width for
the semiconductors investigated as calculated from LSDA AEMPA and ASIC for both
a=1(AEM) and a = o* (AEM!C*). We also report the experimental values AE®P
whenever available, although a direct comparison with experiments is difficult, since these
values are rather imprecise and sometimes not known. The general feature is that ASIC
produces only minor corrections over LSDA, and that these corrections do not follow a
generic trend. Thus, while for the nitrites ASIC always increases the band-width, it does
just the opposite for KCI, SrO and CaO.

Table 4.2: Valence band experimental bandwidth AFE$* compared with those obtained
from ASIC (a = 1) AEM!C1 LSDA (AEMPA) and ASIC with the optimal o = o* from
table 4.1 AE?SC* for a number of semiconductors. The lattice parameters used for the
calculations are either the equilibrium LSDA or the experimental when available (in A).
The experimental values are from the literature (last column).

Solid AE™® AEMICt AFLSPA  AFASICes  Reference

LiCI 45 3.52 3.06 3.51 [209]
NaCl 1.7-45  2.11 2.06 K 209]
KCl 2343  1.09 1.21 1.09 209]
MgO 3.3-67  5.16 483 506  [210, 211]
CaO 0.9 2.72 2.89 2.82 [211]
SrO 2.21 2.53 2.39

AIN 6.0 7.44 6.27 6.92 [212]
GaN 74 8.42 7.33 7.85 [213]
InN 6.0 6.66 6.01 6.34 [214]
Zn0  ~5 5.66 477 5.54 [215]
ZnS 5.5 6.49 5.57 6.05 [216]
ZnSe 5.6 7.14 5.35 6.38 216]

4.4.2 Wide-gap semiconductors: ZnO and GaN

Having established a = 1/2 as an appropriate value for II-VI and I1I-V semiconductors, we
now look at the whole band-structure (not just the fundamental gap) for a few test cases.

Here we consider ZnO and GaN for which photo-emission data disagree quite remarkably
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from LSDA calculations. In figure 4.2 we compare the band structure of wurtzite ZnO
obtained respectively from LSDA and our ASIC.
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Figure 4.2: Calculated band structure of wurtzite ZnO obtained from LSDA and ASIC.
Owing to the ionic character of ZnO each group of bands can be clearly labeled according
to a single, dominant orbital character as shown. The VBT is aligned at 0 eV.

In ZnO, the valence band top (VBT) is predominantly oxygen 2p in character and
the conduction band minimum (CBM) is essentially zinc 4s. With a value of ~ 0.5 for
the scaling parameter «, the ASIC band gap closely matches the experimental gap of
E,=3.43 eV, whereas the LDA band-gap is very small (~ 0.85 eV). Some part of the
LDA band gap error in ZnO can be traced to an underestimation of the semi-core Zn 3d
states. The LDA binding energy for the Zn 3d states is ~ 5.5eV while photoemission
results place them at around ~ 7.8 eV. ASIC however rectifies the problem and is in very
good agreement with experiment. This results furthermore in the removal of the spurious
Zn34-Oy, band mixing seen in LDA. An additional feature is that the band-width of the
valence band increases considerably as an effect of the downshift of the d manifold. Its
worth mentioning that the positions of the Zn 3d levels obtained from ASIC in the case of
ZnS, ZnSe, and ZnTe also agree remarkably well with experiment.

The wide-gap III-V semiconductor GaN presents similar phenomenology to that of
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Zn0. Figure 4.3 compares the band structure for wurtzite GaN obtained from LSDA and
ASIC. When compared to X-ray photoemission spectra [217], the LSDA band structure
of GaN has several shortcomings. Firstly, the band-gap between N 2p bands (VBT) and
Ga 4s bands (CBM) is underestimated at around 2.2 eV against the experimental value
of 3.4 eV. Secondly, the 3d states of Ga are too shallow in LSDA, leading to a spurious
3d-2s hybridization. As a result the Ga 3d states overlap with and split the N 2s bands.
ASIC rectifies the picture on both counts by improving the band gap and lowering the

position of the Ga 3d bands with respect to the N 2s bands. These results corroborate
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Figure 4.3: Calculated band structure of wurtzite GaN obtained from LDA and ASIC. The
primary orbital character of the bands is indicated. The VBT is aligned at 0 eV.

those of referneces [129, 153, 154] where in ZnO and GaN have previously been discussed

in a pseudo-potential based SIC context.

4.4.3 Transition-metal oxide: MnO

Transition metal oxides like MnO and NiO are characterized by partially filled 3d orbitals
and an associated local magnetic structure. In particular the Mn?* ions in MnO are mag-
netic with a half-filled 3d shell. In the ground state, MnO is an A-type anti-ferromagnetic

insulator in the intermediate charge-transfer Mott-Hubbard regime with a band-gap in the
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region of 3.8-4.2 eV. The VBT is expected to be of mixed Mn 3d-O 2p character and the
CBM pure Mn 3d in character. However the LSDA description of MnO is flawed in several
aspects most notably in describing MnO as a narrow gap (E; = 0.92 eV) Mott-Hubbard
insulator with both the VBT and CBM composed of purely of Mn 3d states. This is
due to the severe underestimation of d electron binding-energies in LSDA. The calculated
anti-ferromagnetic band-structures of MnO from LSDA and ASIC («a = 1/2) are shown in
figure 4.4.
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Figure 4.4: Calculated band structure of anti-ferromagnetic MnO obtained from LSDA
and ASIC. In our calculation we obtain an LSDA bandgap of ~0.65 eV whereas the ASIC
bandgap is much improved at ~3.5 eV. The VBT is aligned at 0 eV.

Note that these are for the rhombohedral unitcell with 4 atoms per cell. The two Mn
ions are anti-ferromagnetically aligned and the oxygen ions are non-magnetic. This results
in a layered ferromagnetic order of the (111) planes, which in turn are anti-ferromagnetic
coupled to each other. Also in this case, ASIC is a considerable improvement over LSDA.
The size of the fundamental gap now resembles the experimental one and the VBT recovers
some p character. We point the reader once again to reference [129] where in Transition-

metal oxides have been discussed in much more detail.
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4.5 Results: Molecules

4.5.1 lonization potentials

In view of the fact that the ASIC method gives improved eigenvalue spectra for several solid
state systems, it is worth taking a cautious look at how it performs with molecules. This
is particularly important for assessing whether the ASIC scheme can be adapted to work
in DFT electron transport schemes based on the KS spectra [151, 218]. In exact KS DFT

(e'OMO) hag a rigorous physical interpretation

only the highest occupied orbital eigenvalue
and corresponds to the negative of the first ionization potential [147, 148]. More generally,

for a N electron system, the following equations hold in exact KS-DFT

HOMO( 1y — _ [ for (N—1< M < N) {441

HOMO(nry — _ A for (N <M< N +1) (4.42)

where —Iy and —Ay are the ionization potential (IP) and the electron affinity (EA) re-
spectively. Therefore we start our analysis by looking at these quantities as calculated by
ASIC. Also in this case we investigate different values of . However here we limit ourselves
only to a = 1 (ASIC;) and a = 1/2 (ASIC, 3).

In table 4.3 and figure 4.5 we compare the experimental negative IP for several molecules
with the corresponding (e"°MO) obtained using LSDA and ASIC. It is clear that LSDA
largely underestimates the removal energies in all the cases and that the values obtained
from ASIC,/, are also consistently lower than the experimental value. However, as made
evident by the figure the agreement between ASIC; and experiments is surprisingly good.
In fact the mean deviation §(X) (X = LSDA, ASIC, 5, ASIC,) from experiment

] le\i] 6QOMOJ + IPExpt (
= S (4.43)

is 3.56 eV for LSDA, 1.69 eV for ASIC;/, and only 0.58 eV for ASIC; (N runs over the
molecules of table 4.3). It is worth noting that we have excellent agreement over the whole
range of molecules investigated going from Ny to large fullerenes Cgy and Cyy.

For comparison in figure 4.5 we have also included results obtained with a full self-

consistent PZ-SIC approach [163]. Surprisingly our atomic approximation seems to pro-
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Table 4.3: Experimental Ionization potential (IP) compared to calculated HOMO eigenval-
ues for neutral molecules. Columns 3 and 4 present the results from ASIC with respectively
a =1/2 and a = 1. The experimental data are taken from reference [219)].

Molecule e VO (aV) -IP(eV)

LSDA ASIC,, ASIC; Experiment

CH; -4.65 -7.34 -10.06 -9.84

NH; -5.74 -8.21 -10.79 -10.07

SiH, -7.95 -10.14 -12.41 -11.00

CyHy -6.28 -8.00 -9.74 -10.51

SiCH4 -5.89 -7.57 -9.35 -9.00

CH3;CHCI, -7.23 -8.97 -10.72 -11.04

C,H,S 595  -7.65  -9.35 -8.87

CqHgS2 -5.56 -7.54 -9.53 -9.30

Pyridine -4.83 -6.57 -8.31 -9.60

Benzene -5.92 -7.59 -9.28 -9.24

Iso-butene -5.39 -6.98 -8.6 -9.22

Nitrobenzene -6.49 -8.76 -10.67 -9.92

Naphthalene  -5.49 -7.04 -8.59 -8.14

Ceo -5.06 -6.53 -8.02 -7.57

Cro -4.92 -6.40 -7.89 -7.36 |
|
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duce a better agreement with experiments than the self-consistent scheme, which generally
overcorrects the energy levels. This is a rather general feature of the PZ-SIC scheme and

it is generally acknowledged that some re-scaling procedure is needed [220, 221].
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Figure 4.5: Experimental negative ionization potential IP compared to the calculated
HOMO eigenvalues for molecules. The experimental data are from reference [219], while
the star symbol represents full PZ-SIC calculations from reference [163].

4.5.2 Electron affinities

In Hartree Fock theory where Koopmans’ theorem holds [222], the lowest unoccupied
molecular orbital (LUMO) energy (¢“VM©) corresponds to the vertical EA of the N electron
system, if one neglects electronic relaxation. No such interpretation exists for (¢*UM©) in
DFT and so the EA is not directly accessible from the ground state spectrum of the N
electron system. However, as equation (4.42) indicates, the EA is in principle accessible
from the ground state spectrum of the N+1—f (0 < f < 1) electron system and asserts in
particular that it must be relaxation free through non-integer occupation. Unfortunately,

the LSDA/GGA approximate functionals usually perform rather poorly in this regard as
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Table 4.4: Calculated HOMO eigenvalues for singly negatively charged molecules compared
to experimental negative electron affinities (-EA). Columns 6,7 and 8 present the LUMO
eigenvalues for the corresponding neutral species.

Molecule erer[eV) Exp. -EA (eV) e MO aY)
LSDA ASIC,,, ASIC, LSDA ASIC,;,, ASIC,
CN- 0.84 -0.79 -2.48 -3.86 -8.13 -9.03 -9.42
CoH™ 0.94 -0.80 -2.68 -2.97 -6.91 -7.38 -7.48
CH3S~ 2.42 0.65 -1.14 -1.87 -5.20 -9.31 -5.34
OH~ 3.82 1.09 -1.80 -1.83 -0.16 -0.43 -0.69
SiH5 4.61 3.13 1.61 -1.41 -2.66 -3.30 -4.07
HOO~ 3.10 -0.07 -3.34 -1.08 -5.30 -6.14 -6.40
NH, 3.83 1.51 -0.98 -0.77 -5.27 -4.80 -4.39
CH; 3.07 1121, -0.45 -0.65 -3.80 -3.84 -3.91
CH3;CO~ 290 176 0.40 -0.42 -2.94 -3.88 -4.85
CHO~ 3.9 2.02 0.42 -0.31 -3.30 -4.40 -5.01
CHy 4.15 1.93 -0.34 -0.08 -2.73 -2.99 -2.47
Ceo 0.03 -1.19 -2.45 -2.65 -3.44 -4.66 -5.90
Coo 0.00 =122 -2.47 -2.73 -3.17 -4.41 -5.66

the N + 1 electron state is unbound with a positive eigenvalue. So one resorts instead
to extracting electron affinities from more accurate total energy differences [223], or by
extrapolating them from LSDA calculations for the NV electron system [224]. This failing
of approximate functionals has been traced in most part to the SI error and so SIC schemes
are expected to be more successful in describing the N + 1 electron spectrum.

In table 4.4 we compare HOMO energies (denoted as 6%&”}’10) of several singly neg-
atively charged molecules with the experimental electron affinities. We also report the
LUMO energies for the corresponding neutral species (denoted as ex"™?). LSDA relaxed
geometries for the neutral molecule are used for both the neutral and charged cases. We
find that various f’f\}gll\'l‘) obtained from ASIC; once again are in reasonably good agreement
with corresponding experimental electron affinities while LSDA and ASIC,/, continue to
be poor even in this regard. In this case 6(X) stands at 4.1 eV , 2.31 eV and 0.83 eV for
LSDA, ASIC, , and ASIC; respectively. Notice that 6]}\}?{1\10 from LSDA is positive in most

cases as the states are unbound.

In figure 4.6 we present our data together with ey as calculated using the PZ-SIC
[163]. Again ASIC, performs better than PZ-SIC, that also for the EA systematically

overcorrects.
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Figure 4.6: Experimental negative electron affinities (-EA) compared to calculated HOMO
eigenvalues of negative radicals.

4.5.3 Vertical excitations

Having shown that ASIC offers a good description of both IP and EA for a broad range
of molecules, we turn our attention to the remaining vertical ionization potentials. As
mentioned before, KS-DFT lacks of Koopmans theorem, and therefore the KS energies are
not expected to be close to the negative of the vertical ionization potentials. However,
at least for atoms, the introduction of SIC brings a remarkable cancellation between the
negative relaxation energy and the positive non-Koopmans corrections [144]. For this
reason the SIC KS eigenvalues are a good approximation to the relaxed excitation energies.
As an example, in table 4.5 we present the orbital energies calculated with ASIC; and
ASIC, /, for the Ny molecule. These are compared with experimental data [225] and orbital
energies obtained respectively with Hartree-Fock (HF), self-consistent SIC, and SIC where
molecular orbitals are used instead of localized orbitals (D-SIC) [159].

Remarkably ASIC; seems to offer good agreement over the whole spectrum, improving
considerably over LSDA and in some cases even over SIC and HF results. This improve-

ment is not just quantitative, but also qualitative. For instance while rectifying the LSDA
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Table 4.5: Orbital energies of Ny calculated with various methods. The results for Hartree-
Fock and SIC are from reference [159]. Experimental results are from reference [225].

Orbital  HF SIC D-SIC ASIC, ASIC,;;, LSDA Exp.

204 -41.49 -38.86 -37.85 -38.29 -33.22 -28.16

20y, -21.09 -20.27 -16.44 -18.42 -15.64 -12.93 -18.75
304 -17.17 -17.39 -13.88 -14.01 -11.70 -9.90 -15.58
1y, -16.98 -16.33 -16.68 -15.97 -13.74 -11.54 -16.93

Table 4.6: Orbital energies for CO, HF and H,O calculated with LSDA and ASIC;. The
experimental results are from reference [226] and references therein.
Molecule  Orbital LSDA  ASIC, Exp.

cO o0 -8.74 -12.85  -14.01
1m -11.54  -16.64 -16.91
4o -13.97 -19.36 -19.72
HF 1w -9.83 -16.96  -16.19
30 -13.61  -19.68 -19.90
H,0 1b; -7.32 -13.38  -12.62
3a, -9.32 -14.66 -14.74
b, -13.33  -18.03 -18.55

spectrum of the Ny molecule, ASIC, preserves the correct order between 30, and 1w, or-
bitals, which are erroneously inverted by both SIC and HF. So why does ASIC perform
better than the other methods with regards to removal energies? In LSDA| electron relax-
ation typically cancels only half of the non-Koopmans contributions, resulting in energies
that are too shallow [144]. In contrast HF lacks energy relaxation and the orbital energies
are too deep. The reason why ASIC, performs better than self-consistent SIC is less clear.
As a general consideration, also for the case of vertical ionization energies self-consistent
SIC seems to overcorrect the actual values. Thus the SIC potential appears too deep, and

the averaging procedure behind the ASIC approximation is likely to make it more shallow.

As a further test we calculated the orbital energies for a few other molecules and
compared them both with LSDA and experiment [226]. These are presented in table 4.6.
Again the ASIC; results compare rather well with experiment, and we can conclude that
the ASIC method offers a rather efficient and inexpensive theory for single particle vertical

excitations.
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4.5.4 HOMO-LUMO gap and discontinuity of the exchange and

correlation potential

We are now in a position to discuss the HOMO-LUMO gap in ASIC. As already mentioned,

¢LUMO _ (HOMO (69 not account for

even for the exact XC functional, the KS gap E;® =
the actual quasi-particle gap E; = Iy — Ay. This in turn is the sum of E)® and the
discontinuity of the exchange and correlation potential A,.. Equivalently
- HOMO _ _LUMO

i.e. Ay is the discontinuity in the eigenvalue of the LUMO state at N. Therefore, in
order to extract the actual gap from the KS gap, provided that the spectrum is reasonably
well described at integer electron numbers N, what remains is to model the derivative
discontinuity at N and ensure that 65\113:1}10 is relaxation free for (0 < f < 1). Local and
semi-local (LSDA/GGA) XC functionals lack such a discontinuity, while self-interaction

corrections are able to restore it, at least in part. For instance the PZ-SIC scheme is

successful in this regard.
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Figure 4.7: Tonization curve for the ethylene (CyH;) molecule as the occupation of the

HOMO state is varied from 0 to 1 in going from the ionized CoH] to the netural CoHy
state.

In figure 4.7 we illustrate the ionization curve for the ethylene (CoH,) molecule as the
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occupation of the HOMO state is varied from 0 to 1 in going from the ionized CoHJ to
the netural CoH,y configuration. It is seen that among the three schemes presented, only
the PZ-SIC scheme approximately models the behaviour required by the equation (4.41).
The ASIC HOMO eigenvalue roughly agrees with the PZ-SIC eigenvalue at integer occu-
pation but behaves linearly through non-integer values. Thus we find that the derivative
discontinuity for the molecule is smoothed out in ASIC, which still connects continuously
different integer occupations. This is one of the limitations of the atomic representation
employed in ASIC.

In view of the foregoing discussion, the actual size of the HOMO-LUMO gap in ASIC be-
comes significant with a direct bearing on the physics described. Ideally, we want e“UMO(N)
(LUMO for the N-electron system) to be as close to ¢"°MO(N + 1) so that the range of
eigenvalue relaxation through fractional occupation numbers M € (N, N + 1) is mini-
mized. Looking at columns 6,7 and 8 in table 4.4 however, we see that for almost all the
molecules, this is hardly the case. The agreement between ¢*"M©(N) and -EA from ex-
periment (~ ¢"OMO(N + 1)) for ASIC, is quite poor implying a considerable energy range
spanning fractional particle number. We still expect this energy range to be smaller for
ASIC,; than LSDA. It is also apparent from the table 4.4 that e5YNM°(N) usually differs
from FIMO(N) and in fact by considerable magnitudes in some cases. Thus the ASIC,
“correction” to the empty LUMO state does not vanish in contrast to the PZ-SIC scheme
where, by definition, the empty eigenstates are SIC free.

Since the SIC operator v{g - is constructed in an atomic orbital representation, the

correction to any KS eigenstate 17 either filled or empty
0ERGic = (Ynlvasiclvn) (4.45)

is not necessarily zero unless 17 only projects onto empty atomic orbitals. Also this
correction to the LUMO with respect to the LSDA is negative in most cases, exceptions
being NHy and CHj3 where it is desirably positive. Thus the fundamental HOMO-LUMO
gap in ASIC is a combination of both the HOMO and LUMO corrections. Table 4.7 shows
how this combination works out in ASIC;/, and ASIC, when compared to LSDA. The
molecular test set is the same as that in table 4.3.

We see in almost all cases the ASIC gap is systematically larger than the LSDA one.
This is expected because the correction to the HOMO is usually much stronger than that to
the LUMO. In general, ASIC is expected to work well for systems where the occupied and

un-occupied KS eigenstates of the extended system have markedly different atomic orbital
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Table 4.7: HOMO-LUMO gap obtained from ASIC compared to the LSDA value. The
values marked with * correspond to unbound LUMO levels.

Molecule gruee _ JONO (o)
LSDA ASIC,,, ASIC,
CH; 1.92 4.95 7.59
NH; T.1* 9.29* 11.61*
SiH,4 8.44* 9.68 10.94
CoHy 5.81 6.59 7.38
SiCH4 6.19 7.07 8.06
CH3CHCl, 5.79 6.84 7.88
C4H,4S 4.46 5.13 5.8
CyHgS, 4.44 6.02 7.6
Pyridine 3.85 4.56 5.26
Benzene 9.22 5.9 6.59
[so-butene 4.88 5.56 6.26

Nitrobenzene  3.25 4.03 4.42
Naphthalene 3.36 3.83 4.29
Ceo 1.62 1.87 2.12
Cro 1.75 1.99 2.23
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signatures being derived predominantly from filled and empty atomic orbitals respectively.
In such a case, the ASIC correction to the empty states would be nullified in being scaled
by near-zero atomic orbital populations. In some cases, provided phase factors combine
suitably, the correction to the empty states can even be positive with respect to the same
in LSDA.

4.5.5 Final Remarks

Before we conclude, we discuss some general properties of the ASIC method which are
relevant to any orbital dependent SIC implementation and also some possible pitfalls.
As with other SIC schemes, ASIC is not invariant under unitary transformations of the
orbitals used in constructing the SIC potential. Thus the ASIC correction is likely to
change as the atomic orbitals used for projecting onto the KS eigenstates of the system
are rotated or transformed otherwise. Unlike the Perdew-Zunger method however, there
can be no variational principle over all possible unitary transformations of the atomic
orbitals because in the general case they do not represent the Hamiltonian of the system
under consideration. This also implies that if the scheme is used with a system that is
already well described by LSDA, the “correction” additional to the LSDA result does not
necessarily vanish. Simple metals and narrow gap systems are likely candidates for this

scenario.

Furthermore, its pertinent to mention that ASIC becomes ineffective if not counterpro-
ductive for materials with homonuclear bonding, in which valence and conduction bands
have the same atomic orbital character. In this situation the ASIC potential will shift the
bands in an almost identical way, without producing any quantitative changes, such as the
opening up of the KS gap. Note that this is a pitfall of the ASIC approximation, which
distinguishes occupied from empty states only through their projected atomic orbital oc-
cupation, but not of the SIC in general. Typical cases are those of Si and Ge. The KS gap
in Si goes from 0.48 eV in LSDA to only 0.57 eV for ASIC, 5, while Ge is a metal in both
cases. In addition the LSDA calculated valence bandwidths of 12.2 eV for Si and 12.8 eV

for Ge, in good agreement with experiments, are erroneously broadened to 14.3 eV and

14.8 eV respectively.
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4.6 Conclusions

In conclusion, we have implemented the ASIC scheme proposed by Filipetti and Spaldin
within the pseudopotential and localized orbital framework of the SIESTA code. We have
then investigated a broad range of semiconductors and molecules, with the aim of providing
a reasonable estimate for the scaling parameter a. We found that a = 1, which accounts
for the full atomic SI, describes surprisingly well ionic semiconductors and molecules. In
particular for molecules, both the IP and the EA can be obtained with good accuracy from
the HOMO KS eigenvalues respectively for the neutral and singly charged molecule. This
makes the ASIC scheme particularly suited for application such as quantum transport,
where the position of the HOMO level determines most of the I-V curve.

In contrast III-V and II-VI semiconductors are better described by a = 1/2, which
corrects the atomic SI for screening. This makes ASIC,/, an interesting effective band
theory for semiconductors. The relation of the present scheme with the fully self-consistent

SIC methods has been emphasized, and so has been that with LDA+U.
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Chapter 5

Ferromagnetism driven by intrinsic
point defects in HfO»

5.1 Introduction

HfO, (Hafnia) is a well known wide band gap insulator (Eg &~ 5.8 €V) with a high dielec-
tric constant. It also exhibits high thermal stability and is commonly used in optical and
protective coatings. HfO, occurs in three different bulk crystalline phases at atmospheric
pressure, the monoclinic C3, phase (space group P2;/c) is predominant at low tempera-
tures while the tetragonal D}} phase (space group P4;/nmc), and the cubic fluorite O;
phase (space group Fm3m) are high temperature phases stable above 2000 K and 2870 K
respectively. As a member of the family of high-k dielectrics, HfO, has been extensively
studied in recent times both experimentally and theoretically [227, 228] because of its po-
tential for substituting SiO, as a gate dielectric in microelectronic devices. First-principles
investigations of the physics of defects in Hafnia [229, 230] also reflect this trend.

In its stoichiometric bulk phase, HfO, is diamagnetic with susceptibility y = —1.6x10"?m*kg~!
and presents no evidence of any long range magnetic order. However in recent experimental
studies [231, 232], it was observed that heating HfO, powders in a reducing atmosphere,
gives rise to a small but detectable ferromagnetic moment, which can then be reversibly
removed by annealing in an oxygen rich atmosphere. The effects were also observed to be
more substantial in HfO, thin films grown by pulsed-laser deposition on various substrates
[232]. Furthermore, the magnetic moment appeared to show no systematic dependence on

2

thin-film thickness and moments in the range of 300 £+ 150 pupnm™*, which corresponds

roughly to 0.1 up/Hf, were observed for film thicknesses in the range of 45—300 nm. Sig-
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nificantly, the Curie temperature was reported to be well above 500 K. These observations
suggest that the detected ferromagnetic moments are somehow driven by the presence of
lattice defects in the material whose concentration can vary significantly depending upon
several factors such as grown conditions, post growth treatment, thin-film texture and
morphology. Also the possibility of rogue impurity phases of magnetic materials such as
Iron although cannot be completely ruled out, is rather unlikely as the magnetic moments
were detected in highly pure samples. Interestingly, the magnetism detected on oriented
thin-films was also found to exhibit significant anisotropy with the saturation moment
being roughly three times larger when the field is applied perpendicular to the film than
when the field is in-plane. This suggests that there might be an orbital contribution to the
magnetic moment in these systems. However, in spite of the large anisotropy, the hysteresis
is found to be small at any temperature with only a tiny remanence and a weak coercivity

of the order of a few millitesla.

With most of the experimental evidence pointing towards intrinsic defects as the likely
source behind the observed ferromagnetic moments, the defect physics of Hafnium Oxide
needs to be re-visited in an effort to establish the identity and the electronic structure
of the lattice defects capable of producing ferromagnetism. First principles density func-
tional theory (DFT) investigations are well suited to addressing this problem as relevant
information such as the energetics of defect formation, the structure of impurity bands,
the spin state of localized defect states and magnetic coupling energies between defects
can be readily obtained from supercell calculations. In fact, theoretical investigations into
the possibility of intrinsic point defect driven ferromagnetism in otherwise non magnetic
compounds have been previously carried out for several systems such as CaBg [233], CaO
[234]. The spin states of point defects in semi-conductors are determined by several com-
peting factors such as symmetry driven orbital degeneracy, the possibility of Jahn-Teller
distortions and coulomb interactions between localized electrons. For example, vacancy
sites in systems such as CaBg, CaO or SiC, are characterized by the high symmetry, ei-
ther octahedral or tetrahedral around the vacancy site. This invariably leads to a highly
degenerate single particle spectrum, which may then present high spin states. In CaO for
instance Coulomb repulsion stabilizes the two holes occupying the degenerate molecular
orbital associated to the Calcium vacancy Ve, in a triplet ground state [234]. However, for
a Si vacancy in cubic SiC, the occurrence of a magnetic Jahn-Teller distortion stabilizes the
spin singlet relative to the triplet state otherwise expected from the 7; symmetry and the

degenerate single particle spectrum [235]. Once it is ascertained that a certain point defect
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within the material under investigation indeed exhibits a spin polarized ground state, the
question of inter-defect magnetic coupling can then be addressed.

In the case of HfO,, it was initially suggested that the detected magnetic moments
probably arose from partially filled d-orbitals derived from Hafnium atoms coordinating
Oxygen vacancies (Vo) in the system. Since the nominal valence of Hf in HfOj is 44, which
leaves Hf atoms with an empty d-shell, the name “d° magnetism” fits the case in question
rather well. However, upon testing the above conjecture using DFT electronic structure
calculations, we find that Oxygen vacancies in monoclinic HfO, exhibit a doubly occupied
singlet ground state that cannot support a magnetic moment. Further investigations reveal
that the observed ferromagnetism is most likely due to the presence of Hafnium (cation)
vacancy sites (Vyy) that form high spin states derived mainly from the Oxygen 2p orbitals
coordinating the Vy. Interestingly, Hafnium vacancies in monoclinic HfO,, are radically
set apart from cation vacancies in systems such as CaQO, by the complete lack of symmetry
around the vacancy site. The defect single particle spectrum is completely non-degenerate
and yet, as our DFT calculations show, they exhibit magnetic ground states. In what fol-
lows, we present a detailed account of our DFT calculations that investigate both the local
electronic structure of the relevant point-defects and the inter-defect magnetic couplings
needed to produce a ferro-magnetic ground state in HfO,. After a brief glance first at
the ground state electronic structure of stoichiometric HfO, in the monoclinic phase, we
look at the nature of Oxygen vacancies in HfO,. We then present results for the case of
Hafnium vacancies and also investigate some interesting differences between the Vyys in

monoclinic, tetragonal and cubic HfO,.

5.2 Computational Details

The DFT calculations are carried out using the LCAO electronic structure code SIESTA [236].
The local spin density approximation (LSDA) is chosen as the approximate exchange-
correlation (XC) potential and in particular, the Ceperly-Alder [237] parameterization of
the XC potential is employed. Test calculations using the generalized gradient approxima-
tion (GGA), are seen to yield qualitatively similar results. We use the numerical localized
atomic orbital basis set implemented in SIESTA including polarized orbitals with an en-
ergy shift of 0.01 eV [236]. Standard norm-conserving scalar relativistic pseudo-potentials
generated using the Troullier-Martins scheme [238] are employed. The pseudo-atomic or-

bital (PAO) basis set and pseudo-potential configurations employed for each of the atomic
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species involved in the calculations are listed in table 5.1. Note that the Hf-4f states are
included in the core. k-point sampling is done over a 6x6x6 Monkhorst-Pack (MP) mesh
for the twelve atom monoclinic unit cell and the mesh is scaled appropriately for larger
cells. For instance, a 3x3x3 MP mesh is used for a 2x2x2 supercell containing 96 atoms.
The energy cutoft defining the equivalent planewave cutoff for the numerical integration
grid is set at a value of 250.0 Rydbergs. In all cases, the atoms in the supercell are relaxed

until all the forces are smaller than 0.05 eV /A.

Atomic Species | Electronic Configuration Basis set
Hf [Xe 4f14] 6s25d* 6s-DZP,5d-DZ
¢} [He]2s?2p? 2s-DZ,2p-DZP
N [He|2s%2p3 2s-DZ,2p-DZP

Table 5.1: The electronic configuration used for the generation of the pseudo-potentials
and the PAO basis sets employed for various atomic species are shown. SZ - single zeta,
DZ - double zeta, DZP - double zeta plus polarization

5.3 Defect free HfO,

Monoclinic HfO, crystallizes in the Baddeleyite structure with 12 atoms or 4 formula units
in the primitive unit cell (Fig. 5.1(a)). Within this structure, each Hf cation is coordinated
by 7 O ions, while two non-equivalent O ion sites coordinated respectively by 3 or 4 Hf ions
can be identified. Henceforth in the text, the O ions surrounded by 3 nearest neighbour
(NN) Hf ions are labeled as O3 and the ones surrounded by 4 NN Hf ions are labeled
0O4. Each Hf ion therefore has 3 O3 and 4 O4 nearest neighbours. Some calculated and
experimental structural parameters for the bulk unit-cell of monoclinic Hafnia are shown
in table 5.2. As is usually the case, LDA is seen to slightly under-estimate the lattice
constant in comparison to experiment. The LDA band structure of stoichiometric HfO,
is shown in Fig. 5.1(b). The band gap E, although under-estimated in comparison to the
experimental value of 5.8 eV, is still substantially large at ~ 3.6 eV. One would therefore
expect the position of various mid-gap defect states to be relatively insensitive to the band
gap error and the defect physics to be accurately described within LDA /LSDA for a range
of Fermi energies. The top of the valence band (VB) in HfO, is composed predominantly
of O-2p states while the conduction band (CB) is chiefly Hf-5d in character. Also, the

0-2s states are seen to be very deep in energy and do not hybridize strongly with any of
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Figure 5.1: (a) The bulk unit-cell of monoclinic HfO, is shown with the larger Hf ions
shown in blue and O ions in red. Panel (b) shows the LDA band structure of monoclinic
HfO,. The Fermi level at 0 eV, is aligned with the top of the valence band. In (cl) the
total density of states corresponding to the band structure shown in Fig. 5.1(b) is plotted.
(c2) PDOS for the Hf—5d states (c3) PDOS for the O—2p states (c4) PDOS for the O-2s
states. Clearly the top of the VB of HfO, is composed mostly of O-2p orbitals while the
bottom of the CB is Hf-5d in character.
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Parameter | Calculated | Experimental
a(A) 5.103 5.1187
b/a 1.018 1.010
c/a 1.032 1.035

((degrees) 99.29 99.18

Volume(A3) 34.44 34.62

Table 5.2: Comparison between calculated and experimental parameters [229] for the bulk
unit-cell of monoclinic HfO,. a,b,c are the lengths of the 3 cell vectors while 3 is the angle
between cell vectors a and c¢. The volume indicated is the volume per formula unit.

the other states. This is evident from the partial density of states (PDOS) depicted in
Fig. 5.1(cl-c4)

5.4 Oxygen Vacancies

We investigate first the electronic structure of Oxygen vacancies (Vo) in HfO, to test the
hypothesis that partially occupied Hf-5d states centered around Vg sites could support
ferromagnetism [231]. In the monoclinic structure there are two inequivalent Vg sites : i)
Vo coordinated by three Hf atoms (Vg3), and ii) Vo coordinated by four Hf atoms (Vy).
The local geometry around both kinds of Vs is shown in Fig. 5.2. A description of the
various defect formation energetics is outside the scope of our work (see reference [229]),
as our main focus is on the electronic and magnetic structure of the defects. However its
worth noting that Vo3 is stabler than Vo, by about 62 meV suggesting that the former

might be the slightly more predominant form of V.

(a) VO3 (b) VO4

Vo

Hf

Figure 5.2: The geometries around Oxygen vacancies Vo3, Vo4 are shown. The dummy
atom at the site of the O vacancy is included for clarity and shown in green. The Vqu
site forms an imperfect tetrahedron while the V3 site forms an almost planar trigonal
structure with the coordinating Hf atoms.
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Figure 5.3: Spin resolved total DOS for Oxygen deficient HfOy. The defect states are
labeled according to figure 5.2 based on the type of Vg they represent. Vg3 and Vo,
represent occupied mid-gap states while VO4* and VO3* denote the empty anti-bonding
type states at the bottom of the conduction band. The vertical line indicates the position
of the Fermi level (Er = 0 eV). Note that both Vg3 and Vo4 are doubly occupied in their
neutral ground state and are non-magnetic.

An Oxygen vacancy in both the three and four fold coordinated case leads to the
formation of a set of impurity levels, with a low lying level in the HfO, band gap (labeled
Vo3 and Voy) and a set of higher lying levels just below the conduction band (labeled V{4
and V§,, see figure 5.3). These impurity levels are formed from a re-hybridization of the
dangling 6s and 5d orbitals of Hf atoms coordinating the vacancy site. Of these states, the
lower lying one in the band gap is filled by two electrons while the higher lying states are
empty. Thus Vg is an n-type defect as it results in two electrons occupying conduction
band derived cation orbitals. These electrons in the perfect crystal would nominally occupy
0-2p orbitals which form part of the valence band. The LDOS shown in Fig. 5.4 provide a
view of the charge density distribution of the various V states in space. Its interesting to
note that the doubly occupied mid-gap states (Vo3 and Vo) are localized in the interstitial
region of the vacancy with lobes pointing towards the dangling Hf ions. The higher lying
empty defect states (V§,; and V§,) meanwhile are localized on the Hf ions around the

vacancy and the Hf-5d contribution to the charge density is also apparent.

The non-magnetic nature of the ground state for both Vo3 and Vo, is apparent from
the the PDOS in Fig. 5.3 wherein the doubly occupied defect state is seen to be completely

non-spinpolarized. Furthermore, the system remains effectively semiconducting and the
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Figure 5.4: Iso-surfaces showing the spatial distribution of the charge density for the Vg
derived defect states are shown. Panels (a) and(c) show the density iso-surfaces for the
low lying mid-gap states Vo3 and V4 respectively. Panels (b) and (d) present the density
iso-surfaces for the higher lying sub-CB states V{,; and Vg, respectively. Clearly the
bonding states Vo3 and Vo4 are well localized within the interstitial region at the vacancy
site while the anti-bonding type V§,; and Vg, show significant amplitude on the Hf ions

directly coordinating the vacancy.
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Vs are unlikely to contribute any free carries to the system. It is worth analyzing the
orbital symmetry of the Vg states in order to understand why they do not lead to a
magnetic ground state. If we assume for the moment that the Hf atoms coordinating the
Vos and the Vs sites form a perfect tetrahedron and a perfect trigonal plane respectively,
resulting in local Ty and C3, symmetries, then the single particle molecular orbital ground
state in each case would be a completely symmetric and non-degenerate a; and | singlet
respectively. Similarly the higher lying o-bonding single particle states would be a t, triplet
in the Vo4 case and a ¢ doublet in the Vo3 case. Deviation from perfect symmetry, as
in the actual case, of course means that the degeneracies of the higher lying states are
lifted and the energy levels suitably reordered. Nevertheless, the ground state remains an
orbital singlet. The higher lying states (labeled V{3, V§, in either case) are well separated
in energy from the low-lying singlet level. Configurations with one electron promoted to
the higher lying states lie prohibitively higher in energy relative to the ground state thus
ruling out electron promotion. Since two electrons occupying an orbital singlet anti-align

their spins, the resulting ground state is non-magnetic.
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Figure 5.5: Spin resolved total DOS for Oxygen deficient HfO, under additional p and n
doping is presented. (a) Calculated DOS in the p-doping case for a (Vo3, No) system in a
48 atom supercell. The V3 state is singly ionized and spin-splits with a magnetic moment
of 1ug. The N-2p states are also indicated. (b) Calculated DOS in the n-doped scenario
for a Vou type vacancy in a 48 atom supercell. The higher lying Vg, state is now partially
occupied and exhibits a weak spin-polarization. The Fermi level is set at 0.0 eV.

We then investigate the effect of additional doping of the Oxygen deficient system

starting with partial p-doping achieved by substituting an electron acceptor like N at an
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O site (Np). In figure 5.5(a) we present the DOS for a (Voz, No) system, bearing in
mind that the situation for a (Vo4, No) system is qualitatively the same. In this case one
electron is removed from the Vg level, and it compensates the hole in the N-2p states. This
therefore represents the oxygen vacancy state in its singly ionized (V{)) configuration. The
V{§ configuration would be stable in real samples when the Fermi level occupies a mid-gap
position between 1 eV to 0.5 eV from the conduction band minimum (CBM). Owing to its
localized nature, the defect level spin splits with a magnetic moment of 1 up per vacancy.
We then check whether these localized moments on the V interact with each other by
considering a larger supercell containing two V3 and two Ng and comparing total energies
for ferromagnetic and anti-ferromagnetic alignment of the magnetic moments on the two
Vos sites. We find very little difference in the total energy irrespective of the V3-Vos
separation and so we conclude that the isolated moments are not magnetically coupled.
Thus the mid gap Vg states cannot support ferromagnetism either at double or single

occupation and the system can at best be paramagnetic.

Although HfO, is a wide gap dielectric material with very low n-type carrier concen-
trations in the conduction band, we study the prospect of additional n-doping in Oxygen
deficient HfO, in order to investigate the effect of occupying the higher lying Vg, and
V&, states. We consider 48 atom supercells containing one Vg site with an extra electron
added to the supercell. A neutralizing positive background charge is also applied. Since
the V{3 and V{,, states are situated just below the conduction band the extra electron
occupies these states. Interestingly both the Vg, and Vg, states exhibit some degree of
spin-polarization with a magnetic moment of ~ 0.04pup and ~ 0.4up per cell for V§,; and

64 respectively. Figure 5.5(b) presents the calculated DOS for one Vo4 with additional
electron doping. Therefore even the higher-lying Vo derived states seem capable of sup-
porting local moments provided they are fractionally occupied. To check however, if these
defect states are capable of giving rise to ferromagnetism, we consider a 96 atom supercell
with two Vo4 defects and introduce two extra electrons into the cell. We compare the total
energies of the parallel and anti-parallel configurations of the local moments around each
vacancy site. In the parallel configuration, the total magnetic moment on the supercell is
~ 0.6pp and in the anti-parallel case the total moment is seen to be ~ Oup. This indicates
that the two electrons added are approximately localized one on either Vg site with a
moment of ~ 0.3up per site. However the magnetic coupling between the two Vg sites is
seen to rather small at ~ 1 meV. Hence it seems that none of the defect states associated

to Oxygen vacancies in Hafnia are capable of producing long range ferro-magnetism.
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5.5 Hafnium Vacancies

In this section we present the electronic structure of Hafnium vacancies (Vj¢) in monoclinic
HfO, and investigate whether Vy; derived defect states can lead to ferromagnetic order.
In monoclinic HfO,, each Hf atom is coordinated by seven O atoms three of which are
of type O3 and the remaining four of type O4. The two types of O ions differ in their
Hf coordination number in the crystal as described previously . For the purposes of the
following discussion, around a given Hf ion site, we label the 3 first NN O3 type ions around
the site as O4 and the 4 NN O4 type ions by Og. O ions beyond a first NN distance from
the Hf site under consideration are labeled as O¢ regardless of their local coordination.
The local geometry around a Hf site is shown in Fig.5.6(a). In the perfect crystal, the
O-2p levels are fully filled and form the bulk of the valence band. Since Hf is a cation with
a 4+ valence, the removal of a neutral Hf atom introduces four empty states among the
O-2p levels. The spin occupation of these four states establishes whether or not the Vi
system is magnetic.

At this point we present our LSDA results for the ground state of Hf deficient HfO,. We
consider a 2x2x2 supercell containing 96 atoms. Only one Hf vacancy is introduced in the
supercell and upon relaxation the O atoms are seen to move outwards around the vacancy

site by about 0.15 A. In figure. 5.6(b) we present the DOS for the supercell in the fully re-
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Figure 5.6: (a)Local geometry at a Hf site in monoclinic HfO, is shown. The two types of
O ions directly coordinating a Hf site (see text) are indicated with the O, type ions shown
in red and the Op type ions in green. The larger Hf ion is shown in blue. (b) Spin resolved
DOS for one Vi is a 96 atom HfO, supercell. The top of the VB is spin-polarized with
hole states mostly confined to the minority spin. Eg is set at 0.0 eV.
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laxed geometry. The valence band is clearly spin split, with the compensating holes mostly
confined to the down spin states resulting in an almost half metallic ground state with a
magnetic moment of 3.52 upg per vacancy. Prior to relaxation the system is completely half
metallic with an integer magnetic moment of 4 ug per vacancy. The relaxation involves a
considerable redistribution of the hole density over the O atoms around the vacancy site as
shown if figure 5.7, with the magnetism coming predominantly from the O, type atoms.

The observed charge re-ordering is driven by large scale re-hybridization, upon relaxation,

Figure 5.7: (a) Density iso-surface (in green) for the highest, minority-spin Vji; derived
hole state in the fully relaxed geometry is shown. In panles (b) and (c), the hole density
before (b) and after (c) geometric relaxation is presented. For clarity only the O ions
directly surrounding the Vs site are shown. During the course of relaxation the charge
density (hole density) is re-distributed clumping mainly on the three O4 type O atoms.
As a result the Op type atoms lose most of their spin polarization. The central atom is a
dummy atom included only for clarity.

of the orbitals constituting the impurity levels with the crystalline surroundings. We find
that the holes clump together on and around the O, atoms and their nearest O¢ type
neighbours. Figure 5.8 shows the localization of the magnetic moment around the vacancy

site, where this outward spread in the spin polarization during the course of relaxation is
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evident.
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Figure 5.8: Localization plot for the magnetic moment inside the supercell before and after
relaxation. The quantity presented is pol(R) = f:’MR r2dr [ dQ[p;(7) — py(7)] against R.
pol(R) is the spin polarization from a shell of thickness dR at radius R where R is measured
radially outward from the vacancy site. Note the redistribution of the magnetic moment
towards outer shells upon relaxation.

Having studied the real space distribution of the magnetic moment, we now look at
the symmetry aspect of the defect states. Looking at the local symmetry around the Vi
site, in the spirit of a defect molecule model, we find a trivial C'; point group for the seven
coordinating O ions. Thus the localized defect orbitals generated from combining the
dangling O-2p orbitals form a set of non-degenerate levels, and the high spin state arises
from single occupation of the four topmost defect levels (insets of figure 5.9). Interestingly
the calculated magnetic moment (~4up) cannot originate from a single set of orbitally
degenerate defect levels even in the most symmetric octahedral coordination. In fact the
largest orbital degeneracy allowed is just three fold, and a total spin S=2 for a configuration
of four spin 1/2 particles is ruled out by the Pauli principle. This means that in any case
a set of non degenerate orbitals must be involved in the high spin configuration. As non-
degenerate orbitals differ in single particle properties (kinetic and ionic energies), the final
configuration of the four spin 1/2 particles is decided not just by mutual Coulomb repulsion
or exchange energy but by an interplay between all contributions in the Hamiltonian.

Looking at the relative energetics of different possible electronic configurations of the
defect levels helps to see what stabilizes the high spin ground state. To this end, we perform

fixed spin moment calculations, for the two limiting cases of S=2 and S=0 (see table 5.3).
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Figure 5.9: Magnetic moment per Vyp as a function of the average distance from the
vacancy site of the seven coordinating Oxygen ions. If the O ions are artificially forced to
move inwards towards the Vi center, the magnetic moment is seen to decay. In the two
insets, schematic representations of the high spin S=2, and non-magnetic S=0 state are
depicted.

From the calculations it emerges that the high spin configuration is expensive with regards

~ AFEps (meV)

- o Un-relaxed | Relaxed

Kinetic 1440.79 194.99
Electrostatic -435.59 -136.42
Exch-corr -176.57 -204.75
Total -171.38 -146.18

Table 5.3: Energy differences AEps = Es—o — Fs—y between the fixed-spin configurations
S = 2 and S = 0 for various contributing terms in the Hamiltonian are shown. Both
the relaxed and un-relaxed geometries around the Vi site are considered. The kinetic
energy terms favour the low-spin S = 0 configuration while the electrostatic and exchange-
correlation energies favour the high-spin S = 2 state.

to kinetic energy but favourable exchange and Coulomb energy stabilize it. It is likely
that the higher lying orbitals are anti-bonding in character with larger kinetic energies. In
fact, one expects that analogous to what happens in molecules, if the O ions around the
vacancy (in the crystal) are artificially squeezed in towards the vacancy, thus driving the
system highly kinetic, the higher lying defect levels would be emptied out accompanied by

a fall in the magnetic moment. This is indeed seen to be the case as shown in figure 5.9.
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As it turns out, at the equilibrium distance in the crystal (~2.28A), the magnetic moment
is close to 4pup.

Next we address the question of the magnetic coupling between isolated vacancies, by
calculating the total energy of a supercell containing two Vi and comparing the energy
between the ferromagnetic (Epy) and antiferromagnetic (Exr) alignments of the local mo-
ments on the two Vi sites. We consider 96, 144 and 192 atom supercells corresponding to
Vit concentrations of 6.25%, 4.16% and 3.12% respectively. The strength of the calculated
magnetic coupling as a function of the nominal Vy; concentration is presented in table 5.4.

Clearly the ferromagnetic alignment is always energetically favorable, and most remarkably

Ve concentration AE (meV)
6.25% (1) “113.66
1.16% (2) ~50.56
3.12% (3) 1381

Table 5.4: Energy differences AE = FEpy — Ear between ferromagnetic and antiferro-
magnetic alignment of the magnetic moments of two different vacancy sites. The first
column indicates the defect concentration and the number in bracket the number of Hf
sites separating the two vacancies.

the coupling appears rather strong, in particular for short Vy;—Vyy distances. This leads
us to attribute the observed ferromagnetism in HfO, thin-films [231] to Hf vacancies. Map-
ping the calculated values of AE onto a simple first neighbour Heisenberg model suggests

Curie temperatures above room temperature for concentrations above 6.25%.

In order to achieve a better understanding of the origin of this ferromagnetic ordering
we perform an extensive study of the charge distribution by means of Miilliken population
analysis. The main features are: (a) the O ions in the cell are polarized to different degrees
depending on their orientation and distance relative to the vacancy site but always with
the same sign, (b) the Hf ions in the cell are also polarized but importantly, the sign of
polarization is opposite to that of the O, and (c) the total polarization of all the O ions
in the cell is 3.92up and that for the Hf ions is -0.40up, leaving a moment of the cell
of 3.52up. This suggests that the magnetic coupling between the O ions in the cell is
mediated by minority spin electron delocalization across the Hf bridge connecting the O
ions. This applies also to O ions belonging to two different Vi sites. The delocalization is
larger when local moments on the two Vyy are ferromagnetically aligned resulting in lower

kinetic and exchange energies relative to the anti-ferromagnetic case.
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5.6 Vy; in cubic and tetragonal Hafnia

Cubic Tetragonal Monoclinic

high-spin low-spin low-spin

Figure 5.10: Schematic showing the spin occupation of defect molecular orbitals formed at
cation vacancies under different symmetries as predicted by simple molecular theory. In
the cubic O, symmetry a high-spin S=1 ground state is expected while a low-spin S=0
configuration is expected for the less symmetric T; and C; geometries.

Having looked at the electronic structure of Hafnium Vacancies in monoclinic Hafnia
in some detail, we now study some interesting differences between Vs in the monoclinic
phase and the more symmetric tetragonal and cubic phases. Although the tetragonal and
cubic phases occur at very high temperatures where ferromagnetism is not an issue, the
local magnetic structure of the Vs in these phases is still worth investigating especially
to see how the higher symmetry effects the results. Note that the Hf ion coordination
number in the tetragonal and cubic phases is eight as opposed to seven in the monoclinic
phase. In the cubic phase all of the eight O ions are equivalent because of the O} symmetry
while in the tetragonal phase with T, symmetry around a Hf ion, the eight O ions form
two groups of four equivalent O ions. The two sets of four 4 O ions differ in their Hf-O
bond distance by about ~ 0.2A. However, in all three phases the formation of a Vy; leads
to the creation of four hole states at the top of the O-2p valence band. In a simple defect
molecule model, the spin-occupation of the four hole states is determined simply by the
local symmetry around the defect. Thus a S=1 high-spin ground state is predicted for

the Oy symmetry in the cubic phase while a S=0 low spin state is predicted for the Ty,
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and ('} symmetries of the tetragonal and monoclinic phases as illustrated schematically in
Fig. 5.10. However, as seen earlier for Vi in the monoclinic phase, the localized nature of

the defect states invariabhlv hrines electron-electron interaction into nlav which micht lead
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Figure 5.11: Calculated density of states for a 108 atom supercell of tetragonal Hafnia with
one Vi (left panel). The top of the VB is spin polarized with the hole density confined
to down-spin states. In the right panel, the spatial distribution of the charge density for
the Vi derived hole states. The holes are see to be mostly localized on the eight O ions
directly coordinating the Vi site.

DOS for a 108 atom supercell of tetragonal Hafnia with one V¢ is shown in Fig. 5.11.
The supercell exhibits and integer magnetic moment of 4.0up and is half metallic with the
holes confined to the minority spin channel. The hole density is also seen to be localized
on the eight O ions coordinating the Vi with a slightly larger contribution coming from
the four O ions that are closer to the vacancy site. Note that the eight O ions relax
outwards by ~ 0.11A. In the case of cubic Hafnia, one would expect a similar high-spin
ground state for Vyy this time also aided by the higher O, symmetry. However, rather
counter-intuitively, the ground state is seen to be a low-spin state driven by a localized to
delocalized transition of the hole charge density. We consider an 81 atom supercell of cubic
Hafnia containing one Vy¢. Prior to geometric relaxation around the vacancy site, a high-
spin S=2 configuration is obtained for the Vy; derived hole states with a magnetic moment
of 4.0up on the supercell. Furthermore the hole density is seen to be localized on the eight

O ions coordinating the Vg site. When the geometry around the Vi is allowed to relax
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Figure 5.12: Calculated DOS for an 81 atom supercell of cubic Fluorite Hafnia containing
one Vi site. In the un-relaxed geometry, the Vi derived hole states are fully spin polarized
(a). Post geometric relaxation around the Vi site, the hole density is no longer spin
polarized (b). The corresponding charge density iso-surfaces (in green) for the Vy; derived
hole states before (c) and after (d) relaxation are presented. The delocalization of the hole
density over the supercell is apparent in (d)
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however, the magnetic moment on the cell vanishes and a S=0 low-spin configuration is
stabilized. It is seen that the magnetic moment on the cell decreases during the process
of geometric relaxation as the O ions coordinating the Vi move outwards by ~ 0.15A as
shown in Fig.5.13. The relaxation is also seen to be symmetric with no distortion of the
octahedral cage formed by the O ions. In the relaxed configuration, the hole density in real
space is found to be delocalized over almost all of the O ions in the supercell (see Fig.5.12).
A Miilliken population analysis of the atomic charge on representative O ions situated at
first and third NN separation from the Vi site is presented in table 5.5. The changes in the
atomic charge and local spin-polarization on the two O ions considered clearly bring out
the delocalization of the hole density with relaxation. One might understand the reason
for this localized to delocalized transition as follows. In all of the three crystalline phases

considered, the geometric relaxation of the O ion cage around the Vg is outwards from
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Figure 5.13: Decay of the magnetic moment on the Vy; center with geometric relaxation
around the site. The average distance from the vacancy site of the eight coordinating O
ions (Rp) serves as a measure of the degree of relaxation.

the center of the Vi site as if in a breathing mode. Thus the overlap between the dangling
O-2p orbitals decreases as the O ions move away from the Vi, center and away from each
other. This in turn leads to a decrease in amplitude of the defect molecular orbitals in
the interstitial regions and the holes are effectively forced to localize in more atomic-like
orbitals. In the monoclinic and cubic phases where all the O ions are not equivalent the
hole density is able to re-distribute itself amongst a subset of the O ions whose 2p orbitals
still over-lap to a sufficient degree. Thus in the monoclinic phase about 80% the hole
density post relaxation is found on the O4 type ions. In the cubic phase however, in the
absence of any distortion, all the eight O ions are equivalent and the increased confinement
of the hole density around the ions is energetically unfavourable owing to an increase in

coulomb-repulsion most of which comes from self-interaction. Thus the holes delocalize
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Onni Onns
N ilon Mjon Nl‘lon Mjon
LSDA (un-relaxed) | 3.025 | 0.431 | 3.362 | 0.002
LSDA (relaxed) 8271 | 0.0 |3.360| D.0

ASIC(relaxed) 3.267 | 0.2 |3.423 | 0.03

Table 5.5: A Miilliken population analysis of the charge and spin-polarization on represen-
tative O ions in the supercell is presented. Oyy; represents an O ion directly coordinating
the V¢ center. Onn represents an O ion at a 3" NN distance from the Vi;. Nl-lon is the
total down-spin charge on the ion and m;,, is the total spin-polarization on the ion. LSDA
results both pre and post relaxation are shown. For the ASIC calculation the relaxed
LSDA geometry is used.

completely in an effort to minimize the coulomb self-repulsion. In order to study whether
self-interaction indeed has a role, we recalculate the ground state for the Vy; center in cubic
Hafnia using the approximate self interaction correction scheme ASIC. The « parameter of
ASIC is set to 0.5 as is appropriate for mid to wide gap Oxides and we use the fully relaxed
LSDA geometry for consistency. As expected, within the ASIC scheme a more localized
configuration for the holes is obtained and the spin-polarization of the hole density is also
partially restored. The total moment on the supercell is found to be ~ 2.7 5 which suggests
that the localization achieved is not perfect. The bulk of the hole density and magnetic
moment are however located on the eight O ions around the Vyy site as is apparent from

the Miilliken population analysis in table 5.5.

5.7 Summary and conclusions

In summary we perform DFT calculations investigating the possibility of intrinsic defect
driven ferromagnetism in HfO,. We find that Oxygen vacancies as such form non-magnetic
impurity levels unless p-type co-dopants are present. The presence of a sub CBM reso-
nance state also leads to the formation of weak local moments on Vg sites in the presence
of extra electron doping when the Fermi-level is just above the CBM. However, in both
cases the Vg derived states are rather localized and show little magnetic interaction, rul-
ing out the hypothesis of d” ferromagnetism [231] in bulk HfO,. In contrast Hf vacancies
show a high spin state with an associated magnetic moment of ~3.5 pup. In contrast to
cation vacancies in highly symmetric lattices, Vi centers in monoclinic Hafnia offer a more
general mechanism for a magnetic ground state based on two facts: (1) symmetry driven

orbital degeneracy is not a pre-requisite for the existence of a high-spin defect ground state
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(2) a set of closely spaced single particle levels together with strong exchange might be
sufficient for the same. These findings suggest that a wider class of systems, not restricted
by symmetry and free from the possibility of Jahn-Teller like distortions, might actually be
open to the possibility of intrinsic defect ferromagnetism. Significantly, the Vi centers are
also ferromagnetically coupled via minority spin electron delocalization across the bridging
Hf sites, with a large coupling strength at short inter-defect distances. However, while
the magnetic coupling strength in itself is strong enough to sustain Curie temperatures
above room temperature, the short range of the interaction requires rather large Vy; con-
centrations. Recent calculations by Osorio-Guillen et.al [239] show that the equilibrium
concentration of Vi defects in bulk Hafnia are several orders of magnitude lower than that
required for magnetic percolation. On the other hand, ferro-magnetic response is experi-
mentally detected only in badly treated and highly granular thin-film samples and never
in the bulk crystalline phase. Furthermore, the magnetic moment in the thin-film samples
is seen to decay with time [232]. These observations in turn suggest that there might
be significant out-of-equilibrium contributions to the defect concentration in the as grown
thin-film samples. Nevertheless given the lack of systematic controlled experiments and
indeed detailed experimental characterization of such “ferromagnetic” thin-film samples,

theoretical calculations [240, 241] on the subject carried out to date remain speculative.
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Chapter 6

Investigation of n-type donor defects
in Co doped ZnO

6.1 Introduction

Zn0 is a piezoelectric [242] transparent conductive oxide [243], in which free-carriers coex-
ist with optical transparency [244]. If magnetism could also be successfully incorporated
through transition metal ion doping, ZnO would become the ultimate multifunctional ma-
terial, with semiconducting, magnetic, optical and mechanical properties. This would
indeed have a profound impact on the emerging field of spintronics [245] with applications
in optoelectronics [246] and quantum computing [247]. Moreover it would allow us to go
beyond the (Ga,Mn)As paradigm [248], whose practical use is severely hampered by the
low ferromagnetic critical temperature. This is why Co doped ZnO (Zn0O:Co) is perhaps
the most studied among all the dilute magnetic oxides. Since room-temperature ferro-
magnetism (RTF) in ZnO:Co thin films, was first demonstrated in 2001 by Ueda et al.
[249], a number of experimental groups have reported similar findings [250, 251, 252, 253].
However, over the same period, several other groups have also reported the absence of
ferro-magnetism in ZnO:Co thin-films [254, 255, 259, 257, 260] detecting either paramag-
netism or spin-glass behaviour in some cases while in others the ferro-magnetic response
was attributed to metallic Co nano-particles. While it has not been possible to reach a
universal concensus on the problem in the face of several conflicting reports, numerous
trends systematically linking the presence or absence of ferro-magnetic response in these
thin-films to the experimental growth and processing conditions have nevertheless emerged.

In what follows we list some of the more commonly reported experimental findings that
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help to clarify the current state of affairs with regards to ZnO:Co.

i) Spectroscopy confirms that Co?" substituting Zn is the center responsible for all
the different magnetic phases found experimentally. These include RTF [256, 257, 258],
paramagnetism [259, 257] and spin-glasses [260].

ii) RTF is detected experimentally from magnetometry [249, 251, 252, 253] or from mag-
netic circular dichroism [261, 250]. The critical temperature (7¢) is not usually measured
and magnetic hysteresis at room temperature is taken as the smoking gun for RTF.

iii) The saturation magnetization (M) and the remanence (M,) are always small. Hence
a secondary phase as the source of RTF is often difficult to rule out. However, except for
metallic Co, the phase diagram of ZnO:Co is populated only by non-magnetic materials
or antiferromagnets with low Néel temperatures (CoO, Coy03, Co304, ZnCoy0y4). The
coercive field is typically small (~ 100 Oe) and weakly temperature dependent.

iv) M is usually smaller than 3ug/Co expected for Co*", with values as low as
0.01 pup/Co [257]. This suggests antiferromagnetic interaction among Co?* leading to
spin-compensation [259, 258, 262]. Notably there are reports of moments exceeding the
spin-only value [253, 263, 264].

v) Growth conditions and post-growth processing are crucial for the magnetic state.
Chemical methods [250, 259, 262] and molecular beam epitaxy [265] generally lead to para-
magnetism, while pulse laser deposition produces RTF films [249, 251, 252, 253]. Typically
oxygen deficient growth [253] at tuned substrate temperatures [266, 267, 268] promotes the
RTF. Similarly annealing in vacuum enhances the magnetic moment and produces ferro-
magnetism [257, 268, 269, 270], while annealing in oxygen has the opposite effect [270, 271].
Clearly sample morphology and intrinsic defects are important for the magnetic state.

vi) The role of free carriers is unclear. Exposure to Zn vapors, supposed to produce free
carriers via the generation of interstitial Zn (Zn;) donors, turns paramagnetic samples into
ferromagnets [272]. However, measurements on samples sequentially annealed in reducing
and oxidizing atmospheres, reveal little correlation between the electrical conductivity and
the magnetic state [273]. Similar conclusions are valid for Al- and H-doping [274].

vii) Recent experimental [275] and theoretical [276, 277] evidence on ZnO points to
oxygen vacancies (V) as the main source of oxygen deficiency but not of free carriers.
These instead are attributed to unintentional H-doping. Exposure of ZnO to Zn increases
the Vo concentration but not that of Zn;. Thus the promotion of RTF due to Zn vapour

exposure [272] must be re-attributed to an increase of the Vo and not of the free carriers.

viii) Electron paramagnetic resonance [278] suggests the presence of two magnetic cen-
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ters. These are both related to Co?*, although they present fine differences in the signal.
Interestingly for a nominal Co concentration in the region of 5% the two centers appear
with similar abundance.

Existing mechanisms for ferromagnetism in the diluted limit cannot explain this com-
plex collection of phenomena. The Zener model, remarkably effective for dilute magnetism
in the ITI-Vs [279], lacks of its foundations when applied to Zn; ,Co,O. First, there is
little correlation between carriers and magnetism [273, 274], and, when present, carriers
are electrons and not holes. The exchange coupling between electrons and local spins is
about five times smaller than that for holes [279] and typical T¢’s are tiny at realistic
carrier densities. Similarly super-exchange must be ruled out [280]. This produces only
short range coupling and RTF can be obtained only for a Co concentration, x, above the
nearest neighbour (NN) percolation threshold. For the wurtzite lattice this is 20 %, much
greater than the typical experimental concentration.

Finally a modification of the Zener scheme, where the magnetic interaction is mediated
by large hydrogenic orbitals associated to intrinsic defects was recently proposed [281].
This “donor impurity band exchange” (DIBE) model predicts ferromagnetism below the
donor percolation threshold and therefore does not need free carriers. Although the mean
field Tc obtained with realistic parameters for Zn;_,Co,O is extremely small (~10 K)
[281], the model is frequently used to justify the experimental results.

Thus, we turn to atomistic density functional theory (DFT) simulations in order to
investigate in detail the electronic structure of Co doped ZnO at the microscopic level with
the eventual aim of proposing a mechanism capable of explaining the myriad experimental

observations.

6.2 Computational setup

Our DFT calculations are carried out within the LCAO basis set and pseudo-potential
framework implemented in the STESTA [282] code. Standard norm-conserving pseudopo-
tentials constructed using the Troullier-Martins [283] scheme are employed. The electronic-
configuration used in constructing the various pseudo-potentials and the basis set employed
for each atomic species are listed in table 6.1 The basis set is specially optimized for bulk
ZnO and extra “ghost” basis functions [282] are included at vacancy sites to accurately
describe the charge density in empty regions. Nonlinear core corrections are included in

the pseudo-potential for the transition metal atoms viz., Zn and Co. k-point sampling
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Atomic Species | Electronic Configuration Basis set
Zn [Ar]4s?3d!° 4s-DZ,4p-DZ,3d-SZ
O [He]2s%2p* 2s-DZ,2p-DZ,3d-SZ
Co [Ar]4s'4p®53d™ 4s-D7Z,4p-DZP,3d-DZ
H il 1s-DZP,2p-DZ

Table 6.1: The electronic configuration used for the generation of the pseudo-potentials
and the pseudo-atomic orbital (PAO) basis sets employed for various atomic species are
shown. SZ - single zeta, DZ - Double zeta, DZP - double zeta plus polarization

for Brillouin zone integration is done using a k-grid cutoff of 16 A which translates to
a 10x10x6 Monkhorst-Pack mesh for the primitive ZnO unitcell and a 3x3x3 mesh for a
128 atom supercell. The k-point grids for other supercell sizes are scaled appropriately.
For the real space integrations involved in the solution of the Poisson equation and the
estimation of the exchange-correlation potential, a grid cutoff (equivalent to plane wave-
cutoff) of 650 Ry is chosen. Note that the use of core-corrections in the pseudo-potentials
necessitates the use of a large real space cutoff to ensure proper convergence of total energy
and forces. Geometrical relaxations are performed using standard conjugate gradient min-
imization until all the Hellmann-Feynman forces are smaller than 0.04 eV /A. For supercell
geometry relaxations, the cell volume is held fixed at the equilibrium volume of a pure
ZnO supercell of the same size. Thus the volume relaxation due to the presence of dopants
and defects which is usually expected to be rather small is neglected and only the inter-
nal degrees of freedom are allowed to relax. The exchange-correlation (XC) potential is
treated within our approximate self interaction correction scheme (ASIC) previously intro-
duced (see chapter 4). The « parameter in ASIC is set to a value of 0.5 which is appropriate
for wide-gap semiconductor systems [285, 286]. For the LSDA component of the XC poten-
tial, the Ceperley-Alder [284] parameterization of the correlation energy functional is used.
As discussed earlier, local and semi-local XC potentials such as LSDA/GGA are found
to be severely inadequate in their description of strongly-corellated and magnetic systems
such as transition metal oxides that contain localized d-electrons. In addition to overcom-
ing most of the problems with LSDA/GGA in the electronic structure, the ASIC scheme

also improves on the exchange parameters for the magnetic transition metal oxides [286].
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6.3 Defect free ZnO

In this section we briefly review the ground state electronic structure of pure un-doped
7m0, focussing in particular on the shortcomings of the LSDA approximation and the
improvements afforded by the ASIC scheme. ZnO crystallizes in the wurtzite structure
where in each Zn and O ion is tetrahedrally coordinated by 4 O and Zn ions respectively.
Table 6.2 shows some of the calculated (LSDA) and experimental cell parameters for the
primitive unit cell of ZnO. Note that since the ASIC energy functional strictly speaking is
not variational and thus does not satisfy the Hellman-Feynman theorem, for consistency
we carry out all geometry optimizations using the LSDA energy functional. In spite of
several short comings in describing the electronic spectrum of transition metal oxides, the
LSDA geometries are usually accurate to with-in a few percent of experiment. The error
made in the lattice constant of ZnO is seen to be less than 1% with the LSDA slightly
overbinding the structure. Also structural relaxations around various defect centers in ZnO

are expected to be qualitatively accurate within LSDA. The ground state band-structures

Parameter | Calculated | Experimental
a(A) 3.23 3.25
c(A) 5.18 5.21

u 0.380 0.382
Volume(A3) 23.39 23.83

Table 6.2: Comparison between calculated and experimental parameters [287] for the bulk
unit-cell of wurtzite ZnO. The parameters a and c respectively are the lattice vectors
lying in and perpendicular to the hexagonal plane while u is the internal parameter of the
wurtzite structure. The volume indicated is the volume per formula unit.

of perfect ZnO calculated within LSDA and ASIC are shown in Fig. 6.1(a) together with
the corresponding DOS. The top of the valence band (VBT) in ZnO is primarily O-2p in
character while the bottom of the conduction band (CBM) is mainly composed of empty
Zn-4s states. One of the main shortcomings of LSDA is the severe underestimation of the
band-gap E; in ZnO. The predicted LSDA gap in our calculation is ~ 0.96 eV well below
the experimental gap of ~ 3.4 eV. The band gap error in LSDA although not critical for
the description of pure ZnO itself, has major implications for the electronic structure of
Zn0O when defects and dopants, which might exhibit mid-gap states, are introduced. Thus
formation energies of various native defects in ZnO as a function of the chemical potential
calculated using LSDA must be corrected for the error in E; [276, 288]. Furthermore, due

to the small value of E;, deep donor (acceptor) states derived from conduction (valence)
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Figure 6.1: The calculated ground state band-structures of defect free ZnO from both LDA

and ASIC are shown (panel a). ZnO exhibits a 2p-4s gap with the CBM being primarily |
Zn-4s in character while the VBT is built mainly from O-2p states. The Zn-3d manifold §
occurs at about 7-8 eV below the VBT while the O-2s states are very deep. In (b) valence :

band PDOS for ZnO from LSDA and ASIC showing the inter-mixing between the Zn-

3d and O-2p states is presented.

ASIC lowers the energy of the localized Zn-3d states

and reduces the amount of Zn-3d+0O-2p mixing in comparion with LDA. The Fermi level
aligned to the VBT is set at 0.0 eV
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band orbitals might be incorrectly described as being shallow. A second discrepancy in
the LSDA electronic structure of ZnO is the incorrect placement of the Zn-3d states in the
valence band spectrum. Valence band photo-emission spectra of ZnO [287] place the Zn-3d
manifold about 7-8 eV from the valence band top (VBT). However LSDA under-estimates
the binding energy of the localized Zn-3d states due to the self-interaction error. This
results in an over-delocalization of the Zn-3d electronic states and some excessive Zn-3d
and O-2p mixing. This is apparent from the PDOS shown in Fig 6.1(b). ASIC however
improves the description on both counts, firstly by opening up the band gap to ~ 3.2eV
which is much closer to the experimental gap and secondly by lowering the energy of
the Zn-3d states thus avoiding spurious band mixing between Zn-3d and O-2p states. The
valence band spectrum of ZnO in ASIC is in fact in very good agreement with experimental

photo emission spectra (PES) [287].

6.4 Co in ZnO

We now look at the electronic structure of ZnO both in LSDA and ASIC when a small
percentage of Co is substituted at the Zn site. For this purpose we consider a 128 atom
supercell of ZnO in which two Zn ions are replaced by Co, which translates to a Co con-
centration of ~ 3.0%. The two Co ions are well separated to minimize Co-Co interaction.
The valency of Co in ZnO:Co is nominally Co?*. Since the ionic radii of Zn** (0.74 A)
and Co%" (0.72A) are quite similar, there is only a rather small relaxation of the geometry
around the Co site with the coordinating O ions relaxing inwards by ~ 0.01A. However,
the shortcomings in the LSDA spectrum of ZnO carry over into the description of ZnO:Co
and are further compounded by the presence of Co states in the gap. As the local sym-
metry of the ligand field around substitutional Co is tetraherdal, the Co-3d orbitals split
into a set of e and ¢, states in the crystal. Note that the symmetry of the states is not
strictly e and ¢, as the tetrahedral symmetry is not perfect in ZnO and the degeneracy of
the two e and three t, states is thus slightly lifted. However the e and t5 labels provide
a useful way to group the two well separated sets of states. Furthermore the exchange
splitting is larger than the crystal field and Co?*t stabilizes in a high-spin state with 5
up-spin and 2 down-spin electrons resulting in a local moment of 3ug per ion. The 2
down-spin electrons occupy the two e derived states which are lower in energy leaving a
set of 3 empty t, states. Experimental X-ray photoemission spectra (XPS) measurements

on Zn0:Co thin films [289, 258] exhibit two main Co derived features (1) a peak in the
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Figure 6.2: Spin resolved density of states for ~ 3% Co doped ZnO calculated from

LSDA (a) and ASIC (b) are shown.

The green and blue shaded regions indicate up-

spin and down-spin Co PDOS respectively. Panels (¢) and (d) present a magnified view of
the PDOS for Co. LSDA underbinds the Co-3d states and incorrectly places the occupied
down-spin 3d states just at the conduction band minimum (CBM). ASIC rectifies the prob-
lem by lowering the energy of the occupied Co-3d manifold. Accordingly the first primary
Co-3d peak occurs at a binding energy of ~2.5 eV in good agreement with experiment
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Co-3d partial density of states (PDOS) near the top of the valence band (VB) at a binding
energy Ep of ~ 2.0 — 3.0 eV and (2) a broad secondary peak at around an Eg of 7.0-8.0
eV with a diffuse tail due to hybridization with O-2p states from the VB. However, as
evident from Fig 6.2 and also supported by earlier literature [290], the binding energy
of the electrons in the partially filled Co-3d orbitals is underestimated in LSDA and the
minority e states of Co?" are placed incorrectly at the Fermi level virtually pinned at
the CBM. In fact a slight charge transfer between the e states and the conduction band
results in a magnetic moment of ~ 3.1up per Co in LSDA. ASIC rectifies this erroneous
description by lowering the energy of the Co states and seems to be in remarkably good
agreement with experimental spectra. Firstly, the minority spin e states are placed at
about ~ 2.5 eV from the CBM. Secondly, the fully filled majority Co-3d states exhibit a
strong hybridization with the O-2p valence band states but show two prominent peaks at
an Eg of ~ 3.0 eV and ~ 8.0 — 9.0 eV. The calculated magnetic moment per supercell is
exactly 3.0up and the system remains semi-conducting. The local magnetic moment on
the Co?* ion calculated from a Miilliken population analysis is found to be 2.7uz. Its also
worth noting the position of the empty minority ¢, states that are placed roughly about
1.0 eV above the CBM. Thus, as neither the occupied nor the empty Co derived states are
close to the CBM, the electronic structure of Co in ZnO is somewhat incompatible with
a carrier mediated picture of ferromagnetism in the DIBE form. Carriers introduced by
hydrogenic donors typically occupy states very close to the CBM and its difficult to envis-
age the charge transfer necessary for strong exchange coupling [281] between such donor
states and the Co derived states. Nevertheless, in order to investigate the feasibility of the
DIBE model in closer detail, one needs to look at how the introduction of various intrinsic
defects alters the electronic structure of ZnO:Co. Several n-type intrinsic donor defects
most notably Oxygen vacancies (Vg), Zinc interstitials (Zn;) and incorporated Hydrogen
(H;) have recently been proposed in the experimental literature [253, 272, 274] as being
responsible for introducing the carriers mediating the ferromagnetic interaction between
Co?* sites in ZnO:Co. In the following section, we present the electronic structure of de-
fective ZnO containing each of the above three native defects before we go on to look at

the effect that each defect individually has on ZnO:Co.
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6.5 Native n-type defects in ZnO

We consider first the electronic structure of the Oxygen vacancy (Vo) in ZnO. Vg has a
relatively small formation energy [276, 288] and is expected to be present in abundance
in defective ZnO samples. Experimentally, concentrations of the order of ~ 10?° cm ™2 are
achieveable which translates to roughly about 1%. Although there has been some debate
until recently in the experimental literature on the role of Vg in the observed conductivity of
Zn0;, it is now widely accepted that Vg is a deep lying donor state that does not contribute
any free carries to the system at room temperature. It has also been shown theoretically
that Vo is likely to be responsible for the persistant photo-conductivity in ZnO [291].
The energetics of formation of Vo under various conditions have been widely addressed in
the theoretical literature and are not discussed in this work. To model Oxygen deficient
Zn0O, we consider a 128 atom supercell with one Oxygen atom removed. In the neutral
configuration the 4 nearest neighbour (NN) Zn ions around the Vg site relax inwards
towards the center of the vacancy by ~ 0.23A. The V¢ defect state is formed from the
re-hybridization of the dangling Zn-4s orbitals around the site and at neutrality is occupied
by two electrons thus making it a double donor impurity. In Fig. 6.4(a) the ASIC band
structure of Oxygen deficient ZnO is shown. V¢ exhibits a deep defect state in the band
gap at about ~ 2.2 eV below the CBM. This is in good agreement with experimental deep
level non-linear spectroscopy data [292] that place the Vg state at 2.1 eV below the CBM.
Furthermore the defect state is spatially localized around the vacancy site extending out
as far as the next nearest shell of O ions.

Fig. 6.3 shows the spatial distribution of the charge density for the doubly occupied
mid-gap Vo state (see also Fig. 6.4(a)). For clarity, Fig 6.4(b) also shows the density of
states (DOS) around the CBM for ZnO with V.

Zinc interstitials (Znp) in ZnO are characterized by large formation energies [276, 288|
and under equilibrium conditions are formed in much lower concentrations compared to
Vo. There has been some debate in the literature as to the identity of the native shallow
donor in ZnO that is responsible for the high n-type conductivity at room temperature.
This shallow donor has a small binding energy (Eg) of ~ 30 meV and both Zn; and H;
have been proposed as possible candidates. It has been shown recently [293] that Zn,
can be stabilized in irradiated ZnO in special Nitrogen rich atmospheres in the form of a
Zn;+Ngo complex, Ng being a Nitrogen impurity substituting an Oxygen site. However,
under standard growth conditions, the formation energy of Zn; is quite large [276, 293] and

it is unlikely to be present in concentrations high enough to explain the measured carrier
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Figure 6.3: Isosurface (in green) depicting the spatial extent of the doubly occupied Vg
defect state is shown. This corresponds to the mid-gap state seen in Fig. 6.4(a). Clearly
most of the charge density is localized at the vacancy site between the 4 coordinating Zn
ions. However there are significant contributions from the next nearset shell of O ions.
The Zn ions are shown in grey, O ions in red.

concentrations in n-type ZnQO. There are two possible interstitial sites in the ZnO lattice,
one with octahedral coordination and the other with tetrahedral coordination. Among
the two, the octahedral site is energetically much lower and we consider Zn; only in this
position. Due to the relatively large size of Zn atom, there is subtantial lattice relaxation
around the Zn; site. The Zn; ion stabilizes off the centroid of the octahedral cage closer to
the three O ions while the three Zn ions forming the octahedral cage are pushed farther
away from the Zn; ion. Fig.6.5(a) shows the local geometry around Zn;. In terms of
electronic structure, as is the case with Vg, the Znj is also a double donor in that the
defect state is occupied by two electrons in its neutral state. However, unlike Vg, the Zn;
defect state is not a mid-gap state but is resonant in the conduction band above the CBM
and therefore ionizes spontaneously with the electrons dropping down into states at the
CBM in the ground state. Thus Zn; acts as a shallow Hydrogenic donor as it produces
electrons in states close to the CBM which contribute to the electrical conductivity in
Zn0O. The band structure and DOS of ZnO with Zn; are shown in Fig.6.4(c,d). The Fermi
level (Ef) now lies in the conduction band as states near the CBM are occupied with the

electrons from Zn;.

Hydrogen is always incorporated into ZnO during growth and because of its low for-

mation energy can be present in substantial amounts. It is most likely to be the shallow
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Figure 6.4: Calculated band structures of ZnO with ~1.5% V¢ (panel a), Zn; (panel c)
and Hj(panel e) are presented. Vo exhibits a deep donor state while Zn; and H; exhibit
defect states that resonate in the conduction band. These states are spontaneously ionized
with the electrons occupying states at the CBM. Thus Zn; and H; act as shallow donors.
The DOS corresponding to the band structures are also shown in panels (b), (d) and (f)
for Vo, Zn; and Hj respectively. The Fermi level is set at 0.0 eV
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Figure 6.5: (a) The local geometry around the Zn; in the octahedral position is shown.
The Zn; is highlighted in magenta. Due to the large size of Zn, substantial geometric
relaxation occurs around Zn;. (b)The local geometry at the Hj site is shown. The H ion
(shown in blue) is incorporated in the middle of a Zn-O bond. As a result the Zn ion is
pushed outwards increasing the Zn-O distance to ~ 3.0 A. The H ion itself is located ~1.0
A from the O ion.

donor responsible for the n-type conductivity of ZnO. There are several possible sites for
H; in the ZnO lattice and its energetics at various sites have been previously discussed
[294]. In this work we consider Hy at two of the possible sites where the formation energy
is low and the resulting electronic structure is that of a shallow donor. The first of these
sites commonly referred to as the bond-center (BC) site, has the Hydrogen located in the
middle of a Zn-O bond. H; is incorporated between the O ion and the Zn ion and the
subsequent geometric relaxation increases the Zn-O bond length to ~ 3.0A with the equi-
librium position for the H ion a third of the way between O and Zn. The local geometry
around this Hj site is shown in Fig.6.5(b). A second site where H is easily accommodated
in ZnO is at an Oxygen vacancy site. This is equivalent to substituting an O ion with H.
We therefore label this defect Hp for clarity. Both H; and Hg are effectively shallow single
donor defects as they produce one extra electron to occupy states near the CBM in the
ground state. Qualitatively the electronic structure of Hy and Hq is similar to that of Zny
except that for a given defect concentration the Fermi level is set lower in the conduction
band as they produce only one electron where as Zn; produces two. This is apparent from

the band structure and DOS shown in Fig. 6.4(e,f).

Although other n-type donors such as Al, Ga have been doped into ZnO:Co in an
attempt to boost the observed ferro-magnetism , we do not study such extrinsic donors in

our work. It seems reasonable to expect that qualitatively, the mechanisms responsible for
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the observed trends in the ferromagnetism when intrinsic donors are introduced must still

be valid in the case of extrinsic donors.

6.6 Donor-dopant interactions

The basic premise of the DIBE model is that the introduction of native shallow donors
into ZnO:Co gives rise to an exchange interaction between the Co-3d states and the hydro-
genic defect states resulting in a spin-split impurity band. When the concentration of the
native donors is large enough so that the overlapping defect states percolate through the
system, global ferromagnetism results. Thus in order for the system to exhibit long range
ferromagnetism the defect-dopant system must essentially satisfy two requirements:(1) The
exchange-interaction between Co and the defect states must be strong as it is the strength
of the exchange interaction that determines T and (2) the defect states must have a
sufficiently large spatial extent enough to achieve percolation at realistic experimental con-
centrations typically < 1%. In this section we look specifically at requirement (1) by
studying the electronic structure of ZnO:Co in the presence of various native defects. Of
particular interest would be the identification of a spin-split defect band if at all present
and the relative spatial arrangements of Co and the defect center in the ZnO lattice that

are energetically favourable.

6.6.1 Zn;-Co interaction

We consider a 128 atom supercell containing one Zn; and one substitutional Co. Several
different relative spatial arrangements of the Co ion and Zn; are studied in order to gauge
the range of Co-Zn; interaction and to extract the binding energy for Co+Zn; pairs. We
find that the range of Co-Zn; interaction is rather short extending no farther than a second
nearest neighbour distance (~ 2.65A) from the Zn; position. However there is a relatively
strong binding energy of ~ 292 meV stabilizing the formation of Co+Zn; pairs with respect
to separated Co and Zn; configurations. Therefore, if both Co and Zn; are incorporated
during high temperature film-growth, Co+Zn; pairs are more likely to be formed. However,
the normally achieveable experimental concentrations of Zn; (~ 10em™2) and Co (~
102'em3) are vastly different and the amount of Co+Zn; is expected to be negligibly
small compared to the amount of Co. In Fig. 6.6(c,d) we show two different supercell
arrangements one in which the Co is at a third NN separation from the Zn; (Fig. 6.6(c))

and a second in which the Co is part of the octahedral cage directly coordinating the Zn;
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Figure 6.6: In (a) & (b) spin resolved DOS calculated from supercells containing one substi-
tutional Co and one Zn; are presented. The shaded regions indicate the Co contributions
to the DOS. The vertical line in indigo indicates the Fermi-level. In the far configura-
tion (panel a), the PDOS is simply a super-position of the PDOS for an isolated Co ion
and Zn; as interaction is minimal. In the near configuration (panel b), substantial charge
transfer occurs from the CB states onto the spin-down Co-t5 states. The resulting on-site
repulsion between the Co-3d states increases the energy of the occupied up-spin Co-3d
manifold which now lies in the band gap. However, the CB states themselves show little
spin-splitting. Panels (¢) and (d) show the supercell arrangements used for the far (a) and
near (b) configurations respectively. The Zn ions are shown in grey, O ions in red and Co
ions in blue. The Zn; is highlighted in magenta. The same color code is used for Zn,O,Co
and Zn; from here on in unless specified otherwise.
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(Fig. 6.6(d)). The former configuration is labelled far and the latter near. Note that
in the near configuration, the Co ion sits closer to the Zn; after geometric relaxation by
about ~ 0.06A compared to the other two Zn ions that form part of the octahedral cage
around the Zn; site. The PDOS corresponding to both the configurations are shown in
Fig. 6.6(a,b). It is apparent that in the far configuration, the combined PDOS is essentially
a superposition of the PDOS for the isolated Co and Zn; species. Furthermore, there
seems to be little exchange-interaction between the conduction band states near the Fermi
level and the Co derived states with the former showing no spin-polarization. The local
electronic structure of the Co ion is also found to be almost identical to that of an isolated
substitutional Co. The total magnetic moment on the simulation cell is still 3.0pp. The
local magnetic moment on the Co?* ion calculated from a miilliken analysis is found to be
2.73pup as compared to 2.71pup for an isolated Co** when no Zn; is present in the supercell.
The situation is markedly different however for the near configuration. The proximity of
the Co ion to the Zn; results in substantial charge transfer from the CB states to some of
the otherwise empty minority spin ¢, states of Co and the local magnetic moment on the
Co ion drops to ~ 2.0pup. The on-site repulsion resulting from an increase in the Co-3d
occupation moves upwards in energy all the Co-3d manifold and now the majority ¢, levels
occupy the ZnO bandgap. The total moment per supercell also decreases from 3.0pp to
2.1pp which shows that both majority and minority CB states are involved in the charge
transfer to the minority spin Co-t, states. Crucially however, there is only a very weak
spin-splitting of the CB states which one would expect from their delocalized nature and
thus the spin-polarization of the CB electrons is negligible. It therefore seems that in spite
of its charge transfer interaction with the Co ion, the Zn; does not lead the formation of a

spin-split impurity band with carriers capable of mediating long range ferromagnetism.

6.6.2 V-Co interaction

The V-Co interaction is studied by considering once again a 128 atom supercell containing
one substitutional Co and one Vg in various relative spatial arrangements. Given that the
Vo state itself is rather localized in space, the Vo-Co interaction cannot be expected to
be of very long range. Accordingly, we find negligible interaction except when the Co
substitutes one of the four Zn sites directly coordinating the Vo. However, there is a
substantial pairing energy of ~ 340 meV favouring Vo+Co pairs over well separated Vg
and Co arrangements. Two different supercell arrangements one in which the Vo and Co

are separated (far) and the other with a Vo+Co pair (near) are shown in Fig.6.7(c,d).
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The separation between the Vi and Co in the two cases is 7.20 A and 1.72 A respectively.
A small degree of geometric relaxation occurs in the near configuration placing the Co
ion closer towards the vacancy site by about 0.01 A compared to the three remaining Zn
ions. The PDOS corresponding to the supercells of Fig.6.7(c) and Fig.6.7(d) are shown
ZnO with V_and Co
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Figure 6.7: In (a) & (b) spin resolved DOS calculated from supercells containing one sub-
stitutional Co and one Vg are presented. The shaded regions indicate the Co contributions
to the DOS. The vertical line in indigo indicates the Fermi-level. (a) In the far configura-
tion, scenario remains Co-V interaction is minimal and neither the Co-3d states and the
mid-gap Vo defect state are perturbed (b) In the near configuration the Vg state is clearly
spin-split by about 0.5 eV. The energy of the Co-3d manifold is also lowered by hybridiza-
tion and the a part of empty minority spin Co-t, states now lie just below the CBM. (¢)
and (d) show the supercell arrangements used for the far (a) and near (b) configurations
respectively. The small green atom indicates the Vg site.

in figures 6.7(a) and 6.7(b) respectively. Clearly the PDOS for the far configuration is
just a superposition of the PDOS for isolated Vo and Co?'. In this arrangement, the

calculated magnetic moment per cell is also 3.0up as one would expect for Co?* and the
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local magnetic moment on the Co ion is also identical to that of isolated Co*" in ZnO.
Meanwhile the Vo mid-gap defect state remains un-perturbed by the presence of Co in
the cell and shows no spin-splitting. In contrast the near configuration presents a much
more interesting picture. The hybrid Vo+Co state is clearly spin-split by ~ 0.5 €V in a
direction opposite to that of the 3d states in Co’". However, unlike in the case of the
Zn;+Co pair, no charge is transfered to the 3d states in the Co ion. The excess of electrons
on the Co ion that results from it being a part of the Vg site, is seen to reside in the
4s and 4p states of the Co. The total magnetic moment on the supercell remains 3.0up
and the local magnetic moment on the Co ion at 2.63up is very similar to the moment
on isolated Co?*(2.71u). Interestingly, the Co-3d manifold is actually slightly lowered in
energy as a result of re-hybridization and the change in the ligand field due to the missing
Oxygen ion. The empty ¢, subset of states are in fact shifted downward and a part of
them is now seen to lie just at the CBM. A closer look at the spatial distribution of the
charge density of this new ¢, derived sub-CBM state (see Fig.6.8) shows that it is in fact
a hybrid state that is mainly Co-3d in character but also with some contribution from the
neighbouring O ions. This re-arrangement of the Co-t, states is significant as these states

are now accessible to electrons produced at the CBM from shallow donor like defects.

Figure 6.8: Spatial distributions of the hybrid Co+V states formed in the near configura-
tion are presented. On the left, the minority spin component of the spin-split mid-gap Vo
state is depicted. The up-spin component has a similar spatial distribution. Most of the
charge density resides at the Vg site but the next nearest shell of O ions also contribute.
On the right, the Co-t, derived state at the CBM is shown. The d,, character of the charge
around the Co ion is apparent but the orbitals on the O-ions surrounding the Co also make
significant contributions to the density.
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6.6.3 H;-Co interaction
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Figure 6.9: In (a) & (b) spin resolved DOS calculated from supercells containing one sub-
stitutional Co and one Hy are presented. The shaded regions indicate the Co contributions
to the DOS. The vertical line in indigo indicates the Fermi-level. (a) In the far configura-
tion, the PDOS is almost a superposition of that obtained for isolated Co?* and H; . (b) In
the near configuration, substantial charge is transferred onto the empty Co-t, states and
the resulting on-site repulsion on the Co ion, increases the energy of the majority Co-3d
states. (c¢) and (d) show the supercell arrangements used for the far (a) and near (b)
configurations respectively. The Hj site is shown in green.

As Hj is also a shallow donor type defect, its interaction with substitutional Co is
qualitatively similar to that of Zn;. As before, both far and near spatial arrangements
are setup in a 128 atom supercell with one substitutional Co and one H;. The PDOS and
supercell configurations for the far and near cases are shown in figures 6.9(a-d). There is
negligible interaction once again in the far configuration and the local electronic structure

and geometry around both H; and Co is virtually identical to that of the corresponding
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isolated species. The near configuration is created by replacing with Co, the Zn ion of the
Zn-0 bond in which the Hj is incorporated. This configuration is favoured by a substantial
pairing energy of ~487 meV and the resulting geometric relaxation involves a shrinking
of the equilibrium bond length between Co and H; to ~1.75 A as compared to what
was originally ~2.0 A between Zn and H;. The electronic occupation of the Co is also
substantially altered as almost a full electron is transfered into one of the Co-ty states
effectively changing the valence of the Co ion from Co?* to Co*. The states at the CBM
as a result are now almost emptied out. Also the on-site repulsion among the localized
Co-3d states from the extra electron increases the energy of the occupied Co-3d manifold
and the majority Co-3d states now sit in the middle of the band gap. The total magnetic
moment on the supercell falls to 2.1z and the local moment on the Co site to ~ 2.0up.
Interestingly, the states at the CBM exhibit a weak spin-split of ~0.05 eV in the same
direction as the Co-3d states. Therefore additional carriers introduced into states at the
CBM might be capable of mediating weak ferro-magnetism in this case.

Before we conclude this section it is worth emphasizing that although defect-dopant
pair formation is favoured in all of the three cases studied above, only Vo+Co pairs are
compatible with spectroscopical evidence available thus far. Zn;+Co and H;+Co pairs if
present in abundance must be spectroscopically visible from the substantial increase in
Co-3d PDOS in the gap. In contrast the spectroscopic signature of the Co ion in Vo+Co

pairs is still very similar to Co?* which is expected to constitute a major fraction of all the

Co present in any sample.
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Table 6.3: Calculated magnetic energy FEy; for various magnetic centers and different
dopants configurations. C1 and C2 are the two magnetic centers included in the simu-
lation cell and their relative concentration (concentration of each center), D is the dopant
with its concentration y, dc_co is the distance between the two magnetic centers expressed
both in A and in NN shells (in parenthesis). Some of the supercell configurations for which
Figures are provided are also referenced in the last column.

1 (z) C2 (z) D (y) dci—c2 (A)  Position D Ey (meV)  Fig.
o0 (0.015)  Co (0.015) N 3.19 (1) B 38 6.10
o (0.015) Co (0.015) 7 3.11 (1) : 62 6.10
o (0.015) o (0.015) e 4.54 (2) . 1 -
o (0.010) o (0.010) Zn; (0.010) 8.01 (3) far K| 2
Co (0.010) o (0.010) Zn} (0.010) 8.01 (3) far 1 -
o (0.010) o (0.010) H (0.010) 8.01 (3) far 1 :
Co (0.010)  Co (0.010) Vo (0.010) 8.01 (3) far <l ’
Co (0.015) o (0.015) Zny (0.015) 3.180 (1) near 629 6.12(a)
Co (0.015) C() (0.015) Ghost-Zn; (0.015) 3.180 (1) near =77 6.12(a)
Co (0.015) Co (0.015) Zny (0.015) 3.551 (1) near 3 6.12(b)
Co (0.015) 0 (0.015) Zny (0.015) 2.914 (1) near 512 6.12(c)
o (0.015) Co (0.015) Zn1 (0.015) 2.557 (1) near 731 6.12(d)
Co (0.015)  Co (0.015) o (0.010) 2.585 (1) near 10 6.13(c)
(() (0.015)  Co (0.015) Vo (0.010) 2.795 (1) near -103 6.13(d)
Co (0.015) Co (0.015) Vo (0.010) & Znj(far) 2.315 (1) near 899 -
(() (0.015) 0 (0.015) H (0.010) 3.829 (1) near 12 6.13(a)
o (0.015) o (0.015) H (0.010) 2.713 (1) near 296 6.13(b)
Cov (0.015) )V (0.015) 5.55 (2) 6 -
CoV (0.015) CoV (0.015) H (0.010) 2.30 (1) far 423 -
CoV (0.015) CoV (0.015) H (0.010) 2.27 (1) far 614 .
CoV (0.015) CoV (0.015) H (0.010) 5.55 (2) far 84 .
CoV (0.015) CoV (0.015) H (0.010) 451 (2) far 9 -
CoV (0.015) CoV (0.015) H (0.010) 6.94 (3) far 20 .

6.7 Magnetic coupling Interactions

Having looked at the electronic structure of the dopants (Co) and some of the defects that
are likely to have a bearing on the ferromagnetism in ZnO:Co, we are now in a position
to address the question of magnetic coupling. The approach is to consider supercells of
various sizes containing two substitutional Co ions and possibly some donor defects in a
variety of relative spatial arrangements. For each supercell arrangement, the total energies
of two configurations Ej; and E;; where the local spin moments on the two Co*" ions
are aligned respectively parallel (11) and anti-parallel (T]) are calculated. The difference

Ern=E-E;| is a measure of the magnetic coupling energy. For the sake of clarity we
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classify various supercell calculations as belonging to one of two categories based on the
relative spatial arrangement of the donor defects and the Co ions in the system. In the
first category donor defects if present in the supercell are always placed beyond a second
NN distance from the nearest substitutional Co ion. Thus slightly generalizing the far and
near classification discussed in the previous section, only arrangements of the far kind are
used in such supercells. In the second category of supercells, only arrangements of the near
kind are used where in substitutional Co ions always occur together with donor defects
situated no farther than a second NN distance. A summary of the calculated magnetic

coupling energies for various supercell configurations if presented in table 6.3.

6.7.1 far Configurations

First the case of two Co*" ions in the supercell with no other donor defect present is
considered using 128 atom supercell setups. These may be looked at as trivial far type
configurations with donor defects situated at inifinty. As Co?* in ZnO does not create
any carriers on its own, the only possible mechanism in this case is super-exchange which
tends to be very short-ranged. Accordingly, we find negligible magnetic coupling except
at first NN separation. In Fig. 6.10 we show the two possible arrangements in which two
Co?* ions can be a first NN distance apart. We find that the coupling is anti-ferromagnetic
(38 meV) for the in-plane arrangement and ferro-magnetic (62 meV) for the out of plane
arrangement. At second NN and beyond the magnetic interaction is virtually zero ( <
-1 meV). Furthermore, we find that the first NN configuration for the two Co*" ions is
favoured over the separated configurations by a substantial pairing energy of ~ 210 meV.
Thus a certain degree of clustering of the substitutional Co is likely under high temperature
growth conditions. Next we look at the case where additional donor defects are introduced
into 192 atom supercells containing two Co ions as before so that the donors are far from
either Co. This kind of arrangement reproduces the general scenario proposed by the DIBE
model wherein a hydrogenic donor orbital centered on a defect site is presumed to interact
with multiple Co ions located inside a characteristic effective radius causing them to line
up ferromagnetically. However, as described in the previous section, none of the most
commonly formed native defects have a strong enough interaction with substitutional Co
except when they happen to be located directly next to the Co. As a result the magnetic
coupling between the Co ions in the far configurations remains essentially unchanged with
respect to the case with no donor defect in the supercell, as evident from rows 4 to 7 in

table 6.3. The results of this sub-section are schematically summarized in Fig. 6.11.
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Figure 6.10: The two different arrangements possible for two substitutional Co ions at a
first NN separation are shown. Left panel: the “in-plane” configuration wherein the two
Co ions lie in the hexagonal plane is shown. The magnetic coupling is AF for this case.
Right panel: the “out of plane” arrangement in which the two Co ions sit in adjacent
hexagonal planes is presented. In this case the coupling is FM.
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Figure 6.11: The general physical scenario modelled by the far category of supercell cal-
culations is schematically described. In the absence of any donor defects, substitutional
Co ions in any sample are either locked in AF or FM alignment (pairs (b) and (c)) at
first NN separation or un-coupled otherwise (pair (a)). The scenario remains unchanged if
donor defects are introduced homogeneously and at random locations in the crystal with
no preference for sites close to substitutional Co. Thus the system is likely to be globally
paramagnetic with some quenching of the measued saturation magnetic moment due to
local AF interactions.
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6.7.2 mnear Configurations

From the evidence presented in the previous section, random and homogeneous distribu-
tions of Co?" and donor defects clearly cannot produce ferro-magnetism in ZnO:Co. A
certain degree of aggregation between Co?" and the donor defects seems necessary in or-
der to activate the localized Co-3d states either by charge-transfer or direct hybridization.
This implies that in real samples, the number of Co ions that can possibly take part in long
range ferromagnetism would also be limited by the defect concentration. As the achieveable
defect concentrations (x¢) are typically an order of magnitude smaller than the Co doping
concentration (x“°), only a fraction of the Co ions can find themselves in close proximity
to donor defects. In this sub-section magnetic interactions between Co ions located in near
type configurations with respect to donor defects are considered. First we look at clustered
configurations where the Co ions themselves are at first NN separation. Then we consider
the magnetic interaction between distinct Co+donor pair complexes such that the Co ions

are separated by several NN distances.

Figure 6.12: Four different supercell arrangements in which one Znp is placed in a near
type configuration (see text) with respect to two Co ions are shown. Note that the large
geometric relaxation around the Zn; can significantly alter the distance between the two
Co ions either increasing or decreasing the Co-Co separation.

In Fig. 6.12 sections of 128 atom supercells showing different arrangements of two
Co ions and a Zn; next to them are presented. The corresponding coupling energies are
presented in Table 6.3. Clearly the presence of Zn; next to either or both the Co when the
two Co themselves are at first NN separation drastically increases the magnetic coupling
strength and the FM alignment is favoured. For the case of the setup in Fig. 6.12(b), the
calculated coupling energy is small as the distance between the two Co ions is increased
drastically by the geometric relaxation around the Zn; and only one of the two Co ions has

charge transfered into its minority ¢, states. In Fig. 6.13 configurations where two Co ions
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are in close proximity to a Hydrogen and a Vg are shown and the corresponding magnetic
coupling energies are reported in table 6.3. Once again, in the case where the Hj is directly
attached to both the Co ions, the magnetic coupling is very large and ferro-magnetic.
It therefore seems that at first NN separation between the Co ions, the charge-transfer
into the Co-ty states from donor defects, as in the case of both Zn; and Hj, has a drastic
influence on the magnetic interaction. To test this conjecture, the Zn; atom in the supercell
of Fig. 6.12(a) is replaced by a set of ghost orbitals but retaining the same geometry so that
the system is the same as that of Fig. 6.12(a) except that the extra electrons introduced
into the minority Co-t, states are now absent. In this case the coupling is seen to drop to

77 meV and is also anti-ferromagnetic (row 9 of table 6.3).

Figure 6.13: Four different supercell arrangements are presented in which either a Vo or an
Hj is located in a near type configuration (see text) with respect to two Co ions. Panels (a)
and (b) show the cells with H; while (¢) and (d) show the cells for V. Magnetic coupling
energies for these configuration are presented in Table 6.3. In (c¢) and (d) the position of
the Vo is incdicated by a small dummy atom (in green).

Meanwhile in the case of the Vg directly coordinating the Co ions where no charge-
transfer on the Co-t5 sub-set occurs, only the in-plane (Fig. 6.13(d)) AF interaction between
the Co ions is strengthened (relative to the corresponding case in Fig. 6.10) while the out
of plane (Fig. 6.13(c)) FM interaction is in fact weakend. Note however that as shown
previously, the Vo-Co interaction lowers the energy of the minority Co-t, states so that
they lie just at the CBM (see Fig. 6.7) and are accessible to electrons introduced by shallow
donors. To test whether the charging of the Co-ty states boosts the strong FM coupling
even in this case, an extra Zn; is introduced into the supercell of Fig. 6.13(d) such that it is
located far from both the Co ions. Still, some of the electrons introduced at the CBM by
the Zn; are transfered onto the minority Co-t5 states and the sign of the magnetic coupling
is seen to change from AF (-103 meV) to FM (899 meV). Thus, strong FM interactions

can be realized in clustered arrangements of Co ions when the minority Co-t, states are
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activated by charge transfer from shallow donor defects. However, this mechanism is not
very relevant to long range ferro-magnetism as it requires percolation of Co ions through

out the system which is only possible for large Co doping concentrations (x“° > 20%).

We now investigate if the FM interactions activated by donor to Co-t, charge transfer
persist at longer Co-Co separations. Since donor-Co interactions themselves are significant
only at first NN separation, we consider donor+Co complexes as the effective magnetic
centers during this discussion. Thus 192 atom supercells are setup in which two substi-
tutional Co ions are placed beyond a first NN separation. Also a donor defect is placed
next to each Co ion forming a complex. The magnetic coupling energy between Co+Zn;
and Co+Hj is reported in table 6.3 and is seen to be negligible. This result however is not
surprising if one looks back at the electronic structure of Co+Zn; and Co+H; presented
earlier (see Figs.6.6 and 6.9). Although these complexes involve local charge transfer onto
Co-t, states, they do not lead to the formation a spin-polarized hybrid state with a suffi-
ciently large spatial extent. The delocalized states at the CBM are partitally emptied out
but exhibit no spin polarization as the s-d exchange interaction between the CB states and
localized Co-ty states is negligible. Thus it seems that charge transfer from Zn; and H;
derived states is ineffective with regards to boosting the FM interaction except when there

is direct over-lap between the Co-t, orbitals which happens only at first NN separation.

The magnetic coupling energies between Co+V centres (abbreviated as CoV) at vari-
ous distances are also reported in table 6.3. In the case where there are just two CoV units
separated by a second NN distance in the supercell with no other shallow donors present,
the magnetic coupling is very weak and anti-ferromagnetic (Table 6.3). Note that in this
configuration, the minority Co-t, derived states are empty although they reside just below
the CBM. However when additional carriers are introduced by adding an extra Hydrogen
atom to the supercell, reasonable FM coupling is obtained for Co-Co separations extending
to a third NN distance. Recall that hybridization between the Co-3d orbitals and the defect
state from Vg, leads to the formation of a set of localized and spin-split hybrid states in
the band gap. Fig. 6.14 shows the PDOS calculated for a supercell with two CoV centres
separated by a second NN distance and with some additional electron doping. The extra
electrons introduced now occupy the hybrid CoV state just under the CBM. The spatial
distribution of the charge density at the Fermi level is also depicted in the right panel of
Fig. 6.14 which shows that the density is mainly localized on the Co ions and some of the
O ions surrounding them. Thus it seems that the impurity band formed from the overlap

of such hybrid CoV states is able to mediate ferromagnetic interaction between Co ions
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Figure 6.14: (Left panel) Calculated DOS for a supercell with two CoV centres and some
additional electron doping is presented. The PDOS form the two Co ions in the supercell
are plotted in red and green. The spin on the two Co ions is set parallel in this case. The
Fermi-level (vertical indigo line) is seen to cut through the partially occupied hybrid CoV
states just below the CBM. (Right panel) The spatial density distribution of the hybrid
states at the Fermi level is depicted. A top-view of the supercell is shown with the c-axis
pointing out of the page. The density is seen to be localized on the Co ions with a d,,, like
symmetry but with some contributions from neighbouring O ions.
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across a few NN distances. The formation of this CoV impurity band in an energy range
that is easily n-dopable is schematically described in Fig. 6.15(a). We also studied the
evolution of the magnetic coupling strength as a function of the occupation of the impurity
band. This is done by artificially adding or removing electrons to the supercell so that the
position of the Fermi level is swept across the band. Clearly, the coupling is weak-AF when
the band is empty but turns FM and increases almost linearly as it starts to be occupied.
The coupling strength shows a maximum at an optimal electron concentration(ng,,) which
is equal to half that of the CoV concentration(x“°V). Beyond ng,, the coupling strength
decreases. It is also seen to flatten-out in some cases. This is because as electons are added
to the CoV hybrid states forming the impurity band, their energy increases and they even-
tually merge with the states at the CBM. After this happens, any further charge added
preferably goes into CB states and the occupancy of the impurity band stays constant and
so does the magnetic coupling strength. The general conclusions of this sub-section are

summarized in Fig. 6.16
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Figure 6.15: (a) A schematic level diagram for Co*", Vo and CoV is presented. Crucially
the CoV center exhibits a defect state in the “n-doping” region, something not possible
for Co?* alone. (b) The magnetic coupling energy Ej; for two 2nd NN CoV centers as a
function of the defect band electron density is shown. The electron density 6.7x10%°cm?
corresponds to one electron every two CoV.
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Figure 6.16: The general physical scenario modelled by the near type supercell configura-
tions is schematically described. Left panel: donor defects situated close to Co-Co pairs
(such as (¢)) promote strong local ferromagnetic coupling between such pairs. Meanwhile
other Co ions in the system are unaffected and pairs such as (b) are still locked in AF
coupling while pairs such as (a) are uncoupled. Right panel: Co ions otherwise isolated
can interact via Co+donor hybrid defect states that extend over a few NN shells (repre-

sented by the yellow shaded region).

The CoV complexes form such a system that can

couple ferromagnetically over a 3rd NN separation. This is equivalent to a modified DIBE
mechanism wherein the active Co dopants occur together with defect centers.
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6.8 Implications for Room Temperature Ferromag-

netism

Taking stock of the DF'T results presented in the previous sections, we now discuss the
implications for room temperature ferro-magnetism (RTF) in ZnO:Co. We consider a
mechanism which aims at explaining the experimentally observed trends in Zn0O:Co based
on two magnetic centers viz., substitutional Co®" ions and CoV complexes. The first of
these centers is responsible only for short range coupling, while the second can instead
sustain relatively long range interaction via a fractionally filled impurity band. Can this
alone produce RTF? As with other diluted systems, percolation theory [295] sets a strict
condition for a magnetic ground state in the thermodynamic limit, that is, the concentra-
tion of the relevant magnetic impurity should exceed the percolation threshold x.. This
threshold depends on the range of the interaction and for the fcc lattice x.. is 19.8%, 13.7%,
6.2%, 4.9% and 3.4% for magnetic interaction ranges extending respectively to Ist, 2nd,
3rd, 4th and 5th NN distances [296]. Thus, the percolation threshold for Co?* with a first
NN interaction range in ZnO:Co is x° ~ 20%. On the other hand, since the range of the
magnetic interaction between CoV complexes extends as far out as a 3rd NN separation,
our two-center model predicts long range RTF if x®°V > x{°V( = 6%). However, to ob-
tain a global CoV concentration of ~6% experimentally in macroscopic samples is a near
impossible task. The Vg concentrations that can be achieved experimentally are of the
order of ~1% at best and even if we assume that a majority of Vg are likely to form CoV

€V measured over the entire sample

complexes driven by the favourable pairing energy, x
cannot be expected to be very different from ~1%. Therefore long range RTF from a
globally percolating structure of CoV complexes is unlikely.

\Y%

However, we do not need such a large x“°V in order to explain most of the experimental

magnetometry results such as the observed hysteresis in the M-H curve at room tempera-
CoV

ture. Magnetic hysteresis can be achieved for the global x well below x, since one just

needs a number of percolating clusters of CoV large enough to be superparamagnetically
blocked. We define an active cluster of CoV as a region in the sample where locally, x“°V
is larger than x9°V. There exists therefore a second global concentration threshold, that
we call the measurability threshold x,,, setting the limit of what can be detected experi-
mentally as RTF. The required size of the CoV clusters can be estimated by considering
coherent rotation of the magnetization over an anisotropy barrier DNzS? (D is the zero-

field split, Nz the number of magnetic ions magnetically blocked and S the Co** spin).
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By taking D = 2.76 cm' from EPR measurements [265] we obtain an estimate Ny = 800
for a blocking temperature Ty = 300 K. This however is rather conservative. In granular
magnets random dipolar interaction [297] or random magnetic anisotropy [298] can push
T to values considerably larger than those predicted for single particle coherent rotation
(by upto a factor 5). A similar effect can be also found in magnetic clusters arranging
according to spinodal decomposition [299]. Thus an estimate for N in the range of 250
magnetic ions is more realistic. This implies that, in order to measure hysteresis at room
temperature, one needs to find regions where around 250 CoV complexes interacting at 3rd
NN exist at concentrations larger than 6%. This seems a rather modest requirement and
calculations presented in [300] show that even for a completely homogenous and random
distribution of CoV neglecting the tendency for Co ions to aggregate, large clusters with
more than 10* CoV units can be formed at x“°V ~2%. Thus the measurability threshold
xS0V can be expected to be of the order of 1-2%. Reference [300] also presents Monte Carlo
simulations investigating the evolution of the thermodynamic properties of CoV clusters

as the concentrations of Co?*" and CoV are varied. We are now in a position to propose

[Co]
Spin-glass or
Frustrated AFM
a |
F ~
3, Long-range
i M Long-range FM
and AHE
Blocked
SPM
I
0.03 x&V=006  [CoV]

Figure 6.17: Proposed phase diagram for ZnO:Co as a function of the relative concentra-
tions of Co**t and CoV. The yellow area is the blocked superparamagnetic (SPM) region,
where both magnetic moment and hysteresis can be detected. The dashed line at small
x marks the region where most of the experiments are conducted. Finally the FM region
is partition into two regions depending on whether or not anomalous Hall effect can be
detected.

a phase diagram (see Fig.6.17) for ZnO:Co based on the relative concentration of Co?*
and CoV. At low x“° and x“°V the system is paramagnetic. As x“V is increased, the

system evolves into what we call a blocked superparamagnetic phase which is the most
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important feature of the phase diagram as it is the region relevant to most experimental
observations. This occurs for x“°V < x%V and x“° < x£°, but nevertheless allows one
the detection of both a net magnetic moment and hysteresis at room-temperature. For
larger x“°V (>6%) a global thermodynamic FM ground state emerges. Importantly bulk
measurements (hysteresis or magnetization) can hardly distinguish between the FM and
the blocked superparamagnetic phase, and more local probes are needed. In particular we
believe that a thorough analysis of neutron scattering data [298] would be highly desirable.
On the other hand as x“° is increased, the short range AFM interactions between the Co
ions become more relevant. Therefore we predict either a frustrated antiferromagnet or a
spin-glass for x“° > x%° and x“°V <« x®. Finally we partition the thermodynamic FM
region into two regions separated by the CoV percolation threshold xS°V. For x®°V > x¢°oV
percolation among CoV is achieved and one expects measurable conductivity from the

impurity band. Since this is strongly exchanged an anomalous Hall effect (AHE) should

CoV

.2V since the conductivity

be detected. This is not expected for ferromagnetism below x
is then dominated by band conductivity which is only weakly affected by Co*" since the
exchange is small. Note that this phase diagram says little about the overall conductivity
of ZnO:Co which in turn can be determined by electrons in the conduction band, which
contribute little to the magnetism. Moreover the boundary between the different phases
are somehow arbitrary and depend critically on the presence of electron donors. For in-
stance the blocked superparamagnetic region can disappear entirely for fully compensated

samples, since the long range interaction between CoVs vanishes.

6.9 Conclusions

In conclusion, using DFT calculations incorporating self interaction correction, we have
investigated the electronic structure of ZnO:Co in the presence of commonly occurring
n-type donor defects in an effort to explain the experimentally reported ferromagnetism
and related trends in thin-films of ZnO:Co. We attribute the observed room tempera-
ture ferromagnetism in ZnO:Co to blocked superparamagnetism. This superparamagnetic
phase develops at Co concentrations below those required for ferromagnetism in the ther-
modynamical limit. However, in order to explain the widely observed enhancement in
room-temperature magnetization and hysteresis in ZnO:Co thin-films upon post growth
processing under Oxygen deficient conditions, we invoke a second active magnetic center
in ZnO:Co namely the Co+Vo (CoV) complex in addition to substitutional Co*". Ferro-
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magnetic interactions between these CoV complexes extend over a few nearest neighbour
distances in the presence of additional electron doping and are strong enough to persist
up to room-temperature. This is in stark contrast to the magnetic interactions between
Co?* which are extremely short range and can also be antiferromagnetic. We show that
the introduction of CoV centres into the system can lead to the formation of ferromag-
netic clusters with a high blocking temperature. These findings draw a new roadmap
for designing diluted magnetic oxides, where the engineering of intrinsic defects plays the
leading role. For instance paramagnetic samples can be turned ferromagnetic by prolonged

exposure to Ti vapours, which produce high concentration of Vg [275].
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Chapter 7

Electronic transport properties of

Mn s single molecule magnets

7.1 Introduction

Single-molecule magnets (SMMs) often also called molecular nanomagnets, represent a
novel class of magnetic materials, wherein each individual molecule is a self contained spin
system whose magnetic properties are determined solely by intra-molecular exchange in-
teractions. Such magnetic molecules usually contain one or more transition metal centers
or rare-earth ions or even just organic radicals and occur as molecular crystals wherein
they are locked in their lattice positions by a careful chemistry of surrounding organic
fragments. Interactions between the individual molecular entities in these crystals are
however weak, and the magnetic behavior probed by experiments is often governed by
intramolecular effects. The discovery of the Mn;, class of magnetic molecules [301] that
exhibit a magnetic ground state of S = 10 with a characteristic magnetic hysteresis [301]
has boosted interest in this field enormously. The observed hysteresis in molecular mag-
nets unlike in conventional ferromagnets is not due to re-magnetization of domains, but
arises due to magnetization tunneling [302] between quantum spin states of the molecule,
as the external magnetic field realigns the degeneracies of different states. This remark-
able phenomenon can be observed in these SMMs as they have a very long spin relaxation
time, which is much larger compared to the measurement time. Indeed relaxation times
of the order of several months have been observed at very low temperatures (~ 2K). A
single molecule therefore effectively behaves like a single domain and is relatively inde-

pendent of the magnetization of its neighboring molecules. These properties make SMMs
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very attractive for a host of technological applications such as single molecule “bits” for
magnetic storage, working units “qubits” in quantum computing or as magnetic switches
which exhibit spin cross-over behaviour under external impulses such as light. The first of
these possibilities viz., the potential for use in information storage has mainly driven re-
search in the field over the past decade. These molecules have been successfully fabricated
in single-molecule transistor geometries [303, 304, 305] and phenomena such as Coulomb
blockade and the Kondo effect have been demonstrated. More recently signatures of the
magnetic properties of these SMMs have been reported in transport measurements through
these molecules [306, 307]. Regions of negative differential conductance (NDC) and com-
plete current supression in low energy excited states of these Mn, molecules were also
observed [306]. To date however, there have been no ab initio theoretical investigations of
the transport properties of these Mn;s, based magnetic molecules. In fact, the investiga-
tion of the coupling between charge transport and the molecular spin degrees of freedom
presents a fascinating and challenging problem for first principles theoretical methods, but
the large system sizes (typically hundreds of atoms) that are needed to model SMMs have
made such calculations impractical. Nevertheless, with the availability in recnet times,
of efficient numerical transport codes such as SMEAGOL [317], an ab initio treatment
of transport through Mn;» SMMs can be undertaken. In this work we study the steady
state transport properties of Mn;s molecules attached to gold electrodes, within the non
equilibrium green’s functions (NEGF') formalism. One of the questions we wish to answer
is whether a static change in the potential in the region of the molecule due to a change

in its local spin configuration can be detected in a transport measurement.

7.2 Structural properties of Mn;, clusters

The prototype SMM of the Mnj, class is the so called Mn;sAc with molecular formula
Mn50412(CH3C00)16(H20)4 and is the most intensively studied among all SMMs. How-
ever, a more recently synthesized Mn;, based molecule abbreviated Mn;;TE has been
shown [308] to be stable on gold surfaces with the potential to self organize into ex-
tended arrays and thus facilitate the individual addressing of molecules in scanning probe
microscopy (SPM) type experiments. In figure 7.1, two different views of the Mn;,TE
molecule are presented. The full chemical formula of the Mn;»TE single-molecule magnet
is [Mnj9012(L)16(H20)4] where L = 4-(methylthio)benzoate. This system basically con-
sists of a Manganese-Oxygen core (Mn;20,2) with 12 Mn ions and 12 O ions. The Mn
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ions in the core are arranged in an almost planar geometry with 4 of the Mn ions in a
central oxide cube and the remaining 8 Mn ions forming an outer ring. The core region
is surrounded by organic dendrimers which are essential for keeping the molecule stable
in solution and more so on metallic surfaces. However, they do not directly influence the
electronic structure of the Mnjy core and as such play no role in the magnetic properties
of these systems. Each of the sixteen 4-(methylthio)benzoate dendrimers has a sulphur
atom at one end that provides the necessary bonding with gold surfaces. Mn, clusters are
usually synthesized as molecular crystals made of weakly interacting individual molecules.
The crystal exhibits a tetragonal symmetry (space group I4) while individual clusters such
as Mn o TE possess an Sy symmetry axis perpendicular to the plane formed by the Mn
ions. In all, this Mn;s system consists of 12 Mn atoms, 48 O atoms and including all of

the organic functional groups has a of a total of 324 atoms.

Figure 7.1: Panel (a) presents a top view of the Mn;3TE molecule along the S; symmetry
axis perpendicular to the plane of the Mn;505 core. The organic thio-ether groups help
to keep the molecule stable in solution and on metal surfaces. The molecule features 16
peripheral sulphur atoms (shown in orange) which provide as many surface bonding sites
when placed on gold. Panel (b) shows a side view of the molecule. The following colour
code is used for various atomic species: C - green, O - red, S - orange, Mn - blue , H - cyan

For a preliminary investigation of the basic electronic structure of a free standing Mn,
core, one does not need to consider the organic thio-benzoate functional groups. Thus

we strip off the thio-ether(TE) groups and replace them by much simpler COOH groups
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on the periphery of the Mnjs core. Thus we are left with a [Mn;20,2(COOH);4(H20)4]
molecule. Note that the prototypical MnsAc cluster can simply be obtained by replacing
the H ions in the (COOH) groups with methyl groups. The resulting bare bones Mn,
system which now contains only 100 atoms is shown in figure 7.3. The Mn ions in these
clusters are six-fold coordinated by O ions but exhibit a significant Jahn-Teller distortion
which lowers the local Oy symmetry. From here on we label this stripped down version of
the molecule Mnjof where “f” indicates the formate (COOH) groups surrounding the Mn,

core.

7.3 Computational setup

To study the electronic structure of the Mn;s system we use the DFT implementation
within the SIESTA package [309] which employs a numerical pseudo-atomic orbital (PAO)
basis set and standard norm-conserving [310] pseudopotentials. The electronic-configuration
used in constructing the various pseudopotentials and the basis set employed for each

atomic species are listed in table 7.1. GGA pesudopotentials generated using the PBE [311]

Atomic Species | Electronic Configuration Basis set
Mn [Ar]4s'4p'3d® 4s-DZP,4p-SZP,3d-DZ
O [He]2s*2p* 2s-DZ,2p-DZP,3d-SZ
C [He]2s?2p? 2s-DZ,2p-DZP
H 1s! 1s-DZP,2p-SZ
s [Ne|3s?3p4 3s-DZ,3p-DZP,3d-SZ
Au [Xe 4f14 5d10] 65’ 6s-DZ

Table 7.1: The Electronic Configuration used for the generation of the pseudopotentials
and the pseudo-atomic orbital (PAO) basis sets employed for various atomic species are
shown. SZ - single zeta, DZ - Double zeta, DZP - double zeta plus polarization

functional are employed for most of the ground state DFT calculations presented as well
as the transport calculations. LDA pseudopotentials are used for test calculations with
the LSDA+U method. Scalar relativistic pseudopotentials are used for S, Mn and Au.
Non-linear core corrections are also included in the case of Mn and Au. Note that fully
filled the 4f and 5d states of Au are included in the core and only the 6s electrons are
explicitly described. Although the 5d states in Au are relatively shallow and need to be
treated in the valence for describing structural properties of Au, the density of states at

the Fermi level of Au is dominated by 6s electrons and for transport calculations at low
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bias (V < 1 eV), this minimal description of Au is mostly adequate. Since the Mn-O sub
system is the main region of interest in these molecules, the Mn and O basis functions are
based on an optimized basis set for bulk MnO and extra polarization orbitals are added for
increased variational freedom. For representing the charge density in real space, a uniform
mesh with a grid cutoff of 450 Ry (equivalent to plane wave-cutoff) is used. For both the
Mn, TE and Mn»f systems geometrical optimizations are performed using standard con-
jugate gradient minimization of forces until all the Hellmann-Feynman forces are smaller
than 0.04 eV/ A. Most of the calculations presented in this work are carried out using the
PBE-GGA exchange-correlation functional. Since the environment in the Mn-O core of the
Mn, system is similar to that in the strongly correlated oxide MnO, one generally needs to
employ extra corrections to LSDA/GGA functionals to obtain a proper description of the
system especially while calculating quantities such as exchange parameters and anisotropy
barriers which depend upon accurate total energies. Form the point of view of electronic
transport calculations, for a quantitatively accurate description of the [-V characteristics,
the level alignments of the various molecular states and especially of the highest occupied
(HOMO) and lowest un-occupied (LUMO) molecular orbitals relative to the chemical po-
tential of the metallic leads must be correct. With these issues in mind, we carry out both
GGA and LSDA+U [312] calculations of the static ground state of the Mnjof system. We
then discuss some implications for GGA based transport calculations on Mnys in terms of
the qualitative and quantitative differences one might expect with respect to a LSDA+U

description.

7.4 Ground state properties

The overall ground state electronic properties of Mni, clusters are relatively well known
and several theoretical works have addressed the magnetic properties of these systems in
detail [313]. In the Mnjsf cluster shown in figure 7.3 two different kinds of Mn ions are
indicated (blue and grey shading). The four inner Mn ions (shaded grey) which form a
slightly distorted cube with 4 O ions, have a charge state closer to Mn?* with a total spin
(s=3/2) while the eight outer Mn ions have a Mn®" charge state with total spin (s=2).
Furthermore, the inner Mn*t ions are coupled anti-ferromagnetically to the Mn®** ions
which results in a ferrimagnetic ground state for the whole molecule with a net spin of
S=8x2-4x(3/2) =10. The Mg = 10 ground state has been detected experimentally

while the grouping of the Mn ions into Mn** and Mn?* can be inferred from structural data
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as the outer Mn** have partially occupied e, states and undergo significant Jahn-Teller

distortions that are typical of Mn(III) systems.

7.4.1 Electronic structure of Mn»f

In figure 7.2 we present the partial density of states (PDOS) for Mnjsf calculated both
with the GGA and LSDA+U functionals. Values of U=6 eV and J=1 eV are chosen for
the Hubbard-U parameter and exchange parameter J respectively. Recent photoemission
results on Mn;, systems [314] place the HOMO-LUMO gap of these molecules in the region
of ~ 2 eV. In comparison, the GGA gap is rather small at ~ 0.5 eV. LSDA+U opens up
the gap as one would expect and for a value of U = 6, the HOMO-LUMO gap is 1.92
eV. From the PDOS in figure 7.2 is apparent that the molecular orbitals on either side of
the Fermi level are made up mostly of Mu derived orbitals with some contributions from
O due to hybridization. In particular the HOMO level seen in the PDOS is actually a
collection of closely spaced Mn-e, states and this description is the qualitatively the same
both in GGA and LDA+U. Furthermore there is very little PDOS near the Fermi level
coming from C atoms and the HOMO-states are therefore expected to be well localized on
the Mn-O core. A closer look at the nature of the HOMO-LUMO gap is presented in right
hand side panel of figure 7.3 where in the contributions of the Mn3* and Mn** ions to the
Mn-PDOS are shown separately. It is clear that the HOMO-LUMO gap in this system is
a essentially a distortion induced gap in a partially occupied manifold of e, states whose

degeneracy has been lifted.

A Miilliken analysis of the local magnetic moment of representative Mn®** and Mn?*
ions is presented in table 7.2. Two slightly different Mn3* ions can be identified which have
different bond-lengths to the coordinating O ions. For clarity, we label them Mn}' and
Mn3" in the table. The local magnetic moments predicted in both GGA and LSDA+U
are quite similar. Although the theoretical moments seem consistently larger than the
experimental ones, a Miilliken analysis is in general, strongly basis set dependent and
calculated local moments cannot strictly be compared to experiment. However both GGA
and LSDA-+U rightly predict the total moment to be 20.0. Thus one might conclude that
GGA and LSDA+U descriptions of the ground state of Mnjs are qualitatively similar.
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Figure 7.2: GGA and LSDA+U partial density of states are shown for the Mn»f cluster.
PDOS around the Fermi level is mainly Mn-O in character. The HOMO-LUMO gap is
underestimated in GGA at ~ 0.5 eV while LSDA+U predicts agapof ~ 1.9eV (U =6, J =
1). Also C atoms in the molecule show very little PDOS around the Fermi level (vertical
indigo line) and do not seem to interact strongly with the d states on the Mn ions

GGA | LSDA+U | Expt.
Mnj* | 3.90 3.87 3.69
Mn;* | 3.93 3.99 3.79
Mn** [ 289 [ -3.02 [ -2.34
Total | 20.0 20.0 20.56

Table 7.2: A Miilliken analysis of the local magnetic moments of the Mn ions in the Mnof
system is presented. GGA and LSDA+U moments are very similar although over-estimated
with respect to experiment [315]
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Figure 7.3: (left) The geometry of the Mnjsf cluster is shown. The 4 inner Mn ions (shaded
grey) are closer to a Mn** valence while the outer 8 ions (blue) are closer to Mn**. (right)
The PDOS for Mn** (lower-right) and Mn** (upper-right) ions, as calculated within GGA,
are shown separately. The total Mn PDOS is shown as a brown background. The occupied
and empty subsets of the e, states of the Mn®* ions form the highest occupied and lowest
un-occupied molecular orbitals in the system and there is very little Mn?* contribution to
the PDOS around the Fermi level.
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7.4.2 Electronic structure of Mn;»,TE

We now consider the full Mn;, TE molecule (see figure 7.1) to analyze the effects of attaching
the organic functional groups. In figure 7.4(a) we present the calculated GGA PDOS for
the Mn;sTE molecule. Clearly the organic TE groups have little effect on the Mn-O
derived states around the Fermi level. The HOMO-LUMO gap is still ~ 0.5 eV as before
and retains its Mn®* — ¢, character. A set of C and S derived states lie about ~ 1 eV
below the Fermi level and show little mixing with any of the Mn states. Similarly, there
are no C and S derived states immediately above the Fermi level. The Mn;sTE molecule
also has a total magnetic moment of 20up corresponding to a Mg = 10 ground state.

The next issue to address is the interaction of the Mn;,TE molecule with a gold surface.
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Figure 7.4: In panel (a),the PDOS (GGA) for a free standing Mn ;5 TE molecule is shown.
The electronic structure of the Mn-O sub-system in Mn;,TE is identical to that in Mnsf.
The only effect of the additional C and S atoms are a set of states about 1 eV below
the Fermi level which show little mixing with the Mn-O system. The total DOS for the
molecule is shown as a grey background. In panel (b), the PDOS for the device region in
7.5 is shown. A small charge transfer from the Mn;sTE molecule to the Au contacts pins
the Fermi level (set at 0 eV) to the HOMO of Mn;,TE

It has been assumed in recent transport experiments [306] that the rather long organic
functional groups act to shield the Mn;,015 core from metallic surfaces and that therefore

the molecule retains its magnetic properties in the vicinity of gold. In our simulations
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we assume that the overall structure of Mn;»TE remains the same when anchored to gold
surfaces through the thiol groups at the periphery of the molecule. Therefore we do not
perform molecular dynamic simulations for the Mn;sTE and gold system and restrict our
DFT study to an investigation of the static charging or discharging behavior of the molecule
on gold. The geometrical setup of the Mn;sTE-Au system studied is shown in figure 7.5
which is the same as the setup to be used for transport calculations. The molecule is
arranged in between two gold surfaces with the anchoring groups roughly perpendicular
to the surfaces. Periodic boundary conditions are applied in the transverse direction to
minimize finite size effects. Since the organic TE groups act only as spacers while providing
anchorage, those TE groups that do not make direct contact with the gold can be left out
of the simulation. This affords considerable savings in the computational resources as
otherwise, the lateral dimensions of the simulation cells employed would have to be much

bigger. Therefore we retain only 4 of the 16 TE groups and replace the rest by (COOH)

Figure 7.5: The set up of the scattering region used in the transport calculations is shown.
Note that 12 out of the 16 TE groups have been replaced by (COOH) groups keeping ;
only those TE that bond to the surface. Because of the low symmetry at the periphery |
Mn12TE;, it is not possible for all the 4 surface bonding S atoms to make identical contact.
The two Mn ions shaded light-purple represent the two ions whose local magnetic moments  ©
are flipped to make the Mg = 9 spin configuration. The transport (z) direction is parallel :
to the page from left to right.

groups as before. It is not known from experiments exactly how many of the S atoms

on TE groups make strong contact with gold surfaces. We orient the molecule so that

160




Transport through Mny;, SMMs 7.4 Ground state properties

two S atoms are anchored to the gold surface on either side. As the TE groups are not
exactly parallel to each other, its not possible to obtain perfect hollow site positions for
all 4 of the S atoms. Therefore we place one of the S atoms at a hollow site and adjust
the orientation of the molecule so that the other three are as close to hollow sites on the
Au surface as possible. We then keep the orientation of the molecule with respect to
the surface fixed and vary the S-Au distance by rigidly moving the Au surfaces along the
z-direction. The calculated PDOS for this “device region” is shown in figure 7.4. It is
apparent that the HOMO of the Mn;sTE molecule is now pinned at the Fermi-level and
is in fact slightly discharged. The magnetic moment of the cell is found to be ~ 19.7up
which means about ~ 0.3 electrons are transfered from the molecule to the gold. Still,
this is a relatively small perturbation and the overall magnetic structure of the molecule
is retained. Also, the PDOS from the S and some of the C atoms is seen to be broadened
out because of their strong interaction with the gold surface. Since we are interested in
studying the effect of the local magnetic structure of the Mn ;s TE molecule on its electrical
transport properties, we need to consider the Mnj5 core in alternate spin configuration and
compare the I-V characteristics for the two different configurations. Although “pure” spin
excitations of the real Mn, system that are eigenfunctions of the total spin operator S
are different from spin configurations wherein the local moments on some of the Mn ions
are flipped with respect the ground state configuration, in spin DFT, one only has access
to “impure” single-determinant states that are only eigenfunctions of S,. In principle
one has to consider many such spin-flip configurations to extract properties of real spin
excitations [316]. However, since we are only concerned with an investigation of principle,
we consider just one such spin flip configuration in which the local moments on one of the
Mn?** and one of the Mn** ions are flipped with respect to the ground state. These two
ions are shaded light-purple in the figure 7.5. Such a configuration results in a total spin
of Mg =9 for the Mn 5, TE molecule and is ~ 150 meV higher in energy than the ground
state configuration with Mg = 10. The PDOS around the Fermi level for the Mg = 9
configuration is plotted in figure 7.6. In this case, two e, derived peaks, one occupied and
one empty, in the minority-spin PDOS are apparent. These arise from the spin on one of

the Mn?* ions being flipped.
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7.5 Transport properties

In this section we present the results for both the zero bias and finite bias transport prop-
erties of the Mn;,TE-Au setup of figure 7.5. The calculations are carried out using the
NEGF transport code SMEAGOL [317]. Figure 7.5 shows the main device or scattering
region and the infinite leads attached on either side of the device are described by ef-
fective self energies [317]. Bias voltages of up to 0.4 eV are considered. The basis sets,
pseudopotentials and real space mesh parameters used are exactly the same as used with
SIESTA for the DFT electronic structure calculations. For integration along the real en-
ergy axis [317], a uniform mesh of 1536 energy points is employed over a 0.4 V bias window
which translates to an energy resolution of ~ 0.26 meV per energy point. Before we move
on to the results, we discuss some of the implications that the GGA electronic structure
holds, for a description of the electronic transport. Firstly, as the HOMO of the Mn;»TE
molecule is located at the Fermi level set by the gold surface, this system cannot exhibit
a conductance gap close to zero bias even though the molecule is effectively very weakly
coupled to the Au surface. One would expect that a method such as LSDA+U where the
HOMO-LUMO gap is bigger, might predict a mid-gap position for the Fermi-level of gold
and therefore also a conductance gap. However, in experiments one is often interested in
not just the two terminal transport properties of these magnetic molecules but more in
the interplay between the magnetism and the transport properties. Therefore one might
consider a three terminal device configuration in which the HOMO level of the molecule is
gated up or down to be level with the chemical potential of the Au surface and then study
the low bias transport properties. The GGA electronic structure is effectively equivalent
to such a gated setup. A second issue one must consider at finite bias is the position of
the unoccupied molecular states. Since the GGA gap at ~ 0.5 eV is underestimated with
respect to the experimental gap, the empty LUMO states would enter the bias window at a
much smaller value of the bias in the GGA description. Furthermore as local xc functionals
are not capable of describing Coulomb blockade type behaviour [318] in weakly coupled
systems, the LUMO states would also effect the total current as soon as they enter the

bias window. These issues should be borne in mind while interpreting the GGA results.

7.5.1 Zero bias transmission

In figure 7.6(b) the zero bias transmission-coefficient is plotted as a function of the energy

for both the Mg = 10 and Mg = 9 configurations. We focus on a narrow energy window
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Figure 7.6: Panel (a) shows the PDOS of the device region for a narrow energy range around
the Fermi level. Panel (b) plots the zero-bias transmission coefficients. The transmission
peaks appear as sharp resonances with little broadening. Also the peaks correspond well
to the Mn PDOS in panel (a).
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of ~ 0.8 eV around the Fermi level as it is the only one relevant at low bias. In figure
7.6(a) the PDOS for the device region (figure 7.5) in the same energy range is presented.
In the Mg = 9 configuration, two e, type states one filled and one empty belonging to
the flipped Mn3* ion appear in the minority spin PDOS. The transmission peaks in figure
7.6(b) appear as very sharp resonances with very little broadening. This shows that the
Mn, core is effectively very weakly coupled to the electrodes and electron tunneling as
opposed to ballistic conduction through a single molecular level is the main mechanism.
Also transmission peaks map neatly onto the Mn-O derived molecular states in the PDOS of
figure 7.6(a). As discussed earlier, the molecular orbitals of Mn;,TE are either purely Mn-
O derived or Carbon-Sulphur hybrids but there is no one molecular state that extends over
the entire Mn;oTE molecule. Therefore the system is essentially composed of individual
impedances in series viz., the TE groups on one side, the Mn, core and the TE groups on
the other side through which electrons have to sequentially tunnel through. This tunneling
behaviour is indeed observed experimentally [307] where currents of the order of tenths of

nano-Amperes are recorded.

7.5.2 I-V Characteristics

In figure the 7.7 current-voltage characteristics of Mn;sTE for both the spin-configurations
studied are presented. The calculated current is of the order of a few nano-Amperes.
Figure 7.7(a, b) plot the spin-resolved current and the total current against the voltage
respectively. The following features emerge:

The current in the Mg = 10 configuration is completely spin-polarized with the minority-
spin current being virtually zero. This is expected as one can see from the zero-bias
transmission in figure 7.6(b) that there are no transmission peaks in the down-spin chan-
nel for Mg = 10.

The current for the Mg = 9 configuration is not perfectly spin polarized and the transmis-
sion peak in the minority-spin seen in figure 7.6(b) duly conducts.

However the total current (see figure 7.7(b)) is different for the Mg = 10 and Mg = 9 con-
figurations and markdly so in some bias regions. In fact in the range between 100 meV and
200 meV positive bias, the current for the Mg = 10 case flattens out while the current for
the Mg = 9 configuration actually decreases with bias. Also in both spin configurations,
the current for negative bias is substantially smaller from that for positive bias and the
device therefore exhibits rectification.

The differential conductance(DC) corresponding to the I-V curves in figure 7.7(b) is plot-
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Figure 7.7: Panel (a) shows the spin-resolved I-V curves for the Mn;,TE molecule between
gold electrodes (see figure 7.5) The current for the Mg = 10 configuration is completely
spin polarized while the current for the Mg = 9 is only partially spin-polarized. Panel
(b) shows the total currents for both spin configurations and regions where the two differ
substantially are obvious. Panel (c) plots the differential conductance corresponding to the
currents in (b). The Ms=9 configuration shows NDC between ~ 100 — 200 meV.
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ted in figure 7.7(c). Because of the flat regions observed in both the I-V curves, the DC
is close to zero over a range of positive and negative bias for both spin configurations. In

the 100-200 positive bias range, the DC is in fact negative for Mg = 9. In order to under-
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Figure 7.8: Evolution of the transmission coefficients with applied positive bias is shown
for both the Mg = 10 (left) and Mg = 9 (right) spin configurations. The bias window is
indicated by the two vertical indigo lines. The transmission peaks clearly show a rightward
drift as the bias is increased. This originates for the fact that the Mn,,TE states are coupled
stronger to the left lead and follow its chemical potential py,. Also some transmission peaks
inside the bias window are seen to get suppressed in the 150-225 meV bias range which
explains the regions of low and negative DC seen in the I-V curves.

stand some of these observations, we look at the evolution of the transmission coefficients
under bias. The transmissions for various positive bias voltages are plotted in figure 7.8
for both Mg = 10 (left panel) and Mg = 9 (right panel). What is immediately appar-
ent is right-ward drift of all the transmission peaks towards higher energies as the bias is

increased from 0 to 300 meV. This is a clear sign that the Mn;,TE molecule is not only
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weakly coupled but also asymmetrically coupled to the leads and in this particular case
relatively more strongly to the left electrode than to the right. Therefore as the chemical
potential of the left lead (ur) is increased with respect to the right lead, the molecular
states just follow the left chemical potential as they try to equilibrate with it. Given the
complicated geometry of the TE groups that anchor the Mn;, TE molecule to the surface
this kind of asymmetric coupling is indeed possible even in reality and often likely in typi-
cal experimental situations.. The decreasing DC and flattening out of the current between
100-250 meV seen for the Mg = 10 case is also relatively easily explained. Between 75 meV
and 225 meV no new transmission peaks enter the bias window and the current therefore
remains constant. However even when some new peaks enter the bias window at around
200-225 meV, the current does not immediately increase. This might be explained by the
fact that some of the transmission peaks already inside the bias window are seen to shrink
in amplitude and therefore their contribution is simultaneously decreasing. These features
are even more pronounced in the case of the Mg = 9 configuration. Once the bias reaches
75-100 meV, the first set of transmission peaks are all inside the bias window and the DC
starts to decrease towards zero. However between 150-225 meV, some of the right most
peaks inside the bias window are seen to decay in amplitude substantially and although
a new set of states start to conduct the current actually decreases resulting in the neg-
ative DC. Beyond 250 meV however, the size of the peaks remains constant in both the
cases and the current once again rises as new states enter the bias window. Yet another
subtle feature that comes out from comparing the motion of the transmission peaks for
the Mg = 10 and Mg = 9 configurations is that in the Mg = 9 case, while all the states
are dragged along by ur,, they do so at different speeds and states that are farther away
from gy, tend to lag behind as the bias is increased. This does not seem to be case for the
Mg = 10 configuration in which the states seem to move more as a group. The reason
for this complicated behaviour of the states is not presently clear. One can however infer
from the different rates of motion of the peaks and the decrease in amplitude of some of
them that the coupling to the leads is changing dynamically under bias. The amplitude of
the transmission scales as the product of the coupling strengths I';, and 'y to the left and

right leads respectively as given by
T(E,V) = Tr[[LG}{TrGM] (7.1)

where (G is the retarded Green’s function for the scattering region. Therefore a change in

the effective coupling to either lead as a result of charge density redistribution under bias

167




7.5 'Transport properties

Transport through Mny, SMMs

Figure 7.9: The spatial charge distribution of some representative Mn, TE molecular states
close to the Fermi energy are plotted. The organic functional groups are not included for
clarity. The S1 state is the HOMO for the Mg
be spread over the Mn3*t ring. The electron in the S2 state however is forced to localize.
The HOMO for the Mg =9 configuration is the S3 state and the e, contribution from the
spin-flipped ion is notably missing. The different spatial charge density distributions of
the state might cause their effective coupling to the leads to be different. Furthermore the
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can lead to a decay of the transmission amplitudes. Also a closer look at the distribution
in space of the charge density of some of the Mn-O derived states in the static case might

offer come clues towards understanding the mechanism. In figure 7.9 we plot the charge
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Figure 7.10: Evolution of the transmission coefficients with applied negative bias is shown
for both the Mg = 10 (left) and Mg = 9 (right) spin configurations. The bias window is
indicated by the two vertical indigo lines. The transmission peaks clearly show a leftward
drift as the bias is increased and the chemical potential of the left lead is lowered. Since
the states are coupled more strongly to the left they follow py, and in doing so avoid the
bias window. Thus the current in the negative bias case is suppressed.

density distribution in space for some of the molecular states of Mn;sTE around the Fermi
level. The states plotted are indicated in the accompanying PDOS. The S1 state is the
HOMO of the Mg = 10 configuration and its apparent that the charge density is rather
uniformly spread over the ring of eight Mn** ions. However, the S2 state which corresponds
to one of the two peaks in the minority-spin channel for the Mg = 9 configuration is seen

to be essentially localized on a single Mn3* ion, viz., the one whose spin is reversed in
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setting up the Mg = 9 configuration. Thus when the local moment on one of the Mn3*
ions is flipped, the electron in the e, orbital of that ion is forced to localize as there are
no other e, states in the same energy range in the minority-spin channel between which
the electron can hop. The state plotted as S3 is the majority-spin HOMO of the Mg = 9
configuration and the missing charge at the spin-flipped Mn®" site is strikingly apparent.
Therefore, given their different geometries, the couplings to the leads of the S1, S2 and S3
states are likely to be different. It is in general difficult to precisely quantify the effective
coupling to the leads of individual molecular states but a newly developed method due to
Rungger (et. al.,)[319] valid in the weakly coupled limit is currently being used to currently
investigate the problem. Finally we look at the evolution of the transmission peaks under
negative applied bias. This is plotted in figure 7.10. As seen in the positive bias case the
molecular states are coupled preferentially towards the left lead. Therefore as the chemical
potential of the left lead pp, is now lowered to apply a negative bias, the states once again
try to equilibrate with the left lead and thus follow py,. In this case however, in doing so
they effectively stay outside the bias window and the current as a result is much smaller.
Note that effective bias window in the calculations is wider by about ~ k7" where k is the
Boltzmann constant, because of the Fermi smearing applied to the distribution functions
of the leads. The increase in current that one sees after the negative bias goes past -200
meV is essentially due to a set of originally un-occupied states entering the bias window

from above.

Before we conclude, a few comments on the quantitative accuracy of the calculations
are pertinent. One of the major issues for theoretical simulations of molecular transport ex-
periments is the uncertainty involved in the device geometry. In the case of small molecules
and devices with a limited parameter space, several different calculations in varying geome-
tries can be carried out and the results compared to experimental data. However, such an
approach is a lot more demanding in the case of systems such as Mn;» TE on gold surfaces
due to the large size of the system and more importantly the complexity of the geome-
try. The fact that these molecules are also tunnel devices only compounds the problem as
small changes in geometry can lead to sizeable differences in the calculated current. On
top of the uncertainties about device geometry, there are other issues such as the approx-
imations made with regards to xc functionals or even limitations at the theoretical level.
For instance, whether manybody effects such as Coulomb blockade and the Kondo effect
observed in these SMMs can be described within the framework of the NEGF formalism

combined with DFT is still an open question. Therefore, a fully quantitative theoretical
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description of the transport properties of these SMMs presents itself as a very challenging

problem in the field for the near future.

7.6 Conclusions

In conclusion, the electronic structure and transport properties of a functionalized Mnjs
single molecule magnet Mn;,TE are investigated in order to test whether a change in the
magnetic environment within such a molecule can lead to detectable changes in its I-V
characteristics. We ascertain that the GGA electronic structure of Mn;»TE is qualitatively
accurate both for the free standing molecule as well as the molecule in contact with a gold
surface. Then, the I-V characteristics between 0 to 400 meV for two different spin config-
urations of the molecule Mg = 10 and Mg = 9 are calculated using the NEGF transport
code SMEAGOL in a two terminal device setup. We find that the transport is mainly via
sequential tunneling which leads to currents of the order of nano Amperes. Furthermore
the device exhibits rectification properties because of weak asymmetric coupling to the
leads. The total current in the two spin configurations studied is found to be different
driven mainly by differences in wave function localization and charging effects. Regions of
negative differential conductance are also observed for the Mg = 9 configuration. These
results therefore suggest that information about the local spin state of such single molecule

magnets can indeed be identified from a detailed knowledge of the I-V characteristics.

171



7.6 Conclusions Transport through Mn;o SMMs

172




Chapter 8
Conclusions and future work

In summary, we have discussed the implementation of “beyond-LDA” density functional
approaches viz., orbital dependent functionals [52] and the ASIC approximation [55], into
the efficient numerical DFT framework of the SIESTA [54] program and presented their
application to some topics of current interest.

We began in chapter 2 by providing an overview of the underlying theoretical framework
upon which most of the work presented in this thesis is based. We summarized Kohn-Sham
density functional theory [49] and introduced the SIESTA code which is a versatile and
efficient platform well suited to DF'T simulations of large electronic systems ranging in size
from several hundred to thousands of atoms. We also presented some salient features of
the SMEAGOL code [51] which implements a numerically efficient non-equilibrium Green’s
functions (NEGF) [95] based algorithm for first principles electronic transport calculations.

In chapter 3, an overview of orbital dependent functionals and the optimized effective
potential (OEP) method [52] was presented. Two different orbital dependent exchange-
correlation functionals viz., the exact exchange (EXX) and self interaction corrected func-
tionals (SIC) were discussed in the context of the Krieger-Li-lafrate (KLI) approxima-
tion [119] to the OEP. Subsequently, their implementation in the SIESTA code was also
outlined. As an application of these orbital dependent functionals, the long standing prob-
lem of overestimation of polymer polarizabilities in DF'T was revisited and the performance
of SIC functionals in this regard was analyzed. Using a test system consisting of chains of
hydrogen molecules, we showed that at the level of the KLI approximation, SIC function-
als afford major improvements over conventional LSDA/GGA approximations in predicting
the polarizabilities of molecular chains. Interestingly, we find that SIC functionals also out

perform the exact exchange functional at the KLI level, predicting polarizabilities accu-
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rately to within 10-15% of quantum chemistry approaches such as MP4 [118]. Orbital
dependent functionals are increasingly being used to address a variety of problems for
which LSDA/GGA are inadequate. In particular, the importance of such functionals in
electronic transport calculations has been recently discussed [320, 321, 322]. We are cur-
rently in the process of implementing these functionals into the SMEAGOL code firstly for
calculating zero-bias transport properties and subsequently for calculations at low-bias in

the weakly coupled regime.

Chapter 4 presented a detailed discussion on the atomic self interaction correction
(ASIC) approxmation. This method, based on the work of Filippetti and Spaldin [129],
comes across as a computationally efficient way to rectify the shortcomings of conventional
LSDA in predicting the electronic structure and spectra of strongly correlated solids as
well as molecules. The implementation of the method within the SIESTA code was also
described and its performance over a wide variety of molecular and solid state test systems
was analyzed. In particular the scaling parameter o that accounts for screening effects
was discussed. Because the ASIC method predicts molecular ionization potentials and
removal energies accurately, it has immediate relevance in molecular electronic transport
calculations where the correct placement of the eigenvalues of highest occupied molecular
orbitals is crucial [321]. Thus, we have also implemented the ASIC method within the
SMEAGOL code and electronic transport calculations using ASIC by Toher et al, are
soon to be published [323]. In terms of future improvements to the ASIC method, we are
currently investigating two main aspects. Firstly, in order to avoid the scaling parameter
a, we are studying the possibility of employing semi-local quantities such as the Laplacian
of the density V?n, kinetic energy denisty 7 (see equation 2.36 in chapter 2) etc to derive
a more natural and self-consistent way to scale the ASIC potential in various systems.
Secondly, although strictly speaking the ASIC total energy is not variational, one might
want to calculate forces within ASIC assuming that the system is not too far away from the
Born-Oppenheimer surface. We are currently testing forces and stress calculations within

ASIC for various systems.

DFT calculations investigating the phenomenon of @ ferromagnetism in HfO, were
presented in chapter 5. Since native defects in HfO, are the most likely cause behind
the experimentally observed ferromagnetic signatures [27], we investigated the electronic
structure of both oxygen vacancies (Vo) which are n-type dopants and Hf vacancies (Vi)
which are p-type dopants in HfO,. We showed that Vo centers form doubly occupied deep

donor states and are non-magnetic in their neutral ground state. Also, additional electron
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doping or partial hole doping of the Vo defect states gives rise to local moments on the
Vo centres but does not lead to long range ferromagnetism. We showed that Hf vacancies
on the otherhand, spontaneously exhibit a spin-polarized ground state driven by strong
exchange among the O-2p orbitals that form the defect molecular orbitals. Furthermore,
individual Vi centers also couple ferromagnetically and can lead to ferromagnetism in
highly defective samples. Since the initial reports of ferromagnetism in un-doped HfO,,
similar experimental reports of high temperature ferromagnetism in un-doped thin-films of
a variety of wide-gap oxides such as TiO,, InyO3 [324] and ZnO [325] have emerged. While
some of these experimental findings have been received with scepticism in the community,
there are also other reports of ferromagnetism in oxides that have been doped with non-
magnetic impurities. For example Carbon and Copper doped ZnO thin-films have recently
been reported as being ferromagnetic (326, 327] at room temperature. Theoretical calcu-
lations on these wide-gap oxide systems seem to suggest that hole states localized on O-2p
orbitals at the top of the valence band generally lead to ferromagnetism if p-type defect or
dopant concentrations are sufficiently high [326, 328]. However, the question of whether
most of these wide-gap oxides can be doped p-type in the first place is widely debated in the
experimental community. Ferromagnetic signatures in HfO,, TiO, and In,O3 are observed
in oxygen deficient growth or treatment conditions [324] which must lead to the formation
of n-type and not p-type defects. Oxides such as ZnO are also strongly n-type and reports
of p-doping in ZnO are generally looked at with suspicion. On the other hand, there is
also some experimental evidence suggesting that the magnetic signatures observed mostly
arise from grain boundaries or thin-film interfaces and not from the bulk layers in these
samples [11, 27, 324, 325]. Thus the current scenario in this field of & ferromagnetism is
one of confusion and detailed theoretical investigations of these systems, focussing on the
electronic structure of native defects at interfaces and surfaces and their interactions with

bulk defects, are necessary in order to resolve some of the conflicting issues.

In chapter 6 a detailed investigation of the magnetism in Co doped ZnO (Zn0O:Co) was
presented emphasizing in particular the role played by native n-type defects. We showed
that substitutional Co ions only interact at first nearest neighbour (NN) separation and
by themselves cannot lead to long range order in ZnO:Co. We also showed that a random
and homogenous distribution of n-type donor defects such as oxygen vacancies (Vg), Zinc
interstitials (Zn;) and hydrogen (H;) does not in any way enhance ferromagnetism in this
system as defect and dopant interactions are short ranged. We identified instead, Co

and Vg pair complexes as the most likely candidates that can lead to ferromagnetism in
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Zn0O:Co. Furthermore, we attributed the experimentally observed ferromagnetic signatures
in ZnO:Co to blocked superparamagnetism and proposed a phase diagram for the material.
While experimental research work on transition metal doped ZnO continues in an effort
to realize high-T. ferromagnetism in these materials, it is becoming increasingly apparent
that these systems are unlikely to form ideal magnetic semiconductors [11]. Recently, it
has even been suggested that the observed ferromagnetism in some transition metal doped
oxides might not be related to the transition metal dopant at all but might instead be
a phenomenon closely related to @ ferromagnetism [11]. This debate is therefore likely
to continue into the near future. Nevertheless, the presence of local antiferromagnetic
interactions and the major role played by native defects which are inherently difficult to

control, is likely to severely diminish the utility of these materials to spintronics.

Finally, in chapter 7 we studied the electronic transport properties of a prototypical
Mn;s based magnetic molecule functionalized by organic thio-ether functional groups [48|
and attached to gold electrodes. We investigated the DFT electronic structure of the Mn;,
single molecule magnet (SMM) using both the GGA exchange-correlation functional and
the LDA+U method. We showed that the GGA and LDA+U description of the system was
qualitatively similar. We then presented the transport properties of the SMM calculated
using the non-equilibrium Green’s functions formalism implemented in the SMEAGOL
code [51]. In particular, the dependence of current-voltage (I-V) characteristics of the
SMM on its local magnetic configuration was investigated. We found the transport prop-
erties of the molecule to be dominated by tunneling type behaviour across the organic
functional groups and asymmetric coupling to the leads. We observed asymmetric -V
curves under positive and negative bias as well as localization driven changes in the cur-
rent for different spin configurations of the Mny, cluster on the molecule. Thus we show
that information about the local spin-state of the molecule can be inferred from a detailed
knowledge of the (I-V) characteristics. While the results of this work serve to illustrate
the feasibility of first principles theoretical transport calculations on these relatively large
molecular systems, a more quantitative description of the transport properties of these
SMMs requires the use of more sophisticated theoretical tools. Firstly, advanced density
functionals capable of accurately describing the strongly correlated electronic structure of
the Mnj, core in these molecules need to be employed. Secondly, the spin-orbit (SO) [329]
interaction needs to be included self-consistently into the calculations in order to investigate
the interplay between charge transport and the magnetic anisotropy in these molecules.

Thirdly, time dependence also needs to be explicity incorporated into the calculations via
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time dependent density functional theory (TD-DFT) [330], in order to model effects such
as current induced local spin excitations or magnetic relaxation within the molecule. Some
of these theoretical developments within ab initio electronic transport codes have only be-
come available recently while others are still being developed. Thus, transport calculations
on these Mn;, molecular magnets represent a very challenging and exciting problem in the

field for the near future.
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