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Abstract

The way in which we learn is the subject of considerable research within multiple disci-
plines. There is also a vast amount of on-line material available to us, causing decision-making
to become increasingly difficult. Learning preferences for decision-making processes has been
an area of substantial research in recent years given the introduction of Recommender Systems
(RSs). RSs help in decision-making processes by recommending items of interest and filtering
out undesired items, they need to learn preferences by extracting information about both the
user and the item. This thesis presents a novel approach of incorporating vagueness and un-
certainty into recommendations via Nonparametric Predictive Inference (NPI). This approach
is termed the Uncertainty Interval (UI); it is a modified version of Nonparametric Predictive
Utility Intervals. There are four Ul approaches presented: Ulypirans, Ulaps, Ulsy and Ulp;.
Each algorithm is evaluated and compared with a similar technique, Robust Bayesian Corre-
lation Learning. The Ul 4, algorithm has superior performance to the other Ul approaches
and is applied to real world data. The width of the interval reflects the amount of information
available to the RS, with a wider interval indicating little or no information. The interval

narrows as more information is incorporated into the U/ algorithm.
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Introduction

This thesis presents what I will name the Uncertainty Interval (UI) approach, a novel algorithm
that incorporates vagueness and uncertainty into recommendations. The U/ algorithm enables
a Recommender System (RS) to calculate an interval utility function for users’ preferences. This
is achieved using a modified statistical approach, Nonparametric Predictive Inference (NPI), to
allow pairwise correlation coefficients to be combined in order to produce a recommendation
for a novel item/user. This chapter describes the motivations behind the work; the challenges
to the development of this algorithm in relation to RSs are also outlined, before presenting the
goals and contributions of this work. Finally, the thesis structure of the rest of this thesis is

described.

1.1 Motivation

The way in which individuals learn is the subject of considerable research within multiple disci-
plines, including statistics, psychology, economics, computer science, philosophy, political and
social science, etc. What individuals learn and the context in which they learn may affect
decision-making processes. That is, individuals learn about their preferences and these pref-
erences, along with judgements (assessments about the external state of the world), influence
decisions. The decision-making process requires the ability to assess and filter a large amount of
information and is generally done so in the face of uncertainty, ¢.e., decisions made with limited
information about their potential consequences. Psychology research in the last four decades

has devoted a good deal of attention to an examination of how individuals process information.



One of the most cited studies on the significant ways in which human behaviour deviates from
predicted behaviour due to cognitive biases and heuristics is that of Kahneman & Tversky
(1979). The implications of cognitive biases and heuristics have been explored to challenge
the assumption that individuals can properly assess the likelihood of various outcomes so that
they can make the utility-maximizing choice among outcomes (Gigerenzer & Gaissmaier} 2011}
Simon et al., [1987).

The study of decision-making is important as individuals are makers of a choice and must
suffer the consequences of such decisions (Lindleyl |1991). The majority of decisions are not
momentary, with some decisions requiring a great deal of thought, especially if those decisions
have long term effects or have substantial costs attached. Decision theory, much like learning,
encompasses a variety of disciplines. Normative decision theory is concerned with the study
of strategies for decision-making under conditions of uncertainty in such a way as to maximize
expected utility, and is concerned with the type of decisions that ought to be made. This
approach uses rationality in order to make a decision. Although, there are those from the
Normative school of thought that may disagree that expected utility is Normative, e.g., Allais
(1953), who argues that higher moments of utility are also important. Whilst descriptive
approaches to decision-making attempts to describe what people will actually do and how
decisions are made in reality.

As individuals, we are spending increasingly more time on-line as we have more access to
the Internet via smart phones, watches, tablets, etc., see |Gunter| (2017)); Perrin (2015)); |Yonker
et al. (2015). There is also a vast amount of on-line material available to us, causing decision-
making to become increasingly difficult. Learning preferences for decision-making processes has
been an area of substantial research in recent years given the introduction of RSs and Context
Aware Recommender Systems (CARS). These systems encompass many statistical techniques,
multiple data sets and heuristics.

In addition, Relational Frame Theory (RFT) was a primary motivation behind this research.
RFT is a modern behaviour-analytic account of human language and cognition which builds
on Skinner’s (1938)) observations on reinforcement (Hayes et al) [2001)). It is based on the
assumption that higher-cognitive functioning and language are composed of relational frames,

which are patterns of generalised relational responding. That is, humans are capable of learning



through complex untrained (derived) relations and, learning occurs in relation to contextual
cues via a history of multiple-exemplar training which is non-linear (see Barnes & Roche, (1996}
Hayes & Hayes, [1989). The usefulness of RET is dependent on its ability to predict how people
will behave given generalised contexts and circumstances.

A natural extension to learning and cognition in humans, was to explore learning by Artifi-
cial Intelligence (Al) and machine learning, in particular RSs. Given that knowledge manage-
ment is a rapidly developing area that is fast changing in order to meet the demands of more
and more individuals using a myriad of on-line services and products, RSs must learn about
preferences. Statistical techniques have been employed to predict and recommend the needs
of such individuals with many companies, such as Amazon, Netflix, and TripAdvisor, etc.,
gathering data about an individual’s on-line behaviour to help their customers make decisions
about future purchases, to recommend movies, places to visit, etc. The information gathered
about on-line users is often accessible by large on-line retailers, i.e., retained preferences, social
media profiles and social tagql] This information is often utilised by RSs that assist us with
our decision-making processes. The techniques that are used by RSs are wide and varied, com-
ing from multiple disciplines to solve a common problem of recommendation (Jannach et al.
2010). Sophisticated information systems are utilised in dialogue-based recommendation via
natural language processes to evaluate reviews (Kang et all 2017)). These systems must learn
preferences, sometimes with little or no data available, and they must adapt to the user’s needs
over time. In addition, the user may also have a desire to personalise the information that they
receive. This may be in the form of their spam filter, the news stories that are promoted on
news sites or the clothes that on-line retailers suggest for them, in short, providing a tailor-made
experience for the user. Therefore the user wishes the system to learn about their preferences
just as much as businesses want their systems to learn the user’s preferences.

In addition to learning preferences, most current RSs also incorporate context. Context
is simply the environment and situation that the user is in when making an online decision.
Context is very important to how we, as humans, learn. It is also possible for the user to have
two conflicting preferences when the context is not the same. For example, the user may have

a preference for thriller novels but will select a romance novel as it is a gift. Therefore it is

1Social tags are keywords generated by individuals on a platform that are used to describe and categorise
an object, concept or idea.



important that context be accessed and incorporated into recommendations.

Finally, with the introduction of the General Data Protection Regulation (GDPR: 25th
May, 2018), which is a comprehensive regulation that unifies data protection laws across all
European Union member states, the way in which Al can learn is changing. As a result of the
implementation of GDPR personal data is to be processed lawfully, fairly and in a transparent
manner. Article 22 of GDPR is related to “Automated individual decision-making, including

profiling.”

“The data subject should have the right not to be subject to a decision, which may
include a measure, evaluating personal aspects relating to him or her which is based
solely on automated processing and which produces legal effects concerning him or
her or similarly significantly affects him or her, such as automatic refusal of an
online credit application or e-recruiting practices without any human intervention.
Such processing includes ‘profiling’ that consists of any form of automated processing
of personal data evaluating the personal aspects relating to a natural person, in
particular to analyse or predict aspects concerning the data subject’s performance
at work, economic situation, health, personal preferences or interests, reliability or
behaviour, location or movements, where it produces legal effects concerning him or

her or similarly significantly affects him or her.”

Often RSs utilise large data stores that are used for exploration and experimentation. Such
stores allow for the identification of relevant variables to produce accurate predictions. Ac-
cording to GDPR, data must be stored for a specified, limited amount of time. Some RSs
are like black box systems in that they are ambiguous in relation to how the recommendation
was made and offer no insight into the logic used to produce the recommendation. However,
the concept of collaborative filtering, explained in Section [3.3.1], is easy to understand and can
easily be explained to users even if the mathematics behind the concept may difficult to grasp.
This is at odds with GDPR as the regulation requires models to be explainable, thus trans-
parent. The last impact of GDPR on RSs is the certification of every party handling the data.
As a result, there are specific requirements for procedures, documentation, certification, and
reporting which binds every party. This affects RSs with respect to comparison and evaluate of

models. RSs rely on data sharing across the internet, between multiple parties, and sometimes
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in multiple countries. Therefore, it may become necessary to create a recommendation on a
single source of information.

This regulation will help combat breeches in data privacy such as the Cambridge Analytica
controversy that saw approximately 50 million Facebook users’ data harvested without their
consent and it was also discovered that Facebook had been collecting the data from users phone
calls and text messages. In addition, Kosinski et al.| (2013) demonstrated that digital records of
behaviour, such as Facebook Likes, are easily accessible and can be used to automatically and
accurately predict a range of highly sensitive personal attributes including: sexual orientation,
ethnicity, religious and political views, personality traits, intelligence, happiness, use of addic-
tive substances, parental separation, age, and gender. Kosinski et al.|(2013) demonstrated that
it was possible to correctly discriminate between homosexual and heterosexual men in 88% of
cases, African Americans and Caucasian Americans in 95% of cases and between Democrat and

Republican voters in 85% of cases.

1.2 Considerations for Proposed Approach

RSs are one of the most well-known Web Intelligence applications. Their primary aim is to
assist in decision-making processes by alleviating the information overload problem. User pref-
erences are typically collected via the users’ implicit (online behaviours, e.g., clicks, views and
purchases) and explicit (e.g. ratings and reviews) feedback. This feedback can be collected
from several different domains and in various formats. Information in relation to context may
also be collected, e.g, the time of day, date, type of devise used, etc. Therefore, incorporating
information that would not typically be considered for the purpose of a recommendation is
ubiquitous in RSs. However, RSs face a number of challenges in relation to providing accurate
recommendations in relation to vagueness and uncertainty in light of novelty. Displaying trans-
parency has also become an issue for RSs which now is required by law in the European Union.
Finally, producing a recommendation, for the majority of RSs, requires auxiliary information.
One of the primary challenges for this thesis is to create an accurate algorithm that utilities

only explicit feedback. Hence, the challenges faced in this thesis are:

e Consideration 1: Incorporating Vagueness and Uncertainty



RSs utilise a number of statistical techniques that combine different approaches in order
to generate a recommendation. These systems produce a point-wise recommendation
that represents the users’ preferences based on previous ratings and/or previous activity.
Such systems do not offer any interval type recommendation that would reflect vagueness
and uncertainty. In this context, uncertainty is characterised as a state in which the
individual has only imperfect knowledge and incomplete information but is still able to
assign probability estimates to the possible outcomes of a decision. Whereas, vagueness
refers to lack of precision, it is a state in which the individual does not have even the
information to make subjective probability assessments. Both vagueness and uncertainty
can be found when novelty is introduced. Novelty of recommendations is defined as the
proportion of known and unknown content in the recommended list (Tweedale et al.,
2016)). Novelty may be found in context, which may be measured in the various forms of
physical (location), social (who you are with/who is the receiver of the item), interaction
media (what device you are using) and modal (your current state of mind/mood), etc.
Novelty can also be present when there is a new user/item where there is no previous
information available. Given that there is vagueness and uncertainty within the system,
within the users’ preferences and within the context, a point-wise estimate cannot be
reflective of the users’ preferences. An interval recommendation is required to allow the
user to explicitly see that the recommendation is reflective of the amount of information

available to the system and the novelty of the context/item/user to the system.

Consideration 2: Transparency within the Recommender System

RSs also face challenging questions regarding how transparent they ought to be in relation
to what information is collected and used when making a recommendation. Transparency,
by definition, means that it (in this case a recommendation) is clear and easy to under-
stand, i.e., unambiguous or obvious. Most RSs are black boxes, in that, they offer the
user no insight into the logic or justification for the recommendations (Sinha & Swearin-
gen|, [2002). According to [Sinha & Swearingen (2002)), a good algorithm “ that generates
accurate recommendations is not enough to constitute a useful system from the users’
perspective. The system needs to convey to the user its inner logic and why a particular

recommendation is suitable for them”. In addition, Jones & Pul (2008) found that some



users were curious to know more about how the system was achieving such good recom-
mendations. According to Swearingen & Sinha) (2002); Tintarev & Masthoff] (2007); |Pul
et al| (2011)) the role of transparency in a RS is very important, and the RS can con-
vey its inner logic to the user via the explanation interface. Tintarev & Masthoff (2007)
expanded on this stating that explanations showing how the system works make RSs
more transparent and good explanations could help increase users satisfaction, making it
quicker and easier for users to find what they want, and persuade them to try or purchase
recommendations. In|Pu et al.| (2011]), they argued that the contribution of explanation is
not only to convince consumers to adopt recommendations, but also allow them to make
more informed and accurate decisions about which recommendations to utilise, and even-
tually affect users satisfaction of RSs. Explanations for recommendations are provided
by several RSs, e.g., Amazon (Mooney & Royl, 2000).

In addition, according to Article 12 of the GDPR data subjects (i.e., users) have the

right to transparent information, communication and modalities.

“The principal of transparency requires that any information addressed to the
public or to the data subject be concise, easily accessible and easy to understand,
and that clear and plain language and, additionally, where appropriate, visu-
alisation be used. Such information could be provided in electronic form, for
example, when addressed to the public, through a website. This is of particular
relevance in situations where the proliferation of actors and the technological
complexity of practice make it difficult for the data subject to know and under-
stand whether, by whom and for what purpose personal data relating to him or
her are being collected, such as in the case of online advertising. Given that
children merit specific protection, any information and communication, where
processing s addressed to a child, should be in such a clear and plain language

that the child can easily understand.”

Therefore, even though transparency has been considered an important aspect of RSs,
it is now a necessary aspect under GDPR. By allowing a system to produce an interval
recommendation, the user is given information via the width of the interval which, over

a number of interactions, demonstrates the more explicit information the user provides



the narrower the interval becomes. Hence, it is obvious to the user how the interval
is narrowing thus, providing some transparency in how explicit feedback from the user
relates to a recommendation. This allows users to meaningfully revise their input in order

to improve recommendations, producing an efficient interaction with the system.

e Consideration 3: Single Source Data

According to Google’s chief economist, Hal Varian “we really do have essentially free
and ubiquitous data” (Champkin) [2011). The information gathered about on-line users
is often accessible by large on-line retailers, utilising a range of statistical techniques
to produce a recommendation. Nowadays, hybrid RSs are common place. A hybrid
system combines two or more recommendation approaches to leverage the strengths of
each individual approach and to address data sparsity and cold-start problems. To achieve
this type of recommendation, ratings, features and demographic information are utilised,
accessing multiple social media accounts.

In light of new legislation, users of RSs have more control over their data - the data
is theirs and they have the right to be forgotten. As a result, the “ubiquitous data”
may not be so ubiquitous. While many RSs utilise such auxiliary information, the pro-
posed algorithm will use only the original data. Therefore the third consideration for
the proposed approach is to produce an algorithm, that not only incorporates vagueness
and uncertainty whilst being easy to understand, but to produce one that is accurate
whilst only incorporating data from a single source. That is not to say that our proposed
methodology is a RS in of itself, but simply that this is a first attempt at developing an

interval recommendation.

1.3 Contribution

This thesis investigates how the U algorithm can contribute to RSs by allowing such systems to
incorporate vagueness and uncertainty and to be more transparent. This research contributes
to the body of knowledge by:

Interval Based Recommendations

The primary contribution of this thesis is to incorporate vagueness and uncertainty into recom-



mendations. Existing RSs provide point-wise estimates regardless of the amount of novelty. As
accurate as current RSs have become a point-wise recommendation cannot address vagueness
and uncertainty. This can only be achieved via an interval approach based on imprecise prob-
ability. The concept of NPI and its specialisation, Nonparametric Predictive Utility Interval
(NPUI), are utilised to update recommendations in light of new information. This ensures,
that when there are few or no observations (e.g., explicit ratings), the interval is wide only

becoming narrower as more feedback is observed.

1.4 Thesis Structure

The following outlines the structure of the Thesis.

e Key Concepts
In Chapter [2| the key concepts utilised in the proposed methodology are introduced.
These include the concepts of probability, utility, vagueness and uncertainty. The notion
of exchangeability, which is a key assumption of the UI approach, is outlined, along with
Nonparametric Predictive Inference (NPI), which also builds on exchangeability. One of
the main challenges of RSs is missingness. Therefore this chapter defines the patterns of
missing values. Next, as the U algorithm utilises Pearson’s correlation coefficient, a brief
overview of this statistical technique is necessary, again with emphasis on how it relates
to exchangeability.

e Literature Review
This chapter focuses on the concepts from the literature that provide relevant insights
for the topics considered in this thesis. The concept of Relational Frame Theory from
behavioural and cognitive psychology is briefly introduced, as are Bayesian Networks from
statistics. This leads to measuring uncertainty, decision-making under uncertainty and
heuristics in decision-making. The concept of vagueness is expanded on and methods of
incorporating vagueness and uncertainty are discussed. Finally, the concept of Recom-

mender Systems (RSs) is introduced, with a brief introduction to the various types of

RSs.



e Proposed Methodology
In Chapter [4] an existing technique, Robust Bayesian Correlation Learning (RBCL) (Trof-
faes et al., 2014)), is introduced. This chapter outlines the RBCL technique and highlights
its limitations. Next, it describes in detail the proposed U algorithm, outlining its various
flavours including U Iynirans, Ulaps, Ulsq, and Ulg,. The chapter concludes by explaining
how this solution addresses the issue of vagueness and uncertainty, which arises as a result
of novelty.

e Evaluation on Simulated Data
Chapter |5| evaluates the performance of the Ul algorithm, in each of the four UI ap-
proaches, on simulated data. It first describes the methods used to simulate data. Next,
the RBCL and U1 algorithms are applied to both complete and sparse data sets, evaluated
by the interval percentage that captures the true correlation coefficient and the absolute
minimum distance from the true correlation coefficient. Finally, these algorithms are
applied to and evaluated on various distributions.

e Evaluation on Real-World Data
In Chapter [0] the best performing U algorithm is applied to the MovieLens data set,
providing a real-world example of its application. It first describes the MovieLens dataset
and its contribution to RSs. Next, as with the previous chapter, the performance of Ul
and RBCL is evaluated and presented.

e Conclusion
Finally, Chapter [7| summaries the thesis by discussing the strengths and weaknesses of

the UT algorithm and identifying a number of potential areas for future work.

1.5 Chapter Summary

Vagueness and uncertainty are present in decision-making related to novel context/user/item.
They arise due to a lack of or imprecise information and/or the inability to attach a subjective
probability assessment. Vagueness and uncertainty may give rise to inaccurate recommen-
dations. NPI has successfully incorporated vagueness and uncertainty into decision-making

processes by utilising imprecise probabilities and exchangeability. Therefore, developing a
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specialised version of NPI would allow vagueness and uncertainty to be integrated into the
decision-making process of RSs.

Lack of transparency has been found to be an issue within RSs. Transparency is not only
required by law, but users want more transparency on how recommendations are made and how
their data is utilised. Transparency engages the user, allowing for more effective interaction
between the user and the system.

This thesis presents the U algorithm, a novel interval approach for incorporating vagueness
and uncertainty into recommendations. The U algorithm enables the system, to not only pro-
vide an interval recommendation, but also provide transparency in relation to feedback. This
algorithm builds on existing statistical techniques that incorporate imprecise probabilities that
are predictive in nature. It also utilises the simple, yet commonly used, statistical technique of
Pearson’s correlation coefficient found in RSs. The following chapters describe how this algo-
rithm achieves combining various statistical approaches, stemming from the multi disciplinary

theories of decision-making and learning, to produce an interval recommendation.
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Key Concepts

In this chapter the concepts used in the proposed methodology are defined. These can be
considered as two sections. The first section defines probability, both precise and imprecise,
utility, vagueness and uncertainty. These concepts relate to decision theory and decision-making
processes. The second section defines exchangeability, missingness and correlation; all of which

are incorporated into the proposed Uncertainty Interval (UT) algorithm.

2.1 Probability

In this section there is a brief outline to the theory of probability. This introduction is focused
towards understanding the key concepts that will follow. First, some basic definitions from
measure theory are given. Next the concept of probability is introduced. The definitions
outlined in this section are taken from |Schervish (2012]).

A measure is a way of assigning numerical values to the “sizes” of sets.

Definition 2.1 Field: A nonempty collection of subsets A of a set (2 is called a field if

o Aec Aimplies A¢e€ A,
° Al, A2 e A 1mphes A1 U AQ e A.

A field A is called a o-field if {A;}2, implies U, A; € A. Therefore, if A is a o-field, then it is

nonempty, closed under compliments and closed under countable unions.
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Definition 2.2 Borel o-field: Let C be a collection of intervals in R. The smallest o-field
containing C is called the Borel o-field. More formally, let B be the smallest o-field that
contains all open subintervals in 2. This o-field is commonly referred to as the Borel o-algebra
B and accordingly each event in B is called a Borel set. As B is a o-field, it is closed under
complement, countable unions, and countable intersections and contains many subsets other

than open intervals.

Definition 2.3 Measurable Space: A pair (€2,.4), where 2 is a set and A is a o-field is

called a measurable space.

Definition 2.4 Measure: A function P: A — [0, 0] is called a measure if

e P(0)=0,
o {A}, mutually disjoint implies P(ui2; A;) = Y P(4;).

Definition 2.5 Measure Space: If P is a measure, the triplet (2,4, P) is called a measure

space.

Definition 2.6 Measurable Function: Suppose that ); is a set with a o-field A; of subsets,
and let {25 be another set with a o-field A, of subsets. Suppose that f:Q; - €2 is a function.

We say that f is measurable if for every A€ Ay, f~1(A) € A;.

Definition 2.7 Probability Space: A probability space is a measure space (€2, A, P) with
P(Q) = 1. Each element of A is called an event. If (2, A4, P) is a probability space, (X,B) is
a measurable space, and X : Q2 - X, then X is called a random quantity. If X =R and B is a
Borel o-field, then X is called a random variable. Let Pr be the probability measure induced on
(X,B) by X from P. The probability measure is called the distribution of X. The distribution
of X is said to be discrete if there exists a countable set A ¢ X such that Pr(A) = 1. The

distribution of X is continuous if Pr({z}) =0 for all z € X.

Coherence in precise probability: Kolmogorov| (1950) axioms of probability state:

° PT(Q) =1
o Pr(A)>0forall Ae A
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e Countable additivity: If Ay, As,... € A are pairwise disjoint (i.e., A;NA; =, for all i #

j), then Pr(UZy 4;) = ¥iZ, Pr(4;)

Any collection of probabilities failing to meet the three Kolmogorov axioms leads to inco-
herence and is at risk of becoming a Dutch Book argument (Kemenyl, 1955). This argument is
a system of bets that guarantees a net loss, i.e., an individual takes a gamble that guarantees

a loss irrespective of what outcome occurs.

Definition 2.8 Probability Mass Function: The probability mass function (pmf) is the
probability function which is defined for the discrete random variable X. It is denoted by
fx(x).

fx(x)=Pr(X =z)>0 for all x

Z fx(l') =1

zeQ)
Definition 2.9 Probability Density Function: The probability density function (pdf) is
the probability function which is defined for the continuous random variable X. It is denoted
by fx().

fx(x)=Pr(xeQ) >0 for all x

/:: fx(x)dz =1

Definition 2.10 Expectation: The expectation of a random variable is a weighted average of
the possible values that X can take, each value being weighted according to the probability of
that event occurring. The expectation is defined differently for continuous and discrete random
variables. Let X be a discrete random variable with probability mass function fx(z). The

expected value of X is:

E[X]=) zfx(z) =) zPr(z)

el e
Let X be a continuous random variable with probability density function fx(x). The expected

value of X is:

E[X]= [: xfx(x)de.

Probability as an expectation: Let A be any event. We can write Pr(A) as an expectation
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(prevision), as follows. Define the indicator function:

1 if event A occurs
I4=

0 otherwise

Then 14 is a random variable and

E(I4) = Z:(:)xPr(]A:x)
=O><P’I"(IA=O)+1><PT(IA=1)
:P’I"(]Azl)

= Pr(A)

2.2 Previsions and Imprecise Probability

The term imprecise probabilities categorises a variety of mathematical representations such
as convex sets of probabilities (Good, [1962; Levi, 1974)), lower previsions (Walley| |1991) and
interval probabilities (Kuznetsov, 1991; Weichselberger, 2000). In this section we will focus on
imprecise probabilities as modelled by lower previsions. While probabilities are defined on event
spaces, previsions exist on the space of real-valued gambles. The definitions in this section are

taken from |Augustin et al.| (2014))

Definition 2.11 Gamble: A gamble f on a random variable w is defined as a mapping
f:Q — R. It represents an uncertain payoff (reward) f(w). This reward is expressed in units
of some linear utility scale, e.q., if we receive double the payoff, we consider this to be twice as

good (or bad).

Definition 2.12 Linear space of gambles: Let £(.A) denote the set of all gambles, then
L(A) is a linear lattice with respect to point-wise addition, the point-wise scalar multiplication

and the point-wise ordering, i.e., every pair of elements has a least upper bound and a greatest
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lower bound.

(f+9)(w) = f(w) +g(w),and
(AN (W) = Af(w)

for any pair of gambles f and g on A, any real A and all w € 2, and

f>gifforall weQ, f(w) < g(w)

The supremum f v g of two gambles g and f on A is defined by their point-wise maximum

for all w e ().

fvg=max{f(w),g(w)}

The infimum f A g of two gambles g and f on A is defined by their point-wise minimum for all

w € .
fng=min{f(w),g(w)}

Definition 2.13 I4(w): If A is an event (A € Q), we can associate a {0, 1}-valued gamble 14,

where [, is the indicator of A. This gamble is defined as:

1 if event A occurs
Iy(w) =
0 otherwise

Definition 2.14 Previsions: The lower prevision of a gamble f, denoted P(f), represents an
individual’s supremum acceptable buying price for f. Similarly, an individual’s upper prevision,
P(f), is his or her infinmum acceptable selling price for f. Therefore, this individual is willing
to buy a gamble f for all prices s < P(f) and sell f for all prices t > P(f). For prices
P(f) < p < P(f) the individual is undecided.

If an individual assesses a lower prevision P(f) for all gambles f on some subset K of the
set L(§2) (the set of all gambles), then this defines a real functional mapping P : K — R, called

a lower prevision with domain K

P(f) represents a so-called fair price for a gamble f. As buying the gamble f for a price

s is the same as selling the gamble —f for the price —s, the lower and upper previsions are
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conjugate functions. That is to say: P(f) = —P(~f) for any gamble f. Therefore, only lower
previsions need to be considered as upper previsions can immediately be derived from them.
P(f) is superadditive, i.e., P(=f) + P(f) <0, hence P(f) < P(f). In addition, since P(f)

is superadditive, P(f) is subadditive.

Definition 2.15 Previsions as probabilities: The lower probability Pr(A) of an event
A c Q is defined as the lower prevision of its indicator I4(w) : Pr(A) = P(14). For the upper

probability Pr(A) of A, we similarly have that Pr(A) = P(1,).

Definition 2.16 Coherent Lower Prevision: A lower prevision is said to be coherent if it
avoids sure loss; this is the most important rationality criterion for lower previsions. A lower
prevision is coherent on a linear space of bounded gambles, K, if and only if it satisfies the

following conditions
e P(f)>inf,eq f(w) (accepting a sure gain).
e P(A\f)=AP(f), for gambles f and g € L, A >0 (non-negative homogeneity).
o P(f+g)>P(f)+L(g) (superadditivity).
Definition 2.17 Precise Prevision: If the lower prevision P(f) and the upper prevision

P(f) for a gamble f happen to coincide, then the value P(f) = P(f) = P(f) is called a precise

prevision.

Definition 2.18 Linear Prevision: A real-valued functional P defined on a set of gam-
bles K is a linear prevision if and only if for all natural numbers m,n > 0 and all gambles

fis--s fms 915 - - - gm in the domain of K,

m

sup [ 1) = P(1)] - o) - P(a)]] 20

we) &=

2.3 Utility

Utility is the name given to the concept of subjective value of usefulness that a consumer gains

from any good or service beyond the explicit monetary value of those goods or services.

Definition 2.19 Utility Function: A utility function, U : R - R is a measure of an individ-

ual’s subjective preferences from returns r € R.
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In order to define expected utility, some notion from normative decision theory must be
introduced. An individual must choose a decision for a non-empty, finite set of admissible
decisions D = {dy, ..., d,}. The consequence of every decision depends on the true, but unknown
state of nature 6 € © = {61,...,0,,}. The corresponding outcome is evaluated by the utility
function u : (D x ©) - R. The utility resulting from making decision d; and the occurrence of

g, is denoted wu(d;,0;).

Definition 2.20 Preference Relations: Preference relations can be defined between out-

comes. Let d; and dy be two possible decisions then:

e dy > dy implies that decision d; is strictly preferred to ds.
e d; ~ dy implies indifference; the individual is indifferent between d; and ds.

e dy > dy implies d; is deemed at least as preferable as decision ds.
Preference of a rational individual (agent) must obey the axioms of rationality:

e Completeness: (dy > dy), (dy > dy) or (dy ~ dy), i.e., an individual has well defined
preferences and that all relevant decisions can be definitively compared to one another.

e Transitivity[l} V di,ds,ds , if (di > dy) and (dy > d3) then (d; = d3). This ensures that
there are no cycles of exact preference.

e Continuity} If d; > d» > d3 then 3 a probability p e [0,1] such that
pdy +4 (1 = p)ds ~ ds i.e., there exists a probability p making an individual indifferent
between a decision between the best and worst outcome (with probabilities p and 1 -p
respectively) and a guaranteed intermediate outcome. Note that the operator +, is used
to denote a gamble between two outcomes rather than standard addition.

e Independence: V dy,ds,d; and p € [0,1], dy = dy < pdy +, (1 - p)ds = pds +, (1 — p)ds

i.e., preference is invariant to the introduction of independent alternatives.

Definition 2.21 Expected Utility: The expected utility of a choice decision depends on the

probabilities and utilities of its possible rewards and is defined for a descrete distribution as:

m

E[u(d;)] = > u(d;, 0;)Pr(6;)

J=1

"'Without transitivity, 4.e., coherence, we end up with a money pump situation (Lindley, [1991]).
2An alternative axiom for continuity is the Archimedean property which states if d; > dy > d3 then 3 o, 3 €
(0,1) such that adi +4 (1 - a)ds > ds > Bdy +4 (1 - B)ds.
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The utility function u is not necessarily linear and loss is expressed as negative utility but
may not be its mirror image. In addition, a utility is often re-scaled to the closed interval [0, 1]
with 0 being the least favoured outcome and 1 being the most optimal outcome. The product
of a rewards’ probability and utility indicates the subjective value to the expectation of that
reward. From the above axioms it is possible to show the existence of a unique utility function

such that:

oV dl,dz,’u(dl) > 'Lb(dg) = dl > d2

e Vd,dy, and pe (0,1), u(p(dy) +4 (1 —p)ds) = pu(dy) + (1 - p)u(ds)

Definition 2.22 Maximum Expected Utility: The optimal decision, d,,:, which mazimises

expected utility is calculated as:

dopt = argmax E[u(d;)]

2.4 Uncertainty

There can be many sources of uncertainty, but these can be categorised by the character
of uncertainties as either aleatory or epistemic. The word aleatory derives from the Latin
alea, which refers to the rolling of dice. Therefore, aleatory uncertainty is uncertainty that
is presumed to be the intrinsic randomness of a phenomenon; it refers to variation which is
inherent to a given system, typically as a result of the random nature of model inputs. Aleatory
uncertainties are typically modelled as random variables described by probability distributions,
where decision makers typically make assumptions about the distribution’s descriptive statistics
(i.e., its mean and variance). This type of uncertainty is considered objective. The word
epistemic derives from the Greek emiornu (episteme), which refers to knowledge. Therefore,
epistemic uncertainty is uncertainty that is presumed as being caused by lack of knowledge (or
data). Epistemic uncertainty often becomes an issue when expert opinion is required to solve

a problem; it is also referred to as reducible uncertainty and subjective uncertainty.

Definition 2.23 Uncertainty: A decision d;, with outcome space R is said to be uncertain

if Pr(d;) is defined for all d;, i.e., it can be assigned a 6;, and Pr(d;)<1 for all d;.
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2.5 Vagueness

Vagueness, which Walley| (1991)) terms imprecision, is a property related to the content of a
statement concerning a questionable feature of the actual problem; either more than one world
or no world is compatible with the available information. It is essentially a property of the given
information, with partial ignorance and conflicting information being common in practice. It
refers to a lack of clarity in meaning: when information is vague it is difficult to form any
interpretation at the desired level of specificity. Vagueness, in philosophical terms, is defined
as: The characteristic of words or phrases whose meaning is not determined with precision.
Use of one or more vague terms typically renders it impossible to establish the truth or falsity

of the sentences in which they appear.

Definition 2.24 Vagueness: A decision d;, with outcome space R is said to be vague if

Pr(d;) cannot be associated with a certain singleton 6;.

2.6 Exchangeability

Exchangeability is a fundamental assumption in Bayesian analysis and reflects how variables do
not depend on their indices even though they may be dependent among themselves. Therefore,
exchangeability is about symmetry in a way that does not require independence. Hence, one

can swap around, or reorder, variables in a sequence without changing their joint distribution.

Definition 2.25 Infinitely exchangeable: Consider a process X = (X7, Xy, ...), taking two
values. A probability distribution Pr for the processes is said to be an infinitely exchangeable se-
quence of random variables if, for any k&, the joint probability Pr(zy,...,x) is invariant to per-
mutation of the the indices, i.e., for any permutation m, Pr(Xy,...,Xy) = Pr(Xzq), - Xrw))-
Therefore, a sequence is infinitely exchangeable if and only if every finite subsequence is ex-

changeable.

Theorem 1 De Finetti’s (1931) representation theorem:
Let (£2, A, P) be a probability space, and let (X, B) be a Borel space. For each ¢, let X;: Q > X

be measurable. The sequence X;! is exchangeable if and only if there is a random probability
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measure g on (X,B) such that e X;=' are i.i.d. with distribution g. Furthermore, if the

sequence is exchangeable, then the distribution of x4 is unique.

In this theorem, de Finetti demonstrates if Xy, X,,... are infinity exchangeable then the
joint probability fx(z1,z,...) has a representation as a mixture. He demonstrates that with
probability 1 the proportion of each type tends to be a limiting frequency and that there is a
unique measure g on the unit interval, 7.e. a probability distribution, such that for any give n,

and a sequence x1,..., Ty,

Pr(a, 0, ...) = fQ 22(1 - 2)pd(x),

where a is the number of x; of type 1 among x1,...,z, and b is the number of type 2.
Although de Finetti’s theorem does not hold exactly for finite sequences, it does hold ap-

proximately for sufficiently large finite sequence. Exchangeability involves complete symmetry

in beliefs. Often such beliefs are not warranted across all observables, but are reasonable for

subsets. In|1938 de Finetti broadened this concept of exchangeability to partial exchangeability.

Definition 2.26 Partially exchangeable: Consider the case of two sets of observations

X1, Xo,...;Y1, Y5, ... Each set of observations takes two values. The covariate is judged as
potentially meaningful, the X;’s are judged exchangeable between themselves and the Y;’s are
judged exchangeable between themselves. Mathematically, the joint law must be invariant

under permutations within the X’s and Y'’s:
PT‘(Xl, e ,Xn;le, N ,Ym) = PT’(XW(I), c. ,Xﬂ(n);Yg(l), Ce ,Yo(m))

This must hold for all n and m, and permutations m and ¢. They can be generalised to more

than two cases of observations.

Here de Finetti proved that for an infinite process {X;, Y} partially exchangeable implies

Xi+..X, i+...+Y,
) m _>(:uX7:uY)

n
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Definition 2.27 Finitely exchangeable: Finite exchangeability is often more natural than
infinite exchangeability and is defined as

X = (Xy,...,X,) is said to be a finitely exchangeable if each of the n! permutations of
Xi,...,X, has the same n-dimensional joint probability distribution, i.e., Pr(Xy,...,X,) =
Pr(Xzay;---»Xz@m)), where X (1y,..., Xz(n) is any of the n! permutations of X, ..., X,. Note,

for a finite sequence of exchangeable random variables p > 0.

2.7 Correlation

Correlation measures the degree and direction of linear association between quantitative vari-

ables.

Definition 2.28 Pearson’s correlation coefficient: Pearson’s correlation coefficient, p, is
the ratio between the covariance and the product of the standard deviations of both sets of

random variables. p has the following properties:

e -1<p<1.

e p>0 when there is a positive linear association, p<0 when there is a negative linear asso-
ciation.

e The sign of the linear correlation coefficient is shared by the covariance. A covariance is a
measure of how much two variables change together. p = 1 when there is a perfect linear
association, p = —1 when there is a perfect negative linear association.

e The value of p is a measure of the extent to which two variables are linearly related. p=0
does not imply that the two variables have no association, just that they have no linear
association.

e Correlation is unit free, i.e., the units of measurement of the two variables do not matter.

e Correlation does not imply causation.
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Pearson’s correlation coefficient, p, is calculated as:

Yia(zi - %) (yi - )
\/Zznzl(xi -T2 Y (yi - )?

P=Pzy=

_ Cov(z,y)
T20y
Where o, and o, represents the standard deviation of x and y respectively. Therefore, we can

see that the correlation coefficient is simply the covariance normalised.

2.8 Missingness

Missing data is defined as data that are missing for some (but not all) variables and for some
(but not all) cases. [Little & Rubin (1987, [2014)) offered an explication of various missing

patterns; when considering a single variable x, values of x can be missing:

e randomly;
e below some cut value of z, or;

e subject to some form of probabilistic censoring proportional to the value of X.

The type of missingness is likely to bias sample estimates of the population mean of z, i.e.,
when data is missing at random the bias is negligible but not necessarily negligible when data
is missing systematically. There are even more possible missing data patterns when considering
multivariate analysis with nonrandom missingness creating bias for both variable means and

covariance estimates (Rubin, [1976)).

Definition 2.29 Missing completely at random (M CAR): Missing data are MCAR when
the probability of missing data on a variable is unrelated to any other measured variable and
is unrelated to the variable with missing values itself. In other words the missingness on the
variable is completely unsystematic. There are two criteria that must be met for missingness to
be described as MCAR - the data must be classified as missing at random (MAR) and observed
at random (OAR). MAR is described below and OAR occurs if the missingness pattern does

not depend on the values of the data that are observed.
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Definition 2.30 Missing at random (MAR): Missing data are MAR when the probability
of missing data on a variable is related to some other measured variable in the model, but not
to the value of the variable with missing values itself. In the context of a movie rating, if users
like the film “Frozen” (animation), they typically do not submit ratings for the movie “The
Conjuring” (horror), in which the missingness of the movie “The Conjuring” depends on the

observed ratings for the movie “Frozen”.

Definition 2.31 Not missing at random (NMAR): Data are NMAR when the missing
values on a variable are related to the values of that variable itself, even after controlling for
other variables. For example, if a user does not like the movie “The Conjuring”, the user will

not rate it.

2.9 Chapter Summary

This chapter has outlined the formal definitions of the concepts that are utilised in this the-
sis. The first section was concerned with key elements related to beliefs and preferences via
probabilities and utilities. The latter part defined the underlying properties of the proposed
methodology, UI approach, which incorporates correlation coefficients and missingness. The
U1 approach makes the assumption of partial exchangeability, allowing for future events to be
predicted from past observations.

The next chapter introduces the themes from the literature that have influenced the Ul
approach. These influences come from the elements of psychology and statistics that focus on

learning, forming relations and imprecision.
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Literature Review

In this chapter we introduce the concepts from the literature that provide relevant information
and insights for the topics considered in this thesis. As with the previous chapter, there are two
distinct themes: firstly, the development of concepts related to precise and imprecise probabili-
ties and; secondly, the development of Recommender Systems (RSs). In the first section, a brief
history of modelling uncertainty is discussed, outlining how precise and imprecise probabilities
are incorporated into decision-making processes. This section also describes how heuristics
play a role in decision-making and the various types of heuristics utilised by individuals making
decisions are described. The next section outlines the various types of RSs and allows for a
brief history of recommendation and preference techniques. This leads to the role of heuristics

in recommendations.

3.1 Beginnings

From the literature in psychology, it is argued that humans learn novel behaviour without direct
reinforcement of that behaviour, where a reinforcer is anything that increases the frequency of
a behaviour; this is known as stimulus equivalence (Fields et al., [1993). It is the fundamental
building block of Relational Frame Theory (RFT). RFT is concerned with all possible derived
relations and as such examines derived relational responding which involves the ability to re-
late stimuli in a variety of ways even though one has never been trained /reinforced for relating
those stimuli in those specific ways (Blackledge, 2003). Not only does RFT consider reflexivity

(e.g. A to A, B to B, etc.), symmetry (e.g. AB matching), transitivity (e.g. untrained AC
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matching), and coordination (same/similar), it encompasses non-coordination (e.g. difference,
oppositeness), evaluation (e.g. better than, less than), causal (e.g. if-then), temporal (e.g.
before-after) and many other types of relations. In addition, RFT distinguishes between two
main types of relational responding, namely non-arbitrary relations and arbitrary relations.
Non-arbitrary relations involve physical properties, formal dimensions, whereas arbitrary rela-
tions are abstract concepts and dimensions such as love, justice, worth/value. For example, an
elephant is larger than a mouse, but we can also state that a 10¢ coin is larger than a 5¢ even
though it is smaller in size. The relation is arbitrarily applicable since they are manipulated
based on social convention (Quinones et al., [2000). In arbitrarily applicable derived relational
responding, mutually entailed relational responses (i.e. if a stimulus A is related to stimulus
B in a specific way, then B is related to A in a complimentary way) are controlled by con-
textual cues rather than physical properties of the stimuli being related. RFT accounts for a
human’s ability to derive additional relationships between stimuli given limited information.

For example, given the following four trained relations:

Coin A is worth less than Coin B

Coin F is worth less than Coin A
Trained Relations = 1

Coin E is worth more than Coin C

Coin C is worth more than Coin D

From these four trained relations, 16 relations are derived. These trained and derived relations
are easier to understand as a graphical representation as in Fig. [3.1.1]

This interpretation of learning via relations is reliant on context, and by considering context,
RSs have been able to produce more relevant and accurate recommendations (these systems
are discussed in ?7). Empirical research on RFT has shown how this approach to language and
cognition allows for the exploration of implicit beliefs via the Implicit Relational Aptitude Pro-
cedure (IRAP) (Barnes-Holmes et all [2006; Nicholson et al., 2013). Therefore, this theory is
not only built on relational learning and context but also evaluates implicit (unconscious knowl-

edge) belief systems. Implicit beliefs (and biases) are brought about unconsciously by typical
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Figure 3.1.1: Trained and Derived Relations.

conditioned responses: “the science of implicit cognition suggests that actors do not always have
conscious, intentional control over the processes of social perception, impression formation, and
Judgement that motivate their actions” (Greenwald & Krieger|, |2006). In addition, Kovécs et al.
(2014)) found that on-line interactions are implicit and automatic. This suggests that relational
learning is objective, as derived relational learning requires historical learning that is gener-
alised to novel contexts/items/experiences. However, it may be argued that, given language
is an arbitrary construct and prone to subjectivity (and even vagueness), judgements based
on language are also subjective. Psychologists have utilised the IRAP to develop evaluations
of implicit beliefs in order to modify maladaptive behaviours (Arch & Craske, |2008]), explore
and understand bias (Hussey et al., [2015), as well as to develop methods to improve learning

(Tarbox et al., 2013).

3.2 Measuring Uncertainty

In general, uncertainty occurs whenever information pertaining to a situation is incomplete,
contradictory or fluctuating. Probability theory provides a well-founded mathematical frame-
work for quantifying uncertainty. The mathematical theory of classical probability arises from
gambling and games of chance which came under examination in the 17th century by Pascal
and de Fermat (Edwards|, [1982). This approach consists of repeating a game of chance a large

number of times under the same conditions. Therefore, the probability of winning is then ap-

27



proximately equal to the proportion of wins in the repeats. Thus, is named a frequentist or
objective probability.

De Finetti (1931) stated “probability does not exist”, by which he meant probability does
not exist objectively but that only subjective probabilities exist, i.e., the degree of belief in
the occurrence of an event attributed by a given person at a given instant and with a given
set of information. Therefore, a subjective interpretation of probability asserts that there is no
such thing as a true or objective probability, but rather probabilities are reflections of a rational
individual’s beliefs, and involves personal judgements (Ramsey), [1924; De Finetti, 1974; Lindley),
1982).

In this thesis uncertainty within the RS is assumed to arise from a lack of information
but it may also be the result of certain fluctuations which are dependent on the context, e.g.,
depending on the particular situation, mood, media literacy, and other biasing factors such as
the interface (Jasberg & Sizov, [2018). Therefore a Bayesian concept of uncertainty is utilised.
This bodes well with subjective utility, as defined in Section [2.3] An individual’s preference
(or utility) for an item may be considered in RFT terms; it is the arbitrary relation of abstract
concepts, they are subjective beliefs that can be evaluated via the individual’s implicit and
explicit on-line behaviour. Implicit beliefs are not subjective probabilities per se, but rather
constitute the basis for subjective probabilities , i.e., derived relational responding with respect
to implicit beliefs that usually involves noticing and coordinating implicit beliefs after/as they
occur (personal correspondence with Dr Nigel Vahey). The RFT literature on “pragmatic verbal
analysis” provides a justification for a Bayesian approach to probability from the point of view
that it allows for adaptive (i.e. learning) systems that change perhaps continually over time

and according to context, as opposed to the more absolutist assumptions made by frequentists.

3.2.1 Decision-making under Uncertainty

The analysis of decision-making under uncertainty varies depending on which discipline is
carrying out the research. Statisticians and mathematicians take a normative view and are
interested in what people ought to do, leading to the optimal outcome, consequence or reward.
Whilst psychologists take a descriptive approach and are interested in what people actually do

in real world decision-making processes.
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The leading normative theory is known as Expected Utility (EU) and was first proved by [von
Neumann & Morgenstern| (1947). This theory deals with objective probabilities and represents
an axiomatic approach to decision-making. Their method assume that an individual is rational
and, as such, wishes to maximise expected utility. However, the von Neumann-Morgenstern
approach does not lend itself to subjective probabilities. Savage (1954)), following on from
von Neumann-Morgenstern’s work, proposed Subjective Expected Utility (SEU) Theory. SEU
theory is also based on a set of rationality axioms for individual preferences among a set of
available decisions, which guarantee the existence of such a subjective probability.

The normative models of von Neumann-Morgenstern and Savage sets out how a rational in-
dividual ought to makes decisions and does not truly represent how individuals actually choose
between decisions given uncertainty. The Allais (Allais, 1953) and Ellsberg (Ellsberg, |1961)
paradoxes demonstrate that there is incoherence as a preference does not hold independently
of considerations of other possible rewards; that is, humans act in a way that contradicts inde-
pendence. This lead to the development of a descriptive approach known as Prospect Theory
(Kahneman & Tverskyl, 1979), which is a descriptive account of decision-making processes.

Following on from a series of experiments that tested the Allais paradox, Kahneman & Tver-
skyl (1979) found that individuals overweight outcomes that are certain, relative to outcomes
which are probable, which was termed the certainty effect. Under the classic model of decision
under risk it is assumed that individuals are risk-averse (Wu et al. 2004). Kahneman & Tver-
sky| (1979) were able to demonstrate that individuals are risk-averse and risk-seekingl} In their
experiment they found that 84% of participants preferred $500 with certainty to a 50% chance
at $1,000. However 72% of the same participants preferred a 0.1% chance at winning $5,000
to $5 with certainty. In the first case, the participants are risk-averse whilst in the second case
they are risk-seeking. In addition, when the actions involve losses 69% preferred a 50% chance
of losing $1,000 to a certainty of losing $500 whilst 83% preferred to lose $5 for sure compared
to a 0.1% chance of losing $5,000. Therefore the reverse occurs and demonstrates that partici-
pants were risk-averse for small probabilities and risk-seeking for moderate probabilities. Risk
attitude is nothing more than a descriptive label for the shape of the utility function presumed

to underlie an individual’s choices. An individual’s risk attitude describes the shape of his or

LA very simple concrete example of this would be individuals who purchase mobile phone insurance and also
play the national lottery.
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her utility function (derived from a series of risky choices) for the outcomes in question. Within
the EU framework it is hypothesized that domain differences in apparent risk attitude might
be the result of differences in marginal value for outcomes in different domains (Dyer & Sarin,
1982). Individuals do not appear to be consistently risk-seeking or risk-averse across different
domains and situations even when using the same assessment method (Schoemaker] 1990).

In addition to the certainty effect, Kahneman & Tversky| (1979) show a reflection effect.
Through their experiments they found that preferences for losses are a mirror-image reflection
of preferences for gains. Therefore, when faced with decision problems, individuals involve not
only possible gains, but also possible losses. An assumption of EU theory is that individuals
who are risk-averse would be just as averse in the face of losses as they would in the face of
gains, and so [Kahneman & Tversky| (1979) have demonstrated that this assumption has been
violated. This means that we cannot consider risk-aversion as an explanation for the certainty
effect as individuals are not risk-averse when confronting losses.

Finally, Kahneman & Tversky| (1979) comment on what they term the isolation effect. The
isolation effect explains the fact that individuals making decisions tend to disregard the com-
ponents that the alternatives share, and tend to focus on what distinguishes them. This occurs
whether those components share common pay-off or share common probabilities. |Gigerenzer &
Brighton| (2009) found that individual’s cognitive processes rely on simple heuristics to reach
accurate responses, they found that the more information that is analysed, the less decision

accuracy was observed. This can perhaps account for the isolation effect.

3.2.2 Heuristics in Decision-making

What is meant by heuristics in decision making? The word heuristic simply means to discover
and is often referred to as a rule of thumb. Heuristics are the result of experience and the
intensity of experience. They are an important part of the decision making process (Kahneman
& Tversky, |1979)). When individuals make decisions, short cuts are taken, e.g., probabilities may
be rounded up and satisficing?] heuristics used. In fact, individuals often evaluate alternative

outcomes sequentially until the first satisfactory or acceptable outcome is found (Simon| 1956)).

2Qatisficing is a decision-making strategy that enables the decision maker to choose an outcome that is good
enough, as opposed to the optimal decision outcome (Simonl [1956]).
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Therefore, as individuals we do not always act as rational agents when making decisions.

According to [Kahneman & Tversky| (1979)) an individual may use stereotypic behaviour to
make a decision in an uncertain situation, this is known as representativeness heuristic. Another
heuristic often employed by individuals is overconfidence, this refers to overestimating one’s
knowledge, underestimating risks and amplifying one’s ability to control events. Anchoring
refers to how an individual allows the advice of influential individuals, such as experts, to
influence decision processes, however their influence may only hold at the initial stages of
decision-making. When an individual is slow to update in light of new information, this heuristic
is known as conservatism. Finally, there is aversion to ambiguity, which is a bias related to
risk-aversion. This refers to why an individual will take little risk under uncertainty. (Charles
& Kasilingam| (2015)) state that an investor’s emotions, i.e. a feeling which is directed to a
particular object or event, affects heuristics.

Prospect theory has additional insight on decision-making in that it accounts for utility
curves differing in domains of gain from those of domain of loss. A domain effect is simply
the commodity being evaluated and Prospect Theory explains how situational variability in
the way a decision is framed can have a dramatic impact on the decisions people make. These
decisions are not restricted to any particular domain. Such an approach offers insights as to why
individuals make non-optimising decisions rather than those that maximise expected utility.

Subjective probabilities might be elicited from expert knowledge or summarise the result of
a statistical processing of historical data. Such probabilities are typically quantified via precise
or point-wise values. In many situations, these probabilities cannot provide a satisfactory
evaluation of uncertainty, by this very reason, a convincing estimate in a normative decision
making context. Therefore, a set-valued, imprecise, quantification might offer a better, or at

least more cautious specification (de Campos & Antonucci, [2015)).

3.2.3 Modelling Vagueness

An early attempt to provide solutions to problems that could not be solved satisfactorily with
precise probabilities was Fuzzy Logic (FL) (Zadeh, 1965)). FL extends from the theory of fuzzy
sets, a theory which relates to classes of objects with unsharp boundaries in which membership

is a matter of degree. This is an organised method for dealing with imprecise data with
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fuzzy sets allowing partial membership and applies a more human-like way of thinking in the
programming of computers. It is based on “degrees of truth” which lie on the [0,1] interval
rather than the usual true or false (1 or 0) Boolean logic on which the modern computer is
based. For example instead of a system defining just hot=0 and cold=1, it may apply hot=0,
warm=.3, chilly=.6 and cold=1. FL has been incorporated into RSs and one such system is
discussed in Section 3.3

The theory of imprecise probability and interval probability has grown via nonparametric
approaches. Nonparametric methods are widely used in statistics, they allow more flexibility
than their parametric counterparts as they require fewer assumptions to be met. Nonparametric
Predictive Inference (NPI) is based on the assumption A,y which was proposed by Hill (1968]).
This assumption allows for prediction in the case of extremely vague prior knowledge. Let
x1,...,T,, be the data values obtained by sampling from a population, with values ordered as
T1)<T(2)<...<T(p) (in increasing order of magnitude). Let Xi,..., X, be the corresponding
pre-data random quantities, so that the data consist of the observed random quantities X; =

T1,..., Xy =2, A is defined as follows:

e The observable random quantities X1, ..., X,, are exchangeable.

e Ties have probability 0. (This was later generalised to include possible ties which tend to
zerd)).

e Given data xq,...,x, the probability that the next observation falls in the open interval
I; = (x(;), x(j+1y) is 1/(n+1), for all j =0,...,n, where z(gy = —co (or 0 when dealing with

non-negative random quantities) and x(,.1) = co.

Therefore, the assumption A, is a distribution free, post-data assumption related to finite
exchangeability (De Finetti, [1931). It may be interpreted in terms of ranks; the rank of the
next observation amongst all observations will be equal to any possible value with probability
1/(n +1). De Finetti’s (1931)) representation theorem uses a similar argument to justify a
Bayesian framework for learning about an underlying parameter and its probability distribution.
A Bayesian approach explicitly requires a specified prior and conditional independence of future
observations and so is not as flexible. Although the assumption A, is not sufficient to derive

precise probabilities, it does provide bounds for probabilities via the application of De Finetti’s

3Ties can be dealt with in NPI by assuming that tied observations differ by small amounts (Hill, [1988).
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(1931) “Fundamental Theorem of Probability”. Therefore, some related predictive inferences
may be expressed using imprecise probability.

In NPI, uncertainty about the future observation X,,; is quantified by lower and upper
probabilities (Coolen, [2011]). These probabilities are such that all orderings of the future random
quantities among the observed random quantities are equally likely. This is a low structure
statistical technique, which is predictive in nature. The theory of imprecise probability makes it
clear that bounds provide valuable information on the uncertainty of events caused by restricted
information (Augustin & Coolen, 2004; [Walley|, 1991} Weichselberger}, 2000)).

There are several advantages to incorporating imprecise probabilities into a model. There is
greater flexibility when quantifying uncertainty, it allows us to deal with conflicting evidence,
weaker assumptions are required and it allows for a simpler way of eliciting subjective judge-
ments (Coolen et al) [2011). Many applications of NPI have been presented in the literature,
e.g., accelerated life testing (Yin et al., [2016), stock returns (Baker et al., 2017), survival sig-
nature (Coolen et al) 2014), right-censored data (Coolen & Yan, 2004)), and as an alternative
to the imprecise Dirichlet model (Coolen & Augustin), 2009)). There have also been many tech-
niques that have incorporated imprecise probability in the literature. For example, sensitivity
analysis in engineering (Oberguggenberger et al., 2009), explaining preference reversals (Bayrak
& Hey, |2017), structural assessments (Mohammadi et al, 2016} Zhang et al., 2017)) and weapons
uncertainty qualification (Picard & Vander Wiel, 2016)).

Nonparametric Predictive Utility Inference (NPUI) is a specialisation of NPI and incorpo-
rates uncertain utility (Houlding & Coolen, |2012). This models extreme vagueness. In NPUI
utilities are scaled to the unit interval. This method allows an individual to assign a utility to
a novel outcome when he or she has experienced n exchangeable outcomes that (after observa-
tion) are believed similar to this. For example, an individual has watched n romantic movies

which he or she assigns varying utilities to these movies. The individual now wants to predict

the satisfaction derived from watching a new romantic movie. Let real-valued ugy,. .., uwm),
with u(;y € (0,1) be the known ordered values of the utilities uy, ..., u, representing preferences
over outcomes O = {o0y,...,0,}. Let U, = {Uy,...,U,} denote the set of random quantities

representing the utilities of the elements within O before they are experienced, and suppose

that the element of U, are considered exchangeable. Then, given a new outcome 0,,,, whose
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utility value Uy, € (0,1) is unknown but considered exchangeable with the elements of U,,, the

NPUI models states the following:

1
n+1

P(Unew € (O,U(l)]) = P(Unew € [U(i),U(“l)]) = P(Unew € [U(n), 1)) =

NPUI leads to the following rules:

e Lower expected utility bound:

e Upper expected utility bound:

e Difference in utility bounds:

1
n+1

AE[Unew] = E[Unew] = E[Unew] =

In this instance, learning occurs over time with new observations incorporated into the
upper and lower bound equations. As n increases the interval width decreases. Therefore the
more experiences an individual has, the more confident he or she will be in making a prediction
for a future utility value from previous similar experiences and outcomes.

Both RSs and CARSs typically give a single value for the recommended item, and rank
items based on their point-wise value. Therefore the precise probability of the user liking
such an item is quantified via a single (precise) probability that satisfies Kolmogorov’s axioms
(Augustin & Cattaneo|, [2011)). Under severe uncertainty, it may be hard to identify a unique
probability distribution which honestly represents the limited information available. Therefore
using a precise probability may have severe limitations (Coolen et al., 2011) and this approach
maybe considered unreasonable (Bradley, |2014). The approach of imprecise probabilities is an
alternative to the standard Bayesian epistemology, i.e., the degrees of partial belief of a person

or system (Walley, |1991)).
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The next section introduces RSs, these are modern day decision-making aids. These systems
seek to maximise expected utility for the user by filtering through all available items to produce

a recommendation. Such recommendations are quantified as a point-wise representation.

3.3 Recommender Systems

Knowledge management within e-commerce is a rapidly developing area that is fast changing in
order to meet the demands of more and more individuals using a myriad of on-line services and
products. Since the famous PageRank algorithm of the Google search engine many entities and
companies have utilised recommender systems. Statistical techniques have been employed to
predict and recommend the needs of such individuals with many companies, such as Amazon,
Netflix, and TripAdvisor, to name but a few, gathering data about an individual’s on-line
behaviour to help their customers make decisions about future purchases, to recommend movies,
places to visit etc. The information gathered about on-line users is often available at no extra
cost, i.e., retaining preferences, social media profiles and social tags (i.e., keywords generated
by individuals on a platform that are used to describe and categorise an object, concept or
idea). Such information is often available to sites as they use links, share and like facilities that
are available. This information is often utilised by Recommender Systems (RSs) that assist
us with our decision-making processes. This feedback can be collected from several different
domains and in various formats. Information in relation to context may also be collected, e.g,
the time of day, date, type of devise used, etc. There are several definitions for RSs but the

definition given by |Adomavicius & Tuzhilin| (2005)) is a generalised one:

“More formally, the recommendation problem can be formulated as follows: Let
C be the set of all users and let S be the set of all possible items that can be
recommended. Let u be a utility function that measures the usefulness of item s
to user ¢, that is, u : C' x S = R, where R is a totally ordered set (for example,
nonnegative integers or real numbers within a certain range). Then, for each user
c € C', we want to choose such item s’ € S that maximizes the users utility. More

formally: ¥ ceC, sl =arg ngxu(c, s).”
S€

The utility function here is the rating achieved by an item from the given individual or as
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predicted by a RS. The more utils an individual assigns an item, the more they prefer that
item. A user’s utility function is an important aspect of RSs as it predicts the user’s preferences
and the subjectivity of an individual’s utility function has been explored in decision-theory from
both statistical and psychological viewpoints (e.g., Kahneman & Tversky| (1979), [Savage (1954]),

von Neumann & Morgenstern| (1947))).

3.3.1 Categories of Recommender Systems

There are three main categories of RSs which are:

e Content-based: Such a RS recommends items that are similar to those preferred by the
user in the past; filtering is based on the novel items description and the user’s profile.
The utility of a novel item is therefore based on the utilities already assigned by the
user to similar items. It does not consider the other users’ preferences. The statistical
techniques often employed for such a RS are cluster analysis such as K-means, hierarchical
clustering and decision-trees, e.g.,[Van den Oord et al.| (2013)), Natsev et al.| (2007)).

e Collaborative: This type of RS recommends items that people with similar preferences
have liked in the past; it recommends items based on the user’s similarity to other users.
The utility of a novel item is therefore based on the utilities assigned by users that are
deemed to be similar to the user. It does not consider the user’s own preferences. The
statistical techniques often employed for such a RS are k-nearest neighbours, matrix
factorization and Pearson Correlation, e.g., Hill et al.|(1995)), |Sarwar et al.| (2001)), [Koren
(2010]).

e Hybrid: This approach combines collaborative and content-based methods and allows
for the use of both the individuals’ ratings as well as those ratings of similar individuals.
There are several ways in which these approaches may be combined. For example, running
the analysis separately and then combining the outcomes; incorporate some character-
istics from a content-based/collaborative method into a a collaborative/content-based

approach; or create a model that incorporates both methods equally, e.g., Debnath et al.

(2008).

Domain characteristics have a strong influence over the types of methods employed to pro-
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duce a recommendation as well as the type of data sources that are accessed (Burke et al.l
2011). For example, a context-based approach is often used for text-based applications as
it has roots in information retrieval (Baeza-Yates & Ribeiro-Neto, 1999) and is analogous to
machine learning. The most common algorithm used is the term frequency/inverse document
frequency (TF-IDF) measure, which looks at how important a word is to a document and is
often used as a weighting factor in information retrieval and text-mining.

For movie and book recommendations a collaborative filtering approach may be taken, with
Pearson’s coefficient (see Definition being a popular similarity measure for two users. It
is possible to use such techniques, not only to find similar users, but also to find similar items.

Both of the above approaches may employ data that is gathered from social sources, i.e,
utilising demographic data, data gathered from previous ratings, reviews of products, on-line
purchasing behaviour and/or social tags. However, in order to produce an accurate recommen-
dation for, say banking and financial products, a more individual data source would be required
which must also incorporate, not only demographics, behaviour and opinions, but also more
personal details such as savings, financial constraints and commitments and a measure of the
user’s risk aversion.

It is worth noting that an individual’s utility for a particular item may vary more rapidly
than for another item. For example, an individual’s utility associated with, say, a smart device
may fluctuate more as next generation devices are released in quick succession. Whereas,
an individual’s utility for a particular genre of music will fluctuate very little as their music
tastes tend to change slowly over time (Burke et al) 2011). Therefore by using domain specific
techniques, a more personalized approach to on-line activity is achieved allowing for greater
customer satisfaction and as a result these sites retain customers and increase customer loyalty.
Maintaining user’s profiles, on-line activity, and preferences is one way to achieve a personalized
recommendation. However, according to|Mansoury et al. (2016]) the vast amounts of information
available to e-businesses has led to an information overload and this may lead to customer
dissatisfaction.

These very sophisticated algorithms stem from simple statistical techniques such as Pear-
son’s correlation, utilised by Konstan et al. (1997)) to recommend news group articles via col-

laborative filtering.
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3.3.2 Cold-Start Problem

But what if it is a new-user or new-item? This is known as a cold-start problem and is a data
sparsity issue. A new-item cold-start problem is when an item is completely new and as such
has not been rated by any individuals. This type of cold-start issue is not isolated to RSs, but
may occur in many decision-making processes where there is vagueness and unfamiliarity about
a novel item that does not allow for a utility function to be assigned (Houlding & Coolen, 2011},
2012)). A new-user cold start problem is when a new individual has not rated anything in the

past and so there is no previous information available about this individual’s preferences.

New-User

RSs may make use of additional data sources (e.g., demographic data), use the data available
from a prominent group of analogous users or use a combination of methods which is known as
hybrid methods (Son|,2016). Making use of additional data sources, such as Facebook and Twit-
ter profiles, allows the system to build a demographic profile of the individual. For example,
Spotify (a music, podcast and video streaming service) utilises collaborative filtering, Natural
Language Processing (NLP), deep learning and analysis on new songs to make recommenda-
tions. By incorporating user information (previous songs listened to), similar user informations
(based on similar song history), music blogs and elements of music such as melody, harmony,
rhythm etc. For new songs, Spotify are able to produce highly personalised recommendations
in the form of Daily Mix and Discover Weekly (Knight, [2015). In relation to NLP, it is impor-
tant to note that vagueness is ubiquitous in all natural languages and is still neglected by most
natural language processing systems (Fermiiller & Roschger, 2014).

Another example is the use of social tags to generate more personalized recommendations
(Zhang et al. [2010). One of the most accurate algorithms that incorporates such additional
data is the MIPFGWC-CS agorithm which uses Modified Intuitionistic Possibilistic Fuzzy Ge-
ographically Weighted Clustering (MIPFGWC) (Son et al, 2013). MIPFGWC uses a fuzzyf]
geography algorithm which allows the system to determine similar users with respect to all

aspects of the demographic data. Here each area is allocated a membership value in each of

4Fuzzy simply refers to a method that allows one piece of data to belong to two or more groups.
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the clusters and so rules out issues related to ecological fallacyf] This approach makes use of
additional data and can more accurately determine users that are similar to the new user based
on their profile’s opinions and social tags. Just as with a collaborative approach, once a set of
neighbours are found to be analogous with the new user, if the item is rated by these users,
then their ratings are considered representative of how a new user would rate them. If an item
has not been rated by this group, then a Pearson coefficient is calculated between it and a
similar item already rated by the group.

What happens when there is a new user and there is no additional information available?
According to [Stigler & Becker| (1977) “tastes neither change capriciously nor differ importantly
between people” and therefore it appears reasonable to use other users as a proxy to generate a
rating for a new-user (Liu et al, 2014). The New Heuristic Similarity Model (NHSM) was
proposed by |Liu et al| (2014) which is an algorithm that utilises the ratings of the more
prominent group of analogous users. This algorithm also addresses some of the limitations of
the Pearson coefficientff] which does not accurately measure the relationship between two items
if that relationship is non-linear. The similarity measure, sim?5°, between a new user and an
active user is improved by using PSS: Proximity (distance between two ratings), Significance
(ratings are more significant if they lie far from the median rating) and Singularity (represents
how two ratings are different with other ratings). In turn, this improves how to determine
a group of analogous users. By combining sim?S% with another common similarity measure,
Jaccard] the authors are able to integrate user rating and thus enhance the accuracy of the
algorithm.

The final algorithm in relation to the new-user cold-start problem to be considered is one
that makes use of hybrid methods. The HU-FCF-++4, which is an extension of the Hybrid
User-based Fuzzy Collaborative Filtering (HU-FCF) (Son, 2015), combines different methods
to achieve a better accuracy of predictions and to eliminate some of the limitations that have

been found with other techniques. It calculates the number of clusters needed for finding similar

% An ecological fallacy occurs when conclusions are drawn based only on the analyses of group data and then
these qualities are attributed at the individual level.

6Pearson coefficient, cosine similarity and Euclidean distance are the most commonly used similarity measures
in collaborative RSs.

"Jaccard coefficient (Jaccard, |1912), is defined as the quotient between the intersection and the union of the
pairwise compared variables among two objects; it only considers the number of common ratings between two
users.
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users (this is one of the limitations of the MIPFGWC-CS approach). Next the MIPFGWC
algorithm is run which specifies the group of analogous users for a new user. Following this,
another algorithm, namely Association Rules Mining (ARM) (to address the limitation of the
Pearson coefficient), is utilised to find similar items of a given one, then a pre-ratings set is
generated for the Complete Rating data based on the most popular rating of all users. Finally
the NHSM algorithm is used to predict from the complete rating dataset. The computational

time for this approach is one of its drawbacks (Son et al., 2013).

New-Item

As with the new-user cold-start problem, this is a data sparsity issue. As the item is new, it
has yet to be rated and so how does a RS recommend such an item to a user?

Regression type models have been proposed by |Agarwal & Chen| (2009)), |[Park & Chul (2009)
and Xu et al| (2014) to mitigate new-item cold-start problems. [Xu et al.| (2014) proposed
a Feature-based Regression Model with Baseline Estimates (FRBE) which adopts previous
regression approaches. This algorithm combines a regression approach that is based on users’
profiles and combines it with baseline estimates. The regression model utilises all available
information of users and items to build a predictive model that incorporates a baseline estimate

for user and item effects b,;, which is defined as:

bm‘=7’+du+di

where 7 is the overall average rating of a ratings dataset, d,, is the observed deviations of a user
from the average rating and d; is the observed deviations of an item. This approach can be taken
when recommending to a new-user, recommending a new-item and also when recommending a
new-item to a new-user as it builds a joint feature space for user/item pairs.

Clustering with Hybrid Features Selection Method (CHFSM) was proposed by [Hdioud et al.
(2016) and, as the name suggests, uses a combination of techniques to solve this problem.
This approach incorporates both semantic and statistical dependencies of the items in order
to compute more accurate similarities between them. This algorithm consists of a k-means

clustering, weighting the keywords using the TD-IDF formula and then calculating the hybrid
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measure of the features. This process is repeated until the centroids no longer move and thus

provide a more accurate recommendation.

Novelty

The concept of novelty is a fundamental field of recommendation effectiveness and added-
value according to Zhang| (2013)): “There is not a unified definition about novelty, therefore,
novel recommendation algorithms are different with respect to the definition of novelty.” Novel
recommendations are recommendations for items that the user did not know about (Konstan
et al., 2006), it has been defined with respect to the end-user as the proportion of known
and unknown relevant items in a recommendation list (Baeza-Yates & Ribeiro-Neto, [1999)).
Zhang| (2013) states that a novel item should have three characteristics: unknown (the item
is unknown to the user), satisfactory (the item is satisfied for the user) and dissimilarity (the
item is dissimilar to items in the profile of the user). Zhang (2013)) believes that novelty should
be used as one of the key metrics to measure customer satisfaction. Vargas & Castells (2011])
identified three critical ground concepts as the core of novelty and diversity; discovery (an item
is seen by, or is familiar to, a user), choice (an item is used, selected, consumed, etc., by a user)
and relevance (an item is liked, useful, enjoyed, etc., by a user). Novel recommendation may
simply be defined as recommended items users don’t know, hence the simplest way to novel
recommend is to filter items in profile of the user.

The accuracy of predictions and the quality of recommendations is extremely important as
it leads to repeat customers. Such accuracy is measured by the Mean Absolute Error (MAE),
which computes the deviation between predicted ratings and actual ratings, and the Root Mean
Square Error (RMSE), which also computes the deviation between predicted ratings and actual
ratings but places more emphasis on larger deviation. A RS can make two types of errors: it
may recommend an item to a user that the user does not like (false positive), or it may fail to
recommend an item to a user that they would like (false negative) (Cho et al., 2002). According
to Burke et al| (2011) “A recommendation technique that optimizes for high accuracy over the
entire data set therefore contains an implicit bias toward well-known items, and therefore may

fail to capture aspects of utility related to novelty.”
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Misssing Values

Ignoring missing data is a common practice (de Campos & Antonucci, [2015). As seen in Sec-
tion [2.8] missingness may result for various reasons. Ignoring missing values can be only justified
under specific assumptions about the process making the output of an observation /measurement
missing. According to Su et al. (2008), most collaborative filtering algorithms currently used
in RSs implicitly assume MAR, whilst others assume MCAR. However, |Marlin et al. (2007)
tested the hypothesis that the probability of observing a rating of an item is dependent on it’s
values. The results show a clear dependence of rating frequency on the underlying preference
level, this creates a systematic bias towards observing a disproportionate number of high rating
values. This indicates that missing values are NMAR.

In relation to exchangeability, unmeasured (i.e., missing values) can be considered exchange-
able with measured (observed) values (Draper et al., [1993). In this instance, it is appropriate
to consider measured values y;,72 = 1,...,m and unmeasured Y;,2 = m + 1,...,n values as ex-
changeable in a sample of the population as opposed to units in the general population but not
included in the sample. If these two groups of units are exchangeable, then inferences made on
units in the sample may be generalized to the units in the larger population.

It is also important to consider missing values in relation to Pearson’s correlation coefficient
p, see Definition [2.28 There are several ways to calculate p when it comes to dealing with
missing values. The most common technique is to analyse only those cases for which the data
is available on all variables; this is known as listwise or casewise deletion. This method omits
any cases that are not entirely complete from the analysis. For example, if we consider the

following matrix:

-1 2 1 MV 0000 1111
M = 0 O 0 0 - 1111 1| Cor(M)= |1 11 1
1 1 1 1 2 2 2 2 1111
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Listwise deletion provides relatively unbiased estimates under MCAR but can lead to pa-
rameter bias when it is not MCAR (Glasser} [1964). A drawback of using listwise deletion is
that it often discards a great deal of potentially usable data. This loss of data leads to larger
standard errors, wider confidence intervals, and a loss of power in testing hypotheses. However,
the estimated standard errors produced by listwise deletion are usually accurate estimates of
the true standard errors. In our example, as we have identical columns in our M matrix, we
have perfect correlation. The deletion of the two rows have had rather a large impact on the
correlation matrix and we have two rows that had no correlation, now having perfect correlation.

In real life, an individual does not simply disregard information because it is incomplete,
often information is filtered based on its relevance (Borlund, 2003). An alternative to listwise
deletion is pairwise deletion. This technique calculates the covariance amongst each pair of
variables using all available cases for each pair. This has the advantage of including information
in the covariance matrix that would have been discarded under listwise deletion. Going back

to our example, in this case the first two rows are removed when calculating pm, mss Pmymas

Pmamss Pmazs AN Prg my-

-2 15 MV 1 - .
1 0 0.63 048
-1 2 1 MV

M= 10 0 0 0 Cor(M) =

0 1 085 097

0.63 085 1 1
1 1 1 1

048 096 1 1
2 2 2 2 ) .

Given that pairwise deletion utilises more data when producing estimates, it is often more
efficient than listwise deletion. Pairwise deletion is unbiased in large samples under MCAR
but may suffer from serious parameter bias when data are MAR (Glasser|, [1964; |Allison, [2002).
It can breakdown because the estimated correlation matrix is not positive definite and cannot
be inverted to calculate the parameters. Its more common problem, however, is the difficulty
in getting accurate estimates of the standard errors. That is because each correlation may
be based on a different sample size, depending on the missing-data pattern. Therefore, we
may have non-negative eigenvalues (non-positive) and the matrix may contain at least one

zero eigenvalue (semi-definite). In the words of Donald Rumsfeld, we have converted “known
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unknowns” into “unknown knowns” - incorrect knowns.
In relation to exchangeability, it is possible to consider a correlation structure as exchange-
able, since clearly there is dependence between measurements on the same individual at different

times, but the exact form of the correlation is not clear (Liang & Zeger} [1986)).

3.3.3 Recommendations via Heuristics

In addition to sophisticated algorithms and statistical functions, these systems incorporate rec-
ommendation heuristics to reduce computational time, make the data scalable and may be
applied pre- or post-filtering (Burke & Ramezani, 2011)). Heuristic-based algorithms essentially
are heuristics that make rating predictions based on the entire collection of previously rated
items by the users (Adomavicius et al., |2005). The commonly used heuristic-based recom-
mendations for content-based RSs are TF-IDF and clustering; for collaborative RSs they are
nearest neighbour techniques (cosine, correlation), clustering and graph theory; and for hybrid
RSs they utilise linear combination of predicted ratings, voting schemes and incorporating one

component as a part of the heuristic for the other (Adomavicius & Tuzhilin| [2005)).

3.4 Chapter Summary

The quantification of uncertainty via precise probability has been incorporated into normative
decision theories. Such theories set up an axiomatic approach as to how rational individuals can
and must maximise expected utility. However, limitations of these Normative approaches were
exposed via the Allais (Allais, [1953)) and Ellsberg (Ellsberg, [1961)) paradoxes, which demon-
strated that humans do not always act in a rational way. Kahneman & Tversky| (1979) went on
to propose their own theory of decision-making, this time from a psychological perspective and
empirical research. What they found was that humans often use heuristics, can be risk averse
and risk seeking and language plays a role in decision-making processes. Given, that there are
a variety of sources of information, a point-wise approach to assessing uncertainty may not
be suitable. Thus, a better and perhaps more cautious approach is to use an interval based
quantification for uncertainty. This can be achieved via NPI. NPI assumes exchangeability and

has been successfully applied to a number of research areas.
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Recommender systems, much like normative decision theories, wish to maximise the user’s
expected utility whilst filtering the vast amount of information available now-a-days via the
Internet. These recommender systems also utilise a number of sources, yet give a point-wise
estimate of the predicted utility. In a similar vein to decision-theory, perhaps a better and
more cautious approach would be to use an interval quantification for predicted utility. It is
possible to assume exchangeability for missing values and for correlation coefficients, therefore
it appears to be appropriate to apply the NPI technique to recommendations.

The next chapter introduces the Robust Bayesian Correlation Learning (RBCL) technique
of [Troffaes et al|(2014). This approach is used to estimate Pearson’s correlation coefficient. It
will be used as a comparison to the proposed technique, the Uncertainty Interval (UT), of this

thesis, which is subsequently discussed.
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Proposed Methodology

Thus far probability, both precise and imprecise, and utility have been discussed. The key
concepts that our proposed methodology are built on have also been discussed, with the concepts
of Nonparametric Predictive Inference (NPI), exhangeability, missing values and correlation
explained. We have also seen how a Recommender System (RS) is a modern day decision-
making aid, which learns via statistical techniques and may utilise all available data on a user
and related users/items. In this chapter we first examine an existing technique, Robust Bayesian
Correlation Learning (RBCL), that offers a similar approach to our proposed technique. Next,

the proposed technique is presented and justified.

4.1 Robust Bayesian Correlation Learning

Learning under severe uncertainty in relation to correlation coefficients have been explored by
Troffaes et al|(2014). Robust Bayesian Correlation Learning (RBCL) introduced two models,
one continuous and one categorical, to learn about dependence between two random variables
under extreme uncertainly using only limited joint observations. The objective of this method
is to estimate a correlation coefficient by utilising the pairwise comparisons between sets of
variables. Inference is made on a multivariate normal random variable (MVN) Z; with z; =
(2i1,---,2z) being a particular realisation of Z;. The mean is known and rescaled to zero,
whilst the covariance matrix ¥ is unknown.

The likelihood function of an i.i.d. sample zq, ..., z, is:
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The Inverse Wishart (IW) is the natural conjugate prior for a covariance matrix and is
commonly used with normal sampling models as a result. The IW distribution guarantees
to produce positive definite draws and generates random covariance matrices. vy acts as a
parameter for learning speed, which is similar to Walley’s s value in the imprecise Dirichlet
model (Walley, [1996)), acting as a tuning parameter. The larger 14>0, the more hypothetical
prior observations are considered and the more the prior distribution influences the posterior
distribution of 3. W is the corresponding prior covariance matrix, ¥y, for a particular value of
V.

The likelihood for the IW is:

vo+k+1

f(E|vg, Wg) o< |X]77 2 exp[ - %tr(\lfozl)]

The hyperparameters are updated as follows:

n
Up=1)p+n \IfnZ\IIQ-FZZiZ;-T
i=1

Yo denotes the prior covariance matrix and its expectation is F(3g|vg, Vo) = Wo/(vo+k+1).

Therefore, the posterior covariance matrix ,, has expectation:

v,
v,— k-1
C(-k-1)%0+ X, 2zl
- vy+n-k-1

E(Zn|21, -y 20, V0, \IIO) = E(Zn|ynu \Ijn) =

For a bivariate case, let Z; = (Z;,Z;2) and oz, and oy, be the variance of Z;; and Z;
respectively. The mean of each is j1z,, and pz,,. Both the variances and means are normalised.

We have k =2 and the prior covariance matrix is:

47



Wo = (- 3) 0§< PoOXx0y
PoOX0y g ;2/

In RBCL the prior correlation is py € [-1,1]. Both prior ox and oy are considered to be
well known, but py is unknown. Now there are two unknown hyperparameters: 1y and py. The
posterior covariance matrix is then defined as:

1 V(,) + 2znzlxz2 V(')po + Z?:rriyi

Yin = —
vy+n

Vopo + i iy vy + S y;
where v = vp—k -1 = 14— 3. The posterior bounds on the correlations are calculated as follows:
—v)+ X0 Ty

—n vy+n

/ n
R + Eizlxiyi

n /
Vgtn

However, there are at least three problems with using an IW prior in this setting:

1. The uncertainty for all variance parameters are controlled by the single degree of freedom
parameter, and hence, provides no flexibility to incorporate different amounts of prior
knowledge to different variance components (Gelman et al., 2003).

2. When v>1, the marginal distribution for the variance is an inverse gamma, which has a
region near zero with extremely low density and causes a bias toward larger variances
when the true variance is small (Gelman), 2006).

3. There is a prior dependency between the variances and correlations such that larger
variances are associated with correlations near 4 /- 1 while small variances are associated
with correlations near zero. Thus, when the true variance is small, the correlation will be
estimated to be zero regardless of the true value of the correlation and this bias remains

even for relatively large sample sizes (Tokuda et al., 2011]).

In addition, this approach utilises pairwise comparisons and provides a model to estimate the
dependence between two random variables under extreme uncertainty. As such, it produces an
estimate of a correlation in the form of an interval, with the width of the interval dependent on

the number of pairwise comparisons available. Hence, when there are no pairwise comparisons,
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this algorithm gives the vacuous information [-1,1]. However, this approach ignores other
information in a multivariate data setting. As individuals, we do not learn in a vacuum and
knowledge for how two items are related is not solely assessed on these two items alone. Rather
some decision-making processes would incorporate how these two items relate to other items
and if some analogy may be formed.

For example, Relational Frame Theory (RFT) is a modern behaviour-analytic account of
human language and cognition which builds on Skinner’s (1938) observations on reinforcement
(Hayes et al., 2001). RFT is based on the assumption that higher-cognitive functioning and lan-
guage are composed of relational frames, which are patterns of generalised relational responding.
That is, humans are capable of learning through complex untrained (derived) relations and,
learning occurs in relation to contextual cues via a history of multiple-exemplar training, see
Barnes & Roche| (1996)); [Hayes & Hayes| (1989)). Relational responses emerge early on in devel-
opment as a result of socio-verbal interactions and develop across time (Barnes-Holmes et al.,
2011)). A coherent relational network is then formed, given sufficient time, through additional

relational responses.

4.2 Uncertainty Interval

Building on the concept of NPUIs, which contains elements of NPIs and uncertain utility,
the proposed approach is to adapt the NPUI equations to estimate the correlation coefficient

between two items. Recall the lower and upper NPUIs are calculated as:

E[ new = 12“@)_714_12“1'
— n 1
E[Unew = ( Z ) n+ 1 +E[Unew]
=1

The correlation coefficient was selected as this is a similarity measure that is often used
in RSs and it is possible to generate pairwise correlations even for very sparse matrices. In
addition, as utilities can be restricted to the unit interval, there is a strong similarity to the

magnitude of a correlation coefficient.
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Recall that Pearson’s correlation coeflicient is calculated as follows:

z;(x—g)_(gi—w(gi)(ai)

As in the previous section, the correlation coefficient was also estimated using Bayesian tech-
niques by [Troffaes et al.|(2014]). Their approach required a prior as well as pairwise comparisons
between items; it utilises pairwise comparisons and provides a model to estimate the dependence
between two random variables under extreme uncertainty. As such, it produces an estimate of
a correlation in the form of an interval, with the width of the interval dependent on the number
of pairwise comparisons available. Hence, when there are no pairwise comparisons, this algo-
rithm gives the vacuous information [-1, 1]. However, this approach ignores other information
in a multivariate data setting. It also requires a prior distribution to be calculated and that
variables are normally distributed, whereas NPUI does not have such requirements.

There a several limitations to using a correlation coefficient to predict similarities according

to |Sheugh & Alizadeh| (2015)):

1. Correlation between two user profiles can only be computed based on items that both
users have rated. Within the context of a RS, users can select among thousands of items
to rate, it is likely that overlap of rated items between two users will be small in many
cases. Therefore, the correlation coefficient cannot be regarded as a trustworthy measure
of similarity because it is based on just a few observations.

2. Two users can only be similar if there is overlap among the rated items, that is, if users
did not rate any common items, their user profiles cannot be correlated.

3. The Correlation technique induces one global model of similarities between users, rather

than separate models for classes of ratings (e.g. positive rating versus negative rating).

The proposed approach in this chapter attempts to overcome these limitations and to provide
an accurate estimate of the correlation coefficient by utilising more observations and calculating

an estimate between non-overlapping user ratings as well as defining positive relations.
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In order to develop what we term an Uncertainty Interval (UT), it was proposed to incor-
porate information that would not normally be utilised to estimate a relationship between two
variables. This is very much in keeping with techniques used by RSs when solving a cold-start
problem. It is not a RS in of itself, but an introduction to incorporating an interval approach
on one of the basic and most utilised statistics in RSs, namely correlations. It was noted that
pairwise correlations generated missing values (MV) given very sparse matrices. Therefore, it
is proposed to utilise the correlations that could be calculated in order to estimate a correlation
coefficient of a MV. If a MV is returned for a correlation calculation between item a and item
b, the correlations of item a and item ¢ and the correlations between item b and item ¢, where
item 7 represents all other items in the matrix, would provide information about how item a

and item b are related. Hence, the Ul approach is also a pairwise comparison method, see

Fig. and in Fig. the graph resembles a Directed Acyclic Graph.

[ )
] Pairwise Comparison

<> No Pairwise Comparison

Figure 4.2.1: Representation of correlation. Figure 4.2.2: Pairwise comparison.

The first step in creating the Ul was to modify the NPUI equations for lower and upper
expectations of utility to incorporate our measure of choice, correlation. This approach seeks

to estimate the upper and lower bound of a correlation, p,, such that:

1 n
p = > (information of how item a relates to i and how b relates to )

Pap ~
b+ 1, 5

(1 + > (information of how item a relates to ¢ and how b relates to 2))
i=1i#a,b

pa,b:n+1

Where the correlation between items a and b is unknown and ¢ is all the other items in the

matrix. In Section [£.2) the least amount of information is displayed as the lower bound, whilst
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Takes the least amount of information, i.e., lower bound

0 a b 1

Takes the most amount of information, i.e., upper bound

Figure 4.2.3: Information about a and b

the most amount of information is displayed as the upper bound. This is illustrated in the
example below, which represents a correlation matrix of a ratings matrix. Information of how
item a relates to ¢ is highlighted green and information of how item b relates to ¢ is highlighted
blue. Information on how item a/b is related to itself is not utilised as this always has perfect

positive correlation.

my ma ms3 my ms
my —pa,a =1 pap Pl i=i Pa,i=2 Pa,i=3 ]
ma | Poa  Pop=1 Pb,i=1 Pb,i=2 Pb,i=3
PMrating = m3 | Pi=ta  Pi=1p  Pisli=1 =1 pPiz1i=2 Pi=1,i=3
My | Pi=2,a Pi=2.b Pi=2i=1 Pi=2i=2 = 1 Pi=2i=3
ms5 | Pi=3,a Pi=3,b Pi=3,i=1 Pi=3,i=2 Pi=3,i=3 = 1]

By building on and extending NPI and NPUI techniques, the U approach assumes that the
correlations are partially exchangeable if the domain and context of the items are the same. For
example, with a movie ratings matrix, the correlations for this matrix may not be considered
exchangeable with each other but when the ratings matrix is broken down by say genre, the
correlations within this sub-ratings matrix may be assumed exchangeable. That is to say, that
the correlation coefficients are exchangeable within a particular genre but not between genres.
By assuming partial exchangeability in this way, we are also assuming that the items in a sub-
ratings matrix are positively related. The next challenge is to combine this information in a

meaningful manner as to estimate the true correlation coefficient of item a and item b.
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4.2.1 Combining Pairwise Comparisons

In this section, the methods considered to combine the pairwise comparisons will be discussed.
As stated above, the primary aim is to combine information about how item a relates to item(s)
with information about how item b relates to item(s) ¢ in order to estimate the true correlation
coefficient of items a and b. To distinguish between the pairwise comparison utilised in the
calculation of the correlation coefficient (i.e., the pairwise comparisons from Mpgqting) and the
pairwise comparison utilised to calculate a MV (i.e., the pairwise comparisons from parg,,,.,)
the former will be referred to as a pairwise correlation and the latter, a pairwise comparison.
In order to illustrate what is meant by pairwise comparisons, let us consider the following
example. Let Mpqting be a 5x5 rating matrix where the rows correspond to five users, uy, ..., us,
and the columns represent five different movies, mq,...,ms. Each movie is rated between 1
and 10, 1 representing the user did not enjoy the movie and 10 representing the user enjoyed

the movie. Not every movie is rated by every user, these are represented as blank spaces in

MRating-
m; Mo M3 My Ms mq Mo msa my ms
w [10 10 10 10 10] mi | 1 042 013 092 -0.12]
w8 8 6 4 ms | 042 1 096 036 0.62
Mraing= 16 7 5 g | PMramaT 1013 096 1 MV 0.97
w |5 9 9 10 ms | 092 036 MV 1 0.36
us | 710 4 10] ms |-0.12 0.62 097 036 1 |

As there are missing variables in Mpqing, a pairwise correlation is calculated. This results in
the matrix parp,,,,, Which has one MV, indicating that no pairwise correlation can be calculated
between mg and my. The MV is the result of a single observation for (u;,ms) = 10 paired with
a single observation for (u;,my) = 10. Therefore, given a single point, no correlation coefficient
can be calculated.

Before proceeding with how the U technique can estimate this MV, consider how the RBCL
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approach would go about calculating an interval for py,, . Setting vy = 2, then:

_1+100
R I
_-1+100
L

Both P, and p; are undefined. As it is not possible to calculate a pairwise correlation, it is not
possible to apply the RBCL approach and as such a vacuous interval of [-1,1] is returned.

In order to estimate the true correlation coefficient of a MV, the UI approach utilises
all pairwise comparisons for mg and my in PMpatin, 10 €stimate the pp, ;. These pairwise
comparisons are highlighted in the matrix below. In the instance where a pairwise comparison
contains a MV and/or is a correlation of an item with itself, e.g., p, = 1, these comparisons
are removed from the algorithm. In Fig. the light shaded area represents the information

from pp,, ., =1,2,5 which is calculated as follows:

1 L 1
new — 1 ma . = —(.13+.96 +.97) = .51
Panew - i:%;gp = 70 )
P3,new = ! (]-+ i Pm ):1(14‘13-}-964‘97):76
7 n+l s 4
1
A(pfﬂ,naw) =P3new ~ P3new = ntl =.25

This generates the interval (0.51, 0.76) which represents the estimate for the correlation between
item 3 and a new item. This provides information on how item 3 relates to all the other items
in the matrix, ignoring missing values.

The darker shaded area represents the information from p,, ,,7 =1,2,5 which is calculated

in a similar manner:

n

1 1
Papew =—— Y Pma; = Z(‘92 +.396 +.36) = .41

n+1,.77
P = (1+ Y p,) = 2(1+.92+ .36 +.36) = .66
7 n+1 it A4
1
A(p4,new) =P4new ~ Panew = m =.25
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In this instance, the estimate for the correlation between item 4 and a new item lies in the
interval (0.41, 0.66). Again, this provides information on how item 4 relates to all other items
in the matrix, ignoring missing values.

The ordering of the pairwise correlations does not affect the final interval as it is an additive
calculation. As the UI approach is only concerned with the final interval that is produced,
the ordering of the pairwise correlations is irrelevant. Notably, Aps e = Apanew s, even
though the information is different, the amount of information is the same, i.e., there are three

correlation coefficients in each case.

Q |
mp mg M3z My ms -
i . T © |
my | 1 042 0.13 (092 -0.12 co
2o
me | 042 1 096 (0.36 0.62 =N
S
ms | 013 096 1 MV 0.97 %g’
my | 092 036 MV 1 036 83
ms |-0.12 0.62 097 (036 1 | 21 | |
1 2 3

Number of Intervals

Figure 4.2.4: Information from p3; and p4;.

The next challenge is to decide how to combine the information from p,; with p; in order
to estimate p,p. There are a number of ways to combine this information, one possibility is
to considered max(pq.i,pp;). Therefore, going back to our example, in order to estimate the
correlation coefficient for ms and mu4, Py m, = 0.92, Pry.ms = 0.96 and py,; m, = 0.97 are utilised.
In doing so, information on how mg relates to m; is ignored, as is the information about how
my relates to msy and ms. This approach may be considered as an optimistic one as it takes

the highest value at each interval.

1 n 1
- Z max(pm3,¢7pm4’i) = 1(92 + 96 + 97) = 71

p. . =
=34 &
n+1 i=1,1#3,4

1 = 1
Dy = (1+ > max(pmy,: pma,) = = (1+.92+ .96 +.97) = .96
Con+l i=1,723,4 ’ o4
_ 1
A(p374) 22374 - p3,4 = n + 1 = 25
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In our example it returns the interval (0.71,0.96), see Fig. [1.2.5] As before, the difference
between the upper and lower intervals is .25. The amount of information is still three pairwise
comparisons, thus has not changed. However, the information itself has changed, thus returning

a different interval.

Q
ma mao ms my ms -
_ - T @ |
mi |1 042 (max(0:13,770:92)) —0.12 5 ©
E o
my | 042 1 EEKOSGINOBE) 062 c °
S
ms | 013 0.96 1 MV 097 8o
my [ 092 036 MV 1 036 83
ms [-0.12 0.62 EEEOOTN0SE) 1 | T \
1 3

2
Number of Intervals

Figure 4.2.5: Maximum value of each pairwise comparison.

In a similar vein, if min(pq, pp;) is considered then pr,, m, = 0.13, Pry m, = 0.36 and

Pms.ma = 0.36 are utilised.

1 n 1
= in(Prms . P ) = = (13 +.36 +.36) = .21
23,4 n+ 1 1:1;3,4m1n(p 3,1 p 4,1) 4( )

_ n . 1
D34 :n g (1 + Z.:1%;3,4mm(pmw,pm‘u) = Z(l +.13+.36 +.36) = .46
_ 1
A(ps,4) P34 P3aT T 25
Q |
my mo ms My ms -
_ . © © |
mi [ 1 042 GEEONSINON) -0.12 +
Eo|
my | 042 1 (EEEOSGINOBE) 0.62 c©
o
ms | 0.13  0.96 1 MV 097 5 S
my | 092 036 MV 1 036 83
ms [-0.12 062 GEAOOTMOBE) 1 | 2L |

1 2 3
Number of Intervals

Figure 4.2.6: Minimum value of each pairwise comparison.
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Once again, this is not ideal as information on how ms relates to ms and ms and how my
relates to my is not incorporated in our example. This may be considered a pessimistic approach
to estimating the true correlation coefficient p,,, m,. In our example, taking the minimum value
of pairwise comparisons gives the interval (0.21,0.46), see Fig. 4.2.6

The concept of taking maximum or minimum values is akin to Houlding and Coolen’s
(2012) approach to solving sequential decisions that incorporates NPUI via a rule that is based
on an attitude of Extreme Pessimism (EP) and a rule that is based on an attitude of Extreme
Optimism (EO). EP occurs when the decision-maker will always select the outcome or sequential
decision path whose lower expected utility bound is greatest, whereas EO occurs when the
decision-maker will always select the outcome or sequential decision path whose upper expected
utility bound is greatest. However the U approach seeks to incorporate information about how
items a and b are related to all other items in the matrix in order to estimate how they are related
to each other and taking either the maximum or minimum value ignores some information.

To overcome the shortfalling of taking the maximum or minimum value, the average of the

. . . i+ 1
pairwise comparisons, %

may be considered. In doing so, it assures that information about
the relationship between item a and item(s) ¢ and the relationship between item b and item(s)

7 is incorporated in the building of the interval.

1 L 1
D a8 (g Py, ) = 7(:60+.66.+.66) = .48

p =
34
4 n+1 i=1.723.4

1 &L 1
B e (1+ s Ps) = = (1 +.60 + .66 + .66) = .73
p3,4 n + 1( 2:1;3,4avg(p 3,1 p ,z) 4( )
_ 1
A(psa) Pya T3 T 20

In our example, the UI approach estimates the lower bound of p,,, m, as 0.46 and its upper
bound as 0.73, see Fig. [£.2.71 As the NPUI equations calculate an expectation, the modified
NPUI equations for the UI approach may also be considered as measuring an expectation.
Therefore, in effect this takes the average of a pairwise correlation and then the UI approach

takes the average of these averages.

27



1.0

my mo ms my ms

_ - © © |

my [ 1 042 (avg(0:13;70:92)) -0.12 c°

Eo|

me | 042 1 (avg(0:96;0:36)) 0.62 =

je)

ms | 0.13  0.96 1 MV 097 gé‘f

my | 092 036 MV 1 0.36 83
ms [-0.12 0.62 (avg(0:97;0:36)) 1 | S ‘ ‘
1 2 3

Number of Intervals

Figure 4.2.7: Average value of each pairwise comparison.

In considering how to combine the information from the correlations, what is being estimated
needs to be considered, i.e., pop. AS pp,, and Pm,,; are summary statistics, they may be
considered standardised random variables. The product of the two correlation coefficients
combines the linear relationship between item a and item(s) ¢ with the linear relationship of
item b with item(s) ¢ by the following;:

1 n Cov(a,i) y Cov(b,1)

Liiiap  0a0i Op0;

n
= Z pma,i X pmbi
n+1l, %

1 Z": (1 . Cov(a,i) y C’ov(b,i))

n+1l, %
1

n
T+l (1 " i=1%¢:a,b Pmas pmb’i)

040 00

1
n+1

Apap) =P, , = Pas =

Going back to our example, this results in the interval (0.20,0.45), see Fig.

1 n 1
Z Pms; X Pmay; = Z(.12 +.35+.35) = .20

p =
P34
A n+l, 45,

1 L 1
o, = 1 | )==(1+.12+ .35+.35) = 45
Prag (e B P pme) = 3(1+ 12+ .35 +.35)
_ 1
Alpsa) =Py, =P = 1%
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Figure 4.2.8: Product of each pairwise comparison.

As the U approach will incorporate the products of correlations, it is necessary to under-
stand the how these products will effect Pus and p, ;. Given that exchangeable random variables
are assumed to have positive correlations, only positive correlations shall be considered. If we
consider a strong correlation as pgirong = -9, a medium correlation as ppedium = -5 and a weak

correlation as pyeqr = -1, representing this as a simple matrix:

o |
-
Pstrong Pmedium  Pweak
Strong
© °
Pstrong Pstrong Pmedium  Pweak ©
Pmedium | Pmedium  Pweak Pweak ©
©
Pweak Pweak Pweak Pweak .
Medium Strong
° °
0.9 0.5 0.1 >
0.9 0.81 0.45 0.09 Medium
N
=]
0.5 045 025  0.05 ek swong
] Weak e Medium
0.1 0.09 0.05 0.01 o | * ¢ Weak
o
T T T T T T T T T
g £ 8 5 5 5 % § %
5 & 5 3 3 38 = = =
= = =

Figure 4.2.9: The product of correlations by strength of correlation.

In Fig. [£.2.9)it is evident that psirong X Pstrong Produces Puirong, ad Pstrong X Pmedium Produces

Pmedium- WHETeas pgirong/medium weak X Pweak PrOAUCes pyeqr. Given that the Ul approach assumes
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partial exchangeability and positive association, this approach is concerned with averaging over

the product of correlations. As such, there is assumed to be a higher proportion of pgyong X Pstrong

and Pstrong X Pmedium 111 COMParison to Pstrong/medium/weak X Pweak-

4.2.2 Development of the Uncertainty Interval

In this section, having proposed that the information should be combined via a product, focus
is given on how to modify the NPUI equations as to estimate correlation coefficients. Further
consider the MVs of a sub-ratings matrix as a unknown relationship between two items and
the goal is to estimate how these items are related to each other. By understanding how these
two items are related, a recommendation may be made for the item not experienced by an
individual.

The first UI to consider is simply to replace the known utilities in NPUI equations with
the product of the pairwise comparisons. This is denoted Ul irans as it is an untransformed

version of U1 and is calculated as follows:

Z (pa,i X pb,i)

Lap =+ 1

i=1,i#a,b
_ 1 U
Pap = n+l (1 + i:LZL;a’b (pa,i X pb,i)) (41)
1

A(pay) =
(Pap) =P,y = Pas =7

The Ulynirans €quations will calculate the interval [0,1] when no information is provided,
i.€., vacuous information. This is in line with the assumption of exchangeability and the fact
that exchangeable random variables are positively correlated. The U lypirans €quations do not
take into account that pairwise correlations may return negative correlation coefficients for a
pair of items that are actually positively correlated. Therefore, it is possible that the interval
may contain negative values and the final interval produced from the pairwise comparisons may
not contain the true correlation coefficient in a similar way that the correlation coefficient of
pairwise correlations is not the true correlation coefficient if complete information was available.
The U Iyptrans €quations may calculate an interval (-1, -1) when the limit is taken. For example,
consider all correlations between item a and item(s) ¢ to be perfectly negatively correlated (i.e.,

pa;i = —1 always) and all correlations between item b and item(s) i are perfectly positively
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correlated (i.e., pp; = 1 always). Then, for an infinite number of pairwise comparisons the

following is true:

1 oo
Ylx-1=-1
n—>oon+1i:1

1 [oe)
Iim ——(1 1x-1)=-1
im +1( +; x —1)

n—-oo n,

If this occurred, the assumption of exchangeability has been violated.

As the product of two correlations is calculated, i.e., p; € (-1,1) xp; € (-1,1), the magnitude
of estimated lower and upper intervals are reduced and the sign of the product is dependent
on the sign of the correlation coefficients. In our example, as there are no negative correlations
utilised in generating an interval to estimate the true correlation coefficient, the outcome is the
same as Fig. [£.2.§

However, this would not be the case if py;, m, Was a MV as pp,, m; = —0.12. Applying the
Uluntrans algorithm to estimate py,, m, generates a final interval (.09,0.34), see Fig. In
this instance p,, m, is known and it is evident that the negative correlation p,, , impacts
on the lower and upper bound equations. Ideally the algorithm will provide bounds for an
unknown relationship between items a and b in [0, 1] as exchangeable random variables have a

correlation coefficient greater or equal to 0.
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Figure 4.2.10: Product of each pairwise comparison with a negative correlation.

A correlation coefficient delivers three pieces of information:

1. Whether two variables are linearly related to one another;
2. Whether the relationship is positive or negative and;

3. The magnitude of the relationship.
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Knowing the magnitude of the relationship may be more informative than knowing the sign of
the correlation. Therefore, the absolute value of the product of pairwise comparisons can be

incorporated into the UI approach. This is termed Ul4,s and is represented in Eq. (4.2)):

Zn: (|paz Xpbz)

—a b n+1 i=1,i+a,b
_ 1 &
Pap =777 (1 + H;a’b (|pa,i X pb,i|)) (4.2)
1
Alpap) =Py, = Pap= 7

As with U Iy pirans, the product of the two correlations will reduce the magnitude of the relation-
ship. However, as all values are in absolute form, the sign will always be positive. Often RSs
are interested in positive relationships, as these are the basis for recommendation, therefore it
would appear justifiable to only consider positive correlations. Further justification to take the
absolute value of the pairwise correlations comes for the calculations of these correlations. A
pairwise correlation is used to deal with missing data and computes the correlation coefficient
for each pair of columns using vectors generated by omitting rows with missing values on a
pairwise basis. According to Lewis (2015)), this may not be a reasonable approach with known
unknowns being converted to unknown knowns. Therefore, even if the underlying data is highly
correlated, applying a pairwise comparison may lead to zero or even high negative correlations.
Going back to the example with a negative correlation, the final interval is now calculated

s (0.20,0.45). In this instance, taking the absolute value of the pairwise comparison better

reflects the true correlation coefficient of p,, m,, see Fig. [4.2.11]
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Figure 4.2.11: Product of each absolute pairwise comparison.
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In a similar approach to Uls,, p? is considered in order to produce intervals between
[0,1]. The coefficient of determination is another term used for p? and is used to explain the
ratio of two variances, i.e., the proportion/percentage of variability accounted for (Nagelkerke,
. It represents the linear relationship between two or more variables and that is why it is
often reported in regression analysis. This is denoted Ulg, with the lower and upper bounds

calculated as follows:

Z (pa,i X pb,i)2

Ban = n+1

i=1,i#a,b
_ 1 a 2
Pap= 77 1(1 + izléa,b (Pasi * po.) ) (4.3)
1

Alpap) =Py = Pap= g

This approach also scales the correlation coefficient between [0,1]. However, calculating Ulg,
produces a lower final interval than Ul 455 as, not only is p € [-1, 1] squared, it is then multiplied
by a value € [0,1]. Returning to our example incorporating a negative correlation, the final

interval is (0.03,0.28).
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Figure 4.2.12: Product of each squared pairwise comparison.

The last approach considered is Ulg;. In order to transform the intervals produced in
Eq. (4.4) the square root is taken. This is similar to a transformation in linear regression,
as the output is interpreted in its original form. This approach also scales the correlation

coefficient between [0,1], but adjusts the lower and upper bounds so that the information about
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how a is related to ¢ and how b is related to i is better reflected. As we can see from Fig. [4.2.13]

the interval is now (0.18, 0.53).

1 n 2
Las =\ ¥ 1 i:;@b (Pai % P
- 1 N 2 (4.4)
Pab = 1+ Pa,i % Pb,i
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Figure 4.2.13: Product of each root pairwise comparison.

The four UI approaches are considered heuristic in a recommender setting in that they
make a rating prediction based on the entire collection of previously rated items by users. These
algorithms also represent relational learning as described in RFT, i.e., certain relationships are
known (trained) and it is possible to derive relationships between unknown (untrained) items.
Recall that there were three challenges outlines in Chapter |1, The challenge of incorporating
vagueness and uncertainty into recommendations is addressed in the interval estimate of Ul
approaches, the wider the interval the more vague and/or uncertain the system is about how
two items are related. In addition, the more information available the narrower the interval
becomes representing a form of learning. Thus, there is transparency in the system as the
system is learning preferences based on explicit feedback and displaying this knowledge as an
interval which represents the amount of knowledge in the system. Finally, utilising a single
data source is, in and of itself, a challenge. The UI approaches are capable of estimating an

interval that is representative of the true correlation coefficient from a single ratings matrix.
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4.3 Chapter Summary

This chapter discussed how the RBCL technique is used to calculate an interval estimate for
a correlation coefficient. The limitations and potential issues related to this technique was
highlighted before introducing our proposed method. In order to develop our technique, a
number of issues needed to be addressed. Firstly, how to combine information about how item
a relates to item(s) ¢ and how item b relates to item(s) . The next challenge was to modify
the existing NPUI equations in order to calculate an interval that would estimate the unknown
correlation p, ;. The four proposed Ul algorithms are Ulyniran, Ulaps, Ulsy and Ulg,. These
are to be evaluated and compared with the RBCL approach using a distance and percent
metrics, as well as by the number of pairwise comparisons in each set of intervals.

The following chapter introduces the evaluation methods and simulated data, describing
the method used to simulate complete and sparse matrices. The four UI approaches are also

evaluated and comparisons made with RBCL where possible.
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Performance Evaluation via Simulation

In this chapter the method used to evaluate and simulate a ratings matrix are discussed. A
single ratings matrix is generated, allowing for the evaluation of the UI approaches and a
comparison, where possible, with the RBCL technique. Next, the UI approaches are applied
to matrices with differing amounts of missing variables and evaluated. Finally, matrices are
simulated from various distributions and the application of the UI approach on these are
explored and evaluated. The aim of this chapter is to distinguish which of the UI approaches

performs most accurately.

5.1 Evaluation of the UI approaches

Within a RS setting, algorithms and statistical techniques are often evaluated by calculating
the Mean Absolute Error (MAE), which computes the deviation between predicted ratings and
actual ratings, and the Root Mean Square Error (RMSE), which also computes the deviation
between predicted ratings and actual ratings but places more emphasis on larger deviation.
However, the Ul approach is not a RS in and of itself. It is an algorithm that estimates an
interval for a missing value and should be evaluated as such. Therefore, in order to evaluate
the Ul algorithm, the imputation of the MVs is evaluated.

In Newman, (2003)), the author related to modelling and simulating missing data. The
average error of the parameter estimates, or missing data error (correlation in this instance), is
calculated as the mean absolute difference between estimates derived from complete data and

those derived from missing data techniques (the U approach). As the four Ul approaches have
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a lower and upper bound they are evaluated by calculating the absolute minimum distance the

final lower and upper bound is from the true correlation coefficient:

5 min [complete data coefficient — incomplete data coefficient|

Distance =
n

The percent of the total number of intervals that the true correlation coefficient is contained
inside the U intervals is also recorded. As the UI approach will be evaluated alongside the
RBCL technique, this is another way to find similarities/differences between the two. In order

to calculate the percentage, let

1 if the true correlation coefficient is contained within the interval
€T; =

0 otherwise

Then the percentage is expressed as:

Z)xmo

8

Percent = ( Z

3 |

Finally, again to draw comparisons between the UI approach and the RBCL technique, the
number of pairwise comparisons that are utilised in generating a final interval is recorded. In
addition to drawing comparisons, this number allows for the interpretation of how informative
the Ul interval is. That is, a narrower interval indicates more information has been corporated
into building the final interval, thus is more informative. This also allows for the calculation
of the percent of missingness in each correlation matrix, as well as the percent of missingness

that remains once the Ul algorithms are run.

5.2 Simulation of Correlated Data

The first matrix considered is one which is exchangeable and positively correlated. The following
is a procedure for randomly generating correlated raw variables, there is 1,000 simulations for
each UI algorithm. These raw variables are simulated, R; ~ MV N(u,Y), such that the vector

1 contains only zeros and the covariance matrix > contain values between .95 and .99 to ensure
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high correlation]] The raw variables generated formed a matrix which has no missing variables
and is positive definite, it contains 500 x 500 entries and is denoted Ceompiete- In an ideal setting
few or no variables would be missing and so the calculated correlation coefficient would be
representative of the data and these positive correlations are calculated using all the data and
are exchangeable. To illustrate this, in Table the first ten correlations generated for items

one to ten of a randomly generated matrix, which will act as our example matrix, is displayed.

Table 5.1: First ten correlations calculated from Ceomprete

item 1 2 3 4 5 6 7 8 9 10

1 1.00

2 090 1.00

3 0.89 0.90 1.00

4 089 090 0.89 1.00

5 090 090 0.88 0.91 1.00

6 0.89 091 088 0.92 0.90 1.00

7 089 090 0.89 090 0.89 0.89 1.00

8 090 090 091 091 091 090 091 1.00

9 091 091 0.89 090 0.89 0.90 091 0.90 1.00

10 091 090 0.89 0.90 091 0.89 0.90 0.91 0.90 1.00

In reality rating matrices are sparse, they consist of few variables and any correlations
calculated are done so on a pairwise basis. In order to create a matrix that would reflect a real
world setting, a mask matrix was generated at random. A mask matrix is generated , i.e., a
matrix comprising of success=1 and failure=0 such that a Hadamrad (entry-wise) product with
a complete matrix produces a new matrix with missing values=0. This allowed the generation
of a matrix with a percentage of missing values (MVs). Real world data sets, such as MovieLens,
Netflix and YouTube, contain a low proportion of observed ratings; this proportion is typically
between 1% and 5% (Marlin et all, 2011]).

A number of considerations is made when generating the missingness of data, see Section
for formal definitions of patterns of missingness. One possible approach is to generate Missing
At Random (MAR) data which assumes the pattern of missingness depends on the value of
the data that is missing. However, the Ul approach assumes the data is exchangeable and
that there is a strong relationship between the items in the ratings sub-matrix. Therefore, the

missingness does not depend on the values of the data that are missing. Another approach

LAll R code for generating simulated data is presented in the appendix.
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is Not Missing At Random (NMAR), which assumes the pattern of missingness is due to a
variable, for example genre. Given that the UI approach assumes partial exchangeability;
generating NMAR, data would be similar to generating a ratings matrix and then creating a
sub-matrix in order to satisfy the partial-exchangeability assumption. As collaborative filtering
algorithms may assume missingness is Missing Completely At Random (MCAR) (Su et al.,
2008) the sparse matrix generated in this section is MCAR. The probability of success in the
mask matrix was set to 0.05 and so we have a matrix with approximately 95% MVs, this matrix
is defined as Cjy. Next, pairwise correlations are calculated. Using a pairwise calculation can
result in correlation matrices which are not positive semi-definitd’ In addition, only paired
correlations are utilised, if there are no pairs then a MV is produced. The first ten of these
correlations in our example are displayed in Table 5.2 from which it is evident that such a
sparse matrix leads to no pairwise comparisons being computed in some cases, thus resulting
in MVs.

Table 5.2: First ten correlations calculated from Cyo

Item 1 2 3 4 5 6 7 8 9 10
1 1.00

2 0.8 1.00

3 MV 1.00 1.00

4 MV -0.67 1.00 1.00

5 088 098 MV MV 1.00

6 MV 093 MV MV -1.00 1.00

7 MV MV MV 1.00 -1.00 0.97 1.00

8§ 099 1.00 MV 093 -1.00 MV 091 1.00

9 MV MV MV MV MV MV MV 0.63 1.00

10 MV MV MV -098 -1.00 MV MV 1.00 MV 1.00

2 As such a pairwise calculation may lead to negative eigenvalues which may imply negative variance - which
is a contradiction of the definition of variance.
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Figure 5.2.1: (a) Correlation Plots: Ciompiete correlations; (b) Correlation Plots: Csy, correlations

In Fig.|5.2.1| (a) the correlations produced by the completed data are strongly positive and
uniform in colour, whereas, in the correlations produced from the sparse data (Fig. [5.2.1| (b))
there is a combination of positive and negative, weak and strong correlations with a non-uniform
pattern displayed.

While Ceompiete generates high positive correlations between all the variables, this is not
the case in Csy. Instead, in addition to MVs, high negative correlations are produced, see
Fig.[5.2.1(b). A high negative correlation may be the result of only two pairwise comparisons,
leading to a line fitted in a negative direction. A single pairwise comparison in a ratings matrix
may lead to a zero correlation coefficient as the fitted line has only one point to pass through.
In addition, if there is a pairwise comparison, this may result in a missing value if all values
are the same, i.e., variance would be zero. As stated, this is one of the limitations of using
pairwise correlations. From Cs¢ a pairwise correlation produced a matrix with approximately
64% missing values. Therefore, the RBCL approach could not be employed to calculate an

interval estimate of the true correlation coefficient for these missing values.

5.2.1 Cliompiete: Complete Data

In order to evaluate the UI approaches and to make comparisons with the RBCL technique,
the example matrix described above is employed. The four UI approaches and the RBCL

technique are used to estimate the lower and upper bounds of two correlations:
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1. The correlation between item 1 and item 2, pc.,, ... (1,2): when missing values are intro-
duced, a pairwise correlation is calculated. The UI approaches and the RBCL technique
will be applied to estimate the true correlation value of item 1 and item 2.

2. The correlation between item 1 and item 3, pc.,,...... (1,3): when missing data is simulated,
a pairwise correlation produced a missing value (MV). In this instance, only the UI
approaches can be applied to estimate the true value of the correlation coefficient between

item 1 and item 3.

Firstly, pc 2) is designated as a MV and the Ulynirans, Ulaps, Ulsy and Ulg, are

complete ( 1 ?

calculated to estimate the true value of the correlation coefficient, p¢ 1,2) =.90. In order

comptete
to evaluate the four UI approaches, the RBCL algorithm is also calculated. The hyperparameter
vy was set to the default of 2 for the calculation of posterior expected covariance matrix.

Fig. displays the performance of the UI approaches to estimate an interval for pc,,,,. ... (1,2).
The UI approaches generate intervals that do not take negative values. The performance of
the RBCL technique is displayed in Fig. [5.2.3] where it is obvious that the first interval gen-
erated is [-1,1]. Both the UI and RBCL techniques quickly narrow as more information is
introduced. However, unlike the RBCL technique, each of the UI approaches underestimate
the true correlation coefficient. In addition, the Ul approach utilises pairwise correlations and,
given the sparsity of the matrix, these pairwise correlations may produce negative or zero cor-
relations, even though the true underlying correlation coefficient is strongly positive. Hence,
these correlations contain errors as demonstrated in Section [3.3.2]

The RBCL builds an interval based on paired observations, it generates a paired correlation
for the first set of intervals and continues to update the correlation coefficient as more and more
paired sets are entered into the model. Therefore, this technique does not contain the errors
generated by pairwise correlations on missing values. In addition, the final interval calculated
using the RBCL approach contains the true correlation coefficient.

As this is a complete matrix simulation, the number of pairwise comparisons utilised in
building the final interval for the UI approaches and the RBCL technique is 499. This in turn
allows for the calculation of the interval, which is 0.002. Therefore, the level of informativeness
of these intervals is high.

Repeating the process to calculate the correlation coefficient between item 1 and item 3
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Figure 5.2.2: Application of Eq. 4.1, Eq. 4.2, Eq. 4.3 and Eq. 4.4 to estimate pc.,,, ... (1,2)
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Figure 5.2.3: Application of RBCL technique to estimate pc.,,, ... (1,2)

produces very similar results as the previous example, see Fig. for UI approaches and
Fig. for RBCL technique. A summary of the distance metric, i.e., the absolute minimum
distance the true correlation lies outside the interval, is displayed in Table [5.3] This table also
contains the percentage of intervals that contain the true correlation coefficient. The RBCL
technique contains not only the true correlation coefficient in the final interval, but also has
the highest percentage of intervals that contain the true correlation coefficient. Hence, given
complete information, the RBCL technique is superior to the UI approaches.

A total of 1,000 matrices were simulated in the above manner and a randomly selected entry

was assigned MV. All four UI algorithms and the RBCL technique were applied to estimate
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Figure 5.2.4: Application of Eq. 4.1, Eq. 4.2, Eq. 4.3 and Eq. 4.4 to estimate pc.,,, ... (1,3)
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Figure 5.2.5: Application of RBCL technique to estimate pc.,,, ... (1,3)

Table 5.3: Final Intervals for Estimated Correlation pc.,,, ... (1,2) and pc,,, ... (1,3)

PCeomptere(152) PCeompiere (153)
Pos Pap Distance Percent Pos Pap Distance Percent
Ulyntrans | 0.81 0.81 0.09 0.20 ]0.80 0.80 0.08 0.20
Ul 4ps 0.81 0.81 0.09 0.20 ] 0.80 0.80 0.08 0.20
Ulg, 0.66 0.66 0.24 0.00 |0.65 0.65 0.24 0.00
Ulg, 0.81 0.81 0.09 0.20 ] 0.80 0.80 0.08 0.20
RBCL 0.89 0.90 0 74.85 | 0.89 0.90 0 76.25
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Table 5.4: Summary statistics of 1,000 simulations of Ceompiete

UIUnt'rans UIAbs UISq UIRt RBCL
%  Distance % Distance % Distance %  Distance % Distance

Min .00 .06 .00 .06 .00 21 .00 .06 63.40 0
Max 40 21 40 21 .00 38 40 21 78.20 0
Median | .20 .09 20 .09 .00 25 20 .09 70.80 0
Mean | .14 .09 14 .09 .00 .25 A7 .09 71.00 0

the true correlation coefficient of the MV and a summary of 1,000 simulations of a complete
correlation matrix with a MV random generated and estimated can be found in Table [5.4]
Notably, the intervals generated by Ulg, never contain the true correlation coefficients and its
absolute average distance from the true correlation coefficients is higher than the other three
UI approaches. Ulynirans, Ulaps and Ulg, all preform almost identically when applied to a

complete dataset. This reinforces the findings from the above examples of pc

complete

(1,2) and
PCoommer (1,3) that the RBCL techniques has superior performance when applied to complete
data. There is little insight as to which Ul approach performs best when applied to a com-
plete correlation matrix. The following section explores their application to sparse matrices
and evaluates the performance in relation to percentage of overall intervals that contain the
true correlation coefficient and the absolute minimum distance from the interval to the true

correlation coefficient.

5.2.2 C9: Sparse Data

The correlation between item 1 and item 2 is p¢ (1,2) =.90 from Ceopmpiete and pe, (1,2) =

complete

.86 from C5¢. The pairwise correlation pc., (1,2) is set to MV in order to explore how the

Ul approaches perform. The aim of the UI approach is to estimate pc

complete

(1,2) using the
products of the correlations produced from Cy.

As the UI technique is a pairwise comparison method, it should be noted that it calculates
products of pairwise correlation coefficients. In Fig. the first interval calculated by a

U1 approach, to estimate p¢ (1,2), incorporates a pairwise correlation that consisted of

complete

two pairwise comparisons multiplied by a pairwise correlation that consisted of three pairwise
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comparisons. Therefore, not only does the number of pairwise comparisons used to construct
a lower and upper bound affect the final interval, but also the number of pairwise comparisons
used for the correlation calculations. When the product of two correlations produces a MV,

this value is removed and not utilised in the building of the intervals.
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Figure 5.2.6: Graph showing the first three intervals to estimate pc.,,,, ... (1,2)

As the UI approaches are primarily heuristics, it is necessary to explore how these ap-
proaches work. In Fig. the correlation coefficients for item 1 are plotted against the
correlation coefficients for item 2 for both complete (displayed as red points) and sparse (dis-
played as blue points) correlation matrices. It is evident, in this example, that in the complete
correlation matrices for untransformed, absolute and squared correlations, the points are all
clustered closely together in the top right corner of each graph, indicating strong positive cor-
relations. Looking at the correlation produced from the sparse data set, even through there are
some strong negative pairwise correlations for item 1 and item 2, the majority of item 1 pairwise
correlations versus item 2 correlations are plotted in the top right corner, indicating both sets
of correlations are strong positive. In the current example, 86% of the sparse correlation matrix
contains values greater than 0.7. The untransformed correlations can contain values between -1
and 1, whereas the absolute and squared correlations are contained within a [0,1] interval. The
points are more spread out in the squared transformation. Therefore, the majority of paired

correlations are representative of the true correlation coefficient.
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Figure 5.2.7: p(1,7) vs p(2,1) for complete and sparse data. From left to right we have (a) Untrans-
formed correlations (b) Absolute correlations (¢) Squared correlations.

The above graphs display both complete and sparse correlations for items 1 and 2. It is
perhaps more relevant to explore the correlation matrix produced from the sparse matrix Csy,
in some more detail. In Fig. [5.2.8] the untransformed pairwise correlations produced for item
a = 1 and all other items are plotted on the left-hand side of the graph whilst the pairwise
correlations produced for item b = 2 and all other items are plotted on the right-hand side
of the graph. The connecting lines indicate a pairwise comparison and clearly there exists
correlations for item 2 with some item ¢ where there isn’t a corresponding correlation for item
1, as indicated by no line. In this example, when there is a negative pairwise correlation between
item a and item ¢, it is paired with a positive correlation between item b and item ¢ and wice
versa. Recall that the pairwise correlations are assumed to be exchangeable and, even though
a negative pairwise correlation is produced, it is not reflective of the true correlation coefficient
given complete information. In addition, 86% of the pairwise correlations are 0.7 or above,
which is more reflective of the true correlation coefficient given complete information. Hence,
positive pairwise correlations should outnumber negative pairwise correlations and once paired
these negative pairwise correlations are mitigated.

To further mitigate the effect of these negative correlations, the absolute value of each corre-
lation is calculated and these are displayed in Fig.[5.2.9 In this instance, the values the pairwise
correlations take are between 0 and 1. There are still pairwise correlations that, although not
negative, are indicating no correlation between item 2 and some item(s) i. As before, these cor-

relations are paired with strong positive correlation for item 1. Another approach to mitigate
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Figure 5.2.8: Untransformed paired correlation comparisons utilised in estimating peompiete(1,2)

1.0

0.8

0.6

0.2

Correlation coefficient
l”-"/ e de .ll’f‘

0.0
|
[ ]

pCS%(a‘ i) pCs%(b' i)

Figure 5.2.9: Absolute paired correlation comparisons utilised in estimating peompiete(1,2)

the affect of these negative correlations is to square each correlation. In Fig. [5.2.10]it is evident
that this causes strong positive pairwise correlations to become less so and the spread is more
evident in this graph. Therefore, the U4, is superior to the Ulg, as it manages to remove the
effects of negative pairwise correlations without comprising the high pairwise correlations.
Applying the four UI approaches to estimate peompiete(1,2), there are 77 paired correlations
that are inputted into building the intervals. Therefore the width of the final interval is 0.012. In
Fig. the intervals for each UI approach is displayed. The black horizontal line represents
the true correlation coefficient as calculated from the complete raw data matrix, whilst the
dashed black line represents the pairwise correlation coefficient as calculated from the sparse

raw data matrix. Ulyperens Underestimates the true correlation coefficient, as does Ulgg; this is
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Figure 5.2.10: Squared paired correlation comparisons utilised in estimating pcompiete(1,2)

reflective of the effect negative pairwise correlations and the spreading effect respectively. The
final interval for Ul 4, contains the true correlation coefficient, with 98.7% of the total number
of these intervals containing the true correlation coefficient. The Ulg; performs slightly worse
in that it is a distance of .02 away from the true correlation coefficient at the last interval.
However, it contains the true correlation coefficient only 13% of the intervals. When the RBCL
technique is applied to estimate peompiete(1,2), a total of three intervals are built, see Fig. .
The final interval, although it contains both peompiete(1,2) and pse(1,2), is wide ranging from
-.068 to .931.

o
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Figure 5.2.11: Application of Eq. 4.1, Eq. 4.2, Eq. 4.3 and Eq. 4.4 to estimate pc,,,, e (1,2)

When the Ul approaches are applied to estimate peompiete(1,3) the results are similar to
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Figure 5.2.12: Application of RBCL to estimate pc.,,, ... (1,2)

those of peompiete(1,2). The most notable difference is the number of paired correlations used
to build these intervals, in this instance 18. Ulynirens underestimates the true correlation
coefficient, whereas the other three UI approaches overestimate it. The RBCL technique is
unable to estimate the true correlation coefficient in this instance are there are no paired raw

data, hence no pairwise correlation can be calculated.
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Figure 5.2.13: Application of Eq. 4.1, Eq. 4.2, Eq. 4.3 and Eq. 4.4 to estimate pcmmplete(l,3)
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In Table the final lower and upper bounds for pc 1,3) are

complete

(1,2) and pc,,pper. (
displayed, as well as the minimum distance of the interval from the true correlation coefficient
and the percentage of intervals that this correlation was contained within the interval. In this
example, the U1 intervals are narrower than the RBCL interval for pc,,, . ....(1,2). This is the
result of the number of paired correlations available to build the U[ intervals (n = 77) compared
to the number of paired raw variables available to build the RBCL interval (n = 3). Therefore,
the width of the final interval for the UI approaches is 0.012, whilst the width of the final

interval or the RBCL technique is 0.998. For pc (1,3), the width of the final interval is

complete
0.052 for the UI algorithms and as no interval can be calculated for the RBCL technique, a
vacuous result (i.e., an interval width of 2) is returned. The U1 approaches are utilising more
information from the correlation matrix and, even through they do not perfectly estimate the
true correlation coefficient, some are producing relatively close estimates. The RBCL technique
utilises the paired raw variables, which contains less information compared to the correlation
matrix. Notably, RBCL cannot estimate the true correlation coefficient when there are no

paired raw variables in the matrix.

Table 5.5: Final Intervals for Estimated Correlation pc.,,, ... (1,2) and pc,,,. ... (1,3)

PCeomptere (152) PCeomptere (153)
Lo Pap Distance Percent P,y Pab Distance Percent
Ulyntrans | 0.55  0.56 0.33 260 |0.71 o077  -0.12 16.67
Ul zps 0.90 091 0 98.70 | 0.92 0.97 0.03 66.67
Ulg, 0.85 0.86 0.04 1299 1 0.90 0.95 0.01 61.11
Ulg; 0.92 0.93 0.02 18.18 [ 0.95 0.98 0.06 27.78
RBCL -0.068 0.93 0 100

5.2.3 Generalising to the entire example matrix
In the previous section the two examples for a sparse correlated matrix were concerned with:
1. Estimating the true correlation coefficient for a known and unknown entry in the sparse

correlation matrix;

2. Exploring the performance of each UI approach and;
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3. Comparing the UI approaches with the RBCL technique.

When the Ul approaches are applied to 80,810 MVs (64.9%) within the example matrix
Cs9, the number of pairwise comparisons, the percentage of the total interval in which the true
correlation coefficient was contained within the interval and the absolute minimum distance
from the true correlation to the Ul approach are recorded. These are used to evaluate the
performance of each U approach. The average number of paired comparisons utilised to gen-
erate a pairwise correlations is 2.47, o = 0.13. Therefore, the RBCL technique would produce a
large interval in estimating these known pairwise correlations. The estimate probability density

function (pdf) of these comparisons is displayed in Fig. [5.2.14

Average Pairwise Raw Variables

u=247
=013

Density
0.0 05 1.0 15 20 25 3.0

2.2 2.4 2.6 2.8 3.0

Figure 5.2.14: PDF of paired raw variable from sparse matrix Csy

These pairwise correlations calculated from the sparse raw data, Csy, are then utilised by
the UI approaches. Even though these pairwise correlations are generated from few paired
raw variables, the pairwise comparisons are generated from a higher number of paired pairwise
correlation, see Fig. [5.2.15] The average number of these is 65.6, o = 16.25. Hence, the average
width of the final interval for the Ul algorithms is 0.015.

Considering each U algorithm separately, the average percentage of the Ul irans intervals
that captures the true correlation coefficient is 6.62% (o = 9.13). Whilst the average distance of
the final interval from the true correlation coefficient is .32 (o = .12), see Fig.[5.2.16] In relation

to Ulas, the average percentage of intervals that captures the true correlation coefficient is
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Figure 5.2.15: PDF of pairwise correlations in Cor(Csy)

42.67% (o = 24.43). The average absolute minimum distance of the final interval is .017 (o =
.015), see Fig. The densities of the average percentage of intervals that captures the
true correlation coefficient (p = 28.29,0 = 26.44) and the average absolute minimum distance
of the final interval (pu = .148,0 = .034) for Ulg, are displayed in Fig. [5.2.18] Finally, Ul
has an average percentage of intervals that captures the true correlation coefficient of 24.97%
(0 =17.24) and the average absolute minimum distance of the final interval is .025 (o = .017),
see Fig. [5.2.19

As expected, Ulypirans is the worse performing algorithm given that it includes negative
correlations which affect the intervals by increasing their distance from the true correlation co-
efficient. Ulg, performs marginally better, but the affect of squaring each correlation coefficient
is decreasing the correlation coefficient that is entered into the algorithm. The is the result of
taking a fraction of a fraction as correlations lie between [-1,1]. The Ulg, algorithm attempts
to reduce the affect of squaring and it performs better than just squaring alone; it is reducing
the distance metric but not increasing the percentage metric. This leaves the U1 4, algorithm,
which not only reduces the distance metric but also increases the percentage metric, making it

the best performing and most accurate of the four Ul algorithms.

82



5] 1=6.615 o]
1 c=9.134 =
23| Zo
z =y
S | o
(=] g 1 a o
& 40 60 80 100 °
Figure 5.2.16: (a) PDF of percent metric and (b) PDF of distance metric of Ulyntrans
= n=4267 2 p=0017
. c=2443 ¢=0.015
>.5- 1 >.8
5 2
& 5]
ag | a
// ‘O_
g/ N °
° 0 20 40 60 80 100 0.10 0.12
Figure 5.2.17: (a) PDF of percent metric and (b) PDF of distance metric of U1 4ps
. w=28.29 ol
S 6 =26.44 b
>8 >\°° |
- e
o o
ng a -
Figure 5.2.18: (a) PDF of percent metric and (b) PDF of distance metric of Ulg,
3 n=24.97 3 n=0.025
s c=17.24 q | 5=0.017
>~8 >.8 4
e z
5 4 5 w0 |
(= o

0.000

Figure 5.2.19: (a) PDF of percent metric and (b) PDF of distance metric of Ulg,

5.2.4 Comparison of Ul to Singular Value Decomposition

In this section, the best preforming U algorithm Ul is compared to the Singular Value
Decomposition (SVD). The SVD algorithm is perhaps one of the most famous recommendation

algorithms, winning the 2006 Netflix prize for movie recommendation. This algorithm employs
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the use of gradient descent to minimise the squared error between predicted rating and actual
rating, eventually getting the best model. The purpose of such a comparison is to calculate the
Root Mean Square Error (RMSE) that is traditionally used by RSs to evaluate the recommender
model. The RMSE is the standard deviation of the prediction errors.

Firstly, to evaluate Ceompiete, the ratings matrix was split into a training (5% of ratings)
and test set (95% of ratings) to demonstrate the performance of the SVD algorithm. This
produced a RMSE of 0.894. This preformed in a similar way to Csy which was the training
data set and Ceompiete Was the test dataset. The correlation matrix produced from Ceopmpiere Was
also split into train and test set, 5% and 95% respectively. This performed better than the
previous two, resulting in a RMSE of 0.122. The correlation matrix produced by calculating
pairwise correlations in Csy was also used to train the SVD algorithm. It was evaluated using
the correlation matrix produced from Ceompiere and had a RMSE of 0.1183. Lastly, the final
interval of the Ul algorithm was evaluated. As there is an upper and lower interval, the
SVD algorithm was applied to both of them. The upper interval resulted in a RMSE of 0.1163,
whilst the lower had a RMSE of 0.1162. This was evaluated on the complete correlation matrix.

These values are displayed in Fig. [5.2.20

Root Mean Square Error

sparse(Rating) | 0.9
Complete(Rating) | 0.8942

Complete(Correlation) [ 0.122
Sparse(Correlation) [ 0.1183

Ul(Abs)Upper [ 0.1163

Ul(Abs)Lower [ 0.1162

Figure 5.2.20: RSME of Complete, Sparse, Imputed and U I g4
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5.2.5 Increasing Missingness

The procedure to produce the above example matrix was followed to randomly simulate 1,000
matrices with approximately 95%, 96%, 97%, 98% and 99% MVs producing Csy, Cyo, Cso,
Csy, and Chg respectively. To evaluate the four Ul approaches the average error was calcu-
lated for each individual simulation. The percent of the total number of intervals that the true

correlation coeflicient is contained inside the U intervals is also recorded.

In Table[5.6/summary statistics of each set of 1,000 simulations by missingness are displayed.
The Ulynirans algorithm, for all levels of missiningness, has the highest error in relation to
average absolute minimum distance and the lowest average percentage of the Ul algorithms.
The Ulyps algorithm consistently performs better than the Ulynirans and Ulg, algorithms
as expected. As the amount of missingness increases, the Ulg; algorithm improves and is
performing similarly to Ul . It is evident that the higher the percentage of missingness, the
higher the percentage of intervals that contain the true correlation coefficient. This is due
to the reduced number of pairwise comparison, leading to wider intervals. In Fig. the
effect of the number of intervals built via the pairwise comparisons on the distance between
the lower and upper bound of the final interval is displayed. From CY¢ the average number
of pairwise comparisons is 1, which results in a final interval width of 0.5. As the amount of
missing decreases, the number of pairwise comparisons increases and at 95% missingness the
final interval is calculated using an average of 50 comparisons giving a final width of 0.19. This
demonstrates that the amount of vagueness and uncertainty within the prediction is decreasing
with the amount of information provided.

For each set of the 1,000 simulations the minimum and maximum number of MVs in the
correlation matrices are displayed in Table [5.7] these figures remain more or the same across
the four U approaches. The percentage of MVs that remain MVs for each level of missingness
is also displayed. This value may be distorted due to the differing number of MVs in each of
the simulated matrices as they range from approximately 61.6% to 66.9% MVs for 95% miss-
ingness. Wider intervals provide information to the user that more information is required and

reflects the vagueness and uncertainty that exists due to a lack of information.
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Table 5.6: Summary statistics of 1,000 simulations of Cyy, Cuy, C39, Cog, Cho

95 % Missing Values

U Iynirans U1 ps Ulg, Ulg;
%  Distance % Distance %  Distance % Distance
Min 5.03 .29 37.34 .01 20.81 .03 19.56 .02
Max 7.90 .36 47.33 .02 33.43 .05 30.90 .04
Median | 6.42 .32 41.90 .02 26.63 .04 25.19 .02
Mean 6.46 .32 41.89 .02 26.67 .04 25.14 .02
96 % Missing Values
U Iynirans U1 ps Ulg, Ulg;
%  Distance % Distance %  Distance % Distance
Min 16.94 .29 55.84 .02 16.08 .02 37.48 .02
Max 26.68 .36 68.25 .03 27.25 .03 55.52 .04
Median | 21.62 .33 61.50 .02 21.94 .03 45.69 .03
Mean 31.64 .33 61.46 .02 21.96 .03 45.60 .03
97 % Missing Values
U Iynirans U1 sps Ulg, Ulg;
%  Distance % Distance %  Distance % Distance
Min 51.41 .28 90.41 .07 84.69 .07 78.80 .04
Max 61.95 .35 94.58 .09 90.41 .09 91.10 .06
Median | 56.63 31 92.61 .08 87.71 .08 87.25 .05
Mean 56.66 31 92.59 .08 87.66 .08 87.14 .05
98 % Missing Values
U Iynirans U1 ps Ulg, Ulg
%  Distance % Distance %  Distance % Distance
Min 68.14 .25 95.29 .01 93.22 .08 95.30 .02
Max 78.12 .33 98.91 .05 98.09 12 98.62 .07
Median | 72.75 .29 97.15 .02 95.53 .10 97.31 .04
Mean 72.73 .29 97.16 .02 95.53 .10 97.31 .04
99 % Missing Values
U Iynirans U1 ps Ulg, Ulg;
%  Distance % Distance %  Distance % Distance
Min 56.71 .27 91.39 0 20.81 .08 92.03 0
Max 92.86 .35 100 .01 33.43 12 100 .01
Median | 75.11 .32 99.23 0 26.63 .10 99.25 0
Mean 75.07 .32 100 0 26.67 .10 100
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Figure 5.2.21: Distance between lower and upper bounds: A(pgp) = %

It is evident that the Ul approaches do not successfully complete a sparse correlation matrix
when the level of missingness increases from 95%. They do provide transparency, in that, the
width of the final bounds reveal the amount of uncertainty and vagueness in the estimate of
the correlation coefficient due to a smaller amount of information. The RBCL technique also
provide the user with this feedback via the width of the final interval. However, it is incapable
of estimating bounds for correlation coefficients when there are not paired raw variables in the
sparse matrix, which is a high percentage at the 95% missingness level, increasing with the
level of missingness.

The Ul approaches perform discrete tasks, ¢.e., it is possible to estimate each correlation
coefficient independent or another. Hence, this approach can be performed on parallel processes.
In addition, the time complexity appears not to be an issue given that 80,000 MVs (without
being parallelised or optimised) can be calculated in 49.87 seconds. In Fig. the length of
time taken to calculate various numbers of MVs are displayed for both user and time elapsed

for system time.

5.2.6 Distributions

In this section, the application of all four U I approaches is explored on various distributions and
then evaluated as before. Three distributions will be generated: Poisson(\ =5) (up =5,0% =

5), Beta(a =0.25,3 = 0.25) (up = 5,0% = 1.6) and Skewed Normal(e(location) = 5, w(scale) =
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Table 5.7: The minimum and maximum number of MV in simulations of Csy, Chy, C39, Coo, Cioy

95 % Missing Values
U Iyntans Ul abs Ulg, Ulrg:
Min(%) | 76835 (61.6) 76826 (61.6) 77329 (61.9) 77208 (61.9)
Max (%) 83456 (66.8) 83678 (67.1) 83334 (66.8) 83438 (66.9)
% still MV 0 0 0 0
96 % Missing Values
Ulyntans Ul 5 Ulg, Ulg,
Min(%) | 98485 (78.9) 98480 (78.9) 98481 (78.9) 98481 (78.9)
Max (%) | 102939 (82.5) 103345 (82.8) 103346 (82.8) 103346 (82.8)
% still MV .08 .08 .08 .08
97 % Missing Values
UIyntans U pps Ulg, Ulgp,
Min(%) | 114004 (91.3) 113904 (91.3) 113904 (91.3) 113904 (91.3)
Max(%) | 116553 (93.4) 116697 (93.5) 116697 (93.5) 116697 (93.5)
% still MV 13.49 13.45 13.45 13.45
98 % Missing Values
Ulyntans Ulps Ulg, Ulg;
Min(%) | 122179 (97.9) 122155 (98.1) 122122 (97.8) 122122 (97.8)
Max(%) | 122918 (98.5) 122907 (98.5) 122044 (98.5) 122944 (98.5)
% still MV 83.87 83.83 83.84 83.84
99 % Missing Values
U Iyntans Ul abs Ulg, Ulrg:
Min(%) | 124543 (99.8) 124542 (99.8) 124542 (99.8) 124542 (99.8)
Max(%) | 124651 (99.9) 124647 (99.9) 124650 (99.9) 12450 (99.9)
% still MV 99.87 99.87 99.87 99.87

2, a(shape) = 5) (pusn = 5.04, 0%y = 1.61). The parameters for these distributions are chosen as
to have similar mean and, in the case of the Beta and Skewed Normal distributions, a similar
variance.

As before, each matrix contains 500 x 500 entries and were simulated 1,000 times for each

distribution and each UT algorithm (12,000 simulations in total). The percentage of missingness
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Figure 5.2.22: System time of user and time elapsed for MVs calculated by Ul 4p

for each of these matrices is set at 95% and then a correlation matrix is produced via pairwise
correlations. This produces correlation matrices with approximately 64% MVs still present,
which is the same for the raw variables generated as Multivariate Normal (MV N) in Section 5.2}
In Table the summary of these simulations is presented, along with those for the MV N
distribution with 95% missingness. The minimum of the absolute minimum distance increases
no more than 0.01 for each distribution when compared with MV N, with the exception of
U I, which has a minimum of the absolute minimum distance increase of .03. Given that this
algorithm has the largest absolute minimum distance, an increase of .03 appears reasonable.
The one distribution and algorithm that appears to vary from the MV N is the Ulyuirans
algorithm applied to Poisson distribution. This differs in both absolute minimum distance
and percentage, being more accurate and a higher percentage of intervals in which the true
correlation coefficient is contained. The Uly,irans Was applied to another 1,000 simulations;
similar results were observed (Percent: min =11.98, max = 18.12, mean = 15.53, median = 15.49
whilst for Distance: min = 0.14, max = 0.19, mean = 0.17, median = 0.17). Even though the
U Iy nirans performs superior when applied to a Poisson distribution, it does not outperform the
Ul 4ps algorithm. Finally, the mean percentage of intervals that the true correlation coefficient
is contained in varies between approximately 27% and 29% for UIg, and between approximately
19% and 29% for Ulg;. For Ul 4, the mean percentage of intervals that the true correlation

coefficient is contained within varies between 35% and 44%, depending on the distribution; the
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Table 5.8: Summary statistics of 1,000 simulations of various distributions

MV N Ulynirans Ul 5, Ulg, Ulg;

%  Distance % Distance %  Distance %  Distance
Min 5.03 .29 37.34 .01 20.81 .03 19.56 .02
Max 7.90 .36 47.33 .02 33.43 .05 30.90 .04
Median 6.42 .32 41.90 .02 26.63 .04 25.19 .02
Mean 6.46 .32 41.89 .02 26.67 .04 25.14 .02
Poisson Ulpnirans Ul s Ulg, Ulg;

%  Distance % Distance %  Distance %  Distance
Min 12.12 14 40.19 .02 20.33 .04 24.36 .02
Max 19.38 .20 50.52 .03 31.97 .07 34.43 .04
Median 15.60 A7 44.44 .02 26.84 .05 29.44 .03
Mean 15.58 A7 44.45 .02 26.84 .05 29.49 .03
Beta Ulynirans Ul zps Ulg, Ulg;

%  Distance % Distance %  Distance %  Distance
Min 4.92 .26 21.64 .02 25.14 .03 14.65 .03
Max 8.27 .32 29.43 .03 32.83 .04 24.82 .05
Median 6.50 .29 29.46 .02 29.19 .03 19.52 .04
Mean 6.52 .29 35.61 .02 29.19 .03 19.56 .04
Skewed Ulynirans Ul s Ulg, Ulg;
Normal | %  Distance % Distance %  Distance %  Distance
Min 4.98 .29 35.11 .01 20.61 .03 17.79 .02
Max 8.58 .36 45.87 .03 34.30 .05 30.16 .04
Median 6.41 .32 40.98 .02 27.24 .04 23.53 .03
Mean 6.45 .32 41.01 .02 27.14 .04 23.51 .03

mean absolute minimum distance changes by a maximum of 0.01. Therefore, given that the
Ul s estimate is the most accurate of all the Ul algorithms, and that the absolute minimum

distance from the true correlation coefficient is more important than the percentage metric, the

U1 zps algorithm performs in a very similar manner on these datasets.

5.3 Chapter Summary

This chapter demonstrated the four U techniques on sparse data sets with various amounts of

missingness. It is clear that the Ul 4 algorithm is the best performing algorithm with respect
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to the number of intervals that contained the true correlation coefficient and the absolute
minimum distance for it. This chapter has presented some of the limitations of the RBCL
technique when applied to sparse datasets; when RBCL can generate an interval, the interval
is much wider than the interval calculated under the UI approaches. It has also highlighted
the limitations of the Ulyprans and Ulg, algorithms; these are unable to mitigate the affects
of negative pairwise correlations and spread due to squaring respectively.

The Ul 45 algorithm performed well for each level of missingness. As demonstrated, this
algorithm is capable of reducing the affect of negative pairwise correlations by only inputting
absolute values. Given that the pairwise correlation matrix generated from the sparse matrix
Csy is assumed to be exchangeable and the raw variables are assumed to be positively correlated,
this approach is justified. It is worth noting that the Ulg; approach becomes more comparable
to Ul 45 when the level of missingness is increased.

The various distributions generated in this section provide information on the performance
of the UT algorithms. It was found that the Ul ;s algorithm performed best in relation to the
absolute minimum distance from the true correlation coefficient and the percentage of intervals
that contained this correlation coefficient. In the next section, the Ul 45 approach is applied
to genres of movies taken from the MovieLens dataset, providing a real-world case study of its

performance.
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Case Study with MovieLens Data

In this chapter the selected algorithm U1, is applied to the MovieLens data. This data is
one of the most utilised datasets in evaluating recommender systems. As the Ul algorithm
assumes partial exchangeability, the algorithm is applied to subsets of the MovieLens data
based on the assigned genre of Action, Children and Horror movies. As in previous sections,
the Ul algorithm is evaluated in relation to the percentage of intervals that capture the
true correlation coefficient (in this case the calculated pairwise coefficient) and the absolute

minimum distance the final intervals lies from the true correlation coeflicient.

6.1 MovieLens Data

The MovieLens data is often employed in exploring new techniques in RSs and is referred to
as a stable benchmark dataset (Harper & Konstan, 2016|). During Spring in 2015, a search for
“movielens” produced 2,750 results in Google Books and 7,580 in Google Scholar (Harper &
Konstan), 2016)). The MovieLens 100K data consists of 100,000 ratings from 943 users on 1682
movies, being released in April 1998. Tt is freely availabldl] and was collected by the GroupLens
Research Project. Each rating is a discrete value between 1 and 5. There is no explicit definition
as to what these ratings represent, but one may assume that: 1=1I hated it; 2=1 didn’t it; 3=1It
was OK; 4=1I liked it and; 5=1I loved it. This data has been cleaned, i.e., users who had less
than 20 ratings or did not have complete demographic information were removed from this data

set. The data files consist of u.data; this is the full ratings data set, consisting of ratings by

"https://grouplens.org/datasets /movielens/100k/ Downloaded 22 November 2016.
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users on movies. A list of genres that movies may belong to is given in u.genre; a movie may
belong to more than one genre. Demographic information about the users, i.e., user 1D, age,
gender, occupation and zip code, are located in w.user. This information is not utilised by the
UI approaches.

There is approximately 95% of the MovieLens data with no entries. The individual’s rating
behaviours are highly associated with missing patterns; movies with higher average rating scores
attract more ratings from individuals, whist individuals who frequently rate movies tends to
be more critical and give lower ratings. Therefore, the pattern of missingness is not Missing
Completely At Random (MCAR) and as such may produce a higher percentage of negative or
zero pairwise correlations than a ratings matrix that is MCAR.

When the Singular Value Decomposition (SVD) algorithm, as introduced in Section m
above, is applied to the MovieLens data, the average Root Mean Square Error (RMSE) produced
is 0.934 (80% training set). A pairwise correlation was applied to the entire MovieLens data
and this created a matrix which contained no missing values. As a result, the Ul 4, algorithm
could not be applied. When the SVD algorithm was applied to only the correlation matrix
produced by the pairwise correlation of the MovieLens matrix, again with 80 training set, this

resulted in a RSME of 0.938.

6.1.1 Specific Examples by Genre

In order to create a matrix of exchangeable correlation coefficients, the MovieLens data was
separated by genre. Genres refers to recurring, repeating and similar, familiar or instantly-
recognizable patterns, styles, themes, syntax, templates, paradigms, motifs or rules. Themes,
even though normally incorporated into genres, are distinct and refers to the issues or concepts
that the movie revolves around (e.g., science fiction, sports, or crime). The mood of a movie
is its emotional tone (e.g., comedy, horror, or tearjerker) and may also be considered distinct
from genre.

The first genre explored in this section is Action, with a total of 251 movies in this category.
The Internet Movie Database (IMDDb) is an online database of information related to films,
television programs and video games. The ratings are generated by registered individuals who

contribute info to the site. The movie names and IMDDb ratings are referred to so that the reader
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may gain some context regarding the movies. The correlation between Movie 2 (Goldeneye
(1995), IMDb(7.2)) and Movie 22 (Braveheart (1995), IMDb(8.4)) is to be estimated. In this
sub-matrix, there are approximately 89% missing data. This correlation was arbitrarily chosen
and it is assumed that it represents the true correlation coefficient. The minimum rating
assigned to a movie in this genre is 1, with a maximum rating of 5. The average rating in this

genre is 3.48 (median=4).

Table 6.1: First ten correlations of Action movies

Mowie 2 4 17 21 22 24 27 28 29 33
2 1.00
4 024 1.00
17 -0.17 0.06 1.00
21 036 0.22 -0.27 1.00
22 0.10 0.10 -0.02 0.23 1.00
24 025 006 039 014 0.23 1.00
27 030 0.27 -0.04 0.09 -0.04 0.13 1.00
28 0.26 001 -0.15 0.20 043 -0.13 0.11 1.00
29 025 007 016 046 0.17 -0.05 0.14 0.09 1.00
33 020 014 044 -0.13 0.04 0.35 0.34 0.04 0.28 1.00

As before, the pairwise correlations of the Action movies are calculated with Table
displaying the first ten correlations of this sub-dataset. For the pairwise correlation matrix,
there are approximately 31% correlations that can not be calculated due to no available pairwise
comparisons. There are only 8% of entries with a pairwise correlation coefficient of 0.7 or
above. The minimum pairwise correlation coefficient is -1, the maximum is 1, with a mean of
0.20 (median=0.22). Therefore, the RBCL technique cannot be applied to estimate an interval
for these correlation coefficients. The use of pairwise comparisons has limitations, but the
percentage of correlation coefficients below 0.7 is high and so the movies in the Action sub-
matrix are explored further. For example, parovie(2,17) = =0.17; Movie 17 (From Dust Till
Dawn (1996), IMDDb(7.3)) is classed as an Action/Comedy/Crime/Horror/Thriller movie by
MovieLens and is described as a modest success at the box office which has since become a
cult film. Therefore, this negative correlation may be a true reflection of the true correlation
coeflicient and not a result of the limitations of pairwise correlation. If the former is true, then
the correlation matrix from Action is not truly exchangeable. Many movies currently do not

fit into one genre classification. Many movies are considered hybrids, i.e., they straddle several
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film genres. It is possible to further categorise movies into sub-matrices of multiple genres,
Action and Horror, but this sub-matrix contains very few entries and, either there are two few
pairwise correlations produced to apply the UI algorithm, or there is no need to apply the Ul
algorithm as there are no MV found in the pairwise correlation matrix.

The correlation coefficient pprovie(2,22) is set to MV and both the Ul 4,5 and RBCL tech-
niques were applied. In Fig. the performance of both approaches are graphically displayed.
The correlation coefficient pprovie for RBCL was calculated using ninety-nine pairwise compar-
isons with 1y = 2. We can clearly see that the final interval produced (0.074,0.114) captures
the pairwise correlation coefficient p,,ovic(2,22). This has a final interval width of 0.04. U 4,
utilises 204 pairwise correlation products, and even though it lies outside the true correlation
coefficient a higher percentage of the time, it gives an excellent estimate of p,uic(2,22) and a

narrower final interval than the RBCL, see Table [6.2]
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Figure 6.1.1: Upper and lower bounds for pasevie(2,22) via (a) Ulsps and (b) RBCL

Table 6.2: Final Intervals for Estimated Correlation pasovic(2,22)

UIAbs RBCL
Pap Dis % | p 7. Dis %

n

p

—a,b

pC,n(2,22) 1009 010 0 360007 011 0 61.61

The next genre that is considered is Children’s movies. This sub-rating matrix consisted
of 122 movies. The level of missingnesss for this genre is 94%, reducing to 32% when pair-
wise correlations are calculated. The average rating in this sub-matrix is 3.35 (minimum=1,
maximum=>5, median=3). In relation to the pairwise correlation matrix, the mean pairwise cor-
relation coefficient is 0.28 (minimum=-1, maximum=1, median=0.32). The first ten pairwise
correlation coefficients are displayed in Table [6.3]

The pairwise correlation between movie 1 (Toy Story (1995), IMDb(8.3)) and movie 71 (The
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Table 6.3: First ten correlations of Children movies

Movie 1 8 35 63 71 78 91 94 95 99
1 1.00
8 0.25 1.00
35 045 0.46 1.00
63 038 0.20 0.76 1.00
71 043 0.14 047 031 1.00
78 024 039 093 040 048 1.00
91 0.14 0.18 -0.62 -0.04 -0.07 -0.11 1.00
94 027 013 0.61 025 004 038 -0.03 1.00
95 041 022 009 038 014 051 035 -0.03 1.00
99 032 020 0.52 0235 026 028 023 020 0.23 1.00

Lion King (1994), IMDb(8.5)) was set to MV. These movies have a pairwise correlation of 0.43,
which indicates a strong positive correlation. The Uy, algorithm has failed to capture this
pairwise correlation in its final interval, having a minimum distance of 0.28. This indicates that
U1 4s underestimated the pairwise correlation. Unlike in the previous chapter, where 86% of
the entries in the pairwise correlation matrix were above 0.7, only 20% of the Children’s matrix
is 0.7 or greater. Given that a high proportion of the matrix is not showing high positive
correlations, it is likely there is a violation of the assumption of exchangeability.

In Fig. it is evident that the RBCL technique performance is superior to that of U 4.,
with Table displaying the evaluation metrics. Based on the ratings from IMDb and their
genre, these movies should be highly correlated. The fact that these movies are not positively
correlated to other movies in this genre is affecting the U4y intervals, thus the final interval
does not reflect the pairwise correlation coefficient. If the assumption of exchangeability was
not violated, and the pattern of missingness was MCAR, then it would be anticipated that the
U1 4ps algorithm would produce an interval estimate of the true correlation coefficient that is
higher than the pairwise correlation coefficient. It is worth noting that the number of intervals
in the Ul algorithm (n = 87) is less than the number of intervals in the RBCL technique
(n =173). Clearly there are more pairwise comparisons in the ratings matrix than in the corre-
lation matrix. The reason being, even though there are 122 movies classed as Children’s, there

are 943 users who rated these movies, 173 of which rated both Movie 1 and Movie 71.
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Figure 6.1.2: Upper and lower bounds for paseuie(1,71) via (a) Ulsps and (b) RBCL

Table 6.4: Final Intervals for Estimated Correlation pasovie(1,77)

UIAbs
P, Pap Dis %

RBCL
p p, Dis %

n

PCy(2,22) 1013 014 028 1.15

0.5 0114 0 1256
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Exploring the movies in this sub-matrix, purevie(35,91) = =0.62. Movie 63 (The Santa
Clause (1994), IMDb(6.4)) is classified as Children’s/Comedy by MovieLens and as Com-
edy/Drama/Family by IMDb. Movie 93 (The Nightmare Before Christmas (1993), IMDb(8.0))
is classified as Animation/Children’s/Musical by MovieLens and as Animation/Family/Fantasy
by IMDb. Neither movie is classed as Chridren’s by IMDb and they have a strong negative
pairwise correlation. Hence, these movies may not be classed in the correct genre in the Movie-
Lens data. This leads the pairwise correlations produced for this sub-matrix to violate the
assumption of exchangeability.

The final genre to be considered is Horror. This consists of a total of 92 movies with
approximately 94% MVs in the ratings matrix. The minimum rating given for a Horror movie
is 1, with a maximum rating of 5. The mean rating in this sub-ratings matrix is 3.29 (median
=4). The percentage of misssingness is reduced to 37% when the pairwise correlations were
calculated. The minimum pairwise correlation coefficient calculated is -1, the maximum is
1, with a mean of 0.27 (median=.030); with approximately 14% of entries with a pairwise

correlation coefficient 0.7 or higher. In Table the first ten correlations are displayed.

Table 6.5: First ten correlations of Horror movies

Movwie 17 84 101 123 183 184 185 200 201 208
17 1.00
84 0.03 1.00
101 0.16 -0.08 1.00
123 030 0.76 0.35 1.00
183 012 0.03 036 0.36 1.00
184 030 040 026 0.18 0.23 1.00
185 -0.03 -0.53 0.06 0.08 0.25 0.06 1.00
200 0.06 -0.21 0.42 -0.08 0.33 0.09 0.22 1.00
201 048 -0.54 0.09 0.14 0.22 064 0.21 044 1.00
208 0.04 054 0.11 025 0.07 0.18 0.24 0.17 0.03 1.00

Movie 17 (From Dusk Till Dawn (1996), IMDDb (7.3)) and Movie 183 (Alien (1979), IMDb

(8.5) are examined. Both the Ul4,s and RBCL algorithms deliver similar results as the Action
genre, see Fig. and Table [6.6]
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Table 6.6: Final Intervals for Estimated Correlation ppsopic(17,183)

Ul pps RBCL
P, Pap Dis % |p b, Dis %
pc,... (17,183) | 0.10 0.12 0 3649 |.08 0.14 0 70.59

In Fig. the frequency of ratings (1-5) for each of the genres explored above is displayed.

Clearly the majority of users assigned a rating of 4 to the genres of Action and Horror, with

Children’s movies receiving a similar number of 3 (n =2218) and 4 (n = 2212) ratings.
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Figure 6.1.4: Frequency of movie ratings by genre
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6.1.2 Evaluating Complete Sub-matrix by Genre

The specific examples in the previous section were used to not only evaluate the U1 4,5 approach,
but also to compare it with the RBCL technique. In this section, as in Section each entry
of the sub-ratings matrix for Action, Children’s and Horror are separately assigned as MV. The
percent and distance metric is calculated for each entry in order to evaluate the performance
of the Ul algorithm. Firstly, for the genre Action, the estimated pdf for both metrics is
displayed in Fig. [6.1.5l The Ul 4,5 estimates the correlation coefficient with a distance of .1
or less in 33% of cases. Clearly the percentage metric indicates that the Ul 4, algorithm is
not capturing the pairwise correlation coefficient in a high percentage of intervals. However, as
shown with the specific examples above, the interval can lie very close to the pairwise correlation,
but not actually contain it. There are very similar findings for Children’s (Fig. and Horror
(Fig. , with 26.7% and 27.3% of the final interval having an absolute minimum distance

of 0.1 or less respectively.
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As the Ul approach is designed to calculate MVs via pairwise correlations, this next
section will present the findings from calculating the true MVs for each sub-matrix via U aps,
i.e., not replacing a pairwise correlation with a MV. In Fig. the percentage of each rating
(values between 1 and 5) are displayed for each Action movie, of which there are 251 such
movies. Each movie has a unique bar, with each bar displaying this percentage. Note, some
movies have 100% of a particular rating, e.g.,the last last movie displayed has a 100% rating
of 2. There is two reasons why this may occur: 1) only one person rated this movie or; 2) all

users rated this movie the same.
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Figure 6.1.8: Percentage of ratings (1-5) for each Action movies

The estimated pdf of the final lower and upper bounds of the U 4, intervals are displayed in
Fig. The number of pairwise comparisons ranges from 1 to 225 with an average number
of 64 pairwise comparisons, see Table The mean value of the final U4, intervals that

estimate the true correlation coefficient is 0.24, recall the mean pairwise correlation for the
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sub-matrix is 0.20. The Ul 4 algorithm is unable to calculate 36% of the MVs (n = 3,452) due

to the lack of pairwise comparisons in the pairwise correlation matrix

Bound

Lower
Upper

Density

0.00 0.25 050 0.75 1.00
Correlation

Figure 6.1.9: PDF of Upper and Lower bounds of Ul 435 for Action

Table 6.7: Summary statistics for Action genre

Minimum Maximum Mean Median
Bmovie(Action) .039 789 120 113
Prmovic (Action) 044 .804 127 119
# Comparisons 1 225 181 191

The same trend in the Action pairwise correlation matrix can be seen in the Children’s
pairwise correlation matrix. There are 122 movies in this matrix, with the majority of movies
receiving a value of each rating, see Fig. Once more, the majority of the pairwise
correlations fell below 0.7 and the estimated pdfs of the lower and upper bounds are displayed
in Fig. [6.1.11] Recall, the mean pairwise correlation for this genre is 0.28, for the lower bound
it is 0.32 and the upper bound it is 0.38, see Table [6.8] In this instance, the Ul4,s algorithm

is able to calculate 88% (n =2032) of the total number of MVs.

As there are fewer movies in the Horror genre, there is less of an overlap of the estimated
pdfs for the lower and upper bounds, see Fig.[6.1.13] The average number of pairwise compar-

ison is 24 as displayed in Table [6.9, which also displays the mean of the final lower and upper
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Figure 6.1.11: PDF of Upper and Lower bounds of U4 for Children’s

Table 6.8: Summary statistics for Children’s genre

Minimum Maximum Mean Median
Bmovie(Children) 0 81 .32 .30
Prmovie (Children) 12 1 .38 34
# Comparisons 1 85 36 35

bound. This demonstrates that there is more vagueness and uncertainty in these intervals in
comparison with the previous example. As there are fewer movies, it is easier to see that each

movie received a rating of each value, as displayed in Fig. [6.1.12] As this genre has a high
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percentage of MVs in the sub-ratings matrix (97%), it is not surprising that the number of

MVs that still remain, once the Ul algorithm is run, is 41% (n = 630).
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Figure 6.1.12: Percentage of ratings (1-5) for each Horror movies

Bound

[] Lower
[ upper

Density

0.00 0.25 050 0.75 1.00
Correlation

Figure 6.1.13: PDF of Upper and Lower bounds of Ul 4 for Horror

It is evident that for these selected genres, not all movies can be considered similar, hence
not all pairwise correlations are exchangeable. There are many ways to create sub-matrices from
ratings data. For example, a sub-matrix may be created using the director of a movie, the lead
actors, the mood or the theme of the movie. As the MovieLens provides information relating

to the genre of the movie, and no other information related to the film, creating different types
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Table 6.9: Summary statistics for Horror genre

Minimum Maximum Mean Median
p . (Horror) 0 .83 .26 24
Pmovie (HOTTOT) 12 1 34 31
# Comparisons 1 64 24 25

of sub-matrices is not within the scope of the current research.

In relation to the application of the Ul algorithm as an additional tool for RSs, the
algorithm provides information to the user that is easy to assess; the wider the interval the
less information the system knows whereas the narrower the interval the more information the
system knows. By providing an interval, instead of a point-wise estimate, it is more likely to
capture the true estimate of the user liking an item, hence improving the user’s satisfaction
of the recommendation. It may be used as a first step for new-user cold-start problems, as it
encourages explicit feedback via the interval width. Therefore allowing the RS to learn the pref-
erences of the user when no other information is available. It also provides transparency of how
the recommendation is generated so that the user builds trust and an interactive relationship

with the system.

6.2 Chapter Summary

This chapter set out to explore how the U1 455 algorithm would perform on a real ratings dataset.
The MovieLens dataset is perhaps one of the most utilised ratings dataset in articles relate to
recommender systems, personalisation and preference decision-making. However, it may not
be the most suitable dataset to apply the Ul 4, algorithm as its pattern of missingness is not
MCAR and thus, generates pairwise correlations that are not exchangeable. It is also important
to note that the Ul 45, approach does not, in and of itself, purport to be a recommender system.
Therefore, given this dataset, the performance of the Ul 4,5 algorithm reflected the quality of
the pairwise correlations supplied to it. It managed to perform well approximately 30% of the
time (i.e. the absolute minimum distance from the pairwise correlation was .1 or less), even
though it had a high percentage of intervals that did not capture the pairwise correlation.

As this algorithm is designed to generate an estimate interval for MVs in a correlation
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matrix, it was reflective of the pairwise correlations that already existed in that matrix. This
is evident from the pdfs generated from the final intervals when compared to the pdf of the
pairwise comparisons. The diversity of the ratings for each movie within a sub-ratings matrix
impacted on the ability of the algorithm, as one of the assumptions is that the correlations
are exchangeable and exchangeable; random variables have positive correlations. The U 454
approach highlights vagueness and uncertainty as is demonstrated by the width of the final
interval. This was evident with the Horror genre. Given that a single source of information
is used, 7.e. a ratings matrix, this vagueness and uncertainty is more transparent than if more
information was incorporated into a recommendation. Simply put, more explicit feedback about

your likes and dislikes, the narrower the interval becomes.
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Discussion

The development and use of imprecise probabilities to new areas of research is gathering mo-
mentum. In addition, the research on Recommender Systems (RSs) is fast paced and rapidly
changing due to e-commerce and Big data. This research is crossing domains and the usefulness
of RSs to aid decision-making has gone beyond that of a movie, book or music recommendation.
RSs are found in many areas, ranging from systems that help entire cities to those that aid
decision-making for health professionals.

This thesis introduced concepts from psychology, statistics and computer science which
is very much in-line with modern RSs. The elements of relational learning from a cognitive-
behavioural perspective combined with decision-making and updating techniques from statistics
provide an interesting and unique union. The application of Nonparametric Predictive Inference
(NPI) to estimating an upper and lower bound for a correlation was proposed and demonstrated
via four U algorithms. The UI approaches are novel approaches to addressing vagueness and
uncertainty within recommendation, with one of the main challenges of RSs being the cold-start
problem. This has been addressed, in part, by incorporating information into the system that
would not ordinarily be utilised via the UI approaches: Ulynirans, Ulaps, Ulsq and Ulpgy.

Pearson’s correlation coefficient is a popular statistical technique employed by RSs and is a
well established and understood technique. Hence, it is a good starting point to introduce in-
terval estimates. The U approaches utilised products of pairwise correlations in order to build
a final interval that estimates the true correlation coefficient. As stated previously, pairwise

calculations may not always be an accurate reflection of the true underlying correlation coeffi-
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cient. Given this method relies on pairwise products of pairwise correlations, the quality of such
estimates may not be truly accurate. However, this approach appears to sit well with findings
from psychology in that, as individuals, derived relations are formed based on trained relations
and are updated as more information is received. In this respect, the Ul approaches are learn-
ing and should be updated as more and more information is gathered. Another limitation of
the use of a correlation coefficient is that it can only measure a linear relationship. Perhaps
future research can explore the application of NPI on other statistical techniques employed by
RSs.

Each of the UI approaches were evaluated on simulated data and compared with a similar
technique, Robust Bayesian Correlation Learning (RBCL). The U1 approaches do not require
any pairwise correlations between two items in order to estimate bounds, which is an advantage
over the RBCL technique. Therefore it is possible to generate a correlation estimate even when
two items do not generate a pairwise correlation. The U approaches presented here attempt to
utilise information from known sources but, in addition, tries to explicitly represent vagueness
within a recommendation by providing an interval recommendation rather than a precise recom-
mendation. The Ul 4,5 performance was superior to the other UI approaches when applied to
simulated data. It consistently had the highest percentage of intervals that contained the true
correlation coefficient and the final intervals had the smallest absolute minimum distance from
the true correlation coefficient. In the absence of any knowledge an interval of [0,1] would be
produced, accurately reflecting the lack of information available. Therefore, given no data, no
personalised recommendations can be produced. Much like other RS techniques, this method
is proposed to be used in conjunction with other methods in order to generate a hopefully more
reflective estimate of a relationship between items when there is uncertainty and vagueness in
an individual’s preference. However, once the level of misssingness increases, the number of
interval estimates produced by the Ul 4, decreases. Therefore, an interval reflecting complete
lack of information is produced. One of the artefacts of exchangeability, hence affecting the
proposed technique, is that, unlike RBCL, only the magnitude of the correlation is possible.
Hence, U1 4,5 may be considered more of a distance measure than a correlation coefficient.

In addition to incorporating vagueness and uncertainty, the U1 455 reflected transparency in

the final interval via the width of the interval. As outlined in Section [I.2] one of the primary
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motivations for developing an algorithm that would incorporate uncertainty and vagueness
that utilises a relatively simple, widely known, statistical technique on a single data set was
due to the new General Data Protection Regulation (GDPR: 25th May, 2018). Considering
the algorithms discussed in the Literature Review related to cold-start problems, Chapter [3]
it is apparent that they are complex in nature, incorporate a myriad of statistical techniques
and multiple datasets. As stated, Article 12 of GDPR requires transparency and that these
algorithms, be it with the aid of visualisation, must be easily accessible and easy to understand.
Given the battery of techniques, this does not appear to be a simple task. It is evident that
users do not understand how their personal data from social media is utilised nor how statistical
techniques are employed to influence their behaviours and attitudes via recommendations on
social media sights in light of the Cambridge Analytica scandal.

Numerous academics have demonstrated how digital footprints (every phone call or SMS;
every Facebook like or T'weet; every email; every online purchase; every Wi-Fi network joined
or every work-out session recorded) can combine together to create a detailed picture of the user
that can be mined to determine preferences, opinions, and desires. This may provide unsettling
to users and they may choose to exercise their right to be forgotten under the new regulation.
This may have a huge impact on the statistical techniques utilised and the access to personal
data. Therefore, a significant challenge to this thesis was the reliance on a single source of
information. In this respect, the Ul 4,5 algorithm performed extremely well on stimulated data
that produced exchangeable pairwise correlations. When applied to real data, the limitations of
this approach were apparent as it was performing well in approximately 30% of the iterations.
This is a reflection of the input data, the pattern of missingness was not Missing Completely
At Random (MCAR) which the Ulaps algorithm was created from. Nonetheless, the final
intervals generated from the algorithm were reflective of the pairwise correlations found in the
sub-ratings matrices.

In addition to exploring new statistical techniques to incorporate NPI for the purpose of
recommendation, future research may wish to explore the utility of the Ul in relation to
generating feedback. Today’s RSs are extremely accurate at predicting preference for items but
one shortcoming may be the lack of feedback they require from users. This may become an

issue if the availability of personal data becomes restricted under GDPR. If a RS is capable of
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building confidence with and interaction in the form of explicit feedback, then both the system
and the user gain. The individual user will clearly see the impact of explicit feedback, thus
providing transparency as well as building a relationship with the user. Recall, a good algorithm
“that generates accurate recommendations is not enough to constitute a useful system from the
users’ perspective. The system needs to convey to the user its inner logic and why a particular
recommendation is suitable for them” (Sinha & Swearingen, 2002)). Therefore, exploring the
affect of interval based recommendations on explicit feedback may be worth investigating via
empirical experiments.

As the level of missingness increased, the percentage of Missing Values (MVs) that remained
a MV increased. Therefore, future research may explore the ability to incorporate the intervals
estimates into the Uy, algorithm, allowing for the still remaining MVs to be estimated. This
would require exploring what value should be taken form the interval estimate to make it point-
wise, if required. This is not necessarily a trivial task and the width of the interval may need

to be a determining factor.
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Appendix A. R Code
Code for EXAMPLE MATRIX

m=matrix(c(10,8,6,5,7,10,8,7,9,10,10,6,NA,9,NA,10,NA,5,NA,4,10,4,8,10,10), nrow=>5, byrow=F)
m

mcor<-cor(m, use='pairwise')

mcor

HighCor_corvars_un<-mcor

n_top_un<-rep(0,5)

for (i in 1:length(n_top_un)){
n_top_unli]<-max(HighCor_corvars_un(3,(i)],HighCor_corvars_un[4,(i)])

}

length(sort(n_top_un))

n_top_un<-n_top_un[lis.na(n_top_un)]

length(n_top_un)

E_lower_n_top_un<-rep(0,length(n_top_un))
E_upper_n_top_un<-rep(0,length(n_top_un))
k<-0
for(i in seq(1:length(n_top_un))){
k<-k+1
E_lower_n_top_un[k]<-1/(1+i)*sum(n_top_un[1:i])
E_upper_n_top_un[k]<-1/(1+i)*(1+sum(n_top_un[1:i]))
}

n_top_unl<-rep(0,5)

for (i in 1:length(n_top_un1)){
n_top_unl[i]<-min(HighCor_corvars_un([3,(i)],HighCor_corvars_un[4,(i)])

}

length(sort(n_top_un1))

n_top_unl<-n_top_unl[lis.na(n_top_un1l)]

length(n_top_unl)

E_lower_n_top_unl<-rep(0,length(n_top_unl))
E_upper_n_top_unl<-rep(0,length(n_top_unl))
k<-0
for(i in seq(1:length(n_top_un1)){
k<-k+1
E_lower_n_top_uni[k]<-1/(1+i)*sum(n_top_un1[1:i])
E_upper_n_top_uni1[k]<-1/(1+i)*(1+sum(n_top_un1[1:i]))
}

n_top_un2<-rep(0,5)
for (i in 1:length(n_top_un2)){

n_top_un2[i]<-(HighCor_corvars_un[3,(i)]+HighCor_corvars_un[4,(i)])/2
}
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length(sort(n_top_un2))
n_top_un2<-n_top_un2[lis.na(n_top_un2)]
length(n_top_un2)

E_lower_n_top_un2<-rep(0,length(n_top_un2))
E_upper_n_top_un2<-rep(0,length(n_top_un2))
k<-0
for(i in seq(1:length(n_top_un2))){
k<-k+1
E_lower_n_top_un2[k]<-1/(1+i)*sum(n_top_un2[1:i])
E_upper_n_top_un2[k]<-1/(1+i)*(1+sum(n_top_un2[1:i]))
}

n_top_un3<-rep(0,5)

for (i in 1:length(n_top_un3)){
n_top_un3[i]<-HighCor_corvars_un[3,(i)]*HighCor_corvars_un[4,(i)]

}

length(sort(n_top_un3))

n_top_un3<-n_top_un3[lis.na(n_top_un3)]

length(n_top_un3)

E_lower_n_top_un3<-rep(0,length(n_top_un3))
E_upper_n_top_un3<-rep(0,length(n_top_un3))
k<-0
for(i in seq(1:length(n_top_un3)){
k<-k+1
E_lower_n_top_un3[k]<-1/(1+i)*sum(n_top_un3[1:i])
E_upper_n_top_un3[k]<-1/(1+i)*(1+sum(n_top_un3[1:i]))
}

win.graph()
par(mar=c(5,5,1,1))
plot(E_upper_n_top_un, type='"l', ylim=c(0,1),
xlab='Number of Intervals', ylab='Correlation Interval’,
cex.lab=2.5, cex.axis=2, col='darkorchid4')
grid (NULL,NULL, Ity = 6, col = "lightgrey")
polygon(c(1:(length(E_upper_n_top_un)), rev(1:(length(E_lower_n_top_un)))),
c(E_upper_n_top_un,rev(E_lower_n_top_un)),col=rgb(.408,.132,.545,0.5), border=NA)
lines(E_lower_n_top_un,lty=1, col="darkorchid4')

win.graph()

par(mar=c(5,5,1,1))

plot(E_upper_n_top_uni, type='"l', ylim=c(0,1),
xlab="Number of Intervals', ylab='Correlation Interval’,
cex.lab=2.5, cex.axis=2, col='dodgerblue4')
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grid (NULL,NULL, Ity = 6, col = "lightgrey")

polygon(c(1:(length(E_upper_n_top_un1l)), rev(1:(length(E_lower_n_top_un1l)))),
c(E_upper_n_top_unl,rev(E_lower_n_top_un1l)),col=rgh(.064,.305,.545,0.5), border=NA)

lines(E_lower_n_top_unl,lty=1, col="dodgerblued')

win.graph()
par(mar=c(5,5,1,1))
plot(E_upper_n_top_un2, type='"l', ylim=c(0,1),
xlab="Number of Intervals', ylab='Correlation Interval’,
cex.lab=2.5, cex.axis=2, col='darkgreen')
grid (NULL,NULL, Ity = 6, col = "lightgrey")
polygon(c(1:(length(E_upper_n_top_un2)), rev(1:(length(E_lower_n_top_un2)))),
c(E_upper_n_top_un2,rev(E_lower_n_top_un2)),col=rgh(0,.392,0,0.5), border=NA)
lines(E_lower_n_top_un2,lty=1, col="darkgreen’)

win.graph()
par(mar=c(5,5,1,1))
plot(E_upper_n_top_un3, type='"l', ylim=c(0,1),
xlab='Number of Intervals', ylab='Correlation Interval’,
cex.lab=2.5, cex.axis=2, col='lightcyan4')
grid (NULL,NULL, Ity = 6, col = "lightgrey")
polygon(c(1:(length(E_upper_n_top_un3)), rev(1:(length(E_lower_n_top_un3)))),
c(E_upper_n_top_un3,rev(E_lower_n_top_un3)),col=rgh(.478,.545,.545,0.5), border=NA)
lines(E_lower_n_top_un3,lty=1, col='lightcyan4')

n_top_und<-rep(0,5)

for (i in 1:length(n_top_un4)){
n_top_un4[i]<-HighCor_corvars_un[3,(i)]

}

length(sort(n_top_un4))

n_top_un4<-n_top_un4[lis.na(n_top_un4)]

n_top_un4<-n_top_un4[-3]

length(n_top_un4)

E_lower_n_top_und<-rep(0,length(n_top_un4))
E_upper_n_top_und<-rep(0,length(n_top_un4))
k<-0
for(i in seq(1:length(n_top_un4)){
k<-k+1
E_lower_n_top_un4[k]<-1/(1+i)*sum(n_top_un4[1:i])
E_upper_n_top_un4[k]<-1/(1+i)*(1+sum(n_top_un4[1:i]))
}

n_top_un5<-rep(0,5)
for (i in 1:length(n_top_un5)){
n_top_un5[i]<-HighCor_corvars_un([4,(i)]

}
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length(sort(n_top_un5))
n_top_un5<-n_top_un5[lis.na(n_top_un5)]
n_top_un5<-n_top_un5[-3]
length(n_top_unb5)

E_lower_n_top_un5<-rep(0,length(n_top_un5))
E_upper_n_top_un5<-rep(0,length(n_top_un5))
k<-0
for(i in seq(1:length(n_top_un5)){
k<-k+1
E_lower_n_top_un5[k]<-1/(1+i)*sum(n_top_un5[1:i])
E_upper_n_top_un5[k]<-1/(1+i)*(1+sum(n_top_un5[1:i]))
}

win.graph()
par(mar=c(5,5,1,1))
plot(E_upper_n_top_un4, type='"l', ylim=c(0,1),
xlab="Number of Intervals', ylab='Correlation Interval’,
cex.lab=2.5, cex.axis=2, col='lightcyan4')
grid (NULL,NULL, Ity = 6, col = "lightgrey")
polygon(c(1:(length(E_upper_n_top_un4)), rev(1:(length(E_lower_n_top_un4)))),
c(E_upper_n_top_un4,rev( )),col=rgb(.478,.545,.545,0.2), border=NA)
lines(E_lower_n_top_un4,lty=1, col="lightcyan4')
lines(E_upper_n_top_un5,lty=1, col="lightcyan4')
polygon(c(1:(length(E_upper_n_top_un5)), rev(1:(length(E_lower_n_top_un5)))),
c(E_upper_n_top_un5,rev(E_lower_n_top_un5)),col=rgh(.478,.545,.545,0.4), border=NA)
lines(E_lower_n_top_unb5,lty=1, col='lightcyan4')

Code for SIMMULATION MATRIX (NORMAL)

#### HIGH CORRELATIONS ######

#HighCor_mu <- rep(0,500)

#set.seed(7732)

#x<-runif(250000, .95, .99)

#HighCor_sigma <- matrix(x, nrow=500, ncol=500)
#is.positive.definite(HighCor_sigma)
#HighCor_sigma<-make.positive.definite(HighCor_sigma)
#is.positive.definite(HighCor_sigma)

#set.seed(7732)

#HighCor_rawvars <- mvrnorm(n=500, mu=HighCor_mu, Sigma=HighCor_sigma)
#HighCor_corvars<-cor(HighCor_rawvars)
#dim(HighCor_rawvars)

#round(HighCor_corvars[1:10, 1:10],2)
#dim(HighCor_corvars)
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#write.csv(HighCor_corvars,file='7732HighCor_corvars.csv')
#write.csv(HighCor_rawvars,file='7732HighCor_rawvars.csv')

#win.graph()
#corrplot(HighCor_corvars, method="color",cl.pos="b", tl.pos="n")

#print(xtable(HighCor_corvars[1:12,1:12],digits=2), type="Iatex", file="1cormat_correlates.tex")

#set.seed(7732)
#mask<-matrix(rbinom(250000,1,.05),nrow=500,ncol=500)
#HighCor_rawvars95NA<-mask*HighCor_rawvars
#HighCor_rawvars95NA <- ifelse(mask, HighCor_rawvars, NA)

#HighCor_corvars95NA<-cor(HighCor_rawvars95NA, use="pairwise')
#write.csv(HighCor_rawvars95NA, file='7732HighCor_rawvars95NA.csv')
#write.csv(HighCor_corvars95NA file='7732HighCor_corvars95NA.csv')
#win.graph()

#corrplot(HighCor_corvars95NA, method="color",cl.pos="b", tl.pos="n")

#print(xtable(HighCor_corvars95NA[1:12,1:12],digits=2), type="latex",
file="cormat95NA1_correlates.tex")

#HighCor_rawvars95NA[1:10, 1:10]
#round(HighCor_corvars95NA[1:10, 1:10],2)

HighCor_corvars<-read.csv('7732HighCor_corvars.csv', sep=',",header =T)
HighCor_corvars<-as.matrix(HighCor_corvars[,-1])
HighCor_rawvars<-read.csv('7732HighCor_rawvars.csv', sep=',',header = T)
HighCor_rawvars<-as.matrix(HighCor_rawvars[,-1])
HighCor_corvars95NA<-read.csv('7732HighCor_corvars95NA.csv', sep='," header = T)
HighCor_corvars95NA<-as.matrix(HighCor_corvars95NA[,-1])
HighCor_rawvars95NA<-read.csv('7732HighCor_rawvars95NA.csv', sep=',',header = T)
HighCor_rawvars95NA<-as.matrix(HighCor_rawvars95NA[,-1])

HighCor_corvars_fill<-HighCor_corvars95NA

#l want just the lower triange to find where NAs are
HighCor_corvars_fill[lower.tri(HighCor_corvars_fill,diag=TRUE)]<-0
MV<-as.matrix(which(is.na(HighCor_corvars_fill), arr.ind=TRUE))#location of i and j
#l don't want the diagonal to be used

diag(HighCor_corvars95NA) <- NA

#location of ith row
locationi<-MV/[,1]
#location of jth column
locationj<-MV([,2]

###Untrans

#Function to calculate the lower bound
lower<-function(t,top){
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1/(1+t)*sum(top[1:t])
}

#Function to calculate the upper bound

upper<-function(t,top){
1/(1+t)*(1+sum(top[1:t]))

}

sparse<-HighCor_corvars95NA

Hit###Absolute

#Function to calculate the lower bound

lower<-function(t,top){
1/(1+t)*sum(top[1:t])

}

#Function to calculate the upper bound

upper<-function(t,top){
1/(1+t)*(1+sum(top[1:t]))

}

sparse<-abs(HighCor_corvars95NA)

Hi#H##HSquared

#Function to calculate the lower bound

lower<-function(t,top){
1/(1+t)*sum(top[1:t])

}

#Function to calculate the upper bound

upper<-function(t,top){
1/(1+t)*(1+sum(top[1:t]))

}

sparse<-HighCor_corvars95NA*HighCor_corvars95NA

###H##Root

#Function to calculate the lower bound

lower<-function(t,top){
sqrt(1/(1+t)*sum(top[1:t]))

}

#Function to calculate the upper bound

upper<-function(t,top){
sqrt(1/(1+t)*(1+sum(top[1:t])))

}

sparse<-HighCor_corvars95NA*HighCor_corvars95NA
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truecor<-c()

#vector of number of pairwise comaparisons

pairwise<-c()

#vector for the absolute minimum distance of last interval from true correlation
dis<-c()

#vector of the lower bounds for each j, i

lowerbound<-c()

#vector of the upper bounds for each j, i

upperbound<-c()

#vector of the percent the true correlation is captured by the interval
percent<-c()

#Function to evaluate the intervals
eval<-function(s,j){
ifelse(((Ibound[s]<= truecor[j]) && (ubound[s]>= truecor(j])), 1, 0)
}
for (j in 1:length(locationi)){
# let this be the x value for calculating bounds
x<-locationi[j]
# let this be the y value for calculating bounds
y<-locationjlj]
# keep a record of the true correlation
truecor(j] <- HighCor_corvars[x,y]
#fill in the n-top vector
n_top<-(sparse[x,]*sparsely,])
#remove any NAs
top<-n_top[lis.na(n_top)]
#apply upper bound fuction
ubound<-sapply(1:length(top),upper,top=top)
#apply lower bound function
Ibound<-sapply(1:length(top),lower,top=top)
#set up a vector for evaluating the intervals
a<-sapply(1:length(ubound),eval,j=j)
#calculate the percentage of time it is inside
per<-sum(a/length(ubound)*100)
#calculate the distance from upper and lower bound of the final interval
b<-c(lbound[length(lbound)],ubound[length(ubound)])
#produce a distance vector
distance<-round(min(abs(lbound[length(lbound)]-truecor(jl),abs(ubound[length(ubound)]-
truecorlj])),3)
lowerbound([j]<-round(lbound[length(lbound)],3)# return last lower bound
upperbound[jl<-round(ubound[length(ubound)],3)# return last upper bound
pairwise[j]<-length(top) #return number of pairwise comparisons
percent[j] <- round(per,3) # return percent of intervals true correlations captured
dis[j]<-distance # return min absolute distance from true correlation
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print(j)
}

H#H###H#H#UNtrans
Results<-cbind(locationi,locationj,truecor,pairwise,lowerbound,upperbound,percent,dis)
write.csv(Results,file='"Untrans_Results.csv')

Hit##tAbsolute
Results<-cbind(locationi,locationj,truecor,pairwise,lowerbound,upperbound,percent,dis)
write.csv(Results, file='Absolute_Results.csv')

Hi#HH#H#Squared
Results<-cbind(locationi,locationj,truecor,pairwise,lowerbound,upperbound,percent,dis)
write.csv(Results,file='Squared_Results.csv')

#i####Root
Results<-cbind(locationi,locationj,truecor,pairwise,lowerbound,upperbound,percent,dis)

write.csv(Results,file="Root_Results.csv')

Code for SIMMULATION MATRIX (OTHER DISTRIBUTIONS)

HighCor_mu <- rep(0,500)

set.seed(7732)

x<-runif(250000, .95, .99)

HighCor_sigma <- matrix(x, nrow=500, ncol=500)
is.positive.definite(HighCor_sigma)
HighCor_sigma<-make.positive.definite(HighCor_sigma)
is.positive.definite(HighCor_sigma)

set.seed(7732)

HighCor_rawvars <- mvrnorm(n=500, mu=HighCor_mu, Sigma=HighCor_sigma)
HighCor_corvars<-cor(HighCor_rawvars)

win.graph()

corrplot(HighCor_corvars, method="color",cl.pos="b", tl.pos="n")

HighCor_pvars <- pnorm(HighCor_rawvars)
HighCor_corpvars<-cor(HighCor_pvars)

win.graph()

corrplot(HighCor_corpvars, method="color",cl.pos="b", tl.pos="n")

#Poisson

HighCor_poisvars <- gpois(HighCor_pvars, 5)
HighCor_corpoisvars<-cor(HighCor_poisvars)

win.graph()

corrplot(HighCor_corpoisvars, method="color",cl.pos="b", tl.pos="n")

#tbinomial
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HighCor_binomvars <- qpois(1-HighCor_pvars, 3, .25)
HighCor_corbinomvars<-cor(HighCor_binomvars)

win.graph()

corrplot(HighCor_corbinomvars, method="color",cl.pos="b", tl.pos="n")

#exponential

HighCor_expvars <- gexp(HighCor_pvars)
HighCor_corexpvars<-cor(HighCor_expvars)

win.graph()

corrplot(HighCor_corexpvars, method="color",cl.pos="b", tl.pos="n")

#skewed normal

HighCor_snvars <- gsn(HighCor_pvars, 5, 2, 5)
HighCor_snvars<-matrix(HighCor_snvars, 500,500)
dim(HighCor_snvars)

HighCor_corsnvars<-cor(HighCor_snvars)

win.graph()

corrplot(HighCor_corsnvars, method="color",cl.pos="b", tl.pos="n")

#Hyper

HighCor_hypvars <- ghyper(HighCor_pvars, 495,5,100)
HighCor_corhypvars<-cor(HighCor_hypvars)

win.graph()

corrplot(HighCor_corhypvars, method="color",cl.pos="b", tl.pos="n")

##tbeta

HighCor_betavars <- gbeta(HighCor_pvars, .5, .5)
HighCor_corbetavars<-cor(HighCor_betavars)

win.graph()

corrplot(HighCor_corbetavars, method="color",cl.pos="b", tl.pos="n")

Code for MOVIELENS MATRIX

user_col_names <- c('user_id', 'age', 'sex’, 'occupation’, 'zip_code')

users <- read.csv('u.user', sep='|', col.names=user_col_names, header=FALSE)
rating_col_names<-c('user_id', 'movie_id', 'rating’, 'timestamp’)
rating<-read.csv('u.data’, sep=", col.names=rating_col_names, header=FALSE)
rating[1:10,]

dim(rating) #1000 x 4

class(rating) #df, need to know what | am sorting

rating<-rating[order(ratingSmovie_id),] # put it in order so that | can keep track of the movie ids
rating[1:10,]

rating<-rating[order(ratingSuser_id),] #need to sort it again by users

rating[1:10,]

genre_col_names<-c('Genre', 'Genre Code')
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genre<-read.csv('u.genre', sep='|', col.names=genre_col_names, header=FALSE)
item_col_names<-c( 'movie id', 'movie title', 'release date',
'video release date','IMDb URL','unknown’,
'Action’,'Adventure’, 'Animation','Children’,
‘Comedy','Crime','Documentary','Drama’, 'Fantasy’,
'Film-Noir','Horror', 'Musical', 'Mystery', 'Romance’,
'Sci-Fi','Thriller', 'War', 'Western')
item<-read.csv('u.item', sep='|', col.names=item_col_names, header=FALSE)
dim(item) # 1682 x 24

names(item)

H#HHHE Make overall matrix ###i#

userid <- length(unique(ratingSuser_id)) #943 users
movieid <- length(unique(ratingSitem_id)) #1682 movies
rating<-as.matrix(rating) #make it a matrix

#make it a matrix so that row=user ID and column=movie ID
ratmat<-matrix(0,nrow=943, ncol=1682) #use 0 to make it easier to remove empty columns
for (i in 1:100000){
ratmat[rating[i,1],rating[i,2]]=ratingli,3]
}

dim(ratmat) # 943 user IDs 1682 Movie IDs

ratmat[ratmat==0]<-NA

rownames(ratmat)<-rownames(ratmat, do.NULL = FALSE, prefix = "User") #label rows
colnames(ratmat)<-colnames(ratmat, do.NULL = FALSE, prefix = "Movie") #label columns
#this means that my movie IDs stay the same when | remove the empty columns

action<-c()

for (iin 1:1682){
if (itemSAction[i]==1){
action[i]<-itemSmovie.id[i]
1
}

action<-na.omit(action)
action[1:10]

length(action) #251 action movies
m<-rep('Movie', 251)
action<-paste(m, action, sep="")

#extract these movies
library(Hmisc)

action_ratmat<-ratmat[, colnames(ratmat) %in% action]#retain only
#the colnames that match the names in action
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dim(action_ratmat) #943 x 251
action_ratmat[1:6, 1:6]

cor_action<-cor(action_ratmat, method="pearson", use="pairwise")
dim(cor_action)

pMiss <- function(x){sum(is.na(x))/length(x)*100}
CorNAs<-apply(cor_action, 2, pMiss)

diag(cor_action) <- NA

cor_action_fillc-cor_action
cor_action_fill[lower.tri(cor_action_fill,diag=TRUE)]<-NA
cor_action_fill[1:5,1:5]

MV<-as.matrix(which(!is.na(cor_action_fill), arr.ind=TRUE))#location of i and j
#l don't want the diagonal to be used

MV[1:5,]

#location of ith row
locationi<-MV/[,1]
#location of jth column
locationj<-MV[,2]

HighCor_corvars95NA<-cor_action

Hi###Absolute

#Function to calculate the lower bound

lower<-function(t,top){
1/(1+t)*sum(top[1:t])

}

#Function to calculate the upper bound

upper<-function(t,top){
1/(1+t)*(1+sum(top[1:t]))

}

sparse<-abs(HighCor_corvars95NA)

truecor<-c()

#vector of number of pairwise comaparisons

pairwise<-c()

#vector for the absolute minimum distance of last interval from true correlation
dis<-c()

#vector of the lower bounds for each j, i

lowerbound<-c()

#vector of the upper bounds for each j, i

upperbound<-c()

#vector of the percent the true correlation is captured by the interval
percent<-c()
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#Function to evaluate the intervals
eval<-function(s,j){
ifelse(((Ibound[s]<= truecor[j]) && (ubound[s]>= truecor(j])), 1, 0)
}
for (j in 1:length(locationi)){
# let this be the x value for calculating bounds
x<-locationil[j]
# let this be the y value for calculating bounds
y<-locationjl[j]
# keep a record of the true correlation
truecor(j] <- abs(HighCor_corvars95NA[x,y])
missing<-HighCor_corvars95NA[x,y]
HighCor_corvars95NA[x,y]<-NA
HighCor_corvars95NA[y,x]<-NA
#fill in the n-top vector
n_top<-(sparse[x,]*sparsely,])
#remove any NAs
top<-n_top[lis.na(n_top)]
#apply upper bound fuction
ubound<-sapply(1:length(top),upper,top=top)
#apply lower bound function
Ibound<-sapply(1:length(top),lower,top=top)
#set up a vector for evaluating the intervals
a<-sapply(1:length(ubound),eval,j=j)
#calculate the percentage of time it is inside
per<-sum(a/length(ubound)*100)
#calculate the distance from upper and lower bound of the final interval
b<-c(lbound[length(lbound)],ubound[length(ubound)])
#produce a distance vector
distance<-round(min(abs(lbound[length(lbound)]-truecor(jl),abs(ubound([length(ubound)]-
truecorfj])),3)
lowerbound([j]<-round(lbound[length(lbound)],3)# return last lower bound
upperbound[jl<-round(ubound[length(ubound)],3)# return last upper bound
pairwise[j]<-length(top) #return number of pairwise comparisons
percent[j] <- round(per,3) # return percent of intervals true correlations captured
dis[j]<-distance # return min absolute distance from true correlation
HighCor_corvars95NA[x,y]<-missing
HighCor_corvars95NA[y,x]<-missing
print(j)
}

Results<-cbind(locationi,locationj,truecor,pairwise,lowerbound,upperbound,percent,dis)
write.csv(Results,file='"ABS_Movie_Lens_Absolute_Results.csv')
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