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Sum m ary

In this thesis, we develop the Geometric Discretization formulation 
of Dirac-Kahler ferniions.

We note that the naive definition of chiral synnnetry is only ap­
proximately captured in the formulation. However, we show that we 
can use the two complexes associated with the definition of the Hodge 
star to construct chiral projection operators that exactly project a dif­
ferent chirality of held on to each complex. Similarly, we construct 
flavour projection operators that project a different flavour of field on 
to each complex. We also see that, in two space-time dimensions, we 
need four complexes to simultaneously separate the chiral and flavour 
components of the field.

We subsequently develop projection operators for four dimensional 
space-time. The flavour projection requires us to introduce a new oper­
ator by analogy to the Hodge star, that takes the complement of a form 
or cochain in the {1,2} subspace, but not the {3,4} subspace. Cor­
respondingly, we define new complexes that complement the original 
complex in just one of the {1, 2} or {3, 4} subspaces. Using this oper­
ator and the Hodge star, we dehne flavour projection operators for the 
Dirac-Kahler helds. We find that to isolate both the chiral and flavour 
components of the fields sinmltaneously requires eight complexes in 
four space-time dimensions.

We also define an Abelian gauge theory for the Geometric Discretiza­
tion and adapt the Hybrid Monte Carlo algorithm to it, using the algo­
rithm to calculate the static potential between ferniions. We find that 
the calculation is in agreement with analytical results. We additionally 
study topological gauge fields and show how their effects differ between 
the Geometric Discretization and standard lattice QED.
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1 Introduction  and M otivation

Science is symbiotic. In every discipline, there are theoretical and experimental 

strands living side-by-side, each helping the other to progress.

In some disciplines, the dialogue between the strands can be qualitative, but in 

particle physics the phenomena of interest are impossible to observe directly. Instead, 

the dialogue must take the form of quantitative comparisons. Theoreticians calculate 

values from the theories. Experimentalists measure values from the experiments. If 

the comparison agrees, the theory is verihed; if not, the theory is shown to be flawed 

and further study is needed.

The dialogue can be beneficial to both strands. A theory with a history of suc­

cessful predictions can direct experimentalists towards more fruitful experimental 

set-ups. An experimental measurement can reduce the number of options available 

in the construction of a theory, when nmltiple possibilities present themselves.

The established theory for describing the quantum mechanical behaviour of par­

ticles is Quantum Field Theory and there are many ways of using it to calculate 

verifiable quantities. Which way we choose is determined by the cjuantity in ques­

tion.

When we are studying the interaction between quarks, a successful approach 

is to pixellate space and time by replacing the four continuous dimensions with a 

four dimensional lattice of points. In most formulations, the fields tha t represent 

particles and their gauge fields are sampled at the points and the motion of the field 

is represented by a ripple across the lattice.

Unfortunately, the act of sampling the fields at the points of the lattice introduces 

problems. Fields th a t would have measurably different momenta in the continuum 

can have the same momenta when it is calculated from the sampled points. This 

problem is known as fermion doubling and it is so profound th a t an entire research 

field has grown up around it.

Resolving the problem is j^articularly difficult because removing the degeneracy 

between fields invariably breaks some of the symmetry of the equations. The sym­

metry is known as chiral symmetry and it is im portant for many reasons, including
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the  role it plays in the  creation of pions.

Several schemes have been proposed th a t remove the  degeneracy to  varying de­

grees and each has a ditt'erent consequence for the  chiral symmetry. The Ginsparg- 

W ilson form ulation [1], which encompasses the  dom ain wall and overlap formulations, 

is the m ost successful scheme to  date, bu t it is very com putationally  costly. It in­

troduces m any more fields which m ust be included in the  calculations, making them  

considerably more tim e consuming.

One scheme achieves a trad e  off between removing the degeneracy and m aintaining 

chiral sym m etry. In four space-tim e dimensions, the staggered ferniion form ulation 

[2] [3] [4] reduces the  sixteen degenerate fields to four and m aintains a limited form of 

chiral symmetry.

This scheme is related  to  a continuum  description of fermionic field theory th a t 

uses a basis of differential forms on a manifold, instead of vectors and th a t replaces 

m atrix  operators w ith the  operators of differential geometry. The description is known 

as the D irac-K aliler fornuilation and it has proven difficult to  recreate on a complex. 

The difficidty comes w ith uniquely and locally defining certain  operators so th a t they 

obey the algebra of differential geometry. In particular, it is difficult to define the 

Hodge s ta r  so th a t its square is proportional to  the  identity  and to  define the wedge 

product so th a t it is local and  obeys Leibniz’s rule.

One proposal th a t addresses these problems is th a t of David Adams [5] [6]. He 

resolves the  form er problem  by introducing a second complex, in parallel w ith the 

first, known as the  dual, and  by defining the Hodge s ta r to  be a 1-to-l m apping 

between the  two complexes. He resolves the  la tte r problem by introducing a wedge 

product th a t is defined by applying the continuum  wedge product to  an interpolated 

space.

It has been shown by R abin  [7] th a t the Hodge sta r is related to  the chiral sym ­

m etry of the  theory, so it is na tu ra l to  ask w hether the doubling in the  num ber of 

fields th a t is brought abou t by introducing the dual is related to  the degeneracy of 

the fields.

The application of th is scheme to  the  D irac-K ahler form ulation has been studied
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before, in the PhD  theses of \ ’ivian de Beauce [8] and Saniik Sen [9]. However, bo th  

concentrated on the technical aspects of the formulation. Between them , they define 

the  scheme and the operators for cubic lattices and tentatively study  the  gauge ftelds.

In this thesis, we will build on their work. We start by studying the theory as it 

stands and by looking into the technical details of how it addresses fermion doubling 

and how it closely it approxim ates the continuum theory.

Next, we consider the role of the dual and we show how it can be used to  achieve 

exact chiral sym m etry as well as how we can use it to isolate the  degenerate fields 

from the theory. We s ta r t this work in two dimensional space-time. However, we also 

extend it to  four space-time dimensions. In this case, we are required to  introduce 

two more complexes, one of which is the dual in two of the four dimensions and the 

o ther is effectively the  dual in the remaining two dimensions. We will see how we 

can use these complexes to  isolat e the four degenerate fields and separate the  chiral 

com ponents of each.

We will also exi)licitly construct an Abelian gauge theory for the fonnulation, 

as it is introduced. The description will be non-compact, recjuiring us to  introduce 

gauge fixing term s for the action. \Vc shall study this in some detail, including for 

topologically interesting fiel(i configurations.

W ith the Abelian gauge tlu'ory constinicted, we describe how' we use it to  perform 

calculations. The basic algorithm tha t we use is the Hybrid M onte Carlo [HMC] algo­

rithm  [10] which is used widely in conventional lattice QCD calculations. We describe 

the  discrete D irac-K ahler scheme in a way tha t is suitable for la ttice calculations and 

we show how the HMC algorithm is implemented for our scheme.

Finally, we will use the algorithm to calculate a selection of properties for the 

Abelian gauge Held. In particular, we will study the topological charge and the  static  

fermion potential of th e  gauge field, using Wilson loops [11].

Some of th is work has appeared in the conference proceeding [12].

3



2 T hesis Structure

Before we enter into tlie study of a ferrnionic field theory using discrete differential 

geometry, we first must familiarize ourselves with the two ingredients. A background 

chapter is devoted to each subject. In the middle of the chapter on differential geom­

etry the reader will find a small section of original work tha t modifies the deffnition 

of one of the operators used in one of the seminal papers in the area. Appendix A is 

also dedicated to this result.

We must also devote some time to getting up to speed with the work tha t has 

been done by my predecessors on this formulation of discrete differential geometry. 

A third background chapter is devoted to this.

W ith the background behind us, we will plunge into the original work proper. 

Chapter 6 contains three sections. The flrst contains observations on the discrete 

differential geometry formulation as it stands. Here, we will look at how it addresses 

the problem of fermion doubling. We will also see th a t some of the correspondences 

between the Dirac and Dirac-Kahler formulations tha t exist in the continuum, are 

only approximately recreated on the complex. We will see th a t this has implications 

for chiral symmetry. The second section introduces a fornuilation th a t takes advan­

tage of the dual complex to produce an exact chiral symmetry th a t we can use to 

isolate the chiral components of the ferniion ftelds. In 1-1-1 space-time dimensions, we 

shall see tha t this needs only a little modification to enable us to separate the ffavour 

components, instead of the chiral conif)onents. To isolate both, simultaneously re- 

c}uires us to introduce two more complexes. We proceed to study this scheme in 3-1-1 

space-time dimensions, for which some of the mathem atical detail is relegated to 

Appendix B. This case follows a similar pattern to the 1-i-l case, with the exception 

th a t we must introduce two more complexes just to isolate the fiavour components 

of the fields. To isolate the chiral and fiavour components, simultaneously requires 

eight complexes. The third section introduces an Abelian field theory for the discrete 

difierential geometry and constructs all the terms th a t are necessary to complete 

calculations.

This leads us to Chapter 7, in which we construct a computing framework tha t
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allows us to  carry out calculations using the Abelian gauge theory described. The 

d a ta  types and algorithm s are explained here along with the design considerations.

In C hapter 8 , we review the Schwiiiger model, describing its form ulation and some 

of the  relevant results th a t can be obtained from it analytically. In particular, we 

review the  analytical results th a t describe the static fermion potential in order to use 

this as a benchm ark for the  results of our calculations.

In the  next chapter, we present the results of calculations obtained using the 

framework described in C hapter 7. We study the topological charge of the  ensemble 

of gauge configurations th a t we generated and we plot the sta tic  potential between 

charges, a ttribu tab le  to  the  Abelian held. Here, we also m ention the  chiral condensate 

and some of the difficulties th a t this formulation faces in try ing to  c-alculate it.

C hapter 10 is the penultim ate chapter and in it we discuss the  possible future 

directions for the work.

In the  ftnal chapter, we bring togethc'r the conclusions from our work and assess 

the  m erit of our discrete Dirac-Kahler fornmlalion.

A ppendix A contains a  modihcation to tlu ' wedge product defined by Becher and 

Joos. These details provide support for Section 4.3.2.

A ppendix B contains th(! details of the correspondence between the Hodge sta r 

operato r and 7 5 , the generator of chiral synnnetry in 3+1 space-tim e dimensions. 

This is the link th a t allows us to isolate the chiral com ponents of the  ferniion helds 

on each complex. It also contributes to the understanding of how we can isolate the 

flavour com ponents. To complete this understanding, we also need the  details of the 

correspondences between the operators and complexes th a t com plement forms in the 

{1,2} subspace, bu t not the {3,4} subspace. This is also contained in this appendix. 

This appendix supports Sections 6.2.4 and 6.2.5.



3 Background: Ferm ionic L attice F ield  Theory

3.1 Ferm ionic Field Theory

Ferniion behaviour is governed by the Dirac equation and its exact form depends on 

the s{)ace in which we work. We shall develop the theory with one space and one time 

dimension because this space is computationally simpler than and is a close analogue 

of 3+1 dimensional space-time. In this space, the Dirac equation uses the Pauli a 

matrices, ai and a2 to implement the anticommuting Clifford algebra.

After a Wick rotation, the space and time dimensions become two Euclidean 

space-time dimensions. This gives us an action th a t is wholly real allowing us to 

consider the path integral as a probability distribution, weighting the possible routes 

through the system that the quantum fields may take. In Minkowski space, the action 

is complex, so instead of a probability, each route has a ])hase associated with it; the 

route th a t incurs the least phase corresponding to the classical solution to the system. 

In Euclidean space, the classical solution corresponds to the route tha t maximizes 

the probability weight.

The 2D Euclidean Dirac; ec]uation is written as

where we have used the Einstein summation convention tha t repeated indices are 

summed over the number of dimensions of the space-time. The Pauli matrices are

In the next section, we will see what happens when we try  to recreate this de­

scription on the lattice.

3.2 T he Ferm ion D oubling Problem

The lattice formulation of field theory was first laid down by Ken Wilson, in 1974

[a^d^ + m] ip = 0

[18]. We will only concern ourselves here with the bits needed to understand the 

problem of fermion doubling.
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On the Euclidean lattice, continuous fields are replaced w ith discrete fields, 'tp(x), 

a  field th a t has a value everywhere in space-time is replaced w ith ipj th a t only has 

values a t the  lattice points, j .  In two dimensions, we can visualise 'ipj as a 2d his­

togram .

The derivative is replaced with a hnite ditt'erence operator. There are several 

different choices for a difference operator. We could use any of the  three following 

definitions for the  derivative a t site i,

 ̂[V'j+A -  ĵ] 
i [i’j -  fPj-d]

However, the th ird  definition has two advantages over the o ther candidates. It ap­

proxim ates the  continuum  derivative more ac:curately and has sym m etry properties 

under spatial inversion. This is the conventional choice.

The fermion doubling problem arises because of this choice, bu t to  see it, w'e must 

step into Fourier sj)ace and look at the definition from there. But before we do so, 

we shall look a t the contimuuri Dirac equation in m om entum  space, so th a t we have 

a benchm ark.

We w rite ip{x) in momentum space as 'ip(x) = ^  f  dp^ip{p)e~‘‘̂ '^. The Dirac 

equation has the following efl'ect.

[a^d^ + m] —  I dp^ip{p)e =
27T

dp^e =  0

If we specialise to  the case where rn = 0 and we take t/i(p) to  be a solution, we can see 

th a t '0(p) can only be nonzero when = 0, because the are linearly independent.

Now we will look a t the lattice case and see how it compares. We w rite the 

field 'ipj as  ̂ where we have used the discrete Fourier transform  and j

is a dimensionless number labelling the lattice site. N  is the  extent of the  square 

lattice. We w rite as {T^ — where is a translation  operator th a t has the 

following effect: The lattice Dirac equation reads

1
N

T  -  T  ^  ^  ^  — 11 ,

O ’a  — -------   +^ 2a
- l a p j .sin(p^a)

— z - CTuiip + =  0



This presents us with a problem. If we think about just one coordinate of p, then, 

when m  = 0, the equation has two solutions: one at p = 0 and one a t p =  We 

know from the continuum expression that only the first solution is physical, but the 

second solution is as real as the first as far as the lattice Dirac equation is concerned.

The consequence of this phantom solution is seen in the Green’s function tha t 

represents a fermion’s propagation. For every dimension of space-time there are now 

two virtual fermions th a t can be exchanged, instead of one. In two dimensions, we 

have 2  ̂ =  4 types of fermion.

The confusion arises because the definition for is unable to distinguish between 

the following two waves.

Figure 1; A Id lattice at p = 0. Figure 2: A Id lattice at p =  f  ■

uses only every second lattice site, so both of the waves in Figures 1 and 2

appear hat.

This is the problem of fennion doubling, so named because the number of fermions 

has doubled in each dimension.

3.3 The Fermion D oubling Story

The problem of fermion doubling was recognized by Ken Wilson when he put for­

ward the idea of a lattice field theory [18]. He also proposed a solution tha t, whilst 

effective, had the unfortunate side-effect of robbing the theory of chiral symmetry. 

Subsequently, others have proposed formulations th a t remove some of the phantom 

solution (known as doublers) and th a t impede the chiral symmetry, all to differing 

degrees.

After W ilson’s suggestion, Kogut and Susskind proposed an idea th a t reduced 

the number of doublers (in four dimensions) to four and retained some degree of 

chiral symmetry [2] [3] [4]. About five years later, Nielsen and Ninomiya nailed down 

the relationship between the doublers and chirality in a theorem that showed that
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doublers were necessary to maintain chiral symmetry on the lattice [24] [25]. It took 

another ten years for anyone to make any significant ground, but it happened when 

David Kaplan added an extra spatial dimension to the lattice. In doing so he was 

able to remove all but one doubler, isolating the remaining doubler at the far end 

of the extra dimension [28]. This left the a single solution on a 4d space-time slice 

at the near end of the extra dimension. Ka{)lan took the idea from a paper by 

Callan and Harvey, published seven years before [29], who had done the same thing 

in the continuum, but were unaware of the implications for the lattice. Shortly after, 

another proposal came to light that had been worked on more or less at the same 

time. Neuberger and Narayanan introduced an infinite set of regulator fields to cancel 

the doublers [46] [47] [48] [49] [50]. This 'tower’of extra fields has since been shown to be 

equivalent to K aplan’s description, where the extra dimension is taken to be infinite.

Before we proceed, it is worth taking a moment to appreciate why it is tha t so 

many have dedicated themselves to j>re.serving chiral synnnetry. W hat does chiral 

symmetry give us tha t inspires such loyalty?

There are many answers. When continuum theories are renormalized they can in 

principle incur both additive and nniltii)licative changes to jiarticle masses. However, 

when the theory has chiral symmetry, the particle mass must stay zero throughout, 

meaning th a t it can only incur nuiltiplicative changes. To facilitate accurate renor­

malization on the lattice, the lattice description must respect chiral symmetry, too 

[20]. Chiral synmietry also provides the theoretical basis for the formulation of pions. 

When the theory respects chiral synnnetry, but the vacuum state  does not, the theory 

is said to have spontaneous symmetry breaking. The number of pions existing in the 

theory then corresponds to the number of independent synmietries tha t have been 

broken [21]. Other reasons are given in [23].

Many comprehensive texts and review articles exist on the subject of fermion 

doubling, (eg [19] [22] [23]). I shall pr&ds the most relevant developments in the 

following sections.
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3.3.1 W ilson  Ferm ions

Wilson’s solution to the problem of doublers was ingenious. He reasoned th a t we 

could add any non-divergent term to the lattice action as long as it was multiplied 

by a because this meant tha t it would go to zero in the continuum limit [18]. The 

term he chose to add was the lattice equivalent of the second derivative because, 

in Fourier space, it corresponds to (1 — cos(p^a)). This term breaks the degeneracy 

between p = 0 and P =  f  •

The drawback to this approach is th a t the extra term acts like a mass term, in the 

sense th a t it contributes a term bilinear in the fermionic fields th a t does not include 

a '} matrix. Consequently, it breaks the chiral symmetry of the action.

It is tem pting to think tha t we could include a factor of 7 in its definition, to retain 

the symmetry, but to do so would break the Lorentz invariance of the continuum limit 

of the action. The extra term is essentially an implementation of which is a

Lorentz invariant quantity. A term  such as would not be; it has one too many

free indices.

3.3.2 Staggered  Ferm ions

A few years after Wilson published his ideas, Kogut, Susskind and Banks suggested 

a variant th a t went some way to eliminating doublers, whilst maintaining an element 

of the chiral synunetry [2] [3] [4]. Their idea was to construct a description that only 

accessed the hrst half of the Brillouin zone, but th a t had the same continuum limit. 

By limiting the system to the first half of the Brillouin zone, the region in which 

doubling takes place is excluded, but the effective lattice spacing of the new descrip­

tion is now twice as long as th a t of the basic theory. To have the proper continuum 

behaviour, the basic spinors in each square of the effective lattice must be grouped 

together in such a way as to represent effective spinors.

The starting point is to diagonalize the Dirac equation because this will make the 

construction of the effective spinors easier. In two Euclidean dimensions, we can do 

this with the following substitution
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'I ', ^ (1)

When we apply the derivative operator to this action, we can see how the Dirac 

equation emerges.

^  E  ~  E  l*'-+A -  (2)
fl /i

where P  =  (— . The next step is to group together the basic spinors so 

tha t the lattice spacing between each group is twice the basic lattice spacing. We 

can see how that is done in Figure 3.

X2 2

•  « •  •
0  i 2

Figure 3: A 2D lattice. The squares correspond to sets of four linearly independent 

spinors, each of which are prenuiltiplied by a ditferent combination of a matrices.

If each square is identified by its lower left corner, the effective spacing between 

squares will be 2a where a is the basic lattice spacing.

At this point, we still have too many degrees of freedom, so we jettison all but 

the one of the components of the transformed spinors from equation (1) and write 

the remaining component as Xx- Which component we choose is arbitrary, although 

it is usual to keep the first.

The derivative in equation (2), which we have shown to correspond to the Dirac 

operator, does not mix the components of the spinors, so this is a valid procedure.
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We can now construct an effective spinor belonging to a square as a combination 

of the Xx fields within th a t square.

' ^ s  =  (3)

where the sum is over the corners, c in square S  and is the effective spinor.

This prescription is completely effective in removing the doublers as we have 

defined them above. However, it has degeneracies of its own of which we must be 

mindful.

If we construct the effective fermion from the Xx fields at all four corners of a single 

cell, we will have ^  equal to a 2 x 2 m atrix with four complex degrees of freedom. 

Each column of this m atrix represents a degenerate effective fermion. This is perfect 

it we require a theory with two degenerate flavours of fermion, but is problematic if 

we require only one flavour.

The final feature worth noting about this formulation is the presence of chiral 

symmetry, although it is not in the form to which we are accustomed. Naturally, 

this fornuilation does not afi'ect the vector symmetry of the action, but the axial 

symmetry comes intertwined with the symmetry of the degenerate flavours. The 

axial symmetry is generated by (T3 ® 0-3, where the first a2. acts on the components 

of the spinor and the second acts on the space of degenerate fiavours, mixing 

them. Consequently, the chiral projection operators are Pr/ l =  \ { I  <8) /  ±  (T3 ® (J3).

3.3 .3  N ie lsen  and N in om iya’s T heorem

When it was first published, the staggered fermion fornuilation represented a small 

victory in the struggle to remove doublers whilst preserving chiral symmetry, but it 

was clear th a t it was a compromise of sorts. Degeneracy had been partially removed 

at a cost of part of the chiral symmetry. Its publication meant tha t there were three 

possibilities for lattice fermions.

The first was the original lattice theory, with full chiral symmetry and lots of 

degenerate doublers. The second was the staggered fornuilation with its reduced 

degeneracy and limited chiral symmetry. The third was the Wilson formulation with
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no doublers, bu t no chiral synnnetry. Between them, it was becoming clear th a t a 

trade off existed between m aintaining the symmetry and removing the degeneracy.

It took five years for this relationship to be pinned down and th a t happened when 

Nielsen and Ninomiya published their “no-go” theorem in 1981 [24] [25]. In it they 

s ta te  th a t, under some fairly mild conditions, the degeneracy is a consequence of 

having chiral sym m etry on the lattice.

Their argum ent proceeded as follows. Each solution to the  chiral lattice Dirac 

equation corresponds to a  point where tfie momentum space lattice Ham iltonian goes 

to  zero. On th e  lattice, momentum space is [)eriodic, so providing the  H am iltonian is 

sufficiently sm ooth, every held th a t crosses the line H{p) =  0 once m ust do so again, 

in order to  m aintain  periodicity. The second crossing is the degenerate doubler. There 

are implicit assum ptions in this argument, but we will see th a t they correspond to 

very mild constrain ts in position space th a t nearly all useful H am iltonians fulfil.

The first is th a t the Hamiltonian be translationally invariant, which means th a t 

m om entum  m ust be a conserved quantity. This stops us from crudely excluding the 

regions of m om entum  space in which the doubling occurs.

The second is th a t the Hamiltonian nmst be smooth in m om entum  space, in all 

derivatives of p. The cons('quence of smoothness is th a t the position space Hamil­

tonian is local to  the corresponding degree. We can see this more easily if we s ta rt 

w ith the definition of locality and work backwards.

Locality is defined by the rate  at which the Hamiltonian goes to  zero as we 

separate the  two points, on which it operates. We can quantify the  degree of locality 

by insisting th a t {x — y)'^H{x,  y) oo as (x -  y) —>■ oo. If the H am iltonian is 

independent of position, it must depend only on the separation between x  and y, 

so we can rew rite this condition as z^H{z )  oc as 2: ^  oc. Stepping into ID 

m om entum  space, this becomes

For this expression to  be non-divergent, the n th  derivative of H{p),  a t p =  0, 

m ust not diverge. An equivalent statem ent is tha t the n — 2 th  derivative is smooth.
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If H{z)  is more local than  any power of 2 ” , then  H{p)  m ust be sm ooth to  all orders, 

which excludes the  possibility of using piecewise fvmctions to  create a doubler-free 

H am iltonian.

The next assum ption is th a t the  H am iltonian m ust be chiral, which means th a t 

the  term s nuist be proportional to  the a  matrices. Because the  a  m atrices are linearly 

independent, chirality ensures th a t i / (p )  only goes to  zero when each of the go to 

zero, not when a com bination of non-zero cancel.

The hnal assum ption is th a t the  charge is conserved and th is is guaranteed through 

the herm iticity  of the Hamiltonian.

These four assum ptions are not very restrictive and most serious proposals up 

until th is point in tim e had m et them . One th a t had not is the SLAG derivative [26] 

in which th e  la ttice derivative is replaced by a factor of in m om entum  space. This 

lorm ulation is chiral and is doubler-free, bu t it can be shown th a t the position space 

representation is non-local [27].

Nielsen and N inom iya’s theorem  shows th a t all proposals bound by the listed 

constraints suffer the trade  off between chirality and miiqueness. It took over ten 

years for a descrij^tion to be proposed th a t navigated its way around the assum ptions 

in an a ttrac tiv e  and viable fashion.

3.3 .4  D om ain  W all Ferm ions

In 1992, David K aplan proposed a fornuilation th a t succeeded where others had 

failed. He pu t non-degenerate, chiral fermions on the  lattice by introducing an ex­

tra  dim ension to the scheme [28]. By including a mass term  tiia t switched sign as 

it crosses the  origin in the  ex tra  dimension, a single chiral solution fell out of the 

description th a t clung to  the four dim ensional slice a t the origin of the ex tra  dim en­

sion. The clinginess could be seen from its wave function which reached into the 

ex tra  dimension, bu t was exponentially dam ped.

However, the doubling did not go away entirely. For a finite, periodic lattice, the 

sign of the  mass term  had to switch back somewhere along the length of the ex tra  

dimension and  it was here th a t the doubler field could be found. W hen the lattice
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was infinite, the exponential suppression ensured that the two solutions decouple. 

However, in the finite case, the situation was less perfect. The small overlap between 

the solutions acted as a mass term and so broke the symmetry.

A few years later Furman and Shamir refined the model by removing the re­

quirements that the lattice be periodic and that the mass be a function of the extra 

dimension [30]. Providing the mass had a value between 0 and 2 lattice spacings, 

chiral solutions would appear on each wall. The advantage of making the lattice 

non-periodic was th a t the same physical lattice size resulted in greater exponential 

decoupling between the two solutions than in Kaplan’s original formulation.

Furman and Shamir’s fornuilation used the following action for four dimensions

S p  ^   ̂ [^n + /i ’̂ n —fi] ^  ^ ” 2 ^ n —fi -|- TUq ^   ̂ '4^n'4^n
n ,/i= 1 ..5  n .11=1..5 n

If we limit the extent of the lattice in the extra dimension to Lg and introduce a 

coupling between the two ends, ni f ,  we can rewrite S p  as

S f =  i ’{ ^ ^ s ) D p { x , s , x ' , s ' ) i p { x \ s ' )  (4)
.r ,x ',s ,s '

where

D j 7 ( x ,  s ,  x ' , s ' )  =  6 { s  -  s ' ) 0 { x ,  x ' )  - H  -  x ' ) I p ^ { s ,  s ' )

Ij){x, x')  =   ̂E^x=1 . . 4  [(1 +  ln)U^,[x)6{x +  fi -  x')  +  (1 -  -,^,)Ul{x')S{x' +  fi -  x)] 

-t- (mo — 2n)S{x  —  x')

0 ^ { s , s ' )  =

PrS{1 — s') — rnfPi6{Ls  — 1 — s') — d(0 — s') : if s =  0 

Pf{S{s -|- 1 — .s') - I -  Pi6{s  — 1 — s') — S{s — s') : if 0 < s < Lg — 1 

—mfPii5{0  — s') + PlS{Ls — 2 — s ' )  ~  S{Ls — 1 — s') : if s = Lg — 1 

The U^{x) are the gauge links f/,,(x) =  exp(ieA^(.x)) and P r / l  are the chiral projec­

tion operators P r / l  =  |(1  ±  7 5 ).

For an example of a recent calculation using this formalism, see [31].

3.3 .5  O verlap Ferm ions

Around the same time, Narayanan and Neuberger proposed a subtly different fornni- 

lation [46][47][48][49][50]. Starting with the same action as (4), but with the coupling
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between the two walls zero {rrif), they rewrote the effective action as

e^%ff{u) cx< b -  \ D 4 f _ y - \ f + y - ^ D l \ b +  >

where s labels an extra coordinate, |6± >  are the states of the system at the infinite 

extremes of the extra coordinate and D± and T± are the many body operators

f ±  =

and Q± and H± are defined through

1 1
g<3± ^  n/ b ± ^  ^

[  0 v W  J  [ c > ^  C ' ^ c + B ±

The and C  terms are:-

C"nai,m/3j =  ^  ~  ^

The T± are transfer matrices along the extra dimension and by taking the infinite 

limit in the extra dimension, their ground states { \0±,U >) are the eigenstates th a t 

come to dominate. After some algebra, this leaves us with an overlap between ground 

states

g5([/) o - , t / | 0  + , t /  >

from which the description gets its name. After further analysis, this can be shown 

to induce the chiral Dirac operator

where H  is the Hamiltonian. Although easy on the eye, this formula is tough to 

implement. The combination of Hs  must be expanded as a series and the ruimber of 

terms th a t must be taken is dependent on the application and the accuracy required, 

just as in the domain wall case. For an example of a contemporary calculation using 

this formulations, see [32].
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3.3.6 G insparg-W ilson Fermions

Both the domain wall and overlap formulations achieve chiral symmetry in the limit 

of an inhnite parameter. The test for lattice chiral symmetry is th a t the formulation 

nmst fulfil the Ginsparg-Wilson relation [33]:-

+  7 5 D  =  aD^j^D

which both these schemes do. In this expression a is the lattice spacing and D  the 

Dirac operator.

The relationship between the two schemes has been established by Borici in his 

work on Truncated Overlap fermioiis [34] [35].

3.3 .7  T he Fuzzy Sphere

A novel approach has been taken by the research group at the Dublin Institute for 

Advanced Studies, w'ho study a formulation in which the manifold is replaced with a 

quantized phase space. The quantization leads to the space having toroidal properties 

and this geometry leads to a non-comnmtativity in the coordinates [36] [37] [38] [39] .
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4 Background: D ifferential G eom etry

The premise of this thesis is to use a particular formulation of discrete differential 

geometry to study fermionic field theories. The formulation borrows finite element 

methods to define operators. Conventional lattice techniques, including all those 

seen in section 3, involve finite different methods, in whicti fields are sampled at the 

vertices of a lattice. Lattice operations process the sampled points to generate either 

scalar values or further fields valid only on the lattice vertices.

Finite element analysis uses the operators from the contimuun on a finite data 

set. The fields at the vertices are linearly interpolated in the regions between vertices 

to give us a continuous field on which the operators are applied [40] [41], Integrals can 

also be approximated in the scheme by integrating over the links, faces, cubes and 

hypercubes of tfie lattice and by interpolating in the regions between neighbouring 

domains.

Before we introduce and extend the discrete differential geometry scheme, we 

shall first run tlirough the necessary background material from continuum differential 

geometry. The following references are good sup{)orting texts [42] [43].

4.1 D ifferential G eom etry in the Continuum

The foundation for almost all differential geometry is the infinitesimal line element, 

dx. On a manifold, we have scalars, vectors and tensors of any degree, but in order for 

a vector or tensor at a point to have a direction, its components must reach another 

point on the manifold. However, if the point were a finite distance away, the vector 

or tensor would no longer be local and this would create problems when the local 

axes are coordinate dependent. Instead we define the vectors or tensors so th a t they 

point to a coordinate an infinitesimal distance away.

Vectors are represented as differential forms  with one line element (known as 

one-forms): v^{x)dx^.  Matrices are described by differential forms with two line 

elements (two-forms): g^,,{x)dx^dx''. Similarly, tensors of degree n are represented 

by differential forms with n  line elements (n-forrns): rj^^n^,,,n^[x)dx^^dx^'^...dx^'\ We 

can define an orientation for the elements by incorporating the wedge product, A.
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An area element (a two-form) is the wedge product of two line element one-forms: 

A dx'^. By wedging this against more one-forms, we can build forms of arbitrary 

dimension.

The wedge operation is antisymmetric: dx^Adx'' =  —dx^/\dx^^. Two consequences 

of this are tha t the product of a differential form with itself is always zero and tha t 

tensors symmetric in any two indices vanish.

An operator whose definition follows from that of A is the Hodge star. This is an 

operator tha t maps a p-forni to the complementary (n — p)-form, in n dimensional 

space. For example, in 2d, it maps dx  (a 1-form) to d y  (a 1-form) and vice versa. It 

also maps dx  A d y  (a 2-form) to a scalar (a 0 form) and vice versa. Formally, it is 

defined as follows

* d x ^  =  (6)

where dx^^ is taken to mean a /;-form, the ordered A product of h 1-fornis and where 

the H  denotes the ordered set of indices in the /(-form. CH  denotes the ordered 

complement of H,  ie all the components in the space not belonging to H,  and e is 

the Levi-Civita tensor. W ith this definition, dx^^ A *dx^^ should always be equal to 

a positive n-form of the same dimension as the space.

The anticonunuting behaviour of A is reminiscent of the 7 and a matrices. How­

ever, the algebra is slightly different. In Euclidean space-time, the 7  and a matrices 

obey the Clifford algebra: {7 '̂ , 7 '̂ } =  26̂ '̂-' and (t‘'} = 2d'“ ,̂ in which {•, •} denotes 

anticoninuitation. To continue the correspondence, we construct a Clifford product 

between the forms to recreate the Clifford algebra and we do this by combining the 

A with a new operator, the contraction operator.

Contraction is denoted e^ j  and is defined through the Hodge star: e^j  = *dx^ A 

*. In practice, it has the effect of reducing the degree of a form, by removing an 

individual line element from an arl)itrarily long differential form. However, it can 

only remove the element th a t is at the left end of the differential form, so to remove an 

element th a t is buried deep within an n-form, we must ftrst use the anticomniutation 

relation to shift it to the left end. For example

A dx̂  ̂ =  -e^^jdx^  A d x ‘̂ =  - d x ' '
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This puts us in a position to  define the Chft'ord product, V,

dx^ V dx^ =  {dx^ A + e ^ j)  dx'' 

and  we can use it to  define a Euclidean Clifford algebra for the differential forms:

{dx>̂ , dx‘'}^ =  2S ‘̂'

We can build algebraic objects as linear com binations of different forms and their 

tensor coefficients. W hen we do this, the various n-forms behave as bases for a  local 

space. For example, in 2D Euclidean space, we can define an a rb itra ry  function as 

F{x)  =  fo{x)  +  fi{x)dx^ +  j 2 {x)dx^ +  f i 2 {x)dx^ A dx' ,̂ which can be w ritten more 

succinctly as F{x)  =  fo{x) +  ffj,{x)dx^ +  ff^^{x)dx^'-dx‘' or F{x) =  fH{x)d,x^. To 

construct an inner product between these objects, we use the Hodge star. If F{x)  

and G{x)  represent f f i {x)dx^  and G{x)  =  gK{x)dx^ , respectively, we define 

the  iinier j)roduct to  be

< F , G > =  j  F  A (*G*) (7)

F  A {*G*) provides us w ith a m easure of integration of the  same dimension as the 

space and the  integral sign is taken to  mean Integration over all space. Only the 

products between forms of identical dimension are non-zero.

W hen we take the  Hodge s ta r of a form twice in succession, we should recover 

the original form. However, along the way we may incur a minus sign, depending on 

both  the dim ension of the original form and the  dimension of the space.

We can refine the  definition of the  Hodge sta r to  remove any am biguity around 

the niiims sign, by including another operator, B, as Becher and Joos do [45]. We 

define B so th a t it has the  following effect on dx^

B d x ^  =  (- l)( ')( i ,T "

We can now create a new sta r operator, =  *B th a t has the property: ★★ =  1.

A nother operator, defined in a similar fashion, is A.  A  also operates on a form 

to  generate a com bination of minus signs, w ith the  effect: A dx^  =  {—l)^dx^.

20



Finally, we must introduce the derivative operators. One of the most useful 

vectors, in field theories, is the derivative and in difl'erential geom etry it can take 

one of two forms. The exterior derivative is defined as an operator th a t acts upon a 

local field and increases the degree of its form: d = dx^  A The adjoint derivative 

(sometimes known as the coderivative) also acts upon a local held, bu t reduces the 

degree of its form: 5 =  — ^ d*. It can be simplified to  =  —e^jd^.

The derivatives can be combined to  construct the Dirac operator: Ip = {d — S), 

which is equivalent to {dx^ A + e^  j)d^  = dx^\Jdf^. The Laplacian, which is the square 

of the  Dirac operator, takes the form {—dS — Sd) because the antisym m etry of bo th  

d and S ensure th a t d‘̂ = 5^ =  0.

This gives us all the tools we need to  see how fermionic field theories can be 

represented using differential geometry, which is the them e of the next section.

4.2 The Dirac-Kahler Equation

T he Dirac equation was hrst w ritten in term s of differential geom etry by Kahler and 

its new form was subsequently christcncd the Dirac-Kahler equation [44], A review 

can be found in the paper by Becher and Joos [45].

Because of the correspondenc'e between the Clifford algebras of the 7 and a  ma­

trices and the differential forms under V, we can write the Dirac-Kahler equation 

as

{dx̂ ' \/ +  Tn)^{x) =  0

where $ (x ) is a differential form. In 4D space-time, has sixteen independent 

com ponents; in 2D, it has four:

=  4>{x) + <t)\ {x)dx^ -|- (j)2 ix )d x ‘̂ + 4>i2{x)dx^ A dx^

This raises a question abou t the equivalence of degrees of freedom. In 2D, we have 

four complex com ponents of $(x'), bu t ju s t two complex com ponents of 'I'(x). This 

can be resolved by introducing a second spinor which we combine w ith the first to
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turn  ipix) into a 2 x 2 matrix,

W ( X )  =

We can relate the conventional Dirac basis to the Dirac-Kahler basis through the 

m atrix Z,  defined as

Z  = 1 + afdx^  +  a^dx^  +  a^a^dx^  A dx^ — 'y^{ — l)^ ‘̂ )aj jdx^
H

where the are the Pauli matrices, H represent the product of ordered components 

and h is the number of components in H.

We use Z  to relate $(a;) to 'ip{x) as follows

<I>(:r) =  5 ]  0(.T, H ) d x ^  =
H  a,b

w'here a denotes the row and (6) the column o f '0. Z  has the useful property dx°^y Z  =  

cr^Z, which means th a t dx°" V $(x) =  Yl,ab ^ab- Using the following identities

for the a matrices, we can explicitly relate <f){x, H)  to i>{x).

Tr (<7"(<r''-)t) = 2S’"-- E „ (8)

(/)(,T,/ / )  =  Tr (9)

When we introduce gauge fields, we must replace with — ieA^.  We write 

the covariant Dirac-Kahler equation as

{d — ()')<J>(x) =  ieA{x)  V $ (a ;)

where A{x)  is a 1-forrn, A{x)  =  A^{x)dx^.  The Abelian gauge transformation takes 

the form

A^{x) A^{x) + % 0 { x )  (10)

In order to construct a useful action, we must also introduce source terms. In 

the Dirac basis, we would use the spinors rj and f) as sources to construct a covariant 

action th a t looks like

li) [ip — iejji +  m)  '0 +  f]'ip +  ipr]
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In the Dirac-Kahler basis, we construct the counterpart to rj and fj, which we shall 

denote 0(2:) =  '^^^^rja\x)Zab and (r){x) = '^^f^ f]a \x)Zab- The ferrnionic contribution 

to the action is now

Sp =< {d~ 5 -  ieA + rn)^  > + < > -\- < ^ , 0  >

We nuist also include the gauge action and a source for the gauge held. In the 

Dirac basis the action is defined to be — where =  d^A^, — d„Ai^. The

Dirac-Kahler representation of F^^ is dA, where d is the exterior derivative mentioned 

earlier. The anticominuting properties of the dx provide the antisymmetry that 

accounts for the two terms in F,,j, and the gauge action is a product of two of these 

terms.

Sg =< dA, dA >

The source field must have the same dimension as the gauge held, so we add the term 

< p ,/I > to the action, defining p to be p = p^[x)dx^.

There is one more family of feature's of the Dirac-Kahler description that we must 

see before we are done. It centres around the operation that corresponds to the

matrix. This will give us tlu' set of projection operators that isolate the chiral 

components of 4>(:r) and also th(> projection operators that separate the c:olunins of 

I p ,  allowing us to single out the degenerate spinor helds.

Given that ^ab =  dehnition <73 =

—ia\02 and w'rite

Zab =  - I  { { a ^ a i f Z ) ^ ^  =  - i d x ^  V d x “̂ V i>''a^Zab
ab ab ab

However, there is some ambiguity here, because we can achieve a similar result using 

the Hodge star operator. We c:an show that, in even dimensions, a J Z  = ~i  * BAZ.  

In odd dimensions, the relationship lacks the A: crJZ = —i * BZ.

Using the familiar projection operators, F/?/l =  ^(1 i  era), we can project 

into its positive and negative chiral components with P r / l  =  i * BA)  =

I  (1 =F idx^  V dx'^y).

W e  can also use these operators to isolate the columns of i p  through right mul­

tiplication. In the Dirac basis, iI’ P r / l  ])rojects out the hrst/second column of i p .  In
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this context, we relabel Pr/l  as P 1 /2  to distinguish its function. Returning to Z, we 

can see that its right multiplication properties are ZcrJ =  Z Vdx^.  We can also show 

that ZaJ = —i* BZ,  which means that we can isolate the degenerate helds by using 

the flavour projection operator P1 / 2  =  i * B).

4.3 The D iscrete D irac-K ahler Equation

A number of attempts have been made to put the Dirac-Kiihler equation on the 

lattice. One of the reasons for such interest is that it provides the continuum limit 

for the staggered fermion formulation. A recent review has been provided by Scott 

Wilson [51].

One of the first attempts was by Becher and Joos [45] and we will briefly outline 

their approach.

We divide the lattice into squares, as in Figure 4.

4

X2 2

I

0

0  I ‘ 2 4  5  A

Figure 4: A 2D lattice for the Becher and Joos model. Each square represents four 

differential forms.

The discretization is done so that to each square four discrete differential forms 

are associated. The four dift’erential forms correspond to the simplices at the bottom 

left corner, the left and bottom edges and the whole square and all four take as 

their coordinate the location of the point at the bottom left corner of the square. 

The bottom edge corresponds to and the left edge to The form d '̂^ A d^'^
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(denoted corresponds to the wliole square and the zero form corresponds

to the bottom left corner. In the centre of each of these objects is a lattice site. Using 

(9), we put the value of 4>{x, H)  = Tr H)^  on these sites, where ■0(x, H)  is

sampled at the site.

The Clifford algebra for the theory is not straightforward. The contraction oper­

ator is similar to tha t of the continuum: ■ However, the wedge

product is defined by

^X.H ^ ^y.K ^  ^^xMuK^y,x+eH (n)

(provided H  r\ K  =  0; otherwise it is zero). Here, H  U K  is an ordered expression; 

the miims signs are accounted for by ffi.K- The interesting feature of this definition 

is the (^'-function. It tells us that the product will only be non-zero if the siniplices, 

corresponding to the forms on eit her side of the wedge, share a common point. Specif­

ically, it says that the simplex corresponding to the form on the right hand side of 

the w'edge nmst start from the ])oint where the simplex, corresponding to the form 

on the left, ends. If this is not th<' case, the product is zero. If we write a general 

1-form as d^ = undesirable consequence that:

e^_id^ A when // ^  H  and d̂ ' A 7  ̂ d^’̂ \  when /i e  H. Instead, we

have e^jd^  A when // 0  H  and #  A , when /i E H .

W ith this definition, the exterior derivative, d, is defined as

d  =  d^  ̂ ^ ^ ^  =  d>̂  ( 12 )

where we have the operators, that sample a field from one square in the direction 

±//,: T±^(t){x, H) = 4>{x ±  e„, H).

W ith this definition, the Clifford product is non-local. The Clifford algebra is

{ # ,  d ' ' ] y  =  #  V d^ V U " '  V d ^ y  =

and the non-locality of the Cliflbrd product has the consequence of making both the 

Dirac-Kahler and Laplacian operators non-local.
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4.3.1 L ocality  vs Leibniz

It is reasonable to ask why Becher and Joos did not choose a simpler definition for 

the wedge product. The definition

gives A = d^'^, when ^  H  and d^ A e^jd^'^ = d^ '^ , when n E H.  This

means th a t it has a local Clifford algebra

{d̂ , = d̂ ^yd̂ 'y +d‘' V

which would seem to make it preferable to the definition of equation (11).

However, they had a very good reason for not choosing this definition. Leibnitz’

rule is the rule governing the differentiation of products. In the continuum, it is

A (-)) =  (rf$) A 0  +  ( ^ $ )  A ( f i e )  (14)

and it is desirable to have the same relation on the complex.

The definition in equation (13) leads to a forwardly defined exterior derivative

d =  d^ A =  fF A (T^ — 1)

which violates equation (14). However, the exterior derivative in equation (12), fulfils 

Leibnitz’ rule and it is for this reason th a t Becher and Joos chose the wedge definition 

of equation (11).

4.3 .2  A n A ltern ative  D efin ition  for th e  W edge P rod u ct

Whilst studying the work of Becher and Joos, we constructed an alternative definition 

for the wedge product tha t has interesting properties. It is possible to define a wedge 

product, within the framework that Becher and Joos use, th a t satisfies Leibnitz’ rule 

and has a local Clifford algebra. However, this definition does not lead to local action 

because the Hodge star cannot be defined to be local.

The definition of the wedge product is critical in the product between fields and 

in the application of the exterior derivative. In both cases, its definition determines

26



which term s go to  zero and which term s remain non-zero. In A ppendix A, we derive 

a deftriition for the wedge product by starting  w ith an undehned wedge product and 

asking w hat form it must take in order to be local and perm it Leibnitz’ rule. The

definition we arrive a t is subtly  different to both  Becher and Joos definition and to

the naive local definition; (F'^  A =  euK(P ' ^ ' ^ ^ f o r  i f  fl A' =  0.

To describe the  effect of our alternative dehnition on the lattice in the Dirac basis, 

we would have to  introduce subtle and non-trivial Dirac delta functions between 

lattice sites in bo th  the definitions of the product between fields and the lattice 

derivative because, on the complex, the wedge product afl'ects bo th  these definitions.

We discuss the alternative dehnitioii in depth in A ppendix A. Here we shall in­

troduce the  definition and dem onstrate th a t it satisfies Leibnitz’ rule for the simplest 

case of a one dimensional complex. A two dimensional example is provided in Ap­

pendix A.

If we introduce the following definition for the wedge product

^  ^.^Jy.Huh-^x,y+eK for / /  fl A' =  0
(15)

0 otherwise

we can see th a t this has the proj)erties

when //, 0  H

d^Ke^jd^'^^ = d^'^^ when // e  H  

which lead to the loc:al Clifford algebra

{ # ,  =  25^ ' '

In A ppendix A, we arrive a t the  definition in equation (15) by considering Leibnitz’ 

rule for an arb itrary  definition of wedge product. If the wedge is to  have a local 

Clifford product, the  exterior derivative must be forwardly defined, so we use this 

as a constrain t. By dem anding th a t Leibnitz’ rule be satisfied, we show th a t this 

is sufhcient to  derive the definition in equation (15). In doing so, we show th a t the 

following definition for the exterior derivative

d = =  di^A{T,, -  1)
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is local and satisfies Leibnitz’ rule in the general case.

As an example, we shall show here th a t Leibnitz’ rule is satisfied for the simplest 

case of a Id  complex.

G  O

A B

Figure 5: A one dimensional complex.

In Figure 5, we have three simplices: [̂ 1], [B] and [AB] corresponding to 

and respectively. We define two fields on this complex with

(-) =  + 0{B,d))d^-^+ 0{A,l)d- -̂^

Using the wedge product of equation (15), the product between these fields is

$ A 0  =  iD)0{A, 0)d^'® +  4>{B, (Ii)0{B, 0)d^® +  <j){B, ^)6{A, l)d̂ '̂^

The exterior derivative of this expression is

ri(<DAB) =  E , , p ^"’̂ A (T ;^ -1 ) ( c|>AB)

= d '̂^A{Te, -  1)($A0)
/  \  (17)

=  (^0(5, 0)0(5 , 0) - 0 ( A 0 ) ^ ( ^ ,0 ) ) f i " ‘’̂ Ad-‘̂'®

=  ( 0 ( 5 ,  (H)0{B, 0) -  ct){A, d))eiA,

with all other terms going to zero.

Now we look at the two terms {d^)AO and (^ $ )A (d 0 ).

= o?-"’iA(re, - 1 ) $

= ^0(5,0) -  0(A0))(^'^’̂ A(̂ "'’®

=  ( 0 ( 5 , 0 ) - 0 ( A 0 ) ) f i - " ’' 

di-) = (̂ 0{B,(D) ~0{A,(D)y^'^
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For the first of the two term s, we have 

{d<^)Ae =

A 0)rf-̂ ’® + 0{B, 0)c/̂ -® + 0{A,

=  iD)0{A, 0) -  cj){A, (D)0{A, 0))ci^’i

For the second of the two term s, we have

M $ )A (d e )  =  ^j^0(A,0)rf-^’® +  0(S,0)d^-® +  0 (A ,l)d ^ ’i 

a(^^(Z?,0) -^^(A,0))d-^’i 

= (^0(A, + (j){B, 0)d̂ -® -  0(A,

A(0{Bj)-0{A,H})yt^ '^

=  ( 4>{B, 0 )^ (5 , 0) -  0 (5 ,  0)^;(A, 0) V - '' ' '

Combining these term s, we liave

(tZ$)A0 + (^$)A(ci(-)) =  (0(Z?, 0)(^(/l, 0) -  0(-4, 0)^(A, 0))d'-^’i

+ U{B,%)0{B,$) -  ct>{BS)0{A,^)yi-^'^

=  U ( i? ,  0)(^(Z?, 0) -  m A ,  0) J

which is the same as the last line of equation (17).

4.3 .3  T he N on-L ocal C om m utator

A nother formulation th a t accepts and works within these lim itations is th a t proposed 

by K ananiori and Kawam oto [52] [53] [54]. Their formulation both  ac-hieves local­

ity and perm its Leibnitz’s rule to  be enforced, but they achieve this by making a 

very unorthodox sacrifice. They introduce a non-com m utativity between fields and 

discrete differential forms.

g{x  +  i:l)(F'I  ̂ =  d '̂>^g{x)

which ensures th a t d{ f { x) g{ x) )  =  {df {x) )g{x)  +  f {x) { dg{ x) ) .

To construct both  a  Clitt'ord product th a t res{)ects this result and gives a Hermi- 

tian  action, they find it necessary to introduce two orientations of the lattice. One
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orientation is for line elements lying in the positive ji direction and one for line ele­

ments lying in the negative // direction. The line element tha t points from x  to x-\- 

is labelled 6^^ The line element th a t points from x  +  /}, to x is labelled 6~^. W ith 

these objects, their exterior derivative is defined to be

•if = E

where d±^f { x)  =  ± { f { x ±  fi) -  f { x) ) .

Their formulation naturally includes a doubling of fields, which they have specu­

lated lends itself to the representation of bosonic and fermionic fields in a supersym- 

nietric theory.

The non-locality has received more theoretical treatm ent elsewhere [55] [56] [57], 

where it is studied in the context of a differential calculus on a finite set.
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5 Background: G eom etric D iscretization

All the formulations that we have considered so far come up against the locality- 

Leibnitz problem w'hich they each address in their own way with their own limitations.

However, the ideas tha t we have seen are all immersed in a finite difference formu­

lation of field theory. Perhaps if we take a different approach at this level, we might 

be able to make more progress.

Geometric discretization is a formulation tha t does offer something different. It 

uses finite element methods to create interpolated, continuous fields on which we can 

use the operators from tlie continuum, but tha t have only a finite number of degrees 

of freedom. It doesn’t solve the problem entirely, as we shall see, but it reduces it to 

a lattice approximation which is controllable by adjusting the lattice spacing.

The foundation for Geometric discretization was built by David Adams in his 

PhD thesis [58]. It has since been added to by Sainik Sen [9] and Vivien de Bcauce 

[8] in their theses. Some of the d(;tails have been published in the paj)ers [59] [60] 

[61] [62] [63] [64] [65] [66] [67] [68]. Work has also been done by Bartlomiej Czech at 

the University of Pennsylvania [69].

5.1 G eom etric D iscretization

To construct the geometric discretization, we start with the same lattice structure as 

in the Becher and Joos method (see Figure 4).

In 2D, the simplices are the points and the lines and squares that lie between 

points. In higher dimensions, the list would include cubes and hypercubes.

We can use the simplices as building blocks to construct a topological model of a 

given space. The collection of simplices together is known as a complex and we can 

use the simplices to construct complexes tha t are isomorphic to arbitrary topological 

spaces.

To introduce our notation, we will use the reference square from Figure 6.

In this example, the complex comprises nine simplices. Four are the points at the 

corners of the square: [A], [B], [C] and [D]. Four are the edges: [AB], [BC], [DC] 

and [AD] and one is the square [ABCD].
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Figure 6: A sample square from the GD lattice.

5.1.1 T he D e R ham  and W h itn ey  M aps

We use the De Rham operator to discretize coiitimious fields. If $(x) =  H)dx^  is 

an arbitrary, continuous differential form, would generate nine separate terms.

The first four would comprise the field of the zero-forms sampled at the corners of the 

square: <̂ ){A,^)[A], 4 > { B 0(C, 0)[C] and (/)(D, 0)[D]. The second four would be 

the integrals of the 1-forms along the edges:-

0 ([D C |)P C | = (Jjoc 1))PCJ

m D \ ) [ A D \  =

Finally, we also have the effect of R  on the two-form:-

^{[ABCD])[ABCD] = ( f  dx^dx^(t){x, \2))[ABCD]
J[ABCD]

For the purposes of consistency, we shall also use the ^  notation to denote the mapped 

zero forms: 0([A])[A], ^{[B])[B], 0([C'])[C], and 0([C])[C']. We have chosen this 

notation because it underlines the property that the effect of R  is to map continuous 

fields to a linear combination of the simplices with field values as their coefficients. 

The general linear combination of these elements is the Geometric Discretization 

representation of a general cochain.

To map the opposite way, from discrete to continuous fields, we use the Whitney 

map. This acts on a general cochain to generate continuous terms containing two 

factors. One is a difi'erential form that reflects the space that the simplex covered.
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The other is a set of functions that interi)olate in the regions between neighbouring 

siinpUces.

To ilhistrate this, we look again at the complex in Figure 6. The bottom left and 

top right corners of the square are taken to have the coordinates (ai,a2) and {bi, 62). 

We must introduce the generalised coordinates as tools to interpolation.

^
^  ^ O i — a i  ^  ^  0 2 - 0 2

These coordinates are only valid within cells on whose boundary can be found 

the simplices between which we are to interpolate. Outside of that cell they are zero. 

For the zero-siniplices above, we have

H’[^] =  W[B] = //2( l - / ^ i )

i r [ c ]  =  ( i - / / i ) ( i - / i 2 )  vr[D] =  Mi( i - /^i2)

Applying W  to the cochain $  = 0 ([/l])[.4] +  ^{[B])[B] + 0 ([C])[(7] ^{[D])[D]

gives 0([A])/fi/t2 +  0([5])/f2(l - / f i )  +  0([C])(l -/i2 ) +  0([D ])/ii(l-//2 ) which

is a function that interpolates between the four corners.

The one-simplices are a little tr ickier. On [AB], we have two coordinates, one 

relative to [.4] denoted //i and one relative to [B], denoted (1 — //-i). If we rewrite 

the former as Ui and the latter as ^2- tiie Whitney map of [.4 5 ] is I-L2{i \̂dv2 — V'2di'i)- 

This reduces to —/<2(i/ii. The four one-siniplices are mapped to

\V[AB] = -^ t 2dm W[BC] = - { l - n r ) d ^ 2

\V[DC] = - ( 1 -//2)f///i W[AD\ = -piid^i2

The two-simplex [ABCD] is mapped to rf/ii Ac//i2. This set of forms and coordinates 

are collectively known as the Whitney elements.

In cases where we are dealing with the unit square, they become very simple.

= 1 ~  Xi, 1.12 = I — X2, d̂ Li =  —dx\ and d/.t2 =  —dx2. Because we will be using 

these objects a great deal, to keep the notation simple and intuitive, we will always 

assume that the simplex in question has been mapped to a unit square.

In discretizing a continuous space, much information is lost about its structure, 

so it is unsurprising that W R  7̂  /. However, when we start with a discretized space 

it is reassuring to see that R W  = I .
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5.1 .2  T he E xterior D erivative

In this framework, the discrete exterior derivative can be obtained by interpreting 

the behaviour of the continuous derivative operator on the Whitney elements. We 

denote the geometrically discretized derivative as D with D R = Rd. In the simple

5.1 .3  T he D iscrete  W edge

The wedge product of two discrete forms is similarly defined by the behaviour of the 

continuous wedge on the Whitney elements. We use the Whitney map to map each 

simplex to the continuum, a]:)ply the continuum wedge and then map back to the 

complex with the de Rham map.

5.1.4 T he H odge Star and th e D ual C om plex

In equation (6), we saw that the contiiuuun Hodge star is defined to be a local operator 

that uniquely maps a form to its complement. On the lattice this is harder to define. 

Referring once again to Figure (6), if we want to map [AB] to its complement, the 

only simplices available of the proper dimension are [BC] and so we must

define the Hodge star to map to either or both. However, when we apply the same 

definition a second time, the result will not be proportional to / ,  because it nnist 

include [CD]. This makes the definition of * non-local.

David Adams proposed a solution to this difficulty [5] [6] by introducing a second 

lattice in the same physical space as the first, but distinct from it. The dual complex 

has the same dimension as the original, but is off-set as shown in Figure 7.

Simplices from the original and dual complexes are related by their midpoints. 

In 2D, a zero simplex from one complex is mapped to the 2-simplex from the other 

whose centre coincides with the original zero-simplex. A one-simplex in the X\ di­

rection is mapped to the one-simplex in the X2 direction that intersects it. The 

2-simplex is mapped to the point at its centre. When the correct sign factors are

example of a single one-simplex [AB\, the coordinates are { \ — x)^{[A\) + x(f){[B]) and 

applying d gives ^{[B])dx — ^{[A])dx. R  maps this back to (^{[B]) — 0([yl])') [AB].
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Figure 7: The original complex (solid lines) and the dual (dashed) superim posed.

included, this gives a 1-to-l mapping th a t enjoys the continuum locality property: 

** =  — j^ where n  is the dimension of the space and h the degree of the

simplex.

5.1.5 T he A djoint D erivative and Contraction O perator

W ith the  Hodge S tar in place, we can define an adjoint derivative: d =  —( —1)"-̂ +'̂ ‘ >(= 

D*, where D  is the discrete exterior derivative of section (5.1.2), acting in the space 

of the dual complex.

The contraction operato r also follows neiatly. e^ j =  *Bdx^  A VF*, where IV' and 

/? are the  W hitney and  De Rham  transforms.

5.1.6 T he Inner P ro d u ct an(i the Barycentric Subdivided Lattice

In his thesis, Sarnik Sen, detailed this extensively [9]. We shall briefly summarize his 

idea.

To define a p roduct between tw'o discrete cochains we s ta rt from the contimium 

definition, equation (7). Straight away, we see th a t there is an  obstacle for GD. 

The definition wedges two cochains, one of which will have been m apped to the dual 

complex. This is not possible using the definition for the discrete wedge th a t we gave 

earlier, so we m ust construct a new definition for use in the inner product.

We introduce a new lattice, the Barycentric Subdivided Lattice th a t is defined 

by the  union of bo th  the original lattice and the dual, but w ith an ex tra  feature. 

Vertices are in troduced a t the  centre of each simplex (the barycentres) and the set of

35



A B C D E

F G H I J

K L M N 0

P Q R S T

U V W X Y

Figure 8: The Baryceiitric lattice.

siinplices on the new lattice is defined from the union of the vertices of the original 

lattice, the  dual lattice and the barycentres. The set of 25 vertices, corresponding to 

Figure 7, is shown in Figure 8.

On this lattice we use a special W hitney transform , , th a t provides interpola­

tion between the new set of vertices. These W hitney elements have a sm aller range 

ot support th an  those on the original and dual lattices alone.

We now define the inner product of < F , G  > as follows.

< a , r ] > =  f  W ^ { D a )  A W ^ { B  ^7])
J m

where B a  is the Barycentric representation of a  and is the  W hitney  m ap to the 

barycentric subdivided lattice.

5.1 .7  Flavour P rojection  O perators

In the D irac basis, the  Dirac spinor is a 2 x 2 m atrix , whose columns represent 

degenerate spinors. In the  continuum, the columns can be isolated using projection 

operators, because the Clifford product is associative: dx^  V V =  

[dx^ V 9^$) V =  0, where b labels the colum n of t/>. This idea transfers to GD, 

but the correspondence is not simple. In his thesis, Vivien de Beauce showed th a t 

the flavours could be isolated both  in the case of cubic complexess and, w ith more 

difficulty, in triangu lar complexes [8].

In the D irac basis, we use the operators to  isolate the columns of iJj through
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right application: =  '0 ' V In 4D, the are defined as

=  i ( l  +  Z f t 6 7 i 7 2 ) ( l  +  /:^67i 727374 )

where

( 18)

b «6 l̂ b

1 -1 -1

2 +1 -1

3 -1 +1

4 +1 +1

In section 4 .2, we show^ed how the Dirac chiral projection operators, Pr/l ,  were 

related to their Dirac-Kahler coiuiterparts. We can use the same logic and the identity 

Z  V dx°‘ =  Z 7J to obtain

=  1(1 +  iabdx^ V fi.r^)(l +  fJbdx̂  V dx^ V dx^ V dx^)
4

In 2D, the equivalent ojperators are = j ( l  + abioia2 ) = | (1  +  abidx'^ V dx^), 

where
— 1 for 6 = 1

« f ,  ■

+1 for 6 =  2
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6 Principal R esearch

This chapter comprises three sections and each sec;tioii represents an independent set 

of observations on or developments of the geometric discretization. In the first, 6.1, we 

discuss the geometric discretization as it has so far been laid out, which is consistent 

with how it has been described in [8][9][58][63]. In the first subsection, 6.1.1, we look 

at how it addresses the issues of fermion doubling, comparing this to the staggered 

fermion fornmlation. In subsection 6.1.2, we compare from the contimuun, to

its discrete counterpart. In the latter case, we find tha t the correspondence between 

d r ' '  V <I>(x) and from the continuum in two space-time dimensions is made

approximate by the spatial discretization. Whilst this has implications for the discrete 

diflerential geometry, it does not affect the correspondence between the Dirac-Kahler 

operator and the staggered Dirac operator. It does, however, have implications for 

the naive discrete dehnition of chiral symmetry which is proportional to the discrete 

counterpart of {dx^ A dx^)\/ and this is discussed in subsection 6.1.3.

In the second section 6.2, we see how we can use the dual complex to implement 

an exact chiral symmetry. Subsections 6.2.1 6.2.3 are dedicated to this result. We

also see how we can use the dual to implement flavour symmetry. This naturally 

raises the question of how we can sinniltaneously implement both symmetries. We 

see in subsection 6.2.4 tha t to achieve this we must introduce two more complexes, 

one analogous to the original complex and one analogous to the dual and th a t we 

nnist carefully define our operators to map between the four complexes.

We extend this idea to four dimensional space-time in subsection 6.2.5, introduc­

ing a new operator and new complexes to facilitate flavour symmetry. To simultane­

ously maintain the chiral and flavour symmetry requires eight complexes in total, in 

analogy to the four complexes required in two space-time dimensions.

In the third section, 6.3, we return to the established formulation of geometric 

discretization [8][9][58][63] and develop an Abelian field theory for it, introducing the 

elements necessary to perform a discrete field theory calculation (subsections 6.3.1 

6.3.4). In subsections 6.3.5 -  6.3.7, we consider topological gauge configurations, 

highlighting some of the differences between their treatm ent within the geometric
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discretization and  standard  liattice QED.

6.1 O bservations om Geometric D iscretization

Before we proceed to develojp the Geometric Discretization, we shall first highlight 

some of its interesting featunes.

6.1.1 Ferm ion Degeneratcy

As we saw in section 3.2, fernnion doubling arises in the lattice Dirac equation, the 

G reen’s function for which prrovides the propagator for the lattice fermion field. It is 

interesting to  see exactly llo^w the; geometric discretization removes the doublers in 

m om entum  space and how tliiis coni])ares with the staggered ferniion formulation.

We m entioned in section 3.3.2. that the staggered fermion form ulation removes 

the degeneracy by reducing t he extent of the Brillouin zone, whilst m aintaining the 

continuum  limit of the Dirac (operator. By halving the zone, it excludes the regions in 

which the doubling solutions (exist. This approach has its own degeneracy because, in 

two space-tim e dimensions, (v\vo sphior lields simultaneously and independently share 

the same lattice.

In the geom etric discretiz^ation. two si)inors also share the same sjmce, bu t the 

mechanism is subtly  diflerent . To see this, we nuist analyse the form ulation in nio- 

m entiun space. Each c:ompoiueiit of the differential held represents a separate degree 

of freedom, so, in the  continuiuni, we must transform  each field to  m om entum  space 

separately.

W hen we apply the De Rlham map, we integrate this over a  hnite region. The 

discrete fields are

where {dH)  denotes the boun(dary of H.  The factor of is the  the unique feature 

here th a t removes the  doublerfs from the discrete Dirac-Kahler operator. The discrete 

adjoint held is similarly defined from the continuum.
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In the context of the action, there are two types of term to consider. The first is 

where S reduces the degree of a form, before its inner product is taken with a simplex 

from the adjoint field of the same, lower dimension. The second is where D increases 

the dimension of the simplex before the inner product is taken with the adjoint field.

Figure 9: Two squares from the GD complex.

To provide a specific example of each, we use the square in Figure 9. In the first 

case, one of the terms to contribute to the action is

< i m m .  - d  [^{[BC])[BC] +  4>{[AD])[AB]) >

Replacing 4>{[BC]) and ^{[AB]) with their momentum space counterparts, we 

have

< H[B])[B],-S —  /  ( f p M p ) -  ^y2TT j  ipi

1 f  .  ( e m W ] i  — pjpiMJi ' l  \
+ — /  ^ I  >

27t J tpi j

~  ̂ f  .  (p ip i[C] i  I pipi[A]i  _  ‘̂  i p i [ B] i )
=<i{[B])[B],—  /  dl^p^i{p)^ -^ >

ZTT J ipitt

In this expression [A]i denotes the coordinate in the direction of the point [A]. If

the distance B C is a, this can be rewritten as

< 5(|B |) |B |, ^  J > (19)

which is a definition that is free of doublers.

When we look at the second type of term in the action, we have

< k lAB]) ,  D (« [i? |) |B l + 0(|/1 |) |^ |)  > (20)
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In this case, we must write both the ferinion field and the adjoint field in momentum 

space.

which, reassuringly, gives us the same exj)ression as equation (19) for the niomeiituin 

space Dirac-Kahler operator.

From these derivations, we can see that the Dirac-Kahler operator explores half 

of the Brillouin zone, just as in the staggered fermion case. However, the momentum 

space representation of the operator does look difl’erent. In the staggered fermion 

formulation, the Dirac operator is proportional to z s in ( ^ )  [19]. In our case, it is
s i n 2 ( ^ )proportional to i— —, which has the same continuum limit.

6.1.2 The Correspondence Between V $  and cr̂ 'I'

The crux of the relationship between the Dirac basis and the Dirac-Kahler basis is 

provided by the matrix Z, which was described in section 4.2. In continuous two 

dimensional space-time, it has the properties dx^ \J Z — Z  and Z  V dx^ =  Z a ^ . 

This leads to the correspondence

H[AB])\AB]

Expanding this around the mid point of [AB], we have

When we calculate the right hand part of equation (20), we have

Doing the same expansion, this becomes

The product of the momentum s[>ace factors is

4zsin2(£^)

pia

dx^ V $(x) ( 21 )
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On the complex this relationship does not hold exactly, which has consequences 

for the naive definition of both chiral and flavour symmetry.

We can see that it exists approximately if we look at how a typical field is con­

structed within the geometric discretization. In two space-time dimensions, the con­

tinuous Dirac-Kahler field is

Tr [ipix)] -I- Tr [ai'4){x)\ dx^ +  Tr [a2 'ijj{x)] dx^ +  Tr [a2 ai'ijj{x)] dx^ A dx^

If we limit our complex to the following square,

Figure 10: A sciuare from the complex.

then our discrete fields are defined as

0([A]) =  Tr 

0([C]) =  Tr [̂ jj{x)] 

i{[AB\) =  /[^^]Tr [oixl}{x)]dx  ̂

^{[AD]) =  /[^^]Tr [G2iix)]dj:^

x= A

x= C

x = B

x = D

^{[B]) = Tr [ip(x)]

0([D]) =  Tr [V̂ (,r)] 

k[DC]) = Tr [a^^{x)] dx^ 

k[BC]) = /[^^j Tr [â 'ipix]] dx^

^{[ABCD]) = [a2ai-ip{x)] dx^ /\dx^

and <I> is the sum of these terms after each is multiplied by the appropriate simplex. 

When we apply dx^y  to and subsequently apply /?, we would like to see

something representing the correspondence in equation (21). However, instead we 

obtain an approximation to it.

By applying dx^A to the Whitney map of ^{[AD])[AD] -f- ^{[BC])[BC] and then 

applying i?, we have  ̂ (^{[AD]) + ^{[BC])^ [ABCD], We write this explicitly as

l[AB]
Tr [a2 'il>{x)]dx‘̂

J[BC]
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If the correspondence existed on the complex as it does in the continuum, we would 

instead expect to see

Alas this term is not defined in the discretization, so we nuist make do with the 

approximation to it represented by equation (22). The only case in which equations 

(22) and (23) agree is when the field ip{x) is linear in xi.  We can generalize this 

statem ent to say th a t the correspondence in equation (21) only holds for linear fields.

This does not affect the relationshij) between the Dirac-Kahler operator and the 

staggered Dirac operator. In this case, the combination of R, dx^/\ and Vt' map both 

(f){[AD]) and 4>{[BC]) on to [ABCD], but Oi introduces the correct sign between 

them giving a derivative of the correct form and tha t is consistent with what we 

would expect from the staggered fermion description.

6.1.3 Chiral Sym m etry

In section 4.2, we saw that, in the continuum, as^l!{x) corresponded to —i ^ B A ^ [ x )  =  

—idx^\Jdx^\/^{x).  For the reasons ex])lained in section 6.1.2, the discrete counterpart 

of —idx^ V dx^\J acting on $  only exactly represents ip{x) Uj;il){x) when the i){x) 

fields are linear.

In GD, * maps between the original and dual complexes and in the next section, we 

shall see how we can take advantage of the correspondence between a^ii){x) and —i * 

from the continuum and the definition of * on the complex to construct chiral 

and flavour projection operators that isolate different chiral or flavour components 

on each complex.

Our goal is to isolate select components of the fields on each complex. We want to 

construct projection operators that project different flavours or chiralities of ferniion 

on to each of the original and dual complexes. We shall see th a t this requires us to 

construct a field to place on the dual tha t adequately cancels with the helds on the 

original when we apply the projection operators.

(/,[ABCD]
Tr [a2'4’ix)] dx^ A d x ^  [ABCD] (23)

6.2 T he Role o f the Dual Com plex
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6.2.1 The Projection Operators

To construct the projection operators, we resolve the Hodge s ta r into two separate 

operators, ju s t as de Beauce and Sen did [64]: one th a t acts on the original complex 

and maps to  the dual (*o) and one th a t maps the o ther way (*d )-

* =  * o  +  *D

Both *o  and *£> are defined so as to  be consistent w ith section 5.1.4. All th a t differs 

are their dom ain and range. T he square of this definition is * *  =  * o  * d  +  * d  * o , 

which respects all the desirable properties of the theory.

We w ant to  build our chiral projection operators so th a t they project a  field of 

one chirality on to  one complex and  a field of the o ther chirality on to  the  other 

complex.

We define our chiral projection operato r to  be

r ’R / L  ^  2 ^  ^  ^

Aj)plication of P r leaves the right handed com ponents of $  on the original complex 

and the left handed com ponents of $  on the dual complex.

Ju st as there is a relationship between a 3 'ip{x) and  —i * there is also a

relationship between 'il>{x)as and  —i * as we saw in section 4.2. We can use 

this to  construct flavour projection operators th a t leave one flavour of field on one 

coni{)lex and  the o ther flavour on the  o ther complex.

We define our flavour projection operators to  be

A pplication of P^^  ̂ leaves the first flavour of field on the original complex and the 

second flavour of field on the dual.

6.2.2 The Field on the Dual Com plex

Unfortunately, it is not enough to  ju s t place norm al geom etrically discretized fermion 

fields on the  dual complex, if we want the  com ponents to cancel correctly when we
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apply these projection operators. Although the fields will have the right structure 

in terms of the trace of the o matrices and ip, the domains of integration will be 

different.

simplex but whose domain of integration is the simplex [..]o from the original 

complex. This enables us to write the field for the dual as

where [CH] denotes the simplex of complementary dimension, but same barycentre

The changes to the domain are implemented so as to afi'ect only the initial dis­

cretization of the fields. They do not apply to the De Rham used in the definition of 

the discrete operators. As such, they allow the proper cancellation without changing 

the algebra of the geometric discretization.

6.2.3 Com m utation Relations

In the Dirac basis, the requirement for chiral symmetry is {as, =  0. The equivalent 

statem ent in the Dirac-Kahler basis is { —i * l3A,d  — 5} =  0 and it follows th a t this

is true for the geometric discretization: { —?’ * BA, D ~ 6} = 0.

Flavour synmietry follows from the associativity of matrix nuiltiplication, in the 

Dirac basis: {0'ii^{x))a3 =  0{rp{x)as). As we saw in 4.2, ip{x)a^ —i*  B^{x) ,  so the 

equivalent statem ent in the Dirac-Kahler basis is [—i ^ B,d  — S\ = It follows that

this is also true for the geometric discretization: [—z * B ,D  — S] = 0.

6.2.4 Sim ultaneously Isolating Chiral and Flavour Components

Before we proceed, it will be best for us to briefiy review what we have achieved so 

far in the context of staggered fermions.

Instead, for the dual complex, we use 0([..]£i, [..]o) to denote a field associated 

with the simplex [..]d and whose value in terms of the a, and tp is associated with the

as the simplex [H]. We can write down the term <p{[..]p, [..]o) explicitly as

Tr dx^^
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Essentially, we have used two staggered ferniion form ulations w ith one on the 

original complex and one on the dual. The discrete differential geom etry has ensured 

th a t the  incarnation on the dual is similar to  th a t on the original, except th a t it is 

already m ultiplied by (7 3 . The P r / l operator leaves ^(1 +  <7 3 )'^ on one complex and 

^(1 — (Ts)il> on the other. T he operator leaves + a^) on one complex and 

■0 1 ( 1  +  0 -3 ) on the other.

This gives us a way to isolate the flavours or chiral com ponents of the spinors, 

bu t we cannot isolate bo th  simultaneously. For example, we can use P r / l s o  th a t one 

complex will have the upper com ponents from the  spinors and the  o ther will have 

the lower com ponents. However, this makes the system unsuitable for separating 

the flavour com ponents. If w'e apply now, we will reintroduce negative chiral 

com ponents on to  the complex containing ju s t the positive com ponents and vice 

versa.

To project out the chiral and flavour com ponents simultaneously, we m ust intro­

duce another pair of complexes: another original complex and another dual. If we 

denote the first set of original and dual as A  and the additional set as B, then  we 

can modify the flavour projection operators, P̂ ^̂  so th a t they m ap between original 

and dual complexes from different sets, whilst Pr/ i  map between complexes in the 

same set. This is illustrated  in Figure 11.

W ith  these operators, we aj)ply P r  to  the  A  set, so th a t it leaves the right com po­

nents of 'ip on the original of A  and the  left com ponents on the dual of A. We apj)ly 

Pl  to the  D set, so th a t it leaves the left com ponents of on the original complex 

of B  and th e  right com ponents on the dual of B.

Next we apply P'^^\ Using we combine the right com ponents of -ip on the 

original of A  and the right com ponents of 'ip on the  dual of B  to  leave the  right 

com ponents of flavour 1 on the original of A  and the  right com ponents of flavour 

2 on the dual of B. We use to  combine the left com ponents of 'ip on the  dual 

complex of A  and the left com ponents on the  original complex of B  to  leave the  left 

com ponents of flavour 1 on the  dual complex of A and the left com ponents of flavour 

2 on th e  original complex of B.
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F igure  11; How we isolate the t(.)ur chiral and flavour com ponents.

We now have four indepeiuk 'n t uon-de;generate, chiral fields, each of which respect 

th e  D irac-K ahler algebra.

A fter th is  p ro jec tion , th e  con tribu tions from all four complexes m ust be included 

in th e  ac tion

6.2.5 In Four D im ensions

I t is in te resting  to  ex tend  these  ideas to  foi u' dimensions because the  flavour sym m etry  

becom es m ore involved.

T he  s tru c tu re  of th e  ch iral i)rojection. opera to r rem ains the  sam e, a lth o u g h  th e  

deta ils  differ. In stead  of th e  relationship a^'ip o  - i  * B A ^ ,  we have <=> — * B A ^  

and  th e  chiral p ro jec tio n  o p era to rs  becom e

P hil  =  ^  (1 T
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For th e  right m uhiplicatioii of 75 to  -0 we have However, in four

dimensions, there are four cohunns of xp which m eans th a t we have four flavours to 

separate. Consequently, in order to  separate th e  four flavours, we need a second 

[)rojection operator and we can see this in equation (18) where the flavour projection 

operato r comprises two projections: ^(1 +  ^67172) and | ( 1  + /ib7i727,374)- The 

second projection th a t we need corresponds to  th e  factor of | ( 1  +?Q!67i72)-

It is apparent from th e  preceding sections th a t when we apply a s { =  — i a i a 2 )  to 'ip 

in two space-tim e dimensions, the corresponding action in differential geom etry is to 

m ap each form to  its com plem ent in bo th  the 1 and  2 dimensions. In four space-tim e 

dimensions, when we apply 71727374 to  i p ,  the  corresponding action in differential 

geom etry is to m ap each form to  its com plement in all four space-tim e dimensions. 

In the  same way, we transla te  the  application of 7172 to  i p  in term s of differential 

geom etry by identifying it with m apping a form to  its com plem ent in the 1 and  2 

directions, bu t not in the  3 and 4 directions. As in the case of the  Hodge star, to  

caj)ture this property  discretely, we m ust introduce another complex, ensuring th a t 

file ma{) to  and from this ex tra  com[jlex is local and  th a t its square is proportional 

to the  identity.

We cannot draw a  4D {)icture of how this ex tra  complex relates to  the  original 

and the  dual, bu t we can draw its analogue in two dimensions. In Figure 12, we have 

the original 2D complex, draw n w ith a black continuous line. T he dual com plex is 

draw n w ith a black dashed line. A complex th a t is com plem entary to  the  original 

in the 1 direction, bu t not the 2 , is shown in red. Its 1-directioii lines lie on top  

of the  original complex and  its 2-direction lines lie on top of th e  dual complex. We 

have shown the lines of th is complex slightly offset in order to  make them  easier to 

distinguish.

To pu t this on a m athem atical footing, we define th e  operato r ^  th a t m aps a 

differential form to  its com plement in th e  1 and 2 dimensions, leaving the 3 and  4 

dimensions untouched.

Here C  is the  com plem ent in the {1, 2} dim ensions. We can show (see A ppendix B)
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Figure 12: The 2D complex. Blac:k continuous lines denote the original complex, black 

dashed lines denote the dual and red lines denote the complex that is complementary 

to the original in the 1 direction, but not in the 2 direction.

that

where B\2 is defined to be consistent with the previous dehnition, but is limited to 

the {1,2} subspace:-

where hi2 is the number of components of H  in the subspace {1, 2}.

Alas, this is not the complete picture. The extra complex tha t we have introduced

so tha t each goes on a unique complex. Figure 13 shows the analogues of all four 

complexes in two dimensions. The fourth complex can be interpreted either as the 

dual to the extra complex or as the complement in the 1 dimension of the dual 

complex. Which way we describe it is only a m atter of the order in which we apply 

the * and 4  operators, starting from the original complex.

To separate the flavour components we take a similar approach to the previous 

2D case.

In Appendix B, we see tha t ^75 so we write the factor from

the flavour projection operator involving 71727374 as ^(1 + /3b * B). We also see in

also has a dual. These four comj)lexes enable us to separate all four flavours of field



Figure 13: The 2D complex. In addition to  the lines in Figure 12, we have included 

the dual to  the ex tra  complex in dashed red lines.

A ppendix B the correspondence between right m ultiplication of ip by 7172  and 4 ^ 12^- 

We w rite the  o ther factor in the  flavour projection operator as |( 1  +  iab^^Bu)

As in the 2D case, we separate  th e  Hodge s ta r into maps between the complexes: 

* =  *od +  *do +  *et +  *te- In addition to  labelling the original and dual complexes by 

o and d, we introduce labels here for the o ther two complexes, e denotes the extra 

coni[)lex related to  the  original by {1,2} com plem entarity. We shall christen this 

comj)lex, th e  12c complex, t denotes the  final complex: the dual of the 12c complex 

(or the 12 com plement of the  dual, depending on how you choose to  look a t it). We 

shall nam e th is complex the  12cd (12-coniplem ent’s dual) and the reason for labelling 

t becomes apparent when we look a t Figure 13. W ith  the 12c and 12cd complexes, 

the com plete p a tte rn  looks like ta rtan .

*od maps from the  original complex to  the dual and * ^ 0  maps the o ther way. *et 

maps from th e  12c complex to  the 12cd complex and *te maps the  o ther way. If we 

take th e  square of *, we have — *0  ̂ * ^ 0  +  *do *od +  *et *te +  *te *et- All o ther term s 

are zero because of the lack of continuity between their range and domain.

We rew rite the factor containing 7 1 7 2 7 3 7 4 , from the flavour projection operator,

as

^ B -  l 3 b * o d B  +  *et B -  I3b *te B )
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For the o ther projection, we follow the same logic. We write 4  as A =  4 ^o e  +  

^ e o  ^ d t  ^ t d '  The SC[ll<ire ot this is +  4  eo^ o e  ”1“  ^ d t ^ t d  “ t“  ^ t d ^ d t -

As ill the previous case, all o ther term s go to  zero because of their lack of continuity 

between the dom ain and range.

Here, ^ o e  m aps from the original complex to the 12c complex and 4k eo  niaps the 

other way. ^ d t  niaps from the dual complex to the 12cd complex and ^ t d  niaps the 

o ther way.

We construct the  projection operator as

^ab  ~  2 ^  ^'0'b^oe^l2  +  ^O ib^td^n ~  io tb ^d t^u )

To resolve th e  flavour com ponents on each complex under the application of the 

com plete projection operator, we must first decide w hat fields to put on the dual, 

12c and 12cd complexes. As in two space-time dimensions, the consideration is the 

dom ain of integration. The fields on all four complexes nuist be discretized using the 

same domains of integration so th a t, after projection, the correct cancellation occurs.

We shall choose the  domains to be consistent with the simplices of the original 

complex, although the  choice is arbitrary. Naturally, the fields th a t go on the original 

complex are the norm al fields th a t are discretized in accordance w ith section 5.1.1. 

On the dual, we put the fields

[H\,
H

where each field is associated w ith the simplex but is initially integrated over the 

region [ C H ] ^  from the original complex. In this instance C  denotes com plem entarity 

in all 4 dimensions. On the  12c complex, we put

12c
H

Finally, on the  12cd complex, we put

Y.'^mvicdACMH]o)[H]u,a
H

111 each instance of 0([A], [5]), [^] indicates the simplex associated w ith the held: the 

simplex th a t defines the  held structu re  in term s of a  and ij> and is used to  im plement

51



the Dirac-Kahler algebra. The second simplex, [B], indicates the initial domain 

of integration. For the formulation th a t we have discussed here, the regions always 

correspond to simplices from the original complex. The operations C12 and C3 4  denote 

complementarity in just the {1,2} and {3,4} subspaces, respectively.

The projection operations commute with the discrete Dirac-Kahler equation, 

which means th a t the Dirac-Kahler algebra does not mix these flavours (see Ap­

pendix B.3).

As in the 2D case, we cannot simultaneously isolate the chiral and flavour com­

ponents of the fields using just one set of complexes, so we must introduce a second 

set.

In the 2D case, we chose to separate the chiral components within the same set 

and then isolate the flavours by projecting between the sets. However, this was 

an arbitrary  choice. We could equally as well have chosen to separate the flavours 

within the sets and isolate the chiral components by projecting between the sets. 

In 4D, it makes much more sense to use the latter arrangement. This will give us 

two sets of complexes, A  and B,  each containing the four complexes; original, dual, 

12-complement and 12-complement-dual. In to tal we now have eight complexes.

Firstly, wc will look at how the flavours separate within each set. To this end, we 

write the flavour projection operator as

On set A,  we apply The first projection is find this puts cohunns 1 and 

3 of il) on the original complex and colunms 2 and 4 of ip on the 12c complex. It also 

puts columns 1 and 3 of xp on the dual complex and columns 2 and 4 on the 12cd 

complex.

The second projection is P/3, and this takes colunms 1 and 3 from both the original 

and dual complexes and leaves just column 1 on the original complex and just column 

3 on the dual. It also takes columns 2 and 4 from the 12c and 12cd complexes and 

leaves column 4 on the 12c complex and column 2 on the 12cd complex. Figure 14 

illustrates how and act within the set.

On set B,  we apply The first projection, P^^, leaves columns 1 and 3 of xp 

on the original and dual complexes and leaves columns 2 and 4 on the 12c and 12cd
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Figure 14: The complexes of 4D. and denote the parts of the flavour projection 

operator.

complexes. The second projection. leaves column 3 on the original complex and 

column 1 on the dual, as well as l('a\'ing column 2 on the 12c com{)lex and column 4 

on the 12cd complex.

We project between the sets to separate the chiral components and this is illus­

trated  in Figure 15. We define the Hodge star so that it maps between the following 

pairs of complexes: (original of A, dual of B), (12c of A, 12cd of B), (12cd of A, 12c 

of B) and (dual of A, original of B). Pr/^ takes the form

= Hi ± ± =F .re.4
± BA T ±  T * i‘’BA)

and by applying Pn, we leave the positive chiral components of colunm 1 of ijj on 

the original complex of set A  and the negative chiral coni{jouents of column 1 on 

the dual of set B. It also leaves the positive chiral components of column 3 on the 

dual of A  and the negative chiral components on the original of B. It leaves the 

positive chiral components of column 2 on the 12cd complex of A and the negative 

chiral components on the 12c complex of set B. It also leaves the [)ositive chiral
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Figure 15: The two sets of complex in 4D. P r/l combines complexes from different 

sets to isolate the chiral components of each flavour.

components of column 4 on the 12c complex of A  and the negative components on 

the 12cd complex of B.

6,3 A belian Field Theory

In this description we now have several complexes. However, the formulation of the 

gauge theory is the same on each complex, so it only needs to be described once. 

The same formulation will generalise to higher dimensions and to more comj)lexes 

in a very straight forward manner. In this section, we shall describe the gauge field 

iorinulation for the established geometric discretization, described in section 5.

In section 4.2, we saw that the continuum construction of the covariant Dirac- 

Kahler equation is (d — S)^(x) = iA(x) V $(x), where A(x)  is a one-form. This is our 

starting point for constructing an Abelian field theory for the geometric discretization.

We discretize the fields by using the De Rham map. The A{x),  being one-forms, 

are discretized only over the one-simplices. Their discrete counterparts are denoted

Interestingly, even at this early stage, the dual coni[)lex starts to nuike its presence
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felt. The detinition of the adjoint derivative is proportional to *D*. in which D is 

the derivative operating on the dual complex. As a result, the Dirac-Kahler operator 

ditferentiates on both complexes. Hence, in order for it to be covariant, there must 

be a gauge field contribution to the Dirac-Kahler equation from both complexes. To 

achieve this we replace, A \ /  with Ag /\ + * Ad /\ *■ We use the suffixes o and d to 

indicate whether the fields are on the original or dual complexes, respectively.

6.3.1 T he G auge Transform ation

In the continuum, an Abelian gauge transform is a zero-form. To discretize this, 

we sample the continuous function at the vertices of the complex. If G denotes the 

contiiuious gauge transform: the discretized version is G =  where

the 0{[Z]) are the fields 0{x) sampled at the zero-simplices [Z].

We dehne the Abelian gauge transformation to be

■ i r

If we use the reference square in Figure 6, we can illustrate this transform with 

the follow'ing examples.

H[A])[A] e^^^^^H{[A])[A]

^{[AD])[AB] ^  ^  ^{{AB])[AB\

^{[ABCD])[ABCD] ^  ^ / e m )  _ / e m ) ^  ^{[ABCD])[ABCD]

We infer tha t the conjugate field nuist transform as follows, in order to keep the 

bilinear, < $ , ! > > ,  invariant,

^{[AB])[AB] ^  ^{[AB]) 

^{[ABCD])[ABCD]

1 +  piom) " [AB]

^{[ABCD])  i   ̂ [ABCD]
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Now that we know how the fields transform, we can look at how the gauge fields 

must transform, in order for the action to remain invariant. The Dirac-Kahler equa­

tion with transformed spinor fields looks like

( D - S ) R V\ ' I e =  ze ( io  A +  * i d  A i? ] (24)

To analyse this, we break it into tw'o parts. The first contains the D and Ao terms 

and concerns the original complex. The second contains the S and Ad terms and 

concerns the dual.

For the first, we have

{D)R IF ieAn A R W' $

D obeys Leibnitz’s rule, which means that we can write

{D)R

We imist introduce a transformation rule for the field Ao/\ so that it cancels with 

the first term on the right hand side. At this stage it is fairly arbitrary how w'e 

distribute the transform about a transforming wedge and a transforming held. One 

way would l)e to dehne the wedge to transform as [H] A [A'] [H]G([H U M]) A

[G{M)]~^[M] and the Ao to transform as Ag ^  Ao — ^ \ G { [ . ] ) ] ~ ^ R [ d W where 

in the wedge expression the G[([..])] are the gauge transforms on the simplex [H] 

(dehned as G{[H]) = R  W{e^^)W{[H]) ) and in the Ao expression, the G([..]) is 

the gauge transform on the simplex to which Ao is wedged. However, a simpler 

description would be to eliminate the transformation for A and instead use

Ar, -  - R dW(e^^) [G( [ . . ] ) ] -

where G([..]) is the gauge transform on the simplex to which Ao is being applied. In 

either case, A„ is forced to become an operator because its transformations depends 

on context. Ultimately, it will not matter which dehnition we choose because they will 

amount to the same computational algorithms. However, the former would require 

A to be a context dependent operator, so the latter is preferred.
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The second part of equation (24) f:?ives

- S R  H H ' (<!>) (25)

In this case, d' =  — =t= D*,  so we nuist apply the Hodge star before we can address 

the covariance. In order for Leibnitz's rule to hold on the dual complex, the gauge 

transformation term iiuist be dehned on the same complex as the Dirac-Kahler fields. 

This means tha t the Hodge star nuist transform in a way tha t replaces the gauge 

transformation on the original complex with tha t on the dual. This makes the Hodge 

star transformation context de{)endent. For the case where * maps between the 

simplices [H] and [M] as *[A/] =  ±[A'], we must have the following transformation

where G{[H]) and G{[M]) are the gauge transforms on the siniplices [H] and [A/], 

respectively.

We can use this to simplify equation (25) to

and we can use Leibnitz’s rule on this expression to obtain a similar transformation 

law as for the original complex

The last operator tha t we nuist consider is the 12 complement operator, intro­

duced in the last chapter as Although this is a similar operator to the Hodge star 

and will have similar transformation properties, the reasons for defining the trans­

formation are slightly different. In this case, we w'ant to transform so th a t the 

projection operators Pag maintain gauge invariance. The transformation law that 

we have defined above for * guarantees that this is the case for the projection 

operator.

The transformation law we require is

*dR  11' IV =  ie * A,i A H 1 r

A , ^ A d - - ^ R [ d W { e ^ h ]  [G'([..])]"'

If ^[H] = p H M A { C H n ) H , , ]  : 4  Gi[{CH,,)Hu])^l^ [G ([i/])]-'
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where G{[H]) is the gauge transform factor on the simplex that ^  is applied to and 

G{[{CH 12)^34]) is the simplex to which [H] is mapped.

This completes the transformations necessary for our discrete Dirac-Kahler to be 

covariant. For later convenience, we summarize the transformation rules here

0  i? W  W  (^0)

For * [M] = ±[K] : * ^  G{[H]) * [G([Af])]“ ^

For =  ±[{CH,2)Hu ] : 4  -  G{[{CHn)H,4])4^ [G([//])]"'

A o - ^ - n

A, e

dW(e^^)

dW{e^^)

6.3 .2  T he G auge A ction

In the continuum, the differential geometry description of the gauge action is — |  < 

(lA.dA >, where dA corresponds to The factor of  ̂ replaces the conventional |  

because the sums over indices are ordered and the antisymmetry of the difl'erential 

forms accounts for the antisymmetry of the indices /i and u. Within our geomet­

ric fliscretization, the gauge action has the corresponding definition: Sq ~  <

DAo, DAo >  - 5  < DAa, DAd >.

This expression is invariant under the gauge transformations (26). In the dehni- 

tion Sg , the A  are not wedged to other simplices, outside the mechanism of the inner 

product. Consequently, the factors of [G'([..])]"’ are ecjual to the identity. This leaves 

us with only the part of the gauge transform that involves the derivative of the field 

to consider. In this case, we can rewrite the last two lines of equation (26) as

A^ A„ -D JO

A, A . - - D

The terms DAg and DA^  then transform as DAg DAg — ~D^ and DAn

DAa -” e One of the properties of the exterior derivative is that — 0 , 

both in the contimuini and in our geometric discretization and this makes the gauge 

action invariant.
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6.3 .3  T he Lorentz G auge

The configuration space of the gauge field can be classified into groups of field con­

figurations tha t are related by a transformation. We can span the space by taking 

a sample element from each group and using the transformation rules. When we 

define a gauge invariant observable and naively integrate it over the conftguration 

space, we end up over counting the configurations th a t the observable would consider 

indistinguishable. The value of the observable is then ill defined, so we nnist pick a 

representative configuration from eacti group. A gauge hxing condition achieves tfiis.

In the continuum, the Lorentz gauge hxing condition is d^A^(x) = 0. W ithin an 

action, the gauge hxing contribution is Sqf = J  dx'^ (d^A^(x))^ and this term 

cancels with part of the gauge action. We can see this if w'e use integration by parts 

to rewrite as

5g  = = - I  {Â‘d‘'d,A, -  A^d‘'d,A,,)
4 Z

We can rewTite the gauge hxing condition as

S g f  =  ~ Y f  =  Y^A“d , i f A ,

When (̂  =  1, this term cancels with the hrst term in Sq - For the geometric dis­

cretization we use —̂  < SA,SA > for Sg f - If we ex])and the dehnition of S q , we 

have

=  - ^ < d A u D A , > - ^ < d a 2, d A 2 >

< DA u DA2 > - ^  < DA2,DA i >

Expanding S g f  similarly, we have

S g f  =  <  S A \ , 6 A i >  — —  <  d A 2 , 8 A 2  >

—  —  <  5 A { , d A 2  >  — —  <  6 A 2 , S A \  >

Because of the inclusion of the dual complex, we have Stokes law: <  DP, Q > = <  

P,5Q  > , for two discrete fields P  and Q. For the definition of S in section 5.1.5, we
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can rew rite S q  and S g f  as

So =  - ^ <  A i , 6D A i > - ^ < A 2 , S D A 2 >  

- ^ < A u SDA2>- ^<A2 , SDA,  >

S qF — ^  ^  ^^"^2 >

— —  < Ai, D6A2 > —— < A2, dsAi >

W hen we add these two term s and set ^ =  1, we see some interesting differences 

between the geom etric discretization and the continuum . In th e  continuum, we have 

dS =  —Sd when the directions of dx^  A and e'^jd„ are different and d6 =  5d when 

they are the  same. As a result, in the contiiuium , we could cancel the bottom  line 

from each term  and combine the top lines. Combining the top lines would give us a 

term  proportional to  the second derivative, which is w hat we see in the Dirac basis 

descri{)tion. However in the geom etric discretization, the identity D5 — —5D  only

holds when the fields are perpendicular to  each other. W hen they are parallel, there

is no equivalence. This means th a t the two bo ttom  lines can successfully cancel and 

the two top lines cam iot be combined. This leaves us with

S c  +  S cF  =  ^  D A \  >  —-  <  D A 2, D A 2  >

>  - ^  <  5A2,6A2 >

< d A , , d A 2 > - \  (̂ 1-0 < d A2,d A,>

W hen ^ =  1, we are left w ith term s th a t can be rearranged to  make

Sg + Sgf ~ ~ 2 ^D)Â j, >

where —{DS +  SD)  is the  definition of the Laplacian operator seen in section 4.1.

6.3.4 The Path Integral M easure

It is not always straight forward to  show th a t the  measure of integration for a pa th  

integral respects the  gauge transform ations of th e  action. T he revelation th a t the

60



feniiioii measure of continuum  gauge theory did not respect axial sym m etry led to 

the discovery of the axial anom aly [70].

For our purposes, we nmst be sure th a t the measures of integration of the fermion 

and gauge fields respects the transform ation of equation (26).

For a given transform ation, 4> —> R W

g i 0 ( [ A i ] )  _ |_  ^id([A2\)  _ j_  _ _ _ j_  ^iO{[AN])

so we can say th a t

sembles

, the result is a term  th a t re-

(f). The term  j j  [..] only provides a phase,

where d ^  represent the  measure of integration. By the same reasoning, we can say 

th a t

For these transform ations, the product of the measures, d4>d<p, is invariant, just as in 

the continuum  case for U{l)y.

The gauge field transform s as A —>■ A  — ^ R  d\V{e ) [(^([..j)]” . Under this 

transform ation, the  measure of integration, dA, transform s so th a t the correction is 

proportional to  D'^A. D'^ of any field is zero, so the measure of integration for the 

gauge field is also invariant.

6.3.5 T opological F ields and Charge

In two continuous space-time dimensions, a topologically interesting gauge field tra ­

jectory is provided by

Ai (x )  =  0 A2(x) =  - L J X i (27)

where uj is proportional to  the field strength, F 1 2 , and is constant across the manifold. 

The manifold itself is a 2D torus, with e  [0, The gauge fields are not periodic 

in the Xi direction, bu t their value at Xi =  0 and xi  = L\  can be related by a gauge 

transform . Consequently, any function or action th a t is gauge invariant will see this 

field as periodic in both  directions. This configuration has previously been discussed 

in [71] and we use a similar description, but with the discontimiity along a difl'erent 

boundary.
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Ill the Dirac basis, the gauge transform th a t we use at the boundary between 

.X] =  U and Xi =  Li is U{x) = so that, with a unit coupUng constant,

=  0) =  ^ 2 (0:1 =  Li) -  i { d 2 U { x ) ^ U - \ x )  =  A2{xi  =  L , ) + ojL,  (28)

we substitute for a; in U , we have U =  fQj. periodic in X2 , Q

must be an integer.

In the lattice description of this gauge trajectory there are complications. There is 

no true topology because lattice fields are comparable to multidimensional histograms 

and, as such, any field can be smoothly deformed into any other field. Nonetheless, 

we can follow the same strategy as in the continuum, replacing the topological charge 

with a parameter, r ,  tha t admits non-integer values.

In standard lattice gauge theory, the topologically interesting gauge field trajec­

tory is represented by [71] [72]

where we have taken L\ = L 2 = L. The topological charge can be calculated as.

There is some subtlety to this expression. Up\s  the ordered product of the gauge links 

around a plaquette and it is a complex quantity. When we take the log of a complex 

quantity, we have to introduce branch cuts to remove the ambiguity associated with 

the periodicity of the exponential function. Any complex expression can be written 

as ^ and clearly 2; =  Taking the log, we have th a t ln(2 ) =

ln(r) + iO = ln(r) + i{0 -h n27r). To remove the confusion between iO and i{6 + 

n27v), the coordinate space is divided into different patches by branch cuts. Branch 

cuts in general run between the singularities of a function. In the case of ln(2 ) the 

singularities are at 2 =  1 , where ln(l) =  0 and at infinity at some direction. We

In this expression, u  = 7 ^ ,  where Q is the topological charge, Q = ^  J  dx ‘̂Fi2. If

Ui{nx,ri2) = (29)
exp[2z™2T] jf = L - I2niri2T

L

(30)

(31)
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choose the branch cut to he along the negative real axis up to the point z = 1 and 

this means th a t when we take the  log of Up,  the exponent stays in the region [—tt, tt]. 

We can calculate Q analytically for the above gauge field. Doing so, we see th a t 

we have L(L — 1) plaquettes for wdiich Up =  (L — 1) plaquettes for which

Up = and one plaquette for which Up = Applying the log,

w ith the branch cuts, this gives us

2 t t t

L2

where denotes 27t m odulation in the interval [—7r,7r]. As r  increases from zero, 

both  term s cancel each other. However, the contents of the |..| of the second term  

rises more quickly than  the contents of the  |..| of the first term . As the contents of 

the |..| of the second term  reaches tt. it crosses the branch cut and has 27t subtracted  

from its value, allowing Q to  increment. This process continues until we reach the 

point were the contents of th e  |..| of the first term  ap[)roaches tt. At this point, 

the definition breaks down because as the contents increase through tt, Q  becomes 

negative. For a lattice where L\  =  L -2 =  L =  6, as studied in [72], Q =  0 in the 

interval r  e  [—2 ^ )  2 ^ ] -  Q —  ̂ interval r  G [2 ^ 1  f(||)] C? =  - 1  when
r 3(36) 36 1

^  L 2 (3 5 )’ 2(35)

The G eom etrically discretized description of Q  must be consistent with this de­

scription. To achieve this, we have to recreate the behaviour of the branch c:ut. 

Applying D  to  the cochains A  gives us the GD equivalent of F 12 over a plaquette. 

By using the mod operation and then summing over all plaquettes, we are able to 

define an appropriate expression for Q.

We have

«=E s Ml
where the denotes a sum over the orientated plaquettes.

6.3 .6  Im plem enting Topological F ields in G D

Equation (27) describes continuous gauge fields w ith a discontiiuiity across one of the 

boundaries. The gauge fields across the boundary are related by a gauge transform . 

In this section, we shall apply the  geometric discretization to this situation.

63



To discretize the gauge fields, we apply the de Rhain map. This gives us the 

following discrete fields

^i(ni ,n2)  =  0 M{ni,n2) =  -ujrix

where the {rii.n^) are dimensionless coordinates, a; =  ^  with L  the dimensionless 

length of the complex and r  is the topological parameter. We have temporarily 

chosen not to use the notation ^([..]) for the time being, as we feel th a t notation of 

the form A ( n i , n 2 ) better expresses the coordinate dependence of the fields.

----------------------------------------------------- C

B

------------------ A

Figure 16: The periodic complex. The red and blue boundaries are identified as the 

same and it is across this boundary tha t the gauge field is discontinuous.

We proceed by explicitly constructing the gauge transform across the discontinu­

ity. In Figure 16, we identify the red and blue boundaries as the same and we proceed 

by discretizing the gauge transform tha t relates the continuous fields A 2 {xi =  0) 

(blue) to ^ 2 (2:1 =  L) (red).

In the continuum the transform is

2 n i x n T
U{x) =

This is a zero-form and applying the De Rham map, on the boundary, acts to sample 

U{x) at the vertices of the discontinuity, yielding

~  2 - K i n i ^ T  ~  2 T T i n ^  T  ~  2 - r T i n ^  t

U{[A]) = U{[B]) = e - ^  U{[C]) = e ~ ^  (33)
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Considering only the original complex for the moment and taking the simplex 

[BC] as an example, we see that, using equation (26), it will transform as =

- i R  [dW ((7(|B1)|B| + t/([C))(C))] |G ([C |)|-‘
(34)

where G([..]) is the gauge transform on a fermion held belonging to simplex We 

have dropped a factor of  ̂ from equation (26) because e is not included in equation 

(33). In this expression, we can make the following substitutions because the gauge 

simplices are wedged with zero-simplices and because we can explicitly substitute for 

the U at the zero-siniphces
2-K ino T ,  ~  ,  2 n i n ^  T 2 7 r i ( n ^ + I ) r

G{[B\) = U{[D]) = e - r ^  a{[C]) = U{[C]) = =  e---- 1-----
~ 2 i r i n ^  T , —2 7 r i (n ;?+1 }r

G{[B])-^ = e— r ^  (7([C])-i =  e  ^

and

/? \dW [u{\B])[B] +  f/([C])[r])j =  [f/([C]) -  f/([5])] [BC]
/  27Tz(n ^  +  l)T 2TTiri2 ''

= L -  e L J [BC]

The discrete wedge operations between [BC] and the [B] and [C] simplices in the 

last two terms of equation (34) contribute the following factors of |

[BC] A [5] =  i  [BC] [BC] A [C] =  I [BC]

All this gives, for equation (34),

2 (35)
=  / i r { | s q )  +  s iii(?F )

Interestingly, we see here a consequence of the hnite lattice size. In the limit of 

an infinitely large complex s i n ( ^ )  has the following behaviour

27t t \  /  2 - k t

IT) = IT  I
To first order this gives
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which is the same as in the continuum (equation 28).

However, for finite extent, this transformation only approximates the contin­

uum. To assess the accuracy of this approximation, we can calculate the fraction 

sin ( ^ )  /  ( ^ ) -  The closer this is to 1, the better the approximation. For the val­

ues, T =  1 and for an extent L = 6 (the size used in [72] and which we will use later 

on), we see that sin ( ^ )  /  ( ^ )  =  0.83.

To complete the description of this gauge transformation, we would also have to 

consider for the dual complex. However, it provides such a poor approximation to 

the continuum transformation that we shall instead look for a better way to represent 

the transformation.

We proceed by extracting a set of gauge fields from the link variables in equations 

(29) and (30). For example, if we write the link variable between [B] and [C] as 

U{[BC]) = we have that A{[BC]) =  —

This gives

(36)

(37)

6.3 .7  T opological F ields in th e A ction

Applying the dehnition for the topological charge in equation (32) to the gauge field 

trajectory defined by equations (36) and (37), we obtain the plot in Figure 17, w'hich is 

in agreement with Vranas’ plot for the topological charge, calculated using equations 

(29), (30) and (31) (top left plot of Figure 1, page 26 of [72]).

When we study the gauge action associated with this field trajectory, we find a 

pronounced difference between the geometric discretization and the standard lattice 

description. To see this, we proceed by constructing explicit expressions for the gauge 

action in both the descriptions.

The lattice has L(L — 1) plaquettes that avoid the discontinuity altogether, each 

with as a product of gauge links. (L — 1) plaquettes cross the discontinu-

if ri] ^  L — 1
4 i ( n i , n 2 )  =

'znn^T

2nn.iT
A2{nun2) =
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Topological charge

Figure 17: The topological charge.

ity, w ithout crossing the boundary in the TI2 direction, each w ith a product 

There is one plaquette around which the links cross both  the  boundary and the
. 2 7 r T ( l - L ’̂ )

discontinuity, w ith a product .

For standard  lattice held theory, the gauge action is

1 V -
5,G a

p

1 _ 1 (u,, +  [/>.)

where P  denotes a p laquette and Up the product of link variables around it. This 

gives

1QStand / /^27rr'\ f  2nT{l  -  L ‘̂ ) \
(38)

A plot of this expression can be found in Figure 18 and this agrees w ith the plot in 

Vraiias’ paper (top right plot of Figure 1, page 26 of [72]). There is a difference in the 

absolute value of So  between the two plots, bu t, in his analysis, Vranas states th a t, 

“T he absolute scale in these figures is of course irrelevant” (penultim ate paragraph 

of page 13, [72]), making it plausible th a t his scale may have been adjusted. The 

relative scale is the same for both.

In the geometric discretization, w'e have 5 ^  =  ^ <  DA, D A  >  (from 6.3.2) and to 

calculate this we divide the complex up into the same three groups of plaquettes. The 

L{L — 1) plaquettes away from the discontinuity each contribute to  Sq- The 

{L — 1) plaquettes th a t cross the discontimiity, bu t not TI2 boim dary each contribute
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Figure 18: The gauge action for the trajectory described by equations (29) and (30) 

at e =  0.89 and L =  6,

to Sg - The plaquette tha t crosses botli the discontinuity and the n-̂ , boundary 

contributes to So- Summing these terms, we have

oGD w ,  27tV  27tV ( L ^ - 1 ) 2  27tV ( L 2 - 1 )

W'e can show that these two expressions are consistent, by expanding the cosine 

functions in Sq ^ .  For small values of r ,  we see tha t

ostand ~  1) 4
^  ) 

which agrees with the expression for S q ^ .

In the general expression for the two cosine terms contribute the two peri­

odicities th a t we see in Figure 18. The low frequency term provides the dominant ’U ’ 

sha[)e and the higher frequency term provides the potential barriers between differ­

ent topological regions, disfavouring the regions tha t are between integer topological 

charge. The local minima occur in regions of integer topological charge, giving these 

regions a degree of stability. The potential barriers can hamper calculations because 

once the system arrives in a topologically non-trivial minima, during a hybrid Monte 

Carlo calculation, for example, the barrier will impede its return to the topologically 

trivial state  represented by the global minimum.

In the geometric discretization, has 110 comparable barriers between the

different topological regions, as can be seen in Figure 19. Sq ^  is quadratic in the
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Figure 19: S q  v s  t  using the GD action a t e  =  0.89 and L =  6.

so it describes the dom inant ‘U ’shape, bu t is not of high enough order to  describe 

the  barriers. This is consistent w ith the c‘ontinuuni, in which the gauge action is also 

cjuadratic in A^.

Several other field theories have been develo])ed th a t use similar non-com pact 

definitions for the gauge links. Cahill uses such a fornuilation as a tool for calculating 

a range of phenomenological quantities [74] [75]. Gockeler et al have studied the 

ecjuation of s ta te  for U{1)  gauge fields [76]. Fiore et al complete a range of calculations 

th a t allows them  to  explicitly compare com pact and non-compact form ulations [77] 

(78).

All these studies have used gauge actions similar to ours and they are quadratic 

in form. It is clear th a t the barriers between topological regions are an artifact of the 

com pact description of gauge links. As such, we would expect th a t the non-com pact 

descriptions offer the advantage of allowing the system to move more freely between 

regions of differing topological charge than  the  standard  description.
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7 C om putational Im plem entation

In this chapter we describe the objects and algorithms used to implement the calcu­

lations described in chapter 9. We will also discuss some of the considerations for the 

implementation.

7.1 T he Form ulation

We have chosen to work in two space-time dimensions because this is a simpler and 

computationally cheaper enviroimient than four space-time dimensions, in which to 

develop and test the formulation.

We have taken as our starting point the geometric discretization scheme as we 

originally introduced in section 5 together with the gauge theory we developed in 

section 6.3. The scheme is restricted to one original complex and one dual. The 

fermion fields exist on the original complex.

This formulation presented here is in keeping with the published formulation 

described in de Beauce and Sen’s work [8] [9] [58] [63].

7.2 G eneral D etails

The algorithms have been implemented in ’C ’ using gcc to compile the code to a 

maximal level of optimization.

The code has been divided between ftve hles:-

• def .h contains all the global parameters, set using the # d efin e  command

• ty p e s .h  contains the user defined objects

• g lo b a l .h  contains the function prototypes for the g lo b a l .c  hie

• g lo b a l . c contains the all functions required by the Hybrid Monte Carlo algo­

rithm and needed to calculate the value of the observables

• hmc. c implements the Hybrid Monte Carlo algorithm and measures the observ­

ables

Our complex is periodic. Although its size is adjustable, in the calculations, it 

is generally set as a 6x6, but we shall use Figure 20 as a reference complex for the
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purposes of the following discussions

A B C

D E F

G H I

Figure 20: A periodic 2D complex.

7.3 C om plex Num bers

Our most fundam ental object is the complex number, which is defined in ty p e s .h .  

We define it as a  j)air of long doubles. It forms the basic unit of the ferniion helds. 

In g lo b a l . c we iiiclude the  functions th a t perform standard  complex arithm etic.

The gauge fields are param eterized using real numbers, so the complex numbers 

only entered the im plem entation through the  fermion fields.

7.4 The Fields

To construct a vector representing all the degrees of freedom of the fermion fields, 

we need to  know which com ponents correspond to which simplices. The order we 

use is to s ta rt w ith the  field belonging to  the  vertex nearest the top left corner of 

the complex. This will be the first com ponent. We will trea t it as part of a cell 

comprising the  fields belonging to  the Xi-direction one-simplex to its right, the  X2 

direction one-simplex above it and the 2-simplex to  the top right. These three values 

will then a[)pear next in the  vector, in the order given. We then proceed down the  

complex until we reach the  bottom  of th a t complex column. Then we move to  the
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column to the right and repeat the process. As a single vector for the complex in 

Figure 20, this is too long to fit on a single page, but if we break it into two, with 

the top portion on the left and the bottom portion on the right, then we have

1̂ 1
l^B]

f  m  \[AC\

[ABHG] [HI]

[D] [HE]

[DE] [HIFE]

[DA\ [C]

[DEBA] [CA]

[G] [Cl]

[GH] [CAGI]

[GD] [F]

[GHED] [ED]

[D] [EC]

[EC] [EDAC]

[BH] \I]
[BCIH] [IG]

[E] [IE]

[EF\ \  [IGDE] )

[EB]

\  [EFCB]

This is a fermion vector which we define in ty p e s .h  as an array of 4 * Â l * N2 

complex numbers, where A l̂ and N2 are the dimensions of the complex.

The gauge held is a 1-forni in the continuum and within the geometric discretiza­

tion it exists only on the 1-simplices, so we only need to include the 1-simplices in its 

vector type, which is defined in ty p e s . h. For the gauge vector, we use a 2 * A l̂ * N2 

array of long doubles with the following basis for the complex shown in Figure 20:-
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 ̂ \AB\ ''

[AG\

\DE\

\DA]

\GH]

\GD\

[DC]

\BH]

[EF]

\EB]

\HI]

[HE]

[CA]

[Cl]

[FD]

[FC]

[IG]

V /
For the purposes of our calculations, we must also include the gauge field on the 

dual complex.

To describe the dual gauge field, we follow the same approach but start w ith the 

dual cell th a t lies to the top right of the first original complex cell (shown in Figure 

21). The basis for this vector is:-
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a b c

A B C

d e f

D E F

g h i

G H I

Figure 21: A periodic 2D complex plus its dual.

( [ab] \
[ag]

[de]

[da]

[ 9 h ]

[9d]
[be]

[bh]

[ e f ]

[eh]

[hi]

[he]

[ca]

[ci]

[fd]

[fc]

M 
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7.5 The Operators

The operators are (4 * Â’l * tV2)x (4 * A^l * N2)  matrices that operate on the fermion 

vectors. They are constructed as an array of 16 * N l ‘̂ * complex numbers. We 

store the elements of the matrix in a one dimensional array in much the same way 

that we store the fields of the complex. We start with the top left element of the 

matrix and proceed downw'ard until we reach the bottom. The next array item is the 

first element of the second colunm and down the column we go and so on.

Principally, there are two types of operator. The first is the free field Dirac- 

Kahler operator, which is antisymmetric. The second is the interaction term, whose 

symmetries are harder to define.

We define the Dirac-Kahler operator, starting from a null matrix. In section 7.4, 

we grouped together sini]:)lices into cells and we can see that each row of the matrix 

corresponds to a cell of the complex defined through the fermion vector basis. Ŵe 

find the four columns that correspond to the same cell and dehue our changes to the 

null matrix around those.

If the row c:orres[)onds to a 0-simplex, the four elements in the columns corre­

sponding to the same cell are

(0 , 1, 1, 0 )

We denote the elements belonging to the next four columns of the same row 

with T{1). These columns belong to the next cell on the complex. These elements 

contribute

r ( i ) ( o , o , - i , o )

We also have a contril)ution from the cell immediately to the left of the one 

corresponding to the row. We indic^ate the set of cohunns belonging to this cell with 

T{—N2).  Their contribution to the row is

r ( - . v 2 ) ( o , -1 ,0 ,0)

All other elements on that row remain equal to zero.

In this notation T{ X)  indicates the number of cells we nmst move over from the 

cell corresponding to the row. The contents of the brackets are the elements in that
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cell, for th a t row.

The other rules are:-

For a row corresponding to a 1-simplex in the 1-direction

( -1 , 0, 0, - 1 )  +  T(1)(0, 0 ,0 ,1) +  T{N2){1,  0,0, 0)

For a row corresponding to a 1-simplex in the 2-direction

(-1 , 0, 0,1) +  T ( - l ) ( l ,  0, 0, 0) +  T (-iV 2)(0, 0, 0 ,- 1 )

For a row corresponding to a 2-simplex

(0,1, - 1 ,  0) +  T (-1 )(0 , - 1 ,  0,0) +  T{N2){0,  0 ,1 ,0)

This prescription doesn’t specify the changes th a t must be made near the bound­

ary of the complex. These changes are implemented as conditional statem ents in the 

routines tha t generate the Dirac-Kahler matrix. The conditional changes are:-

If the row corresponds to a cell in the far right column of the complex,

• T{N2)  must be replaced with T{ —N2{N1 — 1)).

If the row corresponds to a cell in the far left column of the complex,

• T{ — N2)  nuist be replaced with T { N 2 { N l  — 1)).

If the row corresponds to a cell on the top row of the complex,

• T{ —1) must be replaced with T{ N2  — 1).

If the row corresponds to a cell on the bottom  row of the complex,

• T( I )  nuist be replaced with T { - { N 2  — 1)).

For the interaction term, we start with two four component arrays th a t tell us 

where, in a m atrix of the same dimensions as the Dirac-Kahler operator, the gauge 

fields should appear and what coefficient they should have, depending on the discrete 

geometry involved. There is one array for each complex and we have a program 

function th a t constructs the interaction m atrix from the two arrays.

Writing out these rules becomes more complicated than for the free field Dirac- 

Kahler operator because in addition to specifying where on each line the non-zero 

entries are to be found, we nuist also specify which gauge helds are required.
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To this end, we necessarily extend our notation. We identify the columns of a 

row with cells, in the same way as for the Dirac-Kahler operator. However, we also 

use the T{X)  notation to indicate on which gauge simplex the appropriate gauge 

field can be found. T{X)  describes a cell relative to the one identified by the outer 

set of brackets. For example, T(l)((), y4[r(—1)(0,1,0,0)], 0,0) would indicate the 1- 

direction gauge simplex from the current cell, placed in the column corresponding to 

the 1-direction simplex of the next cell, o and d indicate whether the field is from 

the original complex or dual. As mentioned in section 7.4, we associate a cell from 

the dual complex to one from the original if the barycentre of the dual 0-simplex and 

the original 2-siniplex coincide: A a, B  h, etc. When we use T{N)  to indicate a 

gauge simplex from the dual coni[)lex, it is this dual cell that we take as the starting 

point.

The rules are:-

For a row corresponding to a 0-simplex

(0, ^Aa[T{-N2){0,1,0, 0)] +  ^Aa[T{-N2 + 1)(0,1,0, 0)],

^ id [T (l) (0 ,0,1, 0)] +  i  4 ,[r(-iV 2  + 1)(0, 0,1, 0)], 0)

+T{-N2){0,  ^ irf[(0 ,1, 0, 0)] +  ^ i ,[ T ( l ) ( 0 ,1, 0,0)], 0,0)

+T(1)(0 ,0, +^-44(0, 0,1, 0)] + ^A,[T{-N2){0,  0,1,0)], 0)

For a row corresponding to a 1-simplex in the 1-direction

(^ i„ [ (0 ,1, 0, 0)], 0, 0, - ^ i , [ T ( l ) ( 0 ,0,1, 0)])

-fT(l)(0, 0,0, -^ id [ (0 , 0,1, 0)]) +  T { N 2 ) { l j , [ T { - N 2 ) { 0 , 1, 0, 0)], 0, 0, 0)

For a row corresponding to a 1-siniplex in the 2-direction

(^io[(0, 0,1, 0)], 0, 0 + i  4rf[T(-iV2)(0,1, 0, 0)])

+ T ( - l ) (^ i„ [T ( l) (0 ,0,1, 0)], 0, 0, 0) + T(-iV2)(0, 0, 0, 1, 0, 0)])

For a row corresponding to a 2-simplex

(0, - Jio[(0 , 0,1, 0)] -  ^ A o[T{N2){0, 0,1, 0)],
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1,0,0)] -{- l i o [ r ( - i ) ( 0 , 1,0,0)], 0)

T(-1)(0 , - i i „ [ T ( l ) ( 0 , 0,1,0)] -  \ A o[T{N2  +  1)(0,0,1,0)], 0, 0).

+T(iV2)(0,0, + ^ A o[T{-N2){0,  1,0, 0)] +  ^Ao[T{-N2 -  1)(0,1,0, 0)], 0)

We have to iiichide corrections to these rules because of the periodic boundary 

conditions of the complex. The corrections apply to the T{X)  indicating the location 

of the gauge simplex as well as the T{X)  indicating the location of the cell within 

the row.

With these two matrices, we can construct the covariant Dirac-Kahler operator as: 

(the first matrix) - ie(the second matrix). The symmetry properties of this operator 

are discussed in section 7.7.

There is one other type of operator that we define in the file types .h. We define 

an operator for gauge fields that we use in the definition of DA  which is required for 

S g  and in SA which is used in S q f -

This operator is a subset of the lines from the free held Dirac-Kahler operator. 

For DA,  we only need the lines that correspond to 2-simplices. For the 5A  operator, 

we only need the lines that correspond to 0-simplices.

7.6 The A lgorithm

We use the Hybrid Monte Carlo algorithm [10] [19] to generate a succession of gauge 

field conhgurations on which we calculate the observables. The most computationally 

demanding parts of the Hybrid Monte Carlo algorithm are the matrix inversions and 

the calculations of the matrix determinant. For reasons of computational efficiency, I 

wrote the determinant function in such a way that it performs Gaussian elimination to 

make the matrix upper diagonal and then calculates the determinant as the product 

of the diagonal elements.

The inversion routine I wrote in two ways. One routine used Gaussian elimina­

tion with pivoting to calculate the inverse. I wrote another routine that used the 

conjugate gradient algorithm to solve for the inverse column by column. However,
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after comparing both algoritlinis in identical circumstances, I found that the con­

jugate gradient algorithm was slower on both 3*3 and 6*6 complexes, although in 

both cases it was only by about 10%. Clearly, the reason that conjugate gradient 

is popular is not just its efficiency, but also that it can be implemented with lower 

memory requirements for large matrices.

7.7 H erm iticity Issues

One difficulty with this fornuilation conies from the symmetry properties of the co­

variant Dirac-Kahler operator.

In the continuum, the Dirac-Kahler operator is antisymmetric and the gauge 

field term is anti-hermitiaii, so the overall fornmlation is also anti-herniitian. In our 

fornuilation, the free field Dirac-Kahler operator is still antisymmetric. However, the 

gauge field term has no comparable properties.

This is a consequence of the role of the gauge helds in the inner product. In 

standard lattice gauge field theory, the inner product between a spinor and adjoint 

spinor on neighbouring lattice sites contains a jiarallel transporter. This transporter 

is involved in both the terms 'ip{n)U{n)ip{n -|- 1) and '0(n -|- l )W{n  -f- l)^|){n) and 

so is involved in both forward and backward propagation of the fermion held along 

the lattice. However, in the case of GD, the fermion held is propagated backwards 

and forward by gauge helds from dih’erent complexes and these fields have been 

discretized by integrating over different domains. As we saw in section 6.3.1, it w'as 

fundamentally necessary to dehne the gauge helds in this way so as to ensure that the 

gauge helds transform to maintain the invariance of the derivative on each complex.

For example, referring to Figure 21, the fermion field on the simplex [BE] is 

mapped to the simplex [ABED] by the derivative D and by the two gauge siniplices 

[AB] and [DE]. However, the held on the simplex [ABED] is mapped back to 

the simplex [BE] by the adjoint derivative and by the gauge simplex [de]. The De 

Rham map that discretizes the gauge held belonging to [de] has a different domain 

of integration to the De Rham map that discretizes the gauge helds belonging to the 

[AB] and [DE] simplices.
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Ill taking the transpose, Ad{[de\) and ^{Ao{[AB]) + Ao{[DE])) are interchanged, 

but they only approximate each other to the zeroth order.

If we were to demand the desired herrniticity properties of the gauge fields, this 

would define a relationship between the gauge fields on each complex. However, 

because each gauge held is involved in the propagation of the fermion fields on several 

simplices, the only case in which this could be realised is when the value of the gauge 

fields are a linear function of position. For example, referring again to Figure 21, if 

we were to constrain Ad{[de\) to be equal to \{Ao{[AB]) + Ao{[DE])), we would also 

have to constrain Afi{[de]) to be equal to \  {Ao{[BC]) +Ao{[EF])) because the field on 

[BE] will also propagate on to [BCFE].  Similarly, we would have to define Ao{[BC\) 

to be equal to ^( Ad{ [ ah] )  + Adi\de\)) and ^{ Ad{ [ bc ] )  + A d { [ e f ] ) ) .  This could only be 

achieved if gauge fields parallel to the 1 direction were linear in the ri2 coordinate 

and independent of rii. A similar analysis also applies to the helds parallel to the 2 

direction. They would have to be a linear function of the r?i coordinate alone. As 

we shall see, we cannot constrain the gauge fields to be linear in the coordinates in a 

HMC calculation, so we must obtain hermiticity properties by other means.

The hermiticity is necessary to ensure that the determinant of the covariant Dirac- 

Kahler operator is always real and positive. This is required for the action to be 

bounded and stable.

The solution that ŵe have adopted to this problem has been to replace the de­

terminant of the covariant Dirac-Kahler operator, det(Af), with \ / det(Af)t det(M ), 

which is similar to the quarter-root trick commonly used in staggered fermion calcu­

lations [73].

7.8 H ybrid M onte Carlo A lgorithm

The HMC algorithm [10] that we used for generating the gauge field configurations 

is well understood. However our implementation is quite unusual, so it is necessary 

to describe it in detail.

We start by choosing random gauge field conhgurations for each of the two com­

plexes. We use a Gaussian function to populate tlie gauge fields from the distribution
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e“ 2 ^ . S tarting w ith a  configuration [)opulated by a Gaussian function allows us to 

clearly see therm alization using the gauge action. We also choose a set of mom enta 

for the gauge fields on bo th  complexes, from the distribution

We construct the D irac-Kahler operator as the  sum M  =  D — 5 + m  — ieAo~ieAd ,  

and we invert this using G aussian elimination, where necessary.

The Ham iltonian for this system is

/ / =  SS  +  SS  +  +  S S r  +  5  5 3  p j ( i ,  t )  +  1  5 3  P j ( i ,  t )  +  hi V $ t ( M t A 7 )
; /

where I labels a simplex and r  is the simulation time. S q is the gauge action from 

Section 6.3.2 and S gf is the gauge fixing term  from Section 6.3.3.

We derive an update  scheme, w ith which to  evolve the system, from the equations 

of motion A(l, t )  =  , and P(l,  t ) = — where the dot denotes the derivative
^  ' d P ( l , r )  '  ’ '  dA{ l ,T)  ’

w ith respect to sim ulation time.

Taking advantage of the identity

 In J d ^ U j I W )  = Re ( Tr ( A r ^  — ^ (39)
dA{ l , T)  V  V /  d A { l , r ) J J

which is shown in A ppendix C, we arrive a t the following update scheme, using the 

lea{)frog m ethod and a sim ulation time step of A t .

A o{1,t  +  A t ) =  A o{1,t ) +  A t Po{1,t +  ^ )2 

2

— , w , - I ' l  -L A -r2 J  ̂ O V ) '  2

Pd{l,r + ^)  = P , ( / , r - ^ )  + Ar

A d { l , T  +  A T )  =  A d { l , T )  +  A T p d { l , T  +  ^ )

Po(/ ,r +  f )  =  P „ ( i , r - f )  +  A r [ - 5 | ^ - 5 g ^ - f l e ( T r ( M - - 5 | | ^ ) )

A r \  0 / 7  ^  A r  -------- ---------- R e ( T v  ( A/-1
d A d l , T )  d A A l , r )  d A a ( l , T ) J J

(40)

As vectors of the  type described in Section 7.4, ^  and are calculated using 

D A  and S^SA,  respectively. The A o{1,t ), Aa{l,T), Po{1,t ) and Pd{l,T) are purely 

real quantities.

To facilitate the use of the leapfrog scheme, we hrst need to evolve the momenta 

of the gauge fields by a half step using the  gauge force term

asn
dAoUfi)

 dSQF -----------

d Ao ( l f i )  y n i  3 Ao( ; , 0 ) y /

9 S c _____________ d S c F _______ R p  I T r  I A / - !  9 M
aAaiifl) aAa(i,0) I I  d A ^ m
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We then  s ta r t a chain of m olecular dynam ics steps th a t update  the gauge fields and 

th e  m om enta according to  equation (40). At the  end of the chain, we roll back the 

m om enta half a step using equation (42).

Next, we evaluate the  H am iltonian for the configurations a t the s ta rt of the molec­

u lar dynam ics chain and a t the  end and accept the  end conhguration w ith probability

If we accept the end configuration, we store it, generate a new set of m om enta from 

th e  G aussian distribution  and  repeat the molecular dynam ics chain, s ta rting  with 

the  half step forward in the  m om enta. If we reject the  end configuration, we store 

th e  s ta rt configuration, generate a new' set of m om enta and s ta rt a new' molecular 

dynam ics chain from the s ta r t configuration.

After a period of therm alization, the stored set of gauge configurations will become 

representative of the contributions to  th e  p a th  integral.

We chose the param eters for th e  sim ulations so as to  achieve a reasonable sampling 

of phase space in a reasonable length of tim e. T he complex had dimensions 6x6 and 

the fermion field was massless. Each molecular dynam ics chain had a duration  of 0.2 

in sim ulation tim e and com prised 20 steps, giving A t =  0.01. To reach an acceptable 

level of thernialization, this configuratioii was nu i for 140 M onte Carlo tests and 

the whole algorithm  took roughly 90 hours to  com plete on Trinity College’s IITAC

Figure 22 shows the value of the gauge action for a typical calculation. We

gauge action was significantly greater th a n  the deviation from horizontal caused by 

the  transien t curve. W ith these param eters, we judged therm alization to  have taken 

place after 80 M etropolis steps. This left us only 60 reliable configurations to  use in 

our calculations, so we ran  three of these processes simultaneously.

(42)

e n d _ r , s ta rt

cluster [79].

considered therm alization to  have taken place when the random  variation in the
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F igure 22: A  p lo t o f the gauge action a fter each MetropoUs ste{). The plateau 

rej)resents the therm alized gauge held w ith  e =  0.89.

For a coupling constant o f e =  0.89. the three sim ulations yielded 180 thern ia lized 

gauge configurations which we found to  have an acceptance rate o f 92%.
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8 R eview  o f the Schwinger M odel

Before we use this com putational framework to calculate phenomenological quan­

tities, we will first devote a chapter to familiarising ourselves with the underlying 

Schwinger model and its properties.

The Schwinger model is named in honour of Julian Schwinger who studied the 

properties of U{1) gauge fields in one space and one time dimension, showing that 

mass was dynamically generated by the gauge field [14], In his original work [14] 

both the space and time dimensions were continuous and the fermion held was taken 

to be massless.

This arrangement can be described as a 1 +  1 dimensional model. However, 

Schwinger wasn’t the first to use 1 +  1 dimensional models. Thirring had previously 

used them to study a purely ferinionic interacting theory [13], but such was the 

interest surrounding Schwinger’s result that the model came to be associated with 

his name.

One of the reasons th a t the model is of great interest is tha t the reduced dimen­

sionality sometimes permits the calculation of quantities tha t cannot be calculat('d 

in four space-time dimensions. Thus, it provides an environment comparable to fotir 

dimensions, in which to study fermionic field theory. Several studies have analytically 

cak'ulated the properties of the model [81] [82] [83] [84]

In our case, we have chosen to use the Schwinger model because its dimension 

and gauge group are much less computationally demanding than higher dimensional 

models. This allows us to perform calculations in a manageable amount of time on 

single processor supercomputing facilities.

For our calculations, we use one time dimension and one space dimension. Bot.h 

dimensions are discrete and we include a single flavour of massless fermion field wit,h 

f/( l)  symmetry. We use Euclidean space, in which we can describe the discrete 1-1-1 

dimensional theory as a discrete two dimensional theory.

In the subsequent sections, we shall use our implementation of the Schwinger 

model to calculate the static quark potential and to consider the chiral condensate. 

In this section, we shall outline some of the established results regarding the static
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quark potential.

8.1 Static Fermion Potential

Iso and Murayama [85] studied the static ferinion potential for the Schwinger model 

in the continuum and Dilger [86] and Joos and Azakov [87] studied the geometric 

description of the continuous Schwinger model. In the geometric cases, the fermion 

fields were represented using a Dirac-Kahler algebra, making them more in keeping 

w'ith the geometric description that we have used.

Both Dilger [86] and Joos and Azakov [87] showed that in the continuum of two 

Euclidean dimensions (one spatial, one temporal), with dynamical ferniions

V(R)  = =  (1 -  (43)
4 2 — 1 )

where ^  and Li is the spatial extension of the space-time.

The second term in equation (43) describes the efl'ect of the finite extent of the 

space. In the limit rnLi oc, this term goes to zero. Iso and Murayama [85] 

attained this same result in this limit. If we look at the potential in the the small R 

limit, subsequent to ruLi oo, we have V{R) +  0{R^)-

This is intuitively sound. Leaving aside screening for a moment, the force exerted 

by the potential is constant in the Schwinger model due to its single spatial dimension. 

Consequently, the potential must grow linearly with separation between the fermion 

and antifermion. In the un(}uenched case, the creation of virtual fermion pairs acts 

so as to screen the fermion and antifermion from one another. This reduces the force 

at large separation.

A plot of the potential described in equation (43) is shown in Figure 23 for the 

parameters e =  0.89 and Li =  6. The plot shows the potential for the quenched case, 

both with and without finite extent effects, in which we expect no screening. It also 

shows the unquenched case, both with and without finite extent effects, in which we 

expect to see screening. We can see that the influence of the screening is much more 

dramatic than that of the finite spatial extent.

In the lattice case, it has been shown explicitly by Rothe [19] (pages 111-115), 

that the quenched calculation leads to a potential proportional to R, where R is
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Figure 23: The static quark potential for e =  0.89 and Li =  6 with the linear, un­

screened potential in the limit of infinite spatial extent (red), the unscreened potential 

with finite spatial extent (green), the screened potential with infinite extent (blue) 

and the screened potential with finite extent(pink).

the separation. In [88], Potvin compares the screened, analytical potential to the 

potential calculated using ensemble projector Monte Carlo methods and obtains good 

agreement, observing both a linear regime at low H and a screened regime at high R. 

In [89], the authors study a strategy for addressing the computational cost associated 

with including dynamical fermions in these calculations. Their calculations show 

good agreement with the predicted values in the quenched case and their attempt at 

recreating the dynamical behaviour shows a degree of screening comparable to the 

expected result in the unquenched case.

The formulation proposed in Section 7 uses dynamical fermions so we expect to 

see a potential that is close to linear for small R, but that shows screening as R  grows. 

As such, we anticipate a potential that is consistent with the unquenched curves in 

Figure 23.
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9 C om putational R esu lts

Here we shall review’ the calculations of the static c}uark potential and we shall con­

sider the calculation of the chiral condensate.

9.1 The Static Fermion Potential

The standard approach is to calculate the gauge invariant correlation function be­

tween two fermions a finite distance R apart, at Euclidean time t = 0 and the same 

two fermions at a later time, t = T. The fermions are taken to be infinitely heavy 

and are therefore static. As T  becomes large, the ground state of this arrangement 

dominates, which is determined by the interac:tion potential.

In practice, we proceed by taking a rectangular loop around a group of lattice 

plaquettes of dimensions TxR,  and we calculate the phase incurred by passing around 

the loop. We average over all the loops of the same size and dimension from the 

lattice and v.’e calculate an expectation value for the phase from an ensemble of 

gauge conhgurations.

If we were able to take the extent of the loop in the time direction to be infinitely 

large, we would find that the ensemble average for the phase becomes: <

, where V(R)  is the potential as a function of the separation between 

the fermions, R. In the inhnitely heavy case, V{R)  is the ground state of the system. 

In practise, we nuist use a hnitely sized loop and we are particularly interested in 

values of T  large enough for the ground state to dominate, but small enough that 

the behaviour dominates over the noise in the ensemble average.

To find this window in T,  we calculate the following quantity

across a range of T, for a fixed value of R. We then identify the region in which this 

becomes independent of T, w'ith small enough error bars to determine an acceptably 

accurate value. The plots of the quantity in equation (44) should fall off to a level 

value, for increasing T, before the error bars become large. The position of this

(44)
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plateau tells us the value of V(R)  for a given R. To determine the shape of the 

potential, we must study this for several values of i?.

9.1.1 Our Parameters

We j)resent here results from calculations performed for two values of e. In the 

first case, e =  0.89, as in Vranas’ paper [72]. In the second, we chose e =  1.3. 

The calculations were performed for a massless fermion, on a 6x6 complex with a 

molecular dynamics chain of length 0.2 divided into 20 steps of 0.01. This yielded an 

acceptance rate of 92%.

9.1.2 Therm alization

Figure 22 in Section 7.8, shows the value of the gauge action as one calculation 

progressed. We used the gauge action as an indicator of when thermalization had 

been achieved.
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Figure 24: A plot of the gauge action after each Metropolis step. The plateau 

represents the thermalized gauge field with e = 1.3.

Each calculation ran for roughly 90 hours and involved 140 Metropolis tests. As

88



described in Section 7.8, we deemed thernialization to have taken place when the noise 

obscured any trend in the value of the action. We judged tha t this was achieved after 

80 Metropolis steps, leaving us with 60 thermalized gauge configurations. To gener­

ate a larger set of thernialized gauge conhgurations, we ran three sucli calculations 

simultaneously for each set of parameters.

In Figure 22, e =  0.89. Figure 24 shows an equivalent plot for the case where 

e = 1.3. In this case also, 80 Metropolis ste[)s proved to be a suitable threshold for 

thermalization and we used three calculations to generate 140 thermalized configu­

rations.

9.1 .3  T he P oten tia l at e =  0.89

\\"e start by looking at the quantity in equation (44). W ith i? =  1, we produced the 

plot in Figure 25. As T  increases, the error bars start off small and increase in size, 

as we would anticipate from the decreased signal-to-noise ratio. At T  = 1, the value 

of equation (44) is 0.384 ±  0.013. W'ith e =  0.89, the value of ^  is 0.396. so the 

plateau agrees with the expected result.
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Figure 25: The static ferniion potential at i? =  1 and e =  0.89.
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QED Potential a t R=2, E=0.89

Figure 26: The static ferniion potential at i? =  2 and e =  0.89.

Figure 26 corresponds to the R = 2 case and here the results are less clear. We 

were only able to generate data points at T = 1 and T  =  2. At T = 3, equation (44) 

recjuires Wilson loops with an extension in the time dimension of four and this takes 

the expression too close to zero. When the ensemble averages go to close too

zero, the noise can easily send the mean to zero or below, resulting in the In function 

becoming singular.

Whilst the second data point in this plot is a standard deviation away from the 

expected result, the first point follows it closely. At i? =  2, we expect ^  to be 0.792. 

The first data point is located at 0.804(+0.032, —0.033), which agrees well.

At i? =  3 and i? = 4, we also found that some of the points succumbed to the noise 

problem. At i? =  3, we were only able to obtain a value for the T =  1 data point: 

1.258(+0.078, —0.084). The theoretical result is 1.188, so again there is agreement.

At /? =  4, r  =  1 was also the only data point with non-singular errors. We 

obtained 1.463(+0.157,—0.187). The theoretical result is 1.584, so these values are 

also in agreement.

These results are summarized in the Table 1 and in the plot of V[R)  at e =  0.89
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Table 1: Static quark joLential data points at e =  0.89.

R Inf <»'(!)> A + A - A Theor. Val.

1 0.384 0.013 0.013 0.396

2 0.804 0.032 0.033 0.792

3 1.258 0.078 0.084 1.188

4 1.463 0.157 0.187 1.584

in Figure 27.
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Figure 27: The static quark potential calculated at e =  0.89.

We interpolated the points from Figure 27 w ith cubic splines to produce a smooth 

representative function. Combining the interpolating function and the analytical 

expression plotted in Figure 23 gives us Figure 28

The interpolating function agrees well w ith the linear form of the quenched analyt­

ical result and at large R, it shows a small deviation from the linear form, suggesting 

either screening of the {)otential by the dynamical fermions or finite volume effects. 

However these deviations are w ithin one standard deviation of the linear form, so 

it caimot be ruled out that they are attributable to noise in the ensemble of gauge
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Figure 28: The analytic predictions for the static fermion potential at e =  0.89 

together with the results from our calculation.

configurations.

To determine the statistical validity of the deviations, a greater number of gauge 

conftgurations would have to be obtaiiie;d to reduce the error bars and to allow mea­

surements on data points at greater B. In the latter case, more configurations would 

improve the signal-to-noise ratio, reducing the influence of the noise.

9.1.4 The Potential at e =  1.3

In increasing e, we encounter the same signal-to-noise problems as when we increased 

R. Consequently, the range of data points that we can access decreases. As we move 

up to e =  1.3, we find that only R = \ provides us with a range of values of T. Figure 

29 shows this range. The T  = 2 data point is errant, but the remaining data points 

follow the predicted pattern.

The T  = 1 data point is 0.888(-|-0.056, —0.060). At i? =  1, the analytical value of 

the potential is 0.845, which is comfortably in agreement. For each subsequent value 

of R, we only have one data point. These are sunmiarized in the Table 2 and are
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Q E D  P o ten tia l a t  R = 1 . E = 1 .3

Figure 29: The sta tic  fennioii potential a t i? =  1 and e =  1.3.

Table 2; 'he s ta tic  quark potential d a ta  points a t e =  1.3.

R 1 / < V V ( 1 ) > \  
I, < V V ( 2 ) >  ) + A - A Theor. Val.

1 0.888 0.056 0.060 0.845

2 1.659 0.213 0.271 1.690

3 2.274 0.499 1.040 2.535

plotted  in Figure 30.

In Figure 31, we see the four potentials predicted by equation (43) for e =  1.3. 

The poten tial for the quenched, infinite spatial extent case is shown in red and the 

poten tial for the  quenched, finite spatial extent case (with L i  =  6) is shown in green. 

The blue and violet plots show the  unquenched potentials for infinite and finite extent, 

respectively.

In Figure 32, we com pare these predictions w ith the potential calculated and 

shown in F igure 30. As in the e =  0.89 case, we use cubic splines to  obtain a sm ooth 

function th a t is representative of the d a ta  points. As before, we see some agreement 

between the  predictions and the  numerically generated potential. The calculated
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Figure 30: T he sta tic  quark potential calculated a t e =  1.3.

potential agrees broadly w ith the quenched predictions, although it suggests deviation 

for increasing R.  This deviation would be consistent w ith either the screening effects 

of the dynam ical fermions or w ith the  finite volume effects. As in th e  e =  0.89 case, 

the  deviation is w ithin one s tandard  deviation of the the  quenched predictions, so we 

cannot be certain  th a t it is not a figment of noise in the  ensemble.

9.1 .5  D iscussion

The (calculated potential in bo th  cases agrees w ith the  quenched predictions. This is 

surprising as the  sim ulation uses dynam ical fermions and so we would expect to  see 

a screened poten tial th a t more resembled the unquenched plots.

In bo th  cases, we see some deviation from the quenched predictions, bu t it is 

small, lying w ithin one s tandard  deviation of the  d a ta  point. It is possible th a t the 

deviation is produced by noise in the ensemble, bu t the  consistency between bo th  

plots would suggest th a t th is is a system atic result.

The deviation of the  in terpolated calculated potential is significantly larger th an  

the  deviation shown by the quenched finite spatial extent case from the quenched

“ 1--------------------1--------------------i------------------- r
Static Quark P o  ential at E = 1 .3  ^
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Figure 31: The static quarlv potential for e =  1.3 and Li = 6 with the linear, un­

screened potential in the limit of inhnite spatial extent (red), the unscreened potential 

w'ith finite spatial extent (green), the screened potential with infinite extent (blue) 

and the screened potential with hnite extent(pink).

infinite extent case. This would suggest that the deviation of the calculated potential 

from the quenched result is due to screening efl'ects, rather than finite spatial extent 

effects. However, the size of the error bars at each jooints do not permit us to draw 

hard conclusions here.

To investigate this further, a greater number of gauge conhgurations would have to 

be generated, in order to reduce the size or the error bars and to allow measurements 

to be made at higher R, where the deviation would be greater, if it is not an artifact 

of the noise.

9.2 The Topological Charge

In Figure 18, we see that in standard lattice field theory, there are free energy hills 

that are likely to impede the transitions of the system between configurations with 

different topological charge in a Hybrid Monte Carlo calculation. In Figure 19, we
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Figure 32: The analytic predictions for the static ferniion potential at e =  1.3 together 

with the result of from our calculation.

see th a t these hills do not appear in the geometric discretization. Using these sets of 

gauge held conhgurations, we calculated the topological charge, using the definition 

in equation (32), in order to see how tlie configurations were distributed.

We calculated the topological charge for sets of gauge conhgurations generated 

with e =  1.3, e =  1.5 and e =  1.7 and the results are shown in Figures 33, 34 and 35, 

respectively.

In the limit of a large number of distributions, the curves should become Gaussian. 

In our case, where the number of configurations is limited to 180, we can see that 

the system visits states of non-zero topological charge liberally enough to suggest 

that there does not appear to be barriers impeding the transition between states of 

differing topological charge. The number of configurations is too few to show that 

the underlying distribution is Gaussian, but the distributions shown would not be 

incompatible with this.

W ith a larger data set, we would be able to infer the topological susceptibility of
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Figure 33; The topological charge distribution for e = 1.3. 

the vacuum which is calculated from the variance of the distribution [92]

< >

where V  is the volume of the system.

9.3 The Chiral Condensate

In [87], Joos and Azakov describe analytical calculations showing the limiting be­

haviour of the chiral condensate with respect to the extension of the lattice in the 

time dimension.

We had hoped th a t a calculation of the chiral condensate for our formulation would 

compare to the theoretical values as well as the static ferniion potential calculation 

had done. Unfortunately, this proved not to be the case.

The reason is the lack of hermiticity in the Dirac operator. In a conventional 

lattice QCD calculation, the chiral condensate. < 'I 'l ' > , is evaluated by calculating 

the ensemble average of Tr where M  is the Dirac operator. This quantity is

guaranteed to be real because of the 7 5 -hermiticity of M.  In our case, the lack of
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Figure 34: The topological charge distribution for e =  1.5.

a horiniticity property means that the eigenvalues can be complex and so Tr(A /“ ') 

can be complex.

This left us with the question of how to make Tr(Af“ )̂ real. Using the prod­

uct M H l  is inadvisable as this represents a difl'erent combination of propagating 

fields to that represented by the product Instead we chose to drop the

imaginary component on the grounds that preliminary sinuilations showed that the 

imaginary part of < 4>,4> > was significantly smaller in magnitude than the real 

part. For example, on a simulation of a 5x5 complex, using 140 Metropolis steps. 

Re 0, 0 =  2514.6 and Im  0, 0 =  —352.5. Whilst the imaginary figures

were not negligible, they were not dominant either and for that reason, we thought 

that dropping might not aftect the data significantly.

Unfortunately, this proved not to be the case. The values for Re 0, 0 that 

we obtained had standard deviations that were several orders of magnitude too large 

to admit any meaningful comparison with the theoretical values. In the example 

where Re 0, 0 > j  =  2514.6, we found that a = 8036.7.

This still leaves an open cjuestion of how to construct a fermion propagator with

98



100
T opoloyicai C h a rg e  D istribution a t  e = 1 .7

T opo log ica l C h a rg e

Figure 35: The topological charge distribution for e =  1.7. 

a real trace in this formulation.

9.4 A utocorrelation

The Hybrid Monte Carlo algorithm achieves its computational efficiency by sampling 

richly from the configurations with high probability. Each new configuration is de­

termined from the previous configuration using molecular dynamics and a Metropolis 

test. This invites the question of whether there is a high degree of autocorrelation 

within the generated sequence of gauge field configurations.

Autocorrelation can be tested using any observable and we shall use the gauge 

action, defined in section 6.3.2. We use the definition for autocorrelation provided 

by Sokal [94] and used in [95] [96]. For a general observable, Xi  with n  components 

and mean X
n - \ t \

 ̂ I i = l

A plot of the autocorrelation function for the gauge action is shown in Figure 36 

for e = 0.89.

We can see here that, at low t, the autocorrelation is high, as expected. However,
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Figure 3G: The autocorrelation of the gauge action measured against the displacement 

in simulation time.

as t increases the autocorrelation quickly falls away, reaching zero after approximately 

40 Monte Carlo steps. As t continues to increase, there is a period of low amplitude 

oscillation before the value of the autocorrelation becomes more erratic. The erratic 

behaviour is expected at high t because the number of components used in the sum 

is small, making the value of the autocorrelation more sensitive to noise.

In our calculations, we use 180 gauge configurations and we can here see that the 

autocorrelation has hampered, but not prevented us from representatively sampling 

the configuration space.
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10 Future W ork

The work th a t we have presented here is largely developmental. We have shown 

how to construct and use an Abelian held theory within the geometric discretization 

framework to numerically calculate analytically known quantities. We have also 

proposed an original scheme for isolating the flavour and chiral components of Dirac- 

Kahler fermions. Both of these topics could be extended in a range of ways.

The gauge theory is an Abelian theory and it would be interesting to generalise 

it to non-Abelian gauge groups. It would also be of interest to compare it to other 

non-compact U{\)  formulations [75][90] for performance and accuracy.

One unusual feature of this description is the lack of hermiticity present in the 

Dirac-Kahler operator. It would be of great interest to analyse the implications of 

this for the formulation. The substitution det{M'^M)  partially addresses this and 

it resembles both the quarter-root trick used in staggered ferniion calculations [73] [91] 

and the denominator of the Overlap Dirac operator in equation (5), but it is different 

enough that the degree of loc:ality is not clear from the definition. This would be 

worth further study.

The lack of a hermiticity property also has consequences for the lattice Feynman 

rules. As we saw in Section 9.3, a non-herniitian Dirac-Kahler operator leads to a 

non-hermitian fermion propagator. This is an im portant issue that deserves to be 

addressed in future work.

We saw agreement between the analytical values for the static fermion potential 

and our calculated values. However, the error bars were smaller at lower e. It would 

be valuable to test this agreement at greater accuracy by performing more calculations 

at lower values of e. This would also allow us to further investigate the screening 

and ftnite volume effects in the static ferniion potential by allowing us to extend the 

calculated potential to higher values of R.

The description th a t we have proposed for isolating the components of Dirac- 

Kahler ferniions using multiple conij)lexes has nuich potential for development and 

could have some bearing on the quarter-root trick of staggered ferniions [73] [91]. In 

the four dimensional version, we used eight complexes, but only four were needed to
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separate the different fiavours. In a free held calculation, there would be a separate 

action for each complex. The total action would then be the sum of four terms: 

S  = So + S(i + Se + Sf. Integrating the fermion fields for each complex separately 

would mean tha t the determ inant in the path integral was a product of four separate 

determinant, one for each complex.

To generalise this to the gauged case, would require us to study how effectively 

we could project out the gauge helds so tha t we could isolate those tha t associate 

with just one flavour.

Naturally, it would be of interest to try  to rewrite these ideas in the conventional 

Dirac basis. The ideas behind the multiple complex approach are inspired by discrete 

differential geometry, but there is no reason, in principle, why the same ideas cannot 

be applied to the standard staggered fermion fornmlation.

W hether these ideas bear fruit or not, it would be nonetheless valuable to try  using 

the multiple complex system to perform lattice gauge calculations, just as we have 

done for original geometric discretization fornuilation. This would require redesigning 

the code and algorithms th a t we have used to calculate the results in Section 9, but 

the adjustments would be a manageable project.
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11 Conclusions

The work hi this thesis mostly relates to the construction and use of an Abelian gauge 

theory in the geometric discretization formulation of discrete differential geometry 

when used to represent Dirac-Kahler ferniions. However, the first result that we 

obtained was a definition for a wedge product tha t adm itted a local equation of 

motion for the fermion field, but not a local action.

Our first development of the geometric discretization formulation was to show 

that, in two space-time dimensions, we could use combinations of the original and 

dual complexes to separate out either the chiral components of the free fermion 

fields or the flavour components. To enable us to isolate both the chiral and flavour 

components simultaneously, we were required to introduce another pair of complexes 

and to adjust the Hodge star definition so that it mapped in a suitable way between 

the four complexes.

Having done this for two dimensions, we studied the same idea in four dimensions. 

We found tha t we could isolate the chiral components using just the original and 

dual complexes, but to isolate each of the four degenerate flavours, we needed to 

introduce two new structures of complex and a new operator. The first complex 

was defined to have simplices complementary to the original complex in two of the 

four space-time dimensions, but not in the remaining two. The simplices of the 

second complex were complementary to the simplices of the first complex in all four 

dimensions. The operator mapped differential forms to their complement in two of 

the four dimensions. As in the two dimensional case, we needed to introduce a second 

set of all the complexes and modify the operators appropriately to be able to isolate 

the chiral and flavour components simultaneously.

In the next section of the thesis, we constructed an Abelian field theory for the 

Dirac-Kahler fornuilation. We introduced a set of gauge transforms, an invariant 

gauge action and, because the theory is non-compact, a gauge fixing term for the 

Lorentz gauge. We defined a topological charge for the theory and compared it 

to established results analytically. We also looked at a specific topological gauge 

configuration and showed how the gauge transformation defining the topology for
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the discrete formulation converged on the continuum definition for large complexes.

We then set about constructing a computational framework for the Abelian gauge 

theory so th a t we could test it, numerically, against analytical results. The framework 

used the Hybrid Monte Carlo algorithm to generate an ensemble of gauge fields on 

both the dual and original complexes.

We used Wilson loops on the configurations generated to calculate the static 

j)otential and showed th a t the potential produced by our formulation agreed with 

the analytic results.

Our final result was to study the topological charge of ensembles of gauge con­

figurations and to show th a t the system appears to move liberally into regions of 

non-zero topological charge with a distribution consistent with the Gaussian shaped 

gauge action.
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A An A lternative D efinition for the W edge Prod­

uct

In this section, we show th a t it is possible to define a wedge product within tlie 

frameworlc introduced by Becher and Joos [45] tha t allows Leibnitz’ rule to be satisfied 

and th a t adm its a local Clifford algebra.

L eibnitz’ rule describes the derivative of the product of a pair of functions and 

it is desirable to  have the same relationship on the complex as in the continuum. 

In the Dirac basis, on the lattice, the derivative is a ftnite difference operator and 

the functions are vectors or scalars found a t the vertices of the lattice. In discrete 

differential geometry, the derivative is the exterior derivative and the functions are 

linear com binations of discrete difl’erential forms. The product between the functions 

is taken using the discrete wedge product and the exterior derivative also contains 

a discrete wedge product between a discrete 1-form and the function on which it 

operates. The definition of the discrete wedge pi'oduct determines which terms are 

non-zero and so it has a subtle but critical rok; in dehning the properties of the 

product and the exterior derivative. In the Dirac basis, its role would be played by 

Dirac delta  functions between lattice sites.

Here, we modify the definition of the wedge product, which affects the definition 

of the  product between functions and the definition of the exterior derivative, so 

th a t it allows Leibnitz’ rule to be fulfilled. The definition for the wedge product is 

local, bu t when we use it to  define the Hodge star operator, which is necessary to 

define an inner product, we find th a t we cannot construct a local operator, with the 

consequence th a t the action retains its non-locality. The modification is subtle and 

to  in terpret it in the Dirac basis would require the introduction of non-trivial Dirac 

delta-functions between lattice points in both the finite difi'erence derivative operator 

and in the product between functions.

This appendix is organised as follows. Firstly, we introduce the notation used 

by Becher and Joos in their paper. We then use locality and Leibnitz’ rule as con­

s tra in ts  on an undefined wedge product and find the form it nmst take in order to
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satisfy these constraints. We subsequently provide examples of this definition on one 

dimensional and two dimensional complexes to show that it allows Leibnitz’ rule to 

be satisfied. We then consider the role of this wedge product definition in axial gauge 

transformations. Finally, we consider the associated Hodge star operator and the 

inner product.

T he construction

Becher and Joos divided the 2D Euclidean lattice into squares with a length of side of 

twice the lattice spacing. From each square, the simplices at the bottom left corner, 

the bottom edge, the left edge and the whole square, represent different discrete 

differential forms, with the same coordinate.

Figure 37: The lattice divided for Becher and Joos formulation.

From the square ABCD,  in Figure 37, the simplices A, AB, AD and ABCD  each 

represent a different discrete differential form, taking the coordinate of the point A 

as their coordinates. Thus

jg represented by the simplex [A] 

is represented by the simplex [AB] 

is represented by the simplex [AD] 

dA,12 jg represented by the simplex [ABCD]

An arbitrary function can be wTitten as $  =  ^  , where the sum

over / /  is a sum over all simplices on the complex, for each coordinate x.
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We start the derivation by writing Leibnitz’ rule as

d { ^ A e )  -  ((/(I>)A(0) -  (^$ )A (fi0 ) =  0 

where the wedge product A is undefined and the two arbitrary fields are

The product between $  and 0  is

<I>A0 =  EE
x ,H  y . K

and applying the exterior derivative to this, we have

d($A 0) =  EEE
z , n  x , H  y , K

where is as yet undehued. Applying the exterior derivative to the two fields 

individually yields

'O'- =  E . , „  8„ ( 0 ( x ,  E , .  [»(u. /v )

After inserting these expressions into Leibnitz’ rule, we have

=  0

z , x . y , H, K, n

- ( - f )  H) (d^O{y, A'))(i'"'"Arf"’'‘Arf ’̂̂ '

where h is the number of members of the set H .

If the Clifford algebra is to behave locally, the wedge must use the forms on its 

left and right to construct a form with the same coordinate as the one on its right, 

but of higher dimension. The resulting form will correspond to a simplex that is 

centred around a lattice site further from the origin, along at least one axis, than the 

lattice site centred in the simplex corresponding to the form on the right hand side 

of the wedge. For example, in Figure 37, must have a product with

coordinate A, if we are to be able to have =  d^'^. Therefore, the

product C^yd^' ‘̂ )Ad‘̂ '  ̂ must be proportional to d'^'^‘̂ which corresponds to a simplex
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centred on a lattice site further along the 2 axis than the lattice site at the centre of 

the simplex corresponding to

Consequently, the requirement that the square of the Clifford product behaves 

locally means that the exterior derivative must contain a forward derivative: — 1).

Applying the forward derivatives to Leibnitz’ rule, we have

(0(x +  e^, H)9{y + K)  -  4>{x,

-9{y,  K)  + e^, H) -

- ( - 1 )  V(.T, H) (e{y + e^, K) -  0{y, =  0

The second terms of tlie first and second lines cancel, leaving us with

(0(a; +  e^, H)0{y +  e^, K) -  0(y, K)<j){x +  e^, (45)

. K
=  0

z.x,y. l l .K,^i

- ( -1 ) '^  ((/)(.x, H)0{y + e^, K) -  4>{x, H)6{y,  A'))rf"'"Ad^’'̂ AfF-

In order for Leibnitz’ rule to be satisfied, the remaining terms must cancel. If 

t he 0 field is constant across the complex, the first and second terms will cancel with 

each other and the third and fourth terms will also cancel with each other. However, 

we are interested in a result for arbitrary fields, so instead we dehne the wedge so 

that the first and third terms cancel with each other and the second and fourth terms 

cancel.

If we choose the A to be

d^'^Ady-^ = for H n K  =

0 otherwise

the first and third terms become

(46)

^  U y  + e.K+ e^, H)0{y + e„

-{- l f ( t>{y  +  e, +  e„  H)0{y +  e^,

If we rewrite en^iK as ( —l)^e/i//A', we can see that the two terms cancel.
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The second and fourth terms of equation (45) are

( -  6{y, K)4>{x + (47)
z , x , y , H, K ,n

- { - 1 ) ^  (  -  0(x, H)0{y, K ) y ^ ’̂  Ad '̂^Ad '̂  ̂

Applying the same definition for A, we have

( -  0{y, A')0(y +  CK +  e ,̂ i f ) ) (48)

-(-1)'’ ( - 0(j/ + CK + e„. H)«(y,

By rewriting (hi k̂  as { — 1Y(^hk we can see tha t these terms also cancel.

A .l  Example in Id

To demonstrate this definition, we show how it satisfies Leibnitz’ rule in one dimen­

sion.

G G
A B

Figure 38: A one dimensional complex.

In Figure 38, we have three siniplices; [A], [B] and [AB] corresponding to d'̂ '̂ , 

and d '̂ ,̂ respectively. We define two fields on this complex with

$  =  0(^,0)(i^’® + 0(5 ,0)d^’® +  (^(yl,l)(i^’i 

C-) =  e{A,(H)d- '̂'^+ 6{B,(D)d‘̂ '^+ 0{A,l)d'^'^

Using the wedge prodvict d^'^Ad^'^ =  e n h ' d ^ ' ^ ' ^ ^ , the product between 

these fields is

$ A 0  =  (f){A, (D)0{A, +  (f){B, H))0{B, 0)d^® +  (biB, %)6{A, l)d >1,1
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The exterior derivative of this expression is

d ( $ A 0 )  =  E , , ^ c ? * ' ' " A ( T e , - l ) ( $ A 0 )

=  d ^ ’̂ A{Te, -  1 ) ( $ A 0 )

=  ( (̂t){B, 0) -  0)6'(A,

=  ^)6{B, 0) -  0 (A  0)^(A, 0))d^’i

with all other terms going to zero.

Now we look at the two terms ((i$)A 0 and (^$)A(<i0).

=  - 1 ) $

=  ^0(5,0) -  0 (A 0))rf^’'A(i -̂® 

=  ( 0 ( 5 ,0 ) - 0 ( A 0 ) ) r f ^ ’' 

d<d =  ( o { B , ^ ) - e { A S ) ) d ^ ' ^

For the hrst of the two terms, we have

(rf$)A0 =  |^((/)(i? ,0)-0(/l ,0 ))rf'^ '’^

A (^{A,  0)ri' ’̂® +  0{B, 0)d®'® +  6<(A,

=  (cj){B, H))e{A, 0) -  (t>{A, $)0{A,

For the second of the two terms, we have

a [ 0{B,(D) -e{A,dl ) jd^^^

= (̂ {̂A, + 0(5, 0)(î ’® -  0(A,

K(o{B,^) -  e{AS))d^'^

= (^0(5, 0)̂ (̂B, 0) -  0(5, 0)̂ (A, 0)^d^’i 

Adding these terms together we have

(c?$)A0 +  (^$)A((i0) =  (0(5,0)6^(^,0)-0(.4,0)6^(^,0))rf"

+  U (5,0)^^(5 ,0) -0 (5 ,0 )^ ^ (A ,0 )V ^ ’'

= ( 0(5, 0)̂ (̂5, 0) -  0(^, 0)̂ (A, 0) 

which is the same as the last line of equation (49).
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A .2 Exam ple in 2d

To demonstrate tha t the exterior derivative satisfies Leibnitz’ rule in less trivial con­

texts, we shall apply it to a two dimensional complex.

Q Q

D C

Figure 39: A two dimensional complex.

In Figure 39, the complex comprises nine siniplices. Four siniplices are zero dimen­

sional: [A], [i?], [C] and [D] which correspond to and respectively.

Four are one dimensional: [AD], [BC], [DC]  and [AD] c:orrespond to 

and d̂ -' .̂ Finally there is the two dimensional simplex [ABCD]  corresponding to

The two fields <I> and 0  are

$ = </>(/!, 0)(/-̂ '® + 0(i?,0)ri«’® + 0(C,0)ri^’® + (/)(D,0)d^’®
+cP{A, +  0 ( C ,  2 )d ^ ’’2 ^  ^  2)d^'^

+ 0 (D , 12)fi^’i2 

0  = ^(/l,0)ri-'^’® + f^(5,0)fl!^’® + (9(C',0)rf̂ '’'® + ^(D,0)d^’®

+0{A,  l)d^'^ +  0{C,  2 )d^’-2 +  0{D,\)d^'^ +  e{D,  2)d^ ‘̂ 

+0{D,12)d^^'^^

Using the product of equation (46), the product between $  and 0  is

$A0 = 0(A,0)^(/l,0)d-4’® + 0(i?, 0)0(5,0)(/^’® + 0(C,0)^^(C,0)^i^’®

+ 0 ( D ,  iJ))0{D, 0 ) d ^ ’® +  0 ( D ,  12)^^(D , 0 ) d " ' i ‘'' +  cf>{B, dl)0{D,

+^{A,  1)0{D,  2 )d^- i2  -  0 ( C ,  2)0{D,  l ) d ^ ’i2 ^  2)d^'^

+ 0 (5 , %)0{A, l)d^'  ̂ +  0 (5 , 0)0(C, 2)c?^’2 ^

+0(yl, \)0{A,  0)ri- '̂i +  0(C, 2)0{C, 0)(/^'2 ^  0)^D,i

+ 0 (5 , 2)0(5 , 0)c/^'^
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Applying the exterior derivative to this, we have

d(4>A0) =

=  0)^(5, 0) -  ^{A, iD)0{A, 0))(i^'i

+ (0(5, %)6{B, 0) -  <̂ (C, 0)^(C, 0))d^’2 

+ (0(C, 0)^(C, 0) -  0(D, 0)^(D, 0))d^’i 

^[(t){AS)0{AS) -  (t>{DS)0{DS))d^''^ (50)

+ (0(5 , 0)^(C, 2) -  0(^1, 0)^(5,

-  (0(5 , 0)^(A 1) -  0(C, 0)0(D,

-  (0(/l, 1)0{A, 0) -  0(D, 1)^(D, 0))d^’i2 

+ (0(C, 2)6»(C, 0) -  0( A  2)6 (̂D, 0))t/^’i2

Now we build the terms (d$)A0 and {A^)A(dO). For the former, we have

= Ey,,dy^^A{Te^-l)<i>
= ( 0 ( 5 ,0 ) -0(^0))rf-4 'i  + ( 0 ( 5 ,0 ) -0 (C ,0 ))r i^ ’2

+ (0(C, 0) -  0 (5 , 0))d^’i + (0(A, 0) -  0(5, 0)](i^-2 

+ (0(C, 2) -  0 (5 , 2})rf^’>2 _  j^D,12

(,/$)A0 = (0(5,0)-0(A ,0))^(/l,0)rf^U  + (0 (5 j)_ ^ (C ',0 ))^ (C ',0 )d^ ’2

+ (0(C, 0) -  0 ( 5 ,0))^(5,0)rf^'i + (0(A, 0) -  0 ( 5 ,0))^^(5, 0)rf -̂2 

+ (0(5 , 0) -  0(/l, 0))(^(5,2)(i^’i2 _  0) _  0))^^(D, l)rf^’i2

+ (0(C, 2) -  0 (5 , 2))^(5, 0)d^’i2 -  (0(/l, 1) -  0(D, 1)) 0(D, (D)d̂ '̂ " 

For the latter, we have

dO = E ,,,rf^’'^A (T e,- l)0

= (0(B, 0) -  0(A, 0 ) ) +  (6)(5, 0) -  0(C, 0))

+ [0{C, 0) -  0{D, 0))d^’i + ( 0̂{A, 0) -  ^(5, 0))rf^’2 

+ (t^(C, 2) -  0 ( 5 ,2))d^’i2 -  (^(A, 1) -  0{D, l))rf^’i2 

(yl<&)A(d0) = 0(5,0) ( 0̂{B, 0) -  0(A, 0)) +  0(5, 0) (^(5, 0) -  6»(C, 0))rf^’2

+0(C’, 0) (^(C, 0) -  9(D, 0))fl'^’i + 0(A, 0) (&{A, 0) -  0(5,0))^^^’̂  

-0(A, 1) (0(A, 0) -  0 (5 ,0))d^ ’̂ 2 ̂  2) (0(C, 0) -  0 (5 ,0))d^'i2

+0(5 , 0) (0(C, 2) -  0(5, 2))rf^’i2 _  0) i)^rfO,i2
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In the sum  (d $ )A 0  +  (yl$)A (dB ), we see tha t many term s cancel, leaving us with 

(d $ )A 0  +  (^ $ )A (d 0 )  =  0 )^ (5 ,0 ) -0 (A ,0 )^ y (A ,0 ) )d ^ ’l

+ 0) -  4>[C, 0)0(C, 0))d^'’2

+  (0(C , 0) -  ct)[D, %)e{D,

+  (0(yl, 0)t^(^, 0) -  cj){D, \h)e{D, 0 ) )d ^ ’2 

+ ((/)(S, 0)^(C, 2) -  ( (̂A, %)e{D,
-  (0(5, 0)̂ (̂ A 1) -  0(C, 0)(/( A  1)) 
- ( 0 ( A , l ) ^ ( A ,0 ) - ( ^ ( A i ) ^ ( A 0 ) ) r f ^ ' ' '

+  ( 0 ( C ,  2)0{C,  0 )  -  2 ) f ^ ( D ,  0 ) ) d ^ ’i2

which is the same as the right hand side of equation (50).

A .3 Transforming the Spinor

One of the  contexts in which this wedge has the potential to be useful is thai of 

transform s. In the 2D continuum, in the Dirac basis, the U v { l )  and U a {1) symmetries 

are im plem ented on the spinor with the transforms 'ip{x) —+ and ^(a;) ^

respectively. In the Dirac-Kahler basis, this be^comes <I>(x) ^  

and <I>(x) —»■ which reduces to <i>(;c) ^  ^a{x)dx^\ /dx^\ / ^^^y

term  pMx) i-^dx^vdx^v)  rewritten as cos(o'(a,')) +  sin(o:(.T))(i,x^ V rf.r^V.

On the  complex, it would also be desirable to have the same transform atbn: 

‘I>(x) ^  ^ia{x){-idx'^wdx^v)^f^^y However, the definition of the wedge th a t Becher aid  

.loos settled  on in [45] does not facilitate this because J 2y  and J 2 y  Ae^j 

are proportional to  th e  translation operators so every pair of consecutive term s in 'he 

power series expansion of pj-oportional to a difl'erent nunner

of translation  operators.

For example,

=  I +  i a { x ) { - i ^ d ^ ' ^  \ /  ('^1)
y 2

-^a^(r r ) ( -z  ^
y z ' y z
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41  ̂ ^  ^  '  ' 5!
y  z y  z

W hen we simpHfy the  above expression using the  definition for the wedge selected 

by Becher and  Joos, it becomes

=  l +  za(x)(-z
y 2

y 2

+  - ........
y z

However, when we expand (51) using the  wedge definition from equation (46), it 

becomes

y z

y z

+  ̂ a ‘‘ (.T) +  i ^ Q ^ ( .T ) ( - z  ^  d̂ '  ̂ V ^  rF ’̂ V) - ......
4! ^   ̂ 5!

y z

which is free of the  transla tion  oj)erators and so can be w ritten  as cos(o:(x)) +  

si 'n{a{x))dx^  V dx^V.

A .4 Implications

Changing the  definition of the wedge product has im plications for m any o ther oper­

ators and operations w ithin differential geometry. In the continuum , the Hodge sta r 

is defined w ith  the  requirem ent th a t dx^  A (*dx^^) = dx^  in n  dim ensional space, 

where d x ^  is an ordered n-form containing all the com ponents of the space. The 

inner product takes advantage of this relation to  build an orientated integral over all 

of the  space: ($ , 0 )  =  f  ^  A (=t=0).

On the complex, it would be desirable to  have the  same properties. The definition 

for the  wedge chosen by Becher and Joos facilitates this; d^ '^K{*d^ '^ )  — d ^ ' ^ , where 

* is natu ra lly  defined to  be and C H  is the com plem ent of H

in the  n-dim ensional space. However, equation (46) leads instead to  d^'^^K{*d^'^^) =
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ec//,^^ where the natura l definition of * is = e u c n d ^  ecH,CH Using this

naively in the inner product, we have

= cf){x,H)0{x,H)d^-^^f^’̂

This has the undesirable property th a t the field and the resulting ri-form belong to 

different coordinates. So, whilst we have gained som ething in term s of locality with 

the exterior derivative, it would appear th a t we have lost som ething with the Hodge 

sta r and  the inner product.

It might be possible to resolve this issue by modifying the  inner product in such 

a way th a t the fields and resulting n-forni have the same coordinate and th a t the 

inner product retains the same contim uun limit. However, as it is not central to  this 

thesis, we shall not pursue its development. The eni[)hasis of this thesis is on work 

using the  GD formalism.
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B 4D  Flavour P rojection

III this appendix, we want to prove relationships between and the Hodge star and 

between ^  and 7172. The notation for Z, B, A  and p follows on from the paper of 

Becher and Joos [45].

B .l  T he H odge Star and 75

In section 4 .2, we saw that the differential description of the ferniion fields was 

achieved by taking the product $(x) =  Yl,ab'^^b^ w h e r e  $ (x ) was a combina­

tion of differential forms, ip was the 4 x 4 matrix, comprising Dirac spinors, and Z  

was a m atrix of differential forms relating them.

In 4D, Z  is defined as

H

where d x ^  denotes the various ordered difl’erential forms of dimension h. We use 

Euclidean 7^ and we have tha t 7 5  =  —7i727374- From the definition for (l>(x), we can 

show th a t applying 7I’ to the right hand side of Z  is equivalent to applying 75 to the 

right hand side of ^ (x ) in the definition for $(a:).

T
75 =  -

T  T  T  T74 73 72 7/
(52)

where CH  is the ordered complement of H  and 4 is the dimension of the space. 

is defined to be equal to (—1)'’ where r is defined to be the number of pairs (a, 6) 

with a e  A  and h E B  where a > b.

When we apply the Hodge star to Z, we have

* pH,CHlJidx^^ (53)
H

By expanding the definition of (2) and ("^2^), we can show th a t (—1)  ̂  ̂ =

( —1)(2). We can also show from the definition of pa,b tha t B dx^^  = (—1)^  ̂ )dx^^  =  

P c H , C H d x ^ ^  and th a t P c h ,c h  +  P h ,c h  =  P1234 , c h - Including these results, we have that

B * A
H
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which is minus the last line of equation (52). Finally, we can take advantage of 

( _ 1 )( 2 )( — !)'* =  (—1 )(2) again to show that B * A  = *B giving

- * B Z  = Z -il

Now we look at left multiplying Z  by which is the same as 7 5 '0 (3 ') according 

to the definition for $(x).

T
75

(54)

Using pn,cH = (-l)^^'^ ^^pcuji = ( - l )^ P c / / , / /  and (-l)^"^'*)(_i)ft =  (-1)(2), we can 

rewrite equation (53) as

H

And finally taking advantage of ( - ! ) (  2 ) =  p c^cn  and P c h .h + P c h .c h  = Pew,1 2 3 4 , 

we have

B *
H

.CH

H

which is minus the last line of equation (54). Because ( — 1)^ 2 ) =  ( _ i ) ( 2) (_i)^'^ we 

can rewrite B* as *BA  giving

-  * B A Z  = - f l Z

B .2 7i72 and 4

We are only interested in the right application of 7 1 7 2  to ip{x), because used

only in the context of flavour separation.

^ ^ ( - l ) ( 2 ) 7 ^ d . T ^ ^  7 ^ 7 f  =  E w ( - l ) ^ " ^ P l 2 , W i 2 7 j / y i 2 ) / / 3 4 ^ ^ ^
(55)

where w'e have split H  into H \2 containing all the components of H  in the

{1,2} subspace and containing all the components in the {3,4} subspace. Our
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operator 4  is defined through

H

) H 3 4

H

To com plete the  relationship, we define the  operators B u d x ^  =  (~1)^ =

where hi 2 is the dimension of H 12 and A u d x ^  — { — l)^^‘̂ d x ^ . We can 

show th a t ( — 1)^ ' ^ 2  ®'*) =  i2+'‘34) gives us

-4 ^A 12 ipjldx"] =
H

Finally we have th a t,

H

which is the sam e as the  last line of equation (55). We note th a t we can write 

— Bx2^A\2 as ^^12

B.3 Flavour C om m utation R elations

The flavour projection operators are defined to  be

P'") =  ^ ( l  +  7 « f c 4 ^ i 2 ) ( l + / ^ b * ^ )4

To show th a t the D irac-K ahler operator com mutes w ith th is expression, we must 

show th a t it com m utes w ith each of the operators *B  and 4ftB\2- All th a t differs 

between the complex and the  continuum  form ulations is the dom ain of integration, 

which we have addressed in the  body of the thesis, so it is enough to  show th a t they 

commute in the  continuum .

S tarting  w ith the  former

[d ~  S, *B] f { x ) d x ^  =  [dx^ V *B] f [ x ) d x ^  = {dnf{x))  [dx^y,  *B] d x ^

So we need to  prove th a t dx>̂  V * B d x ^  = *B{dx^  V d x^ ) .  The left hand side is
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The right hand side is

Pti,H  ̂ ^PH/i.L,CHuixdx^^'^^ +   ̂ ^Pnu^,.CH/ndx^^^^^

where C denotes complementarity in 4D.

In the case where e H ,  we relate the two terms containing If they are

equivalent, then we have

=Pm,//( —1)  ̂  ̂ "^PH/n,CHUti

An expansion of (^2 )̂ gives ( —1)  ̂ 2 ) =  (_ i) ( 2 ) ( — The equality becomes 

P H , C H P f i , C H  =  —  PH / f i , CHU t i

=  PH,CHPH,^lP^l.CHu^l

=  Pti,n{ — ^)^'^^PH,CHPH,ij.Pn,CHPtJ.,fi

We know that =  1 and we can factor out some of the terms to reach

When /< e H , we have that p î,h Ph .^ =  ( — 1)^” ’ and so the right hand side equals 1.

For the case where // ^  H ,  we nuist compare the coefficients from the terms 

containing We want to prove the equivalence of

=  ( — 1)̂   ̂ ^PHUfi.CH/fiPiiM

By expanding we can show that (—1)  ̂ =  ̂ =  (—l)^^)( —1)^. The equality is

now
P H , C U P t i , C H  —  ( —l)^P//U/i,C////iP^,//

=  { — '^)^PH,CHIij.Pti,CH/tiPiiM 

— {—^)^PH,CHpH,ij.Pti,CH/iJ.PtJ„H 

=  { — l)'^pH,CHPH,^iPti,CHPn,nPti,H

Using =  1, we can simplify the equality to

H
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W hen /i ^  / / ,  we have th a t Ph ,hPh,h  =  which completes the proof of the

com m utation of * B  w ith d  — S.

For the  second operator, we proceed in a similar fashion. We want to  prove th a t

d x ^  V ^ B u d x ^ ^  =  ^ I k B u d x ^  V d x ^  (56)

I t is easiest to  divide this proof into two halves. In the first, we will assum e th a t 

// e  {1,2}. In the second, we will assume th a t // G {3,4}.

W hen 1.1 €  {1,2}, the left hand side of equation (56) is

T he right hand side is

Com paring the cases where p. € H 12, we want to  check th a t the following equality 

holds true.

Pm,«12(“ 1)^  ̂ ' PHl2/ l̂,CHi2U l̂ =  ( - 1 ) ^   ̂ ’ P^h2,CHl2p l̂■,CHl2

By expanding (̂ *'‘2” ^)’ show th a t ( — 1)^ ) =  (—1)( 2^)(— Inser t i ng

this (and swapping left for right), we have for the equality

P H i 2 , C H \ 2 P h , C H \ 2  P ^ l J h 2 ^  1) P H i 2 / t l , C H \ 2 V H  

We can rearrange some of the term s on the right as follows

PHi2,CH\2pfj,,CH\2 Pti.H\2^ 1) PHi2,CHi2UiJ.Pn,CHi2Ufi

W'e can use p^^^ =  1 and factor out some common term s to  reduce the expression to

1 = P ^ .H ,2 ( -1 ) '“ "^V//.2,M

In th e  case where p  G i / 1 2 , we have th a t p^,Hi2 Pf/i2 ,/i =  ( —1)^^^“ \  so the equivalence 

holds.
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For ji G C H \ 2 , the equivalence th a t we are seeking to  prove is

^ ’ Plh20^l,CHx2/tl — ^ ' PH i2,CHi2P^I.CHi2

We can show th a t ( — 1)^  ̂ =  ( — 1)^ 2^)(—1)^'^, which reduces this expression to

(again, we swap left aud right hand sides)

PHi2,CHi2PlJ-^CH\2 Pfl.Hi2i 1) PHi2DfJ.,CHi2/ll

After further expansion, we have

PH\2fiHi2Pli,CHi2 Pll.Hl2^ PHl2,CHi2/fJ.Pp,,CHi2/fi

PfJ,,Hl2i 1)  P // l2 ,C // i2P//i2 , / lP /i ,C // l2P/i , /J

Using =  1 and cancelling some conunon expressions, this becomes

1 =  PtUh2i~'^)^'"Plh2,H

Because p e  C H 1 2 , we have P^l.H\2 PHi2 4 l ~  ( —1)^'^  so this equivalence holds.

In the  case where // G {3, 4}, for the left hand side of ecjuation (56) we have

( - 1 ) ( ' ‘" V / / ,2 .C / /> 2 P / . , (C / / .2 ) / /3 4  

For the right hand side, we have

If we equate the coefficients for the case // e  H 3 4 , we have

P / i , / / l 2 / / 3 4 ( “ l ) ^  = ^ V f / l 2 , C W l 2  =  ( “ 1 ) ^  ^  ^  P H i 2 C H i 2 P i l , C H x 2 H 3 4 .  

which simplihes to

PH.H12H34 Pn,CH\2 H3 i

In the case where // e  {3,4}, it is the  case th a t p ^ j i ^2 — Ph,ch i 2  ̂ equate

these two term s. An identical argum ent follows for the case / /  e  C //3 4 .
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C M athem atical Iden tities

Here, we prove the identity in equation (39).

dAd. T

=  -T r

=  - T v  2  ̂ ’

=  -T r2

=  -T r

=  iT r 2

aAii,

- T v2

-T r

Be

(AftM) -1

d M
d A( l , T )

+ i T r  f A f - i A / t - i M t j J f - )
d A ( l , r )  J ^ \  d A { l , T ) )

dA{l , r )

-A/*-!dM’
d A ( l , r ) '

A f * - i

) + i T Y  

+ i T r (

d A { l , T ) )  2 ^̂ *̂

( T v (^A/-i

A f - l  9 M _
dA[l ,T)

d M  
dA( l , T )

-1 d MM dA{l ,r]

I d M  
8A{ 1 ,t ) J J

where we 

Tr (.4).

have made use of the properties Tr (ABC) = Tr {CAB)  and Tr =
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