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Summary

In this thesis, we develop the Geometric Discretization formulation
of Dirac-Kahler fermions.

We note that the naive definition of chiral symmetry is only ap-
proximately captured in the formulation. However, we show that we
can use the two complexes associated with the definition of the Hodge
star to construct chiral projection operators that exactly project a dif-
ferent chirality of field on to each complex. Similarly, we construct
flavour projection operators that project a different flavour of field on
to each complex. We also see that, in two space-time dimensions, we
need four complexes to simultaneously separate the chiral and flavour
components of the field.

We subsequently develop projection operators for four dimensional
space-time. The flavour projection requires us to introduce a new oper-
ator by analogy to the Hodge star, that takes the complement of a form
or cochain in the {1,2} subspace, but not the {3,4} subspace. Cor-
respondingly, we define new complexes that complement the original
complex in just one of the {1,2} or {3,4} subspaces. Using this oper-
ator and the Hodge star, we define flavour projection operators for the
Dirac-Kahler fields. We find that to isolate both the chiral and flavour
components of the fields simultaneously requires eight complexes in
four space-time dimensions.

We also define an Abelian gauge theory for the Geometric Discretiza-
tion and adapt the Hybrid Monte Carlo algorithm to it, using the algo-
rithm to calculate the static potential between fermions. We find that
the calculation is in agreement with analytical results. We additionally
study topological gauge fields and show how their effects differ between

the Geometric Discretization and standard lattice QED.
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1 Introduction and Motivation

Science is symbiotic. In every discipline, there are theoretical and experimental
strands living side-by-side, each helping the other to progress.

In some disciplines, the dialogue between the strands can be qualitative, but in
particle physics the phenomena of interest are impossible to observe directly. Instead,
the dialogue must take the form of quantitative comparisons. Theoreticians calculate
values from the theories. Experimentalists measure values from the experiments. If
the comparison agrees, the theory is verified; if not, the theory is shown to be flawed
and further study is needed.

The dialogue can be beneficial to both strands. A theory with a history of suc-
cessful predictions can direct experimentalists towards more fruitful experimental
set-ups. An experimental measurement can reduce the number of options available
in the construction of a theory, when multiple possibilities present themselves.

The established theory for describing the quantum mechanical behaviour of par-
ticles is Quantum Field Theory and there are many ways of using it to calculate
verifiable quantities. Which way we choose is determined by the quantity in ques-
tion.

When we are studying the interaction between quarks, a successtul approach
is to pixellate space and time by replacing the four continuous dimensions with a
four dimensional lattice of points. In most formulations, the fields that represent
particles and their gauge fields are sampled at the points and the motion of the field
is represented by a ripple across the lattice.

Unfortunately, the act of sampling the fields at the points of the lattice introduces
problems. Fields that would have measurably different momenta in the continuum
can have the same momenta when it is calculated from the sampled points. This
problem is known as fermion doubling and it is so profound that an entire research
field has grown up around it.

Resolving the problem is particularly difficult because removing the degeneracy
between fields invariably breaks some of the symmetry of the equations. The sym-

metry is known as chiral symmetry and it is important for many reasons, including



the role it plays in the creation of pions.

Several schemes have been proposed that remove the degeneracy to varying de-
grees and each has a different consequence for the chiral symmetry. The Ginsparg-
Wilson formulation [1], which encompasses the domain wall and overlap formulations,
is the most successful scheme to date, but it is very computationally costly. It in-
troduces many more fields which must be included in the calculations, making them
considerably more time consuming.

One scheme achieves a trade off between removing the degeneracy and maintaining
chiral symmetry. In four space-time dimensions, the staggered fermion formulation
[2][3][4] reduces the sixteen degenerate fields to four and maintains a limited form of
chiral symmetry.

This scheme is related to a continuum description of fermionic field theory that
uses a basis of differential forms on a manifold, instead of vectors and that replaces
matrix operators with the operators of differential geometry. The description is known
as the Dirac-Kahler formulation and it has proven difficult to recreate on a complex.
The difficulty comes with uniquely and locally defining certain operators so that they
obey the algebra of differential geometry. In particular, it is difficult to define the
Hodge star so that its square is proportional to the identity and to define the wedge
product so that it is local and obeys Leibniz’s rule.

One proposal that addresses these problems is that of David Adams [5][6]. He
resolves the former problem by introducing a second complex, in parallel with the
first, known as the dual, and by defining the Hodge star to be a 1-to-1 mapping
between the two complexes. He resolves the latter problem by introducing a wedge
product that is defined by applying the continuum wedge product to an interpolated
space.

It has been shown by Rabin [7] that the Hodge star is related to the chiral sym-
metry of the theory, so it is natural to ask whether the doubling in the number of
fields that is brought about by introducing the dual is related to the degeneracy of
the fields.

The application of this scheme to the Dirac-Kéhler formulation has been studied




before, in the PhD theses of Vivian de Beaucé [8] and Samik Sen [9]. However, both
concentrated on the technical aspects of the formulation. Between them, they define
the scheme and the operators for cubic lattices and tentatively study the gauge fields.

In this thesis, we will build on their work. We start by studying the theory as it
stands and by looking into the technical details of how it addresses fermion doubling
and how it closely it approximates the continuum theory.

Next, we consider the role of the dual and we show how it can be used to achieve
exact chiral symmetry as well as how we can use it to isolate the degenerate fields
from the theory. We start this work in two dimensional space-time. However, we also
extend it to four space-time dimensions. In this case, we are required to introduce
two more complexes, one of which is the dual in two of the four dimensions and the
other is effectively the dual in the remaining two dimensions. We will see how we
can use these complexes to isolate the four degenerate fields and separate the chiral
components of each.

We will also explicitly construct an Abelian gauge theory for the formulation,
as it is introduced. The description will be non-compact, requiring us to introduce
gauge fixing terms for the action. We shall study this in some detail, including for
topologically interesting field configurations.

With the Abelian gauge theory constructed, we describe how we use it to perform
calculations. The basic algorithm that we use is the Hybrid Monte Carlo (HMC) algo-
rithm [10] which is used widely in conventional lattice QCD calculations. We describe
the discrete Dirac-Kahler scheme in a way that is suitable for lattice calculations and
we show how the HMC algorithm is implemented for our scheme.

Finally, we will use the algorithm to calculate a selection of properties for the
Abelian gauge field. In particular, we will study the topological charge and the static
fermion potential of the gauge field, using Wilson loops [11].

Some of this work has appeared in the conference proceeding [12].




2 Thesis Structure

Before we enter into the study of a fermionic field theory using discrete differential
geometry, we first must familiarize ourselves with the two ingredients. A background
chapter is devoted to each subject. In the middle of the chapter on differential geom-
etry the reader will find a small section of original work that modifies the definition
of one of the operators used in one of the seminal papers in the area. Appendix A is
also dedicated to this result.

We must also devote some time to getting up to speed with the work that has
been done by my predecessors on this formulation of discrete differential geometry.
A third background chapter is devoted to this.

With the background behind us, we will plunge into the original work proper.
Chapter 6 contains three sections. The first contains observations on the discrete
differential geometry formulation as it stands. Here, we will look at how it addresses
the problem of fermion doubling. We will also see that some of the correspondences
between the Dirac and Dirac-Kahler formulations that exist in the continuum, are
only approximately recreated on the complex. We will see that this has implications
for chiral symmetry. The second section introduces a formulation that takes advan-
tage of the dual complex to produce an exact chiral symmetry that we can use to
isolate the chiral components of the fermion fields. In 141 space-time dimensions, we
shall see that this needs only a little modification to enable us to separate the flavour
components, instead of the chiral components. To isolate both, simultaneously re-
quires us to introduce two more complexes. We proceed to study this scheme in 341
space-time dimensions, for which some of the mathematical detail is relegated to
Appendix B. This case follows a similar pattern to the 1+1 case, with the exception
that we must introduce two more complexes just to isolate the flavour components
of the fields. To isolate the chiral and flavour components, simultaneously requires
eight complexes. The third section introduces an Abelian field theory for the discrete
differential geometry and constructs all the terms that are necessary to complete
calculations.

This leads us to Chapter 7, in which we construct a computing framework that




allows us to carry out calculations using the Abelian gauge theory described. The
data types and algorithms are explained here along with the design considerations.

In Chapter 8, we review the Schwinger model, describing its formulation and some
of the relevant results that can be obtained from it analytically. In particular, we
review the analytical results that describe the static fermion potential in order to use
this as a benchmark for the results of our calculations.

In the next chapter, we present the results of calculations obtained using the
framework described in Chapter 7. We study the topological charge of the ensemble
of gauge configurations that we generated and we plot the static potential between
charges, attributable to the Abelian field. Here, we also mention the chiral condensate
and some of the difficulties that this formulation faces in trying to calculate it.

Chapter 10 is the penultimate chapter and in it we discuss the possible future
directions for the work.

In the final chapter, we bring together the conclusions from our work and assess
the merit of our discrete Dirac-Kahler formulation.

Appendix A contains a modification to the wedge product defined by Becher and
Joos. These details provide support for Section 4.3.2.

Appendix B contains the details of the correspondence between the Hodge star
operator and s, the generator of chiral symmetry in 341 space-time dimensions.
This is the link that allows us to isolate the chiral components of the fermion fields
on each complex. It also contributes to the understanding of how we can isolate the
flavour components. To complete this understanding, we also need the details of the
correspondences between the operators and complexes that complement forms in the
{1,2} subspace, but not the {3,4} subspace. This is also contained in this appendix.

This appendix supports Sections 6.2.4 and 6.2.5.




3 Background: Fermionic Lattice Field Theory

3.1 Fermionic Field Theory

Fermion behaviour is governed by the Dirac equation and its exact form depends on
the space in which we work. We shall develop the theory with one space and one time
dimension because this space is computationally simpler than and is a close analogue
of 3+1 dimensional space-time. In this space, the Dirac equation uses the Pauli o
matrices, oy and oy to implement the anticommuting Clifford algebra.

After a Wick rotation, the space and time dimensions become two Euclidean
space-time dimensions. This gives us an action that is wholly real allowing us to
consider the path integral as a probability distribution, weighting the possible routes
through the system that the quantum fields may take. In Minkowski space, the action
is complex, so instead of a probability, each route has a phase associated with it; the
route that incurs the least phase corresponding to the classical solution to the system.
In Euclidean space, the classical solution corresponds to the route that maximizes
the probability weight.

The 2D Euclidean Dirac equation is written as
[0*0* + m]¢¥ =0

where we have used the Einstein summation convention that repeated indices are

summed over the number of dimensions of the space-time. The Pauli matrices are

0 1 0 —1i I
01 = dp = O3i=
10 ¢ 0 0 -1
In the next section, we will see what happens when we try to recreate this de-

scription on the lattice.

3.2 The Fermion Doubling Problem

The lattice formulation of field theory was first laid down by Ken Wilson, in 1974
[18]. We will only concern ourselves here with the bits needed to understand the

problem of fermion doubling.




On the Euclidean lattice, continuous fields are replaced with discrete fields. ¥ (z),
a field that has a value everywhere in space-time is replaced with ¢; that only has
values at the lattice points, j. In two dimensions, we can visualise ¢; as a 2d his-
togram.

The derivative is replaced with a finite difference operator. There are several
different choices for a difference operator. We could use any of the three following

definitions for the derivative at site ¢

s [thrap — W4
Oty =9 W5 — ¥j-4]
o (D56 — Dy—p]
However, the third definition has two advantages over the other candidates. It ap-
proximates the continuum derivative more accurately and has symmetry properties
under spatial inversion. This is the conventional choice.

The fermion doubling problem arises because of this choice, but to see it, we must
step into Fourier space and look at the definition from there. But before we do so,
we shall look at the continuum Dirac equation in momentum space, so that we have
a benchmark.

We write ¢(z) in momentum space as () = ﬁ/ dp*y(p)e~ 7. The Dirac

equation has the following effect.

il -y s - -
(0,0, +m] — o /dp u'(p) T —/dp e T* [—vﬁpya#w(])) + NI*U’(P)} =0

If we specialise to the case where m = 0 and we take 1)(p) to be a solution, we can see
that 'J)(p) can only be nonzero when p, = 0, because the o, are linearly independent.

Now we will look at the lattice case and see how it compares. We write the
field v; as % Zp Lﬁpe_iaﬁj , where we have used the discrete Fourier transform and j
is a dimensionless number labelling the lattice site. N is the extent of the square
lattice. We write 0, as 5- (T T",), where T, is a translation operator that has the

following effect: T),1); = ;44 The lattice Dirac equation reads

1 T T —iap-j 1 —iap-j ~Sin(p CL) 7 7




This presents us with a problem. If we think about just one coordinate of p, then,
when m = 0, the equation has two solutions: one at p = 0 and one at p = Z. We
know from the continuum expression that only the first solution is physical, but the
second solution is as real as the first as far as the lattice Dirac equation is concerned.

The consequence of this phantom solution is seen in the Green’s function that
represents a fermion’s propagation. For every dimension of space-time there are now
two virtual fermions that can be exchanged, instead of one. In two dimensions, we
have 22 = 4 types of fermion.

The confusion arises because the definition for 9, is unable to distinguish between

the following two waves.

V) £ O
L b4

Figure 1: A 1d lattice at p = 0. Figure 2: A 1d lattice at p = 7.

O, uses only every second lattice site, so both of the waves in Figures 1 and 2
appear Hat.
This is the problem of fermion doubling, so named because the number of fermions

has doubled in each dimension.

3.3 The Fermion Doubling Story

The problem of fermion doubling was recognized by Ken Wilson when he put for-
ward the idea of a lattice field theory [18]. He also proposed a solution that, whilst
effective, had the unfortunate side-effect of robbing the theory of chiral symmetry.
Subsequently, others have proposed formulations that remove some of the phantom
solution (known as doublers) and that impede the chiral symmetry, all to differing
degrees.

After Wilson’s suggestion, Kogut and Susskind proposed an idea that reduced
the number of doublers (in four dimensions) to four and retained some degree of
chiral symmetry [2][3][4]. About five years later, Nielsen and Ninomiya nailed down

the relationship between the doublers and chirality in a theorem that showed that

8




doublers were necessary to maintain chiral symmetry on the lattice [24][25]. It took
another ten years for anyone to make any significant ground, but it happened when
David Kaplan added an extra spatial dimension to the lattice. In doing so he was
able to remove all but one doubler, isolating the remaining doubler at the far end
of the extra dimension [28]. This left the a single solution on a 4d space-time slice
at the near end of the extra dimension. Kaplan took the idea from a paper by
Callan and Harvey, published seven years before [29], who had done the same thing
in the continuum, but were unaware of the implications for the lattice. Shortly after,
another proposal came to light that had been worked on more or less at the same
time. Neuberger and Narayanan introduced an infinite set of regulator fields to cancel
the doublers [46][47][48][49][50]. This ‘tower’of extra fields has since been shown to be
equivalent to Kaplan’s description, where the extra dimension is taken to be infinite.

Before we proceed, it is worth taking a moment to appreciate why it is that so
many have dedicated themselves to preserving chiral symmetry. What does chiral
symimetry give us that inspires such loyalty?

There are many answers. When continuum theories are renormalized they can in
principle incur both additive and multiplicative changes to particle masses. However,
when the theory has chiral symmetry, the particle mass must stay zero throughout,
meaning that it can only incur multiplicative changes. To facilitate accurate renor-
malization on the lattice, the lattice description must respect chiral symmetry, too
[20]. Chiral symmetry also provides the theoretical basis for the formulation of pions.
When the theory respects chiral symmetry, but the vacuum state does not, the theory
is said to have spontaneous symmetry breaking. The number of pions existing in the
theory then corresponds to the number of independent symmetries that have been
broken [21]. Other reasons are given in [23].

Many comprehensive texts and review articles exist on the subject of fermion
doubling, (eg [19] [22] [23]). I shall précis the most relevant developments in the

following sections.




3.3.1 Wilson Fermions

Wilson’s solution to the problem of doublers was ingenious. He reasoned that we
could add any non-divergent term to the lattice action as long as it was multiplied
by a because this meant that it would go to zero in the continuum limit [18]. The
term he chose to add was the lattice equivalent of the second derivative because,
in Fourier space, it corresponds to (1 — cos(p,a)). This term breaks the degeneracy
between p =0 and p = 2.

The drawback to this approach is that the extra term acts like a mass term, in the
sense that it contributes a term bilinear in the fermionic fields that does not include
a v matrix. Consequently, it breaks the chiral symmetry of the action.

It is tempting to think that we could include a factor of 7 in its definition, to retain
the symmetry, but to do so would break the Lorentz invariance of the continuum limit
of the action. The extra term is essentially an implementation of d,0", which is a
Lorentz invariant quantity. A term such as 7,0,0" would not be; it has one too many

free indices.

3.3.2 Staggered Fermions

A few years after Wilson published his ideas, Kogut, Susskind and Banks suggested
a variant that went some way to eliminating doublers, whilst maintaining an element
of the chiral symmetry [2][3][4]. Their idea was to construct a description that only
accessed the first half of the Brillouin zone, but that had the same continuum limit.
By limiting the system to the first half of the Brillouin zone, the region in which
doubling takes place is excluded, but the effective lattice spacing of the new descrip-
tion is now twice as long as that of the basic theory. To have the proper continuum
behaviour, the basic spinors in each square of the effective lattice must be grouped
together in such a way as to represent effective spinors.

The starting point is to diagonalize the Dirac equation because this will make the
construction of the effective spinors easier. In two Euclidean dimensions, we can do

this with the following substitution
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T T \I U %1 52
U, — 030", U, — V071052 (1)

When we apply the derivative operator to this action, we can see how the Dirac

equation emerges.
T : 1 . Lo T T, 1 T
\Izzafla;h?—a Z; [T, — T_,] o265, = @I% z;: o, [Wers — Vg (2)

where [* = (—1)*+1"-*t*1 The next step is to group together the basic spinors so
that the lattice spacing between each group is twice the basic lattice spacing. We

can see how that is done in Figure 3.

‘e . ] S ® ° 13
e L] ® L] . (] .

X2 2 @-------- . ] e @ -en o * [
e ° [ 3 --® @ Loccee L] °

R ° e -9 (SE=ms ) [ 3

0 1 2 4 s 6

X

Figure 3: A 2D lattice. The squares correspond to sets of four linearly independent

spinors, each of which are premultiplied by a different combination of o matrices.

If each square is identified by its lower left corner, the effective spacing between
squares will be 2a where a is the basic lattice spacing.

At this point, we still have too many degrees of freedom, so we jettison all but
the one of the components of the transformed spinors from equation (1) and write
the remaining component as x,. Which component we choose is arbitrary, although
it is usual to keep the first.

The derivative in equation (2), which we have shown to correspond to the Dirac

operator, does not mix the components of the spinors, so this is a valid procedure.
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We can now construct an effective spinor belonging to a square as a combination
of the x, fields within that square.

g = ZUT’(I.;?XIC (3)

ceS

where the sum is over the corners, ¢ in square S and 0 s is the effective spinor.

This prescription is completely effective in removing the doublers as we have
defined them above. However, it has degeneracies of its own of which we must be
mindful.

If we construct the effective fermion from the y, fields at all four corners of a single
cell, we will have ¥ equal to a 2 x 2 matrix with four complex degrees of freedom.
Each column of this matrix represents a degenerate effective fermion. This is perfect
if we require a theory with two degenerate flavours of fermion, but is problematic if
we require only one flavour.

The final feature worth noting about this formulation is the presence of chiral
symmetry, although it is not in the form to which we are accustomed. Naturally,
this formulation does not affect the vector symmetry of the action, but the axial
symmetry comes intertwined with the symmetry of the degenerate flavours. The
axial symmetry is generated by o3 ® o3, where the first o3 acts on the components
of the spinor ¥ and the second o3 acts on the space of degenerate flavours, mixing

them. Consequently, the chiral projection operators are Pg/, = %(1 ® I +o03® 03).

3.3.3 Nielsen and Ninomiya’s Theorem

When it was first published, the staggered fermion formulation represented a small
victory in the struggle to remove doublers whilst preserving chiral symmetry, but it
was clear that it was a compromise of sorts. Degeneracy had been partially removed
at a cost of part of the chiral symmetry. Its publication meant that there were three
possibilities for lattice fermions.

The first was the original lattice theory, with full chiral symmetry and lots of
degenerate doublers. The second was the staggered formulation with its reduced

degeneracy and limited chiral symmetry. The third was the Wilson formulation with
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no doublers, but no chiral symmetry. Between them, it was becoming clear that a
trade off existed between maintaining the symmetry and removing the degeneracy.

It took five years for this relationship to be pinned down and that happened when
Nielsen and Ninomiya published their “no-go” theorem in 1981 [24][25]. In it they
state that, under some fairly mild conditions, the degeneracy is a consequence of
having chiral symmetry on the lattice.

Their argument proceeded as follows. Each solution to the chiral lattice Dirac
equation corresponds to a point where the momentum space lattice Hamiltonian goes
to zero. On the lattice, momentum space is periodic, so providing the Hamiltonian is
sufficiently smooth, every field that crosses the line H(p) = 0 once must do so again,
in order to maintain periodicity. The second crossing is the degenerate doubler. There
are implicit assumptions in this argument, but we will see that they correspond to
very mild constraints in position space that nearly all useful Hamiltonians fulfil.

The first is that the Hamiltonian be translationally invariant, which means that
momentum must be a conserved quantity. This stops us from crudely excluding the
regions of momentum space in which the doubling occurs.

The second is that the Hamiltonian must be smooth in momentum space, in all
derivatives of p. The consequence of smoothness is that the position space Hamil-
tonian is local to the corresponding degree. We can see this more easily if we start
with the definition of locality and work backwards.

Locality is defined by the rate at which the Hamiltonian goes to zero as we
separate the two points, on which it operates. We can quantify the degree of locality
by insisting that (z — y)"H(x,y) # oo as (z — y) — oo. If the Hamiltonian is
independent of position, it must depend only on the separation between x and y,
so we can rewrite this condition as z"H(z) 4 oc as z — oo. Stepping into 1D

momentum space, this becomes

ke JAHGI = G [ ) e
= (0" [ dpe g Hp)

For this expression to be non-divergent, the nth derivative of H (p), atip = Q,

must not diverge. An equivalent statement is that the n — 2th derivative is smooth.
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If H(z) is more local than any power of 2", then H(p) must be smooth to all orders,
which excludes the possibility of using piecewise functions to create a doubler-free
Hamiltonian.

The next assumption is that the Hamiltonian must be chiral, which means that
the terms must be proportional to the o matrices. Because the o matrices are linearly
independent, chirality ensures that H(p) only goes to zero when each of the p, go to
zero, not when a combination of non-zero p, cancel.

The final assumption is that the charge is conserved and this is guaranteed through
the hermiticity of the Hamiltonian.

These four assumptions are not very restrictive and most serious proposals up
until this point in time had met them. One that had not is the SLAC derivative [26]
in which the lattice derivative is replaced by a factor of p, in momentum space. This
formulation is chiral and is doubler-free, but it can be shown that the position space
representation is non-local [27].

Nielsen and Ninomiya’s theorem shows that all proposals bound by the listed
constraints suffer the trade off between chirality and uniqueness. It took over ten
years for a description to be proposed that navigated its way around the assumptions

in an attractive and viable fashion.

3.3.4 Domain Wall Fermions

In 1992, David Kaplan proposed a formulation that succeeded where others had
failed. He put non-degenerate, chiral fermions on the lattice by introducing an ex-
tra dimension to the scheme [28]. By including a mass term that switched sign as
it crosses the origin in the extra dimension, a single chiral solution fell out of the
description that clung to the four dimensional slice at the origin of the extra dimen-
sion. The clinginess could be seen from its wave function which reached into the
extra dimension, but was exponentially damped.

However, the doubling did not go away entirely. For a finite, periodic lattice, the
sign of the mass term had to switch back somewhere along the length of the extra

dimension and it was here that the doubler field could be found. When the lattice
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was infinite, the exponential suppression ensured that the two solutions decouple.
However, in the finite case, the situation was less perfect. The small overlap between
the solutions acted as a mass term and so broke the symmetry.

A few years later Furman and Shamir refined the model by removing the re-
quirements that the lattice be periodic and that the mass be a function of the extra
dimension [30]. Providing the mass had a value between 0 and 2 lattice spacings,
chiral solutions would appear on each wall. The advantage of making the lattice
non-periodic was that the same physical lattice size resulted in greater exponential
decoupling between the two solutions than in Kaplan’s original formulation.

Furman and Shamir’s formulation used the following action for four dimensions

. el : T T
SF — 1{/‘715“/;1 [wrw—;} - L""'n~[zJ I Z Un [L'n+[t .l Un—p — 2@"71] + my Z UnWPn

W, =145 n,u=1..5 n

DO =

If we limit the extent of the lattice in the extra dimension to L, and introduce a
coupling between the two ends, m;, we can rewrite Sp as
Sg = Z )(x,s)Dp(z, 8,2, 8)Y(2, s) (4)
where
Dr(z,s,7,8) = 8(s — 8 D(z,2") +d(x — ') D (s, )
D(z,z') = %2;1:1..4 [(1 el LRI B ) A [ — 7,,)Ul(.z:’)5(:r’ + 4 — 1‘)]
+ (mo —2n)é(z — ')
PR(S(I == 8/) = 7II,fPL5(LS —1- S/) = (5(0 = S/) < ifeg =()
wl(s, §)=48 Pabfs+1—8&)+Pbls—1—)—8(s—s):if0<cs< L;—1
—~mpPro(0 — 8') + Pré(L, —2—6') —8(Ls — 1 —8)sits=L,—1
The U,(x) are the gauge links U, (x) = exp(ieA,(z)) and Pg/, are the chiral projec-
tion operators Pr/p, = 5(1 £ 7s5).

For an example of a recent calculation using this formalism, see [31].

3.3.5 Overlap Fermions

Around the same time, Narayanan and Neuberger proposed a subtly different formu-

lation [46][47][48][49][50]. Starting with the same action as (4), but with the coupling
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between the two walls zero (my), they rewrote the effective action as
e RS TR T e e L | IR

where s labels an extra coordinate, |b4+ > are the states of the system at the infinite

extremes of the extra coordinate and Dy and T, are the many body operators

.T ~ AT &
Di = el Q+a Tt = el Hia

and )4+ and Hy are defined through

d 1 C 1 1 C
WS TR M PO (N2 ?f
0 /B Glaw @lors G BT

The B* and C terms are:-

1
s C § C Jix
Bnm‘,mﬁj 9 ( o F 7”) nai,mpBj — 5()(1'8 [()m.n+[t n,/u I On m+uUm ;1]

1 "
Y ot E Y % 7 Tji* af
(nm}mdj = 3 [om.n+/1 Dn.u n m+;1[' m, /1] u
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The T, are transfer matrices along the extra dimension and by taking the infinite
limit in the extra dimension, their ground states (|0+, U >) are the eigenstates that
come to dominate. After some algebra, this leaves us with an overlap between ground

states

e’V =< 0-,U|0+,U >

from which the description gets its name. After further analysis, this can be shown

to induce the chiral Dirac operator

D= (”75_571}) (5)

where H is the Hamiltonian. Although easy on the eye, this formula is tough to
implement. The combination of Hs must be expanded as a series and the number of
terms that must be taken is dependent on the application and the accuracy required,
just as in the domain wall case. For an example of a contemporary calculation using

this formulations, see [32].
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3.3.6 Ginsparg-Wilson Fermions

Both the domain wall and overlap formulations achieve chiral symmetry in the limit
of an infinite parameter. The test for lattice chiral symmetry is that the formulation

must fulfil the Ginsparg-Wilson relation [33]:-
D5 + v5D = aDvys D

which both these schemes do. In this expression a is the lattice spacing and D the
Dirac operator.
The relationship between the two schemes has been established by Borici in his

work on Truncated Overlap fermions [34][35].

3.3.7 The Fuzzy Sphere

A novel approach has been taken by the research group at the Dublin Institute for
Advanced Studies, who study a formulation in which the manifold is replaced with a
quantized phase space. The quantization leads to the space having toroidal properties

and this geometry leads to a non-commutativity in the coordinates [36][37][38][39] .
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4 Background: Differential Geometry

The premise of this thesis is to use a particular formulation of discrete differential
geometry to study fermionic field theories. The formulation borrows finite element
methods to define operators. Conventional lattice techniques, including all those
seen in section 3, involve finite different methods, in which fields are sampled at the
vertices of a lattice. Lattice operations process the sampled points to generate either
scalar values or further fields valid only on the lattice vertices.

Finite element analysis uses the operators from the continuum on a finite data
set. The fields at the vertices are linearly interpolated in the regions between vertices
to give us a continuous field on which the operators are applied [40][41]. Integrals can
also be approximated in the scheme by integrating over the links, faces, cubes and
hypercubes of the lattice and by interpolating in the regions between neighbouring
domains.

Before we introduce and extend the discrete differential geometry scheme, we
shall first run through the necessary background material from continuum differential

geometry. The following references are good supporting texts [42] [43].

4.1 Differential Geometry in the Continuum

The foundation for almost all differential geometry is the infinitesimal line element,
dz. On a manifold, we have scalars, vectors and tensors of any degree, but in order for
a vector or tensor at a point to have a direction, its components must reach another
point on the manifold. However, if the point were a finite distance away, the vector
or tensor would no longer be local and this would create problems when the local
axes are coordinate dependent. Instead we define the vectors or tensors so that they
point to a coordinate an infinitesimal distance away.

Vectors are represented as differential forms with one line element (known as
one-forms): v,(x)dz*. Matrices are described by differential forms with two line
elements (two-forms): g, (x)dz*dz”. Similarly, tensors of degree n are represented
by differential forms with n line elements (n-forms): nu, uy. . (x)dx* dzt? . .dat™. We

can define an orientation for the elements by incorporating the wedge product, A.
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An area element (a two-form) is the wedge product of two line element one-forms:
dz* A dz”. By wedging this against more one-forms, we can build forms of arbitrary
dimension.

The wedge operation is antisymmetric: dz*Adz¥ = —dx¥ Adz#*. Two consequences
of this are that the product of a differential form with itself is always zero and that
tensors symmetric in any two indices vanish.

An operator whose definition follows from that of A is the Hodge star. This is an
operator that maps a p-form to the complementary (n — p)-form, in n dimensional
space. For example, in 2d, it maps dz (a 1-form) to dy (a 1-form) and vice versa. It
also maps dz A dy (a 2-form) to a scalar (a 0 form) and vice versa. Formally, it is

defined as follows

xdxt = HCH o .CH -

where dz? is taken to mean a h-form, the ordered A product of h 1-forms and where
the H denotes the ordered set of indices in the h-form. CH denotes the ordered
complement of H, ie all the components in the space not belonging to H, and ¢ is
the Levi-Civita tensor. With this definition, da*’ A *dz* should always be equal to
a positive n-form of the same dimension as the space.

The anticommuting behaviour of A is reminiscent of the v and ¢ matrices. How-
ever, the algebra is slightly different. In Euclidean space-time, the v and ¢ matrices
obey the Clifford algebra: {y*,7"} = 26" and {o*, 0"} = 20*", in which {-, -} denotes
anticommutation. To continue the correspondence, we construct a Clifford product
between the forms to recreate the Clifford algebra and we do this by combining the
A with a new operator, the contraction operator.

Contraction is denoted e, and is defined through the Hodge star: e* . = xdaz# A
. In practice, it has the effect of reducing the degree of a form, by removing an
individual line element from an arbitrarily long differential form. However, it can
only remove the element that is at the left end of the differential form, so to remove an
element that is buried deep within an n-form, we must first use the anticommutation

relation to shift it to the left end. For example

et adx” Ndx* = —eH adz? N dx¥ = —dz”
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This puts us in a position to define the Clifford product, V,
dz* v dz¥ = (dz* N +e*.) dx¥
and we can use it to define a Euclidean Clifford algebra for the differential forms:
Vet de'l = 20"

We can build algebraic objects as linear combinations of different forms and their
tensor coefficients. When we do this, the various n-forms behave as bases for a local
space. For example, in 2D Euclidean space, we can define an arbitrary function as
F(z) = fo(z) + fi(z)dx' + fo(x)dz?® + fio(x)dz' A dz?, which can be written more
succinctly as F(z) = fo(z) + fu(z)dz* + fu (z)dztdz? or F(z) =Y, fu(x)dz®. To
construct an inner product between these objects, we use the Hodge star. If F(x)
and G(z) represent Y, fu(z)dz™ and G(z) = Y, gk (x)dzX, respectively, we define
the inner product to be

< F.G>= /F/\ (+G¥) (7)

F' A (xG*) provides us with a measure of integration of the same dimension as the
space and the integral sign is taken to mean integration over all space. Only the
products between forms of identical dimension are non-zero.

When we take the Hodge star of a form twice in succession, we should recover
the original form. However, along the way we may incur a minus sign, depending on

both the dimension of the original form and the dimension of the space.
e on: JEi <€H,CdeCH) = cHCHCHH o H _ (_ q)h(n=h) g, H

We can refine the definition of the Hodge star to remove any ambiguity around
the minus sign, by including another operator, B, as Becher and Joos do [45]. We
define B so that it has the following effect on dz'!

h

Bdz" = (—1)(2)dx?

We can now create a new star operator, x = *I3 that has the property: *x = I.
Another operator, defined in a similar fashion, is A. A also operates on a form

to generate a combination of minus signs, with the effect: Adz? = (—1)"dxz".
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Finally, we must introduce the derivative operators. One of the most useful
vectors, in field theories, is the derivative and in differential geometry it can take
one of two forms. The exterior derivative is defined as an operator that acts upon a
local field and increases the degree of its form: d = da* A 8,. The adjoint derivative
(sometimes known as the coderivative) also acts upon a local field, but reduces the
degree of its form: § = —(—1)"""" x d*. It can be simplified to § = —e*,9),.

The derivatives can be combined to construct the Dirac operator: ) = (d — §),
which is equivalent to (dz* A +e*1)0,, = dz* Vv 0,. The Laplacian, which is the square
of the Dirac operator, takes the form (—dd — dd) because the antisymmetry of both
d and ¢ ensure that d* = 6% = 0.

This gives us all the tools we need to see how fermionic field theories can be

represented using differential geometry, which is the theme of the next section.

4.2 The Dirac-Kahler Equation

The Dirac equation was first written in terms of differential geometry by Kahler and
its new form was subsequently christened the Dirac-Kéahler equation [44]. A review
can be found in the paper by Becher and Joos [45].

Because of the correspondence between the Clifford algebras of the v and ¢ ma-
trices and the differential forms under V., we can write the Dirac-Kahler equation

(dz* v 0, + m)®(x) =0

where ®(x) is a differential form. In 4D space-time, ®(x) has sixteen independent

components; in 2D, it has four:
®(z) = ¢(x) + ¢ (x)da! + ¢o(2)dx? + Pra(x)da’ A dz?

This raises a question about the equivalence of degrees of freedom. In 2D, we have
four complex components of ®(x), but just two complex components of W(z). This

can be resolved by introducing a second spinor which we combine with the first to
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turn ¢ (x) into a 2 x 2 matrix,

We can relate the conventional Dirac basis to the Dirac-Kéahler basis through the

matrix Z, defined as
Z =1+ o7dz! + ofdz® + o7 o) dz' A dx® = Z(—l)( )0,,le
H

where the o, are the Pauli matrices, H represent the product of ordered components
and A is the number of components in H.

We use Z to relate ®(z) to ¢ (x) as follows

Z ¢(z, H)d Z Ya
ab

where a denotes the row and (b) the column of ¢. Z has the useful property dz®Vv Z =
ol Z, which means that dz® VvV ®(2) = 3, (0¥ ) ! Zap. Using the following identities

for the o matrices, we can explicitly relate ¢(x, H) to ¥(z).

Tr (o (05)1) = 264K S a ool = 2.5 (8)
ol HY =T (01,'@&) P = 12,, 1o(x, H) (9)

When we introduce gauge fields, we must replace 9, with 9, — ieA,. We write

the covariant Dirac-Kéahler equation as
(d—0)®(z) =ieA(x) vV ®(z)

where A(z) is a 1-form, A(z) = A,(z)dz". The Abelian gauge transformation takes

the form
®(z) — ?@P(z) Au(z) — Au(z) + L9,0(x) (10)

In order to construct a useful action, we must also introduce source terms. In
the Dirac basis, we would use the spinors 7 and 7 as sources to construct a covariant
action that looks like

U (D —ied +m) Y+ + Un
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In the Dirac-Kéhler basis, we construct the counterpart to n and 7, which we shall
denote ©(z) = _ , n((lb)(x)Zab pind gy =37 52 (2) Za. The fermionic contribution

to the action is now
Sp=<®,(d—0—icA+m)®>+<6,0>+<d,0>

We must also include the gauge action and a source for the gauge field. In the
Dirac basis the action is defined to be —&FM,,F‘“’, where F), = 0,4, —8,A,,. The
Dirac-Kébhler representation of F},, is dA, where d is the exterior derivative mentioned
earlier. The anticommuting properties of the dx provide the antisymmetry that
accounts for the two terms in F},, and the gauge action is a product of two of these

terms.

S(,' =< dA.dA >

The source field must have the same dimension as the gauge field, so we add the term
< p, A > to the action, defining p to be p = p,(z)dz*.

There is one more family of features of the Dirac-Kéhler description that we must
see before we are done. It centres around the operation that corresponds to the
o3 matrix. This will give us the set of projection operators that isolate the chiral
components of ®(z) and also the projection operators that separate the columns of
1, allowing us to single out the degenerate spinor fields.

Given that ), (a“w)flb) Zyi=F z,,»((f’) <(TEZ) . we can use the definition o3 =

ab

—1i0,09 and write

> (05%)) Zay = =i Y 9P ((0102)72) , = —ida' Vdz® v Y ¢ Zy,
ab

ab ab
However, there is some ambiguity here, because we can achieve a similar result using
the Hodge star operator. We can show that, in even dimensions, agZ = —3x BAZ.
In odd dimensions, the relationship lacks the A: 01 Z = —i x BZ.

Using the familiar projection operators, Pr/p = 3(1 £ 03), we can project ¥(z)
into its positive and negative chiral components with Pp;, = 3 (1 Fi*BA) =
5 (1 F idz! v dz?v).

We can also use these operators to isolate the columns of v through right mul-

tiplication. In the Dirac basis, ¢'FPg . projects out the first/second column of ¢. In
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this context, we relabel Pg/; as P/, to distinguish its function. Returning to Z, we
can see that its right multiplication properties are Zaf = Z Vdz*. We can also show
that ZU;;T = —i*x BZ, which means that we can isolate the degenerate fields by using

the flavour projection operator Py, = (1 Fi* B).

4.3 The Discrete Dirac-Kihler Equation

A number of attempts have been made to put the Dirac-Kéhler equation on the
lattice. One of the reasons for such interest is that it provides the continuum limit
for the staggered fermion formulation. A recent review has been provided by Scott
Wilson [51].

One of the first attempts was by Becher and Joos [45] and we will briefly outline
their approach.

We divide the lattice into squares, as in Figure 4.
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Figure 4: A 2D lattice for the Becher and Joos model. Each square represents four

differential forms.

The discretization is done so that to each square four discrete differential forms
are associated. The four differential forms correspond to the simplices at the bottom
left corner, the left and bottom edges and the whole square and all four take as
their coordinate the location of the point at the bottom left corner of the square.

The bottom edge corresponds to d*! and the left edge to d®2. The form d*' A d*?
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(denoted d*'?) corresponds to the whole square and the zero form d*? corresponds
to the bottom left corner. In the centre of each of these objects is a lattice site. Using
(9), we put the value of ¢(z, H) = Tr (o},w(m. H)) on these sites, where ¥ (z, H) is
sampled at the site.

The Clifford algebra for the theory is not straightforward. The contraction oper-
ator is similar to that of the continuum: e#.d*" = ¢, j/,d*H/*. However, the wedge

product is defined by
dz,H A dy.l\’ e EH.I\_d:r,HUKO"y.x-%eH (11)

(provided H N K = (); otherwise it is zero). Here, H U K is an ordered expression;
the minus signs are accounted for by €5 ;. The interesting feature of this definition
is the o-function. It tells us that the product will only be non-zero if the simplices,
corresponding to the forms on either side of the wedge, share a common point. Specif-
ically, it says that the simplex corresponding to the form on the right hand side of
the wedge must start from the point where the simplex, corresponding to the form
on the left, ends. If this is not the case, the product is zero. If we write a general
I-form as d" = )" d"", we can see that this has the undesirable consequence that:
et adh AN dvH # d¥H, when ¢ H and d* A e#advt # d%H | when u € H. Instead, we
have e# d* A d¥H = dv=¢wH when u ¢ H and d* A e d¥H = d¥=»H when p € H.

With this definition, the exterior derivative, d, is defined as
d=d"Ady=d"h[1—-T 4 (12)

where we have the operators, T, that sample a field from one square in the direction
s opn(s, H =gl Lle,, H).
With this definition, the Clifford product is non-local. The Clifford algebra is

@t d gy = dt v d' Vv di =200 T
i

and the non-locality of the Clifford product has the consequence of making both the

Dirac-Kahler and Laplacian operators non-local.



4.3.1 Locality vs Leibniz

It is reasonable to ask why Becher and Joos did not choose a simpler definition for

the wedge product. The definition
dr,H A dy,K i fH‘K’(sI'ydI'HUK (13)

gives e’ d* A d¥H = d¥H when p & H and d* A e#od¥H = d¥¥ | when p € H. This

means that it has a local Clifford algebra
{db,d” Yo =d" vid® VEdi v dBy =26

which would seem to make it preferable to the definition of equation (11).
However, they had a very good reason for not choosing this definition. Leibnitz’

rule is the rule governing the differentiation of products. In the continuum, it is
AP ANO) = (dP) AN O + (AD) A (dO) (14)

and it is desirable to have the same relation on the complex.

The definition in equation (13) leads to a forwardly defined exterior derivative
d=d'*NO,=d* AN (T, — 1)

which violates equation (14). However, the exterior derivative in equation (12), fulfils
Leibnitz’ rule and it is for this reason that Becher and Joos chose the wedge definition

of equation (11).

4.3.2 An Alternative Definition for the Wedge Product

Whilst studying the work of Becher and Joos, we constructed an alternative definition
for the wedge product that has interesting properties. It is possible to define a wedge
product, within the framework that Becher and Joos use, that satisfies Leibnitz’ rule
and has a local Clifford algebra. However, this definition does not lead to local action
because the Hodge star cannot be defined to be local.

The definition of the wedge product is critical in the product between fields and

in the application of the exterior derivative. In both cases, its definition determines
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which terms go to zero and which terms remain non-zero. In Appendix A, we derive
a definition for the wedge product by starting with an undefined wedge product and
asking what form it must take in order to be local and permit Leibnitz’ rule. The
definition we arrive at is subtly different to both Becher and Joos definition and to
the naive local definition: d®f A d¥¥ = eyrd* K5 for HN K = (.

To describe the effect of our alternative definition on the lattice in the Dirac basis,
we would have to introduce subtle and non-trivial Dirac delta functions between
lattice sites in both the definitions of the product between fields and the lattice
derivative because, on the complex, the wedge product affects both these definitions.

We discuss the alternative definition in depth in Appendix A. Here we shall in-
troduce the definition and demonstrate that it satisfies Leibnitz’ rule for the simplest
case of a one dimensional complex. A two dimensional example is provided in Ap-
pendix A.

If we introduce the following definition for the wedge product

dBHAdYE = ey gdvHUKSTYTeR for HNK = ()
1

0 otherwise
we can see that this has the properties

et adtAdY = dvH when ¢ H

diAet udvtl = dvH when € H

which lead to the local Clifford algebra
{d*,d"}q = d*Vd'V + d"Vd*V = 26"

In Appendix A, we arrive at the definition in equation (15) by considering Leibnitz’
rule for an arbitrary definition of wedge product. If the wedge is to have a local
Clifford product, the exterior derivative must be forwardly defined, so we use this
as a constraint. By demanding that Leibnitz’ rule be satistied, we show that this
is sufficient to derive the definition in equation (15). In doing so, we show that the

following definition for the exterior derivative

=408, = 5T —1) (16)
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is local and satisfies Leibnitz’ rule in the general case.
As an example, we shall show here that Leibnitz’ rule is satisfied for the simplest
case of a 1d complex.

© mga o .
A B

Figure 5: A one dimensional complex.

In Figure 5, we have three simplices: [A], [B] and [AB] corresponding to d*?,

dP? and d*', respectively. We define two fields on this complex with

® = ¢(A,0)d4° + ¢(B, 0)dB? + ¢(A,1)d!
6 = §(A, 0)d4° +0(B,0)dB? + (A, 1)d "

Using the wedge product of equation (15), the product between these fields is
DAO = ¢(A,0)0(A, 0)d*° + ¢(B, 0)0(B, 0)d?® + ¢(B, 0)0(A, 1)d*!

The exterior derivative of this expression is

d®AO) = ¥, dA(T,, —1)(BAO)
= dMA(T,, — 1)(PAO)
= (@(B, 0)6(B,0) — 6(A,0)6(A, @))(WA(W
= (o(B.(a)e(B 0) — o(A.(/))ﬁ(A.(Z)))d-“~‘

with all other terms going to zero.

Now we look at the two terms (d®)AO and (AP)A(dO).

4o = ¥, AT, — 1)d
dAA(T,, — 1)d
= (@(B, 0) — &(A, O)))d“‘-‘f\df"@
= (6(B,0) - o(4,0))
R (()(B,(D)—é’(A,(/)))d""
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For the first of the two terms, we have

(dD)AO = ((@(B.@) = @(A.,O)))df“)
A <e(A, 0)d*? + 6(B, B)dB? + 6(A, l)d‘*l)
= (0B, 0)0(4,0) — 9(4,0)0(4,0) }a**
For the second of the two terms, we have
(AD)A(dO) = A(cb(A.Q))d"*” + ¢(B, 0)dB + (A, l)d“)
A(6(B,0) - 8(A,0))a*
= ( A, 0)d* + ¢(B,0)dB? — (A,l)dA‘l)
A(0(B,0) - 0(4,0)) !
(D’(B.(Z))H(A,(/)))d‘“

Il
/\

Combining these terms, we have
(dD)AO + (AP)A(dO) = (o(B.V))(}(A.(Z))—o(A,@)H(A,@))(I“-I

+ [ o(B,0)0(B,0) — 6(B,0)6(A, @))(l~“~‘

= (&(B,0)6(B,0) — ¢(A, 0)8(A, (o)>(1f‘~1

which is the same as the last line of equation (17).

4.3.3 The Non-Local Commutator

Another formulation that accepts and works within these limitations is that proposed
by Kanamori and Kawamoto [52] [53] [54]. Their formulation both achieves local-
ity and permits Leibnitz’s rule to be enforced, but they achieve this by making a
very unorthodox sacrifice. They introduce a non-commutativity between fields and

discrete differential forms.
glo + i d™* = d™ g(z)

which ensures that d(f(z)g(z)) = (df (x))g(z) + f(z)(dg(x)).
To construct both a Clifford product that respects this result and gives a Hermi-

tian action, they find it necessary to introduce two orientations of the lattice. One
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orientation is for line elements lying in the positive p direction and one for line ele-
ments lying in the negative p direction. The line element that points from z to z + /i
is labelled #™* The line element that points from z + fi to x is labelled §~#. With

these objects, their exterior derivative is defined to be
df = > {(Osuf)8* — (00}
i

where O, flz) = £ flo £ LY— Flz)).

Their formulation naturally includes a doubling of fields, which they have specu-
lated lends itself to the representation of bosonic and fermionic fields in a supersym-
metric theory.

The non-locality has received more theoretical treatment elsewhere [55][56][57],

where it is studied in the context of a differential calculus on a finite set.
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5 Background: Geometric Discretization

All the formulations that we have considered so far come up against the locality-
Leibnitz problem which they each address in their own way with their own limitations.

However, the ideas that we have seen are all immersed in a finite difference formu-
lation of field theory. Perhaps if we take a different approach at this level, we might
be able to make more progress.

Geometric discretization is a formulation that does offer something different. It
uses finite element methods to create interpolated, continuous fields on which we can
use the operators from the continuum, but that have only a finite number of degrees
of freedom. It doesn’t solve the problem entirely, as we shall see, but it reduces it to
a lattice approximation which is controllable by adjusting the lattice spacing.

The foundation for Geometric discretization was built by David Adams in his
PhD thesis [58]. It has since been added to by Samik Sen [9] and Vivien de Beaucé
[8] in their theses. Some of the details have been published in the papers [59] [60]
[61] [62] [63] [64] [65] [66] [67] [68]. Work has also been done by Bartlomiej Czech at

the University of Pennsylvania [69].

5.1 Geometric Discretization

To construct the geometric discretization, we start with the same lattice structure as
in the Becher and Joos method (see Figure 4).

In 2D, the simplices are the points and the lines and squares that lie between
points. In higher dimensions, the list would include cubes and hypercubes.

We can use the simplices as building blocks to construct a topological model of a
given space. The collection of simplices together is known as a complex and we can
use the simplices to construct complexes that are isomorphic to arbitrary topological
spaces.

To introduce our notation, we will use the reference square from Figure 6.

In this example, the complex comprises nine simplices. Four are the points at the
corners of the square: [A], [B], [C] and [D]. Four are the edges: [AB], [BC], [DC]
and [AD] and one is the square [ABCD]|.
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Figure 6: A sample square from the GD lattice.

5.1.1 The De Rham and Whitney Maps

We use the De Rham operator to discretize continuous fields. If ®(x) = ¢(x, H)dz"

an arbitrary, continuous differential form, R®(z) would generate nine separate terms.
The first four would comprise the field of the zero-forms sampled at the corners of the
square: ¢(A,D)[A], (B, 0)[B], #(C,0)[C] and ¢(D, D)[D]. The second four would be

the integrals of the 1-forms along the edges:-

S([AB)[AB] = (fiup dz'¢(z,1))[AB]
o([DC))[DC] (fipey 42 6(, 1))[DC]
S([ADN[AD] = ([ up)dz*¢(x,2))[AD]
S([BCDIBC) = (fipc d2¢(x,2))[BC]

Finally, we also have the effect of R on the two-form:-

#([ABCD])[ABCD] = ( /{ABCD] dz'dx*¢(x,12))[ABCD]

For the purposes of consistency, we shall also use the ¢ notation to denote the mapped
zero forms: ¢([A])[A], &([B))[B], #([C])[C], and &([C])[C]. We have chosen this
notation because it underlines the property that the effect of R is to map continuous
fields to a linear combination of the simplices with field values as their coefficients.
The general linear combination of these elements is the Geometric Discretization
representation of a general cochain.

To map the opposite way, from discrete to continuous fields, we use the Whitney
map. This acts on a general cochain to generate continuous terms containing two

factors. One is a differential form that reflects the space that the simplex covered.
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The other is a set of functions that interpolate in the regions between neighbouring
simplices.

To illustrate this, we look again at the complex in Figure 6. The bottom left and
top right corners of the square are taken to have the coordinates (ay,as) and (by, by).

We must introduce the generalised coordinates as tools to interpolation.

_ bi—x — bo—mo
'ul  bi—ay H2 = ba—a2

These coordinates are only valid within cells on whose boundary can be found
the simplices between which we are to interpolate. Outside of that cell they are zero.

For the zero-simplices above, we have

WIA] = pps W[B] = pa(l—pm)
W[C] = (1—pm)(1—pu2) W[D] = ui(1— po)

Applying W to the cochain ® = ¢([A])[A] + &([B])[B] + ¢([C))[C] + &([D))[D]
gives (}([A])m;tg +(ZB([B]);L2(1 — i1 +HCPNL — ) (1 — pa) +(E)([D])/t1(1 — j12) which
is a function that interpolates between the four corners.

The one-simplices are a little trickier. On [AB], we have two coordinates, one
relative to [A] denoted g and one relative to [B], denoted (1 — pq). If we rewrite
the former as v, and the latter as 15, the Whitney map of [AB] is us(11dvs — vadyy).

This reduces to —puodp;. The four one-simplices are mapped to

W([AB] = —padu, W[BC] = —(1— p1)dus

W[DC] = —(1— us)du W[AD] = —udus
The two-simplex [ABC D] is mapped to du; Adpus. This set of forms and coordinates
are collectively known as the Whitney elements.

In cases where we are dealing with the unit square, they become very simple.
pur =1—1x, uo = 1 — x5, duy = —dzx; and dus = —dx,. Because we will be using
these objects a great deal, to keep the notation simple and intuitive, we will always
assume that the simplex in question has been mapped to a unit square.

In discretizing a continuous space, much information is lost about its structure,
so it is unsurprising that W R # [. However, when we start with a discretized space

it is reassuring to see that RW = [.
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5.1.2 The Exterior Derivative

In this framework, the discrete exterior derivative can be obtained by interpreting
the behaviour of the continuous derivative operator on the Whitney elements. We
denote the geometrically discretized derivative as D with DR = Rd. In the simple
example of a single one-simplex [AB], the coordinates are (1—xz)([A]) +z¢([B]) and
applying d gives ¢([B])dz — ¢([A])dz. R maps this back to ((fb([B]) - ¢~5([A])> [AB].

5.1.3 The Discrete Wedge

The wedge product of two discrete forms is similarly defined by the behaviour of the
continuous wedge on the Whitney elements. We use the Whitney map to map each
simplex to the continuum, apply the continuum wedge and then map back to the

complex with the de Rham map.
oAd =R [W () nw (9)]
5.1.4 The Hodge Star and the Dual Complex

In equation (6), we saw that the continuum Hodge star is defined to be a local operator
that uniquely maps a form to its complement. On the lattice this is harder to define.
Referring once again to Figure (6), if we want to map [AB] to its complement, the
only simplices available of the proper dimension are [BC] and [AD], so we must
define the Hodge star to map to either or both. However, when we apply the same
definition a second time, the result will not be proportional to I, because it must
include [C'D]. This makes the definition of * non-local.

David Adams proposed a solution to this difficulty [5][6] by introducing a second
lattice in the same physical space as the first, but distinct from it. The dual complex
has the same dimension as the original, but is off-set as shown in Figure 7.

Simplices from the original and dual complexes are related by their midpoints.
In 2D, a zero simplex from one complex is mapped to the 2-simplex from the other
whose centre coincides with the original zero-simplex. A one-simplex in the z; di-
rection is mapped to the one-simplex in the xy direction that intersects it. The

2-simplex is mapped to the point at its centre. When the correct sign factors are
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Figure 7: The original complex (solid lines) and the dual (dashed) superimposed.

included, this gives a 1-to-1 mapping that enjoys the continuum locality property:

x% = (—1)""=M [ where n is the dimension of the space and h the degree of the

simplex.

5.1.5 The Adjoint Derivative and Contraction Operator

With the Hodge Star in place, we can define an adjoint derivative: § = —(—1)""*" x
Dx, where D is the discrete exterior derivative of section (5.1.2), acting in the space
of the dual complex.

The contraction operator also follows neatly. e# = xRda* A W, where W and

R are the Whitney and De Rham transforms.

5.1.6 The Inner Product and the Barycentric Subdivided Lattice

In his thesis, Samik Sen, detailed this extensively [9]. We shall briefly summarize his
idea.

To define a product between two discrete cochains we start from the continuum
definition, equation (7). Straight away, we see that there is an obstacle for GD.
The definition wedges two cochains, one of which will have been mapped to the dual
complex. This is not possible using the definition for the discrete wedge that we gave
earlier, so we must construct a new definition for use in the inner product.

We introduce a new lattice, the Barycentric Subdivided Lattice that is defined
by the union of both the original lattice and the dual, but with an extra feature.

Vertices are introduced at the centre of each simplex (the barycentres) and the set of
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Figure 8: The Barycentric lattice.

simplices on the new lattice is defined from the union of the vertices of the original
lattice, the dual lattice and the barycentres. The set of 25 vertices, corresponding to
Figure 7, is shown in Figure 8.

On this lattice we use a special Whitney transform, W2, that provides interpola-
tion between the new set of vertices. These Whitney elements have a smaller range
of support than those on the original and dual lattices alone.

We now define the inner product of < F,G > as follows.
€ an == / WEB(Bo) AWB(B x 1)
M

where Bo is the Barycentric representation of o and W2 is the Whitney map to the

barycentric subdivided lattice.

5.1.7 Flavour Projection Operators

In the Dirac basis, the Dirac spinor is a 2 x 2 matrix, whose columns represent
degenerate spinors. In the continuum, the columns can be isolated using projection
operators, P® because the Clifford product is associative: da# Vv 9,(® v P®) =
(dz* v 9,®) v P® = 0, where b labels the column of ©. This idea transfers to GD,
but the correspondence is not simple. In his thesis, Vivien de Beaucé showed that
the flavours could be isolated both in the case of cubic complexess and, with more
difficulty, in triangular complexes [8].

In the Dirac basis, we use the operators P to isolate the columns of 1 through
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right application: ¥® = v P® In 4D, the P are defined as

: 1 .
P(b ) = 3(1 + 1()’)’“/,]“/,2)(1 + db'y] 72’\//374) (18)
where
bl ay | B
1| —-1] -1
2 +11] -1
31 =11 +1
4 +1 | +1

In section 4.2, we showred how the Dirac chiral projection operators, Pg/r, were
related to their Dirac-Kahler counterparts. We can use the same logic and the identity

Z V dz® = Z~Y to obtain
1 5 9 9 %
Pl Z(1 +- iapdx’ V dz?)(1 + Bydz! V d2® v dz3 Vv dz?)

In 2D, the equivalent ojperators are P = %(1 + apio 09) = %(1 + apidz? v dzt),

where
=1 forivb==1

+1 for b=2
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6 Principal Research

This chapter comprises three sections and each section represents an independent set
of observations on or developments of the geometric discretization. In the first, 6.1, we
discuss the geometric discretization as it has so far been laid out, which is consistent
with how it has been described in [8][9][58][63]. In the first subsection, 6.1.1, we look
at how it addresses the issues of fermion doubling, comparing this to the staggered
fermion formulation. In subsection 6.1.2, we compare dz*V, from the continuum, to
its discrete counterpart. In the latter case, we find that the correspondence between
dz* vV ®(z) and o*1)(x) from the continuum in two space-time dimensions is made
approximate by the spatial discretization. Whilst this has implications for the discrete
differential geometry, it does not affect the correspondence between the Dirac-Kahler
operator and the staggered Dirac operator. It does, however, have implications for
the naive discrete definition of chiral symmetry which is proportional to the discrete
counterpart of (dx' A dz?)V and this is discussed in subsection 6.1.3.

In the second section 6.2, we see how we can use the dual complex to implement
an exact chiral symmetry. Subsections 6.2.1 — 6.2.3 are dedicated to this result. We
also see how we can use the dual to implement flavour symmetry. This naturally
raises the question of how we can simultaneously implement both symmetries. We
see in subsection 6.2.4 that to achieve this we must introduce two more complexes,
one analogous to the original complex and one analogous to the dual and that we
must carefully define our operators to map between the four complexes.

We extend this idea to four dimensional space-time in subsection 6.2.5, introduc-
ing a new operator and new complexes to facilitate flavour symmetry. To simultane-
ously maintain the chiral and flavour symmetry requires eight complexes in total, in
analogy to the four complexes required in two space-time dimensions.

In the third section, 6.3, we return to the established formulation of geometric
discretization [8][9][58][63] and develop an Abelian field theory for it, introducing the
elements necessary to perform a discrete field theory calculation (subsections 6.3.1
- 6.3.4). In subsections 6.3.5 — 6.3.7, we consider topological gauge configurations,

highlighting some of the differences between their treatment within the geometric
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discretization and standard liattice QED.

6.1 Observations om Geometric Discretization

Before we proceed to developp the Geometric Discretization, we shall first highlight

some of its interesting featurces.

6.1.1 Fermion Degeneracy

As we saw in section 3.2, ferrmion doubling arises in the lattice Dirac equation, the
Green’s function for which prrovides the propagator for the lattice fermion field. It is
interesting to see exactly how the geometric discretization removes the doublers in
momentum space and how thiis compares with the staggered fermion formulation.

We mentioned in section 3.3.2. that the staggered fermion formulation removes
the degeneracy by reducing t he extent of the Brillouin zone, whilst maintaining the
continuum limit of the Dirac operator. By halving the zone, it excludes the regions in
which the doubling solutions xist. This approach has its own degeneracy because, in
two space-time dimensions, twio spinor fields simultaneously and independently share
the same lattice.

In the geometric discretization. two spinors also share the same space, but the
mechanism is subtly different . To see this, we must analyse the formulation in mo-
mentum space. Each componient of the differential field represents a separate degree
of freedom, so, in the continuium, we must transform each field to momentum space

separately.

2T

G (x))de = 71— /de@AH(p)ei’deH

When we apply the De Rlham map, we integrate this over a finite region. The

discrete fields are

1 1 2. ip 7 1 2. 12 ipE
o([H])[H] = /[H] d:ng/(dz/)oH(p)(” [H] = %/dzpwaﬁl(p)e’) le—om [H]

where (OH) denotes the boundary of H. The factor of ﬁh- is the the unique feature

here that removes the doublerss from the discrete Dirac-Kéhler operator. The discrete

adjoint field is similarly defined from the continuum.
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In the context of the action, there are two types of term to consider. The first is
where 0 reduces the degree of a form, before its inner product is taken with a simplex
from the adjoint field of the same, lower dimension. The second is where D increases

the dimension of the simplex before the inner product is taken with the adjoint field.

@ o o o q

F E D
P G v I S o b )

C G =it}

A B C

Figure 9: Two squares from the GD complex.

To provide a specific example of each, we use the square in Figure 9. In the first

case, one of the terms to contribute to the action is

< &(|B))[B], -6 (c;([BC'])[BC] o rS([AB])[AB]) >

Replacing ¢([BC]) and o([AB]) with their momentum space counterparts, we

have
(()11)1[(7]1 e (,ipl[b’]l)

< (})([B])[B] —0 (%/(]2[)4)1(])) ()im[B]‘z[BC]

1Py

(()iPI[B]I i, eipl[/‘]l)

1 Qb ip2(Bl2
B v 1p2 A
+27r/d po1(p) s e [AB] | >

(eipl[(/'h 4+ eirrAl _ Qeipl[Bll) .
e?2Bl2[B] >

=< 3(1B)IB). = / pén(p)

In this expression [A]; denotes the coordinate in the z; direction of the point [A]. If

ipra

the distance BC'is a, this can be rewritten as

4isin®(&?)

p1a

< (BB, 5= / Lo () ¢P18I[B] > (19)

which is a definition that is free of doublers.

When we look at the second type of term in the action, we have

< 9([AB)), D (9((B))1B] + a({A)[4]) > (20)
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In this case, we must write both the fermion field and the adjoint field in momentum

space.

¢mwmmﬂ=fm“5%/fﬁmwﬁmm

eiri[Bli _ oipy [A]l)

_ 1 2T ( ip2(B]2
- 5 [ b0 ————Lemionap)

Expanding this around the mid point of [AB], we have

il o 922 sin (B2 ) )
o / d*pé,(p) (L(Q)> ePlABh ¢ipalBla [ 4 p]

tp1

When we calculate the right hand part of equation (20), we have

1 - eP1[Bl1 _ gip1[Ah e,
or /dzp¢1 (p) ( )‘flm[B]z[AB]

a

V4

Doing the same expansion, this becomes

1 2 2 27 sin( B2 . :
%/dzl)@l(P) (ﬂZ_)_) (,Zpl[AB]x()ng[B]-z[AB]

a

The product of the momentum space factors is

4q sinz(%)

pia
which, reassuringly, gives us the same expression as equation (19) for the momentum
space Dirac-Kahler operator.

From these derivations, we can see that the Dirac-Kahler operator explores half
of the Brillouin zone, just as in the staggered fermion case. However, the momentum
space representation of the operator does look different. In the staggered fermion

formulation, the Dirac operator is proportional to zsin(%%) [19]. In our case, it is

2( pua

. .sin ) . : o las
proportional to e e which has the same continuum limit.
n

6.1.2 The Correspondence Between dz* V & and o#V

The crux of the relationship between the Dirac basis and the Dirac-Kahler basis is
provided by the matrix Z, which was described in section 4.2. In continuous two
dimensional space-time, it has the properties da* VvV Z = ¢7Z and Z V da* = ZoT.

This leads to the correspondence
da* v ®(z) & oylz) (21)
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On the complex this relationship does not hold exactly, which has consequences
for the naive definition of both chiral and flavour symmetry.

We can see that it exists approximately if we look at how a typical field is con-
structed within the geometric discretization. In two space-time dimensions, the con-

tinuous Dirac-Kahler field is
Tr [¢(2)] + Tr [o19(z)] dx' + Tr [o29p(x)] d2® + Tr [o901%(z)] dx* A da?

If we limit our complex to the following square,

Figure 10: A square from the complex.

then our discrete fields are defined as

o([A]) = Tr [¥(2)]

H(B) = Tr [w(@)] |

T=A z=B

() =Tr [W(@)]| o(ID) = Tr [p(@)]|
H([AB]) = _[AB]Tr [019(x)] dx’ o([DC)) = Jipey Tr [o19(a | da!
A(AD]) = [fi4pTr [029(2)] da? H([BC)) = [ipe Tr [o2t(x)] da

¢([ABCD)) = f[AHC,I)]Tr [02019(2)] dz* A da?
and ® is the sum of these terms after each is multiplied by the appropriate simplex.
When we apply dz*V to W(&)) and subsequently apply R, we would like to see
something representing the correspondence in equation (21). However, instead we

obtain an approximation to it.
By applying dz'A to the Whitney map of ¢([AD])[AD] 4+ ¢([BC])[BC] and then
applying R, we have 1 (@([AD]) s QS([BC])> [ABCD]. We write this explicitly as

1
2 (/MB} Tr [o99)(x)] da® +/{BP] Tr [o2¢(2)] da’ ) [ABCD] (22)

42




If the correspondence existed on the complex as it does in the continuum, we would

instead expect to see

(/ Tr TaahlaN dal A A#\ rARCD] (23)
(ATY [o91) ()] dx' A da? [ABC D]
Alas this term is not defincu 1w e ascieuzation, su we must make do with the

approximation to it represented by equation (22). The only case in which equations
(22) and (23) agree is when the field ¢(x) is linear in z;. We can generalize this
statement to say that the correspondence in equation (21) only holds for linear fields.

This does not affect the relationship between the Dirac-Kéhler operator and the
staggered Dirac operator. In this case, the combination of R, dz'A and W map both
®([AD]) and ¢([BC]) on to [ABCD], but 9, introduces the correct sign between
them giving a derivative of the correct form and that is consistent with what we

would expect from the staggered fermion description.

6.1.3 Chiral Symmetry

In section 4.2, we saw that, in the continuum, o32)(x) corresponded to —ix BA®(z) =
—idx' vVdx? v ®(z). For the reasons explained in section 6.1.2, the discrete counterpart
of —idx!' V dz?V acting on ® only exactly represents ¥(z) — o3t (2) when the ()
fields are linear.

In GD, * maps between the original and dual complexes and in the next section, we
shall see how we can take advantage of the correspondence between o31(x) and —i *
BA® from the continuum and the definition of * on the complex to construct chiral
and flavour projection operators that isolate different chiral or flavour components

on each complex.

6.2 The Role of the Dual Complex

Our goal is to isolate select components of the fields on each complex. We want to
construct projection operators that project different flavours or chiralities of fermion
on to each of the original and dual complexes. We shall see that this requires us to
construct a field to place on the dual that adequately cancels with the fields on the

original when we apply the projection operators.
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6.2.1 The Projection Operators

To construct the projection operators, we resolve the Hodge star into two separate
operators, just as de Beaucé and Sen did [64]: one that acts on the original complex

and maps to the dual (x¥p) and one that maps the other way (xp).
t =g ¥p

Both o and xp are defined so as to be consistent with section 5.1.4. All that differs
are their domain and range. The square of this definition is x* = %o *p + *p *o,
which respects all the desirable properties of the theory.

We want to build our chiral projection operators so that they project a field of
one chirality on to one complex and a field of the other chirality on to the other
complex.

We define our chiral projection operator to be

PR/L = (1 -+ /) * 4 BA+ i *o BA)

Application of Py leaves the right handed components of @ on the original complex
and the left handed components of ® on the dual complex.

Just as there is a relationship between o3t (z) and —i * BA®, there is also a
relationship between v (z)o; and —i * B®, as we saw in section 4.2. We can use
this to construct flavour projection operators that leave one flavour of field on one
complex and the other flavour on the other complex.

We define our flavour projection operators to be

P — (1:F7*dB:|:7*oB)

DO | —

Application of P Jeaves the first flavour of field on the original complex and the
second flavour of field on the dual.
6.2.2 The Field on the Dual Complex

Unfortunately, it is not enough to just place normal geometrically discretized fermion

fields on the dual complex, if we want the components to cancel correctly when we
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apply these projection operators. Although the fields will have the right structure
in terms of the trace of the ¢ matrices and ¢, the domains of integration will be
different.

Instead, for the dual complex, we use ¢([..|p,[..]o) to denote a field associated
with the simplex [..]p and whose value in terms of the o; and ¢ is associated with the
simplex [..]p, but whose domain of integration is the simplex [..]o from the original

complex. This enables us to write the field for the dual as

3" &([Hlp. [CH)o) H]

(H]
where [CH| denotes the simplex of complementary dimension, but same barycentre

as the simplex [H]. We can write down the term ¢([.]p.[.]o) explicitly as

b ([Hls, [CH o) = / Tr [ULC] dzCH

J(cHo

The changes to the domain are implemented so as to affect only the initial dis-
cretization of the fields. They do not apply to the De Rham used in the definition of
the discrete operators. As such, they allow the proper cancellation without changing

the algebra of the geometric discretization.

6.2.3 Commutation Relations

In the Dirac basis, the requirement for chiral symmetry is {3, @} = 0. The equivalent
statement in the Dirac-Kéhler basis is {—i * BA,d — 6} = 0 and it follows that this
is true for the geometric discretization: {—i* BA, D — 0} = 0.

Flavour symmetry follows from the associativity of matrix multiplication, in the
Dirac basis: (@ (x))os = @(1(z)o3). As we saw in 4.2, ()03 < —i x B®(z), so the
equivalent statement in the Dirac-Kéhler basis is [~ x B,d — ] = 0. It follows that

this is also true for the geometric discretization: [—i * B, D — d] = 0.

6.2.4 Simultaneously Isolating Chiral and Flavour Components

Before we proceed, it will be best for us to briefly review what we have achieved so

far in the context of staggered fermions.



Essentially, we have used two staggered fermion formulations with one on the
original complex and one on the dual. The discrete differential geometry has ensured
that the incarnation on the dual is similar to that on the original, except that it is
already multiplied by 3. The Pg/;, operator leaves %(1 + 03)1 on one complex and
(1 — 03)1 on the other. The P® operator leaves ¢1(1 + 03) on one complex and
¥%(1 4 03) on the other.

This gives us a way to isolate the flavours or chiral components of the spinors,
but we cannot isolate both simultaneously. For example, we can use Pg/r, so that one
complex will have the upper components from the spinors and the other will have
the lower components. However, this makes the system unsuitable for separating
the flavour components. If we apply P® now, we will reintroduce negative chiral
components on to the complex containing just the positive components and vice
versa.

To project out the chiral and flavour components simultaneously, we must intro-
duce another pair of complexes: another original complex and another dual. If we
denote the first set of original and dual as A and the additional set as B, then we
can modify the flavour projection operators, P®®) so that they map between original
and dual complexes from different sets, whilst Pp/;, map between complexes in the
same set. This is illustrated in Figure 11.

With these operators, we apply Pg to the A set, so that it leaves the right compo-
nents of ¥ on the original of A and the left components on the dual of A. We apply
Py, to the B set, so that it leaves the left components of ¢ on the original complex
of B and the right components on the dual of B.

Next we apply P®. Using PY), we combine the right components of 1) on the
original of A and the right components of ¥ on the dual of B to leave the right
components of flavour 1 on the original of A and the right components of flavour
2 on the dual of B. We use P® to combine the left components of 1 on the dual
complex of A and the left components on the original complex of B to leave the left
components of flavour 1 on the dual complex of A and the left components of flavour

2 on the original complex of B.
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Figure 11: How we isolate the four chiral and flavour components.

We now have four independent non-degenerate, chiral fields, each of which respect
the Dirac-Kahler algebra.

After this projection, the contributions from all four complexes must be included
in the action

5 =884+854458+58

6.2.5 In Four Dimensions

It is interesting to extend these ideas to four dimensions because the flavour symmetry
becomes more involved.

The structure of the chiral projection operator remains the same, although the
details differ. Instead of the relationship 031 < —ix BA®, we have v51) < — x BAD

and the chiral projection operators become

Pr/r = 5 (1 FxBA)

B =




For the right multiplication of 75 to ¥ we have 1v5 < — x B®. However, in four
dimensions, there are four columns of ¥ which means that we have four flavours to
separate. Consequently, in order to separate the four flavours, we need a second
projection operator and we can see this in equation (18) where the flavour projection
operator P®) comprises two projections: $(1 4+ dapy172) and 2(1 4 Byy1y2y37s). The
second projection that we need corresponds to the factor of %(1 + iapY17Y2)-

It is apparent from the preceding sections that when we apply o3(= —ioy09) to ¥
in two space-time dimensions, the corresponding action in differential geometry is to
map each form to its complement in both the 1 and 2 dimensions. In four space-time
dimensions, when we apply 71727374 to v, the corresponding action in differential
geometry is to map each form to its complement in all four space-time dimensions.
In the same way, we translate the application of ;7 to 1 in terms of differential
geometry by identifying it with mapping a form to its complement in the 1 and 2
directions, but not in the 3 and 4 directions. As in the case of the Hodge star, to
capture this property discretely, we must introduce another complex, ensuring that
the map to and from this extra complex is local and that its square is proportional
to the identity.

We cannot draw a 4D picture of how this extra complex relates to the original
and the dual, but we can draw its analogue in two dimensions. In Figure 12, we have
the original 2D complex, drawn with a black continuous line. The dual complex is
drawn with a black dashed line. A complex that is complementary to the original
in the 1 direction, but not the 2, is shown in red. Its 1-direction lines lie on top
of the original complex and its 2-direction lines lie on top of the dual complex. We
have shown the lines of this complex slightly offset in order to make them easier to
distinguish.

To put this on a mathematical footing, we define the operator # that maps a
differential form to its complement in the 1 and 2 dimensions, leaving the 3 and 4
dimensions untouched.

.dl‘H:pH e dT(CH12)Hg4
12,CHiygth

Here C is the complement in the {1,2} dimensions. We can show (see Appendix B)
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Figure 12: The 2D complex. Black continuous lines denote the original complex, black
dashed lines denote the dual and red lines denote the complex that is complementary

to the original in the 1 direction, but not in the 2 direction.

that
vy & KB

where By, is defined to be consistent with the previous definition, but is limited to

Biydzf = <th2> dzf!

where Ry, is the number of components of H in the subspace {1,2}.

the {1, 2} subspace:-

Alas, this is not the complete picture. The extra complex that we have introduced
also has a dual. These four complexes enable us to separate all four flavours of field
so that each goes on a unique complex. Figure 13 shows the analogues of all four
complexes in two dimensions. The fourth complex can be interpreted either as the
dual to the extra complex or as the complement in the 1 dimension of the dual
complex. Which way we describe it is only a matter of the order in which we apply
the * and # operators, starting from the original complex.

To separate the flavour components we take a similar approach to the previous
2D case.

In Appendix B, we see that ¥vy; = ng & — x BP, so we write the factor from

1 o . . . o S B il } 4 o
the flavour projection operator involving v1727v374 as 5(1 + & * B). We also see in
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Figure 13: The 2D complex. In addition to the lines in Figure 12, we have included

the dual to the extra complex in dashed red lines.

Appendix B the correspondence between right multiplication of ¥ by vy and #B;2®.
We write the other factor in the flavour projection operator as %(1 + i, 8 B2)

As in the 2D case, we separate the Hodge star into maps between the complexes:
k = %o4 + *do + *et + *40. In addition to labelling the original and dual complexes by
o and d, we introduce labels here for the other two complexes. e denotes the extra
complex related to the original by {1,2} complementarity. We shall christen this
complex, the 12¢ complex. t denotes the final complex: the dual of the 12¢ complex
(or the 12 complement of the dual, depending on how you choose to look at it). We
shall name this complex the 12¢d (12-complement’s dual) and the reason for labelling
t becomes apparent when we look at Figure 13. With the 12c¢ and 12c¢d complexes,
the complete pattern looks like tartan.

*,q Mmaps from the original complex to the dual and %4, maps the other way. *.
maps from the 12¢ complex to the 12cd complex and *;,. maps the other way. If we
take the square of x, we have x* = *,q *4o + *do *od + *et *te + *¢e *er- All other terms
are zero because of the lack of continuity between their range and domain.

We rewrite the factor containing v,792y374, from the flavour projection operator,
as

B

b

(1 4 Bb *do B — Bb %o B + Bb *et B — Bp *te B)

DO |
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For the other projection, we follow the same logic. We write # as # = #,. +
N, + B + B The square of this is Gl = @B, + B B + B Biq + BB
As in the previous case, all other terms go to zero because of their lack of continuity
between the domain and range.

Here, #,. maps from the original complex to the 12¢ complex and #., maps the
other way. #4 maps from the dual complex to the 12cd complex and #;y maps the
other way.

We construct the projection operator as
| : , : :
P, = 5 (14 ic,BeoBro — i, o Bro + i, @gBro — iy, B12)

To resolve the flavour components on each complex under the application of the
complete projection operator, we must first decide what fields to put on the dual,
12¢ and 12c¢d complexes. As in two space-time dimensions, the consideration is the
domain of integration. The fields on all four complexes must be discretized using the
same domains of integration so that, after projection, the correct cancellation occurs.

We shall choose the domains to be consistent with the simplices of the original
complex, although the choice is arbitrary. Naturally, the fields that go on the original

=4

complex are the normal fields that are discretized in accordance with section 5.1.1.

On the dual, we put the fields

where each field is associated with the simplex [H],4, but is initially integrated over the
region [CH], from the original complex. In this instance C denotes complementarity

in all 4 dimensions. On the 12¢ complex, we put
Z O([H]12e: [Cr2H]o) [H]12c
Finally, on the 12cd complex, we put

Zd> |12¢ds [C3a H o) [H)12¢d

In each instance of ¢([A], [B]), [A] indicates the simplex associated with the field: the

simplex that defines the field structure in terms of ¢ and v and is used to implement
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the Dirac-Kahler algebra. The second simplex, [B], indicates the initial domain
of integration. For the formulation that we have discussed here, the regions always
correspond to simplices from the original complex. The operations C;5 and Cs4 denote
complementarity in just the {1,2} and {3,4} subspaces, respectively.

The projection operations commute with the discrete Dirac-Kéhler equation,
which means that the Dirac-Kahler algebra does not mix these flavours (see Ap-
pendix B.3).

As in the 2D case, we cannot simultaneously isolate the chiral and flavour com-
ponents of the fields using just one set of complexes, so we must introduce a second
set.

In the 2D case, we chose to separate the chiral components within the same set
and then isolate the flavours by projecting between the sets. However, this was
an arbitrary choice. We could equally as well have chosen to separate the flavours
within the sets and isolate the chiral components by projecting between the sets.
In 4D, it makes much more sense to use the latter arrangement. This will give us
two sets of complexes, A and B, each containing the four complexes: original, dual,
12-complement and 12-complement-dual. In total we now have eight complexes.

Firstly, we will look at how the flavours separate within each set. To this end, we
write the flavour projection operator as P®) = Py P,, .

On set A, we apply PY). The first projection is P,, and this puts columns 1 and
3 of 1 on the original complex and columns 2 and 4 of ¥ on the 12¢ complex. It also
puts columns 1 and 3 of ¥ on the dual complex and columns 2 and 4 on the 12cd
complex.

The second projection is P, and this takes columns 1 and 3 from both the original
and dual complexes and leaves just column 1 on the original complex and just column
3 on the dual. It also takes columns 2 and 4 from the 12c¢ and 12cd complexes and
leaves column 4 on the 12¢ complex and column 2 on the 12cd complex. Figure 14
illustrates how F,, and Pj3, act within the set.

On set B, we apply P®. The first projection, P,,, leaves columns 1 and 3 of ¢

on the original and dual complexes and leaves columns 2 and 4 on the 12c¢ and 12cd
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Figure 14: The complexes of 4D. P, and P denote the parts of the flavour projection

operator.

complexes. The second projection, P, leaves column 3 on the original complex and
column 1 on the dual, as well as leaving column 2 on the 12¢ complex and column 4
on the 12cd complex.

We project between the sets to separate the chiral components and this is illus-
trated in Figure 15. We define the Hodge star so that it maps between the following
pairs of complexes: (original of A, dual of B), (12c of A, 12cd of B), (12cd of A, 12¢
of B) and (dual of A, original of B). Pg/; takes the form

Prn = L(1++BABAF sAPBA+ +PABAF AP BA
e A BAT e PR+ AR e A

and by applying Pg, we leave the positive chiral components of column 1 of ¢ on
the original complex of set A and the negative chiral components of column 1 on
the dual of set B. It also leaves the positive chiral components of column 3 on the
dual of A and the negative chiral components on the original of B. It leaves the
positive chiral components of column 2 on the 12cd complex of A and the negative

chiral components on the 12¢ complex of set B. It also leaves the positive chiral
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Figure 15: The two sets of complex in 4D. Pg/;, combines complexes from different

sets to isolate the chiral components of each flavour.

components of column 4 on the 12¢ complex of A and the negative components on

the 12cd complex of B.

6.3 Abelian Field Theory

In this description we now have several complexes. However, the formulation of the
gauge theory is the same on each complex, so it only needs to be described once.
The same formulation will generalise to higher dimensions and to more complexes
in a very straight forward manner. In this section, we shall describe the gauge field
formulation for the established geometric discretization, described in section 5.

In section 4.2, we saw that the continuum construction of the covariant Dirac-
Kéhler equation is (d — §)®(x) = iA(x) V ®(x), where A(z) is a one-form. This is our
starting point for constructing an Abelian field theory for the geometric discretization.

We discretize the fields by using the De Rham map. The A(x), being one-forms,
are discretized only over the one-simplices. Their discrete counterparts are denoted
A

Interestingly, even at this early stage, the dual complex starts to make its presence




felt. The definition of the adjoint derivative is proportional to *Dx, in which D is
the derivative operating on the dual complex. As a result, the Dirac-Kéahler operator
differentiates on both complexes. Hence, in order for it to be covariant, there must
be a gauge field contribution to the Dirac-Kahler equation from both complexes. To
achieve this we replace, AV with A, A 4+ % Ay A . We use the suffixes o and d to

indicate whether the fields are on the original or dual complexes, respectively.

6.3.1 The Gauge Transformation

In the continuum, an Abelian gauge transform is a zero-form. To discretize this,
we sample the continuous function at the vertices of the complex. If G denotes the
continuous gauge transform: ¢, the discretized version is G = Y (12D where
the 6([Z]) are the fields 6(z) sampled at the zero-simplices [Z].

We define the Abelian gauge transformation to be

é R [W ((ﬂ")) W (@)]

If we use the reference square in Figure 6, we can illustrate this transform with

the following examples.

S((AD[A] — €D g([A])[4]
HAB)[AB] — J (90 4 90) G([AB))[AB)
#([ABCD])[ABCD] — % (eié([-ﬂ) + 9B 4 0(CD e'?‘5<[01)) &([ABCD))[ABCD]

We infer that the conjugate field must transform as follows, in order to keep the
bilinear, < @, d >, invariant,

HAD(A] — ([ [¢7] " ()
;5([AB])[AB] - (;([AB]) {% (cié([,»l]) + eié([B])>} - [AB]

&(JABCD))[ABCD] —
= = S Fay . -1
$(JABCD)) [i <€ie<[141> 4 (0B 4 gid((CD) 4 ez@([D]))] [ABCD]



Now that we know how the fields transform, we can look at how the gauge fields
must transform, in order for the action to remain invariant. The Dirac-Kahler equa-

tion with transformed spinor fields looks like
(D= 8)R|W (%) w (8)] = e (Ao A+ Aan ) R[W () W ()] (1

To analyse this, we break it into two parts. The first contains the D and A, terms
and concerns the original complex. The second contains the § and A, terms and
concerns the dual.

For the first, we have

(DR [W (¢?) W (8)] = ied, R [W (%) W ()]

D obeys Leibnitz’s rule, which means that we can write

(DR (W (¢?) W ()] = R [{aw (¢?) A {w (&)} + {w ()} {aw (@) }]

We must introduce a transformation rule for the field A,A so that it cancels with
the first term on the right hand side. At this stage it is fairly arbitrary how we
distribute the transform about a transforming wedge and a transforming field. One
way would be to define the wedge to transform as [H] A [K] — [H]G([H U M]) A
[G(M)]~'[M] and the A, to transform as A, — A, — Z—;[G([..])]”R[dl@/’((’ié)]. where
in the wedge expression the G[([..])] are the gauge transforms on the simplex [H]
(defined as G([H]) = R [i@’(em)lf’l/’([H])]) and in the A, expression, the G([..]) is

the gauge transform on the simplex to which A, is wedged. However, a simpler

description would be to eliminate the transformation for A and instead use

Ay = Ay = 2R [aW ()] (G(( )

where G([..]) is the gauge transform on the simplex to which A, is being applied. In
cither case, A, is forced to become an operator because its transformations depends
on context. Ultimately, it will not matter which definition we choose because they will
amount to the same computational algorithms. However, the former would require

A to be a context dependent operator, so the latter is preferred.




The second part of equation (24) gives
6R [W (eié> W (@)} = jew Ay el [W ((ﬂ'@> W (cb)] (25)

In this case, 6 = — % Dx*, so we must apply the Hodge star before we can address
the covariance. In order for Leibnitz’s rule to hold on the dual complex, the gauge
transformation term must be defined on the same complex as the Dirac-Kahler fields.
This means that the Hodge star must transform in a way that replaces the gauge
transformation on the original complex with that on the dual. This makes the Hodge
star transformation context dependent. For the case where *x maps between the

simplices [H] and [M] as *x[M] = £[K], we must have the following transformation
« = G(HD « [G(MD)

where G([H]) and G([M]) are the gauge transforms on the simplices [H] and [M],
respectively.

We can use this to simplity equation (25) to

«dR [W (efé) W (*d)ﬂ o Saw Aot B [n' (M) W (@ﬂ

and we can use Leibnitz’s rule on this expression to obtain a similar transformation

law as for the original complex
. e i B
As— Ad— 2R [dw (e 9)] G

The last operator that we must consider is the 12 complement operator, intro-
duced in the last chapter as #. Although this is a similar operator to the Hodge star
and will have similar transformation properties, the reasons for defining the trans-
formation are slightly different. In this case, we want # to transform so that the
projection operators P,, maintain gauge invariance. The transformation law that
we have defined above for * guarantees that this is the case for the Ps, projection
operator.

The transformation law we require is

If &[H]| = puyycn,,[(CHig) Hag & — G([(CHy)Hsq))# [G([H])] ™



where G([H]) is the gauge transform factor on the simplex that # is applied to and
G([(CHy2)Hs4)) is the simplex to which [H] is mapped.
This completes the transformations necessary for our discrete Dirac-Kéahler to be

covariant. For later convenience, we summarize the transformation rules here

s~alr (@]
o) — o) [R{w(w(.D}]
For + [M] =+[K] : =« — G([H]) *[G(M])]"
For &#[H] = +[(CHy2)Hx): & — G([(CH12)Hsy])# [G([H])] ™
A, — A, — LR [dW ()| [G(L.D)]
N IGLDI™

(26)
Ag— Ag— iR |dW (€

6.3.2 The Gauge Action

In the continuum, the differential geometry description of the gauge action is —% <
dA,dA >, where dA corresponds to F},,. The factor of % replaces the conventional %
because the sums over indices are ordered and the antisymmetry of the differential
forms accounts for the antisymmetry of the indices p and r. Within our geomet-
ric discretization, the gauge action has the corresponding definition: Sg = —% <
DA, DA, > -1 < DAy, DA, >.

This expression is invariant under the gauge transformations (26). In the defini-
tion S¢, the A are not wedged to other simplices, outside the mechanism of the inner
product. Consequently, the factors of [G([..])] " are equal to the identity. This leaves

us with only the part of the gauge transform that involves the derivative of the field

e to consider. In this case, we can rewrite the last two lines of equation (26) as

oy il 3D [eié]
e
Ad g Ad == ED [elé]
e
The terms DA, and DA, then transform as DA, — DA, — LD? [eié] and DA, —
DA; — 1D? [eié}. One of the properties of the exterior derivative is that D? = 0,

both in the continuum and in our geometric discretization and this makes the gauge

action invariant.
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6.3.3 The Lorentz Gauge

The configuration space of the gauge field can be classified into groups of field con-
figurations that are related by a transformation. We can span the space by taking
a sample element from each group and using the transformation rules. When we
define a gauge invariant observable and naively integrate it over the configuration
space, we end up over counting the configurations that the observable would consider
indistinguishable. The value of the observable is then ill defined, so we must pick a
representative configuration from each group. A gauge fixing condition achieves this.

In the continuum, the Lorentz gauge fixing condition is d,A*(z) = 0. Within an
action, the gauge fixing contribution is Sgp = —215 [ dz? (0“14“(.17))2 and this term
cancels with part of the gauge action. We can see this it we use integration by parts

to rewrite —1F,,, F* as
1 uv 1 AV U AV A
SG == _ZF E“, = “5 (A () C)“A,, e _4 d d,,A“)
We can rewrite the gauge fixing condition as
Ser. = i (O*AM)? = iA“d A,
T 2&. 26 M

When & = 1, this term cancels with the first term in S;. For the geometric dis-

cretization we use —é < 0A,0A > for Sgp. If we expand the definition of Sg, we

have

1 » N y _
Soti— =5 < DA, DA, > —% < DAy, DAy >

—% < DA, DAy > —% < DAy, DAy >

Expanding Sgp similarly, we have

Because of the inclusion of the dual complex, we have Stokes law: < DP, () >=<

P, 6Q) >, for two discrete fields P and (). For the definition of ¢ in section 5.1.5, we
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can rewrite Sg and S as
1 ~ ~ 1 ~ ~
Se = 5 < Ay, 0DA; > 25 < As,0DAy >

—% <& Al 8D —% A gD =

1 ~ o 1l o 3
SG'F = _i < Al,D()Al > _i < AQ,D(SAQ =

i e TR
—%<A1,D5A2>_E<A23D6Al>

When we add these two terms and set £ = 1, we see some interesting differences
between the geometric discretization and the continuum. In the continuum, we have
do = —dd when the directions of dz* A 9, and e”_0, are different and dé = dd when
they are the same. As a result, in the continuum, we could cancel the bottom line
from each term and combine the top lines. Combining the top lines would give us a
term proportional to the second derivative, which is what we see in the Dirac basis
description. However in the geometric discretization, the identity Dé = —dD only
holds when the fields are perpendicular to each other. When they are parallel, there
is no equivalence. This means that the two bottom lines can successfully cancel and

the two top lines cannot be combined. This leaves us with

1 ~ - 1 - o
S(;+S(;p‘ - —§<DA1,DA1>—‘§<DAQ,DA2>
1 e SO 1 M
—i < 0A;,0A, > —= < 0As,0A5 >
11 1<D/1D/1>11 1<D/1D/i>
2 é 1, 2 2 6 2 1

When £ = 1, we are left with terms that can be rearranged to make
1 = &
Sa + Sagr = —5 < Al“ —(D(S + (;D)Au >

where —(D§ + 6D) is the definition of the Laplacian operator seen in section 4.1.

6.3.4 The Path Integral Measure

It is not always straight forward to show that the measure of integration for a path

integral respects the gauge transformations of the action. The revelation that the
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fermion measure of continuum gauge theory did not respect axial symmetry led to
the discovery of the axial anomaly [70].

For our purposes, we must be sure that the measures of integration of the fermion
and gauge fields respects the transformation of equation (26).

For a given transformation, czB — R [W e'ié) W ((ﬁ)] , the result is a term that re-
sembles < [eié([’“]) + f42) 4 4 ¢®0(AND | & The term + [.] only provides a phase,
so we can say that

do— R W ()W (d0)]
where d¢ represent the measure of integration. By the same reasoning, we can say
that
db([]) — () [R{WW(D}]
For these transformations, the product of the measures, dg)d[p‘, is invariant, just as in
the continuum case for U(1),.

The gauge field transforms as A — A — iR [(iﬂ'((jé)] [G([.])]"". Under this
transformation, the measure of integration, dA, transforms so that the correction is
proportional to D?A. D? of any field is zero, so the measure of integration for the

gauge field is also invariant.

6.3.5 Topological Fields and Charge

In two continuous space-time dimensions, a topologically interesting gauge field tra-

jectory is provided by
Al(l) = 0 Az(l) = —WT (27)

where w is proportional to the field strength, Fjs, and is constant across the manifold.
The manifold itself is a 2D torus, with z, € [0, L,]. The gauge fields are not periodic
in the x; direction, but their value at ; = 0 and z; = L; can be related by a gauge
transform. Consequently, any function or action that is gauge invariant will see this
field as periodic in both directions. This configuration has previously been discussed
in [71] and we use a similar description, but with the discontinuity along a different

boundary.
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In the Dirac basis, the gauge transform that we use at the boundary between

z; =0 and z; = L; is U(z) = 112 50 that, with a unit coupling constant,
Ag(l’l = O) = Ag(l'l = Ll) - 1(82U(.I’)>UA1(Z‘) — AQ((L‘l == L]) + le (28)

In this expression, w = %, where () is the topological charge, Q) = % [ dz®Fi,. If
we substitute for w in U, we have U = ¢?2™@¥2/L2 and for this to be periodic in z3, Q
must be an integer.

In the lattice description of this gauge trajectory there are complications. There is
no true topology because lattice fields are comparable to multidimensional histograms
and, as such, any field can be smoothly deformed into any other field. Nonetheless,
we can follow the same strategy as in the continuum, replacing the topological charge
with a parameter, 7, that admits non-integer values.

In standard lattice gauge theory, the topologically interesting gauge field trajec-
tory is represented by [71] [72]

Ui(ni,ng) = : Lk (29)

exp[#L2r] ifpy =L — 1
—2ming T
Tz
where we have taken L; = Ly = L. The topological charge can be calculated as,

27r?

] (30)

Us(ni,n2) = exp|

There is some subtlety to this expression. Up is the ordered product of the gauge links
around a plaquette and it is a complex quantity. When we take the log of a complex
quantity, we have to introduce branch cuts to remove the ambiguity associated with
the periodicity of the exponential function. Any complex expression can be written
as z = re? and clearly z = re®® = re!®*"2")_ Taking the log, we have that In(z) =
In(r) + 40 = In(r) + i(¢ + n2x). To remove the confusion between if and (6 +
n27), the coordinate space is divided into different patches by branch cuts. Branch
cuts in general run between the singularities of a function. In the case of In(z) the

singularities are at z = 1, where In(1) = 0 and at infinity at some direction. We
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choose the branch cut to lie along the negative real axis up to the point z = 1 and
this means that when we take the log of Up, the exponent stays in the region [—m, 7].
We can calculate @ analytically for the above gauge field. Doing so, we see that

we have L(L — 1) plaquettes for which Up = e2mit/L® ([ — 1) plaquettes for which

Up = 2™/L* and one plaquette for which Up = g 2mir(LA-1)/ . Applying the log,
with the branch cuts, this gives us
1 ‘ | : 27 |"
= — (L2 =-1)|—| —((L*-1)—
e=5(w-v 5 -lwe-vE )
where |..|T denotes 2m modulation in the interval [—m, 7]. As 7 increases from zero,

both terms cancel each other. However, the contents of the |..| of the second term
rises more quickly than the contents of the |..| of the first term. As the contents of
the |..| of the second term reaches 7, it crosses the branch cut and has 27 subtracted
from its value, allowing @) to increment. This process continues until we reach the
point were the contents of the |..| of the first term approaches 7. At this point,
the definition breaks down because as the contents increase through m, () becomes

negative. For a lattice where L, = Ly = L = 6, as studied in [72], ) = 0 in the

interval 7 € [— (%‘305) 2’;6)]. @ = 1 in the interval 7 € [_,3;’)) ii;j ] and @ = —1 when
3(36) 36
T € [~55m ~ 269

The Geometrically discretized description of () must be consistent with this de-
scription. To achieve this, we have to recreate the behaviour of the branch cut.
Applying D to the cochains A gives us the GD equivalent of Fy, over a plaquette.
By using the mod operation and then summing over all plaquettes, we are able to
define an appropriate expression for ().

We have

(32)

Q= Z

where the )", denotes a sum over the orientated plaquettes.

6.3.6 Implementing Topological Fields in GD

Equation (27) describes continuous gauge fields with a discontinuity across one of the
boundaries. The gauge fields across the boundary are related by a gauge transform.

In this section, we shall apply the geometric discretization to this situation.
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To discretize the gauge fields, we apply the de Rham map. This gives us the

following discrete fields

Al (nl, ng) — () Ag(nl, TLQ) = —wny

where the (ny,ny) are dimensionless coordinates, w = %’1 with L the dimensionless
length of the complex and 7 is the topological parameter. We have temporarily
chosen not to use the notation A([..]) for the time being, as we feel that notation of

the form A(ny,ny) better expresses the coordinate dependence of the fields.

Figure 16: The periodic complex. The red and blue boundaries are identified as the

same and it is across this boundary that the gauge field is discontinuous.

We proceed by explicitly constructing the gauge transform across the discontinu-
ity. In Figure 16, we identify the red and blue boundaries as the same and we proceed
by discretizing the gauge transform that relates the continuous fields Ay(z; = 0)
(blue) to As(z1 = L) (red).

In the continuum the transform is

This is a zero-form and applying the De Rham map, on the boundary, acts to sample

U(x) at the vertices of the discontinuity, yielding

A

OA) =™ O((B) = ™E T((C)) = 7B (33)
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Considering only the original complex for the moment and taking the simplex

[BC| as an example, we see that, using equation (26), it will transform as =

Ae((BC) = AF(BC) iR [aW (u ([BJ)[BJ + (0 1>[OJ)] (B
—iR {dw (U([B])[ )}

(34)
where G([..]) is the gauge transform on a fermion field belonging to simplex [..]. We
have dropped a factor of % from equation (26) because e is not included in equation
(33). In this expression, we can make the following substitutions because the gauge
simplices are wedged with zero-simplices and because we can explicitly substitute for

the U at the zero-simplices

~ 21rinB-r ~ ‘Zmu(‘r 27 nB 1)
aglii—nly 92 gla)=0o) =2 =&
e G([C])~! = ==

and

R [aw (0([B)IB]+T((C)(C))

L

[l

(i) - 0(1B))] (Be
: <(—*~ 1 —L> [BC]
— (("“1]T = 1) (’277_1;&[30]

The discrete wedge operations between [BC] and the [B] and [C] simplices in the

last two terms of equation (34) contribute the following factors of %

[BCIA[B] = 3(BC] [BCIAIC] = 5(BC]
All this gives, for equation (34),
Alo’lue([BC]) A A(r)ed([BC]) = % ((%% - 1) - é <1 - e‘lﬁl) (35)

—  Ared e
= A™([BC]) +sin (&)
Interestingly, we see here a consequence of the finite lattice size. In the limit of

271'7')

an infinitely large complex sin( has the following behaviour

; : 2rT 2T %
nglgosln <T> = < 7 ) — O(L™)

To first order this gives

Ame(Be)) = A(pe) = A + (27
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which is the same as in the continuum (equation 28).

However, for finite extent, this transformation only approximates the contin-
uum. To assess the accuracy of this approximation, we can calculate the fraction
sin (#7) / (3Z). The closer this is to 1, the better the approximation. For the val-
ues, 7 = 1 and for an extent L = 6 (the size used in [72] and which we will use later
on), we see that sin (£Z) / (£Z) = 0.83.

To complete the description of this gauge transformation, we would also have to
consider for the dual complex. However, it provides such a poor approximation to
the continuum transformation that we shall instead look for a better way to represent
the transformation.

We proceed by extracting a set of gauge fields from the link variables in equations
(29) and (30). For example, if we write the link variable between [B] and [C] as

U([BC)) = ¢i*A1B) | we have that A([BC]) = — 22T

This gives

. 0 if n L—1
Ay(n1,no) = L 7 (36)

s i S A |
L€

~ 2Ty T
Ag(ni,ng) = — L%

6.3.7 Topological Fields in the Action

Applying the definition for the topological charge in equation (32) to the gauge field
trajectory defined by equations (36) and (37), we obtain the plot in Figure 17, which is
in agreement with Vranas’ plot for the topological charge, calculated using equations
(29), (30) and (31) (top left plot of Figure 1, page 26 of [72]).

When we study the gauge action associated with this field trajectory, we find a
pronounced difference between the geometric discretization and the standard lattice
description. To see this, we proceed by constructing explicit expressions for the gauge
action in both the descriptions.

The lattice has L(L — 1) plaquettes that avoid the discontinuity altogether, each

o (AT . . . »
with e“Z% as a product of gauge links. (L — 1) plaquettes cross the discontinu-
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Figure 17: The topological charge.

2nT

ity, without crossing the boundary in the ny direction, each with a product e"z%.
There is one plaquette around which the links cross both the ny boundary and the
. o ) I-e‘27r7(1~L2)
discontinuity, with a product e 2.
For standard lattice field theory, the gauge action is

Sg = (i,z {1 - 1) (Up + U:,)}
P

where P denotes a plaquette and Up the product of link variables around it. This
gives

geend L [L‘z — (L? — 1) cos(e <27TT>) — cos(e <2—WT—(1———L2))} (38)

e? L2 L2%e

A plot of this expression can be found in Figure 18 and this agrees with the plot in
Vranas’ paper (top right plot of Figure 1, page 26 of [72]). There is a difference in the
absolute value of S; between the two plots, but, in his analysis, Vranas states that,
“The absolute scale in these figures is of course irrelevant” (penultimate paragraph
of page 13, [72]), making it plausible that his scale may have been adjusted. The
relative scale is the same for both.

In the geometric discretization, we have S = % < DA,DA > (from 6.3.2) and to

calculate this we divide the complex up into the same three groups of plaquettes. The

L(L — 1) plaquettes away from the discontinuity each contribute QL’feTf to Sg. The

(L — 1) plaquettes that cross the discontinuity, but not n, boundary each contribute
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Figure 18: The gauge action for the trajectory described by equations (29) and (30)
ate=080 and L =0,

% to Si. The plaquette that crosses both the discontinuity and the ny, boundary
1 9r2.-2(T.2__ 132 |

contributes % to Sg. Summing these terms, we have
SGD _ ([ _ 1 P e Fiiq 2mire AR =1)? B 2m?73(L% - 1)
S¢” = L(L - )W b1 Tig2 TAg2 T T2:2

We can show that these two expressions are consistent, by expanding the cosine
functions in S, For small values of 7, we see that

2n272(L2% — 1)

Ss'tand i LI
. L2e2

O[T

which agrees with the expression for S&P.

In the general expression for S&%" the two cosine terms contribute the two peri-
odicities that we see in Figure 18. The low frequency term provides the dominant 'U’
shape and the higher frequency term provides the potential barriers between differ-
ent topological regions, disfavouring the regions that are between integer topological
charge. The local minima occur in regions of integer topological charge, giving these
regions a degree of stability. The potenti‘;ﬂ barriers can hamper calculations because
once the system arrives in a topologically non-trivial minima, during a hybrid Monte
Carlo calculation, for example, the barrier will impede its return to the topologically
trivial state represented by the global minimum.

In the geometric discretization, S&P has no comparable barriers between the

different topological regions, as can be seen in Figure 19. SGP is quadratic in the A,,,
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Figure 19: S vs 7 using the GD action at e = 0.89 and L = 6.

so it describes the dominant ‘U’shape, but is not of high enough order to describe
the barriers. This is consistent with the continuum, in which the gauge action is also
quadratic in A,,.

Several other field theories have been developed that use similar non-compact
definitions for the gauge links. Cahill uses such a formulation as a tool for calculating
a range of phenomenological quantities [74] [75]. Gockeler et al have studied the
equation of state for U(1) gauge fields [76]. Fiore et al complete a range of calculations
that allows them to explicitly compare compact and non-compact formulations [77]
[78].

All these studies have used gauge actions similar to ours and they are quadratic
in form. It is clear that the barriers between topological regions are an artifact of the
compact description of gauge links. As such, we would expect that the non-compact
descriptions offer the advantage of allowing the system to move more freely between

regions of differing topological charge than the standard description.
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7 Computational Implementation

In this chapter we describe the objects and algorithms used to implement the calcu-
lations described in chapter 9. We will also discuss some of the considerations for the

implementation.

7.1 The Formulation

We have chosen to work in two space-time dimensions because this is a simpler and
computationally cheaper environment than four space-time dimensions, in which to
develop and test the formulation.

We have taken as our starting point the geometric discretization scheme as we
originally introduced in section 5 together with the gauge theory we developed in
section 6.3. The scheme is restricted to one original complex and one dual. The
fermion fields exist on the original complex.

This formulation presented here is in keeping with the published formulation

described in de Beaucé and Sen’s work [8][9][58][63].

7.2 General Details

W

The algorithms have been implemented in using gece to compile the code to a
maximal level of optimization.

The code has been divided between five files:-

e def .h contains all the global parameters, set using the #define command

e types.h contains the user defined objects

e global.h contains the function prototypes for the global.c file

e global.c contains the all functions required by the Hybrid Monte Carlo algo-
rithm and needed to calculate the value of the observables

e hmc. c implements the Hybrid Monte Carlo algorithm and measures the observ-
ables

Our complex is periodic. Although its size is adjustable, in the calculations, it

is generally set as a 6x6, but we shall use Figure 20 as a reference complex for the
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purposes of the following discussions.

A B C
D E E
G H I

Figure 20: A periodic 2D complex.

7.3 Complex Numbers

Our most fundamental object is the complex number, which is defined in types.h.

We define it as a pair of long doubles. It forms the basic unit of the fermion fields.

In global.c we include the functions that perform standard complex arithmetic.
The gauge fields are parameterized using real numbers, so the complex numbers

only entered the implementation through the fermion fields.

7.4 The Fields

To construct a vector representing all the degrees of freedom of the fermion fields,
we need to know which components correspond to which simplices. The order we
use is to start with the field belonging to the vertex nearest the top left corner of
the complex. This will be the first component. We will treat it as part of a cell
comprising the fields belonging to the z-direction one-simplex to its right, the xs
direction one-simplex above it and the 2-simplex to the top right. These three values
will then appear next in the vector, in the order given. We then proceed down the

complex until we reach the bottom of that complex column. Then we move to the
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column to the right and repeat the process. As a single vector for the complex in
Figure 20, this is too long to fit on a single page, but if we break it into two, with

the top portion on the left and the bottom portion on the right, then we have

[A]
[AB]
[AG] ke
[ABHG] [HI]
D] [HE]
[DE] [HIFE)
[DA] €]
[DEBA] [CA]
[G] [C1]
[GH] [CAGI]
[GD] [F]
[GHED] [FD]
[B] [FC]
[BC) [FDAC]
[BH] 1]
[BCIH)] 1G]
[E] [IF]
[EF) [IGDF]
[EB]
[EFCB]

This is a fermion vector which we define in types.h as an array of 4 x N1 x N2
complex numbers, where N1 and N2 are the dimensions of the complex.

The gauge field is a 1-form in the continuum and within the geometric discretiza-
tion it exists only on the 1-simplices, so we only need to include the 1-simplices in its
vector type, which is defined in types.h. For the gauge vector, we use a 2 N1x* N2

array of long doubles with the following basis for the complex shown in Figure 20:-

72




RN
L2 %

TEEE®
5

T mEmEw QR
=53 32 Q08 8>

For the purposes of our calculations, we must also include the gauge field on the
dual complex.

To describe the dual gauge field, we follow the same approach but start with the
dual cell that lies to the top right of the first original complex cell (shown in Figure

21). The basis for this vector is:-
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Figure 21: A periodic 2D complex plus its dual.
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7.5 The Operators

The operators are (4 x N1 x N2)x(4 % N1x N2) matrices that operate on the fermion
vectors. They are constructed as an array of 16 x N12 + N22 complex numbers. We
store the elements of the matrix in a one dimensional array in much the same way
that we store the fields of the complex. We start with the top left element of the
matrix and proceed downward until we reach the bottom. The next array item is the
first element of the second column and down the column we go and so on.

Principally, there are two types of operator. The first is the free field Dirac-
Kéhler operator, which is antisymmetric. The second is the interaction term, whose
symmetries are harder to define.

We define the Dirac-Kéhler operator, starting from a null matrix. In section 7.4,
we grouped together simplices into cells and we can see that each row of the matrix
corresponds to a cell of the complex defined through the fermion vector basis. We
find the four columns that correspond to the same cell and define our changes to the
null matrix around those.

It the row corresponds to a O-simplex, the four elements in the columns corre-
sponding to the same cell are

(0,1,1,0)

We denote the elements belonging to the next four columns of the same row
with 7'(1). These columns belong to the next cell on the complex. These elements

contribute

T(1)(0,0,-1,0)

We also have a contribution from the cell immediately to the left of the one
corresponding to the row. We indicate the set of columns belonging to this cell with

T(—N2). Their contribution to the row is
T(-N2)(0,-1,0,0)

All other elements on that row remain equal to zero.
In this notation 7'(X) indicates the number of cells we must move over from the

cell corresponding to the row. The contents of the brackets are the elements in that
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cell, for that row.
The other rules are:-

For a row corresponding to a 1-simplex in the 1-direction
(-1,0,0,—1) + T(1)(0,0,0,1) + T(N2)(1,0,0,0)
For a row corresponding to a 1-simplex in the 2-direction
(-1,0,0,1) +T(-1)(1,0,0,0) + T(—N2)(0,0,0,—1)
For a row corresponding to a 2-simplex
(0,1,-1,0) + T(-1)(0,-1,0,0) + T(N2)(0,0,1,0)

This prescription doesn’t specify the changes that must be made near the bound-
ary of the complex. These changes are implemented as conditional statements in the
routines that generate the Dirac-Kahler matrix. The conditional changes are:-

If the row corresponds to a cell in the far right column of the complex,

e T'(N2) must be replaced with T'(—N2(N1 — 1)).

If the row corresponds to a cell in the far left column of the complex,

e T'(—=N2) must be replaced with T(N2(N1 —1)).

If the row corresponds to a cell on the top row of the complex,

e 7T'(—1) must be replaced with T'(N2 —1).

If the row corresponds to a cell on the bottom row of the complex,

e 7'(1) must be replaced with T'(—(N2 — 1)).

For the interaction term, we start with two four component arrays that tell us
where, in a matrix of the same dimensions as the Dirac-Kéahler operator, the gauge
fields should appear and what coefficient they should have, depending on the discrete
geometry involved. There is one array for each complex and we have a program
function that constructs the interaction matrix from the two arrays.

Writing out these rules becomes more complicated than for the free field Dirac-
Kahler operator because in addition to specifying where on each line the non-zero

entries are to be found, we must also specify which gauge fields are required.
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To this end, we necessarily extend our notation. We identify the columns of a
row with cells, in the same way as for the Dirac-Kahler operator. However, we also
use the T'(X) notation to indicate on which gauge simplex the appropriate gauge
field can be found. T'(X) describes a cell relative to the one identified by the outer
set of brackets. For example, 7'(1)(0, A[T(-1)(0,1,0,0)],0,0) would indicate the 1-
direction gauge simplex from the current cell, placed in the column corresponding to
the 1-direction simplex of the next cell. o and d indicate whether the field is from
the original complex or dual. As mentioned in section 7.4, we associate a cell from
the dual complex to one from the original if the barycentre of the dual 0-simplex and
the original 2-simplex coincide: A < a, B < b, etc. When we use T'(NV) to indicate a
gauge simplex from the dual complex, it is this dual cell that we take as the starting
point.

The rules are:-

For a row corresponding to a O-simplex

(0, %Ad[T(—NQ)((). 1,0,0)] + %Ad[r(ﬂ\ﬁz +1)(0,1,0,0)],

iAd[T(l)(O, 0,1,0)] + %Ad[T(-J\/’Q +1)(0,0,1,0)],0)

+T(—N2)(0, i,ai,,[(o. 1,0,0)] + =A4[T(1)(0,1,0,0)],0,0)

A

| =

+7(1)(0,0, +%Ad[(0, 0,1,0)] + %/id[T(—LVQ)(O, 0,1,0)],0)

For a row corresponding to a 1-simplex in the 1-direction

(=A,[(0,1,0,0)],0,0, —%Ad[T(l)(O, 0,1,0)])

DN —

+T(1)(0,0,0, —%Ad[(o, 0,1,0)]) + T(NQ)(%Ad[T(—NQ)((), 1,0,0)],0,0,0)

For a row corresponding to a 1-simplex in the 2-direction

(%Ao[(o, 0,1,0)],0,0 + %A(,[T(—NQ)(O. 1,0,0)])

+T(—1)(%AO[T(1)(O, 0,1,0)],0,0,0) + T(-N2)(0,0,0, %Ad[(o, 1,0,0)])

For a row corresponding to a 2-simplex

(0, —iﬁo[(o, 0,1,0)] — A, [T(N2)(0,0,1,0)],

=] =
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il :
+74,((0,1,0,0)] + 211-14,,[T(_1>(o, 1,0,0)],0)

A[T(1){0,0,1,0)] — = A, [T (N2 +1)(0,0,1,0),0,0)

1
4
+T(N2)(0,0, +%AO[T(—N2)(O, 1,0,0)] + iAO[T(—NQ 10010, B0

=] =

We have to include corrections to these rules because of the periodic boundary
conditions of the complex. The corrections apply to the T'(X) indicating the location
of the gauge simplex as well as the 7'(X) indicating the location of the cell within
the row.

With these two matrices, we can construct the covariant Dirac-Kahler operator as:
(the first matrix) - ie(the second matrix). The symmetry properties of this operator
are discussed in section 7.7.

There is one other type of operator that we define in the file types.h. We define
an operator for gauge fields that we use in the definition of DA which is required for
Se and in 5 A which is used in Sar.

This operator is a subset of the lines from the free field Dirac-Kéahler operator.
For DA, we only need the lines that correspond to 2-simplices. For the §A operator,

we only need the lines that correspond to O-simplices.

7.6 The Algorithm

We use the Hybrid Monte Carlo algorithm [10][19] to generate a succession of gauge
field configurations on which we calculate the observables. The most computationally
demanding parts of the Hybrid Monte Carlo algorithm are the matrix inversions and
the calculations of the matrix determinant. For reasons of computational efficiency, I
wrote the determinant function in such a way that it performs Gaussian elimination to
make the matrix upper diagonal and then calculates the determinant as the product
of the diagonal elements.

The inversion routine I wrote in two ways. One routine used Gaussian elimina-
tion with pivoting to calculate the inverse. I wrote another routine that used the

conjugate gradient algorithm to solve for the inverse column by column. However,
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after comparing both algorithms in identical circumstances, I found that the con-
jugate gradient algorithm was slower on both 3*3 and 6*6 complexes, although in
both cases it was only by about 10%. Clearly, the reason that conjugate gradient
is popular is not just its efficiency, but also that it can be implemented with lower

memory requirements for large matrices.

7.7 Hermiticity Issues

One difficulty with this formulation comes from the symmetry properties of the co-
variant Dirac-Kahler operator.

In the continuum, the Dirac-Kéhler operator is antisymmetric and the gauge
field term is anti-hermitian, so the overall formulation is also anti-hermitian. In our
formulation, the free field Dirac-Kahler operator is still antisymmetric. However, the
gauge field term has no comparable properties.

This is a consequence of the role of the gauge fields in the inner product. In
standard lattice gauge field theory, the inner product between a spinor and adjoint
spinor on neighbouring lattice sites contains a parallel transporter. This transporter
is involved in both the terms v(n)U(n)¢(n + 1) and ¥(n + 1)Ut (n + 1)1(n) and
so is involved in both forward and backward propagation of the fermion field along
the lattice. However, in the case of GD, the fermion field is propagated backwards
and forward by gauge fields from different complexes and these fields have been
discretized by integrating over different domains. As we saw in section 6.3.1, it was
fundamentally necessary to define the gauge fields in this way so as to ensure that the
gauge fields transform to maintain the invariance of the derivative on each complex.

For example, referring to Figure 21, the fermion field on the simplex [BE] is
mapped to the simplex [ABE D] by the derivative D and by the two gauge simplices
[AB] and [DE]. However, the field on the simplex [ABED] is mapped back to
the simplex [BE] by the adjoint derivative and by the gauge simplex [de]. The De
Rham map that discretizes the gauge field belonging to [de] has a different domain
of integration to the De Rham map that discretizes the gauge fields belonging to the

[AB] and [DE)] simplices.
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In taking the transpose, A([de]) and 3(A,([AB]) + A,([DE])) are interchanged,
but they only approximate each other to the zeroth order.

If we were to demand the desired hermiticity properties of the gauge fields, this
would define a relationship between the gauge fields on each complex. However,
because each gauge field is involved in the propagation of the fermion fields on several
simplices, the only case in which this could be realised is when the value of the gauge
fields are a linear function of position. For example, referring again to Figure 21, if
we were to constrain Ag([de]) to be equal to %([lo([AB]) + A([DE])), we would also
have to constrain A4([de]) to be equal to (A, ([BC))+ A, ([EFY))) because the field on
[BE] will also propagate on to [BC'FE]. Similarly, we would have to define A,([BC])
to be equal to 1(Aq4([ab]) + Ag([de])) and 1(A4([be]) + Ag([ef])). This could only be
achieved if gauge fields parallel to the 1 direction were linear in the ny coordinate
and independent of n;. A similar analysis also applies to the fields parallel to the 2
direction. They would have to be a linear function of the n; coordinate alone. As
we shall see, we cannot constrain the gauge fields to be linear in the coordinates in a
HMC calculation, so we must obtain hermiticity properties by other means.

The hermiticity is necessary to ensure that the determinant of the covariant Dirac-
Kéhler operator is always real and positive. This is required for the action to be
bounded and stable.

The solution that we have adopted to this problem has been to replace the de-

terminant of the covariant Dirac-Kéhler operator, det(M), with \/det(M)f det(M),
which is similar to the quarter-root trick commonly used in staggered fermion calcu-

lations [73].

7.8 Hybrid Monte Carlo Algorithm

The HMC algorithm [10] that we used for generating the gauge field configurations
is well understood. However our implementation is quite unusual, so it is necessary
to describe it in detail.

We start by choosing random gauge field configurations for each of the two com-

plexes. We use a Gaussian function to populate the gauge fields from the distribution
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e 24, Starting with a configuration populated by a Gaussian function allows us to
clearly see thermalization using the gauge action. We also choose a set of momenta
for the gauge fields on both complexes, from the distribution e~2P",

We construct the Dirac-Kéahler operator as the sum M = D—4d+m aE Y z'e/id,

and we invert this using Gaussian elimination, where necessary.

The Hamiltonian for this system is
1 ~ 1 ~ :
H=252+ 8%+ S%p + S&p + 5 > PXi7)+ 5 > Pi(l.7) + In\/det(MTM)
l l

where [ labels a simplex and 7 is the simulation time. S¢ is the gauge action from
Section 6.3.2 and Sgp is the gauge fixing term from Section 6.3.3.
We derive an update scheme, with which to evolve the system, from the equations

and P(/ Tl = —9H _ where the dot denotes the derivative

of motion A(l T) = 9A(LT)

aP
with respect to SlIHuldthIl time.
Taking advantage of the identity

In /det(MT M) < (M“ Jl)) (39)

aA 1, 7) 9A(l,7)

which is shown in Appendix C, we arrive at the following update scheme, using the

leapfrog method and a simulation time step of Ar.

AT+ A7) = A7) +ATP(,T+4)
Ad(Z,T‘f—AT) = Ad(l,T)+ATpd(l’T+%)

Bl,r+41) = P(,7—Ar)+Ar [—a o Her _ p (Tr (AI—I——aAf}I{T)))]
5 o E AT 8Sg 85gr. [-1_0M
T A = Bl r—LT L Ar [—0 20 OSer _ Re (Tr (M Md(m))]

(40)
As vectors of the type described in Section 7.4, a% and Qi@ are calculated using
DTDA and 676 A, respectively. The A,(1,7), Aq(l,7), P,(I,7) and Py(l,7) are purely
real quantities.

To facilitate the use of the leapfrog scheme, we first need to evolve the momenta

of the gauge fields by a half step using the gauge force term
T 8S¢ 98 ~1_8M
[_ oA,00 — aio e (Tr (M 0,40(1,0)))]

= +4
B AT L 5 AT S 0Sq = OM
Pa(l, 3 = Fy(l,0) + i [_ a/id(?,()) N OAd%l.FO) — Re (Tr (M laAd(l,O)))]

(41)
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We then start a chain of molecular dynamics steps that update the gauge fields and
the momenta according to equation (40). At the end of the chain, we roll back the

momenta half a step using equation (42).

= o AT At aS S —1_8oM
By =B remr=alt e e el (o))

o ® AT AT a5, dS, —1 M
Falsr) = wWhgllor ibsr b — - [—aAd(ﬁT) = aAd(Gl‘;) — Re (Tr (.M ﬂ_aAd(l.T)))l X
42

Next, we evaluate the Hamiltonian for the configurations at the start of the molec-
ular dynamics chain and at the end and accept the end configuration with probability

1 g Hend < gstart

2= 2 <Hend ~Hstart>
e

if Hend = Hst,art

f we accept the end configuration, we store it, generate a new set of momenta from
the Gaussian distribution and repeat the molecular dynamics chain, starting with
the half step forward in the momenta. If we reject the end configuration, we store
the start configuration, generate a new set of momenta and start a new molecular
dynamics chain from the start configuration.

After a period of thermalization, the stored set of gauge configurations will become
representative of the contributions to the path integral.

We chose the parameters for the simulations so as to achieve a reasonable sampling
of phase space in a reasonable length of time. The complex had dimensions 6x6 and
the fermion field was massless. Each molecular dynamics chain had a duration of 0.2
in simulation time and comprised 20 steps, giving A7 = 0.01. To reach an acceptable
level of thermalization, this configuration was run for 140 Monte Carlo tests and
the whole algorithm took roughly 90 hours to complete on Trinity College’s IITAC
cluster [79].

Figure 22 shows the value of the gauge action for a typical calculation. We
considered thermalization to have taken place when the random variation in the
gauge action was significantly greater than the deviation from horizontal caused by
the transient curve. With these parameters, we judged thermalization to have taken
place after 80 Metropolis steps. This left us only 60 reliable configurations to use in

our calculations, so we ran three of these processes simultaneously.
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Figure 22: A plot of the gauge action after each Metropolis step. The plateau

represents the thermalized gauge field with e = 0.89.

For a coupling constant of e = (.89, the three simulations yielded 180 thermalized

gauge configurations which we found to have an acceptance rate of 92%.
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8 Review of the Schwinger Model

Before we use this computational framework to calculate phenomenological quan-
tities, we will first devote a chapter to familiarising ourselves with the underlying
Schwinger model and its properties.

The Schwinger model is named in honour of Julian Schwinger who studied the
properties of U(1) gauge fields in one space and one time dimension, showing that
mass was dynamically generated by the gauge field [14]. In his original work [14]
both the space and time dimensions were continuous and the fermion field was taken
to be massless.

This arrangement can be described as a 1 + 1 dimensional model. However,
Schwinger wasn’t the first to use 1 + 1 dimensional models. Thirring had previously
used them to study a purely fermionic interacting theory [13], but such was the
interest surrounding Schwinger’s result that the model came to be associated with
his name.

One of the reasons that the model is of great interest is that the reduced dimen-
sionality sometimes permits the calculation of quantities that cannot be calculated
in four space-time dimensions. Thus, it provides an environment comparable to four
dimensions, in which to study fermionic field theory. Several studies have analytically
calculated the properties of the model [81][82][83][84]

In our case, we have chosen to use the Schwinger model because its dimension
and gauge group are much less computationally demanding than higher dimensional
models. This allows us to perform calculations in a manageable amount of time on
single processor supercomputing facilities.

For our calculations, we use one time dimension and one space dimension. Both
dimensions are discrete and we include a single flavour of massless fermion field with
U(1) symmetry. We use Euclidean space, in which we can describe the discrete 1+ 1
dimensional theory as a discrete two dimensional theory.

In the subsequent sections, we shall use our implementation of the Schwinger
model to calculate the static quark potential and to consider the chiral condensate.

In this section, we shall outline some of the established results regarding the static
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quark potential.

8.1 Static Fermion Potential

Iso and Murayama [85] studied the static fermion potential for the Schwinger model
in the continuum and Dilger [86] and Joos and Azakov [87] studied the geometric
description of the continuous Schwinger model. In the geometric cases, the fermion
fields were represented using a Dirac-Kéhler algebra, making them more in keeping
with the geometric description that we have used.

Both Dilger [86] and Joos and Azakov [87] showed that in the continuum of two

Euclidean dimensions (one spatial, one temporal), with dynamical fermions

(cosh mR — 1)
9 (()m[,l AL 1)

R m™m s m™m
V(R):T(l—(’ R)'-

(43)
where m? = % and L, is the spatial extension of the space-time.

The second term in equation (43) describes the effect of the finite extent of the
space. In the limit mL; — oo, this term goes to zero. Iso and Murayama [85]
attained this same result in this limit. If we look at the potential in the the small R
limit, subsequent to mL; — oo, we have V(R) — 3e*R + O(R?).

This is intuitively sound. Leaving aside screening for a moment, the force exerted
by the potential is constant in the Schwinger model due to its single spatial dimension.
Consequently, the potential must grow linearly with separation between the fermion
and antifermion. In the unquenched case, the creation of virtual fermion pairs acts
so as to screen the fermion and antifermion from one another. This reduces the force
at large separation.

A plot of the potential described in equation (43) is shown in Figure 23 for the
parameters e = (.89 and L; = 6. The plot shows the potential for the quenched case,
both with and without finite extent effects, in which we expect no screening. It also
shows the unquenched case, both with and without finite extent effects, in which we
expect to see screening. We can see that the influence of the screening is much more
dramatic than that of the finite spatial extent.

In the lattice case, it has been shown explicitly by Rothe [19] (pages 111-115),

that the quenched calculation leads to a potential proportional to R, where R is
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Figure 23: The static quark potential for e = 0.89 and L; = 6 with the linear, un-
screened potential in the limit of infinite spatial extent (red), the unscreened potential
with finite spatial extent (green), the screened potential with infinite extent (blue)

and the screened potential with finite extent(pink).

the separation. In [88], Potvin compares the screened, analytical potential to the
potential calculated using ensemble projector Monte Carlo methods and obtains good
agreement, observing both a linear regime at low R and a screened regime at high R.
In [89], the authors study a strategy for addressing the computational cost associated
with including dynamical fermions in these calculations. Their calculations show
good agreement with the predicted values in the quenched case and their attempt at
recreating the dynamical behaviour shows a degree of screening comparable to the
expected result in the unquenched case.

The formulation proposed in Section 7 uses dynamical fermions so we expect to
see a potential that is close to linear for small R, but that shows screening as IR grows.
As such, we anticipate a potential that is consistent with the unquenched curves in

Figure 23.
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9 Computational Results

Here we shall review the calculations of the static quark potential and we shall con-

sider the calculation of the chiral condensate.

9.1 The Static Fermion Potential

The standard approach is to calculate the gauge invariant correlation function be-
tween two fermions a finite distance R apart, at Euclidean time ¢ = 0 and the same
two fermions at a later time, t = 7. The fermions are taken to be infinitely heavy
and are therefore static. As T becomes large, the ground state of this arrangement
dominates, which is determined by the interaction potential.

In practice, we proceed by taking a rectangular loop around a group of lattice
plaquettes of dimensions TxR, and we calculate the phase incurred by passing around
the loop. We average over all the loops of the same size and dimension from the
lattice and we calculate an expectation value for the phase from an ensemble of
gauge configurations.

If we were able to take the extent of the loop in the time direction to be infinitely
large, we would find that the ensemble average for the phase becomes: < W(A) >—
F(R)e VT where V(R) is the potential as a function of the separation between
the fermions, R. In the infinitely heavy case, V(R) is the ground state of the system.
In practise, we must use a finitely sized loop and we are particularly interested in
values of T' large enough for the ground state to dominate, but small enough that
the behaviour F(R)e VT dominates over the noise in the ensemble average.

To find this window in 7', we calculate the following quantity

< W(T) >
= << W(T + 1) >> S

across a range of T', for a fixed value of R. We then identity the region in which this
becomes independent of T', with small enough error bars to determine an acceptably
accurate value. The plots of the quantity in equation (44) should fall off to a level

value, for increasing T', before the error bars become large. The position of this
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plateau tells us the value of V(R) for a given R. To determine the shape of the

potential, we must study this for several values of R.

9.1.1 Ouwur Parameters

We present here results from calculations performed for two values of e. In the
first case, e = 0.89, as in Vranas’ paper [72]. In the second, we chose e = 1.3.
The calculations were performed for a massless fermion, on a 6x6 complex with a
molecular dynamics chain of length 0.2 divided into 20 steps of 0.01. This yielded an

acceptance rate of 92%.

9.1.2 Thermalization

Figure 22 in Section 7.8, shows the value of the gauge action as one calculation
progressed. We used the gauge action as an indicator of when thermalization had

been achieved.

120 T T T T

Gauge Ac'tion

110

100

90

80

70

60

Value of Gauge Action

50

40

30

20 i ! L 1 L 1
0 20 40 60 80 100 120 140

No of Metropolis Steps

Figure 24: A plot of the gauge action after each Metropolis step. The plateau

represents the thermalized gauge field with e = 1.3.

Each calculation ran for roughly 90 hours and involved 140 Metropolis tests. As
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described in Section 7.8, we deemed thermalization to have taken place when the noise
obscured any trend in the value of the action. We judged that this was achieved after
80 Metropolis steps, leaving us with 60 thermalized gauge configurations. To gener-
ate a larger set of thermalized gauge configurations, we ran three such calculations
simultaneously for each set of parameters.

In Figure 22, e = 0.89. Figure 24 shows an equivalent plot for the case where
e = 1.3. In this case also, 80 Metropolis steps proved to be a suitable threshold for
thermalization and we used three calculations to generate 140 thermalized configu-

rations.

9.1.3 The Potential at ¢ = 0.89

We start by looking at the quantity in equation (44). With R = 1, we produced the
plot in Figure 25. As T increases, the error bars start off small and increase in size,
as we would anticipate from the decreased signal-to-noise ratio. At T' = 1, the value
of equation (44) is 0.384 £ 0.013. With e = 0.89, the value of % is 0.396, so the

plateau agrees with the expected result.
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Figure 25: The static fermion potential at R = 1 and e = 0.89.
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Figure 26: The static fermion potential at R = 2 and e = 0.89.

Figure 26 corresponds to the R = 2 case and here the results are less clear. We
were only able to generate data points at T'=1 and T = 2. At T = 3, equation (44)
requires Wilson loops with an extension in the time dimension of four and this takes
the expression eV T too close to zero. When the ensemble averages go to close too
zero, the noise can easily send the mean to zero or below, resulting in the In function
becoming singular.

Whilst the second data point in this plot is a standard deviation away from the
expected result, the first point follows it closely. At R = 2, we expect &TR to be 0.792.
The first data point is located at 0.804(+0.032, —0.033), which agrees well.

At R = 3 and R = 4, we also found that some of the points succumbed to the noise
problem. At R = 3, we were only able to obtain a value for the T' = 1 data point:
1.258(40.078, —0.084). The theoretical result is 1.188, so again there is agreement.

At R = 4, T = 1 was also the only data point with non-singular errors. We
obtained 1.463(+0.157, —0.187). The theoretical result is 1.584, so these values are
also in agreement.

These results are summarized in the Table 1 and in the plot of V/(R) at e = 0.89
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Table 1: Static quark potential data points at e = 0.89.
R | In (235;;i> +A | —A || Theor. Val.
1 0.384 0.013 | 0.013 0.396
2 0.804 0.032 | 0.033 0.792
3 1.258 0.078 | 0.084 1.188
4 1.463 0.157 | 0.187 1.584

in Figure 27.
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Figure 27: The static quark potential calculated at e = 0.89.

We interpolated the points from Figure 27 with cubic splines to produce a smooth
representative function. Combining the interpolating function and the analytical
expression plotted in Figure 23 gives us Figure 28

The interpolating function agrees well with the linear form of the quenched analyt-
ical result and at large R, it shows a small deviation from the linear form, suggesting
either screening of the potential by the dynamical fermions or finite volume effects.
However these deviations are within one standard deviation of the linear form, so

it cannot be ruled out that they are attributable to noise in the ensemble of gauge
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Figure 28: The analytic predictions for the static fermion potential at e = 0.89

together with the results from our calculation.

configurations.

To determine the statistical validity of the deviations, a greater number of gauge
configurations would have to be obtained to reduce the error bars and to allow mea-
surements on data points at greater K. In the latter case, more configurations would

improve the signal-to-noise ratio, reducing the influence of the noise.

9.1.4 The Potential at e = 1.3

In increasing e, we encounter the same signal-to-noise problems as when we increased
R. Consequently, the range of data points that we can access decreases. As we move
up to e = 1.3, we find that only R = 1 provides us with a range of values of T'. Figure
29 shows this range. The T' = 2 data point is errant, but the remaining data points
follow the predicted pattern.

The T' = 1 data point is 0.888(40.056, —0.060). At R = 1, the analytical value of
the potential is 0.845, which is comfortably in agreement. For each subsequent value

of R, we only have one data point. These are summarized in the Table 2 and are
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Figure 29: The static fermion potential at R =1 and e = 1.3.

Table 2: The static quark potential data points at e = 1.3.
R | In <<Wm>> +A | —A || Theor. Val.

<W(2)>
i 0.888 0.056 | 0.060 0.845
2 1.659 0.213 . 0.271 1.690
3 2.274 0.499 | 1.040 2.535

plotted in Figure 30.

In Figure 31, we see the four potentials predicted by equation (43) for e = 1.3.
The potential for the quenched, infinite spatial extent case is shown in red and the
potential for the quenched, finite spatial extent case (with L; = 6) is shown in green.
The blue and violet plots show the unquenched potentials for infinite and finite extent,
respectively.

In Figure 32, we compare these predictions with the potential calculated and
shown in Figure 30. As in the e = 0.89 case, we use cubic splines to obtain a smooth
function that is representative of the data points. As before, we see some agreement

between the predictions and the numerically generated potential. The calculated
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Figure 30: The static quark potential calculated at e = 1.3.

potential agrees broadly with the quenched predictions, although it suggests deviation
for increasing R. This deviation would be consistent with either the screening effects
of the dynamical fermions or with the finite volume effects. As in the e = 0.89 case,
the deviation is within one standard deviation of the the quenched predictions, so we

cannot be certain that it is not a figment of noise in the ensemble.

9.1.5 Discussion

The calculated potential in both cases agrees with the quenched predictions. This is
surprising as the simulation uses dynamical fermions and so we would expect to see
a screened potential that more resembled the unquenched plots.

In both cases, we see some deviation from the quenched predictions, but it is
small, lying within one standard deviation of the data point. It is possible that the
deviation is produced by noise in the ensemble, but the consistency between both
plots would suggest that this is a systematic result.

The deviation of the interpolated calculated potential is significantly larger than

the deviation shown by the quenched finite spatial extent case from the quenched
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Figure 31: The static quark potential for e = 1.3 and L; = 6 with the linear, un-
screened potential in the limit of infinite spatial extent (red), the unscreened potential
with finite spatial extent (green), the screened potential with infinite extent (blue)

and the screened potential with finite extent(pink).

infinite extent case. This would suggest that the deviation of the calculated potential
from the quenched result is due to screening effects, rather than finite spatial extent
effects. However, the size of the error bars at each points do not permit us to draw
hard conclusions here.

To investigate this further, a greater number of gauge configurations would have to
be generated, in order to reduce the size or the error bars and to allow measurements
to be made at higher R, where the deviation would be greater, if it is not an artifact

of the noise.

9.2 The Topological Charge

In Figure 18, we see that in standard lattice field theory, there are free energy hills
that are likely to impede the transitions of the system between configurations with

different topological charge in a Hybrid Monte Carlo calculation. In Figure 19, we
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Figure 32: The analytic predictions for the static fermion potential at e = 1.3 together

with the result of from our calculation.

see that these hills do not appear in the geometric discretization. Using these sets of
gauge field configurations, we calculated the topological charge, using the definition
in equation (32), in order to see how the configurations were distributed.

We calculated the topological charge for sets of gauge configurations generated
with e = 1.3, e = 1.5 and e = 1.7 and the results are shown in Figures 33, 34 and 35,
respectively.

In the limit of a large number of distributions, the curves should become Gaussian.
In our case, where the number of configurations is limited to 180, we can see that
the system visits states of non-zero topological charge liberally enough to suggest
that there does not appear to be barriers impeding the transition between states of
differing topological charge. The number of configurations is too few to show that
the underlying distribution is Gaussian, but the distributions shown would not be
incompatible with this.

With a larger data set, we would be able to infer the topological susceptibility of
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Figure 33: The topological charge distribution for e = 1.3.

the vacuum which is calculated from the variance of the distribution [92]

ol L
X*’—L;—‘

where V' is the volume of the system.

9.3 The Chiral Condensate

In [87], Joos and Azakov describe analytical calculations showing the limiting be-
haviour of the chiral condensate with respect to the extension of the lattice in the
time dimension.

We had hoped that a calculation of the chiral condensate for our formulation would
compare to the theoretical values as well as the static fermion potential calculation
had done. Unfortunately, this proved not to be the case.

The reason is the lack of hermiticity in the Dirac operator. In a conventional
lattice QCD calculation, the chiral condensate. < W >, is evaluated by calculating
the ensemble average of Tr (M '), where M is the Dirac operator. This quantity is

guaranteed to be real because of the ys-hermiticity of M. In our case, the lack of
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Figure 34: The topological charge distribution for e = 1.5.

a hermiticity property means that the eigenvalues can be complex and so Tr (M 1)
can be complex.

This left us with the question of how to make Tr (M ~!) real. Using the prod-
uct MTM is inadvisable as this represents a different combination of propagating
fields to that represented by the product < WW >. Instead we chose to drop the
imaginary component on the grounds that preliminary simulations showed that the
imaginary part of < (?b,(i) > was significantly smaller in magnitude than the real
part. For example, on a simulation of a 5x5 complex, using 140 Metropolis steps,
Re << 55,5) >> = 2614.6 and Im << (?), ) >> = —352.5. Whilst the imaginary figures
were not negligible, they were not dominant either and for that reason, we thought
that dropping might not affect the data significantly.

Unfortunately, this proved not to be the case. The values for Re (< ;5, (Z) >) that
we obtained had standard deviations that were several orders of magnitude too large
to admit any meaningful comparison with the theoretical values. In the example
where Re << (Z,QB >> = 2514.6, we found that ¢ = 8036.7.

This still leaves an open question of how to construct a fermion propagator with
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Figure 35: The topological charge distribution for e = 1.7.

a real trace in this formulation.

9.4 Autocorrelation

The Hybrid Monte Carlo algorithm achieves its computational efficiency by sampling
richly from the configurations with high probability. Each new configuration is de-
termined from the previous configuration using molecular dynamics and a Metropolis
test. This invites the question of whether there is a high degree of autocorrelation
within the generated sequence of gauge field configurations.

Autocorrelation can be tested using any observable and we shall use the gauge
action, defined in section 6.3.2. We use the definition for autocorrelation provided
by Sokal [94] and used in [95] [96]. For a general observable, X; with n components

and mean X
n—|t|

ey Z(Xz' — X)(Xigp — X)

i=1
A plot of the autocorrelation function for the gauge action is shown in Figure 36

for e = 0.89.

We can see here that, at low ¢, the autocorrelation is high, as expected. However,
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Figure 36: The autocorrelation of the gauge action measured against the displacement

in simulation time.

as t increases the autocorrelation quickly falls away, reaching zero after approximately
40 Monte Carlo steps. As t continues to increase, there is a period of low amplitude
oscillation before the value of the autocorrelation becomes more erratic. The erratic
behaviour is expected at high ¢ because the number of components used in the sum
is small, making the value of the autocorrelation more sensitive to noise.

In our calculations, we use 180 gauge configurations and we can here see that the
autocorrelation has hampered, but not prevented us from representatively sampling

the configuration space.
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10 Future Work

The work that we have presented here is largely developmental. We have shown
how to construct and use an Abelian field theory within the geometric discretization
framework to numerically calculate analytically known quantities. We have also
proposed an original scheme for isolating the flavour and chiral components of Dirac-
Kahler fermions. Both of these topics could be extended in a range of ways.

The gauge theory is an Abelian theory and it would be interesting to generalise
it to non-Abelian gauge groups. It would also be of interest to compare it to other
non-compact U(1) formulations [75][90] for performance and accuracy.

One unusual feature of this description is the lack of hermiticity present in the
Dirac-Kahler operator. It would be of great interest to analyse the implications of
this for the formulation. The substitution \/m partially addresses this and
it resembles both the quarter-root trick used in staggered fermion calculations [73][91]
and the denominator of the Overlap Dirac operator in equation (5), but it is different
enough that the degree of locality is not clear from the definition. This would be
worth further study.

The lack of a hermiticity property also has consequences for the lattice Feynman
rules. As we saw in Section 9.3, a non-hermitian Dirac-Kahler operator leads to a
non-hermitian fermion propagator. This is an important issue that deserves to be
addressed in future work.

We saw agreement between the analytical values for the static fermion potential
and our calculated values. However, the error bars were smaller at lower e. It would
be valuable to test this agreement at greater accuracy by performing more calculations
at lower values of e. This would also allow us to further investigate the screening
and finite volume effects in the static fermion potential by allowing us to extend the
calculated potential to higher values of R.

The description that we have proposed for isolating the components of Dirac-
Kahler fermions using multiple complexes has much potential for development and
could have some bearing on the quarter-root trick of staggered fermions [73][91]. In

the four dimensional version, we used eight complexes, but only four were needed to
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separate the different flavours. In a free field calculation, there would be a separate
action for each complex. The total action would then be the sum of four terms:
S =85,4+S43+S. + S;. Integrating the fermion fields for each complex separately
would mean that the determinant in the path integral was a product of four separate
determinant, one for each complex.

To generalise this to the gauged case, would require us to study how effectively
we could project out the gauge fields so that we could isolate those that associate
with just one flavour.

Naturally, it would be of interest to try to rewrite these ideas in the conventional
Dirac basis. The ideas behind the multiple complex approach are inspired by discrete
differential geometry, but there is no reason, in principle, why the same ideas cannot
be applied to the standard staggered fermion formulation.

Whether these ideas bear fruit or not, it would be nonetheless valuable to try using
the multiple complex system to perform lattice gauge calculations, just as we have
done for original geometric discretization formulation. This would require redesigning
the code and algorithms that we have used to calculate the results in Section 9, but

the adjustments would be a manageable project.
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11 Conclusions

The work in this thesis mostly relates to the construction and use of an Abelian gauge
theory in the geometric discretization formulation of discrete differential geometry
when used to represent Dirac-Kahler fermions. However, the first result that we
obtained was a definition for a wedge product that admitted a local equation of
motion for the fermion field, but not a local action.

Our first development of the geometric discretization formulation was to show
that, in two space-time dimensions, we could use combinations of the original and
dual complexes to separate out either the chiral components of the free fermion
fields or the flavour components. To enable us to isolate both the chiral and flavour
components simultaneously, we were required to introduce another pair of complexes
and to adjust the Hodge star definition so that it mapped in a suitable way between
the four complexes.

Having done this for two dimensions, we studied the same idea in four dimensions.
We found that we could isolate the chiral components using just the original and
dual complexes, but to isolate each of the four degenerate flavours, we needed to
introduce two new structures of complex and a new operator. The first complex
was defined to have simplices complementary to the original complex in two of the
four space-time dimensions, but not in the remaining two. The simplices of the
second complex were complementary to the simplices of the first complex in all four
dimensions. The operator mapped differential forms to their complement in two of
the four dimensions. As in the two dimensional case, we needed to introduce a second
set of all the complexes and modify the operators appropriately to be able to isolate
the chiral and flavour components simultaneously.

In the next section of the thesis, we constructed an Abelian field theory for the
Dirac-Kahler formulation. We introduced a set of gauge transforms, an invariant
gauge action and, because the theory is non-compact, a gauge fixing term for the
Lorentz gauge. We defined a topological charge for the theory and compared it
to established results analytically. We also looked at a specific topological gauge

configuration and showed how the gauge transformation defining the topology for
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the discrete formulation converged on the continuum definition for large complexes.

We then set about constructing a computational framework for the Abelian gauge
theory so that we could test it, numerically, against analytical results. The framework
used the Hybrid Monte Carlo algorithm to generate an ensemble of gauge fields on
both the dual and original complexes.

We used Wilson loops on the configurations generated to calculate the static
potential and showed that the potential produced by our formulation agreed with
the analytic results.

Our final result was to study the topological charge of ensembles of gauge con-
figurations and to show that the system appears to move liberally into regions of
non-zero topological charge with a distribution consistent with the Gaussian shaped

gauge action.
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A An Alternative Definition for the Wedge Prod-

uct

In this section, we show that it is possible to define a wedge product within the
framework introduced by Becher and Joos [45] that allows Leibnitz’ rule to be satisfied
and that admits a local Clifford algebra.

Leibnitz’ rule describes the derivative of the product of a pair of functions and
it is desirable to have the same relationship on the complex as in the continuum.
In the Dirac basis, on the lattice, the derivative is a finite difference operator and
the functions are vectors or scalars found at the vertices of the lattice. In discrete
differential geometry, the derivative is the exterior derivative and the functions are
linear combinations of discrete differential forms. The product between the functions
is taken using the discrete wedge product and the exterior derivative also contains
a discrete wedge product between a discrete 1-form and the function on which it
operates. The definition of the discrete wedge product determines which terms are
non-zero and so it has a subtle but critical role in defining the properties of the
product and the exterior derivative. In the Dirac basis, its role would be played by
Dirac delta functions between lattice sites.

Here, we modity the definition of the wedge product, which affects the definition
of the product between functions and the definition of the exterior derivative, so
that it allows Leibnitz’ rule to be fulfilled. The definition for the wedge product is
local, but when we use it to define the Hodge star operator, which is necessary to
define an inner product, we find that we cannot construct a local operator, with the
consequence that the action retains its non-locality. The modification is subtle and
to interpret it in the Dirac basis would require the introduction of non-trivial Dirac
delta-functions between lattice points in both the finite difference derivative operator
and in the product between functions.

This appendix is organised as follows. Firstly, we introduce the notation used
by Becher and Joos in their paper. We then use locality and Leibnitz’ rule as con-

straints on an undefined wedge product and find the form it must take in order to

105




satisfy these constraints. We subsequently provide examples of this definition on one
dimensional and two dimensional complexes to show that it allows Leibnitz’ rule to
be satisfied. We then consider the role of this wedge product definition in axial gauge
transformations. Finally, we consider the associated Hodge star operator and the

inner product.

The construction

Becher and Joos divided the 2D Euclidean lattice into squares with a length of side of
twice the lattice spacing. From each square, the simplices at the bottom left corner,
the bottom edge, the left edge and the whole square, represent different discrete

differential forms, with the same coordinate.

&
1
Pany

o
o)

(0]

Figure 37: The lattice divided for Becher and Joos formulation.

From the square ABC D, in Figure 37, the simplices A, AB, AD and ABC'D each
represent a different discrete differential form, taking the coordinate of the point A

as their coordinates. Thus

d*? is represented by the simplex [A]

d*! is represented by the simplex [AB]
d*? is represented by the simplex [AD)]
d*1? is represented by the simplex [ABC D]

An arbitrary function can be written as ® = Y, ¢(z, H)d®", where the sum

over H is a sum over all simplices on the complex, for each coordinate x.
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We start the derivation by writing Leibnitz’ rule as

d(PAB) — (d2)A(O) — (AP)A(dO) =0
where the wedge product A is undefined and the two arbitrary fields are
(b = Zx,H ¢(£L’, H)dqu (_) = Zy_K ()(yv K)dy’K
The product between ® and © is
PAO = "> o(x, H)b(y, K)d""Ad*¥
z,H y.K
and applying the exterior derivative to this, we have
A@A0) = 333" 0, (0(x, H)(y, K) ) d*Ad=" Adv*
2 a.H y K

where 0, is as yet undefined. Applying the exterior derivative to the two fields

individually yields

40 =3, Y, 1 O (0(x, H))d#Ad 4O =Y, , 5, « 0u(6(y, K) )d=+Ad"K

After inserting these expressions into Leibnitz’ rule, we have

3 {8u<¢(;r.H)0(y,[\'))(ll'/‘/\d""”i\dy"’( o(y, I\)(dﬂ(/)(l H))d“‘f\d‘”‘*”/N\dy*"’

2.0 H K

—(=1)¢(z, H) (a,ﬁ(y, K))dﬂ*”AWMM} ~0

where h is the number of members of the set H.

If the Clifford algebra is to behave locally, the wedge must use the forms on its
left and right to construct a form with the same coordinate as the one on its right,
but of higher dimension. The resulting form will correspond to a simplex that is
centred around a lattice site further from the origin, along at least one axis, than the
lattice site centred in the simplex corresponding to the form on the right hand side
of the wedge. For example, in Figure 37, (Zy dv?)Ad*! must have a product with
coordinate A, if we are to be able to have e*4(}> d¥?)Ad*! = d*'. Therefore, the

dA,l‘z

product (Zy d¥?)Ad*! must be proportional to which corresponds to a simplex
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centred on a lattice site further along the 2 axis than the lattice site at the centre of
the simplex corresponding to d*.

Consequently, the requirement that the square of the Clifford product behaves
locally means that the exterior derivative must contain a forward derivative: (T, —1).
Applying the forward derivatives to Leibnitz’ rule, we have

= [(d)(m + e H)O(y + €, K) — 6w, H)0(y, K) ) d**Ad™H Ad"*

2,20, H, K, 1
—b(y, K) (qb(m + e, H) — ¢(z, H))dz’“/\dxﬂi\dy""

~(~1)*0(a, H) (80 + €4 K) — B0, K))dI-Hi\dZ.u/\dyJ"] =0

The second terms of the first and second lines cancel, leaving us with

Z {(([’)(a: +eu, H)0(y + ey, K) — 0(y, K)d(z + e, H))dz'“f\dx‘ﬁf\dy’K (45)

Z2 0 H K i

L (o(.r. H)0(y + €., K) — é(z, H)8(y, [\’))d""”/\(l“’i\dy.h} T

In order for Leibnitz" rule to be satisfied, the remaining terms must cancel. If
the 6 field is constant across the complex, the first and second terms will cancel with
each other and the third and fourth terms will also cancel with each other. However,
we are interested in a result for arbitrary fields, so instead we define the wedge so
that the first and third terms cancel with each other and the second and fourth terms
cancel.

If we choose the A to be

dEAPE =  egpdhBIEFEIter | for HNK'= (16)
0 otherwise

the first and third terms become

Z (05(;1/ +ex + e, H)O(y + ey, K)e predv " HOK
v, H, K,

—(=1)"¢(y + ex + e, H)O(y + e, A’)GH“Kdy,,uUHUK)
If we rewrite ey, as (—1)"€,mx, we can see that the two terms cancel.
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The second and fourth terms of equation (45) are

X {( —0(y, K)o(x + ey, H))dz’“/*\d’*"’f\dy»’( (47)

z,2,y,H, K,

_(—1)h( al: d)(lﬂ H)(}(y, [())dz'Hi\dz’uf\dy’K} —0

Applying the same definition for A, we have

¥ [( — 0y, K)oy + ex + ey, H)) € dVHIHVK (48)

y,H,K,p

_(_1)h( — d)(!/ TER = Cpys H)(}(y, K’))GH“Kdy,uUHUK}

By rewriting e,k as (—1)"e, ur we can see that these terms also cancel.

A.1 Example in 1d

To demonstrate this definition, we show how it satisfies Leibnitz’ rule in one dimen-

sion.

)
A B

Figure 38: A one dimensional complex.
In Figure 38, we have three simplices: [A], [B] and [AB] corresponding to d4?,
d?? and d*', respectively. We define two fields on this complex with

® = ¢(A4,0)d" + ¢(B,0)dP? + ¢(A,1)d*!
© = 0(A 0)d*° +0(B,0)dP? + 6(A,1)d*!

Using the wedge product d®7Ad¥K = eppd? UK §*v+ex  the product between

these fields is

DAO = ¢(A,0)0(A,0)d*° + o(B,0)0(B, 0)dP° + o(B, D)8(A, 1)d*!




The exterior derivative of this expression is
dPAO) = ¥, d"A(T,, — 1)(BRO)
= dAA(T,, — 1)(9AO)
s (¢(B, 0)0(B, 0) — ¢(A, 0)8(A, (Z)))d“/\d“‘"”
- (cb(B,O))()(B, 0) — 6(A, 0)8(A, @))dA-l

with all other terms going to zero.

Now we look at the two terms (d®)A© and (A®)A(dO).
dd = ¥, d"AT, —1)d
= dMAT, - 1)
— (0(B,0) — 6(4,0)) d*'AdA0
2 <@(B.,(/)) - O(A.(/)))d-“~1
dBi= (e(B.w) & e(A.w))dA-l
For the first of the two terms, we have
(dD)AO = ((co(B.(/)) 2 (.9(.4.(2)))(1"-‘)
A (H(A. 0)d*0 + 6(B, 0)dP? + (A, 1)(11-“)
= (o(B. 0)8(A, 0) — 6(A, 0)()(,.4,(0))(1‘“
For the second of the two terms, we have
(AP)A(dO) = A( (A, (0)d““0+d>(B.®)d“~”+d)(A,1)d“>
/\ 8(B,0) — (A, Q)))d’“
= ( #(A, 0)d* + ¢(B,0)dP? — (A,l)d"*‘)
A(6(B,0) - 6(A, @))d/“
( OB, 09(A,0) )

Adding these terms together we have
(dD)AO + (AD)A(dO) = (cb(B, 0)6(A, (b)—qb(A,(Z))()(A,O)))dA*I
+ (6(B,0)0(B,0) — 6(B,0)0(A, 0) |d*!
= (o(B,0)0(B,0) — o(A,0)0(A,0) )d*!
which is the same as the last line of equation (49).
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A.2 Example in 2d

To demonstrate that the exterior derivative satisfies Leibnitz’ rule in less trivial con-

texts, we shall apply it to a two dimensional complex.

@ S
A B
G O
D C

Figure 39: A two dimensional complex.

In Figure 39, the complex comprises nine simplices. Four simplices are zero dimen-

A0, g8, geb dP?, respectively.

sional: [A], [B], [C] and [D] which correspond to and
Four are one dimensional: [AB], [BC], [DC] and [AD] correspond to d*?!, d©2, dP:!
and d”2. Finally there is the two dimensional simplex [ABC D] corresponding to
qD12.

The two fields ¢ and © are

d = ¢(A,0)d4° + o(B,0)dP? + ¢(C,0)d%? + ¢(D, )d"?
+o(A, 1)d™ + ¢(C, 2)d"? + ¢(D, 1)d”! + ¢(D, 2)dP?
+¢(D,12)dP12

© = 6(A,0)dA° +6(B,0)d?° +6(C,0)d“? + (D, 9)dP-?
+0(A, 1)d* +6(C,2)d°? + (D, 1)dP* + 6(D, 2)dP?
+6(D, 12)d"12

Using the product of equation (46), the product between ¢ and © is

PAO = ¢(A,0)0(A,0)d*° + ¢(B,0)0(B,0)dP? + ¢(C,0)0(C, §)d?
+¢(D, 0)0(D, 0)d”? + ¢(D,12)6(D, )d"'? + ¢(B, 0)8(D, 12)d":1?
+¢(A,1)8(D,2)dP'2 — $(C,2)8(D, 1)dP'? + ¢(A, 0)8(D,2)dP?

+¢(B,0)8(A, 1)d*! + ¢(B,0)0(C, 2)d? + ¢(C, 0)0(D, 1)d”
+¢(A, 1)8(A, 0)d* + ¢(C, 2)0(C, 0)d%2 + ¢(D, 1)6(D, 0)dP-!
+¢(D,2)8(D, 0)d">
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Applying the exterior derivative to this, we have

d®AO) = ¥, d"A(T,, —1)(BAO)

s @wﬂwam—MAmwAmw“
+(m3mw&m—¢mmwwﬁ0fﬂ
-%mcwwwmyﬂmamwpw»WJ
+(<z‘>(A 0)6(A, 0) — 6(D, 0)0(D, @))dm (50)
+<¢(B 0)6(C,2) — 6(A, 0)6(D, 2))d0-12
—(¢U1®MKA,U——¢K1®MMD,U)dD”

i ((p(A, 1)8(A, 0) — (D, 1)6(D, @))dm?
+(¢(c ,2)8(C, 0) — ¢(D, 2)4(D, @))dw

Now we build the terms (d®)A© and (AP)A(dO). For the former, we have

dd = ¥ d"A(T,, - 1)d
= < o(B,0) —OA(A)] (c)BV) — ¢(C, (0))(1("2
(o (C,0) — (D, 0) > + ( 5(A,0) — &(D, (0))(1“-2
+(6(C,2) - 6(D,2))aP2 - (¢(4,1) - 6(D, 1))dP2
(dD)AO = ( 5(B, (/))—g) A, 0)) (A, 0)dA! + ( (B, VJ)—(,D(C @)) (C, 0)dC2

For the latter,

de

(AD)A(dO)

0)
)
)
)
)

+( — &(D,0))6(D,
+( — (A, 0))6(D,
+( — #(D,2))6(D,

we have

>, . dYA(T,, —1)©
( (B,0) — H(A.(Z)))d‘
( (C,0) — (D, @))d
( (C,2) — (D, 2))d
(6(3 0) — 6(A,

- 6(D

—~ D

B,0)(6(C

¢ 0)(
)(e
(e

6(C,0) — (D, @)dD-1+o(A (2))((7’(/1 0) —

(MDI+(¢>A0)
9)dP12 _ (c)B(/)
0)dP12 — (

)H(D 0)dP:2
))o(D, 1)dP?
(D, 0)d"12

)6
—oDl)

B ( (B,0) —4(C, (o))df'»2

D1 4 ( (A,0) — 6(D, (D))dD'Q
D12 _ (9(14’ IFdin 1)>dl),12
0))d** + 6(B, 0)(6(B,0) - (C. 0))d°?
(D, V))>dDA2
)d0‘2+¢> 2 (HC(Z) ) - 6(D, (z))
)dn.lz B, 0) (() )

dD.12

dD 12
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In the sum (d®)AO + (AP)A(dO), we see that many terms cancel, leaving us with

(dD)RO + (AB)A(dO) = (¢(B,0)9(B 0) — 6(A, 0)6(A, @))d/ﬂ
+<d>(B,(Z))H(B 0) — 6(C, 0)8(C, @))d02
+((C. 0)0(C.0) = 6(D, 0)0(D, 0) )P
+(6(4,00(A.0) = 6(D, 0)9(D, 0) ) a2
+(0(B,0)6(C,2) - 6(4,0)6(D, 2) )4
—(</>(B, 0)6(A, 1) — 6(C,0)0(D, 1))st12
—(d)(A, 1)8(A, 0) — ¢(D, 1)9(D, @))dm‘z
+(q>(c, 20(C,0) — 6(D,2)0(D, @))dw

which is the same as the right hand side of equation (50).

A.3 Transforming the Spinor

One of the contexts in which this wedge has the potential to be useful is that of
transforms. In the 2D continuum, in the Dirac basis, the Uy (1) and U4 (1) symmet-ies
are implemented on the spinor with the transforms ¢ (z) — €@ (z) and ¢(z) —

(@)o39))(x), respectively. In the Dirac-Kéahler basis, this becomes ®(z) — €@ @(z)
and ®(z) — eie@(—idz'Vdz® )G (1) which reduces to ®(z) — @& VAV (z)  The
term e/(@)(—ide'Vdz®V) can he rewritten as cos(a(z)) + sin(a(z))dz' Vv da?V.

On the complex, it would also be desirable to have the same transformatin:
B(x) — el@(—idelvdz*™V) G (1) However, the definition of the wedge that Becher end
Joos settled on in [45] does not facilitate this because e, d"#A and ) d¥# A2t
are proportional to the translation operators so every pair of consecutive terms in she
power series expansion of '™~ 2y ST g proportional to a different num»er
of translation operators.

For example,

i@~y VY, d72V) =1+ia(z deyIVZd”\/ (51)

——a deyl\/Zd”\/ (x —zz:dyl\/z:d22
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L : A | TR
+aal(.’r)(—22dy‘l % Zd*~2v)‘ + zaaf’(r)(—? Zdy‘l v Zd 2l A
Yy z Yy z

When we simplify the above expression using the definition for the wedge selected

by Becher and Joos, it becomes

2)(~i L, @ IVE, d*?V) ) = 1+ia(z —ZZdyIVZd”V

& %OQ(I)(T_G, T o= zéa-'*(.r)(—i Z dvt v Z T Tl

1CEN ;
+Ea‘(;1:)(TfelTie2) + z— (z)(—1i Z dvt v Z g B,

However, when we expand (51) using the wedge definition from equation (46), it

becomes

T, BIVEL ) g m(.rx—de"“ R

By
—saz(z)—z—a —IZ Iyl\/Zd“Zv

&

1 4 3 B : | z,2
jn (x) + 1:5—!0 (.r)(—dey \/Zd V) — ...
y z

which is free of the translation operators and so can be written as cos(a(x)) +

sin(a(z))dz! Vv dz?V.

A.4 Implications

Changing the definition of the wedge product has implications for many other oper-
ators and operations within differential geometry. In the continuum, the Hodge star
is defined with the requirement that dz’ A (*dz™) = dz™ in n dimensional space,
where dz? is an ordered n-form containing all the components of the space. The
inner product takes advantage of this relation to build an orientated integral over all
of the space: (,0) = [ ® A (xO).

On the complex, it would be desirable to have the same properties. The definition
for the wedge chosen by Becher and Joos facilitates this: d*#A(xd*") = d®~, where
* is naturally defined to be *d™" = ey cpyd* 7 H and CH is the complement of H

in the n-dimensional space. However, equation (46) leads instead to d®" A(xd™) =
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dr—ecm:N " where the natural definition of * is *d®f = eyepd*=¢cnCH_ Using this

naively in the inner product, we have

(¢(z, H)d>H,0(z, H)d®?) = o(z, H)O(z, H)d>" Ad®ecaCH
= o¢(z, H)(z, H)d*—ecuN

This has the undesirable property that the field and the resulting n-form belong to
different coordinates. So, whilst we have gained something in terms of locality with
the exterior derivative, it would appear that we have lost something with the Hodge
star and the inner product.

It might be possible to resolve this issue by modifying the inner product in such
a way that the fields and resulting n-form have the same coordinate and that the
inner product retains the same continuum limit. However, as it is not central to this
thesis, we shall not pursue its development. The emphasis of this thesis is on work

using the GD formalism.
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B 4D Flavour Projection

In this appendix, we want to prove relationships between 7! and the Hodge star and
between # and 7;7y,. The notation for Z, B, A and p follows on from the paper of

Becher and Joos [45].

B.1 The Hodge Star and ~;

In section 4.2, we saw that the differential description of the fermion fields was
achieved by taking the product ®(z) = >, wéb)Zab, where ®(z) was a combina-
tion of differential forms, 1 was the 4 x 4 matrix, comprising Dirac spinors, and Z
was a matrix of differential forms relating them.

In 4D, Z is defined as
Vs Z Jn%d

where dz¥ denotes the various ()rdered differential forms of dimension h. We use
Euclidean v, and we have that v5 = —7;727374. From the definition for ®(z), we can
show that applying 77 to the right hand side of Z is equivalent to applying vs to the

right hand side of L'(.’I') in the definition for ®(z).

2on(= 7 izt ] T {ZH i) (2) Vhda! ]%{%T%T%T
il ZH ( P1234,H ;CHC{T (52)

1 h
= —ZH —1) )Plzuclﬂyd"f
where CH is the ordered complement of H and 4 is the dimension of the space. pa p
is defined to be equal to (—1)" where r is defined to be the number of pairs (a, b)
with a € A and b € B where a > b.
When we apply the Hodge star to Z, we have
h h
+[(~)DFda?| = 37 (-1)E oy enrfda (53)
H
By expanding the definition of (’2’) and (4;h), we can show that (—1)(45h) (—11%=
(—1)@). We can also show from the definition of p4 p that Bda®" = (—1)(45’1)(13?”1 =

pencndz and that peycw +pren = prosacr. Including these results, we have that

Bx A [(—1)(3)72(1:17”] = Z(—l)(4 h)p1234 ey ydzH
H

116




which is minus the last line of equation (52). Finally, we can take advantage of

(—1)(45h)(—1)h == (—1)(2) again to show that B x A = xB giving
— % BZ = ZnF

Now we look at left multiplying Z by 77, which is the same as y3¢(2) according

to the definition for ®(z).

o [ZH(—l)(g)vﬁdﬂf”] = —HH¥BY [Z;;(—l)(g)vﬁdw”
= —ZH(—l)(g)pu,umngx” (54)

4—h

b Zu(—l)( 2 )PCH,123471T{d1?CH

4—h

Using puen = (—1)""Mpey p = (=1)"pen,n and (1) >(—1)h' = (—1“(2), we can

rewrite equation (53) as
h 4—h 5
(=) rFdet] = S0 pen yhda”
H
And finally taking advantage of (—1)(4;’1) = pencr and pey g+ pcHcH = PeH 1234,
we have

B *

h 4—h

Z(—l)(z)vl}dr”] = Z(—l)( . )/)cu,l‘z:sf/gdfal

H H
4—h

which is minus the last line of equation (54). Because (—1)( 2') = (—1)(5)(~1)”’, we

can rewrite Bx as xBA giving

—+«BAZ =12

B.2 Y192 and ‘

We are only interested in the right application of vy to ¥ (x), because ~17, is used
only in the context of flavour separation.
o P B (%) T H
{ZH(—U 2)ygdz ]72 Y= 2 u(=D\ 1o Yien ) m,, 92

2—h13+h3y

(55)
= ZH(_I)( 2 )/)IQ,Cng’)’EdI(CHl?)H“

where we have split H into HoHs4, Hyo containing all the components of H in the

{1,2} subspace and H3,4 containing all the components in the {3,4} subspace. Our
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operator @ is defined through

h h
. Z(-l)('Z)"/’Zd.TH :Z(—1)(2))01112,6'1112VE(jilf'(CHm)H“

H H

: : : hy2
To complete the relationship, we define the operators Bjodzf = (—1)( #)doH =
PHa.H1,d2x™ where hys is the dimension of Hiy and Aj.dzf = (—1)PM2dzH. We can
hig+h 2—hjo+h
124 34) b —(—1)}”2(—1)( 12 34)

show that (—1)( which gives us

A e By Vi i T j..(CH12)Hj.
—WA [(—1)(2)”/’11(141’ :Z(‘l)( 57 pityg iy Y dar 12 s
H
Finally we have that,
; i o 2—h13+h3q T ;..(CHi2)H
—Bi2® A [(—1)(')7;1511' = Z(—l)( : )/012.01112”/”0"‘7"L i
H
which is the same as the last line of equation (55). We note that we can write

—B12#Ay as BB,

B.3 Flavour Commutation Relations

The flavour projection operators are defined to be
(b) 1 . /
P = 1(1 +7V(Yb.812)(1+‘db*8)

To show that the Dirac-Kahler operator commutes with this expression, we must
show that it commutes with each of the operators *B and #B;,. All that differs
between the complex and the continuum formulations is the domain of integration,
which we have addressed in the body of the thesis, so it is enough to show that they
commute in the continuum.

Starting with the former
[d — 6, +B] f(z)dz™ = [dz* v O, *B] f(z)dz" = (8,f(z)) [dz*V, *B] dz"
So we need to prove that dz# V *Bdx! = xB(dz* v dzf'). The left hand side is

PH.CH ( —1 ) (g),{)[l,,CH ((1.’17CHUH + (Z.TC”//[ )
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The right hand side is

h—1

PuH ((—1)( . )pH/;L,CHU/LdeCHUu + (—1)( . )pHUu,CH/ud-Z'CH/u)

h+1

where C denotes complementarity in 4D.
In the case where u € H, we relate the two terms containing da®“#. If they are

equivalent, then we have

h h—-1

PH,CH(—l)('Z)Pu,CH = Pu,H(—l)( 2 )pH/u,CHUu

h

An expansion of ("}') gives (—1)(h51) = (=1)() (=1)1=". The equality becomes

prCHPucH = Puu(—1)" V pH/ucHOL
= puu(=1D)" pucauupucrop
= pur(=1)" pucupu pppcroy
= Puu(=1)" " pucHpruPucHPup

We know that p,, = 1 and we can factor out some of the terms to reach

1= /);L,H(_]‘)h+]pH,u

h—1

When p € H, we have that p, gpn, = (—1) and so the right hand side equals 1.

For the case where u ¢ H, we must compare the coefficients from the terms

containing dz®"/*. We want to prove the equivalence of

h h+1

pH,CH(_l)(Q)pu,CH = (—1)( g >PHUu,CH/uPu,H

h+1 h

By expanding ("1'), we can show that (—1)( ) = (—1)(2)(—1)”. The equality is

now

h

PH,CHPuCH 1)*prupcH/uPuH

=

(=1)

=l PH,CH/uPu,CH/uPu,H
= (—1)"pucHPHuPuCH P H

(=1

h
PH,CHPH pPu,CHPupuPu,H

Using p,,, = 1, we can simplify the equality to

1= (_l)th,,upu,H
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When p € H, we have that py,p,n = (—1)", which completes the proof of the
commutation of xB with d — 4.

For the second operator, we proceed in a similar fashion. We want to prove that
) )

P A7: AN = H 26

dz" vV 8Bydx" = eBadat Vo dx (56)

[t is easiest to divide this proof into two halves. In the first, we will assume that
1€ {1,2}. In the second, we will assume that u € {3,4}.
When p € {1,2}, the left hand side of equation (56) is

h
(“1)( i2)/01112,0111zﬂu,cmg (daFefisda sy d:z'c”‘2”3"/“)

The right hand side is

hig+1 /11271)

Pu,Hy» ((—1)( 2 )/)leu,‘.cu,2/ul1-’1'0”121]3““+(—1)( 2

CHi12H34Upu
p”]z//J.CH]gU/ld‘r : e l)

Comparing the cases where € Hyo, we want to check that the following equality

holds true.

hjo—1 hyo
/)/I.H12(_1)( “ )/)/Ilg//l.L'ngU/l = (—1)( 2 )/)/Ilg.(,‘”mp[l.CHlQ

By expanding (’”?{1). we can show that (—1)('”22_1) - (—1)('32)(—1)1*’”2. Inserting

this (and swapping left for right), we have for the equality

" 1-hi2
PHy2,CH12Ppu,CH12 = /111.1112(—1) : PHyz/u,CH2Up
We can rearrange some of the terms on the right as follows

- 1—h
pr.Cpr}l,CH]Q Sm— /);L,H]z(_l) 12p1']12.CHl-zU/tp/l.CHwUu

1—hjo

i /)M~1112(_1) PH12uPHy2,CH12Pu,CHi2 Pp,p

We can use p, , = 1 and factor out some common terms to reduce the expression to

1—hi2

1 :/)/L.ng(_l) p”l'z,,u

In the case where p € Hyo, we have that p, p,,pH,,, = (—1)M2-1 50 the equivalence

holds.
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For p € CH,4, the equivalence that we are seeking to prove is

hig+1 hy2
pu,Hu(_l)( 2 PH\2UpCHy2 /0 = (_1)( 2 )pHu,CHl?pp«CHn

)L122+1)

We can show that (—1)( = (—1)(%2)(—1)’“2, which reduces this expression to

(again, we swap left and right hand sides)

_ hi:
PHy\2,CH12Pp,CHy2 = pu,le(_l) 1szlf.)UlLCHm/u
After further expansion, we have

. h
PHy\2,CH12Pu,CH12 = pu,Hm(_l) lnglz,CHu/up;t,CHu/#
e h
- pu,le(_l) 12le27C1112/)H127Hp[luCH12/ll

oy h
= Pu,Hyo ( i 1) 12pHm,CHrzle‘z»up#wClepu,u

Using p,, = 1 and cancelling some common expressions, this becomes

1= pu.1112<_1)h12pH12~ﬂ
Because p € CHia, we have py my,PH 50 = (—=1)™M2, so this equivalence holds.
In the case where p € {3, 4}, for the left hand side of equation (56) we have

hlz)

(-

PHi2,CHy2Pu,(CH12)H3s (dl,(CHn)HMU“ i d‘/r(CHu)HM/u)

For the right hand side, we have

h \ R
(—1)( %2)plt,H12H34pH12cH12 (do" )b o JoFHieBadin)

If we equate the coefficients for the case p € Hszy, we have

(hlz

B
pu,leHaq(_l) 2 )pﬂm,CHu = (—1)( éz)le‘ZCHIQPNsCHl‘zH&l

which simplifies to
Pu,HiaHzqy = Pu,CHioH34

In the case where i € {3,4}, it is the case that p, g, = pucm,,, SO We can equate

these two terms. An identical argument follows for the case p € CHsy.
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C Mathematical Identities

Here, we prove the identity in equation (39).

H( = In/det(MTM) = %3 ln(det MTM))
= 1T — f] (In (MTM))
= 1T, ((MTM (MTM))
= LTy ((MTM ool d“* M) LTy ((Aﬁ]\f)“ﬂﬁﬂ—))
= 1Tr (M-t 0“* M) 4 YT (MM M)
= 1Ty (M o ) LTr (M 59 )
= ATr (M) + 4T (M)
gt 4 ( 710(/)1)\117)+ o It <U lr)Z(]\[IT)

i R ( (M ]()(:]\1171))

where we have made use of the properties Tr (ABC) = Tr (CAB) and Tr (AT) =
Tr (A).
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