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Summary

The proton spin puzzle has intrigued experimentalists and theorists since
the surprising result from the EMC experiment at CERN in 1988, which
found a smaller than expected contribution to the spin of the proton from
the component quarks. The question, “where does the spin of the proton
come from?” remains unanswered. Recent data suggests a value of 31 £ 4%
for the fraction of the spin carried by the up, down and strange quarks.
The contribution from the gluons and from the orbital angular momentum
of the quarks and gluons is not completely known. The Relativistic Heavy
Ion Collider at Brookhaven National Laboratory plans to probe the proton
structure using the deep inelastic scattering of protons at high center-of-mass
energies (/s = 50 — 500 GeV) and momentum transfers (pr > 10 GeV/c).
To measure the contribution of the gluons to the spin of the proton, with
sufficient accuracy, a polarized proton beam with a maximum beam polariza-
tion error of 5% is necessary. One method of measuring the polarization of
a proton beam uses the analyzing power in elastic proton collisions at small
scattering angles. The accuracy of the polarization measurement depends
on the size of the helicity single-flip amplitude. In the thesis, bounds on the
imaginary part of the helicity single-flip amplitude are derived which provide
important information related to the evaluation of polarization. Extended to

include equality and inequality constraints, the Lagrange multiplier method



of optimization is successfully employed to bound the imaginary single-flip
amplitude, modified by a kinematical factor, in the low momentum transfer
region at center-of-mass energies about 50 GeV. An upper bound of 0.84
is found when the elastic cross section, the imaginary spin average non-flip
amplitude at small momentum transfers and the total cross section are ex-
pressed as equality constraints, with unitarity expressed as an inequality
constraint. This bound, at low momentum transfers in the energy range of
the Relativistic Heavy Ion Collider, limits the analyzing power to positive

values.
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General Introduction

The expression

I 1

indicates the different contributions which sum to give the proton its spin of
one half. The various contributions arise from the component quarks (AY),
the spin of the gluonic fields (AG) and the orbital angular momentum of the
quarks (L,) and of the gluons (Ls). In the deep inelastic scattering regime
only the light flavour quarks (up, down and strange) contribute to the spin
of the proton. The net helicity of the quark flavour ¢ in the direction of the

proton spin, in the quark parton-model [1, 2, 3], is given by

M= [ Aq@yde= [ {0 - @+ @ -d@)dr (02)

where  is the Bjorken scaling variable and ¢(x) is the difference between the
number density of quarks with spin parallel to the nucleon spin (¢'(z)+q'(z))

and those with spin anti-parallel (¢'(x) + ¢'(z)).



Probing the proton: Measurements of the cross-section differences, with
particular spin configurations of incoming leptons and target nucleons, pro-
vide information on the polarized spin structure functions. For a longitudi-
nally polarized target, in [+p — '+ X, the longitudinal spin-spin asymmetry
=

)

A= (dae— da3 )/(daa+ do (0.3)

is the quantity which is measured in polarized lepton-nucleon deep inelastic
scattering experiments. Initial leptons can be longitudinally polarized along
(—) or opposite («) the direction of motion and nucleons are longitudinally
polarized along (=) or opposite (<) the initial lepton direction of motion.

In the Bjorken limit, or deep inelastic region,

Q?
~ oMy

—¢*=Q* >0, v=E-EFE -0, =z fixed (0.4)

where (% is the four-momentum transfer squared, F and E’ are the energies
of the incoming and outgoing leptons, in the Lab frame, respectively and M
is the nucleon mass. In the Bjorken limit the unpolarized structure functions,

Wi (x, Q%) and Wy(z, Q?), are known to scale approximately [1, 2]:
lin MWy (2, @) = Fila),  lmnvWa(e, @) = Fy(a).  (05)
J J

Similarly the polarized structure functions, G;(z, Q?) and Go(z, Q?), are ex-

pected to scale approximately in the Bjorken limit [1, 2]:

I}Bm M?*v Gy(z, Q*) = g1(x), lgI_l M2 Gy(z, Q%) = go(z).  (0.6)
j J



The longitudinal spin-spin asymmetry can be expressed in terms of the un-

polarized and polarized structure functions:

_ Q*{(E+ E’'cos9) MG, — Q*G,}
2EE’ {2W, sin?6/2 + W, cos26/2}

A (0.7)

where 6 is lepton scattering angle. The asymmetry A| expressed in terms of

the virtual Compton scattering asymmetries A; 5 is
A= D (A +nA,) (0.8)

where the coefficients D and 7 are known. Analysis of A leads to the ex-

pression [1, 2]

Ay~ DA, (0.9)

and

4 F(x)

TR —— 0.10
9@~ 5 5 d T R@) U2y
where R is the ratio of the longitudinal to transverse cross-section,
I/VQ I/2
= — |1+—|—-1. .
R W, ( +Q2) i (0.11)

In the quark-parton model the polarized structure function g;(x) can be
interpreted as the difference between the number density of quarks with spin
parallel to the nucleon spin (¢'(z) + ¢'(z)) and those with spin anti-parallel

(¢*(z) + ¢*(x)) averaged over the quark flavour charges e, [1, 2, 3]:

{gAu(m) + %Ad(:c) s éAS(@} (0.12)

DO | =

gz} = % ZegAq(m) =



where Aq(z) = ¢'(z) — ¢*(z) +¢' (x) — ¢* (r). Measurements of the longitudi-
nal and transverse spin-spin asymmetries, in polarized lepton-nucleon deep
inelastic scattering, can lead to information on the polarized structure func-
tions which can be utilized to calculate the contribution from the quarks to

the spin of the proton.

Sum rules: The Bjorken sum rule [4] relates the integral over the proton

and neutron spin structure functions;

Qs

Al ¢ (z,Q*) dx — /01 g¥(z, Q%) dz = % {1 2 ) <_)} (0.13)

™

where a3 = Au—Ad is a nucleon axial coupling constant sometimes expressed
as the ratio of the axial and vector coupling constant (G 4/Gy) of weak de-
cays. The factor (1 — O («y/m) ) arises from QCD radiative corrections. This
sum rule reflects the difference in polarization asymmetry in deep inelastic
scattering from proton and neutrons. The polarized structure function g; ()
is extracted for a proton and a neutron separately using different polarized
targets. With measurements of g;(x) one can test the Bjorken sum rule which
is independent of nucleon spin structure details and is a fundamental sum

rule.

The Ellis-Jaffe [5] sum rules have been derived using the same assumptions

as for the Bjorken sum rule—a quark structure for the hadronic, electromag-



netic and weak currents—and by assuming the SU(3) symmetry in decays of

the octet baryons with a zero net polarization of the strange quark sea of the

nucleon;
g = /lgjll)(m)dl“ = —1*613 . E-as (0.14)
0 12 36
IHQ") = /1 g1 (z)dz = K S (0.15)
0 12 36

where the nucleon axial coupling constants ag and ag are related to the SU(3)

couplings F' and D by
a;;:F+D, CL8:3F—D. (016)

The SU(3) couplings F' and D describe the - decays of the baryon octet
members. The Ellis-Jaffe sum rule predicts I'Y(Q?) = 0.171 £ 0.006 at Q* =
10 GeV? and a contribution of approximately 60% from the quarks to the

spin of the proton.

EMC data: In 1988 the European Muon Collaboration (EMC) at CERN
measured I'?(Q?) at Q% = 10 GeV? [6]. The result I'?(Q?) = 0.123 +0.013 +
0.019 was unexpectedly lower than the value predicted by the Ellis-Jaffe sum
rule. The contribution from the quarks AY = 14 +18% was also found to be
surprisingly low with 77 + 6% coming from the up quarks, —49 4+ 6% from
the down quarks and a non-zero contribution of —15 4+ 6% from the strange

quarks. This startling result, suggesting a proton spin crisis in the parton



model, created much theoretical interest [7] which lead to the discovery of
the anomalous gluon contribution. In the modified picture AY is replaced
by the linear combination AY — (3a,/27) AG which can be made small by
a cancellation between quark and gluon contributions. A new experimental
programme to investigate the phenomenon further also commenced. More
recent data from the Spin Muon Collaboration (SMC) at CERN [8] suggests
AY = 31 + 4% with the up quarks providing about 83.2 + 1.5%, the down
quarks about —42.5 + 1.5% and the large negative fraction of —9.7 + 1.8%
coming from the strange quarks. The questions “Where does the spin of the
proton come from? The gluons (AG)? Could it be in the orbital angular

momentum of the quarks (L,) and the gluons (L¢)?”remain unanswered [9)].

Gluon Contribution: To probe the gluon polarization AG(Q?), where

AGQY) = [ AG(z, Q?)dz, (0.17)

0

and thus measure the gluon contribution to the proton’s spin, a high energy
polarized proton beam scattering at high momentum transfers is required.
Studies of the gluon polarization suggest AG(Q?) ~ 0 — 2 at Q% ~ 1 GeV?
and AG(Q?) is expected to grow with Q%. At the Relativistic Heavy Ion
Collider (RHIC), Brookhaven, it is planned to use the polarized quarks of
one beam of polarized protons to probe the spin structure of the protons in

the second beam with high energies (y/s = 50 — 500 GeV) and momentum

6



transfers (pr > 10 GeV/c).
The longitudinal spin-spin asymmetry in the direction of the beam, one

of the observables planned to be measured at RHIC, is given by

o T g — N ) LI =l ]

A prd
T PP (N + Ne )+ (N.C+ Ny |

(0.18)

where N, ., N, ., N_, and N__ are the number of specific physical events
observed with each combination of longitudinal beam polarization directions
and P,, P, are the polarizations of the beams. The double spin asymmetry
Ay will play a vital role in finding the gluonic contribution to the proton’s
spin [10]. To probe the gluon polarization, the process, p+ p — v + X, or
the QCD Compton subprocess, g + ¢ — q + 7, offers good sensitivity to the
gluon polarization. In this process the longitudinal spin-spin asymmetry is
directly related to the gluon polarization. As well as QCD Compton scatter-
ing, jet production probes the gluon polarization with good sensitivity. The
asymmetry Ay for the process, p+ p — jets, or the elastic gluon-gluon sub-
process, g+ g — g+ g, is proportional to the square of the gluon polarization

and the jet rate production is high.

The RHIC collider, filled with polarized protons (P =~ 70%) and equipped
with Siberian Snakes and Spin Rotators [11], is expected to provide a lumi-
nosity of 2 x 1032em=2s7!. By late 2000 the first spin physics run is expected

to start. RHIC has an approved program of spin physics for two major exper-

7



iments, STAR [12] and PHENIX [13], and one elastic scattering experiment
(PP2PP) [14]. In the coming years data from the RHIC accelerator will help
unravel the Proton Spin Puzzle and give us a deeper understanding of the

role of spin in high energy physics.

To measure the gluon contribution to the proton spin, with sufficient
accuracy, a polarized proton beam is required and the beam polarization
error should be less than five percent, AP/P < 5% [15]. There are many
possible choices of polarimeters but there are uncertainties on the accuracy
of the measured beam polarization [16, 17, 18]. One such polarimeter uses
the analyzing power in elastic proton collisions at small scattering angles,
where for a known analyzing power, the polarization of the proton beam is
calculated by measuring the single spin transverse asymmetry. This small
angle scattering region is the Coulomb Nuclear Interference (CNI) region.
Due to the size of the scattering angle there is limited data for the analyzing
power in this kinematical region. The value of the analyzing power, in the CNI
region, is sensitive to the modified imaginary helicity single-flip amplitude
Im7r5. To determine the behaviour of the CNI analyzing power the amplitude
Im 75 must be accurately known or alternatively an upper bound on | Im 75|
can be used to limit the size of the analyzing power. An upper bound of

(pp — 1)/2 x 5% = 4.48% on |Imrs| is sufficient for the proton analyzing



power to be used as a polarimeter with AP/P < 5% where u, = 2.793 is the

proton’s magnetic moment.

Outline of the Thesis

Polarimetry is introduced in Chapter 1 with a description of why polarized
beams are necessary in experiments measuring the gluonic contribution to
the proton’s spin followed by a section on proton polarimetry in the Coulomb
Nuclear Interference (CNI) region, where the helicity amplitudes are first in-
troduced and an expression for the analyzing power is derived. To end the
Chapter a brief summary of proton-carbon polarimetry is given which is an-
other possible candidate for polarimetry at RHIC. In the thesis the modified
helicity single-flip amplitude Im 75, for elastic proton collisions in the CNI re-
gion, is bounded using the Lagrange multiplier technique of optimization. In
general the method of Lagrange multipliers can be used to optimize a func-
tion in a system with constraints. The constraints are related to physical
quantities or functions in the system, which are known. A simple example is
the problem of minimizing the surface area of a cylinder given the volume of
the cylinder. The function to be optimized is the surface area, volume is an
equality constraint and the minimum surface area is found by optimizing the

system. Similarly the Froissart bound [19], an asymptotic bound on the total

L



cross section, can be derived by including unitarity and the elastic cross sec-
tion as constraints with the total cross section as the objective function. In
the same way a bound on Im 75, the imaginary helicity single-flip amplitude
modified by a kinematical factor, is derived where the system constraints are
the elastic cross section, the total cross section and the imaginary spin aver-
age non-flip amplitude, all of which are experimentally known. The Lagrange
multiplier method also allows inequality constraints to be used when optimiz-
ing the system. Unitarity, appearing as an inequality, is input as a constraint
when optimizing Im 5. Many models indicate a value of ~ 0.1 for Imr5 [20],
where the value of 0.1 is above the threshold value of (u, — 1)/2 x 5% for
polarimetry with AP/P < 5%.

In the second Chapter a Regge model calculation is used to obtain a value for
the amplitude Im r5 at zero momentum transfer and a synopsis of models for
the helicity-flip component is given. Experimental data from Fermilab E704
is presented where a 200 GeV polarized proton beam was used to measure
the analyzing power for proton-proton elastic collisions in the CNI region.
Other bounds on the amplitude Imr5 are discussed.

The Lagrange method of optimization is introduced in Chapter 3 with a re-
view of the formalism of Einhorn and Blankenbecler [21]-[25]. Other bounds
in particle scattering are mentioned, particularly the work of Martin and

collaborators, who have greatly contributed to this field since the pioneering

10



work of Froissart. Ending Chapter 3 is an example of the Lagrange method
of optimization where the MacDowell-Martin bound for spinless particles is
derived.

In the fourth Chapter the observables, to be used as constraints when opti-
mizing Imr;, are expressed in terms of partial wave amplitudes. The observ-
ables are the total cross section, the imaginary spin average helicity non-flip
amplitude, the elastic cross section and unitarity. The helicity representation
of Jacob and Wick [26] is used to express the five helicity amplitudes in elas-
tic proton collisions as partial wave expansions. The observables expressed
in terms of helicity amplitudes are written as partial wave series and the
imaginary helicity single-flip amplitude is expanded as Taylor series in the
CNI region.

The amplitude |Im 75| is first optimized in Chapter 5 with unitarity and the
elastic cross section expressed as inequality and equality constraints, respec-
tively. The bound, not a ‘strict’ bound, limits the value of | Im 5| in the CNI
region. The unitarity constraints divide the solutions into different classes
which allows the optimal solution to be selected. The system of constraints
in this Chapter, and subsequent Chapters, is numerically solved using a com-
bination of analytic calculations and mathematica 3.0.

A new constraint is added to the system in Chapter 6, the new constraint

being the imaginary spin average helicity non-flip amplitude at some fixed
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momentum transfer in the Coulomb Nuclear Interference region. As expected
the bound on | Imr;| is improved but the bound is far from the desired value
of (p, —1)/2 x 5%. The unitarity constraints play a more important role in
this system of constraints, the different solutions generated by the unitarity
constraints are compared and the resultant upper bounds on | Imrs| are dis-
cussed.

In the seventh and final Chapter, the full set of constraints are used to opti-
mize | Im 75| in the CNI region. The extra constraint is the total cross section.
The derived bound has a value of ~ 0.89 at /s = 50 GeV. This bound on
| Imrs|, with a value less than (g, — 1)/2, ensures that the analyzing power
in the CNI region is positive; p, = 2.793 is the proton’s magnetic moment.
The optimal solution again is determined by the unitarity constraints. A
summary of all the derived bounds on |Im 75| in the CNI region is followed
by a brief discussion on the applications of optimization techniques in other

physical and non-physical problems.
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Chapter 1

Polarization Measurement

Details about the gluon polarization can be found by measuring the double
spin longitudinal asymmetry, Ay, in a particular process, ultimately leading
to a value of the contribution from the gluons to the proton’s spin [10]. The

double spin longitudinal asymmetry is written as

1 [V =N ) 0N =N i)

, o
Py By | (Vs ¥ No) ¥ (Noy TN (1)

AL =

where N, ., N, , N_, and N__ are the number of specific physical events
observed with each combination of beam polarization directions and P,, P,
are the polarizations of the beams. The asymmetry, to be measured, is
dependent on the square of the beam polarization error and consequently
it is essential to have an accurate knowledge of the beam polarization. To

probe the gluon polarization with sufficient accuracy, the maximum beam
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polarization error AP/P cannot be larger than 5% [15]. One method of

polarimetry uses the analyzing power in pp elastic collisions at small angles.

1 Proton-Proton Polarimetry

It is believed that polarization in elastic scattering vanishes at high energy
where the amplitudes are eventually dominated by diffraction energy. Recent
studies of hadronic scattering indicate that this may not be the case [20]. For
high energy pp elastic scattering in the Coulomb Nuclear Interference (CNI)
region (t ~ —0.0012 (GeV/c)?), the analyzing power A,, possesses a small

but considerable value [27, 28].

1.1 Analyzing Power in the CcNI Region

The analyzing power A, for a proton and the transverse single spin asym-

metry Ay are related through the expression
Ay P= Ay (1.2)

where P is the beam polarization and the target is unpolarized; for 100%
beam polarization the asymmetry and analyzing power are equal '. The

beam polarization can be measured by counting the scatters with the beam

'In some literature the analyzing power A,, is referred to as the transverse single spin

asymmetry Ay.
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polarized up (NT) and then down (N') in a polarimeter with a known ana-

lyzing power A,,:

5 L T
T A, |[NTYNY| T A,

Ay (1.3)

The analyzing power A,, expressed in terms of the s-channel helicity ampli-

tudes is [29]
do

App dt

= —Im[¢; (1 + P2+ d3 — P4)] (1.4)

where do /dt is the differential cross section-

do i 2 . 4\(2 ‘ 3 2 2
= = g5 01507 + 1625, ) + |0(5. O + |als, 1) +4Is(s, )} |
(1.5)
k is the centre-of-mass momentum and ¢, ..., ¢5 are the five independent
helicity amplitudes used to describe elastic pp collisions [26, 30]:
é1(s,t) =<++|o| ++ >, (1.6)
b2 (8,t) =< ++|¢| — — >, (1.7)
P3(s,t) =<+ — || + — >, (1.8)
$a(s,t) =<+ —|¢| -+ >, (1.9)
P5(s,t) =< ++|p|+-> . (1.10)

The helicity amplitudes can be written as a sum of hadronic and electro-

magnetic amplitudes;

pi=t +eP ™ (i=1,...,5). (1.11)
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The Coulomb phase shift § is given by [31]

bt 4t

d=—aln 3 + | 0.577a (1.12)

where « is the fine structure constant, b is the nuclear slope parameter and

A? = 0.71(GeV/c)? the dipole Sachs form factor parameter. Neglecting the

amplitudes ¢y, ¢4 and ¢, — @3, at high energies in the CNI region 2, we can
write the analyzing power as
do . "
App o i Im [¢5 (¢1 + ¢3)] = —2Im [¢5 ¢ ] (1.13)

where ¢, is the spin average non-flip amplitude, (¢; + ¢3)/2. Expressing the
helicity amplitudes as ¢; = ¢! + € ¢¢™ (i = 1,...,5), and neglecting the

Coulomb phase, the analyzing power in the CNI region can be rewritten as

do

App gt—

- 2 [(eh )’ ok + o)
x (Im d)i) o — 7" (Im ¢§) . (1.14)
The electromagnetic helicity amplitudes are known, the one-photon-exchange

amplitudes are given in [32], and the optical theorem [29, 33] gives Im ¢"

ot but very little is known about the hadronic single helicity-flip amplitude

2The double helicity-flip amplitude ¢4 at small values of —t can be ignored because
of a kinematical factor (—t). Measurements of the transverse-spin and longitudinal-spin
total cross sections suggest, at high energies, that the contribution from ¢o and ¢; — ¢3

to the CNI proton analyzing power is negligible [20].
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Im @2, experimentally or theoretically, and thus the use of the pp analyzing
power as a polarimeter depends on the contribution from the hadronic single

helicity-flip amplitude.

Looking in more detail we can write the analyzing power in the CNI region
as [33]
v—t (kp —2Imrs) % + 2Rers — 2pImrs
2
m (%) —2(p+0) e +1+p

t

A, = (1.15)

with ¢, ¢4, and ¢; — @3 not contributing where p = Re ¢ /Im¢y, kK, +1 =
i, = 2.793 is the proton’s magnetic moment, m is the proton mass and the
ratio r; includes a scaling by the imaginary part of the spin-average hadronic

amplitude and by a kinematical factor of m/\/—t:

L. (1.16)

- V-t Im¢,(s,t)

In the CNI region when t = t., where
te = —8ma/ow = —0.0012 (GeV/c)?, (1.17)

interference between the non-flip amplitude and the single-flip amplitude is
most prominent. This is reflected in the (k, — 2Im7;) & term. When |p| is
small, as is the case at /s = 20 GeV [33], the main contribution to A, in
the CNI region (t < t.), comes from Im 75 and at larger momentum transfers

outside the CNI region (t > t.) the real part of 75 is dominant. The maximum
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value of A,, in the CNI region, 4.7% with Imrs = 0, is modified by about

5.5% when Imr; = £0.05. The position of the maximum of A, is
8
I — \/§+E(p1mr5—Rer5)—(p+5) t. ~ V3t, (1.18)

where the Coulomb phase 4 is small and can be neglected for pp scattering in
the CNI region [20]. A large bound of | Im r;| results in an uncertainty on the
maximum value of A,, and to successfully use the pp analyzing power as a
polarimeter with AP/P < 5% a maximum upper bound of (p,—1)/2%x 5% =~

4.48% on | Imrs

is paramount.

2 Proton-Carbon Polarimetry

Similar to proton-proton elastic collisions, the analyzing power A, for elastic
proton-carbon scattering in the CNI region has a non-zero value which can be
used to measure the polarization of a proton beam [28, 34]. The analyzing

power expressed in terms of the s-channel helicity amplitudes is [35]

do

A,c g

=Im (f7, f-) (1.19)

where f, . and f,  are the helicity non-flip and flip amplitudes, respectively.

The modified helicity-flip amplitude, in pC elastic scattering is

- T i
= i (1.20)
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Decomposing the helicity amplitudes into hadronic and electromagnetic com-
ponents enables the analyzing power to be written in terms the flip and non-
flip amplitudes [35]. In the case of pC scattering, interference between the

flip and non-flip amplitudes is most prominent at ¢ = t. where

B —8nZ«

Otot

T ~ —0.0013(GeV/c)? (1.21)

with Z = 6 for a carbon target [28, 35]. Although the spin 0-spin 1/2 system
is in many ways simpler than the spin 1/2-spin 1/2 system, the maximum
value of the pC analyzing power in the CNI region, like the pp analyzing
power, is sensitive to the imaginary modified helicity-flip amplitude Im r and
to use the pC analyzing power as a polarimeter an accurate knowledge of
| Imr| is necessary. Due to the simplicity of the detector system [34] this
relative polarimeter, with a theoretically predicted accuracy of 10 — 15%, is
one of the candidates for a polarimeter at RHIC.

One challenge is to calculate the size of the imaginary modified helicity-
flip amplitude | Imr5| in the case of pp collisions or |Imr| in the case of pC
collisions. The Lagrange multiplier method, to be introduced in Chapter
3, is used to optimize |Imrs| resulting in an upper bound which limits the
value of the analyzing power in the CNI region. All present knowledge of
the amplitude | Im7;s|, in the low momentum transfer region, is presented in
the next Chapter including experimental data from Fermilab, Regge models,

QCD models and derived bounds.
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Chapter 2

Helicity Single-Flip Amplitude

In order to use the pp analyzing power as a polarimeter an accurate knowledge
of the modified helicity single-flip amplitude Im r5 must be known. For a 5%
beam polarization error a maximum upper bound of (y, —1)/2x 5% ~ 4.48%

is allowed. What is known about the modified single helicity-flip

on | Imr;
amplitude Im 75, theoretically or experimentally? In this chapter all present
knowledge of Imrs, theoretical and experimental, is presented. A Regge
model is used to calculate the value 0.09 for Im r5 at zero momentum transfer
followed by a summary of Regge and QCD helicity-flip models. Experimental
data from Fermilab E704 is presented which indicates a positive pp analyzing
power over the CNI region. Lastly a bound on the spin 0-spin 1/2 modified

helicity flip amplitude at low momentum transfers is analyzed. A bound on
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Im 75, based on the positivity properties of the coefficients in the partial wave

series for the differential cross section, is also discussed.

1 Models based on Regge Theory

In Regge theory [36] the scattering amplitude has a variable asymptotic be-
haviour and this behaviour can be connected to a family of bound states and
resonances of different masses and spins [37]. For pp scattering there are five

independent helicity amplitudes [26, 30],

1 (5,8) =<+ + ¢ + + >= 91T (s,1) (2.1)
62 (s,t) =< ++ 6| — — >= ¢=% (s, 1) (2.2)
¢3(s,t) =<+ —|¢| + — >= ¢ (5,2) (2.3)
¢4 (s,t) =<+ — |¢| = + >= ¢T1 (s, 1) (2.4)
P5 (s,1) =<+ + |¢| + — >= ¢1F (s,1) (2.5)

The contribution of a single ¢-channel meson Regge pole at « (), to an s-

channel helicity amplitude for the process ab — cd, is given by [38, 39]
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[Ae=Aal [Ad—Ap|
v =t v -t
ez = TF( 2% 65, X

AaAp 2my, 2m,

% [1+ (=1)% 7| T (I, — ce) () 7 (a}s)™  (2.6)

where m,, is the proton mass, s. is the spin of the corresponding meson
exchange and [, is the minimum value achieved by s, on the exchange degen-
erate trajectory; Table 2.1 shows the Regge exchanges and the corresponding
Se [39]. The residues [ are simply related to the coupling constants. This
model provides a crude description of the helicity structure and s,t depen-
dence of most two body processes. For ¢4 (s,t) and ¢5(s,t) the leading

meson exchanges are p,w ay and f [38] with
Gty (£) = O, (E) = iy (£) = ¢ (2) = 0.5+ 0.9 (2.7)
and the trajectory slope is ) = 0.9.

Table 2.1: The Regge meson exchanges with the corresponding s, and /..

e A be
p, W 1
1
a9, j 2

For the Pomeron amplitude [38, 39],

At L _irap

ele? (alps)®”

4 [ =t | Fe ek
‘/\(:)\a — /\c a
Prars = _§Ipﬁfﬁf ‘U)\d/\b (47”2)

p

(2.8)
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where the coupling is fixed by the assumption of f dominance and for pp

scattering, zp = 1.0, A = 3.1 GeV~? [38]. The Pomeron trajectory P is
ap = 1.0+ 0.3t (2.9)

and the trajectory slope for the Pomeron exchange is ap = 0.3. The vertex

parity relation is [38, 39]

B s = (=P (Y e pr (2.10)

while upper and lower vertices are related by
ol B A (2.11)

where 7); is the intrinsic parity of particle i. The signs of the trajectory
contributions to the imaginary part of the elastic pp scattering amplitudes
are P+ f —p—w+ay [40] and the contribution to Im r; is found to come from

the Pomeron exchange, having the value 0.09 at zero momentum transfer.

The spin structure of the helicity-flip amplitude has been investigated by
many authors. Table 2.2 lists some models and the corresponding size of the
helicity-flip component. A review of each model is given in [20, 33].

The sign and magnitude of Im rj differs for each of the approaches men-
tioned in Table 2.2, however the values suggest |Imr;| < 0.1 at RHIC ener-

gies. This value for | Im 75| does not satisfy the requirement, | Imrs| < 4.48%,
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Table 2.2: Models for the helicity-flip amplitude

Model Helicity-flip component
dual quark-parton [41] rs = —0.06
pion exchange [42] Imrs; = 0.06
impact picture [43] Imrs ~ —0.06
two-gluon [44] Ty =10.13
compact diquark [45] Imrs = 0.05—0.10
chiral symmetry breaking [46] [Imrs| = 0.1

which, in order to use the pp analyzing power as a polarimeter in the CNI

region with a maximum beam polarization error of 5%, is necessary.

2 Experimental Data

The analyzing power in the CNI region has been measured with the 200 GeV /¢
polarized proton beam facility at Fermilab. For the first time at high ener-
gies polarizations effects have been observed in the CNI region. The use of a
polarized beam and a recoil sensitive scintillator target have made the detec-
tion possible. In previous experiments with unpolarized beams and polarized

targets the CNI region was unaccessible. The experimental data shown in Ta-
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ble 2.3 [47] suggests that the analyzing power in the CNI region is small and
positive, and the data agrees with the theoretical prediction of a purely CNI
analyzing power originating from the interference between the helicity single-
flip amplitude and the helicity non-flip amplitude. Analysis of the data [33]

indicates a positive value of 8 — 30% for Im 7.

Table 2.3: Analyzing power data from Fermilab E704.

—t range < —t> Ao

(GeV/c)? (GeV/c)? (%)

1.50 x 1073 — 4.00 x 103 2.88 x 1073 4.46 + 3.16
4.00 x 1073 — 1.25 x 1072 8.30 x 1073 3.11+1.09
1.25 x 102 — 2.25 x 102 1.75 x 1072 2.62+1.01
2.25 x 10~2 — 3.25 x 102 2.73 x 1072 3.1741.07
3.25 x 1072 — 4.25 x 10~2 3.68 x 1072 2.17+1.39

4.25 x 1072 — 5.00 x 1072 4.75 x 1072 0.27 £ 2.77

The PP2PP experiment, approved by RHIC, plans to complete a detailed
study of elastic pp scattering using polarized proton beams with center-of

mass energies in the range 50 — 500 GeV over the CNI region [14].
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3 Bound from Positivity Properties

A fundamental consequence of unitarity is that the absorptive unpolarized
differential cross section for the elastic scattering of particles of arbitrary spin

must obey the representation [48]-[50]

dO’A 00
o nz::O(Qn + 1) cn(8)Py(cosf), cp(s) >0
x S (Imgy)*. (2.12)

1

P,(cosf) is a Legendre polynomial whose argument is the cosine of the center-

of-mass scattering angle and the absorptive differential cross section satisfies

do? do™
= (g =
dt )= dt

(s,t <0) (2.18)
which leads to a bound on Imrjs given by [51]

Imrs <25. (2.14)
This result limits the size of the analyzing power A,, to 4.7% + 13.1% at
small ¢ and with an upper bound of 2.3 the required value of 5% for the

beam polarization accuracy cannot be obtained but the bound limits the

value the analyzing power can take in the CNI region.

4 Spin 0-Spin 1/2 Bound

A study of bounds on the single helicity-flip amplitude ¢5 may provide im-

portant information related to the behaviour of the analyzing power A,

26



in the CNI region. The optimization technique of Lagrange multipliers, ex-
tended by Einhorn and Blankenbecler [21] to include equality and inequality
constraints, is used to derive bounds on the modified single helicity-flip am-

plitude Im ¢, based on unitarity and experimental quantities, where

Im ¢s5(s,t) = —\/kT_t Im ¢5(s, t) (2.15)

and
by, ™ Ims(s.0

k Im ¢+ (57 t)

(2.16)

—t~0

Hodgkinson [52] used o, and the slope g to drive a bound on the helicity-flip

amplitude for spin 0-spin 1/2 collisions;

; /6
I fe ()] _ oo~ (70w )
— = < 3¢t >
Imf, (s,0) — d 6007 h

5023 (6002 1/6
{1+ g4 (A> t+ Q) (2.17)

TTOe]

o < 7.48 rog \ 3
a 92/3 600t20t

where f,, and f,_ are the helicity non-flip and flip amplitudes respectively.

with

The optimum

| Imrs| < 2.3 (2.18)
is obtained if a similar bound for pp collisions is assumed over the energy

range /s = 50 — 500 GeV. This upper bound on |Imrs| is significantly

greater than the critical value of 4.48% for polarimetry with AP/P < 5%.
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In the following chapters the variational formalism of Einhorn and Blanken-
becler [21] is introduced. A number of equality and inequality constraints
for pp elastic scattering in the CNI region are found, and with the variational
method of Einhorn and Blankenbecler an upper bound on |Im ;| in the CNI

region is derived.
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Chapter 3

Optimization with Lagrange

Multipliers

To optimize a function subject to constraints, equality and inequality con-
straints, the method of Lagrange multipliers can be employed [21]-[25]. The
method is used to derive bounds on the helicity single-flip amplitude in elas-
tic pp scattering with unitarity constraints, appearing as inequalities, and
various experimental quantities, appearing as equality constraints. Such ex-
perimental quantities are the total and elastic cross sections, and the slope

of the spin average helicity non-flip amplitude.
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The Froissart bound [19] was the first bound on the asymptotic behaviour

of the total cross section at high energy (s — 00);
oot < Clog? (s/s0) (3.1

where /s is the center-of-mass energy and s is a constant. Since the result of
Froissart many developments of the method of obtaining bounds on scatter-
ing amplitudes have been made [53] — [67] , ranging from spinless scattering
to nucleon-nucleon scattering and scattering of particles of arbitrary spins.
In the following Chapters the Lagrange multiplier method of optimization is
used to bound the imaginary helicity single-flip amplitude Im ¢5 in elastic pp
collisions. The pp system is a spin 1/2-spin 1/2 system with five independent
helicity amplitudes, two non-flip, two double-flip and one single-flip. Com-
pared to the spin 0-spin 0 system or the spin 0-spin 1/2 system, the number
of helicity amplitudes is greater and the algebra following optimization can
present some challenges. The derivation of the bound is based on unitarity,
analyticity in the Lehman-Martin ellipse and on polynomial behaviour, with

no dependence on theoretical models.

In this Chapter, before deriving bounds in the pp system, the basic
concepts and terminology of the optimization technique is introduced [21]
[25] along with a description of the conditions required to maximize a

function and an example of how the Lagrange multiplier method is used to
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obtain the MacDowell-Martin bound [68] in spinless scattering.

1 Terminology

Objective function: The function that we want to optimize is called
the objective function. This function depends on a set of real variables
X1, T9, ..., T,, denoted by

F(z) = f(a1, 3, .. 20) (3.2)

The objective function is sometimes named the cost or penalty function.

Constraints: We consider equality constraints and inequality constraints.

Equality constraints are written as

Jetz) =0 m=1,2...0p. (3.3)
Inequality constraints are written as

g3(x) >0, (=12 ...q. (3.4)

Any point x = (x1,xs,...x,) that satisfies the constraints is called a feasible

point and the set of such points is called the feasible set S.

Tangent cone: The set of all (unit length) half-lines h, originating at a

point xy in S and tangent to a curve in S is called the tangent cone to S at
Zo.
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Differentials: Given a function f, we denote its gradient vector at zy by
f'(x0). Given any vector v, the linear functional f'(zg,v) = (f'(z0),v) is

called the first differential of f and is denoted by

Mzﬂmwﬂﬂmwzi%ﬁr (3.5)

Similarly, the second differential of f at xy is defined by the quadratic form

Flan) =33 ot vy, (36)

Regular points of S:  Let z be a feasible point and let £ be a unit vector
satisfying

(fi(zo), k) =0, Va. 3.7
If every k satisfying Eqn. (3.7) lies in the tangent cone C' at z, then zg is a

regular point of S.

Normal points of S: If the gradients f'(zy) are linearly independent, z,

is a normal point. Every normal point is a regular point.

1.1 Maximization with Equality Constraints

The standard method of Lagrange multipliers determines all local maxima
(or minima) that are regular points. It is summarized by the following two

theorems:
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Theorem 3.1 Let xy be a regular point of S and let zy be a local mazimum
of f(z) on S.

(i) Then there exists multipliers A\, such that the auziliary function
P
L=f+3 oo
a=1

has a vanishing gradient

(i1) For a mazximum

L"(z0,h) <0 (3.9)

for all h wn the tangent cone at xy.

(i11) If xo is normal, the multipliers A\, are unique.

Theorem 3.2 If Eqn. (3.8) is satisfied and if L"(xq,h) is strictly negative

for all h in the tangent cone at o, then xqy is a local mazimum of f(x).

In practice the theorems are used as follows: Solve the n gradient equa-
tions, L'(zg) = 0, for z( as a function of the unknown multipliers A,. The
solutions xg = x(A,) are inserted into the constraint functions f,(xg) and
the multipliers are chosen to satisfy the constraint conditions f,(xo) = 0.

The solutions are limited to those for which L"(z¢, h) < 0 (for a maximum).
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1.2 Maximization with Inequality Constraints

The definitions of normal points and regular points extend to inequality con-
straints if we divide these into interior constraints 3 in I(zg), and boundary

constraints 3 in B(xg), defined by
I(zo) = { Bl gs(x0) > 0} (3.10)

B(zo) = { 8| gs(x0) = 0}. (3.11)

Consider the maximization of f(x) subject to the constraints
Llmleell, -ae 100 .00 (3.12)
gelz) 20, B=12..:0. {4.13)

For any feasible x¢, let I(x) be the set of indices 3 for which gz(z¢) > 0 and
B(xp) be those 3 for which gs(z¢) = 0. The following two theorems outline

the conditions necessary to optimize with inequality constraints.

Theorem 3.3 Let z¢ be a regular point and a local maximum of f in the
feasible set S. Then

(i) There exists multipliers A\, and pg > 0 such that the auziliary function

p q
L= f + Z /\afa + Z Hp3p
a=1 B=1
has a vanishing gradient

L'(z) = 0. (3.14)
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(ii) If 5 € I(xg) we may choose pug = 0; we may ignore any inequality
constraint gg for which gz(zo) > 0.

(111) Let Sy be the subset of S for which gg(x) = 0 for all B € B(zo) for which
pg > 0. Then

L"(z0,h) <0 (3.15)

for all h in the tangent cone of Sy at xy.

(i) If x¢ is a normal point, the multipliers are unique.

Theorem 3.4 If Eqn. (5.14) is satisfied and if
L"(;I’(). }I) <A() (316)
for all h in the tangent cone at xq, then xo is a local mazimum of f(x).

In Theorems 3.3 and 3.4 the inequality constraint g, for which the corre-

sponding multiplier p4 is positive, effectively is an equality constraint.

2 MacDowell-Martin Bound; An Example

MacDowell and Martin found a lower bound on the logarithmic derivative

based on unitarity for elastic spinless scattering [68]:

1 U?m 1
9= 9 i Yido | k2 S L1
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where the logarithmic derivative g is given by [69]

d
9= log (Im F(s,t))],_q - (3.18)

Using the method of Lagrange multipliers the MacDowell-Martin bound can
be obtained. For equal mass elastic scattering the center-of-mass energy +/s

and the momentum transfer ¢ are written as
Vs = V4k? + 4m? (3.19)

and

t = —2k*(1 — cos¥) (3.20)

where £ is the center-of-mass momentum and € is the center-of-mass scatter-

ing angle.

2.1 Observables and Constraints

For identical or equal mass spinless scattering the total and absorptive elastic

cross sections have partial wave expansions [69]
4
Otot — ﬁ Z (2[ + ].) ay (3.21)
1

and

4
o = = Y (20+1) af (3.22)
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where a; is the imaginary partial wave amplitude. The logarithmic derivative

¢ has the partial wave expansion [69]

327 1
— 204 D)L (1+1) a. 3.23
(S%t)xgkz;( +1) L+ 1) a (3.23)
Our aim is to constrain the logarithmic derivative, therefore g is the objective

function. The constraints are the total and absorptive elastic cross section

plus the positivity constraint
U=aq-a >0 (3.24)

which is a direct consequence of unitarity [26, 69, 70].

Before optimizing the logarithmic derivative it is useful to rewrite the
scattering amplitudes as dimensionless amplitudes. We define the normalized
dimensionless total cross section Ay = (k*/47) 014, the normalized absorptive
elastic cross section ¥, = (k?/4m)cZ, and the normalized dimensionless

logarithmic derivative gy = (k*s0/47) g, where, in the high energy limit!

A=) (2l+1) a=2) la, (3.25)
l l
Sa=) (2+1)af ~2) laf (3.26)
l l
and
o= A+DI(I+)a=2> Pq. (3.27)
l l

'Tn proton-proton scattering the total and elastic cross sections are normalized by the

factor k2 /m.
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The equality constraints, Ay and ¥, are expressed as

« {Ao - QZlal} and [ [Eez — 22[(1,2]
1 1
respectively, where o and 3 are equality multipliers. The inequality or uni-
tarity constraint U; = a; — ai > 0 is expressed as

(2[ + 1) NU = 2I\U;

and by definition the inequality multiplier A; must be zero or positive [21]-

[25).

2.2 Optimization

The auxiliary function with the logarithmic derivative as the objective func-

tion is introduced:
Iy = 2213(1, +« [Ao - 221@} + 8 {Eel — QZla?} + (3.28)
! [ l
2 Zl/\l (a, - af)
[

where \; > 0. To optimize the system we differentiate the auxiliary function

L with respect to the imaginary partial wave amplitude a;, to first order-

oL

= 203 — 20l 4+ 200 — 4L (B+N) a (3.29)
!
and second order-
s 2L
d =40 [+ Xq) - (3.30)
Oaj
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For an minimum we require L/0a; = 0 and 8°L/da} > 0, this leads to the
condition # < —\; with

a = L e s + A
T2+ N 208+ 208+ M)

(3

2.3 Unitarity Classes

When optimizing the system it is natural to divide the partial waves into two
classes [21] — [25]. For each unitarity inequality there are two classes, I and

I3
W={J|U>0,x5=0, B={J|U;=0,%20}, (332

[ is called the interior unitarity class and B is called the boundary unitarity

class. The interior unitarity class becomes
I"={li|0<ag<1,)=0} (3.33)
and the boundary unitarity class splits into two subclasses;

== BUO = {l|a1 =O,)\l Z 0} (334)
BV ={l|U;>0,) >0}

— B ={lldh =1, 2>0}. (3.35)
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Interior Unitarity Class

The inequality multiplier \; is equal to zero and the imaginary partial wave

amplitude is

a=r —rol? (3.36)

where r; = a/(2|3|) > 0 and ro = 1/(2|4]) > 0. The maximum [ for positive

lmu.r =L = \/E (337)
(£,

and the minimum [ is l,,,;, = 0.

partial waves is

Boundary Unitarity Class

The boundary unitarity class BY0 = {l|a; =0, > 0} is non-empty when
[ > L = lpe and there is no contribution from the partial wave ampli-
tude @; in this unitarity class. The other boundary unitarity class Bt =
{l|a; =1,)\ >0} is non-empty when [ < 0 and is empty when [ > 0 and

consequently there is also no contribution from this unitarity class.

2.4 Reconstructing the Constraints

In this case we are interested in contributions from the interior unitarity class
IY. The normalized dimensionless total cross section A is reconstructed by

substituting the expression for the imaginary partial wave amplitude a;, given
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in Equation (3.36), into

A =2%la (3.38)
=1
to give
- 2 T%
A0:2Z¥Gq—ml)~§5 (3.39)

for large [. Similarly the normalized dimensionless absorptive elastic cross

section ¥, and logarithmic derivative gy can be reconstructed;

1 3
Zdzg%, (3.40)
min 1 7‘3
%'%gé- (3.41)

The logarithmic derivative g written in terms of the normalized dimensionless

logarithmic derivative g is

47 qo

= 3.42
¥ k250104 ( )
or
9o
= - 3.43
9= i (3.43)

and substitution of Equations (3.39) and (3.41) into this expression for g

leads to the bound

— 3.44
- 35 19 ( )
The ratio ry /79, where
| 4 A%
—_—= - = 3.45
i) 3 el ’ ( )
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is simply found by solving Equations (3.39) and (3.40). The minimized log-

arithmic derivative with the ry/ry = 4 A2/(3 %) is written as

2 -9
lk_atot

b .46
Im s Og )

g >

and in the high energy limit, k& ~ \/s/2, the MacDowell-Martin bound

1 aft
Yo 4
4 e o )

is obtained.
In deriving the lower bound on g we have only considered leading order
[ terms. If lower order [ terms are included the complete MacDowell-Martin

bound

tot

- 1 o2 1
47 % o DR

(3.48)

can be found.
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Chapter 4

Observables in Proton-Proton

Scattering

In the elastic scattering of protons there are many observables that can be
measured experimentally [29, 71, 72|, for example, the total and elastic cross
sections, the nuclear slope, single spin asymmetries and double spin asym-
metries. The observables, expressed in terms of the five independent helicity
amplitudes, ¢y, ..., ¢5, in the representation of Jacob and Wick [26], can
be expanded as a partial wave series. In this chapter we will introduce the

helicity representation of Jacob and Wick and express some of the proton -

proton scattering observables as partial wave expansions.
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1 Helicity Amplitudes

For the elastic scattering of two protons at CM energy /s and CM momen-
tum k = /s —4m? /2, there are sixteen helicity amplitudes which under the

following relations [26, 30];

Parity conservation

MA@ AA2) = (=1)F A (=M = Xyl @] — A1 — Ag) (4.1)

Time reversal invariance

(VXS] 8 Ada) = (=1 (M| @ [N A) (4.2)

Identical particle scattering

(NP9 @ M) = (1) * (M| @ [ A2 Ar) (4.3)

Symmetry properties

df,(0) = (=1)""d\_,(0), d,(0) = (1) " dl,\(6), df.(0) = dL,_\(0)

(4.4)
reduce to two non helicity-flip amplitudes, two double helicity-flip ampli-
tudes, and one single helicity-flip amplitude where A = Ay — Ay, = A| — S
The non helicity-flip amplitudes ¢; and ¢3, the double helicity-flip ampli-

tudes ¢y and ¢4, and the single helicity-flip amplitude ¢5, have partial wave

4



expansions [26, 30, 73]:

\[

01 (5,8) = (++ 18] +4) = 32 3 (27 +1) (f(8) + f11(5)) dao (6)  (4.5)

s (5,) = (+ — 6] + — 2“—5}; @7 +1) (F(5) + () &, (6)  (46)
0n(5.) = (16l = =) = 3 B @7+ 1) (i) = () da(6) (41
81 (5,1) = (= I9] - §; 27+ 1) (Fis) ~ ()1 ) (48)

g5 (s,t) = (++ 10l + - }: (27+1) fi(s)dyo (0)  (4.9)

where f7 (i = 0,1,11,22,21) denote the s-channel partial wave amplitudes,

I ff = af , Ra fif = b and 2= conll = 1 41725

In the Coulomb Nuclear Interference (CNI) region, t ~ —0.0012(Gev/c)?, it
is convenient to express the five helicity amplitudes in terms of Jacobi poly-
nomials. For J— X an integer, we can relate df ,(¢#) to the Jacobi polynomials
PP (z), where z = cosfl. To define the d{ll(()) function in terms of Jacobi
polynomials it is suitable to separate the space of A and pu into four regions

A, B, C, D as shown in Figure 4.1. In region A, the relation is [74]

A TENT =N 14+ 11—\ uaew
(’i““’)‘u e ) () )XPH @,
(4.10)

where z = cosf) = 1+1/2k* and J -1 =0,1,2,---
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A <=0

AU >=0
N /
N o7
X 7
B
A-U<=0 N v A-u>=0
C A A
AU <=0 7 N\ At >=0
£ B N
A N
o N
7 N
u
Ap<=0
A >=0

Figure 4.1: Regions associated with the expressions of dy 4(0) in terms of

Jacobi polynomials.

Equivalent forms in the other regions are obtained by use of symmetry
relations (30, 74].

In region B, use

df,,(6) = (~1) d2,(9). (4.11)

In region C, use
df ,(0) = (-1)**d’,_,(9). (4.12)

In region D, use
dy,(0) =d’,_\(9). (4.13)
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The df ,.(0) functions can now be expressed in terms of Jacobi polynomials:

dgo(8) = P} (2). (4.14)
ah0)= LT P2 (4.15)
&)= S22 pE() (4.16)
and
aly) = [ Z ). (4.17)

The five helicity amplitudes in Equations (4.5) - (4.9) can thus be written in

terms of Jacobi polynomials;

dr(s,t) = Z (27 +1) (f5 () + £1(s)) P> (=) (4.18)
hrs.t) = - }; 27 +1) (fi(s) = £ (s)) PO (2), (4.19)
da(s,t) = %;(QJ—H) ((s) + fa(9)) Pi2P(2) (4.20)
ount) = LCED S 2140 (o) = ) PEDE) (420
Os(5.1) = ﬁ%“?‘?;(wm S G PEDG) (422)

where z = cosf = 1+ t/(2k?).
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2 Total Cross Section

The optical theorem [29, 33] at zero momentum transfer or z = 1,

@Q—f Oiot (3) (4.23)

Im ¢, (s,t)]—g =
is used to express the total cross section as a partial wave expansion, given

by

() = 753 @7+ 1){(a3(s) +ali(s)) PO(1)

DLy
k J

0,2
+ (al(s) +afy(s)) PP (D)}, (424)
where Im ¢, (s,t) = (Im ¢1(s,t)+Im ¢3(s,t))/2 is the imaginary spin average
helicity non-flip amplitude. For z = 1 or t = 0, the Jacobi polynomials can

be written as [75]
[(a+n+1)

(a.8) -
R = Fla+1)n! ’

n

(4.25)
; 0,0) /1y _ 0,2) /1y _ : .
leading to P; /(1) = 1 and P;~7(1) = 1. The partial wave expansion for
the total cross section is thus
T
On() = 13 2 (27 + 1) {ag(s) + ai(s) +afs () +ap(s)} . (4.26)
r

The normalized dimensionless total cross section, defined as Ay = k%0 /7 !,
is given by

Ao =Y (27 + 1) {ad(s) + a](s) + afy(s) + aga(s)} - (4.27)
o

Tn spinless scattering the total and elastic cross sections are normalized by the factor

K4/ (4r).
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3 Imaginary Non-Flip Amplitude

The imaginary spin average non-flip amplitude inside the Coulomb Nuclear

Interference (CNI) region, written as a Taylor expansion, is

(4.28)

Im ¢+(S’t) ~ Im ¢+(850) +1 (i Im¢+(s, t))
dt i

To calculate 4 Im ¢, (s, t)‘ o Equation (4.25) with the additional prop-

t=

erty [75]
g _mIm+n+a+p6+1)
= plap) —9—m P(a+m,6+m) 4.9
g " (2) 'n+a+p+1) 7 (2) W)

is employed and for m =1

dz " n 2

To calculate the slope of the imaginary non-flip amplitude, the properties

given in Equations (4.25) and (4.30) are used to find

d 1
= PO = S I +1) (4.31)
o z=1
and
d 02 1
P =5+ -1). (4.32)
& il

The imaginary non-flip amplitude thus has the partial wave expansion

Im ¢, (s,t) =

§ ZJZ (27 +1) {aj(s) + a{(s) + a\ (s) + agy(s) } (1 - g J(J + 1))

(4.33)
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with momentum transfers in the CNI region, where ¢ = —t/k?. The logarith-

mic derivative of the imaginary spin average non-flip amplitude is defined

as [69]
d 1 d
g= E In Im ¢+(S, t)’t:O = m (a Im ¢+(S, t)) o s (434)
therefore
(i Im o, (s, 7‘)) =g Ima¢,(s,0). (4.35)
dt t=0

The Taylor expansion of Im ¢, (s,t) in the CNI region, given by Equation (4.28),

can thus be written as
Imo¢,(s,t) =Imo,(s,0) {1 - (-tg)}. (4.36)

In the CNI region the term 1 — (—t g) can be approximated with the expo-
nential ¢4 and using the optical theorem the imaginary spin average non-flip

amplitude can be expressed as

I8, %) = —[%M ed?t. (4.37)

s

4 Elastic Cross Section

The elastic cross section can be expressed as a partial wave expansion by

integrating the differential cross section over momentum transfer t:

ggls) = /_04,\112 dtda((; ) : (4.38)

50



The differential cross section written in terms of the helicity amplitudes is

do(s,t) 7r

dt 2k? s

{16105, 6) + [0a(s, 1) + |s(s, 1)

+oa(s, t)]* +4los(s, )]} (4.39)

and the elastic cross section also written in terms of the helicity amplitudes
is

™

0
oals) = g [ dt {1 O +[6a(s, OF +16s(s, O

+a(s, )| + 4|gs(s, t)|*} . (4.40)

Using the expression

t=—2k%(1-2), (4.41)
the ¢ variable can be replaced with the z variable, where t is the momentum
transfer, k is the center-of-mass three-momentum, and z = cos . The elastic

cross section expressed as an integral over z becomes

m

1
sals) = = [ dz{lon(s 0 +16a(s, OF +1¢a(s,OF

+Hepa(s,1)|* + 465(s, 1)} . (4.42)

To express the elastic cross section as a partial wave expansion, the inte-
grals [*dz|pi(s,t)|? are calculated, where i = 1,---,5. The integration
formula [76]

(1 —2)*(1 + 2)? P*P)(2) P@B)(2)dz =

J—-1 20+8+1 T (a4n+1) T(B+n+1) 5
n! (a+B+2n+1) T(a+B+n+1) "1

(4.43)

+1 L
/ 0 m
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is used to find

which leads to

% §
L I61(s,8)[2 dz
+1 9
/~1 |pa(s,t)|” dz
+1 9
/_1 a5, )| dz
41 ;
/4 \ba(s, 8)[2 dz

+1 "
L 165 (5, 8)|? dz

e %o %o e ¥

?
B
o 2!
2% 2

(2J +1)

(2J +1)

(2J +1)

(20 1

V£ (s) + Fs)|]

f3(s) = fix(s)

)+ £50)°

£(s) — 3,(s)
)|

(4.44)

(4.45)
(4.46)
(4.47)
(4.48)

(4.49)

Equations (4.45)-(4.49) substituted into Equation (4.42) gives the partial

wave expansion for the elastic cross section;

sals) = @I+ (RG] +F6[ +]Hhef
o) 26} @s0)

The normalized dimensionless elastic cross section, defined as ¥¢ = k%04 /T,

1S

B = 2 I+ DRG] + [ + 6] + ] +2[#e)l
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5 Imaginary Single-Flip Amplitude
The imaginary single helicity-flip amplitude,
Im ¢5 (s,1) Z (27 + 1) a3, (s) df (0) , (4.52)

written in terms of Jacobi polynomials is

sl =22 J+1
Im ¢s5(s, 1) = f(—@—)—Z(zu 1) ,/—]—agl(s) PPD(Gz)  (4.53)
= !

%_%ZQIle \/FJ()PJI;()- (4.54)
J

In the Coulomb Nuclear Interference (CNI) region, ¢t ~ —0.0012 (Gev/c)?,

or

1.1 . .
P(, ,7,)(:) is expanded as a Taylor series;

DO [y

(4.55)

(P

where z = 1+ t/(2k*) and ( = —t/k?. Using the two properties of Jacobi

=1

polynomials in Equations (4.25) and (4.30), the Taylor series for P}l_’ll)(z)

about z =1 1is

P )= J (1 = % T 1) - 2]) , (4.56)
and thus
Im ¢5(s, t J+1
(311_05;(231/1 N XJ: (2 =1 ——; g <1 —% [ 1)~ 2]) ay,(s).
(4.57)



The approximation sinf) ~ 2sinf/2 for § ~ 0 is used to write /—t =

2ksinf/2 as/—t ~ ksinf = k(1—22)/2. TheratioImrs = mIm ¢s/(v/—tIm ¢, )

is
m  Im (55
I == 4.
T g (e e
where
7 Im ¢5(8’ t)
Im ¢5 = (T:-—ZZ—)m- . (459)

6 Unitarity

The partial wave amplitudes obey the following unitarity inequalities [73]

Ul = gg—|ffI’=0 (4.60)
0y = & ~|fiFz0 (4.61)
VW o= &\ - IfP- P20 (4.62)
Vi = ahy =P = f512P 20 (4.63)

where f7 (i = 0,1,11,22,21) denote the s-channel partial wave amplitudes,
Im f/ = a/ and Re f/ = b/. Combining Equation (4.60) with Equation (4.61)

leads to the inequality W7 = U{ + Uj where

W' =a5+ai = |fy? = i1 = 0 (4.64)

54



and the inequality X/ = V;/ + V;/ follows from the combination of Equa-

tion (4.62) and Equation (4.63) where

X7 =af; +ay — |17 = fal” =22 2 0. (4.65)

For the elastic scattering of spin 0 and spin 1/2 particles there are two in-
dependent helicity amplitudes, a flip and a non-flip amplitude, with partial
wave expansions whose partial wave amplitudes obey unitarity relations sim-
ilar to relations (4.60) and (4.61). The unitarity relations (4.62) and (4.63)
are characteristic of spin 1/2 - spin 1/2 scattering, the f3; term coming from
the single helicity-flip amplitude ¢5. The partial wave amplitudes, expressed

in terms of partial wave phase shifts, are given in the Appendix.
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Chapter 5

Optimization under ¢, and

Unitarity

The Lagrange method of optimization [21]- [25] is used to derive an upper

bound on amplitude | Imr5|. The amplitude | Im 75| is bounded by optimizing
the modified single helicity-flip amplitude Im ¢s with unitarity, expressed as
inequality constraints, and the elastic cross section, appearing as an equality
constraint. The imaginary modified helicity single-flip amplitude, Im b5 =

Im ¢5/v/1 — 22, has the partial wave expansion

41

IIll()5Sf Z (2J +1) —

J<1—— [J( J+1)—2]> al,(s)
(5.1)



and
m Tm ¢s(s, t)

k Imo, (s, t) o)

Imrs =

with momentum transfers ¢ inside the CNI region where ¢ = —t/k%. The
normalized dimensionless elastic cross section expressed as a partial wave

expansion is

Sa=S @I+ D{[H 6] + | 6] +[f6] +mHe)] 256}

' (5.3)
The partial wave unitarity relations, a direct consequence of S-matrix uni-
tarity, are

W' =aj +ai - |fi = If{I* 20 (5-4)

and

X7 = afy +ag, — [fAP = 1l = 20f 2 0. (5.3)

1 Lagrange Formalism

The modified single helicity-flip amplitude Im ¢ is optimized by introduc-
ing the normalized dimensionless elastic cross section %, expressed as an
equality constraint, and the partial wave unitarity relations, expressed as in-

equality constraints. The modified single helicity-flip amplitude Im é5 is the
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objective or penalty function in the Lagrangian [77]:

£ = tmds 5B = S+ 1) (P + P + VAR +UAF +2A74P)]

J
+ 327 + s (afy + a3, — 117 = 151 - 21£11)
J
+3 7+ DA (af +af — £ = 1£) (5.6)
J

where [ is an equality multiplier and the inequality multipliers, A; and puy,
are non-negative by definition. In the high energy or large J limit only
the leading order J terms are included; 2J + 1 terms are replaced by 2.J,
J(J + 1) terms are replaced by J?, and /s ~ 2k. The Lagrange function of

Equation (5.6), in the large J limit becomes
L = Imds+ 0 [ el — OZ J (lf + AP T+ 21f51|2)]
23 Jus (ady + ady — IFAP = 1517 = 21 £
+2;J/\J (af +af — 52~ 1£1P) (5.7)

with

Tmos =~ Y J* ( gﬂ) aj, (s) (5.8)

o

and ¢ = —t/k?. The system is optimized by taking first and second deriva-
tives with respect to the real and imaginary partial wave amplitudes, b and
a;. This gives the optimized set of partial waves, at some fixed ¢ in the CNI
region;

b/ = 0vi, (5.9)
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d 7
Qs =g = = 5.10
A A T E10)
f
ai]l :agQ - 1+2/1J (5'11)
J 1 _ €72
al, = M (5.12)
= 1+20;

where \; = Ai/28, iy = py/20, and > 0 for a maximum (or § < 0 for a

minimum).

2 Unitarity Classes

Optimization imposes the conditions:

b =0 =% 7 =uf 40 =a, (5.13)
o8 =af el @ =ab,, (5.14)
The partial wave amplitudes therefore obey the following unitarity in-

equalities

W/ =g —a*20 (5.15)

and

X' =af —a®—a),2>0. (5.16)
When optimizing the system it is natural to divide the partial waves into two

classes [21]. For each unitarity inequality there are two classes, I and B:

"={J|w;>0,X,=0}, BY={J|W,;=0,,20} (5.17)
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E={J|X;>0 =0, BX={J|X;=0jig=>0} (518)

I is called the interior unitarity class and B is called the boundary unitarity

class.

2.1 " and B" Unitarity Classes

The interior unitarity class I" is rewritten as
™ ={J0<al <1,X =0}, (5.19)
and the boundary unitarity class B" splits into two subclasses, BYY and B}¥;

— B% ={J|aj =0,}; 20} (5.20)
BY ={J|W;>0,X >0}

— BV ={J|a] =1,}, >0} .(521)

Consider the unitarity class I". The inequality multiplier \; is equal to
zero and from Equation (5.10), af = 0 with \; = 0. Therefore there is no
contribution from the interior unitarity class /Y. The boundary unitarity
class B0 with a({ = () restricts the value \ J to zero. Since A g > 01is
required the unitarity class B"° is non-empty, however with aj = 0 there
is no contribution from this unitarity class. The other boundary unitarity
class BV with aJ = 1 restricts the value \; to a negative value of —1. Since

A,y > 0 is required the unitarity class BY is empty and consequently there
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is also no contribution from this unitarity class. Table 5.1 summarizes the

contributions from the various unitarity classes.

2.2 X and B* Unitarity Classes
The interior unitarity class /X under the optimization becomes

* = {Jla11 al,?—ay%>0, uJ—O} (5.22)
and the boundary unitarity class B is written as

BY E{]'(I” o L =" =, /JJ>O} (5.23)

There is no contribution from the interior unitarity class /X. The inequality
multiplier /i is equal to zero and from Equation (5.11), af;, = 0 with a; = 0.
The boundary unitarity class BX with af, — af,2 — af,2 = 0 and ji; > 0 is

non-empty and there is a contribution from the unitarity class BX. Table 5.1

gives a synopsis of the contributions from the various unitarity classes.
There are four possible unions of unitarity classes in this optimized system;

IW UTX: Both of these unitarity classes are non-empty but all the partial
wave amplitudes are zero and there is no contribution from this union of

classes.
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Table 5.1: Interior and Boundary unitarity class contributions associated

with optimization under the elastic cross section and unitarity.

Unitarity Class Contribution
o non-empty class with zero contribution
B%o non-empty class with zero contribution
ik empty class
= non-empty class with zero contribution
BY non-empty class with non-zero contribution

IV UBX: This union of unitarity classes is also non-empty. There is a
contribution from the boundary class B* but there is no contribution from

the interior class IV,

BW UIX: This union of unitarity classes splits into two subclasses, one
empty subclass B U I, and one non-empty subclass BYo U IX. There is
no contribution from the non-empty subclass B U IX and therefore there

is no contribution from the entire unitarity class BY U IX.
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BW UBX: This union of unitarity classes also splits into two subclasses,

one empty subclass BY1 U BX | and one non-empty subclass BY° U BX with

a non-zero contribution.

The unitarity classes IV U BX and BYo U BX are equivalent, since in both

of these unions of classes the partial amplitude aJ is equal to zero or both

I and B"° are non-contributing unitarity classes. The only non-empty

contributing set of unitarity classes is the set; BYo U BX ¢ BY U BX or

I U BX where

J g
(111 (122 1 + Q[I,J
and
J g € 72
ol e B [1 8 ‘]]
21 1 _+_ 2/1J

The boundary unitarity class condition
B = {J!a‘{l -0}’ —a3,’=0, fi; > 0} .
on substitution of Equations (5.25) and (5.26), can be expressed as
X _ w5 | = ANk .
¥ = {1 |8+ - [7/688) (1= /8) )] =0, s 2 0} .

The quadratic equation

N . J ¢ ’
2 1L (1S g2 _
5+ fig {8,5 <1 8.] )J =1,

(5.24)

(5.25)

(5.26)

(5.27)

(5.28)

(5.29)



has solutions

o J € "
,”_E{i@%(l_gj)]_l}. 0
By definition ji; > 0 and the positive solution is selected;
=Ll iaa[d (-8 - (5.31)
S 83 8 ' '
3 Reconstruction of o,
The optimized partial waves can be written as
1 443
R PRy fy (P 5.32
apy Qo9 2 ( Q(«])> ( )
and
J(1-§77)
a9 = —2— Q(J) (533)
with
" ¢ ¢
Q(.]):1+2/,LJ: 16U2+J2_ZJ4+6—4J6 (534)

and J < M, where M is the maximum J corresponding to positive partial

wave amplitudes and is given by
M = Floor [ 8/4 : (5.35)

The Floor function gives the greatest integer less than or equal to /8/(. We
g q

now reconstruct Yo and Im @5 by substituting Equations (5.32) and (5.33)
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mnto
e] =4 Z g (all 5= (121 ) (536)
and

Im ¢5 = Zﬂ( S >agl (5.37)

to give

M 2 3 {5} 2 7
<J 837 16827 J cJ c2J

EeI:Z: +

> V- o0r+ o * gt~ wey teaaE) O

and

S Mo ¢J° .~ >
ey n _ 5.39
m Qs 12::0 <2Q(J) 8Q(J) T 128Q(J) pie

For large J, using the Euler-MacLaurin expansion [78, 79], the summation

over J is replaced by an integration over .J, leading to

M? ¢ S

E(,NT—&H (]\[)+165212(M)+I4(M)——Ie(M) o1 Bs(M) (5.40)
and
Im ¢ ~11(M)_51(M) & I:(M) . (5.41)
S g g'® 128" '
The Jacobi-Elliptical integrals, I; (j = 1,...,8), are given by
M Wi J
LM)= | dJ—— L(M)=
=5 Yo B QY
Iy(M ry i Iy(M MdJ ‘]3
S T IO
non = [Mar L non= [Mar=L
W=k Yo POk Ve
(M Y 4 Is(M Y 4 5.42
7( )_ 0 Q(J) 8( )— 0 W' ( = )
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To solve Equation (5.40), for the equality multiplier 3, the value of the
normalized dimensionless elastic cross section ¢ = k%0 /m must be known.
The experimental data for o, and the ¥, value as a function of center-of-

mass energy ' is shown in Table 5.2 [80]. The system was solved at two

Table 5.2: g, and ¥ as a function of center-of-mass energy

V5 (GeV)  k(GeV)  0q (mb) T

19.4 9.65 6.88 524
23.5 11:71 6.87 770
30.7 15.32 6.94 1332
44.7 22.33 7.23 2947
92.8 26.38 7.40 4214
62.5 31.23 7.63 6088

values of momentum transfer, t = —0.001 (GeV/c)? and —0.01 (GeV/c)?,
over the energy range /s = 19.4 — 62.5 GeV. The system could not be
solved analytically because of the nature of the Jacobi-Elliptical integrals.
To compute the solutions of the system mathematica 3.0 [81] was used
to solve Equation (5.40) for (J; the complete mathematica code is given in

the Appendix. After solving the system for 3 at a given t and /s, the

I'To convert mb to GeV ™2 divide by 0.3894
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optimized value of the modified helicity single-flip amplitude Im b5 is found
by substituting the value of 5 into Equation (5.39) or Equation (5.41). The
ratio Im 5 is given by

m Im (55(8, t)

k Im o4 (s,t) (5:43)

Imrs =

The experimental data for oy, [80], g [82] and the value of the normal-
ized dimensionless total cross section Ay = k%0 /7, necessary to calculate

Im o, (s,t), is given in Table 5.3. A fit was used to calculate values of o

Table 5.3: 0.4, g and Ay as a function of center-of-mass energy.

Vs (GeV) 2g (GeV'?) Ttot (mb) Ag
19.4 11.74 38.76 2953
23.5 11.80 39.23 4399
30.7 12.20 40.14 7702
44.7 12.80 41.29 16832
52.8 12.87 42.90 24412
62.5 13.02 44.01 35106

and o [80] where the values given in Tables 5.2 and 5.3 are nominal values.
Error analysis gives an error of ~ 30% on ¢, ~ 1% on oy, and ~ 2% on g

which result in an error of ~ 5% on the |Imrs| upper bound.
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4 Results

An upper bound on Im7s is computed and a lower bound is obtained by
changing the sign of the equality multiplier; Im &5 is minimized. Under this
translation the lower bound on Im ¢s is simply minus the upper bound and
therefore if Imrs < a then Imr; > —a and the upper bound on the modulus

of Imr; is given by | Imrs| < a.

Upper Bound at t = —0.001 (GeV/c)?

Table 5.4 gives the upper bound on |Imrs| at t = —0.001 (GeV/c)? over
the energy range /s = 19.4 — 62.5 GeV. The bound on |Im7s| is not a
very ‘strong’ bound; to use the pp analyzing power as a polarimeter | Imr;|
must be less than (p, — 1)/2 x 5% ~ 4.48%. The calculated bound may
not be a useful bound but the technique can be repeated with additional
constraints in the system. The addition of constraints into the Lagrange
function will at least give the same upper bound- the bound cannot get
‘wider’, an improvement on the bound is more likely. It is well accepted that
the greater the number of constraints in the system, the better the bound

becomes.
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Table 5.4: Results including upper bound on | Im 75| optimized under o, and

unitarity constraints at t = —0.001 (GeV/c)? as a function of /.

Vs (GeV) Imo, Jmax 5 | Im 75
19.4 1474 863 1659 114.8
23.5 2193 1047 2015 113.5
30.7 3835 1370 2622 LT
44.7 8369 1897 3746 110.9
52.8 12136 2359 4372 108.1
62.5 17447 2793 5099 107.0

Upper Bound at t = —0.01 (GeV /c)?

at t = —0.01 (GeV/c)? over the

Table 5.5 shows the upper bound on | Imrs
energy range /s = 19.4—62.5 GeV. The bound on | Im 75| is an improvement
on the bound at t = —0.001 (GeV/c)?, a factor of ten smaller. The bound

is dependent on y/—t, as t decreases the bound grows in size, and

on |Imrs
likewise as t increases the bound reduces in size. This dependency is linear

and to derive an upper bound of less than 4.48% on | Imrs| the bound must

not have such a strong dependence on /—t.
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Table 5.5: Results including upper bound on | Im 75| optimized under o, and

unitarity constraints at t = —0.01 (GeV/c)? as a function of /s.

Vs (GeV) Imao, ) . 1o} | Im 75|
19.4 1399 273 164 12.1
23.5 2080 331 199 11.9
30.7 3630 433 259 11.8
44.7 7901 631 S i g
52.8 11453 746 433 115
62.5 16454 883 504 11.3

An obvious difference between the two sets of results is the size of the bound

as t approaches zero, the bound tends to infinity. The bounds on

on |Imrs|;
| Im 75| at the two values of momentum transfer are approximately related
to each other by a factor of 10. As ¢ falls by a factor of 10 the bound on
| Im 75| rises by a factor of 10, and similarly, as ¢ rises by a factor of 10 the
bound on |Imrs| falls by a factor of 10. Therefore, in the CNI region, there
is a linear relationship between the bound on |Imr;| and the momentum
transfer t. This linear behaviour originates in the singular behaviour of /—¢

in Jiax where Jpax = +/8k2/(—t). The singular nature of v/—t in Jyay causes
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the number of partial waves to approach infinity as ¢ tends to zero, and also
the bound on |Im7;s| tends to infinity. In order to improve the bound on
| Im 75| the contribution from the higher partial waves must be reduced [52].
The addition of constraints in the Lagrange function will reduce the bound
on |Imr;s|, such constraints are the total cross section and the slope of the
imaginary non-flip amplitude. These extra constraints are introduced into
the Lagrange function in the following Chapters, and as expected the bound

reduces as more constraints are added to the system, significantly.

on | Imrs
i8]
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Partial Wave Plots, t = —0.001 (GeV/c)?

al; az:

0.025
0.0006
0.00045

0.015
0.0003

0.00015 e

2 J
A i R 200 400 600 800

Figure 5.1: af,,aj, under o, and unitarity; /s = 19.5 GeV, t

—0.001 (GeV/c)“
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Figure 5.2: ai,, aj, under o, and unitarity; /s = 23.5 GeV.
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Figure 5.3: a{,,aj; under o, and unitarity; \/s = 30.7 GeV.
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Figure 5.4: ai,, aj; under o, and unitarity; \/s = 44.7 GeV.
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Figure 5.5: af,, aj; under o and unitarity; /s = 52.8 GeV.
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Figure 5.6: ai, aj, under o, and unitarity; /s = 62.5 GeV.
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Partial Wave Plots, t = —0.01 (GeV/c)?
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Figure 5.7: aj,aj, under oq and unitarity; /s = 19.5 GeV, t =

—0.01 (GeV/c)2.
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Figure 5.8: af,, aj; under o, and unitarity; \/s = 23.5 GeV.
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Figure 5.9: af,, aj, under o, and unitarity; /s = 30.7 GeV.
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Figure 5.10: af,, a3, under o and unitarity; /s = 44.7 GeV.
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Figure 5.11: af,, ay; under oy and unitarity; /s = 52.8 GeV.
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Figure 5.12: af,, aj; under o, and unitarity; /s = 62.5 GeV.
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Chapter 6

Bound including the

Spin-Average Amplitude

To improve the previous bound on | Im ;| extra constraints are added to the
Lagrange function. It is known, in general, as the number of constraints in
a system are increased, the bound on the objective function improves. The
aim is to obtain an improved bound on |Im75| by optimizing the modified
single helicity-flip amplitude Im ¢ with unitarity, expressed as inequality
constraints, the elastic cross section, appearing as an equality constraint, and
with the imaginary spin average helicity non-flip amplitude, expressed as an

equality constraint. The new constraint, being the imaginary spin average
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helicity non-flip amplitude Im ¢, (s, t), has the partial wave expansion:

Img.(8,1) =

g Y (27 +1) {a({(S) L (sl e (st aQJQ(s)} (1 — 2 J(J+ 1))
7

where ( = —t/k?. The unitarity constraints of Equations (4.64) and (4.65),
and the partial wave expansion for the dimensionless normalized elastic cross
section Y, given by Equation (4.51), are again input constraints in the

Lagrange function with the objective function Im ¢s.

1 Lagrange Formalism

The Lagrange function is constructed with the imaginary spin average non-
flip amplitude Im ¢ (s, t) expressed as an equality constraint, the normalized
dimensionless elastic cross section ¥ appearing as an equality constraint,
and the partial wave unitarity relations appearing as inequality constraints.
The modified single helicity-flip amplitude Im ¢s is introduced as the objec-

tive or penalty function in the Lagrange function:
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£ = Tndst |Sa = ST+ 1 (BRI + P+ R+ 2A741)]

J
+ [Im<z>+ — 4\/—; zj: (2J +1) {aé(s) +ai(s) +aii(s) + a{z(s)} (1 - % J(J + 1))}
+2 T+ uy (afy + a3y — A1 - 151 — 2 £ %)
+0T 1) (a3 +af — |12 - 1 1?) (6.2)
where 3 and ~ are equality multipliers. The inequality multipliers, A; and

(1. are non-negative by definition and ¢ = —t/(k?). The Lagrange function

of Equation (6.2), in the large J or high energy limit, becomes
£ = Indst S =250 (P + P+ AP + |57 + 215 P)
b
+v |Impy — > J {a;{(s) +aj(s) +af;(s) + a‘2]2(5)} (1 - % J2>]
J

+23 Jus (afy + ady = 117 = 1 £ = 21 £ %)
J

+23°JAs (af +af — £ = £ P) (6.3)
J
and
Im 5 ~ S TP (1 - %ﬂ) aj,(s). (6.4)
J

The system is optimized by taking first and second derivatives with respect
to the real and imaginary partial wave amplitudes, b/ and a/. This gives the

optimized set of partial waves, for a fixed ¢ in the CNI region;

b = 0V, (6.5)

(2
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T<1_§J2)+5\J

J J

=i = = ! 6.6

0 1 1+25, (6.6)
2 ~

J_J_T(l—gj)-i-u.] i

ay; = Q9 = 1+ 27y (6.7)

and

J _é(l_gﬁ)

T ) 68
as 1+ 2 (6.8)

where \; = \;/20, fiy = p;/28, r = —v/(48) and 3 > 0 for a maximum (or

3 < 0 for a minimum)

2 Unitarity Classes

Optimization under the three constraints imposes the conditions:

b =lYi= =g +if =g, (6.9)
ay =a and ai, =ajs. (6.10)

The partial wave amplitudes therefore obey the following unitarity in-
equalities

W/ =al-al>>0 (6.11)

and

X' =aj, —a?—a3?>0. (6.12)
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When optimizing the system it is natural to divide the partial waves into two

classes [21]. For each unitarity inequality there are two classes, I and B:

™ ={J|W;>0,A,=0}, BY={J|W;=0,} >0} (6.13)

P ={J| X =0,f=01,  B*={J|Xi=0.0; >0} (6.4

I is called the interior unitarity class and B is called the boundary unitarity

class.

2.1 I'" and B" Unitarity Classes
The interior unitarity class I, under the three constraints, is expressed as
™ ={Jl0<a] <13, =0} (6.15)

In Equation (6.6) A, is set to zero and the imaginary partial wave amplitude

aj in the interior unitarity class becomes

a =T (1 = %ﬁ) . (6.16)
The constraint 0 < aj < 1 places the restriction

4 < 1 , 4

= I = —> <o = 6.17

c . c (6.17)

on J. When r > 1 or r < 0 the solutions for the optimized system are

complex and for real solutions 0 < r < 1, this limits the value of J to

g = % (6.18)
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The boundary unitarity class BY splits into two sub-classes, B"° and BW1:

— B% ={J|aJ =0, %, 20} (6.19)
BY ={J|W,; >0, X, >0}

— B ={J|aj =1, %, 20} .(6.20)

In the boundary unitarity class BY° the imaginary partial wave amplitude
aj is equal to zero and from Equation (6.6) the inequality multiplier Ay is
given by

Aj=—r (1 = %ﬁ) . (6.21)
The B"° class begins at J? = 4/(, and for J?> > 4/(, 0 < r < 1, the
inequality multiplier A, is positive. Therefore the boundary unitarity class
B"o is non-empty but with aj = 0 for all J there are no contributions
from this unitarity class. The imaginary partial wave amplitude aj is equal

to unity in the boundary unitarity class B and from Equation (6.6) the

inequality multiplier Ay is given by

Aj=r (1 - % ,]2> = B, (6.22)
By definition A;>0or r(1 — (/4 J%) > 1. This limits the value of J to
. 4
2<l (1 - 1) (6.23)
¢ r

and with 0 < r < 1, J can only take complex values. The B"! class is

therefore an empty unitarity class.
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In summary. the unitarity classes, IV and B"°, are non-empty and the
unitarity class B! is empty;

M={J0<a) <1,0<J< M}, (6.24)

BY ={Jlaj =0, My + 1< J < My} (6.25)

where M, = Floor [ 4/(], M, = Floor [ 8/C] and ¢ = —t/k?%.

2.2 ¥ and BY Unitarity Classes

The interior unitarity class I under the optimization becomes
I*={J|a}, - a},® - a},* > 0, i, = 0}, (6.26)

Substituting Equations (6.7) and (6.8), with ; = 0, into the interior con-

straint af; — a{;? — a3,? > 0 leads to the equation;

fill)=a1+ayJ* +az3J* +as J° >0 (6.27)

where a; = 7(1 —7),ay = 7((2r — 1)/4 — 1/(646?), a3 = (/(2560%) —
r2C%/16, ay = —(?/(648)?, and only solutions with positive J are allowed.

The solution is of the form

AR n?é (6.28
¢

where 7, is a function of r, # and . The function 7; will be shown to be

equal to unity. The boundary unitarity class BX is written as
&= J J 2 78 ~
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The constraint af; —af;? — a3;? = 0 can be written as a quadratic equation:

i+ as+ H(J) =0, (6.30)

where

filD)=a14+a J° +ag J* +asJ°. (6.31)
The solutions are
m:% {i\/1—4f1(J)—1}. (6.32)
The function f;(.J) is negative for J? > 4/ and therefore fi; is positive for
such J values. By definition z; > 0. Consequently, only the positive solution
is chosen;

,1J=%{\/1—4f'1(,])—1}. (6.33)

To summal* = {J|01J1 ~a,’~a3*>0,0<J < ]WI} on-empty:
* ={Jlaf, —af,> = a},> >0, 0< J < M}, (6.34)
B* ={Jla}, — af\? — a3, =0, M; +1 < J < My}, (6.35)
with 7 = 1, where M; = Floor [\/:l—/—(], M, = Floor[ 8/(} and ( =
—t/k*. It is important to notice that with n; = 1 both interior unitarity
classes, I'"" and I, are non-empty over the same region, J € [0, M;]. Sim-
ilarly the boundary unitarity classes, B" and BX, are non-empty over the
same region, J € [M; + 1, Ms]. In other words there is no mixing of unitarity
classes, all classes either interior unitarity classes or boundary unitarity are

classes for a given J.
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The unitarity classes IV UIX, BY UBX and the union IV UIX UBY uBX

are considered.

3 Solution of Interior Unitarity Class

Consider the set of interior classes I = I'"Y U IX. The inequality multipliers,
A, and fiy, in the interior region are equal to zero. The imaginary partial

wave amplitudes are

i (1 _ g J2) (6.36)
and
3 A

E=0,1,11,22, with0 < .J < M;, where M, is the maximum J corresponding
to positive partial wave amplitudes (a] > 0) and is equal to Floor [ 4/(].
The Floor [ 4/¢ } function gives the greatest integer less than or equal to
\/I/? . The imaginary spin average non-flip amplitude Im ¢! is reconstructed

by substituting Equation (6.36) into the partial wave expansion
M, C
imof = 3 {af(s) +al) +ah(o) + b} (1-§2)  (639)
J=0

to give

M, C 2
Im¢, =4r> J (1 o J2> (6.39)
J=0
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where superscript I denotes the contribution from the interior unitarity class
I = I UI¥*. The Euler-MacLaurin expansion [78, 79] for large J is used to

write the imaginary spin average non-flip amplitude as an integration over

J
M, 2
Im¢! =~ 47’/ dJ (J— %J3+ %6‘]5) (6.40)
0
r¢ r¢?
~ 2rM? — 7M;1 + ﬁM;"J. (6.41)

Substituting M; ~ /4/¢ into this Euler-MacLaurin expansion leads to

Im ¢! ~ (6.42)

gET.

Similarly 3/, is reconstructed by substituting Equations (6.36) and (6.37)

e

into the partial wave expansion

M;
Sh=2%J(a)?+a]*+af,? + a3y + 2], ?) (6.43)
J=0
to give
32 . 1 3
e 6.44
4~ 6" T 3 06c (6.44)
for large .J. The equality multiplier
3 I
P §C1m¢+ (6.45)

is found by manipulating Equation (6.42). The solution of Equation (6.44)

is simply
1 96 32

1/2
/—j = ﬁ C (E(Iel = Q 7"2> (646)
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or

1 96 3 Lg
L= oc (- Scmel?) . (6.47)

The experimental data for o, and Im ¢, given in Tables 5.2, 5.4 and 5.5, is
used to find the values of the equality multipliers, r and 3, at t = —0.001 (GeV /c)?
and t = —0.01 (GeV/c)? over the energy range /s = 19.4 — 62.5 GeV. The

values of r and (3 are shown in Table 6.1.

Table 6.1: The equality multipliers r and 3 under o, Im ¢, and unitarity

constraints.

Vs (GeV) t =—0.001 (GeV/c)? t =—0.01 (GeV/c)?

r 3 ¥ G
19.4 0.00593 1401 0.0562 164
23.5 0.00599 1702 0.0568 200
30.7 0.00612 2216 0.0579 263
44.7 0.00629 3166 0.0594 376
52.8 0.00653 3699 0.0617 445
62.5 0.00670 4316 0.0632 921

The modified imaginary single-flip amplitude Im (ﬁé is reconstructed by
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substituting Equation (6.37) into
k. M,y ) C
Tasithe — 3 " (1 =8 J2> ay, (s) (6.48)
J=0
to give
~ M, C 2
Im ¢l = Z b ( ) . (6.49)
For large J the modified imaginary single-flip amplitude is written as

TR B
7l
M5~ aser

(6.50)

An analytic expression for modified single-flip amplitude is found by substi-

tuting the expression for 3 into Equation (6.50), this gives

N 1/2
lmgpgz\/gé( (Imd) ) : (6.51)

In this unitarity class Im ¢! = Im ¢, , ¥/, = 5y and Im ¢ = Im ¢s, that is,
the contribution to the optimized modified single-flip amplitude completely

originates in the interior unitarity class, I = IV U IX, and

- 111 ek
Im g5 < \/:C < C Im ¢+> : (6.52)

The lower bound on Im ¢s is simply minus the upper bound;

- 111 Ll
i s _\/:C < c I ¢+) . (6.53)

The bound on |Imrs|, given by m|Im ¢s|/(k Im . ), is

) [m g2 |2
lhnr5|§\/ii'3(' ¢ Img?) (6.54)

24 k¢ Im &,

where ¢ = —t/k2.
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3.1 Results

Table 6.2 shows the bound on |Imr;| evaluated in the CNI region at t =
—0.001, —0.01 (GeV/c)? over the kinematical range, \/s = 19.5 — 62.5 GeV.

A number of comments can be made about the bound on | Im75|. The bound,

Table 6.2: |Im7s| as a function of center-of-mass energy and momentum

transfer optimized under o, Im ¢, and unitarity constraints.

Vs (GeV) t =—0.001 (GeV/c)? t = —0.01 (GeV/c)?
19.4 93.6 8.4
2315 92.5 8.3
30,7 91.0 8.1
44.7 90.3 8.0
52.8 87.9 s
62.5 87.0 7.6

with the imaginary spin average non-flip amplitude, the elastic cross section
and unitarity as constraints is an improvement on the previous bound with
the elastic cross section and unitarity as constraints. This is expected; the
bound improves as more constraints are added to the system. The bound on

| Imr;| decreases as t increases and the bound has a linear dependence on
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the momentum transfer ¢.

In the interior unitarity class Jy,., = M; = Floor[\/4/7 | and the par-
tial wave amplitudes are zero for higher J. The partial wave series for the
imaginary partial wave amplitude ay, terminate at J = M,, the largest
value of J allowed in the interior unitarity class. For positive values of aj,,
s = My= Floor[\/g/‘c ]. The partial wave series for aj; is truncated at
J = M, which may result in the loss of information and the bound on | Im 75|
may be unnecessarily high. The boundary unitarity class BY U BX is non-
empty for M} +1 < J < M,. In the boundary class none of the partial wave
series are truncated and all the amplitudes become zero as J approaches M.
The next case to consider is the boundary unitarity class B = BWY UBX. The
behaviour of the partial wave amplitudes at /s = 52.8 GeV, in the interior
unitarity class, is shown in Figures 6.2 and 6.3 where the partial wave series

terminate at J = M,;. Consider the polynomial f;(J) given by
fl(J):al+a2J2+a3J4+a4J6>0 (655)

where a; = r(1—7), ap =7¢(2r—1)/4—1/(645?%), a3 = ¢/(2563?) —r2¢%/16
and a; = —(?/(645)%. The interior unitarity class IX defined in Equa-

tion (6.35) can be redefined as

X ={J|fiJ) >0, ji;=0}. (6.56)
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The value of J satisfying fi(.J) > 0 was found to be

4
0<J?< nfz (6.57)

with 7 set to unity. The polynomial f;(.J), shown in Figure 6.1, can be plot
by substituting the numerical values for r and (3, at /s = 52.8 GeV and
t = —0.001 (GeV/c)?. The maximum J, with nf = 1, at /s = 52.8 GeV
is 1668. The maximum J for fi(J) > 0, from Figure 6.1, is 1668 implying

n ~ 1. The is true for all kinematical values considered in the Thesis.

T4

0.006

0.003

500 1000 1500 2000

Figure 6.1: Behaviour of the polynomial f;(.J).
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Partial Wave Plots
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Figure 6.2: a (k= 0,1,11,22) and a3, optimized under o, Im ¢, and uni-

tarity in the interior unitarity class; /s = 52.8 GeV, t = —0.001 (GeV/c)?.
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Figure 6.3: af (k = 0,1,11,22) and a3, optimized under o, Im¢, and

unitarity in the interior unitarity class; /s = 52.8 GeV, t = —0.01 (GeV/c)?.
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4 Solution of Boundary Unitarity Class
In this unitarity class the value of J is limited to
Mi+1<J< M, (6.58)

where M, = Floor[\/4/(], My = Floor[,/8/¢] and ¢ = —t/k?*. The unitarity
constraint in the boundary unitarity class, a, — a{,? — a3,? = 0, leads to the

expression for the partial wave amplitude af,:

1
al, = 5{1i\/1—4(1512}. (6.59)

Therefore the partial wave amplitude af, must be positive in the boundary
unitarity class. The expression for the imaginary spin average helicity non-

flip amplitude is

Mo C
Imgf=3 3= Jai (1 - Z‘ﬂ) . (6.60)
J=Mi+1

For M, +1 < J < My, the term (1 — (/4 .J?) is negative and af, is positive,
consequently Im¢? is negative inside the boundary unitarity class. The
experimental value of Im ¢, is positive and by including only the boundary
unitarity class, where Im ¢ f = Im ¢, , the system is not solvable. To solve
the system in the boundary unitarity class, the interior unitarity class must

also be considered, where Im (Z)fL + Im @f =Imdg,.
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5 Interior and Boundary Unitarity Classes

The set of unitarity classes I U B or I U IX U BW U BX is considered. In
summary, inside the interior unitarity class I, the value .J can take is limited

to 0 < J < M. The system constraints are given by

Img¢! = (6.61)

__8_. ’,”
3¢
5 SRR e |

xh== —
=6 TR %60

(6.62)

with imaginary partial wave amplitudes

g =7 (1 - §J2> (6.63)

and

J ¢
= [1~-20 6.64
(12| 811’ <1 8 ) ( )

where k& = 0,1,11,22 and ¢ = —t/k*. The modified helicity single-flip am-

plitude is
1 11
3 48¢%°

Im ¢! ~

(6.65)
The equality multiplier 3 expressed in terms of the system constraints is

96 3 A
% - \/;C (zg, = ;¢ mey 2) : (6.66)

Consider the case when

ol = gg Imol 2. (6.67)
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The reciprocal of the equality multiplier 3 is zero and as a result the imagi-
nary partial wave amplitude ay; is zero inside the interior unitarity class, 1.

If the imaginary partial wave amplitude ay, is zero then
Im ¢l =0. (6.68)

Therefore there is no contribution to the modified imaginary helicity single-
flip amplitude inside the interior unitarity region I. The system constraints

are rewritten as

Trngh! = %7‘ (6.69)
92
Ta = 6 re (6.70)

a) =r (1 _ ¢ J2> (6.71)

and

ay =0 (6.72)

and the equality multipliers, r and 3, in the interior unitarity class I are

given by

el
and
L (6.74)
‘[)’ =U. a
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5.1 Numerical Technique

To solve the system, with both interior and boundary unitarity classes, a
numerical technique is required. The system cannot be solved analytically
because of the complex nature of Jacobi-Elliptical integrals and solutions
cannot be obtained with the use of mathematica. The numerical technique,
combining mathematica with analytic calculations, is successfully applied
and a bound on |Im7s| is derived. A detailed description of the numerical

technique follows.

What fraction of X, falls into the interior class I?7 The contribution
in the interior region 3/ is a fraction of the total normalized dimensionless

elastic cross section Y given by
L = n%y (6.75)

where 0 < n < 1. In the interior region ¥/, = 3/4¢Im¢!? and the fraction

n is the ratio X1 /3q;

. §€_Im¢>7{2.

= (6.76)

The contribution to Y4 from the boundary unitarity class B is therefore

8 =(1-n)Zy. (6.77)

el —

What fraction of the imaginary spin average amplitude falls into

the interior class I?7 Assume the contribution to Im ¢, in the interior
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class is 100% and the contribution from the boundary class B is zero, that
is,

Im¢, =Ime, + ImpY =Imep’ +0=1Im¢’. (6.78)

It will be shown, using an iterative technique, that Im c;Sf < 0 and Im d)i >
Im ¢, such that Im¢’ + Im¢# = Im¢,. In the boundary unitarity class
B = BY U B, by setting Im¢? = 0, the system is constrained by partial
wave unitarity and by the elastic cross section; Im ¢, is not a constraint in

the boundary unitarity class.

In Chapter 5, the system, with partial wave unitarity and the elastic cross
section as constraints, was solved in the boundary unitarity class . The same
method is followed. In the boundary unitarity class, B = B" U BX, the

optimized partial waves, at a fixed ¢ in the CNI region, can be written as

1 40
a,‘lll = (122]2 = 5 <1 — m) (679)
and
g _J (1 B é‘]Q)

=3 o) (6.80)

where
Q(J)z\/1652+J2—£J4+C—2J6 (6.81)

4 64 '

with M, +1 < .J < M,. When J = M, the interior unitarity class terminates

and M, is the maximum .J corresponding to positive partial wave amplitudes
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whers
M, = Floor [ 4/(] (6.82)
-
M, = Floor[ 8/(] . (6.83)

The Floor(x| function gives the greatest integer less than or equal to z.
The observable ¥ and the objective function Im @5 are reconstructed by

substituting Equations (6.79) and (6.80) into

Mo
25=4 Y J(af,’+a3?) (6.84)
J=My+1
and
N Mo ‘ C
Imge = %, J (1——Jg> &y (6.85)
J=M1+1 8
to give
M) 8pJ | 16p*J  J° ¢J° i
»E = (J— — + ——— + — + ) 6.86
| J:AZ[]+1 Q(J)  QU)? Q)P 4Q(J)*  64Q(J)? (6.86)

and

: N N - I . i
B o —
Im ¢y = Z (2(‘?(]) 8Q(J) N 128Q(J)> '

J=M;+1
For large J we can replace the summation over J by an integration over

(6.87)

J [78, 79] which leads to

L., | , ¢ e
Sha g (M= (M +1)°) ~88L + 166+ 1 — s I+ o7 Ts (6:88)
and
o ¢ 5



The Jacobi-Elliptical integrals, I; (j =1,...,8), are given by

M M:
11:/2dji 12=/2dJ !
M M

h+1 Q(;]) fi+1 Wi)z
=L om 4= Lo 507
5 /A 5
b= 5T = fun i
j /A :[ildj Q{;) T /A:il dJ%;)z. (6.90)

To numerically solve the system and calculate a bound on |Im7s|, the kine-
matical values /s = 52.8 GeV and t = —0.001 (GeV/c)? are chosen as
sample points. The experimental data in Tables 5.2 and 5.4 give the values
Yol = 4214 and Im ¢, = 12128. The fraction n of ¥ in the interior unitarity
class I, given by Equation (6.76), is 0.003765 and the contribution to ¥4 in
the boundary unitarity class B, given by Equation (6.77), is 4056. Rewriting

Equation (6.88) as

2
(M§ — (M + 1)2) — 885 + 16825 + I; - §16 + S Ig, (6.91)

4056 =
oo 4 64

DD | b=t

enables a solution for 3 to be found, where 3 = 2487. When reconstructing

Zg. where

Mo
28=4 Y J(a’+4a}?) (6.92)
J=M1+1
with
1 403 )

J J
A, =5 =— |1 — —— (6.93
11 22 2 ( Q(J) )



and

Folaj?
ay == (1-57) : (6.94)
2 Q)
the imaginary partial wave amplitude a{, is found to be non-zero. The con-
straint
Mo C
g =2 3 Jai, (1 -2 JQ) (6.95)
J=M;+1 4

initially set to zero, is a function of af,. Substituting the expression for af;,
with the solved multiplier value, into Im ¢ results in the non-zero value of
—570. In the interior unitarity class the contribution to Im @5 is zero when

the fraction of ¥ in the class is given by

3 hn¢5+2

To satisty the condition Im ¢, = 12128 = Im (,75’+ + Im qbf the value of Im qbi
is adjusted to Im ¢, — Im¢¥ = 12128 + 569 = 12697. The value of Im ¢%
increases and consequently the fraction n of ¥ in the interior unitarity class
also increases, to a value of 0.04127. The contribution to Y in the boundary
unitarity class B becomes 4041 = (1 — n)Y and the equation

2

(M;" — (M; + 1)2) — 88, + 165°I, + I — §16 +>=1Ig (6.97)

4041 =
4 64

DN =

is solved for 3 with solution 3 = 2492. A value of —567 for Im¢? is cal-

culated after reconstruction and the condition Im¢% + Im¢? = Imé¢, is

satisfied. Reconstructing Im ¢s in Equation (6.87) with /s = 52.8 GeV,
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t = —0.001 (GeV/c)? and 3 = 2492, the bound
| Imrs| < 59.2 (6.98)

is calculated. The contributions from the two unitarity classes are shown in

Table 6.3.

Table 6.3: Contributions from the /U B unitarity classes with o, Im ¢, and

unitarity constraints; \/s = 52.8 GeV, t = —0.001 (GeV/c).

=P U ur B =BV yBY%yUBWYUBX

0<.J <1668 1669 < J < 2359
r 0.00685 0
1/3 0 4012 %10
Imo, 12697 —567
Yol 174 4041
Im s 0 59.2

5.2 Results

The bound on |Im7s| is calculated by adding the contributions from the

interior and boundary unitarity classes. The contribution from the interior
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unitarity class is always zero and the contribution to the bound comes entirely

from the boundary unitarity class.

Momentum transfer t = —0.001 (GeV/c)?

In the kinematical region /s = 19.4 —62.5 GeV at t = —0.001 (GeV/c)? the

varies from 63.8 down to 58.6, Tables 6.4 and 6.5 list the

bound on |Im7s
contributions from the interior and boundary unitarity classes, respectively.
To calculate the upper on |Imrs| the contributions from the two unitarity
classes are simply added and to find the values of the observables the con-

tributions from the two unitarity classes are also added. As expected the

Table 6.4: Contributions from I C [ U B with o, Im¢, and unitarity

constraints; t = —0.001 (GeV/c)?2.

Vs (GeV) Jrange n (%) T 1/ Lo Im¢y Imrs

19.4 0,610 3.66 000621 0 19 1545 0O
23.5 0, 740] 374 000628 0 29 2298 0
30.7 0,969] 3.86 000641 0 52 4016 0
447 [0,1412) 392 000659 0 116 8769 0
528 [0,1668] 4.12 0.00684 0 174 12705 0

62.5 [0,1975] 4.21 0.00702 0 257 18268 0
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Table 6.5: Contributions from B C [ U B with 0., Im¢, and unitarity

constraints; t = —0.001 (GeV/c)2.

Vs (GeV) Jrange (1-n)(%) r (B e

Im¢, Imrs

19.4 (611, 863] 96.34 0 947 505 —70 63.8
23.5 [741, 1047] 96.26 0 1147 742 -104 624
30.7 (970, 1370] 96.14 0 1491 1281 -180 61.2
44.7 (1413, 1997] 96.08 0 2132 2831 -—-398 60.8

52.8 [1669, 2359] 95.88 0 2493 4041 -567 59.2

(@)
[S)
(@]

[1976, 2793] 95.79 0 2909 5832 —818 58.6

from the interior unitarity class is zero and the ma-

contribution to | Imrs
jority of the contribution to Y, comes from the boundary unitarity class. To
restrict the bound on | Im 75| the contribution to ¥ in the boundary unitarity
class, given by (1 — n), must be reduced. The reduction of this contribution
has the effect of reducing the contribution from the imaginary partial wave
amplitude a3;. The only partial wave amplitude the bound depends on is
ay; and therefore a reduction in the contribution from the imaginary partial
wave amplitude ay, in the boundary unitarity class should reduce the bound
on |Imrs|. In previous calculations the bound on | Im 75| was considerably

higher. When solving the system without contributions from the boundary
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unitarity class and with contributions only from the interior unitarity class
the bound on | Im 7/, in the same kinematical range, varies from 93.6 down
to 87.0. When the system is constrained by partial wave unitarity and the
elastic cross section o, also in the same kinematical region, the bound on

varies from 114.8 down to 107.0.

[ Imr;

Momentum transfer t = —0.01 (GeV /c)?

In the kinematical region /s = 19.4 — 62.5 GeV at t = —0.01 (GeV/c)? the
bound on |Im7s| varies from 5.6 down to 5.0, the complete set of results
are given Tables 6.6 and 6.7 The contribution to |Imrs| from the interior
unitarity class is again zero. The majority of the contribution to ¥ remains
in the boundary unitarity class. When solving the system without contribu-
tions from the boundary unitarity class and with contributions only from the

. in the same kinematical range,

interior unitarity class the bound on | Imr;
varies from 8.4 down to 7.6. When the system is constrained by partial wave
unitarity and the elastic cross section o, in the same kinematical region, the

varies from 12.1 down to 11.3.

bound on | Im7;

The bound on |Imr7s| derived with, partial wave unitarity, the elastic
cross section o, and the imaginary spin average non-flip amplitude Im ¢, ,
expressed as constraints, is a definite improvement on the previous | Im7s|

bound. There is an overall improvement on the | Imr5| bound, although the
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value is far from the 4.48% threshold necessary to successfully use the pp CNI
analyzing power as a polarimeter with a maximum beam polarization error
of 5%.

Table 6.6: Contributions from I C [ U B with o4, Im¢, and unitarity

constraints; t = —0.01 (GeV/c)?.

Vs (GeV) Jrange n (%) r 1/ Zq Im¢, Imrs

19.4 [0, 193] 32.27 0.0583 0 169 1451 0
23.5 [0, 234] 32.99 0.0589 0 254 2157 0
30.7 [0, 306] 33.89 0.0600 0 452 3760 0
44.7 [0, 446] 34.19 0.0615 0 1008 8186 0
52.8 [0,527] 35.89 0.0638 0 1513 11849 0

62.5 [0, 624] 36.57 0.0654 0 2227 17020 0
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Table 6.7: Contributions from B C [ U B with o, Im ¢, and unitarity

constraints; t = —0.01 (GeV/c)?2.

Vs (GeV) Jrange (1—-n)(%) r B Xa Im¢, Imrs

19.4  [194,273] 67.73 0 112 355 —50 56
235  [235,331] 6701 0 135 516 —74 5.5
30.7  [307,433) 6611 0 178 881 —125 5.5
447  [447,631] 6581 0 255 1939 —274 5.7
528 [528,746]  64.11 0 302 2702 —382 5.1

62.5 (625, 883] 63.43 0 354 3862 —-54 5.0

In the next and final Chapter a new bound on |Im7s| is derived. The
penalty function Im ¢ is constrained by an extra observable- the total cross
section oy,. The extra constraint in the system has the desired effect of
reducing the bound on |Im 7| to a value less than one at /s = 50 GeV and

with momentum transfers in the CNI region.
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Partial Wave Plots
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J
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Figure 6.4: af, and a3, optimized under o, Im ¢, and unitarity constraints

in the I U B unitarity class; /s = 52.8 GeV, t = —0.001 (GeV/c)?.

a a}/
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0:.,.025
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Figure 6.5: af, and ay, optimized under o, Im ¢, and unitarity constraints

in the 7 U B unitarity class; /s = 52.8 GeV, t = —0.01 (GeV/c)2.
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Chapter 7

Optimization including o,

To improve the previous bound on |Imrs| another equality constraint is

added to the Lagrange function. This new equality constraint is the total
cross section, o, expressed as a normalized dimensionless total cross section

with the partial wave expansion
A=Y 27+ 1) {a] +af +ay +ajy} . (7.1)
J
Included in the Lagrange function are the equality constraints;
Ta = 227 +1) (P +1FH P+ P+ 157 +280P)  (7.2)

and

Imo+—z\/l§ J (27 + 1) {ag (s) + af(s) + af\ (s) + azy(s) } <1—§J(J+1)> .
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The unitarity inequalities of Equations (4.64) and (4.65) are again utilized
as input inequality constraints. An improved bound on |Im7;s| in the CNI

region is expected. The bound

1/2
SOTI7d, 1) (7.4)

| Imrs| < mp\/g ( =

tot

at zero momentum transfer is derived. At /s = 52.8 GeV its value is 0.89,

a large improvement on the bounds previously derived in Chapters 5 and 6.

1 Lagrange Formalism

The normalized dimensionless total cross section Ay, expressed as an equality
constraint, is added to the Lagrange function along with the normalized
dimensionless elastic cross section ¥, written as an equality constraint, the
imaginary spin average non helicity-flip amplitude Im ¢, also expressed as
an equality constraint, and the partial wave unitarity relations written as
inequality constraints. The modified single helicity-flip amplitude Im ¢s is

introduced as the objective or penalty function in the Lagrange function:
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£ = Im<155+a[AO—Z(2J+1){(13(8)+a{(s)+a{1(s)+agg(s)}}

5B = ST+ 1) (P + 2P +IFF + 1747 + 257
)
:1/_5 ; (2J +1) {a(J)(S) + a{(s) + a{l(s) + a{Q(s)} (1 — %J(J - 1))]

+3(27 + Dy (ady + a3y = 11~ 1l = 2517)
J

{4 {Im or —

+3°@2J+ DA (af +af = £ = 1£]?) (7.5)
J

where «, (# and v are equality multipliers. The inequality multipliers, A; and
jt; are by definition non-negative and ¢ = —t/(k?). In the high energy or
large J limit only the leading order J terms are included and the Lagrange

function of Equation (7.5) becomes
£ = et =25 {alls) +al(s) +af () + o)}
J
+3 {zd - 2? T2+ 11+ 11 + £ + 2|f2J1'2)}
+v llmq)+ = ZJ: J {a({(s) + aj (s) + af,(s) + ag2(s)} (1 - %JQ)]

+23 Ty (alJl +az — |37 = | - 2|f2Jl|2)

J
+2)"JAs (af +af - |1 - |FP) (7.6)
J
and
Imaps ~ > J? (1 - %J?> ay (s). (7.7)
J
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The system is optimized by taking first and second derivatives with respect
to the real and imaginary partial wave amplitudes, b/ and a. This gives the

optimized set of partial waves, at some fixed t in the CNI region;

b = 0Vi, (7.8)
e + 1y (11;;5\;]2) + A ’ iy
P L L (11 +_ 2%{]2) e (7.10)
J
and
= M (7.11)

1+ 2,[1“]
where \; = Ai/2B, iy = ps/28, 11 = —a/(208), 9 = —y/(48) and B > 0 for

a maximum (or 3 < 0 for a minimum).

2 Unitarity Classes

Optimization under the four constraints imposes the following conditions:

i == Il =al + 8 =q (7.12)
o =af and al; =ay,. (7.13)

The partial wave amplitudes therefore obey the following unitarity inequali-
ties

W'/ =aj —al*>0 (7.14)
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and

X =gy —a,® —a5,° >0, (7.15)

2.1 " and BY Unitarity Classes

The interior unitarity class IV, under the four constraints, is expressed as
™ ={J)0<al <1, =0}. (7.16)

In Equation (7.9) A, is set to zero and the imaginary partial wave amplitude

ag in the interior unitarity class becomes

aj =1+ 1 (1 - §J2> , (7.17)

The constraint 0 < af < 1 places the restriction

% (—(rl 1) = 1) <P<l (1 + T—1> (7.18)

o ¢ 9
on.J. When ry+79 > 1 or r; +79 < 0, the solutions for the optimized system
are complex and for real solutions the conditions 0 < ry +7y < 1 and 9 > 0,

must be satisfied. The value of J is limited to

0<J? <2 (1 4 ﬁ) . (7.19)
¢ T2

The boundary unitarity class BY splits into two sub-classes, B"° and BW1:

— B" ={J|aJ =0}, >0} (7.20)
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BY ={J|W, >0, >0}

— BV ={J|aJ =114, 20} .(7.21)

In the boundary unitarity class B the imaginary partial wave amplitude
ay is equal to zero and from Equation (7.9) the inequality multiplier Ay is

given by

)\J:—(T1+T2)+T2§J2. (7.22)

The B"° class begins at J2 = M2 = 4/C (1 + r1/r3), and for J > M; + 1,
with 0 < 71 +7ry < 1 and 79 > 0, the inequality multiplier A is positive.
Therefore the boundary unitarity class B'° is non-empty for J > M; +1 but
with aj = 0, for all J, there are no contributions from this unitarity class.
The imaginary partial wave amplitude ay is equal to unity in the boundary
unitarity class B! and from Equation (7.9) the inequality multiplier Ay is
given by
¢

;\J:(7'1+7'2)—1"T‘21J2. (723)

By definition A; > 0 and the value of J is limited to

> 4 (T] i T'g) —1
g = - 7.24
<3 ( it ) (7.24)

and with 0 < r; + 7, < 1 and r > 0, J? is negative, or J is complex. The

B"1 class is therefore an empty unitarity class.
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In summary, the unitarity classes, I" and B"°, are non-empty and the

unitarity class B! is empty;
M={J0<a)<1,0<J<M}, (7.25)

BYo ={Jlaj =0, My + 1< J < My} (7.26)

where M, = Floor [\/4/((1 +r1/r2)}, M, = Floor [\/8/7] and ¢ = —t/k%

2.2 ¥ and BX Unitarity Classes

The interior unitarity class /X under the optimization becomes
*={Jla},—a}’ - a}* >0, i; =0}, (7.27)

Substituting Equations (7.10) and (7.11), with g; = 0, into the interior

constraint ai; — ai;* — aj,? > 0 leads to the equation;

fo(J) =@+ 8 J> +ads J* + a4 J® >0 (7.28)

where a; = (11+73) (1= (r1+73)), a2 = ro¢ (2(r1+72)—1)/4—1/(643?), a3 =
¢/(2563?%) — r2¢?/16, a; = —(?/(643)%, and only positive J solutions are

allowed. The solution is of the form

. L4
0< J? <n§E (1+T—1> (7.29)

)
where 7, is function of ry, 79, # and (. The function 7, is set to unity, it

will be shown later that 7, ~ 1 and the bound is slightly adjusted by setting
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17y = 1. The boundary unitarity class B is written as

B* ={J|a}, - a},® - a},> =0, ji; > 0}. (7.30)

The constraint ai; — af,? — aj;?> = 0 can be written as a quadratic equation:

i+ iy + fo(J) =0, (7.31)

where
fo( D) =@y + @y J? + g J* +dy J® (7.32)

The solutions are

ez % {i\/l AT = 1} . (7.33)

The function f5(J) is negative for J > M; = Floor[4/{ (1 +r1/r2)] and
therefore fi; is positive for such J values. By definition ji; > 0, therefore the

positive solution is chosen;
. 1 .
o= { 1—4p(J) - 1} . (7.34)
To summarize, both the classes, I* and BX, are non-empty:
* ={Jla}, —a},® - a3,* >0, 0< J < My}, (7.35)

BX={Jla}, —ah? - a2 =0, My +1< J < My}, (7.36)

for ny = 1, where

My = Flour [\/4/< (1t 7“1/7"2)] , (7.37)
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M= Floor { 8/(] (7.38)

and ¢ = —t/k*. Tt is important to notice that with 7, = 1 both interior
unitarity classes, I'"Y and I*, are non-empty over the same region, J €
[0, M;]. Similarly the boundary unitarity classes, BY and BX, are non-
empty over the same region, M; +1 < J < Ms,. In other words there is
no mixing of unitarity classes, all classes either interior unitarity classes or

boundary unitarity classes for a given J.

The unitarity classes are IV U IX and the union I U I*X U BW U BX are

considered

3 Solution of Interior Unitarity Class

Consider the set of interior classes, I = I U I*. The inequality multipliers,
A, and jiy, in the interior region are equal to zero. The imaginary partial

wave amplitudes are therefore written as as

(li =71+ T9 (1 - %(]2> (739)
and
J ¢
S ) - 4
5y 8,U< 8J>, (7.40)

k=0.1,11,22, with 0 < J < M, where M; = Floor [\/4/¢(1+71/rs)] is

the maximum J in the interior unitarity class. In this case the contributions
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to the observables and to the bound on Im ¢5 solely comes from this interior
unitarity class; A) = Ag, Im qbi = [, , Bh = ¥y and Im q~5§ = Im gz~55. The
normalized dimensionless total cross section is reconstructed by substituting
Equation (7.39) into
M,
Ag=>J (aé +ai +af; + a‘QIQ) (7.41)

J=0

to give
My C ‘ 1
AOZSZJ[TI*}-TQ(l——JZ)J. (742)
J=0 4

The Euler-MacLaurin expansion [78, 79] for large J is used to write the

normalized dimensionless total cross section A, as an integration over J:

M,
Ay ~ 8 dJ ((l'] == 7‘2) J - Tg-f—l- J3> (743)
0

M?
- {801 +72) =g M7} (7.44)

Q

Similarly the imaginary spin average helicity non-flip amplitude Im ¢! is

reconstructed by substituting Equation (7.39) into

M,
mo, = > J{a] +af +ai, + a3, } (1 - % J2> (7.45)
J=0
to give
: T
Im¢, = 4/ dJ {('rl +719)J — (2rg + TI)Z 3 +T2EJ5} (7.46)
0
2 Crp r9¢° 4
~ All 2(T1 o TQ) = (27‘2 = Tl)ZMl =1 a—Ml : (747)
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T
el»

The dimensionless normalized elastic cross section 3}, by substituting

Equations (7.39) and (7.40) into

M,
281:2ZJ<a({2+a‘1}2+a{12+a{22+2a2‘]12>, (7.48)
J=0

is reconstructed:

r202
Ya & {4(7‘1 4+ 1r9)° M} — (11 + mo)rel M} + —i—g— Mf}

M} oo \

The modified imaginary single-flip amplitude Im b5 is reconstructed by sub-

stituting Equation (7.40) into

M,
Imgs =D J° (1 - % J2> aby (7.50)
J=0
leading to
13 Y
Im §D5 = @ ‘g)g] (1 = —8‘ J ) : (751)

For large J the modified imaginary single-flip amplitude is written as

~ 1 M} Cxro 2 e
o B e = ] = 2 — ) 52
Im ¢: 85 4 <1 6]\[1 = 128M1 (7.52)

An expression for the equality multiplier 3 is found by solving Equation (7.49):

2 1/2
M2 {1 - §M? + oM}

A/j = (7-53)

12 12"
8 {Da — (4(r1 + 12)2M} — (ry + ra)raC M + 35 MF) }
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Rewriting the modified imaginary single-flip amplitude one obtains,

. 9 1/2
Imos =~ {zel—(4(r1+r2)2Mf—(r1+r2)r2<M;* é Mf)}

G ¢ ¢? i
= {1—EW 128M4 : (7.54)

The equality multipliers, 7 and 75, are found by solving Equations (7.44)

and (7.47). The solutions are given by

A (1-3Imey/Ag)

T 36 (1 — 2Im gy [Ap)’ (7.55)
and
2
= = ;(;ncm J4o)? {re0)
where ( = —t/k?. The equality multiplier 3, with solutions for r; and ry, is

expressed as

9(Ap — 2Im 1—2Im Ao+ 36Im A2
3= (Ao ?+) \/ ¢+/Ao ¢4/ (7.57)

240 C\/7280 — 243 /(1 — 2Im ¢,/ Ao)

The optimized modified imaginary single-flip amplitude, expressed as a func-

tion of ry, ro and /3, becomes

~ (Ao—2Imey) /1/2—2(1 - Img, /Ag) Im ¢,

Im o5 = 7.58
’ 440 ¢ \/36261—A3C/(1—21m¢+//40) e
with
J N & 1 - 2 . 7-59
o= (1-2 2] (7.59
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For low momentum transfers the imaginary spin average non-flip amplitude

Im ¢, expanded to order ¢, is written as
A
Imo, ~ ?O (1+gt) . (7.60)

Under this approximation the maximum ./ inside the interior unitarity class
is independent of ¢ and in the limit £ — 0 the number of partial waves is
finite where

Jmax = A/ 12g k . (761)

The equality multipliers in the low ¢ limit become

e : 62
T g2k ( t ) (7.62)
Ao
g = — 7.63
T Tkt ehis)
and
9gk?
g = LA (8 + gt(16 + 9gt)) /2 . (7.64)
2,/725. — 243/ (gk?)
The upper bound on |Im7s|, where | Imrs| = m, | Im¢s|/(k Im ¢..), can be
expressed analytically:
my kg A=
| Imrs| < -2 18% — Sgk? x h(t) (7.65)
where
(8 + gt(16 + 9gt))"/*
Lt} = 7.66
() s (7.66)

119



The variable h(t) is finite at ¢ = 0 and changes ‘slowly’ over the CNI region.
Figure 7.1 shows the behaviour if h(t) over the range t € [0, —0.01] (GeV/c)?,

Vs = 194 — 62.5 GeV. Writing Ay = k?01,/m and e = k%0 /m, enables

the bound on | Im ;| to be expressed as

1/2
| Im7rs| < mp \/g <367T2g L 1) % h(t). (7.67)
o

Figure 7.1: Behaviour of h(t) over the CNI region.

The reason why the bound is similar is related to the fact that the inequality

multipliers are equal to zero inside the interior unitarity class. Setting the
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inequality multipliers equal to zero is like having no unitarity constraints in

the system.

3.1 Results

The value of the bound on |Imr;s| is given in Tables 7.1 and 7.2 plus the
values of the equality multipliers. The most noticeable feature of this new

is its size at low momentum transfers, having a value of

bound on |Im7s
0.89 at /s = 52.8 GeV, t = —0.001 (GeV/c)?. The extra constraint Ay has
a desired effect on the bound, reducing to a value less than unity in the CNI

region.

Table 7.1: | Imr;| optimized under o, Im ¢, 0, and unitarity inside the

interior region at t = —0.001 (GeV/c)?.

Vs (GeV) | T o] Jmax | Im 75|
19.4 —12.54 12.7F 90 81 0.97
23.5 —12.56 12.79 117 98 0.92
30.7 -12.02 12.24 158 151 0.92
44.7 —-11.22 11.44 217 195 1.05
592.8 —11.53 11.76 293 231 0.89
62.5 —11.56 11.79 358 276 0.86
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Table 7.2: | Imrs| optimized under o), Im ¢, o and unitarity inside the

interior region at t = —0.01 (GeV/c)%.

V5 (GeV) r ry g Jmax  [Imrs
19.4 125 149 85 81 0.97
23.5 T B A 98 0.91
30.7 B SR S 131 0.92
44.7 092 114 204 195 1.05
52.8 095 117 276 231 0.89
62.5 —094 118 337 276 0.86

The optimized partial waves, at /s = 52.8 GeV and t = —0.001 (GeV /c)?,
are shown in Figures 7.2 and 7.3. Both partial wave series terminate at
J = 231 which is the upper J limit, M, for the interior unitarity class I.
When considering both the interior and boundary unitarity classes, values of

J > M, are permitted.
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Figure 7.2: af (k=0,1,11,22) and a3, optimized under o, Im ¢, 0o and

unitarity in the interior class; v/s = 52.8 GeV, t = —0.001 (GeV/c)>.
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Figure 7.3: a (k= 0,1,11,22) and a3, optimized under o, Im ¢, oy and

unitarity in the interior class; /s = 52.8 GeV, t = —0.01 (GeV/c)%.
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The bound on | Im 7|, under the approximation

2

~  Otot
g oy’ (7.68)

with momentum transfers in the CNI region can be expressed as

| Im7s| < mp ,/6% x h(t) (7.69)

and in the zero momentum transfer limit, £ — 0, the bound on |Im7;s| is

finite and can be expressed analytically as

| Im7s| < m, \/g (7.70)

This approximation generates a ‘stricter’ bound on |Imrs| which is shown
in Table 7.3 over the CNI region. The bound is considerably lower than the
first bound obtained when the system was constrained by the total elastic
cross section and by partial wave unitarity; 108.0 compared to 0.84 at /s =
52.8 GeV, t = —0.001 (GeV/c)2.
The bound can be reduced further by considering the behaviour of the
polynomial
folJ) = @1 + g J? + g J* 4+ @y J° (7.71)
where a; = (ri+rq9) (1= (r1+712)), @a = rof (2(r1+r9)—1)/4—1/(645%), a3 =
¢/(2563%) — r3¢%*/16 and a4 = —(?/(643)%. The interior unitarity class IX

defined in Equation (7.27) can be redefined as

X={J|f(J)>0, jiy=0}. (7.72)
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Table 7.3: | Im 75| max, with an approximation for g, over the CNI region.

Vs (GeV) t=0(GeV/e)? t=-0.001 (GeV/c)? t=—-0.01 (GeV/c)?

19.4 0.803 0.805 0.825
23.5 0.805 0.808 0.827
30.7 0.819 0.821 0.842
44.7 0.839 0.841 0.864
52.8 0.841 0.843 0.866
62.5 0.846 0.848 0.871

The value of .J found to satisty f>(.J) > 0 was found to be
‘ 04 "
J? < n}= <1 + Z—1—) (7.73)

with 77 set to unity. The polynomial f(.J), shown in Figure 7.4, can be plot
by substituting the numerical values for 71, 7, and 3, at /s = 52.8 GeV and
t = —0.001 (GeV/c)?. The maximum J, with n} = 1, at \/s = 52.8 GeV
is 231. The maximum J for fy(J) > 0, from Figure 7.4, is 227, implying
n, = 0.99. The interior unitarity class I, terminating at J = 227, is reduced
by a small number of partial waves. The effect of this reduction of partial
waves on the bound is slight, approximately 7y times the original bound.

This reduction can be applied to the bound all energies over the CNI region
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to give a slight improvement on the present | Im 75| bound.

‘ : o : — J
50 100 150 200 Kw
~0.05

Figure 7.4: The behaviour of the polynomial f5(J).

4 Solution of Interior and Boundary Classes

Consider the set of classes I U B = I U IX U BY U BX. The boundary

unitarity constraints are
BY ={Jla}, —a{’ —af,> =0, My +1 < J < My} (7.74)

and

BYo = {Jlaj =0, My +1< J < My} (7.75)
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where M; = Floor[\/4/C(1+7“1/r2)], M, = Floor[,/8/¢] and ¢ = —t/k>.
The contribution to | Im7rs| from the boundary unitarity class B can range
from 0% —100%. The system with four constraints, when interior and bound-
ary unitarity classes are included, is solved in the same way as described in
Chapter 6. With four constraints, three equality and unitarity, the boundary
unitarity class is not solvable. The way to solve the system is to convert the
three equality constraints into one equality constraint- .. To achieve this
the numerical method in Chapter 6 can be employed. The contribution to

from the boundary unitarity class can be selected without violating

| Im7;

any of the constraints and this contribution can be made arbitrarily small.

Consider the case with Eff = 012, Eé, = 0,93, at /8 = 52.8 GeV

and t = —0.001 (GeV/c)?. The maximum contribution to |Imrs| is 34.7

I

5

< 0.5 and |Imr®| < 34.2. The case with £§ = 0.01%,

where |Imr

¥ =0.99%,, leads to | Imrs| < 11.6 where | Imr| < 0.8 and | ImrZ| < 10.6.

Finally, the case with ©5 = 0.001%,, £/, = 0.999%, leads to |Imrs| < 4.3

B

5

< 3.5. The partial wave amplitudes, af,

where |[Im7l| < 0.8 and |Imr
and ay,, in the boundary interior class, are shown in Figures 7.5, 7.6 and
7.7, where 232 < J < 2359. The bound on | Imr#| falls when the fraction of
Y in the boundary unitarity class is reduced. The partial wave amplitudes

in this region also become smaller in amplitude and contribute less to the
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bound on |Im7Z|. The fraction of ¥ in the boundary unitarity class can be
reduced further and further until the contribution from this class to | Imr;|
is negligible in comparison with the contribution from the interior unitarity

class. In this limit the bound has the expression

1/2
< mp \/g (‘%Lf‘ﬂ . 1) % h(t) . (7.76)

Otot

| Im 75

or, under the approximation g &~ 02, /(32m04),

s \/g % h{t) (7.77)

| Im 75

where
(8 + gt(16 + 9g¢))"/*

h(t) = T

(7.78)

The bound is identical to the bound when only the interior unitarity class is
considered. Table 7.3 shows the bound on | Im 75| over the CNI region under
the approximation g ~ o2,/(32mo.). In this system of four constraints,
when the interior unitarity class is considered, the solution is an analytic one
and the maximum J in this class is much lower than the cases studied in
Chapters 5 and 6. The fact that the maximum J is much lower ensures that

the sum

Imes =Y J*ay, (1 — §J2> : (7.79)
J

terminating at J = Jpna.x = 231, is finite and the upper bound on |Imrs| is

less than unity.
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Figure 7.5: aﬂ and a% optimized under oo, Im¢,, oy and unitarity
in the boundary unitarity class with 8 = 0.1%y; /s = 52.8 GeV,

t =—0.001 (GeV/c)2
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Figure 7.6: af, and aj;, optimized under o., Im¢,, oy and unitarity
in the boundary unitarity class with 25 = 0.01Z4; +/8 = 52.8 GeV,

t =—0.001 (GeV/c)?
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Figure 7.7: alJ1 and agl optimized under o, Im¢,, oyx and unitarity in
the boundary unitarity class with Zfl = 01 Eg; /8 = 2.8 Ge¥, T =

—0.001 (GeV/c)?.
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In the Thesis the optimization technique of Lagrange multipliers was
successfully used to derive bounds on the amplitude |Im 75| in the Coulomb
Nuclear Interference region. The value of each of the bounds differs and the
bound on | Im 75| improves as more constraints are added to the system. In
Chapter 5 two constraints, the elastic cross section expressed as an equal-
ity constraint and unitarity expressed as inequality constraints, are used to
bound |Imrs|. The unitarity constraints split into two classes; an interior
unitarity class and a boundary unitarity class. When optimizing | Im 5|, un-
der the elastic cross section and unitarity, the interior unitarity class is empty
and the only non-empty unitarity class is the boundary unitarity class. The
system in the boundary unitarity class consists of one equation expressing
the normalized dimensionless elastic cross section, Y¢ = k%0¢ /7, in terms of

the equality multiplier 3:

M? 2
Sa & == = 861/(M) +168°Ip(M) + I(M) ~ %IG(M) + 'éz Is(M) (7.80)

where the I,’s, given in Equation (5.42), are Jacobi-Elliptical integrals. The
equation for X, which could not be solved analytically because of the na-
ture of the Jacobi-Elliptical integrals, was solved using mathematica 3.0.
When there is one unknown in the system of Equations the solution can
be easily computed with mathematica 3.0. The bound on |Imrs|, 108.1 at
t = —0.001 (GeV/c)?and 11.5 at t = —0.01 (GeV/c)? with /s = 52.8 GeV, is

not a ‘strict” bound and in order to use the pp analyzing power as a polarime-
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ter in the Coulomb Nuclear Interference region a bound of 4.48% on | Im 75|
is required. The value of the bound over the range /s = 19.4 — 62.5 GeV,
at t = —0.001 (GeV/c)? and t = —0.01 (GeV/c)?, is shown in Table 5.4 and
5.5.

A new constraint, the imaginary spin average non-flip amplitude ex-
pressed as an equality constraint, is added to the system with the elastic
cross section expressed as an equality constraint and unitarity expressed as
inequality constraints. The unitarity constraints again split into different
unitarity classes. Three different unitarity classes are considered; the inte-
rior class, the boundary class and the union of the interior and boundary
classes. The system can be solved analytically when the interior unitarity

i1s derived:

class is considered and a bound on | Im 7

1/2
11 m (Zel = %C Im¢2+)
e L m 81
[Tmrs| < /57 ¢ Imo, e

where ¢ = —t/k*. The bound on | Im 75| has the value 87.9 at t = —0.001 (GeV/c)?

and 7.7 at t = —0.01 (GeV/c)? with /s = 52.8 GeV. The values of the bound
over the Coulomb Nuclear Interference in the range /s = 19.4 — 62.5 GeV
are presented in Table 6.2. When only the boundary unitarity class is consid-
ered no solutions are possible because inside the boundary class the imaginary
spin average amplitude is negative. When both the interior and boundary
classes are considered there are two simultaneous equations, one equation

for the elastic cross section and the other equation for the imaginary spin
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average amplitude. Inside the boundary unitarity class the two equations
contain Jacobi-Elliptical integrals. The equations, inside the boundary uni-
tarity class, are not solvable with mathematica 3.0; a system of equations
with more than one variable is unsolvable in the boundary unitarity class. A
numerical technique, designed to solve the system inside the boundary uni-
tarity class by reducing the two simultaneous equations to one equation,
is successfully used to solve the system. This leads to a new improved
bound on the amplitude |Imrs|; 59.2 at ¢ = —0.001 (GeV/c)? and 5.1 at
t = —0.01(GeV/c)? with /s = 52.8 GeV. The contributions from the uni-
tarity classes to the bound on |Imr;| are given in Tables 6.4, 6.5, 6.6 and
6.7.

In the final chapter, four constraints are included in the system; the elas-
tic cross section, the imaginary spin average amplitude and the total cross
section, all expressed as equality constraints, and unitarity expressed as in-
equality constraints. The unitarity classes considered are the interior class
and the union of the interior and boundary unitarity classes. The interior
unitarity class can be solved analytically and a new, much improved, bound

on |Imrs| is derived:

6100, 1/2
| Imrs| < mp % <% - 1) X h(t) (7.82)
tot
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where
(8 + gt(16 + 9gt))*/*
(1+gt)

h(t) = (7.83)

This new bound changes very little over the Coulomb Nuclear Interference
region and its value is 0.89 at /s = 52.8 GeV. The bound, computed over the
range /s = 19.4—62.5 GeV, is shown in Tables 7.1 and 7.2. The interior and
boundary classes, together, lead to an upper bound on | Im r5| identical to the
bound when just the interior class is considered. This is achieved by reducing
the contribution in the boundary unitarity class, without violating the bound-
ary unitarity constraint, until the contribution from the boundary class is
negligible in comparison to the contribution from the interior unitarity class.
The experimental values for the observables have errors which will have an ef-

bound. The approximation g & o2, /(3270.), reduces the

fect on the |Imr;
final bound on | Im75|; 0.89 to 0.84 at /s = 52.8 GeV, t = —0.001 (GeV/c)%.
This approximation leads to a reduced number of experimental quantities in
the expression for the bound and consequently the error is reduced. A sum-
mary of the bounds from each unitarity class in the three studied systems,
at /s = 52.8 GeV and t = —0.001 (GeV/c)?, is presented in Table 7.4. The
bound of 0.84 is a huge improvement on the first bound of 108.0. Although
the value of 0.84 is above the threshold value of 4.48% which is necessary in
order to use the pp analyzing power as a polarimeter in the Coulomb Nuclear

Interference region with a beam polarization error of, at most 5%, it does
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limit the size of the analyzing power. As 0.84 is less than «,/2 = 0.896, the
analyzing power in the CNI region is positive.

With more constraints in the system an improved bound would result al-
though to include a new constraint its behaviour must be known experimen-
tally. In the event of future collider experiments measuring pp observables, a
greater experimental knowledge of pp observables will be known more accu-
rately at higher energies and over a wider momentum transfer range. With
this knowledge new constraints can be added to the Lagrange function and
an improved bound less than or equal to 4.48% may be found.

The optimization technique of Lagrange multipliers, applied to elastic
proton scattering in the Thesis may also be applied to other physical prob-
lems. The method can be used to optimize a function in a system where a
number of constraints are given. The constraints can be both equality and
inequality constraints. Applications of optimization techniques can be found
in public transport models [84] where the Lagrange multiplier method is used
to maximize the flow of traffic through a town center with a minimum cost,
and in acoustic problems [85] where an optimization technique is used to
optimize the acoustical absorption characteristics of an enclosure.

The approved PP2PP RHIC experiment [14] will study, in detail, elastic
pp collisions over the Coulomb Nuclear Interference region with center-of-

mass energies in the range 50 — 500 GeV. An important issue at RHIC is
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polarimetry. It will be interesting to learn what polarimeter will be used in
the PHENIX, STAR and PP2PP experiments and what the future will be for
other polarimeters which have been investigated theoretically and experimen-
tally including the elastic pC and elastic pp Coulomb Nuclear Interference

polarimeters discussed in Chapter 1.

Table 7.4: Summary of the bounds on |Imrs|; at /s = 52.8 GeV and t =

—0.001 (GeV/c)?

Constraints Unitarity Classes 2k Y -
oe and unitarity Boundary 108.0
Oel, Im ¢, and unitarity Interior 87.9
Interior and Boundary 59.2
oa, Im @, 0o and unitarity Interior 0.84
Interior and Boundary 0.84
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Appendix A

Partial Wave Phase Shifts

In the elastic region the partial wave amplitudes, expressed in terms of the

partial wave phase shifts, are given by [86]

g = ¢ sin 8 (A.1)
' = e’ sin 87, (A.2)
i é [1 — g2t ((‘()S 207 + isin 263 cos a‘]>] , (A.3)
£ = % {1 — g ((’()S 203 — isin 26y cos ozjﬂ ; (A.4)
and
£l = %e%éf sin 207 sina” . (A.5)
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Appendix B

Mathematica Code

In[1]:= (x Sample Mathematica file, t=-0.001, W=52.8 *)
In[2]:= Q=Sqrt[c1 +¢c2J2+c3J4+ c4 J6]

Out[2]= (cl + c2 J72 + c3 J°4 + c4 JI°6)

In[3]:= £1=3/ @

il=Integrate([f1,J,a, bl;
Out[3]= (J/ (c1 + c2 32+ c3J4+c4J "6) )

In[5]:= £f11=J/(Q"2)
i2=Integrate[f11,J,a, b];
Out[bl= (J / (c1 + c2J°2+c3J4+c4J6))

In[7]:= £2=3"3/Q
i3=Integrate[f2,J,a,b];
Out[7]= (J3 / (c1 + c2 J°2+c3J°4+ c4d J6) )

In[9]:= £22=3"3/( Q"2 )

i4=Integrate[f22,J,a, b];
Out[9]= (J°3 / (c1l + c2 J°2+c3J°4+ cd J6))
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In[11]:=£3=J"5/Q
ib=Integrate[f3,J,a, bl;
Dut[11]= (J°5 / (el + £2 J2 + €3 J"4 + c4 J°6 ) )

In[13]:=£f33=J"5/( Q"2 )
i6=Integrate[f33,J,a, bl;
But[18]= (J°5 / (cl1 + ¢2 J72 + c3 J°4 + ¢4 J°6 ) )

In[15] :=£f4=J"7/Q
i7=Integrate[f4,J,a, b];

Dut{15]= (J°7 / (cl + €2 72 + ¢c3 J°4 + c4 J°6 ) )
In[17]:= f44=3"7/( Q"2 )
i8=Integrate[f44,J,a, b];
Owt[17]= (J°T / (cl #+ c2 J’2 + ¢c3 J°4 + c4 J°6 ) )

In[19]:=
EO=M "2 /2 -8 il + 16 ~2 i2 + i4 -1/4 € i6 + 1/64 <A2 i8;

In[20] := c1=16*3"2 ;
c2=1;

c3=-1/4 ( ;

c4=1/64 ("2 ;

In[21]:= t=-0.001;

In[22] := mp=0.938; W=52.8; k=Sqrt[(W/2)°2 - mp~2]; (= (-t/k"2); a=0;
b=Floor[Sqrt [8(]]; A=k~2/Pi * (42.906/.3894); E1=k"~2/Pi * (7.407/.3894);
g=(12.87/2); phi=k*W/(4*Pi)* (42.906/.3894)*(1 - (-t*g));

In[23] := FindRoot [EO==E1,/3, 1000,5000, MaxIterations->400]
Out[23]= [ — 4372.74929761300423 + 8.36339296256140229*"-9 I

In[29] := (31=4372.75

Out [29]= 4372.75

In[30] := (* double check solution *)
E1l
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EO /.8 — 1
Out [30]= 4214.59
Out [31]= 4214.59297107105168 - 1.18713820234705313%"-8 I

In[32]:= b1=J/(801) (1 - (/8 J~2);
nul=1/2(Sqrt[1 + 4 b1°2] -1 );
all=nul/(1 + 2 nul);

b11=b1/(1 + 2 nul);

(x Im r5 Bound *)

imr5=mp/k *Sum[J"2xb11x(1 - (/8 J~2),J,a,b]/(phi)
Out [33]= 108.061
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Appendix C

Euler-MacLaurin Expansion

The Euler-Maclaurin integration formula allows a sum to be written as an

integral:
S i = [ r@det Ligom+ro)+ 2 [ - )
Bgi‘ (7% m) = 72 (] + 25 (75 m) ~ £ (1) + ...
Pin 0 [t oy — gt 1] (1)
where, f'(m) = L f(z)|,_,,. and By, (0) = B, are Bernoulli numbers
with By = 1/6, By = —1/30, Bs = 1/42, By = —1/30, Biy = 5/66,

By = —691/2370, By = 7/6. The following summations can be written

as polynomials;

> i % oey e e 1) (C.2)

Z [P == (m+1)(2m+1) (C.3)
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=1

215 2(m+1)* (2m? + 2m — 1)
and for large m we can approximate the sum as

m 1
Z Jn ~ Tnn+1 )
= n+1

142



Bibliography

[1] M. Anselmino, A. Efremov and E. Leader, Phys. Reps. 261, 1 (1995).

2] E. Leader and E. Predazzi, An Introduction to Gauge Theories and Mod-

ern Particle Theory, Vol. 1, Cambridge University Press (1996).
(3] U. Stiegler, Phys. Reps. 277, 1 (1996).
[4] J. D. Bjorken, Phys. Rev. 148, 1467 (1966), Phys. Rev. D1, 1367 (1967)

[5] J. Ellis, R. J. Jaffe, Phys. Rev. D9, 1444 (1974),

Phys. Rev. D10, 1668 (1974).
(6] J. Ashman et al., Nucl. Phys. B328, 1 (1989).

[7] G. Altarelli and G. G. Ross, Phys. Lett. B212, 391 (1988).
S. J. Brodsky, J. Ellis and M. Karliner, Phys. Lett. B206, 309 (1988).

G. Veneziano, Mod. Phys. Lett. A4, 1605 (1989).

143



[11]

R. J. Jaffe, A. Manohar, Nucl. Phys. B337, 509 (1990).

A. V. Kisselev and V. A. Petrov, Theor. Math. Phys. 91, 234 (1992).

D. Adams et al., Phys. Lett. B357, 248 (1995),

Phys. Rev. D 56, 5330 (1997).

G. Altarelli and G. Ridolfi, Nucl. Phys. B(Proc. Suppl.) 39B, 106 (1995).
[. A. Savin, The SMC results on polarized muon-nucleon deep inelastic
scattering, Proceedings of the 13th International Symposium on High
Energy Spin Physics, Protvino, Russia, 1998, edited by N. Tyurin et al.

(World Scientific, Singapore, 1999), p. 78.

V. A. Petrov, Nucleon Spin Puzzle: Ten Years Later..., in SPIN9S,
Proceedings of the 13th International Symposium on High Energy Spin
Physics, Protvino, Russia, 1998, edited by N. Tyurin et al. (World Sci-
entific, Singapore, 1999), p. 107.

H. Y. Cheng, hep-ph/0002157

G. Bunce, RHIC Spin Physics, Proceedings of the DESY Workshop,

May 1999, edited by A. De Roeck et al., p.283.

T. Roser, RHIC Spin Program, Proceedings of the DESY Workshop,

May 1999, edited by A. De Roeck et al., p.52.

144



[12]

[13]

[15]

[16]

[17]

[18]

[19]

[20]

S. Vigdor, Long-Term Overview of STAR Spin Program, Proceedings of
the RIKEN BNL Research Center RHIC Spin Workshop, 1999, eds L.

Bland et al., p.17.

N. Saito, Progress of PHENIX Spin Program, Proceedings of the RIKEN
BNL Research Center RHIC Spin Workshop, 1999, eds L. Bland et al.,

p.26.

W. Guryn et al., Fxperiment to Measure Total and Elastic Cross Sections
at RHIC, rev. 1995.

http://www.rhic.bnl.gov/exportl/pp2pp/pp2pp-html
C. Prescott et al., Report of RHIC Spin Review Commoittee, June 1995.

K. Kuroda in AIP Conf. Proc. No. 95, High Energy Spin Physics,

Brookhaven, 1982, ed. G. M. Bunce (AIP, New York, 1983), p. 618.
D. C. Carey et al., Phys. Rev. Lett. 64, 357 (1990).

G. Bunce, Proton Polarimetry for RHIC, RIKEN BNL Research Center,

Workshop organized by E. Leader (1999).
M. Froissart, Phys. Rev. 123, 1053 (1961).

N. H. Buttimore, B. Z. Kopeliovich, E. Leader, J. Soffer and T. L.

Trueman, Phys. Rev. D59, 114010 (1999).

145



[21] M. B. Einhorn and R. Blankenbecler, Ann. Phys. 67, 480 (1971).

[22] M. R. Hestenes, Calculus of Variations and Optimal Control Theory,

John Wiley and Sons (1966).

(23] R. J. Eden, Optimization of Collision Amplitudes under Constraints,

Lecture Notes in Physics, Vol. 17, Springer-Verlag (1973).
[24] M. M. Denn, Optimization by Variational Methods, McGraw-Hill (1969).

[25] D. P. Bertsekas, Constrained Optimization and Lagrange Multiplier

Methods, Academic Press (1982).
[26] M. Jacob and G. C. Wick, Ann. Phys. 7, 404 (1959).
[27] B. Z. Kopeliovich and L. I. Lapidus, Sov. J. Nucl. Phys 19, 114 (1974).

(28] N. H. Buttimore, in AIP Conf. Proc. No. 95, High Energy Spin Physics,

Brookhaven, 1982, ed. G. M. Bunce (AIP, New York, 1983), p. 634.
[29] C. Bourrely, E. Leader and J. Soffer, Phys. Reps. 59, 95 (1980).

[30] M. L. Goldberger, M. T. Grisaru, S. W. MacDowell and D. Y. Wong,

Phys. Rev. 120, 2250 (1960).
[31] R. N. Cahn, Z. Phys. C15, 253 (1982).

[32] N. H. Buttimore, E. Gotsman and E. Leader, Phys. Rev. D18, 694
(1978).

146



[33] N. Akchurin, N. H. Buttimore and A. Penzo, Phys. Rev. D51, 3944

(1995).

[34] K. Kurita, A New Polarimeter for RHIC, Proceedings of the DESY

Workshop, May 1999, edited by A. De Roeck et al., p.71.

(35] N. H. Buttimore, Fermion boson collisions and swift proton polarimetry,
Proceedings of the RIKEN BNL Research Center RHIC Spin Workshop,

1999, eds L. Bland et al., p.214.
[36] T. Regge, Nuovo Cimento 14, 951 (1959).
[37] G. F. Chew, S. C. Frautschi, Phys. Rev. Lett. 8, 41 (1962).
(38] E. L. Berger, A. C. Irving, C. Sorensen, Phys. Rev. D17, 2971 (1978).
[39] A. C. Irving, R. P. Worden, Phys. Rep. 34C, 117 (1977).

[40] P. D. B. Collins, An Introduction To Regge Theory and High Energy

Physics, Cambridge University Press (1977).
[41] P. V. Landshoff and J. C. Polkinghorne, Nucl. Phys. B32, 541 (1971).

[42] K. G. Boreskov, A. A. Grigiryan, A. B. Kaidalov and I. I. Levintov,

Sov. J. Nucl. Phys 27, 432 (1978).

[43] C. Bourrely, H. A. Neal, G. A. Ogren, J. Soffer and T. T. Wu, Phys. Reuv.

D26, 1781 (1982).

147



[44]

[52]
[53]
[54]
[55]

[56]

M. G. Ryskin, Yad. Fiz. 46, 611 (1987), Sov. J. Nucl. Phys 46, 337

(1987).

B. Z. Kopeliovich and B. G. Zakharov, Phys. Lett. B226, 156 (1989).
M. Anselmino and S. Forte, Phys. Rev. Lett. 71, 223 (1993).

N. Akchurin et al., Phys. Rev. D48, 3026 (1993).

G. Mahoux, Phys. Lett. 67B, 75 (1976).

H. Cornille and A. Martin, Nucl. Phys. B115, 163 (1976).

G. Auberson, A. Martin and G. Mennessier, Phys. Lett. 67B, 75 (1977).

N. H. Buttimore, Flastic Scattering and The Magnetism of Swift Pro-
tons, Presentation at the Adriatico Research Conference on Trends in

Collider Spin Physics, ICTP, Trieste, Italy, December 1995.

D. P. Hodgkinson, Phys. Lett. 39B, 640 (1972).

O. W. Greenberg and F. E. Low, Phys. Rev. 124, 2047 (1961).
K. Yamamato, Nuovo Cimento 27, 1277 (1963).

Y. S. Gin and A. Martin, Phys. Rev. 135, B1375 (1964).

R. J. Eden, Phys. Lett. 19, 695 (1966), J. Math. Phys. 8, 320 (1967).

148



[57] A. Martin, Nuovo Cimento 59A, 131 (1969), Scattering Theory: Unitar-
ity, Analyticity and Crossing, Lecture Notes in Physics, Vol. 3, Springer-

Verlag (1969).
[58] S. M. Roy and V. Singh, Phys. Rev. D1, 2638 (1970).

[59] R. Savit, R. Blankenbecler and M. B. Einhorn, J. Math. Phys. 12, 2092

(1971)
[60] K. H. Miitter, Nucl. Phys. B31, 589 (1971).
[61] B. D. Hahn and D. P. Hodgkinson, Nucl. Phys. B46, 232 (1972).
[62] S. M. Roy, Phys. Reps. 5, 125 (1972).
[63] S. K. Chan and I. A. Sakmar, Phys. Rev. D13, 603 (1976).
64] S. M. Roy, Phys. Lett. T0B, 213 (1977).

[65] G. Mennessier, S. M. Roy and V. Singh, Nuovo Cimento 50A, 443

(1979).
[66] K. S. Ramadurai and 1. A. Sakmar, Prog. Theo. Phys. 63, 1700 (1980).

[67] 1. A. Sakmar and J. H. Wojtaszek, Phys. Rev. D26, 2280 (1982), Nuovo

Cimento TOA, 132 (1982).

[68] S. W. MacDowell and A. Martin, Phys. Rev. 135, B960 (1964).

149



[69] R. J. Eden, High Energy Colisions of Elementary Particles, Cambridge

University Press (1967).

[70] A. D. Martin, T. D. Spearman, FElementary Particle Theory, North -

Holland Publishing Company, Amsterdam (1970).
[71] L. Wolfenstein, Phys. Rev. 96, 1654 (1954).

(72] J. Bystricky, F. Lehar and P. Winternitz, Journal de Physique 39, 1

(1978).
[73] K. H. Miitter, Nucl. Phys. B27, 73 (1971).
[74] M. Andrews and J. Gunson, J. Math. Phys. 5, 1391 (1964).

[75] W. W. Bell, Special Functions for Scientists and Engineers, Van Nos-

trand (1968).

[76] Bateman Manuscript, Higher Transcendental Functions, McGraw-Hill

(1953).

[77] A. T. Bates and N. H. Buttimore, Optimisation of the single helicity-
flip amplitude in elastic pp collisions, Talk given at QCD99, Montpellier,

France, July 1999, Nucl. Phys. B (Proc. Suppl.) 86, 175 (2000).

[78] R.P. Boas and C. Stutz, American Journal of Physics 39, 745 (1971).

150



[79]

[80]

[81]

[84]

[85]

G. B. Artken and H. J. Weber, Mathematical Methods for Physicists,

Academic Press (1995).

C. Caso et al, European Physical Journal C3, 1 (1998).

Particle Data Group Web Page, http://pdg.Ibl.gov

S. Wolfram, Mathematica, The Student Book, Addison-Wesley Publish-

ing Cmpany (1994).
F. Pereira and E. Ferreira, Phys. Rev. D61, 07750 (2000).

A. T. Bates and N. H. Buttimore, in Spin 98, Proceedings of 13th In-
ternational Symposium on High Energy Spin Physics, Protvino, Russia,
1998, edited by N. Tyurin et al. (World Scientific, Singapore, 1999), p.

483.

J. de D. Ortazar and L. G. Willumsen, Modelling Transport, 2nd Ed.,

John Wiley and Sons, 1994.

M. Cappelli D’Orazio and D. M. Fontana, Applied Acoustics 57, 139

(1999).

Talk given by S. MacDowell, Brookhaven National Laboratory, August

1997.

151



