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Summary

The proton spin puzzle has intrigued experimentalists and theorists since 

the surprising result from the EM C  experiment at C E R N  in 1988, which 

foiHid a smaller than  expected contribution to the spin of the proton from 

the component quarks. The question, “where does the spin of the proton 

come from?” remains unanswered. Recent data  suggests a value of 31 ±  4% 

for the fraction of the spin carried b}̂  the up, down and strange quarks. 

The contribution from the ghions and from the orbital angular momentum 

of the quarks and gluons is not completely known. The Relativistic Heavy 

Ion Collider at Brookhaven National Laboratory plans to probe tlie proton 

structure using the deej) inelastic scattering of protons at high center-of-mass 

energies {y/s =  50 — 500 GeV) and momentum transfers {pr > 10 GeV/c). 

To measure the contribution of the gluons to the spin of the proton, with 

sufhcient acciu’acy, a polarized proton beam with a maximum beam polariza­

tion error of 5% is necessary. One method of measuring the polarization of 

a proton beam uses the analyzing power in elastic proton collisions a t small 

scattering angles. The accuracy of the polarization measurement depends 

on the size of the helicity single-flip amj)litude. In the thesis, bounds on the 

imaginary part of the helicity single-flip amplitude are derived which provide 

im portant information related to the evaluation of polarization. Extended to 

include equality and inequality constraints, the Lagrange multiplier m ethod



of optiinization is successfully employed to bound the imaginary single-flip 

amplitude, modified by a kinematical factor, in the low momentum transfer 

region at center-of-mass energies about 50 GeV. An upper bound of 0.84 

is found when the elastic cross section, the imaginary spin average non-flip 

amplitude at small momentimi transfers and the to tal cross section are ex­

pressed as equality constraints, with unitarity expressed as an inequality 

constraint. This bound, at low momentum transfers in the energy range of 

the Relativistic Heavy Ion Collider, limits the analyzing power to positive 

values.
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General Introduction

The expression

-  =  -  AE +  AG + Lq + L g (0.1)

indicates the different contributions which sum to give the proton its spin of 

one half. The various contributions arise from the component quarks (A S), 

th(' spin of the gluonic fields (AG) and the orbital angular momentum of the 

(juarks (Lg) and of the gluons {Lq ). In the deep inelastic scattering regime 

only the light flavour cjuarks {up, down and strange) contribute to the spin 

of th(' j)roton. The net helicity of the (}uark flavour q in the direction of the 

jHoton spin, in the cjiiark parton-model [1, 2, 3], is given by

Ag =  j  Aq{x) dx = j  ^q^{x) — q^{x) + q ^ x )  — q^{x)'^ dx  (0.2)

where x  is the Bjorken scaling variable and q{x) is the difference between the 

number density of ciuarks with spin parallel to the nucleon spin {q̂  { x )+q^x ) )  

and those with spin anti-parallel {q^{x) +  g^(x)).
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P ro b in g  th e  p ro to n : Measurements of the cross-section differences, with

particular spin configurations of incoming leptons and target nucleons, pro­

vide information on the polarized spin structure functions. For a longitudi­

nally polarized target, in l+p  —̂ I'+ X , the longitudinal spin-spin asymmetry

is the quantity which is measured in polarized lepton-nucleon deep inelastic 

scattering experiments. Initial leptons can be longitudinally polarized along 

( ^ )  or opposite (<—) the direction of motion and nucleons are longitudinally 

polarized along (=^) or opposite (<̂ =) the initial lepton direction of motion, 

bi the Bjorken limit, or deep inelastic region.

where is the four-moment uni transfer squared, E  and E'  are the energies 

of the incoming and outgoing leptons, in the Lab frame, respectively and M  

is the nucleon mass. In the Bjorken limit the unpolarized structure functions, 

W\{x ,Q ‘̂) and H'2(x,(5 ^), are known to scale approximately [1, 2]:

Similarly the polarized structure functions, G\{x,Q'^) and G 2 {x,Q'^), are ex­

pected to scale approximately in the Bjorken limit [1, 2]:

(0.3)

—q̂  = oc , u = E  — E '  oo ,

IhnM Wi{x,Q^)  =  Fi{x) , \\m .vW 2 {x,Q‘̂) =  F2 {x) . (0.5)



The longitudinal spin-spin asym m etry can  be expressed in term s of the  un ­

polarized and polarized structu re  ftuictions:

^ Q m E  + E'cos») MGi-Q^G;}
" 2 £ £ ' ' { 2 H ' i s i t i ^ e < / 2 + M / 2 C O s 2 « / 2 }

where 0 is lepton scattering  angle. The asym m etry  Ay expressed in term s of

the v irtual C om pton scattering  asym m etries A 1 2  is

(̂1 =  D {Ai -\- TjAo) (0-8)

where the  coefficients D  and rj are known. A nalysis of ^ || leads to  the  ex­

pression [1, 2]

/l|l «  D Ai  (0.9)

and

where R  is the ra tio  of the longitudinal to  transverse cross-section,

In the quark-parton  model the  polarized stru c tu re  fm iction g\{x)  can be 

interpret('d  as the difference between the num ber density of quarks w ith  spin 

parallel to  the  nucleon spin {q̂  {x) +  qHx))  and those w ith spin an ti-parallel 

{q^{x) -f q^{x)) averaged over the  quark flavour charges [1, 2, 3]:

\  \  +  l ^ d { x )  -f ^ A s ( x ) |  (0.12)



where Aq{x)  = q^{x) — q^{x) +  g^(x) — (x).  M easurem ents of the  longitudi­

nal and transverse spin-spin asym m etries, in polarized lepton-nucleon deep 

inelastic scattering, can lead to  inform ation on the  polarized s truc tu re  func­

tions which can be utilized to  calculate the contribu tion  from the  quarks to  

the  spin of the proton.

S u m  ru le s : The Bjorken sum  rule [4] relates the integral over the pro ton

and neutron  spin s truc tu re  functions;

^  9 \ { ^ , Q ^ ) d x  ~  =  y  | l  -  0  (0.13)

where 0 3  =  A n  —A d  is a nucleon axial coupling constant som etim es expressed 

as the ra tio  of the axial and vector coupling constant ( Ga / G v ) of weak de­

cays. The factor ( 1 —0  (Qs/tf) ) arises from QCD radiative corrections. This 

sum rule reflects the  difference in polarization asym m etry in deep inelastic 

scattering  from pro ton  and neutrons. The polarized s tru c tu re  function gi{x)  

is ex tracted  for a pro ton  and a neutron separately  using different polarized 

targets. W ith  m easurem ents of ^i(x) one can test the Bjorken sum  rule which 

is independent of nucleon spin struc tu re  details and is a  fundam ental sum  

rule.

T he Ellis-Jaffe [5] sm n riiles have been derived using the sam e assum ptions 

as for the  Bjorken sum  rule— a quark structu re for the hadronic, electrom ag-

4



netic and weak currents— and by assum ing the  SU(3) sym m etry in decays of 

the  octet baryons w ith a zero net polarization of th e  strange quark sea of the  

nucleon;

s ' M d i  =  + ^ a s  (0.14)

rr(Q')  =  ^ ‘ < ( i ) < i i = - ^ a 3  +  | a s  (0.15)

where the  nucleon axial coupling constants 0 3  and og are rela ted  to  th e  SU(3) 

couplings F  and D  by

a ,3 =  F  +  D , as = 3 F  — D . (0.16)

The SU(3) couplings F  and D  describe the (3- decays of the  baryon octet 

members. The Ellis-Jaffe sum  rule predicts r i(Q ^ )  =  0.171 ±  0.006 a t =  

1 0  GeV'^ and a  contribution of approxim ately 60% from the quarks to  the 

spin of the proton.

E M C  d a t a :  In 1988 the European Muon C ollaboration (e m c ) a t CERN

m easured a t =  10 GeV^ [6 ]. The result ri(Q '^) =  0.123 ±  0.013 ±

0.019 was unexpectedly lower th a n  the  value predicted by th e  Ellis-Jaffe sum 

rule. T he contribu tion  from the  quarks A E =  1 4 ±  18% was also found to  be 

surprisingly low w ith  77 ±  6 % coming from the  up quarks, —49 ±  6 % from 

the down quarks and  a  non-zero contribution of —15 ±  6 % from th e  strange 

quarks. This s ta rtlin g  result, suggesting a proton spin crisis in th e  parton

5



model, created much theoretical interest [7] which lead to the discovery of 

the anomalous gluon contribtition. In the modified picture A S is replaced 

by the linear combination A S — (3o;s/27r) AG which can be made small by 

a cancellation between cjuark and gluon contributions. A new experimental 

programme to investigate the phenomenon further also commenced. More 

recent da ta  from the Spin Muon Collaboration (SMC) at CERN [8] suggests 

A S =  31 ±  4% with the up quarks providing about 83.2 ±  1.5%, the down 

quarks about —42.5 ±  1.5% and the large negative fraction of —9.7 ±  1.8% 

coming from the strange quarks. The questions “Where does the spin of the 

proton come from? The gluons (AG)? Could it be in the orbital angular 

momentum of the quarks {Lg) and the gluons (Lg)?”remain unanswered [9].

G lu o n  C o n tr ib u tio n : To probe the gluon polarization AG(Q^), where

and thus measure the gluon contribution to the proton’s spin, a high energy 

polarized proton beam scattering at high momentum transfers is required. 

Studies of the gluon polarization suggest AG(Q^) ~  0 — 2 at ~  1 GeV^

Collider (RHIC), Brookhaven, it is planned to use the polarized quarks of 

one beam of polarized protons to probe the spin structure of the protons in 

the second beam with high energies {^/s =  50 — 500 GeV) and momentum

(0.17)

and AG{Q^)  is expected to grow with Q^. At the Relativistic Heavy Ion

6



transfers (p r  >  lO G eV /c).

T he longitudinal spin-spin asym m etry in the direction of the beam , one 

of the observables planned to  be m easured a t RHIC, is given by

PaPb
( iV ^^ -7 V + - )  +  ( iV _ _ - iV _ + )  
(7V++ +  7V+_) +  (iV__ +  iV_+)_

(0.18)

where N ^ - ,  and N __are the num ber of specific physical events

observed w ith each com bination of longitudinal beam  polarization  directions 

and Pa, Pb are the polarizations of the beam s. The double spin asym m etry 

A i j ,  will play a vital role in finding the gluonic contribution  to  the  p ro to n ’s 

spin [10]. To probe the gluon polarization, the process, p +  p ^  7  +  X, or 

the  C^CD C om pton subprocess, .9 +  g f/ +  7 , offers good sensitivity  to  the 

gluon polarization. In this process the longitudinal spin-spin asym m etry  is 

directly  related to the gluon ])olarization. As well as QCD C om pton sca tte r­

ing, je t production probes the gluon polarization w ith good sensitivity. The 

asynnnetry  A n  for the  j)rocess, p +  p —> jets, or the elastic gluon-gluon svib- 

process, g-\-g  9 +  g-, is proportional to  the square of the  gluon polarization

and the je t ra te  production is high.

The RHIC colhder, filled w ith polarized protons (P  70%) and equipped 

w ith Siberian Snakes and Spin R ota to rs [11], is expected to  provide a lum i­

nosity of 2 X lO^^cm^'^s"^ By late 2000 the first spin physics run  is expected 

to  s ta rt. RHIC has an  approved program  of spin physics for two m ajor exper-



iinents, STAR [12] and PHENIX  [13], and one elastic scattering  experim ent 

(P P 2 P P ) [14]. In the coming years d a ta  from the  RHIC accelerator will help 

Tuiravel the  Proton Spin Puzzle and give us a  deeper understanding  of the 

role of spin in high energy physics.

To m easure the  ghion contribxition to  the pro ton  spin, w ith  sufficient 

accuracy, a polarized proton beam  is required and the  beam  polarization 

error should be less th an  five percent, A P / P  < 5% [15]. T here are m any 

possible choices of polarim eters bu t there are uncertainties on the accuracy 

of the m easured beam  polarization [16, 17, 18]. One such polarim eter uses 

the analyzing power in elastic proton collisions a t small scattering  angles, 

where for a known analyzing power, the polarization of the  pro ton  beam  is 

calculated by m easuring the  single spin transverse asym m etry. This small 

angle scattering  region is the Coulomb Nuclear Interference (CNi)  region. 

Due to  the  size of the scattering  angle there is lim ited d a ta  for the  analyzing 

power in th is kinem atical region. The value of the analyzing power, in the  CNI  

region, is sensitive to  the modified im aginary helicity single-flip am plitude 

Im /'5 . To determ ine the  behaviour of the CNI analyzing power the  am plitude 

Im rs m ust be accurately known or alternatively an upper bound on | Im rsI 

can be used to  lim it the size of the analyzing power. An upper bound of 

( / I p  — l ) /2  X 5% ~  4.48% on | Im rsI is sufficient for the  p ro ton  analyzing

8



j)Ower to be used as a polarimeter with A P /P  < 5% where jip = 2.793 is the 

proton’s magnetic moment.

O utline of the Thesis

Polarimetry is introduced in Chapter 1 with a description of why polarized 

beams are necessary in experiments measuring the gluonic contribution to 

the proton’s spin followed by a section on proton polarimetry in the Coulomb 

Nuclear Interference (CNi)  region, where the helicity amplitudes are first in­

troduced and an expression for the analyzing power is derived. To end the 

Chapter a brief summary of proton-carbon polarinietry is given which is an­

other [)ossible candidate for polarimetry at RHIC. In the thesis the modified 

helicity single-hip anii)litude Im /’5 , for elastic proton collisions in the CNI re­

gion, is bovmded using the Lagrange multiplier technique of optimization. In 

general the method of Lagrange multipliers can be used to optimize a func­

tion in a system with constraints. The constraints are related to physical 

(juantities or fmictions in the system, which are known. A simple example is 

the problem of minimizing the surface area of a cylinder given the volume of 

the cylinder. The function to be optimized is the surface area, volume is an 

equality constraint and the minimum surface area is found by optimizing the 

system. Similarly the Froissart bound [19], an asymptotic bound on the total

9



cross section, can be derived by including miitarity and the elastic cross sec­

tion as constraints with the total cross section as the objective function. In 

the same way a boimd on Im rs, the imaginary helicity single-flip amplitude 

modihed by a kinematical factor, is derived where the system constraints are 

the elastic cross section, the total cross section and the imaginary spin aver­

age non-flip amplitude, all of which are exp(^rimentally known. The Lagrange 

nuiltiplier method also allows inequality constraints to be used when optimiz­

ing the system. Unitarity, appearing as an inequality, is input as a constraint 

when optimizing Imrs. Many models indicate a value of ~  0.1 for Im rs [20], 

where the value of 0.1 is above the threshold value of (/Xp — l) /2  x 5% for 

polarimetry with A P / P  < 5%.

In th(' second Chapter a Regge model calculation is used to obtain a value for 

the amplitude Im 7 5  at zero momentum transfer and a synopsis of models for 

the helicity-flip component is given. Experimental data from Fermilab E704 

is presented where a 200 GeV polarized proton beam was used to measure 

the analyzing power for proton-proton elastic collisions in the CNI region. 

Other bounds on the amplitude Imrs are discussed.

The Lagrange method of optimization is introduced in Chapter 3 with a re­

view of the formalism of Einhorn and Blankenbecler [21]-[25]. Other bounds 

in particle scattering are mentioned, particidarly the work of Martin and 

collaborators, who have greatly contributed to this field since the pioneering

10



work of Froissart. Ending C hapter 3 is an exam ple of the  Lagrange m ethod 

of optim ization where the  M acDowell-M artin bound for spinless particles is 

derived.

In the fourth  C hapter the observables, to  be used as constrain ts when op ti­

mizing Im r 5 , are expressed in term s of partia l wave am plitudes. The observ­

ables are the to ta l cross section, the im aginary spin average helicity non-flip 

am plitude, the elastic cross section and unitarity. T he hehcity representation 

of Jacob and Wick [26] is used to express the five helicity am plitudes in elas­

tic pro ton  collisions as partia l wave expansions. The observables expressed 

in term s of helicity am i)litudes are w ritten  as partia l wave series and the 

im aginary helicity single-flip am plitude is expanded as Taylor series in the 

CNI region.

The am plitude [ Im rsl is first optimized in C hapter 5 w ith  un ita rity  and the 

elastic cross section expressed as inequality and equality constraints, respec­

tively. T he bound, not a ‘s tr ic t’ bound, lim its the value of | Im rs | in the  CNI  

region. The m iitarity  constrain ts divide the solutions into different classes 

which allows the optim al solution to  be selected. T he system  of constrain ts 

in th is C hapter, and subsequent Chapters, is numerically solved using a com­

bination of analytic calculations and m a th em atica  3 .0 .

A new constrain t is added to  the system in C hapter 6, the new constraint 

being the im aginary spin average helicity non-flip am plitude a t some fixed

11



nioinentuin transfer in the  Coulomb Nuclear Interference region. As expected 

the bound on | IrnrsI is improved but the boim d is far from th e  desired value 

of [Hp — l ) / 2  X 5%. The un itarity  constraints play a m ore im portan t role in 

th is system  of constraints, the different solutions generated by the  u n ita rity  

constrain ts are com pared and the resu ltan t upper bounds on | Im rs | are dis­

cussed.

In the  seventh and final C hapter, the full set of constrain ts are used to  op ti­

mize I Im rsI in the CNI region. The extra constrain t is the  to ta l cross section. 

The derived bound has a value of ~  0.89 a t ^ / s  =  50 GeV. This bom id on 

I  IniTsI, w ith  a value less th an  ( / i p  — l) /2 ,  ensures th a t the  analyzing power 

in the CNI region is positive; Hp =  2.793 is the p ro to n ’s m agnetic m om ent. 

I 'h e  optim al solution again is determ ined by the im itarity  constrain ts. A 

sunnnary  of all the derived bounds on | Im rsI in the CNI region is followed 

by a brief discussion on the  applications of optim ization techniciues in o ther 

physical and  non-physical problems.
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Chapter 1

Polarization Measurement

Details about the gluon polarization can be found by measuring the double 

spin longitudinal asynnnetry, A n ,  in a particular process, ultim ately leading 

to a value of the contribution from the gluons to the proton’s spin [10]. The 

double spin longitudinal asynunetry is written as

where A+_, and N __are the number of specific physical events

observed with each combination of beam polarization directions and Pq, Ph 

are the polarizations of the beams. The asymmetry, to be measured, is 

dependent on the square of the beam polarization error and consequently 

it is essential to have an accurate knowledge of the beam polarization. To 

])robe the gluon polarization with sufficient accuracy, the maximum beam
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polarization error A P / P  cannot be larger than  5% [15]. One m ethod of 

polarimetry uses the analyzing power in pp elastic coUisions at small angles.

1 Proton-Proton Polarim etry

It is believed tha t polarization in elastic scattering vanishes at high energy 

where the amplitudes are eventually dominated by diffraction energy. Recent 

studies of hadronic scattering indicate tha t this may not be the case [20]. For 

high energy pp elastic scattering in the Coulomb Nuclear Interference (CNi)  

region (t ~  —0.0012 (GeV/c)^), the analyzing power App possesses a small 

but considerable value [27, 28].

1.1 A nalyzing Power in the CNI R egion

The analyzing power App for a proton and the transverse single spin asym­

metry are related through the expression

■A.ppP =  A n ( 1-2)

where P  is the beam polarization and the target is unpolarized; for 100%

beam j)olarization the asymmetry and analyzing power are equal The

beam i)olarization can be measured by comiting the scatters with the beam 

'111 s o m e  l i t e r a t u r e  t h e  a n a l y z i n g  p o w e r  A p p  i s  r e f e r r e d  t o  a s  t h e  t r a n s v e r s e  s i n g l e  s p i n  

a s y m m e t r y  A n  ■
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polarized up (A^^) and then down (A^^) in a polarim eter w ith a know^n an a­

lyzing power App-.

P
A VP

1
A

A n  ■ :i,3 )
pp_iVT + 7Vî

T he analyzing power App expressed in term s of the  s-channel hehcity am pli­

tudes is [29]

•^pp ~  +  02 +  03 — 04)] (1-4)

where do / dt is the differential cross section-

9 ^ .2  c. +  |02(s,OP +  |03('S,OP +  \4>4{s,t)\‘̂ -|-4|(?!)5(s, i) ̂  |  ,

(1.5)

k  is the centre-of-mass m om entum  and 0 ] , . . . , 0 5  are th e  five independent 

helicity am plitudes used to describe elastic pp collisions [26, 30]:

01 (•‘̂1 —< +  +  |0 | +  +  > 1

(p2{s,t) = <  -K-h 101----- > ,

03 (•Si t) = <  H--101 H >1

04 (■§, t) = <  H-| 0 |  h >  ,

05 (<5, t) =< -h + 101 H > -

( 1 .6 )

(1.7)

( 1 .8 ) 

(1.9)

( 1. 10)

The helicity am plitudes can be w ritten  as a sum  of hadronic and electro­

m agnetic am plitudes;
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Tlie Coulomb phase shift S is given by [31]

6 =  —a  In
bt 4t

-  0.577a (1.12)

where a  is the fine s truc tu re  constant, b is tlie nuclear slope param eter and  

=  0.71(GeV /c)^ the dipole Sachs form factor param eter. Neglecting the  

am plitudes 02, 04 and 0i — 03, a t high energies in the CNI region we can 

w rite the  analyzing power as

-  Iin [05 +  <̂3)] =  - 2  Im [0 ;  0+] (1.13)

where 0+ is the spin average non-flip am plitude, (0i + 0 3 ) /2 . Expressing the  

helicity am j)litudes as 0, =  0* +  {i =  1 , . . . , 5 ) ,  and neglecting the

Coulom b ])hase, the analyzing power in the CNi region can be rew ritten  as

da
dt -  2 I m

a

The electrom agnetic helicity am plitudes are known, the  one-photon-exchange

am plitudes are given in [32], and the optical theorem  [29, 33] gives Im0^J. oc

(7t„t but very little  is known about the hadronic single helicity-flip am plitude 

’■^The double lielicity-flip am plitude (j>4 a t small values of —t can be ignored because 

of a kinem atical factor {—t). M easurem ents of the transverse-spin and longitudinal-spin 

to ta l cross sections suggest, a t high energies, th a t the contribution  from 4>2 and 4>\ — (p3 

to  the CNI  proton analyzing power is negligible [20].
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Iiii^g , experimentally or theoretically, and thus the use of the pp analyzing 

power as a polarimeter depends on the contribution from the hadronic single 

helicity-Hip amplitude.

Looking in more detail we can write the analyzing power in the CNI  region

as [33]
 ̂ -  2 Im r5 ) ^  +  2 R ers  -  2 p lm r 5

J \ .n p  / \ 2
^  ( ^ )  -  2 ( p  +  5 )  ^  +  1 +  p2

with (f)2 , and 0 i — ^ 3  not contributing where p =  Re^+Z Im 0 4 ., Kp-\-\ = 

fip = 2.793 is the proton’s magnetic moment, m  is the proton mass and the 

ratio rs includes a scaling by the imaginary part of the spin-average hadronic 

amj)litude and l)y a kinematical factor of m /

^ hn(P+is,t)-  ̂  ̂ ^

In the CNI region when f ~  tc, where

tc = —87ra-/(Jtot ~  —0.0012 (GeV/c)^ , (1-17)

interference between the non-hip amplitude and the single-flip amplitude is 

most prominent. This is reflected in the [Kp — 2 In ir5 ) ^  term. W hen |p| is 

small, as is the case at ^/s ~  20 GeV [33], the main contribution to App, in 

the CNI  region {t < tc), comes from Im rs and at larger momentum transfers 

outside the CNI  region {t > tc) the real part of rs is dominant. The maximum
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value of App in the CNI region, 4.7% w ith Im rs  =  0, is modified by abou t 

5.5% when In irs  =  ±0.05. The position of the m axim um  of App is

where the Coulomb phase 5 is small and can be neglected for pp scattering  in 

the CNI region [20]. A large bound of | Im rsj results in an  uncertain ty  on the  

m axinnun value of App and to successfully use the pp  analyzing power as a 

polarim eter w ith A P / P  < 5% a  m aximum upper bound of (/Up —1)/2  x 5% ~  

4.48% on I Im rs  I is param ount.

2 Proton-C arbon Polarim etry

Similar to  proton-pro ton  elastic collisions, the analyzing power Apc  for elastic 

proton-carbon scattering  in the CNI region has a non-zero value which can be 

used to  measure the  polarization of a pro ton  beam  [28, 34]. The analyzing 

j)ower expressed in term s of the s-channel helicity am plitudes is [35]

where /+ +  and /+ _  are the helicity non-flip and hip am plitudes, respectively. 

The m odihed helicity-flip am plitude, in p C  elastic scattering  is

tm ax
8 1 

\ / 3  H— ( p i m r s  — R e r s )  — ( p - I - t c ~ V S t c  (1-18)
J

(1.19)

m  U -
( 1.20)

In i/+ +  ■
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Decomposing the helicity am plitudes into hadronic and electrom agnetic com­

ponents enables the analyzing power to  be w ritten  in term s the  flip and  non­

flip am plitudes [35]. In the  case of p C  scattering, interference between the  

flip and non-flip am plitudes is most prom inent at t  = tc where

tc =  ~  -0 .0013(G eV /c)2  (1.21)
^ to t

w ith Z  — 6 for a carbon ta rge t [28, 35]. A lthough the spin 0-spin 1/2 system  

is in m any ways simpler than  the spin 1/2 -sp in  1/2 system, th e  m axim um  

value of the p C  analyzing j)ower in the CNI region, like the  pp analyzing 

power, is sensitive to  the im aginary modified helicity-flip am plitude I m r  and 

to  use the  p C  analyzing j)ower as a polarinieter an  accurate knowledge of 

I  Im r  I  is necessary. Due to  the simplicity of the  detector system  [34] th is 

relative polarim eter, w ith a theoretically predicted accuracy of 10 — 15%, is 

one of the candidates for a polarim eter a t RHIC.

One challenge is to  calculate the size of the  im aginary modified helicity- 

flip am plitude | Imy'sj in the  case of pp collisions or | I rn r | in th e  case of p C  

collisions. The Lagrange m ultiplier m ethod, to  be introduced in C hapter 

3, is used to  optim ize | Imrs j  resulting in an upper bound which lim its the 

value of the analyzing power in the CNi region. All present knowledge of 

the  am plitude | Imrsj ,  in the  low m om entum  transfer region, is presented in 

the next C hapter including experim ental d a ta  from Fermilab, Regge models, 

C^CD models and derived bounds.
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Chapter 2

H elicity Single-Flip A m plitude

111 order to use the pp  analyzing power as a polarinieter an accurate knowledge 

of the inodihed helicity single-flij) am plitude In irs  m ust be known. For a 5% 

beam  polarization error a m axinm m  upper bound of (//p — l ) /2  x 5% ^  4.48% 

on I Iiiu'sl is allowed. W hat is known about the modified single helicity-flip 

aiii])litude Ini 7V,, theoretically or experim entally? In this chapter all present 

knowledge of In irs , theoretical and experim ental, is presented. A Regge 

model is used to  calculate the value 0.09 for I m r 5  a t zero m om entum  transfer 

followed by a sum m ary of Regge and QCD helicity-flip models. Experim ental 

d a ta  from Ferm ilab E704 is presented which indicates a positive pp  analyzing 

power over the  CNI region. Lastly a bound on the  spin 0-spin 1 /2  modified 

lielicity flip am plitude a t low m om entum  transfers is analyzed. A bound on
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Im r’5, based on the positivity  properties of the  coefhcients in the  p artia l wave 

series for the  differential cross section, is also discussed.

1 M odels based on Regge Theory

In Regge theory  [36] the scattering  am plitude has a  variable asym ptotic be­

haviour and th is behaviour can be connected to  a family of bound s ta tes  and 

resonances of different masses and spins [37], For pp  scattering  there are five

independent helicity am phtudes [26, 30],

01 t) = <  +  +  |0 | +  +  > =  0 ++ (^11) (2 -1)

02  {s, t) = <  + + \4>\------> =  (s, t) (2.2)

03 (s, t) = <  + -  101 -F -  > =  0++ (s, t) (2.3)

04 (s, 0  = <  +  -  101 -  +  > =  (f>t+ (s, t) (2.4)

05 {s, t) = <  +  -h 101 H—  > =  0+^ (s, t) (2.5)

The contribu tion  of a single t-channel meson Regge pole a t a{ t ) ,  to  an  s- 

channel helicity am plitude for the process ab —> cd, is given by [38, 39]
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_ |Ac—Aa| /

1
2 ^1+ ( - ! ) “• e - ' “- J r ( i . - o J  («;)■-'• K s ) “- (2.6)

where nip is the proton mass, Sg is the spin of the corresponding meson 

exchange and is the minimmn vahie achieved by on the exchange degen­

erate trajectory; Table 2.1 sliows the Regge exchanges and the corresponding 

Sg [39]. The residues fJ are simply related to the coupling constants. This 

model provides a crude description of the helicity structure and s, t depen­

dence of most two body processes. For {s, t) and (/>5 (s, t) the leading

meson exchanges are p, uj U2 and /  [38] with

fVp (0  =  {t) = (0  =  « /  (0  =  0.5 -H 0.9t (2.7)

and the trajectory slope is =  0.9.

Table 2.1: The Regge meson exchanges with the corresponding Sg and Ig.

e le

p, UJ 1
1

«2, / 2

For the Pomeron amplitude [38, 39],

1 /   J. \  ^d^c —• â| +  |Ad —A(,|)

(a',sr
( 2 .8 )
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where the couphng is fixed by the assumption of /  dominance and for pp 

scattering, xp = 1.0, A = 3.1 GeV~^ [38]. The Pomeron trajectory P  is

cvp =  1 .0+  0.3i (2.9)

and the trajectory slope for the Pomeron exchange is a'p = 0.3. The vertex 

parity relation is [38, 39]

(2 . 10)

while ujjper and lower vertices are related by

P.l l )

where ?/j is the intrinsic parity of particle i. The signs of the trajectory 

contril)utions to the imaginary part of the elastic pp scattering amplitudes 

are P  + f  — p — u  + a2 [40] and the contribution to In irs is fomid to come from 

the Pomeron exchange, having the value 0.09 at zero momentum transfer.

The spin structure of the lielicity-flip amplitiide has been investigated by 

many authors. Table 2.2 lists some models and the corresponding size of the 

helicity-flip component. A review of each model is given in [20, 33].

The sign and magnitude of Im 7 5  differs for each of the approaches men­

tioned in Table 2.2, however the vahies suggest | InirsI < 0.1 at RHIC ener­

gies. This value for | ImrsI does not satisfy the requirement, j Im rsI <  4.48%,
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Table 2.2: Models for the helicity-flip amplitude

Model Helicity-hip component

dual quark-parton [41] T5 =  —0.06

pion exchange [42] Im rs =  0.06

impact picture [43] Im rs ~  —0.06

two-gluon [44] Im rs =  0.13

compact diquark [45] Im rs =  0.05 — 0.10

chiral symmetry breaking [46] 1 Ini rs| 0.1

which, ill order to use the p p  analyzing power as a polarim eter in the CNI 

region with a maximum beam polarization error of 5%, is necessary.

2 E xperim ental D ata

The analyzing power in the CNI region has been measured with the 200 GeV / c  

polarized proton beam facility at Fermilab. For the first time a t high ener­

gies polarizations effects have been observed in the CNI region. The use of a 

j)olarized beam and a recoil sensitive scintillator target have made the detec­

tion possible. In previous experiments with unpolarized beams and polarized 

targets the CNI region was unaccessible. The experimental da ta  shown in Ta-
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ble 2.3 [47] suggests tha t the analyzing power in the CNI region is small and 

j)Ositive, and the data agrees with the theoretical prediction of a purely CNI 

analyzing power originating from the interference between the hehcity single- 

hip amplitude and the helicity non-flip amplitude. Analysis of the da ta  [33] 

indicates a positive value of 8 — 30% for In irs.

Table 2.3: Analyzing power data from Fermilab E704.

—t  range 

(GeV/c)2

<  - t  >  

(GeV/c)2

j^pp

(%)

1 . 5 0  X 1 0 - ^  -  4 . 0 0  X 1 0 “ ^ 2 . 8 8  X 1 0 - ^ 4 . 4 6  ± 3 . 1 6

4 . 0 0  X -  1 . 2 5  X 1 0 - 2 8 . 3 0  X 1 0 - 3 3 . 1 1  ±  1 . 0 9

1 . 2 5  X 1 0 - 2  _  2 . 2 5  X 1 0 - 2 1 .7 5  X 1 0 - 2 2 . 6 2  ±  1 .0 1

2 . 2 5  X 1 0 - 2  -  3 . 2 5  x  1 0 - 2 2 . 7 3  X 1 0 - 2 3 . 1 7 ±  1 . 0 7

3 . 2 5  X 1 0 - 2  -  4 . 2 5  x  1 0 “ 2 3 . 6 8  X 1 0 - 2 2 . 1 7  ±  1 .3 9

4 . 2 5  x  1 0 - 2  -  5 . 0 0  X 1 0 - 2 4 . 7 5  X 1 0 - 2 0 . 2 7  ± 2 . 7 7

The PP 2P P  experiment, approved by RHIC, plans to complete a detailed 

study of elastic p p  scattering using polarized proton beams with center-of 

mass energies in the range 50 — 500 GeV over the CNI region [14].
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3 Bound from P ositiv ity  Properties

A fundamental consequence of unitarity is th a t the absorptive unpolarized 

differential cross section for the elastic scattering of particles of arbitrary  spin

nuist obey the representation [48]-[50]

da-^  ° °
=  ^ ( 2 n  + l)c „ (s )P „ (c o s ^ ) , c„(s) >  0

‘  n=0

(X ^ ( I n i ( / ) i ) ^ .  (2.12)
i

P n i  COS 0) is a Legendre polynomial whose argument is the cosine of the center- 

of-niass scattering angle and the absorptive differential cross section satisfies

^ ^ ( . , 0 ) > ! ^ ( M < 0 )  (2.13)

which k'ads to a bound on Im rs given by [51]

I m r 5 < 2 . 5 .  (2.14)

This result limits the size of the analyzing power App to 4.7% ±  13.1% at

small t and with an upper boimd of 2.3 the required value of 5% for the

beam polarization accuracy cannot be obtained but the bound limits the 

value the analyzing power can take in the CNI region.

4 Spin 0-Spin 1 /2  Bound

A study of bounds on the single helicity-hip amplitude may provide im- 

j)ortant information related to the behaviour of the analyzing power App
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in the CNI region. The optimization technique of Lagrange multipUers, ex­

tended by Einhorn and Blankenbecler [21] to include equality and inequality 

constraints, is used to derive bounds on the modified single helicity-fiip am­

plitude In i05, based on unitarity and experimental quantities, where

Ini05(s,^) =  In i05(s,i) (2.15)

and

- t ~ 0
k Im 4>^{s,t)

Hodgkinson [52] used ae\ and the slope g to drive a bound on the helicity-fiip 

am plitude for spin 0-spin 1/2 collisions;

I '* !? ® " -® '" !
with

^  ( Traei
1 / 3

\ 60crt̂ ot/

where /++ and /+_  are the helicity non-flip and flip amplitudes respectively. 

Tlie optinuun

| I m r 5| < 2.3 (2.18)

is obtained if a similar bound for pp collisions is assumed over the energy 

range y/s = 50 — 500 GeV. This upper boimd on [Imrsl  is significantly 

greater than  the critical value of 4.48% for polarim etry with A P / P  < 5%.

27



In the following chapters the variational formalism of Einhorn and Blanken­

becler [21] is introduced. A munber of equality and inequality constraints 

for p p  elastic scattering in the CNI region are found, and with the variational 

method of Einhorn and Blankenbecler an upper bound on | ImrsI in the CNI 

region is derived.
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Chapter 3

Optim ization w ith Lagrange 

M ultipliers

To optimize a function subject to constraints, equality and inequality con­

straints, the met hod of Lagrange multipliers can be employed [21]-[25]. The 

method is used to derive bounds on the helicity single-flip am plitude in elas­

tic p p  scattering with m iitarity constraints, appearing as inequalities, and 

various experimental (luantities, appearing as equality constraints. Such ex­

perimental cjuantities are the total and elastic cross sections, and the slope 

of the spin average helicity non-fiip amplitude.
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Tlie Froissart bound [19] was the first bound on the  asym ptotic behaviour 

of the to ta l cross section a t high energy (s —>• oc);

(Ttot <  C log^ (s/so) (3.1)

where is the  center-of-mass energy and sq is a constant. Since the  result of 

Froissart m any developments of the m ethod of obtain ing bounds on sca tte r­

ing am plitudes have been m ade [53] -  [67] , ranging from spinless scattering  

to  nucleon-nucleon scattering  and scattering of particles of a rb itra ry  spins. 

In the  following C hapters the Lagrange nuiltiplier m ethod of optim ization  is 

used to  bound the im aginary helicity single-flip am plitude Im 05 in elastic pp  

collisions. T he pp  system  is a spin 1/2-spin 1/2 system  w ith five independent 

helicity am plitudes, two non-flip, two double-fiij) and one single-flip. Com- 

j)ared to  the  spin 0-spin 0 system  or the spin 0-spin 1/2 system , the  num ber 

of helicity am plitudes is greater and the algebra following optim ization  can 

present some challenges. The derivation of the  bound is based on unitarity , 

analy tic ity  in the Lehm an-M artin ellipse and on polynom ial behaviour, w ith 

no dependence on theoretical models.

In th is C hapter, before deriving bounds in the pp  system , the basic 

concepts and term inology of the optim ization technique is in troduced [21] 

[25] along w ith a description of the conditions required to  maximize a 

function and an exam ple of how the Lagrange m ultiplier m ethod is used to
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obtain  the M acDowell-M artin bound [68] in spinless scattering.

1 Terminology

O b je c t iv e  fu n c tio n : The function th a t we want to  optim ize is called

the objective function. This function depends on a set of real variables 

Xi , X2 , ■.. ,Xn,  denoted by

f { x )  =  f { x i , X 2 , . . . X n ) .  (3.2)

The objective function is sometimes nam ed the cost or penalty  function.

C o n s tr a in ts :  We consider equality constraints and inequality  constraints.

Ecjuality constrain ts are w ritten  as

/ a ( x ) = 0  a  = 1,2,  . . . p .  (3.3)

Inequality constrain ts are w ritten  as

gfsix) > 0 ,  l3 = 1,2,  . . . q .  (3.4)

Any point x  =  (a^i, X2,  ■ ■ ■ x„) th a t satisfies the constrain ts is called a  feasible

point and the set of such points is called the  feasible set S.

T a n g e n t co n e : T he set of all (unit length) half-lines h, originating a t a

point Xq in S  and tangent to  a curve in S  is called the tangen t cone to  S  a t

X q .
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D ifferen tia ls : Given a function / ,  we denote its gradient vector a t xq by

/'(.To). Given any vector v, the linear functional f ' {xo,v)  = ( f ' {xo) ,v)  is 

called the first differential of /  and is denoted by

n a f

S f  = f { x o ,  v) = {f ' {xo),v) = Vi -  (3 .5)
i=l  ^

Similarly, the second differential of /  at xo is defined by the quadratic form

/ " ( x o ,  =  E  E  ■ ( 3  6 )
i=i  j= i

R e g u la r  p o in ts  o f  S: Let Xq be a feasible point and let A: be a unit vector

satisfying

( / ' ( x o ) , A - )  =  0 ,  Vq . (3.7)

If every k satisfying Ec[ii. (3 .7)  lies in the tangent cone C  at xq, then Xq is a 

regular point of S.

N o rm a l p o in ts  o f S: If the gradients f ' {xo)  are linearly independent, xq

is a normal point. Every normal point is a regular point.

1.1 M axim ization with Equality Constraints

The standard method of Lagrange multipliers determines all local maxima 

(or minima) tha t are regular points. It is summarized by the following two 

theorems:
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Theorem  3.1 Let Xq be a regular point of S  and let xq be a local maximum  

of f i x )  on S.

(i) Then there exists multipliers Aq such that the auxiliary function

L = f + f ^  Xafa
a = l

has a vanishing gradient

d L
L'{xq) = —— = 0  z =  1, 2 , . . .  n . (3.8)

UXi

(li) For a maximum

L"{xo , h) <0  (3.9)

for all h in the tangent cone at xq.

(ill) I f  Xo IS normal, the multipliers Aq are unique.

Theorem  3.2 I f  Eqn. (3.8) is satisfi,ed and if L"{xQ,h) is strictly negative 

for all h in the tangent cone at xq, then x q  is a local maximum of f[x) .

hi practice the theorems are used as follows; Solve the n gradient equa­

tions, L'[xq) =  0, for xq as a fimction of the unknown multipliers Aq. The 

solutions X q =  . x o ( A q )  are inserted into the constraint functions / q ( x o )  and 

the multipliers are chosen to satisfy the constraint conditions fa(xo)  =  0. 

The solutions are limited to those for which L"{xq, h) <  0 (for a maximum).
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1.2 M axim ization with Inequality Constraints

The definitions of norm al points and regular points extend to  inequality  con­

stra in ts if we divide these into interior constrain ts [3 in I { xq), and boundary  

constraints /j in B { xq), defined by

/(xo) =  {^|i?/3(xo) > 0} (3.10)

B{xq) ^  {(3\g0{xo) = {)} . (3.11)

Cbnsider the m axim ization of f { x)  subject to  the  constraints

U x )  = Q, a  = l , 2 , . . . p ,  (3.12)

ggi^c) > 0 ,  0  = l , 2 , . . . q .  (3.13)

For any feasible Xq, let /(xq ) be the set of indices (3 for which ,9/j(xq) >  0 and 

B{xq)  be those for whicli g^ixo)  =  0. The following two theorem s outline 

the conditions necessary to  optim ize w ith inequality constraints.

T h e o re m  3 .3  Let xq he a regular point and a local maximum of f  m  the

feasible set S. Then

(%) There exists multipliers X^, and >  0 such that the auxiliary function

P Q

L  =  f  +  1 ^ 0 9 0
a = l 0= 1

has a vanishing gradient

L'(xo) =  0. (3.14)
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(li) If  6  G I{xq) we may choose fi/s =  0; we may ignore any inequality

cojistramt for  which gis{xo) >  0.

( i l l )  Let S\ be the subset of S  for which g^ix) =  0 for all j3 G B{xq) for  which

/i/j > 0. Then

L "(xo ,/))< 0  (3.15)

for  all h in the tangent cone of S\ at Xq.

(iv) If  Xq is a norm al point, the multipliers are unique.

Theorem  3.4 If Eqn. (3.14) satisfied and if

L " { x o , h ) < 0  (3.16)

f o r  all h in the tangen t cone at Xq, then  t q  is a local m a x im u m  o f  f { x ) .

In Tlieoreins 3.3 and 3.4 the inequahty constraint for which the corre­

sponding multiplier fiff is positive, effectively is an equality constraint.

2 M acDow ell-M artin Bound; An Exam ple

Mac'Dowell and Martin found a lower bound on the logarithmic derivative 

based on unitarity for elastic spinless scattering [68]:



where the logarithm ic derivative g is given by [69]

(3.18)

Using the m ethod of Lagrange multipUers the M acDowell-M artin bound can

be obtained. For equal mass elastic scattering  the  center-of-m ass energy y/s 

and the m om entum  transfer t are w ritten  as

where k  is the  center-of-mass m om entum  and 8 is the center-of-m ass sca tte r­

ing angle.

2.1 Observables and Constraints

For identical or equal mass spinless scattering  the  to ta l and absorptive elastic 

cross sections have partia l wave expansions [69]

v 's  =  V  4k'  ̂ +  4rn2 (3.19)

and

t = —2k^ (1 — cos^^) (3.20)

<̂ tot — ~ĵ  ^  (2/ +  1) Q/ (3.21)

and

(3.22)
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where ai is the im aginary partia l wave ampUtiide. The logarithm ic derivative 

g has the partia l wave expansion [69]

( ^ )  X 3 ^  E  ( 2 ' Da , .  (3.23)

Onr aim is to  constrain the logarithm ic derivative, therefore g is the objective

fim ction. The constraints are the to ta l and absorptive elastic cross section

phis the p os itiv ity  constraint

Ui =  ai -  af >  0 (3.24)

which is a direct conseqiience of un ita rity  [26, 69, 70].

Before optim izing the logarithm ic derivative it  is useful to rewrite the 

scattering amplitudes as dimensionless amplitudes. We define the normalized 

diniensionless to ta l cross section A q =  (A’^/47t) atot, the normalized absorptive 

elastic cross section =  (/c^/47t) cr^, and the normalized dimensionless 

logarithm ic derivative g^ =  (A’^S(Ttot/47r) p, where, in  the high energy lim it^

Ao =  + 1) ~  (3.25)
/ I

Eei =  ' ^ { 2 l  +  l )  (3.26)
/ I

and

.go =  E  (2^ +  1)  ̂ (̂  +  1) (3.27)
______________________________I___________________  I

' i n  p ro to n -p ro to n  sca tte ring  the to ta l and elastic cross sections are norm ahzed by the

fac to r A’^ / tt.
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The equality constraints, and Eg;, are expressed as

a ^0 ~  2 / g; and 3 ^el 2 ̂  I of

respectively, where a  and f3 are equality m ultipliers. T he inequality or uni- 

ta rity  constrain t Ui = ai — of > 0 is expressed as

(2/ +  1) XiUi ~  2l\iUi

and by definition the inequality m ultiplier A/ nm st be zero or positive [21]-

[25].

2.2 Optim ization

Tlu’ auxiliary function w ith the logarithm ic derivative as the  objective func­

tion is introduced:

L  =  + O ' — 2 / g; +  (3.28)

2 IXi (̂ ai -  af^

where A; >  0. To optim ize the system  we differentiate the auxiliary function 

L w ith respect to  the im aginary partia l wave am plitude ai, to  first order- 

dL
dai

= 2 r  -  2al + 2/A, +  A,) ai

and second order-

c n
daf

-41{13 + X,)

(3.29)

(3.30)
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For an m inim um  we require d L /d a i  = 0 and d^L/daJ  > 0, th is leads to  the 

condition j3 < —\ i  w ith

   ̂ j 2 ^
2{(3 + \ i )  2{j3-\-Xi) 2{f3-\ - \ i )

2.3 U nitarity  Classes

W hen optim izing the system  it is na tu ra l to  divide the  partia l waves into two

classes [21] -  [25]. For each un itarity  inequality there are two classes, I  and

B:

= { J \ Ui  > 0, Xi  = {)} , = { J \ Ui  = 0 , X i > 0 }  , (3.32)

I  is called the  interior un itarity  class and B  is called the  boim dary un itarity  

class. The interior un itarity  class becomes

/ ^  =  { / | 0  <  a, <  1,A,  =  0} (3.33)

and the l)oundary un itarity  class splits into two subclasses;

— » B^'° = { l \ a,  = 0 , X i > 0 }  (3.34)

B^^ = { l \ U i > 0 , X i >  0}

— > B^^ = {l\a'o = l , X i > o ]  . (3.35)
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Interior U nitarity Class

The inequality m ultiplier A; is equal to  zero and the im aginary partia l wave 

am plitude is

where r i  =  a/{2\(3\) > 0 and rg =  \/{2\l3\) > 0. The m axim um  I for positive 

partia l waves is

and the m inim um  I is Imin =  0.

Boundary U nitarity Class

The boundary  un itarity  class =  { / 1 a; =  0 , A/ >  0} is non-em pty when 

I > L = Unax find there is no contribution from the  partia l wave am pli­

tude 0 / in this m iitarity  class. The other boundary  un ita rity  class =  

{ / 1 a/ =  1, A; >  0} is non-em pty when I < 0 and is em pty w hen I > 0 and 

consecjuently there is also no contribution from this un ita rity  class.

2.4 Reconstructing the Constraints

In th is case we are interested in contributions from the interior u n ita rity  class 

/ ^ '. T he norm alized dimensionless to ta l cross section A q is reconstructed  by 

su bstitu ting  the expression for the  im aginary partia l wave am plitude ai, given

ai = ri -  T2 P (3.36)

max (3.37)
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in Equation (3.36), into
L

Ao = 2 Y ^ la i  (3.38)
/=i

to  give

Ao = 2 j 2 l ( r , - r 2 l ‘̂ ) ^ ^  (3.39)
^   ̂  ̂ 2r2

for large I. Similarly the normalized dimensionless absorptive elastic cross 

section Eg/ and logarithm ic derivative can be reconstructed;

Ee/ ~  ^ ^  , (3.40)
3  T2

(3.41)

The logarithm ic derivative cj w ritten  in term s of the  norm alized dimensionless 

logarithm ic derivative go is

9 =  (3.42)
.‘’■O 'tot

or

and substitu tion  of Equations (3.39) and (3.41) into th is expression for g 

leads to  the bound

9 > 1  ^  . (3.44)
Ss T2

The ratio  r i / r 2 , where
ri 4

, V  . {3.45)2̂ 3 Lg/
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is simply found by solving Equations (3.39) and (3.40). T he m inimized log­

arithm ic derivative w ith the  r i / r 2 =  4v4o/(3Ee;) is w ritten  as

1 cr,
(3.46)

97T S  CTei

and in the high energy limit, k ^  \ f s / 2 ,  the  M acDowell-M artin bound

9 >  —  (3.47)
0071 (Tel

is obtam ed.

In deriving the lower bound on g we have only considered leading order 

/ term s. If lower order I term s are included the com plete M acDowell-M artin 

bound

1 1

can be found.
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Chapter 4 

Observables in Proton-Proton  

Scattering

In the elastic scattering of protons there are many observables th a t can be 

measured exi)erinientally [29, 71, 72], for example, the total and elastic cross 

sections, the nuclear slope, single spin asynnnetries and double spin asym­

metries. The observables, expressed in terms of the hve independent helicity 

amplitudes, 0 i , . . . , 0 5 ,  in the representation of Jacob and Wick [26], can 

be expanded as a partial wave series. In this chapter we will introduce the 

helicity representation of Jacob and Wick and express some of the proton - 

proton scattering observal)les as partial wave expansions.
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1 H elicity A m plitudes

For the elastic scattering of two protons at CM energy ^ / s  and CM momen­

tum  k  — \ /s  — A m ? j 2 ,  there are sixteen helicity amplitudes which under the

following relations [26, 30];

P a r i ty  c o n se rv a tio n

(A'iAii.#.!A,A2) =  ( - J ) " - "  ( - a ;  -  Ail 01 -  A, -  A2) (4.1)

T im e  re v e rsa l in v a rian ce

( a ; a ' 1 I A 1A2) =  ( - i r "  (A1A2 I | a ; a ' ) (4.2)

Id e n tic a l p a r tic le  s c a tte r in g

{ \ ' M 4 >  [A.Ai) =  ( - 1 ) - '- '  (a ;a ;i 0 iajA,) (4.3)

S y m m e try  p ro p e r t ie s

, di {̂0) = di _̂,{e) 
(4.4)

reduce to two non helicity-flip amplitudes, two double helicity-Hip ampli­

tudes, and one single helicity-flip amplitude where X =  X\ — X 2 , =  X \ —

The non helicity-fiip amplitudes (p\ and ^ 3 , the double helicity-flip ampli­

tudes 02 ^nd 0 4 , and the single helicity-flip amplitude 0 s, have partial wave

44



expansions [26, 30, 73];

01 (<̂ 1 )̂ — ( +  +  \̂ \ +  + )  — ^  X! (^) +  /n(^)) 0̂0 (^) (4-5)
J

03 (*', )̂ — (+  “  101 +  “ ) — ^  X] +  1) ( / / ('^) +  fni )̂) (^) (4-6)

02 (s, t) = (+ + 101---) = X] (/n  ( )̂ “  /o (•̂ )) 0̂0 (^) (4-7)

,#< ( s ,«) =  (+  -  1,̂ 1 -  + )  =  ^  ^  (2 J  +  1) (/i!,(s) -  / / ( s ) ) r f f _ .  m  (4.8)

05 (5 , 0  — (+  +  l</>! +  - )  -  - ^  ^  ( 2 J  +  1) /2'i(5) ( ^ )  (4-9)
J

where / /  (i =  0 ,1 ,1 1 , 22, 21) denote the s-channel partia l wave am plitudes, 

I n i , / /  =  af ,  R e f /  = hj  and ^ =  cosO =  1 +  t/2k'^.

In the Coiilonib Nuclear Interference (CNi) region, t ~  —0.0012(G ev/c)^, it 

is convenient to  express the five helicity am plitudes in term s of Jacobi poly­

nomials. For J  —A an integer, we can relate d'{^{B) to  the Jacobi polynom ials 

p{»<0)(^z), where 2  =  cos^^. To define the d:{^[0) function in term s of Jacobi 

polynom ials it is su itable to  separate the space of A and into four regions 

A. B, C, D as shown in Figure 4.1. In region A, the  relation is [74]

(
( J  +  A ) ! ( J - A ) !  / l  +  ^ \ ^ 1 -  2 

2
(4.10)

where ^ =  cos^ =  1 +  t /2k^ ,  and J  — A =  0,1, 2, • • •.
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A.+|i <= 0 

A.-|i >= 0

\
\

\

X - |i  <=  0

D /
/

A.+H <=0 ^
/

/

A,-|i >= 0

C   A-

A.+H >= 0

\
\

\

>,-|i <= 0 

A.+|i >= 0

Figure 4.1: Regions associated with the expressions of d{ {̂0) in terms of 

Jacobi polynomials.

Eciuivalent forms in the other regions are obtained by use of symmetry 

relations [30, 74], 

bi region B, use

= (4.11)

hi region C, use

bi region D, use

4 ,(0) =

(4.12)

(4.13)
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The functions can now be expressed in term s of Jacobi polynom ials:

=  (4.14)

=  (4.15)

< i ( « )  =  (4.16)

and

(4.17)

T he hve helicity am plitudes in Equations (4.5) - (4.9) can thus be w ritten  in 

term s of Jacobi polynomials;

* (« • ' )  = | | E ( 2 - ^ + l ) ( / o ( ' > )  +  /n(s ) )  P r “’( )̂ (4.18)

=  | | E ( 2 . - ' + l ) ( / n ( s ) - / o ( s ) ) ^ ’J“'“’(2).  (4.19)

03(s.() =  E  (2-' +  1) (/YM +  Pj' f̂U) (4.20)

^<(.5.0 =  j7.~ E  (2^ +  1) -  / / ( " ) )  (4.21)

x / i  \ / l  — 2  ̂ ^  J  ̂ j j + 1  J.
i k

where 2  =  cosO =  1 + t / { 2 k ‘̂ ).

^5(.'-,0 =  '̂  4;,. '  E ( 2 J  +  1) y ' ^ / i ' i ( ‘» ) f i - i ' (^ )  (4.22)
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2 Total Cross Section

The optical theorem  [29, 33] a t zero m om entum  transfer or 2: =  1,

Ini(^+(s,t)|^^o =  (4.23)

is used to  express tlie to ta l cross section as a partia l wave expansion, given

by

(Xtot(s) =  ^  y ]  ( 2 J + 1) { ( a ^ ( s ) + a / i ( s ) ]

+  +  ®22('^)) (4.24)

where Im0_|_(.s,f) =  (Im (?i)i (5 , t) +  Im </)3 (s, ̂ ))/2 is the im aginary spin average

helicity non-flip am plitude. For 2; =  1 or f =  0, the  Jacobi polynom ials can

be w ritten  as [75]

leading to  P j° ’°^(l) =  1 and (1) =  1. The partia l wave expansion for 

the  to ta l cross section is thus

<7tot('S) =  - ^  (2 J  +  1) |ao(^ ') +  +  ^22('^)} ■ (4-26)
^ j

The norm alized dimensionless to ta l cross section, defined as A q =  k ^ O io x . j '^  ^  

is given by

-4o =  X! {^0 (■®) +  '^22('®)} ■ (4.27)

^In spinless scattering the total and elastic cross sections are normalized by the factor 

A--V(47t).
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3 Im aginary N on-Flip A m plitude

The imaginary spin average non-flip amplitude inside the Coulomb Nuclear 

Interference (CNi) region, written as a Taylor expansion, is

(4.28)
t=o

To calculate ^  Im 0_|_(s, t)  ̂ Equation (4.25) with the additional prop­

erty [75]

dm
=  2 - . r(m + n + o + /<+l)

^  '  r{n + a + + I)

is employed and for m =  1

—  p{a+l ,P+\) (4.30)

To calculate the slope of the imaginary non-fiip amplitude, the properties 

given in Equations (4.25) and (4.30) are used to find

A
dz

Z = 1

(4.31)

and

A.
dz

(4.32)
2 = 1

The imaginary non-flip amplitude thus has the partial wave expansion

Ini0+(.s,^) =

4A-7 X ] (2-^ +  1) (oq (s) +  o-iis) + aiiis) +  a22i )̂}

(4.33)
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with moinentiim transfers in the CNI region, wliere C =  —t/k'^. The logarith­

mic derivative of the imaginary spin average non-flip amplitude is defined 

as [69]

/  d
Im 0+(s, t)

t=o

therefore

— In i0 + (s,t) g In i0+(s, 0).

(4.34)

(4.35)

The Taylor exj)ansion of Im 4>+{s, t) in the CNi region, given by Equation (4.28), 

can thus be written as

(4.36)

In th(' CNI region the term 1 — {—tg)  can be approximated with the expo­

nential and using the optical theorem the imaginary spin average non-flip 

amplitude can be expressed as

Im(/.+ ( .s ,t)=
47T

(4.37)

4 E lastic Cross Section

The elastic cross section can be expressed as a partial wave expansion by 

integrating the differential cross section over momentum transfer t:

. . ( . ) = / ” (4.38)
J-4k^ dt
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Tlie differential cross section w ritten  in term s of the helicity am plitudes is

 ^  01̂  + + |03(s,

+ 1̂ 4 (5 , i)|^ +  4|05(s, (4.39)

and the elastic cross section also w ritten  in term s of the  helicity am plitudes 

is

+  |(/l)4(s,i)P+ 4 |0 5 (s ,t)P }  .(4 .40)

Using the expression

t = z ) , (4.41)

the t variable can be replaced w ith the 2 variable, where t is the  m om entum  

transfer, k  is the center-of-niass three-m om entum , and z =  cos 6̂ . T he elastic 

cross section expressed as an integral over ^ becomes

C^el(s) =  j   ̂ d z \ \ ( t > i { s , t ) \ ^  +  \(j)2 { s , t ) \ ^  ^ - \ ( l ) z { s , t ) \ ' ^

+  |(^4(s, i)|^ +  4 |05(s , i ) |^ |  . (4.42)

To express the  elastic cross section as a partia l wave expansion, the  inte­

grals dz\<pi{s,t)\^ are calculated, where i — l , - - - , 5 .  T he in tegration 

formula [76]

2 0 + 0 + 1  r(ct+n+l) r(/3+ n + l)  r 
n\ ( a + ! 3 + 2 n + \ ) T { a + 0 + n + \ )  ^

(4.43)
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is used to find

which leads to

+1

- 1 2 J +  1 ’ M , J (4.44)

101 (-5, 0 1 ^  X !  +  • / i i ( ^ )

\(l)2 {s , t ) \ ‘̂ dz  =  ^ ^ ( 2 J  +  l ) | / o ^ ( s ) - / n ( s )

J   ̂ \cf)3{s,t)\‘̂ dz =  ^ X ] ( 2 J  + 1) | / / ( s ) +  / 2‘̂2 («)

\4>4{s,t)f dz  =  ^ 5 1 ( 2 - ^ + 1 )  | / / ( ^ )  - / 2 2 («)

\(p5{s,t)\^ dz  =  ^ $ I ( 2 J  + 1) | / 2̂ i(s)

(4.45)

(4.46)

(4.47)

(4.48)

(4.49)

Ecjuations (4.45)-(4.49) substituted into Equation (4.42) gives the partial 

wave ex])aiision for the elastic cross section;

fT'el(s) =  /o ('^ ) +  fli^)  +  fni^)

The normalized diinensionless elastic cross section, defined as Eei =  /r̂ cTei/Tr,

IS

Epi = fo{s)  +  f l { s )  +  f u{ s )  +  f 22{s) + 2  fn i^)  I

(4.51)
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5 Imaginary Single-Flip A m plitude

The imaginary single helicity-Hip amplitude,

Im (2-  ̂+  1) «2i(s) *  (») , (4.52)

w ritten in terms of Jacobi polynomials is

In i05(g,t) =  —̂ H ( 2 i + 1 )  J  an(s )  P j - l \ z )  (4.53)

or
Im 05(s,t) j j + l  ^
{I -  z^y/'^ ~  4 k ^  i  J  °2i('^)-Pj-i (2 )̂ • (4.54)

In the Coulomb Nuclear Interference (CNi)  region, t ~  —0.0012 (Gev/c)^, 

-Pj^i^(-) is expanded as a Taylor series;

(4.55)

where z = I + t / {2k ‘̂) and C =  Using the two properties of Jacobi

polynomials in Equations (4.25) and (4.30), the Taylor series for Pj2^i(z) 

about 2  =  1 is

(1 -  ̂W ' f  + 1) - 2]) . (4.56)
and thus

Ini (p5 {s,t)
(1 _ 2 2 )1/2 « = ^ E ( 2 ^ + 1 )  [ J ( J + l ) - 2 ] )

^ ~ 1  J  ' \  /
(4.57)
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The approximation sin6^ ~  2 sin 6 /̂2 for 6/ ~  0 is used to write \ / ^  = 

2A’sin 0/2 as \ / ^  ~  k sin . The ratio Im rs =  m  Im 0 5 /(-v /^ Im 0 + )

IS

where
^  ~ Ini(^5(s,t)

^2)1/2 • (4.59)

6 Unitarity

Tlie partial wave amplitudes obey the following unitarity inequalities [73]

Vi = » i ! - | / 6 ' P > 0  (4.60)

=  » i ' - l / / l " > 0  (4.61)

V," =  O n - t / Z i l ' - l / j . P a O  ( « 2 )

V2̂  = -  \ f i?  -  \ f i f  > 0 (4 .63)

where / /  {i =  0 ,1 ,11 ,22 ,21) denote the s-channel partial wave amplitudes, 

Im / /  =  a /  and Re / /  =  bj. Combining Equation (4.60) with Equation (4.61)

leads to the inequality W ’’ =  U( +  where

H '" =  0^ + a . i -  l/o-'p -  I / /P  >  0 (4.64)
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and the inequality X'’ = +  V2 follows from the combination of Equa­

tion (4.62) and Equation (4.63) where

X" =  afi +  4 ,  -  I//1P -  I//2P -  2I//J2 > 0 . (4.65)

For the elastic scattering of spin 0 and spin 1/2 particles there are two in­

dependent lielicity amplitudes, a flip and a non-flip amplitude, with partial 

wave expansions whose partial wave amplitudes obey unitarity relations sim­

ilar to relations (4.60) and (4.61). The imitarity relations (4.62) and (4.63) 

are characteristic of spin 1/2 - spin 1/2 scattering, the / /j  term coming from 

the single helicity-flip amplitude (j)̂ . The partial wave amplittides, expressed 

in terms of partial wave phase shifts, are given in the Appendix.
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Chapter 5 

Optim ization under and 

U nitarity

The Lagrange m ethod of optim ization [21]- [25] is used to  derive an upper 

bound on ampUtude | Im /'sl. T he am phtude | Im rsI is bounded by optim izing 

the modified single helicity-flip am plitude Im 0s w ith unitarity , expressed as 

inequality constraints, and the elastic cross section, appearing as an equality 

constraint. The im aginary modified helicity single-Hip am plitude, Im ^ s  =  

Im 0 5 / \ / l  — 2 ^, has the  partia l wave expansion

Im4(.s.0 = ^ E ( 2 '^ + l )
(5^1)
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and

Ini rg = (5.2)

w ith  m om entum  transfers t inside the CNI region where C =  The

nonnahzed  rhrnensionless elastic cross section expressed as a partia l wave 

expansion is

+ fni^) + f22i )̂ + 2  f2i{s) I .

(5.3)

The partia l wave un itarity  relations, a direct consequence of 5 -m atrix  uni- 

tarity , are

ir'^ = «ô  +  a / - | / o " p - | / / P > 0  (5.4)

and

(5.5)

1 Lagrange Formalism

The modified single helicity-flip am plitude In i^ s  is optim ized by in troduc­

ing the  norm alized dirnensionless elastic cross section Sei, expressed as an 

eciuality constraint, and the partia l wave im itarity  relations, expressed as in- 

eciuality constraints. T he modified single helicity-flip am plitude Im </>5 is the
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objective or {)enalty function in the Lagrangian [77];

L  =  In i05+  /̂  'Eel — +  1) (l/(f 1̂ +  I / /P  +  l/n  P +  I/22P +
j

+  +  1)m j ( o n  + q 4 ~  I / /1 P  “  1/22P “  21/2^^!^)
j

+  +  1 )^ , /  (« o  +  o f  — I/o  P -  U i^ P )  (5 .6 )
J

where / i is an ecjuahty m ultipher and the inequahty multipHers, \ j  and f i j ,  

are non-negative by definition. In  the high energy or large J  lim it only 

the leading order J  terms are included; 2J +  1 terms are replaced by 2J, 

, / ( , / +  1) terms are replaced by ,P , and ^/s ^  2k. The Lagrange function of 

Equation (5.6), in the large J  lim it becomes

C =  Ini(^5 +  / i  Eel — 2 y ^ J  (l/n  1̂ +  +  | /n |^  +  I / / 9 P +
. /

+ 2 ^  j / o  (flu +  «22 -  l / u l '  -  1/ 2̂2!' -  2 | / / i |2 )  
j

+ 2 ^ J \ ,  { a i  +  a i  - \ f i l f  -  I / / P )  ( 5 7 )
,/

w ith

I m 0 5 « E > ^ '  ( ^ “ 8 ' ^ ' )  (5-8)

and C =  The system is optim ized by taking first and second deriva­

tives w ith  respect to the real and imaginary pa rtia l wave amplitudes, 6/ and 

a /. This gives the optim ized set of partia l waves, at some fixed t in  the CNI 

region;

6/ =  OVi ,  (5.9)
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A„
% — (ii —

^11  ^22  ~

2̂1

/

80

1 +  2Aj 

1 + 2jl j

1 -  i.p

(5. 10)

(5. 11)

(5.12)
1 +  2Aj

where \ j  =  Xj /2f j ,  j l j  = iij/2f3,  and (3 > ^  for a  m axim um  {ov P < 0 for a

niinnnum

2 U nitarity Classes

Optimization imposes the conditions:

h'- = 0 Vi = >  / /  =  af  + =  a /  , (5.13)

Oq =  a'[ and a'/j =  a '22 ■ (5-14)

Tlie partial wave amplitudes therefore obey the following unitarity  in­

equalities

>  0 (5.15)

and

- a / i ^ - a ^ i ^  >  0.  (5.16)

\Mien optimizing the system it is natural to divide the partial waves into two 

classes [21], For each unitarity inequality there are two classes, I  and B\

I^ ' = {.I I IVj > 0 , A j  = 0 } ,  B ^  = { j j W j  = 0, Aj >  0} (5.17)
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— {./ I X j  > 0, jdj — 0} , — {J  I X j  — Q, p.j > 0} (5.18)

1 is called the interior unitarity class and B  is called the boundary unitarity 

class.

2.1 and Unitarity Classes

The interior unitarity class is rewritten as

7*^'= { j | 0  < < 1, Aj =  O} , (5.19)

and the boundary unitarity class B^^ splits into two subclasses, B ^  and B f ' ;

— » B̂ '̂° =  {J  I =  0 , Aj >  O} (5.20)

Z?"' =  X ) ,  Aj >()}

— > B^'^ =  {J |Qo =  1, A / >  O} .(5.21)

Consider the luiitarity class . The ineciuality multiplier Aj is equal to 

zero and from Eciuation (5.10), Cg =  0 with A,; =  0. Therefore there is no 

contribution from the interior imitarity class 7^''. The boundary unitarity 

class B^^° with — 0 restricts the value Aj to zero. Since Xj > 0 is 

recjuired the m iitarity class B^^° is non-empty, however with Cg =  0 there 

is no contribution from this unitarity class. The other boundary unitarity 

class i?" ' with = 1 restricts the value A,; to a negative value of —1. Since 

A,7  > 0 is required the unitarity class 5^ '̂  ̂ is empty and consequently there
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is also no contribution from this un itarity  class. Table 5.1 sum m arizes the 

contributions from the  various un itarity  classes.

2.2 and Unitarity Classes

The interior un itarity  class under the  optim ization becomes

/ ^  =  {J  I >  0 , / i j  =  o} , (5.22)

and the boundary  tu iitarity  class is w ritten  as

=  {J  I fl/i -  =  0 , / / j  >  O} . (5.23)

There is no contribution from the interior un ita rity  class . The inequality

multii>lior f i j  is equal to  zero and from E quation  (5.11), =  0 w ith  j i j  =  0.

I 'h e  boundary  im itarity  class w ith afj — =  0 and / i j  >  0 is

non-em pty and there is a contribution from the un ita rity  class B ^ . Table 5.1 

gives a synopsis of the contributions from the  various vmitarity classes.

There are four possible unions of un itarity  classes in th is optim ized system;

jw  y  jx .  B oth of these un itarity  classes are non-em pty bu t all the  partia l 

wave am plitudes are zero and there is no contribution  from this im ion of 

classes.
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Table 5.1: Interior and Boundary unitarity class contributions associated 

with optimization under the elastic cross section and unitarity.

Unitarity Class Contribution

jW non-empty class with zero contribution

non-empty class with zero contribution

BW, empty class

non-empty class with zero contribution

q W non-empty class with non-zero contribution

This union of unitarity classes is also non-empty. There is a 

contribution from the boundary class but there is no contribution from 

the interior class /'^ .

r W u IX; union of unitarity classes splits into two subclasses, one 

empty subclass U and one non-empty subclass B^° U . There is 

no contribution from the non-empty subclass B^° U and therefore there 

is no contribution from the entire imitarity class B ^  U .
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r W U B ^ : This union of luiitarity classes also splits into two subclasses,

one empty subclass U , and one non-empty subclass B ^°  U B ^  w ith 

a non-zero contribution.

The unitarity  classes U B ^  and U B ^  are equivalent, since in both  

of these unions of classes the partial amplitude is eqiial to zero or both  

and B'^^° are non-contributing unitarity classes. The only non-empty 

contributing set of unitarity classes is the set; B^^° U B ^  C  B ^  U B ^  or 

/ "  U B ^  where

a^ =  a5̂  =  0, (5.24)

//,/
( l \ \  —  ( loo  —

and

®21

1 -I- 2fij

1 +  2/ ij

(5.25)

(5.26)

The boundary vmitarity class condition

B ^  =  { . / 1 a/, -  -  ^21  ̂ =  0, ftj > O} ,

on substitution of Equations (5.25) and (5.26), can be expressed as

(5.27)

B ^  = { J{ J  I  +  f i j  -  [ j / m  ( l  -  (C/8) j ' ) ] '  =  0 , /ij  >  o} . (5.28)

The quadratic ecjuation

=  0, (5.29)
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has sohitions

= ±, 1 + 4 1

By definition fij > 0 and the positive sohition is selected;

1
AO = 1 +  4 1

(5.30)

(5.31)

3 R econstruction of cr,e!

The 0])timized partial waves can be written as

JL]
Q(J)

and

with

^21 2 Q{J)

Q{J) = 1 +  2/7, =  ^16/^2 + J2 _  ^ J4 +  g  J6

(5.32)

(5.33)

(5.34)

and J  < M,  where M  is the maxiniuni J  corresponding to positive partial 

wave amplitudes and is given by

M  = Floor 8/C (5.35)

The F loor function gives the greatest integer less than or equal to y^8/C. We 

now reconstruct Sei and Ini 05 by substituting Equations (5.32) and (5.33)
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into
M

Ee, =  4 ^  J  (ai,  2 +  a i  (5.36)
j =o

and

Ini 05 =  ^  ./^ ~  8

to give

V  SI3 J  m ^ j  j ^  Q j ^  e r  \

” ,̂ oV W) Q(./P iQ{Jf* MQ(J)V
and

For large J . using tlie Euler-MacLaurin expansion [78, 79], the siunmation 

over J  is replaced by an integration over J , leading to

A / 2  r  (-2

Eel ~  ^  -  m A M )  +  \ % f h [ M )  +  h [ M )  -  ^  h [ M )  +  h { M )  (5.40) 
2 4 o4

and

I m ^  i  h ( M )  -  ^  h m  +  ^  h { M )   ̂ (6.41)

The Jacobi-Elliptical integrals, /j  (j =  1 , . . . ,  8), are given by

J
h [ M )  =

I'M
/  d J

Jo
J

Q (i)
h { M )  =

r M
: /  d J  

Jo
r M r M

h { M )  = /  d J  
Jo Q{J)

h { M )  =

~X5

__o

f M r M
h { M )  = /  d J

Jo Q{J)
h { M )  =

o'
R-

r M J " r M
h { M )  =

__o

Q{J)
h { M )  = /  dJ  

Jo

Q { J f

Q { J f

Q [ j y

Q { j y
(5.42)
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To solve Equation (5.40), for the equality multiplier (5, the value of the 

normalized dimensionless elastic cross section Sei =  \P‘G^\j'K must be known. 

The experimental da ta  for and the Eei value as a function of center-of- 

mass energy  ̂ is shown in Table 5.2 [80]. The system was solved at two

Table 5.2: iTei and Sei as a function of center-of-mass energy

xA (GeV) k (GeV) del (mb)

19.4 9.65 6.88 524

23.5 11.71 6.87 770

30.7 15.32 6.94 1332

44.7 22.33 7.23 2947

52.8 26.38 7.40 4214

62.5 31.23 7.63 6088

values of momentum transfer, t =  —0.001 (GeV/c)^ and —0.01 (GeV/c)^,

over the energy range ^/s = 19.4 — 62.5 GeV. The system could not be

solved analytically because of the nature of the Jacobi-Elliptical integrals.

To compute the solutions of the system m athem atica 3 .0  [81] was used

to solve Equation (5.40) for /i; the complete m athem atica code is given in

the Appendix. After solving the system for j3 at a given t and the 

^To convert mb to GeV“  ̂ divide by 0.3894
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optim ized value of the modified helicity single-flip am plitude Im ^5 is found 

by substitu tin g  the  value o f i n t o  E quation (5.39) or E quation  (5.41). The 

ra tio  Ini is given by

rn

The experim ental d a ta  for crtot [80], g [82] and the  value of the  norm al­

ized diniensionless to ta l cross section A q = fĉ cXtot/Ti', necessary to  calculate 

Im 0 + (s ,i) ,  is given in Table 5.3. A fit was used to  calculate values of

Table 5.3: crtot, f] and A q as a function of center-of-m ass energy.

\ / s  (GeV) 2g (GeV 2) <7tot(mb) ^0

19.4 11.74 38.76 2953

23.5 11.80 39.23 4399

30.7 12.20 40.14 7702

44.7 12.80 41.29 16832

52.8 12.87 42.90 24412

62.5 13.02 44.01 35106

and (Jtot [80] where the  values given in Tables 5.2 and 5.3 are nom inal values. 

E rror analysis gives an error of ~  30% on <Jei, ~  1% on crtot and  ~  2% on g 

which result in an error of ~  5% on the | Im rsI upper bound.
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4 R esults

An upper bo;uid on Im rs  is com puted and a  lower bound is obtained  by 

changing the sign of the  equality m ultipher; Im cf)^ is minimized. U nder th is 

transla tion  the  lower bom id on Im ^ s  is simply minus the  upper bound and 

therefore if Im rs  <  « then  Im rs  >  — o- and the upper bound on th e  m odulus 

of Im rs  is given by | Im rs | <  a.

U pper Bound at t =  —0.001 (GeV/c)^

Table 5.4 gives the upper bound on Iln irsI a t  ̂ =  —0.001 (G eV /c)^ over 

the energy range y/s =  19.4 — 62.5 GeV. T he bound on |I m r s | is not a 

very ‘strong’ boimd; to  use the p p  analyzing power as a polarim eter | Im rs | 

must he less th an  {f^ip — l ) /2  x 5% ~  4.48%. The calculated bovmd may 

not be a useful bound bu t the technique can be repeated  w ith additional 

con.straints in the system. The addition of constrain ts into the Lagrange 

function will a t least give the same upper bound- the  bound cannot get 

‘w ider’, an im provem ent on the bound is more likely. It is well accepted th a t 

the greater the  num ber of constraints in the system , the b e tte r  th e  bound 

becomes.
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Table 5.4: Results including upper bound on | ImrsI optimized under aei and 

tuiitarity constraints at t — —0.001 (GeV/c)^ as a function of y/s.

^  (GeV) Im 0+ '-^max 1 Im rsI

19.4 1474 863 1659 114.8

23.5 2193 1047 2015 113.5

30.7 3835 1370 2622 111.7

44.7 8369 1997 3746 110.9

52.8 12136 2359 4372 108.1

62.5 17447 2793 5099 107.0

U pper Bound at t =  —0.01 (GeV/c)^

Table 5.5 shows the upper boiuid on | InrrsI at t  =  —0.01 (GeV/c)^ over the 

energy range ^ /s  — 19.4 — 62.5 GeV. The bound on | lm r ^ \  is an improvement 

on the bound at t =  —0.001 (GeV/c)^, a factor of ten smaller. The bound 

on I Im rsI is dependent on \ / ^ ,  as t decreases the bound grows in size, and 

likewise as t increases the bound reduces in size. This dependency is linear 

and to derive an upper bound of less than 4.48% on | Imrgl the bovmd must 

not have such a strong dependence on
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Table 5.5: Results including upper bound on | Im rsI optim ized under cTei and 

u n itarity  constraints a t t =  —0.01 (GeV/c)^ as a function of ^/s.

(GeV) Im (f)^ JmsLX P 1 Im rs

19.4 1399 273 164 12.1

23.5 2080 331 199 11.9

30.7 3630 433 259 11.8

44.7 7901 631 371 11.7

52.8 11453 746 433 11.5

62.5 16454 883 504 11.3

An obvious difference between the two sets of results is the  size of the  bound 

on I Iiur.r,!; as t apj)roaches zero, the  bound tends to  infinity. The bounds on 

I Ini /’sl at th(' two values of nionientiun transfer are approxim ately rela ted  

to  each o ther by a factor of 10. As t falls by a factor of 10 the  boim d on 

1 Im /’sl rises by a  factor of 10, and similarly, as t rises by a  factor of 10 th e  

bound on | Im rsI falls by a factor of 10. Therefore, in the CNI region, there 

is a linear relationship between the  boim d on I lmrsI  and th e  m om entum  

transfer t. This linear beliaviour originates in the singular behaviour of \ / ^  

hi Jmax where J^ax =  {—t). The singular natu re  of in Jmax causes
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the mimber of partial waves to approach infinity as t tends to zero, and also 

the bound on |In ir5 | tends to infinity. In order to improve the bound on 

I  InirsI the contribution from the higher partial waves must be reduced [52]. 

The addition of constraints in the Lagrange function will reduce the bound 

on I ImrsI, such constraints are the total cross section and the slope of the 

imaginary non-flip amplitude. These extra constraints are introduced into 

the Lagrange function in the following Chapters, and as expected the bound 

on I ImrsI reduces as more constraints are added to the system, significantly.
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Partial Wave Plots, t =  —0.001 (GeV/c)^
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Figure 5.1: unifier ĉ ei and unitarity; y/s  =  19.5 GeV, t =

-0 .0 0 1  (GeV/c)'^.
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Figure 5.2: « n , a 2 i mider a \̂ and unitarity; -y/s =  23.5 GeV.
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Figure 5.3: a f i , a 2 i under and unitarity; =  30.7 GeV.
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Figure 5.4: a{^,a2i under a \̂ and unitarity; ^/s ~  44.7 GeV.
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Figure 5.5: (lii.aii under (Jei and unitarity; ^/s = 52.8 GeV.
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Figure 5.6: under and unitarity; y/s =  62.5 GeV.
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Partial Wave Plots, t =  —0.01 (GeV/c)^
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Figure 5.7: a u , a 2 i under Oe\ and unitarity; ^/s  =  19.5 G eV, t  =

- 0 .0 1  (G eV /c)2.
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Figure 5.8: a f j , a 2 i under fJei and unitarity; y /s  =  23.5 GeV.
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Figure 5.9: Q n , « 2 i under and unitarity; ^/s =  30.7 GeV.
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Figure 5.10: under a^i and unitarity; -^/s = 44.7 GeV.
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F’igure 5.11: Gn,« 2 i mider and unitarity; y/s = 52.8 GeV.
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Figure 5.12: <1 / 1 , 0 2 1  under a \̂ and unitarity; ^/s — 62.5 GeV.
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Chapter 6 

Bound including the  

Spin-Average Am plitude

Tt) improve the previous bound on | IinrsI extra constraints are added to the 

Lagrange function. It is known, in general, as the number of constraints in 

a system are increased, the bound on the objective function improves. The 

aim is to obtain an improved bound on IlmrsI by optimizing the modified 

single helicity-hip amplitude Im ^5 with unitarity, expressed as inequality 

constraints, the elastic cross section, appearing as an equality constraint, and 

with the imaginary spin average helicity non-flip amplitude, expressed as an 

equality constraint. The new constraint, being the imaginary spin average
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helicity non-flip am plitnde Im 0_(_(s, t), has the partia l wave expansion:

Ini (f)+{s, t) =

^  (2 -  ̂+  1) | a o ( - 5) +  (^) +  ^^11(5) +  <̂22(^)}

(6 .1)

where Q =  —t/k'^.  The un ita rity  constrain ts of Equations (4.64) and (4.65), 

and the  partia l wave expansion for the dimensionless norm alized elastic cross 

section Eei, given by E quation (4.51), are again input constrain ts in the 

Lagrange fxmction w ith the objective function Ini05.

1 Lagrange Form alism

The Lagrange function is constructed w ith the  im aginary spin average non- 

fii]) am plitude Im 0+(,s, t) expressed as an equality constrain t, th e  norm alized 

dimeusionless elastic cross section Sei appearing as an  equality  constrain t, 

and the  partia l wave un itarity  relations appearing as inequality constraints. 

T he modified single helicity-flip am plitude Im (f)̂  is introduced as the  objec­

tive or penalty  function in the  Lagrange function:
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£ =  Im </>5 +  /̂ E d  -  Z i‘2J +  1 )  ( I / o  I "  +  l / . - 'P  +  l / Z . P  +  \ &  + 2 1 / / , P )

+ Ini0+ -  ^  Z  (2^ + 1) {ao(s) + (''?) + O n(s )  + â 2(̂

+  ^ ( 2 J  +  l)i^Lj ( a / i  + 0 2 2  “  l / n P  ~  1/2^2!^ ~  21/2^^11^)
.7

+  +  1 ) ^ J  ( « o  +  a /  -  I / o  P  “  I / / P )

where f3 and 7  are eqiiahty muhiphers. The inequahty rnultiphers, A j and 

f i j , are non-negative by dehnition and =  —t/ { k ‘̂ ). The Lagrange function 

of Equation (6.2), in the large J  or high energy hmit, becomes

C =  Im 05 + /̂ E , ,  -  2 ^  . /  ( l/o ^ P  +  I / / P  +  | / / j p  +  |/2^2p +  2 | / ;
J  |2 
21

+7 Ini0+ -  ^ . / { a o ( s )  +  a/(s) +  a/i(s) +  a^2 ( ‘ 

+ 2  ^  J / / J  ( a f i  +  a4  -  \ f n ?  ~  -  2 | /2 ^ ip )

(6.3)

(6.2)

and

(6.4)

The system is optimized by taking first and second derivatives with respect 

to the real and imaginary partial wave amplitudes, 6/  and a/. This gives the 

optimized set of partial waves, for a fixed t in the CNI region;

bf =  OVi, (6.5)
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=  (6,6)
° ' 1 +  2Aj ' ^

and

where Xj = Xj/2f3, fxj = jij/2j3, r =  —7 / ( 4/ )̂ and /:? > 0 for a maximum (or 

/i < 0 for a mininnmi).

2 U nitarity Classes

Optimization under the three constraints imposes the conditions:

hi = Q ^ i ^ f J  = ai  + b i = a i ,  (6.9)

Oq =  a{ and afj =  a 2 2  • (6.10)

The partial wave amphtudes therefore obey the following unitarity in- 

eciualities

= a i - a f > Q  (6 . 11)

and

=  afi -  >  0 . (6.12)
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When optimizing the system it is natural to divide the partial waves into two 

classes [21], For each unitarity inequality there are two classes, I  and B:

=  {J  I Wj  > Q, A j  = 0j  , B^^' = { j l l V j  = 0 , A j > 0 j  (6.13)

= { J  \ X j  > 0 , / / j  =  0} , B ^  =  {J  I X j  =  0 , / / j  >  0} (6.14)

I  is called the interior unitarity class and B  is called the boundary unitarity  

class.

2.1 and U nitarity  Classes

The interior unitarity class , under the three constraints, is expressed as

/ ” ' =  { j | 0  < <  1, Aj =  O} . (6.15)

In Ecjuation (6.6) Aj is set to zero and the imaginary partial wave amplitude 

Oq in the interior unitarity class becomes

a „ ' = r ( l - ^ J " )  . (6.16)

The constraint 0 <  Og <  1 places the restriction

i  (l -  1) < < 1 (6,17)

on ,/. When r  > 1 or r  < 0 the solutions for the optimized system are

complex and for real solutions 0 < r  < 1, this limits the vahie of J  to

(6.18)
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The boundary unitarity class splits into two sub-classes, B ^°  and B ^ ^ :

— > =  { j | a ^  =  0, Aj > 0} (6.19)

B^ '̂ = { j \ W j > 0 ,  A j > 0 }

— . =  { J  I =  1, Aj > 0} . (6.20)

In the boundary unitarity class B^^° the imaginary partial wave amplitude

Oq is equal to zero and from Equation (6.6) the inequality multiplier Aj is

given by

Aj =  - r  . (6.21)

The class begins at =  4/C, and for > 4/^, 0 < r  < 1, the 

iueciuality multiplier Aj is positive. Therefore the boundary unitarity class 

Zi"" is uon-enipty but with = 0 for all J  there are no contributions 

from this unitarity class. The imaginary partial wave amplitude is equal 

to unity in the boundary unitarity class and from Equation (6.6) the 

inecjuality nmltiplier Aj is given by

A./ = r (̂ 1 -  ^  J2 j  -  1. (6.22)

By definition A; > 0 or r ( l  — C/4 .P) > 1. This limits the value of J  to

i  ( 1  -  1 )  ( 6.23)

and with 0 < r < 1, J  can only take complex values. The 5*^' class is

therefore an empty unitarity class.
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In sunnnary, the unitarity classes, and are non-empty and the

unitarity class is empty;

7'^' =  { j | 0 < a ^ < l ,  0 <  J < M i } ,  (6.24)

= [ j \a i  = {), Kh + l < J  < M 2 ] (6.25)

where A/i =  Floor , A/2 =  F loor [y'^8/C and C =

2.2 and Unitarity Classes

The interior unitarity class under the optimization becomes

= {J  I a i  -  fliV -  «2V  > 0 , =  0 } , (6 .26)

Substituting Equations (6.7) and (6 .8), with //j  =  0, into the interior con­

straint afi — — a2i  ̂ > 0 leads to the equation;

/i  (J) =  ai -h a-2 + a .3 -j- 04 J® > 0 (6.27)

where fij =  7’(1 — r), 02 =  r(  (2r — l) /4  — l/(64/S^^), = C,/{2b%0^) —

7’̂ C^/16, 04 =  —C^/(64/i)^, and only solutions with positive J  are allowed. 

The solution is of the form

0 < < r?? ^ (6.28)

where 7/1 is a fiuiction of r, (j and C- The fimction rji will be shown to be 

equal to unity. The boundary unitarity class is written as

= I J  I «n — — «2i  ̂ =  0> /ij > o | . (6.29)
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The constraint a /, — ~  ^2 1  ̂ ~  0 t>e written as a quadratic equation:

such J  vahies. By definition //j >  0. Consequently, only the positive solution 

is chosen;

It is im portant to notice tha t with 771 =  1 both interior unitarity 

classes, / ' '  and / ^ ,  are non-empty over the same region, J  G [0, Mi], Sim­

ilarly the boundary unitarity classes, and , are non-empty over the 

same region, J  G [M\ +  1, A/2]. In other words there is no mixing of unitarity 

classes, all classes either interior imitarity classes or boundary unitarity  are 

classes for a given J .

—  0 ) (6.30)

where

I i { J )  — fli +  G2 +  cis 0,4 . (6.31)

The solutions are

(6.32)

The function j \ { J )  is negative for > 4/C and therefore j lj  is positive for

(6.33)

To summarize, both unitarity classes, and 5 ^ ,  are non-empty:

(6.34)

B ^  =  { -  a / , 2  _  = 0 , ^ /i +  1 <  J  <  M 2 } , (6.35)

with //, =  1, whe're A/, =  F lo o r , A/ 2  =  F lo o r [y^8 /C and C =
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The unitarity classes and the imion {J [J U

are considered.

3 Solution of Interior U nitarity Class

Consider the set of interior classes I  =  U . The inequality multipliers, 

A,/ and //j, in the interior region are ecjual to zero. The imaginary partial 

wave amplitudes are

k =  0,1,11, 22, with ( ) < - / <  M \, where M\ is the maximum J  corresponding

(6.36)

and

(6.37)

to j)ositive partial wave amplitudes [aj. > 0) and is equal to F lo o r

The F lo o r y V C ]  function gives the greatest integer less than or equal to 

yiTC- The imaginary spin average non-flip am plitude Im 4>l is reconstructed 

by substituting Equation (6.36) into the partial wave expansion
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where superscript 1 denotes the contribution from the interior unitarity class 

/  =  U . The Euler-MacLaurin expansion [78, 79] for large J  is used to 

write the imaginary spin average non-flip amplitude as an integration over 

J:

Im

Ri 2rA'/f -  — +  — Aff . (6.41)1 2 1 24  ̂ V /

Substituting M\ ~  \f^/C  into this Euler-MacLaurin expansion leads to

I n i 0 : [ R i ^ r .  (6.42)

Similarly is reconstructed by substituting Equations (6.36) and (6.37) 

into the joartial wav(̂  cxi)aiision

A / i

I
J = 0

to give

Egi — 2 ^  J  [aQ  ̂ +  O'/  ̂ +  tt|i  ̂ +  022  ̂ +  2a2i (6.43)

for large J . The equality multiplier

T — Im 0^ (6.45)
8

is foimd by manipulating Equation (6.42). The solution of Equation (6.44)



or

The experimental data for (Tel and In i0 + , given in  Tables 5.2, 5.4 and 5.5, is 

used to  find the values o f the e(iuality m ultipliers, r  and j3 ,a t t  =  —0.001 (GeV/c)^ 

and t =  —0.01 (G eV/c)^ over the energy range a/s =  19.4 — 62.5 GeV. The 

values o f r  and f j  are shown in Table 6.1.

Table 6.1: The equality m ultip liers r  and j3 under Im 0 +  and u n ita rity  

constraints.

(GeV) t =  -0 .001 (GeV/c)2 t =  -0 .01  (GeV/c)2

r P r P

19.4 0.00593 1401 0.0562 164

23.5 0.00599 1702 0.0568 200

30.7 0.00612 2216 0.0579 263

44.7 0.00629 3166 0.0594 376

52.8 0.00653 3699 0.0617 445

62.5 0.00670 4316 0.0632 521

The modified im aginary single-hip amplitude In i^g  is reconstructed by
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substituting Equation (6.37) into 

to give

=  - ( 0 . 49)

For large J  the modified imaginary single-flip amplitude is written as

An analytic expression for modified single-flip amplitude is found by substi­

tuting the expression for [j into Equation (6.50), this gives

In this uuitarity class Ini0^ =  Ini(/!)+, Eg, =  Sei and Im05 =  Im^s, that is, 

the contriliution to the optimized modified single-flip amplitude completely 

originat('S in the interior unitarity class, I  = U /^ ,  and

/TT 1 /  3 \
Ini05 < y ^  ^ (̂ Sei - -C  Im 0+ j . (6.52)

The lower bound on Im 0s is simply minus the upper bound;

/ T T 1 /  3 \
Ini05 > - y  ^  ^ (̂ Sei - -C  Ini(/)+j . (6.53)

The bound on | ImrsI, given by m\ Ini05|/(A: Im0_|_), is
N 1 / 2



3.1 Results

Table 6.2 shows the bound on | h n r 5 | evaluated in the CNI region aX t = 

—0.001, —0.01 (GeV/c)^ over the kinematical range, s/s  =  19.5 — 62.5 GeV. 

A number of comments can be made about the bound on | Im rsl- The bound.

Table 6.2: | I m r 5 | as a function of center-of-mass energy and momentum 

transfer optimized under a^x, Ini0+ and tm itarity constraints.

v /i (GeV) t =  -0 .001 (GeV/c)2 t = -0 .01  (GeV/c)2

19.4 93.6 8.4

23.5 92.5 8.3

30.7 91.0 8.1

44.7 90.3 8.0

52.8 87.9 7.7

62.5 87.0 7.6

with the imaginary spin average non-flip amplitude, the elastic cross section 

and unitarity  as constraints is an improvement on the previous boimd with 

the elastic cross section and unitarity as constraints. This is expected; the 

boimd improves as more constraints are added to the system. The bound on 

j Irn T5  I decreases as t increases and the bound has a linear dependence on



the  m oiiientuin transfer t.

In the  interior un ita rity  class Jmax =  M i  =  F loo r[y4yC ] and the  par­

tia l wave am plitudes are zero for higher J .  The partia l wave series for the 

im aginary partia l wave am plitude a^i te rm inate  a t J  =  M i, the largest 

value of J  allowed in the  interior un itarity  class. For positive values of a^i, 

Jmax =  ^ 2  =  F lo o r [ ^ 8 /C]- The partia l wave series for is trun ca ted  at 

J  =  M l  which m ay result in the loss of inform ation and the  bound on | Im rs] 

m ay be unnecessarily high. The boundary un ita rity  cleiss U is non­

em pty for M l + 1 < J  < Mo. In the boundary  class none of the  partia l wave 

series are trunca ted  and all the am plitudes become zero as J  approaches M 2 - 

T he next case to  consider is the boundary un ita rity  class B  = B ^ U B ^ . The 

behaviour of the partia l wave am plitudes a t y/s  =  52.8 GeV, in the  interior 

un ita rity  class, is shown in Figures 6.2 and 6.3 where the partia l wave series 

te rm inate  a t J  =  A/j. Consider the polynom ial f i { J )  given by

/ i ( J )  = cii + tt2 J'  ̂ + 0 3  J'^ + tt4 > 0 (6.55)

where (ii = r ( l  — r), 0 2  =  (2r — l ) /4  — 1/(64/^^), 0 3  =  C/(256/S^^) —r^C^/16

and 0 4  =  —C^/(64/^)^. T he interior un ita rity  class defined in E qua­

tion (6.35) can be redefined as

= { J \ f i { J ) > 0 , f i j ^ 0 }  . (6.56)
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The vahie of J  satisfying / i ( J )  >  0 was found to  be

(6.57)

w ith rf^ set to  unity. The polynom ial / i ( J ) ,  shown in Figure 6.1, can be plot 

by substitu ting  the  numerical values for r  and (3, a t y /s  — 52.8 GeV and 

t =  —0.001 (GeV/c)^. The maxim um  J ,  w ith rjf =  1, a t y /s  =  52.8 GeV 

is 1668. The m axim um  J  for f \ { J )  >  0, from Figure 6.1, is 1668 im plying 

//i ~  1. The is true  for all kineniatical values considered in the  Thesis.

f l

0 . 006

0 . 0 0 3

2000500 1000 1500

Figure 6.1: Behaviom  of the  polynom ial / i ( J ) .
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Partial Wave Plots

^ 2 1

0 . 0 0 6

0 . 0 0 4 5

0 . 0 0 3

0 . 0 0 1 5

4 0 0 800 1 2 0 0 1 6 0 0

0 . 03

0 . 02

0 . 01

J
4 0 0  8 0 0  1 2 0 0  1 6 0 0

Figure 6.2: aj. (k =  0 ,1 ,11,22) and a^i optimized under (Jei, Im(/»+ and uni­

tarity  in the interior unitarity class; ^/s = 52.8 GeV, t = —0.001 (GeV/c)^.

ai
0 . 0 8

0 . 0 6

0 . 0 4

0 . 0 2

J
1 2 0 3 60 4802 4 0

0 . 0 6

0 . 0 4 5

0 . 0 3

0 . 0 1 5

Figure 6.3: a{. {k = 0 ,1 ,11,22) and a^i optimized under (Jei, Im0_|. and 

unitarity in the interior unitarity class; ^/s =  52.8 GeV, t = —0.01 (GeV/c)^.
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4 Solution of Boundary U nitarity Class

In this un itarity  class the  value of J  is lim ited to

Ml +  1 < J  < M2 (6.58)

where M \  =  Floor[Y /4/C], M 2 =  F lo o r [y 8 /C ] and  C =  The un itarity

constrain t in the boundary  un itarity  class, a /j — =  0, leads to  the

expression for the partia l wave am plitude a'/j:

=  . (6.59)

Therefore the partia l wave am plitude o/j m ust be positive in th e  boundary  

un itarity  class. The expression for the im aginary spin average helicity non­

flip am plitude is

M2

J = A / i  +  l

For Ml + I < J  < M 2 , the  term  (1 — (^/4 ,P) is negative and is positive, 

conseciuently Ini(/)_^ is negative inside the boundary  un ita rity  class. The 

experim ental value of Im is positive and by including only th e  boundary  

un itarity  class, where =  Ini(/)+, the system  is not solvable. To solve

the system  in the boundary  m iitarity  class, the  interior tm ita rity  class m ust 

also be considered, wliere Ini0_[^ +  In i0:^  =  Ini0_|_.

(6 .60)
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5 Interior and B oundary U n itarity  C lasses

The set of unitarity classes I  U B  or U U U B ^  is considered. In 

snnnnary, inside the interior unitarity class / ,  the value J  can take is limited 

to 0 <  J  <  A/i- The system constraints are given by

lni(f)l = ^ r  (6.61)

with imaginary partial wave amplitudes

(6-63)

and

=  (6.64)

where k = 0 ,1 ,11 ,22  and C =  —t/k^.  The modihed helicity single-flip am­

plitude is

(6.65)

The ecjuality nuiltiplier /i expressed in terms of the system constraints is

^ (Sei -  . (6.66)

Consider the case when

. (6.67)
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The reciprocal of the eciuality multiplier ij is zero and as a result the imagi­

nary partial wave am plitude a^i is zero inside the interior unitarity  class, I. 

If the imaginary partial wave amplitude a^i is zero then

Im0^ =  O. (6.68)

Therefore there is no contribution to the modified imaginary helicity single- 

iiip amplitude inside the interior unitarity region / .  The system constraints 

are rewritten as

=  (6.69)

=  (6.70)

with imaginary partial wave amplitudes

/  1 ^  72a;; (6.71)

and

ai, = 0 (6.72)

and the eciuality multipliers, r and 3, in the interior unitarity  class I  are

given by

r = (6.73)2 Ini

and

i = 0. (6.74)
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5.1 Numerical Technique

To solve the system, with both interior and boundary unitarity classes, a 

numerical technique is required. The system cannot be solved analytically 

because of the complex nature of Jacobi-Elliptical integrals and solutions 

cannot be obtained with the use of mathematica. The numerical technique, 

combining mathematica with analytic calculations, is successfully applied 

and a bound on | ImrsI is derived. A detailed description of the numerical 

technique follows.

W h a t fraction  of Eei falls in to  th e  in te rio r class I? The contribution 

in the interior region is a fraction of the total normalized dimensionless 

elastic cross section Eei given by

E i =  (6.75)

where 0 < n < 1. In the interior region =  3/4 C Ini 04̂  and the fraction

7} is the ratio Epj/Eei;

=  t C  V  •
4 ^ e l

The contribution to Sei from the boundary unitarity class B  is therefore

E f  =  ( l - n ) E e , .  (6.77)

W h a t fraction  of th e  im ag inary  spin average am p litu d e  falls in to  

th e  in te rio r class I? Assmne the contribution to \m (f )+  in the interior
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class is 100% and the contribution from the boundary class B  is zero, that 

is,

It will be shown, using an iterative technique, that Ini and Im >

wave unitarity and by the elastic cross section; Ini(/)+ is not a constraint in 

the boundary unitarity class.

In Chapter 5, the system, with partial wave unitarity and the elastic cross 

section as constraints, was solved in the boundary unitarity class . The same 

method is followed. In the boundary unitarity class, B  =  U B ^ , the 

oj)tiniized partial waves, at a fixed t in the CNi region, can be written as

with A/i +1 < ,/ < A/2 . When J  =  M\ the interior unitarity class terminates 

and M 2 is the maximum J  corresponding to positive partial wave amplitudes

Im 4>+ = Im +  Im = Im +  0 =  Im </>:
’+ •

(6.78)

Ini0+ such that In i0^ +  =  Im0+. In the boundary unitarity class

B = B^^ U B ^ , by setting Ihk/);^ =  0, the system is constrained by partial

(6.79)

and

(6.80)

where

(6.81)
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where

and

Ml = F lo o r

Mo =  F lo o r

(6.82)

(6.83)

The Floor[x] function gives the greatest integer less than  or equal to x. 

The observable Sei and the objective function Irn^s are reconstructed by 

substituting Equations (6.79) and (6.80) into

A/2 

J = M i  +  \

and

to give

a /2

2̂1

(6.84)

(6.85)
J = A / i  +  l

J = A / i  +  l V Q{j) Q { j y  Q { j y  4Q{ j y  64Q{jy

and
a/2

Ini (j)̂  =
CJ^

8 Q { J ) ^  128Q{J) )  '

For large J  we can replace the sunnnation over J  by an integration over

C ^ \

(6 .86)

(6.87)

J  [78, 79] which leads to

~ ^ {M2 -  (M  + 1)') -  8,£̂ /i + + h - j hC r . ^
64

and

7 •

(6 .88)

(6.89)
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T he Jacobi-E lhptical integrals, Ij (j =  1 , . . . ,  8), are given by

/•a/2  J  rA'h j

iA / i + i  Q{ j )  iA/ i+1 Q [ j y
/•a / 2  P  /-a /2  / 3

^^-nnV2Jm i +\ Q[ j ) Jmx+i Q [ j y

'  A/,+1 Qi J)  Jm,+i ' Q i j y
ri\l2 J ' rM2 I '

(6-90)
JMi +i  Q [ J )  JMi+1 Q [ J Y

To numerically solve the  system  and calculate a bound on | Im rsI, the  kine- 

m atical values ^/s =  52.8 GeV and t =  —0.001 (G eV /c)^ are chosen as 

sample points. The experim ental d a ta  in Tables 5.2 and 5.4 give the  values 

Eel =  4214 and Ini (2!)+ =  12128. The fraction n of Eei in the interior un itarity  

class / .  given by E quation (6.76), is 0.003765 and the  contribution  to  Eei in 

the boundary un itarity  class D, given by E quation (6.77), is 4056. Rew riting 

Eciuation (6.88) as

4056 — -  (̂ A/ 2  — {Ml +  l)""̂ ) — 8,6I\ +  16f3^l2 +  I4 — j  I& +  , (6.91)

enables a solution for 6  to  be found, where p  =  2487. W hen reconstructing 

where
a/2

ES = 4 5:  , / { a “  + a^,2) (6.92)

with
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and

the imaginary partial wave amplitude a/j is found to be non-zero. The con­

straint

Im0® = 2 ^  (6-95)
J = M i  +  l V  /

initially set to zero, is a function of afj. Substituting the expression for 

with the solved nmltiplier value, into Ini0_[  ̂ results in the non-zero value of 

—570. In the interior unitarity class the contribution to Irn05 is zero when 

the fraction of Ed in the class is given by

^ =  4 C - ^ .  (6.96)

To satisfy the condition Irn0_,_ =  12128 =  Im0+ +  the value of Ini0^

is adjusted to Im0+ — Ini0^ = 12128 + 569 =  12697. The value of 

increases and consequently the fraction n of Sei in the interior xmitarity class

also increases, to a value of 0.04127. The contribution to Egi in the boundary

unitarity class B  becomes 4041 =  (1 — n)Eei and the equation

4041 =   ̂(A /| -  (Ah + 1)') -  Sl3h +  +  4̂ - I /e  +  ^ /8 (6.97)

is solved for [3 witli solution (3 =  2492. A value of —567 for Im 0^ is cal­

culated after reconstruction and the condition Im^^^ +  Iin^;^ =  Im0_|_ is 

satished. Reconstructing Im05 in Equation (6.87) with ^/s = 52.8 GeV,
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t = —0.001 (GeV/c)^ and (i = 2492, the bound

| I n i r 5 | <  59.2 (6.98)

is calculated. Tlie contributions from the two unitarity classes are shown in 

Table 6.3.

Table 6.3: Contributions from the l U B  unitarity classes with agi, Im(/)_|_ and 

unitarity constraints; ^/s = 52.8 GeV, t = —0.001 (GeV/c)^.

I  = U 

0 <  J  <  1668

B  = U B ^ ’ U B ^  

1669 <  J  <  2359

r 0.00685 0

l l l i 0 4.012 X lO -'*

Im (/)+ 12697 -5 6 7

Epi 174 4041

Im f5 0 59.2

5.2 Results

The bound on j lnirsl  is calculated by adding the contributions from the 

interior and boundary unitarity classes. The contribution from the interior
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uiiitarity class is always zero and the contribution to the bound comes entirely 

from the boiuidary unitarity class.

M om entum  transfer t =  —0.001 (GeV/c)^

In the kinematical region ^/s =  19.4 — 62.5 GeV at t = —0.001 (GeV/c)^ the 

bound on | ImrsI varies from 63.8 down to 58.6, Tables 6.4 and 6.5 list the 

contributions from the interior and boundary unitarity classes, respectively. 

To calculate the upper on | ImrsI the contributions from the two unitarity 

classes are simply added and to find the values of the observables the con­

tributions from the two unitarity classes are also added. As expected the

Table 6.4: Contributions from I  C I  D B  with cTgi, Im0_j_ and imitarity 

constraints; t =  —0.001 (GeV/c)^.

/ i  (GeV) J  range n (%) r l/[3 ^el Im 0+ Im rs

19.4 [0, 610] 3.66 0.00621 0 19 1545 0

23.5 [0, 740] 3.74 0.00628 0 29 2298 0

30.7 [0, 969] 3.86 0.00641 0 52 4016 0

44.7 [0, 1412] 3.92 0.00659 0 116 8769 0

52.8 [0, 1668] 4.12 0.00684 0 174 12705 0

62.5 [0, 1975] 4.21 0.00702 0 257 18268 0
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Table 6.5; Contributions from B <Z I  VJ B  with (Jei> Im0+ and unitarity 

constraints; t =  —0.001 (GeV/c)^.

(GeV) ,7 range (1 -  n) (%) r Sel Im 0_)_ Im rs

19.4 [611, 863] 96.34 0 947 505 -7 0 63.8

23.5 [741, 1047] 96.26 0 1147 742 -104 62.4

30.7 [970, 1370] 96.14 0 1491 1281 -180 61.2

44.7 [1413, 1997] 96.08 0 2132 2831 -398 60.8

52.8 [1669, 2359] 95.88 0 2493 4041 -567 59.2

62.5 [1976, 2793] 95.79 0 2909 5832 -818 58.6

contribution to | InirsI from the interior unitarity class is zero and the ma­

jority of the contribution to Epi comes from the boundary unitarity class. To 

restrict the bound on | ImrsI the contribution to Sei in the boundary unitarity 

class, given by (1 — n), must be reduced. The reduction of this contribution 

has the effect of reducing the contribution from the imaginary partial wave 

amplitude The only partial wave amplitude the bound depends on is 

0 -2 ] and therefore a reduction in the contribution from the imaginary partial 

wave amplitude aji in the boundary unitarity class should reduce the bound 

on I Imrsj. In previous calculations the bound on | ImrsI was considerably 

higher. When solving the system without contributions from the boundary
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uiiitarity  class and w ith contributions only from the interior un ita rity  class 

the bound on | Iin /’sl, in tlie same kinem atical range, varies from 93.6 down 

to  87.0. W hen the system  is constrained by partia l wave un ita rity  and  the 

elastic cross section (Teh also in the same kinem atical region, the bound on 

I IniT’sl varies from 114.8 down to 107.0.

M om entum  transfer t = —0.01 (GeV/c)^

In the kinem atical region i / i  =  19.4 — 62.5 GeV aX t  =  —0.01 (G eV/c)^ the 

bound on | In i7-5 1 varies from 5.6 down to  5.0, the  com plete set of results 

are given Tables 6 . 6  and 6.7 The contribution to  jlm rs l from the  interior 

un itarity  class is again zero. The m ajority  of the contribution  to  Sgi rem ains 

in the boundary un itarity  class. W hen solving the  system  w ithout contribu­

tions from th(' boundary  un itarity  class and w ith contributions only from the 

interior un itarity  class the bound on | Im rsI, in the  sam e kinem atical range, 

varies from 8.4 down to 7.6. W hen the system  is constrained by partia l wave 

un itarity  and the  elastic cross section in the  sam e kinem atical region, the 

bound on | Im r’sl varies from 12.1 down to  11.3.

The bomid on j l mr s l  derived with, partia l wave unitarity , th e  elastic 

cross section and the im aginary spin average non-flip am plitude Im(/>_|_, 

expressed as constraints, is a  definite im provem ent on the  previous I lmrsI  

bound. There is an overall improvement on the | ImrsI  bound, although the
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vahie is far from the 4.48% threshold necessary to successfully use the pp CNI 

analyzing power as a polarimeter with a maximum beam polarization error 

of 5%.

Table 6.6: Contributions from I  C I  U B  with cTei, Im0_|_ and unitarity 

constraints; t = —0.01 (GeV/c)^.

(GeV) J  range n (%) r 1/(3 Im 0_|_ Im rs

19.4 [0, 193] 32.27 0.0583 0 169 1451 0

23.5 [0, 234] 32.99 0.0589 0 254 2157 0

30.7 [0, 306] 33.89 0.0600 0 452 3760 0

44.7 [0, 446] 34.19 0.0615 0 1008 8186 0

52.8 [0, 527] 35.89 0.0638 0 1513 11849 0

62.5 [0, 624] 36.57 0.0654 0 2227 17020 0
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Table 6.7; Contributions from B C I  U B  with Im</)_|- and unitarity 

constraints; t =  —0.01 (GeV/c)^.

^  (GeV) J  range (1 - n )  (%) r P Sel Im (/)_!_ Im rs

19.4 [194, 273] 67.73 0 112 355 -5 0 5.6

23.5 [235, 331] 67.01 0 135 516 -7 4 5.5

30.7 [307, 433] 66.11 0 178 881 -125 5.5

44.7 [447, 631] 65.81 0 255 1939 -274 5.7

52.8 [528, 746] 64.11 0 302 2702 -382 5.1

62.5 [625, 883] 63.43 0 354 3862 -5 4 5.0

hi the next and final Chapter a new bound on IlmrsI is derived. The 

penalty function Ini (̂ 5 is constrained by an extra observable- the total cross 

section crtot- The extra constraint in the system has the desired effect of 

reducing the bound on | ImrsI to a value less than one at y/s = 50 GeV and 

with momentum transfers in the CNI region.
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Figure 6.4: a'l̂  and aji optimized under Im<;A_|_ and unitarity  constraints 

in the I  U B  unitarity class; y/s =  52.8 GeV, t =  —0.001 (GeV/c)^.
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Figure 6.5: a/i and a^i optimized under cjei, Ini(̂ _|_ and unitarity  constraints 

in the I  U B  im itarity class; y/s = 52.8 GeV, t = —0.01 (GeV/c)^.
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Chapter 7

Optimization including

To ini{)rove the previous boiind on IlmrsI another equality constraint is 

added to the Lagrange function. This new equality constraint is the total 

cross section, at„t, expressed as a normalized diniensionless to tal cross section 

with the partial wave expansion

A q — ^  (2J +  1) |o-o +  a'l +  a'/i +  0 2 2 } • (7.1)
.7

Included in the Lagrange function are the eqtiality constraints;

E., -  Y .i'iJ  +  1) (|/„"P +  l/i'P  +  I//.P  +  l / i P  +  2 |/ / ,p )  (7.2)
J

and

^  (2 J  +  1) | a o ( s )  +  a f ( s )  +  a ' /i(s) +  022(5)} ^ l - ^ J ( J  +  l ) j

(7.3)
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Tlie un itarity  inequalities of Equations (4.64) and (4.65) are again utilized 

as input inequality constraints. An improved bound on | I m r 5 | in the  CNI 

region is expected. T he bound

a t zero nionientuni transfer is derived. At ^ /s  =  52.8 GeV its value is 0.89, 

a large improvement on the bounds previously derived in C hapters 5 and 6.

1 Lagrange Formalism

The normalized dimensionless to ta l cross section A q, expressed as an  equality 

constraint, is added to  the Lagrange function along w ith the  norm alized 

diniensionless elastic cross section Eei, w ritten  as an equality constrain t, the 

im aginary spin average non helicity-flip am plitude ln i0 + , also expressed as 

an equality constraint, and the partia l wave un ita rity  relations w ritten  as 

ine(juality constraints. The modified single helicity-fiip am plitude Im 0 s is 

introduced as the objective or penalty  function in the  Lagrange function:

SGTT̂ /CTel
(7.4)
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£  =  III! ^5  +  a

+ / i

+  ■

Ao — ^  (2 J  +  1) |a o ( s )  +  a f ( s )  +  a'(-f {̂s) +  f^22('®)}
. /

S , ,  -  ^ ( 2 J  +  1) ( | /o ^ |2  +  I / / P  +  | / / i p  +  I / / 2 P  +  2 | / / i | 2 )
./

In i0+  -  ^  ^  (2 J  +  1) |a o ( s )  +  a({s)  + a{^{s) +  022(

+  ^ ( 2 J  +  l ) / / , j  +  a22 -  l / n P  -  |/2 ^ 2 p  “  ‘̂ \f2i\‘̂ )
J

+ (®o +  ~ I/o 1̂ ~ I / /P )
.;

where cv, /i and 7  are equahty multipliers. The inequality multipliers, Aj and 

//,/ are by definition non-negative and C =  —t / { k ‘̂ ). In the high energy or 

large J  limit only the leading order J  terms are included and the Lagrange 

lunction of Ecjuation (7.5) becomes

C = Im 05 +  O'

+ /i

Aq — 2 ' ^ J  |aQ(s) +  a({s) +  afi(s) +  a22('^)}
J

-  2 ̂  J (i/„-'p + i//r̂  + iz/.p + 1//2P+ 2\fif)
J

{o'o(s) + « f ( « )  +  a f , (s )  +  Om (»)} t  j

J

+2  J X j  (̂ Oo +  a /  -  -  | / / | ^ )  (7.6)

+ 7 ^ 72^

and

Im 05 ^  (1 -  ^  jA a^i ( s ) . (7.7)

(7.5)
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T he system  is optim ized by taking first and second derivatives w ith respect 

to  th e  real and im aginary partia l wave am plitudes, 6/ and  a / .  This gives the

optim ized set of partia l waves, a t some fixed t in the  CNI region;

6/ =  OVz,  (7.8)

+T2 ( l  -  I J2) +  Aj 
i +  Z A j

J  J  ^1 + ^ 2  ( l  -   ̂ + /'^J ^
r+2Â  '

and

where A,/ =  \ j / 2 ( j ,  f t j  = f^ij/2l3, r\ = —o/{23) ,  T2 =  —7 / ( 4/^) and /  ̂ >  0 for 

a maxim um  (or d  < 0 for a minimum).

2 U nitarity Classes

O ptim ization under the  four constraints imposes the  following conditions:

(,/ =  0 V* ^  / /  =  0/ +  6/ =  a;' (7.12)

Oq =  a(  and = a ^ 2  ■ C^-13)

The partia l wave am plitudes therefore obey the  following un ita rity  inequali­

ties

>  0 (7.14)
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and

X-’ =  a/i -  >  0 . (7.15)

2.1 and Unitarity Classes

The interior unitarity class , under the four constraints, is expressed as

7 '^ ''=  { j | 0  < < 1, Aj =  O} . (7.16)

In Equation (7.9) Aj is set to zero and the imaginary partial wave amplitude 

rtg in the interior im itarity class becomes

« o = n  +  r 2 ( ^ l - ^ J ' ^  . (7.17)

The constraint 0 <  Og <  1 places the restriction

on ,/. When I'l + r2 > 1 or 7’i + r 2  < 0, the solutions for the optimized system 

are complex and for real solutions the conditions 0 <  ri +  r 2 <  1 and > 0, 

nnist be satisfied. The value of J  is limited to

r2 ,  4 n0 <  r  < -  1 +  — . (7.19)C V V2J

The boundary unitarity class splits into two sub-classes, B ^ °  and :

— > B ^ °  =  {J  I =  0, Aj >  O} (7.20) 
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= { j \ W j > Q ,  A j > 0 }

—  ̂ =  {J I  =  1 , Aj >  0} . (7.21)

In the boundary unitarity class B ^ °  the imaginary partial wave amplitude 

Aq is equal to zero and from Equation (7.9) the inequality multiplier Aj is 

given by

Aj =  —(ri +  r2) +  ^ 2  ^  . (7.22)

The 5 ' '°  class begins at =  M f  =  4/C ( 1  +  r-[jr2), and for J  > Mi +  1, 

with 0  <  ri +  T2  < 1  and r 2 > 0 , the inequality multiplier Aj is positive. 

Therefore the boiuidary unitarity class is non-empty for J  > M\  + 1  but 

w'ith Oq =  0, for all J ,  there are no contributions from this unitarity class. 

The imaginary partial wave amplitude Oq is equal to unity in the boundary 

unitarity class i ? " ' and from Equation (7.9) the inequality multiplier Aj is 

given by

Aj =  ( r i + r 2 ) - l - r 2 ^ J ^  (7.23)

By definition A,7 >  0 and the value of J  is limited to

J, ̂  4 ^ (r, + r ^ ) - l A 24)

and with 0 < 7 'i +  r 2 < 1 and > 0, is negative, or J  is complex. The

' class is therefore an empty unitarity class.
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In sunnnary, the unitarity classes, and are non-empty and the

nnitarity class is empty;

= { j |0  < < 1, 0 < J  < Ml} , (7.25)

= [ j \4  = Q, Mi + l < J  < M 2 ]  (7.26)

where M\ — Floor ^ 4/C (1 +  ri/r2) , M2 =  Floor y^S/C] and C =

2.2 and Unitarity Classes

The interior unitarity class under the optimization becomes

{J  I a{, -  -  02 1̂ '  >  0 , =  0 } , (7.27)

Substitu ting  Equations (7.10) and (7.11), with p,j =  0, into the interior 

constraint a'l̂  — >  0 leads to  the equation;

f2{J)  ~  '̂1 ^2 ^3 ^  0 (7 .28)

where cii =  ( r i + r 2 ) ( l - ( r i + 7'2)), 02 =  t’2C (2 ( r i+ T 2 ) -  1 ) / 4 - 1/(64/:^^), 0 , 3  =  

C/(256/^^) — rfC^/16, (X4 =  —C^/(64/i)^, and only positive J  solutions are 

allowed. The solution is of the form

t 2 ^  „ 20 <r <  772 ^ (1 +  ;r j (7-29)

where 772 is fimction of r\, V2 , and Q. Tlie fimction 772 is set to  unity, it 

will be shown later th a t  772 ~  1 and the bound is slightly adjusted by setting
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t]2 =  1. The boundary unitarity class is written as

=  [ j \  afi -  =  0, /ij >  o} . (7.30)

The constraint 05^1 — ~ = 0 can be written as a quadratic equation:

+ /"̂  ̂+ / 2 ('/) =  0, (7.31)

where

f2{J) — o,\ +  5.2 +  0 3  +  G4 J® (7.32)

The solutions are

W =  5 { ± / i^ ^ 4 / 2 ( 7 ) - i } . (7.33)

The fimction / 2 (-/) is negative for J >  Mi =  Floor[4/(^ (1 +  ?’i/?'2 )] and

therefore ftj is positive for such J values. By definition ftj >  0, therefore the

positive solution is chosen;

iu =  \  ■ (7.34)

To summarize, both the classes, and B ^ , are non-empty:

> 0, 0 < J  < Mi} , (7.35)

=  {J |a /i  -  ^  +  1 < J  < M 2 } , (7.36)

for rj2 =  where

hU — F loor v/4/C (1 +  r-i/r2)  
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Mo =  F lo o r 8/C (7.38)

and  C =  It is im portan t to  notice th a t w ith 772 =  1 b o th  interior

un ita rity  classes, and / ^ ,  are non-em pty over the  sam e region, J  G 

[0, A/i]. Similarly the  boundary  un itarity  classes, and , are non­

em pty over the same region, M j +  1 <  J  <  M^.  In o ther words there is 

no mixing of un ita rity  classes, all classes either interior u n ita rity  classes or 

boundary  un itarity  classes for a given J .

The un itarity  classes are U and the vmion U U B ^  U B ^  are 

considered

3 Solution of Interior U nitarity Class

Consider the set of interior classes, I  =  U . The inequality m ultipliers, 

A./ and f i j ,  in the interior region are ecjual to  zero. T he im aginary partia l 

wave am plitudes are therefore w ritten  as as

a i  =  n + r , ( l ^ ^ A  (7.39)

and

=  P  (7.40)

ISk  =  0 ,1 ,11 , 22, w ith 0 <  J  <  M ], where M i  =  F lo o r  (1 +  f'il'f'2 )

the  maxim um  J  in the  interior un itarity  class. In th is case the  contributions
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to  the observables and to  tlie bound on Im 05 solely comes from this interior 

un itarity  class; ^Iq =  A q, Im <;!!)_[. =  Im0_|_, Sg] =  Sei and Im ^g =  Im(;^5. The 

normalized dimensionless to ta l cross section is reconstructed  by substitu ting  

Equation (7.39) into

Ah

E
j = o

n i l

Ao = ' ^  J  («o +  a /  +  a{i +  022) (7.41)

to give
Ml

A q = 8 ' ^  J
j= o

(7.42)

The Euler-M acLaurin expansion [78, 79] for large J  is used to  w rite the 

normalized diniensionless to ta l cross section /Iq as an  in tegration  over ./:

{ 8(r'i +  7-2) — •

(7.43)

(7.44)

Similarly the im aginary spin average helicity non-flip am plitude Imc/)_[ is 

reconstructed by substitu ting  Eciuation (7.39) into

Ml
E
j=o

/ A
Im 0+ =  ^  J  jo.Q + 05̂  +  05̂ 1 + 022} I 1 — -

to  give

Im I
rMi

16

M l 12(ri +  rs) -  (2r2 +  n ) ^ M l  +  'T2C"
4 24

M l

(7.45)

d J  ( (ri +  r 2) J  -  (2r2 +  r i ) ^  +  r 2 ~ J ^ \  (7.46)

(7.47)
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The diinensionless norniahzed elastic cross section Eg,, by substituting 

Ecjuations (7.39) and (7.40) into

M l

E
j = o

is reconstructed:

Eel ^  |4(r i  +  r2) 'A/i'-(ri +  r2)r2CMf +  ^ M f |

The modified imaginary single-flip amplitude Im 0s is reconstructed by sub­

stituting Equation (7.40) into

Ini05 = ”  8

leading to

=   ̂ P.51)

For large J  tlie modified imaginary single-flip amplitude is written as

An expression for the equality multiplier /j is found by solving Equation (7.49):

1/2
M l  {l -  +

8 {Ee, -  (4 (n  +  -  (n  +  T2)r2CMf  + M f ) } ‘
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Rewriting the modified imaginary single-flip am plitude one obtains,

2 /“2 \  "I 1 /2

Ini05 ~  | S e , -  (^4(n+r2) 'A/?-(r i+r2)r2CMf + ^ M f j |

The equality multipliers, r \  and r 2 , are found by solving Equations (7.44) 

and (7.47). The solutions are given by

(1 -  3Ini0_^/Ao) 
36(1 -  2 In i0+ M o)^

and

r-2 = ---------------------------- ^ (7.56)
72(1 -  2 Im 0+ /A o)^

where C =  The equality nmltiplier /j, w ith solutions for ri and r 2 , is

expressed as

 ̂ 9(/lo — 2 Ini(^+) ^ 1  — 2 Ini(/)+/.4o +  36 I ixiiP ^ / A q ^

2AoC^72Ee, -  2 ^ 2 ^ / ( l  -  2 Im 0 + M o )

The oj)timized modified imaginary single-flip amplitude, expressed as a func­

tion of 7’i, 7'2 and f j ,  becomes

 ̂ ~ (A ) -2 In i ( / )+ )  \ / l / 2 - 2 ( l - I n i ( / ) + / A o )  In i0+
Ini(/)5 = -------— — ---------'  (7.58)

4 ^ 0  C  ^ 3 6 E e , - . 4 2 C / ( l - 2 I m 0 + M o )

with

=  (7.59)
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For low inoiiientum transfers the imaginary spin average non-flip amplitude 

Im0_|_, expanded to order t, is written as

I m 0 + ~  Y +

Under this approximation the maximinn J  inside the interior unitarity  class 

is independent of t and in the limit t —> 0 the number of partial waves is 

finite where

' - ^ m a x  —  Y  1 2 . 9  ^  • C ^ - 6 1 )

The ecjuality multipliers in the low t limit become

/4o f l + 3 g t \  r-7

"  =  W e  [ - j - ) '

and

d = - /--■ -  (8 +  9((16 +  9s ())‘'" ■ (7.64)
2^/72E„ -  2A^„/(gk^)

The upper l)ound on | Im rsI, where | Inir’s] =  m.p \ Ini05|/(A,’ Im 0+), can be

expressed analytically:

nip kg
2Aq \

w'here

ISEei -  ^ H t)  (7.65)
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The variable h{t)  is finite a t t  =  0 and changes ‘slowly’ over the CNI region. 

Figure 7.1 shows the behaviour h{t)  over the range t  E [0, —0.01] (G eV /c)^, 

y /s  =  19.4 — 62.5 GeV. W riting Aq =  and Egi =  k'^aei/n, enables

the bound on | In irsI to  be expressed as

I T 1 /  [g [36ngae\I Im rsI < m p y -  I —-^1--------11 x h{t ) . (7.67)

A similar bound can be obtained if the un itarity  constrain ts are excluded [83].

5 . 4

-Z/ 6.2 _ ., -2y g: GeV ^
6

Figure 7.1: Behaviour of h{t)  over the  CNI region.

The reason why the bound is similar is related to the fact th a t the inequality  

multipliers are equal to  zero inside the interior un ita rity  class. Setting the
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inequality multipliers equal to zero is like having no unitarity constraints in 

the system.

3.1 Results

The value of the bound on | ImrsI is given in Tables 7.1 and 7.2 plus the 

values of the equality multipliers. The most noticeable feature of this new 

bound on [bnrsl  is its size at low momentum transfers, having a value of 

0.89 at y/s =  52.8 GeV, t = —0.001 (GeV/c)^. The extra constraint Aq has 

a desired efl'ect on the bound, reducing to a value less than unity in the CNI 

region.

Table 7.1: l lmrsj  optimized imder Im0_j., Utot and unitarity inside the 

interior region at i = —0.001 (GeV/c)^.

(GeV) r\ r-i 'An ax 1 Im rs

19.4 -12 .54 12.77 90 81 0.97

23.5 -12.56 12.79 117 98 0.92

30.7 -12.02 12.24 158 131 0.92

44.7 -11.22 11.44 217 195 1.05

52.8 -11 .53 11.76 293 231 0.89

62.5 -11 .56 11.79 358 276 0.86
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Table 7.2: Ilm rsI optimized under cTei, Ini0+, cTtot and unitarity inside the 

interior region at t = —0.01 (GeV/c)^.

(GeV) r\ T2 ^max 1 Im rsl

19.4 -1 .25 1.49 85 81 0.97

23.5 -1 .05 1.27 111 98 0.91

30.7 -1 .00 1.22 150 131 0.92

44.7 -0 .92 1.14 204 195 1.05

52.8 -0 .95 1.17 276 231 0.89

62.5 -0 .94 1.18 337 276 0.86

Fhe optimized partial waves, at y/s = 52.8 G eV  and t = —0.001 (GeV/c)^, 

are shown in Figures 7.2 and 7.3. Both partial wave series term inate at 

J  = 231 which is the upper J  limit, M\, for the interior im itarity class / .  

W hen considering both the interior and boundary unitarity classes, values of 

J  >  M\ are perm itted.
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Figure 7.2: af, {k =  0,1,11, 22) and a^i optimized under Im 0+, Utot and 

unitarity in the interior class; ^/s = 52.8 GeV, t = —0.001 (GeV/c)^.
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Figure 7.3: a{ {k =  0,1,11,22) and a^i optimized imder a^i, Im 0+, (Jtot and 

unitarity in the interior class; ^/s =  52.8 GeV, t =  —0.01 (GeV/c)^.
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The bound on | Im \, under the approximation

(7.68)

w ith  n io n ie n tiu n  tra n s fe rs  in  th e  CNI reg io n  c a n  b e  ex p re ssed  a s

ImrsI < mp 'ifi ^ (7.69)

and in the zero nioinentum transfer hniit, f ^  0 , the bound on |I m r 5 | is 

finite and can be expressed analytically as

This approximation generates a ‘stricter’ bound on | ImrsI which is shown 

in Table 7.3 over the CNI region. The boiuid is considerably lower than  the 

first bound obtained when the system was constrained by the total elastic 

cross section and by partial wave unitarity; 108.0 compared to 0.84 at ^ /s  =  

52.8 GeV, i =  -0 .001 (G eV /c)^

The bound can be reduced further by considering the behaviour of the 

polynomial

where Oi =  ( r i+r2)  ( l - ( r i + r 2 ) ) ,  02 =  r 2 C (2 (r j+ r 2 ) - 1 ) / 4 - 1/(64/:^^), 0 3  =  

C/(256/y^) — r|C^/16 and 0 4  =  —C^/(64/y)^. The interior unitarity  class 

dehned in Equation (7.27) can be redefined as

(7.70)

—  0\ a2 ds + 5,4 (7.71)

/ ^ ^ { J | / 2 ( J ) > 0 , / - / ,  = 0} . (7.72)
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Table 7.3: 1 Im rslniax, w ith an approxim ation for g, over the  C NI region.

v/^ (GeV) t =  0 (GeV/c)2 t =  -0 .001  (GeV/c)2 t =  -0 .0 1  (G eV/c)2

19.4 0.803 0.805 0.825

23.5 0.805 0.808 0.827

30.7 0.819 0.821 0.842

44.7 0.839 0.841 0.864

52.8 0.841 0.843 0 . 8 6 6

62.5 0.846 0.848 0.871

I 'h e  value of J  foiuid to  satisfy f i i J )  > 0 was foiuid to  be

w ith 772̂  set to  unity. The polynom ial / 2 (</), shown in Figure 7.4, can be plot 

by substitu ting  the munerical values for r i ,  ra and j3, a t ^/s =  52.8 GeV and 

t =  —0.001 (G eV /c)^. The m aximum J ,  w ith rj^ =  1, a t y/s =  52.8 GeV 

is 23f. T he m axim um  J  for / 2 (./) >  0, from Figure 7.4, is 227, im plying 

t]2 =  0.99. T he interior un itarity  class , te rm inating  a t J  =  227, is reduced 

by a small m m iber of partia l waves. The effect of th is reduction of partia l 

waves on the boiuid is slight, approxim ately 772 tim es the  original bound. 

This reduction can be applied to  the bound all energies over the CNI region
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to give a slight improvement on the present | ImrsI bomid.

f 2

0 . 1 5

0.  05

100 150 2 5 050 2 0 0

- 0 . 0 5

Figure 7.4: The behaviour of the polynomial / 2 (J)-

4 Solution of Interior and Boundary Classes

Consider the set of classes I  U B = U U U B ^ . The boundary 

unitarity constraints are

B^  = {J |a fi -  =  0, Mi +  1 < J  < M2 } (7.74)

and

B^° =  [j \ai  = 0, A/i +  1 < J  <  M2 } (7.75)
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where A/j =  Floor[y^4/C(l +  r i / r 2 ) ], =  Floor[Y^8/C] and C =

Tlie contribution to | ImrsI from the boundary unitarity  class B  can range 

from 0% —100%. The system with four constraints, when interior and bound­

ary unitarity classes are included, is solved in the same way as described in 

Chapter 6. W ith four constraints, three equality and unitarity, the boundary 

unitarity class is not solvable. The way to solve the system is to convert the 

three equaUty constraints into one equality constraint- Sgi. To achieve this 

the numerical method in Chapter 6 can be employed. The contribution to 

I Im /'sl from the bomidary unitarity class can be selected w ithout violating 

any of the constraints and this contribution can be made arbitrarily small.

Consider the case with =  O.lEgi) ^ei ~  O.QEei, at = 52.8 GeV 

and t =  —0.001 (GeV/c)^. The maxinuun contribution to | I m r 5 | is 34.7 

where IlnirgI < 0.5 and | I m r f |  <  34.2. The case with =  O.OlSei, 

Eg, =  0.99Eei. leads to | ImrsI < 11 .6  where | ImrgI <  0.8 and | I m r f  | <  10.6. 

Finally, the case with E^ =  O.OOlEei, Eg, =  0.999Egi, leads to l lmrgl  <  4.3 

where IlmrgI < 0.8 and | l m r f |  <  3.5. The partial wave amplitudes, afj 

and a-2], in the boundary interior class, are shown in Figures 7.5, 7.6 and 

7.7, where 232 < J  < 2359. The bound on | I m r ^ |  falls when the fraction of 

Eel in the boundary im itarity class is reduced. The partial wave amplitudes 

in this region also become smaller in amplitude and contribute less to the
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bound on | In ir ^ | .  The fraction of Sei in the boundary u n ita rity  class can be 

reduced fu rther and further un til the contribution from  th is class to | Im r 5 | 

is negligible in  comparison w ith  the contribution from  the in terio r u n ita rity  

class. In  th is lim it the bound has the expression

I Im rs I <  m p -  i j  x h { t ) . (7.76)

or, under the approxim ation g ~  cr^j,t/(327rcrei),

I Im rs l <  mp  x h{t)  (7.77)
V 54

where

hi t )  =  +  . (7,78)
(1 +  gt)

The bound is identical to the bound when only the in terio r im ita r ity  class is 

considered. Table 7.3 shows the bound on | In i rsI over the CNI region under

the approxim ation g ~  /(327r(Tei)- In this system of four constraints,

when the in terior u n ita rity  class is considered, the solution is an analytic one 

and the maximum J  in  this class is much lower than the cases studied in  

Chapters 5 and 6. The fact tha t the maximum J  is much lower ensures tha t 

the siun

= . P-79)

te rm inating at J — J^ax =  231, is fin ite  and the upper bound on | Im rs ] is 

less than unity.

128



0 . 0 0 8

0 . 0 0 6

0 . 0 0 4

0 . 0 0 2

J
5 0 0 1 0 0 0  1 5 0 0  2 0 0 0

0 . 0 0 0 0 6

0 . 0 0 0 0 4

0 . 0 0 0 0 2

5 0 0  1 0 0 0  1 5 0 0  2 0 0 0

Figure 7.5: and a^i optimized under (Tei, Im 0 + , atot and  un ita rity

in the boundary  un itarity  class w ith =  O.lEgi; y /s  =  52.8 GeV, 

t =  -0 .0 0 1  (GeV/c)2.

a ĵ
0 . 0 0 2 5
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Figure 7.6: afj and optimized under (Tei, Im 0 + , <7tot and  un ita rity  

in the boim dary un itarity  class w ith E^ =  O.OlEei; =  52.8 GeV, 

f =  -0 .0 0 1  (GeV/c)2
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Figure 7.7: afi and a^i optimized under cTei, Im0_|_, (Jtot and unitarity in 

the boundary unitarity class with =  O.OOlEei; y /s  =  52 .8  GeV, t = 

-0.001 (GeV/c)2.
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In the Thesis the optimization technique of Lagrange rnultiphers was 

successfully used to derive bounds on the amplitude | Im rsI in the Coulomb 

Nuclear Interference region. The value of each of the bounds differs and the 

bound on | ImrsI improves as more constraints are added to the system. In 

Chapter 5 two constraints, the elastic cross section expressed as an equal­

ity constraint and unitarity expressed as inequality constraints, are used to 

bound I Im \. The unitarity constraints split into two classes; an interior 

unitarity  class and a boundary imitarity class. W hen optimizing | Im rs |, un­

der the elastic cross section and unitarity, the interior unitarity  class is empty 

and the only non-empty unitarity class is the boundary unitarity class. The 

system in the boundary unitarity class consists of one equation expressing 

the normalized dimensionless elastic cross section, Sei =  in terms of

the eciuality multi])lier l5\

Sei «  ^  -  8,d/,(A/) +  \ ^ f h { M )  +  h [ M )  -  ^  h { M )  +  ^  h { M )  (7.80)

where the / / s ,  given in Equation (5.42), are Jacobi-Elliptical integrals. The 

ecjuation for Eei, which could not be solved analytically because of the na­

ture of the Jacobi-Elliptical integrals, was solved using m athem atica 3.0. 

When there is one unknown in the system of Equations the solution can 

be easily computed with m athem atica 3.0. The bound on | Im rsI, 108.1 at 

t = —0.001 (GeV/c)^ and 11.5 at t =  —0.01 (GeV/c)^ with ^/s  =  52.8 GeV, is 

not a ‘s tric t’ bomid and in order to use the pp analyzing power as a polarime-
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te r in the  Coulomb N uclear hiterference region a boim d of 4.48% on | InirsI 

is required. T he value of the  bound over the range y /s  =  19.4 — 62.5 GeV, 

a t t  =  —0.001 (GeV/c)^ and t  — —0.01 (GeV/c)^, is shown in Table 5.4 and 

5.5.

A new constrain t, the im aginary spin average non-flip am plitude ex­

pressed as an  equality constraint, is added to  the  system  w ith  the elastic 

cross section expressed as an  equality constrain t and u n ita rity  expressed as 

inequality constraints. The un itarity  constrain ts again split into different 

vuiitarity classes. Three different un itarity  classes are considered; the  inte­

rior class, the  boundary  class and the union of the interior and  boundary  

classes. The system  can be solved analytically when the interior un ita rity  

class is considered and a bound on | InirsI is derived:

where C =  T he bound on | Im rs| has the  value 87.9 a t  ̂ =  —0.001 (GeV/c)^

and 7.7 a t t =  —0.01 (GeV/c)^ w ith y /s  =  52.8 GeV. The values of the  bound 

over the Coulomb Nuclear Interference in the range y /s  =  19.4 — 62.5 GeV 

are {)resented in Table 6.2. W hen only the boundary  un ita rity  class is consid­

ered no solutions are possible because inside tfie boundary  class the  im aginary 

spin average am plitude is negative. W hen b o th  the  interior and  boim dary 

classes are considered there are two sim ultaneous equations, one equation 

for the elastic cross section and the other equation for the  im aginary spin

( 7.81)
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average am plitude. Inside the boundary lu iitarity  class the  two equations 

contain Jacobi-E lliptical integrals. The equations, inside the  boundary  uni- 

ta rity  class, are not solvable w ith m a th em atica  3 .0 ; a system  of equations 

w ith  more th an  one variable is imsolvable in the boundary  un ita rity  class. A 

num erical technique, designed to  solve the system  inside the  boundary  uni­

ta rity  class by reducing the two sim ultaneous equations to  one equation, 

is successfully used to  solve the  system. This leads to  a new im proved 

bound on the  am plitude Iln irsI; 59.2 a t t =  —0.001 (GeV/c)^ and 5.1 a t 

f  =  —0.01 (GeV/c)^ w ith ^/s  =  52.8 GeV. The contributions from th e  uni­

ta rity  classes to  the bound on | Im rsI are given in Tables 6.4, 6.5, 6.6 and 

6.7.

In the  final chapter, four constraints are included in the  system; the  elas­

tic cross section, the  im aginary spin average am plitude and the to ta l cross 

section, all expressed as ecjuality constraints, and un ita rity  expressed as in- 

eciuality constraints. The un ita rity  classes considered are the  interior class 

and the  union of the  interior and boundary im itarity  classes. The interior 

u n ita rity  class can be solved analytically and a new, much improved, bound 

on I In irsI is derived:

I Im rsl <  m p  ^  ^ (7.82)
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This new bound changes very Uttle over the Coulomb N uclear Interference 

region and its value is 0.89 a t y/s  — 52.8 GeV. The bound, com puted over the  

range y/s  =  19.4 — 62.5 GeV, is shown in Tables 7.1 and 7.2. The interior and 

boundary  classes, together, lead to  an upper bound on | Im rsI identical to  the 

boiuid when ju s t the interior class is considered. This is achieved by reducing 

the  contribution  in the  boundary  un itarity  class, w ithout violating the  bound­

ary un ita rity  constrain t, until the contribution from the  boundary  class is 

negligible in com parison to the contribution from the interior un ita rity  class. 

The experim ental values for the observables have errors which will have an  ef­

fect on the  I Ini rsI bomid. The approxim ation g ~  a^Q^/(32nae\), reduces the  

final bound on | InrrgI; 0.89 to  0.84 a t ^ /s  =  52.8 GeV, f =  —0.001 (G eV /c)^. 

This approxim ation leads to  a reduced num ber of experim ental quantities in 

the expression for the  bound and consequently the  error is reduced. A sum ­

m ary of the bom ids from eacli un itarity  class in the  three studied system s, 

a t y/s  =  52.8 GeV and t =  —0.001 (GeV/c)^, is presented in Table 7.4. The 

bound of 0.84 is a huge im provem ent on the first bound of 108.0. A lthough 

the  value of 0.84 is above the  threshold value of 4.48% which is necessary in 

order to  use the  pp  analyzing power as a polarirneter in the Coulomb N uclear 

Interference region w ith a beam  polarization error of, a t m ost 5%, it does



lim it the  size of the analyzing power. As 0.84 is less th an  ACp/2 =  0.896, the  

analyzing power in the CNI region is positive.

W ith  more constraints in the system  an improved bound would resu lt al­

though  to  include a new constrain t its behaviour m ust be known experim en­

tally. In the event of future collider experim ents m easuring pp  observables, a 

g reater experim ental knowledge of pp  observables will be known m ore accu­

ra te ly  a t higher energies and over a wider m om entum  transfer range. W ith  

th is knowledge new constraints can be added to  the  Lagrange function and 

an improved bound less th an  or ecjual to  4.48% m ay be found.

Tlie optim ization technique of Lagrange nuiltipliers, applied to  elastic 

l)roton scattering in the Thesis may also be a]>plied to  o ther physical prob­

lems. The m ethod can be used to  optim ize a function in a system  where a 

num ber of constraints are given. The constraints can be b o th  equality  and 

inecjuality c'onstraints. A pplications of optim ization technicjues can be found 

in pul)lic transport models [84] where the Lagrange m ultiplier m ethod is used 

to  maximize the flow of traffic th rough a town center w ith a m inim um  cost, 

and in acoustic problems [85] where an optim ization technique is used to  

o])timize the acoustical absorption characteristics of an enclosure.

The aj)proved P P 2 P P  RHIC experim ent [14] will study, in detail, elastic 

pp  collisions over the Coulomb Nuclear Interference region w ith  center-of- 

mass energies in the range 50 — 500 GeV. An im portan t issue a t RHIC is
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polarinietry. It will be interesting to  learn w hat polarim eter will be used in 

the PH EN IX , STAR and P P 2 P P  experim ents and w hat the  fu ture will be for 

o ther polarim eters which have been investigated theoretically  and experim en­

ta lly  including the  elastic p C  and elastic pp Coulom b Nuclear Interference 

I)olarim eters discussed in C hap ter 1.

Table 7.4: Sum m ary of the bounds on | I m r 5 |; a t y/s =  52.8 GeV and t =  

-0 .001  (GeV/c)2

C onstrain ts U nitarity  Classes 1 Im  r 5 |max

CTei and un itarity Boundary 108.0

fXei, In i0+  and un itarity Interior 87.9

Interior and B oundary 59.2

(Tel, (7tot and im itarity Interior 0.84

Interior and B oundary 0.84

136



Appendix A

Partial Wave Phase Shifts

In the elastic region the partial wave am plitudes, expressed in term s of the  

partial wave phase shifts, are given by [86]

(A .l)

and

f i y  =  1  [l ~  cos 2(5̂  +  z sin 2 ^ 2  cosa'^j

j ’22 ~  [ 1  ~  (^cos252 ~  i sin 2 (^ 2  cosa'^^j ,

1
/ 2̂ j =  ^ sin 2 S 2 sin a'"

(A .2)

(A.3)

(A.4)

(A.5)
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A ppendix B

M athem atica Code

In[l]:= (* Sample Mathematica file, t=-0.001, W=52.8 *)

In[2]:= Q=Sqrt[cl + c2 J'2 + c3 J~4 + c4 J~6]
Out [2]= (cl + c2 J"2 + c3 J'4 + c4 J''6)

In[3] := fl=J/ Q 
il=Integrate[f1,J ,a , b] ;
Out [3]= (J/ (cl + c2 J~2 + c3 J~4 + c4 J ''6) )

In[5] := fll=J/(Q-'2) 
i2=Integrate[f11,J ,a , b];
Out [5]= (J / (cl + c2 J'-2 + c3 J~4 + c4 J“6 ) )

In[7]:= f2=J~3/Q 
i3=Integrate[f2,J ,a ,b] ;
Out[7]= (J~3 / (cl + c2 J~2 + c3 J~4 + c4 J~6) )

In[9]:= f22=J'3/( Q~2 ) 
i4=Integrate[f22,J,a, b];
Out [9]= (J~3 / (cl + c2 J~2 + c3 J~4 + c4 J~6) )
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In[ll] :=f3=J-'5/Q 
i5=Integrate[f3,J,a, b];
Out[11]= (J'S / (cl + c2 J~2 + c3 J~4 + c4 J*6 ) )

In[13]:=f33=J"5/( Q~2 ) 
i6=Integrate[f33,J,a, b] ;
Out [13]= (J~5 / (cl + c2 J‘2 + c3 J~4 + c4 J~6 ) )

In[15]:=f4=J-7/Q 
i7=Integrate[f4,J,a, b];
Out [15]= (J'7 / (cl + c2 J'2 + c3 J~4 + c4 J~6 ) )

In[l?]:= f44=J“7/( Q~2 ) 
i8=Integrate[f44,J,a, b];
Gut[17]= (J~7 / (cl + c2 J~2 + c3 J~4 + c4 J'6 ) )

In[19]:=
E0= M ~2 /2 - 8 /î il + 16 l3~2 i2 + i4 -1/4 C i6 + 1/64 C~2 i8;

In [20]:= cl=16*/r2 ; 
c2=l;
c3=-l/4 C ; 
c4=l/64 C~2 ;

In[21]:= t=-0.001;

In[22]:= mp=0.93B; W=52.8; k=Sqrt[(W/2)~2 - mp~2]; C= (-t/k~2); a=0; 
b=Floor[Sqrt[8C]]; A=k~2/Pi * (42.906/.3894); El=k~2/Pi * (7.407/.3894); 
g=(12.87/2); phi=k*W/(4*Pi)* (42.906/.3894)*(1 - (-t*g));

In[23]:= FindRoot[E0==E1,5, 1000,5000, Maxlterations->400]
Out[23]= 6 4372.74929761300423 + 8.36339296256140229*~-9 I

In[29] := /:/l=4372.75 
Out[29]= 4372.75

In[30]:= (* double check solution *)
El
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EO / . [ 3 ^  f3l 
Out [30]= 4214.59
Out[31]= 4214.59297107105168 - 1.18713820234705313*"-8 I

In[32]:= hl=J/i8(3l) (1 - C/8 J~2); 
nul=l/2(Sqrt[l + 4 bl~2] -1 ); 
all=nul/(l + 2 nul); 
bll=bl/(l + 2 nul);

(* Im r5 Bound *)
imr5=inp/k *Sum[J"2*bll*(l - ( / 8 J"2), J,a,b]/(phi)
Out[33]= 108.061
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A ppendix C 

Euler-MacLaurin Expansion

The Euler-M aclaiirin in tegration forniula allows a  sum  to  be w ritten  as an  

integral:

E  f  (')
1 = 1

f  (x) dx  +  i  [ /  {m)  +  / ( ! ) ]  +  (m) -  f  (1)]

B4 ( 0 )

4!

. . .  +

f  (m) -  f  (1) + Be (0 ) 

6 !

2 !

f  (m) -  f  (1)

( C . l )

where, /'(???) =  f  and i?2n (0) =  B 2n are Bernoulli num bers

wnth D 2 =  1/6, i ? 4  =  —1/30, Be =  1/42, Bg =  —1/30, Bio =  5 /66, 

Bv2 =  —691/2370, B \ 4  =  7 /6 . The following sum m ations can be w ritten  

as polynomials;
m  1

^  (C.2)

m  1

^  -  m  {rn +  1) {2m  +  1)
t=\ ^

(C.3)

141



m  1

/=1  ^

rn  1

^  — m  [m +  1) {2m, + 1) (3m^ +  3m — i j
/=i 30

= ~  rn  ̂{m +  1)  ̂ +  2m — l)12

and for large m we can approximate the sum as

m 1y r ̂  — m”+^ .

(C.4)

(C.5)

(C.6)

(C.7)
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