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Abstract

Random nanowire networks (NWNs) are promising synthetic architectures for non-volatile mem-

ory devices and hardware-based neuromorphic applications due to their history-dependent re-

sponses, recurrent connectivity, and neurosynaptic-like behaviours. Such brain-like functions occur

due to emergent resistive switching phenomena taking place in the interwire junctions which are

viewed as memristive systems; they operate as smart analogue switches whose resistance depends

on the history of the input voltage/current. We successfully demonstrated that NWNs made with a

particular class of memristive junctions can exhibit a highly-selective conduction mechanism which

uses the lowest-energy connectivity path in the network identified as the “winner-takes-all” state.

The complex and adaptive behaviour of these junctions lead the system to channel the current

through a single conductive path that spans the source-drain electrodes sandwiching the NWN.

But these complex networks do not always behave in the same fashion; in the limit of sufficiently

low input currents (preceding this selective conduction regime), the system behaves as a leakage

capacitive network and its electrical activation is driven by cascades of breakdown-based switch-

ing events involving binary capacitive transitions. Understanding these two regimes is crucial to

establish the potential of these materials for neuromorphics and for this we present two computa-

tional modelling schemes designed to describe the capacitive and memristive responses of NWNs

interrogated adiabatically by voltage/current sources. In particular, our capacitive network model

is regarded as a parallel RC circuit, with a leakage current term, to simulate their non-ideal ca-

pacitive properties. Our findings reveal the fault-tolerant aspect in the slow-switching dynamics of

memristive networks in contrast with the abrupt activation response obtained in the fast-switching

process of binary capacitive networks. Our results are corroborated by experimental evidence that

reveal the fine electrical properties of NWN materials in their respective formation (capacitive)

and conducting (memristive) stages.
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I. INTRODUCTION

The study of network systems plays an important role in numerous scientific arenas (e.g.

information technology, neurobiology, materials science, etc.) and provides valuable insights

into a diverse range of complex phenomena that depend on their intricate connectivity

patterns [1, 2]. Essentially any many-body system can be outlined as a network of nodes

and edges and this includes large-scale grids such as the World-Wide Web as well as the

smallest motifs in nature such as atoms arranged on a crystal lattice. A particular aspect

of complex network systems is that the perfect knowledge of its individual parts will not

necessarily lead to a perfect understanding of the whole system’s behavior especially if its

units are adaptable to changes in the environment [1, 3, 4]. Examples of complex adaptive

networks are climate, ecosystems, financial markets, and perhaps the most fascinating of

all, the human brain [5]. The latter is a highly complex machine formed by billions of

neurons which are disorderly interconnected by trillions of synapses. Our brain has unique

abilities that outperform by far the fastest computers on the planet such as ultra-fast sensory

processing, high-level pattern recognition, and the ultimate skill of learning from experience.

Brain activity is also incredibly energy-efficient; it consumes about 20 W, equivalent to a

dim light bulb [6]. Such attributes have inspired the creation of the so-called neuromorphic

(brain-like) devices that have the potential to revolutionize computing technology with the

next-generation of microprocessors that will mimic brain functions[7–10].

To date, there has been numerous attempts to emulate brain-like processing using con-

solidated very-large-scale integration (VLSI) hardware[11]. It turns out that designing

neuromorphic-based devices out of conventional CMOS technology can be extremely com-

plex and expensive as a result of their rigid processing architecture combined with the

characteristic von Neumann bottlenecks. Nonetheless, there are potentially cheaper and less

complex platforms devised from a material science perspective that can be used as bench-

marks for neuromorphic technologies. One of them consists of using smart synthetic mate-

rials composed of an entangled network of core-shell nanowires (NWs) that learn and adapt

in response to external stimulation resembling in many aspects synapses of biological neural

networks[12–14]. These networks typically consist of randomly dispersed metallic nanowires

coated with an active dielectric shell from which new and intriguing electronic properties

emerge; these materials are shown to behave as memristive (MR) systems in which their
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electrical resistance depends on the history of the applied current or voltage drop[15, 16].

This is the key circuit ingredient that rules the learning process of these networks and their

plasticity-like attributes.

Nanowire networks (NWNs) are promising MR architectures for neuromorphic ap-

plications due to their connectivity and neurosynaptic-like behaviours [12, 17, 18].

The latter takes place on the insulating layer coating intersecting wires in which a

metal/insulator/metal (MIM) junction with MR properties is formed. A single MIM MR

junction manifests complex non-equilibrium dynamics that are central for the neuromor-

phic capabilities of the whole network. The mechanism behind such dynamical behaviour

is not unique and it depends on the material characteristics of the junction. Examples of

MR materials [10] are transition metal oxides, amorphous-to-crystal phase materials such

as GeSbTe, and polymeric matrices sandwiched by metals (e.g. Ag@PVP plates). During

the breakdown of a MIM junction, the growth of a conducting filament (CF) bridging the

metal plates takes place and this can be regulated by distinct mechanisms [16, 19–21] includ-

ing thermochemical, electrochemical metallization, and valence change. With the filament

gradual growth, a drastic reduction in the characteristic resistance of the junction can be

measured.

In a recent work, we have reached unprecedented levels of control over the transport

dynamics of NWNs in which we successfully set them to respond in a similar fashion as its

fundamental units, the junctions [22]. Specifically, we demonstrated a self-similar scaling

of the conductance of networks and the junctions that comprise them. We showed that

this behaviour is an emergent property of a junction-dominated network that contains a

particular class of junctions whose conductance grows supra-linearly with the injected cur-

rent. These junctions enable the development of the so-called “winner-takes-all” (WTA)

conducting path that spans the entire network, and which corresponds to the lowest-energy

connectivity path [22, 23]. The full understanding of how WTA paths emerge provides

unparalleled insights into the dynamics of electrically activated networks. However, the fea-

tures of this activated regime is highly dependent on a precursor formation stage in which

the network operates as a capacitor with almost no current flow. This regime is evident when

the network is interrogated by sufficiently low currents (just a few pA); it characterizes a

transient stage in which the entire NWN connectivity frame is electrically probed prior to

selecting its least-resistance paths that will carry most of the current flow. Therefore, it is
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crucial to understand (and to describe) not only the MR properties of NWN samples but

also their capacitive features since these will practically define the most conductive regions

of the network and its potential for WTA propagation.

FIG. 1: (Top panels) Circuit sketches representing a NWN being described by a (a) capacitive model

(CPM) and a (b) MR model (MRM). Each lumped circuit element is assigned to model the electrical

characteristics of the interwire junctions in their respective formation (capacitors) and adaptive conducting

(memristors) modes. Horizontal green lines represent metallic electrodes. (Bottom panels) PVC SEM

images of Ag NWN samples subjected to distinct I-V characterizations. In (c), the image was taken by

holding the source voltage at 2 Volts and setting a leakage current of few hundreds of pA. The network

dimensions are 200 x 200 µm and the white scale bar corresponds to 20 µm. In (d), the image was taken

from a full I-V sweep with a limiting current compliance of 500 nA. The network dimensions are 100 x 100

µm and the white scale bar corresponds to 2 µm. Darker wires are grounded to the electrodes meaning

that their junctions were optimized in response to the given excitation. Almost the whole network is

featured in the capacitive/formation regime whereas a single WTA path is contrasted in the

memristive/conducting regime. More details on this experiment can be found in [22].

This work extends our knowledge on the development (and robustness) of conductive

paths in complex NWNs by investigating their characteristic MR and capacitive behaviours.

NWs connected by either capacitive or MR junctions are complementary models whose ap-

plicability depends on how the networks are interrogated. The capacitive response is dom-

inant when the network is interrogated by extremely low currents (∼ pA); in this regime,

each junction is represented by a capacitor which breaks down if the voltage drop across it

exceeds its characteristic threshold voltage. Once this occurs, the junction becomes a mem-

ristor at a high-resistance state (HRS) and sufficiently small currents can flow through it.
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As more current is adiabatically sourced onto the network, the MR state of these junctions

can be continuously evolved up to their respective low-resistance state (LRS). The outcomes

of both capacitive and MR descriptions were systematically tracked and compared in this

work by means of accurate multi-scale simulations. The results reveal great contrast in the

dynamics of networks made of junctions that either have their state instantaneously flipped

during dielectric breakdown (capacitive) or evolved continuously from HRS→LRS (memris-

tive). These findings are consistent with direct observations of the electrical activation of

the networks using passive voltage contrast (PVC) technique[24] (cf. Figure 1).

Our findings highlight the main differences between a breakdown-based switching process

(involving binary capacitive transitions) and an gradual switch (involving analogue MR

components) in complex NWN systems. NWNs made of slow-switching elements exhibit a

continuous spectrum of conductance states bounded only by the junction cutoffs Γoff = 1/Roff

and Γon = 1/Ron. This mechanism is shown to be highly selective, funnelling most of

the sourced current through a single path (WTA state) of NWs bridging the electrodes.

NWNs composed of fast-switching elements are not as selective however, with a much larger

number of junctions playing an active role in forming a pathway between electrodes. We

show that NWNs containing fast-switching elements evolve in a discrete fashion with the

system alternating between stages of idleness and activity. While active, one can characterize

the network dynamics by computing cascade events (or avalanches) comprised of clusters

of junctions being activated simultaneously and their respective time durations. On the

other hand, slow-switching junctions undergo a whole spectrum of conductance levels as

the network is gradually excited by the current source. In this way, a binary cascade-like

characterization cannot be conducted without the consideration of a (arbitrary) threshold

parameter that classifies the occurrence (or not) of an avalanche event. Furthermore, we

show that the slow-switching dynamics are fault-tolerant in response to perturbations, i.e.

the network transport response is robust against junction failure. Only a minute increase

in sheet conductance occurs at the moment a WTA path activation is slightly perturbed in

the network. The fast-switching dynamics however are susceptible to larger-scale junction

failures, requiring up to 55% additional switching events to form a continuously active

pathway between electrodes.
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II. COMPUTATIONAL METHODS

To illustrate the nonlinear mechanisms governing the formation and conduction processes

in disordered NWNs, we developed two modelling schemes that will describe the network

dynamics in the two distinctive regimes: a (i) fast-switching capacitive model (CPM) and

a (ii) slow-switching MR model (MRM). Both models have already been used to capture

the main dynamical features of numerous NWN samples and their outcomes are successfully

supported by experimental data [22, 25, 26]. However, these models were never closely

compared and, as we shall demonstrate, they will unveil distinct switching behaviours that

play an important role in the synaptic-like response of electrically stressed NWNs.

All our NWNs are characterized by means of numerous I-V sweeps with a current limiting

compliance being gradually ramped up during SET procedure. CPM accounts for the initial

formation stage of the network in which it experiences residual amounts of input currents and

all its interwire junctions are in their pristine insulating state. Therefore, in this scheme, the

NWs are treated as equipotential wire segments and their connections as binary capacitors.

Depending on the voltage drop across the capacitive junction, it can be either non-activated

(|0〉) or activated (|1〉). The capacitance state of a junction can flip from |0〉 → |1〉 if the

voltage drop across it is larger than its associated breakdown voltage (Vb), hence a given

junction connecting a pair of wires (n,m) can be activated if |Vn − Vm| ≥ Vb where Vn (Vm)

is the potential at wire n (m). The capacitor activation is characterized by a modification

in the capacitance value of the junction as C0
nm → C1

nm where C0
nm is an estimated quantity

determined uniquely by the characteristics of the wires and C1
nm → 0 meaning that the

junction has lost its capacitive properties and charge will start to flow through it. The

values of C0
nm are estimated by considering interwire junctions as parallel-plate capacitors

with C0
nm = C0 = εrε0A/d ∀ (n,m) pairs for the sake of simplicity. In the equation, εr is the

relative permittivity of the dielectric, ε0 is the permittivity of the air, A is the plate area,

and d is the plate separation. For our PVP coated Ag NWs, we used εr ≈ 2.5, d ≈ 8 nm and

the area of the plates can be estimated from the NW diameters which range D ∼ 60−80 nm.

Assuming an ideal square area projected from two superimposed soft-body wires, A = D2

and C0 ≈ 18 attoFarads (aF).

CPM simulation [25] begins by placing the whole capacitor network in contact with

electrodes that source and drain a certain amount of charge Q, representing the charge

7



that builds up due to the applied bias voltage. The applied charge is incremented from an

initial value Qi up to a pre-defined maximum value of Qmax in steps of ∆Q. At Qi, all

junctions are set at |0〉-state and at each charge increment the electric potential of each

wire is calculated and the potential difference across each junction is checked against the

breakdown voltage. A capacitance matrix M̂c is built taking into account the network

connectivity and the potential on each wire is obtained by solving the system of equations

M̂cV̂ = Q̂ self-consistently. This means that charge on the electrodes is only incremented

once all |0〉 → |1〉 transition activity on the network ceases.

As the input current applied on the network increases, one observes the NWN crossing

over from a capacitive to an adaptive conducting regime which is better accounted by MRM.

This is the stage in which most of the junctions in the NWN overcomes their initial for-

mation state dominated by sufficiently large tunnel barriers. In other words, these probed

junctions are now MRs and their transport mechanism is ruled by CF growth. As a result,

the NWN begins to respond as a MR network in which it self-selects the most favourable

routes for the current flow by means of least-resistance paths. We recently demonstrated

that such controlled current-flow renders a self-similar scaling of the conductance of NWNs

and the junctions that comprise them and this is the essence of the MRM [22]. It starts

by relating conductance variation with the input current in single junctions, i.e. Γj = f(I)

where Γj is the conductance of the junction expressed as a function of the input current I.

A “bottom-up” implementation approach is followed by incorporating the conductance law

for individual junctions onto networks made by an interconnect of those elements. Measure-

ments conducted in numerous junction systems including single interwire connections and

individual wires of various core-shell materials (Ag@PVP, Ni@NiO, Ag@TiO2, Cu@CuO,

etc.) revealed that Γj scales with the current as a power law (PL),

Γj = AjI
αj (1)

where Aj is a proportionality constant and the exponent αj ≈ 1. We demonstrated via

ion-drift model analogy that these quantities are respectively related to the mobility of the

diffusing charge-carriers in the junction and to the nonlinear effects caused by the strong

electric fields present in the dielectric layer [22]. The resistance of junctions can vary con-

tinuously from a HRS (Roff ∼ 104 kΩ) to a LRS that corresponds to the opening of a single

conducting channel that bridges the metal plates. The conductance of this state is set to
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be the quantum of conductance, Γon = 1/Ron = 2e2/h with e being the electron charge

and h the Planck’s constant. This junction model is then transferred to a NWN setting

which includes junction resistance (Rj = 1/Γj) and inner wire resistance (Rin) contributions

interacting into a voltage-node network frame. While Rj characterizes a dynamical quantity

in accordance to Eq. (1), Rin is fixed and it is given by Rin = ρ`/S where ρ is the wire

resistivity, ` is the wire segment length and S is the cross sectional area of the wire. These

parameters were set to reported values for Ag@PVP NWs of ρ = 22.6 nΩm and wire di-

ameters of 50 nm[27, 28]. The calculations involve iterating the amount of current sourced

at the electrodes and at each current-step, the conductance of the entire network (Γnt) is

obtained numerically. Kirchhoff’s circuit equations in matrix form M̂ΓV̂ = Î are solved to

calculate Γnt and to determine how the sourced current is distributed through the network

[22]; M̂Γ is the conductance matrix containing the network connectivity information and

characteristic conductance values, V̂ contains the potential at each node, and Î contains the

current injected/extracted at each electrode node. Therefore, the current flowing through

an interwire junction connecting voltage nodes (n,m) can be obtained as

In,m =
|Vn − Vm|
Rn,m
j

. (2)

For the first iteration, Rn,m
j = Roff ∀ (n,m) internode pairs. Once In,m is determined for all

junctions, their new conductance state is obtained using the same functional form as in Eq.

(1), i.e.

Γn,mj = Aj(In,m)αj . (3)

After updating the conductance of all junctions, the total current sourced on the electrodes

is incremented and the whole procedure of calculating Γn,mj takes place recursively until the

input current reaches a predefined maximum value of Imax. The network conductance is

then calculated for each sourced current value; such Γnt× I curves are the main outcome of

MRM.

For the sake of consistency, CPM and MRM were employed on the same NWN skeletons;

although fundamentally different, both models are set to act on the same network geometries.

Most of the simulations were parameterized for NWNs made of core-shell Ag@PVP NWs

but our implementations are transferable to any material specification.
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III. RESULTS

Figure 2(a) is an SEM image of one of our NWN sample made with Ag@PVP core-shell

NWs. This NWN has a wire density of 0.47 NWs/µm2 and the average length of the wires

is about 7µm. After conducting an image-processing procedure that recognizes the wire

objects in the image and converts their pixel information onto a mathematical graph, we

estimate that this network contains a total of 963 junctions. Figure 2(b) shows a stick

representation of (a) which was built from the resultant graph [27]. By using an identical

network geometry for both MRM and CPM simulations, the spatial fluctuations can be

removed allowing a more direct comparison.

FIG. 2: (a) An SEM image of an Ag NWN with a wire density of 0.47 NWs/µm2 and average wire length of

7µm. Electrodes are located at either sides of the network and the white scale bar at the bottom represents

10µm. (b) Stick representation of an Ag NWN sample taken from (a). Black sticks represent the Ag NWs

whereas the vertical thick green lines represent the electrodes.

The network geometry shown in Figure 2 was first set to evolve in accordance to the

MRM model from which Γnt × I curves were obtained. The NWN is continuously driven

through distinct conductive regimes and their characteristics depend on the properties of

the junctions defined by Eq. (1) [22]. This can be seen in Figure 3 which depicts the

evolution of the network conductance considering that its junctions follow a PL dynamics

with Aj = 0.05 and αj = 1.1. These values are proven to describe with great success the

MR dynamics of Ag@PVP NW junctions as evidenced by numerous experimental data [22].

Distinct conduction regimes are of note in Figure 3(a) being those (i) OFF-threshold (OFF),
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(ii) transient growth (TG), (iii) power-law (PL), and (iv) post-power-law (PPL). The OFF-

threshold region is the network ohmic response to low current levels. Here the current

flowing through junctions is not high enough to cause a drastic change in conductance and

we are going to demonstrate the capacitive properties of the network at this regime later

on. At a certain critical current, the conductance of the network increases in a nonlinear

fashion as junctions begin to improve their resistances (TG regime). Immediately after the

TG region is the PL region where the junctions in the WTA path begin to evolve. Here

there is a self-similarity between the collective network response and an individual junction

response to increasing current compliance as both systems scale with the same exponent αj

[22]. This emergent phenomenon is due to the highly selective nature of current propagation

for networks with αj > 1 in which practically all of the sourced current is channelled into

the most energy-efficient conducting path, the WTA. At this state, the NWN responds as

a unidimensional channel just as in a single junction. A visualisation of the activated wires

at the end of the PL regime is shown in Figure 3(b). These activated wires are marked in

black and they are found to carry most of the input current. This path contains 7 junctions

evolving to the LRS meaning that just 0.72% of the junctions handle most of the current-flow

workload in the PL regime. As more current is sourced onto the electrodes, other conducting

paths are enabled in a discrete fashion. The device gradually acquires a two-dimensional

character due to the formation of parallel conductive paths. About 80 supralinear junctions

reach their optimum conductive state at I = 30 u.c. allowing the network to distribute

the input current through multiple conducting paths. This is roughly 8.3% of the junctions

taking part in the conduction process.
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FIG. 3: (a) Simulated conductance versus current obtained for the image processed Ag NWN shown in

Figure 2. The curve was taken MRM. All four distinct transport regimes discussed on the main text is

depicted on panel and highlighted in different colours: (OFF) OFF-threshold, (TG) transient growth, (PL)

power law, and (PPL) post-power-law. Currents are expressed in units of current (u.c.). The junction

characteristics are set at αj = 1.1 and Aj = 0.05. The blue circle marks the point in the curve in which

the junctions comprising the WTA paths are fully optimised at I = 1.77 u.c. and Γnt = 0.013 mS. This

point marks the disruption of the PL conducting regime. (b-c) NWN skeleton in which NWs connected by

junctions at the LRS are highlighted in black and in light grey otherwise. The NWN snapshot depicted in

(c) was taken at the PPL stage at I = 30 u.c..

At low current levels corresponding to the OFF-threshold in MRM, one can expect to find

a capacitive response from the individual NW junctions coupled with some leakage current

since their dielectric coating are not expected to be an ideal insulator; a small DC current

can always leak through the dielectric material. To account for this dual response, CPM
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is modified to incorporate leakage current in capacitive networks by considering a parallel

RC circuit as a proxy for low current flow in NWNs. To simulate leakage currents of the

order of pA, the resistance of this dummy resistor connected in parallel to the capacitive

network (Rd) must be high enough, in this case we used Rd ∼ 1010 Ω. A potential difference

that is placed across both elements then links the charge accumulated on the NWN with a

leakage current through the resistor. Figure 4(a) is the gradual breakdown of a capacitive

network by visualising the current flow required to cause an increasing charge build-up across

the capacitor. One can identify a sudden increase in the required current flow at 6.22 aC.

A visualisation of activated wires in the NWN at this point is presented in Figure 4 (b).

Black wires represent those with an activated junction thus giving the wire an electrical

connection with either of the electrodes. Junctions that are in contact or are near the

electrodes activate easily as the potential difference builds quickest in these areas. Figure

4(c) shows the activated wires at the point when a continuous electrical path between the

two electrodes has formed. The current levels through the resistor at this point is 1.3×10−7

A. A striking difference between both models can be seen here, the number of junctions

that are activated before path formation in CPM is much greater than in path formation

in MRM. In this case there are 61 junctions activated at path formation, i.e. 6.33% of

junctions compared with 0.72% of junctions in the WTA path captured in MRM. Figure

4(d) is a visualisation of the network at a late stage of activation. Note the sudden jumps

in the required leakage-current flow associated with clusters of breakdown events that are

crucial for the development of the MR properties of the NWN during its adiabatic electrical

stress. These jumps correspond to the sudden activation of wires in the network causing

the effective capacitance of the network to drop suddenly. The current level through the

resistor during capacitive activation is in the order of 10−7 A which compares favourably

with current levels of hundreds of pA measured in the PVC image shown in Figure 1(c) and

yet well below the current levels required for junction evolution in the MR regime.
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FIG. 4: (a) Leakage current through the parallel RC circuit as a function of the charge accumulation of the

capacitive NWN. Steep jumps in current levels are clear at certain charge values and correspond to sudden

activations of capacitive junctions. (b) Visualisation of the network at the first set of junction activations at

6.22 aC and leakage current of 4.2× 10−8 A. Wires with an activated junction are in black and inactivated

wires are in light grey. Figure (c) presents the activated wires when an electrical path between the electrodes

is formed at 1.3 × 10−7 A and 11.78 aC. (d) Activated wires at a relatively high leakage current level at

5.7× 10−7 A and 30 aC. Almost all junctions in the network underwent breakdown and the system is now

MR at the HRS.

The sudden and large amount of junction activations, or avalanches, that give rise to

the steps in leakage current flow offer much insight into the scale-free response of NWNs in

the CPM approach. Of particular interest is the distribution in avalanche sizes and their

respective relaxation times recorded during the CPM evolution (cf. Figure 5). The size of an

avalanche (s) is defined as the number of junctions that break down at a given input charge

Q. When at least one junction breaks down, the network self-organizes by redistributing its

built-up charge throughout its remaining capacitive elements which can trigger subsequent

avalanche events at the same charge input. The amount of iteration steps the network

takes to relax its avalanche activity up to the point where s = 0 is defined as the avalanche

lifetime or relaxation time (τ). Figure 5 shows the avalanche and lifetime distributions taken
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for an ensemble containing 1000 Ag NWN samples of fixed wire density of 0.4 NWs/µm2.

The length of the wires is fixed at 7 µm and they are randomly spread over distinct device

areas of 55 × 55, 60 × 60, and 70 × 70 µm. One can observe that both distributions

depict a power-law trend which is indicative of scale-free critical behaviour in which a small

perturbation can cause changes across the entire network. The exponents describing the

avalanches and their respective lifetime statistics are rather close to the values found in a

classic scale-free model, the 2D Abelian sandpile [29, 30]. As the network gets saturated

with activations (the breakdown of a junction is assumed to be irreversible with C0
nm ← C1

nm

transitions being forbidden) the shape of the distributions is heavily affected by finite size

effects caused by the closed boundaries of the device and the local constraints induced by

the permanent capacitive properties of the junctions. Yet, we can say that NW meshes

operating in the capacitive mode exhibit a collective integrated response to electrical stimuli

that is independent of the device size, i.e. the emerging collective dynamics of capacitive

NWN systems is scale-invariant at least within certain length/time scales.

In addition to the avalanche characterization provided by the computational model, we

devised an experiment inspired by the works of Avizienis et al. [31] and Demis et al.

[13] which evidences the collective dynamics of NWNs operating at leakage-current levels.

The experiment consists of measuring time traces of leakage current in a NWN sample

experiencing a DC bias voltage for a large period of time. By Fourier transforming the

measured fluctuations in current, one can unveil complex emergent behaviours related to the

activation process of the network and its recurrent connectivity structure. An Ag NWN of

dimensions 1 × 1 mm was contacted through an Ag paste and electrical tests were performed

using a Keithley 2400 source unit. We started by applying a bias voltage of 9.5 V but this

was not sufficient to turn the network on. The bias was then increased to 10.5 V and the

network current response was recorded for 20 hours in total. Only the first three hours of

current data is required to analyse the leakage-current response of the sample because, after

three hours of measurement, sufficiently high currents levels were recorded indicating that

the network had surpassed leakage conduction. These results are shown in Figure 5(c-d).

The presence of a power-law trend in the power spectrum points to a network-wide activation

that is scale-free with a 1/fβ noise scaling with β = 1.01. As argued by Avizienis et al.

[31], such persistent current fluctuations at DC bias indicate the capacity of the network in

avoiding the formation of a single dominant high-conductivity pathway between electrodes.
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This view agrees with the picture captured by our CPM (with a leakage term) of a scale-free

clustering activation process in NWNs operating at a sufficiently low-current domain.

FIG. 5: (a) Avalanche (s) and its respective (b) lifetime (τ) frequency distributions in log-log scale taken

for a random NWN ensemble containing over 1000 network samples of fixed wire density of 0.4 NWs/µm2

and distinct sizes of 55 × 55, 60 × 60, and 70 × 70 µm. Note that for this result to acquire statistical

significance, it needs to be taken for a large ensemble of random NWN samples rather than applying CPM

onto the solely image-processed NWN sample of Figure 2. The dashed lines are power law fittings that give

exponents of βs = −1.25 for the avalanche distribution sizes and βτ = −1.42 for the lifetime distribution.

Finite size effects play an important role in cutting off the power law trend specially in the lifetime results.

(c) Fourier transform (in log-log scale) of the time traces of DC current response shown on panel (d). The

power-law fit gives a 1/fβ scaling with an exponent β = 1.01. (d) Time traces of current response (black

curve) to 10.5 V DC bias measured in an Ag NWN sample of dimensions 1 × 1 mm. The triangular bias

sweep (red curve) shows the fine voltage range (10.4998 - 10.5002 V) around 10.5 V - marked by the dashed

grey line - that the network experiences for almost three hours.

As so far demonstrated, disordered NWNs can exhibit scale-free capacitive activation

or self-similar selective MR dynamics depending on which current range the network is

being probed. In particular, such MR random networks are very attractive for probing

collective features that are typical of biological neural systems such as adaptability, parallel

processing, and fault-tolerance capabilities. Contrary to regular patterned devices - such as

crossbar arrays [9, 32] - where each unit has a singular role, computation in random MR

16



networks relies on the non-deterministic action of their nonlinear elements distributed in a

highly disordered manner. The disordered and dynamical natures of these networks make

them ideal candidates to probe novel fault-tolerant computing paradigms. In other words,

the massively parallel processing power characteristic of disordered interconnects combined

with the adaptability of their building-blocks enables self-organization, reconfiguration, and

self-healing to mitigate device shortcomings [33]. To illustrate such robustness to variability

in random MR NWNs, we studied the role played by defects on their conduction response. A

defect is made on a network composed of supralinear junctions exhibiting WTA conduction

and it consists of removing a junction from this key path. This is a striking perturbation

to consider since in principle it can destroy the current flow through the most favourite

network path. MRM simulations were carried out to monitor the network conductance as

a function of current for the defective system and compared with the original Γnt × I curve

shown in Figure 3(a). Figure 6(b) is a visualisation of the WTA path in the unperturbed

network, identical to that shown in Figure 3(b). Figure 6(c) represents the new WTA path

that is formed in the perturbed network with the destroyed junction represented by the red

star. The conductance evolution for both original and defective NWN is almost identical

at least until the first stages of the PPL regime as shown in Figure 6(c). The self-healing

properties embedded in the dynamics of MR NWNs are clear in this example; the disruption

of paths forces the junctions to re-adapt and this causes a redistribution of current across

the network frame. The system then reconfigures into another least-resistance-path that

does not aversely impact its overall conductance using hence just a little extra power to

stress this second WTA path.

In the capacitive regime however we demonstrated that small perturbations can have a

significant effect on the network dynamics as depicted in Figure 5(d-e). Here the network is

perturbed by deleting a key junction that is involved in forming the path between electrodes

in the CPM model. In Figure 6(d) the unperturbed network is presented when the leakage

path between electrodes has been formed for the first time and this occurs at the charge of

11.77 aC. Figure 6(e) shows the activated wires at the moment of path formation for the

perturbed network with one of its crucial junctions being destroyed from the start of the

simulation (represented by the red star). This junction plays a pivotal role in the dynamics

of path formation in the capacitive network which is evident when we compute the number

of activated wires for both pristine and perturbed cases. The unperturbed network activates
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61 wires whereas the defective one mobilizes 95 wires, an increase of 56% with respect to the

benchmark pristine system. The charge required to form the electrode-electrode path also

points to the sensitivity of the network to perturbations: 13.05 aC for the defective NWN

compared with 11.77 aC for the unperturbed one. Contrasting the fault-tolerant results

captured by CPM and MRM, one can conclude that the CPM shows a greater sensitivity

to network geometry and connectivity profile and this sensitivity is manifested in the global

capacitive properties of the network. The MRM however is much more robust; while the

WTA path may completely re-route when a fault is encountered it does so in an efficient

manner with little change in the global conductance of the network.
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FIG. 6: (a) Γnt×I curves obtained for the original (black dashed line) and the defective network (red line).

The junction characteristics in these simulations are αj = 1.1 and Aj = 0.05. The curves only differ at the

PPL regime. (b) Network diagram depicting wires in the WTA (black sticks) at I = 1.77 u.c. obtained

using MRM in the original NWN. (c) A junction in this path was deleted and it is highlighted by a red star

symbol. The network self-organizes the current transmission to another WTA path located at its bottom

part. This path contains the same amount of junctions as in the original network, i.e. 7 junctions. Wires

carrying residual or no current at all appear in light grey. Vertical green lines represent the electrodes that

source current onto the network. (d) Network diagram depicting activated wires (black sticks) in the original

NWN described as a capacitive system via CPM. (e) The same activation simulation as in (d) but with a

defective junction marked with a red star symbol. One can clearly notice, by comparing panels (b)↔(d)

and (c)↔(e), the selective↔clustering activation of the NWN treated as an analog MR model (MRM) or as

a binary capacitive model (CPM). This contrasting feature is also captured experimentally in Figure 1(c-d).
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IV. CONCLUSION

In this work, we presented two computational methods designed to describe the elec-

trical and conduction properties of random NWNs made of core-shell NWs interrogated

by voltage/current sources. The methods successfully model the leakage capacitive (CPM)

and memristive (MRM) responses of NWNs perturbed at distinct transport regimes. The

network is shown to behave as a leakage capacitor when sufficiently low currents (∼ pA)

are applied onto the system. CPM is then used to emulate a cascade of breakdown-based

switching events characterized by pristine dielectric junctions in the network loosing their

capacitive properties when the voltage drop across them exceeds a characteristic threshold

voltage. In turn, these junctions are recast as a MR unit - initially at a HRS - which can

be continuously evolved up to their respective LRS as more current is adiabatically sourced

onto the network. Such MR dynamics in networks is outlined with the MRM which makes

use of an empirical power-law functional to describe the HRS→LRS evolution of the junc-

tions. The two descriptions reveal the highly contrasting dynamics exhibited by the NWN

responding as a capacitive or a MR system. Networks in the capacitive regime undergo

a long-range activation process with clusters of capacitive junctions being activated in a

binary fashion. This causes the current to “leak” through the network in a discrete manner

as a result of the abrupt collective activation of junction groups. We demonstrated that

this dynamics manifests complex emergent behaviours such as spatially correlated activa-

tion and scale-invariant avalanche distributions. As the capacitive properties of the network

fade in response to the increase of input current, its MR dynamics takes over and the

slow-switching feature of the MR junctions starts to play a role. This gives rise to a highly-

selective conduction mechanism in which the NWN junctions reconfigure their resistive state

to channel most of the current-flow to the WTA path. The latter consists of an emergent

internal state that uses minimum power by transmitting the sourced current through the

least-resistance path rather than spreading into multiple current-carrying paths across the

network. This conduction regime is better described by the MRM which further reveals

other emergent characteristics of complex networks with adaptive/reconfigurable elements

such as self-similarity, multi-level conductance switching, and fault-tolerance capabilities.

Our results are supported by striking experimental evidences that unfold the recurrent dy-

namics of the networks via direct observation of PVC images and power spectrum analysis of
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their temporal DC response. Our findings show that random NWNs are complex synthetic

materials that span a rich range of emergent properties and conduction mechanisms that can

be employed in brain-like computing ranging from logics (suitable in the capacitive regime)

to analog processing (fit for the MR regime).
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