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Summary

The objects under consideration in this work are sim plicial meshes. We are interested 

in the geom etric shape of the  constituen t simplices. This interest is justified  by the 

im pact of sim plicial shape on the error bounds and perform ance of the  finite element 

m ethod used for solving system s of partia l differential equations. A rising from this 

is a notion of sim plicial quality. For our purposes a good quality  sim plex of a given 

dim ension is considered to  be one which is as close as possible to  the  regular simplex 

of th a t dim ension. We use the  qualities of the individual simplices of a mesh to  induce 

quality m easures of the mesh itself (such as the average or m inim um  quality  taken over 

the mesh). Such m easures are referred to as global quality  measures.

Having agreed upon m easures of quality, we move on to consideration of how this 

quality  m ight be improved. Specifically, we consider the application of local transform a

tions to th ree dim ensional meshes for the purposes of im proving global quality  measures. 

Many local mesh transform ations appear in the literatu re, w ith no obvious link between 

all of them . O ur purpose is to  develop an enum eration of possible transform ations, and 

having done so, to  im plem ent software to system atically exam ine and rank them  in order 

of usefulness.

For reasons th a t are discussed in the tex t, we are generally m ost desirous of im proving 

the global m inim um  quality. Since this quality m easure is often m sensitive for the 

purposes of optim isation, a new global quality measure, the exponential measure, is 

introduced. It has the p roperty  of being able to assume the functionality  of the m inim um  

or average global quality  of a mesh depending on the value of a param eter, and is a 

more sensitive m easure th an  the  global m inim um  quality. A num ber of optim isation 

algorithm s, such as hillclim bing and annealing, are also defined for use on the above 

optim isation  problem.

The enum eration of possible transform ations is achieved w ith  recourse to  a set of 

fundam ental transform ations known as the Alexander moves, which are operations de

fined upon ab strac t sim plicial complexes, and extended for use on geom etrical simplicial 

meshes. All possible local transform ations may be expressed using com binations of these



basic operations. We term  such combinations Alexander movesets.

Software is developed implementing Alexander movesets, as well with a number of 

the aforementioned optim isation algorithms.

Using this software we generate a ranking of movesets of length up to and including 

three for a series of test meshes. Rankings are also generated for a subset of movesets 

of length four.

We find th a t a number of transformations stand out amongst all those tested, many, 

but not all, of which are mentioned in the literature. The exponential function referred 

to above is found to be successful in terms of its ability to improve the global minimum 

quality. A number of quality measure /  optimisation algorithm combinations are identi

fied as useful. Overall, our methodology bears fruit with the proviso tha t combinatorial 

issues arise for long movesets.
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10.25 A N N | ĵ ^(0.95, 0.05, -0 .1 ,  1, Q ex p )............................................................................................................................................216

10.26 Annealing w ith 20 cycles; 5 =  0.05; =  1 ..........................................................................................................................221

10.27 H C ^ jv ^ (0 .0 5 , Qexp), where $  =  {/i | l{^l) =  3}  223

10.28 U nit.C ube.un iform _lslO .m eshS  (top  20 m o v ese ts) ............................................................................................................... 224

10.29 H C ^ ^ ( 0 . 0 5 ,  Qexp), where $ =  {/j I/(/i) =  4}  228

10.30 H C ^ ^ ( 0 . 0 5 ,  Qexp), where <K =  | /(m) =  4}  228

10.31 Itera tion  counts for movesets of length f o u r ............................................................................................................................. 231

A .l H C |^ ( 0 .0 5 ,  Q exp ), where =  {/i | l{^l) < 3}: top  four m ovesets excluding move 7 ..............................................246

A.2 H C |jv ^ (0 .0 5 , Qexp), where =  {/x | l (^)  < 3}: top  four movesets excluding vertex move-l ike movesets  . 247

A.3 H C |j^^ (0 .0 5 , Q exp ), where <I> =  {/x | /(/x) <  3}; top  four m o v e s e t s ................................................................................ 250

A.4 H C |^ ( 0 , 5 ,  Q exp ), where $  =  {/i | i(/x) <  3}: top  four m o v e s e ts ...................................................................................251

A .5 H C*jy^(Q av), where >̂ =  {^ | l{fi) < 3}: top  four m o v e s e ts ............................................................................................. 252

A.6 H C f ^  (0.2, Qexp), where <I> is the set of tria l m o v ese ts ......................................................................................................253

A.7 H C | ^  (0.5, Qexp), where <I> is the set of tria l m o v ese ts ......................................................................................................254

A .8 HCgJ^^(0.7, Qexp), where <I> is the set of tria l m o v ese ts ......................................................................................................255

A.9 A N N | ^  (0.05, 0.05, 0.0, 4, Qexp), where is the set of tria l movesets. M a =  0.5  256

A .10 A N N |j^^ (0 .0 5 , 0.05, 0.0, 1, Q ex p )............................................................................................................................................... 257

A .11 A N N |j^^ (0 .0 5 , 0.05, 0.0, 1, Q ^in), =  0 . 1 ...........................................................................................................................258

A .12 A N N |j^^ (0 .0 5 , 0.05, 0.0, 1, Qmin), M  =  0 . 5 ....................................................................................................................... 259

A .13 A N N |j^^ (0 .0 5 , 0.05, 0.0, 1, Qmin), M  =  0 . 9 ....................................................................................................................... 260

A.14 H C |^ ( 0 .0 5 ,  Qexp), where $  =  {/x | l(/i) =  4, and T { n )  — 1}: top  fifteen movesets; ni — 1 ...............................265

A .15 H C fj^^(0 .05 , Qexp), where $  =  {/x | /(^) =  4, and =  1}: top  fifteen movesets excluding movesets

containing vertex moves, n/ =  1 ...................................................................................................................................................266

A.16 H C % ^  (0.05, Qexp), where ^  — {/i | ^(/^) — 4, B.nd ^"(/i) — 1^; fifteen movesetsj tii — 2 ............................. 268

A.17 (0.05, Qexp), where <J) =  {/x | /(/x) =  4, and =  1}: top  fifteen movesets excluding movesets

containing vertex moves, n; =  2 ...................................................................................................................................................269

B .l t_ v e r te x  d a ta  s tru c tu re  .....................    273



X LIST OF TABLES

B.2 t.s im p lex  data  s t ru c tu r e ........................................................................................................................................................274

B.3 t.com plex data  s t ru c tu re ........................................................................................................................................................274

B.4 Abstract Alexander m o v e s .................................................................................................................................................... 276

B.5 A bstract move data  structure (t_ lo g ica lm o v e)................................................................................................................276

B.6 Application site (type t .m o v e ) ............................................................................................................................................. 276

B.7 Moveset da ta  structure (t_com plexm ove)..........................................................................................................................276



List of Figures

2.1 Properly and im properly joined  2 - s im p lic e s .................................................................................................................................. 10

2.2 H om ogeneous and non-hom ogeneous sim plicia l c o m p le x e s .................................................................................................... 11

2.3 M anifolds in R " ..........................................................................................................................................................................................  14

2.4 N on-m anifo lds in ...............................................................................................................................................................................  14

3.1 Inradius o f 2 - s i m p l e x ...............................................................................................................................................................................  18

3.2 Dihedral angle, 6 ....................................................................................................................................................................................... 19

3.3 Solid a n g l e ...................................................................................................................................................................................................... 20

3.4 /c-angles in K ® ..............................................................................................................................................................................................  21

3.5 Triangle c l a s s e s ..........................................................................................................................................................................................  22

3.6 Tetrahedron c l a s s e s ..........................................................   23

3.7 Slivers and c a p s ..........................................................................................................................................................................................  23

3.8 Regular tetrahedron w ith  side r ........................................................................................................................................................  24

3.9 R adius r a t i o ..................................................................................................................................................................................................  26

3.10 Two d im ensional version of k ................................................................................................................................................................ 31

4.1 C onfigurations o f four points in ................................................................................................................................................. 47

4.2 C onfigurations o f five points in ....................................................................................................................................................  48

4.3 Som e non-convex configurations o f n  +  2 p o i n t s ......................................................................................................................  49

4.4 P ossib le tr iangulations o f regions m ade up o f five points four of w hich are c o p l a n a r ........................................... 50

4.5 R egular refinem ent o f t r i a n g l e ............................................................................................................................................................  51

4.6 R egular refinem ent o f  a t e tr a h e d r o n ................................................................................................................................................. 52

4.7 Edge s w a p p in g ..............................................................................................................................................................................................  53

4.8 T riangulations for 5 points w hen e d g e - s w a p p in g ......................................................................................................................  54

4.9 Som e triangulations for 6 po in ts w hen e d g e -s w a p p in g ........................................................................................................... 54

5.1 G eom etric realizations o f equation (5 .1 ) ...........................................................................................................................................  60

5.2 C losed 1 - c o m p le x ....................................................................................................................................................................................... 64

5.3 A lexander m oves in R®—  a  is a new  v e r t e x .................................................................................................................................. 67

5.4 O riginal 2 - c o m p l e x ...................................................................................................................................................................................  72

5.5 C om m utativ ity: (D , a ) (E , b ) ............................................................................................................................................................. 73

5.6 C om m utativ ity: (E , b ) (D , a ) ............................................................................................................................................................. 73

5.7 T heorem  11: t \  =  (A C , a ) ( B C , b ) (B a , c ) ............................................................................................................................. 76

5.8 T heorem  11: T2 =  (B C , b ) (A C , a ) (A b , c ) .............................................................................................................................  76

5.9 A 1-com plex which is not a com binatorial 1 - m a n if o ld ........................................................................................................... 81

5.10 A com binatorial 2 -m a n ifo ld .................................................................................................................................................................... 81

xi



xii LIST OF FIGURES

6.1 Exam ple complex: M i .................................................................................................................................................................... 88

6.2 Exam ple com plex: M 2 .................................................................................................................................................................... 89

6.3 Vertex removal from  2 -s im p le x .....................................................................................................................................................  91

6.4 Intrinsically  illegal a ttem p ted  vertex re m o v a l ......................................................................................................................  92

6.5 Vertex removal w ith two o p t io n s .................................................................................................................................................  93

6.6 Legal boundary  vertex removal from a 2 - c o m p le x ...............................................................................................................  94

6.7 Intrinsically  illegal a tte m p ted  boundary  vertex r e m o v a l ................................................................................................... 94

6.8 Legal boundary  vertex removal from 3-compIex ................................................................................................................... 95

6.9 Illegal vertex r e m o v a l ....................................................................................................................................................................... 96

6.10 Convex octahedron : legal vertex r e m o v a l ...............................................................................................................................  97

6.11 Legal vertex r e m o v a l ....................................................................................................................................................................... 97

6.12 Illegal vertex r e m o v a l ....................................................................................................................................................................... 97

6.13 Exam ple transform ation : { a o a ia 2 , a ) ( a s a 4 , a ) ~ ^ ..............................................................................................................  99

6.14 Exam ple transfo rm ation : ( a o a i a 2 , a ) ( a 3 a 4 , a ) “ ' .................................................................................................................. 100

6.15 S tra igh ten ing  a line during  vertex r e m o v a l ...............................................................................................................................101

6.16 Non-convex realisation  of com plex 6 . 1 6 ......................................................................................................................................102

6.17 Vertex a  m oved outside  of original carrier ...............................................................................................................................102

6.18 Removal of vertex from  face or l i n e .............................................................................................................................................. 104

6.19 Illegal vertex removal from a o a i a 2  ...................................................................................................................................104

6.20 Vertex sm ooth ing  in two d im en sio n s ...............................................................................................................................................105

7.1 A pplication of moveset w ith length g reater th an  1 .................................................................................................................... 116

8.1 Edge-flipping in 2 D ............................................................................................................................................................................... 124

8.2 G eom etrically  illegal edge f l i p ..........................................................................................................................................................125

8.3 Edge flip t r a n s f o r m a t io n .................................................................................................................................................................... 126

8.4 Regular refinem ent: stage ( i ) .............................................................................................................................................................127

8.5 Regular refinem ent: stage (ii) ......................................................................................................................................................... 128

8.6 R egular refinem ent: stage ( i i i ) ......................................................................................................................................................... 128

8.7 R egular refinem ent: stage ( i v ) ......................................................................................................................................................... 129

8.8 R egular refinem ent: stage (v)  129

8.9 C onfigurations obtained by rem oving bg ................................................................................................................................... 134

8.10 2D represen tation  of 3D shell .........................................................................................................................................................135

8.11 Edge-sw apping: five vertex case — sam ple r e - t r ia n g u la tio n ............................................................................................. 135

9.1 Before and afte r im provem ent w rt Q a v .....................................................................................................................................141

9.2 Sam ple exponential qua lity  p r o f i l e s ..............................................................................................................................................143

9.3 In itia l exponential quality  profile for U n i t_ te t_ ls 5  .meshS .................................................................................................144

9.4 In itia l exponential qua lity  profile for U n it_ te t_ ls5 _ p .m esh S  ............................................................................................. 144

9.5 Choosing 0 ................................................................................................................................................................................................ 145

9.6 H eat c y c l e ................................................................................................................................................................................................153

9.7 H eat cycle using acceptance r a t i o ................................................................................................................................................. 158

10.1 C ube c o m p le x e s .....................................................................................................................................................................................168

10.2 T etrahedral complexes ...................................................................................................................................................................... 169

10.3 Spherical c o m p le x e s ..............................................................................................................................................................................169



LIST OF FIGURES xiii

10.4 Improvement profile for dataset U nit_C ube.uniform .lslO  .m eshS ............................................................................. 177

10.5 Improvement profile for dataset Unit_Cube.uniforin_lslO_p.mesh3 ...................................................................... 177

10.6 Improvement profile for dataset Unit_Cube_unif orm_ls5 .meshS ............................................................................. 178

10.7 Improvement profile for datcLset U n it_ te t_ ls5  .m e s h 3 .................................................................................................178

10.8 Improvement profile for dataset Unit_Cube_unifonn_lslO .m esh3 ............................................................................. 181

10.9 Improvement profile for dataset Unit_Cube_unifom_lslO_p.mesh3 ...................................................................... 182

10.10 Improvement profile for dataset U n it .te t_ ls l0 .m e sh 3 .................................................................................................182

10.11 ;9-profiles for HC*j^^(0.05, Qexp) applied to u n it_ cu b e_ u n ifo rm _ ls5 ................................................................... 184

10.12 Comparison of HCfjy^(0.05, Qexp) using R an d o m V erte x M o v e  and J i g g l e V e r t e x ..................................... 189

10.13 Comparison of 7-1.4 and (7, 1-4)  191

10.14 Variation of minimum qualities with respect to the |8-fraction ................................................................................ 200

10.15 Variation of average qualities with respect to the ;9-fraction ................................................................................... 201

10.16 ,9-profiles for H C B * ^ (0 .9 5 , 0.05, —0.1) applied to u n it_ cu b e_ u n ifo rm _ ls5 ......................................................205

10.17 Final minimum qualities associated with top ranked movesets obtained using H Cgj^f(0.05, Q e x p )  and 

H CB|J^^(0.95, 0.05, - 0 . 1 ) ..............................................................................................................................................  206

10.18 Improvement profiles for H C B * ^ (0 .9 5 , 0.05, —0.1)   207

10.19 Comparison between HC*j^^(Qn,in) and A N N * ^ (0 .0 5 , 0.05, 0.0, 1, Q e x p ) ......................................................214

10.20 Comparison between multiple improvement a lg o r i th m s ............................................................................................. 217

10.21 Improvement profile for unit_cube_unif orm_ls5 when annealing wrt the minimum quality with = 0 .1  218

10.22 Improvement profile for u n it .c u b e .u n if  orm_ls5 when annealing wrt Qexp(0.05), with =  0 . 9 ........219

10.23 Comparison between HCfjy^(0.05, Qexp), and HC*j^^(0.05, Q e x p ) ...................................................................... 224

10.24 Variation in the number of cells and vertices in multiple moveset m o d e ............................................................... 226

10.25 Improvement profile for four complexes to which H C^j^^(0.05, Qexp) has been applied for,movesets of 

length t h r e e .............................................................................................................................................................................227

10.26 Comparison between HC*j^^(0.05, Qexp) and H C^j^^(0.05, Qexp), using J ig g le V e r te x ................................229

10.27 Comparison of hill climbing between movesets of length three and f o u r ................................................................233

10.28 Final comparison between improvement methods ....................................................................................................... 238

A.l Variation in the number of cells and vertices in MM mode (n; =  1 ) ............................................................261

A.2 Variation in the number of cells and vertices in MM mode (n; =  2 ) ............................................................262

A.3 Improvement profile for four complexes to which H C ^j\^ (0 .05 , Qexp) heis been applied for movesets of

length 4 at neighbour-level 1 ...............................................................................................................................................263

.A..4 Improvement profile for four complexes to which H C ^ ^ ( 0 .0 5 ,  Qexp) has been applied for movesets of

length 4 at neighbour-level 2 ...............................................................................................................................................264



■ i V - S v

’ -'U

' £.fiiifel'*Si.H
s .  5’’̂

''' ̂ : "Ilf
■ ■' - ; ^;' ^ i' ?- '■' ■ f S '  ■SwIllrMi 

'■ "̂ |.^|| I g L ^  ■ A m

f h i -  &  : - ' ' V S :  
i-'-if

1 ^ .  r ^ :
;;; v i ^

■ - a l  '■ ■ -■-" -7‘ ■ -  '■■ '■■ ■

. s T * _ *- - -j -• -fi . r » - '

r|;* ' lii: t.l f f T f

'rt".* 4^i.yJ.Jf
?  r  i f  ^  I  . V

« I I  ̂1 ? t ̂
f i i i i t : :  1 1:

s :|. ?

i :(f|l!|ttr
"m M W -

£--j--~.0,.ir.i.



Chapter 1

Introduction

1.1 Aims

The finite element method (FEM) for the solution of systems of partial differential 

equations over a domain uses a discretisation of the domain. This discretisation, or 

mesh, is used to turn the solution of the p.d.e’s into the solution of a linear system, 

and consists of a collection of simple, convex cells whose union forms the domain. It is 

assumed here that the cells are simplices.^

We are interested in the geometric shape of the simplices. This interest is justified 

by the fact that the accuracy (or speed of convergence) of a solution using the finite 

element method is, to a significant extent, dependent upon the geometric shape of the 

cells contained in the associated mesh. Immediately arising from this is a notion of 

simplicial quality — some shapes are good, and some are bad. In order to proceed, a 

notion of quality must be agreed upon. For our purposes a good quality simplex of a 

given dimension is considered to be one which is as close as possible to the equilateral, 

or regular, simplex of that dimension.^ We will provide evidence for this in section 1.2.

The issue of mesh transformations for the purpose of removing low quality simplices 

forms the core of the thesis. Specifically, we consider what local transformations may be 

applied in three dimensions. There are a host of standard local mesh transformations in

Triangles in two dimensions, or tetrahedra in three dimensions, etc.
^Various quality measures which encapsulate this requirement are described in chapter 3

1
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the literature. Many of them  involve quite complex alterations to the local structure of 

the mesh. One of the main questions which prompted this work was the choice of such 

transformations. It was not clear to us why certain transform ations were chosen, and 

not others. We were therefore motivated to find a method of systematically enum erating 

transform ations, to develop software to apply them, and to compare the results of doing 

so.

We attem pt an approach based on first principles. A set of transform ations is in

troduced which may be regarded as atomic in a certain sense. These are known as 

A le x a n d e r  m oves^. Alexander moves may be combined in many ways to form more 

complex operations, which we dub A le x a n d e r  m o v ese ts . We explicitly show th a t 

moves may be combined to form any of the standard transform ations th a t we have 

encountered.

Our software is capable of applying Alexander movesets of arbitrary  length to sim- 

plicial meshes, and we use it to exhaustively consider all movesets of length up to and 

including three. We compare them in terms of their ability to improve three global 

siniplicial quality measures, of which two are the global minimum and the average sim- 

plicial quality. For reasons which we will discuss in section 1.2.3, we generally seek to 

improve the global minimum quality of a mesh. Since the minimum quality is often an 

insensitive measure for improvement, we introduce a th ird  global quality measure, the 

exponential quality, which has the ability to operate as the global average quality or 

the global minimum quality, or as many quality measures in between, depending on the 

value of a param eter.

Therefore, in the course of examining and comparing movesets, we also consider the 

optimisation problem of attem pting to maximise the global minimum simplicial quality. 

We try a number of different improvement algorithms for doing this. They may be 

broadly categorised into hill-climbing and annealing algorithms. We investigate a num

ber of different algorithm /quality measure combinations, in an effort to find successful 

ones.

In summary, our aims are

În analogy with the Reidemeister moves of knot theory
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•  to  find successful and unsuccessful com binations of A lexander moves in the term s 

described above, and to see where stan d ard  transform ations seen in the literature 

fit into th is scheme.

•  to  gain an insight into w hether our m ethodology is able to  isolate good transfor

m ations from the set of movesets of length g reater th an  three.

•  to  find which of the  three global quality  m easures we define are best suited to

our optim isation problem , and to identify the best a lgo rithm /quality  measure 

com binations.

In the  rem ainder of the  chapter, we consider why sim plicial shape is im po rtan t in the 

first place, and why our definition of good quality  is reasonable. T his done, we present 

a layout of the thesis.

1.2 Simplicial shape and the FEM

We have already defined a good quality simplex to  be one which is as close as possible to

a regular simplex. A justification of this definition is given in th is section. We present 

theoretical and em pirical results relating to  the finite elem ent m ethod, and use these to 

gain insight into w hat a bad simplex is, and how the existence of such simplices affects 

the solution process.

1.2.1 Theoretical results

We commence w ith a discussion of error bounds for the two dim ensional case. Following 

the  discussion in [11], we consider the solution of a set of p .d .e’s on a  triangu lar mesh. 

Let u be the  true  solution of the system, and Unn be the approxim ate solution. Define 

th e  error to  be enn{x, y) =  Unn(x, y) — u{x,  y). Let r  be any triangle in the  mesh, and 

denote its th ree in ternal angles by 0q, ^2 - Let h be the  length of the  longest edge of

T .  T he error norm  is defined to be

{eunix, y ) f d x d y ,
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and the norm  is defined as

y ) l l / / i  —  I  ■) y ) )  ” 1" i ^ l i n , x { ^ i  U } )  j 2 / ) )  } d 3 ; d y
T

Lastly, we use the sem inorm  of the  space, denoted by

1 /2

Babuska and Aziz showed in [4] th a t eun{x, y) may be expressed as

y)i|}/2 = r(6>)|u|2 , ( 1 .1 )

where

in which ^'(0) is a positive, continuous, finite function. T he function 'I' has the property  

th a t ^ '(0 ) >  for

where 7  is an upper bound on the  m axim um  interior angle of the triangle. Thus r (0 )  <  

r ( 7 ), ^ <  7  <  7T, which implies th a t  the error is reduced by avoiding triangles w ith large 

angles.

A sim ilar error bound is derived in th ree dim ensions for te trah ed ra  in [51].

N either of these results make any s ta tem en t concerning avoidance of sm all angles, 

aside from the  obvious fact th a t  where there are large angles, there will often be small 

angles. Small angled triangles or te trah ed ra  are perfectly perm issible from the  point of 

view of equation (1.1). However in two dim ensions it is dem onstrated  in [35] th a t small 

angled triangles have the  effect of increasing the condition num bers of the  associated 

finite elem ent m atrices. We do not know of an equivalent results in three dimensions, 

bu t it is reasonable to  assum e th a t  they  hold.

For a mesh, the  bound 7  in equation (1.2) is d ic ta ted  by the largest angle of any 

triangle in the  mesh. A sim ilar s itua tion  holds for small angle bounds. Thus, the  “w orst” 

simplex in a mesh d ic ta tes the a priori  error for the solution process.

0  <  7  <  7T , ( 1 .2)
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1.2.2 Empirical results

A cost/benefit analysis for simplicial quality improvement in terms of solution efficiency 

is provided in [34], For a pair of two dimensional model problems, they solve the Imear 

system associated with the p.d.e.’s using relevant iterative solvers (CG, GMRES) with 

and without pre-conditioners. Using an initial, or baseline, mesh they note the number 

of iterations required to achieve convergence to some accuracy (e.g., 10~®). The baseline 

iterations are then compared with solutions of the same problems carried out on meshes 

to which a number of low quality (small angle) elements have been introduced. This 

takes the form of adding two or three poor quality simplices initially, and observing the 

number of iterations required for convergence. The number of poor quality simplices is 

then increased to 5, 10, 20 percent, and the corresponding numbers of iterations required 

for convergence are observed. There is an increase in the number of iterations in all cases, 

notably as the percentage of poor quality elements increases.

The cost/benefit analysis involves taking another mesh and fixing the percentage 

of elements containing small angles (less than 5°, say) at 10%. The times taken for 

solution of the systems are noted. Improvement techniques are then applied to the 

meshes, and timed. The time taken to achieve convergence is noted on the new meshes. 

If the combined improvement/solution time is less than the time taken for the original 

solution, then improvement has proved useful.

Their overall conclusions were

• for most of the cases considered, a few poor quality elements did not significantly 

affect the number of iterations

• as the problem size increased, or the percentage of poor quality element increased, 

the work to solve the problem increased. The use of pre-conditioners moderated 

this trend

• for the two model problems, the break-even point in terms of minimum angle size, 

at which improvement became beneficial moved towards higher angles as meshes 

got larger
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1.2.3 Conclusion

Since regular simplices contain no large or small angles, our definition of them as good 

quality simplices makes sense in light of the discussion in the previous two sections.'^

It is worth noting at this point tha t, in considering geometric quality alone in the 

context of solution accuracy, we are making somewhat of an assumption. When solving a 

system of p.d.e’s the properties of the differential operator also have a strong bearing on 

any derived linear system, and on the convergence properties of any solution technique. 

We deal with this point by stating tha t, at a minimum, one needs a geometrically good 

starting  mesh. From there, alterations relevant to specific operators can be made.^

As noted a t the end of section 1.2.1 the quality of the worst simplex in the mesh 

dictates error bounds when using the mesh. Therefore we focus particular attention on 

improving the quality of the worst simplex in any mesh.® This is the reason tha t we 

are interested in transformations, and in quality measures and optim isation techniques, 

which give rise to improvement in the global minimum quality of a complex.

1.3 Layout

The layout of the thesis is as follows. In chapter 2 we introduce some basic topological 

definitions for use later on. Chapter 3 contains a definition of a simplicial quality mea

sure, along with a list of common measures which obey the definition. It also contains a 

discussion of the global quality measures induced by the simplicial measures, and a def

inition of the exponential quality measure. In chapter 4 we introduce and discuss some 

standard  local transform ations of simplicial complexes. In chapter 5 we introduce the 

Alexander moves, and discuss some of their properties. Chapter 6 deals with the partic-

^We note, however, that regular simplices are not always desirable. For certain applications, there

is a benefit in having long, thin simplices, often facing in some preferred direction — see [76], which

considers the use of triangulations of data points in for the interpolation of smooth functions using

piecewise linear interpolation. It concludes that such triangulations should contain long triangles facing

in certain directions, and thin triangles facing in others, all defined by directional derivatives
^Work has been carried on combined solution and geometry based mesh quality measures, e.g., [12] 
®The discussion in section 1.2.2 mitigates this situation slightly
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ulars of applying Alexander moves in three dimensions. Chapter 7 discusses additional 

issues which arise when applying combinations of Alexander moves, or movesets, in three 

dimensions. In chapter 8 we express some of the standard transform ations encountered 

in chapter 4 in terms of Alexander movesets. Chapter 9 contains a detailed discussion 

of the exponential quality measure defined in chapter 3, along with definitions of the 

optimisation algorithms which are subsequently used in our experiments. In chapter 10, 

there is a description of the computational experiments we have carried out, along with 

a presentation of the results obtained. Finally, chapter 11 details conclusions we have 

arrived at.

A number of appendices are also included. Appendix A contains tables of results 

and iigures which are referred to in chapter 10. Appendix B describes some aspects of 

the implementation of the Alexander move software. Lastly, appendix C gives a brief 

description of the Delaunay triangulation.

Broadly speaking, the chapters 1-5 contain background detail, and discussion of ex

isting research. Chapters 6 and 7 contain a mixture of our own work, and standard 

techniques. Chapters 8-10 contain our research, and chapter 11 deals with our conclu

sions.



Chapter 2 

Geometric Simplicial Complexes

2.1 Introduction

We are concerned with optimisation of simplicial meshes with respect to geometric 

quality functions. This chapter consists of an introduction to some aspects of the theory 

of simplicial complexes relevant to th a t purpose.

The first definitions of a simplex and of a simplicial complex will be anchored in the 

familiar topological space M", where all of our meshes will be located. Furthermore, we 

confine ourselves to finite complexes.

This approach will allow us to discuss in chapter 5 the geometrical analogues of 

results we derive within an abstract framework and there, and in chapter 6, to discuss 

how the geometry forced upon us by any given complex affects the application of abstract 

Alexander moves to th a t complex.

2.2 Finite geometric simplicial complexes 

2.2.1 Definitions

Let X and S be two topological spaces [41], [82].

D e fin itio n  1. A h o m e o m o rp h ism  is a one-to-one continuous transformation h : l i  

S which is onto and has a continuous inverse.

8
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Two topologised spaces are topologically equivalent when there exists a homeomorphism 

between them.

Let T  =  {ao, a i, . . . ,  a„} be a set of points in E".

Definition 2. The a ff ine  hull [23] of T  is the subset ofBP defined by

{ n n

^  Qfjai ^  Qfj =  1 

i —O i = 0

D efin ition  3. The set of points T  is a ff ine ly  in d e p en d e n t  i/a ff(T ) is different from  

the affine hull of every proper subset of T.

D efin ition  4. The convex  hull of T  is the subset

{ n

Qfia, Q!i > 0 for each i, and a, = l \  . (2.1)

1 = 0  2 = 0  J
D efin ition  5. A geometric simplex of dimension k (a k-simplex) is defined to be the 

convex hull of k + 1 affinely independent points ao, ai, . . .  ,a.k in We will usually 

denote a k-simplex by

A =  aoai . . .  a-k (2.2)

A 0-simplex is one of the {a^}, usually called a v e rte x . A 1-simplex is a line segment, 

referred to as an edge. A 2-simplex is a triangle, a 3-simplex a tetrahedron and so on. 

A n-simplex is the simplex of maximal dimension allowable in E " .

D efin ition  6. A k-simplex B is a face, or a k -c o m p o n e n t  of an n-simplex A  {k < n) 

if  each vertex of B  is a vertex of A .  We write this as B < A. The faces of A  other 

than A  itself are called p roper  faces.

D efin it ion  7. The in te r io r  [24] of a simplex A  is defined as the set of points contained
in A ,  but not in any proper k-component of A .  It is denoted int(A). Note that int(A)

A, where int(A) denotes the closure o/int(A).

D efin ition  8 .  For a k-simplex A ,  with vertices ao, a i ,  . . . ,  a point x  G A C E” may 

be expressed using equation (2.1). The {a^} are known as the barycen tr ic  coordinates
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of X.  The barycen ter  of a k-simplex A  is the point x  e  int(A) with o.i =  fo r each 

i.

D efin ition  9. Two simplices A  and B  are properly  jo in e d  i f  either A  n B  =  0 or 

A n B  is a face of A  and B.

Figure 2.1 illustrates examples of properly and improperly joined 2-simplices.

Properly joined

Improperly joined 

Figure 2.1: Properly and improperly joined 2-simplices

We may also refer to properly joined simplices as being conform ing.

D efin ition  10. A f in ite  geom etr ic  s im p lic ia l  com plex ~K is a finite collection of 

geometric simplices which are properly joined and which have the property that each 

face of a member o /K  is also member o /K . The dimension dim(K) o /K  is the largest 

positive integer k such that K has a k-simplex. The union of the members of a geometric 

complex K taken as subsets of R",

U A ( C M " ) .
A e  K

is variously called the un derly ing  space or the polytope  o /K  [70], or the geom etric  

carr ier  o /K  [21]. It is denoted |K| ]21], [41], ]24], ]70].
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D efin ition  11. The ver tex  se t  of a complex'K, V(K), consists of the set of 0-sirnplices 

in the complex.

D efin ition  12. A tr iangu la tion  of a topological space X  is a pair ( h , K)  where K is 

a simplicial complex and h is a homeomorphism /i : |K| —>• X. X  is triangulable if  it 

has a triangulation.

D efin ition  13. An n-complex is said to be hom ogeneous if  each k-simplex [k < n) in 

the complex is a k-component of an n-simplex.

All complexes which we will consider are assumed to be homogeneous. Figure 2.2 gives 

examples of homogeneous and non-homogeneous complexes.

Homogeneous 2-complex Non-homogeneous 3-complex 

Figure 2.2: Homogeneous and non-homogeneous simplicial complexes

D efin ition  14. An n-complex K is said to be k-connected {k < n) if, for  each pair of 

n-simplices A  and A ' , there is a sequence of n-simplices beginning with A  and ending 

with Pl such that two consecutive simplices in the series have a k-component in common. 

The complex is said to be connected if  it is 0-connected and com ple te ly  connected if  

it is {n — 1)—connected.

2.3 Congruence and equivalence

When we speak of applying transformations to a geometric simplicial complex, we refer 

to transformations made to the rectilinear components (the simplices) of the complex
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itself. We define here the notions of congruence and equivalence of simplicial complexes, 

and thereby an equivalence class of complexes related by rectilinear transformations.

Definition 15. L e tK  andL be two complexes. A ver tex  m ap is a function v : V(K) —>• 

V(L) such that if

A =  ao ai . . .  Bk ,

is a simplex o f K,  then

B =  w(ao)v(ai) . . .  'y(ak), 

is a simplex of L,  where the {u(ai)} are not necessarily all distinct.

Definition 16. Two complexesK andL are congruent (or isom orph ic) i f  there exists 

a bijective vertex map between them.

A vertex map v : V(K) V(L) may be extended to a continuous transformation 

V : |K I -> |L| as follows. Let K be an n-complex. Let x €  |K|. Then xG int(A ) for some 

A:-simplex A =  ao ai . . .  a  ̂ contained in K. In terms of barycentric coordinates
k

X =  ^  Q fja i .

1= 0

Define v : |K| —>• |L|
k

v{x) = ' ^ a i v { a i ) . (2.3)
i=0

Thus ^(a:) is given the same barycentric coordinates as x  relative to whatever vertices 

the vertices of A are mapped into. Since the barycentric coordinates of a point are 

continuous functions of that point,  ̂is a continuous transformation from |K| to |L| which 

maps simplices linearly into simplices. v is known as a simplicial map or barycentric 

extension.

N ote that if there exists an isomorphic vertex map v : V(K) —> V(L) between the two 

complexes then w is a homeomorphism.

Definition 17. A geometric complex L is a subdivision  of a complex K if

|L| =  |K|,

and each simplex o /L  is part of a simplex o /K .
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D efin ition  18. A geom etr ic  com plex  K is considered to he equivalent [1] (or  PL- 

equivalent^ [23], [27]) to a geom etr ic  com plex h i f  there exist subd iv isions  K ' o /K  and  

L' of  L such tha t  K' is congruent to  L' . We express such equivalence  K —> L (see 

also sec tion  5.4-4)-

Therefore, if K  is equivalent to L then there exists a (piecewise linear) homeomorphic 

simplicial mapping between the carriers of K and L.

As an aside, the question arises as to whether the converse is true. That is, are two 

complexes equivalent if their carriers are homeomorphic? This is the same as questioning 

whether the fact that two spaces are homeomorphic implies that there exists a piecew ise  

l inear  homeomorphism between them, and was the content of a conjecture known as the 

H au p tv erm u tu n g ^  [75] in combinatorial topology for some time. It has been disproved 

for general complexes [65], but is correct for 3-dimensional manifolds and 2-dimensional 

triangulable spaces [69[.

We will return to the topic of equivalence in the context of abstract simplicial com

plexes in section 5.4.

2.4 Manifolds

The geometric carriers of the complexes we have been discussing up to now are quite 

general subsets of R". For our applications this generality is unnecessary. We will 

be assuming that the carrier of any mesh we use will be a m a n ifo ld  or a m anifo ld  

with  boundary,  which we define below. These definitions will motivate the definition 

of a combinatorial n-manifold given in the context of abstract simplicial complexes in 

section 5.5.2.

First, two useful topological subspaces of E” : let x  —  { x q , X i , . . .  ,x„_i) € M". The 

n-ball B", and the n-halfspace HP are defined [24]

^Piecewise Linear
^German for “Main Conjecture”; formulated by Steinitz |84] and Tietze [85] in 1908
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(a: G K” I ||a;|| =  1}
(2 ,4)

HT =  {x € M" I Xo >  0}

D efinition 19. An n-manifold is a non-empty topological space M with the property 

that every point a: G M has an open neighbourhood homeomorphic to B” , for some n.

D efinition 20. An n-manifold with boundary is a non-empty topological space M 

such that every point a: G M has an open neighbourhood homeomorphic to B” or to I P , 

for some n. The boundary of M is the set of points in M which have neighbourhoods 

homeomorphic to HP.

See figure 2.3 for an example of a manifold with boundary and figure 2.4 for some 

examples of non-manifolds.

Figure 2.3: (a) point with neighbourhood homeomorphic to 1” ; (b) point with neighbour

hood homeomorphic to H"

Figure 2.4: Non-manifolds in
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2.4.1 Boundary

Consider a geometric n-complex K wliich has as its carrier a manifold with boundary. 

Then, by considering only boundary points of |K|, we see that there is a (n — l)-complex 

K' which has as its carrier the boundary of |Kj. Thus, K' is called the boundary of K.

2.5 Conclusion

We will meet many of the concepts defined here in slightly altered form in chapter 5 

wherein we define abstract complexes, and Alexander moves. Before doing so, we in

troduce and discuss simplicial quality measures in the next chapter, and some local 

transformations of simplicial complexes in chapter 4.



Chapter 3 

The quaUty of simpHces and complexes

3.1 Introduction

A num ber of references to  the  quality of a simplex or a  com plex have been m ade. The 

notion of quality  is clarified in this chapter. We define quality  in itia lly  in term s of the 

individual simplices of a complex, and use th is definition to  induce various global quality  

m easures on the complex (for exam ple the average, or m inim um , sim plicial quality  taken 

over the complex).

G enerally speaking, simplices which are as close in shape as possible to  the  regular 

simplex in any dim ension are considered desirable. This assum ption was justified in 

section 1.2 w ith reference to  the finite elem ent m ethod.

In section 3.2 some definitions are given for use in the  rem ainder of the chapter. Sec

tion 3.3 gives a definition of the angles of a simplex in n-dim ensions. It goes on to  classify 

the types of degenerate sim plex which may appear, and lists them  for two and three 

dimensions. Section 3.4 defines a  generalised sim plicial quality  m easure for individual 

simplices. Sim plicial quality  m easures in 2D and 3D are detailed in sections 3.5 and 

3.6 respectively, along w ith  geom etrical in terp re ta tions where relevant. Section 3.7 dis

cusses to  w hat ex tent differing quality  m easures are equivalent, and proposes a prim ary 

measure, the  radius ratio , for use.

Section 3.8 describes a num ber of ways in which the  global quality  of the  complex 

may be m easured using th e  qualities of its constituen t simplices. Finally, section 3.9

16
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discusses how to calculate changes in these global quality measures.

3.2 Definitions

Let K  be an n-complex, and let A  be an geometric n-simplex contained in K . Let

A =  ao3.i ■ • • a„ .

Each vertex a, of A  has coordinates (a |, af, . . . ,  a ” ) in R".

D e fin itio n  21. The vo lum e  of A  is obtained by taking the n x n  determinant [39], [17]

det((ao - a i ) , . . . , ( a o  -  a„))
v o l(A ) =  ± -

n!
(3^1)

One may also use the (n -|- 1) x (n +  1) determinant

1 1 . . 1

v o l(A ) =  ± ao a\ .

O q a "  . • <

(3,2)

For large n (and for certain cases at small n) the determinant may be numerically 

unstable [19[.

D e fin itio n  22. The d iam e ter , D{A), of a simplex A, is defined to be

D{A) m aj^ |x  — y| 
x,y e A

X 1/2

I -  yi\
x , y e A

(3.3)

where A  is viewed here as an open set in E” .

D e fin itio n  23. The in rad ius  of A is

Rin{A) =  sup {radii of all spheres contained in A } 

(see figure 3.1 for a 2-dimensional example)
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Figure 3.1: Inradius of 2-simplex

D efin itio n  24. The o u tra d iu s  or c ircu m sp h ere  of A  is

■Rou<(A) =  inf {radii of all spheres containing A }  .

We may assign a diameter and an inradius to the complex K  as follows. For each of s 

n-simplices, A,, in the complex, let

A  =  D{Ai ) ,

R L  =  R i n { A i )  .

Then

JD(K) =  max D i,
 ̂ ’ 0 < i < s  * ’

Ri n{K)  =  m ill .
0 < i< s

3.3 Angles

Dihedral angles and solid angles are defined in section 3.3.1 for simplices in two and 

three dimensions. These definitions will be used later on when dealing with simplicial 

quality measures. A more general definition of simplicial angles is given in section 3.3.2 

for the purpose of defining a classification of n-simplices.

3.3.1 Simplicial angles in two and three dimensions

In two dimensions the only type of angle is the standard one between the edges of a 

triangle. In three dimensions two types of angle exist; the solid angle and the dihedral 

angle.
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Dihedral angle

A dihedral angle exists between two planes (see figure 3.2). In the case of a te trahedron, 

there are six dihedrals between pairs of faces of the simplex, one for each edge.

n i

Figure 3.2: Dihedral angle, S

T he dihedral angle between two planes is

(5 =  7T — arccos ( ) , (3.4)V||ni||||n2||y
where ii i  and r i 2 are norm al to the planes.

Solid angle

D efinition 25. Let A  — aoaia2 a 3  be a 3-simplex. The solid angle at the vertex â  is 

defined to be the area of the spherical triangle formed by projecting the 2-simplex not 

containing â  onto the unit sphere.

Let S \,S2 ,S l be the dihedral angles at â . Then the solid angle at â  is [50], [73],

O i =  5 \  - \-  ^ 2  - \-  . (3.5)

The solid angle subtended a t ao is shown in figure 3.3, (b).

3.3.2 K -angles and degenerate simplices

We are in terested  in the  geom etrical quality  of simplices. We show in this section w hat 

can go wrong, by listing ways in which a simplex can be degenerate. A num ber of 

classifications and  nom enclatures exist [18], [8]. We use the  one contained in [8].
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(a) (b)

Figure 3.3: Solid angle subtended at ao (|aoa'i| =  |aoa'2 | =  laoa'sl =  1)

First a set of generalised angles are defined for n-simplices. They are then used to 

characterise various types of degenerate simplex.

D efinition 26. A k-angle is defined at each k-face, B, of an n-simplex m R". A small 

{n — k — 1) dimensional sphere is placed around B. The sphere lies on an {n — k)- 

dimensional plane perpendicular to B, and i t ’s center is the projection o /B  onto the 

plane. The k-angle is defined to be the fraction of the sphere which lies within A .

Since we are dealing solely with simplices, the largest /j-angle we can encounter is 

one subtending a hemisphere. On a hemisphere, a /c-angle has the value

From the definition, a 0-angle is the angle at a vertex and is referred to as a solid 

angle. An (n — 2)-angle is the angle between two (n — l)-simplices, and is known as 

a dihedral angle. Note th a t for the case n =  3, both of these angles are equivalent to 

their previously defined counterparts of section 3.3.1 up to a multiplicative constant (see 

figure 3.4 and example 3.1 below). Furthermore, note th a t in the solid angle and the 

dihedral angle are the same — familiar angles.

Exam ple 3.1. Referring to definition 26 we depict in figure 3-4 the three dimensional 

k-angles corresponding to solid and dihedral angles. The intersection of two planes in 

(b) may be viewed as the intersection of two faces of a tetrahedron.

In figure 3.4, (a), B =  ao, which is a 0-face, so we are looking fo r  a 0-angle. A c

cording to the definition, this is obtained using a (3 — 0 — 1) =  2 dimensional sphere
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2 — sphere

/

(a)
(b)

Figure 3.4: fc-angles in . (a) 0-angle; (b) 1-angle

centered at ao. This is reminiscent of a solid angle.

In the case of figure 3-4, (b), ~B = aoai, a 1-simplex. Therefore, there is a 1-angle 

defined at aoai using a (3  — 1 — 1) =  1 dimensional sphere. This is reminiscent of a 

dihedral angle.

In order to proceed, we now state without proof a theorem from [8| which we will 

use to give a classification of degenerate simplices in terms of the configuration of large 

and small A:-angles they possess.

D efinition 27. For an n-simplex, A ,  let NS{k, e) denote the property that no k-simplex 

of A  has an angle smaller than e. Similarly, let NL{k, e) denote the property that no 

k-simplex in A  has an angle larger than |  — e-

Theorem  1. There exists e' > 0 depending only on d and e, such that NS{k,e) implies 

NS{k + 1, e') and NL{k  +  1, e) implies NL{k, e'), for each k in the range [0, d — 3]. 

Furthermore, Â 5'(0,e) implies NL{n — 2,e') and NS{n — 2,e) implies NL{0,e').

D efinition 28. A {j, k)-bad-angle-simplex, 0 < j , k  < n — 1, allows small angles at faces 

of A  of dimension up to j  — 1 and large angles at faces of dimension (n — 1) down to k.

When j  — 0, no small or large angles of any sort are allowed by theorem 1, so the 

value of k is irrelevant. When A: =  0, large solid angles are allowed, which means there 

will be arbitrarily small angles elsewhere, so the value of j  is irrelevant. Thus in E", 

there will be 2 +  (n — 1)^ different types of simplex under this classification.
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D egenerate sim plices in two and three dim ensions

In two dimensions, solid angles and dihedral angles are the same, and are referred to as 

angles. There are 2 +  (2 — 1^) = 3  types of 2-simplex possible under the classification of 

definition 28. They are listed below and examples shown in figure 3.5.

jrrO  No small or large angles are perm itted, triangles in this class are “round” or close 

to regular

j = l ,  k = l  Small angles are allowed, but no large angles. Figure 3.5 shows an example 

of this case.

k = 0  Large angles are allowed. This will result in small angles as well.

j  = 0

j  = 1, k = l  

Figure 3.5: Triangle classes

In three dimensions there are six types of tetrahedron. They are depicted in fig

ure 3.6 on the next page.

Figure 3.7 shows side-on views of a sliver and a cap.

3.3.3 The regular tetrahedron

The regular tetrahedron will be used often during this chapter as a paragon of tetrahedral 

quality. Table 3.1 on page 24 contains the coordinates of the vertices of two regular 

tetrahedra of side r. TZi has been used as a test complex for the Alexander code, and 

7?-2 (see figure 3.8 and [58]) is used in section 3.6.2.
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round, j  = 0 needle (1, 2) spindle (1, 1)

sliver (2, 1)cap, k = 0

Figure 3.6: Tetrahedron classes

capsliver

Figure 3.7: Side on view of a sliver and a  cap. In each case, as /i —> 0, the te trah ed ra  

become increasingly degenerate



24 3.3. ANGLES

T i l T l2

(0,0,0)
(r,0,0)

( i ’ 2v^’ \ / i ' ’)

(^ ,o ,o)
( 0 , ^ , 0 )
(0.1,0)

( —y/sr  rj — > /6 r '\  
\  6 3 J

Table 3.1: Examples of regular tetrahedra

T3 (—\/3r/6, 0, —-\/6r/3)

_ - ^ r 2 (0,r/2,0)

n  (0 ,-r /2 ,0 )

Figure 3.8: Regular tetrahedron with side r
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We usually denote the regular tetrahedron of side r  by 7?.(r), or sim ply TZ, depending  

on the context.

3.4 Simplex quality

Let S  be the set of all n-sim plices contained in an n-com plex, K , and let A  e  5 .

D e f in it io n  2 9 . A s im p l ic a l  q u a l i t y  m e a s u r e  is a continuous function  77 ; [0,1]

such that

77(A ) =  0

implies that A  is a degenerate n-simplex, and

7]{A) =  1

implies that A  is the regular n-simplex. Furthermore, rj should be invariant under rota

tion, uniform scaling, translation and reflection of the simplex, [59], [25].

Not all of the available quality measures obey this definition. The m easures we use will 

do so, however.

3.5 2D quality measures

The obvious measure used to assess the quality of a sim plex in two dim ension is the 

minimum or m axim um  angle of the sim plex. Mesh generation algorithm s often give 

guaranteed quality bounds for the com plexes they produce in term s of the m inim um  

or m axim um  quality of any sim plex in the com plex. Furthermore, as discussed in sec

tion 1 .2 .1 , the error incurred when using the finite elem ent m ethod in two dim ensions 

is directly related to bounding the m axim um  angle away from tt, or to a lesser extent, 

from zero.

A nalogues of the three dimensional measures discussed in section 3.6 (such as the 

radius ratio)  may be form ulated in two dim ensions, but we will not consider them  here.
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3.6 3D quality measures

The focus in this section is on three dimensional complexes, but some of the measures 

defined below carry over with ease to higher dimensional simplicial complexes.

Many different three dimensional simplicial quality measures have been defined [59], 

[58], [60[, [32], [57], ]33]. We list a subset of defined measures, concentrating on ones 

th a t obey definition 29, although we do list some measures th a t do not conform to the 

definition at the end of the section.

3.6.1 Radius ratio

The radius-ratio is defined to be

where and Rout îre defined in section 3.2. It is known [68[ th a t p <  1, with equality 

iff the tetrahedron is regular. The factor of 3 is added for normalisation purposes. 

Figure 3.9 shows a two dimensional example.

(3.6)

a

Good quality triangle Poor quality triangle

Figure 3.9: Radius ratio

A convenient formula for the radius ratio in three dimensions is given in [59]. Let A 

be a 3-simplex, with volume v. Let , 0 <  i <  3 be the areas of the four faces of A and 

let a, b and c each be products of lengths of opposing edges of A. Then [68[
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and
\ / { a  +  b +  c){a +  b — c){a +  c — b){b +  c — a)

(3.8)
24v

Com bining equations (3.6), (3.7) and (3.8) gives

216v^
(3.9)

+  b +  c){a +  b -  c){a +  c -  b){b +  c -  a)

3.6.2 Mean ratio

Consider a m atrix which im plem ents an affine transform ation from a regular tetrahe

dron, TZ, to a general tetrahedron. A , whose volum e is the same as that o f TZ. Joe and 

Liu in [58] give a tetrahedral quality measure which uses the ratio of the geom etric to 

the arithm etic m ean of the eigenvalues of such a m atrix.

A n  a ffin e  tr a n s fo r m a t io n

Let A  =  a o a ia 2 a 3  and S =  S0 S1 S2 S3  be non-degenerate 3-sim plices. We define a volume 

preserving transform ation between A  and S as follows: Take ao to be a favoured vertex. 

A 3 X 3 m atrix,

may be defined from the vertices of A . A sim ilar m atrix, S, may be defined from the 

vertices of S. Let e , , i =  1,2,  3, be the unit vector in w ith 1 in the position and 

zeros elsewhere. We have

A — [ai — ao, a 2  — ao, a3 — a o ] ,

S s j  — Sj Sq , 1 — 1 , 2 , 3  ,

which im plies that

6 i  =  S “ ^ ( S j  -  So )  .

Thus

a, -  ao =  AS“ ^(Sj -  S q ) ,

which m ay be re-written as

a j  =  M s i  - I -  b ,

where M =  AS“  ̂ and b =  ao — Mso- Since volum es are preserved.

(3.10)

det M =  1 . (3.11)
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T h e  m ea n  ra tio

W ith reference to the previous section, let S be the regular tetrahedron, 7?., and let A  

be a simplex whose quality we wish to measure.^ Define

T =  M'^M, (3.12)

and let (Ai, A2 , A3) be the eigenvalues of T. They are positive, since T is positive definite.

D e fin it io n  30. The mean ratio of A  is defined to be

ft(A) (3.13)
tr T Ai +  A2  +  A3

As it is defined, the mean ratio is not a computationally useful measure of quality, 

since it requires the calculation of a determinant or a set of eigenvalues for each simplex 

examined. The following theorem expresses the mean ratio in a more computationally  

friendly manner.

T h eo rem  2. The mean ratio of a simplex A  may be written

12\ / ^
k{A) (3 .14)

where v is the volume of A, and the lu are the lengths of the six edges of A.

Proof  We outline the proof given in [58]. Let TZ =  rorir 2 r 3  be a regular tetrahedron 

which has the same volume as A . Let A =  [ai — a o ,a 2  — a o ,a 3  — ao] and R =  [ri —

ro,r2 -  ro,r3 -  ro].

Using for the coordinates of 71 those given in figure 3.8 on page 24,

R =  r

Furthermore

\ /3 /2  \ /3 /2  

- 1/2  1/2  0

0 0 0

R- 1 1
l / \ / 3  - 1  - l / v / 6  

l / \ / 3  1 - l / \ / 6

0 0 3 /^ 6

(3.15)

= (6\/2^;)l/^ (3.16)

^This means that M =  AR where R is the matrix associated with 7?., and S is replaced by R
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where v  is the volum e of A . This follows from the expression for the volum e of a regular 

tetrahedron [73|
r^ \/2

V =
12  ’

and the fact that TZ and A  have the same volum e by definition. It rem ains to calculate

It is easily be shown that

^(2c?oi +  2c?o2 ~  di2)/S - -  ^

C? 1 2

-  -  (3(^03 +  3c?i3 +  3(^23 — d o i  — do2 — d i 2 ) / 6  j

(3.17) 

where

dzj  =  (a, -  ao)'^(a, -  ao) =  ,

and indicates an entry which is irrelevant for our purposes. Returning now to equa

tion (3.13), we note that

tr T =  Aj + A2  +  A3

=  '^ ^ { d o i  +  do2 +  C?03 +  d i2  +  C?13 +  C?23)

=  2 ^  E  '«• (3-18)
l < i < j < 3

The result now follows from the requirement of volum e preservation (d e tT  =  1) and the 

com bination of equations (3.16), (3.18) and (3.13).

At this point the theorem  has been proved only for the specific vertex ordering of 

7Z and A , the particular coordinates chosen for TZ, and for the choices of ao and tq as

privileged vertices. It is further proved in [58] that the result is independent of these

coordinates, choices and orderings. □

G eom etric interpretation

A  geometric interpretation of k is that it m easures the extent to which the incircle of 

the regular tetrahedron is skewed in the course of the transform ation 7Z —> K .  From
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equation (3.10), this transformation has the form

y = Mx + b , (3.19)

where the x lies on the incircle of 71. The equation of the incircle is

(x + bo)'^(x + bo) =  , (3.20)

where r  is the radius, and —bo is the center. Inserting (3.19) into (3.20) results in the

equation of an ellipse, £\

(y + bi)'^(M"^)'^M“^(y + bi) = , (3.21)

where b i =  —M“^b + bo. A translation and a rotation simplifies (3.21) to
2 9 9,-y»̂
1 _L 2 , ‘̂ 3 _  ^ 2  ( o— + — + — = r  , (3.22)

/ \ l  A2 A 3

where the {Â } are the eigenvalues of M^M, as before. The general equation of an 

ellipsoid at the origin is
^ 2  „ 2  „ 2

4  + ^  + 4  = l ,  (3.23)q,2  r y Z

where are the lengths of the principal half-axes. Combining (3.23) with (3.22)

gives

= XiT̂

=  X2T̂

7  ̂ =

which allows the mean ratio to be expressed in terms of the principal half-axes of £

3 { / ^
«(A ) =  ■ (3.24)a'̂  + +  7^

Figure 3.10 on the facing page gives a two dimensional analogy of k.

C om patib ility  w^ith definition 29

We have ac(A) e  [0, 1] for 3-simplex A, where

0; A degenerate
k(A)

1; A regular .
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>

Figure 3.10: Two dim ensional version of k. K 2d  =  2 y ^ A iA 2 )/(A i +  A2 ), and K 2d

2 ^ / a ^  I {a^ + /3'̂ )

It also has the required invariance under scaling, etc. Thus it is an acceptable quality  

measure.

3.6.3 Minimum solid angle

The solid angle of a tetrahedron was defined in section 25. In analogy w ith the two 

dimensional case, one would expect that the m inim um  solid angle should be usable as 

a measure of quality. Following the argument of [59|, this is shown to be the case in 

the sense of definition 29. Furthermore, it is shown that the sine o f the m inim um  solid 

angle,

It is not a particularly com putationally  friendly one, however, given that it involves the 

com putation of three dihedral angles, each of which involve a trigonom etric evaluation. 

A  more efficient expression m ay be derived. Referring to the sim plex, A  =  a o a ia 2 a 3 , of 

figure 3.3, (a), on page 20, the solid angle 6q at ao m ay be calculated using

m m
m in

is also a quality measure, and is more com putationally efficient.

N e w  e x p r e s s io n  for s o lid  a n g le

A  standard definition o f the solid angle subtended at a vertex was given in equation (3.5).
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where v = vol(A ) and the lij are the lengths of the edges of A [59]. This involves at 

most one trigonometric evaluation. In fact if amin is usable as a quality measure, there 

is no need for even this evaluation.

M inim um  solid  angle as a q u ality  m easure

In order that the minimum solid angle be usable as a simplicial quality measure, it must 

take the value 0  for degenerate simplices, and a maximum  (normalised) value of 1 for 

the regular tetrahedron.

For a tetrahedron. A, with angles 0 <  i <  3, it can be shown

that Omin is bounded in the following manner

with equality iff A is the regular tetrahedron. Thus the minimum solid angle may be 

used as a quality measure with appropriate normalisation.

U sing  a m i n  as a q u ality  m easure

Assume the solid angles of A are ordered as follows: 9min =  < ^2 < and

that (7j =  sin(^i/2). Use also the result of [36] that the sum of the solid angles of a 

tetrahedron is bounded thus

0 < dmin < =  6  arcsin(\/3/3) — tt ,

3

i= 0

By equation (3.26), 6 3  is the only one of the {9i} which can have value greater than tt.

Thus straight away ao < cji < 0 2 - Equation (3.26) also gives us that

3̂ ^ 27t —  —  Q\ —  Q2

< 2 7 T - ^ 2 ,

which means that

Since sinx =  sin(7r — x), 0 2  < <̂3 . In summary.

O m in  =  OL mm G i ,T T lin (3.27)
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where

Oi =  sin
^  sin Vl/2 ’

1

may be used as a quality measure.

3.6.4 Edge ratio

(3.28)

where D  is the  diam eter of the simplex (see definition 22) and a  is a norm alising factor.

3.6.5 Other 3D measures

The m ajority  of the measures we have listed are of an aspect ratio type, involving ratios 

of some q uan tity  which goes to zero w ith the volume of the  te trahedron , com bined with 

some quan tity  which does not do so [25]. Thus, by tak ing  suitable com binations of 

volumes, face areas, edge lengths etc., there are many more quality  m easures available 

which obey definition 29 (for example, those contained in [67], ]6] and [16]). On top of 

this, there are angle based quality measures (such as amin in section 3 6.3) which may 

also be used.

3.6.6 Flawed measures

M easures which use the outradius, or ratios of functions of edge lengths or which use 

dihedral angles will likely fail to  detect certain  degenerate te trahed ra . Consider the 

following exam ples

E x a m p le  3 .2 . Let

reasonable even as the tetrahedra become degenerate. I f  the denom inator was replaced 

by the outradius, say, a sim ilar failure would occur.

X' =  min I
0<i<j<3

m ax I
0<i<j<3

(3.29)

N ote that fo r  the sliver or the cap o f figures 3.6 and 3.7, the edge lengths will remain
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Exam ple 3.3. We have detailed in section 3.6.3 how the minimum solid angle of a 

tetrahedron is usable as a quality measure, in analogy with the use of the minimum  

angle in two dimensions. The minimum dihedral angle is another natural choice. Let A  

be a 3-simplex, and let {ni}f_o be the unit normals to the four faces of A . The dihedral 

measure of quality is

S = a  min (tt — arccos(iii • n j)) ,
0<i<j<3

using equation (3.4). ol is a normalisation constant such that =  1.230959; the value 

in radians of the dihedral angle of the regular tetrahedron.

The quantity S as defined above fails to detect degenerate tetrahedra of the needle 

type (see figure 3.6 on page 23). These have no small or large dihedral angles and so 

are viewed as having good quality by this measure.

3.7 Relationships between simplicial quality measures

Joe and Liu have carried out an in-depth analysis of three tetrahedral quality measures 

in [59] wherein they establish a weak mutual “equivalence” between the radius ratio (p), 

the mean ratio (k) and the sine of the minimum solid angle (cTmin)-

3.7.1 Weak equivalence between quality measures

The authors of [59] define a tetrahedral shape measure in a manner similar to that given 

in definition 29. Then any pair of shape measures, // and u, are weakly equivalent if

< u <  , (3.30)

where cq, Ci, Cq, ei are positive constants. This equivalence is modelled on the equiva

lence of norms in normed linear spaces, but it lacks their power. Let ||-||i and ||-||2 be 

two norms on a finite dimensional vector space, V. Then by equivalence of norms,

a |k lli  < ||a:||2 < /5 ||x ||i, Vx e  V,

where a  and /5 are positive constants. If for some pair of positive constants a, b,

a < ||a:||i < b,
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then there exist positive constants a', b' such that

a' <  ||a:||2 <  b '.

Furthermore, if, the relation

II2/II1
holds, then there exist a', b' such that

» ' <  .

\ \y\ \2

The situation with equation (3.30) is somewhat different. If

a <  /^(A) <  b , 

for some simplex. A , then there exists a', b', such that

a <  /i(A ) <  b'

where

a ' =  (a/ci)^/®‘ , 6 '=  (6/co)^/®°.

However the inequality

“ - K B ) -  ’
does not give rise to a corresponding one in terms of /i(A )/;u (B ) if Cq >  Ci. In this sense 

the equivalence of n  and is considered to be “weak”.

3.7.2 Relationship between p ,  k  and (Tjnin

Three inequalities of the form of equation (3.30) are derived in [59] and shown in equa

tions (3.31), (3.32) and (3.33). Since each of the inequalities can be inverted^, six 

^For example, equation (3.31) also implies the relation
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possible inequalities are implied.

< P

16
< ^min

\/3  2 < ^min

2
^  , (3^31)

(3.32)

<  y/ ' "  ■ <3.33)

These equations mean th a t if any of p, k or Omin approach zero, then so will each of 

the others. However, experiments detailed in [59] show th a t the rate a t which they do 

so varies. The experiments involve starting  with regular tetrahedron TZi of table 3.1. 

This tetrahedron is deformed towards zero volume in a variety of different ways, and the 

behaviour of the quality measures is observed. The results show th a t any of the measures 

can approach zero faster than  any of the others depending on the m anner in which the 

tetrahedron is compressed. For example let the coordinates of TZi be param etrised as 

follows:

where u = I corresponds to the regular tetrahedron. Then as —>■ 0, p will tend to 

zero faster than Gmin which will tend to zero faster than  k . If, on the other hand, the 

param etrisation

Ui =  I (0,0,0),(u,0,0), ( 1 ’ I 2 ’ “T ’ ~3”

is used, amin will approach zero faster than  k which will approach faster than  p as u —> 0.

The picture which emerges when u is near 1 is somewhat simpler. In this region the 

ordering

^  ^  P — ^min )

holds approximately. This ordering seems to take shape in the region where all quality 

measures hold values greater than 0.7. An observation is made by the authors of [59] 

tha t the position of p in the above ordering means th a t it tends to d istribute values 

more uniformly in the middle of the interval [0, Ij. This provides a tentative reason to 

favour it above others when presenting statistical data.
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A conjecture

Finally we present a conjecture expressed in [59] which we will be using.

C onjecture Any pair of simplicial quality functions, /i, u which obey definition 29, 

and which are algebraic functions of the volume, face areas and edge lengths of a 

tetrahedron, and which succeed in recognising all forms of degenerate tetrahedron 

listed in figure 3.6 will obey a inequality of the form

complex via the definition of a composite function formed by combining the qualities of 

all the cells in the complex. The next section lists some such induced measures.

3.8.1 G lobal quality measures

Let K be an n-complex, A an n-simplex in K, and 77 a simplicial quality function. 

Furthermore, let Nc{K)  be the number of n-simplices in K. The following composite 

functions are used.

Global m inim um

3.8 Complex quality

The quality function used for cells can be used to induce a quality measure on the entire

C m r n ( K )  =  m in i ) (A ) (3.34)

Average quality

(3.35)

E xponential quality measure

O  (in  -  ^ A < K ^ ( A ) e  
2 e x p (  ) (3.36)
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where > 0. Qexp(K) can emulate either the average quality or the minimum quality 

of K , and a range of intermediate values, parametrised by p. See chapter 9 for more 

details.

P ro d u c t o f logs o f sim plex  q uality

ap„„(K) =  log ( n  "((A)) =  Y, ■ (3.37)
\ A < K  /  A < K

3.9 Calculating changes in quality

Let K and K ' be a simplicial n-complexes containing Nc{K) and Nc(K') n-simplices 

respectively. Consider a transformation /  ̂ : K  -> K ' which removes a set of r n-simplices 

{A,p,. . . ,  Aj^_^}, from K and adds a set of s new n-simplices . . . ,  to K,

where the region filled by the {Bj,} is the same as that filled by the {Ai,}.

The computer application at the center of this thesis applies transformations to 

simplicial complexes. In order to assess the usefulness of a transformation, we need to 

measure the quality of the new complex created. We may also want to calculate from 

this the magnitude of the change in quality resulting from the transformation. The 

change in quality may be defined on either a global or local basis.

3.9.1 Global quality

Let Q be one of the measures described in section 3.8.1. Then the new global quality is 

simply Q (K ') and the change in quality as a result of applying /i is given by

AQ =  Q{K') -  Q { K ) . (3.38)

If AQ 0 then the transformation results in a disimprovement in quality and if A ^  ^  0 

the transformation results in an improvement.

3.9.2 Local quality

The new quality may be obtained in a local sense by obtaining the global quality Q for 

the sub-complex {Bj^, . . . ,  Bj,_j} of K ', which we denote by Q({Bjo, . . . ,  Bj,_j}).
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The local change in quality may be found by also obtaining Q on the sub-complex 

{Aig, . . . ,  Ai^_i} of K and calculating

AiQ = , B j,_ ,}) -  Q({Ai„,. . . ,  A;,_ J ) . (3.39)

3.9.3 Relationship between global and local quality

After the application of a transformation, calculating the new quality locally requires 

the least computational effort, but it is the new global quality that is the most im

portant measure, particularly the minimum quality. It is desirable, then, that after a 

transformation has been applied, the global change in quality is calculable from the local 

change in quality. Using the complexes K and K ' of the previous section, we will see 

that this may be done for the measures Q^y, Qprod and Qexp but unfortunately not for 

the measure Qmin- We consider each of these in turn, starting with Qav

Qav Before the transformation jj, above has taken place, the quality Qav(K) is

^  _  ^ ( C o )  +  ? ? ( C i )  H  h 7 7 ( A i o ) H  h  7 7 ( A i ^ _ J - I -  h  ? ; ( C n „ ( K ) )  ro ah\^ a v lK j -  . (3.4Uj

After /Lt has been applied, the quality of K ' may be written

^  ~ l - - - - - - - - - 1 ~  ^ ( B j o )  H - - - - - - - - - h  ^ ( B j , _ i )  - I  h  ^ ( C n ^ ( k ' ) )  / q . - | N
Javi j -  , (3. Ij

where

iV e(K ') =  iV c(K ) +  s - r ,

and the sum of the qualities over the replaces that over the { A j , } [ r Q .  Equa

tion (3.41) may be re-expressed

^  _  V i ^ o )  +  ^ ( C i )  - I - - - - - - - - - h  rj{Ai^)  H - - - - - - - - - h  r i i ^ U- i )  H - - - - - - - - - ^  ? ? ( C n c ( K ) )

N,{K')
^(Aio) H ^- (̂Air_i) ?7(Bjo) H h7/(Bĵ _̂ ^

iV c(K ') iV e(K ')

which reduces to

n  ^(^io) +  • • • +  Vi^ir-x) . ^(Bjo) +  ■ • • +  r/(Bj^_J
 ̂ iVe(K') Â c(K') ^ Nc{K') ■ ^
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The last two terms in equation (3.42) are effectively the local quality Qav taken on the 

sub-complexes {Ai,}[rQ and respectively.

Qexp The update of Qexp may be achieved by maintaining the numerator and the 

denominator of Qexp separately and updating each in the manner of Qav From equa

tion (3.36)

Q e x p ( K )  —  p  )

where

M  =  77(C o)e-^''(‘̂ o) +  7 7 (C i)e -^ " (‘=̂ ^̂  +  - - -  +  Y1 +  • ■ •

and
r — 1

2 ) — g-^J?(Co) _|_ g-^77(Ci) g-/3f?(Ai^) q - 0 v { C n ^ ( K ) - i ) _

Then

(3.44)

where
5 — 1 r — 1

M" =  AT + (3.45)
fc=0 k=0

and
5  —  1 r - 1

(3.46)
k= 0 k= 0

The ratio (3.44) may calculated out whenever the complex exponential quality is needed.

Qprod The value of Qprod may be updated as follows

Q p r o d ( K ' )  =  Q p r o d ( K )  -  (log?7(AiJ + • • • + logr7(Ai^_ J )

+  ( lo g r 7 ( B j J  +  • • • +  l o g 7 7 ( B j , _ J ) .

(3.47)

Qmin Finally, let

Q o l d  —  Q m i n ( {  A j g , . . . , A j ^  j  ̂ } )  ,
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be the  local m inim um  quality  of the sub-com plex {Ai ^ , . . . ,  A ;^_j} of K  before the 

application  of /x and let

Q n e w  =  Q m i n ( { B j g , ■ • • , j  } )  ,

be the  local m inim um  quality  of the sub-com plex {Bj ^ , . . .  ,Bj^_j} of K ' after fx has 

been applied. We wish to  obtain  Qmin(K') from qnew and qoid-

Obviously

Q o l d  ^  Q m i n  ( K ) .

T he value of qnew will fall into one of the three ranges below.

Q n e w  Q m in(I^) Qmin{I^ ) — Q n e w

Q n e w  — Sm in{I^) Q m in (K ')  =  Q „ i n ( K )

Q n e w  ^  Q m in(I^)  i 

Q o ld  — Q m i n ( K )

The removal of the {A iq , . . . ,  may remove all cells which 
give K  its minimum quality. Thus the new minimum quality may 
be higher than Qoid- However, the only way to find this out, and 
calculate it, is to traverse the entire complex. This is an 0{Nc(K') )  
operation. Note that if qoid Q m in (K ) ,  then the fact that Q „ e w  > 
Q m in(K ) has no relevance to the new minimum quality of K ' .

Hence it is not possible to  m aintain  an accurate value, in constan t tim e, for the measure 

Q m i n ( K ' )  by calculating Q m i n ( K ' )  from the local change in quality.

3.10 Summary

In th is chap ter we have given a general definition of a sim plicial quality  m easure, along 

w ith  a collection of quality  measures obeying the definition. I t has furtherm ore been 

shown th a t a  type of equivalence can be dem onstrated  to  hold between the quality  

m easures given (see section 3.7). Based on th is result, we will confine ourselves to  using 

th e  radius ratio , p, as the  geom etric quality  measure in all of our experim ents.

In addition, a num ber of m ethods of extending a sim plicial quality  m easure to  give 

a  global quality  m easure for a complex have been discussed, am ong them  the, obvious.
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global minimum quality, Qmin, and the global average quality, Qav We furthermore 

introduced the exponential quality measure, Qexp- It will be shown in chapter 9 th a t 

it approaches the value of the global average or minimum quality, as well as multiple 

interm ediate values, upon variation of the param eter (3.

Given our discussion in section 1.2 on page 3 concerning the effect of geometric 

quality on the convergence properties of the finite element method, Qmm has pride of 

place among our measures in the sense th a t we will always be trying to obtain the best 

global minimum quality of any complexes we deal with in later chapters. However we 

will not always improve complexes with respect to Qmin- Much of our attention will be 

focused on improvement with respect to Qexp(/5), with /3 chosen to favour improvement 

with respect to the global minimum quality.

We now move on to discussing some standard transform ations used for the improve

ment or adaptation of two and three dimensional simplicial complexes.



Chapter 4 

Some transformations of simplicial 

complexes

4.1 Introduction

In this chapter we in troduce a set of two and three dim ensional local transform ations 

of sim plicial complexes th a t appear in the literature.^ The list is no t exhaustive, but 

includes m any of the m ost commonly used transform ations. Each listed transform ation  

will be rephrased in term s of A lexander moves in chapter 8.

A lthough the focus of this thesis is mesh^ im provement, some of the transform ations 

are used in o ther contexts, such as mesh generation or mesh adap tation . Given th a t the 

d istinction between mesh im provement, and mesh generation in particu lar, is sometimes 

blurred, we will allude to  some of these alternate  uses. In preparation , we give definitions 

below of mesh generation, mesh im provem ent and mesh adap tation . Mesh generation 

is dealt w ith first because it logically precedes mesh im provem ent.

Having given these definitions, we will commence the discussion of local transfor

m ations of sim plicial complexes, s tarting  in section 4.2 w ith edge-flipping. Section 4.3 

deals w ith regular adaptation  in two and three dimensions. In section 4.4 we discuss

^Although none o f our com puter experim ents take place in two dim ensions, it is useful to  describe

som e two dim ensional transform ations, as they provide a context for certain three dim ensional ones 
^In the sequel, the term s mesh, triangulation  and simplicial complex  will be synonym ous

43
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a generalisation of edge-flipping, known as edge-swapping, and finally in section 4.5 we 

deal with vertex smoothing.

4.1.1 Mesh generation

There is an enormous body of research on mesh generation, which we mention here only 

in passing. References [9], [10] and [28], for example, provide relatively recent surveys 

of the field.

D efin ition  31. Given a geometric description^ of a (possibly non-convex) polytopal 

subset I? C  , a mesh generation algorithm fills T> with an simplicial n-complex^. 

Holes in the interior are permitted.

The geometric description will thus usually involve a collection of vertices, lines and 

hyperplanes describing the (possibly not connected) boundary of the subset. This will 

then be decomposed into a complex of n-simplices, whose union will be the subset V. 

Each of the initial vertices will be vertices of at least one of the n-simplices. Extra, or 

Steiner ]9], points may be inserted into the interior of V  in order to help create the 

triangulation.^

4.1.2 Mesh improvement

D efin ition  32. A mesh improvement algorithm assumes as input an existing triangu

lation of a domain in K” and alters it (without changing the shape of the domam) to 

improve it with respect to some quality measure.

In our case all quality measures will be geometric, simplicial measures, although 

others are possible, such as the solution based criteria of [12]. Chapter 3 gives a definition 

of a simplicial quality measure.

^For example using a planar straight line graph in two dimensions [81]
^Non-simplicial mesh generation algorithms exist in abundance, but they are not relevant to us here 
^Non-convex three dimensional polyhedra cannot, in general, be triangulated without the acdition

of such points [9], [79]
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Mesh improvement as defined here could therefore be considered a post-processing 

step on a previously generated mesh.

4.1.3 M esh adaptation

As in the case of mesh generation, the field of adaptive mesh refinement comprises a 

large body of research of which we will take little note aside from the following brief 

discussion. For reviews of the subject, see [46] and [86].

Adaptive meshing is defined in the context of the solution of a system of partial 

differential equations on a domain decomposed into a mesh.® Adaptive algorithms alter 

element density and size during the solution process, based on a posteriori estimates of 

the error between the calculated solution on the actual solution of the system. Thus, 

simplices are refined in some parts of the mesh, and may even be coarsened in others, 

according to the local values of the estimator.

Given tha t the adaptation takes place during the solution of the system of pde’s, 

adaptation algorithms have to be quick, while at the same time attem pting to maintain 

reasonable geometric simplicial quality. This means th a t geometric quality is gener

ally not explicitly improved when using adaptive algorithms (due to the expense of 

quality calculations); rather the algorithms are developed so th a t they give theoretical 

lower bounds on the minimum qualities of the simplices which are obtained using them. 

Generally speaking, for the older algorithms, such bounds exist in abundance in two 

dimensions, but have not been proved to do so in three.^ More recent algorithms give 

certain geometric guarantees in three dimensions ]7], ]60], ]3], [62], ]63].

®We refer in particular here to solution using the finite elem ent m ethod
case in point here is longest edge bisection  [77]. The two dim ensional case com es w ith the

guarantee that the angles of all refined sim plices will be bounded from below  by a m ultiple of the

sm allest angle of the original com plex. In three dimensions no such bound has been obtained (at least

until recently). In practice, however, the algorithm  operates satisfactorily in three dim ensions [78] —

even in parallel; the author of th is thesis has im plem ented a parallel longest edge bisection algorithm

for use with a three dim ensional large eddy flow solver in a m echanical engineering research laboratory

[37], [38]
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4.2 Edge flipping transformations

Before giving a definition of edge flipping, we will briefly consider the possible trian

gulations of the convex hull of n +  2 points, not all coplanar, in M". It is proved by 

Lawson in [55] that there are at most two different triangulations of such a set, and that 

there will often be only one, with the geometric configuration of the points determining 

how many triangulations are admissible.® We give diagrams of each of the three distinct 

configurations of vertices which exist in two dimensions in figure 4.1, and of the five 

distinct configurations in three dimensions in figure 4.2.

Definition 33. Consider 4 or 5 non-coplanar points in or respectively. I f  the 

points are arranged such that their convex hull admits two triangulations, an edge- 

fiipping transformation in M" involves replacing the existing triangulation of the points 

with the other possible triangulation.

In two dimensions, the above definition encompasses figure 4.1, case (iii). In three 

dimensions, it encompasses figure 4.2, cases (ii) and (v). Note that in two dimen

sions both admissible triangulations of figure 4.1, (iii) contain two triangles. How

ever in three dimensions, the leftmost triangulation of figure 4.2, (v) contains two 

tetrahedra (aoaia 2 a 3 , aoaia 2 a 4 ) whereas the rightmost triangulation contains three: 

(^ 0 ^ 1 ^ 3 3 .4 , a i a 2a 3a 4 , a 2a o a 3a 4 ).

In our application, we are not confined to convex hulls of n -I- 2 points. We shall 

often encounter configurations such as that of figure 4.3, (i), where the edge fiip shown 

in figure 4.1, (iii) would alter the shape of the existing (non-convex) hull, or the case of 

figure 4.3, (ii), where an attem pt to apply the fiip depicted in figure 4.2, (v) would do 

likewise. Flips in each of these cases are therefore forbidden.

The convex case provides an upper bound, however, on the number of triangulations 

that are available in a given instance, convex or not.

® A method of enumerating all possible geometrically distinct configurations is presented in the same 

paper
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a-2

(i)

a2

(i i)

33 aa

ai
(iii)

a i

Figure 4.1: Possible configurations of the convex hull of 4 points in two dimensions, along 

with admissible triangulations
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as

as

a3

(iii)
3 3

(i)

(ii)

^3

aa

(iv)
aa

ao

(v)
Figure 4.2: Possible configurations of the convex hull of 5 points in three dimensions, 

along with admissible triangulations
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3 3

a i  3 4

(i) (ii)
Figure 4.3: Some non-convex configurations of n +  2 points

4.2.1 A set of edge-flipping transform ations

We define a set of edge-flipping transformations in two and three dimensions, referring 

where necessary to the above discussion.

Two dimensions

The two dimensional case is simple — it involves only switching between triangulations 

of the type shown in figure 4.1, (iii), while forbidding flips in cases like the one depicted 

in figure 4.3, (i).

Three dimensions

Our choice of set in three dimensions is due to Joe [43], [45], and its elements are referred 

to  by him as local transformations.

First, and foremost we take the case of figure 4.2, (v), with flipping forbidden in cases 

such as depicted in figure 4.3, (ii). An edge flip of this type creates three tetrahedra 

where there were two (T2 3 ), or two tetrahedra where there were three (T3 2 ).

Next, we consider configurations of the type depicted in figure 4.2, (ii), allowing for 

lack of convexity. The full set of possibilities of this type is depicted in figure 4.4, where 

the four vertices (ao, a 4 , H2 , a i) are coplanar. This makes the available flips dependent 

on the relative positions of these vertices on their common plane, which reduces to the 

two dimensional case. In figure 4.4, case (i) corresponds to figure 4.1, (iii). Case (ii)
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aa a3 aa

ya-i \a2

a4

(i) (ii) (iii)

Figure 4 .4 : Possible triangulations of regions m ade up of five points four of which are 

coplanar

corresponds to a non-convex instance of the same case, and case (iii) is analogous to 

case (i) of figure 4.1. A flip may therefore be made in case (i) only.

Case (i) contains two sub-cases, however. When the plane formed by the four 

vertices above is on the boundary of the triangulation, a flip creates two tetrahedra 

where there existed two tetrahedra, thus T2 2 . However, if the faces (aoa4 a i, a ia 4 a 2 ) or 

(aoa2 ai, aoa4 a 2 ) are in the interior of the complex, then in order that the complex re

main legal, the pair of tetrahedra facing the two depicted in figure 4.4 must also undergo 

an edge flip. In this case, the transformation brings four tetrahedra to four tetrahedra; 

thus T4 4 .

Joe [43], [44], [45] has used the above local transformations in a number of algo

rithms for the improvement of meshes with respect to some of the geometric quality 

measures introduced in chapter 3, as well as algorithms aimed at producing Delaunay^, 

or almost Delaunay tria n g u la tio n s .T h e  most recent, [45], contains an approach which 

has certain similarities to ours, and which we discuss in more detail in chapter 1 1 .

These papers raise one particularly interesting point. In two dimensions, given any

®For an extrem ely brief description of the  Delaunay triangulation , see appendix  C 
“̂Consider five non coplanar points, ao, a i ,  &2, a s , ^4 in Define a  face ao a ia2 , shared by the

te trah ed ra  aoaia2a3  and  aoa ia2a4 , to  be locally optimal [43] if a4 is no t contained in the circum sphere

of aoaia2a3 . A flip is deemed favourable if it renders a face locally optim al. However in [43] Joe

has shown th a t there  exist triangulations which, even after all adm issible, favourable, flips have been

applied (allowing for non-convex configurations w here flips are desirable, b u t forbidden), the resulting

mesh is still not Delaunay



4.3. REGULAR REFINEMENT 51

triangu lation  of a set of points, it is possible to  obtain  any o ther triangu la tion  of the 

sam e set via a sequence edge flips of the sort depicted in figure 4.1 [53]. T he question 

therefore arises w hether in three dim ensions a finite sequence of local transform ations, 

{Tij},  can be used to  transform  any triangulation  K j of a set of points into any other 

triangulation , K 2 , of th e  same set. It is conjectured by Joe in [43] th a t th is is possible, 

bu t, to  our knowledge, no proof has so far been supplied. See also [66], num ber 28, where 

a sta tem en t of the conjecture involving T23 and T32  only is given. N otw ithstanding the 

above, it seems th a t a proof of the conjecture has been given in [13] for the special case 

th a t the vertices of the  triangulation  are those of a convex polytope.

4.3 Regular refinement

Regular refinement in tw'o dimensions is depicted in figure 4.5. The analogous trans

form ation in three dim ensions is depicted in figure 4.6. This type of transform ation  is 

usually used in mesh adap ta tion  (e.g., the algorithm  of Bank et al. in ]5]), bu t not, to 

our knowledge, for mesh improvement.

Figure 4.5: Regular refinement of triangle. The resulting triangles are all similar to the 

original

In two dim ensional regular adap tation , all of the  sub-triangles (child triangles) are 

sim ilar to the  original triangles, so there is no loss of quality  for triangles which are 

regularly refined. However, the refinement procedure produces non-conform ing neigh

bouring triangles and these have to  be refined in some m anner on the ir non-conforming 

edges. This m ay lead to  some degradm g of simplex quality.

In the three dim ensional case, four child te trah ed ra  are formed a t the  corners of the 

parent, all of which are sim ilar to  the parent. In the  interior there is an octahedron
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which may be divided into four tetrahedra in three different ways by drawing a diagonal 

between one of the three pairs of opposing vertices. Creating the interior te trahedra  

using the wrong diagonal may lead to poor quality interior simplices, so there is not 

even an immediate guarantee of quality for the child tetrahedra of the regularly refined 

tetrahedron. Furthermore, as in the two dimensional case, regular refinement causes 

non-conforming neighbouring tetrahedra which, when refined, can result in degrading of 

simplex quality. Some advances have been made, however, on the quality front; Bey [14] 

has given an algorithm for which the child tetrahedra created by regular refinement fall 

into a set of at most three congruence classes (identical up to rigid motion and positive 

or negative scaling). The algorithm also ensures th a t non-conforming neighbouring 

tetrahedra do not give rise to new tetrahedra of unbounded quality.

Figure 4.6: Regular refinement of a tetrahedron

4.4 Edge swapping

Edge-swapping is an improvement transform ation used on three-dimensional meshes 

which is described in both [57] and [33], and more recently in [80]. It may be considered 

a generalisation of edge-flipping as described in section 4.2 in the sense th a t the T32  

transform ations appear as special cases of the transform ation described below.

In order to proceed we need the following definition.

D e fin itio n  34. The sh e ll o f an edge in a tetrahedral complex is the complex form ed by 

the set o f tetrahedra which contain that edge.
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Figure 4.7, (a) on this page shows the shell of the edge asae- If Sî a.̂  is removed, 

the shell may be re-triangulated in five different ways. To see this consider the two 

dimensional region formed by the five vertices not contained in asae, depicted in fig

ure 4.7, (b). Note th a t in practice, this region is not necessarily planar; we render it 

so for clarity. Figure 4.8 on the next page shows the five triangulations of this two 

dimensional surface which are possible. Each of these triangulations corresponds to a 

three dimensional triangulation of the original shell. Figure 4.9 shows a subset of the 

fourteen possible triangulations for the case where six, rather than five, vertices are not 

contained in the edge to be removed.

Figure 4.7: Edge swapping

In general, let ab be an edge which is marked for removal. Suppose th a t there are p 

tetrahedra surrounding ab. Then there are p  vertices contained in the shell, but not in 

ab. The number of triangulations Np, of the shell of ab is given by the formula

are known as the Catalan numbers, and they appear in a wide variety of combinatorial 

contexts [49], [83], [20]. The quantity Np gets large very quickly (see table 4.1). In [57],

la.

a,

’a,

(a) (b)

(4.1)

Numbers of the form
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Figure 4.8: Triangulations for 5 points when edge-swapping

Figure 4.9: Some triangulations for 6 points when edge-swapping
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the shell w ith nine vertex neighbours (and 429 possible re-triangulations) is the largest 

shell for which a re-triangulation is a ttem pted . Note th a t the case p = 3 reduces to a

Vertices Triangulations
3 1
4 2
5 5
6 14
7 42
8 132
9 429
10 1430
11 4862
12 16796
13 58786
14 208012

Table 4.1: Triangulations as a function of number of vertices neighbouring an edge

th ree dim ensional T3 2  edge-flip.

Note also th a t if the region defined by the vertices not in the edge to  be removed is 

non-convex, a reduced num ber of re-triangulations may be available.

Lastly, the above description refers only to  a one dim ensional edge being removed 

to  accom m odate a  re-triangulation. The inverse of such a transform ation  may also be 

applied, where one of the  triangulations depicted may be replaced by an edge. Here, 

in the  case p =  3 we ob ta in  a T2 3  transform ation. T ransform ations of th is type are 

discussed in [80| under the title  of multi-face removal.

4.5 Vertex smoothing

We now come to  a com pletely different m ethod of im proving the quality  of a mesh. 

Up to  now the mesh transform ations we have discussed have functioned by altering the 

local connectivity of vertices in order to  add or remove elem ents of the  mesh. Vertex 

sm oothing proceeds by altering the coordinates of a vertex within the hull form ed by the 

cells containing the vertex. This constraint exists, because to  move a vertex outside this 

hull will give rise to  a non-conforming mesh.
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The simplest type of vertex coordinate change is Laplace Smoothing [29], [32]. This 

works as follows:

Let V be the vertex to be moved. Consider the set of vertices

H/ =  {w < S tar(v ) | w ^  v} ,

where the star of a vertex is the complex formed by all simplices containing that vertex. 

Move V to the center of mass of W ,  where each vertex in W  is given mass I. If this 

move is legal (which is not necessarily the case), accept or not depending on whatever 

quality criteria are being applied.

More elaborate schemes [2], [48], [6] for vertex moving are possible. For example, let 

X be the coordinates of the free vertex v .  Define the quality of a cell c to be rj{x.). Then 

the quality of S tar(v ) can be expressed as

= min rj{x) ,
C < S ta r(v )

where (^(x) is a continuous, non-differentiable function.

The optimal point for the vertex, x* is found by maximising 0(x) over the feasible 

region for x. A quadratic programming approach has been used in [31] and [33] to solve 

this incarnation of the problem.

In [2], a framework for theoretical analysis of vertex smoothing techniques is devel

oped, under the heading of Generalized Linear Programming.

We confine ourselves to relatively simple vertex smoothing algorithms, as these are 

sufficient for our purpose. A further discussion of vertex smoothing, along with a de

scription the smoothing algorithms we use, is given in section 6.4.3.

4.6 Conclusion

In this chapter, we have considered standard transformations used for mesh improvement 

or adaptation. We will see them again in chapter 8 when we re-express them in terms of 

Alexander moves, and some of them will reappear in the course of analysing the results 

of our experiments in chapter 10.

In order to proceed, we must now introduce the Alexander moves.



Chapter 5

Combinatorial topology and Alexander 

moves

5.1 Introduction

In chapter 4 we dealt w ith some standard  transform ations which may be applied to 

the geom etrical simplicial complexes which were discussed in chapter 2. T he purpose 

of this chapter is to pu t such transform ations on a more formal footing by applying 

topological m achinery to  define a set of atom ic transform ations, in term s of which we 

can express the  existing transform ations (in chapter 8), and explore others. We call 

these atom ic transform ations the A le x a n d e r  m o v es  [1]. A no ta tion  for applying them  

is also developed.

We do not d irectly  define the Alexander moves on geom etric complexes bu t discard 

geom etric inform ation by defining abstract simplicial complexes in section 5.2. Upon 

these complexes an algebra of the abstrac t vertices is defined in section 5.3. In section 5.4 

the  A lexander moves them selves are defined on abstrac t complexes.

The definition is m ade on abstrac t complexes because we m ay algebraically m anip

ulate sym bols representing the  vertices, and this leads to  ease, bo th  of definition, and 

in proving theorem s. The ease comes a t a price, however and in chapter 6, we discuss 

some ex tra  steps required when applying Alexander moves to  geom etric complexes.

57



58 5.2. A B ST R A C T  SIM PLICIAL CO M PLEXES

Having defined the Alexander moves, we show in section 5.4.4 how abstract com

plexes related by such transformations form an equivalence class. We then connect this 

to an equivalence of a geometric type defined in section 2.3.

It is not to be expected that the meshes used are completely general. We assume that 

meshes will be combinatorial manifolds with boundary (see section 5.5.2 for a definition 

of a combinatorial manifold, and section 2.4 for a somewhat similar notion defined in 

R ").

A note to the reader This chapter contains a number of theorems and proofs from 

[1] for completeness. Generally speaking, the details of the proofs are not necessary for 

an understanding of the thesis beyond this chapter. A notable example is theorem 11 

in section 5.4.5, although corollary 4 which relies on it is interesting. However, an 

understanding of the statements of theorems 14-17 in section 5.5 is helpful for the 

discussion in section 6.3.1.

5.2 Abstract simplicial complexes

All discussion of simplices and complexes so far (section 2.2) has entailed them being 

viewed as flat subsets of R". Each simplex has an interior and each complex a carrier, 

both of which are subsets of R ".

We are now going to begin again and build up a theory of simplicial complexes 

which makes no reference to any geometry, but which is instead defined purely using 

finite collections of finite sets of formal vertices. We shall see that many of the definitions 

of section 2.2 will carry over in this abstracted context.

Definition 35. A fin ite  abstract s im p lic ia l com plex is a non-empty finite collection 

of finite sets K such that if A e K. and B C A then B G K [61]. The elements o fK  are 

called simplices, and the elements of the set

V(K) =  (J A.
A e K

are called vertices.
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The dimension of a simplex A G K  is

dim(A) =  card(A) — 1,

where card(A) is the cardinahty of the set A. The dimension of K  is the maximum 

dimension of any simplex in K.

D efin ition  36. Two abstract complexes are said to be non-intersecting i f  they share 

no vertices.

D efin ition  37. For a complex K and a, a vertex in K, the s tar  of a, Star (a), is defined 

to be the set of simplices in K which contain a.

Note tha t the definitions of a /c-com ponent and of /c-connectedness made in 

section 2.2.1 for geometric complexes carry directly over to case of abstract complexes.

5.2.1 Geometric realization

The tetrahedral meshes we operate on are geometric complexes. We wish to see how 

abstract complexes may be connected to some geometric counterpart.

Any abstract simplicial complex may be imbedded in R", for n  sufficiently large. 

For example, let n = card(V (K )). Label the vertices of K  {ao, ai, . . .  ,a„_i}. Define a 

map V : V(K) R"“  ̂ which maps ao onto 0 € R”~̂  and maps the i^^ vertex of the set 

{ai}"J]̂  ̂ onto the unit point of the axis. Clearly these points are affinely mdependent 

in R""^. Furthermore, for each simplex

A = ao ai ... a/j

in K  there corresponds a geometric simplex

A' = conv({i;(ao), . . . ,  w(ak)})

in R"“ ' .

This imbedding of K in R"  ̂ is called a geom etric  rea lization  of K, and is denoted 

^(K).
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The particular imbedding described above is the simplest to form. In fact, a stronger 

result exists. Any abstract simplicial complex of dimension n may be imbedded in 

[41] (but not necessarily in where d < 2 n  [30]).

In our applications we will be considering a much more restricted class of abstract 

simplicial complexes — those abstract n-complexes which have a geometric realization 

in R" .

From the foregoing we see that for a given abstract complex, K  there are an infinite 

number of geometric realizations for that complex. Consider, for example, the 3-complex

aoaia2a3 + aoaia2a4,

for which two realizations are shown in figure 5.1.^

(5 .1)

aa

ao

a,

as

(a) (b)

Figure 5.1: Geometric realizations of equation (5.1).

In figure 5.1, (a) the realization is a convex region in whereas figure 5.1, (b) is a 

non-convex region. The particular realization of an abstract complex will be seen to 

determine which transformations may be applied to the complex. This is discussed 

further in chapter 6.

^The “+ ” operation is defined in section 5.3
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5.3 An algebra of vertices

To define Alexander moves on an abstract complex, we need to be able to speak of 

formal sums of products of vertices. In order to do this we must first define an algebra 

on the vertex set. We do this below in a manner which closely follows [1].

From definition 35, the vertex set forming any complex is finite, but we assume we 

are allowed to add new vertices to the set whenever necessary.

We furthermore require two additional special vertices 0 and 1 (which have no par

ticular geometric significance).

With this in mind, let a, {ai} be vertices. An algebra may now be defined as follows

0 + a =  a ,

0 • a  =  0 , (5.2)

1 a =  a ,

where (a =  0, 1, or ai).

Addition is taken to be associative and commutative, and multiplication to be asso

ciative, commutative and distributive.

With definitions (5.2), we may create formal polynomials of vertices,

n  ^ o a j g Q  • a ^ p j  ■ • • a - z o f c g  +  >

where G N, Vz. We further specify that vertices in the algebra obey

1 +  1 = 0 ,  (5.3)

and

a* • aj =  0 . (5.4)

Thus the most general polynomial which may be now be formed in this algebra has unit

coefficients (by equation (5.3)), and no term in the polynomial contains repeated vertices

(by equation (5.4)). With these rules in place, we may express an abstract n-simplex, 

A, as

A =  aoai . . .  a„ . (5.5)
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and an abstract n-complex as

n  =  Q-ioo ■ +  ajjp • H , (5.6)

where the dimension^ of II is maxj kj. Using equation (5.6), a homogeneous^ n-complex 

may then be written

n  =

Any geometric complex may be expressed as an abstract complex by using (5.7) with 

each geometric simplex corresponding to a term  in the sum, where all the vertices are 

symbols shorn of their geometric attributes.

Note also th a t by (5.3) and (5.4) we will also have

n + n = 0,
n • n = 0 or 1,

for any complex.

Henceforth we will speak of the polynomials II above as complexes, and shall concern 

ourselves only with homogeneous complexes.

5.3.1 The boundary of an abstract complex

In section 2.4 we defined the notion of a boundary for the carrier of a geometric complex 

(at least if the carrier is a manifold with boundary). We now define the boundary of an 

abstract complex.

Definition 38. For every n-complex K there is an associated {n — 1)-complex, K, 

called the boundary  o /K . The boundary of a single vertex, a, is defined to be 1. The 

boundary of the simplex 1 is defined to be 0. For simplices o f dimension greater than

0, the boundary is defined to be the sum of the {n — 1)-components o f the simplex. In

summary

^The polynomial 1 , of degree 0 is considered to have dimensionality -1.
^See definition 13 on page 11
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1 =  0 , 

a =  1,
_  _ _  (5.8)
a b  =  a +  b ,

a b c  =  a b + ^  +  b c .

The boundary of a complex is then easily defined using the boundary of each of the 

simplices comprismg the complex. Thus, in the case of a 0-complex (a formal sum of 

vertices), the boundary will be either 0 or 1 , depending on whether there is an even 

or odd number of terms in the sum (by equation (5.3)). For complexes of dimension 

greater than 0, the boundary is simply the sum of the faces of each of the simplices 

reduced modulo 2.

The following formulae for finding the boundary of sums and products of complexes 

may be readily proven using the definitions above. They are analogous to the rules for 

finding the derivatives of standard polynomials. Let K  and L be complexes. Then

T heorem  3.

K T L  =  K  +  L , (5.9)

and

i ^  =  K L + K L . (5.10)

D efin ition  39. A complex is said to be closed i f  its boundary is 0. Otherwise it is said 

to be open or bounded.

Figure 5.2 shows a geometric representation of the closed 1-complex

0̂ 1̂ +  ai a2 +  3-2 a o .

Lem m a 1. The boundary of an n-simplex is closed.

Proof We proceed by induction. The statem ent is true by definition for the case n = 0;

a =  1; 1 =  0
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32

ai

Figure 5.2: Closed 1-complex

Let A be an (n +  l)-simplex. We may write

A =  b B ,

where b  is a vertex and B is an n-simplex. Then

A =  ^  -  bB  +  B , 

using equation (5.10). Thus the boundary of A is

A =  B +  B  =  0 ,  

by (5.3), and the hypothesis of the induction th a t B =  0.

□

T heorem  4. The boundary of an open complex K is always closed.

Proof. The boundary of K  is the sum of the boundaries of its simplices. Lemma 1 gives 

the result. □

D efin ition  40. A component A of a complex K is said to he in ternal i f  it is not part 

of the boundary of K.

5.3.2 Some properties of algebraic complexes

We can speak of products of simplices and complexes, as in the following theorem 

T heorem  5. The product of a k-simplex K with an l-simplex L  is a {k + l + l)-simplex.
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Proof. This is obvious from equation (5.5). □

Furthermore,

Theorem  6. Every complex K  is a sub-complex of a simplex.

Proof. This is true for the simplex formed by the product of all vertices contained in 

K. □

Factorisation of a com plex

Let K  be an n-complex. Let A  be a /c-component of K  (0 <  A; <  n). Then K  may be 

w ritten

K  =  A P  +  Q , (5.11)

where P  is an (n — A; — l)-complex referred to as the com plem ent of A  with respect

to K . U k = n, then P  is simply the complex 1. The complex Q is referred to as the

residue of A P .

Theorem  7. A component A of a complex K is internal i f  and only if the complement 

of A with respect to K is closed.

Proof. As in equation (5.11), the complex may be written

K  =  A P  + Q , 

where P  is the complement of A. Then

K  =  A P 4  A P  +  Q .

Since A  is not a part of A P  4- Q, then by definition 40, A  is internal iff P  =  0. □

5.4 Alexander moves

In section 2.3 we used the notion of a subdivision to define equivalence. How a subdi

vision is arrived a t was not specified — some sequence of geometrical operations upon 

the elements of the complex presumably being required.
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We shall define a series of formal operations on abstract complexes which correspond 

to some simple geometric operations on their geometric realizations. These operations 

are known as A le x a n d e r  m oves. Combinations of these simple transform ations are 

considered to result in “subdivisions” of the abstract complexes. In fact in [1] it is shown 

th a t they correspond exactly to the subdivisions of geometric complexes.

5.4.1 Simple transformations

D e fin itio n  41. Let K  be an abstract n-complex. Let A  be a k-component o f K .  Let a  

be a vertex which is n o t already contained in K . We define the A le x a n d e r  m o v e  of 

order k (A, a) to be the operation which transforms

For an n-complex, then, there are n +  1 possible Alexander moves which may be 

applied to simplices of th a t complex, one for each possible dimension, k, of a simplex in 

K  (in fact there are 2n 4- 1 possible moves if one includes inverse moves — see below).

For a transform ation (A, a) which takes the complex K  to a complex K ', there may 

also be an inverse transform ation, (A, a ) ~ \  such tha t K ' goes to K . The inverse only 

exists if there is a K  such th a t K  is transformed into K ' by (A, a).

We will denote a transform ation of the complex K  into the complex L as a result of 

an Alexander move (A, a) by^

K  =  A P  +  Q

(see equation (5.11)) into the complex

L =  a A P  +  Q . (5.12)

(A , a ) ,

and a (presumed legal) inverse transform ation by

(A, a) 1.

^Note the similarity with the notation of definition 18 in section 2.3; see also section 5.4.4
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Geometrically an Alexander move of order 1 corresponds to the addition of a nevî  

vertex to an edge; one of order 2 corresponds to the addition of a vertex to a triangle, 

of order 3 to a tetrahedron, and so on. Figure 5.3 shows the geometric analogues of 

the Alexander moves (of order >  0) which may be applied to the tetrahedron aoaia 2 a 3 . 

Using equation (5.12), the transformations in figure 5.3 may be expressed as follows

(aoai, a)

(aoaia2 , a)

— aaoa^ — aao a a ^ ,

aaoaia2 

= aagai + aaoa2 + aaia2 ,

=  aaoaia2 +  aapaias +  aaoa2a3 +  aaxa2as

(aoai, a)

a.,

(aoaiaa, a)

(aoaia2 a3 , a)

Figure 5.3: Alexander moves in — a is a new vertex

Let

K ^  K' (A, a ) .

We adopt a number of conventions for Alexander moves which are useful when proving 

theorems. We allow the transformation (A, a) even when A  is not a component of



68 5.4. A L E X A N D E R  M O V E S

K. Such a transform ation simply leaves K  unchanged. Similarly, if neither A  nor a  is 

contained in K ', then (A, a )“  ̂ always exists, and leaves K ' unchanged. We never allow 

a transform ation (A, a) where a  is already an element of K .

An Alexander move (a, b) of order 0 merely replaces the vertex a  by the vertex b. 

The inverse of such a transform ation always exists.

D e fin itio n  42. A n Alexander move (A, a) on a complex K  is said to be in te rn a l  if  

the simplex A is not a component of the boundary o /K . Even if  A  is not a component 

o /K , the move is considered to be internal. A move (A, a )“  ̂ is internal if  (A, a) is.

5.4.2 Alexander movesets

We have now defined the Alexander moves for an abstract complex. The purpose of 

defining them was to use them as atomic transformations which can be combined iato 

more complex transformations. Hence the following definition

D e fin itio n  43. A combination of Alexander moves applied successively to a compleL is 

called an A le x a n d e r  m o vese t .  The number of transformations in a moveset is called 

the length of the moveset. A moveset o f length one is an Alexander move.

A moveset is written as follows

(A, a) (B, b) (C, c) - -  - , (5.L3)

with the leftmost transform ation applied first.

5.4.3 Abstract moves and movesets

Let K  be a n-complex. The notation we use in sections 5.4.1 and 5.4.2 to denote moves 

and movesets assumes th a t for each move of a moveset a suitable location for application 

of the move has been chosen — i.e., the transform ation (A, a) assumes th a t the simplex 

A  has been chosen from K.

However, we often specify the order of a move, and whether it is a refining move or 

an inverse move, before specifying its location (see section 6.2). To facilitate this we 

define abstract moves and movesets.
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M oves

D efinition 44. A n abstrac t Alexander move is a move whose order has been chosen, 

and for which it is decided whether it is an inverse or a refining move. A location for  

application of the move is not chosen:

Abstract refining moves of order i are denoted a j ,  for i = l ,n .  Inverse moves of the 

same order are denoted . The notation ckq is used for both refining and inverse 

moves of order 0 (vertex relabelling)

D efinition 45. The set of all abstract Alexander moves available in dimension n is 

denoted An- This set is sometimes extended to include vertex moves (see section 6.5.3 on 

page 108).

D efinition 46. A concrete  move is the combination of an abstract Alexander move 

and a location for its application. Thus it is a familiar fully specified Alexander move. 

i4,s s^ich we use the standard notation to depict it, for example (A, a).

M ovesets

D efinition 47. A n abstrac t Alexander moveset is a moveset consisting of abstract 

moves.

We use a normal font to denote abstract movesets, and a bold font to depict fully 

specified or concrete movesets. Thus an abstract moveset of length k is written

1 1  =  o c i - - - a k ,  (5.14)

whereas its concrete counterpart is written

/j. =  ( A i ,  a i ) ( A 2 ,  B . 2 )  ■ ■ ■ (Ak ,  a k ) . (5.15)

The notion of an abstract move will not be used again in this chapter. It becomes

useful when we discuss the Alexander move code and the specifics of applying Alexander

moves in three dimensions.
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5.4.4 Congruence and equivalence revisited

In section 2.3 we defined congruence and equivalence for geometric simplicial complexes. 

We now define them in terms of abstract complexes.

D e fin it io n  48. Two abstract complexes will be said to be c o n g r u e n t  iff it is possible to 

transform one into another by a sequence of simple transformations of order 0 — i.e., 

by a sequence of vertex relabellings.

This definition is identical to the one given in definition 16.

D e fin it io n  49 . Two abstract complexes, K  and L are said to be e q u iv a le n t  iff it  is 

possible to transform one into the other by a sequence of simple transformations of 

arbitrary orders. Following the notation of [1], we denote this equivalence K  ^  L 

(naturally L ^  K  also).

This definition is not obviously identical to that of definition 18, but the following 

theorem, which we state without proof (see [1]) unites the two definitions.

T h eo rem  8. A necessary and sufficient condition that two geometric complexes be equiv

alent in a geometric sense is that their abstract counterparts be equivalent in the sense 

just defined.

We note the following two theorems for use later;

T h eo rem  9. If two complexes are equivalent then so are their boundaries.

In order to prove this result we require the following lemma

L em m a 2. If an Alexander move carries a complex K  into a complex L it carries the 

boundary K  of K  into the boundary of L.

Proof. Let (A , a) be the Alexander move in question. Then

K  =  A P  +  Q , L =  a A P  +  Q .

Furthermore

K  =  A P  +  A P  +  Q .
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and

L =  a A P  +  A P  +  Q

aA  P  +  A P  +  Q .

Under (A, a)

K ^ a A P  +  A P  +  Q =  L.

□

Theorem 9 follows immediately from lemma 2.

T h e o re m  10. Let K  and L be a pair of non-intersecting complexes, and let K ' and L' 

be a second pair of non-intersecting complexes such that K ' and L' are equivalent to K

and L respectively. Then K L  is equivalent to K 'L '.

Proof. A sequence of Alexander moves r  carrying K  into K ' will also be applicable to 

K L  unless r  introduces a vertex of L during the course of its application, in which 

case it is not legal to apply r  (see definition 41). This circumstance may be avoided by 

forming a new complex Lq via a series of Alexander moves of order 0 — by replacing 

vertices in L by a sufficient number of new vertices such th a t no vertex of Lq appears 

in K , K ', or any intermediate complex between K  and K '. Then we have

KL KLo

Reversing roles, we have

K 'L o K qL' ^  K 'L ',

which gives the result. □

5.4.5 Commutativity of Alexander moves

Consider the two transformations

(D, a) (E, b) (5.16)
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and

K K 2  (E, b ) ( D ,  a) .  (5.17)

We are interested in knowing when K i and K 2  are identical, and when they are not. In 

other words, when (D, a) and (E, b) commute, and when they do not. The following 

examples show two cases in point.

E xam ple 5.1. Consider a 2-complex

aoaiaa +  aia2as (5.18)

(shown geometrically in figure 5.4)- Let

D =  aia3

E  =  a i a 2 .  (5  19)

a,

Figure 5.4: Original 2-complex

Figure 5.5 on the facing page shows the result of applying the transformation in equa

tion (5.16) to the complex (5.18), whereas figure 5.6 shows the result o f applying (5.17). 

It is clear that the final result in each case is different, which means that (D, a) and 

(E, b) do not commute.

E xam ple 5.2. If, however,

D =  aoai 

E =  a2aa,

then the transformations (D, a) and (E, b) do commute.
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a, a

(D, a) (E, b)

Figure 5.5: Commutativity; (D, a) (E, b)

a, a

(E, b) (D, a)

Figure 5.6: Commutativity: (E, b) (D, a)
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The next theorem will show that K i and K 2  of equations (5.16) and (5.17) are 

either identical, or differ by a single Alexander move, and it will provide conditions for 

commutativity of Alexander moves.

We take into the account the case where D  and E  intersect by expressing them as 

follows

D  =  A C  E =  B C , (5.20)

where A , B  and C are non-intersecting. We may now state the following theorem

T h eo rem  11 . Let K  be a complex. Let A ,  B  and C be three non-intersecting simplices,

and a, b and c be three distinct vertices, not already in K . Then the transformations

n  =  (A C , a) (B C , b) (B a , c)

T2  =  (B C , b) (A C , a) (A b , c) (5.21)

both transform K  into the same complex L.

Proof. We proceed by applying t i  and T2 to each term (simplex) P  of K  separately.

Suppose P  does not contain the component A . Then both Ti and T2  reduce to 

(B C , b) (in the case of t i ,  (B a, c) has no effect because the vertex a was not added 

by (A C , a) due to the lack of existence of A ). Similarly when P  does not contain B , 

Ti and T2 reduce to (A C , a). When P  does not contain C, Ti and T2  leave the complex 

unchanged. The only terms remaining are of the form

P  =  A B C - F ,  (5.22)

where F is a residual simplex.

We apply the transformation to the simplex in equation (5.22):
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P  ^  a B (A C  +  A C ) • F (A C , a)

=  a F (B A C  +  B A C )

^  a F {B A C  +  b A (B C  +  B C )}  (B C , b)

=  a b A B C F  +  a B F C (A  +  bA )

^  {cC (B  +  a B )(A  +  bA ) +  a b A C B } ■ F (B a, c) (5.23)

The transliteration
a ■H- b ,

A •H- B ,

A B ,

ormation ti •h- T 2  When the same transliteration is applied to equa- 

left unchanged. Thus t i  and T2 have the same effect on P  Since all 

have now been considered, the theorem is proved. □

example 5.1, we see that applying t \ and T2 to the 2-complex (5.18) 

■esult in each case. Here

A  =  a s ,

B  =  a 2 ,

C =  a i .

5.8 on the next page show the result of applying t \  and T 2  respectively, 

e results are identical.

C o n d itio n s  for c o m m u ta t iv ity

We can derive the general conditions for commutativity of Alexander moves as a corollary 

to theorem 11, Let C =  1. Transformations (5.21) become

Ti =  (A , a) (B , b) 

T2 =  (B, b) (A , a ) ,
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A a, A a,

(A C , a) (B C , b)
A a

(B a, c)

Figure 5.7: ti =  (AC, a) (BC, b) (Ba, c)

A â

(B C , b) (A C , a)
A a

(A b , c)

Figure 5.8: T2 =  (BC, b) (AC, a) (Ab, c)
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(the th ird  factor in t i  does not cause any changes since the com ponent B is removed by 

the transform ation  (B, b)). Since t i  =  T2 by theorem  11, we have

Corollary 1. A pair of simple transformations (A, a) and (B, b) are commutative 

provided A ,  B, a and b are non-intersecting (see example 5.2).

Factorisation of Alexander moves of arbitrary order

Let B =  1 in equations (5.21) above. They become

ri =  (AC, a) (C, b)(a, c)

= (AC, c) (C, b)

T2 =  (C, b) (Ab, c ) .

Theorem  11 then gives

(AC, c) =  (C, b) (Ab, c) (C, b ) - ' . (5.24)

Suppose the AC has dim ension k, and C has dim ension I <  k, then  Ab has dim ension 

k — I. Thus

Corollary 2. Any Alexander move of order k may be broken down into three Alexander 

moves of order I, k — I and I, where I <  k.

By induction, we have

Corollary 3. An Alexander move of any order may be formed from a series of Alexander 

moves of order 0 and 1.

W hence, from the  definition (49) of equivalence.

Corollary 4. A necessary and sufficient condition that two complexes K and L be 

equivalent is that one may be transformable into the other by a sequence of Alexander 

moves of order 0 and 1.
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5.5 Elements, spheres and manifolds

We now come to two special classes of complex, elements and spheres, which we will 

use define the notion of a combinatorial manifold from the point of view of abstract 

complexes.

5.5.1 Elements and spheres

D e fin itio n  50. An n -e le m e n t  is an n-complex which is equivalent to an n-simplex. 

The order  u  of an n-element is the minimum number of Alexander moves required to 

transform the n-element into an n-simplex. A 0-element is a vertex, which is a 0-simplex. 

Thus every 0-element has u  = 0.

D e fin itio n  51. An n -sp h ere  is an n-complex which is equivalent to the boundary of an 

{n +  l)-simplex. The order  of an n-sphere is the minimum number of transformations 

required to reduce the sphere to the boundary of an (n +  1)-simplex. Every 0-sphere is 

the boundary of a 1-simplex, which is the sum of two vertices. Every complex equivalent 

to the sum of two vertices is itself the sum of two vertices. Thus the order o f a 0-sphere 

is zero. The boundary of a 0-simplex is the complex 1. We define this complex to be the 

{—l)-sphere. It has order zero.

D e fin itio n  52. A n n-complex is said to be s im p ly -co n n e c ted  if  it is either an n-element 

or an n-sphere. The complex 1 is considered to be simply-connected since it is defined 

to be a {—\)-sphere.

Elements and spheres have some useful properties:

T h e o re m  12. The boundary of an n-element is an {n — l)-sphere.

Proof. Let K  be an n-element. By definition K  is equivalent to an n-simplex, A. The 

boundary of A  is an (n — l)-sphere by definition. Since by theorem 9 on page 70, the 

boundary of K  is equivalent to the boundary of A, we have the result. □

T h e o re m  13. Every n-sphere is closed.
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This follows from lemma 1 and theorem 9.

T heorem  14. The product of a k-element, E and an l-element, F (E and F are non- 

intcrsectinq) is a [k + l + l)-eiement.

Proof. Consider the special case where the k and I elements are k and I simplices respec

tively. Then, by theorem 5 on page 64, the product of the two is a (A: +  / +  l)-simplex. 

Theorem 10 on page 71 then gives the general case. □

T heorem  15. The product of a k-element and an l-sphere (element and sphere non

intersecting) is a {k 1 l)-element.

Proof. Consider the special case where the element is a A:-simplex E and the sphere is 

the boundary of an (/ +  l)-simplex F. The product becomes EF. Let a be a vertex of 

E. E may written as aB, where B has dimension (/c — 1). Furthermore

EF =  a B F .

Now,

aBF ^  B F (F, a ) -^ ,

where B F  is a (A; +  / +  l)-simplex, which gives the result in the special case. The general 

case follows from theorem 10. □

T heorem  16. The product of a pair of non-intersecting spheres of dimension k and I 

respectively is a {k -\-1 -\- V)-sphere.

Proof. Once again take the special case where the spheres are the boundaries of (A: +  1) 

and (I +  l)-simplices, E, F respectively. The product is thus E F . Consider the product 

EF. E has the same vertices as E, so it does not intersect F. By theorem 15, EF is a 

(A: +  / +  2)-sphere element. But

EF =  E F .

Thus the product of spheres is the boundary of a (A: +  / +  2)-element, and is, therefore, 

a (A; +  / +  l)-sphere. The general result follows from theorem 10. □
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Theorem s 14, 15 and 16 m ay be sum m arised as follows

Theorem  17. The product o f any finite set o f simply-connected complexes, {Si} is 

simply-connected, and is an element unless all of the {S;} are spheres.

5.5.2 Combinatorial n-manifolds

Elem ents and spheres are them selves very specialised complexes. P rac tica l complexes 

may not be either. In section 2.4, however, we saw th a t quite com plicated spaces could 

be form ed by requiring th a t the  neighbourhoods of each point be hom eom orphic to  

or EI*̂ , ra th e r th an  requiring th is of the whole space. By analogy we now define a type 

of ab strac t sim plicial com plex where each vertex has a  neighbouring region (its com

plem ent) which is sim ply-connected, even if the  com plex itself is no t sim ply-connected. 

We call such a  com plex a com binatorial manifold. We follow the trea tm e n t given in [1] 

w ith slightly altered  notation .

Definition 53. A component A  of a complex K. is said to be regular i f  its complement 

P with respect to K is simply-connected (using the factorisation K =  A P  +  Q /

D efinition 54. A complex K is said to be a co m b in a to r ia l m a n ifo ld  i f  all of its

vertices are regular.

Exam ple 5.3. The following complex contains a non-regular component, a.

aao -l- a a i  -h aa2 =  a(ao +  a i - I -  3 2 ) .  (5.25)

In order for  a to be regular, the complement (ao - I -  ai -t- a2) of a m ust be a 0-element 

or a 0-sphere. B ut the only 0-element is a complex consisting of one vertex, and the 

only 0-sphere is a complex consisting of the sum of two vertices, so a is not regular. 

Figure 5.9 on the next page is a geometric representation of complex (5.25).

Exam ple 5.4. On the other hand, consider the following 2-complex

a a o a 2  - I -  a a i a 2  —  a ( a o a 2  +  a i a 2 ) ,
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♦ ♦  a,a

Figure 5.9; A 1-complex which is not a combinatorial 1-manifold

which is depicted in figure 5.10. The complement o f a in this case is the l-complex

Thus complex (5.26) is equivalent to the 1-simplex aoai — i.e., it is a 1-element.

a.

Therefore a is regular.

We state without proof the following results [1]:

Theorem  18. All components of a combinatorial n-manifold are regular.

Theorem  19. Every complex equivalent to a combinatorial n-manifold is itself a com

binatorial n-manifold.

(5.26)

which may be written

^ 2 ( ^ 0  +  ^ i )  — a 2a o a i  ^

and

a2aoai (aoai, as) ^

a

Figure 5.10: A combinatorial 2-manifold
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Corollary 5. Every simply-connected complex is a combinatorial n-manifold.

Theorem  20. The product o f two non-intersecting complexes K and L can only be a 

combinatorial manifold i f  both K and L are simply-connected.

Using the properties of combinatorial manifolds we may also prove the following

Theorem  21. An [n — l)-com ponent A  of a combinatorial n-manifold, M , is a com

ponent of at most two simplices.

Proof. Decompose M  in the usual manner

M  =  A P  +  Q .

Since A  is an {n — l)-simplex, P  is a 0-complex. By theorem 18, P  is also simply- 

connected. Thus P  is either a single vertex, a, or the sum of two vertices, a  and b. 

Therefore there are at most two simplices in M , A a and A b , containing A. □

This fact is assumed when calculating boundary vertices in the Alexander move code. 

Any {n — l)-components which are contained in only one simplex are taken to be on the 

boundary. The vertices they contain will thus also be on the boundary.

Theorem  22. A component A  of a combinatorial n-manifold  M  is internal or on the 

boundary of M  according to whether its complement with respect to M. is a sphere or an 

element.

Proof.

M  =  A P  +  Q ,

and

M  =  A P  +  A P  +  Q . (5.27)

By (5.27), if A  lies on the boundary of M , then its complement with respect to  M , P , 

must be non-zero. Since P  is simply-connected this means th a t it must be an n-element, 

since we would have P  =  0 if P  were a sphere. If A  is internal then it does not lie on 

M , so we must have P  =  0 which means th a t P  is a sphere. □
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C o r o l la r y  6. The boundary of a combinatorial n-manifold is a combinatorial (n — 

I)-manifold.

Proof. By equation (5.27). □

C o m p a r is o n  b e tw e e n  m a n ifo ld s  a n d  c o m b in a to r ia l  m a n ifo ld s

Using theorem  22 we can make an intuitive com parison between the  neighbourhoods of 

po in ts on the manifolds defined in section 2.4 and the sim ply-connected neighbourhoods 

of v'ertices of a com binatorial n-m anifold as defined in this section. The set of points on a 

m anifold whose neighbourhoods are of type may be com pared w ith the set of vertices 

of a  com binatorial n-m anifold whose com plem ents are spheres. S im ilarly w ith  points on 

a m anifold w ith boundary th a t have type IHI'̂  neighbourhoods and those vertices on a 

com binatorial m anifold whose com plem ents are elements.

O ur definition of a com binatorial n-m anifold is analogous to  a m anifold w ith bound

ary under this com parison. The manifolds of section 2.4 are analogous to  those combi

na to ria l m anifolds all of whose vertices have spheres as com plem ents (for exam ple the 

boundary  of a com binatorial n-manifold).

5.6 Conclusion

A series of simple transform ations, term ed A lexander moves, which m ay be applied to 

ab s trac t complexes has been described. We have alluded to  the fact th a t they can be 

com bined to  form more com plicated transform ations, term ed movesets. A definition of 

equivalence between ab strac t complexes has been given, and it has been noted in the 

s ta tem en t of theorem  8 on page 70 th a t equivalence in the geom etric sense of section 2.3 

is identical to  equivalence in the abstrac t sense of th is chapter. C om binatorial manifolds 

have also been defined and we will henceforth be assum ing th a t the  abstrac tion  of any 

com plex we deal w ith will be a com binatorial manifold.

In the next chapter we consider the application of A lexander moves to  geom etric 

complexes, no tab ly  in three dimensions.



Chapter 6

Applying Alexander moves

6.1 Introduction

In th is chapter we focus on the details of applying A lexander moves to  a  geom etric 

3-complex, M , where we assum e th a t the ab strac t com plex associated w ith M  is a 

com binatorial manifold.

The application of A lexander moves m ay be sum m arised as the  addition  of vertices 

to, or removal of vertices from, a simplicial complex. To th is we also add  the possibility 

of relocation of existing vertices. We will study  the  conditions under which it is possible 

to  perform  each of these operations, particu larly  in th ree dim ensions.

W hen applying an A lexander move, we s ta r t w ith an  ab s trac t move^ (i.e., we know 

its order, k >  0,^ and w hether it is an inverse or a refining move). In order to  generate a 

concrete A lexander move^, we m ust decide upon a location w ith in  M  for application  of 

the ab strac t move. Such locations are chosen using a choice function. Choice functions 

are discussed in section 6.2.

One of the m ain preoccupations of th is chapter is detecting  when concrete A lexander 

moves are illegal. This two p a rt question is addressed in section 6.3. T he first p a r t has 

^See definition 44 on page 69
^The case /c =  0 is a vertex relabelling (whether the move is a refinement or an inverse). Although

this is a perfectly valid Alexander move, we do not consider it to be a useful transformation when

altering a geometric mesh.
^See definition 46 on 69

84
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already been alluded to in section 5.4.1, where we showed that there are circumstances 

where inverse Alexander moves are illegal on abstract complexes. We say that such 

moves are intrinsically illegal, and give a method of recognising them m section 6.3.1. 

We also give some examples of intrinsically illegal moves in three dimensions.

Since this chapter concerns geometric complexes, our main focus is on the second 

part of the aforementioned question, which concerns geometric legality. This refers to 

the fact that it is possible for an Alexander move to be legal on an abstract complex, 

but illegal on a particular geometric realisation of that complex. Section 6.3.2 gives 

examples of geometrically illegal Alexander moves. Section 6.4 details the tests used to 

detect geometric illegality in three dimensions.

In section 6.5 we give an overview of vertex removal and relocation in three dimen

sions.

The chapter concludes in section 6.6 with a summary of the algorithm used for the 

application of Alexander moves.

6.2 Choice functions

Given a complex M, and an abstract Alexander move, a ,  a choice function returns 

sites within M for the application of ex. Sites are simplices of differing dimensions 

(including vertices) where the dimension depends upon the order and nature of a   ̂ The 

combination of a site A and a  forms a concrete move. The types of site returned by 

choice functions are classified below in terms of proposed Alexander moves.

Refining move For an Alexander move of order k, the required site is a A:-simplex, A, 

to which a new vertex a may be added in the usual manner

M = A P  + R

^  aA P + R  (A, a). (6-1)

^Whether a  is a refining move, an inverse move or a vertex move
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In v e rse  m ove The returned site is always a vertex, regardless of the order of the move. 

Once a vertex a  is chosen as a potential site, the complement of the vertex w ith 

respect to M  is searched for a A;-simplex, A , which would be created by the removal 

of a. T hat is, one searches for A  such tha t M  may be w ritten in the form

M  =  a A P  +  R ,  (6.2)

which has the property tha t

a A P  +  R  -)■ A P  +  R  (A, a ) “ ^ .

V e rte x  m ove There is no order associated with a vertex move. The returned site is 

always a vertex.

In summary, we may give the following definition.

D e fin itio n  55. A choice fu n c tio n , <̂, is a procedure which, when presented with an 

n-complex, M , and an Alexander move o l G An^, returns a vertex or simplex from  that 

complex as an application site fo r ct. The combination of an abstract Alexander move 

and a site is a concrete move.

The return values corresponding to each type of Alexander move are

C(a, M)
/c-simplex : a. — a ^ , \ < k < n

vertex : a  =  Q:̂  \  1 <  A: <  n (6-3)

vertex : vertex move

6.2.1 Classes of choice function

Definition 55 allows for considerable freedom in the manner of generating return values 

for a given pair (a , M ). The general classes of choice function we have used are®

ra n d o m  choice Each operation of this procedure on M  chooses a random site from 

M , which is consistent with the value of a  (or no choice — if no site in M  is so 

consistent). See example 6.1 on the next page.

^See definition 45 on page 69
®Within each class, many different choice functions may defined
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seq u en tia l choice Let there be p relevant sites in M . Assign numbers 1 , . . . ,  p to each 

site. The first operation of on M  returns site 1, the second site 2, and so on. 

No more than  p calls to ^ may be made.^ We also use the term exhaustive choice 

function to describe this type of choice function. See example 6.3.

C lassification  by com p lex ity

Let n represent approximately the number of vertices or A:-simplices in a A;-complex, M. 

We note th a t choice functions may also be classified in terms of the complexity of the 

algorithm  used to choose a site for the move.

random -choice Let c G N be a constant. A random-choice choice function makes at 

most c attem pts to find a suitable site for the application of an abstract move. The 

value of c may be specified by the user, and is usually close to 1. The complexity 

of this approach is 0(1) .

seq uen tia l Such choice functions search all (or a large part) of the complex for the 

most suitable site for application of the an abstract move — thus an 0 ( n )  search 

is made for every abstract move to be applied. The “most suitable” site will usually 

be the one a t which the best quality improvement is obtained. We will deal with 

quality issues in the context of movesets in chapter 7.

6.2.2 Exam ples

E xam p le  6.1 (R and om  choice m ove ap p lication ). Consider the simplicial complex, 

M l, depicted in figure 6.1. We start with an abstract Alexander move, \  to be applied 

to M l. Suppose that we wish to choose a site for the move using a random site choice 

function, The application process will proceed as follows:

The abstract move, is an inverse move^, so must return an interior vertex

În fact the situation with sequential choice functions is more complex than this, since the successful

application of a concrete move to M  changes the number of sites in M (see section 7.3.3).
»It requires a vertex removal from a 1-simplex
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as an application site. Thus we will have

M l) =  a,-,

with 0 < i < 10. The application o /af^  at may now be tested fo r  legality. For example 

if  i =  7 in figure 6.1, the move is illegal, but if  i — 9 it is legal (e.g., (aias, ag)-^ /

a,‘o

a,̂1

Figure 6.1: Example complex: M i

Exam ple 6.2 (Random  choice move application). If we take ct2 o,s our abstract 

Alexander move, and M i as in figure 6.1, then the choice function  ^i is expected to 

return a random 2-simplex. Thus,

Cl(^2 i  -l^l) 1

for  io, ii ,  Z2 mutually distinct and a^gaijaij < M \.

Exam ple 6.3 (Sequential move application). Once again, consider the application 

of to Ml in figure 6.1. This time we require that be applied using a sequential 

choice function, ^2 - This will involve choosing all interior vertices and testing them for  

suitability for this type of removal. Thus in figure 6.1, we will have

C2(«rS M l )  =  { a s ,  as ,  ay, ag, ag} .

Not all of these vertices will be suitable, but they will all be tested.
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a,
Figure 6.2: Exam ple complex: M 2

E x a m p le  6.4 (S eq u e n tia l m ove a p p lic a tio n ) . Consider the simplicial complex M .2  

depicted in figure 6.2. Suppose that here we wish to make the 2D abstract move 

cti, which is the addition of a vertex to a 1-sirnplex. Assume further that we restrict 

ourselves to interior simplices. Then exhaustive move application entails testing each of 

the internal 1-simplices before deciding upon a suitable one. Thus,

(̂ 2 (0 1̂ , M 2) =  {aoa3, aias, a2a3, asaa, aoas, a2as, a4a5} (6-4)

For the case o f 0 .2 , sites to be tested would be

<̂ 2 ( 0 =2 ) M 2 ) =  { a o a s a 4 ,  a 2 a 4 a s ,  a o a a a s ,  a 2 a s a 3 ,  a o a i a s ,  a i a 2 a 3 }  .

yls we can see, the search space for inverse Alexander moves will usually be somewhat 

smaller than that fo r refining moves.

6.3 Detecting illegal Alexander moves

Given an abstract Alexander move, a ,  and a site, A , chosen using a choice function, we 

now wish to assess whether the concrete move formed from a  and A  is legal.

Refining moves are always legal, regardless of the location at which they are a t

tem pted because for any fc-component. A , M  may be written as A P  +  R , and trans

formed as in equation (6.1) on page 85. We thus dispense with them for most of the 

remamder of this chapter.

For inverse moves the situation is not so simple. If the complex may not be written 

as in equation (6.2) for some /c-simplex. A, then (A, a )“  ̂ does not exist at a. We say
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the move is in tr ins ica l ly  illegal^ at a, in the sense th a t it may not be applied even 

to the abstraction of the complex M . In order th a t an inverse move, a ,  be legal on a 

geometric complex, it must first be intrinsically legal on the associated abstract complex. 

We therefore consider intrinsic legality first.

6.3.1 Intrinsic illegality

We propose a test for deciding whether a proposed inverse Alexander move at a vertex a, 

contained in an combinatorial n-manifold, M , is intrinsically illegal or not by factorising 

the complement of a. The complex M  may be familiarly expressed as follows

M  =  aP + R, (6.5)

where by the definition of a combinatorial manifold, P is simply-connected and thus by 

corollary 5 on page 82 is itself a combinatorial manifold. We now factorise the complex 

P as follows

P =  Q1Q2 • • ■ Q i , where i >  I , (6.6)

and each of the Qi are assumed to be irreducible. By theorem 20, we have th a t each of 

the Qi are simply-connected. Substituting equation (6.6) back into equation (6.5) gives

]VI = aQiQ2 ■ • Qi + R . (6-7)

Since M  is a combinatorial manifold we have by theorem 22 th a t a is internal or on 

the boundary of M  according to whether the complement of a with respect to M  is a 

sphere or an element.

Consider first the case th a t a is internal, so P is a sphere. Thus each of the {Qi} 

from equation (6.7) must be a sphere by theorem 17 on page 80 (since we already have 

th a t they are simply-connected). An /-sphere, Qi, may be w ritten as

Qi =  E , ,

®The terminology we use here is our own; as far as we know, neither in trinsic  legality nor geometric  

legality are standard terms in the literature
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for some (/ +  l)-element Ei (see section 5.5.1). Let lo\  be the order of each sphere Qi. 

For the special case tha t Wj =  0, Ei will be a {I +  l)-simplex. W ithout loss of generality 

let Wi =  0. Equation (6.7) may be written

IVI = aE 1Q2 • • Qi + R ,

which allows the transformation

M ^  EiE2---Ei + R  (Ej, a)“^ .

This transform ation is only possible if E i is a component — a product of vertices rather 

than a sum of products of vertices.

We have, then, tha t an internal vertex removal is intrinsically illegal unless at least 

one of the factors forming its complement is a sphere of order zero. When the re

quirement is th a t the inverse move be of order k, the sphere in question must be a 

{k — l)-sphere. A number of examples are given below.

E xam ple 6.5. Consider the 2-complex

M = a(aoai + a^a2 + a2ao), (6-8)

shown graphically in figure 6.3. We wish to know whether an inverse Alexander move 

of order 2 ai a  is legal.

Figure 6.3: Vertex removal from 2-simplex

The complement of a with respect to M is a 1-complex which is the boundary of the 

2-simplex aoaia2 .

M =  aa^a^a^ •
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Thus it is a 1-sphere of order 0. Removing it is legal, and gives

M! —> a .o 3 l3 2   ̂ ■

Exam ple 6.6. Now consider the complex

M =  a(aoai +  aja2 +  ^2^‘i +  ^3 ^4  +  +  ^5^0) 1 (6-9)

which has a geometric representation in figure 6.4- Here the complement 0/  M is a

Figure 6.4: Intrinsically illegal attempted vertex removal

sphere, as befits an internal vertex, but the sphere does not have order 0. In fact it has 

order 3 — for example applying the composite transformation

(aoaa, a i)“ (̂aoa3, a2)“Haoa4, 

to this complement gives the complex

0̂̂ 4 + a4a5 + asao = aoa4a5 .

Furthermore, the complement in equation (6.9) is not factorisable into a prod'jLct of 

spheres of order 0. Thus, an inverse Alexander move of order 2 at the vertex a is 

not legal. This is in agreement with an examination of figure 6.4; simply remoxing a 

and cutting all connections with other vertices results in a configuration which is not a 

simplicial 2-complex.

Exam ple 6.7. The complex

M = a(aoai + aia2 +  a2a3 +  aaao), ,6-10)
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Figure 6.5: Vertex removal with two options

which is represented in figure 6.5 gives a choice of removing a from  two simplices, not 

just one. This is manifested in the fact that there is a further factorisation of M  as 

follows

M  =  a (bq + a2)(ai +  a s ) ,

=  a ( a ^ ) ( a l ^ ) .  (6.11)

Graphically we can see easily that a may be removed from the complex in figure 6 5 to 

leave either a.Qa.2 o ra ia a , which is in agreement with equation (6.11).

Now consider the case where a is on the boundary of M . Here, the complement of 

a m equation (6.5) is an element by theorem 22. Using the factorisation (6.7) of M  

theorem 17 requires then tha t at least one of the factors Qi is an /-element for some 

I > 0 and z >  1. The remaining {Qj} may be spheres or elements. We have that 

a boundary vertex removal is intrinsically illegal unless at least one of the remaining 

factors, Qj, j  ^  i is Si sphere of order 0. W ith the requirement th a t the Alexander move 

be of order k, Qj must in fact be a (A: — l)-sphere of order 0. For each such sphere 

Qj) Qj ~  where E j is a /e-simplex. The vertex a can legally be removed from Qj to 

create the corresponding Ej as in the case where a is internal. We note th a t since a is 

a boundary vertex, the maximal order k of an Alexander move a t a is n — 1 as against 

n  in the case where a is an internal vertex.

E x a m p le  6.8. Let

M  — a(aoa2 +  a ia 2 ) ,
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which is also represented by figure 6.6. Vertex a2  may also be factored out to give

a,

Figure 6.6: Legal boundary vertex removal from a 2-complex

M = aH2(ao + a i) =  aa2 aoB i. (6-12)

We wish to know whether an inverse Alexander move of order 1 is legal at a. Note that

•  One of the factors forming the complement o f a is an element — the 

0-element aa.

• Another factor, aoa^, is a 0-sphere of order 0

Thus, the removal of a from  aoa2 is legal. This agrees with the graphical evidence from

figure 6.6.

Exam ple 6.9. Consider, however, the complex

M = a(aoa2 +  a2as +  aias) +  aia2a3 (6.13)

represented in figure 6.7, and again attempt to remove a in an inverse move of order 1.

The complement o f a with respect to M is an n-element. It does not factorise further.

a,‘o a

Figure 6.7: Intrinsically illegal attempted boundary vertex removal



6 .3 . D E T E C T IN G  IL L E G A L  A L E X A N D E R  M O V E S 95

however. Thus in this case, we have a complement which contains no spheres of any 

sort in its list o f factors. Therefore a is not removable fo r  any order o f Alexander move. 

Graphically we see the same thing; removing a  from  figure 6 .7 does not result in a valid 

2-complex.

E x a m p le  6 .1 0 . Lastly we show a more complex 3D example. Let

M  =  aa4(aoai +  aia2 +  a2as +  aaao ) , 

which is shown graphically in figure 6.8. We wish to know whether there exists an inverse

a4

Figure 6.8: Legal boundary vertex removal from 3-complex

move o f order 1 at a. M  m ay be factored further to give

M  =  aa4(ao +  a2)(ax +  aa)

=  a a 4 a i ^ a l ^ .  (6-14)

We have in the factorisation (6 .14) o f the complement o f  a  the required element, a 4 , 

along with two 0-spheres, each of order 0. Thus in a sim ilar m anner to example 6.7, a 

can be removed from  aoa.2 oraiaa to create a 4 aoa2 (a3 + a i)  or a4ai as (ao+ a 2 ) respectively.

The details above provide a starting point for the general application of n-dimensional 

inverse Alexander moves.

T h ree  d im en sio n s

The technique described above is not used in the application code, however. The reason 

is that we have not implemented code to generate irreducible, symbolic factorisations of
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the complements of vertices which are proposed for removal. W ithout such factorisations 

it is difficult to tell (certainly in a general, n-dimensional context) whether there exist 

spheres of order 0 within the complement of a vertex. Instead we use rules which are 

specific to three dimensions.

Consider the case of removing a vertex a  from a three dimensional complex. The 

m ethods we use to detect whether the removal is intrinsically legal are based on counting 

the numbers of neighbouring vertices to which a  is connected, and counting the numbers 

of cells containing those vertices, which also contain a. Figures 6.9 to 6.12 on pages 96-97 

show a number of legal and illegal cases which might arise in practice.

»3

Figure 6.9: Removal of a illegal

Before proceeding, we note a lim itation in our approach with regard to boundiry 

complexes; the algorithm we use to detect intrinsic illegality functions for internal ver

tices only. As a result, we cannot remove boundary vertices. We therefore confine all 

Alexander operations to internal vertices, since we do not wish to add boundary vertices 

which cannot be removed.

We now move on to consider how the geometry of an arrangem ent of cells and vertices 

affects the ability to carry out intrinsically legal vertex removals.

6.3.2 Geometric illegality

This section deals with the effect of geometry on the legality or otherwise of proposed 

Alexander moves. First of all we summarise the requirements a transform ation nust
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a,i

(a) (b)

Figure 6.10: Convex octahedron; removal o f a legal. The three 1-sim plices which m ay be 
formed from opposing vertices upon removal of a are: aoa 2 , a ia s  and a 4 as. T his figure 
depicts the choice of aoa 2

a4

Figure 6.11: Rem oval of a legal

a4

Figure 6.12: Removal of a rendered illegal by the presence of v
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fulfil in order to be geometrically legal.

com plex  legality  The transformation must result in a legal complex — i.e., all pairs 

of simplices in the new complex must be properly joined in accordance with defi

nition 9 on page 10.

g lobal g eo m etric  c a rrie r  invariance As we saw in section 5.2.1, a given geometric 

complex is but one of many realizations of its associated abstract complex. When 

applying transformations to a geometric complex, we will require that the geomet

ric carrier (see definition 10 on page 10) of the complex remain unaltered. This is 

completely reasonable — when working with the mesh of some domain we do not 

wish alterations to the mesh to change the shape of the domain.

local g eo m etric  c a rrie r  invariance Let A be an application site for some transfor

mation. Let W a be the complex formed from S tar(A ) (see definition 37 on 

page 59). The principle of local carrier invariance states that the carrier of W a 

should not be altered by a transformation. Preserving the local carrier implicitly 

fulfils the requirements of global carrier invariance.

We now discuss how these requirements affects the application of Alexander moves. 

R efining m oves

All refining moves which are legal on the abstraction of a geometric complex are legal 

on any geometric representation of that complex.

Inverse m oves

As with abstract complexes, difficulties arise when attempting to apply inverse moves 

to geometric complexes. We shall see from the examples below that while each inverse 

Alexander move which may legally be applied to an abstract complex may be applied 

to at least one of its geometric realizations, it may not necessarily be applicable to all 

of its realizations without altering the carrier of the realisation, or giving rise to an 

illegal simplicial complex. This means that there will be Alexander moves which are
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intrinsically legal but which are forbidden for a particular realisation because of the 

requirement tha t the carrier be preserved.

E xam p le  6.11. Let M be the abstract complex

M  =  aoaia2a3 +  aoaia2a4

=  a o a i a 2 ( a 3  +  3 4 ) .

Make the following transformation

M  —)■ aaoaia2 (a3 +  3 4 ) 

which may be further condensed to

^(^0 ^ 1  ̂ 2 )(^3 ^4 ) •

(6 .15)

(aoaia2 , a ) ,

(6 .16)

Having just applied the transformation (aoaia2 , a), we know that (aoaia2 , a )“  ̂ is a 

legal inverse, but an examination of equation (6.16) shows that (aaa4 , a )“  ̂ is also legal, 

and

^ ( ^ 0 3 l ^ 2 ) ( 3 3 ^ 4 )  ^ 3 ^ 4 ( ^ 0 ^ 1 3 2 ) ( ^ 3 ^ 4 ,  3 )
-  1

(6 .17)

Figure 6.13 shows this pair of transformations for a convex geometric realization o /M .

a.
■>

(aoaia2 , a)

Figure 6.13: (a o a ia 2 , a ) (a 3 a 4 , a )“ ^

(a3H4 , a) 1

E xam ple  6 .1 2 . Consider the transformations of example 6.11 attempted on the leftmost 

complex of figure 6.I4 .
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(aoaia2, a)

Figure 6.14: (a o a ia 2 , a )(aaa 4 , a )“ ^

In this case there is no straight line between as and a4 that remains within the hull of 

the original complex, so the transformation fails to preserve the local carrier at a. It 

is thus unclear how to make the final transformation. One idea would be to take the 

complex formed by geometrically removing the point a and all its connecting edges, and 

connecting the vertex pair aaa4 to give

aoaia2a3 +  aoaia2a4 +  aja2a3a4 .

However, this is unsatisfactory because this transformation alters the shape of the hull 

of the original geometric complex and thus does not preserve its geometric carrier. The 

transformation is therefore disallowed.

We describe the A lexander move (a 3 a 4 , a ) “  ̂ in exam ple 6.12 as being g e o m e t r i c a l l y  

i l legal  — it is not intrinsically  illegal on the ab strac t com plex, bu t canno t be applied 

to  the  particu la r geom etric complex a t hand.

6.4 Testing geometric legality

In th is section we provide tests for geom etric illegality. T he tests  are all based on

volume^® calculations of n-simplices (where the  dim ension of the com plex is assum ed

to be n). Volume signs are used to  ob ta in  simplex o rien tation  w ith respect to  certain

planes. This orien tation  inform ation is then  used to  assess the legality of proposed

transform ations.

'̂’See equation (3.1) on page 17
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We consider some examples which illustrate legal and illegal cases in two and three 

dimensions. The examples are classified in order of inverse Alexander move. We de

scribe tests which detect illegalities in each case. These tests are sufficient to deal with 

configurations that arise in up to three dimensions, but may not suffice for certain 

configurations that appear in higher dimensions.

Since we deal here with vertex removals, or with vertex moves, sites for Alexander 

move application are always vertices. The local carrier at a site a, W a, is defined as on 

page 98.

6,4.1 Rem oving a vertex from a line

Consider the realisation of complex (6.16) on page 99 shown in figure 6.15, (a) on this 

page. Suppose we wish to test the inverse move (a3a4, a)“  ̂ We move a to the centroid 

of the proposed new simplex, aaa4. Since a remains in |W a| (see figure 6.15, (b)), the 

proposed move is geometrically legal.

(a) (b)

Figure 6.15: Straightening a line during vertex removal

If, on the other hand, the realisation of the same complex given in figure 6.16 is used, 

we see that the move is illegal since moving a to the centroid of aaa4 moves it outside 

the original carrier (see figure 6.17). Note also that the collection of simplices no longer 

forms a geometric simplicial complex because some of the simplices have illegal non-null 

intersections with other simplices (for example aaoa2 a 3  now intersects the interior of 

the simplex a a ia 2 a 3 ).
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as

ao

Figure 6.16: Non-convex realisation of complex 6.16

as

ao

Figure 6.17; Vertex a  moved outside of original carrier
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Test

The above test may be described more formally as follows. Let a be the vertex proposed 

for removal. Let 5(a) denote the set of p n-simplices neighbouring a. Thus

S(a) =  ,

where each Aj is an n-simplex. Before a is moved, let the volume of each cell in 5(a) 

be denoted Vi, ior 0 < i < p, where the vertex lists of each cell are ordered such that 

Vi >  0. Now move a to the centroid of the proposed new simplex, as part of the legality 

test. Recalculate the volumes, of each of the simplices contained in 5(a) using the 

new coordinates of a and the origmal vertex ordering. If the signs of any of the volumes 

have changed (or if v[ =  0  for any i) then a has moved outside the original geometric 

carrier (or is a vertex of at least one simplex with zero volume), and the proposed move 

is illegal.

We will henceforth refer to this test as 7i(a).

6.4.2 R em oving a vertex from a face

Consider the abstract complex

^(^ 0 ^ 1  +  ^ 1 ^ 2  ^ 2 ^o ) ( ^ 3  “1“ ^ 4 ) ) (6.18)

and its depiction in figure 6.18 on the next page. In the case of the geometric complex 

shown here, it is obvious th a t there exists a transformation to the complex

aoaia2as -I- aoaia2a4, (6 19)

via the removal of a from the face aoaia2 . However, consider the representation of the 

same abstract complex in figure 6.19. Here it is not possible make the above transfor

mation since a 4  and a 3  are on the same side of ao aia 2 . The creation of the two simplices 

of complex (6.19), results in a complex whose carrier is not th a t of Wa- Furthermore, 

it invclves an illegal intersection between the simplices ao aia 2 a 3  and ao aia 2 a 4 .
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Figure 6.18: Removal o f vertex from face or line

as

Figure 6.19: Vertex removal from a o a ia 2 illegal —  &4 and as are on the sam e side of 

aoa^ag
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T e s t

As in section 6.4.1, calculate the volumes of the  p  n-sim plices in 5 ( a ) . T his tim e ensure 

all volumes, Vi, 0 <  i <  p, are calculated w ith respect to  a fixed ordering of the  vertices 

of the face a o a ia 2 . If all the  Vi have the same sign, then  as and a 4  are bo th  on the same 

side of a o a ia 2 , and the  removal of a  to  create aoaias  is considered to  be illegal.

We refer to  th is te st as ? 2 (a, a o a ia 2 ).

6.4.3 M oving a vertex

For our purposes here, the vertex sm oothing transform ation  consists of tak ing  a vertex, 

a, with some in itia l set of coordinates and moving it to  some new set of coordinates. 

Figure 6.20, (a) —> (b) depicts a two dim ensional exam ple.

a s  3 4

ao
ao

a
(a) (b)

(c)

Figure 6.20: Vertex smoothing in two dimensions

Difficulties arise w ith vertex movement when the  new coordinates of a  are outside 

of the carrier of W a, as is the case in figure 6.20, (a) —>• (c).

T e s t

T he test used to  detect illegal vertex moves is identical to  71(a) above. Once again take 

the  complex, W a, formed from 5 (a ) which contains the n-sim plices Before

moving a, note the  volume Vi of each A ,. A fter a  has been moved, calculate the volumes 

of the  p new n-sim plices, { A 'J U  created by the  change in coordinates. D enote the 

volumes of these new cells hy v[, 0 <  i <  p. Since no new vertices have been added or
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removed, there is a simple correspondence between the old and new cells: Ai -f-> Aj.

If, for any i, the sign of v[ is different from that of Vi, or if v[ =  0, then the proposed 

vertex move is illegal.

Referring once again to the two dimensional example, figure 6.20; the signs of the 

areas of the 2-simplices aaoai and a a ia 2 will change under the coordinate change 

(a) —>• (c), demonstrating the illegal nature of the move.

We designate this test 7^ (a). It detects vertex move errors in any dimension.

6.5 Applying Alexander moves in 3D

The application of Alexander moves in three dimensions is summarised in this section. 

We deal with vertex removals and relocation only, since vertex addition is easily imple

mented in n-dimensions, and is always legal. Section 6.5.1 contains definitions of a few 

useful quantities. Section 6.5.2 gives an overview of the algorithm for vertex removal, 

and section 6.5.3 describes the various vertex relocation algorithms we use.

6.5.1 Definitions

Let M be a complex, a be a vertex and oci be an abstract Alexander move (which at

this point may be a refinement, an inverse, or a vertex move). Tables 6.1 and 6.2 define

a number of quantities which are used in the following sections.

r} a simplicial quality function

Vmin the minimum volume allowed for any simplex of M  

©min the minimum quality allowed for any simplex of M

Table 6.1: Useful quantities

The three dimensional abstract Alexander moves are given in table 6.3 for reference 

(see also section 5.4.3).
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the number of vertices connected to a  

 ̂ the vertex neighbours of a

the set of ra-simplices containing a  

the scale of 5(a); defined to be

s = min |a  — a,;
0 < i < T i v ( a )

Table 6.2: Quantities associated with the neighbourhood of a vertex

Dimension Insertion onto Removal from
1-simplex a i
2-simplex OC2

3-simplex « 3
vertex move

Table 6.3: Abstract Alexander moves in three dimensions

6.5.2 V ertex removal

Let a  be a vertex. The removal of a  may be intrinsically and /o r geometrically illegal. 

Intrinsic legality is a precondition for geometric legality.

The legality test therefore proceeds in two stages. First the the connectivitj^ structure 

near a  is examined for a simplex, A, of dimension appropriate to the proposed vertex 

removal. Failure to find such a simplex means th a t the move is intrinsically illegal. 

Assuming A  is obtained, the second stage involves applying tests to discover if there are 

geometric reasons why the removal should not go ahead. We summarise this procedure 

in the C h o o seS im p lex  algorithm of table 6.4 on the following page.

T es tin g  g e o m e tr ic  leg a lity

We have already given a set of tests for geometric legality m section 6.4. Below we list 

the occasions on which each of the tests is used.

r a . \ ” v ( a ) -

5(a)

7i(a) Carried out when attem pting to create 1-simplices.
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INPUT: a,
OUTPUT: new simplex A created by removal o f a., or 0 
CreateSimplex:

A ^  0
i f  connectivity structure at a contains a simplex, B, of dimension i 

A ^  B 

en d if  
i f  A  0

i f  geometric test on the removal o f  a to create A  fails 
A 0 

en d if  
en d if  
return  A

Table 6.4: Algorithm; C reateS im plex  

72(a, A) Carried out in the case where ny{a) = 5 and z =  2.

6.5,3 Vertex movement

Vertex movement (or smoothing) is the final transform ation we deal with. The legality 

test for this transform ation was introduced as Tm in section 6.4.3.

We consider the three dimensional case here/^ and describe three algorithms imple

mented for applying vertex moves.

A lg o rith m s

L a p la c ian  sm o o th in g : This involves moving a target vertex to the center of mass of 

its neighbouring vertices with all masses being taken to be 1. The algorithm is 

detailed in table 6.5 on page 110 using the notation of tables 6.1 and 6.2.

R a n d o m  v e r te x  m o v em en t: This is a variation on Laplacian smoothing. The center 

Although the only specifically three dimensional aspect is the number of coordinates of each vertex
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of mass is used as a starting point (assuming it is legal) and a user defined number 

of random vertex moves of random magnitude (up to a maximum size determined 

by a local length scale) are applied around that point. After each random move, 

the minimum quality of the new 3-simplices created by the coordinate change is 

noted (assuming the new coordinates are legal). After all moves have been carried 

out, the coordinate change which maximised the above local minimum is deemed 

to be the best, and is accepted. If none of the random moves were legal, or none 

of them improved upon the local minimum which obtained at the center of mass, 

then it is taken to be the result of the procedure. If the center of mass is itself an 

illegal position, then the vertex is left at its original starting position. Table 6.6 on 

page 111 contains this algorithm.

Jiggle vertex m ovem ent A simplification of Random VertexM ove which drops the 

fallback to Laplacian smoothing, and, more importantly, drops any tests for quality 

improvement. Tests for breach of (user defined) minimum quality and volume are 

retained. The function is so named because it perturbs a vertex a set number of 

times, and returns the most recent, legal set of coordinates.^^ See table 6.8 on 

page 113 for more details.

There are many algorithms for vertex smoothing, but these simple ones suffice for 

our purposes.

6.6 Move application algorithm

We finish this chapter by giving the basic algorithm for the application of Alexander 

moves in table 6.9. Note that we indulge in a slight abuse of notation by allowing the 

expression for a refining Alexander move, (A, a), to stand also for inverse moves and 

vertex moves where appropriate.

Where legal means, as usual, that none of the original simplices are inverted
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INPUT: a, \  where a has coordinates (a®,a\a^), and aj has coordinates

OUTPUT: a with new coordinates, or with old coordinates (indicating that the proposed 
move is illegal).

Define the minimum allowed volume and quality o f a simplex to be respectively Vmin ^nd 
Q m in

Define the star o f  a on input to be the following set o f simplices

Star(a) =  {AijfJo

L aplacianV ertexM ove

Calculate new coordinates, {c>}, of  a to be

, - ^ n „ ( a ) - l  j  
j  ^  2 ^1 = 0  “ i

n^(a)

Let be the simplices of Star(a) using the coordinates {c^}
Define the quality and volume of the new configuration to be

qnew =  min r?(Bi),
0 < i < p

Vnew =  min v o l(B j ) .
0 < i < p

ifcinew < Vmin OR Vnew <  © m m  OR  7^ (a) fails ( Using the volumes of the simplices 
{A;} and {B,} connected to a)

en d if  
re tu rn  a

Table 6.5: Algorithm; L ap lac ian V ertexM ove
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INPUT: a, \  where a has coordinates (a°,a \a^ ), and a.i has coordinates
( a P  a 2 ' |  a j y r

moves

OUTPUT: a with new coordinates, or with old coordinates (indicating that the proposed 
move is illegal). Preference is given to the Laplacian vertex move; another choice will be 
accepted only if it gives better results 
R andom VertexM ove

a ^  LaplacianVertexMove(a)
l>> ^  a i  

Define
Qmm =  min 77(A)

A  e  S ta r (a )

n 0 
while n  <

c> <r- ChooseRandomVector(s)^
i— CL  ̂ +

Let be the simplices o/"Star(a) using the coordinates {o’ }
Define the quality and volume o f the new configuration to be

qnew = min ^ (B i) ,
0 < i < p

Wnew =  min vol(Bi) .
0 < i < p

i f  cinew > Orrnn A N D  v^ew > '^min A N D  7^  (a) passes (using the volumes o f 
the simplices {Ai} and {Bi}j

i f  Qneu) ^ Qmin 
Q m in Qnew 

^  
endif 

endif 
n <- n + 1

endwhile
return

'^^moves is the number of random moves to be appUed (the default value is 10) 
*’See table 6.7

Table 6.6: Algorithm: RandomVertexMove
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IN PU T: s, the scale o f S ta r(a )
O U T PU T : random vector with magnitude in the region (e,s), where e is a small positive 
number (usually 0 (1 0 “^®))
Define m  to be the magnitude o f the random vector 
Define x  to be the random vector 
ChooseRandomVector

r *r- random number in the range (0,1). 
m  i— sr (ensure that m  > e)
X i— where {x }̂ are random numbers in the range ( — 1,1)

Ensure that |x| > e (re-choosing :x: if necessary) 
return  x

Table 6.7: Algorithm: C hooseR andom V ector

6.7 Conclusion

We now have the m achinery to  apply A lexander moves to  th ree  dim ensional geom et

ric sim plicial complexes. T he next chapter deals w ith  issues th a t  arise when m ultiple 

A lexander moves are com bined into m,ovesets.
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INPUT; “ a, where a has coordinates {a^,a^,a^), and â  has coordinates
CqO f l l  a 2 \  j^r 
\ ^ i  5 ^ 2  5 / '  m o v e s

OUTPUT; a with new coordinates, or with old coordinates (indicating that the proposed 
move is illegal). No quality tests are performed apart from tests against lower bounds. The 
coordinates corresponding to the most recent legal vertex move are returned after 
perturbations have been performed.
JiggleVertex

while n <

c> •<—  ChooseRandom Vector(s)
o’ <— + o’
Let be the simplices ofStar(a) using the coordinates {c^}
Define the quality and volume o f the new configuration to be

qnew = min 77(6 ;),
0<2<p

Wnew = min vo l (B i) .
0<i<p

i f  Unew > Qmin A N D  Vnew > Vmin A N D  7 ^ (a) passes (using the volumes of 
the simplices {Ai} and {Bi}^

^  o’
endif
n n + 1

end while 
return  V

“Notation here is as for algorithm 6.6

Table 6.8; Algorithm: JiggleV ertex
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INPUT:

Complex M 
Abstract move cxi 
Choice function, ^
Local quality function, rj

OUTPUT: New complex M' (possibly with identity transformation applied)
A p p ly M o v e

Let a be the vertex to be added, removed or moved as a result o f applying cti to M 
Si •<— C(o=i5 M); Si is a site for applying cx.i°' 
mark cxi as illegal 
K M 
i f  Si / 0

i f  (Si, a) is intrinsically and geometrically legal 
mark a.i as legal
create lists o f cells, and to be deleted and created as a
result o f applying (Sj, a) to M 
foreach new cell, Bj created

i f  7y(Bj) < Qmin OR  V O l(B j)  <  V r n i n  

mark cxi as illegal 
terminate application process 

e n d i f  
en d fo r

else
mark cXi as illegal 

e n d if

e n d i f
i f  cki is legal

Apply the transformation

M ^  M' (Si, a)

K ^  M'

e n d i f  
r e tu rn  K

“If Qj is a vertex move, Si is taken to be a vertex

Table 6.9: Algorithm: A pplyM ove



Chapter 7

Applying Alexander movesets

7.1 Introduction

In the previous chapter we dealt with the mechanics of applying Alexander moves to 

complexes, particularly in three dimensions. However the raison d ’etre of our computer 

application is to apply Alexander movesets — sequences of Alexander moves — to 

complexes. We are therefore interested in applying abstract movesets of the form

) Ĉ -1)

to a geometric n-complex M , where each is an abstract move, and /(//) is the length 

of the moveset.

In order to apply // to M , each of its component Alexander moves must be indi

vidually applied (starting with OLi )̂. Following the discussion in chapter 6, this entails 

choosing an application site for each move and testing for both intrinsic and geometric 

legality a t those sites, using the algorithm summarised in table 6.9.

We introduce the application of movesets as distinct from moves in section 7.2. In 

section 7.3 we introduce the notion of proximate sites being chosen for proximate moves 

of a moveset, and discuss the complexity of various ways of choosing sites for the moves 

of an abstract moveset. Section 7.4 deals with quality tests which may be used after a 

moveset has been performed. Section 7.5 concludes the chapter with the algorithm used 

for the application of a single moveset to a complex.

115
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7.2 Movesets of non-unit length

Suppose >  1. Applying ^ to M  requires more care than applying a moveset with 

/(/x) =  1  (or a move), because each move of /j, (after the first) is being applied to a 

complex which has been altered by the previous moves of the moveset. Example 7.1 

below illustrates this.

E x a m p le  7 .1 . Let M  be the 2-complex shown in figure 1.1, and suppose we wish to 

apply the Alexander moveset cxiOC2 to it (with the leftmost transformation being applied 

first, as usual). For the abstract move a i  we must choose a 1-simplex (using some  

choice function) from  M  to which a new vertex may be applied. This results in a new 

complex M' (obtained here by applying the transformation (a 4 B5 , ae)^. A site fo r  the 

move CX.2 must then be chosen from  M ', giving rise to a final complex M" (here, using 

(aoaia2, ^7))-

aa

M  M' (after insertion of ag: (3 4 3 5 , as))

1

M" (after insertion of ay: (aoaiaa, a 7 ))

Figure 7.1; Application of moveset with length greater than 1

The properties of choice functions discussed for moves in section 6.2 therefore hold 

for movesets — provided one ensures that one is choosing from the correct complex.
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7.3 Choosing proximate application sites

Once again, let l{fi) > 1. The question arises as to whether there should be any con

nection between the application sites of successive moves of a moveset. As before, let 

M be a simplicial complex. Consider again the abstract moveset of equation (7.1), and 

suppose that the sites {Ajg,. . . ,  Ai,j^j_^} are chosen to complete the {oii jYj^l  ^^e 

are chosen completely at random, then there is no significant difference be

tween making this one moveset of length l{fx) and making /(//) movesets of length 1. 

This lessens the usefulness of the moveset as a unit rather than as a separated collection 

of individual moves. In order to investigate moveset application, we require a method of 

choosing application sites which are mutually close. First we need to define more clearly 

what we mean by “close”.

7.3.1 Level sets of vertices

Let the complex M be viewed as a graph G, which has as vertices the vertices of M, and 

has as edges the 1-simplices of M. Starting from any vertex, a, the graph can be split 

into a series of level sets, each containing vertices at a particular connective remove from 

a. Thus a is the sole occupant of level set A°. Level set A^ is occupied by all vertices 

directly connected to a. Level set A^ contains all the next-nearest neighbours of a, and 

so on. The definition of level sets allows us to make a connectivity based definition of 

the distance between two vertices as the the level set occupied by one with respect to 

the other.

7.3.2 Encouraging closeness

Let /i be the moveset of equation (7.1). Let ai- {j € [0,/(/i) — 2]) be some move in 

fi other than the last. Assume that an application site, Aj  ̂ has been chosen for 

As usual the concrete move associated with cxi. will take the form (Ai^, a), where the 

vertex a will be added, removed or relocated during the course of the transformation. 

Take this vertex as a starting point. We can now restrict the set of sites available to 

the subsequent move in the moveset, to all sites connected to vertices within a
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certain level set distance, / > 0, of a. That is, we allow vertices, or simplices containing 

vertices, in the set

A ° U A ^ U - - - U A i .  (7.2)

We consider such sites to be close to a. Sites which are not close are discounted from 

the selection process. We may thus make the following definition which will be used in 

chapter 10.

D efin ition  56. Consider an abstract moveset ji. We say that we are applying /x at 

neighbour-level I when I level sets are considered close in the above sense, for the 

purposes of applying moves of the moveset. In equation (7.2), the neighbour-level is I.

Under this procedure, the first move of a moveset is exempt from any restrictions, 

and all subsequent moves have their application sites chosen from among a restricted 

set of nearby sites.

7.3.3 Choice function complexity for movesets 

R an d o m  site  choice

The computational complexity of applying individual Alexander moves was discussed 

in section 6.2.1, wherein it was noted that random site choice function has complexity 

0(1) for a move. Thus, for a movesets of length I, the complexity of random application 

will be 0(1). Since the lengths of any movesets we are dealing with will be small, use of 

a random site choice function has a negligible effect on runtime.

S equen tia l choice functions

The sequential application of movesets of length /(/x) > 1 requires more care than for 

the case /(//) =  1 (which was covered in section 6.2.1). Furthermore, it will become 

obvious that only short movesets may be applied in this manner.

Let Mo be a complex, and suppose that we wish to exhaustively apply the moveset 

of equation (7.1), to M q (where /(/x) > 1). As described in the previous section, this 

entails searching each of the available sites m M q (let there be ^o, say). Application of
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cti^ at each of these sites will result in any one of the complexes ^  The move

a jj must now be applied exhaustively to each of S\ sites in each M \, and so on until 

move has been applied to all possible sites of The particular set of sites

chosen from all the above will be those for which the concrete moveset, fj,, gives the best 

change in quality.

7.4 Quality

The central purpose of our computer application is to observe the effects of repeated 

application of movesets on a simplicial complex and to discover which movesets result 

in the greatest increase in global quality.^

Up to this point we have not discussed quality in the context of Alexander trans

formations. This reflects the granularity of our approach. We do not require th a t the 

results of Alexander moves obey quality criteria^; but th a t those of moveseis do so. 

Thus, provided moves are legal, and respect certain lower bounds on quality^, they are 

invariably accepted. The effect on a complex of combinations of moves is what is of 

interest, so quality tests are applied at the level of movesets.

7.4.1 Basic quality tests

Consider the case of a moveset /x applied to a complex M . We assume it is legal. 

Following the discussion in sections 3.8 and 3.9, we can assign a global quality, Q, to 

the complex and calculate the change in this quantity as a result of the application of

II.

Let M ' be the complex resulting from application of Then

A Q = Q ( M ' ) - Q ( M ) ,

^In chapter 3 we gave a definition of a local simplicial quality measure, and we showed how any

such measure, 77, could be used to induce a global quality measure on the complex. We defined (in

section 3.8.1) four global quality measures, of which we use three: Qmin(M ), Qav(M ) and Qexp(M) 
^For example, that a move must improve the quality of a complex 
^See the minimum allowed global quality, Q m i n ,  introduced in table 6.1 on page 106
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is the improvement due to the moveset. Therefore AQ < 0 corresponds to a disimprove- 

ment and AQ > 0, to an improvement.

One of three moveset acceptance criteria may now be imposed:

• The moveset is accepted regardless of the value of AQ

• The moveset must be favourable (AQ > 0) in order to be accepted. This accep

tance criterion is that of the hill-climbing algorithm we will encounter in chapter 9

• A simulated annealing approach may be taken. The moveset is accepted if

(1) AQ > 0.

(2) AQ < 0, but a random number r G (0,1) is chosen from a uniform distribution 

such that r G (0, where T is a “temperature” parameter assigned

to the complex, and 7 cx (1/T). A full annealing approach, taken over 

the application of multiple movesets, would involve T itself being altered 

according to some annealing schedule.

Quality tests will be discussed in greater detail in chapter 10 in the course of 

presenting our experimental results.

7.5 Moveset application algorithm

We conclude this chapter with a listing in table 7.1 of the algorithm, A pplySingle- 

M oveset, used to apply movesets to a simplicial complex. Some details are elided in 

the interest of brevity.

7.6 Conclusion

The scene is now set for the experimental application of Alexander movesets to geomet

rical simplicial complexes in the coming chapters, but first, in the next chapter, we will 

demonstrate how the standard transformations described in chapter 4 may be expressed 

as Alexander movesets.
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A p p ly  S in g leM o vese t
INPUT:

complex, M
Alexander moveset, fj, =  11^=0 “ v' length I > I, where each cxi- is an abstract 
Alexander move 
choice function  ̂
local quality function r]

OUTPUT: new complex, M' (possibly with identity transformation applied)

store state, E, o f the complex before applying 
mark as legal 
“Mo <- M
j  ^ 0
^foreach abstract move in

Mj+i •(- A ppIyM ove[M j ,  at^, C(aij, Mj ) ,  r])^
i  ■«- i  +  1
i f  OLi^ is illegal

mark n  as illegal
j  <r-0

terminate application o f ̂  
e n d i f  

en d fo r
i f  fx is marked as legal

i f  n  fails user specified quality tests'^ 
mark /x as illegal

else
M' M, 

e n d if  

e n d i f
i f  /X is marked as illegal 

M' ^  M  

e n d i f  
r e tu rn  M'

“As the moveset is applied, a set of intermediate complexes, {M j}*_o, is created, where M q =  M  
and M; =  M '

*Note that the tXi .  are applied from left to right as dictated in chapter 5, section 5.4.2 
^See table 6.9 on page 114 
‘̂ See section 7.4.1

Table 7.1: Algorithm: A p p ly S in g le M o v e se t



Chapter 8

Implementation of standard 

transformations using Alexander 

movesets

8.1 Introduction

The purpose of this chapter is to restate the standard transform ations described in chap

ter 4 in terms of Alexander movesets. In each case we will take note of the length of the 

moveset required to express the transformation. This relates to how complex the trans

formation is. Movesets of length one are themselves Alexander moves. W here relevcnt, 

we will note cases where movesets which are intrinsically legal may be geometricilly 

illegal.

All transform ations discussed will be based in two or three dimensions, as they are 

m chapter 4.

In section 8.2 we define vertex generation. Section 8.3 briefly mentions vertex ad

ditions to, and removal from, simplices. We move on in section 8.4 to deal w ith ecge- 

flipping in two and three dimensions. Section 8.5 deals similarly with regular refinement, 

and section 8.6 consider edge-swapping.
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8.2 Vertex generation

In the following sections, vertices may be assigned a g e n e ra tio n , denoted gen(a) for 

a vertex a. Before a moveset is applied, all the generations are taken to be zero. As 

vertices are added, they are assigned increasing generation according to the following 

algorithm. Let a  be new vertex inserted in a simplex A  under the transform ation (A, a). 

Let {vi} be the vertices of A. Then

gen(a) =  max(gen(vi)) +  1. (8.1)
V i

The generation of a vertex is denoted using a superscript notation. Thus a vertex a  of 

generation 2 is denoted a^.

8.3 Simple vertex addition and removal

We consider vertex addition to, and removal from, simplices. Although this transform a

tion was not mentioned in chapter 4, it arises in adaptive meshing [77] and is from our 

point of view a trivial case — a transformation consisting of the addition of a vertex to a 

line, face, etc., is itself an Alexander move (see figure 5.3 on page 67 in which the Alexan

der moves for a tetrahedron are displayed). Thus the moveset required to implement 

any of these transformations is of length one. All vertex additions are geometrically 

legal. Vertex removals obey the rules discussed in chapter 6.

8.4 Edge flipping

This transform ation was discussed in section 4.2 of chapter 4 — see figures 4.1 and 4.2 

on pages 47 and 48 respectively for the two and three dimensional incarnations.

8.4.1 Two dimensions

Consider the leftmost complex depicted in figure 8.1 on the next page. Assigning vertex 

generation information to each vertex, we write it as
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K - a ° a ° a °  +  a?a°a°,

where the generation of the vertex is calculated as in equation (8.1). The desired result 

of a two dimensional edge-flip is the complex

L =  a°a?a° +  a > ° a ° .

In terms of Alexander moves the transformation is expressed by the following two step 

moveset:

i) Apply (a?a^, bj) to K to give

K i=bJ(a«a? +  a?a° +  a°a° +  a°a°).

ii) The complex K i may be written

Ki =  bi(a»a»)(a?a«),

which allows b j to be removed from either aga® or a°a°. Applying (aQaj, bg)”  ̂

gives the desired result.

In summary, two dimensional edge flipping may be expressed in terms of Alexander 

moves as

(a?a«, bj) (a°a«, h l ) - ^ . (8.2)

A graphical representation of the application of the moveset is given in figure 8.1.

Figure 8.1; Edge-flipping in 2D

Of course, the moveset (8.2) was developed on an abstract complex. Geometry may 

also come into play, such as in the complex of figure 8.2 on the next page. Here the edge 

flip is geometrically illegal.
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a,

- >  ?

Figure 8.2: Geometrically illegal edge flip

8.4.2 Three dimensions

The three dim ensional analogue of 2D edge flipping was discussed in chapter 4, sec

tion 4.2.1 on page 49. The Alexander move equivalent was in fact given and discussed  

in exam ples 6.11 and 6.12 on page 99, although not identified. Reusing these two ex

am ples, we will specify the m oveset required to  perform the transform ation for the case 

where no four points are coplanar (see figure 4.2, (v)). The coplanar case (figure 4.2, 

(ii)) is essentially a 2D edge flip on the 2-sim plices contained in the plane formed by the 

four vertices.

Referring to com plex (6.15) in exam ple 6.11, we write our in itial com plex as

where vertex generation inform ation is detailed. The com plex resulting from a three 

dim ensional edge flip on K  is

The expression of this in Alexander moves is the following m oveset of length two:

i) Make the transform ation (aQa°a2 , b j)  to give

ii) A pply the transform ation (a^a®, b j)   ̂ to K i. This gives the required com 

plex.

In summary, three dim ensional edge flipping may be expressed in term s of Alexander 

moves by

(8.3)
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a, a,

K K,

Figure 8.3: (aga?ag, bj) (aga^, bj) ^

which is shown graphically in figure 8.3.

Referring to example 6.12, depending on the geometry of the representation, this 

moveset may not be geometrically legal. A geometrically illegal example is given in 

figure 6.14 on page 100.

The inverse flip L — K is performed using the moveset

(a°a°, bj)(a«a?a«, bS)-^

Application of this moveset is geometrically legal unless ag and a° are both on the same 

side of aoaja® (or either of them are on aQa^a®).

8.5 Regular refinement

This is discussed in section 4.3. The two and three dimensional versions of regular 

bisection are shown graphically in figure 4.5 on page 51 and figure 4.6 on page 52, 

respectively.

8.5.1 Two dimensions

We will describe the transformation using a single 2-simplex. If the simplex is part of a 

larger complex, the effects on the neighbouring simplices have to be taken mto account, 

but are not relevant to this discussion. The description below suffices to present the 

essential details.
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Let A  

complex

aoaja® be a 2-simplex, The required transformation creates from A  the

L =  aJcJ4  +  a jc jc j +  a5c ] 4  +  c l c \ c l , (8.4)

The Alexander move equivalent of two dimensional regular bisection involves three 

initial refinement stages and two final inverse stages:

i) Apply the Alexander move (aoa ia2 , bg) to A , to give the complex

Ki=bJ(a°a? +  a?a° +  a«a«). (8.5)

Figure 8.4 gives a geometrical representation of the results of this move.

0a,‘o 0a„i a,

Figure 8.4: Stage (i): (a o a ia 2 , b j )

ii) Apply the moveset

(aga? ,4)(a°a« ,c l ) (a«a? ,c^) ,

to the complex K i. The individual moves of this moveset are all mutually 

commutative, so the order is irrelevant. The result is the complex,

K2 =  bj(a^cj +  ajcj + a?cj + a°cj + a^c^ + a^c^), 

represented in figure 8.5 on the next page,

iii) Next apply

(8 .6 )

(a»b;, dS) { a > ; ,  d?) (a^bj, d | ) ,
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0a„

Figure 8.5: Stage (ii): (aga?, c j) (aja^, cj) (a^a?, c^ ).

to  K 2 to  give the  com plex

K3 = + a y ,d l + a?cjd? +  a?c}d? +  + a ĉ d̂^

+  b j(cjd ^  +  c}d^ +  c\dl + c\dl +  c^do +  C o d o )

which is represented in figure 8.6. Again, all the constituen t moves of the 

moveset are m utually  com m utative.

0a„

Figure 8.6: Stage (iii): (agbj, d§) (a?bj, d j) (a^bj, d^).

iv) The vertices which have ju s t been added are now removed; bu t not from  the 

simplices th a t they were added to. T he moveset

(cjci ,  d^)-! (cjc^, d^)-^ (c^cj, d^)-^, (8.7)

is used, which results in the  complex

K4 == a^cjc^ +  a?cjc| + a^c}c  ̂+  bj(cjc| +  c|c^ +  cJ4)

shown in figure 8.7 on the next page.
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0

Figure 8.7: Stage (iv): (c jcj, d^)  ̂ (c}c^, d^)  ̂ (c^cj, dg) ^

a “

Figure 8.8; Stage (v): (cqcJc ,̂ b j) ^

v) F inally  apply (cocjc^, b j )   ̂ to arrive a t the complex L of equation (8.4) 

and which is represented in figure 8 . 8

It is w orth checking w hether each of the inverse moves listed in moveset (8.7) in (iv) 

above are intrinsically  legal. Consider the case for vertex dp. K 3 m ay be w ritten

K 3 =  d ^ (a o 4  +  aocj +  +  b^cj) +  Q  ,

where Q  does not contain do. This may be further, familiarly, factorised into

K3 =  d^(a°+ b ^ ) ( 4 +  cj)

= d^(aX)(c2cJ),

and so the  inverse move is intrinsically legal. This move will also always be geom etrically 

legal due to  the convexity of a 2-simplex. Sim ilar calculations m ay be perform ed for d j 

and  d l .

In sum m ary, two dim ensional regular bisection can be expressed in term s of A lexan

der moves using the  moveset
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(aoaiaa, b j)

(44, cl) (a?a°, ci) (a°a?, c^)

(agbj, do) (a jb j, d^) (a°bj, d^)

(CqcL d^)-^ (cjc^, d^)-^ {clcl, d^)-^

(cjc}4 , hl) - \

of length 11. This moveset is always geometrically legal.

8.5.2 Three dimensions

A description of the moveset which implements regular refinement in three dimensions is 

given below. We do not attem pt to draw the result of each stage, as the drawing becomes 

complicated, and would not enhance clarity, but we give a picture of the outcome in 

figure 8.9 on page 134.

We begin with a 3-simplex A, which has vertices {ag, aj, a°, a®}. As in the two 

dimensional case, a complex consisting of a single simplex is used for this description. If 

the simplex exists in a larger complex, its neighbours must be suitably updated, but the 

moveset does not dififer. Regular adaptation of A uses the following moveset of length 

24.

(a«a?a«a“, b j)

(a°a?, cj)(a?a«, ci)(a°a“, c^)(a°a«, ci)(a°a“, cl)(a^«, c^) 

dl){clcl d 2 ) - ^ a « c l ,  dDiclcl, d ? ) - i  

(a^c ,̂ d^)(clcj, d lr^a^c l  dl){c\cl d^)-i 

(boag, e^)(cjc^c^, e^)“ ^(bja?, e?)(cjcjc^,

(bja«, e^)(c lc ic l, e2 )-i(b ja° , e^)(c^c^4, e^)-^

(cjc^, b j)-^

(8.9)

Let us consider these transformations one by one. We will discontinue the use of
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superscripts in the following to reduce clutter. Let K  =  aoaia2a3. Then the Alexander 

move (aoaia2a3, bo) results in the new complex.

bo(aoaia2 +  aoa2a3 +  aoaiaa +  a ia 2 a a ) . (8.10)

The next transform ation in equation (8.9) is (aoai, Cq). Equation (8 .10) may be re

expressed as

bo(aoai(a2 + as) + aoa2a3 + aia2a3),

which becomes

bo(co(^o +  ^ i )(^2 +  ^3) +  aoa2a3 +  a i a 2 a 3 ) ,

under (aoai, Cq). Following equation (8.9) in this manner, we now find th a t {a.ia.2, Ci) 

results in

bo{ci(aiCo +  aia3 +  a2Co + ^2^2)  +  Co(aoa2 +  aoS-3 +  aias) +  aoa2a3} , (8-H)

which is transformed by (aoa2, C2) into

t>o{c2(aoCo +  aoa3 +  a2Co +  3-2^ 3 )

+ Ci(aiCo +  a ia 3  +  a2Co +  a2a3) (8 .12)

+ Co(aoa3 +  a ias)}  .

If we complete the second row of equation (8 .9) by applying the moveset

(a iaa , C3) (a2a3, C4) (aoaa, C5),

(working left to right, as usual) we obtain the complex

bo{c5(aoC2 +  aoCo +  a 3C2 +  a-̂ Co)

+  C4(a2C2 +  a2Ci +  asC2 +  asCi)

+  C3(aiCi +  aiCo +  ^3^1 +  asCo) (8.13)

+  C2(aoCo +  a2Co)

+  Ci(aiCo +  a 2Co)} .
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Moving on to the third row of equation (8.9), we now apply the moveset

(a3Co, do) (C3C5 , do) ^ .

Complex (8.13) may be rewritten as

b o { a 3 C o (c 3  +  C5 ) +  C 5(aoC 2 +  aoC o +  a s C 2 )

+  C 4 ( a 2 C 2  +  a 2 C i  +  a 3 C 2  +  a a C i )

+ C3(aiCi + aiCo + ^301) (8-14)

+ C2(aoCo + a2Co)

Ci(^iCo +  a 2Co)} .

which becomes

b o {(^3 +  C q)(C 3  +  C5) +  C 5(ao C 2  +  a oC o  +  9 .3 0 2 )

+  C4(a2C2 +  a2Ci +  a3C2 +  a3Ci)

+  C3(aiCi +  aiCo +  a3Ci)

+  C2(aoCo +  a 2Co)

+  Ci(aiCo +  a 2Co)} .

under the transformation (aaCo, do). The transformation (C3C5 , do)“  ̂ is easily applied 

to give the complex

bo{coC3C5 +  C5(a3C3 +  aoC2 +  aoCo +  a3C2)

+ C4(a2C2 + a2Ci +  a3C2 + asCi)

+  C3(aiCi +  aiCo +  a 3Ci) (8.15)

+ C2(aoCo + a2Co)

+  Ci(aiCo +  a 2Co)} .

The subsequent moves

(aac l,  di)(c3c4, di)~^(a3C2, d2)(c4cs, d 2 )“ ^ a 2Co, d3)(cic2, d a ) " ^ ,
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when applied, transform (8.15) into

b o { C o C 3 C s  +  C1C3C4 +  C2C4C5 +  C0C1C2

+  ^ 5 ( 3 3 0 4  +  a 3C3 +  a o C 2  +  a o C o )

+  C4(a3Ca +  a 2 C 2  +  a 2 C i )

+  C3(aiCi +  aiCo)

+  C2(a2Ci +  aoCo) +  aiCoCi} ,

which m ay be rewritten as

b o { C o C 3 C 5  + C 1 C 3 C 4  +  C2C4C5 + C 0 C 1 C 2  

+  ^ 3 (C 3 C 4  +  C4C5 +  C5C3)

+  a2(cic2 +  C2C4 +  C4C1) (8 .16)

+  ai(coCi +  C1 C3  +  C3 C0 )

+  ^ o (C qC2 +  C2C5 +  C 5 C 0 ) }  ,

to  aid the application of the remaining moves. Consider now the transform ation (boao, eo) 

to equation (8.16). This creates the com plex

eo(bo +  ao)(coc 2  +  C2 C5  +  C5 C0 ) +  bo{rem aining term s} .

N oting that the coefficient of eo(bo +  ao) is a 2-sphere of order 0, we may now apply the 

transform ation (C0 C2 C5 , e o )“  ̂ to give

^ 0 C qC2C5 +  b o { C o C 2 C 5  +  C0C3C5 +  C1C3C4 +  C2C4C5 +  C0C1C2  

+  ^ 3 ( ^ 3 0 4  +  C4C5 +  C5C3)

+  a 2 ( C i C 2  +  C2C4 +  C4C1)

+  ^ l ( C o C i  +  C1C3 +  C 3 C 0 )}

A pplying the remainder of moveset (8.9), in a sim ilar manner, excluding the very 

last move, we arrive at the com plex

^ oCqC2C5 +  a i C o C i C 3  +  a 2 C iC 2 C 4  +  a3C 3 C 4 C s +  b o ( C o  +  C 4 ) ( c 2  +  C 3 ) ( c i  +  C5) (8.17)
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The last move of moveset (8.9) is now but one of three possible moves involving the 

removal of the vertex bo to create a 1-simplex, which is in keeping with three possibilities 

shown in figure 8.9.

0a„K'

l-s im p lex  jo in s Cg and c® 1 -sim plex joins c° and c® 1 -sim plex jo in s C2  and C3

Figure 8.9: Configurations obtained by removing b j

8.6 Edge swapping

Finally we deal with edge swapping, the three dimensional transformation previously 

discussed in section 4.4. We will demonstrate the Alexander moveset for the shell (defi

nition 34) which was discussed in section 4.4 and which is replicated here in figure 8.10, 

(a) on the facing page.

As in section 4.4, the essentials of the transformation may be dealt with by con

sidering the two dimensional region shown in figure 8.10, (b). Thus we view the shell 

as depicted in figure 8.10, (c), where the unfilled circle represents the 1-simplex asae 

going through the plane of the page. We will describe the moveset required to transform 

this mesh into one of the five possible triangulations for the five tetrahedron case (see 

section 4.4, figure 4.8). Figure 8.11 shows the particular triangulation we have chosen. 

Figure 8.10, (a) represents the initial complex

K = a°a°(a°a? + a?a° + a«a° + a°a° + a°a«). (8.18)

Figure 8.11 represents the desired complex

L = (a» + aSXaSaJa” + a»a»a» + a»a»a»). (8 .19)
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Figure 8.10: 2D representation of 3D shell

Figure 8.11: Edge-swapping: five vertex case — sample re-triangulation
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with Hg and a° not shown. K may be transformed into L using the following moveset:

i) We apply (agag, bo), to K, which may represented as

0a,‘o

(aga°, hi)
in two dimensions.

ii) Next we apply a two dimensional edge-flip. As described in section 8.4.1 a 

flip consists of two Alexander moves. Thus

(a«bS, c^) (a?a«, c^)-^ ,

gives

(a°bi, cl) (a?a°, eg)

iii) All that remains to do in this case is to make the move (aja®, bj)  ̂ to 

obtain the complex L.

Thus the overall moveset consists of the four moves

hi)
(aSbJ, cl) (a?a°, cl)~  ̂

(a?a°, b J ) - \
(8 .20 )



8.7. CONCLUSION 137

for the case where there are five vertices in the shell th a t are not members of the edge 

to be removed

8.6.1 Legality

An edge swapping transform ation is always intrinsically legal but not always geometri

cally legal. It will be geometrically legal if the region defined by the vertices not in the 

edge to be removed is sufficiently convex, and of a® and ag are on opposite sides of the 

planes defined by the other vertices.

8.7 Conclusion

In this interlude, we have dem onstrated th a t some of the standard transform ations may 

be expressed as Alexander movesets. We begin now to focus on experimental results 

with a more detailed look a t the exponential quality measure in the next chapter.



Chapter 9 

Quality improvement on complexes

9.1 Introduction

Movesets are applied to complexes with the aim of improving their quality with respect to 

some global quality measure. We defined three^ global quality measures in section 3.8.1:

•  the minimum quality (Qmin),

•  the average quality ( Q a v ) ,

•  the exponential quality (Q exp ) -

In this chapter, we will describe a number of different algorithms with which we 

improve complexes using the above measures. The basic mode of operation will be to 

repeatedly apply a moveset, to a complex M , while maintaining a watch on the global 

quality of M . As previously noted, our desired outcome is an improvement in the global 

minimum quality of M , or at the very least, no disimprovement.

We commence in section 9.2 with a comparison of the three measures in which we 

will also justify our subsequent heavy reliance on Qexp- Section 9.3 details the properties

o f  Qexp-

Finally, section 9.4 lists three improvement algorithms. The results of applying these 

algorithms are given in chapter 10.

^We will not concern ourselves here with the product quality measure, Qprod

138
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9.2 Comparison of global quality measures

The most relevant global measure for assessing the quality of a complex is Qmin, as 

our discussion in section 1.2 demonstrated. When attempting to improve a complex, 

however, it is not a particularly sensitive measure — most transformations will not im

prove the minimum quality of the complex, even if they give rise to local improvements. 

The average quality of the complex is a more sensitive measure when improving; how

ever a complex can have a high average quality while harbouring a cell of poor quality. 

Example 9.1 illustrates these points.

E x a m p le  9 .1 . In chapter 10, section 10.3, a set of test complexes is given upon which 

all our experiments are performed. Here, we take one of these complexes, (U nit_-  

S p h ere_ ls2 .  5 .meshS), and apply a moveset consisting of a single vertex move to it 

100000 times.^ The complex is improved with respect to the Qmin o,nd Qav global quality 

measures. The results are given in table 9.1.

In table 9.1, we first give the starting state of the complex. The results of improve

ment with respect to the minimum quality are given next, along with data on how many 

improving moves were made. In this case, no moves were made that improved the global 

minimum quality of the complex?, even though there were 99535 available legal moves 

(out o / 100000 applied). Thus Qmin is not a particularly sensitive measure in this case.

Compare this with the situation that obtains after the complex is improved with respect 

to the average quality. Here, there are 99 improving moves and the average quality of 

the complex has increased, but at the expense of the global minimum.

Figure 9.1 contains histograms depicting the situation for the average case before and 

after improvement. The histograms plot quality on the x-axis (using bins of width O.lj 

versus the number of cells with quality in a given bin. In the case below, the average 

quality distribution is skewed further towards one after improvement, as expected, while 

some new cells are added with quality between 0.2 and 0.3, causing the lowering of

^The choice of moveset is irrelevant, and the number of iterations is not important — we are merely 

illustrating a point here
®This is somewhat extreme; often a few successful movesets will be made, but the number is usually 

small
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U nit_S phere_ ls2 .5 .meshS
Statistics for initial complex

Max quality 9.997300E-01
Min quality 3.967812E-01
Average quality 8.305601E-01

Q m in

Transformation details
Legal moves 99535
Improving moves 0

Statistics for final complex
Ma:x quality 9.997300E-01
Min quality 3.967812E-01
Average quality 8.305601E-01

S a v

Transformation details
Legal moves 99535
Improving moves 99

Statistics for final complex
Max quality 9.984400E-01
Min quality 2.078429E-01
Average quality 8.595990E-01

Table 9.1: Qmin versus Qav (100000 moves attempted)
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m inim um  quality.

2
I  20

Z  20

0.7 0.8 0.9 10 0.1 0.2 0.3 0.4 0.5 0.6
Quality 

Final complex

0.1 0 .2  0.3 0.4 0.5
Quality

0 .7  0 .8  0 .9  1

Figure 9.1; Before and after improvement wrt Qav

T here is room, then, for a more sensitive quality m easure th an  the global minimum , 

and a more effective measure than  the global average quality. In the next section we 

consider the exponential quality function as a candidate.

9.3 The exponential quality function revisited

The exponential quality  function (introduced in section 3.8.1) is defined to  be

Qexp(M) EA < M
(9.1)

where M  is an n-complex, A  is a n-simplex, 77 is a sim plicial quality  function and /3 >  0.
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9.3.1 M otivation for reliance on Qexp

In the coming chapters will primarily use Q e x p  as our global quality function, in place 

of either Qmin or Qav We justify this decision below.

B e h a v io u r  o f  Qexp

As ^ ^  0, the quantity -> 1, with the result that

Q Ea<m^(A)
JexpiiVlj -> ,

= Qav(M).

On the other hand, as /3 —>• oo, we have —)• 0 , so

Q e x p ( M )  — >■ Q m i n ( M )  .

For each value of 0  between 0 and oo, Qexp(/?) represents a separate quality function 

“between” Qm\n and Qav We can therefore extend our original set of global quality 

functions, Qmin and Qav, to a continuously infinite set of functions, parametrised by /?.

This allows much greater scope in our effort obtain measures which combine effi

cacy with improvement of the global minimum quality, and m otivates our decision to 

henceforth mainly use the exponential quality function.

D efin it io n  57 . We use the term ^ -p ro f i le  to describe the behaviour of Qexp with respect 

to log(^) for a given complex.'^

E x a m p le  9 .2 . Figure 9.2 on the next page gives two graphical instances of the ^-profile 

of Qexp- The data are obtained from two of the test datasets listed in section 10.3 

(U nit_Cuhe_uniform _ls5.m esh3 and U nit_Sphere_ ls5_p  .meshS). In each case, as 

increases, QexpiP) shifts from measuring the average quality to measuring the minimum  

quality of each complex, as expected.

^We consider the variation of Qexp with respect to log(^) because P may vary over multiple orders 

of magnitude in order to encompass both the global average and minimum qualities
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Figure 9.2: Sample exponential quality profiles

9.3.2 Choosing a value for (3

Although Qexp(M) converges to Qav(M) for small /3, and to Qmin(M) for large /3, the 

values of 0 which are “large” or “small” will vary from complex to complex. For example, 

foi a given complex, /3 is large when

g - ^ n ( A m i n )  ^  ^

A < K ,

where Amin is a simplex of minimal quality in M.

E xam ple  9.3. Consider figures 9.3 and 9.4; the profiles for complexes Unit_ tet_-  

l s5  .mesh3 and U ni t_ te t_ ls5_p . meshS respectively. In the case of Unit_ tet_ls5.mesh3,

Q exp  ~  Q a v

when log(/3) —1, whereas the same does not hold for U n i t_ te t_ ls5_p . meshS until

log(/3) —3. Similarly

Q exp  ~  Q m in

when log(/9) 3.8 for Unit_tet_ls5.mesh3, whereas this is not true for Unit_te t_-

ls5_p.meshS, until log(/3) ~  5.

T h e  /^-fraction

The above discussion shows that it is not immediately possible to produce a value of P 

of which one can say that it approaches Qav or Qmin for all complexes. We wish to be
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Figure 9.3: Initial exponential quality profile for U n i t_ te t_ ls 5  .mesh3
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9.3. T H E  E X P O N E N T IA L  Q U A L IT Y  F U N C T IO N  R E V IS IT E D 145

able to specify (3 m & manner which allows us to do this.

The method we use takes advantage of the fact that for a complex M , Qexp always 

produces a value in the range (Qmin(M), Qav(M)). It furthermore requires that we 

have independent access to the values of Qmin(M) and Qav(M).

Qav(M)

Qexp(M)

Q„in(M) +  (5(Qav(M) -\Q„,in(M))

Qmin(M)

log(^)

Figure 9.5: Choosing P

Let 5 € (0,1). To choose a value of 0 which produces a value near Qav for a complex 

M, proceed as follows: let 5 take a value near 1 (0.95 for instance). Let

t = Qmin(M) + 5(Qav(M) -  Q™n(M)) . (9.2)

Define the function

/ ( / ? )  =  Q e x p ( M ) ( ^ ) - i ,  ( 9 . 3 )

where the dependence of Q e x p  on (3 is made explicit. A numerical calculation of the zero 

of /  with respect to 13 (using the bisection method, for example) will result in a value 

[3t for which

Qexp(M)(A)~t.

Values of /3 close to Qmin(M) or anywhere between Qmin(M) and Qav(M) are ob

tained in a similar manner.^ See also figure 9.5.

În fact there are numerical difficulties with taking (5 ss 0, so in practice, when taking S  small, we 

often use Qmin itself
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We can now choose P w ithout specifying a value for it th a t might be unsuitable for 

the complex at hand. Instead, we can specify the fraction of the distance Qexp(M) is to 

be between the minimum and the average qualities. The process of finding /3 will then 

autom atically take into account the given complex. We call S “the ^-fraction”.

9.4 Algorithms for optimisation

We describe the three algorithms used for optimisation of simplicial complexes in in

creasing order of complexity. We commence with a simple hill climbing algorithm. This 

is followed by an algorithm  which combines hill climbing with variation of the /3 param 

eter discussed in section 9.3. The final algorithm combines simulated annealing with 

variation of /3.

Let M  be a complex and he a abstract moveset. Let Q denote a global quality 

function, where we take this to mean tha t

Q =  Q e x p (/3 ) , 0 <  /3 < oo.

Each algorithm will apply // to M  multiple times using multiple different site choices®, 

to produce an output complex, M '. At each application of fi, a quality test will be 

performed using Q.

9.4.1 Hill climbing

A value of ^  is fixed. The corresponding global quality function, Q =  Qexp(/3) is used 

when improving M . Only applications of jj, which improve M  are accepted. Table 9.2 

contains a more formal description.

9.4.2 Hill climbing with variation of /3

As the title  suggests, this approach allows for variation of /3. The param eter is varied 

from an initial to a final value in steps of fixed size, with multiple applications of // 

®See chapter 7
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IN P U T : M , n,

O U T P U T : M '

HillClimb:

Q  ^  Q ex p iP )  

i ^  0

while i  <  I m a x

apply /i to M  
if  Q(M') > Q(M)

accept application o f  p, 
M ^ M '

else
undo effects o f  p  

endif
i <— i +  I

end while 
M ' <- M

Table 9.2: Algorithm: H illC lim b  

“Imax denotes the maximum number of iterations allowed
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being carried out using the global quality function corresponding to each value of 13. 

Table 9.3 on the facing page contains a description of this algorithm.

9.4.3 Annealing

We discuss a simulated annealing [47] approach to our optimisation problem.

Let M  be a complex, and ^  a moveset. We consider first the case where the parameter 

/3 is fixed. Thus we work with a fixed global quality function Q =  Qexp(/3), /5 > 0. 

Simulated annealing introduces a new parameter, referred to as the temperature. A  

temperature T  > 0, is assigned to the complex. The moveset /i is then repeatedly 

applied to M, using a Monte Carlo procedure [52], with Metropolis sampling [64].  ̂ This 

entails applying n  using the accept /  reject algorithm detailed in table 9.4 on page 150, 

which allows for the acceptance of disimproving movesets with a probability which is 

dependent on the magnitude of the change in quality, and the value of the temperature. 

The temperature itself is altered periodically according to a certain schedule.

Note that in annealing terms, the algorithms detailed in the previous two sections 

apply annealing with T =  0, and no alteration in temperature. The probability of 

accepting disimproving transformations is therefore zero.

A nnealing  schedule

The temperature schedule we use consists of starting the system at zero temperature, 

heating it up, and then cooling it down. We refer to this as a temperature cycle. Multiple 

cycles may be performed.

Before any cycles are performed, an initial set of iterations is carried out at zero 

temperature. The average change in quality at zero temperature may be determined 

from this initial set. Upon completion, the initial temperature is set to this average 

value.

The first temperature cycle is considered to start at this point. The decision whether

^With the proviso that we are searching for a global maximum of Q e x p i P ) ,  rather than the more 

familiar case where a minimum is required
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“INPUT: M, /i, A, P f. I3znc, I m a x  

OUTPUT: M'
H illC lim bB eta:

P Pi 
i 0

start: while i < Imax

i f  condition for updating P holds'^

P ^  P  +  Pine 
i f  P =  pf +  Pine 

* ^ I m a x  
go to  Start

en d if
Q  ^  QexpiP)  

en d if
apply /i to M 
i f  Q(M') > Q(M)

accept application o f  p.
M ^  M'

else
undo effects o f jj. 

en d if
I •<— 2 +  1

endwhile
M'

Table 9.3: Algorithm: H illC lim b B e ta

and Pf are the initial and final values of /3, respectively. The value /3j„c G K is the increment 
applied to P every time it is changed. U /3i < p f,  then j3inc > 0, and vice versa

‘’The condition we use for updating 0  is that a specified number of iterations has been carried out 
since the last change, i.e., when i mod n =  0 for some n  > 0. Other criteria could be used, however, 
such as specified global qualities being reached, lack of change in quality for a set number of iterations, 
etc.



150 9.4. ALGORITHMS FOR OPTIMISATION

IN P U T : M , T, Qexp(/S)
O U T P U T : M '
Metropolis:

Q  ^  Q e x p i P )

T ^  I j T  
apply p, to M.
A (Q ) ^  Q (M ') -  Q(M ) 
i f  A (Q ) > 0

accept application o f p

e lse  i f  A{Q)  < 0

r <— uniformly distributed random number in range (0,1) 
i f  r  <

accept application o f p  
M  ^  M '

e lse
undo effects o f p  

e n d i f  

e n d i f

Table 9.4: Algorithm: M etropo lis
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or not to  apply each legal instance of fj, is m ade hereafter using an annealing step, w ith 

respect to  the aforem entioned initial tem perature.

T he annealing process is carried out a t the in itia l tem pera tu re  until one of two 

possible conditions for tem peratu re change obtain:

1) T he m axim um  num ber of iterations, ix , allowed for a given tem p era tu re  is reached

2) T he acceptance ratio is greater than  a specified value.

We first describe the simpler case of the  m axim um  num ber of itera tions being 

reached. We will then  introduce the acceptance ratio.

Annealing schedule based solely on ix

W hen i r  iterations have been carried out, the tem pera tu re  is increased by a fixed 

amount®, and annealing continues w ith respect to  the  new tem peratu re . This process 

is repeated until a predefined num ber of tem pera tu re  increases have been m ade, and a 

m axim um  tem pera tu re  has been reached, a t which point the tem pera tu re  is decreased 

in steps which m irror the increase. A cycle is considered to  have te rm inated  when the 

initial tem pera tu re  is re-attained . Cycles m ay be applied m ultiple times.

The s ta te  of the complex may optionally be stored for fu ture reference a t the end of 

each cycle. W hen all cycles have com pleted, the stored com plex w ith the best quality 

may be chosen as the  result of the annealing process.

We define a heating  /  cooling schedule (based on ix  only) using the  param eters listed 

in table 9.5 on th e  following page. Using these param eters, the to ta l num ber of iterations 

required for a com plete set of cycles is calculated using the form ula

I  = i f  + 2ncrisiT ■ (9.4)

A sam ple case involving the application of two tem pera tu re  cycles is given in exam 

ple 9.4.

®The increase may be additive, or multiplicative. That is to say, given an initial temperature, To, we 

may increment by a fixed amount at each change in temperature, or we may multiply it by a constant 

factor
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Param eter Description

V The initial number of iterations carried out a t zero tem perature

T o The initial, non-zero, tem perature

ir The number of iterations which must be performed to precipitate 

a tem perature increase /  decrease

s Dictates the size of step taken in going from one tem perature to 

another

Us The number of steps taken beyond Tq per cycle

f r , s The function which generates a new tem perature, using the old 

tem perature and the param eter s, when the annealing schedule 

dictates a tem perature change; th a t is to say T n ew  — fT ,s { T o id ) -  

The change may be either additive or multiplicative. Thus,

lT ,s { T o ld )  =  Told  +  •s ,

or

fT ,s { T o ld )  =  sT o id  ■

We will also make use of / ^ j ,  where the inverses corresponding to 

the above equations are

f r ! s { T o id )  =  Told  — s ,

and
f  — l/'-p \ Told  

J T , s \ - ^ o l d )  —  j

respectively

ric The number of heating /  cooling cycles

Table 9.5: Parameters which define an annealing schedule
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T
10 -

1 - 2

1 - 3

1 - 5

1 -6

End of cycleEnd of cycleEnd o f cycle

50 90 130 170 210 250 290 330 370 410 450 490 530 570 610 650 690 730 770 810 850
Iterations

Figure 9 6: Heat cycle; i f  =  50, i t  =  4 0 , =  5 , ric =  2 . / r , s  is multiplicative, with

temperature range (10“ ®, 10“ ^)

Exam ple 9.4. Figure 9.6 depicts the case

V = 50,

To =  10"®

i r -  40,

8 =  10,

ris =  5,

Uc =  2.

Applying equation (9.4) gives

/  =  50 +  2 • 2 • 5 • 40 =  850.

A nnealing w ith  an acceptance ratio

When an annealing schedule is based on ir  alone, difficulties may arise at high tem per

atures. The premise of annealing is th a t the acceptance of some disimproving transfor

mations may allow one to avoid getting trapped in locally optim al configurations, and 

thereby encourage the discovery of globally optim al configurations. However at suffi

ciently high tem perature, it is obvious from algorithm 9.4 th a t all transform ations are
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almost equally likely, which will mean the acceptance of large numbers of disimproving 

transformations, swamping any benefit gained from the avoidance of locally optimal 

configurations, and simply leading to a poor quality result.

We define the circumstances under which a given temperature is “too high” as follows.

For disimproving transformations, we model each the accept /  reject choice using 

the Bernoulli random variable®, X ,  which takes the value 1 upon acceptance, and 0 on 

rejection. Under this model, annealing at a given temperature is a set of ir  independent 

trials {X i , . .. ,Xi^). We further assume that for fixed temperature, the probability of 

acceptance is constant over an arbitrary number of trials. Thus

where a is the probability of acceptance, and 1 < i < ir-

D efin ition  58. Given X  and a at a temperature T, we may now state that T  is too 

high if, for pre-specified ta € (0,1),

The quantity a is known as the acceptance ratio at temperature T, with rA being the 

maximum allowable acceptance ratio.

In practice when applying the Metropolis algorithm, it is not obvious what the 

underlying acceptance ratio at a given temperature is. The following method is used to 

estimate it:

After switching to a temperature, T , apply transformations in the usual manner until 

n < ir disimproving transformations have been encountered. At this point calculate the

1; P { X ^ l )  = a 

0; P (X  =  0) =  l - a ,
(9.5)

a > r ^ .

ratio

(9,6)
n

where Ua is the number of accepted disimproving transformations. I f  Ua/n >  then 

the temperature is too high.

®See [42]
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This immediately raises the question of how large n must be in order that the estimate 

be sufficiently accurate. In an instance where T  is too high, we want the estimate using 

as few trials as possible, because a large value of n means that many disimprovements 

may be accepted in order to discover that the temperature is unsuitable. Certainly it 

is undesirable that all ir  iterations be carried out to obtain the acceptance ratio. The 

minimum required value of n is calculated as follows:

Note that the expected value of X  is

(X) =  1 -a +  0 - ( 1 - a )  =  a,  (9.7)

and the variance is

4  =

=  (1 — a)^ • a +  (0 — a)^ • (1 — a) (9.8)

=  a(l — a ) .

Define the random variable

X =  + . (9,9)
n

where each of the Xi are as in equation (9.5). By equations (9.5) and (9.9)

n

which is the quantity referred to in equation (9.6). Note further that

(Xi) +  h {Xji)
(X) n

na
n

= a,  (9.10)

which confirms X as a reasonable estimator of the underlying acceptance ratio.

The variance of X , is

= ((X -  (X»^) = (X V  (9 . 11)



156 9.4. A L G O R IT H M S  F O R  O P T IM IS A T IO N

 2
Taking {X ) first, we have

n

From the definition of Xi,

n

E - ^ 0  = ( E ^ - ) -  p-13)
i=i  /  \ i = i

and

‘Y,X.xA =Y {̂Xi){X,), (9 .14)
i^j  /  i#j

since the trials are independent. Combining equations (9.10), (9.12), (9.13) and (9.14), 

we obtain

—2. 1 /  2( X )  = ^ l n a  + 21 )«

—  (na + n(n — l)a^) . (9.15)

Equations (9.11) and (9.15) now give

cr|r =  -^{na + n(n — l)a^) — 

a ( l — o)
(9.16)

n

The ultimate goal is to estimate the underlying probability of acceptance, a, using 

X . Since (X)  =  a, this purpose will be served by choosing n such that cr^ is suitably 

small. In order to quantify “suitably small”, we will appeal to the following statement 

of the central limit theorem [42].

T h eo rem  23. Let X  be a random variable with mean /i and variance . Then the 

random variable

a
has a distribution^^ that approaches the standard normal distribution as n —)■ oo.

(9.17)

“̂Reading off the mean and variance for X  from equation (9-17) agrees with equations (9.10) and 

(9.16)
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Thus X  is normally distributed for sufficiently large n. The normal distribution has 

the property that 95% of the area under the distribution is contained in the interval 

(/X — 2(7, /x +  2cr). We will therefore assume that the same holds for X.  Armed with this, 

we may reasonably assume (i.e., with probability 0.95) that all estimates obtained using 

X  will fall in the interval (a — 2(7^, a +  2(7^). In order to estimate a to an accuracy S, 

say, it is now sufficient to choose n such that the width of two standard deviations is 5.

In order to calculate n, the value of <5 must be chosen. Since the values of the 

acceptance ratio inhabit the interval (0,1), we usually take J =  0.1 in order to avoid the 

uncertainty in the estimation of the mean being a significant proportion of the mean 

itself.

The maximum of the function on the right hand side of equation (9.18) occurs at 

a = 0.5. The largest sample size will thus be required at that value for a fixed S.

E xam ple 9.5. Inserting <5 =  0.1 and a = 0.5, into equation (9.18) gives

E xam ple 9.6. On the other hand, taking a =  0.8, and keeping 5 =  0.1, results in

That is

which, in the case in hand (using equation (9.16)), becomes

whence

(9.18)

n
0.01

100 .

n =  4-0 .8 -0 .2 -100  =  64.

For a user specified a and 6, the Alexander moveset software automatically calculates 

the required value of n, if desired.
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U sing the acceptance ratio

Annealing with the acceptance ratio proceeds as in the case where It  alone is being 

used up to a tem perature Th where the acceptance ratio exceeds As soon this 

is true, operations at Th cease, and the tem perature is decreased in steps of size s, as 

usual. Thus, the higher tem peratures (defined using Tq , s and Ug) may never be reached, 

depending on the value of

M ultiple cycles and the acceptance ratio

When the acceptance ratio is being used over multiple cycles, we multiply the maximum 

acceptance ratio, t a , by a factor (0 <  <  1) at the end of each cycle. This results

in a damping effect on the values of the maximum tem peratures reached in successive 

cycles. We usually choose M a =  1/2.

An example of the effect of this policy on the pair of cycles depicted in figure 9.6 is 

shown in figure 9.7

10- '  

10-2  

10~ ®  

10- " '  

lO - '^  - 

10" ®  ■ 

0

>  T a  at this tem perature

/

End of cycle End of cycle End o f cycle

50 90 130 170 210 250 290 330 370 410 450 490 530 570 610 650 690 730
Iterations

Figure 9.7: Heat cycle using acceptance ratio

The algorithm  for tem perature cycling using a varying maximum acceptance ratio 

is given in table 9.6.
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IN P U T ; M , /3, n ,  To, Tmax ,  rig, f r , s .  t a ,  S 

O U T P U T : M '
Cycle:

T  ^  To
’T-d ^  0 (î d is number o f disimproving moves proposed at temperature T )
let n be the minimum sample size required to obtain the underlying acceptance ratio
given rA and 5 (using equation (9.18) (substituting ra for 'a'))
i 0
loop:

i f  (i > 0 A N D  {i mod i r )  =  0) O R (rid > n A N D  Ua/n > t a )

T ^  h A T )
i f T  =  Tmax OR fla/n > TA 

f r , s  ^  / f  j
e n d i f  
i f T  =  To

cycle is complete; r e tu rn  M  
e n d if  

e n d if
M  ■«- “M e t r o p o l i s ( M ,  n ,  T, Qe x p i P) )  
i <— i +  I

end loop

Table 9.6: Algorithm: Cycle

“See table 9.4
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Algorithm for annealing

The com plete annealing algorithm  which we use may now be assembled. I t is given in 

tab le  9.7.

IN PU T: M, n, /3, i f ,  Uc. Ug, fr,s, ta , S 
O U T PU T . M '
Anneal:

T ^  0
(M, To) ^  ‘̂ H illC lim biM , /3,
M l -f- M
T m a x  ^  '’(/r,.)"^(To) 
c ■<— 0
w hile c < ric

M  ■(- C ycie(M , /3, /i, To, Tmax, f r , s ,  t a J )  
Mc+2 M  
t a ^  M a -  t a  
c <— c +  1

endw hile
re tu rn  M  such that‘s

Q(M) =  max Q(Mi)
l< i< r i c 4 - l

Table 9.7: Algorithm: A nneal

“We extend the function H illC lim b of table 9.2 to return the average change in quahty (T o )  taken 
over the i /  iterations specified

*'If / t ,5 is additive, [fT,sY{x) = x -\-ps. If multiphcative, then {jr.sYix) =  s^x
' Îf more than one M; has this property, then the one with the lowest index is returned

Annealing with variation of /3

Since the  beginning of th is section, we have required th a t the param eter ^  be fixed when 

applying annealing. We now relax this restric tion  to  allow op tim isation  w ith  respect to 

both  /? and the  tem peratu re.

W hen doing this, in itia l and final values of j3 are chosen, along w ith a step  size for 

moving between them  (as discussed in section 9.4.2). We set 13 to  the  in itia l value. A full 

set of annealing cycles (defined using the  param eters described in tab le  9.5) is carried
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out with respect to the global quality function corresponding to this /3. As previously 

discussed, the state of the resulting complex is stored at the end of each cycle (see also 

table 9.7), and annealing continues. When all cycles are completed, ^ is set to its next 

value, and the above process is repeated using the previously stored complex with the 

most favourable state. Optimisation continues in this m anner until the final state  of j3 

has been reached. Table 9.8 details this algorithm.

INPUT: M, n,  Pi, /?/, ‘̂ Pinc, i f .  ric, Us, f r , s ,  t a , S 

OUTPUT: M'
AnnealBeta:

P <— Pi 
while P ^ pf

M ^  ’’A n n e a l { M , n , l 3 , i f , n c , n s , s , f T , s , r A , S )  
P  ^  P  +  Pine 

endwhile

Table 9.8: Algorithm; A n n ealB eta

“Where it is assumed that /?/ =  /?, +  /cAnc, where /c 6 Z 
*’See table 9.7



Chapter 10 

Experiments

10.1 Introduction

This chapter details experiments carried out on a set of three dimensional test complexes, 

using our implementation of algorithms described in section 9.4.

10.2 Preliminaries 

10.2.1 Computational bounds

Alexander movesets may have arbitrary length, but we will focus on relatively short 

movesets. The reason for this is computational. In three dimensions, for example, there 

are

7 +  7 ^+  7  ̂ =  399, (10.1)

different Alexander movesets of length up to 3 (with vertex smoothing included as an 

Alexander move). There are 2401 movesets of length 4 alone, and so on. We are therefore 

limited in our ability to exhaustively examine all movesets beyond a certain length. We 

will take the approach of exhaustively examining short movesets, rather than examining 

randomly chosen long movesets.

162
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10.2.2 M odes of operation

We distinguish two main modes of operation of our code which are used when carrying 

out the experiments in this chapter.

S ing le  m o v ese t m o d e  A single moveset is applied multiple times to a complex, with 

the aim of improving the global quality of the complex with respect to one of 

the measures defined in chapter 3. Quality statistics are taken before and after 

application of the moveset. The efficacy of the moveset is judged based on the 

final quality.

The code is used primarily in this mode.

M u ltip le  m o v ese t m o d e  A moveset length is specified, and the Alexander code chooses 

movesets of tha t length at random, applying them to a complex in the usual man

ner. The frequency with which each moveset is successfully applied is recorded, 

as is the final quality of the complex. However in this case, a good final quality 

cannot accurately be attributed to any particular moveset.

This mode of operation is the lesser used.

10.2.3 Tools and hardware

The environments in which the experimental data were obtained are now detailed, as 

are the tools used for analysis.

H a rd w a re

The Alexander move code has been compiled and run on three UNIX-like platforms; 

Linux, FreeBSD and AIX. The computational resources used were as follows

•  The IITA C  x86 Linux 32 node, 64 processor cluster.^ This was the primary 

resource.

^http;//w w w .tchpc.ted.ie/comput_res/cluster_fs.html
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•  T he Centre for Supercom puting in Ireland IBM R S/6000 48 processor SP2 m a

chine.^

Q ueueing tools

A lthough the  A lexander code is sequential, tens of thousands of jobs were subm itted  

to the  queueing system s of each of the  above machines. In order to  achieve this, a 

collection of au tom ated  subm itta l tools were im plem ented in b o th  Perl and C. T he use 

of the  queueing system s introduced an elem ent of parallelism  which was necessary to  

enable us to  ob ta in  the results presented in th is chapter.

A nalysis tools

The quan tity  of d a ta  arising from thousands of movesets tested  on m ultip le d a tase ts  was 

of the  order of gigabytes. This am ount of o u tp u t necessitated the  im plem entation  of 

au tom ated  d a ta  analysis tools. These were all im plem ented in Perl, and  am ongst other 

things allow the sorting of d a ta  w ith respect to  each of the  three m ain global quality 

m easures, as well as the generation of or Gnuplot o u tp u t where required.

10.2.4 N otation

In the upcom ing sections, we present d a ta  and analysis resulting  from  a variety of 

experim ents. Before com mencing, some useful no ta tion  is introduced.

R elabelling the A lexander moves

There are six A lexander moves in three dim ensions, along w ith a vertex sm oothing 

transform ation. A labelling of the  moves was given in tab le  6.3 on page 107. We 

introduce a  new labelling in tab le  10.1 (w ith the original one in brackets), which is 

referred to  as the  sequential labelling. I t is used because of its sim ilarity  to  th e  internal 

representation of the A lexander moves in the  com puter code, and because of its  greater 

com pactness.

ĥttp://www.tchpc.ted.ie/comput_res/rs6000_fs.html
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Dimension Insertion onto Removal from

1-simplex 1 ( a i ) 4 ( a f i )
2-simplex 2 (02) 5 ( a 2  )̂
3-simplex 3 ( a s ) 6 ( a ^ ^ )

7 (vertex move)

Table 10.1: Sequential labelling of abstract Alexander moves in three dimensions, with 

the old notation in brackets

E xam ple 10.1. Under this system, an abstract moveset consisting of the addition of a 

vertex to a 1-simplex, followed by the removal of a vertex from a 2-simplex, followed by 

a vertex move would be represented as 1_5_7.

Movesets will usually be denoted by ji for abstract movesets, and /i for concrete 

ones. The expression l{fi) denotes the length of /i. Thus

/(1_6.7_4) =  4.

O p tim isation  and quality  m easures

The global quality functions we will optimising with respect to are, as usual, denoted 

by Qmin, Qavj a^d Qexp, for the global minimum, average and exponential quality re

spectively.

When using the exponential quality function, we use the /5-fraction, 5, introduced in 

section 9.3.2 to param etrize the quality function tha t is being used. To recap:

Q e x p (5 )
Q av  ; 5  —)• 1 > 0 )

Q m in  ; 5  —>■ 0  (/5  —>• oo) .

T he neighbour level

Recall th a t it is desirable th a t for each move of an abstract moveset, a site be chosen 

for its application th a t is close to sites chosen for previous moves of th a t moveset. We 

quantified closeness with a definition of the neighbour-level in definition 56 on page 118. 

Unless otherwise specified, in this chapter we will always operate a t neighbour-level one. 

This will be denoted n/ =  1.
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V e rte x  sm o o th in g  o p tio n s

We described the options for vertex smoothing in section 35. The algorithms which will 

be used here are R an d o m V e rte x M o v e  (see algorithm 6.6 on page 111), and J igg leV - 

e r te x  (see algorithm 6.8 on page 113).

When using either of these options, we usually include an argument of the form 

R an d o m V ertex M o v e(5 0 ). This is the number of times the vertex being moved is 

perturbed in the course of arriving at the final coordinates to be returned by the routine 

(in the notation of table 6.6 on page 111; here iV^oi;es — ^0). The routine J ig g le V e rte x  

takes a similar argument.

10.3 Datasets

The datasets we use are inspired by those suggested by Dompierre et al in [25] as 

benchmarks for mesh improvers. They specify, not test complexes, but test geometries. 

A rbitrary initial triangulations of these geometries are created (perhaps by hand) which 

are to be improved to the best quality possible. Mesh improvers are then compared 

purely on the basis of the qualities of the final complexes they produce. In [25] the focus 

is on both geometric quality and target edge length — i.e., producing the best possible 

geometrical quality constrained by a requirement th a t all edge lengths must be close to 

a specified length. We do not include edge length restrictions in our geometric quality 

measures.

All complexes are generated using the GAMBIT mesh generator (which is associated 

with the FLUENT package). For each benchmark geometry two complexes are created, 

parametrised by the number of vertices per unit distance on an interm ediate boundary 

complex which GAMBIT uses to generate the final complex. For example, the complex 

U nit_C ube_unif orm_lslO .meshS is formed from a cube upon which a surface complex is 

generated which has 10 vertices per unit of distance. A volume complex is subsequently 

generated using this surface complex. This volume complex will therefore contain more 

simphces than  U nit_C ube_unif orm_ls5 .mesh3.

Since GAMBIT produces reasonably good complexes, a perturbed counterpart to
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each GAMBIT complex has also been created using perturbation of internal vertices 

of the original. These complexes have significantly lower minimum quality than the 

originals.

The test complexes are listed in tables 10.2 and 10.3, and depicted^ in figures 10.1 

to 10.3 on pages 168-169. The perturbed complexes are denoted by a ‘_ p ’ in their 

names. Note th a t there is no surface difference between the original and perturbed 

complexes because the only vertices tha t are moved are internal.

The names of some of the datasets are quite long. On occasion'^ we will have need of 

abbreviations to refer to them more concisely. Table 10.4 contains a list of abbreviations.

Complex Vertices Cells Origin
Unit_Cube_uniform_lslO.mesh3 1589 7363 GAMBIT, original
Unit_Cube_uniform_lsl0_p.mesh3 1589 7363 GAMBIT, perturbed
Unit_Cube_uniform_ls5.meshS 267 950 GAMBIT, original
Unit_Cube_uniform_ls5_p.mesh3 267 950 GAMBIT, perturbed
Unit_Sphere_ls5.meshS 896 4161 GAMBIT, original
U nit_Sphere_ls5_p.meshS 896 4161 GAMBIT, perturbed
U nit_Sphere_ls2 .5 .meshS 161 613 GAMBIT, original
U nit_Sphere_ls2 . 5_p.mesh3 161 613 GAMBIT, perturbed
U n it_ te t_ lsl0 .m esh 3 502 2271 GAMBIT, original
Unit_tet_lslO _p.m esh3 502 2271 GAMBIT, perturbed
U n it_tet_ls5 .m esh3 67 193 GAMBIT, original
U n it_ te t_ ls5 _ p .mesh3 67 193 GAMBIT, perturbed

Table 10.2: Test complexes

10.4 Types of experiment

A variety of experiments may be carried out based on the algorithms described in 

section 9.4, and on the single and multiple moveset modes of operation discussed in 

section 10.2.2. Furthermore, it is possible to assess moveset application using any of 

minimum, average or exponential quality measures. In this section a notation is derived 

which encompasses the main types of experiment and the param eters upon which they 

depend.

^These images were rendered using the GMV mesh viewer [72]
■‘Such as in the keys of plots
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Complex Volume Minimum Average Product
U nit_Cube_uniform _lslO .m esh3 1 3.848646E-01 8.329080E-01 -1.403358E+03
Unit_Cube_uniform _lslO _p.m esh3 1 1.391621E-05 4.324777E-01 -9.335028E+03
Unit_Cube_uniform _ls5.m esh3 1 4.584467E-01 8.408842E-01 -1.712388E 1-02
Unit_Cube_uniform _ls5_p.m esh3 1 3.233958E-05 5.098129E-01 -9.729576E4 02
U nit_Sphere_ls5 .m esh3 4.125324 3.624200E-01 8.284432E-01 -8.143286E+02
U nit_Sphere_ls5_p.m eshS 4.125324 1.074795E-05 4.104463E-01 -5.465558E+03
U n it_ S p h e re_ ls2 .5 .meshS 3.953208 3.967812E-01 8.305601E-01 -1.192084E+02
U n it_ S p h e re_ ls2 . 5_p.mesh3 3.953208 5.327249E-05 4.179519E-01 -7.895561E+02
U n it_ te t_ ls lO .m esh 3 1.178511E-01 3.470749E-01 7.680857E-G1 -6.331005E+02
U n it_ te t_ ls l0 _ p .m esh 3 1.178511E-01 3.405482E-05 3.910130E-01 -3.390931E+03
U n it_ te t_ ls5 .m esh S 1.178511E-01 4.351112E-G1 8.057995E-01 -4.419837E+01
U n it_ te t_ ls5 _ p .m esh 3 1.178511E-01 1.099580E-04 5.G00746E-01 -2.394537E+02

Table 10.3: Test complex initial qualities

Complex Abbreviation
U nit_Cube_uniform _lslO .m esh3 uclO
U nit_Cube_uniform _lslO _p.m esh3 uclOp
U nit_C ube_unifonn_ls5.m esh3 uc5
Unit_Cube_uniform _ls5_p.m esh3 uc5p
U nit_Sphere_ls5.m eshS us5
U nit_Sphere_ls5_.m esh3 us5p
U n it_ S p h e re_ ls2 .5 .mesh3 US2.5
U n it_ S p h e re_ ls2 . 5_p.mesh3 us2.5p
U n it_ te t_ ls lO .m esh 3 utlO
U n it_ te t_ ls lO _ p .m esh 3 utlOp
U n it_ te t_ ls5 .m esh 3 ut5
U nit_ te t_ ls5 _ p .m esh S ut5p

Table 10.4: Abbreviations for test complex names

U nit_Cube_uniform _ls5.m esh3, U nit_C ube_uniform .lslO .m eshS,

U nit_Cube_uniform _ls5_p.m esh3 U nit_C ube_uniform _lsl0_p.m esh3

Figure 10.1: Cube complexes
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Unit_tet_ls5.mesh3,

Uiiit_tet_ls5_p.mesh3

Unit_tet_lslO.mesh3, 

Unit_tet_lslO_p.meshS

Figure 10.2: Tetrahedral complexes

Unit_Sphere_ls2.5.meshS, 

Unit_Sphere_ls2.5_p.mesh3

Unit_Sphere_ls5.mesh3, 

Unit_Sphere_ls5_p.meshS

Figure 10.3: Spherical complexes

169
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The three available algorithms are

•  Hill climbing,

•  Hill climbing with variation of the /5-fraction, 5, between 5x and 82 (used with Qexp 

only),

• Annealing.

We denote them by HC, H CB, and A N N , respectively. The decision on which op

tim isation algorithm to use is the first step of any execution of the Alexander code. 

However, there is a m ultitude of configurable param eters whose values must also be 

decided before a run commences. For example

•  the dataset to be improved,

• the number of iterations to be carried out,

•  the moveset mode (single or multiple),

•  the global quality function for use when improving,

• the choice functions to be used,

to name but a few. Of the parameters, we take a small number of the most relevant 

ones, and combine them  with the above notation for the three algorithms to describe 

the various experiments we carry out.^ The result is illustrated in following examples, 

in which K denotes a simplicial complex, // an abstract moveset, and $  some set of 

abstract movesets.

Exam ple 10.2. Consider the application to K of all movesets o f length less than or 

equal to three using hill climbing with the Alexander code in single moveset mode. Fur

thermore, improvement is to take place with respect to the exponential quality measure 

fo r P-fraction 6.

^Other parameters are dealt with on a case by case basis as (and if) they are encountered.
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This experiment is described using the expression Qexp), where H C  repre

sents the hill climbing algorithm, “SM ” refers to single moveset mode, and

$  =  {/i I l{^l) <  3} .

E x a m p le  10 .3 . If, instead of using single moveset mode in example 10.2, multiple 

moveset mode is required, we write H C ^ ^ (5 , Qexp)- Improvement with respect to 

the average or minimum quality in place of the exponential quality is represented by 

^ ^ M M iQ a v)  or respectively (no 5 is necessary).

E x a m p le  10 .4 . Consider example 10.2 once again. Let the choice of algorithm be hill 

climbing with variation of j3. Suppose that the ^-fraction ranges from  <5i to 8 2  in steps of 

size s. Then the experiment is denoted by <52, s). The dependence on Qexp

is omitted because it is the only quality measure available for use with this algorithm.

E x a m p le  10 .5 . Let and 8 2  be two ^-fractions. Our requirement is to carry out 

annealing at values of S in the range [<5i, 2̂] in steps of size s. A t each value of 5, 

annealing is carried out for  two cycles (see section 9.4-3). The experiment is represented 

by A N N |^ ((5 i,  8 2 , s, 2, Qexp)-

10.4.1 Sorting m ovesets

Much of the analysis in upcoming sections consists of the presentation of tables contain

ing the best performing movesets for various test datasets. The process of determining 

the best performing moveset (or movesets) of a collection implies an ability to decide 

which of a pair of movesets is the best. The manner in which we decide depends on 

whether single moveset mode or multiple moveset mode® is in use.

S in g le  m o v e se t m o d e  Let movesets fii and 112 be applied to a complex for a fixed 

number of iterations. The value of the final minimum, average or exponential quality^ 

®See section 10.2.2
^Depending on preference, and regardless of which quality measure was used during actual improve

ment process
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decides which is the better moveset for the complex in hand. Generally speaking, the 

exponential quality is used during improvement, and the final minimum quality is used 

to decide between the movesets.

M u ltip le  m oveset m ode The moveset which appears most frequently is declared the 

best. This method of choosing good movesets is obviously less reliable and so is used 

less often.

E xam ple 10.6. Table 10.6 on page 175 contains a list o f the top four movesets for  

each of the test complexes listed in table 10.2, where improvement is carried out in 

single moveset mode, with respect to the exponential quality fo r  5 =  0.05, and sorting is 

carried out with respect to the global m inim um  quality.^

C aveat

When sorting movesets which have been applied in single moveset mode it is worth noting 

th a t each moveset listed as having produced a given final quality for a test complex 

represents an equivalence class of movesets which produce the same final quality from 

tha t complex. Generally speaking the cardinality of such an equivalence class will be 1. 

However, if two or more movesets result in the same global minimum quality, the choice 

of which is displayed first in our table is an artifact of hash table im plem entation in Perl, 

rather than an indication of greater merit. This situation is most obvious when more 

than one of the top movesets listed in a table result in the same minimum quality, such 

as in table 10.17 on page 197 for the case of U nit_C ube_uniform _ls5_p.m esh3, where 

all four top movesets result in the same minimum quality. Not only is the ordering 

here spurious, but if there happen to be, say, six movesets in to tal associated with this 

minimum quality, then the choice of movesets excluded from the table is also, from our 

point of view, arbitrary.

We defend against this circumstance by running multiple test cases, to allow the true 

best movesets multiple opportunities to come to the fore.

®Thus, H C *^ (0 .05 , Qexp) in the notation recently discussed
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10.4.2 A note on presentation

Many tables of results will be used in the following sections. Most occupy one or more 

pages. Where possible, tables will be included in the main text itself, but on occasions 

where we feel that inclusion of a particular figure or table inhibits clarity, it is placed in 

appendix A.

With regard to the issue of presenting so much data in tabular form as opposed to 

graphical form, the reason is simply that for the particular data we present (moveset 

rankings), we have found no suitable graphical alternative.

10.5 Hill climbing using Qexp with / ( / / )< 3

For our initial experiment we carry out Qexp), where the S  is taken to be

0.05,® and

«> = {a* U(/^) < 3} . (10.2)

The results are presented in tabular and graphical form, and discussed. They comprise 

a reference point for experiments detailed in later sections.

Each moveset in $  is applied for a set number of iterations to each of the test 

complexes listed in table 10.2 on page 167. The iteration counts vary from complex to 

complex. They are listed in Table 10.5 overleaf.

We proceed now with presentation and analysis of results.

10.5.1 Top m ovesets

In this section we consider the best movesets in $  obtained when carrying out the above 

experiment. The best movesets in this case are those for which the resulting complex 

has the greatest global minimum quality. Table 10.6 on page 175 contains this data, 

with the top four movesets being displayed for each dataset.

®The choice of quality function and /3-fraction is justified in sections 10.6 and 10.7 
^°See the discussion in section 10.4.1 on page 171
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Test complex Number of iterations
Unit_Cube_uniform.lslO.mesh3 4000000
Unit_Cube_uniform_lsl0_p.mesh3 4000000
Unit_Cube_uniform_ls5.mesh3 600000
Unit_Cube_uniform_ls5_p.meshS 600000
Unit_Sphere_ls2.5.meshS 600000
Unit_Sphere_ 1 s2.5_p. meshS 600000
Unit_Sphere_ls5.meshS 1000000
Unit_Sphere_ls5_p.mesh3 1000000
Unit_tet_lslO.mesh3 2000000
Unit_tet_lslO_p.mesh3 2000000
Unit_tet_ls5.mesh3 500000
Unit_tet_ls5_p.mesh3 500000

Table 10.5: Number of iterations for each test complex for each moveset

The most obvious aspect of table 10.6 is the appearance of the vertex move, 7, in the 

top four movesets for each test complex. Here and elsewhere, the vertex move is shown 

to be the single most im portant individual move.

Equally notable is the observation th a t the vertex move is often not sufficient on 

its own, but performs better in combination with other movesets. In particular, the 

combination of 7 and 1_4 in varying orders is highly visible in the top four movesets of 

many of the test cases.

Since they appear regularly in table 10.6, it is worth further examining the movesets 

7_1_4, 2_7_5 and 3_7_6, or variations thereof.^^ Exam ination of logged output data 

on each of these combinations shows th a t large numbers of them  involve addition and 

removal of the same vertex, combined with the relocation (via the sub-moveset 7) of a 

separate vertex. In such cases, 2_7_5 or 3_7_6 simply reduce to an identity transform ation 

plus a vertex move. For example, 2_5 would add a vertex to a face, and remove it from 

the same face. For this reason, we often refer to 2_7_5 or 3_7_6 as vertex move like 

movesets, and we do not significantly differentiate between them  and a single vertex 

move.

The situation is different for the moveset 7_1_4. When 1_4 adds and removes the same 

vertex, it will result in an identity transform ation in all cases except for “octahedron” 

configurations such as was depicted in figure 6.10, (a) on page 97. Removing the vertex 

^^Such as 1.4.7, or 7.2.5
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Complex Moveset Minimum Average Exp
unit_cube_un ifo rm _lslO 7 A A 6.263651E-01 8.026771E-01 6.957401E-01

1.7 A 6.210352E-01 8.027406E-01 6.933099E-01
1-4-7 5.919616E-01 7.931800E-01 6.842602E-01
7_2_5 5.738288E-01 7.955548E-01 6.645429E-01

unit_cube_uniform _lslO _p 7-1.4 6.141473E-01 7.993105E-01 7.076373E-01
1-7-4 6.025445E-01 7.988856E-01 7.001503E-01
7-2-5 5.714567E-01 7.996341E-01 6.964200E-01
3-6-7 5.713635E-01 7.993267E-01 6.958326E-01

u n it_ cu b e_ u n ifo rm _ ls5 1-7-4 6.416344E-01 8.086651E-01 6.940879E-01
7 6.120364E-01 8.079278E-01 6.796991E-01

7-1-4 6.120364E-01 8.019662E-01 6.854408E-01
2-7-5 6.120364E-01 8.068375E-01 6.783089E-01

un it_cube_unifo rm _ls5_p 7-1-4 6.359448E-01 8.128110E-01 7.121173E-01
1-4-7 6.311172E-01 8.067347E-01 7.143554E-01
7-7-7 6.120364E-01 8.197711E-01 7.075715E-01
2-7-5 6.120364E-01 8.202368E-01 7.032981E-01

u n i t_ s p h e re _ ls 2 .5 1-4-7 6.929802E-01 8.184918E-01 7.360008E-01
1-7-4 6.718421E-01 8.112402E-01 7.129806E-01
7-3_6 6.672660E-01 8.123255E-01 7.126073E-01
7-2-5 6.671235E-01 8.101931E-01 7.127751E-01

u n i t_ s p h e re _ ls 2 . 5_p 7-7 6.676251E-01 8.077562E-01 7.166332E-01
7-2-5 6.662354E-01 8.101281E-01 7.138418E-01
7-3-6 6.660263E-01 8.097628E-01 7.141282E-01
2-5-7 6.638199E-01 8.056850E-01 7.119000E-01

u n it_ s p h e re _ ls 5 7 6.553702E-01 8.112904E-01 7.155511E-01
7-2-5 6.541851E-01 8.119897E-01 7.146919E-01
7-7-7 6.538712E-01 8.119553E-01 7.171271E-01
7-3-6 6.535736E-01 8.095155E-01 7.151341E-01

u n it_ sp h e re_ ls5 _ p 7 6.535557E-01 8.121959E-01 7.326131E-01
7-2-5 6.506640E-01 8.130555E-01 7.312149E-01
2-5-7 6.502862E-01 8.134608E-01 7.307513E-01
7-3-6 6.493427E-01 8.123244E-01 7.308224E-01

u n i t_ te t_ ls lO 7-1-4 6.434219E-01 7.748990E-01 6.892212E-Q1
3-6-7 6.198850E-01 7.700091E-01 6.765722E-01
7-7-7 6.196684E-01 7.714955E-01 6.784064E-01

7 6.190727E-01 7.710385E-01 6.766540E-01
u n it_ te t_ ls lO _ p 2-5-7 6.184782E-01 7.658197E-01 6.785834E-01

7-2-5 6.175030E-01 7.693335E-01 6.813494E-01
7-3-6 6.148865E-01 7.705516E-01 6.819737E-01
3-6-7 6.145360E-01 7.687162E-01 6.776397E-01

u n i t_ te t_ l s 5 7-1-4 6.460409E-01 8.103755E-01 6.885638E-01
1-7-4 6.433215E-01 8.117090E-01 6.879105E-01
7-2-5 6.178814E-01 8.070505E-01 6.758151E-01
2-5-7 6.172305E-01 8.070804E-01 6.757730E-01

u n i t_ te t_ ls 5 _ p 3-7-6 6.170191E-01 8.093828E-01 6.842179E-01
7 6.161107E-01 8.099227E-01 6.862140E-01

1-4-7 6.159293E-01 8.045677E-01 6.840288E-01
7-7 6.159196E-01 8.100904E-01 6.861840E-01

Table 10.6: HC^j^^(0.05, Qexp), where $  =  {/i | /(^) < 3}. Top four movesets displayed 

and sorted with respect to Qmin- Vertex movement uses R andom V ertexM ove(50). 

Iterations counts contained in table 10.5
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a  in this figure may give rise to one of three simplices, of which only one is the simplex 

to which a  was added by the move 1. Thus the transform ation need not be an identity 

transformation. Examination of output data  shows th a t many of these non-identity 

transform ations do occur, as well as many identity transformations. Thus the moveset 

7_1_4 may act as either a vertex move or a vertex move plus a non-identity, possibly 

improving, transformation.

The data  of table 10.6 also shows all the top movesets involve neither an increase 

nor a decrease in the number of vertices. Furthermore, movesets such as 7, or 7_3_6 or 

7_2_5 will increase nor decrease the number of simplices.

The moveset 7_1_4 could well increase or decrease the number simplices, if it added 

one vertex and removed another. However, examination of its application to our test 

complexes shows th a t it rarely does so (of our test cases, only one complex exhibited 

any change in the number of simplices, and this was subsequently undone).

Transformations involving the addition and removal of the same vertex in a non

identity transform ation arose in section 8.4 when we discussed Alexander move imple

m entations of two and three dimensional edge-flips. Although none of the movesets 

mentioned above are capable of implementing the edge-flips described in th a t section, 

the non-identity transform ation associated with the moveset 1_4 in the octahedron case 

could be viewed as a type of edge-flip. We will also see the movesets 1_5 and 2 A  appear

ing in upcoming sections. When these are applied to the same vertex, they implement 

the edge-flips of section 8.4.

Finally, we note th a t every moveset in the top four improves the minimum quality 

of the complex to which it is applied, often signiflcantly.

Improvement profiles

Figures 10.4 to 10.7 on pages 177-178 give a graphical representation of the improve

ment process for each of the top four movesets in the case of the complexes Unit_Cube_- 

uniform _lslO .m eshS, U nit_C ube_uniform _lslO _p.meshS, U nit_C ube_uniform _ls5 .-  

meshS and U n it_ te t_ ls 5  .meshS.

In each graph, the three global qualities, minimum, average and exponential, are
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plotted. Given the nature of each quality measure, the minimum always occupies the 

lowest position, the exponential quality is (by definition) located between the minimum 

and the average, and average therefore always lies above the other two. Points corre

spond to instances where improvement in the exponential quality took place. At such 

points, measurements of the minimum and average quality are also taken and plot

ted. Given the low ^-fraction, one would expect the exponential quality to improve the 

minimum quality in preference to (and perhaps at the expense of) the average quality. 

Disimprovements in the minimum quality should also be possible, but less likely. Dis- 

improvements in the exponential quality are impossible, since we are hill climbing with 

respect to it.

Aspects of this pattern are observed in each case. In figures 10.6 and 10.7 the average 

quality is disimproved, although not in all cases in figure 10.7. Figure 10.7 contains clear 

instances where minimum quality is temporarily decreased, despite improvement in the 

exponential quality.

C onvergence

The data in figures 10.4 to 10.7 may also be used to provide a qualitative assessment of 

whether or not the iteration counts specified in table 10.5 are sufficient for convergence of 

the associated improvement processes, with respect to the exponential quality measure. 

The fiatness of the exponential profile at the final iteration in each of the plots in the 

aforementioned figures gives a strong indication that the iteration counts are more than 

sufficient. So much so that we consider now the effect (if any) of a significant reduction 

in the number of iterations.

This is done by dividing each of the values in table 10.5 by 10, rerunning the ex

periment for the full set, $ , of movesets, and plotting the new improvement profiles to 

determine the extent to which the processes have converged. The top four movesets in 

each test case are listed in table 10.7 overleaf.

Comparison with table 10.6 confirms first of all that, although the top four movesets 

in each test case are not in the same order as those in table 10.6, a very similar set of 

movesets comes to the fore.
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Complex Moveset Minimum Average Exp
unit_cube_uniform _lslO 7.1,4 6.244117E-01 8.040787E-01 6.922456E-G1

1_7.4 6.207907E-01 7.981818E-01 6.720728E-01
1-4-7 5.919616E-01 7.954526E-01 6.824128E-01
2-5-7 5.745575E-01 8.002369E-01 6.632300E-01

unit_cube_uniform _lslO_p 1-4.7 6.053334E-01 7.933868E-01 7.011080E-01
7-1-4 5.930425E-01 7.946549E-01 6.956356E-01
1-7-4 5.738280E-01 7.730778E-01 6.486728E-01
7-2-5 5.722539E-01 8.001305E-01 6.952595E-01

unit_cube_uniform _ls5 1-7-4 6.416344E-01 8.119309E-01 6.881276E-01
3-7-6 6.120364E-01 8.165969E-01 6.704090E-01
7-3-6 6.120364E-01 8.104441E-01 6.787545E-01
7-7-7 6.120364E-01 8.111291E-01 6.782220E-01

unit_cube_uniform _ls5_p 7-1-4 6.343048E-01 8.106304E-01 7.075403E-01
2-7-5 6.120364E-01 8.192097E-01 6.790067E-01
7-7-7 6.120364E-01 8.245550E-01 7.057480E-01

7 6.120364E-01 8.172678E-01 7.067054E-01
u n it_ sp h e re _ ls2 .5 1-4-7 6.886573E-01 8.160339E-01 7.269802E-01

7-2-5 6.668891E-01 8.112118E-01 7.109753E-01
7-3-6 6.656419E-01 8.117459E-01 7.108134E-01

7 6.655858E-01 8.077865E-01 7.116691E-01
u n it_ sp h e re _ ls2 . 5_p 7-7 6.687865E-01 8.085226E-01 7.128121E-01

7-3-6 6.648027E-01 8.084835E-01 7.099281E-01
7_2_5 6.609933E-01 8.106228E-01 7.079376E-01
2-5-7 6.581259E-01 8.026157E-01 7.054874E-01

u n it_sphere_ ls5 7 6.517589E-01 8.118706E-01 7.116187E-01
7.2-5 6.510229E-01 8.110063E-01 7.104313E-01
7.7 6.499839E-01 8.124293E-01 7.111798E-01

2-5-7 6.476786E-01 8.097268E-01 7.082042E-01
unit_sphere_ls5_p 7-7-7 6.471740E-01 8.147668E-01 7.287383E-01

7-2-5 6.459215E-01 8.094199E-01 7.239928E-01
7-7 6.392145E-01 8.142922E-01 7.270702E-01
7 6.391659E-01 8.097227E-01 7.237896E-01

u n it_ te t_ ls lO 7-1-4 6.334526E-01 7.745103E-01 6.840860E-01
7 6.168710E-01 7.712990E-01 6.739643E-01

2-5-7 6.164648E-01 7.703828E-01 6.724846E-01
7-2-5 6.151070E-01 7.716021E-01 6.750074E-01

u n it_ te t_ lslO _ p 7-7-7 6.132102E-01 7.731491E-01 6.796022E-01
7-2-5 6.095871E-01 7.676102E-01 6.776799E-01
7-3-6 6.073317E-01 7.687723E-01 6.787163E-01

7 6.069142E-01 7.671754E-01 6.749071E-01
u n it_ te t_ ls 5 7-1-4 6.455832E-01 8.105130E-01 6.883748E-01

1-7-4 6.208079E-01 8.063169E-01 6.741292E-01
3.6-7 6.183017E-01 8.073917E-01 6.756594E-01
7-2-5 6.180086E-01 8.072041E-01 6.755991E-01

u n it_ te t_ ls5 _ p 1-4-7 6.172619E-01 8.046119E-01 6.837039E-01
7-7-7 6.172305E-01 8.113249E-01 6.856957E-01
3-7-6 6.170191E-01 8.089257E-01 6.813122E-01
7-2-5 6.168550E-01 8.103272E-01 6.861587E-01

Table 10.7: HC^j^^(0.05, Q e x p ) ,  where $  =  {/x | l { f i )  <  3}. Top four movesets displayed 

and sorted with respect to Qmin- Vertex movement using R andom V ertexM ove(50). 

Iterations counts are one tenth of the originals listed in table 10.5
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Next, a perusal of the final minimum qualities attained by the top movesets in 

each case (even if they differ from table to table) shows tha t they are very close to 

those attained by the equivalently placed movesets in table 10.6. The maximum dif

ference between the final values in the top slot is approximately 0.1 for the case of 

U n it_ te t_ ls lO  .meshS, and in the case of U nit_S phere_ ls2 .5_p .raesh3  the value in 

table 10.7 is greater than  th a t in table 10.6.

The differences between the tables in terms of final exponential quality values vary to 

a larger extent than in terms of the final minimum quality. The aforementioned tables 

indicate this, and the graphs in figures 10.8 to 10.10 on pages 181-182 give a visual 

perspective on the situation.
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Figure 10.8: Improvement profile for dataset Unit_Cube_uniform_lsl0.mesh3

In figure 10.8, for the complex U nit_Cube_unif orm _lslO  .meshS, the movesets 7_1_4, 

1_4_7 and 2_5_7 all seem to be more or less converged with respect to Qexp, whereas for 

1_7_4 this does not appear to be fully the case. For U nit_Cube_uniform _lslO _p.m esh3, 

figure 10.9 indicates convergence for movesets 7_1_4 and 7_2_5, but not completely so 

for 1_4_7 and 1_7_4. The improvement process seems to have converged for all movesets
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in the case of U n it_ te t_ ls lO  .meshS.

Examination of the rest of the datasets shows convergence in most of the other cases. 

Generally speaking, the smaller datasets show convergence, and the larger ones exhibit 

instances of slight non-convergence.

In conclusion, then, we may say that the iteration values used for our experiments up 

to this point have erred on the side of caution. In upcoming sections, we will, therefore, 

occasionally use a lesser number of iterations.

Effect of improvement on the /3-profile

The /3-profile of a complex indicates the manner in which Qexp(/3) goes from representing 

average quality of the complex at small values of /3, to representing the minimum quality 

at large values. It was introduced in section 9.3.1 in definition 57. In this section, we 

choose from table 10.6 the results for a particular complex, unit_cube_unif orra_ls5, 

and compare its initial /3-profile with those of the complexes resulting from the appli

cation of each of the movesets in table 10.8. Note that the top four movesets from 

table 10.6 for un it_cube_un iform_ls5 are included in this list. Figure 10.11 on the 

next page contains the result of this comparison.

1-4.7 
7_1_4 
1_7_4
2-7_5 
3_6.7

7
7-7

Table 10.8: Movesets used for ^-profile test

The plots in figure 10.11 indicate that quite an amount of flattening of ̂ -profile takes 

place during the course of improving the complex. The relatively sharp drop between 

the average and the minimum quality has become a much gentler incline as the average 

and the minimum qualities move closer to each other.

For HC^j^(0.05, Qexp), this has implications for the quality function with respect to 

which we are improving. For this experiment, the value of P is chosen once, at the start
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Figure 10.11: ^-profile after H C g^(0 .05 , Qexp) has been applied to 

unit_cube_unif orm_ls5 for movesets listed in table 10.8

of the improvement process, using the /3-fraction on the original complex. In this case, it 

has value S  =  0.05, which from examination of the initial ,5-profile in figure 10.11, would 

result in a choice of P  such that log^ 4; say between 3 and 4. Obtaining the value 

of /? corresponding to the same ^-fraction for any of the final complexes would result in 

a value for 0  for which log^ «  5. Thus, the process of improvement has changed the 

quality function with respect to which we are improving — moving it slightly closer to 

the average quality measure.

This does not appear to have detrimental effects on the improvement process — 

we can see from the improvement profiles in figures 10.4 to 10.7 that no trend towards 

disimprovement of the minimum quality becomes apparent after a large number of it

erations has been carried out. Furthermore, we have run some experiments where Qexp 

was periodically updated for a fixed value of the /3-fraction. The final qualities obtained 

were, in general, no better than those of table 10.6.
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10.5.2 Focus on test complex Unit_Cube_uniform_lslO .meshS

The particular test case Unit_Cube_uniform_lslO.meshS is chosen (arbitrarily) for 

elaboration on some of the data presented in table 10.6. In tables 10.9 to 10.11, we first 

present the top fifteen movesets sorted with respect to the minimum quality (so the first 

four movesets to appear here are as in table 10.6). In the next table, we take the top 

fifteen movesets with respect to the exponential quality, and in the following one, with 

respect to the average quality. Initial quality statistics for the complex are displayed in 

each table for the purposes of comparison.

Complex Moveset Minimum Average Exp
Initial 3.848646E-01 8.329080E-01 4.072668E-01

un it_cu b e_u n iform _lslO 7-1-4 6.263651E-01 8.026771E-01 6.957401E-01
1-7-4 6.210352E-01 8.027406E-01 6.933099E-01
1-4-7 5.919616E-01 7.931800E-01 6.842602E-01
7-2-5 5.738288E-01 7.955548E-01 6.645429E-01
2-7-5 5.730593E-01 7.915962E-01 6.596581E-01
2_5-7 5.730424E-01 7.973915E-01 6.645706E-01
3-6-7 5.729074E-01 7.952461E-01 6.647894E-01
7-3-6 5.728844E-01 7.952476E-01 6.649511E-01
7-7 5.727024E-01 7.928460E-01 6.660752E-01

7-7-7 5.721624E-01 7.930074E-01 6.660326E-01
7 5.718254E-01 7.956671E-01 6.648946E-01

3-7-6 5.619839E-01 7.913301E-01 6.564537E-01
7-7-1 4.882325E-01 6.641262E-01 5.348033E-01
7-1-7 4.882314E-01 6.371310E-01 5.337011E-01
1-7.7 4.780035E-01 6.422699E-01 5.367053E-01

Table 10.9: Top 15 movesets applied to u n it_ cu b e_ u n if orm .lslO  sorted in order of min

imum quality for H C |j^ (0 .0 5 , Q e x p )

Table 10.9 continues in the vein of table 10.6, with all of the top fifteen movesets 

containing a vertex move. In the last three of the fifteen movesets, refining movesets 

make an appearance. In each of these cases, vertex moves dominate the moveset, com

pensating for the extra vertices added. All successfully improve the minimum quality 

of the complex.

Table 10.10 on the following page contains the data sorted with respect to the ex

ponential quality. The results display a strong resemblance, though not an identity, to 

those of table 10.9, as would be expected with the /^-fraction taken to be 0.05. Once 

again, vertex moves appear in each of the top fifteen movesets.
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Complex Moveset Minimum Average Exp
Initial 3.848646E-01 8.329080E-01 4.072668E-01

un it_cube_unifo rm _lslO 7-1-4 6.263651E-01 8.026771E-01 6.957401E-01
1-7.4 6.210352E-01 8.027406E-01 6.933099E-G1
1-4-7 5.919616E-01 7.931800E-01 6.842602E-01
7-7 5.727024E-01 7.928460E-01 6.660752E-01

7-7-7 5.721624E-01 7.930074E-01 6.660326E-01
7-3-6 5.728844E-01 7.952476E-01 6.649511E-01

7 5.718254E-G1 7.956671E-01 6.648946E-01
3-6-7 5.729074E-01 7.952461E-01 6.647894E-01
2-5-7 5.730424E-01 7.973915E-01 6.645706E-01
7-2-5 5.738288E-01 7.955548E-01 6.645429E-01
2-7-5 5.730593E-01 7.915962E-01 6.596581E-01
3-7.6 5.619839E-01 7.913301E-01 6.564537E-01
1-7-7 4.780035E-01 6.422699E-01 5.367053E-01
7.7.1 4.882325E-01 6.641262E-01 5.348033E-01
7-1-7 4.882314E-01 6.371310E-01 5.337011E-01

Table 10.10: Top 15 movesets applied to un it_cube_un ifo rm _lslO  sorted in order of 

exponential quality for HC5;^^(0.05, Qexp)

Complex Moveset Minimum Average Exp
Initial 3.848646E-01 8.329080E-01 4.072668E-01

un it_cube_unifo rm _lslO 1-5 3.848646E-01 8.329966E-01 4.078812E-01
1-4-4 3.848646E-01 8.329361E-01 4.079221E-01
7-1-5 3.873362E-01 8.328544E-01 4.160302E-01
1-5-7 3.873362E-01 8.318678E-01 4.147505E-01
2-2-2 3.848646E-01 8.308930E-01 4.094808E-01
1-7-5 3.848646E-01 8.307230E-01 4.121678E-01
2-1.5 3.848646E-01 8.301832E-01 4.119332E-01
1-5-2 3.848646E-01 8.289140E-01 4.176852E-01
1.5.1 3.848646E-01 8.277453E-01 4.132511E-01
1-1.5 3.848646E-01 8.270055E-01 4.140691E-01
3.1.7 3.848646E-01 8.258326E-01 4.143803E-01
3.1.1 3.848646E-01 8.188845E-01 4.157735E-01
2J2 3.848646E-01 8.149236E-01 4.214236E-01

1.4.2 3.873362E-01 8.102723E-01 4.304961E-01
3.6.2 3.848646E-01 8.091720E-01 4.265210E-01

Table 10.11: Top 15 movesets applied to  un it_cube_un ifo rm _lslO  sorted in order of 

average quality for H C |^ (0 .0 5 ,  Qexp)
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Sorting the same d a ta  w ith respect to  the average quality  of the  com plex produces 

a significantly different collection of top m o v e s e t s . I n  tab le  10.11, we note first of all 

th a t vertex moves are not in evidence to same exten t here as previously. Next, it is only 

the first two movesets which improve the average quality  a t all. T he first, 1_5, has the 

ability  to  im plem ent the standard  edge flip, T3 2  (see chapter 4, and section 8.4.2), and 

the second contains the fam iliar com bination 1_4. Both of these com binations appear 

in o ther movesets in th is table.

Note also the  perform ance of the moveset 7_1_5. It worsens the  average quality, 

bu t in generates a  higher m inim um  quality (although not high enough to  appear in the 

o ther tables). E xam ination of the im provem ent process showed th a t  the  moveset 1_5 

was carried out only once during the course of im provem ent, whereas 7_1_5 generated an 

im provem ent 22 tim es. Thus the  use of this moveset resulted in increased perform ance 

over one of its sub-movesets.

10,5.3 Top m ovesets excluding vertex moves

The dom inance of the vertex move in table 10.6 makes one wonder w hat happens if one 

forbids its use. We do this in two different ways in tables A .l and  A .2 on pages 246 

and 247.

Excluding all vertex moves

In tab le  A .l, we list the  top  four movesets for each test complex excluding all movesets 

which contain a  vertex move.

T he movesets appearing in table A .l are a less impressive collection th an  those of 

tab le  1 0 .6 . Some fail to  improve the complexes^^ to  which they are applied, others are 

reasonably successful, bu t not to  the extent of those in tab le  1 0 .6 .

A num ber of in teresting points emerge.

•  Movesets containing 1_4 are once again am ong the  m ost successful.

^^Note that these are movesets which best improve the average quaUty in a process that was trying

to improve the exponential quality at 6 =  0.05
^^See the initial quality values for each test case in table 10.3
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•  Movesets containing 1.5 also make appearance.

•  The moveset 2_4 (which may implement a T2 3  edge flip) also appears, on its own 

and as part of other movesets, but it rarely manages to improve the minimum  

quality of the complex.

Excluding vertex type movesets

We define the vertex move type movesets to be those movesets which are made up 

entirely of vertex moves, or behave as if they were. The table below contains the vertex 

type movesets of length up to three.

3-6_7
3.7_6
7-3_6
2_5_7
2_7.5'
7-2-5

7
7.7

7-7-7

In table A .2 we list the top eight movesets for each of our test complexes, excluding 

vertex type movesets.

A number of points may be made about the data in table A .2.

•  The top movesets for each test complex contain vertex moves combined with 1-4, 

or, less frequently, 1_5.

•  Following these come movesets which involve vertex addition, combined with ver

tex movement.

•  It is notable that vertex removals combined with vertex movement do not appear 

to be successful (possibly because of the paucity of vertex removal opportunities 

for existing vertices in any of the complexes).

■̂̂ This definition is made bearing in mind the comment in section 10.5.1 concerning the vertex move 

like behaviour of movesets such as 2-7-6 or 3-6-7
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10.5.4 Importance of the vertex smoothing algorithm

Up to this point we have been using the vertex smoothing algorithm  R an d o m V e rte x -  

M ove, with N ^ o v e s  =  50 (see algorithm 6.6 on page 111) for applying the move 7. In 

this section we switch to using the J ig g le  V e rte x  algorithm (with =  8 )/^  in

order to estim ate the effect of the smoothing algorithm on our results. We carry out 

the familiar H C ^^(0 .0 5 , Qexp) experiment, using the iteration counts of table 10.5, but 

with R an d o m V ertex M o v e(5 0 ) replaced by J ig g leV ertex (8 ). Table A.3 on page 250 

contains the resulting top four movesets with respect to the minimum quality in the 

usual format. A comparison of tables 10.6 and A.3 shows th a t the change in smoothing 

algorithm produced a general worsening of results. Figure 10.12 demonstrates this 

graphically with a comparison of the final minimum qualities associated with the top 

ranked moveset for each test complex. The shorthand for the datasets introduced in 

table 10.4 is used in the figure.

Comparison of vertex smoothing algorithms
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Figure 10.12: Comparison of H C g^(0.05, Qexp) using R andom V ertexM ove and Jig- 

gleV ertex

This state  of affairs is perhaps not surprising given th a t R a n d o m V e rte x M o v e  

makes an a ttem pt to select the (locally) best vertex move out of a collection of random 

^^See algorithm 6.8 on page 113
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moves, whereas J igg leV ertex  simply applies a collection of random moves, and selects 

the last move applied regardless of quality. Thus the local quality of individual vertex 

moves within a moveset affects the global quality achieved by the moveset.

On the other hand, the same set of movesets achieve top ranking under the applica

tion of both algorithms — weakening the vertex move algorithm does not significantly 

reduce its importance

10.5.5 The difference between 7_1_4 and (7, 1_4)

The moveset 7_1_4 (and variations thereof) is one of the most common among the top 

ranked movesets. We attem pt to estimate in this section the extent to which it is better 

as a unit than as individual applications of its constituent sub-movesets. We specifically 

choose 7, 1_4 based on their success as movesets in their own right, and ignore other 

combinations. As discussed elsewhere, in order to be applied, 7_1_4 must to give rise to 

an improvement, but there is no onus on any of its sub-movesets to do so. In the case 

of (7, 1-4), each must, individually, give rise to improvement in order to be accepted.

The combination (7, 1_4) is tested by applying HC^j^^(0.05, Qexp) to each dataset, 

for the usual number of iterations,^® but allowing either 7 or 1_4 to be applied at each 

iteration. The choice of which one is made randomly. The results for each complex are 

contained in table 10.12 on the next page.

We compare these results with those of table 10.6; in particular with those of test 

complexes whose top ranked moveset is a variation on 7_1_4 (e.g., 1_4_7). Figure 10.13 

shows the difference in final minimum quality attained for each such dataset.

The complexes resulting from these transformations are quite close in final minimum 

quality, but in all cases except for that of u n it_ te t_ ls lO , the combination moveset 

7_1_4 is more successful. Some benefit does seem to accrue from using the movesets in 

a single unit.

^®See table 10.5
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Complex Moveset Minimum Average Exp
unit_cube_uniform _lslO 7, 1.4 5.955074E-01 7,983588E-01 6,790736E-01
unit_cube_uniform _lslO_p 7, 1.4 6.107146E-01 7,974879E-01 7,042155E-01
unit_cube_uniform _ls5 7, 1.4 6.120364E-01 8,036634E-01 6,859556E-01
unit_cube_uniform _ls5_p 7, 1.4 5,743992E-01 7,943189E-01 6,858297E-01
u n it_ sp h e re _ ls2 .5 7, 1.4 6,823243E-01 8,116358E-01 7,211806E-01
u n it_ sp h e re _ ls2 .5_p 7, 1.4 6,654953E-01 7,946619E-01 7.069602E-01
un it_sphere_ ls5 7, 1.4 6,530045E-01 8.075587E-01 7.133253E-01
unit_sphere_ls5_p 7, 1.4 l,355888E-02 4,313239E-01 1.429830E-01
u n it_ te t_ ls lO 7, 1.4 6,438114E-01 7.742311E-01 6.885899E-01
u n it_ te t_ lslO _ p 7, 1.4 5,857724E-01 7,529452E-01 6,691928E-01
u n it_ te t_ ls5 7, 1.4 6.443664E-01 8,105001E-01 6,885965E-01
u n it_ te t_ ls5 _ p 7, 1.4 6.090955E-01 7,875696E-01 6,633463E-01

Table 10.12: Investigation of the moveset of length three involving the moves 7, 1, 4. The 

individual movesets 7 and 1.4 were carried out on each test complex

Com parison of 7_1_4 and  7. 1_4
0.7
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Figure 10,13: Comparison of 7_1_4 and (7, 1.4)
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10.6 A list of trial movesets

The task of carrying out the experiment Qexp) in section 10.5 with $  as in

equation (10.2) on page 173 for the specified numbers of iterations is a significant one.^^ 

The time taken to perform such a run on the faster of the two available clusters varied 

from three to ten days depending on the number of processors available, and the settings 

of various parameters.

Requiring all experiments to consider all available movesets while operating on mul

tiple datasets, even for |$ | =  399, as in the above case, is thus prohibitive. It is useful, 

therefore, to look for a representative subset of $  whose movesets perform best over all 

test cases. This subset is used to shorten the runtimes of some of the experiments in 

upcoming sections. We refer to it as the set of trial movesets (of length /(/i) < 3).

A set of trial movesets generated using one quality measure may not match those 

generated using another. Therefore we obtain our list by carrying out the experiments 

HC|A^(Qav), H C |^ ( 0 .5 ,  Qexp) and H C |^ (0 .0 5 , Qexp)- The intention here is to ob

serve the best movesets using quality measures near Qavj near Qmim and in the interme

diate region Qexp(<̂  =  0.5). The union of top movesets in each of these cases are taken 

to be the trial movesets.

We commence with HC|j^^(0.05, Qexp) applied to each of the test complexes in 

table 10.2. This data  has already been provided in table 10.6. The results from H C |^ -  

(0.5, Qexp) and H C g ^ ( Q a v )  are contained in appendix A in tables A.4 and A.5 respec

tively^®, again showing a selection of the top four best movesets. Fewer test complexes 

are examined in the last two experiments, and iteration counts are smaller (see ta 

ble 10.13). The reduction in the number of test complexes and iterations arises from 

a time /  relevance tradeoff — the da ta  in table 10.6 will be used frequently in later 

sections and merit long runs, whereas tables A.4 and A.5 are used only here, for the 

purposes of comparison.

The first point to notice when comparing tables 10.6, A.4 and A.5 is th a t the movesets

which come to the fore are relatively similar in each case, particularly between the

^^This discussion goes through if H C is replaced by H C B  or A N N  
^®Commencing on page 251
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Test complex Number of iterations
Unit_Cube_uniform_ls5.meshS 60000
Unit_Cube_uniform_ls5_p.meshS 60000
U n it_ S p h ere_ ls2 . 5 .mesh3 60000
U n it_ S p h ere_ ls2 . 5_p.mesh3 60000
Unit_Sphere_ls5.m esh3 50000
Unit_Sphere_ls5_p.meshS 50000
U n it_ te t_ ls l0 .m e s h 3 50000
U n it_ te t_ ls5 .m esh 3 50000
U n it_ te t_ ls5_p .m esh 3 50000

Table 10.13: Iterations counts for test complexes when determining trial movesets

experiments involving the exponential measure. Movesets involving the combinations 

1_5 and 7_1_7 do appear uniquely in the case of H C ^^(Q av), but most found here also 

appear in the other two cases. This indicates tha t the choice of quality measure does 

not strongly affect the top movesets.

Based on an examination of the results for each test complex in each of the tables, we 

arrive at a list of trial movesets each of which appear in at least one test case. To this list 

we add the movesets 1_5 and 2_4, even though they rarely appear in the top four movesets 

for any test case. T hat they can implement im portant standard transform ations such 

as edge flips is considered reason enough to include them. Note th a t when a certain 

moveset appears, we include re-orderings of th a t moveset; thus the appearance of 7_1_5 

entails the appearance of 1_7_5 and 1_5_7, although not 5_1_7, for example, since this is 

a significantly different moveset from the previous three. We discard the moveset 7_1_7, 

based on the rarity of its appearance, and its dissimilarity with the other top movesets. 

Table 10.14 on the following page contains the resulting list.

10.7 Choosing a global quality function

In chapter 3 the minimum, average and exponential quality measures were introduced. 

By itself, Qexp(<̂ ) accounts for an infinite number of quality measures via variation of 

the /3-fraction, 5. Rather than using multiple measures in our experiments, we wish to 

choose a single measure which we consider to be the best, and use it for the m ajority of 

experiments. This choice is made bearing in mind th a t the usual intent is to increase



194 10.7. CHOOSING A GLOBAL QUALITY FUNCTION

1_7_4
7_1_4
1_5.7
1_7.5
y_i_5
2_4_7
2_7_4
7_2_4
3.6_7
3-7_6
7_3.6
2.5.7 
2.7_5 
7.2.5

7
7.7

7.7.7 
1.5 
2-4

Table 10.14: Trial movesets

the global minimum quality.

Our choice is Qexp(^ =  0.05) (as was indicated in advance in section 10.5). Experi

mental justification for this choice is provided below in the form of comparisons between 

different quality measures made using the set of movesets listed in table 10.15. This 

list consists of the trial movesets excluding 1.5 and 2.4. All experiments are carried 

out using the basic hill climbing algorithm — it is assumed that the choice of quality 

measure would be the same if derived with the other algorithms.

We commence with a comparison between Qexp(<̂  =  0.05) and Qav and Qmin- This 

done, we justify the particular choice of 5 =  0.05.

10.7.1 Comparison of Qexp with Qav and Qmin

Each moveset in table 10.15 is applied to each of the test complexes, but improvement 

is carried out with respect to the global average and minimum quality measures rather

Although note section 10.8.3
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than with respect to the exponential quality measure, and the results are compared 

with the data in table 10.6 on page 175 for Qexp(<̂  =  0.05). Tables 10.16 and 10.17 on 

pages 196 and 197 give the results for the average and minimum quality, respectively.^*^ 

The top four movesets are listed for each complex, with sorting being carried out, as 

before, with respect to the minimum quality.

1.4.7
1.5.7
1.7.4
1.7.5
2 .4 .7
2 .5 .7
2 .7 .4
2.7.5
3 .6 .7
3.7.6  

7
7.1.4
7.1.5
7.2.4
7.2.5  
7_3.6
7.7

7 .7 .7

Table 10.15: Movesets for use when comparing Qav and Qmin with Qexp

Comparing Qexp and Qav

A comparison of tables 10.6 and 10.16 shows Qexp(^ =  0.05) to be a superior quality 

function for improving the minimum quality. Although Qav manages to improve the 

minimum quality with each of the top four movesets for each test complex, it is also 

true th a t in each case the fourth placed moveset using Qexp gives better results than 

the first placed moveset with Qav. Thus the average quality, while somewhat useful, is 

significantly outshone by the exponential quality measure.

*̂̂ The value of 1.0 in all of the exponential quality slots in table 10.17 simply means that Qexp was 

not used
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Complex Moveset Minimum Average Exp
unit_cube_uniform _lslO 7 4.234826E-01 8.664409E-G1 8.500655E-01

3-6-7 4.234045E-01 8.660157E-01 8.495631E-01
7-2-5 4.188171E-01 8.660543E-01 8.497460E-01
7-3-6 3.956291E-01 8.662711E-01 8.498701E-01

unit_cube_uniform _lslO_p 7-7 4.507151E-01 8.662189E-01 8.641767E-G1
7-7-7 4.494861E-01 8.667668E-01 8.647748E-01
7.2-5 4.354782E-01 8.645381E-01 8.624281E-01
2-5-7 4.133922E-01 8.641352E-01 8.62G318E-01

unit_cube_uniform _ls5 1-5-7 5.242151E-01 8.435584E-01 8.260673E-G1
1-7-5 5.242151E-01 8.423242E-01 8.241844E-01
7-1-5 5.242151E-01 8.419295E-01 8.235777E-01
1-4-7 5.010967E-01 8.709509E-01 8.565253E-01

unit_cube_uniform _ls5_p 7-7-7 5.072638E-01 8.647857E-01 8.624326E-01
3-6-7 5.067983E-01 8.645927E-01 8.621806E-01
7-7 5.007081E-01 8.649777E-01 8.626357E-01

7-2-5 4.970104E-G1 8.652333E-01 8.628189E-G1
u n it_ sp h e re _ ls2 .5 7-7 4.682346E-01 8.608838E-01 8.429140E-01

3-6-7 4.481023E-01 8.618697E-01 8.426977E-01
7-7-7 4.477053E-01 8.601065E-01 8.414648E-01
7-1-4 4.335009E-01 8.683310E-01 8.491711E-G1

u n it_ sp h e re _ ls2 . 5_p 7-7 4.946666E-01 8.606989E-01 8.581453E-01
7 4.629564E-01 8.609103E-01 8.582383E-01

2-5-7 4.495012E-01 8.611869E-01 8.585416E-G1
7-2-5 4.423048E-01 8.612071E-01 8.584862E-G1

un it_sphere_ ls5 7-7 4.459940E-01 8.633285E-01 8.463903E-01
7-7-7 4.413057E-01 8.626447E-01 8.456141E-01
3-6-7 4.313006E-01 8.629014E-01 8.454576E-01
7-2-5 4.219585E-01 8.632706E-01 8.454635E-G1

unit_sphere_ls5_p 7-7-7 4.490196E-01 8.620120E-01 8.599881E-01
2-5-7 4.214955E-01 8.614567E-01 8.593373E-G1

7 4.091509E-01 8.622208E-01 8.600487E-01
7-7 4.019331E-01 8.626195E-01 8.605076E-01

u n it_ te t_ ls lO 7-7-7 4.136066E-01 8.213795E-01 8.074647E-01
2-5-7 3.8638G7E-01 8.222456E-01 8.078791E-01
7-7 3.856338E-01 8.219571E-01 8.07691GE-01

1-4-7 3.826250E-01 8.376590E-01 8.248835E-01
u n it_ te t_ ls lO _ p 7-7-7 4.249099E-01 8.215562E-01 8.189G42E-01

7-7 4.135121E-01 8.219250E-01 8.192384E-G1
7-2-5 4.089021E-01 8.216485E-01 8.189065E-01
2-5-7 3.935609E-01 8.217466E-01 8.19G235E-01

u n it_ te t_ ls 5 2-4-7 5.724839E-01 8.079072E-01 7.893928E-01
1-4-7 5.123254E-01 8.347239E-01 8.174167E-G1
1-7-4 5.023700E-01 8.306692E-01 8.12G982E-01
2-5-7 4.988919E-01 8.282089E-01 8.G99526E-01

u n it_ te t_ ls5 _ p 1-4-7 5.216315E-01 8.343069E-01 8.307876E-01
7-1-4 5.074805E-01 8.300254E-01 8.262852E-G1
7-7 5.070235E-01 8.285138E-01 8.247234E-01

2-7-5 5.040970E-01 8.288285E-01 8.250366E-01

Table 10.16: HC*jy^(Qav)) where $  =  { ^  \ l { f i )  <  3}. Top four movesets chosen for 

each test complex, sorted with respect to minimum quality. Vertex move algorithm: 

R an d o m V ertex M o v e(5 0 ). Iterations counts contained in table 10.5 on page 174
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Complex Moveset Minimum Average Exp
unit_cube_uniform _lslO 2 I , J 5.706171E-01 8.288026E-01 l.OOOOOOE+00

1.4.7 5.680922E-01 8.306599E-01 l.OOOOOOE+00
3-6.7 5.673813E-01 8.286137E-01 l.OOOOOOE+00
7_3_6 5.645777E-01 8.319138E-01 l.OOOOOOE+OO

unit_cube_uniform _lslO _p No change
un it_cu b e_u n iform _ls5 1_4.7 6.413499E-01 8.336913E-01 l.OOOOOOE+OO

7.1.4 6.120809E-01 8.361056E-01 l.OOOOOOE+OO
1.7.4 6.120809E-01 8.389514E-01 l.OOOOOOE+OO
2_5.7 6.120364E-01 8.411804E-01 l.OOOOOOE+OO

unit_cube_uniform _ls5_p 3.7.6 1.299939E-02 5.294965E-01 l.OOOOOOE+OO
1.4.7 1.299939E-02 5.264876E-01 l.OOOOOOE+OO
2.7_5 1.299939E-02 5.058435E-01 l.OOOOOOE+OO
7.3.6 1.299939E-02 5.280660E-01 l.OOOOOOE+OO

u n it_ s p h e r e _ ls 2 .5 7.3.6 6.468012E-01 8.157590E-01 l.OOOOOOE+OO
7.1.4 6.437478E-01 8.258410E-01 l.OOOOOOE+OO
3.6.7 6.436012E-01 8.175337E-01 l.OOOOOOE+OO
7J2.5 6.369295E-01 8.185203E-01 l.OOOOOOE+OO

u n it_ s p h e r e _ ls 2 . 5_p 1.7.4 6.112419E-01 8.009522E-01 l.OOOOOOE+OO
7.1.4 5.829927E-01 7.692040E-01 l.OOOOOOE+OO
7J2.5 5.560106E-01 7.786696E-01 l.OOOOOOE+OO
2.5.7 3.744544E-01 7.037748E-01 l.OOOOOOE+OO

u n it_ sp h e r e _ ls5 2.5.7 5.862609E-01 8.247572E-01 l.OOOOOOE+OO
1.4.7 5.829995E-01 8.243203E-01 l.OOOOOOE+OO
1.7.4 5.622428E-01 8.223977E-01 l.OOOOOOE+OO
3.6.7 5.541060E-01 8.244926E-01 l.OOOOOOE+OO

u n it_ sp h ere_ ls5 _ p No change
u n it_ te t_ ls lO 2.4.7 3.700538E-01 7.663210E-01 l.OOOOOOE+OO

7.1.5 3.700538E-01 7.689835E-01 l.OOOOOOE+OO
7.1.4 3.700538E-01 7.682085E-01 l.OOOOOOE+OO
3.7.6 3.700538E-01 7.686929E-01 l.OOOOOOE+OO

u n it_ te t_ ls lO _ p 7.1.4 1.175920E-04 3.926186E-01 l.OOOOOOE+OO
7.2.5 1.175920E-04 3.912042E-01 l.OOOOOOE+OO
1.4.7 1.175920E-04 3.948961E-01 l.OOOOOOE+OO
1.7.4 1.175920E-04 3.925701E-01 l.OOOOOOE+OO

u n it _ t e t _ ls 5 7.1.4 6.488562E-01 8.079811E-01 l.OOOOOOE+OO
1.4.7 6.456862E-01 8.083549E-01 l.OOOOOOE+OO
2.5.7 6.225351E-01 8.046609E-01 l.OOOOOOE+OO
7.3.6 6.223533E-01 8.107557E-01 l.OOOOOOE+OO

u n it_ te t_ ls 5 _ p 7.3.6 6.222548E-01 7.992621E-01 l.OOOOOOE+OO
3.6.7 6.220484E-01 8.049689E-01 l.OOOOOOE+OO
2.7.5 6.204320E-01 8.096089E-01 l.OOOOOOE+OO
1.4.7 6.163040E-01 8.024969E-01 l.OOOOOOE+OO

Table 10.17: where $  =  {/f | /(/i) <  3}. Top four movesets chosen for

each test complex, sorted with respect to minimum quality. Vertex move algorithm: 

R a n d o m V ertex M o v e(5 0 ). Iterations counts contained in table 10.5 on page 174
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C om paring Qexp and

In table 10.17, we see the behaviour using the true minimum quality measure to be 

somewhat erratic. In some cases it produces excellent quality complexes — for the test 

complexes U n it_ te t_ ls5  .meshS and U n it_ te t_ ls5_p  .meshS improvement with respect 

to Qmin produces better results than improvement with respect to Qexp(<̂  =  0.05). 

However, for U nit_tet_lslO .m eshS, the best moveset produces a minimum quality of 

almost half that produced by Qexp, and for Unit_Cube_uniform_lslO_p.mesh3 and 

Unit_Sphere_ls5_p .meshS no improvement with respect to the minimum quality is 

achieved for any of the trial movesets.

By contrast, Qexp(<̂  =  0.05) combines closeness to the minimum quality measure due 

to the choice of /3-fraction with greater reliability than Q^in for each test complex — 

providing a good (and often an excellent) standard of improvement in every case.

10.7.2 Qexp at various values of the /3-fraction

In section 10.7.1 we concluded that Qexp(<̂  =  0.05) is better than Qmin or Qav Here we 

consider whether 0.05 is the best choice for the ^-fraction.

l A J
1_5

1_5_7
I J A
l-7_5
2_4

2_4.7
2.7_4

7
7-1.4
7.1.5
7.2.4
7.7

7-7.7

Table 10.18: Movesets used for comparison of values of 6

A collection of movesets is applied to nine test complexes using Qexp (5), for 5 = 

0.2,0.5 and 0.7. The movesets used are a subset of the trial movesets of section 10.6,
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and are listed in table 10.18. The iteration  counts used are those of tab le  10.5 on 

page 174. The top  four m ost successful movesets applied to  each te s t complex are 

given in the  appendices in tables A .6 to  A .8 on pages 253-255 for <5 =  0.2, 0.5 and 0.7 

respectively. The d a ta  obta ined  for S =  0.05 listed in table 10.6 are also considered for 

the relevant datasets.

In figure 10.14 we plot the  final m inim um  quality  value a tta in ed  by the  top  ranked 

moveset for each te st complex, against the four values of ^-fraction. T he graph  is split 

up into two p arts  to  avoid c lu tter, since d a ta  on nine complexes is being presented. In 

the same spirit, we make use of the abbreviations of the nam es of the  d a tase ts  (detailed 

in tab le  10.4) in the keys of the  graphs, ra ther than  prin ting the ir full nam es. The plots 

show th a t in most  cases, the top moveset for 6 =  0.05 a tta in s  a higher final minimum 

quality  th an  for the  o ther values of the /3-fraction which were tested.

Figure 10.15 contains a sim ilar pair of plots, w ith the  average quality  being plotted, 

ra th e r th a n  the m inim um  quality. The expected behaviour is th a t as the (5 increases 

(and Qexp(< )̂ approaches Qav), th a t the values of the average quality  achieved by the 

top  ranked movesets will increase. This behaviour emerges.

Next, we will com pare the  /3-fractions in term s of the  frequencies w ith which they 

produce complexes w ith the best final minim um  quality. Consider the  test case U n it_ -  

t e t _ l s 5  .meshS in each of the  tables A .6 to  A .8, as well as tab le  10.6. The top  ranked 

movesets a t each of the values of 5 are, respectively, 7_1_4, 7_1_4, 1_4_7 and 1_7_4 

(starting  w ith 5 =  0.05). The highest m inim um  quality  a tta in ed  is Qmin =  0.6460409 

for S = 0.05 (as against 0.6433576 for 5 =  0.2, say). We therefore consider Qexp(^ =  0.05) 

to  be the best quality  function for the top ranked moveset slot for th is  te st complex.

Using th is exam ple as a tem plate, a counter is assigned to  each of the four values 

of S. For each of the nine te st complexes, we find the value (or values) of S for which 

Qexp(< )̂ produces the best m inim um  quality a tta ined  by a top  ranked moveset. The 

counter assigned to  th a t value (or values) is increm ented. This procedure is also carried 

out for second, th ird  and fourth  ranked movesets. Table 10.19 contains the  results based 

on the d a ta  in th e  aforem entioned tables.

Thus for the  top  ranked moveset for each of the te st complexes, using Qexpi^ =  0.05)
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Figure 10.14: Variation of minimum qualities with respect to the ^-fraction

Rank
/3-fraction

0.05 0.2 0.5 0.7
1 6 3 1 0
2 6 3 1 0
3 5 3 1 0
4 9 2 1 1

Table 10.19; Frequency with which each /3-fraction produces the best minimum quality
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Figure 10.15: Variation of average qualities with respect to the /3-fraction
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produced the complex with the best final minimum quality in six out of the nine cases, 

Qexp(<̂  =  0.2) in three of the nine, and Qexp(<̂  =  0.5) in one case. In the case where 

Qexpi^ = 0.5) attained the best value, Qexp(<̂  =  0.2) also did so, and both were counted.

These statistics, combined with the plots in figures 10.14 and 10.15, indicate that 

our choice of /5-fraction is justified, at least in comparison to the other values tested.

10.8 Hill climbing with variation of /3 for < 3

Having established Qexp as a good quality measure, and seen its behaviour when used 

with the hill climbing algorithm, we switch now to a slightly altered version of the hill 

climbing with variation of /? (H CB) algorithm discussed in section 9.4.2, and observe 

the effects, if any.

A set of experiments is performed similar to those carried out in section 10.5, with 

the proviso that the /5-fraction is set to an initial value of 0.95 (which puts Qexp ~  Qav)i 

and varied in steps of —0.1 to a value of 0.05.^^ This is done for all complexes for the trial 

movesets contained in table 10.14. For each test complex, we use the iteration counts 

of table 10.5, split over the ten steps taken between 0.95 and 0.05. In the notation of 

section 10.4, this experiment is summarised as

H C B |j^(0 .95 , 0.05, -0 .1 ),

where

$  =  {/i I l{n) < 3} .

The results are shown in table 10.20 on the facing page, taking the usual form of the

top four movesets for each dataset.

Although a more detailed examination of tables A.6 to A .8 shows that Qexp(<5 =  0.2) is quite a 

good quality function
^^To recap: A large /3-fraction, S E (0, 1), corresponds to a small value of /?, and a small /S-fraction, 

to a large value of /?
^^For the majority of cases in table 10.20, the exponential quality is hsted as 1.0. This is a notational 

convention which indicates that Qexp is no longer being used, but has been replaced by the minimum 

quality. This circumstance may arise as a result of numerical instability in the exponential measure, 

which we discuss in section 10.8.1
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Complex Moveset Minimum Average Exp
unit_cube_uniform_lslO \JA 6.317708E-01 8.122024E-01 l.OOOOOOE-hOO

\AJ 6.303842E-01 8.137687E-01 l.OOOOOOE-hOO
7-1-4 6.263651E-01 8.080850E-01 l.OOOOOOE+OO
7-2-5 5.780088E-01 7.836471E-01 l.OOOOOOE-hOO

unit_cube_uniform_lslO_p 1-4-7 6.303842E-01 8.G90929E-01 l.OOOOOOE-hOO
1-7-4 6.303842E-01 8.124896E-01 l.OOOOOOE+OO
7-1-4 6.263651E-01 8.044679E-01 l.OOOOOOE+OO
3-6-7 5.772511E-01 7.970816E-01 l.OOOOOOE+OO

unit_cube_uniform_ls5 1-4-7 6.471823E-01 8.069523E-01 l.OOOOOOE+OO
7-1-4 6.471823E-01 8.139998E-01 l.OOOOOOE+OO
1-7-4 6.471823E-01 8.158710E-01 l.OOOOOOE+OO
3-6-7 6.120364E-01 8.023434E-01 7.090746E-01

unit_cube_uniform_ls5_p 1-4-7 6.561221E-01 8.044403E-01 l.OOOOOOE+OO
1-7-4 6.471823E-01 8.119405E-01 l.OOOOOOE+OO
7-1-4 6.416344E-01 8.104308E-01 l.OOOOOOE+OO
3-7-6 6.120364E-01 8.117814E-01 l.OOOOOOE+OO

unit_sphere_ls2.5 7-1-4 6.845880E-01 8.255418E-01 l.OOOOOOE+OO
7 6.785585E-01 8.005638E-01 6.876996E-01
7-7 6.767978E-01 8.086596E-01 6.859598E-01
2-5-7 6.764250E-01 8.081729E-01 l.OOOOOOE+OO

unit_sphere_ls2.5_p 7 6.787959E-01 7.997015E-01 6.881588E-01
7-7-7 6.768998E-01 8.059820E-01 6.853415E-01
7-2-5 6.750328E-01 8.075562E-01 l.OOOOOOE+OO
3-6-7 6.747568E-01 8.054536E-01 l.OOOOOOE+OO

unit_sphere_ls5 1-4-7 7.042394E-01 8.399222E-01 l.OOOOOOE+OO
7-1-4 7.019015E-01 8.291056E-01 l.OOOOOOE+OO
1-7-4 6.681876E-01 8.263127E-01 l.OGOOOOE+00
3-6-7 6.601806E-01 8.164633E-01 l.OOOOOOE+OO

unit_sphere_ls5_p 1-4-7 6.856487E-01 8.315813E-01 l.OOOOOOE+OO
7 6.610482E-01 8.052398E-01 6.753387E-01

7-7-7 6.605508E-01 8.121788E-01 6.753669E-01
2-5-7 6.584495E-01 8.150134E-01 l.OOOOOOE+OO

unit_tet_lslO 1-4-7 6.469694E-01 7.892441E-01 l.OOOOOOE+OO
7-1-4 6.438248E-01 7.742383E-01 l.OOOOOOE+OO
7 6.379284E-01 7.696267E-01 6.475377E-01

1-7-4 6.376329E-01 7.798152E-01 l.OOOOOOE+OO
unit_tet_lslO_p 1-4-7 6.483517E-01 7.911535E-01 l.OOOOOOE+OO

7-1-4 6.466823E-01 7.733250E-01 l.OOOOOOE+OO
7 6.369644E-01 7.651948E-01 6.459971E-01

7-3-6 6.340054E-01 7.694136E-01 l.OOOOOOE+OO
unit_tet_ls5 1-4-7 6.848601E-01 8.132425E-01 l.OOOOOOE+OO

1-7-4 6.474235E-01 8.086869E-01 l.OOOOOOE+OO
7-1-4 6.221433E-01 8.018067E-01 l.OOOOOOE+OO
7-7-7 6.220669E-01 7.956254E-01 6.342159E-01

unit_tet_ls5_p 1-7-4 6.453669E-01 8.119939E-01 l.OOOOOOE+OO
7-3-6 6.220218E-01 7.973845E-01 l.OOOOOOE+OO
3-6-7 6.216848E-01 8.048782E-01 l.OOOOOOE+OO
1-4-7 6.215186E-01 7.877468E-01 l.OOOOOOE+OO

Table 10.20: H C B * ^ (0 .9 5 , 0.05, —0.1), where $  is the set of trial movesets (see ta 

ble 10.14). Top four movesets displayed and sorted with respect to  Qmin- Vertex move

ment uses R an d o m V ertex M o v e(5 0 ). Iteration counts contained in table 10.5
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10.8.1 Numerical difficulties for small values of the ^-fraction

We spoke above of the H C B  algorithm being slightly altered. This is so in the sense 

th a t it allows the exponential quality to be replaced by the global minimum if certain 

numerical instabilities arise. These instabilities are associated with small values of the 

/3-fraction, particularly where variation of the ;0-fraction is concerned.

To shed some light on this we consider the /^-profile of the complex u n it_ cu b e_ - 

un ifo rm _ ls5  before and after improvement by a number of movesets. The movesets 

considered are the same as those used in the discussion of ^-profiles arising from

H C |^ (0 .0 5 , Qexp),

on page 183.^^ They are listed in table 10.8 on page 183, and include the top movesets 

associated with the complex in table 10.20. Figure 10.16 on the facing page contains 

the comparison of initial and final /3-profiles for

H C B |^ (0 .9 5 , 0.05, -0 .1 ) .

As we noted before, the flattening of the ^-profile associated with the improved com

plexes means th a t the value of /? associated with a small /9-fraction increases substantially 

between the initial and final complexes. Whereas in the case of H C ^ ^ (0 .0 5 , Qexp) this 

not relevant since the value of is calculated only once, a t the s ta rt of the procedure, in 

the case of H C B |j^ (0 .9 5 , 0.05, —0.1), /3 is recalculated nine times. Since a larger the 

value of j3 increases the numerical instability of Qexp (because one is often calculating 

ratios of extremely small numbers), we sometimes encounter problems for small values 

of the /0-fraction.

In cases where difficulties arise, and where 5 is sufficiently small (and Qexp (5) is 

therefore to some extent approximating the minimum quality), we may decide to discard 

the exponential quality, and switch to using the true minimum measure, Qmin, to remove 

the numerical problem. In practice we have seen no performance degradation due this 

issue.

^■^Except for the moveset 2.7.5. This is an omission, but is not material to our discussion here
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Figure 10.16: /3-profile after H C B ^^(0.95, 0.05, —0.1) has been applied to 

unit_cube_uniform _ls5 for movesets listed in table 10.8

10.8.2 Analysis

A comparison between tables 10.20 and the data for HCgj^^(0.05, Qexp) given in ta

ble 10.6 show the results using H C B  to be generally better than for ^ fixed (with the 

exception of u n it_ sp h e re _ ls2 .5). The differences are generally of the order of 10“ .̂ 

Figure 10.17 on the next page illustrates this with a comparison between the final min

imum qualities attained using the top ranked movesets in both cases.

Im provem en t profiles

We investigate in greater depth the manner in which H C B  improves the test com

plexes by looking at the improvement profiles associated with the top four movesets of 

each complex. We focus in particular on the complex un it_cube_unif orm_ls5, whose 

improvement profiles are in figure 10.18 on page 207.

A number of points may be made.

• The stepping behaviour of the central, exponential measure in each plot arises 

from the periodic changes in the /^-fraction.
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Figure 10.17: Final minimum qualities associated with top ranked movesets obtained 

using HC^y^j(0.05, Qexp) and H C B ^^(0.95, 0.05, —0.1). The shorthand introduced in 

table 10.4 for labeUing the test complexes is used

•  For larger values of the /3-fraction, the m inim um  quality  experiences m ore variation 

th an  in the case of HC^j^^(0.05, Qexp) (com pare w ith figure 10.6 on page 178 for 

the same com plex), and the average quality  tends to  in itia lly  improve. This is 

unsurprising, given th a t the quality  m easure Qexp(< )̂ is closer to  Qav for such 

values.

•  The num erical instabilities alluded to  in section 10.8.1 m anifest them selves in 

pathological behaviour of the exponential quality  for low values of th e  ,5-fraction. 

They are present in each of the movesets whose im provem ent profiles are graphed 

on the  facing page. In each case the plots of the average and  m inim um  qualities 

show th a t the  software dealt w ith the problem  quickly w ithou t degradation  of 

m inim um  quality, and Qexp was replaced as the  p rim ary  m easure.

•  No num erical problem s arise in any of the  four cases before 6  =  0.35, and in all 

bu t one case, S  =  0.25 is reached. Moreover, m ost of the  im provem ent work is 

done by the  tim e these values of 6  have been reached.
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Figure 10.18: Improvement profiles for H C B | ĵ (0.95, 0.05, -0 .1 ) applied to 

unit_cube_uniform _ls5
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•  Note that each of the improvement processes terminate before the 600000 iterations 

allotted to them. This is because the iterations are divided into ten steps of 60000 

iterations. When a switchover to Qmm occurs, the software simply completes that 

step using Qmin) and finishes. So the improved values have, in fact, been achieved 

using less iterations than in the case of H C |j^ (0 .05 , Q exp)-

10.8.3 Confirming the trial movesets

It is reasonable to question whether the trial movesets obtained using hill climbing for 

the /3-fraction, 5, fixed are adequate for use when varying 5. As a test we applied all 

movesets of length /(/i) <  3 to a subset of the test datasets, using hill climbing with 

variation of 5. The results are given in table 10.21 on the next page. An identical 

collection of movesets appear in the top four indicating that the trial movesets are 

suitable for use with this algorithm.

10.9 Annealing

Our approach to simulated annealing was introduced and discussed in section 9.4.3. In 

this section we consider the efficacy of annealing when improving with respect to the 

exponential and minimum quality measures. The average measure is not considered.

Before continuing, we make a number of points on the manner in which annealing is 

used.

•  Annealing cycles are applied using an acceptance ratio^^ as depicted in figure 9.7 

on page 158. When multiple cycles are applied, the acceptance ratio used for one 

cycle is multiplied by a factor, M^, before being used for the following cycle (of 

course may have the value 1). If the procedure involves only one cycle, is 

irrelevant.

^^The order of the top four movesets for the complex u n it_ cu b e_ u n if orm _ls5 differs between ta

bles 10.20 and 10.21. This is an artifact of the sorting routines as discussed in section 10.4.1. Note that

the final minimum qualities are identical 
^®The acceptance ratio, t a , was introduced in definition 58 on page 154
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Complex Moveset Minimum Average Exp
unit_cube_uniform_ls5 1.7.4 6.471823E-01 8.158710E-01 l.OOOOOOE+00

1.4.7 6.471823E-01 8.069523E-01 l.OOOOOOE+00
7.1.4 6.471823E-01 8.139998E-01 l.OOOOOOE+00

7 6.120364E-01 7.917940E-01 6.318852E-01
unit_sphere_ls2 .5 7.1_4 6.845880E-01 8.255418E-01 l.OOOOOOE+00

7 6.785585E-01 8.005638E-01 6.876996E-01
7.7 6.767978E-01 8.086596E-01 6.859598E-G1

2.5.7 6.764250E-01 8.081729E-01 l.OOOOOOE+00
unit_sphere_ls5 1.4.7 7.042394E-01 8.399222E-01 l.OOOOOOE+00

7.1.4 7.019015E-01 8.291056E-01 l.OOOOOOE+00
1.7_4 6.681876E-01 8.263127E-01 l.OOOOOOE+00
3_6.7 6.601806E-01 8.164633E-01 l.OOOOOOE+00

un it_ te t_ ls lO 1.4.7 6.469694E-01 7.892441E-01 l.OOOOOOE+00
7.1.4 6.438248E-01 7.742383E-01 l.OOOOOOE+00

7 6.379284E-01 7.696267E-01 6.475377E-01
1.7.4 6.376329E-01 7.798152E-01 l.OOOOOOE+OO

u n it_ te t_ ls5 1.4.7 6.848601E-01 8.132425E-01 l.OOOOOOE+00
1.7.4 6.474235E-01 8.086869E-01 l.OOOOOOE+OO
7.1.4 6.221433E-01 8.018067E-01 l.OOOOOOE+OO
7.7.7 6.220669E-01 7.956254E-01 6.342159E-01

Table 10.21: 1103^^(0.95, 0.05, —0.1), where $ = {/i | l{n) < 3}. Top four 

movesets displayed and sorted with respect to Qmin- Vertex movement uses 

RandomVertexM ove(50). Iteration counts contained in table 10.5
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• Consider an annealing procedure that involves c cycles, with s steps per cycle. 

Assume that a total of n iterations is to be applied overall, with these iterations 

being apportioned amongst the cycles. Let the acceptance ratio be r^. The n steps 

are divided on the assumption that each cycle consists of all s steps. However, 

if the acceptance ratio is low, on any given cycle, the temperature is likely to 

be considered too high before all s steps have been completed. The policy upon 

reaching such a temperature is to immediately commence cooling in steps mirroring 

those taken when heating. Therefore, in a case where an intermediate temperature 

is found to be overly hot on even one cycle, the overall process may take less than 

the prespecified number of iterations to complete. We usually require that a 

shortfall after all cycles are complete be made up by continuing to iterate at the 

lowest temperature until the full complement of iterations has been applied.

• During an annealing run we allow the state of the complex to be stored at the end 

of each cycle, and a note made of its quality attributes. When the improvement 

process is complete, we choose the best of all stored complexes. In a sense this 

means that our implementation of annealing enjoys an advantage over the other 

algorithms implemented here. They are judged on the final results they achieve, 

and do not have the option of choosing an intermediate state.

We proceed now with the presentation of results.

10.9.1 Choosing a suitable acceptance ratio

Our first step is to find out whether there exists an acceptance ratio that is suitable for 

all test datasets, for all movesets. Furthermore we wish to test whether an acceptance 

ratio which is successful with the exponential quality is also suitable for use with the 

minimum quality and vice versa.

The exponential measure

The exponential measure is considered first. Specifically, we use the familiar measure, 

Q e x p ( O . O S ) ,  and apply movesets to nine of the test datasets. In order to enable compar-
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ison w ith  previous results, the movesets used are chosen to  be those listed in table 10.6. 

Thus we apply to  each datase t the four movesets associated w ith it in th a t table.

T he experim ent carried out is A N N |j^ (0 .0 5 , 0.05, 0.0, 1, Qexp) — th a t is to  say we 

apply annealing using Q e x p ( O . O S )  w ith no variation of the  /3-fraction, for one cycle. Ad

ditionally, the cycle contains twelve heating and cooling steps, and  tem pera tu re  change 

is m ultip licative (see table 9.5 on page 152). T he to ta l num ber of itera tions is as in 

tab le  10.5 for each complex, w ith the iterations divided between the  twelve heating and 

cooling steps (since only one cycle is used).

For a  given complex each moveset is applied using nine different acceptance ratios, 

t a  =  ( 0 .1 , . . . ,  0.9). For each r^ , the final m inim um  quality  is ob ta ined  and com pared 

w ith th a t obta ined  for the other values of r^ . The best final value is chosen, along with 

the acceptance ra tio  (or ratios) which produced it. The results of th is procedure are 

tabu la ted  in tab le  10.22 on the next page. T he final m inim um  quality  achieved for the 

same moveset applied to  the same complex in table 10.6 is also listed in this table.

We evaluate the  success of each acceptance ra tio  by counting the num ber of tim es 

th a t it is associated w ith one of the top four ranked movesets. Thus for the  complex 

u n it_ c u b e _ u n if  orm _ls5  in table 10.22, the moveset 1_7_4 applied w ith annealing using 

an acceptance ra tio  of 0.3 gave a be tte r value th an  w ith any o ther acceptance ratio. The 

moveset in the th ird  slot gave equally good values for ratios 0.1 — 0.5, and the  rem aining 

movesets achieved the same result w ith all acceptance ratios. Table 10.23 gives the 

counts associated w ith each acceptance ratio. On the  basis of m axim um  count, we 

choose the value 0.9. However the result is som ew hat unsatisfactory, in th a t no clear 

w inner emerges.

In order to  see if annealing w ith more th an  one cycle produces a more definitive 

result, we perform  a sim ilar experim ent, using four cycles ra th e r th a n  one. T he results 

are contained in appendix A, in table A .9 on page 256, where we have added one datase t, 

u n it_ c u b e _ u n if  orm _lslO , to  our collection. The associated acceptance ratio  counts are 

contained in tab le  10.24 on page 213.

We note th a t this experim ent is not identical to the  one ju s t considered. In the 

first place, a different set of movesets is tested. Secondly, shortfalls in iterations a t the
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Complex Moveset With annealing 
[6 =  0.05)

Without annealing 
(S = 0.05) Ratio

unit_cube_uniform _ls5 1.7A 6.471E-01 6.416E-01 0.3
7 6.120E-01 6.12E-01 0.1 - 0 .9

7A A 6.416E-01 6.12E-01 0.1 - 0 .5
2JJ> 6.12E-01 6.12E-01 0.1 - 0 .9

unit_cube_uniform _ls5_p 7A A 6.413E-01 6.359E-01 0 .6 -0 .9
1-4-7 6.37E-01 6.311E-01 0.4
7-7.7 6.12E-01 6.12E-01 0.1 - 0 .9
2-7-5 6.12E-01 6.12E-01 0.1 - 0 .9

u n it_ sp h e re _ ls2 .5 1-4-7 7.2749E-01 6.92E-01 0.5
1-7-4 6.86E-01 6.71E-01 0.3
7-3-6 6.72E-01 6.672E-01 0.2
7-2-5 6.71E-01 6.671E-01 0.3, 0.4

u n it_ sp h e re _ ls2 .5_p 7-7 6.71E-01 6.67E-01 0.7, 0.8, 0.9
7.2-5 6.69E-01 6.662E-01 0.5
7.3.6 6.696E-01 6.66E-01 0.7
2-5-7 6.689E-01 6.638E-01 0.8

u n it_sphere_ ls5 7 6.576E-01 6.553E-01 0.9
7.2.5 6.6E-01 6.541E-01 0.9
7-7-7 6.577E-01 6.538E-01 0.7
7-3-6 6.598E-01 6.535E-01 0.3 -  0.9

u n it_ te t_ ls lO 7-1-4 6.475E-01 6.43E-01 0.1
3-6-7 6.284E-01 6.198E-01 0.6
7-7-7 6.28E-01 6.196E-G1 0.8

7 6.293E-01 6.19E-01 0.7
u n it_ te t_ lslO _ p 2-5-7 6.248E-01 6.18E-01 0.8

7J2.5 6.242E-01 6.175E-01 0.9
7-3-6 6.233E-01 6.148E-01 0.9
3.6.7 6.24E-01 6.145E-01 0.6

u n it_ te t_ ls 5 7-1-4 6.70E-01 6.460E-01 0.5 -  0.9
1-7-4 6.43E-01 6.433E-01 0.1
7-2-5 6.184E-01 6.178E-01 0.6
2-5-7 6.198E-01 6.172E-01 0 .6 -0 .9

u n it_ te t_ ls5 _ p 3-7-6 6.1598E-01 6.17E-01 0.1
7 6.17E-01 6.161E-01 0.2

1-4-7 6.518E-01 6.159E-01 0 .6 -0 .9
7 7 6.151E-01 6.159E-01 0 .6 -0 .9

Table 10.22: ANN^j^^(0.05, 0.05, 0.0, 1, Q e x p ) ,  where $  is the set of movesets appearing 

in the equivalent ranks in table 10.6

Successes with each acceptance ratio
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
8 7 9 8 9 13 14 14 15

Table 10.23: Acceptance ratio frequencies for one cycle
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Successes with each acceptance ratio
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
7 7 9 9 6 8 10 10 13

Table 10.24: Acceptance ratio frequencies for four cycles

end of all cycles are not rectified as we discussed in the introduction to this section, 

which means tha t some of this data  was obtained using less than the intended number 

of iterations. Bearing all this in mind, the results in table 10.24 are somewhat similar 

to those in 10.23, and equally inconclusive.

On balance, therefore, we conclude tha t =  0.9 is the best value for the acceptance 

ratio when using Qexp(0.05). However, the results raise the question of whether annealing 

is beneficial (or necessary) when using the exponential measure.

Before continuing we note tha t the final minimum qualities in tables 10.22 and A.9 

are quite good. In many instances, if one looks a t the final minimum quality associated 

with the top ranked movesets, they are better than any other improvement method 

encountered so far. This is somewhat deceiving, however. Although, for example, the 

moveset 7_1_4 achieves a good result for the acceptance ratio 0.1 upon the complex 

u n i t_ te t_ ls lO  in table 10.22, the result is not so good for the same moveset applied 

with ta = 0.9. We have listed the acceptance ratios th a t gave the best final qualities. 

If we had considered the acceptance ratios th a t produced the worst final qualities, then 

the annealing procedure would not have performed as well.

We have therefore gathered the results from table 10.22 for our choice of the accep

tance ratio of =  0.9 into table A .10 on page 257. These results will be compared 

graphically with others in section 10.9.2.

The m inim um  quality measure

We wish to compare the performance of Qmin with and w ithout annealing. At the same 

time, we hope to get an indication of what acceptance ratio (if any) is most suitable for 

use with Q m i n -

D ata has already been gathered on the behaviour of Qmin without annealing. It is



214 10.9. ANNEALING

contained in table 10.17 on page 197. Using the movesets appearing in th a t table, ',he 

experiment A N N ^j^(0 .05, 0.05, 0.0, 1, Qmin) is performed for acceptance ratios t a  —  

0.1, 0.5, and 0.9. Thus one annealing cycle is used in each case. The cycle is divided iito  

twelve steps. Iteration counts are as in table 10.5. Tem perature change is multiplicative. 

The results are contained in tables A. 11 to A. 13 on pages 258-260.^^

A comparison of all the tables mentioned above indicates th a t annealing is bene

ficial when using the minimum quality. Figure 10.19 contains a comparison between 

the minimum quality attained by the top ranked moveset in table 10.17, and those in 

tables A. 11 to A. 13.^*

C om parison of the  minimum quality without annealing  and  the  minimum quality 
with annealing a t various a c cep t ratios

0.8
without annealing  — i—  

ac cep t ratio: 0.1 — x—  
ac cep t ratio: 0.5 
ac cep t ratio: 0.9 a ....0 .7

® 0.6 
oe

-er '

■o0>
cflj

0.5

Q .

?  0.4 

3  0.3
O ’

lo,.
is

uc5 uc5p US2.5 us2 .5p utIO u ti Oput5 utSp usS us5p
Com plex

Figure 10.19: Final minimum qualities associated with top ranked movesets obtained

using and A N N |^ (0 .0 5 , 0.05, 0.0, 1, Qexp), for =  0,1, 0.5, 0.9. The

shorthand introduced in table 10.4 for labelling the test complexes is used

We see from the figure th a t annealing with accept ratios of 0.1 or 0.5 produces results 

which are either much better, or very similar to improvement w ithout annealing in each 

case. Annealing with accept ratio 0.9 produces better results than  w ithout annealing, 

but generally not as good as with annealing using the other two accept ratios.

The appearance of Qexp =  1-0 in each of the tables simply indicates that it is not being used 
^®As usual it is the position that is common, the movesets may not be identical
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It appears th a t annealing is beneficial when using the m inim um  quality  m easure, and 

th a t  low (<  0.5) accept ratio  are more suitable. However, there rem ain cases where Q m in  

fails to produce any significant im provem ent — such as the case of us5p  in figure 10.19.

10.9.2 Annealing with and without variation of /3

As the final experim ent in this section, we apply the th ird  optim isation  algorithm  dis

cussed in section 9.4.3 (see algorithm  9.8 on page 161). By definition, th is entails 

im proving w ith respect to  Qexp- As in section 10.8 we vary the  /3-fraction between 

0.95 and 0.05 in steps of —0.1. One cycle is used a t each value of the  /3-fraction. 

The full set of tria l movesets are tested. In our no ta tion  for experim ents th is becomes 

A N N | ĵ ^(0.95, 0.05, —0.1, 1, Qexp)- The cycle is divided, as previously in th is section, 

into twelve parts , and the  iteration  counts are taken from tab le  10.5. In keeping with 

our conclusion in section 10.9.1, we use an acceptance ratio  of 0.9 since we are using 

Qexp- The results are listed in tab le  10.25 on the  following page, and the top  ranked 

movesets are p lo tted  in the  usual m anner in figure 10.20 on page 217 against those for 

H C |^ ( 0 .0 5 ,  Qexp), H C B |^ ( 0 .9 5 ,  0.05, -0 .1 )  and A N N | j,^(0.05, 0.05, 0.0, 1, Qexp) 

using the d a ta  in tables 10.6, 10.20 and A .10.

A com parison of these tables, or, more im m ediately, a glance a t aforem entioned 

figure, shows annealing w ith respect to fixed /0-fraction a t acceptance ra tio  0.9 to be 

reasonably successful, although not outstandingly  so. A nnealing w ith  variation of the 

/5-fraction does not seem to  shine as an im provem ent m ethod to  a significantly greater 

extent th an  its counterparts, although it does perform  slightly b e tte r  th an  pure hill 

climbing, as does annealing w ith respect to  a fixed /3-fraction. From figure 10.20 we 

would, on balance, consider hill climbing with variation of the /3-fraction to  emerge as 

the leading m ethod.

Perhaps the central conclusion we would draw is th a t there is no strong indication 

th a t annealing gives great advantages over hill climbing when using the exponential 

measure.
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Complex Moveset Minimum Average Exp
unit_cube_uniform _ls5 1-4.7 6.487303E-01 8.250980E-01 l.OOOOOOE+00

7.1.4 6.419991E-01 8.223129E-01 l.OOOOOOE+00
1.7.4 6.120809E-01 7.968772E-01 l.OOOOOOE+00
3.6.7 6.120364E-01 8.415246E-01 l.OOOOOOE+00

unit_cube_im iform _ls5_p 1.4.7 6.257981E-01 7.849473E-01 l.OOOOOOE+00
7.7 6.120364E-01 8.155505E-01 6.311190E-01

3.7.6 6.120364E-01 8.298208E-01 l.OOOOOOE+00
3.6.7 6.120364E-01 8.415879E-01 l.OOOOOOE+00

u n it_ sp h ere_ ls2 .5 7.1.4 6.895464E-01 8.109529E-01 l.OOOOOOE+00
1.4.7 6.833244E-01 8.097243E-01 l.OOOOOOE+00
3.6.7 6.764539E-01 8.187918E-01 l.OOOOOOE+00
7.2_5 6.758647E-01 8.176843E-01 l.OOOOOOE+00

u n it_ sp h ere_ ls2 . 5_p 3.6.7 6.754916E-01 8.236612E-01 l.OOOOOOE+00
7.7 6.747219E-01 8.096395E-01 l.OOOOOOE+00

2.5.7 6.745959E-01 8.165916E-01 l.OOOOOOE+00
7.3.6 6.740695E-01 8.192602E-01 l.OOOOOOE+00

u n it_sp h ere_ ls5 7.1.4 6.608594E-01 8.290713E-01 l.OOOOOOE+00
7.3.6 6.587567E-01 8.278717E-01 l.OOOOOOE+00
7.7 6.580702E-01 8.196003E-01 6.756353E-01

3.6.7 6.561279E-01 8.289317E-01 l.OOOOOOE+00
unit_sphere_ls5_p 7.7.7 6.578562E-01 8.188531E-01 6.663000E-01

7.3.6 6.577460E-01 8.287871E-01 l.OOOOOOE+00
3.6.7 6.565960E-01 8.291371E-01 l.OOOOOOE+00
7.7 6.552191E-01 8.166642E-01 6.634420E-01

u n it_ te t_ ls lO 7 6.348063E-01 7.742621E-01 6.417939E-01
7.2.5 6.308697E-G1 7.737519E-01 l.OOOOOOE+00
7.7.7 6.298281E-01 7.830598E-01 l.OOOOOOE+00
7.7 6.277812E-01 7.816023E-01 1 OOOOOOE+00

u n it_ te t_ ls lO _ p 7.2.5 6.285648E-01 7.734580E-01 l.OOOOOOE+00
3.6.7 6.257311E-01 7.882056E-01 l.OOOOOOE+00
7.3.6 6.246090E-01 7.860375E-01 l.OOOOOOE+00
2.5.7 6.238578E-01 7.870575E-01 l.OOOOOOE+00

u n it_ te t_ ls 5 1-4.7 6.636751E-01 7.958464E-01 l.OOOOOOE+00
7.1.4 6.486292E-01 8.060317E-01 l.OOOOOOE+00
1-7-4 6.229194E-01 7.915371E-01 l.OGOOOOE+OO
2.5.7 6.218129E-01 8.130884E-01 l.OOOOOOE+00

u n it_ te t_ ls5 _ p 1.4.7 6.488467E-01 7.982212E-01 l.OOOOOOE+00
7.2.5 6.225486E-01 8.073462E-01 l.OOOOOOE+00
3.6.7 6.213020E-01 8.019483E-01 l.OOOOOOE+00
2.7.5 6.210790E-01 8.092022E-01 l.OOOOOOE+00

Table 10.25: A N N * j^ (0 .9 5 , 0.05, —0.1, 1, Qexp), where $  is the set of trial movesets 

(see table 10.14). Top four movesets displayed and sorted with respect to Qmin- Vertex 

movement uses R andom V ertex]V Iove(50). Iteration counts contained in table 10.5. 

r A  — 0.9
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Figure 10.20: Final minimum qualities associated with top ranked movesets obtained us

ing H C |^ (0 .0 5 ,  Qexp), H C B |^ (0 .9 5 , 0.05, -0 .1 ) , A N N | ĵ (̂0.05, 0.05, 0.0, 1, Qexp) 

and A N N ^ ^ (0 .9 5 , 0.05, —0.1, 1, Qexp) (for =  0.9). The shorthand introduced in 

table 10.4 for labelling the test complexes is used

10.9.3 Im provem ent profiles

The improvement profiles associated with anneahng are quite different to those asso

ciated with the hill climbing methods. The heating and cooling cycles cause greater 

activity in terms of improvement and disimprovement than occurs when hill climbing. 

Notable dips in quality appear in the high tem perature regions of cycles.

To illustrate this behaviour, we include improvement profiles for two different an

nealing algorithms applied to the complex u n it_ cu b e_ u n if orm_ls5.

First we consider annealing with respect to the minimum quality as carried out in 

section 10.9.1. The case =  0.1 is examined. The profiles for the top four movesets 

are given in figure 10.21 on the following page.^® Since annealing is carried out with 

one cycle only, we can easily see the pronounced disimprovement in the central region 

of some of the plots, where the tem perature is high.^*^

^®The exponential measure is not plotted in these graphs, even though it appears in the key. It’s

value is 1.0, which is out of the range of the plots 
'̂’Notably that for moveset l-7_4
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10.9. ANNEALING 219
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N ext, figure 10.22 depicts the  im provem ent profile arising from th e  application  of 

annealing w ith variation of the /5-fraction described m section 10.9.2. In the  central, 

exponential, plot for each moveset, we can see the  fam iliar stepping behaviour associated 

w ith changes in the value of the  /5-fraction. An annealing cycle occurs for each value 

of the  /3-fraction so as well as the  stepping, a quality dip appears in the  center of each 

cycle. Given th a t t a  =  0.9, these dips can be quite significant. There is also much more 

varia tion  in the m inim um  quality, certainly for high values of the  /3-fraction, th an  in 

im provem ent profiles for hill clim bing w ith variation of the  /3-fraction (see figure 10.18 on 

page 207).

10.9.4 Using multiple cycles

We consider the ex ten t to  which the use of m ultiple cycles and the  acceptance ratio  

m ultiple, M ^, introduced on page 158, enhance the perform ance of annealing.

Tables 10.22 on page 212 and A .9 on page 256 were used in section 10.9.1 when 

finding an acceptance ra tio  suitable for use w ith Qexp- They contain results obtained 

using one and four cycles respectively (w ith =  0.5). On the  basis of the results in 

these tables, it appears th a t no real advantage is gained from using the  ex tra  cycles.

T he d a ta  in tab le  10.26 on the  facing page was obta ined  from applying annealing 

for twenty cycles to  each of the  complexes listed, using the  specified movesets, w ith 

M a  — 1-0, for the num ber of iterations specified in tab le  10.5. T he acceptance ra tio  is 

taken to  be 0.9. T he results are com pared in the tab le  to  the  results for H C ^ ^ (0 .0 5 ,-  

Q e x p )  listed in tab le  10.6. The annealing results are b e tte r  in four cases, bu t significantly 

worse in two. In three of the  cases they are better, an in term ediate  com plex proved to 

be the  best. In our im plem entation of H C |^ ( 0 .0 5 ,  Q ex p) ,  there  is no option for taking 

in term ediate  states.

We conclude th a t while annealing m ore or less holds its  own when used w ith m ultiple 

cycles, no obvious advantage has been observed over using one cycle.
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Complex Moveset With annealing 
(J = 0.05)

Without anneahng 
J J  = 0.05)

unit_cube_uniform_lslO 7.1.4 5.609301E-01 6.263E-01
unit_cube_uniform_ls5 1-7.4 4.584467E-01“ 6.416E-01
unit_cube_uniform_ls5_p 7.1.4 6.070853E-01'' 6.359E-01
unit_sphere_ls2 .5_p 7.7 6.713924E-01® 6.67E-01
unit_sphere_ls5 7 6.588406E-01 6.553E-01
un it_tet_ lslO 7.1.4 6.182794E-01 6.43E-01
u n it_ te t_ ls5 7.1.4 6.812055E-0P 6.460E-01
unit_tet_ls5_p 7 6.174045E-0P 6.16E-01

“The final value was not the best value; the best value belonged to some intermediate complex

Table 10.26: Annealing for (5 =  0.05 for acceptance ratio 0.9; 20 anneahng cycles used in 

each case, with M a  =  1
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10.10 Multiple moveset mode

Multiple moveset mode is the second, and less frequently used, mode of operation of 

the Alexander software. It was introduced in section 10.2.2 on page 163. We perform a 

number of experiments here to show it in operation, and analyse the results obtained. 

In the course of these experiments, we will move for the first time beyond movesets of 

length three.

Let K be a complex. We confine ourselves to applying HC^j^^(0.05, Qexp)- The set 

$  is defined by specifying a moveset length. Movesets of that length are then chosen at 

random and applied to K, with improvement being sought with respect to Qexp(0.05).

With respect to the analysis of results, movesets may be ordered in terms of the 

frequency with which they are successfully applied to a complex. However, ordering in 

this manner will place a moveset which improves a complex ten times to a small degree 

over one which improves it once by a large amount. In any case, we are less interested in 

the individual movesets which come to the fore in this manner than in the performance 

and behaviour of the overall process.

In the following we will occasionally make use of the abbreviations S M  or MM for 

single or multiple moveset modes respectively.

10.10.1 M ovesets of length three

We consider first movesets of length three. This allows us to make a partial comparison 

between single and multiple moveset mode.

A comparison is made between HCgjy^(0.05, Qexp), where <I> =  {/i | l(/j) < 3} and 

H C ^j^(0.05, Q e x p ) ,  where $  =  {^ | l(/j,) = 3}. The comparison is not completely fair, 

since the first experiment has a greater set of movesets available for use, but most of 

the top ranking movesets resulting from the application of single moveset mode are of 

length three in any case.

Table 10.27 on the facing page contains the results of applying multiple moveset mode 

to each of our test datasets for 5000000 iterations. There are 343 possible movesets of

Although, as we will see in section 10.11, we do make use of this information in one respect
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length three. This means that, on average, each moveset will be attem pted 14577 times.

Complex Moveset
length Minimum Average Exp

unit_cube_uniform _lslO 3 6.122200E-01 8.034747E-01 6.873603E-01
unit_cube_uniform_lslO_p 3 3.596390E-01 6.164352E-01 4.699384E-01
unit_cube_uniform _ls5 3 6.471823E-01 8.098337E-01 6.983237E-01
unit_cube_uniform _ls5_p 3 4.668187E-01 6.553962E-01 5.644393E-01
u n it_ sp h ere_ ls2 .5 3 6.732586E-01 8.114922E-01 7.276138E-01
u n it_ sp h ere_ ls2 . 5_p 3 5.657020E-01 7.024662E-01 6.197329E-01
u n it_sp h ere_ ls5 3 6.376867E-01 7.971827E-01 l.OOOOOOE+00
unit_sphere_ls5_p 3 4.591192E-01 6.477265E-01 5.246965E-01
u n it_ te t_ ls lO 3 6.379462E-01 7.711756E-01 6.888535E-01
u n it_ te t_ ls lO _ p 3 3.929272E-01 5.797536E-01 4.783504E-01
u n it_ te t_ ls 5 3 6.659917E-01 7.900954E-01 7.054311E-01
u n it_ te t_ ls5 _ p 3 5.934276E-01 7.407975E-01 6.664491E-01

Table 10.27; H C ^ ^ (0 .05 , Qexp), where $ — {/x | 1(h) =  3}. Vertex movement uses 

RandomVertexM ove(50). Iterations: 5000000. Neighbour level 1

Figure 10.23 shows a comparison between the minimum quality associated with the 

top ranked moveset for each test complex in table 10.6, and the final minimum quality 

obtained in multiple moveset mode. The results obtained using multiple moveset do not 

compare favourably with those arising from single moveset mode. Note how the method 

performed especially poorly for the perturbed versions of each complex.

Notwithstanding this, we examine the improvement process more closely. The reason 

is th a t whereas the top performing movesets in single moveset mode all leave the number 

of vertices in the complex untouched, in multiple moveset mode many movesets which 

add or remove vertices from the complex are applied. A glance at table 10.28 on the 

next page which contains the top performing movesets for the above experiment applied 

to the complex U nit_Cube_uniform _lslO .m eshS confirms this.

We consider first changes in the number of cells and vertices. The four plots in 

figure 10.24 on page 226 depict the numbers of cells and vertices in four test complexes 

as they undergo the improvement process. In all cases, there are less vertices than 

cells, so the lower line plots the vertices. In each case, there is an initial increase in 

cells and vertices, followed by a slow decrease, although rarely to the original starting 

point (u n it_ cu b e_ u n if orm_ls5 is a case where the final number of cells is less than the



Fi
na

l 
nr

tin
im

um
 

qu
al

ity

224 10.10, MULTIPLE MOVESET MODE

Hill climbing in single nnoveset m ode com pared  with hill climbing in multiple m ovese t m ode
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Figure 10.23: Comparison between HCfj\^(0.05, Q e x p ) ,  and H C ^ ^ (0 .0 5 , Q e x p )

Moveset Accepted improves
7-7.7 476
7_2.5 427
3-6-7 406
7-3-6 403
2-5-7 382
1-4-7 322
7-1-4 306
4-7-7 106
7-1-7 76
1-7-4 68
7-4-7 66
1-7-7 64
3-6-1 50
1-2-5 49
7-7-4 49
1-3-6 40
4-3-6 40
1-4-1 37
4-1-4 37
4-1-7 34

Table 10.28’ Unit_Cube_uniform_lsl0.mesh3 (top 20 movesets)
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original, although the num ber of vertices rem ains the same).

We p lo t in figure 10.25 on page 227 the im provem ent profiles for th e  same com

plexes. These profiles do not appear to  be significantly different th a n  those generated in 

single moveset mode, although the second case from the top does not seem to be fully 

converged.

10.10.2 Movesets of length four

T hey experim ents carried ou t in th is section differ in two respects from those in sec

tion  10.10.1.

•  F irs t of all, the vertex sm oothing algorithm  used is J ig g le V e r te x (8 ) , ra th e r than  

R a n d o m V e rte x M o v e (5 G ). This change was m ade to  a ttem p t to  level the playing 

field in term s of the perform ance of the  vertex sm oothing move versus all others. 

T he results in table A .3 on page 250 obtained from applying H C ^ ^ ( 0 .0 5 ,  Qexp) 

w ith J ig g le V e r te x (8 )  are used for the purposes of com parison, ra th e r than  the 

usual ones in table 10.6.

•  Secondly, we apply movesets here for the  first tim e a t a higher neighbour level. 

Up to  th is point, we have applied movesets a t neighbour-level one. In th is section 

we will present some results obtained using neighbour level two.

Tables 10.29 and 10.30 on page 228 contain the results of the application of 

(0.05, Qexp), w ith  $  =  I /(/x) =  4}, for ni =  1 and 2 respectively. The num ber of 

itera tions carried out in each case is 15000000. This m eans th a t each of the  2401 

movesets of length four will be applied an average of 6247 times.

Based on these results, figure 10.26 on page 229 makes a com parison between movesets 

of length  t h r e e , a t  =  1, and four a t n/ =  1 and 2, all in m ultiple moveset mode. 

A fu rther com parison is m ade w ith the results for single moveset m ode in tab le  A .3 on 

page 250.

^^Recall the definition of the neighbour-level in definition 56 on page 118
®^We do not include the table containing these results, but the details of the experiment are as in 

table 10.27 on page 223 apart from the change in vertex smoothing function
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Figure 10.24: Variation in the number of cells and vertices in multiple moveset mode 

(using movesets of length 3)
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Figure 10.25: Improvement profile for four complexes to which H C ^ ^ (0 .0 5 , Qexp) has 

been applied for movesets of length three
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Complex Moveset
length Minimum Average Exp

unit_cube_uniform_lslO 4 4.489564E-01 7.236808E-01 5.178372E-01
unit_cube_uniform_lslO_p 4 1.056537E-01 3.980541E-01 1.970712E-01
unit_cube_uniform_ls5 4 5.563776E-01 7.672695E-01 6.223900E-01
unit_cube_unifonn_ls5_p 4 2.121828E-01 4.484269E-01 2.995780E-01
unit_sphere_ls2 .5 4 5.574149E-01 7.556210E-01 6.184743E-01
unit_sphere_ls2 ,5_p 4 1.438732E-01 3.387631E-01 2.096588E-01
unit_sphere_ls5 4 4.771931E-01 7.140483E-01 5.230691E-01
unit_sphere_ls5_p 4 1.150180E-01 3.769875E-01 1.962810E-01
un it_tet_ lslO 4 4.d34461E-01 6.767322E-01 5.050807E-01
unit_tet_lslO _p 4 1 39321lE-01 3.696219E-01 2.157566E-01
u n it_ te t_ ls5 4 6.389781E-01 7.802203E-01 6.872907E-01
unit_tet_ls5_p 4 2.872780E-01 4.841127E-01 3.676207E-01

Table 10.29: H C ^ ^ (0 .05 , Q e x p )>  where $  = {^ | /(/x) =  4}. Vertex movement uses 

JiggleVertex(8). Iterations: 15000000. Neighbour level 1

Complex Moveset
length Minimum Average Exp

unit_cube_uniform_lslO 4 4.517507E-01 7.349841E-01 5.080641E-01
unit_cube_uniform_lslO_p 4 1.149602E-01 4.188920E-01 1.982671E-01
unit_cube_uniform_ls5 4 5.955479E-01 8.033771E-01 6.423591E-01
unit_cube_uniform_ls5_p 4 2.483986E-01 5.212006E-01 3.397982E-01
unit_sphere_ls2 .5 4 5.475147E-01 7.542900E-01 5.920868E-01
unit_sphere_ls2. 5_p 4 1.850366E-01 4.281114E-01 2.525693E-01
unit_sphere_ls5 4 4.268810E-01 7.129458E-01 4.970249E-01
unit_sphere_ls5_p 4 1.420220E-01 4.082411E-01 2.009367E-01
un it_tet_ lslO 4 4.265598E-01 6.911955E-01 4.915579E-01
unit_tet_lslO _p 4 1.449670E-01 4.005648E-01 2.174655E-01
u n it_ te t_ ls5 4 6.608737E-01 8.164247E-01 7.072560E-01
unit_tet_ls5_p 4 3.62691 lE-01 5.880969E-01 4.565244E-01

Table 10.30: H C ^ ^ (0 .05 , Q e x p ) ,  where $  = {/i | l{n) =  4}. Vertex movement uses 

JiggIeVertex(8). Iterations; 15000000. Neighbour level 2
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Hill climbing in single m ovese t m ode com pared  with hill climbing in 
multiple m ovese t m ode (using JiggleVertex(8))
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Figure 10.26: Comparison between HC^j^^(0.05, Qexp)> and HC^j^^(0.05, Qexp), ap

plied for movesets of length three at n; =  1, and movesets of length four at n/ =  1 and 2. 

The vertex movement function is Jiggle V ertex (8)

The behaviour of all cases of multiple moveset mode is similar to th a t seen in fig

ure 10.23 on page 224, with single moveset mode improvement performing as well as or 

better than multiple moveset mode in all cases, and with the la tte r mode doing poorly 

when used on the perturbed complexes.

For the four complexes previously used in figures 10.24 and 10.25 for movesets of 

length three, we give the variation in the number of cells and vertices for movesets 

of length four in figures A .l and A.2 respectively, starting  on page 261. The related 

improvement profiles are given in figures A.3 and A.4. All are similar those obtained for 

movesets of length three, although figures A.3 and A.4 indicate th a t the improvement 

process is less converged in the length four case than in the length three case.

On the m atter of increasing the neighbour level, the d a ta  presented here indicates 

th a t it provides no noticeable benefit. We will return to the issue in section 10.11.
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10.11 Movesets of length four (SM)

We return to our original experiment performed in single moveset mode, HC|jy^(0.05,- 

Qexp)- However, this time the movesets used are a subset of the set

$  =  {/i I /(/i) =  4} .

10.11.1 Filtering movesets

One of the difficulties with testing longer movesets for usefulness in single moveset mode 

is the sheer number of them. There are 7̂  =  2401 movesets of length four alone. To make 

the situation manageable, some method of choosing a reasonable subset is necessary. We 

derive a subset of the movesets of length four using a simple filter based on results gained 

in this chapter. There are two parts to the filter

Use M M  m ode resu lts  Using the results for multiple mode application of movesets 

of length four in section 10.10.2, we require of a moveset that it have been success

fully applied at least once during those experiments (using a table analogous to 

table 10.28 on page 224 for movesets of length four). This filter reduces the num

ber of movesets by an amount dependent on the neighbour-level, and the number 

of iterations used.

F ix  v e rtex  n u m b er As previously mentioned, observation of the results gained for 

movesets of length three shows all the most successful movesets neither add nor 

subtract vertices from the complex. We therefore decide to use only movesets 

which have an equal number of vertex additions and vertex removals (any number 

of vertex moves may appear as they neither add nor remove vertices). Using this 

filter alone reduces the number of movesets from 2401 to 595.

The above filters are labelled (i) and (ii), in the order in which they appear above. 

We use a subset of movesets of length four which pass the filters. Filter (i) is applied 

first, followed by (ii). Neighbour levels one and two are considered (this is important 

from the point of view of filter (i)).
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For a moveset fi, we introduce the function

{ 0; a fails to pass the filter
(10.3)

1; ^  passes the filter .

Then the set, <J>, of movesets used may be written

$  =  I  /(/x) =  4, and =  1} .

In the case n/ =  1, there are 1647 movesets which are successfully applied at least 

once in multiple moveset mode. This number is reduced to 387 upon application of 

filter (ii). For n/ =  2, 2254 movesets are applied at least once in multiple moveset 

mode.^^ Filter (ii) reduces this number to 562.

Given the large size of <J>, even after filtration, we apply them to a reduced number 

of, mainly small, datasets. Table 10.31 shows the datasets and the associated iteration 

counts.
Complex Iterations

unit_cube_uniform_ls5 200000
u n it_ sp h e re _ ls2 .5 60000
u n it_ te t_ ls lO 500000
u n i t_ te t_ ls 5 50000

Table 10.31: Iteration counts for movesets of length four

10.11.2 Top movesets

For each neighbour-level we present the following results^®

•  The top fifteen movesets from $ ,

•  The top fifteen movesets from $  excluding movesets containing any vertex moves,

The overall top fifteen movesets for =  1 are listed in appendix A in table A. 14 on 

page 265. The remaining results for n/ =  1 are contained in table A. 15 which holds top 

'̂‘Filter (i) is obviously not particularly helpful here
®̂ We have also returned to using the vertex movement function R andom V ertexM ove
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ranked movesets with no vertex moves. The tables A. 16 and A. 17 on pages 268-269 

contain equivalent data in the same order for rii =  2 .

The overall top ranking movesets for rii =  1 and 2 are very similar to those of 

length three which rank highly (see section 10.5.1 on page 173). Once again the vertex 

move occupies a central role. The combination 7_1_4, or equivalent re-orderings thereof, 

appears in most of the top movesets, usually accompanied by the move 7. The sub- 

moveset 1_4 also appears frequently within high ranking movesets, as do the vertex 

move-like movesets such as 3_6_7_7.

The rankings in the absence of vertex moves are also interesting, since we encounter 

some movesets which were not possible at shorter length. First of all, the familiar 

sub-movesets, 1_4, 2_4, 1_5 etc. appear regularly. Sometimes they appear effectively on 

their own, such as in 3_6_1_4, where the sub-moveset 3_6 is usually the addition and 

removal of the same vertex, in an identity transformation, leaving 1_4 to achieve any real 

improvement. However, we get a number of interesting combinations, such as 1_1_4_5. 

Sometimes this will reduce to 1_5 (which may be the edge flip T3 2 ), but on occasion, both 

1_4 and 1_5 will achieve useful work (for the complex u n it_ cu b e_ u n if orm _ls5, compare 

the final minimum quality achieved in table A .l on page 246 by 1_5 with the final value 

for moveset 1_1_4_5 in table A .15). Other interesting combinations are 1_2_5_4, which 

is capable of implementing a combined T3 2  and T2 3  transformation, and 1_4_1_4.

10.11.3 Perform ance

Figure 10.27 on the next page contains a comparison between H C ^j^(0.05, Qexp) for 

< 3} (see table 10.6 on page 175), and the results for the overall top ranked 

movesets at neighbour-levels one and two respectively, in tables A. 14 and A. 16.

The figure shows movesets of length four (taken at =  1) performing slightly better 

than those of length three. It also indicates that increasing the neighbour level to two 

does not help matters. Based on the top ranking movesets in table A. 14, it seems 

possible that much of the improvement in the length four case is due to extra vertex 

moves in the moveset, thus 1_4_7_7 may essentially operate as {1_4_7}-I-{7}, rather than
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Figure 10.27: Comparison between HC|j^(0.05, Qexp), and HC^j^(0.05, Qexp)j where 

$1  =  {/i I /(a*) < 3} and $ 2  =  {a* | =  4, and T{n) = 1}. The set $ 2  is apphed with
ni = 1,2. The vertex movement function is RandomVertexM ove (50). Iterations for 

$ 1  are as in table 10.5 on page 174, and for $ 2  as in table 10.31 on page 231

as the unit 1_4_7_7.

10.12 Summary

We sum m arise the major findings of this chapter under two headings: analysis of 

m ovesets, and comparison of quality measures and improvem ent algorithm s.

10,12.1 Movesets

We will in itially  consider m ovesets of length up to three, since all such m ovesets were 

exam ined in our experim ents.

•  The m ost successful m oveset (in terms of top ranked position) is 7_1_4 and varia

tions thereof.^®

^®And there is evidence to suggest that the combination {7_1_4} performs better than separate 

application of 7 and 1.4
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•  Movesets involving the addition and removal of the same vertex, combined with a 

vertex move, are prominent.

•  The reason for the appearance of the moveset 1_4 in the most successful moveset 

appears to be that it is capable of performing a non-identity transformation when 

applied to an octahedral configuration (such as that in figure 6.10 on page 97).

•  Movesets involving vertex moves far outperform those involving no vertex moves. 

For example, the moveset 7_1_5, has been shown in a number of cases to perform 

better than 1_5 --- the ability to move vertices allows configurations to be generated 

in which the moveset 1_5 can be favourably carried out more often than if 1_5 was 

being applied on its own.

• Vertex moves are successful as movesets in their own right. This mcludes movesets 

such as 7, 7_7, and vertex move-like movesets such as 2_7_5 and 3_6_7

• Weakening the vertex move algorithm by using the JiggleV ertex algorithm, 

rather than the Random VertexM ove algorithm does not dislodge movesets con

taining vertex moves from their position of pre-eminence.

• Excluding vertex move-like movesets, and generating a list of top ranking movesets 

results in the usual 7_1_4 type combinations appearing in the top ranking movesets, 

but with the addition of refining movesets of the form 7_1, 7_7.1 in the lower ranks.

• The exclusion of movesets involving any vertex moves results in the movesets 

1_4, 1_5 appearing on their own as top ranked movesets. The moveset 1_4 also 

appears in a number of other top ranked movesets in combinations which involve 

overall refinement of the complex, such as 1_4_1. The moveset 2_4 appears as a 

sub-moveset within certain movesets, but with less success than either 1_4 or 1_5.

• Movesets which involve overall coarsening of the complex do not appear.

• Applying arbitrary movesets of a specified length (in multiple moveset mode) does 

not appear to enhance performance.
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We now consider briefly the results gained from exam ining the subset of movesets of 

length four defined in section 10.11. We note that due to our choice o f subset, refining 

or coarsening m ovesets were not tested.

•  M ovesets containing the sub-m oveset 1_7_4 (and variations) appear in all the top  

ranked positions, e.g., 7_7_1_4.

•  Once again all top m ovesets contained vertex moves.

•  Exclusion of m ovesets containing vertex m oves results in the appearance of m ovesets 

containing the familiar sub-m ovesets 1_4, 1_5 and 2_4. T he extra length of the 

m oveset allows certain new, interesting configurations to  appear, such as 1_4_1_5, 

or 1_5_2_4, which is capable of im plem enting a combined transform ation of T3 2  

followed by T2 3 .

Discussion

One key property of all the top m ovesets that appear in our rankings is that they neither 

add nor remove vertices, and they rarely or never increase or decrease the number of 

sim plices. The vertex move has this property, so do vertex move-like m ovesets (e.g., 

2_7_5), and, im portantly, our observations indicate that m ost successful applications of 

1-4 also have this property.

M ovesets involving 1_5 or 2_4 with a vertex move add no vertices, but they do add or 

remove sim plices. Consider the case of the m oveset 1_5. Assum e that each application  

of it is an instance of the edge-flip T3 2 . Then, in any com plex, there will be a finite 

number of available applications of this moveset. Even if a vertex move is added (7_1_5) 

the bound on the m axim um  number of available transform ations remains.

For the moveset 1_4, this bound does not exist when it is applied to an octahe

dral configuration (see section 10.5.1, and figure 6.10 on page 97), or when the same 

vertex is added and removed in an identity transform ation. A ssum ing that octahedral 

configurations exist in the com plex, non-identity 1_4 transform ations m ay be carried 

out endlessly, by sim ply flipping back and forth between the three available 1 -sim plices
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(assuming they are geometrically available). However, there will be a finite number 

of such transform ations th a t improve the complex (and of course identity transforma

tion manifestations of 1_4 neither improve nor disimprove the complex). This is where 

the combination with the vertex move plays its part — vertex movements can render 

previously unfavourable configurations favourable, thus allowing the moveset 1_4 to be 

applied. This may occur an arbitrary  number of times (possible involving the undoing 

of previous applications of 1_4 as a result of more recent vertex moves), and appears to 

be what gives 1_4 the advantage over its counterparts 1_5 and 2_4.

The manifestation of the moveset 1_4 which adds and removes the same vertex, £,nd is 

capable of generating a non-identity transformation on an octahedral type configuration 

does not seem to have been mentioned as notable in the literature. In [80] a reference 

is made to the special case of 1_4, involving four coplanar v e r t ic e s ,b e in g  found to be 

useful in the unpublished manuscript, [22], but we do not know how they arrived a: this 

conclusion. In our case it has emerged from the testing of all possible movesets of length 

up to three, and many of length four.

10.12.2 Quality functions

We summarise what we have learnt about quality measures in this chapter, commencing 

with comparisons between measures for hill climbing algorithms, and moving on to 

consider further conclusions arising out of the annealing experiments. At all times we 

bear in mind th a t our aim is to improve the global minimum quality.

• One of the main points to emerge from our study is the superiority of the expo

nential quality measure, Qexp, in terms of reliability combined with performance, 

over both the minimum and average measures.

• Of the possible settings of the /3-fraction, 5, for the exponential measure, Qexp(<̂ )> 

the value 5 =  0.05 proves itself to be the most successful. Indications are that any 

small value of 5 will provide reasonable performance (as would be expected).

^̂ Defined in [45]
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•  Using Qexp(^ =  0.05), a com parison of the basic hill clim bing and  hill climbing

w ith variation of the /3-fraction indicates th a t hill climbing w ith variation of d  is

m arginally the better.

•  The top  ranked movesets (see table 10.14 on page 194) do not vary significantly 

w ith change in the  quality m easure used for improvement.

W hen we factor annealing into our considerations, a num ber of fu rther points emerge

•  A nnealing appears to be beneficial when used w ith the  global m inim um  quality in 

the sense th a t it removes some of the cases where Q m \n  produces no im provem ent 

a t all, thereby increasing its reliability. However some instances of very poor 

im provem ent still exist, even w ith annealing.

•  A nnealing does not seem to  provide particu lar benefit over hill clim bing when used

w ith Q exp -

•  No clear best acceptance ratio  emerges for Qexp-

•  The best acceptance ratios for annealing w ith obtained for Qmin and Qexp differ,

w ith those for Qmin being in the region <  0.5 (approxim ately), and the value 0.9 

being the best for Qexp-

We sum m arise our com parison of quality measures in figure 10.28 on the following 

page.^* From it we will make a final conclusion th a t hill climbing w ith  variation of the 

/3-fraction is the  algorithm  th a t has emerged from our experim ents w ith the  best overall 

perform ance.

have omitted the results for annealing at fixed /3-fraction from this plot to reduce clutter. 

Figure 10.20 on page 217 may be consulted for details. Our above conclusion holds regardless
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Figure 10.28: Final minimum qualities associated with top ranked movesets obtained 

using H C |^ (0 .0 5 , Qexp), H C B |^ (0 .9 5 , 0.05, -0 .1), A N N | ĵ ^(0.95, 0.05, -0 .1 , 1,- 

Qexp), A N N |^ ( - ,  - ,  - ,  1, Q^i„) (for =  0.1) and H C |^ (Q ™ „ ), H C f^(Q av). 

The shorthand mtroduced in table 10.4 for labelling the test complexes is used. The sets 

of movesets, $ , used in the different experiments may not be the same
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Conclusion

11.1 Achievements and key conclusions

Using A lexander moves, we have developed a m ethod of system atically  enum erating the 

local transform ations of a simplicial complex. In the course of applying and ranking 

these transform ations, or movesets, we have investigated a num ber of global quality 

measures and im provem ent algorithm s. The accom plishm ent of th is entailed^

•  the definition of the Alexander moves on abstrac t complexes, and the  definition of 

choice functions for choosing sites w ithin complexes for the application  of moves

•  the extension of the definition of A lexander moves to  geom etric complexes

•  the definition of A lexander movesets, and an extension of the definition of choice 

functions to  allow proxim ate sites to  be chosen for proxim ate moves of movesets

•  the definition of simplicial quality measures, and the  extension thereof to  global 

quality m easures such as the m inim um  or the  average

•  the in troduction  of the exponential quality m easure

• the definition of an im proving moveset to be one which as a unit improves the 

complex w ith  respect to  a global quality measure, ra th e r th an  as a collection of

^Not necessarily in the order in which they were encountered

239
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individual moves each of which must create an improvement

•  the definition of a convenient notation for representing movesets (e.g., 1_7_4)

•  the development of improvement algorithms for use with the exponential quality 

measure, such as hill climbing, or annealing, with variation of the ^-fraction

•  the development of software to allow experimentation with Alexander moves. No

table features of this software include

-  the ability to apply arbitrary combinations of Alexander moves to simplicial 

complexes

-  the ability to fully unwind partially applied movesets if they prove to be 

unsuitable at any point, thus leaving the complex the way it was a t the start 

of the moveset

-  the provision of hooks to allow the use of arbitrary  simplicial quality measures 

tha t obey our definition of such a measure (see definition 29 on page 25)

-  the implementation of hill climbing, hill climbing with variation of the /^-fraction, 

as well as implementation of annealing, complete with cycling, and a variable 

acceptance ratio

-• numerous da ta  analysis routines for the examination of the large quantity of 

data  produced by the Alexander code

W ith all this accomplished, we have tested and ranked all movesets of length three 

or less according to each of three improvement algorithms, as well as a significant subset 

of movesets of length four with respect to the hill climbing algorithm. We have drawn 

the following conclusions, among others

•  We consider first our conclusions regarding movesets

-  Vertex movement or smoothing emerged as extremely im portan t from our
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-  Movesets which added and removed the same vertex were prominent (such 

addition and removal is sometimes referred to as a bistellar flip  [56])

-  Movesets containing the sub-moveset 1_4 emerged as some of the most suc

cessful, particularly when combined with the vertex move, 7. Furthermore, 

we have seen no significant reference to the transformation 1_4 in the litera

ture

-  In addition to the above, the movesets (or sub-movesets) which emerged as 

notable were 1_5 and 2_4. These movesets are capable of implementing the 

standard transformations T3 2  and T2 3  respectively, and our study of output 

data indicates they have largely done so

-  The confirmation of the value of existing transformations mentioned in the 

previous item is interesting in that it bolsters the evidence for the wide-spread 

reliance on such transformations, while at the same time providing confidence 

in the ability of our methodology to discover successful movesets

-  With regard to the application of Alexander movesets of greater lengths, it 

has become obvious in the course of this work that there is something of a 

combinatorial problem. In order for this method to be effective in examining 

longer movesets, filtering techniques must be employed^ in order to reduce 

the set of movesets to be examined.

• The examination of global quality measures carried out in tandem with the work 

on movesets has also provided some interesting results

-  The emergence of the exponential quality measure, Qexp, in terms of reliabil

ity combined with performance (particularly when compared with either the 

global minimum, or average, quality measures) is notable

-  Hill climbing with variation of the /3-fraction seems to be the most successful 

improvement algorithm, by a small margin over simple hill climbing

simple filter was applied in section 10.11.1 for movesets of length four
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-  The seeming lack of advantage gained when using annealing w ith the expo

nential measure is interesting

-  On the other hand, it is noteworthy th a t the minimum quality measure does 

appear to benefit from the use of annealing

11.2 Comparison with existing work

We make some brief comparisons between the work contained herein, and other relevant 

research.

•  Joe, in [45], has carried out work which, to our knowledge, is closest to our own. He 

carries out a detailed study of combinations of a set of local transform ations applied 

to many test triangulations. His local transformations are defined in chapter 4, 

section 4.2. They do not apply, remove or relocate vertices, and a somewhat 

reduced 1_4 moveset is used (it seems to require four coplanar vertices to operate). 

On the contrary we use the full set of Alexander moves, in combination with 

the vertex move. In the absence of a proof of Joe’s conjecture of [43] that all 

triangulations with the same number of vertices are reachable using the local 

transform ations defined by him^, it is not guaranteed th a t the full search space 

is available when using the transformations of ]45], and certainly triangulations 

which involve more or less vertices are not available.

Furthermore, our algorithm for applying movesets is completely different from his, 

and has a different focus. We choose a moveset in advance, and apply it multiple 

times to a complex with the intention of finding the best movesets, on the average, 

out of an exhaustive list. The technique of Joe is closer to our implementation of 

multiple moveset mode, where arbitrary  movesets may be applied to the complex, 

and be noted if they succeed in improving the complex, rather than  one moveset 

applied many times. His technique is successful at improving complexes, but his 

aim is not to provide rankings of movesets which perform well on the average.

^See also [66], number 28. A proof of the conjecture has been given in [13] for the special case that 

the vertices of the triangulation are those of a convex polytope
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Lastly, he improves exclusively with respect to local minima or m axim a of geo

m etric measures, rather than with respect to global measures.

•  Freitag and Ollivier-Gooch [33], [32] have carried out research into mesh improve

ment using a number of different transformations, such as edge-flipping (see sec

tion 4.2), edge-swapping (see section 4.4) and vertex smoothing (see section 4.5). 

Their work emphasises the benefits of using different transform ations in successive 

improvement passes over a mesh; for example, a vertex smoothing pass, followed 

by edge-flipping pass, followed by another vertex smoothing pass. They carry out 

improvement with respect to a number of, mainly dihedral angle based, geomet

ric quality measures.^ They improve with respect to local minima and maxima 

of these measures (rather than global quality measures, as we do), often using 

different measures with different optimisation passes.

They require tha t each individual transformation (edge-flip, etc.) they apply im

prove the complex, so there is no combination of transform ations in the manner 

of our movesets.

We may compare some of our findings to their work, however. The pre-eminence 

of the moveset 7_1_4 in our experiments is an example of two different types 

of transform ation combining to improve on the abilities of either transform ation 

individually.

•  Bjorner et al in [15] have carried out work involving the combination of edge fiips, 

using a simulated annealing approach. Their work is purely combinatorial, however 

(as far as we are aware), and focuses on such issues as minimal triangulations of 

topological manifolds.

11.3 Final points

A few further points may be made concerning the contents of this thesis.

'‘Although they also use the in-sphere criterion arising from the study of Delaunay meshes (see 

appendix C)
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• To our knowledge, the use of Alexander moves for the purpose of improving geo

metric complexes is novel, as is the manner in which we define choice functions and 

apply movesets, notably the particular method we use to ensure that proximate 

moves of movesets choose proximate sites.

• We have not seen other formal expressions of standard transformations stated in 

terms of Alexander movesets (or other atomic transformations for that matter) m 

the manner of chapter 8.

•  We are unaware of significant investigation into improvement^ of simplicial com

plexes using local transformations carried out with respect to global quality mea

sures in this field. In particular, we have not seen other usage of the exponential 

quality measure for this purpose, or of such definitions as the /3-fraction, or of 

analysis and implementation of such algorithms as hill climbing with variation of 

the ^-fraction, or annealing with respect to the exponential quality measure.

•  Our definitions of annealing with cycling, and the manner of our tests of multiple 

acceptance ratios appear to be novel.

In conclusion, we hark back to the statement of the aims of this work made in sec

tion 1.1, on page 3, and note that we have succeeded in achieving the goals set; We have 

obtained successful and unsuccessful movesets of length up to three, and some of length 

four. We have shown that widely used transformations are among the more successful, 

notably the vertex move, which is the single most successful. We have demonstrated 

that our methodology is capable of finding successful movesets of short length, but 

that it is dependent on filtering mechanisms for long movesets. Finally, we have shown 

the efficacy of the exponential quality measure, and obtained some successful quality 

measure/improvement algorithm combinations.

®With the aim of improving the global minimum quality
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Complex Moveset Minimum Average Exp
un it_cube_unifo rm _lslO 1.4.1 3.873362E-01 6.539507E-01 4.628046E-01

1.4.2 3.873362E-01 8.102723E-01 4.304961E-01
1.1.2 3.848646E-01 7.359211E-01 4.337727E-01
1.1.1 3.848646E-01 6.519516E-01 4.460901E-01

unit_cube_unifo rm _lslO _p 2.2.5 1.391621E-05 2.975855E-01 4.006559E-02
2.2.4 1.391621E-05 2.515148E-01 4.694858E-02
1.3.2 1.391621E-05 2.102632E-01 5.018832E-02
2.2.3 1.391621E-05 2.089946E-01 4.689288E-02

un it_cube_un ifo rm _ls5 1.5 5.242151E-01 8.419987E-01 5.585014E-01
1.1.5 5.242151E-01 8.381592E-01 5.521777E-01
1.4.1 4.907194E-01 7.036325E-01 5.365849E-01
1.5.1 4.891339E-01 8.351449E-01 5.151198E-01

unit_cube_unifo rm _ls5_p 2.2.5 3.233958E-05 1.888026E-01 7.745637E-02
2.2.4 3.233958E-05 1.665595E-01 7.676150E-02
1.4.3 3.233958E-05 2.046620E-G1 6.773882E-02
2.2.3 3.233958E-05 1.698240E-01 6.275502E-02

u n it_ s p h e re _ ls 2 .5 1.1.4 4.289449E-01 6.390247E-01 4.776798E-01
1.4.1 4.271256E-01 6.370673E-01 4.700315E-01
2..1.4 4.088998E-01 6.487529E-01 4.662378E-01
2.2.5 3.967812E-01 8.147876E-01 4.307340E-01

u n it_ s p h e re _ ls 2 . 5_p 1.4 7.664927E-05 3.061874E-01 4.222460E-02
2J2.5 5.327249E-05 1.524972E-01 5.685449E-02
2.2.4 5.327249E-05 1.357481E-01 6.070082E-02
1.4.3 5.327249E-05 1.678890E-01 5 392514E-02

u n it_ sp h e re _ ls5 2.1.4 3.698330E-01 6.444202E-01 4.361533E-01
1.4.4 3.624200E-01 8.284642E-01 3.861447E-01
2.2.4 3.624200E-01 7.554597E-01 4.101130E-01
1AJ2 3.624200E-01 7.925884E-01 4.093247E-01

u n it_ sp h e re_ ls5 _ p 2.2.5 1.074795E-05 2.394653E-01 4.358212E-02
1.4.4 1.074795E-05 4.105475E-01 2.055799E-02
2J2A 1 074795E-05 2.072682E-01 4.815981E-02 '
1.4.3 1.074795E-G5 2.382168E-01 4.595257E-02

u n i t_ te t_ ls lO 1.1.4 3.700552E-01 5.852743E-01 4.256375E-01
1.4 3.700538E-01 7.109154E-01 4.253199E-01

1.4.1 3.660560E-01 5.852180E-01 4 181403E-01
1.5 3.559775E-01 7.685281E-01 3.752135E-01 i

u n it_ te t_ ls lO _ p 1.4 4.419492E-05 3.665504E-01 3.148835E-02
1.1.4 4.419492E-05 1.748823E-01 6.037649E-02
2.2-5 3.405482E-05 1.901768E 01 4.655614E-02
1.4.4 3.405482E-05 3.913428E-01 1.969602E-02

u n i t_ te t_ l s 5 1.1.4 4.351112E-01 6.946205E-01 4.982683E-01
2.2.4 4.351112E-01 6.748711E-01 4.811338E-01
1.1.2 4.351112E-01 6.801072E-01 4.681804E-01
1.4.1 4.351112E-G1 6.872940E-01 4.924442E-01

u n i t_ te t_ ls 5 _ p 1.1.4 1.032117E-03 1.505329E-01 9.308167E-02
1-4.1 1.032117E-03 1.607271E-01 9.087106E-02 |
1.4 9.586571E-04 4.621942E-01 5.386932E-02

2J2.5 l,099580E-04 1.513488E-01 7.982603E-02

Table A.l: H C ^^(0 .05 , Q exp), where $  =  { / i  1 < 3} Top four movesets excluding 

those containing the move 7 displayed and sorted with respect to Qmin- Vertex movement 

using RandomVertex]V[ove(50). Iteration counts contamed in table 10.5 on page 174
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Table A.2: HC*j^^(0.05, Qexp), where $  =  {/  ̂ | /(//) <  3}. Top eight movesets excluding 
vertex move-like movesets displayed and sorted with respect to Qmin- Vertex movement 
using R an d om V ertexM ove(50). Iteration counts contained in table 10.5 on page 174

Complex Moveset Minimum Average Exp
unit_cu b e_u n iform _lslO 7-1.4 6.263651E-01 8.026771E-01 6.957401E-01

1.7.4 6.210352E-01 8.027406E-01 6.933099E-01
1.4.7 5.919616E-01 7.931800E-01 6.842602E-01
7.7.1 4.882325E-01 6.641262E-01 5.348033E-01
7.1.7 4.882314E-01 6.371310E-01 5.337011E-01
1.7.7 4.780035E-01 6.422699E-01 5.367053E-01
7.1 4.566930E-01 6.521582E-01 5.093281E-01
1.7 4.499764E-01 6.282442E-01 5.035634E-01

unit_cube_uniform _lslO _p 7.1.4 6.141473E-01 7.993105E-01 7.076373E-01
1.7-4 6.025445E-01 7.988856E-01 7.001503E-01
1.4.7 5.196098E-01 7.301407E-01 l.OOOOOOE+00
7-7-1 1.663686E-01 3.810273E-01 2.501720E-01
7.7-2 1.305002E-01 3.333453E-01 2.002750E-01
7-1-7 1.219292E-01 3.734738E-01 2.406348E-01
7-1 1.103420E-01 3.289197E-01 1.856359E-01

1-7-7 9.846008E-02 3.488999E-01 2.135761E-01
u n it_cu b e_u n iform _ls5 1-7-4 6.416344E-01 8.086651E-01 6.940879E-01

7-1-4 6.120364E-01 8.019662E-01 6.854408E-01
1-4.7 5.967504E-01 7.876687E-01 6.716774E-01
1-5-7 5.393463E-01 8.409997E-01 5.669838E-01
7-7-1 5.340025E-01 7.086105E-01 5.792673E-01
7-1-7 5.268733E-01 6.715141E-01 5.745509E-01

1-5 5.242151E-01 8.419987E-01 5.585014E-01
7-1-5 5.242151E-01 8.412746E-01 5.575734E-01

u n it_cube_uniform _ls5_p 7-1-4 6.359448E-01 8.128110E-01 7.121173E-01
1-4-7 6.311172E-01 8.067347E-01 7.143554E-01
1.7-4 4.035493E-01 6.806771E-01 5.088178E-01
7-7-1 1.718065E-01 3.466328E-01 2.519809E-01
7-1-7 1.716165E-01 3.537762E-01 2.659450E-01
1-7-7 1.506311E-01 3.447715E-01 2.575268E-01
7.7.2 1.367882E-01 3.222314E-01 2.067869E-01
7.2.7 1.074336E-01 2.403996E-01 1.865921E-01

u n it_ s p h e r e _ ls 2 .5 1.4.7 6.929802E-01 8.184918E-01 7.360008E-01
1.7.4 6.718421E-01 8.112402E-01 7.129806E-01
7.1.4 6.276818E-01 7.922468E-01 6.924631E-01
1.7.7 5.123119E-01 6.410227E-01 5.498173E-01
7.7.1 5.038946E-01 6.705915E-01 5.474574E-01
7.1.7 4.812540E-01 6.273911E-01 5.326577E-01
7.1 4.789949E-01 6.567034E-01 5.211030E-01

7.1.5 4.477053E-01 8.280799E-01 4.747706E-01
u n it_ sp h e r e _ ls2 .5 _ p 7.1.4 6.305111E-01 7.707573E-01 l.OOOOOOE+00

1.4-7 5.767520E-01 7.541387E-01 l.OOOOOOE+00
1.7.4 5.226221E-01 7.566192E-01 l.OOOOOOE+00
7.7.1 1.534726E-01 3.003039E-01 2.126420E-01
7.7.2 1.279548E-01 2.968525E-01 1.837800E-01
7.7.3 1.070595E-01 2.902401E-01 1.499056E-01

continued on next page
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Table A.2: continued

Complex Moveset Minimum Average Exp
1.7.7 9.540816E-02 2.606326E-01 1.739669E-01
7.2.7 9.218549E-02 2.120248E-01 1.615935E-01

u n it_ sp h e re _ ls5 7.1.4 6.413584E-01 8.039220E-01 l.OOOOOOE+00
1.7.4 5.962591E-01 7.798458E-01 l.OOOOOOE+00
1.4.7 5.521858E-01 8.029402E-01 l.OOOOOOE+00
7.7.1 4.809132E-01 6.592965E-01 5.246203E-01
7.1.7 4.735817E-01 6.347107E-01 5.289368E-01
7.1 4.568749E-01 6.434970E-01 5.014930E-01

1.7.7 4.320617E-01 6.023054E-01 4.916256E-01
1.7 4.235691E-01 6.097644E-01 4.900761E-01

u n it_ sp h e re_ ls5 _ p 1.4.7 5.335865E-01 7.257759E-01 l.OOOOOOE+00
1.7.4 5.213616E-01 7.333365E-01 l.OOOOOOE+00
7.1.4 5.108713E-01 7.211474E-01 l.OOOOOOE+00
7.7.1 1.620431E-01 3.601968E-01 2.358602E-01
7.1.7 1.274756E-01 3.392666E-01 2.165771E-01
7.2.7 1.033938E-01 2.624794E-01 1.663973E-01
7.7.2 1.026605E-01 3.146141E-01 1.856580E-01
7.1 8.099445E-02 2.973282E-01 1.683907E-01

u n i t_ te t_ ls lO 7.1.4 6.434219E-01 7.748990E-01 6.892212E-01
1.4.7 5.985768E-01 7.589367E-01 l.OOOOOOE+00
1.7.4 5.606625E-01 7.487596E-01 6.399392E-01
7.7.1 4.355398E-01 6.028990E-01 4.787801E-01
7.1.7 4.258520E-01 5.780104E-01 4.838844E-01
7.1 4.0631 llE-01 5.992815E-01 4.606386E-01

1.7.7 4.045783E-01 5.727846E-01 4.779944E-01
7.1.1 3.914680E-01 5.977424E-0Jj 4.335872E-01

u n it_ te t_ ls lO _ p 1-7.4 5.753024E-01 7.408078E-01 l.OOOOOOE+00
7.1.4 5.282976E-01 6.989884E-01 l.OOOOOOE+00
1-4-7 5.138552E-01 6.849513E-01 l.OOOOOOE+00
7.7.1 1.317217E-01 3.225671E-01 2.188856E-01
7-1-7 1.116004E-01 3.084989E-01 2.054229E-01
7-7-2 9.266183E-02 2.623315E-01 1.586465E-01
7-2-7 8.706009E-02 2.295794E-01 1.625155E-01
7.1 7.597142E-02 2.547898E-01 1.530621E-01

u n it_ t.e t_ ls 5 7-1-4 6.460409E-01 8.103755E-01 6.885638E-01
1-7-4 6.433215E-01 8.117090E-01 6.879105E-01
1.4.7 6.049372E-01 7.917310E-01 6.565628E-01
7_1 5.822328E-01 7.572992E-01 6.269842E-01

7-1-7 5.796835E-01 7.096269E-01 6.191970E-01
7-7-1 5.156359E-01 6.998637E-01 5.615703E-01
2.7.4 5.121903E-01 7.282194E-01 5.459329E-01

1.7 5.045457E-01 6.761691E-01 5.542026E-01
u n i t_ te t  _ls5_p 1.4.7 6.159293E-01 8.045677E-01 6.840288E-01

1-7.4 6.148275E-01 7.977498E-01 6.746160E-01
7-1-4 6.010813E-01 7.831940E-01 6.628264E-01
7-1-7 1.835135E-01 3.692989E-01 2.840012E-01
7-2-4 1.390696E-01 4.938636E-01 1.940419E-01
7-7-3 1.303059E-01 2.847498E-01 1.888932E-01
7-7-1 1.274265E-01 2.858321E-01 2.137617E-01

continued on next page



A Experim ental data 249

Table A.2: continued

Complex Moveset Minimum Average Exp
7J2JT 1.100343E-01 2.270489E-01 1.869887E-01

Table A.2: end of table
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Complex Moveset Minimum Average Exp
unit_cube_uniform _lslO lA -7 5.844917E-01 7.788983E-01 6.459399E-01

1.7 A 5.820305E-01 7.704567E-01 l.OOOOOOE+00
7-2.5 5.697185E-01 7.763081E-01 6.473029E-01
7-1-4 5.692871E-01 7.747648E-01 6.417520E-01

unit_cube_uniform _lslO_p 7-3.6 5.634291E-01 7.701717E-01 6.517247E-01
3-6-7 5.555838E-01 7.656888E-01 6.427141E-01
2.5.7 5.496154E-01 7.660753E-01 6.393011E-01

7 5.431208E-01 7.745375E-01 6.597586E-01
unit_cube_uniform _ls5 7-1.4 6.187584E-01 8.056533E-01 6.772497E-01

3-7-6 6.120364E-01 7.968907E-01 l.OOOOOOE+00
7 6.120364E-01 8.073256E-01 6.743747E-01

1-4.7 6.120364E-01 7.971969E-01 6.747868E-01
unit_cube_uniform _ls5_p 7-2-5 6.120364E-01 8.161987E-01 6.958073E-01

2-7.5 6.120364E-01 8.078127E-01 6.877485E-01
7-3-6 6.120364E-01 8.188172E-01 6.992892E-01
2.5.7 6.120364E-01 8.149225E-01 6.972944E-01

u n it_ sp h e re _ ls2 .5 7-1-4 6.528333E-01 7.965993E-01 6.945336E-01
7-3-6 6.490403E-01 7.969190E-01 6.897307E-01
7-2-5 6.475543E-01 8.005278E-01 6.898843E-01
2-5-7 6.434329E-01 7.900973E-01 6.797847E-01

u n it_ sp h e re _ ls2 . 5_p 7.3.6 6.341482E-01 7.828797E-01 6 820992E-01
3.6.7 6.325554E-01 7.870247E-01 6.727767E-01
3.7.6 6.295860E-01 7.914400E-01 6 773345E-01
7.2.5 6.269318E-01 7.824527E-01 6.724241E-01

un it_sphere_ ls5 2-5-7 5.944857E-01 7.765918E-01 6.432587E-01
7 5.796190E-01 7.748233E-01 6.364154E-01

3-6-7 5.783128E-01 7.712400E-01 6.333909E-01
7-3-6 5.771739E-01 7.694840E-01 6.285400E-01

unit_sphere_ls5_p 7.2.5 5.319751E-01 7.478258E-01 6.144920E-01
7 5.248466E-01 7.481656E-01 6.174624E-01

2.5.7 5.126219E-01 7.350681E-01 5.959439E-01
3-6.7 5.092231E-01 7.319696E-01 5.920742E-01

u n it_ te t_ ls lO 1.4.7 5.739888E-01 7.473581E-01 6.305757E-01
7 5.668612E-01 7.507604E-01 6.415030E-01

2.5.7 5.665926E-01 7.464554E-01 6.288621E-01
7.1.4 5.644094E-01 7.445283E-01 6.247494E-01

u n it_ te t_ lslO _ p 7.3.6 5.398230E-01 7.352902E-01 6.256645E-01
7.2.5 5.358521E-01 7.218070E-01 6.025171E-01

7 5.356342E-01 7.310376E-01 6.20927GE-01
3.7.6 5.314329E-01 7.262210E-01 6.078559E01

u n it_ te t_ ls 5 7.1.4 6.449379E-01 8.096939E-01 6.851110E-01
7.3.6 6.182689E-01 8.053373E-01 6.729747E-01

7 6.167035E-01 8.060404E-01 6.710819E-01
2-7.5 6.140629E-01 8.089937E-01 6.702738E-01

u n it  _ tet_ ls5_p 2-7-5 6.160530E-01 8.049994E-01 6.809417E-01
1.4.7 6.120898E-01 7.927421E-01 6.623218E-01
3.6.7 6.096519E-01 8.088718E-01 6.812524E-01

7 6.087885E-01 8.091180E-01 6.824254E-01

Table A.3: H C f^ (0 .0 5 , Q e x p ) ,  where $ =  {/i | /(/i) < 3}. Top four movesets displayed 

and sorted with respect to Qmin- Vertex movement uses JiggleVertex(8) Iteration 

counts contained in table 10.5
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Complex Moveset Minimum Average Exp
unit_cube_uniform _ls5 1-4-7 6.471823E-01 8.502215E-01 7.715977E-01

3-6-7 6.120364E-01 8.454969E-01 7.546091E-01
7 6.120364E-01 8.452561E-01 7.553763E-01

3-7-6 6.120364E-01 8.417289E-01 7.458380E-01
unit_cube_uniform _ls5_p 7-3-6 6.120364E-01 8.62637GE-01 8.382922E-01

7-7-7 6.120364E-01 8.623049E-01 8.379701E-01
1-7-4 6.120364E-01 8.640884E-01 8.398278E-01
1-4-7 6.111957E-01 8.661178E-01 8.448402E-01

u n it_ sp h e re _ ls2 .5 7-7 6.411920E-01 8.382205E-01 7.725676E-01
7-3-6 6.408272E-01 8.390366E-01 7.732127E-01
1-4-7 6.401258E-01 8.452675E-01 7.844155E-01
3-6-7 6.397972E-01 8.384935E-01 7.733340E-01

u n it_ sp h e re_ ls2 . 5_p 7-2_5 5.847836E-01 8.547718E-G1 8.271368E-01
7-7 5.812603E-01 8.543510E-01 8.270983E-01

7-3-6 5.798972E-01 8.547115E-01 8.276755E-01
7 5.732499E-01 8.554415E-01 8.279194E-01

un it_sphere_ ls5 7-7 6.383120E-01 8.442258E-01 7.888327E-01
1-4-7 6.363325E-01 8.479472E-01 7.973763E-01
7-7-7 6.318431E-01 8.439652E-01 7.885412E-01
7-3-6 6.302229E-01 8.439946E-01 7.880875E-01

unit_sphere_ls5_p 7-7 5.726189E-01 8.565041E-01 8.353709E-Q1
1-4-7 5.661765E-01 8.554811E-01 8.349251E-01
7-3-6 5.522884E-01 8.557661E-G1 8.343314E-01
3-6-7 5.352675E-01 8.552099E-01 8.332897E-01

u n it_ te t_ ls lO 1-4-7 6.128371E-01 8.047575E-01 7.464391E-01
7-1-4 5.768616E-01 7.993178E-01 7.339397E-01
3-6-7 5.717105E-01 7.970261E-01 7.297919E-01
7-7-7 5.697382E-01 7.985333E-01 7.293921E-01

u n it_ te t_ ls5 7-1-4 6.359849E-01 8.151328E-01 7.129342E-01
1-4-7 6.343272E-01 8.156502E-01 7.127399E-01
1-7-4 6.308326E-01 8.159807E-01 7.121219E-01
7-7 6.114960E-01 8.147878E-01 7.093048E-01

u n it_ te t_ ls5 _ p 1-7-4 6.066363E-01 8.288465E-01 7.925466E-01
3-7-6 5.707626E-01 8.254744E-01 7.881912E-01
7-7 5.702818E-01 8.256793E-01 7.891851E-01

2-5-7 5.652558E-01 8.256745E-01 7.892209E-01

Table A.4: HCfj^^(0.5, Qexp), where $ = {/x | l{^) < 3}. Top four movesets displayed 

and sorted with respect to Qmin- Vertex movement uses RandomVertexMove(50). 

Iteration counts contained in table 10.13 on page 193



2 5 2 A E xperim ental data

Complex Moveset Minimum Average Exp
unit_cube_uniform _ls5 7.1.5 5.242151E-01 8.419295E-01 5.577862E-01

1.5.7 5.242151E-01 8.435584E-01 5.564545E-01
1.5 5.242151E-01 8.425505E-01 5.580925E-01

1.7-5 5.242151E-01 8.423242E-01 5.580409E-01
unit_cube_uniform _ls5_p 7.1.4 5.644187E-01 8.659267E-01 6.233007E-01

7.7 5.530060E-01 8.638284E-01 6.186253E-01
7.7.7 5.505729E-01 8.637185E-01 6.198358E-01
3.6.7 5.386096E-01 8.622958E-01 6.170800E-01

u n it_ sp h ere_ ls2 .5 2.5.7 5.041552E-01 8.604016E-01 5.227617E-01
7.2.5 4.914158E-01 8.606918E-01 5.162353E-01

7 4.749530E-01 8.608686E-01 4.983839E-01
7.3.6 4.492290E-01 8.605915E-01 4.677494E-01

u n it_ sp h ere_ ls2 . 5_p 7.7.7 5.366702E-01 8.564425E-01 5.659442E-01
7.7 5.297946E-01 8.587826E-01 5.621080E-01

3_6.7 4.794647E-01 8.586817E-01 5.048831E-01
1.4.7 4.793895E-01 8.726895E-01 5.146398E-01

u n it_sp h ere_ ls5 7-7.7 4.815426E-01 8.599194E-01 4.928421E-01
7.3.6 4.577430E-01 8.604638E-01 4.709096E-01
7.2.5 4.514471E-01 8.601812E-01 4.661434E-01
2..5.7 4.455674E-01 8.603624E-01 4.608484E-01

unit,_sphere_l s5_p 7.7 4.820305E-01 8.592249E-01 5.308098E-01
7 4.741758E-01 8.581811E-01 5.323902E-01

2.5.7 4.730676E-01 8.577518E-01 5.152101E-01
7J2.5 4.372904E-01 8.587345E-01 4.687795E-01

u n it_ te t_ ls lO 7 4.574896E-01 8.185698E-01 4.954840E-01
7.7.7 4.385388E-01 8.173652E-01 4.762709E-01
2.5.7 4.240128E-01 8.185467E-01 4 549727E-01
7-1.4 4.179492E-01 8.246555E-01 4.468665E-01

u n it_ te t_ ls 5 2.4.7 5.724839E-01 8.079072E-01 6.077856E-01
7.1.7 5.264753E-01 8.062079E-01 5.674561E-01
7.7 5.176002E-01 8.279871E-01 5.587095E-01

2.7.5 5.114666E-01 8.284568E-01 5.592379E-01
u n it_ te t_ ls5 _ p 1.4.7 5.590168E-01 8.338444E-01 6.022788E-01

7.7.7 5.160465E-01 8.278449E-01 5.729980E-01
3.7.6 5.092989E-01 8.285089E-01 5.755926E-01
7.1 4 5.074805E-01 8.299379E-01 5.712343E-01

Table A .5: H C *^ (Q av)! where $  =  {/x | l{fx) < 3}. Top four movesets displayed and 

sorted with respect to Qmin- Vertex movement uses R a n d o m V ertex M o v e(5 0 ). Iteration 

counts contained in table 10.13 on page 193



A E xp erim en ta l data 253

Complex Moveset Minimum Average Exp
unit_cube_uniform _ls5 l A J 6.471823E-01 8.204159E-01 7.244453E-01

1.7.4 6.471823E-01 8.230534E-01 7.209401E-01
7.1.4 6.471823E-01 8.217863E-01 7.249457E-01

7 6.120364E-01 8.188746E-01 7.100389E-01
unit_cube_uniform _ls5_p 1.4.7 6.416344E-01 8.595337E-01 8.099134E-G1

7.1.4 6.416344E-01 8.545926E-01 8.021249E-01
1.7.4 6.234476E-01 8.558990E-01 8.027807E-01

7 6.120364E-01 8.567351E-01 8.000557E-01
u n it_ sp h e re _ ls2 .5 1.7_4 6.698741E-01 8.266251E-01 7.483859E-01

1.4.7 6.606964E-01 8.278451E-01 7.525009E-01
7.7 6.537765E-01 8.217544E-01 7.402315E-01

7.7.7 6.534927E-01 8.216787E-01 7.403917E-01
u n it_ sp h e re _ ls2 . 5_p 1.7.4 6.442115E-01 8.403997E-01 7.868143E-01

7 6.378489E-01 8.407486E-01 7.791751E-01
7.7.7 6.31963GE-01 8.397318E-01 7.778875E-01
7.7 6.312488E-01 8.403638E-01 7.791716E-01

un it_sphere_ ls5 7.7 6.421492E-01 8.342951E-01 7.626362E-01
7 6.395232E-01 8.330051E-01 7.615397E-01

1.4.7 6.385086E-01 8.389692E-01 7.757184E-01
7.1.4 6.385030E-01 8.348389E-01 7.676290E-01

unit_sphere_ls5_p 7.1.4 6.131573E-01 8.474852E-01 8.049106E-01
7.7.7 6.066284E-01 8.491165E-01 8.048737E-01
7.7 6.041655E-01 8.484538E-01 8.045248E-01
7 6.021839E-01 8.479001E-01 8.037019E-01

u n it_ te t_ ls lO 1.4.7 6.460732E-01 7.994289E-01 7.352891E-01
1.7.4 6.406528E-01 7.937945E-01 7.229580E-01
7.1.4 6.395106E-01 7.893226E-01 7.172353E-01
7.7.7 6.000135E-01 7.845196E-01 7.052711E-01

u n it_ te t_ ls 5 7-1.4 6.433576E-01 8.116752E-01 6.962986E-01
1.4.7 6.423861E-01 8.116273E-01 6.961284E-01

7 6.160681E-01 8.106653E-01 6.886650E-01
7.7.7 6.150833E-01 8.107257E-01 6.885535E-01

u n it_ te t_ ls5 _ p 7 5.935818E-01 8.215947E-01 7.489462E-01
7.7 5.932612E-01 8.215014E-01 7.488798E-01

7.7.7 5.886237E-01 8.217233E-01 7.487720E-01
1.4.7 5.854420E-01 8.233485E-01 7.539468E-01

Table A.6: HC*j^^(0.2, Qexp)> where $ is the set of trial movesets. Top four 

movesets displayed and sorted with respect to Qmin- Vertex movement uses 

Random VertexM ove(50). Iteration counts contained in table 10.5



2 5 4 A Experim ental data

Complex Moveset Minimum Average Exp
unit_cube_uniform _ls5 1.4.7 6.471823E-01 8.511790E-01 7.749942E-01

7.1.4 6.471823E-01 8.471284E-01 7.664424E-01
1-7.4 6.187584E-01 8.476175E-01 7.590084E-01
7.7.7 6.120364E-01 8.452433E-01 7.554057E-01

unit_cube_uniform _ls5_p 7.7.7 6.120364E-01 8.627393E-01 8.384065E-01
1.4.7 6.111957E-01 8.687683E-01 8.481064E-01
1.7.4 6.034010E-01 8.677525E-01 8.453992E-01
7.7 5.994922E-01 8.630602E-01 8.385783E-01

u n it_ sp h e re _ ls2 .5 7.1.4 6.419740E-01 8.440406E-01 7.833729E-01
7 6.403829E-01 8.395244E-01 7.738736E-01

7.7.7 6.382065E-01 8.376178E-01 7.728663E-01
1.4.7 6.370983E-01 8.491822E-01 7.914319E-01

u n it_ sp h e re _ ls2 .5_p 7 5.748931E-01 8.563233E-01 8.290760E-01
7.7 5.746365E-01 8.556891E-01 8.285673E-01

7.7.7 5.703289E-01 8.549336E-01 8.275765E-01
7.1.4 5.334751E-01 8.567989E-01 8.319894E-01

un it_sphere_ ls5

.................................................

1.4.7 6.485181E-01 8.548397E-01 8.116535E-01
1.7.4 6.434921E-01 8.527722E-01 8.026480E-01
7.1.4 6.333287E-01 8.499531E-01 8.032113E-01
7.7.7 6.305372E-01 8.451330E-01 7.920440E-01

unit_sphere_ls5_p 1.4.7 5.801460E-01 8.676786E-01 8.505014E-01
7.7 5.489954E-01 8.595203E-01 8.387870E-01
7 5.353065E-01 8.588743E-01 8.378221E-01

7.7.7 5.309018E-01 8.591158E-01 8.381989E-01
u n it_ te t_ ls lO 1.4.7 6.276490E-01 8.107064E-01 7.575453E-01

7.1.4 5.990150E-01 8.033347E-01 7.429649E-01
1.7.4 5.950844E-01 8.073979E-01 7.461267E-01
7.7 5.822827E-01 7.987607E-G1 7.327638E-01

u n it„ te t_ ls 5 1.4.7 6.398518E-01 8.159581E-01 7.12966iE-01
1.7.4 6.383368E-01 8.153338E-01 7.128739E-01
7.1.4 6.359849E-01 8.155844E-01 7.130149E-01
7-7.7 6.127451E-01 8.151826E-01 7.092689E-01

u n it_ te t_ ls5 _ p 1.7.4 5.879018E-01 8.289191E-01 7.927101E-01
7 5.669763E-01 8.263364E-01 7.896228E-01

1.4.7 5.571118E-01 8.302443E-01 7.951391E-01
7.7 5.542247E-01 8.261727E-01 7.895135E-01

Table A.7: H C *^(0 .5 , Q e x p ) ,  where $ is the set of trial movesets. Top four 

movesets displayed and sorted with respect to Qmin- Vertex movement uses 

Random VertexM ove(50). Iteration counts contained in table 10.5



A Experim ental data 255

Complex Moveset Minimum Average Exp
un it_cube_unifo rm _ls5 1.7 A 6.463313E-01 8.610034E-01 8.050951E-01

7-1-4 6.413499E-01 8.597012E-01 8.016946E-01
7-7-7 6.120364E-01 8.549947E-01 7.915004E-01
7-7 6.120364E-01 8.554598E-01 7.918305E-01

unit_cube_uniform _ls5_p 1-7-4 5.832147E-01 8.679064E-01 8.551390E-01
1-4-7 5.789842E-01 8.697232E-G1 8.577366E-01
7-1-4 5.766894E-01 8.69051 lE-01 8.566852E-01
7-7-7 5.751152E-01 8.641128E-01 8.503751E-01

u n i t_ s p h e re _ ls 2 .5 7-7-7 6.242404E-01 8.465857E-01 7.963950E-01
7-1-4 6.226053E-01 8.511562E-01 8.037855E-01
7-7 6.220086E-01 8.473223E-01 7.967760E-01
7 6.205470E-01 8.474336E-01 7.970066E-01

u n it_ sp h e re _ ls2 .5 _ p 7-7 5.401196E-01 8.587948E-01 8.439092E-01
7-7-7 5.119008E-01 8.589158E-G1 8.434445E-01
7-1-4 4.922844E-01 8.640191E-01 8.494859E-01
1-4-7 4.868717E-01 8.706187E-01 8.573114E-01

u n it_ sp h e re _ ls5 1-4-7 6.371157E-01 8.607121E-01 8.2701 lOE-01
7 6.135726E-01 8.513827E-01 8.089073E-01

7-7 6.119874E-01 8.520748E-01 8.094846E-01
7-1-4 6.090115E-01 8.566131E-01 8.179355E-01

u n it_ sp h e re_ ls5 _ p 1-4-7 5.185597E-01 8.718560E-01 8.616650E-01
7 4.997360E-01 8.610429E-01 8.489510E-01

7-7-7 4.834674E-01 8.613785E-01 8.493944E-01
7-7 4.774108E-01 8.617546E-01 8.498194E-01

u n i t_ te t_ ls lO 1-4-7 5.811000E-01 8.199468E-01 7.762050E-01
1-7-4 5.751104E-01 8.178272E-01 7.716920E-01
7-1-4 5.620698E-01 8.161025E-01 7.678931E-01
7-7-7 5.381209E-01 8.092558E-01 7.580509E-01

u n i t_ te t_ l s 5 1-7-4 6.353502E-01 8.208550E-01 7.413190E-01
1-4-7 6.316327E-01 8.215600E-01 7.443575E-01
7-7 5.988894E-01 8.202383E-01 7.394727E-01
7 5.973378E-01 8.204010E-01 7.395319E-01

u n i t_ te t_ ls 5 _ p 7-7-7 5.480237E-01 8.275669E-01 8.060907E-01
7-7 5.395682E-01 8.273467E-01 8.061237E-01

7-1-4 5.377772E-01 8.290437E-01 8.075977E-01
7 5.364549E-01 8.275493E-01 8.062714E-01

Table A . 8 :  H C g j ^ ^ ( 0 . 7 ,  Q e x p ) ,  where $  is the set of trial movesets. Top four 

movesets displayed and sorted with respect to Qmin- Vertex movement uses 

Random VertexM ove(50). Iteration counts contained in table 10.5



2 5 6 A E xperim ental data

Complex Moveset With annealing 
((5 =  0.05)

Without annealing 
(S = 0.05) Ratio

unit_cube_uniform _lslO 7 A A 6.303E-01 6.263E-01 0.9,0.8,0.7,0.6
1.7 A 6.303E-01 6.210E-01 0.1
1..4.7 6.547E-01 5.919E-01 0.3,0.4
7.2.5 5.745E-01 5.738E-01 0.1

unit_cube_uniform _ls5 1.7.4 6.471E-01 6.416E-01 0.3
n 6.12E-01 6.12E-01 0.1 -0 .9

7-1.4 6.416E-01 6.12E-01 0.1,0.6
2.7.5 6.12E-01 6.12E-01 0.1 -0 .9

unit_cube,.unif orm_ls5_p 7-1.4 6.413E-01 6.359E-01 0.6 ,0.5,0.4,0.3
1.4.7 6.37E 01 6.311E-01 0.7
7-7.7 6.12E-01 6.12E-01 0 1 o

2-7-5 6.12E-01 6.12E-01 0.1 -0 .9
u n it_ sp h e re _ ls2 .5 1-4-7 7.199E-01 6.92E-01 0.8

1-7-4 6.7E-01 6.71E-01 0.3
7-3-6 6.725E-01 6.672E-01 0.9
7_2_5 6 725E-01 6.671E-01 0.5

u n it_ sp h e re _ ls2 .5_p 7-7 6.693E-01 6.67E-01 0.4
7-2-5 6.697E-01 6.662E-01 0.9
7-3.6 6.703E-01 6.66E-01 0.7
2-5-7 6.701E-01 6.638E-01 0.8

un it_sphere_ ls5 7 6.565E-01 6.553E-01 0.6
7-2.5 6.576E-01 6.541E-01 0.7
7.7.7 6.578E-01 6.538E-01 0.4
7.3.6 6.598E-01 6.535E-01 0.9

u n it_ te t_ ls lO 7.1.4 6 475E-01 6.43E-01 0.2
3.6.7 6.277E-01 6.198E‘-01 0.8
7.7.7 6.289&01 6.196E-01 0.7

7 6.264E-01 6.19E-01 0.9
u n it_ te t_ ls lO _ p 2.5.7 6.209E-01 6.18E-01 0.9

7_2.5 6.263E-01 6.175E-01 0.8
7.3.6 6.245E-01 6.148B-01 0.9
3.6 7 6.226E-01 6.145E-01 0.8

u n i t . t e t_ l s 5 7.1.4 6:477E-01 6.460E-01 0.8
1.7.4 6.47E-01 6.433E-01 0.9
7.2.5 6.182E-01 6.178E-01 0.4
2.5.7 6.186E-01 6.172E-01 0.3

u n it_ te t_ ls5 _ p 3.7.6 6.207E-01 6.17E-01 0.2
7 6.164E-01 6.161E-01 0.7

1-4-7 6.629E-01 6.159E-01 0.9
7.7 6.175E-01 6.159E-01 0.2

Table A .9‘ A.NN^y^^(0.05, 0.05, 0.0, 4, Qexp), where $  is the set of trial movesets. M a  = 

0.5



A Experim ental data 257

Complex Moveset Minimum Average Exp
un it_cube_un ifo rm _ls5 1-7-4 6.427527E-01 7.965807E-01 6.836411E-01

7.1.4 6.393169E-01 7.968021E-01 6.94281 lE-01
7 6.120364E-01 8.018810E-01 6.816010E-01

2.7.5 6.120364E-01 8.273066E-01 l.OOOOOOE+00
unit_cube_unifo rm _ls5_p 7.1.4 6.413499E-01 8.175641E-01 7.224910E-01

1.4.7 6.311172E-01 7.959168E-01 7.067317E-G1
7.7.7 6.120364E-01 8.169280E-01 7.091039E-01
2.7.5 6.120364E-01 8.224899E-01 7.048119E-01

u n i t_ s p h e re _ ls 2 .5 1.4.7 7.271909E-01 8.374628E-01 7.756989E-01
7.3.6 6.719211E-01 8.075378E-01 7.146410E-01
7_2.5 6.689367E-01 8.079644E-01 7.145446E-01
1.7.4 6.221954E-01 7.813347E-01 6.773665E-01

u n i t_ s p h e re _ ls 2 . 5_p 7.7 6.710665E-01 8.085818E-01 7.182487E-01
7.2.5 6.689330E-01 8.099929E-G1 7.189326E-01
7.3.6 6.672382E-01 8.099777E-01 7.188180E-01
2.5.7 6.671142E-01 8.097534E-01 7.187763E-01

u n it_ sp h e re _ ls5 7.2.5 6.609285E-01 8.295742E-01 l.OOOOOOE+00
7.3.6 6.598302E-01 8.292684E-01 l.OOOOOOE+00

7 6.576994E-01 8.180162E-01 7.205974E-01
7.7.7 6.540082E-01 8.162238E-01 7.196402E-01

u n i t_ te t_ ls lO 7.1.4 6.428749E-01 7.925662E-01 7.156888E-01
7 6.290127E-01 7.727478E-01 6.817236E-01

3.6.7 6.258604E-01 7.744119E-01 6.810747E-01
7.7.7 6.219711E-01 7.741725E-01 6.808189E-01

u n it_ te t_ ls lO _ p 7.2.5 6.242000E-01 7.766014E-01 6.896488E-01
7.3.6 6.233667E-01 7.781185E-01 6.898000E-01
2.5.7 6.209938E-01 7.771185E-01 6.901012E-01
3.6.7 6.209413E-01 7.782990E-01 6.897081E-01

u n i t_ te t_ l s 5 7.1.4 6.700134E-01 8.092502E-01 6.978628E-01
1.7.4 6.211676E-01 7.817850E-01 6.678285E-01
2.5.7 6.198011E-01 8.073732E-01 6.755696E-01
7.2.5 6.165263E-01 8.069443E-01 6.757502E-01

u n i t_ te t_ ls 5 _ p 1.4.7 6.518129E-01 8.007585E-01 7.051991E-01
7 6.169791E-01 8.106104E-01 6.861588E-01

3.7_6 6.156602E-01 8.088224E-01 6.844189E-01
7.7 6.151287E-01 8.103187E-01 6.861165E-G1

Table A . 10: A N N g ^ (0 .0 5 , 0.05, 0.0, 1, Qexp) ,  where $  is the set of trial movesets (see 

table 10.14). Top four movesets displayed and sorted with respect to  Qmin- Vertex 

movement uses R an d o m V ertex M o v e(5 0 ). Iteration counts contained in table 10.5. 

r A  =  0.9
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Complex Moveset Minimum Average Exp
unit_cube_uniform_ls5 1-4,7 6.6G0955E-01 8.212244E-01 l.OOOOOOE+00

7-1-4 6.416344E-01 8.290349E-01 l.OOOOOOE+00
2-5-7 6.120364E-01 8.423013E-01 l.OOOOOOE+00
1-7-4 5.495956E-01 7.581707E-01 l.OOOOOOE+00

unit_cube_uniform_ls5_p 1-4.7 6.413499E-01 8.039673E-01 l.OOOOOOE+00
3.7.6 6.120364E-01 8.344851E-01 l.OOOOOOE+00
7-3-6 6.120364E-01 8.393540E-01 l.OOOOOOE+00
2-7-5 6.120364E-01 8.311118E-01 l.OOOOOOE+00

unit_sphere_ls2.5 7-1-4 7.392764E-01 8.364639E-01 l.OOOOOOE+00
7-2-5 6.818117E-01 8.146235E-01 l.OOOOOOE+00
7-3-6 6.811264E-01 8.161927E-01 l.OOOOOOE+00
3-6.7 6.801477E-01 8.149397E-01 1 OOOOOOE+00

unit_sphere_ls2.5_p 2-5-7 6.827817E-01 8.170622E-01 l.OOOOOOE+00
7-2.5 6.817980E-01 8.183287E-01 l.OOOOOOE+00
7-1-4 6.685203E-01 8.379325E-01 1 OOOOOOE+00
1-7-4 6.591308E-01 8.106985E-01 l.OOOOOOE+00

unit_sphere_ls5 3-6-7 6.581856E-01 8.301402E-01 l.OOOOOOE+00
2-5-7 6.555858E-01 8.291704E-01 l.OOOOOOE+00
1-4-7 6.446057E-01 8.036577E-01 l.OOOOOOE+00
1-7-4 3.624200E-01“ 8.284432E-01 1 OOOOOOE+00

unit_sphere_ls5_p 7-3-6 1.000637E-04 5.193970E-01 l.OOOOOOE+00
7-2-5 1.000637E-04 5.194754E-01 l.OOOOOOE+00
7.1.4 4.147351E-05 4.648868E-01 l.OOOOOOE+00

unit_tet_lslO 7-1-4 6.472304E-01 8.269802E-01 l.OOOOOOE+00
3-7-6 5.082649E-01 7.576823E-01 l.OOOOOOE+00
7-1-5 3.559775E-01 7.717598E-01 l.OOOOOOE+00
2-4-7 3.471334E-01 5.831469E-01 l.OOOOOOE+00

unit_tet_lslO_p 1-7-4 4.237747E-01 6.653139E-01 l.OOOOOOE+00
7-2-5 1.265230E-04 5.426730E-01 l.OOOOOOE-f-OO
1.4.7 1.175920E-04 4.023193E-01 l.OOOOOOE+00
7-1-4 4.419492E-05 4.356592E-01 l.OOOOOOE+OO

unit_tet_ls5 1-4-7 6.839971E-01 8.158618E-01 l.OOOOOOE+OO
7-1-4 6.491819E-01 8.089042E-01 l.OOOOOOE+OO
7-3-6 6.220186E-01 8.115129E-01 l.OOOOOOE+OO
2.5.7 6.217671E-01 8.099576E-01 l.OOOOOOE+OO

unit_tet_ls5_p 1-4-7 6.727162E-01 8.006320E-01 l.OOOOOOE+OO
7-3-6 6.219529E-01 8.120056E-01 l;O0OO0OE+OO
2-7-5 6.183501E-01 8.091547E-01 l.OOOOOOE+OO
3-6-7 1 099580E-04 5.298293E-01 l.OOOOOOE+OO

“The final value was not the best value; the best value belonged to some intermediate complex

Table A .11: A N N 5 ^ (0 .0 5 , 0.05, 0.0, 1, Q m i n ) ,  with =  0.1 and $  is the set of movesets 

appearing in table 10.17
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Complex Moveset Minimum Average Exp
unit_cube_uniform_ls5 1AJ7 6.561221E-01 8.105409E-01 l.OOOOOOE+00

7-1-4 6.416344E-01 8.290349E-01 l.OOOOOOE+00
2-5-7 6.120364E-01 8.404485E-01 l.OOOOOOE+00
1-7-4 5.495956E-01 7.581707E-01 l.OOOOOOE+00

unit_cube_uniform_ls5_p 1-4-7 6.413499E-01 8.039673E-01 l.OOOOOOE+00
3-7-6 6.120364E-01 8.344851E-01 l.OOOOOOE+00
7-3-6 6.120364E-01 8.444106E-01 l.OOOOOOE+00
2-7-5 6.120364E-01 8.311118E-01 l.OOOOOOE+00

unit_sphere_ls2.5 7-1-4 7.323087E-01 8.409125E-01 l.OOOOOOE+00
3-6-7 6.812946E-01 8.139110E-01 l.OOOOOOE+00
7-2-5 6.800187E-01 8.150867E-01 l.OOOOOOE+00
7-3-6 6.781111E-01 8.201279E-01 l.OOOOOOE+00

unit_sphere_ls2.5_p 7-2-5 6.817047E-01 8.190919E-01 l.OOOOOOE+00
2-5-7 6.812360E-01 8.167460E-01 l.OOOOOOE+00
7-1-4 6.685203E-01 8.379325E-01 l.OOOOOOE+00
1-7-4 6.591308E-01 8.106985E-01 l.OOOOOOE+00

unit_sphere_ls5 3-6-7 6.621649E-01 8.289838E-01 l.OOOOOOE+00
2-5-7 6.586300E-01 8.300132E-01 l.OOOOOOE+00
1-4-7 6.446057E-01 8.036577E-01 l.OOOOOOE+00
1-7-4 3.624200E-01“ 8.284432E-01 l.OOOOOOE+00

unit_sphere_ls5_p 7-3-6 1.000637E-04 5.193970E-01 l.OOOOOOE+OO
7-2-5 1.000637E-04 5.194754E-01 l.OOOOOOE+00
7-1-4 4.147351E-05 4.648868E-01 l.OOOOOOE+OO

unit_tet_lslO 7-1-4 6.472304E-01 8.269802E-01 l.OOOOOOE+OO
3-7-6 5.082649E-01 7.576823E-01 l.OOOOOOE+OO
7-1-5 3.559775E-01 7.717598E-01 l.OOOOOOE+OO
2-4-7 3.471334E-01 5.831469E-01 l.OOOOOOE+OO

unit_tet_lslO_p 1-7-4 4.034390E-01 6.461076E-01 l.OOOOOOE+OO
7-2-5 1.265230E-04 5.426730E-01 l.OOOOOOE+OO
1-4-7 1.175920E-04 4.023193E-01 l.OOOOOOE+OO
7-1-4 4.419492E-05 4.356592E-01 l.OOOOOOE+OO

unit_tet_ls5 1-4-7 6.768201E-01 8.129521E-01 l.OOOOOOE+OO
7-1-4 6.486048E-01 8.109463E-01 l.OOOOOOE+OO
2-5-7 6.225942E-01 8.096633E-01 l.OOOOOOE+OO
7-3-6 6.219875E-01 8.142792E-01 l.OOOOOOE+OO

unit_tet_ls5_p 1-4-7 6.846089E-01 8.030519E-01 l.OOOOOOE+OO
7-3-6 6.227714E-01 8.080218E-01 l.OOOOOOE+OO
3-6-7 1.099580E-04 5.298293E-01 l.OOOOOOE+OO

“The final value was not the best value; the best value belonged to some intermediate complex

Table A.12: ANN|^(0.05, 0.05, 0.0, 1, Qmin), with = 0.5 and $ is the set of movesets 
appearing in table 10.17
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Complex Moveset Minimum Average Exp
unit_cube_uniform _ls5 1_4_7 6.514371E-01 8.140185E-01 l.OOOOOOE+00

lAA 6.413499E-01 8.359800E-01 l.OOOOOOE+00
1.7.4 6.187584E-01 8.093102E-01 l.OOOOOOE+00
2.5.7 6.120364E-01 8.431382E-01 l.OOOOOOE+00

unit„cube_uniform _ls5_p 1.4.7 6.204724E-01 7.904055E-01 l.OOOOOOE+00
7.3.6 6.120364E-01 8.385739E-01 l.OOOOOOE+00
2.7.5 6.120364E-01 8.344215E-01 l.OOOOOOE+00
3.7.6 3.233958E-05“ 5.098129E-01 l.OOOOOOE+00

u n it_ sp h e re _ ls2 .5 7.1.4 7.280139E-01 8.346542E-01 l.OOOOOOE+00
7.2.5 6.803698E-01 8.211651E-01 l.OOOOOOE+00
3.6.7 6.793550E-01 8.177439E-01 l.OOOOOOE+00
7.3-6 6.786526E-01 8.151951E-01 l.OOOOOOE+00

u n it_ sp h e re _ ls2 .5_p 7.1.4 7.216211E-01 8.421760E-01 l.OOOOOOE+00
7.2.5 6.816267E-01 8.176500E-01 l.OOOOOOE+00
2.5.7 6.803858E-01 8.184672E-01 l.OOOOOOE+00
1.7.4 6.147990E-01 7.897536E-01 l.OOOOOOE+00

un it_sphere ..ls5 3.6.7 6.605340E-01 8.314514E-01 l.OOGOOOE+00
2.5.7 6.537991E-01 8.274833E-01 l.OOOOOOE+00
1.4.7 5.835285E-01 7.787699E-G1 l.OOOOOOE+00
1.7.4 3.624200E-01^ 8.284432E-01 l.OOOOOOE+00

unit_sptiere_ls5_p 7.3.6 1.068782E-04 5.133171E-01 l.OOOOOOE+00
7.1.4 1.000637E-04 4.782559E-01 l.OOOOOOE+OO
7.2.5 5.673625E-05 4.943085E-01 l.OOOOOOE+00

u n it_ te t_ ls lO 7.1.4 6.483966E-01 8.249507E-01 l.OOOOOOE+OO
3.7.6 5.032637E-01 7.510977E-01 l.OOOOOOE+OO
7.1.5 3.559775E-01 7.719513E-01 l.OOOOOOE+OO
2.4.7 3.470749E-01'‘ 7.680857E-01 l.OOOOOOE+OO

u n it_ te t_ ls lO _ p 7.1.4 1.218602E-03 5.539695E-01 l.OOOOOOE+OO
7.2.5 1.359824E-04 5.289377E-01 l.OOOOOOE+OO

u n it_ te t_ ls5 7.1.4 6.485386E-01 8.050926E-01 l.OOOOOOE+OO
2.5.7 6.220843E-01 8.093733E-01 l.OOOOOOE+OO
1.4.7 6.219929E-01 7.943483E-01 l.OOOOOOE+OO
7.3.6 6.217357E-01 8.075503E-01 l.OOOOOOE+OO

u n it_ te t_ ls5 _ p 7.3.6 6.217329E-01 8.142246E-01 l.OOOOOOE+OO
2.7_5 6.211871E-01 8.138547E-01 l.OOOOOOE+OO
1.4.7 6.208841E-01 7.899182E-01 l.OOOOOOE+OO
3.6.7 1.099580E-04 5.171956E-01 l.OOOOOOE+OO

“The final value was not the best value; the best value belonged to some intermediate complex

Table A .13: A N N |^ (0 .0 5 , 0.05, 0.0, 1, Qmin), with =  0.9 and $  is the set of movesets 

appearing in table 10.17
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Figure A.l: Variation in the number of cells and vertices in multiple moveset mode (using 

movesets of length 4) at neighbour-level 1
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Figure A .2: Variation in the number of cells and vertices in multiple moveset mode (using 

movesets of length 4) at neighbour-level 2
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Unit_Cube_uniform_i8l0.me8h3 -- all movesets
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Figure A .3: Improvement profile for four complexes to which H C ^ ^ (0 .0 5 , Qexp) has 

been applied for movesets of length 4 at neighbour-level 1
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Figure A.4; Improvement profile for four complexes to which H C ^ j\^ (0 .05 , Qexp) has 

been applied for movesets of length 4 at neighbour-level 2
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Table A .14: H C |^ (0 .0 5 , Q e x p ) ,  where $  =  | l [ n )  =  4}, and !F {n )  =  1}: Top fifteen
movesets displayed and sorted with respect to Qmin; =  1; Vertex movement using 
R an d om V ertexM ove(50 ); Iteration counts contained in table 10.31 on page 231

Complex Moveset Minimum Average Exp
u n it_cu b e_u n iform _ls5 7_1.7.4 6.471823E-01 8.138693E-01 6.988862E-01

7-1-4.7 6.471823E-01 8.070363E-01 6.973912E-01
7-7-1-4 6.471823E-01 8.114123E-01 6.997921E-01
1-4-7-7 6.471823E-01 8.108710E-01 6.992656E-01
1-7-7-4 6.416344E-01 8.098391E-01 6.893790E-01
1-7-4-7 6.187584E-01 8.036643E-01 6.872431E-01
7.7-7-7 6.120364E-01 8.094358E-01 6.788649E-01
3-6-7-7 6.120364E-01 8.050970E-01 6.799548E-01
7-7-3-6 6.120364E-01 8.068731E-01 6.794647E-01
3-7-7-6 6.120364E-01 8.134399E-01 6.734623E-01
7-3-7-6 6.120364E-01 8.048735E-01 6.797123E-01
7-2-7-S 6.120364E-01 8.070667E-01 6.793753E-01
7-2-5-7 6.120364E-01 8.064511E-01 6.797463E-01
7-7-2-5 6.120364E-01 8.105510E-01 6.791777E-01
2-5-7-7 6.120364E-01 8.119041E-01 6.785788E-01

u n it_ s p h e r e _ ls 2 .5 1-4-7-7 6.982302E-01 8.208873E-01 7.324535E-01
7-1-4-7 6.716499E-01 8.103955E-01 7.190223E-01
7-7-7-7 6.696525E-01 8.102611E-01 7.088951E-01
7-7_2-5 6.679376E-01 8.103305E-01 7.092388E-01
7-7-3-6 6.678276E-01 8.123836E-01 7.100076E-01
3-6-7-7 6.672086E-01 8.116110E-01 7.113139E-01
3-7-6-7 6.665556E-01 8.079366E-01 7.084657E-01
7-2-5-7 6.662027E-01 8.081345E-01 7.114717E-01
2-7-5-7 6.659389E-01 8.097092E-01 7.098571E-01
2-5-7-7 6.649438E-01 8.099076E-01 7.090518E-01
7-2-7-S 6.648027E-01 8.092304E-01 7.075573E-01
7-7-1-4 6.643065E-01 8.104556E-01 7.138419E-01
1-7-4-7 6.639308E-01 8.077336E-01 7.063302E-01
7-3-7-6 6.604130E-01 8.061316E-01 7.082604E-01
7-3-6-7 6.584912E-01 8.071962E-01 7.085479E-01

u n it_ te t_ ls lO 7-1-4-7 6.444586E-01 7.832065E-01 6.992461E-01
7-7-1-4 6.388803E-01 7.746797E-01 6.863658E-01
7-1.7-4 6.272510E-01 7.711170E-01 6.792020E-01
7-7-3-6 6.228732E-01 7.703746E-01 6.766238E-01
7.2 .5 .7 6.211474E-01 7.721012E-01 6.775441E-01
1.7.4.7 6.193031E-01 7.701472E-01 6.790552E-01
7JJ2.5 6.167236E-01 7.714349E-01 6.766143E-01
2_5.7.7 6.166868E-01 7.706466E-01 6.761293E-01
Z J J o J 6.156014E-01 7.698328E-01 6.737279E-01
2.7.S .7 6.146117E-01 7.688320E-01 6.718636E-01
7.S.7.6 6.139730E-01 7.689953E-01 6.740317E-01
7 .3 .6 J 6.123762E-01 7.695638E-01 6.751049E-01
S .6.7.7 6.121448E-01 7.704664E-01 6.759715E-01
7.7.7.7 6.108096E-01 7.729236E-01 6.742461E-01
1-4.7.7 6.083107E-01 7.741431E-01 6.887157E-01

u n it _ t e t _ ls 5 7.1.7.4 6.473614E-01 8.097371E-01 6.881560E-01
7-1-4-7 6.463768E-01 8.110370E-01 6.882660E-01

continued on next page
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Table A.14: continued

Complex Moveset Minimum Average Exp
1_7_4.7 6 457168E-01 8.114582E-01 6.883013E-01
1-4.7-7 6.446050E-01 8.114538E-01 6.879054E-01
7-7-1-4 6.441055E-01 8.055649E-01 6.818897E-01
1-7-7-4 6.322068E-01 8.027819E-01 6.794992E-01
3-7-6-7 6.181938E-01 8.072743E-01 6.754964E-01
7-2-7-5 6.179625E-01 8.076058E-01 6.753553E-01
3-6-7-7 6.178606E-01 8.073184E-01 6.755596E-01
7-7-2-5 6.172919E-01 8.061017E-01 6.754253E-01
7-3.7-6 6.165929E-01 8.076302E-01 6.754248E-01
2-5-7.7 6.165428E-01 8.070423E-01 6.754757E-01
7-3-6-7 6.164474E-01 8.069733E-01 6.752972E-01
7-2-5.7 6.161380E-01 8.074989E-01 6.755714E-01
7-7-7-7 6.156701E-01 8.080261E-01 6.750099E-01
Table A. 14: end of table

Table A . 15: H C 5 j ^ ^ ( 0 . 0 5 ,  Q e x p ) ,  where $  = { //1 Z(/i) =  4 ,  and ^ ( / i )  = 1}. Top fifteen 
movesets excluding movesets containing vertex moves displayed and sorted with respect 
to Qmin; ni = l\ Vertex movement using Random VertexM ove(50). Iteration counts 
contained in table 10.31 on page 231

Complex Moveset Minimum Average Exp
unit_cube_uniform _ls5 1-1-4-5 5.461515E-01 7.981148E-01 5.963950E-01

1-1-4-4 5.400240E-01 7.850949E-01 5.809612E-01
1-3-6-5 5.242151E-01 8.419987E-01 5.585014E-01
1-5-3-6 5.242151E-01 8.419060E-01 5.581360E-01
3-1-5-5 5.242151E-01 8.419060E-01 5.581360E-01
1-1-5-6 5.242151E-01 8.419060E-01 5.581360E-01
2-1-5-5 5.242151E-01 8.419060E-01 5.581360E-01
3-1-4-5 5.242151E-01 8.419987E-01 5.585014E-01
2-5-1-5 5.242151E-01 8.419060E-01 5.581360E-01
1-2-5-5 5.242151E-01 8.419060E-01 5.581360E-01
1-5-2-4 5.242151E-01 8.407798E-01 5.568778E-01
1-1-5-5 5.242151E-01 8.419060E-01 5.581360E-01
1-2-4-5 5.242151E-01 8 419060E-01 5.581360E-01
1-5-1-4 5.242151E-01 8.419060E-01 5.581360E-01
3-6-1-5 5.242151E-01 8.419060E-01 5.581360E-01

u n it_ sp h e re _ ls2 .5 2-4-1-5 4.691351E-01 7.883871E-01 5.038801E-01
1-2-5-4 4.691351E-01 7.774381E-01 5.077760E-01
1-4-2-5 4.612940E-01 7.726533E-01 4.978325E-01
3-6-1-4 4.612940E-01 7.719395E-01 4.980458E-01
1-4-3-6 4.612940E-01 7.730580E-01 4.951542E-01
1-1-4-5 4.466261E-01 7.807951E-01 4.983320E-01
1-4-1-5 4.466261E-01 8.300679E-01 4.764211E-01
1-3-6-4 4.444434E-01 7.723167E-01 4.882180E-01
2-1-4-5 4.352296E-01 7.820844E-01 4.716265E-01
2-1-4-4 4.253373E-01 7.640045E-01 4.566664E-01

continued on next page
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Table A. 15: continued

Complex Moveset Minimum Average Exp
2_4_2_5 3.967812E-01 8.076158E-01 4.354021E-01
3.1.5.4 3.967812E-01 7.646447E-01 4.471743E-01
3.2.4.4 3.967812E-01 8.114178E-01 4.349697E-01
2-5-2.4 3.967812E-01 8.089682E-01 4.357952E-01
l-2_4_6 3.967812E-01 7.704404E-01 4.459991E-01

u n it_ te t_ ls lO 1_1_4.5 3.851682E-01 7.081368E-01 4.295998E-01
1-3-6-4 3.828227E-01 7.127647E-01 4.354928E-01
1.4^.5 3.828227E-01 7.127221E-01 4.337268E-01
3-6-1-4 3.757559E-01 7.108537E-01 4.302657E-01
2_1.4_5 3.757559E-01 7.139138E-01 4.128499E-01
3-l_5-4 3.757559E-01 7.151802E-01 4.306931E-01
1-4.1_4 3.757559E-01 6.973651E-01 4.251208E-01
2-5-1-4 3.717329E-01 7.118480E-01 4.244283E-01
1-2-5-4 3.717329E-01 7.136823E-01 4.271213E-01
1-4-1-5 3.700550E-01 7.524612E-01 4.029766E-01
1-1-4-4 3.700550E-01 6.905203E-01 4.442764E-01
1-4-3-6 3.700538E-01 7.111083E-01 4.242958E-01
2-4-1-5 3.651688E-01 7.242767E-01 4.195596E-01
1-5-2-5 3.559775E-01 7.685281E-01 3.752135E-01
1-1-5-5 3.559775E-01 7.685281E-01 3.752135E-01

u n it_ te t_ ls 5 3-6-2_4 4.351112E-01 8.020349E-01 4.560268E-01
2-4-3-6 4.351112E-01 8.020349E-01 4.560268E-01
2-3-6-4 4.351112E-01 8.020349E-01 4.560268E-01
1-4-3-6 4.351112E-01 7.733061E-01 4.777541E-01
2-2-4-6 4.351112E-01 8.020349E-01 4.560268E-01
3-6-1-4 4.351112E-01 7.698668E-01 4.773004E-01
l-3_6-4 4.351112E-01 7.534924E-01 4.839383E-01
2-2_5-4 4.351112E-01 8.020349E-01 4.560268E-01
2-4-2_5 4.351112E-01 8.020349E-01 4.560268E-01
3-1-5-4 4.351112E-01 7.733061E-01 4.777541E-01
3-2-4-4 4.351112E-01 8.020349E-01 4.560268E-01
2-5-2-4 4.351112E-01 8.020349E-01 4.560268E-01
l-2_4_6 4.351112E-01 7.698131E-01 4.773463E-01
2-l_4_6 4.351112E-01 8.020349E-01 4.560268E-01
1-4-2-5 4.351112E-01 7.675120E-01 4.739731E-01
Table A. 15: end of table
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Table A .16: H C ^ ^ (0 .0 5 , Q e x p ) ,  where $  =  { / i  | l{fx) =  4}, and T { f i )  =  1}: Top fifteen 
movesets displayed and sorted with respect to Qmin; =  2; Vertex movement using 
R an d om V ertexM ove(50 ); Iteration counts contained in table 10.31 on page 231

Complex Moveset Minimum Average Exp
u n it_cu b e_u n iform _ls5 I J A J 6.471823E-01 8.130172E-01 6.969025E-01

1.7 J  A 6.413499E-01 8 113530E-01 6.931980E-01
7 .1 A .7 6.413499E-01 8.115049E-01 6.933531E-01
1 A J .7 6.393169E-01 8.077399E-01 6.910784E-01
7 A .7 A 6.393169E-01 8.120529E-01 6.896893E-01
7_7-3-6 6.120364E-01 8.088304E-01 6.793448E-01
7_2.7_5 6.120364E-01 8.079292E-01 6.794625E-01
7^-5_7 6.120364E-01 8.076901E-01 6.792347E-01
2_7-5-7 6.120364E-01 8.089873E-01 6.789948E-01
7.7.1.4 6.120364E-01 8.090324E-01 6.849529E-01
2.7.7.S 6.120364E-01 8.125393E-01 6.772570E-01
3.7 .6 .7 6.120364E-01 8.110531E-01 6.784703E-01
7.7 .7 .7 6.120364E-01 8.100315E-01 6.779212E-01
3.6 .7 .7 6.120364E-01 8.040592E-01 6.797345E-01
7.3 .6 .7 6.120364E-01 8.084629E-01 6.789284E-01

u n it_ s p h e r e _ ls 2 .5 7.7 .7 .7 6.684439E-01 8.119514E-01 7.094507E-01
1-7-4.7 6.679153E-01 8.077795E-01 7.101627E-01
2.7 .7 .5 6.668366E-01 8.113663E-01 7.055762E-01
7-3.6.7 6.664022E-01 8.078775E-01 7.087251E-01
3-7_6-7 6.655762E-01 8.094283E-01 7.081297E-01
7.7.1.4 6.649492E-01 8.091881E-01 7.027558E-01
7.7-2-5 6.648322E-01 8.127082E-01 7.084146E-01
7-3-7-6 6.636983E-01 8.107894E-01 7.042459E-01
2_5.7.7 6.630467E-01 8.112591E-01 7.086250E-01
7.1 .7 .4 6.628763E-01 8.075181E-01 7.085922E-01
2.7 .5 .7 6.627746E-01 8.084943E-01 7.078974E-01
7.7.3.6 6.624374E-01 8.096787E-01 7.065571E-01
7J2.7.5 6.612181E-01 8.103512E-01 7.068175E-01
3-6.7.7 6.596129E-01 8.109166E-01 7.062959E-01
7J2-5.7 6.581132E-01 8.102056E-01 7.058209E-01

u n it_ te t_ ls lO 1.4.7.7 6.374807E-01 7.747397E-01 6.836300E-01
1.7-7.4 6.187993E-01 7.743777E-01 6.768971E-01
3.6-7-7 6 153129E-01 7.712608E-01 6.743378E-01
2-7-S-7 6.152421E-01 7.741481E-01 6.741838E-01
2.5 .7 .7 6.150897E-01 7.713158E-01 6.736911E-01
7J2.5.7 6.142882E-01 7.725124E-01 6.754737E-01
1.7.4.7 6.141040E-01 7.727071E-01 6.767957E-01
7.3 .6 .7 6.140836E-01 7.722130E-01 6.730972E-01
3-7.7.6 6.132740E-01 7.744023E-01 6.695950E-01
7.7J2.5 6.132605E-01 7.713592E-01 6.734849E-01
7-3.7-6 6.126908E-01 7.728384E-01 6.745674E-01
7.1 .4 .7 6.126875E-01 7.740021E-01 6.805240E-01
7-1-7.4 6.060119E-01 7.728135E-01 6.734768E-01
7 .7 .7 J 6.043011E-01 7.718098E-01 6.731329E-01
7J2J.5 6.038690E-01 7.723929E-01 6.724919E-01

u n it _ t e t _ ls 5 1.4.7.7 6.471196E-01 8.103300E-01 6.880724E-01
1-7.4-7 6.440993E-01 8.115262E-01 6.883214E-01

continued on next page
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Table A.16; continued

Complex Moveset Minimum Average Exp
7.7.1-4 6.432439E-01 8.106242E-01 6.881320E-01
7.1.4.7 6.426162E-01 8.105656E-01 6.879509E-01
1.7.7.4 6.376880E-01 8.096693E-01 6.878516E-01
7-1.7.4 6.189713E-01 8.073272E-01 6.754430E-01
7.2.7.5 6.186948E-01 8.078183E-01 6.753456E-01
7.7.3.6 6.174767E-01 8.067850E-01 6.752402E-01
3.7.6.7 6.171548E-01 8.076065E-01 6.755303E-01
3.6.7.7 6.170821E-01 8.076411E-01 6.754336E-01
2.7.7.5 6.168971E-01 8.076706E-01 6.754960E-01
2_5.7_7 6.168891E-01 8.071831E-01 6.753853E-01
2.7_5.7 6.168747E-01 8.075062E-01 6.755677E-01
7.7.7.7 6.166979E-01 8.070600E-01 6.745983E-01
7.3.7.6 6.166836E-01 8.066321E-01 6.751089E-01
Table A. 16: end of table

Table A .17: H C f^ (0 .0 5 , Qexp), where $  =  {/x | l{fi) = 4, and ^ ( /i)  =  2}. Top fifteen 
movesets excluding movesets containing vertex moves displayed and sorted with respect 
to Qmin; ni =  2; Vertex movement using R andom V ertexM ove(50). Iteration counts 
contained in table 10.31 on page 231

Complex Moveset Minimum Average Exp
un it_cube_unifo rm _ls5 2.5.1.5 5.242151E-01 8.419987E-01 5.585014E-01

1.3.6.5 5.242151E-01 8.419987E-01 5.585014E-01
1-3.5.6 5.242151E-01 8.419060E-01 5.581360E-01
3-1.6.5 5.242151E-01 8.419060E-01 5.581360E-01
3.6.1.5 5.242151E-01 8.419060E-01 5.581360E-01
1.5.3.6 5.242151E-01 8.419060E-01 5.581360E-01
1.2.5.5 5.242151E-01 8.419987E-01 5.585014E-01
3.1.5.6 5.242151E-01 8.419987E-01 5.585014E-01
1.5.2.5 5.242151E-01 8.419060E-01 5.581360E-01
2.1.5.5 5.242151E-01 8.419060E-01 5.581360E-01
1-1-5.4 5.242151E-01 8.419060E-01 5.581360E-01
1.4.1.5 5.242151E-01 8.420334E-01 5.588669E-01
1-5-1-4 5.086389E-01 8.406340E-01 5.405663E-01
1.1.4.5 4.787658E-01 8.021249E-01 5.181191E-01
2.1.5.4 4.750550E-01 7.828836E-01 5.325598E-01

u n i t_ s p h e re _ ls 2 .5 1.4.3.6 4.691351E-01 7.813789E-01 5.071210E-01
1.4.2.5 4.691351E-01 7.832609E-01 5.077006E-01
1.3.6.4 4.691351E-01 7.783683E-01 5.067546E-01
1.3.4.6 4.691351E-01 7.861910E-01 5.053252E-01
1.1.4.4 4.691351E-01 7.763348E-01 5.138693E-01
2.5.1.4 4.612940E-01 7.767561E-01 4.968070E-01
1.2.5.4 4.612940E-01 7.750828E-01 4.974076E-01
1-4-1-4 4.506149E-01 7.790240E-01 4.949637E-01
3-1-6-4 4.444434E-01 7.749246E-01 4.858057E-01
2-1.4-5 4.398507E-01 7.766653E-01 4.876372E-01

continued on next page
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Table A. 17: continued

Complex Moveset Minimum Average Exp
1-1-4_5 4.270877E-01 8.045998E-01 4.574837E-01
3.1.4.6 3.967812E-01 7.705184E-01 4.463009E-01
3-6-1-4 3.967812E-01 7.703734E-01 4.469134E-01
2-1-4-6 3.967812E-01 8.289888E-01 4.225460E-01
1-2-4-6 3.967812E-01 7.942696E-01 4.341018E-01

u n it _ t e t _ ls lO 3-1-6-4 3.828227E-01 7.163277E-01 4.287934E-01
1-4-1-4 3.828227E-01 7.104362E-01 4.313615E-01
3-6-1-4 3.757559E-01 7.145794E-01 4.253241E-01
2-5-1-4 3.757559E-01 7.125839E-01 4.267665E-01
1-2-5-4 3.757559E-01 7.143712E-01 4.212197E-01
2-1-5-4 3.757559E-01 7.141178E-01 4.255397E-01
1-4-2-5 3.757559E-01 7.120868E-01 4.253048E-01
2-1-4-5 3.717329E-01 7.194292E-01 4.219259E-01
1-2-4-5 3.700553E-01 7.138736E-01 4.153795E-01
1-3-6-4 3.700552E-01 7.158131E-01 4.252372E-01
1-1-4-4 3.700549E-01 7.069449E-01 4.339478E-01
1-4-3-6 3.693993E-01 7.135681E-01 4.233364E-01
1-1-4-5 3.658148E-01 7.470676E-01 4.020586E-01
1-3-6-5 3.559775E-01 7.685281E-01 3.752135E-01
1-2-5-5 3.559775E-01 7.685281E-01 3.752135E-01

u n i t _ t e t _ l s 5 3-2-6-4 4.351112E-01 8.020349E-01 4.560268E-01
2-3-6-4 4.351112E-01 8.020349E-01 4.560268E-01
2-4-3-6 4.351112E-01 8.020349E-01 4.560268E-01
3-2-4-6 4.351112E-01 8.020349E-01 4.560268E-01
2-3-4-6 4.351112E-01 8.020349E-01 4.560268E-01
3-6-2-4 4.351112E-01 8.020349E-01 4,560268E-01
3-1-6-4 4.351112E-01 7.801218E-01 4.818045E-01
1-3-6-4 4.351112E-01 7.698131E-01 4.773463E-01
3-1-4-6 4.351112E-01 7.732524E-01 4.778066E-01
1-4-3-6 4.351112E-01 7.732524E-01 4.778066E-01
3-6-1-4 4.351112E-01 7.698737E-01 4.772826E-01
1-3-4-6 4.351112E-01 7.733061E-01 4.777540E-01
2-1-4-6 4 351112E-01 8.020349E-01 4.560268E-01
1-2-4-6 4.351112E-01 7.582831E-01 4.795824E-01
2-5_2-4 4.351112E-01 8.020349E-01 4.560268E-01
Table A .17: end of table



Appendix B

Description of Alexander move code

B .l Introduction

In this chapter the operation of the Alexander move code is discussed along with some 

im portant data  structures.

We commence in section B.2 with a brief overview of the functionality of the code, 

and then proceed in section B.3 to describe some im portant da ta  structures relating to 

the representation of vertices, simphces and complexes. Finally, in section B.4 there is 

a discussion of some floating point issues and of floating point tolerances used.

In what follows we will occasionally refer to configuration param eters, for example, 

TOL. An example of a full configuration file can be found in section B.5.

B.2 Functionality

The Alexander move code applies Alexander movesets to a simplicial 3-complex for a 

specified number of iterations in an attem pt to optimise the quality of the complex with 

respect to one of the global quality measures described in chapter 3. Statistics on the 

changing quality of the complex, and the effect of applying each moveset, are output 

during and after the run.
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B.2,1 Optimisation algorithms

In section 9.4, we discussed three algorithms for the optimisation of a global quaity 

measure on a simplicial complex. The algorithms were hill climbing, hill climbing wth 

variation of /3, and annealing. Each of these algorithms have been implemented witiin 

the code.

B.2.2 Interface

The user may affect the running of the code by specifying the values of parameters in 

a datafile usually called a le x .d a t, and may override many of the parameters thenin 

from the command line. Re-compilation of the code is necessary to change a numbei of 

rarely used parameters.

B.3 Fundamental data structures

This section details the key contents of the data structures used to represent fundamental 

entities, namely vertices, simplices, complexes and Alexander moves.

B.3.1 C naming conventions and standard data types

Before proceeding we note some naming conventions and common data types used in 

the implementation.

• A structure t_ f  oo is defined initially to be s t r u c t  s_f oo, and then as t_ f  oo 

using the C typedef keyword.

• A pointer ’foo’ is denoted f  oo_p. A pointer to a pointer is denoted f  oo_pp, 

and so on.

• t_ re a l  is a typedef of double, although this is alterable at compile time 

(to long double, for example).

• The C enumeration t_btype represents the boundary type of a simplex or 

vertex. It may take the values in te rio r  or b o u ndary .
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• The type t _ g s l i s t  implements a generic singly linked list.

•  The type t _ s l i s t  implements a singly linked list specifically of simplices. It 

is used because it avoids the casting which is necessary when using the type 

t _ g s l i s t .  This is relevant from a performance point of view because linked 

lists of simplices are commonly employed.

B.3,2 Representing vertices, simplices and complexes

Let K  be a simplicial n-complex. Let v  be a vertex, and A  a simplex contained in 

K . The data structures used to represent v, A  and K  are t_ v e r te x , t_ s im p lex  and 

t_com plex, and are listed in tables B .l, B.2 and B.3, respectively.

The MAX_DIM param eter which appears below is a compile time param eter dictating 

the maximum allowable dimension of the complex.

Vertex v
int dim Dimension of the complex containing v
int id A unique numerical identifier assigned to each vertex in K
t_real coords[MAX_DIM] The coordinates of v
t_gslist *connectedVerts_p Other vertices connected to v  (linked list)
int connectedCells Number of cells connected to v
struct s_slist *cells_p A linked list of the cells containing v
t_btype btype The boundary type of v
int generation Indicates whether a vertex was original to a complex, or was 

created during transformation thereof. Original vertices have 
generation 0; vertices added subsequently have generation > 0 
(see also section 8.2)

Table B .l: t_ v e r te x  data structure

B .3.3 Implementing Alexander moves

The basic algorithm for applying an Alexander move to a simplicial n-complex K  has 

been outlined in chapter 6. It involves splitting the move into two conceptual parts; 

abstract and concrete (see section 5.4.3). The user is responsible for choosing an abstract 

move for application to K , and the application bears responsibility for the choice of an 

application site for the move (using a method of choice dictated by the user). This
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Simplex A
in t  dim The dimension of A
in t  id A unique identifier assigned to each simplex in K
t_ v e r te x
*vertices_pp[MAX_DIM+l]

The array of vertices which make up A

s t r u c t  s_sim plex 
*faceNeighbours[MAX_DIM+1]

The array of simplices which share an {n — l)-simplex, or face, 
with A (for use with n-simplices only)

t_ r e a l  volume The volume of A (depends on the dimension of A  — the 
volume of a 1-simplex is a length). Usually only calculated for 
n-simplices

t _ r e a l  q u a l i ty The quality of A with respect to whatever measure is in use 
(used only for n-simplices)

t_ b ty p e  btype The boundary type of A. A cell can only be in te r io r

Table B.2: t_ sim p lex  data structure

Complex K
in t  dim Dimension of K
i n t  n v e r ts ,  n c e l l s Number of vertices and cells contained in K
in t  maxVertId Largest id of any vertex in the complex
t_ v e r te x  * v e rtex L is t_ p , 
t_ v e r te x  **vertexA rray_pp

Set of vertices of K. The vertices are represented in the form 
of both a linear (linked) list and an array

t_ sim p lex  * c e llL is t_ p Linked list of cells forming K
t_ r e a l  (*qfunc) (• • •) The quality function used to measure cell quality
t_ q u a l i ty  q u a l i ty A structure holding the global qualities of K  (see section 3.8.1)
t_ r e a l  volume The volume of the K . This is invariant under any application 

of Alexander moves
t . i n t s l i s t  *vertexH oles_p The vertex “hole” list
t_ v tx c lip b o a rd  *c lipboard_p Facilitates successive moves within a moveset being made con- 

nectively “near” each other

Table B.3: t.com plex  data structure
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division of labour obtains because, in a large complex, it is unreasonable to expect the 

user to specify a list of simplices or vertices to which a sequence of moves should be 

applied.

N otational changes

The 2n + 1 abstract Alexander moves available for transforming an n-complex are la

belled differently in the application code than in chapter 5. Instead of being indexed 

{ao, « ! , . . . ,  cxji, . . . ,  q:“ }̂ as in section 5.4.3, they are labelled {0, 1, . . . ,  2n, 2n+l},^ 

in the notation introduced in section 10.2.4. Table B.4 on the next page lists the abstract 

moves under the new labelling system, including the the vertex move 2 n + l, which was 

detailed in section 6.5.3.

To recap, the three dimensional Alexander moves are listed below using the notation 

of table B.4.

Move Description
1 ,4 A vertex insertion onto /  removal from line
2 ,5 A vertex insertion onto /  removal from face
3, 6 A vertex insertion onto /  removal from a cell

7 Vertex move

D ata structures representing abstract and concrete moves

Table B.5 on the following page contains the t_logicalm ove structure used to represent 

an abstract move. It combines with the application site data held in the t_move structure 

of table B.6 to form a concrete move.

B.3.4 Implementing Alexander movesets

A moveset is implemented as a linked list of abstract moves. This list is traversed once

and each move within the list is applied. If a move within the moveset is judged to be

illegal, then the whole moveset is terminated. The moveset is held in the t_complexmove

structure shown in table B.7 on the next page.

^Although, by corollary 4 of chapter 5 (page 77), all moves (2 <  i <  n) could be imple

mented in terms of Oi and (or 1 and 4). This is not attempted within the code because it is easier 

and more efficient to implement each move separately
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Alexander moves for an n-complex

( l , . . . , n ) The n refining Alexander moves, where j denotes the dimension of the simplex 
being refined

( n + l , . . . , 2 n ) The n inverse Alexander moves. For the move j a vertex is removed from a 
simplex of dimension {j  — n)

2 n + l An alteration of vertex coordinates (a vertex move)

0
Theoretically represents a vertex relabelling (or an inverse vertex relabelling), 
but is never used in practice. There is no representation for this type of move 
in the code

Table B.4: Abstract Alexander moves

Abstract move i
in t  alexMove The index i of i
v o id  * (*ChoiceFunc) (• • ■) Pointer to the function used to choose a site for application of 

1 (unless i is a vertex move)
in t  (*M oveVertex) (■ ■ ■) If i is a vertex move, this points at the vertex movement func

tion

Table B.5; Abstract move data structure (t_ lo g ica lm o v e)

Application site A , given i
t_ s im p lex  *sim plex_p A  if 1 <  i <  n
t_ v e r te x  *vertex_p A i f n  +  l < i < 2 n + l

Table B.6: Application site (type t_move)

Moveset fj,
in t  le n g th Moveset length
t_ lo g ic a lm o v e  * m ovelist_p Linked list of abstract moves (see table B.4)
s tr u c t  s_ m o v ese t_ sta te  
s ta te _ d a ta

Used to hold a list of vertices added in a given moveset. This 
field is only used with certain choice functions

Table B.7: Moveset data structure (t_complexmove)
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U n d o in g  m o v e se ts

W hen a moveset fails for whatever reason, either during application or after it has been 

fully applied, it is im portan t to  be able to  undo its effects.

Let K  be a  complex, and let : K  —> K '

/ i  =  1 • • • m ,

be an ab strac t moveset to  be applied to  K , w ith l { f i )  >  1. The approach we take is to 

apply each move of / /  to  the complex until the moveset is accepted or is found to  be 

illegal a t some point. All cells and vertices added and deleted during  application are 

stored. If the moveset is found to be unacceptable all original cells and vertices deleted 

during the application of the moveset are restored, and new cells /  vertices are deleted. 

If the moveset is deem ed acceptable all the changes are already applied to  the  complex, 

so there is no work to  be done.

B.4 Floating point issues 

B.4.1 Introduction

An effort has been m ade to  keep the  am ount of floating point arithm etic  used in the 

A lexander code to  a minim um . To the  extent th a t we are operating  on a purely topolog

ical s tructu re , we can use counting algorithm s (for exam ple the algorithm  for calculating 

the set of boundary  faces of a complex) to  do our work. However the geom etry of the 

particu lar realisation of the complex in hand dic tates th a t some floating point d a ta  (e.g., 

vertex coordinates) m ust be stored and m anipulated. We need to  calculate cell volumes, 

for exam ple, because we test the correctness of transform ations by com paring the signs 

of the volumes before and after the  transform ation.

B .4.2 Absolute and relative error

Com parison between a pair of floating point quantities is perform ed by com puting their 

difference and considering them  to  be equal if the  m agnitude of the difference is less
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than a specified tolerance.

Two error measures are used; the ab so lu te  and the re la tiv e  error [40]. Let x  be an 

approximation to a real number x. Then the absolute error is defined to be

E a b s { x )  =  \ X  ~  X \  , (B.l)

and the relative error is

(B.2)
f I

Note that the relative error is invariant under scaling (x —>■ ax).  Since the magnitudes of 

some quantities, such as lengths or volumes, may vary widely from complex to complex, 

the relative error is often a more useful measure.

B.4.3 Floating point tolerances

A number of different tolerances are used in conjunction with floating point calculations 

in the Alexander move code. The tolerances reflect the diff'ering accuracies of the various 

operations carried out on the complex, and are used for three purposes;

i) to detect variation in certain floating point quantities (such as vertex coordinates)

ii) to detect whether certain quantities have exceeded lower bounds

iii) to perform error checking

Options i) and ii) diflfer from iii) in the sense that the code encounters and deals with i) 

and ii) as part of its normal operation, whereas failure of the error checks of iii) indicates 

errors m the code or data.

The following sections give examples of how the tolerances TOL, IMPROVE_TOL and 

VOL_TOL are used.

V aria tio n  te s tin g : v e rtex  co o rd in a tes

When testing a site for application of a vertex removal, the vertex in question is not 

always geometrically located on the simplex whose creation is proposed by the removal.
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In such cases the vertex is first moved to the centroid of the proposed simplex, and then 

removed. The purpose of first moving the vertex is to allow a test for the geometric 

legality (see section 6.3.2) to be carried out. If the vertex has not been moved, such a 

test is not necessary.

Let a  be a vertex in R" with coordinates {x^, x®, . . . ,  x^)  before a vertex removal has 

taken place, and coordinates (yf, y f , . . . ,  y®) afterwards. If

max — yf I < TOL ,

then the vertex coordinates are considered not to have altered.

Coordinate variation testing is also used when dealing with vertex moves.

Testing lower bounds

The param eter IMPROVE_TOL is the only tolerance th a t is used with this type of test. Its 

value is the least quality improvement tha t is considered significant by the user. Thus, 

if the magnitude of the improvement wrought by a moveset is less than this value it is 

ignored regardless of its legality. The value of IMPROVE_TOL is usually much larger than 

any of the other tolerances.

Error checking: cell volum e

Let K  be a n-complex containing n-simplices { A i , . . . ,  An^(k)}- Suppose a moveset ^  is 

applied to K  which affects k cells {Ai^, . . . ,  Ai^} by replacing them with {Bi^, . . . ,  Bij^,}, 

for some k’. If we subsequently decide to undo the transform ation, and retrieve the 

{Ai.}*^j, then in order to ensure th a t the code is functioning correctly the volumes of 

the retrieved cells are often tested to see if they are the same as those of the originals. 

For any one of the cells, Aj^, the volume retrieved after the reversal of the transform ation 

is viewed as an approximation to the original volume. Therefore an absolute error may 

be calculated to be

E a U ^ o l { A i . ) )  = |v o l(A f f° - )  -  vollAf"*-)!
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The param eter TOL is used to assess the error; thus if

the undoing of the transform ation is considered to be legal.

Error checking: com plex volum e

In accordance with the requirement of section 6.3.2 th a t the carrier of a complex be geo

metrically unaffected by the application of an arbitrary collection of Alexander movesets, 

the volume of a complex must remain invariant during the running of the Alexander 

move code.

The calculated volume of a cell of the complex is assumed to approxim ate the actual 

volume of th a t cell to some accuracy e. The volume of the complex is calculated by 

summing the volumes of all the cells in the complex. The act of summing also sums 

the errors on the volumes of each of the individual cells. This results in an estimate 

th a t approximates the complex volume to a lesser accuracy than th a t which obtains for 

individual cells and their volumes.

In order to take this into account while maintaining the strong tolerance needed 

elsewhere, a new, slightly weaker, tolerance is defined: VOL_TOL. Furthermore, due to 

the variation in m agnitude of the volumes of different complexes, a relative error is used 

when comparing the complex volume before and after movesets have been applied. Thus

before and after a set of transform ations have been applied to the complex then the 

transform ations are considered to have been legal from the point of view of the complex 

volume.

Error checking: com plex quality

Let K  be a complex. After a moveset is applied to K  during a run of the Alexander code, 

the global qualities (except Qmin — (see section 3.8.1)) are updated. At the end of the 

run the final qualities of K  are calculated, and must match the values obtained during the

if
before

£;rei(vol(K)^^^"") < VOL_TOL,
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course of the run. Since the calculation of quality for each cell is a relatively complex one 

(see section 3.6.1), and since calculating the global qualities involves summing multiple 

individual qualities, the tolerance used to test this should not be as strict as TOL. The 

more lenient QUAL_TOL is used for the purpose. Taking the average quality of the complex 

as an example, let Q^^(K) be the value calculated during the run, and Ql^{K) be the 

final quality calculated at the end of a run. Then if

fa:v(K)-CL(K)|>QUAL_TDL,

there has been an error during the run.

B.4.4 Lower bounds for volume and quality

Moves which are both intrinsically and geometrically legal may produce new cells which 

are of very low quality or of very small volume. Such extremely small values of either 

attribute may result in the creation of illegal complexes as a result of numerical error, 

particularly in the case of cell volume. For example, when a set of new cells is created 

as a result of a vertex move, the signs of the volumes of each of the cells are tested to 

see if they have changed. If they have, then the vertex move is illegal. However, if the 

volumes of the new cells are sufficiently close to zero the calculation of the sign of the 

volume will be prone to error and illegal configurations could conceivably be accepted.

This and similar scenarios give rise to the exception to the rule above that all 

moves within movesets are unquestioningly accepted. Moves that result in cell vol

umes or qualities below certain user-defined values are rejected, regardless of whether 

they are legal or not. Three parameters are used to allow the user to apply these restric

tions. GLOBAL_MIN_QUAL dictates what the minimum quality of the complex may be and 

GLOBAL_MIN_VOL dictates the minimum allowable cell volume. GLOBAL_MIN_VOL_RATIO 

operates as follows. Suppose a vertex move takes place. Such a move affects all cells in 

the star of the vertex to be moved. After the move has taken place, each cell is tested 

by calculating the ratio of its volume after the move to its volume before the move. If 

the absolute value of this ratio is less than the value of GLOBAL_MIN_VOL_RATIO, then 

the move is rejected.



282 B.5. A SAMPLE ALEX. DAT CONFIGURATION FILE

B.5 A sample alex.dat configuration file

We give a sample a lex  .d a t configuration file. This particular file applies movesets using 

Qexp(<̂  =  0.05) using the hill climbing algorithm.

OPT_UPDATE_CONDITION_FUNCTION
GLOBAL_QUAL_MEASURE
N_OPT_PARAMS
OPT.PARAMS
ANN_SAMPLE_ACC
ANN_ACCEPT_TEST_FREQ
ANN_ACCEPT_RATIO
ANN_ACCEPT_RATIO_MULTIPLE
HEAT_CYCLE_QBETA_FRAC_BOUNDS
TEMP.INDEX
QBETA.INDEX
NEIGHBOUR.LEVEL
MOVESET.DECISION
ROOTFINDER.BRACKETS
CHOICE.FUNC
QFUNC
MIN_QUAL_UPDATE_POLICY
FORBIDDEN.MOVES
QUAL_BIN_LEN
MAX_VERTS
qUAL_STATS_FREQ
COMPLEX_STATS_FREQ
OPT_BASELINE_ITS
LOG.LEVEL
DEBUG.LEVEL
GLOBAL_MIN_QUAL

= UpdateQBETAConditionHolds 
exp 

= 1
= 0.05 0.05 -0.1 11 1 0 1 0 
= 0.1 

= 100 

= 0.5 
= 0.5
= 0.95 0.95 -0.1 
= 1 

= 0 
1
require.improve 
=  -6 6.0 
pair_func 
aspectSd 
start

0.1
250000
10000

10000
10

1

1

l.OE-5

1 2 1 5 2 0 1
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GLOBAL_MIN_VOL

GLOBAL_MIN_VOL_RATIO

IMPROVE.TOL

ITERATIONS

INPUT.MOVE

TRANSFORMATION.METHOD

INIT_REFINE_CHOICE

REFINE.CHOICE

INIT_REMOVE_CHOICE

REMOVE_CHOICE

INIT_MOVE_CHOICE

MOVE_CHOICE

VERTEX_MOVE_FUNC

VERTEX_MOVE_MAX_NTRIES

MOVE_EPS

LC.ALPHA
LC_BETA
LC.GAMMA
MAX_UNSUCCESSFUL_TRIES

RAND_CHOICE_TOO_MANY_TRIES

TOL

VOL.TOL

qUAL_TOL

TEST_EXPQUAL_ACC

CHECK_EXPQUAL_FREQ

EXPQUAL_FRAC_NEAR_ZERO

EXPqUAL_MAX_NUMERICAL_DRIFT

DUMP_EXPQUAL_DATA

MAX_SITES_PER_EXHAUSTIVE_IT

MOVE.DECISION

l.OE-7
l.OE-10
l.OE-05
5
no_input_move 
= alex
ChooseClipboardRandomlnteriorSimplex 
ChooseClipboardRcindomlnteriorSimplex 
ChooseClipboardRandomlnteriorVertex 
ChooseClipboardRandomlnteriorVertex 
ChooseClipboardRamdomlnteriorVertex 
ChooseClipboardRajidomlnteriorVertex 
JiggleVertex 
8 
1.0 
 ̂ 0 
 ̂ 1 

 ̂ 0 
10 

10
5.0E-16

= l.OE-12
lE-08
True
2500
l.OE-01
l.OE-06
False
25000000
always_move
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RESTART = false
STORE_EVERY_MOVESET = false
STORE_ALL_LEGAL_MOVESETS = false
REPORT_ALL_IMPROVES = true
REFINE.LIKELIHOOD = 0.5
SIMPSIZE.ORDER = random
VERTEX BTYPE = either
UNDO_ILLEGAL_MOVE = true
REFINE_BOUNDARY_VERTS = false
IMPROVE.BOUNDS = -5.0 5.0
NUM.BINS = 10
IMPROVE.SCALE = global
CHECK_NEIGHBOUR_QUALITY = false
UPDATE_MOVESET_IMPROVE = sum
CALC_GLOBAL_BEFORE_AFTER_QUAL = true



Appendix C 

The Delaunay triangulation

This is one of the most studied triangulations of a given domain [81], [9], [28], and offers 

a number of theoretical geometric quality guarantees, particularly in two dimensions. 

It has the property that, in M” , the circumsphere of the (n +  1) vertices in any n- 

sirnplex in the complex does not contain any other vertices (this is sometimes referred 

to as the in-sphere condition). In two dimensions, it maximises the minimum angle 

over triangulations of a given set of points [54]. This does not carry over to all angles 

in the three dimensional case where “sliver” tetrahedra with arbitrarily small dihedral 

angles may appear [81],[18] (see also chapter 3, section 3.3.2 for a definition of a sliver 

tetrahedron).^

The Delaunay triangulation is the dual of the Voronoi tessellation [26], [71].

În n-dimensions, the Delaunay triangulation is the one which minimises the maximum radius of 

a min-containment sphere [9], [74] (the min-containment sphere of a simplex A is the smallest sphere 

containing A — it is not necessarily the circumsphere of A)
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