LEABHARLANN CHOLAISTE NA TRIONOIDE, BAILE ATHA CLIATH | TRINITY COLLEGE LIBRARY DUBLIN
Ollscoil Atha Cliath | The University of Dublin

Terms and Conditions of Use of Digitised Theses from Trinity College Library Dublin
Copyright statement

All material supplied by Trinity College Library is protected by copyright (under the Copyright and
Related Rights Act, 2000 as amended) and other relevant Intellectual Property Rights. By accessing
and using a Digitised Thesis from Trinity College Library you acknowledge that all Intellectual Property
Rights in any Works supplied are the sole and exclusive property of the copyright and/or other IPR
holder. Specific copyright holders may not be explicitly identified. Use of materials from other sources
within a thesis should not be construed as a claim over them.

A non-exclusive, non-transferable licence is hereby granted to those using or reproducing, in whole or in
part, the material for valid purposes, providing the copyright owners are acknowledged using the normal
conventions. Where specific permission to use material is required, this is identified and such
permission must be sought from the copyright holder or agency cited.

Liability statement

By using a Digitised Thesis, | accept that Trinity College Dublin bears no legal responsibility for the
accuracy, legality or comprehensiveness of materials contained within the thesis, and that Trinity
College Dublin accepts no liability for indirect, consequential, or incidental, damages or losses arising
from use of the thesis for whatever reason. Information located in a thesis may be subject to specific
use constraints, details of which may not be explicitly described. It is the responsibility of potential and
actual users to be aware of such constraints and to abide by them. By making use of material from a
digitised thesis, you accept these copyright and disclaimer provisions. Where it is brought to the
attention of Trinity College Library that there may be a breach of copyright or other restraint, it is the
policy to withdraw or take down access to a thesis while the issue is being resolved.

Access Agreement

By using a Digitised Thesis from Trinity College Library you are bound by the following Terms &
Conditions. Please read them carefully.

| have read and | understand the following statement: All material supplied via a Digitised Thesis from
Trinity College Library is protected by copyright and other intellectual property rights, and duplication or
sale of all or part of any of a thesis is not permitted, except that material may be duplicated by you for
your research use or for educational purposes in electronic or print form providing the copyright owners
are acknowledged using the normal conventions. You must obtain permission for any other use.
Electronic or print copies may not be offered, whether for sale or otherwise to anyone. This copy has
been supplied on the understanding that it is copyright material and that no quotation from the thesis
may be published without proper acknowledgement.



MULTIDIMENSIONAL SECOND ORDER GENERALISED
STOCHASTIC PROCESSES ON LOCALLY COMPACT
ABELIAN GROUPS

By

Bernard Keville

SUBMITTED IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY
AT
THE UNIVERSITY OF DUBLIN
DUBLIN, IRELAND
OCTOBER 2003



TRINITY COLLEGE
14 0CT 2004

LIBRARY DUBLIN

ATHE S
£



This thesis has not been submitted as an exercise for a degree at this
or any other University.

This thesis is entirely my own work, except where indicated in the
text. ;
The Library may lend or copy this thesis upon request.

Bernard Keville

i



To My Parents

il



Table of Contents

Table of Contents

Acknowledgements

Summary

1 Sy(G) and the Bochner-Schwartz-Godemont Theorem

%]

1.2

1.3

1.4

Introductiontandizeneraliconceptiss il i B el B Rl Sl
1.1.1 Measure and integration on locally compact Abelian groups
17172 lihelovitiers transform s Sie de el 6 T Sl i O 8
Banachi@elfanditriples kBN o Siatie LBy s ST Ca e Shias Al e
2006 Basiciotions! it & mlam caniel Sla o m s i e,
1:2:2: ¢ ' Kemels'and operatorss i & w3 Te U S 55 (A
1.2.3 Banach Gelfand triples and reproducing kernel Hilbert spaces
124 . Eheconvexienne il Bl 0 5 0 U e R T T
1.2.5 Direct integrals in Hilb(B')

over locally:compact- Abelian groupsi .0 .. . bl S LD
The Schwartz-Bruhat space
andftemperedidistributionss ek EE S ARG R
The Feichtinger algebra Sp(G)
gudapplicalions ;i .. o R G S L e A e
T4 15 A@ uasimeasures s Mok w80 Pl i, Sk, LT IRG 2l e L
1.4.2 Bounded uniform partitions of unity in A(G) . . . . . . .. ..

1.4.3 Wiener amalgam spaces of quasimeasures . . . . . . . . .. .. il

L 2 el nleehias e, 0 A s Sl R SO, L U e
Lahb o he Bejchemperalgblamae: - o 'Goan o0 o0 R U e L
ldifs o The Wicnelalpaboms o )0 SR Sl SR e s e

v

iv

vii

viii

© 3O O W N =

12



1.4.7  The extended Fourier transform

andithesPlancherelS§theorem W& s &5 SR dss e e EE ar s 21
1.4.8 Positivity, distributions of positive type

andtthe/Bochneritheorerniti e a8 s s 5y bt Shaniiai. 18 & i 22
1:4.9 ‘Bets'eof spectral.synthesis for SplGa) L, "l o ibelin 706 0, 24
1245105 Reriodisation and restrictionti- s i s e s g e i 26
124118 WienerfamalgamsStand kernelsit & e i i e sinl e eh e g 29
] YeBimeasnres: il i8S Sty TR S G TGRS NS i e 30
T4 138 Eounierfmultipliers S S EHE SR I S R e 31
1.4.14 Translation-invariant Hilbert Subspaces of Sy(G)

and the Bochner-Schwartz-Godement Theorem . . . . . . . . . 32

2 Second Order Generalised Stochastic Processes on Locally Compact

Abelian Groups 36
2. 1EIntroductiontandfoeneralfconcepts, & s SR S 36

211+ Beeond' order stechastic Procesies. . it o .0 e B0 ) 38

20195 Stochasti emeasnzes! SEe - Mo g vt Calt Bt Bl SR e e 39

2.1.3 Stationary second order stochastic processes . . . . . . : L s R0

2.1.4 Harmonisable and V-bounded stochastic processes . . . . . . . 40
2.2 Second order generalised stochastic processes . . . . . . . o e 42
2. 3hthespectraliProcess k. S aliniirie et s .10 VR L sl i R 44
2.4 Stationary second order generalised stochastic processes and the spec-

tral ‘tepresentation theoremii: s g B S e "ot e 8 e Sl 45
2.5 SRl eiBere ol © g oot MG B Sttt B L UE R Sl 51
2.6 Harmonisable and V-bounded :

generalisedtsiochasticiprocessesii: o Rl SRR S e 52
2.7 Filtered generalised st:ochastic DLOCESSEs, = ALV EE T e e aiiay 57

3 Multidimensional Second Order Generalised Stochastic Processes on

Locally Compact Abelian Groups 60
Sulesintroductionnt g o Ve il O SERI i e s GIU S HURRER S 60
3.2+ ‘Nowmal Hillerte L0 - Modnles o . 0 o ain N o gl al e e 61
3.3 Multidimensional second order

Btochagtic proccssts . 7 0 o e en B0 RIS e i T 63
3.4 Multidimensional second order

generalised stochastic processes . . . . . ... ... ... Sl R 66
3.5 "Reprodiicing kernel Hilbert £(H)-modules. . ..". .. . .o o000y 69
3.6 Operator valued Fourier transform :

and the Bochner theorem . . . . . .. .. SEGRC I b e R o) e



3.7 Stationary multidimensional second order

generalisedistochastic proecesses#i.: & - vl sl el Rt Wl il 81
3.8 Multidimensional stationary stochastic

processes and multidimensional stationary

generalised stochastic iprogesses ti aiiat Sl e il e Dl 85
3.9 Harmonisable multidimensional second order generalised stochastic pro-
CESSESMr i o ia e T s S RIS b BRSO AR el R R B 87

3.10 Harmonisable multidimensional stochastic
processes and harmonisable multidimensional
generalised stochastic processes . . . . .. ... .. el o ST 88

Bibliography : 91

vi



Acknowledgements

At the end of a long road, it gives me great pleasure to acknowledge the kindness of
some of the many good Samaritans encountered on the way.

I wish to thank Dr. Richard Timoney of the School of Mathematics, Trinity
College Dublin for his very considerate supervision and his careful reading of this
thesis.

Most of this work was conceived during the academic year 2001-2002, which I
had the privilege of spending as a guest of the Numerical Harmonic Analysis Group
(NuHAG) in the Department of Mathematics at the University of Vienna. I would .
like to thank Monika Dorfler, Norbert Kaiblinger, Josef Mattes, Charly Grochenig,
Tobias Werther and all the members of the extended NuHAG family for their un-
stinting hospitality and friendship. In particular, I would like to'pay tribute to the
founder and director of the group, one of nature’s true gentlemen, Professor Hans
Georg Feichtinger, whose extraordinafy personal and mathematical generosity is an
example to us all. My stay in Vienna was made pbssible by the Ostereichischer Aus-
tauschdienst (OAD) and I would like to express my appreciation to Doris Zwettler
and her colleagues in the OAD for the great hospitality and the many Ausflige I
enjoyed during a very enriching stay in Vienna. :

I would like to thank Ole Christensen, Torben Klint Jensen, Thomas Poulsen and
their colleagﬁeé at the Technical University of Denmark, Lyngby for the overwhelming
Danish hospitality experienced during a fondly remembered summer school in 2001:-

Finally, I would like to thank my parents who have stood by me through thick

and thin and to whom I dedicate this thesis.

vil



Summary

This thesis is concerned with the harmonic analysis of multidimensional generalised
stochastic processes on locally compact Abelian groups. A multidimensional gener-
alised stochastic process is a continuous linear operator from a test function space into
a space of H-valued random variables, where H is a separable Hilbert space. The re-
markable properties and very simple structure of the Feichtinger algebra Sy(G) make
it very suitable as a test function space in this respect. Classical representation the-
orems for stationary and harmonisable processes on locally compact Abelian groups
which have been extended to infinite dimensions can be proved in in much more com-
pact way, avoiding much of the technical machinery associated with operator valued
integration and the theory of operator valued bimeasures.

Chapter 1 considers the Féichtinger algebra and its applications in abstract har-
monic analysis. In particular, Bochner’s theorem is extended to the dual space Sy(G)’
and a representation theorem is proved which is an essential prerequisite for the proof
of the spectral representation theorem for stationary generalised stochastic processeé.

Chapter 2 uses the results of chapter 1 to treat the harmonic analysis of scalar
valued generalised stochastic processes, extending some of the classical results for
stochastic processes, whose proof then is much simpler than heretofore, avoiding the
technicalities associated to the theory of integration.

Chapter 3 is concerned with the abstract harmonic analysis of infinite dimensional

“stochastic processes. Again, in this setting, the properties of So(G) prove to be very
useful in deriving concise and elementary proofs of some of the results obtained by

Kakihara'in his monograph.
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Chapter 1

So(G) and the
Bochner-Schwartz-Godemont
Theorem

1.1 Introduction and general concepts

The Feichtinger algebra Sy(G) has many remarkable properties, which, allied to its
simple structure and the fact that its dual space is a space of tempered distributions
which contains many of the classical spaces of interest in abstract harmonic anal-
ysis, make it very suitable as a space of test functions on locally compact Abelian
groups. The formation of tensor prodicts facilitates the harmonic analysis of vector-
valued struétures; in particuiar, the projective tensor product of So(G) with a suitable
Hilbert space of random variables yields a test space of second order stochastic pro-
cesses. Central to the analysis.of stationary second order stochastic processes are
various interrelated notions in harmonic analysis such as positive-definiteness, the
Bochner theorem, translation-invariant Hilbert spaces, unitary representations etc.
We will show how the algebra Sy((G) can be used to prove and extend the results

necessary for later analysis of second order stochastic processes. In particular, the



Bochner theorem is extended to a space of unbounded measures and a closely related
representation theorem for diagonally-invariant translation-bounded quasimeasures
on G x G is proved which is later employed for the harmonic analysis of stationary
second order stochastic processes with distributional kernels. We consider initially
some basic concepts and establish notational conventions. We begin with some back-
ground material drawn from [2, 16, 30, 31] on analysis on locally compact Abelian

groups.

1.1.1 Measure and integration on locally compact Abelian
groups

The algebra of continuous functions with support in a compact subset K of a locally

compact Abelian group G, equipped with the uniform norm, is denoted Ck(G). The

union of all such spaces,
k(@) = JCx(©),
K

is a locally convex function algebra [30] when equipped with its natural inductive
limit topology. K(G) is continuously embedded into its dual space, the space of

Radon measures,
R(G) =()Ck(G),
K
equipped with its natural projective limit topology. Pointwise multiplication may be
extended by transposition to make R(G) a locally convex topological (G)-module.
Given a Radon measure, p € R(G), and ¢ € K(G), the value (¢, n) = p(¢) is an

integral, denoted

/G $(z)du(z).



A Radon measure p is positive if it acts non-negatively on the positive cone of non-
negative functions in K(G). The group G acts through translation on K(G); given

z € G, the corresponding translation operator L, is defined by

L.¢(y) = ¢(y — z).

This action of G extends through transposition to R(G) and it is well known that
there exists a positive translation-invariant Radon measure which is unique up to
multiplication by a scalar. We denote this Haar measure by dz. K(G) is also a

topological algebra with respect to convolution, which is defined by

6x9() = [ olz = 0y
and R(G) is a topological K(G')-module with respect to convolution, defined by trans-
position. The involutions on K(G) defined by ¢(z) = ¢(—z) and ¢*(z) = ¢(—x)
extend to R(G) by transposition. The uniform completion of X(G) is the algebra
Co(G) of continuous functions vanishing at infinity. Since K(G) is continuously and
densely embedded into Cy(G), it is clear that any Radon measure p € R(G) which is

uniformly bounded on K(G) in the sense that

- supk||pllox ey < 00

extends to an element of the dual space of Co(G). Co(G) = M(G) is the space
of bounded Radon measures and is a commutative x-Banach algebra with respect to

convolution.

1.1.2 The Fourier transform

The completion of the image of the continuous embedding,

¢ — ¢dz,



of K(G) into M(G) is L*(G), the algebra of absolutely continuous bounded measures
or integrable functions.

The set of L!(G)-homomorphisms, equipped with the weak-x topology, is a locally
compact Abelian group, @, the dual group, whose elements are the characters of G.

Each ¢ € L'(G) defines a function, a, on the dual group according to

5(@) = /G T

The linear mapping

Fo:¢p—o

~

thus defined is the Fourier transform; its isometric image is the Fourier algebra, A(G).
The identity
(6,9) = ($,9),6 € L(G), ¥ € L*(G),

where
3(8) = / N
< G

defines an extension of the Fourier transform by duality to an isometry of L*(G)

~

onto A(G)', the algebra of pseudomeasures.

Definition 1. h € L=(G) is of positive type if it is positive on the algebra L'(G) in
the sense that
(% ¢* h) >0,V € L'(G).

Functions of positive type are characterised by the classical Bochner theorem.

Theorem 1. (The Bochner Theorem)
A function h on the locally compact Abelian group G 1s of positive type if and only
if there exists a positive, bounded measure pu, € M(G) such that

hz) = [(x,f) dpn().

JG



Given a positive definite function h and p;, as above, we have that

[hllz@) = h(0) = llkall sy

and we noté that the character 7 is the function of positive type on G associated to
the Dirac measure dz on el

Each z € G determines a character ,%I of G according to

(Z,%.) = (z,%).
In fact, all characters of the dual group are determined in this way, which is the
content of the following theorem.
Theorem 2. (Pontryagin duality theorem)
T 7,
is a homeomorphic isomorphism of the groups G and 5

Theorem 3. (The Plancherel theorem) There exists a normalisation of the dual Haar
measure dT such that the Fourier transform is unitary from the dense subspace L'.N

~

L*(G) of L*(G) into L*(G) and hence extends to a unitary isomorphism of L*(G)
onto L(G).

Hence, for each ¢ € L?*(G), we have

[ 1ot - /S 13(2) 2.

Theorem 4. (The inversion theorem) Given that the respective Haar measures on
G and its dual have been normalised in order to ensure the validity of the Plancharel
theorem, every ¢ € L' N A(G) can be represented in the form

amzé&a@aﬁ@ea



1.2 Banach Gelfand triples

A Gelfand triple is a generalisation of the notion of a Hilbert space which is well-known
in the literature, albeit under different names such as 'rigged Hilbert space’, ’equipped
Hilbert space’ [18], 'resolution space’. Gelfand triples arising from dense Banach
subspaces of a Hilbert space are considered in [14] and arise, at least implicitely, from
integrable group representations in the theory of atomic decompositions of coorbit

spaces [13].
1.2.1 Basic notions

Let (H;( | )) be a separable Hilbert space with a dense Banach subspace, B. We

denote the pairing of B with its dual B’ by ( , ) - ie

(,):Bx B — C;(¢,p) — (&, p).

If we denote the inclusion of B into H by iz and the antilinear identification of H

with H’ by Ty, then the operator
73 =i2377-¢1:3 :B— B/;(b'—)a
is an antilinear embedding of B into its dual (see §0 of [32] and chapter 2 of [33] for
a similar notion). We may write this fact as
(igliny) = (¢, 1Y),
or simply,
(ely) = (8, 9).

The space
§=—I-BB={$3¢€ B},



equipped with the transported norm, is a dense Banach subspace of H’ called the

antispace of B and it is clear that

ol

= B.

The operator 15 extends by duality to an antilinear isomorphism of B’ and B’ = B/,

the antidual of B - ie for ¢ € B, u € B,

(@) = (&, 1.
Since ig is an injection, B is w* dense in B’ and the inner product may be extended

to a sesquilinear form on B x B" or (B’ x B) - ie

($lu) = (&), (ulg) = (¢,7), where ¢ € B, p € B (1.2.1)

Definition 2. A triple
(B, #;B'), 4] ),

consisting of a Banach space B, continuously and densely embedded into a Hilbert
Space H, which, in turn, is weak* densely embedded into the dual space B’, equipped
with the inner product (1.2.1), is called a Banach Gelfand triple.

Definition 3. Given two Gelfand triples (By, H;, B}) and (B2, Hz, Bj), an isomor-
phism V of B; onto By extends to an isomorphism of the respective dual spaces. V
is a Gelfand triple isomorphism if it extends to an isomorphism of H; onto H, in
which case it is a unitary Gelfand Triple isomorphism if

(VolVY)2 = (¢¥)1,V9, ¢ € Br.
1.2.2 Kernels and operators

The algebraic tensor product B ® B is a dense subspace of the Hilbert space tensor
product H ® H. The projective tensor product B®B is the completion of B® B with
respect to the least cross-norm

lolle = iﬂf{z l¢illsll¥ill : 0 = Z(bi ® P;},

i€l 1€l

1]



and is a Banach x-algebra when equipped with the multiplication

b1 ® V.62 ®EQ = (¢2, Y1)$1 ® ¥,

and involution

6®P) =94 (1.2.2)
Since B® B is continuously embedded into H ® H, it generates the Gelfand triple

(B®B,H® H,(BRB)).

If, for ¢, v, € B, we let
¢ *x Pt = (oY) 9,

then the mapping ¢ ® ¥ — ¢ x1* extends to an *-isometry o — T, of B®B onto an
operator algebra which we denote by B® B*. BRB* is a two-sided ideal in £(B), the

algebra of bounded linear operators on B. We denote the inverse isometry by
k: T w— k(T).

Where B is a function space on a locally compact Abelian group G, T is an integral
operator, and the function k(7)) on G x G is called the kernel of T.
The operator algebra H®H* is the algebra of trace class operators on H and

denoted 7(H). It is equipped with the inner product
(S|T) = trST*,
where the trace functional, tr € 7(H)’, is defined by

tr ¢ @ Y* = (¢|9).



The Hilbert space completion of 7(H) is the Hilbert-Schmidt space, HS(H). Given
that H’ may be identified with H, it is a simple consequence of the theory of projective

tensor products that o — T, extends to a unitary isomorphism of the Gelfand triple
(H&H, H® H, (H®H)')
onto the Gelfand triple of operator spaces.
() SR, LCHY)

More generally, since BRB* dense in 7(H), o — T, extends to a unitary isomor-

phism of the Gelfand triple

(B®B,H® H,(B®B)')
onto the Gelfand triple of operator spaces
(B®B*, HS(H),L(B,B),

where the identification between an operator T € L(B,B’) and x(T) € (BXB)' is
given by
(¢ ® ¥, k(1)) = (¥, T9).

Definition 4. With the notation above, we call x(T') the kernel of the operator T.

1.2.3 Banach Gelfand triples and reproducing kernel Hilbert
spaces

Schwartz showed in [32] and [33] that there is a bijective cofrespondence between

the set of positive definite kernels - the Schwartz reproducing kernels - associated

to a separable locally convex topological vector space, F, and the set of Hilbert
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subspaces of FE. Given a Banach Gelfand triple, (B, H, B’), very elementary methods
are used below to show that there exists a bijective correspondence between the
Hilbert subspaces of B’ and the set of positive definite elements of (B®B)’, which we
refer to as Schwartz reproducing kernels.

Definition 5. The involution (1.2.2) extends by duality to an involution of (B®B)'.
#(T) € (B®B)' is Hermitian if it is invariant under involution, ie x(T)* = &(T), and
positive-definite if

(¢ ®¢,A(T)) 20, V¢ € B.

The operator T corresponding to an Hermitian or positive-definite x(7°) is called an
Hermitian or positive-definite operator, respectively.
The set, (B&B)'*, of positive-definite elements of (B&B)’, is a w*-closed convex

cone, on which an ordering, >, is defined by

KIT) = k(9) =klT) = kl3) 20,
If we denote the space
TB[,(B,E) = {7BT #“P'e E(B,y)}

of antilinear operators from B into its dual by £(B, B’), then the antilinear identi-
fication between x(T) € (B®B)' and an antilinear operator T € L£(B, B') is given
by

(¥, T) = (¢ ® ¥, K(T)).

Definition 6. Let (B, H, B’) be a Banach Gelfand triple. A Hilbert space continu-
ously embedded into B’ is called a Hilbert subspace of B’; the set of all such subspaces
is denoted Hilb(B').

Definition 7. A Hilbert subspace (7, (| )) of B"is a reproducing kernel Hilbert space
if there exists an antilinear operator Te € L(B, B’) such that

1. Toe J,Né € Band
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2. (¢, u) = (uT¢),Vne J,¢ € B.

In the following two propositions, we show that every Hilbert subspace of B’ is
a reproducing kernel Hilbert space. This result is new for Gelfand triples; similar
results in the context of reproducing kernel Hilbert subspaces of D’(R") can be found
in [25] and in a more general context in [33]. .

Initially we show that every x(T) € (B®B)'* generates a Hilbert subspace, Hr
QL B

Proposition 1. Gien k(T) € (B&B)'*, let Hy be the completion of the subspace
TB={T¢: ¢ € B}
of B’ with respect to the seminorm

IT¢ll = /(¢ ® &, 5(T)).

Then (Hr,( | )r), where

(To|Ty)r = (¢ ® ¥, w(T)),
is a Hilbert subspace of B'.

Proof. { | )r is an inner product since from the Schwartz inequality,

(¥, To)l < IToIITHl,

it is clear that il o
IT¢ll =0 = (¥, Té) =0,Vy € B,

and hence that T is the > zero element in B'. The linear operator T € L(B,Hr)
defined by Té¢ = T¢$ = T¢ has dense range and hence T* is a continuous linear

embedding of 7{_; = Hr into B'. =]
Conversely, the following proposition shows every element of Hilb(B') is generated
by an element of (B®B)*.

Proposition 2. Given a Banach Gelfand 'tm'ple, (B,H,B’) and J € Hilb(B'), there
exists a unique K(T) € (B®B)'* such that J = Hr.

1]
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Proof. If we denote the embedding of J into B’ by iz, then i%; € £(B, J’) and has
dense range. If we denote the antilinear identification of J’ and J by I 7, then

(i717358lig] 7i5¢) 7 = (¥,i51 7i%,¢), for ¢,y € B,

and it is clear that
J = HT, where T = i]l [ji}l.

From propositions 1 and 2 above, there is a bijective correspondence,
K(T) i HT,

between the Hilb(B') and (B®B)'*.

Definition 8. The positive-definite kernel x(T) € (B&B)'* is called the Schwartz
reproducing kernel of the Hilbert subspace Hr of B'.

1.2.4 The convex cone Hilb(B')

We describe briefly the remarkable structure of Hilb(B’).

1. There exzists a law of multiplication by non-negative scalars. Given J € Hilb(B’)
and a positive real number ¢, ¢J is the set consisting of the elements of the

original Hilbert space J equipped with the scalar product ( , ).7, where
<h, k)cJ — 1/C<h, k)]
Where ¢ = 0, we let ¢J = {0}.

2. There exists a law of addition on Hilb(B'). Given Hilbert subspaces J,K €

Hilb(B’) the Hilbert space J + K is the completion of the space

oA {U’:j_*'k:jEj’ke’C})
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with respect to the norm

Il 7+ = inf {4/l + lIklk : 5 € T,k € K}
" Equivalently,
J+K=(TJ&K)/kerd,
where
: JToK — B';(h,k)— h+k.
3. An order relation is defined on Hilb(B').

JISYCiE—" B @B

where Bz, Bx are the closed unit balls in 7, K € Hilb(B') respectively.

We are now in a position to state the fundamental result concerning the relationship

between (B&B)'* and Hilb(B'), the proof of which may be found in [32, 33].

Proposition 3. The mapping k(T) — Hr is an isomorphism of the conver cone
(B®B)'+ onto Hilb(B'). More explicitly:

1. ¢.k(T) 1is the Schwartz reproducing kérnel of cHr;
2. k(S) + &(T) is the Schwartz reproducing kernel of Hs + Hr;

3. - He<Hy = s(8) = k(T).

1.2.5 Direct integrals in H ilb(B’ ) '
over locally compact Abelian groups

For each = € G, let T, be an element of (B®B)'* and let = — k(T;) be weakly

measurable in the sense that the function z — (¢ ® ¥, k(T})) is Borel measurable for



14

all ¥, ¢ € B. Each ¢ € B defines a vector field

¢:G— HHTI;IHTI¢.

z€G

Hence if {¢;}icr is a countably dense subset of B, the following is true:
1. z— (¢i(z), Q;J-(I))HTI is measurable for all 7,5 € I;
2. the linear span of {¢;(z)}:cs is dense in Hy, for each z € G.

Consequently, the vector fields {i)i}iel make {Hr, },ec into a measurable ﬁeld in
Hilb(B') over G [16].

Definition 9. Given a positive Radon measure p on G, {Hr, }.ec C Hilb(B') is
w-summable if

[ P61, duta) < oo, ¥0 € B

Given a positive Radon measure y and a y-summable field {Hr, }zec C Hilb(B'), the
Hilbert space completion of the set of vector fields {¢ : ¢ € B}, equipped with the
inner product

(@19 = [ GNP, (o),

is an element of Hilb(B’) called the direct integral of the spaces { Hr, }.ec with respect
to the measure p and is denoted by

®
/ Hr, dp(z). (1:2.3)
G
The Schwartz reproducing kernel of the direct integral 1.2.3 is
[ #(T)duta) € (BEB)
G

defined by
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1.3 The Schwartz-Bruhat space
and tempered distributions on G

Fourier analysis has been extended to larger classes of objects using distributional
methods associated to vérious spaces of test functions. One such space is the Schwartz-
Bruhat space [4] of rapidly decreasing functions, S(G), which we describe purely for
the sake of comparison and completeness.

Let G be an elementary group, ie
G = RESA TR

where p, ¢ and r are non-negative integers and F is a finite Abelian group. A function
¢ is an element of S(G) if and only if the function and all its derivatives with respect
to the real and toral subgroups remain bounded when multiplied with a polynomial
whose coeflicients consist of infinitely differentiable functions on the torus. The topol-.
ogy on S(G) is derived from the corresponding seminorms in the usual manner. In
the case of an arbitrary locally compact Abelian group, G, a Bruhat pair consists of
an open, compactly generated subgroup H of G and a compact subgroup L of H such

that H/L is an elementary group.

Definition 10. S(G) is the inductive limit of the spaces S(H/L) over all Bruhat
pairs (H, L).

The Schwartz-Bruhat space can also be defined without using structuretheory.
Osborne [28] defined a space of functions which decay rapidly off compact subsets of
a locally compact Abelian group G as follows: A function ¢ € L*°(G) is an element
of A(G) if there exists a compact subset C(¢) of G with the property that for each

positive integer n there is a constant M, such that for each integer k > 1,

ldlc-cieykllos < Mpk™™.

)
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The following theorem was proved in [28]:

Theorem 5. The Schwartz-Bruhat space is the space
5(G) = {¢ € A(G)lo € A(G)}.

The Schwartz-Bruhat space has a large number of very desirable properties from
the point of view of harmonic analysis. In particular, it is a Fourier invariant, locally
convex function space with_ a double module structure, continuously and densely
embedded into many of the classical function spaces. The Fourier transform may be
extended by duality to the space of tempered distributions, §'(G), and of particular
interest in the context of the harmonic analysis of stochastic processes is the extension
of Bochner’s theorem to §'(G) [36]. The Schwartz-Bruhat space is, however, unwieldy
and difficult to use. A much simpler and more accessible option is available, as we

shall see.
1.4 The Feichtinger algebra S)(G)
and applications

1.4.1 Quasimeasures

Given a compact subset K of a locally compact Abelian group G, we denote by
Ak(G) = A(G)[Cx(G)

the set consisting of elements of the Fourier algebra supported in K. The compacted
Fourier algebra,

K
equipped with its natural inductive limit topology, is a locally convex function algebra

and a convolution ideal of KC(G) containing positive functions with arbitrarily small



it

support. Its dual space
Q(G) =) Ax(GY,
K

is the space of quasimeasures. The space of Radon measures, R(G), is continuously
embedded into Q(Q), when both spaces are equipped with their natural projective
limit topology. A quasimeasure is positive if it acts non-negatively on the cone of non-
negative elements of the compacted Fourier algebra. Every positive quasimeasure is,
in fact, a Radon measure; this is easily proved. .

Proposition 4. A positive quasimeasure is a (positive) Radon measure.

Proof. Let a compact set K C G be given. Pick a compact neighbourhood U of the
identity. Since A.(G) is a convolution ideal in X(G) and contains positive functions
with arbitrarily small support, we can arbitrarily uniformly approximate any positive
function ¢ € Ck(G) by a positive function.ux ¢ € A.(G) with support in K + U. An
application of Theorem 2, Chap III, section 2 of [3] completes the proof. O

Definition 11. A quasimeasure u vanishes on an open set O C G if

(p,n) =0,Y9 € A(G) with supp ¢ C O.
The support of a quasimeasure y, denoted by supp u, is the complement of the largest
open set on which p vanishes. :

We note that every pseudomeasure is a quasimeasure and every compactly sup-
ported quasimeasure is a pseudomeasure. Q(G) is a locally convex toplogical module
over the compacted Fourier algebra with respect to pointwise multiplication, deﬁned
by transposition. In the case of convolution, the module action extends to a vaguely
or 0(R(G), K(G))-continuous linear operator from K(G) intc; R(G), which commutes
with translations. . Conversely, every operator of this type is a convolution with a
quasimeasure. These facts were established in [17] Whére quasimeasures were intro-
duced as the topological dual of a space of functions D(G), which is shown in [6] to

be isomorphic to the compacted Fourier algebra.
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1.4.2 Bounded uniform partitions of unity in A(G)

Definition 12. Let U be a compact neighbourhood of the identity. A countable
collection {z;},c; C G is

1. U-dense, if
G =| J(z: + U);

i€l

2. relatively separated, if, for any compact set K C G,

supyecl{i € I : (y + K) N (z; + U) # 0} = ckx < o0.

A bounded uniform partition of unity in A(G) subordinate to U - U-BUPU, for short
- is a collection {¥;};e; C A(G) such that,

I
Ytz =1¥sc G;
€]
s
supp ¥; C (z; +U),Vi € I;
e

supier||¥ill a) < oo,

where {z;}ie; C G is any U -dense, relatively separated set.

A bounded uniform partition of unity in A(G) may be found for any compact

neighbourhood of the identity [11].

1.4.3 Wiener amalgam spaces of quasimeasures

We present a simplified version of the theory of Wiener amalgam spaces, specialised to
quasimeasures. The original presentation can be found in [9] and a detailed exposition
in [7]. Given a compact neighbourhood of the identity, U, and an associated U-BUPU,
{¢:}icr, every quasimeasure, u € Q(G), has a representation,

p=> i, (1.4.1)

i€l
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as a locally-finite sum of compactly supported pseudomeasures. Conversely, any pu
with the representation (1.4.1) is a quasimeasure [17]. The Wiener amalgam space,
W(A',1P)(G), with local component A" and global component [? consists of the set of
quasimeasures, p, such that {||¥;u| a(y }ier is p-summable. Wiener amalgam spaces
with a local component other than A’ may also be defined.

Definition 13. Given a Banach A(G)-module B, which is continuously embedded
into Q(G), the space of quasimeasures locally in B is the space

Bioe = {1 € Q(G) : Y € B,y € A(G)}.

Definition 14. Let {¢;}:c; be a bounded uniform partition of unity in A(G) subor-
dinate to a compact neighbourhood of the identity. The Wiener amalgam space of
quasimeasures locally in B with global IP behaviour, for 1 < p < oo, is the space

W(B,1")(G) = {u € Bioc : {thinticr € I"}.

When equipped with the amalgam norm

]l = |{irtierllin sy,

W(B,[?)(G) is a Banach A(G)-module, continuously embedded into Q(G). The def-
inition is independent of the partition of unity used - different partitions of unity
generate equivalent norms and, given any h € A, G), an equivalent ”continuous”

norm is defined by
T (L |Lohull? dz)'?

for 1 < p < 0o, with the obvious adjustment for p = oco.
The following result, which is theorem 2 of [21], is very useful.

Theorem 6. Let 1 < p < 00 and 1/p+ 1/p' = 1. Then the dual of the Wiener
amalgam space W (B, IP) is the space

W(B,IP)(G) = W(B',I”)(G).
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1.4.4 Segal algebras

Definition 15. A Banach space B, which continuously embedded into L} (G), is
homogeneous if it is

1. translation isometric - ie

IL:¢llz = ll4ll5,V¢ € B,Vz € G;

2. strongly translation continuous - ie

limI_.0||LI¢ = (]5“3 =0,V¢ € B.
A Segal algebra is a dense, homogeneous subalgebra of L!(G).

Reiter’s ideal theorem (Theorem 6.2.9 of [30]) states that there is a bijective cor-
respondence between the closed ideals of a Segal algebra S'(G) and those of L!(G).
More precisely, any closed ideal in L!(G) is the closure of an closed ideal I of S(G);
conversely, given any closed ideal Is of S(G), there a unique closed ideal I of L'(G)
such that

Is = In S(G).

Since the group characters are the annihilators or co-ideals in L*>°(G) of the maximal
closed ideals in L'((), it is a consequence of the ideal theorem that the maximal ideal
space of a Segal algebra is the dual group ¢

Definition 16. A Segal algebra S(G) is strongly character-invariant if it is modula-
tion isometric - ie %

in which case it is, in addition, strongly modulation continuous.

1.4.5 The Feicht_i_nger algebra
Definition 17. The Feichtinger algebra is the Wiener amalgam space W (A, ')(G).



21

The symbol Sy(G) is used for the Feichtinger algebra to signify that it is the

minimal strongly character invariant Segal algebra [12]. Its dual space
SHG) = W(A,1)(G)

is the space of translation-bounded quasimeasures. We note from [12] that Sy(G)
contains the Schwartz-Bruhat space as a dense subspace and from [10] that Sj(G) is

a subspace of the space of tempered distributions.

1.4.6 The Wiener algebra

So(G) is continuously and densely embedded into another Segal algebra of interest,
the Wiener algebra (8],
11’((;) :W(Cowll)(G))

whose dual,

T(G) = W(M, (®)(G),

is a Banach subspace of S{(G), the space of translation-bounded measures.

1.4.7 The extended Fourier transform
and the Plancherel theorem

One of the most useful properties of S'o is its Fourier iﬁvariance - Feichtinger proved in
(12] that the Fourier transform is an isomorphism of Sy(G) onto SO(@). The Fourier
transform may hence be extended by duality to an isomorphism of the dual spaces.
The following extension of the Plancherel theorem is then a simple consequence of

the density of S(')(.G') in L?(G) and the classical Plancherel theorem.

Theorem 7. (The Extended Plancherel Theorem) The Fourier transform is a unitary
Gelfand triple isomorphism of

(So, L2, L)@ onto (S5, I2.5LHED).
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1.4.8 Positivity, distributions of positive type
and the Bochner theorem

We may use the Fourier transform on the space of distributions Sj(G) to extend
the classical Bochner theorem to distributions of positive type. The version of the
Bochner theorem presented here for Sj is completely new, although the theorem has
already been extended to spaces of distributions. The prototype result in this respect
is the Bochner-Schwartz theorem - theorem 3, p. 157 of [18] and theoreme XVIII
of [34]. Other results of interest include a Bochner type result for positive-definite
measures on locally compact Abelian groups - theorem 4.5 in [2] and a similar result
for transformable measures - theorem 4.1 of [1]. Theorem 1, p.231 of [18] and theorems
21.4, p.493 and 2.7, p.1012 of [15] are representation theorems in a similar vein for
positive fﬁnctionals on commutative Banach *-algebras. We begin by characterising
the positive elements of Sy(G)'.

Proposition 5. Every positive element p of Si(G) is a positive, translation-bounded
measure and
Hlelire) = llullsyo)-

Proof. Let pu be a positive element of Sj(G) and {¢;}.c; be a BUPU in A(G). For
each ¢ € [, 9, is a positive, bounded measure and hence we have
sl = 19 * Bl oo (&)-

Hence

lellre) = supierllvinllme
5“1’:‘61”{1;1‘ * | L>(G)
= supierllipll a(c)
=" |lpllsyc)-
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Since Sy(G) is Fourier invariant, it is clear that in addition to being a Segal algebra,
it is a Banach function algebra.

Definition 18. A distribution p € S{(G) is multiplicatively positive if it is positive
on the function algebra Sy(Q) - ie

(19, 1) > 0,V¢ € So(G).

It is clear that every positive element of S{(G) is multiplicatively positive, but not
obvious that the converse is true. An example of a linear space where multiplicative
positivity does not imply positivity can be found in [18].

Definition 19. A distribution p € Sj(G) is of positive type if it is positive on the
Segal algebra Sp(G) - ie if

(d)* ¢*7.u‘) Z O,VQZS = SO(G)

We note that the Fourier Transform of a multiplicatively positive distribution is
a distribution of positive type. The following theorem demonstrates that positivity
and multiplicative positivity are equivalent.

Theorem 8. (Bochner’s Theorem) p € Si(G) is of positive type if and only if its
Fourier transform is a positive, translation-bounded measure.

Proof. The Fourier transform of a positive, translation-bounded measure is an element
of S{(G) of positive type. _ .

Conversely, let p € S{(G) be of positive type. Given an approximate identity
{ua} C So(G), p is the w*-limit

* *
b= limgug *» ul, * i

of functions of positive type. By the classical Bochner theorem and the w*-w* conti-
nuity of the extended Fourier transform, 7 is the w*-limit'in Sj(G) of anet of positive,
bounded measures and is hence positive. An application of proposition 5 completes

the proof. a
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1.4.9 Sets of spectral synthesis for Sy(G)

Given a closed subgroup H of a locally compact Abelian group G, we consider the
relationship between the space of distributions Sj(H) and the set of elements of Sj(G)
supported in H. In particular, we show that S{(H) is continuously embedded into
Sy(G) and that every distribution with sdpport in H can be represented by an element
of Sj(H). This is, in fact, equivalent to saying a closed subgroup is a set of spectral
synthesis for the Banach function algebra Sp(G). The result i;s new in the context
of Sp(@), although Hoermann has proved in [20] that, given locally compact Abelian
groups G; and Gs, the subgroup {0;} x G2 of G x G is a set of spectral synthesis
for Sp(G; x G9). Background information on sets of spectral synthesis can be found
in [30], from which the following definition is taken.

Definition 20. The cospectrum of an ideal I in the function algebra Sy(G) is the set

Cosp I ={z € G:¢(z)=0,Yp € I}.

_Given a closed set E C G, it is clear that every ideal Is in the function algebra

So(G) with F as cospectrum is contained in the closed ideal
Ig = {¢ € So(G) : ¢(z) =0,Vz € E},
and Proposition 2.1.16 of [30] shows that any such ideal /s contains the ideal

Jeg={¢ € So(G) : EN supp ¢ = 0}.

Definition 21. A closed set E C G is a set of spectral synthesis for the function
algebra Sy(G) if e
Je = Ig,

or, equivalently, if there exists precisely one closed ideal of the function algebra Sy(G)
with F as cospectrum. '
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Given a closed set F, the operation of restriction to F is the quotient map
RE . SQ(G) e So(G)/]E,¢ = ¢ + IE.

The adjoint operator R} is an isomorphism of the dual space (So(G)/Ig) onto the
annihilator Iz C S)(G). Given u € (So(G)/IEg)', we have for any ¢ € Sy(G) such
that supp ¢ N E =0,

(¢, Rpp) = (Reo,p) =0

and hence that supp Rip C E. Thus we have the following inclusion
Iz c {p € Sy(G) : supp u C E}.

The obvious question which arises here is whether inclusion can be replaced by equal-
ity; equivalently, whether every element of Sj(G) with support in the closed set £ C G
is of the form R} pu, for some p € (So(G)/IEg)'.

Proposition 6. Let E be a closed subset of the locally compact Abelian group G. If
E is a set of spectral synthesis for the Banach function algebra So(G), then

R(So(G)/15) = {n € SH(G) : supp 1 C E}.

Proof. From section 4.6 of [16], we note that it is a consequence of the Hahn-Banach
theorem that A
[ I+

defines a bijective correspondence between the closed ideals of L!(G) and the w*-
closed, translation-invariant subspaces of L*°(G). Hence, using Reiter’s ideal theorem
and the Fourier invariance of Sy, it is clear that

ISHI;'

defines a bijective correspondence between the closed ideals of the function algebra
So(G) and the w*-closed, modulation-invariant subspaces of Sy(G). Since

U@ e So(G) : supp p C E}
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and {g € S{(G) : supp p C E} is a w*-closed, modulation-invariant subspace of
Sy(G), we have that

Jg c* {u € Si(G) : supp u C E} C Ig.

Using the fact that E is a set of spectral synthesis for the function algebra Sy(G), we
now have that
*{ue S(G):suppuC B} =Ig

and hence
Ri(So(G)/ &) = I = {u € Sy(G) : supp . C E}.

The next result is crucial for later work.
Proposition 7. Closed subgroups are sets of spectral synthesis for So(G).

Proof. The statement follows from the ideal theorem and corollary 7.3.4 of [30]. O

1.4.10 Periodisation and restriction

The Feichtinger algebra exhibits invariance under the operation of restriction, Ry,
and periodisation, Py, over a closed subgroup H. We show that the corresponding
adjoint operators R} and P,*, are isomorphisms of Sy(H) and So(G/H)' onto the
closed subspaces of So((G)’ consisting of elements which are supported in /1 and are
H-periodic respectively. The proofs require results results of the previous section and
are presented here for the first time, although the results have been stated in [10]. In
addition, using the Bochner theorem for Sy(G)’, we present an original proof of the
Poisson summation formula. |

Proposition 8. Given a closed subgroup H of the locally compact Abelian group G,
the image of So(G) under the restriction map Ry, equipped with the transported norm
-- 18 So(H), e

Ru(So(G)) = So(H).

Proof. See theorem 7 of [12]. ; O
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Proposition 9. Let H be a closed subgroup of a locally compact Abelian group G.
Then
{1 € So(G) : supp u C H} = Ry(So(H));

equz’valently, given any pu € Sy(G) with support in a closed subgroup H, there exists
pn € Sy(H) such that
<¢)p‘) e (RH¢»#H)

Proof. The proposition follows from the propositions 6, 7 and 8. O

As a consequence of proposition 8, we have the convolution tensor product repre-
sentation of Sp(G).

Proposition 10. (The convolution tensor product representation)
Given ¢ € So(G) and € > 0, there exists {¢;}ier, {¥i}ier C So(G) such that

<P=Z¢i*¢f
iel

and

> lgillsae illsae) < lellso@ + e
el

Proof. From proposition 8, the restriction of Sy(G x G) to the antidiagonal can be
identified with Sp(G') and the proof is completed by an appeal to the Fourier invariance
of SO. (]

Definition 22. The periodisation operator Py over the closed subgroup H of a locally
compact Abelian group G is defined by

Pud(z + H) = /H #(z + h)dh.

Proposition 11. The image of So(G) under the periodisation operator Py, equipped
with the quotient norm, is isometrically isomorphic to the space So(G/H). - ie

Py(S0(G)) = So(G/H).
Proof. See theorem 7 of [12]. S o a
Definition 23. A distribution p € S{(G) is H-periodic if

Lpp = p,Yh € H.
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Definition 24. Let H be a closed subgroup of a locally compact Abelian group G.
The annihilator subgroup of H is the subgroup H* of G defined by

Ht ={ht € G: (h,h') =1,Vh € H}.

The following result characterises the H-periodicity of a distribution in terms of
the support of its Fourier transform.
Proposition 12. Let H be a closed subgroup of a locally compact Abelian group, G.
w € Sy(G) is H-periodic <= supp Ji € HL.

Proof. 1t is clear that a distribution with spectrum in H+ is H-periodic. 3
Conversely, let u € S{(G) be H-periodic. Then, given a BUPU {¥;}ic; C A(G),
i has the representation
b= Z Vi * p

i€l
as a sum of H-periodic, continuous L*>°(G) functions. An application of proposition
7.1.20 of [30] completes the proof. O

Proposition 13. Let H be a closed subgroup of a locally compact Abelian group G.
Then
Py (So(G/H)) = {p € Sy(G) : u is H — periodic}.

" Proof. The proposition follows directly from proposition 9, proposition 11 and propo-
sition 13. O

Theorem 9. (The Poisson Summation Formula) Let H be a closed subgroup of a
locally compact Abelian group G. Then

.7:G].H = ].H_L.

Proof. 1y is obviously H-invariant and, in addition, is of positive type, since

e /H R » (Rud)* (h)dh

[Fu(Rr¢)*(07)
=i

1y is invariant under the group of modulations {M,. : h* € H*} and hence Fgly
is a positive, [{*-invariant measure, supported in H+ and is hence Haar measure on
He i : O
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1.4.11 Wiener amalgams and kernels

Where B is a homogeneous function algebra on the locally compact Abelian group,
G, Wiener amalgams of the form W (B,[!)(G) exhibit an invariance property under
the formation of projective tensorA products. The following result is new, although a
special case - the invariance of Sy under the formation of tensor products - has been
proved in [12]..

Proposition 14. Let B be a homogeneous function algebra on the locally compact
Abelian group, G. Then

W(B,1)(G)®W (B, (G) = W(BRB,1')(G x G).

Proof. Given a BUPU {¢;}ier C A(G), {¢i®;}ijer is a BUPU in A(G x G). Hence,
given p € W(B,1')(G)®W (B, 1')(G) with the representation

i an®gna

the estimate
olvi@wsple <Y lwifallz D 59l
i,j TRt i
implies the inclusion
W (B, 1")(G)®&W (B, 1))(G) c W(B®B,1')(G x G).

An application of corollary 4 of [11] implies the reverse inclusion and compfetes the
proof. ; O

The Sy(G) kernel theorem, which is stated without proof in [10], is proved below
very easily. The proof should be compared to that of the kernel theorem for the
Schwartz-Bruhat space [4]. .

Theorem 10. The mapping o — T, defined by
(f®7,0) =@ T /)

is an isometric isomorphism of the space of kernels Sj(G x G) onto the space of
bounded linear operators L(So(G), S5(G)).
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Proof. As a simple consequence of proposition 14, we have the representation
So(G x G) = Sp(G)®S0(G)

and, since Sp(G) is conjugation invariant, the proof is completed by appealing to
lemma I11.B.26 of [37]. O

If we denote the isometric image of Syp(G x G) under o — T, by B, then since
So(G) is dense in L*(G), B is a proper, dense subalgebra of the space of trace class
operators 7(L?(G)) and we can extend the kernel theorem as follows:

Proposition 15. The mapping o — T, is a unitary Gelfand triple isomorphism of

(So(G x G), L¥(G x G), S)(G x G)) onto (B, HS(L*(G)),B).

1.4.12 Bimeasures

Definition 25. A bimeasure on a locally compact Abelian group G is continuous
linear mapping

B : K(G) — R(G),
where R(G) is equipped with its natural projective limit topology.

The dual of the Varopoulos algebra Vo(G x G) = Co(G)®Cy(G)-is the bimeasure

algebra of bounded bimeasures [19)],

BM(G x G) = L(Cy(G), M(G)).

Wo(G x G) = W(Cy, I})(G)®W (Cy, I')(G)

is a proper subalgebra of the V4(G x G). An application of proposition 14 yields
Wy(G x G) = W(BM,I®)(G x G),

the space of translation-bounded bimeasures.
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1.4.13 Fourier multipliers

The following definition is from [10].

Definition 26. T € B’ is a Fourier multiplier if it commutes with translations - ie

LiTE; = BN,

We denote by
M(So(G), Sy(G))

the subspace of B’ consisting of Fourier multipliers. The following result characterises

the space M (Sy(G), Sj(G)) was stated without proof in [10].

Proposition 16. T € B’ is a Fourier multiplier if and only if there exists ur € Sj(G)
such that
T¢ = ¢ M-

Furthermore,
T~ pr

is an isomorphism of M(Sy(G), Sy(G)) onto Sy(G) - ie

ITlls = l|lurllsye)-

Proof. Any operator generated through convolution with an element of S{(G) is a
Fourier multiplier in B’.
Conversely, from the kernel representation,

(¥, To) = (¢ ® ¥, 5(T)),
and proposition 13 it is clear that
T is a Fourier multiplier <= k(T is Ag — invariant
< supp Foxck(T) C Vg,

where Ag and Vi denote the diagonal and antidiagonal subgroups of G x G respec-
tively and we use the fact that A} = Vs. ; .

Since V5 is naturally isomorphic to 6’, we have from proposition 7 and the Fourier
invariance of Sy(G) that there exists ur € Sj(G) such that

@T¢) = (7rd)
= (Y, ur*¢),
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which yields the representation
To=pr*¢

as required. If we denote the identification of Sj((G x G)/AG) and Sy(G) by ia,
then, by proposition 13, the operator PA_ia. is an isomorphism of S3(G) onto the
subspace of diagonally invariant kernels in S{(G x G). a

1.4.14 Translation-invariant Hilbert Subspaces of Sj(G)
and the Bochner-Schwartz-Godement Theorem

The main result in the following section - the Bochner-Schwartz-Godement theorem -
is required for a representation theorem for stochastic processes which will be proved
in the next chapter. We prove here that positive-definite diagonally invariant kernels
in Sy(G xG)' can be represented by positive translation-bounded measures on the dual
group; equivalently that every unitary representation of G in a Hilbert subspace of
S5(G) is generated by a positive translation-bounded measure on G. The results here
are new, but similar in spirit to those in chapter 5 of [1]; section 6.3 in [16]; theorem
6, p.169 of [18] and, particularly in the case of translation-bounded bimeasures, the
final theorem is essentially theorem 2.5 of [26].

Since (Sy, L2, Sp)(G) is a Banach Gelfand triple, every Hilbert subspace of Sj(G)

is a reproducing kernel Hilbert space with Schwartz reproducing kernel
&(T) e SiHiE % Q).

Hr is the completion of the subspace {T'¢ : ¢ € Sy(G)} of Sy(G), with respect to the

norm
ITgll = /(¢ ® &, 5(T)),

equipped with the inner product

(TITy)r = (¢ @9, K(T)),
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where the antilinear operator T € L(Sy(G), Sj(G)) is defined by

(¥,To) = (¢ @ ¢, 5(T)).
The identification
k(T) & Hr
of a Hilbert space with its reproducing kernel is an isomorphism of the cone of positive

definite kernels g™ (G x G) and the cone Hilb(S}y(G)) of Hilbert subspaces of Sj(G).

- Definition 27. A kernel
k(T) € So(G x G)

is diagonally invariant if it is invariant under the action of the diagonal subgroup Ag
of G x G in the sense that

(L:¢ ® Ly, &(T)) = (¢ ® ¥, &(T)), Y9, ¥ € So(G),Vz € G.
It is clear that the representation
Ly : T TLyo

of the group G in the Hilbert space Hy is unitary if and only if the Schwartz repro-

ducing kernel (7T) is diagonally invariant.

Definition 28. A Hilbert subspace Hr of Sy(G) is translation-invariant if x(T) is
diagonally-invariant.

The set of diagonally-invariant kernels is obviously w*-closed in S{(G x G) and
hence the set Hilba,(S)(G)) of translation-invariant Hilbert subspaces of S3(G) is
obviously a closed convex cone in Hilb(S)(G)).: .

The simplest example of a translation-invariant Hilbert subspace of Sj(G) is the
one-dimensional Hilbert space Hz with Schwartz reproducing kernel ;(5 ® Xz which_
is the Fourier image of the Hilbert subspace L2(a, dz) of S{)(@) The content of the
following theorem is that every element in Hilbag(Sy(G)) is obtained as a direct

integral of such spaces.
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Theorem 11. (The Bochner-Schwartz-Godement Theorem,)

~

Hr € Hilbac(S{(G)) if and only if there exists ur € TT(G) such that for ¢,v €
So(G),

(To|Ty) = /G FEPE)dur (&),
and hence e 0
To— ¢,¢ € So(G)

extends to a unitary antilinear isomorphism of Hr onto L*(C, dpr).

Proof. For any ur € T*(@), it is clear that L*(G, dur) is Ag-invariant with respect to
modulation and hence that the Fourier image of L"’(@' ,dpr) is translation-invariant.

Conversely, let Hy € Hilba,(S)(G)). Then, since x(T) is diagonally-invariant, T
is a Fourier multiplier and there exists or € S}(G) such that

(ToITY) = (or*@lor*)

<¢7 ar * a)
(Y * ¢*, o7).

Il

Il

Since &
(px0*,0r) = ||Tol|”,

we have that o7 is a distribution of positive type and hence, by the Bochner theorem,
there exists a positive translation-bounded measure uy € T7(G) such that

ToTe) = [ 3@0@dur @)
G
Since ﬁr is a translation-bounded measure, we have for each ¢ € W(@) that

[ e
G

and since lC(@) is dense in W(a), L2(§, dur) is the completion of W (G) with respect
to the norm thus defined. Since Sp(G) is continuously and densely embedded into
W ((Q), it is dense in L?(G, dur) and hence the mapping

Té— ¢

extends to a unitary antilinear isomorphism of Hr onto Lz(@, dur). ‘ ]
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An important application of the above result is the decomposition
@
L*G) = /A H; dT
G

of L?(G) into minimal translation-invariant Hilbert subspaces of Sj(G); or, equiv-
alently the decomposition of the representation of G through translation into its
irreducible components. The Schwartz reproducing kernel of L?(G) is the convolu-
tion kernel dg; the correspondiﬁg operator is the linear embedding of Sy(G) into its

dual.



Chapter 2

Second Order Generalised
Stochastic Processes on Locally
Compact Abelian Groups

2.1 Introduction and general concepts

The use of distributional techniques in the harmonic analysis of stochastic processes
is not a new idea. The classical spaces S(R) and D(R) and other, less familiar,
spaces have been used as test function spaces in order to define generalised stochastic
processes (23, 24, 25]. This approach bypasses the need for vector integration and
simplifies the proof of some of the classical results of the theory of second order
‘stochastic processes.

The representation of stochastic processes on locally compact Abelian groups as
the Fourier transform of stochastic measures is considered in [27]. In this case, a lot of
preparatory work is required in order to define a stochastic integral and the results are
only valid for bounded stochastic measures. Furthermore, in order to justify integral
representations of harmonisable processes, the theory of bimeasure integration must

be considered. However, the extension of the distributional approach to stochastic

36
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processes defined on a locally compact Abelian group G is not particularly straight-
forward since the definition of the test spaces S(G) and D(G) is somewhat involved
and their use very unwieldy.

An ideal test function space for the harmonic analysis of stochastic processes on lo-
cally compact Abelian groups would combine the desirable properties of the Schwartz-
Bruhat space S(G) - in particular its Fourier invariance - with structural simplicity.
The Feichtinger algebra Sy(() is such a space. Its use as a test function space for gen-
eralised stochastic processes was first considered by Hormann [20], who presented very
concise proofs of classical results and extended results obtained by Niemi [27] using
stochastic integration. However, the proof of the spectral representation theorem pre-
sented in [20] rests on two assumptions which have not been justified: ”..any positive
g € So(G) can be written in the form g = ff, where f € Sy(G)” (proof of theorem 1,
part c) and, secondly, given o € Syp(G)’, ”.....that 7 is positive and this is equivalent.
to o positive definite” (proof of theorem 8). The second assumption is, in fact, the
Bochner theorem for So(G)’, which has not been stated in [20]. Indeed, the notion of
positive definite has not been defined in [20] for elements of Sp(G)’. The unjustified
use of the Bochner theorem for Sp(G) does however illustrate its importance in the
proof of the spectral representation theorem for generalised stochastic processes. In
the work which follows, the spectral representation theorem for generalised stochastic
processes is shown essentially to be a corollary of the Bochner-Schwartz-Godement
theorem, which was proved for the first time for So(G) in chapter 1. Furthermore, it
is shown in this present work, using the fact that the time domain of a gene}ra'li}sed
stochastic process is isomorphic to a Hilbert subspace of So(G)’, that any generalised

stochastic process with a bounded covariance bimeasure may be identified with a
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stochastic process. This bypasses theorem 11 of [20], the proof of which was quite
technical.

We consider initially the basic concepts and results in the theory of second order
stochastic processes on locally compact Abelian groups and state some of the classi-
cal results including the spectral representation theorem. This information and the

notation is drawn essentially from [27].

2.1.1 Second order stochastic processes

In this work, we are interested in a particular class of processes defined by complex
valued random variables ¢ with zero expectation £€ and finite variance £|€|*> with
respect to a Borel probability measure P on the locally compact space €2; in other

words, elements of the centred probability space

Al N /Qf(w)dp(w) =0 and £|¢]? < o0}, F2ueT)

Definition 29. A second order stochastic process X on a.lqcally compact Abelian
group G is a function
X :G— L, P).

Definition 30. The realisation of a second order stochastic process X on a locally
compact Abelian group G corresponding to w € Q is the function X, on G, defined
by

Xlr)y= X(zw)xr € G

Definition 31. The correlation of two second order stochastic processes X and Y
on the locally compact Abelian group G is the function oxy on G x G defined by

oxy(z,y) = EX(2)Y (y).
The autocorrelation oxx of X is written oy.

Definition 32. The time domain H x of a second order stochastic process X is the
- completion of the linear span of the set of random variables

{X(2):xE G} C LEQ,P)
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2.1.2 Stochastic measures

Definition 33. A stochastic measure on the locally compact Abelian group G is a
continuous linear mapping Z from K(G) into the space of random variables L3(, P).
Given ¢ € K(G), Z¢, denoted

| #)iz(a),
e}
is a stochastic integral.
Definition 34. The dual space
M(G, L§(Q, P)) = L(Co(G), L§($, P))
of Co(G)RL2(Q, P) is the space of bounded stochastic measures.

Definition 35. A stochastic measure Z is orthogonally scattered if

(Zf|Zg)Lg(n,P) =

for disjointly supported pairs of functions f, g € K(G).

2.1.3 Stationary second order stochastic processes

Definition 36. A second order stochastic process X is stationary if there exists a
continuous function vy on G such that

ox(z,y) = rx(z — y).

The following theorem is the most fundamental result in the theory of second
order stochastic processes. Roughly speaking, the theorem states that a stochastic
process on a locally compact Abelian group G which is stationary may be represented
by something deterministic - a positive, bounded measure on the dual group il

Theorem 12. (The spectral representation theorem for stationary stochastic pro-
cesses) sl ¥

A second order stochastic process X on a locally compact Abelian group G is
stationary if and only if there exists a positive bounded measure px on the dual group
G such that for z,y € G,

oilon) /a@—y,f)dux(f)- (212)
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Let X be a stationary stochastic process on the locally compact Abelian group G.
Then there exists an orthogonally scattered bounded stochastic measure Zx on the
dual group such that

N / T ) (2.1.3)

G
In addition,

1ZxdllL2) = 18]l 12(G uyy» YO € K(G)

and hence Zx extends to a unitary isomorphism of the spectral domain Lz(é.,ux)
onto the time domain Hx.

We shall not prove the theorem since we will later prove a more general version, but
will comment briefly. The autocorrelation kernel of a stationary stochastic process X
is a diagonally invariant positive-definite function and hence the representation 3.7.1
is a consequence of the classical Bochner theorem. The positive bounded measure px °
defined by equation 3.7.1 is the spectral measure of X. The stochastic measure Zx
defined by equation 2.1.3 is the Fourier transform or spectral process of X and it is

clear that Zx i1s a bounded measure and

1Zx| < x|l

However, if the process GG is not discrete, G is not compact and, since the characters

are not compactly supported, the integral 2.1.3 has yet to be defined. We shall not

dwell on the vagaries of vector valued integration at the moment as we intend to

introduce an environment that bypasses the need for this.

2.1.4 Harmonisable and V-bounded stochastic processes

A stationary stochastic process is the Fourier transform of a bounded, orthogonally
scattered stochastic measure. A natural extension-of the notion of stationarity is to
consider stochastic processes which are the Fourier transform of bounded stochastic

measures which are not necessarily orthogonally scattered.
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Definition 37. Stochastic processes with a representation 2.1.3 as the Fourier trans-
form of a stochastic measure are called harmonisable.

Definition 38. Associated to a harmonisable process X is its covartance bimeasure
By, defined by A i
<¢ ® 1/}a BX) e (ZX¢|ZX¢)) ¢71/) (S CO(G)

By is a bounded bimeasure and positive definite in the sense that

(p®6,Bx) = ||Zx¢|?

S H0INBE CyC):

The autocorrelation of a harmonisable process may be expressed as the bimeasure
integral

e~ /G e RdBxE). T (2.1.4)

xG

Conversely, any second order stochastic process X where the autocorrelation has
the representation (2.1.4) can be represented as the Fourier transform of a bounded -
stochastic measure and is hence harmonisable [22]. The definition of harmonisible
stochastic processes used in this work corresponds to the definition of weakly har-
monisable processes used by other authors [22], [27]. Strongly harmonisable processes
are defined by having a covariance bimeasure which is a bounded measure on A% G
Strongly harmonisable processes are clearly weakly harmonisable and, since we do
not intend to work with strongly harmonisable processes here, we refer to weakly
harmonisable processes simply as harmonisable.

Definition 39. A weakly continuous second order stochastic process X is V-bounded
if the range of X and

‘s /G X(@)¢()dz : |3l < 1,6 € LX)}
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are bounded subsets of L3(2), where

| X@é)da

is a Bochner integral.

The following theorem, which is theorem 4.2 of [29], states that harmonisability
and V-boundedness are equivalent.

Theorem 13. A stochastic process X on a locally compact Abelian Group G 1is har-
monisable if and only if it 1s V-bounded.

We would like to stress at this point that the validity of the representation (2.1.4)
will not be justified here; we refer instead to some of the treatises on the subject of
bimeasure integration. It should be noted that another shortcoming of the classical
theory is that it deals only with boﬁnded stochastic measures. We will attempt to

remedy this by employing a suitable space of random variable valued test functions.

2.2 Second order generalised stochastic processes

Definition 40. The dual of the Banach space of stochastic processes, So(G)®LZ(9),
is the space
i (So(G)BLG(Q)) = L(So(G), L§(2, P))

of generalised stochastic processes on the locally compact Abelian group G.

The definition of generalised stochastic process used here mimics that of a gen-
" eralised function, or distribution, which is an element of the dual of a space of (de-
terministic) test functions. Previously, generalised stochastic processes have been
defined to be continuous linear mappings from a function space such as S(R) or D(R)
into a space of random variéi)les (23, 24, 25]. Use of the test function space Sp(G) in

this work considerably simplifies proof of some of the classical theorems.
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We mte that the space of generalised stochastic processes is the space of translation-
boundedstochastic quasimeasures and contains the space of translation-bounded stochas-

tic measures,

(W(G)RLH(Q)' = LIW(G), L§(Q, P)).

In additon, since Sy(G)®L2(N) is dense in the Hilbert space
L¥(G, L§(Q, P)) = L*(G) ® L§(, P),

the tripl
(So(G)®Lj(), L*(G, Ly(9, P)), L(So(G), L§(2, P)))

is a Bamich Gelfand triple of stochastic processes.

Since

(X' DlY ) za,m)| < IX MY Il s 1 ¥l 5o

it is clear that
PR Y — (X'9lY'Y) L3, p)

extends to a continuous linear functional on Sy(G)®SH(G) = So(G x G), which we
define tc be the correlation kernel of X’ and Y

Definition 41. The correlation of two generalised stochastic processes X', Y’ on the
locally compact Abelian group G is the kernel

Oxryr € S(,)(G X G)
defined by : )
(0 ® v, 0xy) = (X'OIY'V) 130,p), & ¥ € So(G). (2.2:1)

Definition 42. The time domain of a generalised stochastic process X’ on the locally
compact Abelian group G is the Hilbert space Hx: C L2(12, P) obtained by completion
of the space of random variables

{X'¢: ¢ € S(G)}



44

It is clear that the autocorrelation ox: = ox/x: of any generalised stochastic
process X' is a positive definite kernel and, from equation (2.2.1), that H - is unitarily

antilinearly isomorphic to the Hilbert subspace of Sj(G) with reproducing kernel o ..

2.3 The spectral process

Given a stochastic process X, we would like to define its Fourier transform Xina way
which is consistent with the (deterministic) Fourier transform - roughly speaking, we
would like the Fourier transform of the realisations of the process to be equal to the
realisations of the Fourier transform and which enables us to extend the definition
of the Fourier transform to generalised stochastic processes. The following definition
.satisfies these conditions and is also consistent with the classical definition of ‘;he
spectral process, defined by equation (2.1.3).

Definition 43. Given a stochastic process \

X € So(G)RLE(R, P)

with a representation

X = Z ¢n ® Znﬁ

the spectral process or Fourier transform of X is the stochastic process
X = Z ¢n b2 Zn

on the dual-group e

From the Fourier invariance of the Feichtinger algebra, it is clear that the operator

fG:Xr-—»)?

is an isomorphism of the spaces Sy(G)®L2(f2, P) and Sg(é)@L%(Q, P) and hence that

the Fourier transform extends by duality to an isomorphism of the respective spaces
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of generalised stochastic processes on G and G. In fact, it is clear that we can say
somewhat more.

Theorem 14. (The Plancherel Theorem) The Fourier transform is a unitary Gelfand
triple isomorphism of

(So(G)BLF(Q), LX(G, L§(Q, P)), L(So(G), L§($2, P)))

onto

(So(G)BLA(), LA(G, LAR, P)), L(Sa(G), LA, P)))-

2.4 Stationary second order generalised stochastic
processes and the spectral representation the-
orem

Definition 44. A second order generalised stochastic process X’ on a locally compact
Abelian group G is stationary if its autocorrelation oy is diagonally invariant, ie

(Lag ® LY, 0x7) = (9 ® 9, 0x1), Yz € G, Y9, 9 € So(G). (2.4.1)
Definition 45. A generalised stochastic process X' is orthogonally scattered if
X' LiXy,

for any pair of functions ¢, € So(G) which are disjointly supported.

The following proposition shows that an orthogonally scattered generalised stochas-
tic process may be characterised by the support of its autocorrelation. The proof is
adapted from [20]

Proposition 17. Let X' be a generalised stochastic process on the locally compact
Abelian group G. )

X' is orthogonally scattered <= supp ox: C Ag.

Proof. Since
supp fNsupp g =0 <= supp(f ® g) N Ag =0,

it is obvious that a generalised stochastic process with an autocorrelation supported
on the diagonal is orthogonally scattered.
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Conversely, let X’ be orthogonally scattered. Given o € So(G x G) such that
supp o is compact and supp 0 N Ag = 0, pick a compact neighbourhood U of the
identity in G x G such that

(K =t U) N AG = 0

and a compact neighbourhood V' of the identity in G such that
Ve xaiail

Then, given any V-BUPU {4;}cs, there exist finite subsets /,, J, C I such that
o= ) Y:®yo
16l el,

and
supp(¥: ® ;) N Ag =0,V (3,7) € I, X J,.

Hence, given any representation

0= fn®gn € So(G)BSH(G),

we have
(o' == Z Wifn & L/fjgm
i€15,5€Js,n
with
supp("/)ifn ® d)jgn) N AG' == ®V2 = Irij & Jm n.
Hence

(0,0x7) =0.
1,

We are now in a position to state and prove the spectral representation theorem.

Theorem 15. (The spectral representation theorem for stationary second order stochas-
tic processes on locally compact Abelian groups) :

Let X' be a second order generalised stochastic process on a locally compact Abelian
group G.

1. X' is stationary if and only if there exists a unique positive, translation-bounded
measure px € TT(G) such that Vo, € So(G), ’

b mioe /G SE P @@ (242)
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2. X' s stationary if and only if the spectral process X' is an orthogonally scattered
translation-bounded stochastic measure.

3. If X' is stationary, then
1X78) = ( /G 168 Pdyux: (8)2, V¢ € So(E)

and hence X' extends to a unitary isomorphism of Lz(é,pxr) and the time
domain Hx.

Proof. 1. A generalised stochastic process whose autocorrelation kernel can be
represented as in (2.4.2) is obviously stationary. Conversely, it is clear that
the autocorrelation of a stationary generalised stochastic process is a positive-
definite diagonally-invariant kernel and the representation 2.4.2 follows from the
Bochner-Schwartz-Godement theorem.

2. The chain of equivalences

< ox/ is Ag — invariant
<> suppFexcox C Aé
= suppFc ® Fgox C Ag
< suppoyg C Ag

X' is stationary

shows that that X' is orthogonally scattered if and only if X’ is stationary.
Given X' is stationary, for any ¢ € Sp(G), we have

||X'¢“i§(ﬂ) < ||,UX’“T“¢”3V(§)’

and hence, from the density of So(G) in W(G), it is clear that X' extends to
an orthogonally scattered translation-bounded stochastic measure.

3. Since Hx- is antilinearly unitarily isomorphic to the Hilbert subspace of Sj(G)
with reproducing kernel ox/, the final part of the theorem follows from the

Bochner-Schwartz-Godement theorem.
O

Definition 46. The measure py € T+(G) associated to a stationary generalised
stochastic process X' is called the spectral measure. The Hilbert space L2(G, jux) is
the spectral domain of the process X'.
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We consider now the relationship between generalised stochastic processes and
stochastic processes. In particular, we would like to derive the classical spectral rep-
resentation theorem for stationary stochastic processes from the equivalent theorem
for generalised stochastic processes. In order to do so, we must decide when a stochas-
tic process and a generalised stochastic process can be identified. The following two
propositions, which are original, show that a stationary generalised stochastic process
can be identified with a (classical) stationary stochastic process if and only if its spec-
tral measure is bounded. This could be considered to be a special case of theorem 11
of [20].

The next proposition shows that every stationary stochastic process generates a
generalised stochastic process with the same time domain.

Proposition 18. Let X be a stationary stochastic process on a locally compact
Abelian group G with spectral measure ux. For each ¢ € So(G), let

X’¢=/X:c¢(a:)dz,
o

where the integral is interpreted weakly. Then,

1. X' is a stationary generalised stochastic process with spectral measure pix.
2. Hx =Hx:.

Proof. 1. The estimate
IX¢ligar = sunll | (Xeleho(o)dal : Il gom < 1}
Xzl [ ¢()lds

G

1/2

IA

IN

shows that X’ is a generalised stochastic process. Furthermore, since for ¢,‘1[1 €
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So(G),

(X'BlXP) = /G Xz(z)da /G Xa3(z)dz)

| txalxy)s@)p)dzdy
GxG

= <¢ ® wv OX))
X' is stationary with spectral measure pyx.

. We show that, for every ¢ € Sy(G), X'¢ may be norm approximated by an
absolutely convergent sum of elements of Hx and is hence in Hx.

Let U be a compact neighbourhood of the identity in G and {%;}.c; be a U-
BUPU in So(G). Then

BEEDY / ¢@)i(z)dr Xzl = ||) v (Xz — Xz,)p(x)i(z)dz||
i€l i€l Vot
< O IXe- Xallo@) )z

Now, for z € z; + U,

“XI = XCC:‘”2

(Xz|Xz) + (Xzi| X1;) — (X2|X2) — (X8| XT)
25upze(zi+1)|0x (0) — ox(z — z:)|
2supzev|ox(0) — ax ()l

A

Since 7 x is the Fourier transform of a positive bounded measure, it is uniformly
continuous and hence

limy—.||X'¢ =) z)Yi(z)dz Xz = 0.
i€l :.+U
Since
S s@wEdaxa) < Y / 6(2) [0u(x)d| Xz,
lel I'+U LGI

A

we hence have
X,¢ € Hx.
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To complete the proof, we show that Hy: is total in Hy. For z € G and
¢ € So(G),

(Xa|X'g) = /G ox(z,)P(y)dy)dy

and hence we have that Xz is orthogonal to Hy: if and only if the function

y— ox(z,y)

is the zero element in Sj(G). Equivalently, since H - is unitarily isomorphic to
the dual of a Hilbert subspace of Sj(G), we have that Xz is orthogonal to Hx-
if and only if Xz = 0.

' =

Definition 47. A generalised stochastic process X’ may be identified with a stochastic
process X if X generates X' in the sense of proposition 18.

We now show the converse of proposition 18 - that every stationary generalised
stochastic procévss with a bounded spectral measure can, in fact, be identified with a
stochastic process.

Proposition 19. Let X' be g\statibnary generalised stochastic process with bounded
spectral measure px:. Then, X' is a bounded measure and X' may be identified with
a stochastic process with range in Hx:.

Proof. Given ¢ € 50(5),
%0l = ([ 16@)Pdue @)
X 1/2 -

and hence by the density of Sy(G) in Co(G), X' extends to a bounded measure on G.
Given ¢ € Sy(G), the estimate

INA

| /G 3E) (2, B)dux )]

"52 Xl/x\l/2 AT))1/2
(/@I¢>( ) Pdux(3)) (/@dux())

X Bl 1225,

shows that .
X¢m [ 3@) (e B (@)
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is an element of H'y, and hence that Xz € Hx/, where
g / oot o
G
Given ¢, v € Sp(G),

(X'g| / Xap(s)dz) = / /G 3@) (w, B)dyux (B)P(a)d

- /5(5)/@(13)(37,5)(1-’15(1#)('(5)

L / HEP @) du ()
- X'¢|xw

and hence we have that

X' = / Xzp(z)dz, Vo € Sp(G),
G

as required. O

2.5 White noise

Definition 48. The stationary generalised stochastic process whose spectral measure
is 15, the Haar measure of the dual group, is called white noise and is denoted by W.

For ¢,% € Sy(G), we have
wolwy) = [ 3@
G

and hence the associated spectral domain is LQ(@). The spectral process W is also a
stationary stochastic process with spectral measure 14 - in other words, W is white
noise on the dual group G. White noise is important in the synthesis of stochastic

processes through filtering. We will consider this at a later stage.
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2.6 Harmonisable and V-bounded
generalised stochastic processes

The following definition is a new generalisation of the definition of a harmonisable
stochastic process.

Definition 49. A generalised stochastic process X' is Harmonisable if X' is a translation-
bounded stochastic measure.

The covariance bimeasure of a harmonisable stochastic process is bounded which
implies that the spectral process is a bounded stochastic measure. The spectral
process of a generalised stochastic process is, however, not necessarily bounded, but
the covariance bimeasure is translation bounded, which is the content of the next
proposition.

Proposition 20. A generalised stochastic process X' is harmonisable if and only if
the autocorrelation kernel ox: has the representation

(B®p,ox) = (6® P, Bxr), b, ¥ € So(G), (2.6.1)

where Bx: 1s a translation-bounded bimeasure.

Proof. Let the generalised stochastic process X’ be harmonisable. Then X' is a
translation-bounded stochastic measure, and it is clear that

Bxi : 6@ % — (X'¢|X'9), 6,9 € W(G),

defines a translation-bounded bimeasure. The representation 2.6.1 then follows.
Conversely, let the autocorrelation of the generalised stochastic process X’ be
represented as in equation 2.6.1, where By is a translation-bounded bimeasure. Then,
for ¢ € So(G),
| IX'8lI* = (¢ ® ¢, Bx).
Hence
s i o £
X781l < 1llw(@) I Bxli5ar ¥ € So(G),

and, since Sp( (3) is dense in W(a ), it is clear that X' extends to a translation-bounded
stochastic measure on G. ' T 0
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We now consider the relationship between harmonisable stochastic processes and
harmonisable generalised stochastic processes. We show in the next two propositions,
using original methods that bypass the use of theorem 11 of [20], that a harmonisable
generalised stochastic process, is a (harmonisable) stochastic process if and only if its

covariance bimeasure is bounded.
Proposition 21. Let X be a harmonisable stochastic process on a locally compact
Abelian group G. For ¢ € So(G), let

X',¢=/Xx¢(a:)d:c,
@

where the integral is interpreted weakly. Then

1. X' is a harmonisable generalised stochastic process with covariance bimeasure
Bx.

P Hxl = Hx.
Proof. 1. For ¢ € So(G),

IX'ol < /G Xzl 6(x)]dz
o sl 2 / 16(2)|dz

G

< Nlox 122 éllsocc)

< |BxligalI8llsoc,

which shows that X' is a generalised stochastic process.
For ¢, v € So(G),

(X,(,é(X’%lx'J) = ([ Xab(a)dal [ Xab(e)da)
= [ (Xz|Xy)B(z)P(y)dzdy
=g G(’X%Ay)@\x)w\y)a:wy

= ($®§70X>
= (¢®¢7BX>~

-. as required.
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2. We show that Hx and Hx are total in each other. For z € G and (}5 € So(G),

(Xalx®) = [ ox(@ )5y
= fana(I)
and hence
X'¢ L XNt € G = FzBxd(z)=0,Yz€G

= Bx¢=0
S =)

since the time domain Hy- is unitarily isomorphic to Hpg,, whose dual is a
Hilbert subspace of Si(G).

Conversely, e
Xz L X'¢,Vo € So(G)
implies that the function
y+— ox(z,y)

is the zero element in Sj(G) and hence that Xz = 0.

We now show a converse to the above proposition.

Proposition 22. Let X' be a harmonisable generalised stochastic process on a locally
compact Abelian group G. If the covariance bimeasure Bx: is bounded, then X' is a
bounded measure and X' can be identified with a (harmonisable) stochastic process
with range 1 Hx:.

Proof. For ¢ € So(é)y g %
1X'¢||1” = (¢ ® ¢, Bx)

and hence, if By is bounded,

X8Il < [ llocll Bxl| a1,
and, since So(a) is dense in Co(é), X’ extends to a bounded measure on G.
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Given ¢ € So(G), the estimate

| [ #(@){z,y)dBx(z,7)|

GxG

| [ 5aBx(0))
G
|Fa By (9)(3)

IA

”Bx'((b)“zu(é)
= sup{|(®, Bx())] : ¥ € So(@), Y]l < 1}
= sup{|{¢® %, Bx')| : ¥ € So(G), [[¥llo < 1}
= sup{[(X'¢|X"9)| : ¥ € So(G), [ llo < 1}
< 178l X7)
< IX'BlIX,

where H)/(\’ || is the bounded stochastic measure norm of X', shows that

X'¢— | 6@)(z,9)dBx(Z,7)
GxG

is an element of H'y,. Given z € G, Xz € Hxs defined by

(X'9lXz)= | 6@z, 9)dBx(Z,7),Yé € So(G),

GxG

determines a stochastic process X on G with range in Hx-.
We show now that X generates X’'. Given ¢, € Sy(G),

| x3ix0)0 @)

|| s@Eiase@ i
| [ @aasx(6)@Bada

[ [P@iEads. @6

/a 3H)dBx($)5)

<¢ ?\51 E/;\X')
(X'o|X"Y)

(x'3) /G Xe(z)ds)

Il

and hence

= /G Xadtahin b e S0,
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as required.
We show finally that X is harmonisable.

(XAXD) = ([ Xeda)dal | Xeb(o)in)

- $(@)(y) (X 2| Xy) dzdy

GxG

Hence, __
(p®Y,0x) = ($® ¥, Bx),

which shows that X is harmonisable. Od

Definition 50. A generalised stochastic process X’ on a locally compact Abelian
group G is V-bounded if the set

Cxr = {X'¢: ¢ € So(G), |4l < 1} (2.6.2)
is bounded.

Proposition 23. Let X' be a generalised stochastic process on a locally compact
Abelian group G.

X'is V-bounded <= Xis a harmonisable stochastic process.

Proof. Since 50(6’) is dense in/go(G'), it is clear that that the set of random variables
Cyx+ is bounded if and only if. X’ is a bounded stochastic measure. 74 (]

In fact, if we replace the Bochner integral by a weak integral in the definition of a
V-bounded stochastic p-rocess as in definition 3.1.1 of [27], it is clear from the density
of Sp(G) in L}(G), that every V-bounded stochastic process may be identified with
a a V-bounded generalised stochastic process and vice-versa. Hence, we have proved
the following proposition, which is theorem 3.2.1 of (27].

Proposition 24. Let X be a stochastic process on a locally compact Abelian group.
Then i
Xis V-bounded <= X1is a harmonisable stochastic process.
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2.7 Filtered generalised stochastic processes

The space of generalised stochastic processes £(S(G), L§(€2, P)) on the locally com-
pact Abelian group G is a right Banach L£(Sy(G))-module. Given a generalised
stochastic process X’ and T € £(Sy(G)), we denote by TX' the generalised stochastic

process

¢ X_/TdJ

and call this process X' filtered by T.
Two subalgebras of £(Sy(G)) are of particular interest as regards the filtering of

generalised stochastic processes - the modulation spaces
M, (G) = W(A,I*)(G)

and

My,1(G) = W(Ala ll)(G)

The convolution algebra M 1(() is the space of tirme-invariant filters. We define the
convolution of u € M 1(G) with the generalised stochastic process X’ by transposi-
tion in the sense that

puxX'¢=X'fix¢.

M 1(G) contains M(G) and, in particular, it contains the Dirac measures. For

z € G, we have
Be el e,
The function algebra M, o(G) is the space of frequency invariant filters and is the

Fourier image of My 1(G); in particular, it contains the characters. The generalised

stochastic process X', filtered by ¥ € M) «(G) is the -generalis_ed stochastic process
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defined by

VX' = X"yo.

The Fourier transform T of an operator T € L(So(G)) is defined by transposition
in the sense that, for QAﬁ € So(G),
BT,
It is the clear that the following is true for any T € L£(Sy(G)) and any generalised
stochastic process X':
TX' =TX'.

In particular, for any p € M« 1(G) and any generalised stochastic process X', we
have that

fioe X s TN

Proposition 25. Let W denote white noise on a locally compact Abelian group G.
Then, the mapping '
T—TW

is a unitary isomorphism of HS(L*(G)) onto L2(G, 13, B)).

Proof. Let S, T be elements of the operator algebra B. Then, if we denote the identity
operator corresponding to white noise by I, we have

(SW|ITW) = trSIT*
(S|T)
and hence, from the density of B in HS(L?*(G)), the mapping T'— TW extends to a
unitary isomorphism of HS(L?(G) into L*(G, L(Q2, P)).
We complete the proof by showing that the mapping is a surjection. If we write
L*(G, L§(Q, P)) = L*(G) ® Lj(Q, P),

then it is clear that we have the following identification:

(G, LA, PY) = H8(LHG), LE (R, PY.
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Hence, given X’ € L2(G, L3(, P)), X"* X' is a positive, trace class operator in L?(G).
The positive square root of X”* X’ is an element of HS(L?*(G)) which we denote by
le. Then

(PxW|PxW) = trPxP%
il XA

which completes the proof.
£l
White noise is used to synthesise stationary stochastic processes through time-
invariant filtering. The proof of the following proposition is a matter of routine.

Proposition 26. Given p € My 1(G), the filtered white noise process p+ W is
stationary with spectral measure |f|*15.



Chapter 3

Multidimensional Second Order
Generalised Stochastic Processes
on Locally Compact Abelian
Groups

1 | Intrc_)duction

We extend the results of the theory of scalar generalised stochastic processes on lo-
cally compact Abelian groups to infinite dimensional processes - ie processes which
are defined using Hilbert space valued random variables. This results in much shorter
* and more transparent proofs of results obtained by Kakihara in [22]. In particular, the
theory of étochastic measures and operator valued bimeasures developed by Kakihara
is bypassed by again using Sp(G) as a test function space and exploiting its remark-
able properties. In this present work, an extended spectral representation theorem for
multidimensional generalised stochastic processes on locally compact Abelian groups
is proved. This requires a Bochner theorem for £(H)-valued distributions, where H
is an separable, infinite dimensional Hilbert space. In order to prove the Bochner the-

orem, an operator valued Fourier transform is defined and some preparatory results

60
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proved. Conditions are defined for a stationary multidimensional generalised stochas-
tic process to be identified with a stochastic process. Harmonisable multidimensional
generalised stochastic processes are investigated and representation theorems proved.
All material in this chapter, except where indicated, is original. We begin with some
background material taken from [22] on normal Hilbert £(H)-modules, which are very

useful in describing infinite dimensional stochastic processes.

3.2 Normal Hilbert £(H)-Modules

Let H be a separable Hilbert space.

Definition 51. A normal pre-Hilbert L(H)-module is a left £L(H)-module ), equipped
with a mapping,

[, ]: Y xY— 7(H),
the grammian, which satisfies the following conditions: for X,Y,Z € Yand T € L(H),

1. [X,X]>0and [X,X] =0 < X =0;
2. [X+Y,Z)=[X,Z]+ Y, Z);

3 {TX.¥] =T[X. Y]

45X = [

A normal pre-Hilbert £(H)-module which is complete with respect to the norm

X1 = /X, X1l

is a normal Hilbert L(H)-module.

We will use the following version of the Schwartz inequality which is lemma 2,
p-18 of [22].
Proposition 27. Let Y be a normal L(H)-module. Then, for X,Y € Y,

X, Y]llzoo < IXN¥IY lly-
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Definition 52. Let } and Z be normal £(H)-modules.

1. A bounded linear operator
L e L{Vig)

which commutes with the module action of L(H) is a module homomorphism
from ) into Z.

2. A module homomorphism which preserves the grammian is a grammian unitary
tsomorphism.

3. Let Y, Z be normal Hilbert H modules. ) and Z are grammian unitarily
isomorphic if there exists a grammian unitary isomorphism of Y onto Z.

4. A module homomorphism from Y into 7(H) is a bounded linear functional on
3
It is clear from the Schwartz inequality that every element Z of a normal L(H)-

module Y defines a bounded linear functional
Az: Y[, 2]

The converse is the Riesz representation theorem, which is proposition 6, p.25 of [22].

Proposition 28. (The Riesz Representation Theorem) Let Z' be a bounded linear
functional on a normal Hilbert L(H)-module Y. Then there ezists a unique Z € Y
such that A
Z) =2 ¥¥ )

and
1z =1z

Definition 53. A trace class operator valued measure on a locally compact Abelian
group G is a continuous linear mapping

b K(G) — 7(H).
For ¢ € K(G), we denote the trace class operator p(¢) by

/G 6(z)du(z)

and say p is positive if, for all positive ¢ € K(G),

/ 8()du(z) € T(H)",
G

where 7(H)" denotes the positive trace class operators.

1]
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Example 1. Let p be a positive trace class operator valued Radon measure on the
locally compact Abelian group G. Then, for each ¢ € K(G), we have that ¢u is a
trace class operator valued measure, where, for any ¢ € K(G),

| vi)ionta) = [ vi)ota)duto)

If, for T € L(H) and ¢,¢ € K(G),
| v@iren) =T [ vol)iuta),

then the set of trace class operator valued Radon measures *
{Ton: ¢ € K(G),T.€ L(H)}

is an L(H)-module which becomes a normal pre-Hilbert L(H)-module when equipped
with the grammuan

(Sou,Twul = S [ o(a)dla)du(z)T"
; . &
The normal Hilbert L(H)-module obtained through completion is denoted L*(G, ).

For further information on normal Hilbert £(H)-modules we refer to [22].

3.3 Multidimensional second order
stochastic processes

We review some of the basic definitions and results on multidimensional stochastic
processes from [22].
Let © be a locally compact space equipped with a Radon probability measure
P. Second order processes are defined by the space of Hilbert space valued random
variables
LQ.H,P) = {620 — % [ e@)dPw) < oo}
Zero mean stochastic processés take values in the space of centred Hilbert space valued

random variables

I3(@H, P) = {§ € LAQ,M, P) : £6 = /Qg(w)dp(w) L
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which we denote by X, for brevity. X, equipped with the grammian

= / £1(w) ® Ex(w)*dP(w),

is a normal Hilbert £(H)-module.

Definition 54. A multidimensional second order stochastic process on a locally com-
pact Abelian group G is a function X : G — X.

Definition 55. 1. The operator correlation of two multidimensional second order
stochastic processes X and Y on a locally compact Abelian group G is the
function

Cxy : G x G — 7(H);Txy(z,y) = [Xz,Yy|
2. The corresponding scalar correlation is the function

oxy = trrxy.

3. The operator autocorrelation of the multidimensional second order stochastic
process X on the locally compact Abehan group G is the trace class operator
valued function

Fx = Fxx.

The corresponding scalar autocorrelation is the function
Ox = tTrx.

Definition 56. Let X be a multidimensional second order stochastic process on a
locally. compact Abelian group G.

1. X is stationary if the scalar autocorrelation ox is diagonally invariant - ie if

ox(y—z,z—z)=0x(y,2),Yz,y,2 € G.

2. X is scalarly stationary if, for each h € H, the scalar process X}, is stationary,
- where

Xpz(w) = (Xz(w)|h),z € G,w € Q.

3. X is operator stationary if the oper-a'mtor autocorrelation 'y is diagonally invari-
ant - ie
I1X(y — Ly2 I) S UX(y»Z‘),nyy-z e
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Theorem 16. (The spectral representation theorem for operator stationary multidi-
mensional stochastic processes on locally compact Abelian groups)

Let X be a multidimensional second order stochastic process on a locally compact
Abelian group G. :

1. X 1is operator stationary if and only if the operator autocorrelation T'x has the
representation

T(,1) = / (y— 2, E)diix (B),

where px s a positive, regular, countably additive, trace class operator valued
Borel measure on the dual group G.

2. X 1s operator stationary if and only if there exists a reqular, countably additive,
grammian orthogonally scattered Borel measure Z on the dual group G such that

g /G s B aa)

The measures Zx and pux are related by

[ 42x@), [ 12x(@) = [ dux(@.V € B

The measure theoretical terms used in the theorem will not be defined here and,
as in the scalar case, no attempt will be made to justify the integral representations.
The details may be found in [22].

The following proposition shows that operator and scalar stationarity are one and
the same thing.

Proposition 29. [22] Let X be multidimensional second order stochastic process on
a locally compact Abelian group. Then

X s scalarly stationary <= X 1is operator stationary.

As in the scalar case, we may extend the notion of stationarity by defining har-
monisable processes.

Definition 57. Let X be a multldlmensmnal second order stochastic process on a
locally compact Abelian group G.
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1. X is harmonisable if its scalar autocorrelation has the representation

e / (. D0 D)dBEE D),

GxG

where B¥ is a bounded bimeasure.

2. X is scalarly harmonisable if, for each h € H, the scalar process X}, is harmon-
isable.

3. X is operator harmonisable if its operator autocorrelation has the representation

Tl gy / (& BT eBXE D),

GxG

where By is an operator bimeasure of bounded operator semivariation.

Proposition 30. [22/ Let X be a multidimensional second order stochastic process on
a locally compact Abelian group G. X is operator harmonisable if and only if there ex-
ists a reqular, countably additive Borel measure Zx of bounded operator semwariation
on the dual group G such that :

Xz = / (z,7)dZx(3).

G

Again, we do not attempt to define the terms used or to justify the integral

representation.

3.4 Multidimensional second order
generalised stochastic processes

The following definition differs from that of one dimensional generalised stochastic
processes only in so far as the random variables are Hilbert space valued. As far as
can be ascertained from the literature, the definition is original.

Definition 58. A multidimensional second order generalised stochastic process on a
locally compact Abelian group G is an element of the Banach space
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Given a multidimensional second order generalised stochastic process X’ on a

locally compact Abelian group G, each h € ‘H defines a scalar process, X 1, Where

Xjp(w) = (X'(w)|h),w € Q.

Proposition 31. Let X', Y’ be two multidimensional second order generalised stochas-
tic processes on a locally compact Abelian group G. Then the mapping I xy+, defined

by

(6 ® ¥, Txry] (X'e, Y'Y]

= [ X'¢(w) ®Y'Y(w)*dP(w), ¢, € So(G),
Q
where the integral is interpreted weakly, extends to a bounded linear operator from

So(G x G) into T(H) and
; ITxy Al < I X NIY))-

Proof. Let
Y 6 ® P, € So(G)BSH(G)

iel

be a representation of F' € Sp(G x G). Using the Schwartz inequality, we have

IE Txyrlllzrey < Z ¢ ® Vi, Cxrye]ll-cr)

i€l

= D IX'6, Y l-e0
€l

< S IX'slllY
i€l

< XYY Nallllal

el

The norm estimate
Tyl < XY

then follows by taking the infimum of the right hand side over all possible represen-
tations of F'. O

Definition 59. Let X', Y’ be multidimensional second order stochastic processes on
a locally compact Abelian group G.
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TCxiyr € L(So(G x G),7(H))

is the operator correlation of X' and Y.
2. I'xixr, written 'x/, is the operator autocorrelation of X'.
3. The scalar autocorrelation of X' is the kernel ox: € Sj(G x G) defined by
(¢®v,0x) =tr[p® ¥, Tx, 6,9 € S(G).

Proposition 32. Let X' be a multidimensional second order generalised stochastic
process on a locally compact Abelian group G. Then, given any ONB {e,}ier of H,

Oxr = j{:tfxa.
i€l
Proof. Since {e; ® €5}, jes is an ONB for HS(H), we have
trlp®¢,Tx] = tr Z<¢ ® Y, Txx )ei ® €]

1,7€1 {

D (6®P,0x;)

el

T X = E ol
1

(=

and hence

a
Definition 60. 1. Let (G be a locally compact Abelian group. The Banach space
L(So(C x G), 7(H)) '
is the space of trace class obemtor valued kernels.”

2. A trace class operator valued kernel T is positive definite if

[¢® 6,T] € T(H)*, Vo € So(G).

We note that the operator autocorrelation of any multidimensional second order

generalised stochastic process is positive-definite.

Definition 61. Let X’ be a multidimensional second order generalised stochastic
process on a locally compact Abelian group G. The completion of the normal pre-
Hilbert £(H)-module

{X'¢: ¢ € S(G)}
in L3(Q,'H, P) is the modular time domain of X'.
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3.5 Reproducing kernel Hilbert £(H)-modules

To every trace class operator valued kernel I we can associate the operator
Tr € L(S0(G), L(So(G), 7(H))),
where the identification between the operator and kernel is defined by

Tré(¥) = [¢® ¥, T).
Definition 62. 1." The Banach £(H)-module
L(50(G), 7(H))
is the space of trace class operator valued distributions.

2. The Banach £(H)-module
LW(G),7(H))

is the space of trace class operator valued translation-bounded measures.

If T is positive definite, then the set
{TTr¢: ¢ € So(G), T € L(H)},
equipped with the grammian
[STre, TTry] = S[¢ ® ¥, TIT,

is a normal pre-Hilbert £(H)-module. We denote the Hilbert C(H)—modﬁle obtained
thfough completion by Hr and call T the reproducing kernel of Hr.

We have already noted that the operator covariance kernel 'y, of a multidi-
mensional genéralised stochastic process X' is positive definite. It is clear that, for
o,v € Sp(G), we have

[(X'oX'Y] = [Tr,. ¢, Tr,, Y]
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and hence that the modular time domain Hx/ and the normal Hilbert £(H)-module
Hr,, are grammian unitarily isomorphic.
We denote, as before, the algebra obtained by the projective tensor product of the

Wiener algebra with itself by Wy - ie

Wo(G x G) = W(G)®W(G),
Definition 63. The space of kernels
L(Wy(G x G),7(H))

is the space of trace class operator valued translation-bounded bimeasures.

Given a positive definite trace class operator valued bimeasure B, we write the
operator Tz simply as B and, for each ¢ € W(G), we have that B¢ is a trace class
operator valued translation-bounded measure. The grammian corresponding to a

positive definite translation-bounded bimeasure is written-

Il

¢(z)¥(y)dB(z,y)

JGxG

= /G B(y)dBo(y)
Bo(v)

(B¢, By

If the positive definite trace class operator valued translation-bounded bimeasure
B is generated by a trace class operator valued Radon measure p in the sense that
for each ¢ € Sy(G) ‘
B¢ = pd,

then we have simply 3

i / $(2)B(z)du(z).
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Definition 64. A trace class operator valued kernel
['e L(So(G x G),7(H))
is diagonally invariant if
[L:¢ ® L.,T] = (¢ ® ¥,T],Vz € G,¥9,9 € So(G).

We note that where a positive definite operator valued kernel is diagonally invariant,
for each z € G, the translation operator L,, defined for each ¢ € So(G) by

L,Tr¢ =TrL.¢,
is grammian unitary in Hr and hence that
z— L,

is a grammian unitary representation of G in Hr.

3.6 Operator valued Fourier transform
and the Bochner theorem

Let
Z ¢: ® T; € So(G)®7(H).
Then, for h, k € H, we have

(3" & @ Tihlk) € So(G).

The Fourier transform F¢ ). ¢; ® T; of Y, ¢; ® T; is the operator valued function on

G defined for h,k € H and € G by

(Fo Y 6 @ T@MIK) = /G<Z e e R e

It is clear that

FeY $6i®Ti=Y 8T
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and hence that Fg is an isomorphism of the Sy(G)®7(H) onto So(G)®7(H), which

extends to an isomorphism of the dual spaces via the relation

where ;1 € L(So(G), L(H)), d € So(G).
The following theorem is an obvious consequence of the definition of the Fourier
transform.

Theorem 17. (The Plancherel Theorem)
The Fourier transform is a unitary Gelfand triple isomorphism of

(So(G)®7(H), L*(G, HS(H)), L(S0(G), L(H)))

onto

(So(G)B7(M), L*(G, HS(H)), L(S0(G), L(M))).
Definition 65. Let p € E(So(@),E(H)).
1. p is positive if, for each positive function qS € So(G),
u(9) € L(H)T,
where L(H)* denotes the positive operators in E(’H)
2. p is of positive type if

p(px ¢*) € L(H)F, V¢ € So(G).

Proposition 33. Let u € L(So(G),L(H)) be positive. Then

1. p € LW(G),L(H)) - ie every positive L(H)-valued distribution is an L(H)-
valued translation-bounded measure.

2. The L(So(G), L(H)) and LW (G), L(H)) norms of u are equivalent; both norms
are equivalent to S

supjni<tllpnllric)-

3. If p € L(So(G), 7(H)), then u € LIW(G), T(H)).
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Proof. 1. For h,k € H, it is clear that upx € S§(G), where, for ¢ € So(G),

(&, uns) = (u(B)hIR),

and, for'h = k,
Brh = pn € TH(G).

For any positive ¢ € So(G),
(h, k) = (@, nk)

is a sesquilinear form on H and hence, for h, k € H,

|<¢7 phk)l .<_ (¢7 “h)l/z <¢) #k>1/2“

Hence, given ¢ € Sy(G), positive and compactly supported, we have, for z € G,

[(Lz®, pne)] < (Lo, pn)/* (Lo, pix)*/?

and hence, taking the sup of both sides over all z € G, we have
pr € T(G),

with
1/2 1/2
linillziy < Neamllimy il

Hence, for any ¢ € Sy(G) and h,k € H with ||kl|,||k|| < 1, we have, using the
positivity of each py, that

(u(@)hlk) = | /G R

< |l¢llwc)supimi<ilipnllre)

= |I¢llwesupni<illunllsyc)

< |18llwie) supini<15up|ysy o <1 (¥, 1)l
= |I¢llwe)supyni<15uP|ylsyc <1l ((¥)hh)]
< I|¢|IW(G)||/-’*”7

where ||| denotes the £(Sy(G), E(’H)) norm. Hence, from the density of Sp(G)
in W(G), we have that p extends to an £(H)-valued translation-bounded mea-
sure.

2. From the inequalities

sunpisillanling) = suppuisisuplely o<1 (4(9)AIR)
< sup“d,"W(G)glHﬂ(d’)“C(H)



and

lu(@)lcay =

74

supya), <1 | ((@)hlk)|
SUP||h||,||k||sll/G¢(1)d#hk(17)|

¢llwcysupyniiki<illnklire)
¢llw e supyni<illnllre),

we see that the L(W(G), L(H)) norm of p is equivalent to supyn<i|lillr(c)-
To show the same is true for the £(Sy(G), £L(H)) norm, we note from [12] that

there exists a constant C' such

that any ¢ € Sp(G) can be written in the form

=D ate,

0<i<3

where ¢, is a non-negative function in Sy(G) and

[#1llsoie) < Clldllse(c),0 <1 <3

Hence, for any ¢ € Sy(G), we have, using the positivity of the operator u(¢;)

for each [,

AN

()l ey <

<

<

S Hule)ller

0<I<3

> supyr<il{(gi)hlh)|
0<I<3

Z supyny<1|{¢r, pn)l
0<I<3

> lilisoaysupimi<i |l sy

0<I<3

4C bl so(cysupyny<tllpnllr(c)-

The proof is completed by the inequality

SUP||l|<1 ll1nll7(e)

= supynj<illpalisyo)
SUP|Inl<1SUP|gl5y ey <1l (@ 1n)]
SUP|In<1SUP|gll5y(cy <1 (1 (B)AI )|
SUP|iglsy <1 11() |-

IA
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Since Sy(G) is dense in W(G), given any ¢ € W(G), we have that u(¢) can
be expressed as the limit in £(H) of a net {1(da) : da € So(G)} of trace class
operators and is hence compact. For any ONB {e; }ic; of H,

tru(d) = D (¢, pe.)

icl
and since the linear functional

¢ tru(e)

is an element of Sj(G), it is clear that
Z/J'e. A SO(G)’
i€l

Since each ., is positive, we have that

D> e, € T(G)

el

and

ST A e /G #(x)de

el el
< ligllwie Y llkellre
i€l
= lolwlD_ tellre
i€l
SO0

Hence, u(¢) is a trace class operator and since we have from the first part of
the theorem that u € L(W(G), L(H)), a routine application of the closed graph
theorem then shows that

p € LW(G), 7(H)).
a

An easy consequence of the above proposition is an £(H)-valued Bochner’s theo-

rem.
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Theorem 18. (Bochner’s theorem)
pn € L(So(G), L(H)) is of positive type if and only if i is a positive, L(H)-valued,
translation-bounded measure.

Proof. The theorem follows from the previous proposition and the chain of equiva-
lences:

u is of positive type <= p, is of positive type, Vh € H
<= [ is positive, Vh € H
<= [ is positive.
O

Proposition 34. Let p be a positive L(H)-valued measure on a locally compact
Abelian group G. If u is bounded - ie

then, for h,k € H, the measure ;. is bounded and, furthermore,
el = suppri<illinll e,
where ||| denotes the L(Co(G), L(H)) norm of p.

Proof. 1f u is a positive, bounded, E('H)-valuéd measure on G, then, for each h € H
and ¢ € K(G), we have

Il

()Rl )
lIploollpellll .

| /G (=)(3)]

IA

Hence, p;, is bounded and :

supjaj<illnllarey < llull-
Since p is positive, :
((6,h), (%, K)) - /das(xﬂ(x)duhk(x)

is a sesquilinear form on Sy(G) x H. For any ¢ € K(G), pick ¥ € K(G) identically
equal to 1 on supp ¢. Then, from the Schwartz inequality,

[ s@dun@l < ([ o@Pdun()( [ [wia)Fdlz)

I8 lloollenllaregy skl rec
lllooll il 12111 %1I-

ININA

)
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Hence, ppx is a bounded measure and

1/2 172
lnillaresy < Nl el i)

The proof is completed by the inequality

lull = sup{sup{] /G¢(I)duhk(x)l IR NIk < 1} : ¢ € K(G), [I4lloe < 1}

sup{|| pakllmy = IRIL I1K]] < 1}
= supyn<illpnllme)

INA

a

The previous proposition facilitates a pointwise definition of the Fourier transform
p of a positive, bounded £(H)-valued measure .

Definition 66. Let ,u be a positive, bounded L(H)-valued measure on a locally
compact Abelian group G. The Fourier transform of u is the £(H)-valued function

i on G defined by

(B(E)IR) = /G e B dusna (), VA, & € .

The following_proposition is reminiscent of the scalar case.
Proposition 35. Let u be positive, bounded L(H)-valued measure. Then
1. i is a bounded, weakly continuous, L(H)-valued function on G and
supsecllB@) e = 15O) e = llull
where ||| is the bounded L(H)-valued measure norm of p.

2. If p 1s a trace class operator valued measure, then [ is a trace class operator
valued function on G and -

supsea i@ le = IO llrry = tr /G dyu(z) = lull,

where ||| is the bounded T(H)-valued measure norm of p.
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Proof. 1. For hy)ke€ Hand 7 € G, we have
[(E@)hE)] < llpnl
and hence 11 is an £(H)-valued function with
supzegllB(@)l cony < llull
ﬁ(ﬁ) is clearly a positive operator and hence
IZO)lceo = supyri<al(BO)AIR)]

== 3“P||h||§1/duh(f)
. G

sup|iy<i | nl|
= |lull.

Since the Fourier transform of a bounded measure is continuous, it is clear that
1 is weakly continuous.

2. Since p is a trace class operator valued measure, the mapping
6 tr [ $@)du(o)
G

is a bounded measure on G. Given any ONB {e; };es of H, we have

tr'/G¢(1i)(l/t(!K) = Z(/G o(x)dp(z)e;|e;)

iel

S [ #@u

€l

Al

and hence that )7, ; y., is a bounded measure. Furthermore, since each g, is
a positive bounded measure, we have

1D ey = Y lite v

i€l iel

1]
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With {e; }ic; as above and = € 6’, we have, for each 7 € I,
2@l = | /G (z,Z)du(z)e;]|?
summiail( | T @du(z)ed

suppuy<i] /G & B dtean )P

Il

< suppuy<illtenlliee)
< supyry<alliznllmce el ()
= |lullllpellm@)-
Hence,
Z [a@)e:l* < [lull Z | tte: I m ()
iel iel

and thus z(7) is a Hilbert-Schmidt operator.

Since 1i(Z) is compact, the estimate

S (E@E)eded] = Zl/?td/te.( )

el el

s Z l|kel M)

i€l
shows that it is a trace class operator.

Since p is positive, we have

|| /G G| i /G i (a3

= S dut@ee)

i€l

= Z/d,uel(x

i€l

= 3 illise,

i€l

= | Z#eJlM(G)-

i€l

M(G)

" Given any ¢ € Cy(G), we have that
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|| /G $(@)du(@) oo = llud, dlll-oo
T z)2du(z)) Y (tr z))V/?
< (¢ /G 16(2) Pdu(z)) (¢ /G e

= (T [ 1@ eI 3 el
e s €l
< 16looll 3 el
i€l

and hence we have

el <1l ZNe.-”M(G)'
i€l
Conversely,
“ Z#C.'HI\I(G) — SUPH‘!’HCO(C)Sll Z/ d)(x)d:u‘cl(r)’
~ €l A
= 5“'7’|I¢Hc0<c)51|t"'/ ¢(x)dp(z)|.
: @

For any trace class operator T', we have

1Tl = sup Y (Teil S5,

Icl .

where the sup is taken over all pairs ({e;}icr, {f;};er) of orthonormal bases of
H and hence it is clear that

NtrT| < N Tllro)-

Hence,

I

g b s / olz)du(o)llncrg
i€l G

= ul.
O

We recall that every positive-definite trace class operator valued kernel I' is the

reproducing kernel of a Hilbert £(H)-module Hr. Where the reproducing kernel is a
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bounded, positive-definite bimeasure B, we note that, for each ¢ € Co(G), B¢ is a

bounded, 7(H)-valued measure and hence the Fourier transform B\d) defined by

PGy /G e e

is a 7(H)-valued function on G.

Proposition 36. Let B be a bounded, positive-definite 7(H)-valued bimeasure on the
locally compact Abelian group G. Then, for each T € G, the linear mapping defined
by : :
B / ) G

G

for each ¢ € Sy(G) extends to a bounded linear functional on Hg.

Proof. 1f we denote the bounded 7(H)-valued measure norm of B¢ by || B¢| and the
bounded 7(H)-valued bimeasure norm of B by ||B||, then we have

n /G T aBe(e)|ray < iBY|

SUPlgloy eyt / B(2)dBo() -

SUP|yliyy<i I [Be, BYll-(0)
SUP|yllcy(cy<i ”Bl/)”mg ” B¢”HB
I Bl Boll#s -

IA IN

3.7 Stationary multidimensional second order
generalised stochastic processes

Definition 67. Let X’ be a multidimensional second order generalised stochastic
process on a locally compact Abelian group G.

1. X' is stationary if the scalar autocorrelation o is diagonally invariant.
2. X' is scalarly stationary if, for each h € H, the scalar process X} is stationary.

3. X' is operator stationary if the operator autocorrelation ['y: is diagonally in-
variant - ie if

[L1¢® Lray FX’] = [d) ®_7Z) FX/],V.’L' S G7V¢7w & SO(G)
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Definition 68. Let X’ be a multidimensional second order generalised stochastic
process on a locally compact Abelian group G.

1. X' is grammian orthogonally scattered if
[X'¢, X'¢] =0,
for any disjointly supported pair of functions ¢,y € So(G).

2. X' is scalarly orthogonally scattered if, for each h € H, the scalar generalised
stochastic process X is orthogonally scattered.

Proposition 37. Let X' be a multidimensional second order generalised stochastic
process on a locally compact Abelian group G. Then X' is grammian orthogonally
scattered if and only if X' is scalarly orthogonally scattered.

Proof. Let X' be grammian orthogonally scattered. Then for each A € H and dis-
jointly supported pair of functions ¢, v € So(G),

(Xig|Xi) = trlp®%,Tx]h® h*
= ()

and hence X' is scalarly orthogonally scattered.
Conversely, any trace class operator T' can be expressed as a sum

T=(T+T)2+48 =T )%
of two self-adjoint trace class operators and it is hence easy to show that
(Thlh) =0,Yh e H =T = 0.

Consequently, if X’ is scalarly orthogonally scattered, then for any disjoinﬂy sup-
ported pair of functions ¢, € Sp(G), we have that

[¢®%,Tx] =0
and hence that X' is grammian orthogonally scattered. a

Theorem 19. ( The spectral representation theorem for operator stationary multidi-
mensional generalised stochastic processes)

Let X' be a multidimensional second order genemlzsed stochastic process on a
locally compact Abelian group G.
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1. X' is operator stationary if and only if its operator autocorrelation can be rep-
resented in the form

68%.0xl = [ 3@IDdnn@, 80 S@), (T
G
where px: 1s a positive 7(H)-valued translation-bounded measure.

2. X' is operator stationary if and only if the spectral process X' is a grammian
orthogonally scattered translation-bounded measure.

3. If X' is operator stationary, then the modular time domain Hx: is grammian
unitarily isomorphic to the modular spectral domain L*(G, px').

Proof. 1. It is clear that I'xs is diagonally invariant if it can be represented as in
equation 3.7.1.

Conversely, the diagonal invariance of I'y: implies that, for h,k € H, there
exists punk € SH(G) such that for ¢,y € So(G),

(l¢® ¥.Txlhlk) = (¢ *¢", ).
Given ¢ € So(G), define T'x/(p), a linear operator on H, according to
(Cx(@)hlkyr =Y (b % ¥, pnk), for bk € H,
i€l
where )., ¢; » ¥ is an admissible convolution tensor product representation

of ¢ (see proposition 10). For [hl],|/k|| < 1, denoting the L(Sy(G x G), L(H))
norm of I'xs by ||Tx||, we have

(Exe(@)hlk)ad < ITxll D dlsoienlllsocen.
il
and hence, taking the inf of the right hand side over all admissible representa-
tions of p, we have 4
ITx (@)llcy < IITx el soe)-

This yields Tx/(¢) € L(So(G), L(H)) and since T'x/(¢) € 7(H) for each ¢ in
So(G), a routine application of the closed graph theorem gives

Cx/(¥) € L(So(G), 7(H)).
For any ¢ € So(G), § _
: FX’(¢*¢*)=[¢®¢aFX']a
and, since ['xs is a positive definite kernel, T'y/ is of positive type, and the
representation 3.7.1 follows from the Bochner theorem and the final part of
proposition 33.
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2. Let X' be operator stationary and ux: be the associated trace class operator
valued spectral measure. Then, for any pair of functions ¢, € So(G) with
disjoint support,

(X', K] = /G H(E)PE)dux ()

which shows that X is grammian orthogonally-scattered.

For any ¢ € So(é), we have from the first part of the theorem,

1%l = IX9, Xdlllecr

e ¢W[M@W@w@mmﬂ

Hence, since So(a) is dense in W(G), X' extends to a X-valued translation-
bounded measure on G.

Conversely, if X' is a grammian orthogonally scattered translation-bounded
measure, then, for each h, k € H, the translation-bounded bimeasure

Bxx, - $® ¥ = ((X'¢, X'y]hlk)

is supported in the diagonal subgroup Az and hence the correlation kernel
ox; x, is dlagonally invariant in each case. Thus, ['xs is diagonally-invariant
and X " is operator stationary.

3. The final part of the theorem follows from the representation 3.7.1.
O

Proposition 38. Let X' be a multidimensional second order generalised stochastic
process on the locally compact Abelian group G. Then

X' 1s scalarly stationary <= X is scalarly orthogonally scattered.

Proof. The statement is an e‘asy' consequence of the fact that, for each h € H,

/\I_/\/
K= 2%
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We can now characterise scalarly stationary processes.

Proposition 39. Let X' be a multidimensional second order generalised stochastic
process on the locally compact Abelian group G. Then

X' is operator stationary <= X' is scalarly stationary.

Proof. The proposition is a simple consequence of proposition 37 and proposition
38. a

It is clear that operator stationarity implies stationarity and hence, from the
previous proposition, that scalar stationarity implies stationarity. The converse is,

however, untrue; for a counterexample, see example IV.6 of [22].

3.8 Multidimensional stationary stochastic
processes and multidimensional stationary
generalised stochastic processes

Let X be a multidimensional second order stochastic process on a locally compact

group G which is bounded in the sense that
supgeg|| Xz||x < oo.
If, for each ¢ € Sy(G), we let
Xd= / Xz¢(x)dz,
G
where the integral is defined weakly, we have
[Xollx < supzecl| Xz x]|4lls0(c),

and hence that X defines a multidimensional generalised stochastic process.
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A stationary stochastic process X is with spectral measure py is certainly bounded

and

(X ¢, Xy

/ Xz, Xy|o(z)y(y)dzdy
GxG
[¢ ® Ja FX]
- / 3E)D(E)dux (3).
G

Hence the generalised stochastic process generated by a stationary process is sta-
tionary and has the same spectral measure as the original process. The following
proposition describes a converse.

Proposition 40. Let X' be a stationary multidimensional second order generalised
stochastic process X' on a locally compact Abelian group G. If the spectral measure
wux: of X' is bounded, e

ux € L(Co(G),7(H)),

then the spectral process X' is a bounded stochastic measure and X' may be identified
with a stationary multidimensional second order stochastic process on G.

Proof. For any ¢ € So(CAv'), we have

tr(X'p, X'¢]

H t/G 16(2)2dpx(3)

= 3 [ 6@rdux, @

=

131D mxe, lasay

€l

I1X7¢|1%

IN

and hence, from the density of So(é) in CO(G'), X' extends to a bounded measure on
G. U : : ;
Using proposition 35 and the Schwartz inequality, we have
I [ 3@ @ Ddee @l < I [ BEFde @GN [ dux @I,
X Dll#t | e
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Hence, from the Riesz representation theorem, the function X, defined by

[X'6, Xa] = /G NNl e e (e

is a ‘H x-valued stochastic process on G.
We show X generates X'. Given ¢,y € So(G),

[X’(b,/GX:cw(z)dx] = /G[X'¢, Xz|(z)dx

% /G /G 6(@)(x, 2)dpx (2)0(z)dz
o /5(5)/@(1)(z,i)dxdux'(5)
= /‘15 T)dpx (T)

= [X',X wJ

as required. ]

3.9 - Harmonisable multidimensional second order
generalised stochastic processes

Definition 69. Let X’ be a multidimensional second order generalised stochastic
process on a locally compact Abelian group G.

1. X’ is harmonisable if X’ is a translation-bounded measure.

2. X' is scalarly harmonisable if, for each h € H, the scalar process X} is harmon-
isable.

3. X' is operator harmonisable if the spectral process X' is a translation-bounded
X-valued measure.

Proposition 41. Let X' be a multidimensional second order generalised stochastic
process on a locally compact Abelian group G. Then X' is operator harmonisable if
and only if the operator autocorrelation I'x/ has the representation

[6®¢,Tx] = [6® 9, Bx],
where Bx: is a 7(H)-valued translation-bounded bimeasure e

Bx: € LW (G)@W(G), 7(H)).
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Proof. Let X' be harmonisable. Then X' is a translation-bounded measure and, using
the Schwartz inequality, the estimate

6 ® .Tlll-oy = 1[X¢, X¥]ll-r
< IXylIX¢l
< X P lwe lolwe
for any ¢, ¢ € 50(6') and the density of Sy(G x @) in W(@)@W(@) show that 'y, is

a bounded 7(H)-valued bimeasure.
i Conversely, let 'y, be a T(H) valued translation-bounded blmeasure It is clear

that the kernel t7I'y; in SO(G' x G) defined by
(9@ ¥,trT5) = trlp ®,Tg)

is a translation-bounded bimeasure. Hence, given any ONB {e,}.c;, we have that
> ierU's, is a translation-bounded bimeasure which is independent of the ONB.

The estimate

IX76> = trlp®é, gl

= ) (¢®¢,Tx, )
i€l y
< el D_To. lram
i€l
for any ¢ € So(é) and the density of So(a) in W(G) show that X' extends to a
translation-bounded measure. o

3.10 Harmonisable multidimensional stochastic
processes and harmonisable multldlmensmnal
generalised stochastic processes

Let X be an operator harmonisable multidimensional second order stochastic process

on a locally compact Abelian group G. Since

SuP:eGHXfCHZ) = Ssupegox(z, )

1 Bx Il sas

INA
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where B¥ is the scalar covariance bimeasure of X, X is bounded and hence generates

a generalised stochastic process via the weak integral

X'¢=/Xa:¢(x)da:.
G

It is easy to show that X' is operator harmonisable with operator covariance bimeasure
Bx. We show now that the converse is true.

Proposition 42. Let X' be an operator harmonisable multidimensional second order
generalised stochastic process on a locally compact Abelian group G. If the operator
covariance bimeasure Bx: of X' is bounded, then X' is a bounded measure and X'
may be identified with a stochastic process on G.

Proof. Let X’ and By be as above. Then, for any ¢ € Sy(G),

IX7g|1> = tri¢p®$, Bx]
< NIZIBE N sar

and hence, from the density of Sy(G) in GG X' extends to a bounded measure.
It is then clear from proposition 36 and the Riesz representation theorem that the
equation

(X'6, Xa] = [ @)z, 5)dBx(Z,7)

GxG

defines a stochastic process X on G with range in Hx.
We show now that X generates X'. For ¢,9 € So(G),

X, [ Xevwys] = [ (X5 XalD(a)ds

3 / 4@ @ 7By (@, )()dx
G JGxG

. / [mdBX/<¢><a>$<z)dx
G G_

. / / 9(@)(@,5)dz dBx()®)
GJG

s /G PGB (@)

= [¢ ®A$, BAX']
= [X'¢, X"y]



and hence

as required.
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