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Summary

This thesis is concerned with the harmonic analysis of multidimensional generalised 

stochastic processes on locally compact Abelian groups. A multidimensional gener­

alised stochastic process is a continuous linear operator from a test function space into 

a space of H-valued random variables, where W is a separable Hilbert space. The re­

markable properties and very simple structure of the Feichtinger algebra Sq{G) make 

it very suitable as a test function space in this respect. Classical representation the­

orems for stationary and harmonisable processes on locally compact Abelian groups 

which have been extended to infinite dimensions can be proved in in much more com­

pact way, avoiding much of the technical machinery associated with operator valued 

integration and the theory of operator valued bimeasures.

Chapter 1 considers the Feichtinger algebra and its applications in abstract har­

monic analysis. In particular, Bochner’s theorem is extended to the dual space 5q(G)' 

and a representation theorem is proved which is an essential prerequisite for the proof 

of the spectral representation theorem for stationary generalised stochastic processes.

Chapter 2 uses the results of chapter 1 to treat the harmonic analysis of scalar 

valued generalised stochastic processes, extending some of the classical results for 

stochastic processes, whose proof then is much simpler than heretofore, avoiding the 

technicalities associated to the theory of integration.

Chapter 3 is concerned with the abstract harmonic analysis of infinite dimensional 

stochastic processes. Again, in this setting, the properties of Sq{G) prove to be very 

useful in deriving concise and elementary proofs of some of the results obtained by 

Kakihara in his monograph.



Chapter 1

So{G) and the
Bochner-Schwartz-Godemont
Theorem

1.1 Introduction and general concepts

The Feichtinger algebra 50(G) has many remarkable properties, which, allied to its 

simple structure and the fact tha t its dual space is a space of tem pered distributions 

which contains many of the classical spacer of interest in abstract harmonic anal­

ysis, make it very suitable as a space of test functions on locally compact Abehan 

groups. The formation of tensor products facilitates the harmonic analysis of vector­

valued structures; in particular, the projective tensor product of Sq{G) with a suitable 

Hilbert space of random variables yields a test space of second order stochastic pro­

cesses. Central to the analysis, of stationary second order stochastic processes are 

various interrelated notions in harmonic analysis such as positive-definiteness, the 

Bochner theorem, translation-invariant Hilbert spaces, unitary representations etc. 

VVe will show how the algebra So{G) can be used to prove and extend the results 

necessary for later analysis of second order stochastic processes. In particular, the

1
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Bochner theorem is extended to a space of unbounded measures and a closely related 

representation theorem for diagonally-invariant translation-bounded quasimeasures 

on G X G is proved which is later employed for the harmonic analysis of stationary 

second order stochastic processes with distributional kernels. We consider initially 

some basic concepts and establish notational conventions. We begin with some back­

ground material drawn from [2, 16, 30, 31] on analysis on locally compact Abelian 

groups.

1.1.1 M easure and in tegration  on loca lly  com pact A belian  
groups

The algebra of continuous functions with support in a compact subset /C of a locally 

compact Abelian group G, equipped with the uniform norm, is denoted Ga'(G ). The 

union of all such spaces,

/C(G) =  |jG ; , ( G ) ,
K

is a locally convex function algebra [30] when equipped with its natural inductive 

limit topology. K,(G) is continuously embedded into its dual space, the space of 

Radon measures,

7^(G) =  flGK(G)^
K

equipped with its natural projective limit topology. Pointwise m ultiplication may be 

extended by transposition to make 7^(G) a locally convex topological /C(G)-module. 

Given a Radon measure, € 'R-{G), and (p € ^ (G ), the value { ( p , n )  = is an 

integral, denoted

/ (j){x)diL{x).
J g
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A Radon measure n  is positive if it acts non-negatively on the positive cone of non­

negative functions in K,{G). The group G acts through translation on /C(G); given 

X  € G, the corresponding translation operator is defined by

This action of G extends through transposition to R.{G) and it is well known that 

there exists a positive translation-invariant Radon measure which is unique up to 

multiplication by a scalar. We denote this Haar measure by dx. fC{G) is also a 

topological algebra with respect to convolution, which is defined by

extend to 7^(G) by transposition. The uniform completion of /C(G) is the algebra 

Co{G) of continuous functions vanishing at infinity. Since K.{G) is continuously and 

densely embedded into Co(G), it is clear that any Radon measure ^  € 'R-{G) which is 

uniformly bounded on JC{G) in the sense that

extends to an element of the dual space of Cq(G). Go(G)' =  M (G) is the space 

of bounded Radon measures and is a commutative *-Banach algebra with respect to 

convolution.

1.1.2 The Fourier transform

The completion of the image of the continuous erribedding,

Lx<t>iy) =  <t>{y -  ^)-

<p{x -  y)i>{y)dy

and 7^(G) is a topological /C(G)-uiodule with respect to convolution, defined by trans­

position. The involutions on /C(G) defined by 0 ( i)  =  4>{—x) and (j)*{x) — <p{—x)

S U V K h ‘\\cK {G ) '  ■< OO

(j) t—> (pdx.
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of /C(G) into M{G)  is L^{G),  the algebra of absolutely continuous bounded measures 

or integrable functions.

The set of L^(G)-homomorphisms, equipped with the weak-* topology, is a locally 

compact Abelian group, G, the dual group, whose elements are the characters of G. 

Each 4> G L^{G) defines a function, <f), on the dual group according to

(̂x) =

The linear mapping

JFg  : 0  i-> </>

thus defined is the Fourier transform; its isometric image is the Fourier algebra, A{G).  

The identity

(0,^) =  (0,V^),0€L1(G),V'€L°°(G),

where

^{x)  = / (f){x){x,x)dx,x E G,
J g

defines an extension of the Fourier transform by duality to an isometry of L°°{G) 

onto A{G)' , the algebra of pseudomeasures.

D e fin itio n  1. h E L°°{G) is of positive type if it is positive on the algebra L^{G) in 
the sense tha t

>  O,V0€ L \G ) .

Functions of positive type are characterised by the classical Bochner theorem.

T h e o re m  1. (The Bochner Theorem)
A function h on the locally compact Abelian group G is o f positive type i f  and only 

i f  there exists a positive, bounded measure fih £ M{G)  such that

(x ,x) d^h{x).h{x) = f

/ 4>{x){x,x)dx,x € G. 
Jn
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Given a positive definite function h and as above, we have tha t

l|/i|U“ (G) =  h{0)  =  ||m/i|Ia,/(g)-

and we note th a t the character x  is the function of positive type on G associated to 

the Dirac measure on G.

Each X  E G determines a character x^ of G according to

( l ,  Xi) =  (x,x).

In fact, all characters of the dual group are determined in this way, which is the 

content of the following theorem.

T h e o re m  2. (Pontryagin duality theorem)

X t—► X i

is a homeomorphic isomorphism o f the groups G and G.

T h e o re m  3. (The Plancherel theorem) There exists a normalisation o f the dual Haar 
measure dx such that the Fourier transform is unitary from the dense subspace L \n  
Li^iG) of L ‘̂ {G) into L^{G) and hence extends to a unitary isomorphism of L ‘̂ {G) 
onto L^{G).

Hence, for each (p 6 L?{G), we have

f  \(l>{x)fdx= f  \(j){x)\'^dx.
J G  Jg

T h e o re m  4. (The inversion theorem) Given that the respective Haar measures on 
G and its dual have been normalised in order to erisure the validity o f the Plancharel 
theorem, every (/> G H A{G) can be represented in the form

(f)[x) — / 4>{x){x,x)dx,x E G. 
J g
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1.2 Banach Gelfand triples

A Gelfand triple is a generalisation of the notion of a Hilbert space which is well-known 

in the literature, albeit under different names such as ’rigged Hilbert space’, ’equipped 

Hilbert space’ [18], ’resolution space’. Gelfand triples arising from dense Banach 

subspaces of a Hilbert space are considered in [14] and arise, at least implicitely, from 

integrable group representations in the theory of atomic decompositions of coorbit 

spaces [13].

1.2.1 Basic notions

Let {'H;{ | )) be a separable Hilbert space with a dense Banach subspace, B. We

denote the pairing of B with its dual B' by { , ) - ie

( , ) : B X  B' — > C] {(f),  fj.) (0, /i).

If we denote the inclusion of B  into Ti. hy ig and the antilinear identification of Ti 

with H' by then the operator

^B = B  — ► B'\4> 1-̂  <p

is an antilinear embedding of B  into its dual (see §0 of [32] and chapter 2 of [33] for

a similar notion). We may write this fact as

(zb^IibV’) =  {4>JrtP),

or simply,

(01V') =

The space

B = 7bB = {0: B},
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equipped w ith the transported norm, is a dense Banach subspace of Ti' called the 

antispace  of B  and it is clear that

1=  S .

T he operator I b extends by duahty to an antilinear isom orphism  of B' and B' =  B  , 

the antidual of f i  - ie for 0  €  5 ,  ^ €  B \

=  (0 ,/ i) .

Since ig  is an injection, B  is w* dense in B' and the inner product m ay be extended  

to a sesquilinear form on B  x B' or {B' x B ) - ie

(0,At), (/x|0) =  (0,71), where (f> e  B, f i  e  B'.  (1-2-1)

D e f in it io n  2 . A triple
{ { B , n , B ' ) , { \ ) ) ,

consisting of a Banach space B,  continuously and densely em bedded into a Hilbert 
Space 7Y, which, in turn, is weak* densely em bedded into the dual space B', equipped  
with the inner product (1 .2 .1), is called a Banach Gelfand triple.

D e f in it io n  3 . Given two G elfand triples {B \ , 'H \ ,  B [)  an d '(B 2 , ^ 2 , ^ 2 )> isom or­
phism  V  of B i  onto B 2 extends to an isom orphism  of the respective dual spaces. V
is a Gelfand triple isom orphism  if it extends to an isom orphism  of Tii onto W2 , in 
which case it is a unitary Gelfand Triple isom orphism  if

{v<p\vip)2 = €  Bi.

1.2.2 Kernels and operators

T he algebraic tensor product B  ^  B  is & dense subspace of the Hilbert space tensor 

product T he projective tensor product B ® B  is the com pletion  oi B ®  B  w ith

respect to the least cross-norm

Ikll® = UihWi îh ■ o- =
i €l i ef
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and is a Banach *-algebra when equipped with the multiplication

4> \  ®  0  V’2 = (02,iAi)01 <8) V’2

and involution

(0 ® ■0)* =  V'® (1-2-2)

Since is continuously embedded into it generates the Gelfand triple

If, for (p,ip,ip €  B, we let

then the mapping 0 (g) -0 i—> 0 * i/>* extends to an -*-isometry a ^  T„ oi B ® B  onto an 

operator algebra which we denote by B®B*. B ^ B *  is a two-sided ideal in £ ( f i) , the 

algebra of bounded linear operators on B. We denote the inverse isometry by

K \ T  k{T).

W here 5  is a function space on a locally compact Abelian group G, T  is an integral 

operator, and the function k{T)  on G x  G is called the kernel of T.

The operator algebra is the algebra of trace class operators on H  and

denoted t { H ) .  It is equipped with the inner product

(5 |T ) =  trST*,

where the trace functional, tr 6 is defined by

tr
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The Hilbert space completion of t { H )  is the Hilbert-Schmidt space, TiS{H).  Given 

tha t may be identified with Ti, it is a simple consequence of the theory of projective 

tensor products th a t a ^  T„ extends to a unitary isomorphism of the Gelfand triple

{ n § > n , n ^ n ,  {n§H)')

onto the Gelfand triple of operator spaces.

{T{n),ns{n),c{n)).

More generally, since B®B*  dense in r (H ), a  h-> extends to a unitary isomor­

phism of the Gelfand triple

onto the Gelfand triple of operator spaces

{B§>B*,nSin),C{B,B')),

where the identification between an operator T  G C { B ,b ' )  and n{T)  G {B®B)'  is 

given by

((/> ® t/), k(T)) =  {i>,T(t)).

D e fin itio n  4. W ith the notation above, we call k(T) the kernel of the operator T.

1.2.3 Banach Gelfand triples and reproducing kernel H ilbert 
spaces

Schwartz showed in [32] and [33] th a t there is a bijective correspondence between 

the set of positive definite kernels - the Schwartz reproducing kernels - associated 

to a separable locally convex topological vector space, E,  and the set of Hilbert
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subspaces of E. Given a Banach Gelfand triple, {B ,H ,  B'),  very elementary methods 

are used below to show that there exists a bijective correspondence between the 

Hilbert subspaces of B'  and the set of positive definite elements of (B®B)' ,  which we 

refer to as Schwartz reproducing kernels.

Definition 5. The involution (1.2.2) extends by duality to an involution of {B<SiBy. 
k{T)  6 (B<S>By is Hermitian if it is invariant under involution, ie k{T)* =  k{T),  and 
positive-definite if

{(f) ® 4>, i^{T)) >  0, V(/) € B.

The operator T  corresponding to an Hermitian or positive-definite n{T)  is called an 
Hermitian or positive-definite operator, respectively.

The set, [ B ^ B ) ' ' ^ , of positive-definite elements of ( B ^ B ) ' ,  is a w*-closed convex 

cone, on which an ordering, > , is defined by

k {T) > k {S) ^  k{T) -  n(S) > 0.

If we denote the space

7 b C { B ,& )  = { I b T  : T  e  C iB ^ W ) }

of antilinear operators from B into its dual by JC{B, B'), then the antilinear identi­

fication between k {T) G [B®B)'  and an antihnear operator T  6  C{B, B') is given 

by

{ij,T4>) =

D efin ition 6. Let [B,T-L, B') be a Banach Gelfand triple. A Hilbert space continu­
ously embedded into B'  is called a Hilbert subspace of B'\ the set of all such subspaces 
is denoted Hilb{B').

Defin ition 7. A Hilbert subspace (J7, ( | )) of B'  is a reproducing kernel Hilbert space 
if there exists an antilinear operator T  G C{B, B')  such th a t

1. T(f) £ J 4 >  E B and , .
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2. =  (Ai|T0),V/i € J ,(})e  B.

In the following two propositions, we show that every Hilbert subspace of B' is 

a reproducing kernel Hilbert space. This result is new for Gelfand triples; similar 

results in the context of reproducing kernel Hilbert subspaces of P '(E ") can be found 

in [25] and in a more general context in [33].

Initially we show that every n{T) G generates a Hilbert subspace, Tir

of B'.

Proposition 1. Given k{T) 6 {B®B)''^, let H r  be the completion of the subspace

T B  = {T(/):(t)e B} 

of B' with respect to the seminorm

\\T<p\\ = \J  (</)(2)0,k(T)).

Then {Ht A \ )r), where

{T(p\T-tp)T =  (0 ® k{T)),

is a Hilbert sub space of B ' .

Proof. ( I ) r  is an inner product since from the Schwartz inequality,

■ |(V-,T<^)|<||T0||| |T^||,

it is clear that
|1T</,|| =  0 ^  (̂ /-,T<̂ ) =  0,Vi/. G fl,

and hence that Tcp is the zero element in B '. The linear operator T  € C{B,'Ht ) 
defined by T<}) — T<f> = T(j) has dense range and hence T* is a continuous linear 
embedding of Ti'-p = H r  into B'. □

Conversely, the following proposition shows every element of Hilb{B') is generated 

by an element of {B^StB)''^.

Proposition 2. Given a Banach Gelfand triple, {B,'H, B') and J  6 Hilb{B'), there 
exists a unique k{T) € (Bi^B)''^ such that J  =  T-It-
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Proof. If we denote the embedding of J  into B'  by i j ,  then i*j G and has
dense range. If we denote the antilinear identification of and by I j i ,  then

for 6 fi,

and it is clear th a t
J  = Tir, where T  = ij> I j i j t -

□

From propositions 1 and 2 above, there is a bijective correspondence,

k {T) ^  H t ,

between the Hilb{B')  and

D efin ition  8. The positive-definite kernel k(T) G {B®B)'^  is called the Schwartz 
reproducing kernel of the Hilbert subspace H r  of B'.

1.2.4 The convex cone

We describe briefly the remarkable structure of Hilb{B').

1. There exists a law of multiplication by non-negative scalars. Given JT e. Hilb{B') 

and a positive real number c, c j  is the set consisting of the elements of the 

original Hilbert space J  equipped with the scalar product ( , )c.j, where

{h ,k )^ j  = l / c { h , k ) j .

Where c =  0, we let c J  — {0}.

2. There exists a law of addition on Hilb{B').  Given Hilbert subspaces J ,K ,  E 

IIilb{B') the Hilbert space J  + JC is the completion of the space

,, {H = j  + k : j  € j , k e l C } ,
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with respect to the norm

ll îl J + K  =  tn.

Equivalently,

J  + IC = {J® IC ) /ke r^ ,

where

$  ; J © / C B'- {h, k ) ^ h  + k.

3. An order relation is defined on Hilb{B').

J  < 1C B j  C Bic

where B j ,  Bjc are the closed unit balls in J,JC E Hilb{B') respectively.

We are now in a position to state the fundamental result concerning the relationship 

between (B^B)''^  and Hilb{B'), the proof of which may be found in [32, 33].

P ro p o sitio n  3. The mapping k{T) i—> H r is an isomorphism of the convex cone 
{B^B)''^ onto Hilb[B'). More explicitly:

1. c .k { T )  i s  the Schwartz reproducing kernel of c'H t ;

2. k{S) + k{T) is the Schwartz reproducing kernel ofTi s  +  H r,'

1.2.5 D irect integrals in Hilb(B')
over locally com pact A belian groups

For each x E G,  let be an element of (B^B)''^  and let x k,{Tx) be weakly 

measurable in the sense that the function x {(p<2) ip, n{Tx)) is Borel measurable for

3. U s < H t k{S) < k(T).
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all 'i/1’, 0 € B.  Each (j) E. B  defines a vector field

0 : G — > jQ  HTr'jX Tx4>-
xeG

Hence if {(pi}i^i is a countably dense subset of B,  the following is true:

1. X I—> {<f>i{x),4>j{x))Hr  ̂ is measurable for all i , j  e  /;

2. the linear span of {0i(x)}ig/ is dense in for each x € G.

Consequently, the vector fields make {Wr^^lieG into a measurable field in

Hilh{B')  over G [16],

D efin itio n  9. Given a positive Radon measure f i  on G, { ' H t x } x ^ g  C Hilb{B') is 
fi-summable if

/  \\Tx(p\\nj. dfi{x) < oo,V</) G B.
J G

Given a positive Radon measure fx and a /i-summable field {T^TxIieG C Hilb{B'),  the 
Hilbert space completion of the set of vector fields { ^  : (j) E 6} , equipped with the 
inner product

(01^) =  [
Jo -

is an element of Hilb{B')  called the direct integral of the spaces { 'H tiIigg  with respect 
to the measure ^  and is denoted by

r n r J K ^ ) .  (1-2-3)
J G

The Schwartz reproducing kernel of the direct integral 1.2.3 is

f  K{T,)dfi{x) e  { B ^ B ) ’+
J g

defined by

[  /t(T;)c///,(x)) =  J  {(j)®ip,K{T^))d^j.{x).
J g  J g
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1.3 The Schwartz-Bruhat space
and tempered distributions on G

Fourier analysis has been extended to larger classes of objects using distributional 

methods associated to various spaces of test functions. One such space is the Schwartz- 

Bruhat space [4] of rapidly decreasing functions, S{G),  which we describe purely for 

the sake of comparison and completeness.

Let G be an elementary group, ie

G =  W  x Z ” x T  X F,

where p, q and r are non-negative integers and F  is a finite Abelian group. A function 

(f) is an element of S[G)  if and only if the function and all its derivatives with respect 

to the real and toral subgroups remain bounded when multiplied with a polynomial 

whose coefficients consist of infinitely differentiable functions on the torus. The topol­

ogy on S{G)  is derived from the corresponding seminorms in the usual manner. In 

the case of an arbitrary locally compact Abelian group, G, a Bruhat pair consists of 

an open, compactly generated subgroup H oi G and a compact subgroup L oi H such 

that H/ L is an elementary group.

D efin ition  10. S{G)  is the inductive hmit of the spaces S { H/ L)  over all Bruhat 
pairs (H, L).

The Schwartz-Bruhat space can also be defined without using structure theory. 

Osborne [28] defined a space of functions which decay rapidly off compact subsets of 

a locally compact Abelian group G as follows: A function (f> E L°°{G) is an element 

of A{G)  if there exists a compact subset C{(f)) of G with the property that for each 

positive integer n there is a constant Mn such that for each integer fc >  1,

II</’ I g - C ( 0 ) ' ' I | o o  <  " •
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The following theorem was proved in [28]:

T h e o re m  5. The Schwartz-Bruhat space is the space

S{G) = {<peA{G) \^eA{d)} .

The Schwartz-Bruhat space has a large number of very desirable properties from 

the point of view of harmonic analysis. In particular, it is a Fourier invariant, locally 

convex function space with a double module structure, continuously and densely 

embedded into many of the classical function spaces. The Fourier transform may be 

extended by duality to the space of tempered distributions, S'{G), and of particular 

interest in the context of the harmonic analysis of stochastic processes is the extension 

of Bochner’s theorerii to S'{G) [36]. The Schwartz-Bruhat space is, however, unwieldy 

and difficult to  use. A nmch simpler and more accessible option is available, as we 

shall see.

1.4 The Feichtinger algebra Sq{G) 
and applications

1.4.1 Q uasim easures

Given a compact subset K of a locally compact Abelian group G, we denote by

Ak (G) = A { G ) [ ] C k {G)

the set consisting of elements of the Fourier algebra supported in K . The compacted 

Fourier algebra,

a ,{g ) = \ J A k {g ),
K

equipped with its natural inductive limit topology, is a locally convex function algebra 

and a convolution ideal o f ’/C(G) containing positive functions with arbitrarily small
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support. Its dual space

Q(G) =  f l ^ / c ( G ) ' ,
K

is the space of quasimeasures. The space of Radon measures, TZ{G), is continuously 

embedded into Q{G),  when both spaces are equipped with their natural projective 

limit topology. A quasimeasure is positive if it acts non-negatively on the cone of non­

negative elements of the compacted Fourier algebra. Every positive quasimeasure is, 

in fact, a Radon measure; this is easily proved.

P r o p o s it io n  4. A positive quasimeasure is a (positive) Radon measure.

Proof. Let a compact set K  C G he given. Pick a compact neighbourhood U of the 
identity. Since Ac{G) is a convolution ideal in IC{G) and contains positive functions 
with arbitrarily small support, we can arbitrarily uniformly approximate any positive 
function 0  G C k {G)  by a positive function,u*(/> €  Ac{G)  with support in K  +  U. An 
application of Theorem 2, Chap III, section 2 of [3] completes the proof. □

D e fin itio n  11. A quasimeasure /i vanishes on an open set O C G if

(0,/i) =  0,V</) 6 Ac{G)  with supp (f) C O.

The support of a quasimeasure fi, denoted by supp jj,, is the complement of the largest 
open set on which fj, vanishes.

We note that every pseudomeasure is a quasimeasure and every compactly sup­

ported quasimeasure is a pseudomeasure. Q{G)  is a locally convex toplogical module 

over the compacted Fourier algebra with respect to pointwise multiplication, defined 

by transposition. In the case of convolution, the module action extends to a vaguely 

or cr(7?.(G), X](G))-continuous linear operator from K.{G) into R{G),  which commutes 

with translations. Conversely, every operator of this type is a convolution with a 

quasimeasure. These facts were established in [17] where quasimeasures were intro­

duced as the topological dual of a space of functions D{G) ,  which is shown in [6] to 

be isomorphic to the compacted Fourier algebra.
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1.4.2 B ou nd ed  uniform  p artition s o f un ity  in A (G )
D efin itio n  12. Let f/ be a compact neighbourhood of the identity. A countable 
collection {xi}i^j  C G is

1. U-dense, if

iei

2. relatively separated, if, for any compact set K  C G,

5upyec|{* e  I  : iy + K)  n  (x, + U) ^ m  = ck  < oo.

A bounded uniform partition of unity in A{G) subordinate to U - {7-BUPU, for short 
- is a collection C A{G)  such that,

1.

where {xi}i^j C G is any [/-dense, relatively separated set.

A bounded uniform partition of unity in A{G)  may be found for any compact 

neighbourhood of the identity [11].

1.4.3 W iener am algam  spaces o f quasim easures

We present a simplified version of the theory of Wiener amalgam spaces, specialised to 

quasimeasures. The original presentation can be found in [9] and a detailed exposition 

in [7]. Given a compact neighbourhood of the identity, U , and an associated J7-BUPU, 

bPi] '/g/, every quasimeasure, € Q{G),  has a representation.

G =  l j ( x ,  +  f/);

= l ,V i  e  G;

2 .

supp 'ipi C (xi + U ) y i  E I',

3.
S U p , 6 / I I 0 ,114 (G )  <  OO,

(1.4.1)
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as a locally-finite sum of compactly supported pseudomeasures. Conversely, any ^  

with the representation (1.4.1) is a quasimeasure [17]. The Wiener amalgam space, 

W{A',l^){G), with local component A' and global component l^ consists of the set of 

quasimeasures, /i, such that {\\il>ifi\\A(Gy}i€i is p-summable. Wiener amalgam spaces 

with a local component other than A' may also be defined.

D efinition 13. Given a Banach /l((7)-module fi, which is continuously embedded 
into Q(G), the space of quasimeasures locally in B  is the space

D efinition  14. Let be a bounded uniform partition of unity in A{G) subor­
dinate to a compact neighbourhood of the identity. The Wiener amalgam space of 
quasimeasures locally in B with global behaviour, for 1 < p < oo, is the space

W{B,F){G)  is a Banach /l(G)-module, continuously embedded into Q{G).  The def­

inition is independent of the partition of unity used - different partitions of unity 

generate equivalent norms and, given any h € Ac{G), an equivalent ’’continuous” 

norm is defined by

for 1 < p < oo, with the obvious adjustment for p = oo.

The following result, which is theorem 2 of [21], is very useful.

T heo rem  6. Let I < p < oo and \ / p  + \/p ' — 1. Then the dual of the Wiener 
amalgam space W{B, l^)  is the space

Bloc -  { /i  €  Q { G )  : V-M €  S ,  VV' €  A , { G ) } .

When equipped with the amalgam norm

W{B,F){GY ^ W{B ' , F ' ) {G) .
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1.4.4 Segal algebras
D efin ition  15. A Banach space B ,  which continuously embedded into ^ociG ), is 
homogeneous if it is

1. translation isometric - ie

=  ||0 |is .,V (/) G B,Vx € G;

2. strongly translation continuous - ie

lim:^^o\\Lx(l> -  4>\\b  =  0 ,^4 )  e  B .

A Segal algebra is a dense, homogeneous subalgebra of L^{G).

R eiter’s ideal theorem (Theorem 6.2.9 of [30]) states th a t there is a bijective cor­

respondence between the closed ideals of a Segal algebra S{C)  and those of 

More precisely, any closed ideal in L*(G) is the closure of an closed ideal Is  of 5(G); 

conversely, given any closed ideal Is  of S{G),  there a unique closed ideal /  of L^{G) 

such that

Is = l n S { G ) .

Since the group characters are the annihilators or co-ideals in L°°{G) of the maximal 

closed ideals in L^{G),  it is a consequence of the ideal theorem th a t the maximal ideal 

space of a Segal algebra is the dual group G.

D efin ition  16. A Segal algebra 5(G ) is strongly character-invariant if it is modula­
tion isometric - ie

l|Mj</.||B =  | | 0 | | B , V 0 e 5 , V x e G ,  

in which case it is, in addition, strongly modulation continuous.

1.4.5 The Feichtinger algebra
D efin ition  17. The Feichtinger algebra is the Wiener amalgam space W{A, l^){G).
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The symbol S q(G) is used for the Feichtinger algebra to signify tha t it is the 

minimal strongly character invariant Segal algebra [12]. Its dual space

S '(G ) = ^ ( A ' , n ( C )

is the space of translation-bounded quasimeasures. We note from [12] tha t S q{G) 

contains the Schwartz-Bruhat space as a dense subspace and from [10] tha t S'q{G) is 

a subspace of the space of tempered distributions.

1.4.6 T he W iener algebra

So{G) is continuously and densely embedded into another Segal algebra of interest, 

the Wiener algebra [8],

W{G) ^  W{Co,l^){G),

whose dual,

T{G) = W { M , n { G ) ,  

is a Banach subspace of Sq(G), the space of translation-bounded measures.

1.4.7 T he ex ten d ed  Fourier transform  
and th e  P lancherel theorem

One of the most useful properties of So is its Fourier invariance - Feichtinger proved in 

[12] th a t the Fourier transform is an isomorphism ojF Sq[G) onto 50(G). The Fourier 

transform may hence be extended by duality to an isomorphism of the dual spaces. 

The following extension of the Plancherel theorem is then a simple consequence of 

the density of 5q(G) in L?{G) and the classical Plancherel theorem.

T h e o re m  7. (The Extended Plancherel Theorem) The Fourier transform is a unitary 
Gelfand triple isomorphism of

(So,L^,S')(G) onto (5o, 5')(G).
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1.4.8 Positivity, distributions of positive type  
and the Bochner theorem

We may use the Fourier transform on the space of distributions Sq(G) to extend 

the classical Bochner theorem to distributions of positive type. The version of the 

Bochner theorem presented here for S q is completely new, although the theorem has 

already been extended to spaces of distributions. The prototype result in this respect 

is the Bochner-Schwartz theorem - theorem 3, p. 157 of [18] and theoreme XVIII 

of [34]. Other results of interest include a Bochner type result for positive-definite 

measures on locally compact Abelian groups - theorem 4.5 in [2] and a similar result 

for transformable measures - theorem 4.1 of [1]. Theorem 1, p .231 of [18] and theorems 

21.4, p.493 and 2.7, p .1012 of [15] are representation theorems in a similar vein for 

positive functionals on commutative Banach *-algebras. We begin by characterising 

the positive elements of So(G)'.

P ro p o s it io n  5. Every positive element ^  of S'q{G) is a positive, translation-bounded 
measure and

'IImIIt(g) = IImIIs îCg)-

Proof. Let /u be a positive element of Sq{G) and {V'ijie/ be a BUPU in A[G). For 
each i E. I, ipifi is a positive, bounded measure and hence we have

Hence

SUpi^j \ \ l l ; i f l \ \M{G)

SUPi^I |]'0t * 1̂1
SUPi^l\\TpiH\\A'(G) 

i l M l l s ' ( G ) -

□
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Since S q{G) is Fourier invariant, it is clear tha t in addition to being a Segal algebra, 

it is a Banach function algebra.

D efin itio n  18. A distribution jj. G Sq(G) is multiplicatively positive if it is positive 
on the function algebra So{G) - ie

> 0 , V < / . g 5 o(G) .

It is clear th a t every positive element of S q{G) is multiplicatively positive, but not 

obvious that the converse is true. An example of a linear space where multiplicative 

positivity does not imply positivity can be found in [18].

D efin itio n  19. A distribution // G Sq(G) is of positive type if it is positive on the 
Segal algebra Sq{G) - ie if

> O , V 0 g 5 o( G) .  ,

VVe note th a t the Fourier Transform of a multiplicatively positive distribution is 

a distribution of positive type. The following theorem demonstrates th a t positivity 

and multiplicative positivity are equivalent.

T h e o re m  8. (Bochner’s Theorem) fi G Sq(G) is of positive type i f  and only i f  its 
Fourier transform is a positive, translation-bounded measure.

Proof. The Fourier transform of a positive, translation-bounded measure is an element 
of Sq{G) of positive type.

Conversely, let n  G 5g(G) be of positive type. Given an approximate identity 
{ua} C  So(G), ji is the w*-limit

/X =  l i m a U a  *  U* *  /U

of functions of positive type. By the classical Bochner theorem and the w*-w* conti­
nuity of the extended Fourier transform, is the w*-hmit‘in Sq(G) of a net of positive, 
bounded measures and is hence positive. An application of proposition 5 completes 
the proof. □



24

1.4.9 Sets o f spectra l syn th esis for Sq{G)

Given a closed subgroup / /  of a locally compact Abelian group O, we consider the 

relationship between the space of distributions Sq{H) and the set of elements of S'q{G) 

supported in H . In particular, we show th a t Sq{H) is continuously embedded into 

Sq(G) and th a t every distribution with support in H  can be represented by an element 

of S'q{H). This is, in fact, equivalent to saying a closed subgroup is a set of spectral 

synthesis for the Banach function algebra 5 o ( G ) .  The result is new in the context 

of Sq{C), although Hoermann has proved in [20]  that, given locally compact Abelian 

groups Gi and G 2 , the subgroup {Oi} x G2 of Gi  x G2 is a set of spectral synthesis 

for S'o(Gi X G2)-  Background information on sets of spectral synthesis can be found 

in [3 0 ] ,  from which the following definition is taken.

D efin ition  20. The cospectrum of an ideal I  in the function algebra 5q(G) is the set

Cosp [  =  {x £  G : <p{x) =  0,V(/) G / } .

. Given a closed set E  C G, it is clear th a t every ideal Is  in the function algebra 

Sq{G) with E  as cospectrum is contained in the closed ideal

=  {0 S Sq{G) : (j){x) =  O.Vx € E},

and Proposition 2 . 1 . 1 6  of [30] shows that any such ideal Is contains the ideal

=  {0 € 5 o ( G )  ; E  n supp <f> =  0}.

D efin ition  21. A closed set E  C G is a set of  spectral synthesis for the function 
algebra 5q(G) if

Je =  Ie ,
or, equivalently, if there exists precisely one closed ideal of the function algebra Sq{G) 
with E  as cospectrum.
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Given a closed set E, the operation of restriction to E  is the quotient map

R e ■ So{G) — » So{G)/1e ', (f> (p + 1b -

The adjoint operator R*  ̂ is an isomorphism of the dual space {So{G )/Ie )' onto the

annihilator C Sq{G). Given /x G {Sq{G)/Ie)', we have for any cj) G Sq{G) such 

that supp </) n E = 0,

{(p, R*e^) =  {Re(I>, p ) =  0 

and hence th a t s^ipp R*^p C E. Thus we have the following inclusion

Ie  C { p E  S'oiG) : supp p  C E}.

The obvious question which arises here is whether inclusion can be replaced by equal­

ity; equivalently, whether every element of Sq(G) with support in the closed set E  C G 

is of the form R-e/i, for some p. € (So{G)/ 1e)'■

Proposition 6. Let E  be a closed subset of the locally compact Abelian group G. I f  
E is a set of spectral synthesis for the Banach function algebra Sq{G), then

Re{So{G)/  fe) '  = {p. e  ■S'o(G) : siipp p  C E}.

Proof. From section 4.6 of [16], we note that it is a consequence of the Hahn-Banach 
theorem that

I  ^

defines a bijective correspondence between the closed ideals of L^{G) and the w*- 
closed, translation-invariant subspaces of L°°{G). Hence, using R eiter’s ideal theorem 
and the Fourier invariance of 5q, it is clear that

I s ^ I ^

defines a bijective correspondence between the closed ideals of the function algebra 
So{G) and the w*-closed, modulation-invariant subspaces of S q{G). Since

J e C-  ̂ {// e  S q{G) : supp p  C E}
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and {/i e  S q(G) : supp pt C E} is a w*-closed, modulation-invariant subspace of 
S q(G), we have that

J e C-‘- ( p  6 S q(G) : supp p C  E} C Ie -

Using the fact tha t E  is a set of spectral synthesis for the function algebra 5o(G), we 
now have that

6 S'q{G) : supp pC. E }  IE

and hence
R^[S^{G )IIe )' = l k  = e  S '(G ) : supp p  C E}.

□

The next result is crucial for later work.

P rop osition  7. Closed subgroups are sets of spectral synthesis for  Sq{G).

Proof. The statem ent follows from the ideal theorem and corollary 7.3.4 of [30]. □

1.4.10 P eriod isation  and restriction

The Feichtinger algebra exhibits invariance under the operation of restriction, R h , 

and periodisation, P//, over a closed subgroup H. We show th a t the corresponding 

adjoint operators R*fj and are isomorphisms of So{H)' and Sq{G /H )'  onto the 

closed subspaces of So{G)' consisting of elements which are supported in / /  and are 

//-periodic respectively. The proofs require results results of the previous section and 

are presented here for the first time, although the results have been stated in [10]. In 

addition, using the Bochner theorem for So{G)', we present an original proof of the 

Poisson summation formula.

P rop osition  8. Given a closed subgroup H of the locally compact Abelian group G, 
the image of Sq{G) under the restriction map R h , equipped with the transported norm  

■ is So{H), ie
R h {So{G)) = So{H).

Proof. See theorem 7 of [12], □
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P rop osition  9. Let H  be a closed subgroup of a locally compact Abelian group G. 
Then

{/i € 5 '(G ) : supp ^ l C H }  =

equivalently, given any € S q(G) with support in a closed subgroup H , there exists 
Hh S S q{H) such that

{(I), H) =  {Rh4>, îH)

Proof. The proposition follows from the propositions 6, 7 and 8. □

As a consequence of proposition 8, we have the convolution tensor product repre­

sentation of S q{G).

P rop osition  10. (The convolution tensor product representation)
Given € S q{G) and e >  0, there exists C So{G) such that

i e l

and
l l < ? ^ t l U o ( G ) | | V ' i | | s o ( G )  <  |l</’ l | 5 o ( G )  +  £■

i e i

Proof. From proposition 8, the restriction of 5q(G' x  G) to the antidiagonal can be 
identified with So{G) and the proof is completed by an appeal to the Fourier invariance 
of5o.

D efin ition  22. The periodisation operator P^  over the closed subgroup / /  of a locally 
compact Abelian group G  is defined by

Ph 4>{̂  + ^ )  = I +  h)dh.
J  H

P rop osition  11. The image of S q{G) under the periodisation operator Ph , equipped 
with the quotient norm, is isometrically isomorphic to the space S q{G/ H). - ie

Ph {So{G)) = So{G/H).

Proof. See theorem 7 of [12], □

D efin ition  23. A distribution ^  € Sq{G) is H-periodic if

LhH  =  / z , V / i  €  H .
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D e f in it io n  2 4 . Let H  he & closed subgroup of a locally com pact A belian group G. 
The annihilator subgroup o f H  is the subgroup of G  defined by

=  {h^  € G :  (h ,h ^ )  =  l ,V /i  €  H } .

T he following result characterises the //-p er io d ic ity  of a d istribution in term s of 

the support o f its Fourier transform.

P r o p o s i t io n  1 2 . Let H  be a closed subgroup of a locally compact Abelian group, G.

€  5 0 (G) is H -periodic  supp J1 €  //'*".

Proof. It is clear that a distribution w ith spectrum  in //-*- is //-p eriod ic .
Conversely, let ^  G S q{G)  be //-p eriod ic . Then, given a B U P U  C A {G ),

has the representation

i e i

as a sum  of //-p er io d ic , continuous L°°{G)  functions. An application of proposition  
7.1.20 o f [30] com pletes the proof. □

P r o p o s i t io n  1 3 . Let H be a closed subgroup o f  a locally compact Abehan group G. 
Then

PJi {S'q{ G / H ) )  =  6  S'q{G) : ^  is H  -  periodic}.

■ Proof. T he proposition follows directly from proposition 9, proposition 11 and propo­
sition 13. □

T h e o r e m  9 . (The Poisson Sum m ation  Formula) Let H  be a closed subgroup of a 
locally compact Abelian group G. Then

=  1 / / J - .

Proof. In  is obviously //-invariant and, in addition, is of positive type, since

>  0 .

1// is invariant under the group of m odulations {M/^x : h^ 6  H ^ )  and hence Ĵ g ^h 
is a positive, //-^-invariant measure, supported in and is hence Haar m easure on

’ □
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1.4.11 W iener am algams and kernels

Where B is a homogeneous function algebra on the locally compact Abelian group, 

G, Wiener amalgams of the form W{B, l^){G)  exhibit an invariance property under 

the formation of projective tensor products. The following result is new, although a 

special case - the invariance of So under the formation of tensor products - has been 

proved in [12]..

P ro p o s it io n  14. Let B  be a homogeneous function algebra on the locally compact 
Abelian group, G. Then

W{B, l ^ ){G)®W{B, l ^ ) {G)  = W{B®B, l ^ ) {G  x G).

Proof. Given a BUPU {i/’,}t€/ ^ (G ), is a BUPU in A{G  x G). Hence,
given II G W{B,l^){G)<S>W{B,l^){G)  with the representation

A* ~  ^  ̂f n  ® 5ni 
n

the estimate

i , j  n  i j

implies the inclusion

W{B, l ^ ) {G) ^ W{B, l ^ ) {G)  C W { B ^ B , l ^ ) { G  x G).

An application of corollary 4 of [11] implies the reverse inclusion and completes the 
proof. □

The 5o(G) kernel theorem, which is stated without proof in [10], is proved below 

very easily. The proof should be compared to tha t of the kernel theorem for the 

Schwartz-Bruhat space [4].

T h e o re m  10. The mapping a ^ T „  defined by

( /  ® 9 ,o) = {g, T^ f )

is an isometric isomorphism of the space of kernels S'q{G x  G) onto the space of 
bounded linear operators C{So{G), S'q{G)).
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Proof. As a simple consequence of proposition 14, we have the representation

S o { G  x G )  =  S o { G ) ® S o { G )

and, since Sq{G) is conjugation invariant, the proof is completed by appealing to 
lemma III.B.26 of [37]. □

If we denote the isometric image of Sq{G  x  G) under cr i—> by B, then since 

5 0 (G) is dense in L‘̂ {G), B is a proper, dense subalgebra of the space of trace class 

operators t{L^{G ))  and we can extend the kernel theorem as follows:

P r o p o s it io n  15. The mapping a T„ is a unitary Gelfand triple isomorphism of 

{So{G  X G),L^{G  X G),S'o{G x G)) onto { B ,H S { L ‘̂ {G)),B').

i

1.4.12 Bim easures
D efin itio n  25. A bimeasure on a locally compact Abelian group G is continuous 
linear mapping

B : IC{G) — ► 7^(G), 

where 7^(G) is equipped with its natural projective limit topology.

The dual of the Varopoulos algebra Vq(G x  G) =  Go(G)(8>Go(G)-is the bimeasure 

algebra of bounded bimeasures [19],

flA/(G x G) =  £(Go(G), M(G)).

iro(G X G) -  W{Go, / ‘ )(G)§U'(Go, /')(G )  

is a proper subalgebra of the V'o(G x G). An application of proposition 14 yields

H^ (̂G x G) ^  W { B M , r ) { G  x G),

the space of translation-bounded bimeasures.
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1.4.13 Fourier m ultip liers

The following definition is from [10].

D efin ition  26. T e  6' is a Fourier multiplier if it commutes with translations - ie

L l T L ^ ^ T , y x e G .

We denote by

M(5o(G),5'(G))

the subspace of B' consisting of Fourier multipliers. The following result characterises 

the space A/(5q(G), 5g(G)) was stated without proof in [10].

P rop osition  16. T E. B' is a Fourier multiplier if and only if there exists (It € S'q{G) 
such that

T(j) =  (j)-k fi-p.

Furthermore,
T  I—> jJL'j'

is an isomorphism of M {S o{G),Sq{G)) onto S'q{G) - le

IjT’lls' =  ||/Jr||5'(G)-

Proof Any operator generated through convolution with an element of Sq{G) is a 
Fourier multiplier in B'.

Conversely, from the kernel representation,

{ijj,T({>) =  {(t>(Siip,K{T)),

and proposition 13 it is clear that

T is a Fourier multiplier i^{T) is A q — invariant
supp Ĵ gxgh{T) C Vg-,

where A q and V g denote the diagonal and antidiagonal subgroups of G x G respec­
tively and we use the fact that-A^ =  Vg.

Since V g is naturally isomorphic to G, we have from proposition 7 and the Fourier 
invariance of S'o(G) that there exists /ir € Sq(G) such that

=  ( ^ ,  Mr *</>),
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which yields the representation
T(f) = IJ-T*

as required. If we denote the identification of Sq((G x  G )/A g) and Sq(G) by j a q , 

then, by proposition 13, the operator P^^iao isomorphism of S'q{G) onto the
subspace of diagonally invariant kernels in S'q{G x G). □

1.4.14 Translation-invariant H ilb ert Subspaces o f Sq{G) 
and th e  B ochner-Schw artz-G odem ent T heorem

The main result in the following section - the Bochner-Schwartz-Godement theorem - 

is required for a representation theorem for stochastic processes which will be proved 

in the next chapter. We prove here that positive-definite diagonally invariant kernels 

in Sq{GX G)' can be represented by positive translation-bounded measures on the dual 

group; equivalently that every unitary representation of G in a Hilbert subspace of 

5q(G) is generated by a positive translation-bounded measure on G. The results here 

are new, but similar in spirit to those in chapter 5 of [1]; section 6.3 in [16]; theorem 

6, p.169 of [18] and, particularly in the case of translation-bounded bimeasures, the 

final theorem is essentially theorem 2.5 of [26].

Since (50, L'^,Sq){G) is a Banach Gelfand triple, every Hilbert subspace of S'q{G) 

is a reproducing kernel Hilbert space with Schwartz reproducing kernel

k ( T )  € 5'+(G X G).

H t is the completion of the subspace {Tcp : 4> E 5q(G)} of 5o(G), with respect to the 

norm

||T0|| = yj(0(8)0, k;(T)), 

equipped with the inner product
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where the antihnear operator T  € C{So{G), S q{G)) is defined by

{ip,T(p) = (0®  V',ac(T)).

The identification

k {T) ^  H t

of a Hilbert space with its reproducing kernel is an isomorphism of the cone of positive

definite kernels 5o”̂ (G x G) and the cone //iZ6(5o(G)) of Hilbert subspaces of 5q(G). 

D efin itio n  27. A kernel
k {T) e  SoiG  X G)

is diagonally invariant if it is invariant under the action of the diagonal subgroup A c  
of G X G in the sense that

{L:c4><̂  k {T)) = € 5o(G),Vx € G.

It is clear th a t the representation

of the group G in the Hilbert space Tir  is unitary if and only if the Schwartz repro­

ducing kernel k {T) is diagonally invariant.

D efin itio n  28. A Hilbert subspace Tir  of S'q{G) is translation-invariant if k(T’) is 
diagonally-invariant.

The set of diagonally-invariant kernels is obviously w*-closed in Sq(G x  G) and 

hence the set //i/^)Ac(‘S'o(Ĝ )) of translation-invariant Hilbert subspaces of 5q(G) is 

obviously a closed convex cone in //i/6(5o(G )).

The simplest example of a translation-invariant Hilbert subspace of S'q{G) is the 

one-dimensional Hilbert space with Schwartz reproducing kernel Xs <8> Xsi which 

is the Fourier image of the Hilbert subspace L^(G, J j)  of 5q(G). The content of the 

following theorem is th a t every element in Hilb^GiSoiG)) is obtained as a direct 

integral of such spaces.
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T heorem  11. (The Bochner-Schwartz-Godement Theorem)
Tir  S //z/6ag(5o(G)) i f  and only i f  there exists pLr €  T~^{G) such that for  0, €

So{G),

{T(f)\Til;)= (
J G

and hence
T < p ^ ^ , 4 , e S o { G )  

extends to a unitary antilinear isomorphism of H r  onto L ‘̂ {G,dfj.T)-

Proof. For any /xy e  T+(G ), it is clear that L^(G, dur)  is A c-invariant with respect to 
modulation and hence tha t the Fourier image of L?{G,diiT) is translation-invariant.

Conversely, let T-Lt G Hilb^^{SQ{G)).  Then, since n{T)  is diagonally-invariant, T  
is a Fourier multiplier and there exists ar  G ^o(G) such that

(r^ lT ’V') =  (cTr 0)
=  (V',cTr*^)
=  { i j  * (f)*, a r )  ■

Since
{4>*4>*,aT) = \\T(f)f,

we have th a t ar  is a distribution of positive type and hence, by the Bochner theorem, 
there exists a positive translation-bounded measure ht  € T*{G)  such that

{T(f)\Til}) = [  0 ( x ) ^ ( x ) d ^ r ( x ) .
J g

Since h t  is a translation-bounded measure, we have for each 4> G W{G)  th a t

/  | 0 ( x ) | ^ d / i 7 ' ( l )  <  GO
J g

and since /C(G) is dense in W{G),  L'^{G, djir) is the completion of W{G)  with respect 
to the norm thus defined. Since So{G) is continuously and densely embedded into 
W{G),  it is dense in I?{G,djjLT) and hence the mapping

T(f) >-̂  (j)

extends to a unitary antilinear isomorphism of 7ir  onto L^{G,dnT)- □
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An important application of the above result is the decomposition

L^{G) = /  dx 
J g

of L"^{G) into minimal translation-invariant Hilbert subspaces of Sq{G)', or, equiv­

alently the decomposition of the representation of G through translation into its 

irreducible components. The Schwartz reproducing kernel of L ‘̂ {G) is the convolu­

tion kernel 5q; the corresponding operator is the linear embedding of Sq{G) into its 

dual.



Chapter 2

Second Order Generalised  
Stochastic Processes on Locally  
Com pact A belian Groups

2.1 Introduction and general concepts

The use of distributional techniques in the harmonic analysis of stochastic processes 

is not a new idea. The classical spaces 5(R ) and 7?(E) and other, less familiar, 

spaces have been used as test function spaces in order to define generalised stochastic 

processes [23, 24, 25]. This approach bypasses the need for vector integration and 

simplifies the proof of some of the classical results of the theory of second order 

stochastic processes.

The representation of stochastic processes on locally compact AbeHan groups as 

the Fourier transform of stochastic measures is considered in [27]. In this case, a lot of 

preparatory work is required in order to define a stochastic integral and the results are 

only valid for bounded stochastic measures. Furthermore, in order to justify integral 

representations of harmonisable processes, the theory of bimeasure integration must 

be considered. However, the extension of the distributional approach to stochastic

36



37

processes defined on a locally compact Abelian group G is not particularly straight­

forward since the definition of the test spaces S{G) and P(G ) is somewhat involved 

and their use very unwieldy.

An ideal test function space for the harmonic analysis of stochastic processes on lo­

cally compact Abelian groups would combine the desirable properties of the Schwartz- 

Bruhat space S{G) - in particular its Fourier invariance - with structural simplicity. 

The Feichtinger algebra 5q(G) is such a space. Its use as a test function space for gen­

eralised stochastic processes was first considered by Hermann [20], who presented very 

concise proofs of classical results and extended results obtained by Niemi [27] using 

stochastic integration. However, the proof of the spectral representation theorem pre­

sented in [20] rests on two assumptions which have not been justified; ’’..any positive 

g E Sq{G) can be written in the form g ~  f f ,  where /  £ Sq{G)" (proof of theorem 1,

part c) and, secondly, given a G S'o(G')', ”  that d is positive and this is equivalent

to a positive definite” (proof of theorem 8). The second assumption is, in fact, the 

Bochner theorem for So{G)', which has not been stated in [20]. Indeed, the notion of 

positive definite has not been defined in [20] for elements of So{G)'. The unjustified 

use of the Bochner theorem for So{G)' does however illustrate its importance in the 

proof of the spectral representation theorem for generalised stochastic processes. In 

the work which follows, the spectral representation theorem for generalised stochastic 

processes is shown essentially to be a corollary of the Bochner-Schwartz-Godement 

theorem, which was proved for the first time for 5q(G) in chapter 1. Furthermore, it 

is shown in this present work, using the fact that the time domain of a generalised 

stochastic process is isomorphic to a Hilbert subspace of So{G)', that any generalised 

stochastic process with a bounded covariance bimeasure may be identified with a
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stochastic process. This bypasses theorem 11 of [20], the proof of which was quite 

technical.

VVe consider initially the basic concepts and results in the theory of second order 

stochastic processes on locally compact Abelian groups and state some of the classi­

cal results including the spectral representation theorem. This information and the 

notation is drawn essentially from [27].

2.1.1 Second order stochastic processes

In this work, we are interested in a particular class of processes defined by complex 

valued random variables  ̂ with zero expectation and finite variance with 

respect to a Borel probabihty measure P  on the locally compact space H; in other 

words, elements of the centred probability space

Llin,  P) =  {C : =  [  ^{uj)dP{u)) =  0 and < oo}. (2.1.1)
Jn

D efin ition  .29. A second order stochastic process X  on a locally compact Abelian 
group (7 is a function

X  -.G — » L l { n ,p ) .

D efin ition  30. The realisation of a second order stochastic process X  on a locally 
compact Abelian group C  corresponding to w G Q is the fimction X,  ̂ on G, defined
by

X^{x) =  X { x , u ) , x  e G.

D efin ition  31. The correlation of two second order stochastic processes X  and Y  
on the locally compact Abelian group G is the function g x y  on G x  G defined bŷ

axY{x, y)  =  SX{x) Y{ y) .

The autocorrelation a x x  of X  is written ax-

D efin ition  32. The time domain H x  of a second order stochastic process X  is the 
completion of the linear span of the set of random variables

{ X { x ) - . x e G} c L l { n , P ) .
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2.1.2 S toch astic  m easures
D efin itio n  33. A stochastic measure on the locally compact Abelian group G is a 
continuous linear mapping Z  from IC{G) into the space of random variables Ll(Q, P). 
Given (p G IC{G), Z(f>, denoted

I (f>{x)dZ{x),
Jg

is a stochastic integral.

D efin itio n  34. The dual space

M {G ,  Lg(n, P )) =  C { C , { G \  L l{n ,  P))  

of Co(G)(8>Lo(n, P)  is the space of bounded stochastic measures.

D e fin itio n  35. A stochastic measure Z  is orthogonally scattered  if

for disjointly supported pairs of functions f , g  E JC{G).

2.1.3 S tationary  second order stoch astic  processes
D efin itio n  36. A second order stochastic process X  is stationary  if there exists a 
continuous function j x  on G  such that

a x { x , y )  =  7a:(x -  y).

The following theorem is the most fundamental result in the theory of second

order stochastic processes. Roughly speaking, the theorem states that a stochastic

process on a locally compact Abelian group G  which is stationary may be represented

by something deterministic - a positive, bounded measure on the dual group G.

T h e o rem  12. (The spectral representation theorem for  stationary stochastic pro­
cesses)

A second order stochastic process X  on a locally compact Abelian group G is 
stationary if  and only if  there exists a positive bounded measure j ix  on the dual group 
G such that for x , y  E G,

(^x{x,y) =  { x - y , x ) d f j . x { x ) .  (2-1-2)
J G
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Let X  be a stationary stochastic process on the locally compact Abelian group G. 
Then there exists an orthogonally scattered bounded stochastic measure Z x  on the 
dual group such that

X { x ) =  f  {x , x)dZx{x) .  (2.1.3)
J g

In addition,

and hence Z x  extends to a unitary isomorphism of the spectral domain L^{G. ^x)  
onto the time domain TLx-

We shall not prove the theorem since we will later prove a more general version, but 

will comment briefly. The autocorrelation kernel of a stationary stochastic process X  

is a diagonally invariant positive-definite function and hence the representation 3.7.1 

is a consequence of the classical Bochner theorem. The positive bounded measure /xx 

defined by equation 3.7.1 is the spectral measure of Â . The stochastic measure Z x  

defined by equation 2.1.3 is the Fourier transform  or spectral process of X  and it is 

clear tha t Z x  is a bounded measure and

| | 2 ' x l |  <  I I m x I I -

However, if the process G is not discrete, G is not compact and, since the characters 

are not compactly supported, the integral 2.1.3 has yet to be defined. We shall not 

dwell on the vagaries of vector valued integration at the moment as we intend to 

introduce an environment tha t bypasses the need for this.

2.1 .4  H arm onisable and V -b ou n d ed  stoch astic  processes

A stationary stochastic process is the Fourier transform of a bounded, orthogonally 

scattered stochastic measure. A natural extension-of the notion of stationarity  is to 

consider stochastic processes which are the Fourier transform  of bounded stochastic 

measures which are not necessarily orthogonally scattered.
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D e fin itio n  37. Stochastic processes with a representation 2.1.3 as the Fourier trans­
form of a stochastic measure are called harmonisable.

D e fin itio n  38. Associated to a harmonisable process X  is its covariance bimeasure 
B x , defined by

{<t> <8) Bx) = {Zx(t>\Zxi’),4>, V' G C 'o(G ).

B x  is a bounded bimeasure and positive definite in the sense tha t

{(f) Bx)  =  | |Z x 0 ||^

>  O , V 0 g C o ( G ) .

The autocorrelation of a harmonisable process may be expressed as the bimeasure 

integral

( ^ x { x , y ) = [  { x , x ) { y , ^ d Bx { x , y ) .  (2.1.4)
J d x G

Conversely, any second order stochastic process X  where the autocorrelation has 

the representation (2.1.4) can be represented as the Fourier transform of a bounded 

stochastic measure and is hence harmonisable [22]. The definition of haxmonisible 

stochastic processes used in this work corresponds to the definition of weakly har­

monisable processes used by other authors [22], [27]. Strongly harmonisable processes 

are defined by having a covariance bimeasure which is a bounded measure on G x  G. 

Strongly harmonisable processes are clearly weakly harmonisable and, since we do 

not intend to work with strongly harmonisable processes here, we refer to weakly 

harmonisable processes simply as harmonisable.

D e fin itio n  39. A weakly continuous second order stochastic process X  is V-bounded 
if the range of X  and

C = { [  X{x)4>{x)dx : ||0||oo <  1 ,0  e  L^{G)}
Jo
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are bounded subsets of L q{Q), where

f  X{x)(f){x)dx
J g

is a Bochner integral.

The following theorem, which is theorem 4.2 of [29], states th a t harmonisability 

and V-boundedness are equivalent.

T h e o re m  13. A stochastic process X  on a locally compact Abelian Group G is har- 
monisable i f  and only i f  it is V-bounded.

We would like to stress at this point tha t the validity of the representation (2.1.4) 

will not be justified here; we refer instead to  some of the treatises on the subject of 

bimeasure integration. It should be noted tha t another shortcoming of the classical 

theory is th a t it deals only with bounded stochastic measures. We will attem pt to 

remedy this by employing a suitable space of random variable valued test functions.

2.2 Second order generalised stoch astic  processes
D e fin itio n  40. The dual of the Banach space of stochastic processes, So{G)^Ll{U),  
is the space

{So{G)%Ll{Q)y = £(5o(G), Lg(Q, P)) 

of generalised stochastic processes on the locally compact Abelian group G.

The definition of generalised stochastic process used here mimics th a t of a gen­

eralised function, or distribution, which is an element of the dual of a space of (de­

terministic) test functions. Previously, generalised stochastic processes have been 

defined to be continuous linear mappings from a function space such as iS(K) or 'D(R) 

into a space of random variables [23, 24, 25]. Use of the test function space S q{G) in 

this work considerably simplifies proof of some of the classical theorems.
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We lote that the space of generalised stochastic processes is the space of translation- 

boundec stochastic quasimeasures and contains the space of translation-bounded stochas­

tic meas'ires,

{ W{G)§Ll {n) ) '  =  C{W{G),  L l { i \  P)).

In additon, since Sq{G)^L1{?1) is dense in the Hilbert space

L^{G,Ll{Q,P)) = L\ G) ^Ll in ,P) ,

the tripb

{So{G)^Ll in) ,  L \ G ,  Ll in,  P)),  C{So{G), L^n ,  P)))

is a Banich Gelfand triple of stochastic processes.

Since

imi>^V)Lg(a,P)| < ll̂ 'lir'llll</>llso(G)||t/’||5o(G),

it is clear that

{X'(f)\Y'ip)

extends to a continuous linear functional on S'o(G)®S'o(G) =  Sq{G x  G), which we 

define tc be the correlation kernel of X'  and Y':

Definition 41. The correlation of two generalised stochastic processes X', ¥ '  on the 
locally om pact Abelian group G is the kernel

( T X ' Y '  € Sq{G X G)

defined by
{4> ® Tp, O X ' Y ' )  =  {X'4>\Y' ĵj)i2(^^p), 0, V' e  5p(G). (2.2.‘l)

D efinition 42. The time domain of a generalised stochastic process X '  on the locally 
compact Abelian group G  is the Hilbert space Hx' C Lo(f2, P)  obtained by completion 
of the space of random variables

{X'4>: <t> 6 5o(G)}.
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It is clear tha t the autocorrelation ax ' = c^x'x’ of any generalised stochastic 

process X '  is a positive definite kernel and, from equation (2.2.1), th a t Tix' is unitarily 

antilinearly isomorphic to the Hilbert subspace of ^^(G) with reproducing kernel ax'-

2.3 The spectral process

Given a stochastic process X ,  we would like to  define its Fourier transform  X in a way 

which is consistent with the (deterministic) Fourier transform - roughly speaking, we 

would like the Fourier transform of the realisations of the process to be equal to the 

realisations of the Fourier transform and which enables us to extend the definition 

of the Fourier transform to generalised stochastic processes. The following definition 

satisfies these conditions and is also consistent with the classical definition of the 

spectral process, defined by equation (2.1.3).

D e fin itio n  43. Given a stochastic process

A' G Sq[G)®LI{Q, P)

with a representation

n

the spectral process or Fourier transform of X  is the stochastic process

n

on the dual group G.

From the Fourier invariance of the Feichtinger algebra, it is clear th a t the operator

T g : X ^ X

is an isomorphism of the spaces 5o(G)<8iLo(n, P) and 5o(G)(8)Lo(^i hence that

the Fourier transform extends by duality to an isomorphism of the respective spaces
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of generalised stochastic processes on G and G. In fact, it is clear th a t we can say 

somewhat more.

T h e o re m  14. (The Plancherel Theorem) The Fourier transform is a unitary Gelfand 
triple isomorphism of

{S^{G )U l[i 'l) .  L \ G ,  L l in ,  P)), C{So{G), L l { i \  P)))

onto
{S o {G )U l{n ) ,  L \ d ,  L l in ,  P)),  c{So{d), L ^ n ,  p ))).

2.4 Stationary second order generalised stochastic  
processes and the spectral representation the­
orem

D e fin itio n  44. A second order generalised stochastic process X '  on a locally compact 
Abelian group G is stationary if its autocorrelation ax '  is diagonally invariant, ie

L^ij,(7x') = {< p^ 'ip ,ax ')yx  e G,\/(j),ij e 5o(G). (2.4.1)

D efin itio n  45. A generalised stochastic process X '  is orthogonally scattered if

X '< l) ±  X ' t p ,

for any pair of functions (p,ip € So{G) which are disjointly supported.

The following proposition shows tha t an orthogonally scattered generalised stochas­

tic process may be characterised by the support of its autocorrelation. The proof is 

adapted from [20]

P ro p o s it io n  17. Let X '  be a generalised stochastic process on the locally compact 
Abelian group G.

X '  is orthogonally scattered supp ox '  C Ac- ■

Proof Since
supp f  n  supp 5  =  0  supp[f  <8 ) 5 ) n  A g =  0 ,

it is obvious th a t a generahsed stochastic process with an autocorrelation supported 
on the diagonal is orthogonally scattered.
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Conversely, let X ' be orthogonally scattered. Given a 6 Sq{G x  G) such that 
supp a is compact and supp a  n A c =  0, pick a compact neighbourhood U of the 
identity in G x G such that

(/c  +  [ / ) n A G  =  0 

and a compact neighbourhood V  of the identity in G  such that

V  x V  c U .

Then, given any V'-BUPU {ipi}i^i, there exist finite subsets C. 1 such that

cr =  ^  iJ jO

and
supp{ipi ® ipj) n Ag =  0, V {i , j )  e  X J„.

Hence, given any representation

^  /n  <8) e  S q{ G ) ^ S o{G),
n  '

we have
a =  Y 2 , 'i’i f n ®

with
supp{ipifn (gi lijjgn) n  A g =  0. Vi G I ^ J  ^  J„,n.

Hence
{a,Gx') = 0 .

□

VVe are now in a position to state  and prove the spectral representation theorem.

Theorem  15. (The spectral representation theorem for stationary second order stochas­
tic processes on locally compact Abelian groups)

Let X ' he a second order generalised stochastic process on a locally compact Abelian 
group G.

1. X ' is stationary i f  and only if  there exists a unique positive, translation-bounded 
measure fix ' G T~^{G) such that V^,-i/' € So{G),

=  I  '^{x)^{x)dpLx'ix).  (2 .4 .2)
J G
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2. X ' is stationary i f  and only i f  the spectral process X ' is an orthogonally scattered 
translation-bounded stochastic measure.

3. I f  X ' is stationary, then

W ^ 'H  =  ( [  G So{G)
J G

and hence X ' extends to a un ita ry  isomorphism o f L ‘̂ {G ,/jLx ')  and the time 
domain 'H x ' ■

Proof. 1. A  generalised stochastic process whose autocorrelation kernel can be 
represented as in (2.4.2) is obviously stationary. Conversely, i t  is clear tha t 
the autocorrelation of a sta tionary generalised stochastic process is a positive- 
definite d iagonally-invariant kernel and the representation 2.4.2 follows from the 
Bochner-Schwartz-Godement theorem.

2. The chain o f equivalences

a x ' is A c  — invariant 

s u p p T c x c f^x ' C A c  

suppTc <8) Tc(yx ' C A^.
suppa^, C A g

shows tha t tha t X '  is orthogonally scattered i f  and only i f  X '  is stationary. 
Given X '  is stationary, for any (j> G 5q(G), we have

^  \ \ l ^X' \ \T\ \<P\ \ l y^Qy

and hence, from the density o f So{G) in W {G ), i t  is clear tha t X ' extends to 
an orthogonally scattered translation-bounded stochastic measure.

3. Since T ix ' is an tilinearly  u n ita rily  isomorphic to the H ilb e rt subspace of Sq(G) 
w ith  reproducing kernel a x ', the final pa rt of the theorem follows from  the 
Bochner-Schwartz-Godement theorem.

□
D e f in it io n  46. The measure / ix ' S T '^{G ) associated to a sta tionary generalised 
stochastic process X ' is called the spectral measure. The H ilb e rt space L ‘̂ {G ,iix> ) is 
the spectral domain o f the process X '.

X  is stationary
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We consider now the relationship between generahsed stochastic processes and 

stochastic processes. In particular, we would like to derive the classical spectral rep­

resentation theorem for stationary stochastic processes from the equivalent theorem  

for generalised stochastic processes. In order to do so, we must decide when a stochas­

tic process and a generalised stochastic process can be identified. The following two 

propositions, which are original, show that a stationary generalised stochastic process 

can be identified with a (classical) stationary stochastic process if and only if its spec­

tral measure is bounded. This could be considered to be a special case of theorem 11

The next proposition shows that every stationary stochastic process generates a 

generalised stochastic process with the same time domain.

P r o p o s it io n  18. Let X  be a stationary stochastic process on a locally compact 
Abelian group G with spectral measure (.ix- For each <p S 5o(G ), let

where the integral is interpreted weakly. Then,

1. X' is a stationary generalised stochastic process with spectral measure fix-

shows that X '  is a generalised stochastic process. Furthermore, since for &

of [20],

2 . Hx=nx' .

Proof. 1. The estimate
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So(G),

{X'4>\X'ip) — { f  Xx(p{x)dx\ [  Xx'4>{x)dx)
J g  J g

=  [  {Xx\Xy)(i>{x)^{y)dxdy
J g x g

=: {(f) ax ) ,

X '  is stationary with spectral measure nx-

2. We show that, for every 0 € S q{Q), X'4> may be norm approximated by an 
absolutely convergent sum of elements of Tix  and is hence in Tix-

Let U he & compact neighbourhood of the identity in G  and be a U-
BUPU in 5o(G). Then

\\X'(f> — ' ^ ^  I  4>{x)ipi{x)dxXx,\\ = 11^^ I  { X x  — Xxi)4>{x)ipi{x)dx\\ 
i e i  i e i

<  f  \ \ Xx  -  Xxi\\\4){x)\'4>i{x)dx 
iei

Now, for X € Xi + U ,

\ \ Xx  — X i i l p  =  { X x \ X x )  +  { X x i \ X x i )  — { X x \ X x i )  — { X x i \ X x )

< 2st/pi6(i-+y)|CTx(0) -  a x { x -  Xi)|
=  2sup^^u\ax{0) -  ax{x)\ .

Since a x  is the Fourier transform of a positive bounded measure, it is uniformly 
continuous and hence

liTni/^e\\X'4>— /  cl){x)’4’i{x)dxXxi\\  = 0.
lei

Since

I I  /  (f){x)'4j,{x)dxXxi\\  <
i e i

<

we hence have
X V  € H x-

Y1 [  \<^>ix)\-^p^{x)dx\\Xx,\\. .,g, Jx,+U

||<?!>||so(G)|lMx||]^ (̂5),
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To complete the proof, we show that Tix' is total in 'Hx- For x E G  and

and hence we have tha t X x is orthogonal to H x '  if and only if the function

is the zero element in 5g(G). Equivalently, since H x '  is unitarily isomorphic to 
the dual of a Hilbert subspace of S'q{G), we have th a t X x  is orthogonal to H x '  
if and only if X x  = 0.

D efin itio n  47. A generalised stochastic process X '  may be identified with a stochastic 
process X  if X  generates X '  in the sense of proposition 18.

We now show the converse of proposition 18 - tha t every stationary  generalised 

stochastic process with a bounded spectral measure can, in fact, be identified with a 

stochastic process.

P ro p o s it io n  19. Let X '  be a stationary generalised stochastic process with bounded 
spectral measure fix'- Then, X '  is a bounded measure and X '  m.ay he identified with 
a stochastic process with range m  T ix’ ■

4> G 5o(G)

{Xx\X'<j))= f a x { x ,  y)4>{y)dy 
J g

□

Proof. Given 0 € 5o(G),

and hence by the density of S q(G) in Co{G), X '  extends to a bounded measure on G. 
Given 0 € 5o(G), the estim ate

[ $ { x ){ x ,x )d i ix '{ x ) \  < ( /  l0(x)|^(i/xx'(x))‘/^( /
J G « G •J G

1/2
M(G)

shows that
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is an elem ent of Ti'x' and hence th a t X x  E 'Hx',  where

{X'4>\Xx) = I  (p{x){x ,x)df ix’{x).
J g

Given <p,ip €  S q{G),

{X'6\  I  Xx'il){x)dx) = I  I  <j>{x){x,x)dux'{x)'ilj{x)dx 
Jg J g Jd

=  / 4>{x) / t l>{x){x,x)dxdf ix' i^)
J g J g

= j^^{x)ij{x)dfix'{x)

= (X'cf>\X'i;)

and hence we have th a t

X'4> =  I Xx(p{x)dx,y4> 6 Sq{G),
J g

as required. □

2.5 W hite noise
D e fin it io n  48 . T he sta tio n ary  generalised stochastic process whose spectral m easure 
is Ig , the H aar m easure of the dual group, is called white noise and  is denoted by W .

For E S'o(G), we have

{\V(f)\Wil}) =  I 4>{x)il}{x)dx 
Jg

and hence the associated spectral dom ain is L^{G).  T he spec tra l process W  is also a 

s ta tio n ary  stochastic process w ith spectral m easure 1g - in o ther words, W  is white 

noise on the dual group G. W hite noise is im portan t i n ‘th e  synthesis of stochastic 

processes through  filtering. We will consider th is a t a la te r stage.
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2.6 Harm onisable and V -bounded  
generalised stochastic processes

The following definition is a new generalisation of the definition of a harmonisable 

stocheistic process.

D e fin itio n  49. A generalised stochastic process X '  is Harmonisable if A'' is a translation- 
bounded stochastic measure.

The covariance bimeasure of a harmonisable stochastic process is bounded which 

implies tha t the spectral process is a bounded stochastic measure. The spectral

process of a generalised stochastic process is, however, not necessarily bounded, but

the covariance bimeasure is translation bounded, which is the content of the next 

proposition.

P ro p o s it io n  20. A generalised stochastic process X ' is harmonisable i f  and only i f  
the autocorrelation kernel has the representation

(0(8) (Tx') =  {(f)<S)'ip,Bx'),(!), Ip G So{G), (2.6.1)

where Dx' is a translation-bounded bimeasure.

Proof. Let the generalised stochastic process X '  be harmonisable. Then X '  is a 
translation-bounded stochastic measure, and it is clear tha t

B x' : 0 0  !-»• (A''0|A'''0), 0, Ip € W {G ),

defines a translation-bounded bimeasure. The representation 2.6.1 then follows.
Conversely, let the autocorrelation of the generalised stochastic process X ' be 

represerited as in equation 2.6.1, where B x ' is a translation-bounded bimeasure. Then, 
for 0  G 5o(G), ^

\\X'<pf = {cf>®' ,̂Bx').
Hence

H ^ ' 0 1 1  <  l l < ^ I U ( 5 ) P x ' | l T B M , V 0 e  5 o ( G ) ,

and, since So{C) is dense in W(G) ,  it is clear tha t X '  extends to a translation-bounded 
stochastic measure on G. ■ □
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We now consider the relationship between harmonisable stochastic processes and 

harmonisable generalised stochastic processes. We show in the next two propositions, 

using original methods th a t bypass the use of theorem 11 of [20], th a t a harmonisable 

generalised stochastic process, is a (harmonisable) stochastic process if and only if its 

covariance bimeasure is bounded.

P ro p o s it io n  21. Let X  be a harmonisable stochastic process on a locally compact 
Abelian group G. For <f) € So{G), let

where the integral is interpreted weakly. Then

1. X ' is a harmonisable generalised stochastic process with covariance bimeasure
B x -  

2. H x ' = n x .

Proof. 1. For (j> 6 S q{G),

/  \\Xx\\\(j){x)\dx 
J G

supiecll^a:!! /  \<}>{x)\dx 
J G

B x \ \ b m \\<P\\s o (̂ g )

which shows that X '  is a generalised stochastic process.

For e  So(G),

{X'4>\X'ip) = { (  Xx(f){x)dx\ f  X xip{x)dx) 
J g j g

=  f  {Xx\Xy)d{x) i ) {y)dxdy  
J g x g

. as required.
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2. We show that Tix  and Tix' are to tal in each other. For x  E G and 0 € So{G),

{ X x \X '^ )  =  [  ax{x,y) '^{y)dy
J G

=- T q B x '^ { x )

and hence

X V  ±  X i ,  V i  G G =̂ > J^q B x 1>{x ) =  0, Vx G G

Bx4> =  0 
^  A''(?l) =  0,

since the time domain T ix’ is unitarily isomorphic to 'Hb x -' whose dual is a 
Hilbert subspace of S q{G).

Conversely,
X x  ±  X ' ^ , y ^ € S o { G )

impUes th a t the function
y ^ ( T x { x , y )

is the zero element in S q{G) and hence tha t X x  = 0.
□

We now show a converse to the above proposition.

P ro p o s it io n  22. Let X '  be a harmonisable generalised stochastic process on aJocally 
compact Abelian group G. I f  the covariance bimeasure B x ' is bounded, then X '  is a 
bounded measure and X '  can be identified with a (harmonisable) stochastic process 
with range in 'Hx> ■

Proof. For S So{G),
IIX'011̂ = (0(g) 0, Bx')

and hence, if B x '  is bounded,

\\x'<f>\\ <  m u B x ' f J l ,

and, since 5q(G) is dense in Cq(G), X '  extends to a bounded measure on G.
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Given 4> € 5o(G), the estimate 

I /  <f>{x){x,^dBx' {x,y)\  =  I [  {x,^dBx' { (p){y) \
JGxG JG

< \\^X'{<P)\\M{d)

=  sup{\{ij, Bx'{(f>))\ : i> e So{G), ||V'||oo < 1} 
=  sup{\{(f)(S)ip,Bx')\ : il> € So{d), ||7/̂ ||oo <  1} 

=  su^{\{ 'X^\X 'rP)\ : i ;  e So{G), ||V-||oo <  1}

<  l i ^ ' 0 l l l l ^ ' l l

<  I I ^ V I I I I ^ ' I I ,

where ||'X'|| is the bounded stochastic measure norm of X ',  shows that

X'^y-^ [  4>{x){x,^dBx ' {x ,y)
Jd x G

is an element of 'H'x>- Given x E G, X x  E. H x '  defined by

( X ' ^ \X x )  =  f  <p {x ) {x ,^dBx ' { x ,y ) ,y^  e So[G),
JdxG

determines a stochastic process X  on G w ith  range in Tix'- 
VVe show now that X  generates X'.  Given <p,Tp E So{G),

{X'(f)\ [  Xxip{x)dx)  =  j  {X'<p\Xx)\l){x)dx 
J g J g

=  4> {x ){x ,^dBx ' {x ,y )^ {x )dx
J g J dxG

f  f  {x , f )dBx'{ ( t ) ) {y)^{x)dx  
J g  J g

=  [  [  ^{x){x, f )dxdBx'{<j )) {y)
J g  J g

=  /  i){y)dBx'{4>){y)
J g

=  {(f><Sirp,Bx') ■ •

and hence
X'4>= [  Xx4>[x)dx,' i( j)e Sq{G),

J g
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as required.
We show finally th a t X  is harmonisable.

{X'(f)\X'Tp) = { f  Xx(j){x)dx\ [  Xxi!}{x)dx)
J g  J g

= [  ^{x)'tp{y){Xx\Xy)dxdy
J g x g

Hence,

which shows th a t X  is harmonisable. □

D efin itio n  50. A generahsed stochastic process X '  on a locally compact Abelian 
group G is V-bounded if the set

Ca- =  {X'cj> : <!> 6 So(G), U U  < 1} (2-6.2)

is bounded.

P ro p o s it io n  23. Let X '  be a generalised stochastic process on a locally compact 
Abelian group G.

X 'is  V-bounded A'is a harmonisable stochastic process.

Proof. Since Sq{G) is dense in Co{G), it is clear tha t tha t the set of random variables 
Cx' is bounded if and only if. X ' is a bounded stochastic measure. _ □

In fact, if we replace the Bochner integral by a weak integral in the definition of a 

V-bounded stochastic process as in definition 3.1.1 of [27], it is clear from the density 

of Sq{G) in L^{G), th a t every V-bounded stochastic process may be identified with 

a a V-bounded generalised stochastic process and vice-versa. Hence, we have proved 

the following proposition, which is theorem 3.2.1 of [27].

P ro p o s it io n  24. Let X  be a stochastic process on a locally compact Abelian group. 
Then

X is  V-bounded <=> X is  a harmonisable stochastic process.
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2.7 Filtered generalised stochastic processes

The space of generahsed stochastic processes C{Sq{G), LI(Q, P)) on the locally com­

pact Abelian group G is a right Banach £(S'o(G))-module. Given a generalised 

stochastic process X '  and T € jC(5o(G)), we denote by T X '  the generalised stochastic 

process

0 H-> X'T(p

and call this process X '  filtered by T.

Two subalgebras of £(5o(G)) are of particular interest as regards the filtering of 

generalised stochastic processes - the modulation spaces

M,^^{G) = W { A , n { C )

and

MooA G )  = W{A',1^){G).

The convolution algebra A/oo,i(G) is the space of time-invariant filters. We define the 

convolution of /x 6 Moo,i(G) with the generalised stochastic process X '  by transposi­

tion in the sense that

/i * X'<f) =  X'fj. - k  (j).

Moo.i{G) contains A/(G) and, in particular, it contains the Dirac measures. For 

X 6 G, we have

* X'<p = X'U4>.

The function algebra M\^oo{G) is the space of frequency invariant filters and is the 

Fourier image of A/oo,i(G); in particular, it contains the characters. The generalised 

stochastic process X',  filtered hy & ^i,oc{G) is the generalised stochastic process
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defined by

ipX'(f) =  X'ip(f).

The Fourier transform T  of an operator T  € £(5o(G')) is defined by transposition 

in the sense that, for 4> € 5'o(G),

f ( p  =  T ^ .

It is the clear that the following is true for any T G C{Sq{G)) and any generalised 

stochastic process X':

f X '  = f ) ( ' .

In particular, for any n G Moo,i(G) and any generalised stochastic process X',  we 

have that

fi  *  X '  =  f i .X ' .

P ro p o sitio n  25. Let W  denote white noise on a locally compact Abelian group G. 
Then, the mapping

T ^ T W

is a unitary isomorphism of onto L^{G,Lil{i).,P)).

Proof. Let 5, T  be elements of the operator algebra B. Then, if we denote the identity 
operator corresponding to white noise by I, we have

{SW \TW )  =  trSIT*
= {S\T)

and hence, from the density of in 7iS{L'^{G)), the mapping T  T W  extends to a 
unitary isomorphism of HS{L‘̂ {G) into L^(G, ^o(^> ^))-

We complete the proof by showing that the mapping is a surjection. If we write

L\G,Ll{n,P))  = L^{G)^Ll{n,P),

then it is clear that we have the following identification:

L \ G ,  Llin,  P)) = ns{L \ G) ,  Llin,  p)).
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Hence, given X '  € L^{G, Ll(Q, P)), X '*X '  is a positive, trace class operator in L^{G). 
The positive square root of X '* X '  is an element of 'HS{L‘̂ {G)) which we denote by 
Px' ■ Then

{Px'W\Px'W) = trPx'P*x>
■ =  t r X '* X \

which completes the proof.
□

W hite noise is used to synthesise stationary stochastic processes through time-

invariant filtering. The proof of the following proposition is a m atter of routine.

P ro p o s it io n  26. Given ii € Moo,iiG), the filtered white noise process // -k W  is 
stationary with spectral measure



Chapter 3

M ultidim ensional Second Order 
Generalised Stochastic Processes  
on Locally Com pact A belian  
Groups

3.1 Introduction

We extend the results of the theory of scalar generalised stochastic processes on lo­

cally compact Abelian groups to infinite dimensional processes - ie processes which 

are defined using Hilbert space valued random variables. This results in much shorter 

and more transparent proofs of results obtained by Kakihara in [22], In particular, the 

theory of stochastic measures and operator valued bimeasures developed by Kakihara 

is bypassed by again using Sq{G) as a test function space and exploiting its remark­

able properties. In this present work, an extended spectral representation theorem for 

multidimensional generahsed stochastic processes on locally compact Abelian groups 

is proved. This requires a Bochner theorem for £(?-^)-valued distributions, where Ti. 

is an separable, infinite dimensional Hilbert space. In order to prove the Bochner the­

orem, an operator valued Fourier transform is defined and some preparatory results

60
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proved. Conditions are defined for a stationary multidimensional generalised stochas­

tic process to be identified with a stochastic process. Harmonisable multidimensional 

generalised stochastic processes are investigated and representation theorems proved. 

All material in this chapter, except where indicated, is original. We begin with some 

background material taken from [22] on normal Hilbert £(H)-modules, which are very 

useful in describing infinite dimensional stochastic processes.

3.2 Norm al H ilbert £(7i)-M odules

Let 7  ̂ be a separable Hilbert space.

Definition 51. A normal pre-Hilhert C{Ti)-module is a left £(H)-module y ,  equipped 
with a mapping,

[ , ] : j ;  X r(W),

the grammian, which satisfies the following conditions: for X, Y ,  Z  E y  and T 6 L{Ti.),

1. [;C, X] > 0 and [X, X] =  0 <=> X =  0;

2. [X + Y,Z] = [X,Z] + [Y,Z]-,

3. [TX,Y] = T[X,Y]-,

4. [y,x] = [X,r]*
A normal pre-Hilbert jC(?^)-module which is complete with respect to the norm

ll^ll =  ^Jm,X]\ \ r^n) ,

is a normal Hilbert C{7i)-module.

We will use the following version of the Schwartz inequality which is lemma 2, 

p.l8of[22]. ' ‘

Proposition 27. Let y  be a normal C{Ti.)-module. Then, for X ,Y  6 y ,

ll[^,i^]l|r(«)<||Xbrb.
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D e fin itio n  52. Let y  and Z  be normal £(H)-m odules.

1. A bounded linear operator
T€C{y, z)

which commutes with the module action of C{Tl) is a module homomorphism  
from y  into Z .

2. A module homomorphism which preserves the grammian is a  grammian unitary 
isomorphism.

3. Let 3 ,̂ Z  be normal Hilbert 7i modules, y  and Z  are grammian unitarily 
isomorphic if there exists a grammian unitary isomorphism of y  onto Z .

4. A module homomorphism from y  into t { H )  is a bounded linear functional on

It is clear from the Schwartz inequality tha t every element Z of a normal C{'H)- 

module 3̂  defines a bounded linear functional

h z - . Y ^ [ Y , Z \ .

The converse is the Riesz representation theorem, which is proposition 6, p.25 of [22].

P ro p o s it io n  28. (The Riesz Representation Theorem) Let Z ' be a bounded linear 
functional on a normal Hilbert C{H)-module y. Then there exists a unique Z  E. y  
such that

z'(Y) = [Y,z]y Y  ey.
and

l i e ' l l  =  1 1 ^ 1 1 .

D e fin itio n  53. A trace class operator valued measure on a locally compact Abelian 
group G is a continuous linear mapping

For 4> € K,{G), we denote the trace class operator ^(0) by

/ (p{x)dfi{x)
J g

and say jj, is positive if, for all positive 0 G IC{G),

I  (l){x)dfi{x) e  r(? i)+ ,
J g

where denotes the positive trace class operators.
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E xam ple 1. Let fx be a positive trace class operator valued Radon measure on the 
locally compact Abelian group G. Then, for  each (f) € K,{G), we have that is a 
trace class operator valued measure, where, for any tp € IC{G),

/ ^{x)d4>iJi{x) =  / ip{x)(p{x)dpi{x).
J g J g

If, for T  € -C(H) and € IC{G),

/  'il}{x)dT(j)n{x) — T  I  xp{x)(j){x)dfi{x),
Jg  j g

then the set of trace class operator valued Radon measures

{T(l)ti : 4> e )C{G),T.e C{n)}

is an CiTi)-module which becomes a normal pre-Hilbert C(TL)-module when equipped 
with the grammian

[S(pii,Txpfj] = S  [  4>{x)ip{x)d^{x)T*.
‘ J g

The normal Hilbert C{T-l)-module obtained through completion is denoted L^{G,fi). 

For further information on normal Hilbert £(W )-modules we refer to [22].

3.3 M ultidim ensional second order 
stochastic processes

We review some of the basic definitions and results on multidimensional stochastic 

processes from [22],

Let n  be a locally compact space equipped with a Radon probability measure 

P. Second order processes are defined by the space of Hilbert space valued random 

variables

L ^ { n ,n ,  P) = { ^ : Q — > n J  U{uj)fndP{w) < oo}.
J n

Zero mean stochastic processes take values in the space of centred Hilbert space valued 

random variables

W, P ) =  {c G n , P )  : S ^ =  f  a ^ ) d P { u )  = 0},
J n
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which we denote by Af, for brevity. Af, equipped w ith  the gramm ian

[6 ,6 ] = /
Jn

is a normal H ilbe rt £(7-^)-module.

D e f in it io n  54. A  multidimensional second order stochastic process on a locally com­
pact Abelian group G is a function X  ; G  — > X .

D e f in it io n  55. 1. The operator correlation o f two m ultid im ensional second order
stochastic processes X  and V  on a locally compact Abelian group G  is the 
function

F x y  - G x C - ^  t {U )- F x r i x ,  y) =  [X x , Yy\.

2. The corresponding scalar correlation is the function

(JxY  =  t r V x Y -

3. The operator autocorrelation o f the m ultid im ensional second order stochastic 
process X  on the locally compact Abelian group G  is the trace class operator 
valued function

T x  =  ^ x x -

The corresponding scalar autocorrelation is the function

ax =  trTx-

D e f in it io n  56. Let X  be a m ultid im ensional second order stochastic process on a 
locally, compact Abelian group G.

L  X  is stationary i f  the scalar autocorrelation ax  is diagonally invariant - ie if  

ax i y  - X , Z  -  x )  =  axiy,  z), V x ,y , 2  € G.

2. X  is scalarly stationary if, for each h E H , the scalar process X^ is stationary, 
where

Xhx{u)  =  {Xx{u) \ h ) , x  € G,u! G

3. X  is operator stationary i f  the operator autocorrela tion F x  is diagonally invari­
ant - ie

T x (y  -  X, z -  x ) =  CTx(j/,z), Vx, J/, z e G .
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T h e o re m  16. (The spectral representation theorem for operator stationary multidi­
mensional stochastic processes on locally compact Abelian groups)

Let X  be a multidimensional second order stochastic process on a locally compact
Abelian group G.

1. X  is operator stationary i f  and only i f  the operator autocorrelation Fx has the 
representation

where n x  is a positive, regular, countably additive, trace class operator valued 
Borel measure on the dual group G.

2. X  is operator stationary i f  and only i f  there exists a regular, countably additive, 
grammian orthogonally scattered Borel measure Z  on the dual group G such that

The measure theoretical terms used in the theorem will not be defined here and, 

as in the scalar case, no attem pt will be made to justify the integral representations. 

The details may be found in [22].

The following proposition shows tha t operator and scalar stationarity  are one and 

the same thing.

P ro p o s it io n  29. {22j Let X  be multidimensional second order stochastic process on 
a locally compact Abelian group. Then

As in the scalar case, we may extend the notion of stationarity  by defining har- 

monisable processes.

D e fin itio n  57. Let X  be a multidimensional second order stochastic process on a 
locally compact Abelian group G.

The measures Z \  and n x  are related by

X  IS scalarly stationary <=>■ X  is operator stationary.
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1. X  is harmonisable if its scalar autocorrelation has the representation

J G x d

where is a bounded bimeasure.

2. X  is scalarly harmomsable if, for each h £ H ,  the scalar process is harmon­
isable.

3. X  is operator harmonisable if its operator autocorrelation has the representation

where B x  is an operator bimeasure of bounded operator semivariation.

P ro p o s it io n  30. [22j Let X  be a multidimensional second order stochastic process on 
a locally compact Abelian group C. X  is operator harmonisable i f  and only i f  there ex­
ists a regular, countably additive Borel measure Z x  of bounded operator semivariation 
on the dual group G such that

Again, we do not attem pt to define the terms used or to justify the integral 

representation.

3.4 M ultidim ensional second order 
generalised stochastic processes

The following definition differs from th a t of one dimensional generalised stochastic

processes only in so far as the random variables are Hilbert space valued. As far as

can be ascertained from the literature, the definition is original.

D e fin itio n  58. A multidimensional second order generalised stochastic process on a 
locally compact Abelian group G is an element of the Banach space

{ S o {G )^ x y  ^  C{So{G),X).
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Given a multidimensional second order generalised stochastic process X '  on a 

locally compact Abelian group G, each h E H  defines a scalar process, X ^, where

Xl4>iio) =  (X'<f){Lj)\h),uj e  n.

P ro p o s it io n  31. Let X ' , Y ' be two multidimensional second order generalised stochas­
tic processes on a locally compact Abelian group G. Then the mapping defined
by

=  [X'4>,Y'^]

=  [  X'<p{u)®Y'i}{LjydP{uj),(i>,ijESo{G),
Jq

where the integral is interpreted weakly, extends to a bounded linear operator from  
Sq{G X G) into t {'H) and

lirx'y'll <

Proof. Let
Y,4>^®̂ êSoiG)®SoiG)
i e i

be a representation of F  € Sq{G x  G). Using the Schwartz inequaUty, we have 

||[/^ , r x 'K '] ||r (K )  <  \ \ [ ( t> i  ® i ' i S x ' Y ' ] \ \ T ( n )

i€l

( H )

i€l 

i€I
< ||x'||||y'||^||0.

i€l

The norm estim ate
| |rx 'r ' | |< l|A " || | |y ' | |

then follows by taking the infimum of the right hand side over all possible represen­
tations of F. □

D e fin itio n  59. Let X ', Y ' be multidimensional second order stochastic processes on 
a locally compact Abelian group G.
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1.

€ £ ( 5 o ( G x G ) , r ( H ) )  

is the operator correlation  o f X ' and Y '.

2. T x 'x ',  w ritten  F x ', is the operator autocorrelation o f X '.

3. The scalar autocorrelation of X '  is the kernel a x ' € 5g(G x  G) defined by

i<p'S)'tp,ax') =  ir[0(g) 6 Sq{G).

P ro p o s it io n  32. Let X ' be a m ultid im ensional second order generalised stochastic 
process on a locally compact Abelian group G. Then, given any ONB o fH ,

ax ' -  .

i e i

Proof. Since {c j is an ONB for HS{T~l), we have

tr[(t)<S>i),rx'] =  ( r  ^ ( 0 ( g )  V',o’x '_x 'P e , ® e *
» j € /

i € l

and hence
ax ' =  ^  C T x ' . . 

i ^ I

□
D e f in it io n  60. 1. Let G be a locally compact Abelian group. The Banach space

£ ( 5 o ( G x G ) , r ( H ) )  

is the space o f trace class operator valued kernels.

2. A  trace class operator valued kernel F is positive definite i f

[< /.®0,F ] e  r (H )+ ,V < ^ G  5o(G).

We note tha t the operator autocorrelation o f any m ultid im ensional second order 

generalised stochastic process, is positive-definite.

D e f in it io n  61. Let X '  be a m ultidim ensional second order generalised stochastic 
process on a locally compact Abelian group G. The com pletion of the normal pre- 
H ilbe rt £ (H )-m odu le

{X 'cl> :<f>eSo{G )} 

in  P ) is the modular time domain o f X '.



69

3.5 R eproducing kernel H ilbert £(7-^)-modules

To every trace class operator valued kernel F we can associate the operator

Tv € C{So{G),C{So{G),T{n))),

where the identification between the operator and kernel is defined by

Tr0(V') = [(/>(8)i/',r].

D efin itio n  62 . 1. The Banach £(H )-m odule

£ (5 o (G ),r (H ))  

is the space of trace class operator valued distributions.

2. The Banach £(H )-m odule
C{W{G),r{n))

is the space of trace class operator valued translation-bounded measures.

If F is positive definite, then the set

{TTv<p ■. 4> e  S o{G ),T  e  C{ H) ) ,

equipped with the grammian

[5Tr0,r7VV'] = 5[0®V^,r]T*,

is a normal pre-Hilbert £(H )-niodule. We denote the Hilbert £(7Y)-module obtained 

through completion by Hp and call F the reproducing kernel of Kp-

We have already noted that the operator covariance kernel Fx' of. a multidi­

mensional generalised stochastic process X ' is positive definite. It is clear that, for 

4>,'ip ^ So(G), we have

[X>XV] = [Tr^,0,Tr^,^]
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and hence tha t the modular time domain H x '  and the normal Hilbert £(W)-module 

are grammian unitarily isomorphic.

We denote, as before, the algebra obtained by the projective tensor product of the 

Wiener algebra with itself by Wq - ie

ir o (G  X G ) =  W {G)^VV(G),

D efin itio n  63. The space of kernels

C{WoiGxG),T{n) )  

is the space of trace class operator valued translation-bounded bimeasures.

Given a positive definite trace class operator valued bimeasure 5 ,  we write the 

operator T b simply as B  and, for each cp 6 W{G), we have th a t Bcf) is a trace class 

operator valued translation-bounded measure. The grammian corresponding to a 

positive definite translation-bounded bimeasure is written

[B(p,Btp] =  [  4>{x)ip{y)dB{x,y)
J G x G

=  [  '^{y)dB(}>{y)
J G

■ =  B(f){ij).

If the positive definite trace class operator valued translation-bounded bimeasure 

B  is generated by a trace class operator valued Radon measure /i in the sense that 

for each (f> € So(G)

B(l) =

then we have simply

/ (p{x)ij{x}d^x{x).
J g
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D efin itio n  64. A trace class operator valued kernel

r  € c {Sq{g  X g ) , t {h ))

is diagonally invariant if

[Li4>0 L^xi;,r] =  [ îg) V’,r],Vx 6 G,y(f), ip e 50(G)-

We note tha t where a positive definite operator valued kernel is diagonally invariant, 
for each x  E G, the translation operator defined for each (f) € 5q(G) by

LxTr<f> = TrLx<f), 

is grammian unitary in H r  and hence that

X  L j

is a grammian unitary representation of G in Tir-

3.6 Operator valued Fourier transform  
and the Bochner theorem

Let

So{G)§>T{n) .
I

Then, for h, k E. H, we have

{J2<P^®T,h\k) € So{G).
i

The Fourier transform  <f>i <gi Ti of ^  ■ 0, <8) Ti is the operator valued function on

G defined for h , k  E Ti and x € G by

(TG'^(pi<S>Ti{x)h\k) = [  ® T jh \k ) {x ) {x ,x )dx ,h ,k  6 H.

It is clear tha t
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and hence tha t T o  is an isomorphism of the S o{ G ) ^ t {T-1) onto which

extends to an isomorphism of the dual spaces via the relation

where //, G C{So{G), C{H)) , (f) € 5q(G).

The following theorem is an obvious consequence of the definition of the Fourier 

transform.

T h e o re m  17. (The Plancherel Theorem)
The Fourier transform is a unitary Gelfand triple isomorphism of

(5o (G )§ r(H ), L \ G ,  HS{n)),  C{So{G), C{H)))

onto
iS o {G )^r{n ) ,  n s { n ) ) ,c { S o { G ) ,  c { n ) ) ) .

D efin itio n  65. Let fi E C{Sq{G), C{Tl))■

1. jj. IS positive if, for each positive function (j> € S'o(G),

//((ji) €

where C{7i)^ denotes the positive operators in C{'H).

2. is of positive type if

P ro p o s it io n  33. Let 6 C{Sq{G), C{TL)) he positive. Then

1. ft 6  C{W{G) , C{7i)) - ie every positive C{H)-valued distribution is an C{'H)- 
valued translation-bounded measure.

2. The £(5o(G ), C{H)) and C{W{G) , C{H)) norms of  ̂  are equivalent; both norms 
are equivalent to

3. I f  II € C{So{G) ,t {H)),  then // € C{W{G) , r {n) ) .
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Proof. 1. For h ,k  E H,  it is clear that fXhk £ S q{G), where, for 0 € Sq{G),

is a sesquihnear form on Ti. and hence, for h ,k  e H,

Hence, given 4> € Sq{G), positive and compactly supported, we have, for i  € G,

and hence, taking the sup of both sides over all x E G, we have

Hence, for any (p 6 Sq{G) and h .k  E Ti. with \\h\\, ||fc|| < 1, we have, using the 
positivity of each that

<  ||0 ||vV '(G)SliP||h||<l||M /illT(G)

=  ll0l|vV'(G)5UP||*l|<l||^/i|U’'(G)
< ||0||VV'(G)SUP1|/,||<1S'UP|| |̂|5̂ (̂ ,<1KV;,/X*)|
=  ll</’lkl'(G)5UP||/,||<iSUp||^||^^,^,<l

< ll<?!'lkv(G)||Mll>

where \\fj.\\ denotes the £(5q(G), C{H))  norm. Hence, from the density of 5q(G) 
in ^^(G), we have that /i extends to an £(7Y)-valued translation-bounded mea­
sure.

2. From the inequahties

5 ^ P | | / i | | < i I I m / i | | t ( g )  =  s u p | | , , | | < l S ■ u p | | 0 | | ^ ^ ( ^ ) < l | ( / x ( 0 ) / ^ | / l ) i  

, .. ^  •5^iPii<Aiiw'(G)<illM(<^)llaw)

{(p,l^hk) = in{(l))h\k),

and, for h = k,
M/i/i — f^h ^ T'^{G).

For any positive (f> E Sq{G)

IJ'hk G T{G),

with
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and

=  S'up||/i||.||jt||<i| /  4>{x)dij.ukix)\
J g

< ||0||lV(G)5^iP||h||,||fc||<l|lml|T(G)
=  ||<?!»||vv(G)5upi|;t||<i||/^/(||T(G),

we see that the C{W{G), £.{?{)) norm of fj. is equivalent to 5t/p||/i||<i||/i/i|!T(G)-
To show the same is true for the C{Sq{G), C{'H)) norm, we note from [12] that 
there exists a constant C such that any (p € Sq{G) can be written in the form

( j ) =
0 < i< 3

where (pi is a non-negative function in 5q(G) and

| | < ^ ; | | 5 o ( G )  <  C ' 1 I<A||s o ( g ) . 0  <  /  <  3 .

Hence, for any 4> £ Sq{G), we have, using the positivity of the operator ^(0;) 
for each I, ■

\\ti{4>)\\c{n) < ^  hj{<Pi)\\c{n)
0<l<3

0 < K 3

■ =  ^^P\M<i\{<Ph f^h)\
0 < K 3

< ll<?̂ ;II.So(G)5UP||/,||<l||M/i||5i(G) 
0 < K 3

<  4 C ||( ? l ) |l s o ( G ) S l tp i |; i | |< i | | / i , , | |r ( G ) -  

The proof is completed by the inequality

•SWP||/i||<l||/^h||r(G) =  5?ip||;,||<il|/J.;,||5^(G)

=  5 U p | |h | |< lS U p | |0 | |5 ^ ,g ,< i | (0 ,M / .) |

=  '5'*^P||/i||<i'5'up||0||g ĵ ĵ<i I {fj,{(j))h\h) I
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3. Since 5o(G) is dense in W{G), given any (f) G W{G), we have that can 
be expressed as the hmit in C{H) of a net ■ 4>a € 5'o(G)} of trace class
operators and is hence compact. For any ONB {ej}tg/ of

tr^x{4>) =
iei

and since the hnear functional

4> I— > trfi{(f)) 

is an element of Sq{G), it  is clear that

^ / i e .  S So{G)'.
i€l

Since each /Xe. is positive, we have that

iei

and

l e i  i € i  ^

<  l l0 l |n '( G )  llM e . l lr (G )  
ier

H'(G)II y^MeJlr(G)
i€l

< CO.

Hence, fi{4>) is a trace class operator and since we have from the first part of 
the theorem that /x € C{W {G), a routine application of the closed graph
theorem then shows that

f i e C { W i G ) , T i n ) ) .

□

An easy consequence of the above proposition is an £(?Y)-valued Bochner’s theo­

rem.
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T h e o re m  18. (Bochner’s theorem)
f i  €  C{So{G), C {H )) is o f positive type i f  and only i f j l  is a positive, C{'H)-valued, 

translation-bounded measure.

Proof. The theorem follows from the previous proposition and the chain of equiva­
lences;

fj. is o f positive type jjLh is o f positive type, '^h € H

Jlh is positive, V/t €  H  

<=> f i  is positive.

□
P ro p o s it io n  34. Let ^  be a positive C{'H)-valued measure on a locally compact 
Abelian group G. I f  ^  is bounded - ie

^ieC{CoiG),c{n)), 
then, fo r  h, k 6 H , the measure fj,hk is bounded and, furtherm ore,

where ||/i|| denotes the C {C o{G ), C{H) )  norm  o f fj,.

Proof. I f  is a positive, bounded, £ (H )-va lued  measure on G, then, for each h E H  
and 4> € /C(G), we have

IJ
<  l l - / > l l o c | | M l l l | / l | P .

Hence, fih is bounded and 

Since f i is positive,

{ { ( p , h ) , { ^p , k ) )  l ( j ) { x ) i p { x ) d n h k { x )
J g

is a sesquilinear form  on So{G) x Ti. For any 0 6 IC{G), pick -ijj € K,{G) identically 
equal to  1 on supp (f). Then, from the Schwartz inequality.

[  4>{x)d̂ ihk{x)\ < ( [  \(p{x)\^dfiu{x)y^‘̂ { [  \'4>{x)\‘̂ dnk.{x))
J g J g J g

1 /2
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Hence, ^hk is a bounded measure and

The proof is completed by the inequality

IImII = sup{sup{\ [  (f){x)dnhk{x)\ : \\h\\,\\k\\ < 1} : <p e  K.{G),\\(p\\oc <~i-} 
Jcc

<  f i U p { h i h k \ \ M { G )  ■ || / i | | ,  \ \k\ \  <  1}  

=  S-Up||/,||<i||/i/,||A/(G).

□

The previous proposition facilitates a pointwise definition of the Fourier transform 

/7 of a positive, bounded £(7Y)-valued measure fi.

D e fin itio n  66. Let /x be a positive, bounded £(W)-valued measure on a locally 
compact Abelian group G. The Fourier transform of yu is the £(H )-valued function 
^  on G defined by

where ||/i|| is the bounded C{'H)-valued measure norm of fi.

2. I f  li is a trace class operator valued measure, then 'p is a trace class operator 
valued function on G and

The following proposition is reminiscent of the scalar case. 

P ro p o s it io n  35. Let ^  be positive, bounded C{'H)-valued measure. Then

1. J1 is a bounded, weakly continuous, C{'H)-valued function on G and

suPsedM' )̂\\c{n) = IIm(0)|U(«) = ||/̂ ||,

l l M ( ^ ) l l r ( W )  =  | | M ( 0 ) | | r ( H )  =  tr f  dll{x) = | | / V . | |
J g

where ||/u|| is the bounded r{H)-valued measure norm of
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Proof. 1. For h ,k  E 7 i  and x  € G, we have

\(p.{x)h\k)\ <  WuhkW 

and hence /t is an £ (H )-va lued  function w ith

sup^eGM^)\\c{n) <

^(0 ) is clearly a positive operator and hence

||m (0)||£(w) =  sup||h||<i|(^(0)/i|/i)|

= supiihiî i /
J g

=  swpi|/.||<i||//,h||

= HI-
Since the Fourier transform  of a bounded measure is continuous, i t  is clear tha t 
'jj. is weakly continuous.

2. Since /.t is a trace class operator valued measure, the mapping

4)<—̂ t r  4>{x)djjL{x)
J g

is a bounded measure on G. Given any ONB {c i j ig ;  o f H,  we have

t r  [  (f){x)dfi.{x) =  V (  [  ^{x)dfi.{x)e,\ei)
J g J g

=  V  /  (j){x)dn̂,[x)

and hence th a t Me. is a bounded measure. Furthermore, since each /ig. is 
a positive bounded measure, we have

l i  ^ M e i l | A / ( G )  =  2̂ I I M c J | a / ( G ) -
i € l  i e l



W ith  {e i} jg / as above and x E G, we have, for each i  € I ,

| | / i ( x ) e i l | ^  =  I I  [  {x,x)df i{x)ei f  .JG
=  supim\<i \{  { x , x ) d n {x ) e , \ h ) \ ‘̂

Jg

=  5Up||,,||<i| /  (x,x)<i/ie./i(2:)P Jg

<  SUp||/,||<i||/Xh||A./(G)||^e.||M(G)

=  l l / ^ l l l l M e . | | M ( G ) -

Hence,

^  I I m I I  Y1 I I ^ < = . | | m ( G )  
i e i  i e i

and thus /2(x) is a H ilbert-Schm idt operator.

Since Jl{x) is compact, the estimate

^  |(//(x)e ,|e i)| =  /  (■'̂ '’ ^)^/^e.(-'c)l
lei i&i

^  l l M e J l M ( G )
i e i

shows tha t i t  is a trace class operator.

Since / i is positive, we have

I! / d n { x ) \ \ r { n )  =  t r  d/i(x)Jg Jg

=  /  dii{x)er\ei)
i e i

=  y "  /
^eI

= l l M e . | | A f ( G )
iei

=  I I  y ^ M e . l | A / ( G ) -
i e i

Given any 0 € C'o(G), we have tha t



and hence we have
w i < i i E  /̂ eJU/CG)-

i e i

Conversely,

(p{x)d^.ci{^)\
16/ i e i  ^

For any trace class operator T ,  we have

l | 7 ’ l | r ( H )  =  •'iUpJ2
i je /  .

where the sup is taken over all pairs { { e i } i e i ,  { f j } j e i )  of orthonormal bases of 
7 i  and hence it is clear that

Hence,

I I  <  5 l i p | | 0 | | ^ _ ^ , ^ , < i | |  /  <l){x)d^l{x)\\r{n)
i e l

□

We recall tha t every positive-definite trace class operator valued kernel F is the 

reproducing kernel of a Hilbert £(W )-module H r -  Where the reproducing kernel is a
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bounded, positive-definite bimeasure B, we note that, for each 4> € Co{G), B(f) is a 

bounded, r(7Y)-valued measure and hence the Fourier transform J50 defined by

locally compact Abelian group G. Then, for each x E G, the linear mapping defined

for each (p € So{G) extends to a bounded linear functional on H b -

Proof. If we denote the bounded r(7l!)-valued measure norm of B(f> by \\B<p\\ and the 
bounded r(H )-valued bimeasure norm of B  by ||S ||, then we have

3.7 Stationary m ultidim ensional second order 
generalised stochastic processes

D e fin itio n  67. Let X '  be a multidimensional second order generalised stochastic 
process on a locally compact Abelian group G.

1. X ' is stationary if the scalar autocorrelation ax '  is diagonally invariant.

2. X '  is scalarly stationary if, for each h E H, the scalar process is stationary.

3. X '  is operator stationary if the operator autocorrelation is diagonally in­
variant - ie if

is a r(H )-valued function on G.

P ro p o s it io n  36. Let B  be a bounded, positive-definite  T{H )-valued bimeasure on the

by

<  ^ ^ P | l 0 l l c o ( C ) < i  W W hs  I I  B cPWhb

< \ \B \ W m \n s -

□

Lit/'jFx'] = [(^(8)0,rx'],Vx e Gy(j),\p e So{G).
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D efin itio n  68. Let X '  be a multidimensional second order generalised stochastic 
process on a locally compact Abelian group G.

1. X ' is grammian orthogonally scattered if

[XV,XV] = 0, 

for any disjointly supported pair of functions i/’ S Sq{G).

2. X '  is scalarly orthogonally scattered if, for each h E Ti., the scalar generalised 
stochastic process is orthogonally scattered.

P ro p o s it io n  37. Let X ' be a multidimensional second order generalised stochastic 
process on a locally compact Abelian group G. Then X ' is grammian orthogonally 
scattered i f  and only i f  X ' is scalarly orthogonally scattered.

Proof. Let X '  be grammian orthogonally scattered. Then for each h E H  and dis­
jointly supported pair of functions (/>, i/j 6  So{G),

{X', (̂p\X'f t̂jj) = tr[(f)i^ ip ,rx ']h®  h*
=  0

and hence X '  is scalarly orthogonally scattered.
Conversely, any trace class operator T  can be expressed as a sum

T = (T +  r *)/2 + z(T -  T*)/22

of two self-adjoint trace class operators and it is hence easy to show that

{Th\h) = 0 y h e H ^ T  = 0.

Consequently, if X '  is scalarly orthogonally scattered, then for any disjointly sup­
ported pair of functions (p,ip E So{G), we have that

[0(g)'(/;,rx'] =  0

and hence tha t X '  is grammian orthogonally scattered. □

T h e o re m  19. (The spectral representation theorem fo r  operator stationary multidi­
mensional generalised stochastic processes)

Let X ' be a multidimensional second order generalised stochastic process on a 
locally compact Abelian group G.
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1. X ' is operator stationary if and only if  its operator autocorrelation can be rep­
resented in the form

[(p<Si'ip,Tx'] = [  '^{x)^{x)d^ix'{x),(j),'4) e  Sq{G), (3.7.1)
Jd

where ^ x ' a positive t {H)-valued translation-bounded measure.

2. X ' is operator stationary if and only i f  the spectral process X ' is a grammian 
orthogonally scattered translation-bounded measure.

3. I f  X ' is operator stationary, then the modular time domain H x' is grammian 
unitarily isomorphic to the modular spectral domain L^{G, fix')-

Proof. 1. It is clear that Fx' is diagonally invariant if it can be represented as in 
equation 3.7.1.
Conversely, the diagonal invariance of implies that, for h ,k  € H, there 
exists fihk € Sq{G) such that for € 5q(G),

{[4)(^'iJj,rx']h\k) =  {(j) * i)*, Hhh) ■

Given \p G So{G), define Fx<(</?), a linear operator on Ti, according to

'^i 1 ^ h k )  ? f o r  / i ,  /c  G

lei
where (j)i * ip* is an admissible convolution tensor product representation 
of (see proposition 10). For ||/i||, ||A:|| < 1, denoting the C{So{G x G),C{'H)) 
norm of Fx' by ||Fx '||, we have

| ( f x ' ( ! ^ ) / l l f c ) H |  <  | | F x ' | |  | | 0 |U o(G)| |V’|U q(G’),
iei

and hence, taking the inf of the right hand side over all admissible representa­
tions of (p, we have

I I f x ' ( </ : >) I I £ ( H )  <  l i r x ' l l l l v ^ l U o C G ) -  

This yields fx'(</^) G £(5q(G ),£(H )) and since fx'(v^) G t{'H) for each ip in 
5o(G), a routine application of the closed graph theorem gives

fx-(<^)G £(5o(G ),r(H )).

For any 0 G So{G),
fx'(0*0*) = [0® 0,rx'],

and, since Fx' is a positive definite kernel, Fx' is of positive type, and the 
representation 3.7.1 follows from the Bochner theorem and the final part of 
proposition 33. , .



2. Let X '  be operator stationary and fix'  be the associated trace class operator 
valued spectral measure. Then, for any pair of functions <p,ip E S q{ G )  with 
disjoint support,

[X'(l),X''ip] = [  <p{x)rp{x)dfxx>{x)
J G  

=  0

which shows tha t X '  is grammian orthogonally-scattered.

For any 0 € 5o(G), we have from the first part of the theorem,

\\X'ct>\U =  ^J\\[X'<i>,X'cl>]\UH)

=  y  I I  ^ I 0 ( ^ ) N m x ' ( 5 ) 1 I t ( w )

Hence, since 5o(G) is dense in W {G), X '  extends to a A'-valued translation- 
bounded measure on G.

Conversely, if X '  is a grammian orthogonally scattered translation-bounded 
measure, then, for each h ,k  E H, the translation-bounded bimeasure

: 0  (8i '0 I-+ {[X'cf), X''iJj]h\k)

is supported in the diagonal subgroup Ag and hence the correlation kernel 
CTx'̂ x'î  is diagonally invariant in each case. Thus, Fx ' is diagonally-invariant 
and X '  is operator stationary.

3. The final part of the theorem follows from the representation 3.7.1.
□

P ro p o s it io n  38. Let X '  be a multidimensional second order generalised stochastic 
process on the locally compact Abelian group G. Then

X '  is scalarly stationary <̂ =4- X '  is scalarly orthogonally scattered.

Proof. The statem ent is an easy consequence of the fact tha t, for each h e H,
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We can now characterise scalarly stationary processes.

P rop osition  39. Let X ' be a multidimensional second order generalised stochastic
process on the locally compact Abelian group G. Then

X ' is operator stationary X ' is scalarly stationary.

Proof. The proposition is a simple consequence of proposition 37 and proposition

It is clear tha t operator stationarity implies stationarity and hence, from the 

previous proposition, tha t scalar stationarity implies stationarity. The converse is, 

however, untrue; for a counterexample, see example IV.6 of [22].

3.8 M ultidim ensional stationary stochastic
processes and m ultidim ensional stationary  
generalised stochastic processes

Let A' be a multidimensional second order stochastic process on a locally compact 

group G which is bounded in the sense tha t

SUPj:^g \ \ X x \\x  <  OO.

If, for each 0 € So{G), we let

and hence tha t X  defines a multidimensional generalised stochastic process.

38. □

where the integral is defined weakly, we have

\\X4>\\x < SUPr.eG\\^x\\x\\(p\\so{G)
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A stationary stochastic process X  is with spectral measure is certainly bounded 

and

[X0, Xi/)] = f  [Xx,Xy](f){x)ip{y)dxdy  
Jgxg

= [<t)^ip,rx]

=  /  0 (x )^ (x )d /x x (x ) .
J g

Hence the generalised stochastic process generated by a stationary process is sta­

tionary and has the same spectral measure as the original process. The following 

proposition describes a converse.

P ro p o s it io n  40. Let X ' be a stationary multidimensional second order generalised 
stochastic process X ' on a locally compact Abelian group G. I f  the spectral measure 
Hx' of X ' is bounded, ie

f ix'e CiCo{G),r{n)),

then the spectral process X ' is a bounded stochastic measure and X ' may be identified 
with a stationary multidimensional second order stochastic process on G.

Proof For any 0  6  5 o ( G ) ,  we have

= tr[X'4>,^'(j>]

= tr f  \4>{x)\'^dnx'{x)J d

—  l l < i ^ l l o c l l  X ]
i€l

and hence, from the density of So{G) in Co(G), X '  extends to a bounded measure on
5 .

Using proposition 35 and the Schwartz inequahty, we have

\ f ^ { x ) { x , x ) d f l x ' i x ) \ \ r { H )  <  W  L \ H x ) \ ‘̂ d H x ’ { ^ ) \ \ l [ l i ) \ \  f  d f l x ' i ' S ) \ \ r
%/ G J  G J  G

1/2
(H)
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Hence, from the Riesz representation theorem, the function X,  defined by

is a Tix'-valued stochastic process on G.
VVe show X  generates X '.  Given (pj'ip €  S q(G),

[X'4>, [  Xxip{x)dx]  =  f  [X'(p, Xx]')p{x)dx
J g J c

G J G
< (̂x) L  ip{x){x, x)dxdpLx'{x)

(p{x)'4}{x)diJLx'{x)

(t){x){x,x)diJ,x'ix)ip{x)dx

' =  [X'4>,x'ip],

as required. □

3.9 Harm onisable m ultidim ensional second order 
generalised stochastic processes

D e fin itio n  69. Let X '  be a multidimensional second order generalised stochastic 
process on a locally compact Abelian group G.

1. X '  is harmonisable if X '  is a translation-bounded measure.

2. X '  is scalarly harmonisable if, for each h E. Ti, the scalar process X ^  is harmon­
isable.

3. X '  is operator harmonisable if the spectral process X '  is a translation-bounded 
A’-valued measure.

P ro p o s it io n  41. Let X '  be a multidimensional second order generalised stochastic 
process on a locally compact Abelian group G. Then X '  is operator harmonisable if  
and only i f  the operator autocorrelation Fx ' has the representation

[0(g)-0,rx'] = fix'],
where B x ' is a riTi)-valued translation-bounded bimeasure, ie

Bx' 6 C{W{Q)®W{G),r{n)).
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Proof. Let X'  be harmonisable. Then X'  is a translation-bounded measure and, using 
the Schwartz inequality, the estimate

|1[(^!8 V',r3p-,]i|r(W) =  \\[X'<p,X''lp]\\r{n)

<

<  \ \ X T \ m ^ i G ) \ \ < P \ \ w i G )

for any (p,ip E Sq{G) and the density of Sq{G x  G) in W { G ) ^ W ( G)  show that is 
a bounded r(?^)-valued bimeasure.

Conversely, let be a r(H )-valued translation-bounded bimeasure. It is clear 
tha t the kernel irF:^, in 5 q ( G  x  G) defined by

( 0  ( g )  Ip, t rV^,)  -  tr[4)  ig >

is a translation-bounded bimeasure. Hence, given any ONB { e jig /, we have that 
is a translation-bounded bimeasure which is independent of the ONB. 

The estimate

ie/

i e i

for any (/> € 5o(G) and the density of So{G) in W{G)  show th a t X'  extends to a 
translation-bounded measure. □

3.10 Harm onisable m ultidim ensional stochastic
processes and harm onisable m ultidim ensional 
generalised stochastic processes

Let X  be an operator harmonisable multidimensional second order stochastic process 

on a locally compact Abehan group G. Since

SU P:,^g \ \ ^ x \\'  ̂ =  S U P i e G ( 7 x ( x , x )
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where the scalar covariance bimeasure of X , -Y is bounded and hence generates

a generalised stochastic process via the weak integral

X'4> =  I X x ( p { x ) d x .
J G

It is easy to show that X '  is operator harmonisable with operator covariance bimeasure 

Bx-  We show now th a t the converse is true.

Proposition 42. Let X '  he an operator harmonisable multidimensional second order 
generalised stochastic process on a locally compact Abelian group G. I f  the operator 
covariance bimeasure B x ' of X '  is bounded, then X '  is a bounded measure and X '  
may be identified with a stochastic process on G.

Proof. Let X '  and Bx' be as above. Then, for any (f) E So{G),

\ \X '4>f  =  t r [< t>®^,Bx' \

< uw im 'W B M

and hence, from the density of So(G) in Co(G), X '  extends to a bounded measure.
It is then clear from proposition 36 and the Riesz representation theorem that the 

equation

[A'V, A 'j;]=  f  4 ){x){x ,j^dBx 'ix ,y)
J g x g

defines a stochastic process X  on G with range in Tix'- 
We show now that X  generates X ' . For 4>,ip E So{G),

[X'(f), [  Xx- (p{x)dx\  =  f  [X'(f), Xx] i l ! {x ) dx
J G  J G

=  [  f  < f > { x ) { x , y } d B x ' i x , y ) ^ { ^ ) d x
J G J G x G

=  f  f  { x , y ) d B x ' { < i ) ) { y ) i ^ i x ) d x  
J g  J g

=  [  [  ip{x){x, y)dx dBx'{(f>){y)
J G  J G

= [  '^{y)dBx'{(f)){y)
J g

= . [0 (8) ■!/', Bx']
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and hence
Xx i p { x ) d x  — X'lp,LI G

as required. □
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