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SUMMARY

This thesis investigates the the appropriateness of integral equations for use in determining 

electric field coverage over sub-urban terrain which is illuminated by an arbitrarily  placed 

transm itter.

Sub-urban terrain is the term  used to describe undulating terrain with an homogeneous 

or piecewise homogeneous distribution of clutter (vegetation, buildings, rocks etc.).

The exact numerical solution for electric field coverage is given in the form of coupled 

integral equations.

These are the Coupled Electric Field Integral Equations (CEFIE) or the Combined Field 

Integral Equations (CFIE).

The field coverage is evaluated numerically using these equations over different terrain 

profiles consisting of various types of materials.

The CEFIE is reduced to a simpler Electric Field Integral Equation (EFIE) and its ap­

plication in determining field coverage is justified m athem atically and with field coverage 

results.

Published methods to speed up the calculation of coverage using the EFIE are imple­

mented on various profiles at different frequencies.

These m ethods are the N atural Basis Method [57], the Green’s Function Perturbation 

Method [58], the Fast Multipole M ethod/Fast Far Field Approximation [61]/[6] and the 

Tabulated Interaction Method [25].

These m ethods are then compared in terms of order of complexity of the algorithm, accu­

racy of results, memory requirement and complexity of code.

I introduce my own method, the Field Extrapolation Method (FEM) [62], and apply it as 

with the published methods.

By m athem atical evaluation and comparison of results I note this method to have the 

lowest order of complexity, give the most accurate results, have the lowest memory re-



quireinents and have the simplest code.

I conclude it is the most appropriate fast integral equation method to calculate field cov­

erage over sub-urban terrain.

A statistical model for clutter is developed and the FEM is applied to this model over var­

ious profiles with varying degrees of clutter. The results confirm that the FEM is robust 

in its application to this type of terrain and the extent of signal distortion due to surface 

roughness mirrors the distortion of the original smooth surface.

Finally some of the better known non-integral equation methods for calculating field cov­

erage are discussed.

These are the Physical Optics approximation [52], the Parabolic Equation Method [22], 

the Impedance Matrix Localisation Method [43], the Impedance Boundary Condition [21] 

and the Geometric and Uniform Theory of Diffraction [55].

The salient advantages and disadvantages of each of these methods are listed.

This thesis concludes that integral equation methods are an efficient means of estimating 

field coverage and that the FEM is the most appropriate of these methods for application 

to suburban terrain.

Having demonstrated its worth in sub-urban terrain the conclusion also expresses the au­

thor’s l)elief that the FEM is the most promising integral equation method for coverage 

estimation in urban terrain and suggests this as a course for future research.
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INTRODUCTION

The need to effectively communicate using wireless systems is not easy to satisfy diie to 

]»andwidtli lim itations and to the complex behaviour of electromagnetic radiation as it 

propagates, scatters and attenuates.

Scattering and attenuation are more pronounced at higher frequencies posing severe prob­

lems in providing ubiquitous coverage for mobile communications providers whose band- 

vidth is at the upper end of the U ltra High Frequency (UHF) radio wave spectrum  

-(300 - 3000MHz).

Ihe  increased demand for better data transmission integrity, which is a current phe- 

ronienon in developed countries in the advent of the personal mobile phone and fax ma- 

ciines, means the provision of adequate field coverage via surface based transm itters will 

bx:ome an ever more challenging task.

I) is conceivable, if not indeed likely, th a t these mobile devices will ultim ately provide the 

services of a PC which will only exacerbate this demand.

Given the above demands, there is a relatively new interest in the use of integral ecjuations 

ii. estim ating field coverage because they are a form of the exact m athem atical solution 

fcr this problem - which is to calculate the field coverage given by an arbitrarily based 

transm itter over an arbitrary surface profile.

To be in a position to offer a good mobile service, an effective transm itter network must 

be in place. For this network to be effective it must be derived from a suitable planning 

process (the alternative is an ad-hoc transm itter placement).

T ie  purpose of this thesis is to aid this fast and accurate planning process by providing 

fast and accurate solutions for field coverage over sub-urban terrain.

The solution to this problem is slow by its very nature.

Pcpular solutions achieve their speed through a compromise in accuracy which is often 

ur;accei)table and leads to poor planning.
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\  concomitant fast and accurate planning tool can be provided using integral equation 

nethods, the development of which is the focus of this thesis.

The propagation and scattering problem itself is expressed exactly as an integral equation 

md this provides the ideal starting point.

Elements of this integral equation can, a priori, be eliminated by virtue of their negligible 

:ontribution.

t  is this feature of the integral equation formulation which makes it a suitable environment 

tor finding fast com putational methods which do not significantly compromise accuracy.

] am concerned with the com putation of UHF radio wave propagation in a suburban en- 

nronment with application to cellular radio systems planning.

By suburban environment I mean undulating terrain with an homogeneous or piecewise 

lomogeneous distribution of clutter (vegetation, buildings, rocks etc.).

I wish to develop a fast, efficient deterministic approach to this problem, taking into ac- 

o u n t clutter as a paramaterised random (probabilistic) distribution of scatterers on the 

sir face.

I; nuist be pointed out th a t the integral equations describing the problem can be written 

ir differential form and so the integral equation methods presented here have their analogy 

ii the difi'erential domain.

Irtegral equations are by their nature easier to conceive, being as they are, simply sum- 

nations. They are therefore preferable to use in the search for fast means of solving this 

problem.

Tie exact numerical solution of the integral equations for the problem would take days to 

sclve for a couple of kilometres of terrain, even on a high speed computer. Clearly this is 

the reason th a t until recently integral equation methods were not popular.

Ai im portant model is commonly used with this problem which speeds up the algorithm 

significantly. This is the PEC model.

Here the surface is assumed to be a PEC which allows use of the much simpler integral 

equation for PECs.

Another im portant assumption is the Forward Scattering Approximation which assumes 

tlu t  radiation propagates primarily in a forward direction away from the source.
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Both give comparable results with the exact solution in the case of grazing incidence which 

impLes a surface based transm itter on terrain which is gently undulating.

It should be noted tha t the computed coverage results presented in this thesis are derived 

assuming the atmosphere and terrain have, respectively constant electrical perm ittivities 

(eo i- used for the atmosphere).

Atmospheric effects such as poor weather, humidity and convection currents, to name but 

a few, will result in greater attenuation, fading and scintillation effects respectivley [1], [2]. 

Wet or snow/ice-covered terrain will yield different coverage results than when the terrain 

is dry [21],

Polarization effects are ignored; all scattered radiation is taken to have the same polariza­

tion as the incident field [5], and the possibility of resonance effects having a significant 

effect on coverage is discounted as being unlikley at the frequencies considered (144 and 

970MHz).

However, this phenomenon would likely become a significant problem as service providers 

are forced to move up the UHF band. Here, raindrops and snowflakes would be likley to 

form resonant cavities in which case rain/snow fall may cause effective blackouts [3].

This thesis attem pts to provide the reader with an intuitively acceptable means with 

which to understand integral equations in electromagnetics and the fast means used to 

solve them.

Research presented in this thesis justifies the PEC model and provides the fastest and 

most efficient m ethod to date to calculate the field over sub-urban terrain.

The thesis will conclude with an analysis of coverage results which will be used as a base for 

the argument th a t integral equation methods offer the best means to address the terrain 

scattering problem.
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ELECTROMAGNETIC SCATFERING THEORY

M odern E lectrom agnetic Scattering Theory is fo u n d d  on the laws of E lectrom agnetism , 

which are M axwell’s Equations [5] and the constitutive relations for m atter.

2.1 Maxwell’s Equations

M axwell’s Equations are given here (a tim e depender.ee of 6**̂  ̂ is assum ed) [52]:

V  X H{p)  =  l uDi p)  +  J(p)  (2.1)

V  X E{p)  =  - iluB { p ) (2.2)

V  • Di p)  = q{p) (2.3)

V • B{p)  = 0 (2.4)

- where uj is the rad ia tion  frequency ( rad/ s) ,  q is charge density and p is a position  vector. 

They are respectively the laws of Am pere and M axvell, Faraday and  Lenz, G auss and 

Biot and Savart.

A m pere’s law was corrected by Maxwell to include the D isplacem ent C urren t te rm  i uD.  

The above position-only vectors are complex quantities and are rela ted  to  the  original 

position  and tim e dependent quantities by:

y ( p , t )  =  i? e |y (p ) e ^ " ‘ j  (2.5)
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2.2 T he C o n stitu tiv e  R ela tion s for Linear M a tter

The following consituitive relations apply for linear matter - Harrington[19]:

^  ^  d E  d^E
D - e E  +  e i — +  £ 2 - ^  +   (2 .6 )

„ dH _ d^H , ,
5  - + / i i— +  + ......  (2.7)

dE d^E  , ,
J  -  aE + a i — + a 2 - ^  +   (2,8)

and can be approximated by:

D = fE  (2.9)

D =  fiH (2.10)

,7 =  dE  (2.11)

- where the tilde superscript denotes a complex quantity and the bar superscript denotes 

a tensor.

Empirically:

e =  e +  (2.12)
to

M atter is termed ’simple’ if the above complex quantities denoted with the tilde superscript 

can be replaced by scalars.

It is termed isotropic if the above tensors can be replaced by scalars.
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2.3 T he /ecto r  W ave Equation

The Vector Wve Equations in E  and H  are derived from Maxwell’s equations by taking 

the curl of (2.) and using the vector identity:

V X V ) 1 /=  V V  • 1 / -  V V  (2.13)

- where V  is ai arbitrary vector.

The Vector W,ve Equation for the Electric Field is:

V X f/r^7 X E(p) — Lo'̂ e ■ E{p)  =  iu>J{p) (2-14)

- where /I and^, the magnetic permeability and electric permittivity, are rank 2 tensors. 

In an homogeiaous isotropic medium the Vector Wave equation becomes:

V X V xE{p) — €^E{p) =  iu)fiJ{p) (2.15)

- which can bevvritten

V^E{p)  - e'^E{p) = - i c o p ^ I ■ J{p) (2-16)

-where I  is theidentity operator and /i  and e are scalars.

By the DualityPrinciple [5], (2.16) can be written in terms of H  and M.

The Vector W a’e Equation is comprised of three coupled scalar wave equations.

The derivation )f (2.16) is to be found in Chew[6].

The integral eqiations th a t describe the electromagnetic scattering problem we are about 

to investigate ae derived from the wave equation via the application of the appropriate 

boundary condiions.
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2 4  G reen ’s F unctions

A Green’s Function is a physical system response to a Dirac delta type pulse.

Tie scalar Green’s function, g{p,p) ,  is the solution to the Scalar Wave Equation where 

tie current is the Dirac Delta function and it is:

(2.17)

- vliere /? is the wave number.

Tie Dyadic Green’s Function, so named because it is a dyad or rank two tensor, is the 

anilogous solution to the Vector Wave Equation.

Fo: an homogeneous isotropic medium it is:

linear, the solution to an electromagnetic problem can be obtained by superposition.

2.5 B ou n d ary  C ond itions

At the interface between two materials having relative perm ittivities e^i, 6 ^2 and perme- 

abi.ities Hri, and where there are no sources, the following conditions can be shown to 

holl at the boundary [5]:

a { p , p ) (2.18)

Derivations of (2.17) and (2.18) can be found in Chew[6 ] Because the Wave Equations are

n  X [El — E 2 ) =  0 (2.19)

n  X {Hi — H 2 ) — 0 (2 .20 )

n • (e,.i£'i — €r2 -£'2 ) — 0 (2 .2 1 )

n ■ { f l r l H i  -  /ir2^2) =  0

- where h is the outward normal unit vector.

(2 .22 )
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2.6 T h e E lectric  and M agn etic  V ector P o ten tia ls

Consider E lectric and M agnetic Fields and H a due to  the E lectric C urrent J  only. 

T hen [16] shows how:

VV • /I + /3M
iLoe

- where A is the  solution to:

(2.23)

\ / ^ A  + P^A = - J  (2.24)

which gives:

(2-25)J v  47T I p -  p' I

or

-4 =  /  J s { p ' ) j~ , ------------------------------------------------------------------------------------------ (2.26)
J s  47T I p -  p' I

- depending on w hether one is solving the Wave E quation  in a volume or on a surface.

By exact analogy w ith the above it can be shown th a t

E f = - S /  X F  (2.27)

- where F is the  solution to:

V ^ F  + P ^ F = - M  (2.28)

which is:

F =  My{p ' ) - — j----- — dv (2.29)
J v  47T I p -  p' I

or

r p-iP\p-p'\
F =  /  M ,(p ')— -------- - d s '  (2.30)Js 47T I p -  p' I

A and F are the M agnetic and Electric Vector Potentials respectively.

By Superposition the to ta l Electric Field is then:

E ^ E a + E f (2.31)
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Hence the general olution for the field radiated by a surface current is:

w  4-/?2 r r , - i p \ p - p ' \  r  p-j/3|p-p'l
E^{p) = -------- ^   r^ds' -  V X /  Ms{p')—  - d s '  (2.32)

ve Js  47t I p -  p' I Js A ' n \ p -  p' \

Use of the Vector P'tentials lead to intermediate differential equations which are uncoupled 

and simple. T hat i, each component, of say A, depends on the corresponding component 

of J only.

Use of A or F  dos not decouple the original vector wave equation as can the use of 

Magnetic Current, vhich will be discussed in detail later.

Hence the only advmtage in the use of A and F is in avoiding the use of complex operators 

(such as dyads) in olving the Vector Wave Equation.
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2.7 M agn etic  C urrent

The concept of M agnetic C urrent is to  be used shortly  in the Surface Equivalence Principle 

and th e  Coupled and Combined Field Integral Equations.

M agnetic current does not exist in the  sense of electric current. I will devote some space 

here to  explain w hat it is and where and why it should be used.

F irst it shoiild be noted th a t m agnetic current cannot be isolated because m agnetic charges 

do no t exist.

Secondly, m agnetic current is used only as a m athem atical convenience. I t is an alternative 

representation  for electric current.

In short, M agnetic C urrent (M ) is an alternative representation in F araday’s Law for the 

E lectric C urrent (J )  which appears in A m pere’s Law. There is thus a transform  th a t 

relates bo th . Use of either or bo th  is a question of convenience since th e  solution for the 

field is unaffected.

From Van Bladel [17] volume electric and m agnetic currents are rela ted  by:

A U p ) =  - (  — )V  X J,{p)  (2.33)
lUJt

and

U p ) =  ( — )V X M„(p) (2.34)
liUli

A good exam ple of the usefulness of M agnetic C urren t is in m agnetic m ateria ls where 

ro ta tin g  electric currents exist.

A pplying the  C ontinuity E quation to  these electric currents yields:

V  • Jt, =  iuiq =  0 (2.35)

- since there is no net inflow/outflow of charge.

Since any vector field is specified by its  curl and divergence free com ponents, th is  type of 

electric curren t can be com pletely described by a m agnetic current M .

If the original electric current is a function of two orthogonal vectors - say x  and  y  - then 

the  equivalent m agnetic current will be a  function of the z  vector only.

This m eans th a t the solution for Jy can be found by solving the M agnetic Vector Wave
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E quation  for My and converting the result to  the equivalent Jy using (2.33).

T he alternative  to  th is would be having to  solve the E lectric Vector Wave E quation  for 

Jy, which m eans solving two coupled scalar wave equations.

Hence, where Jy is ro tating , does not diverge and is invariant in one direction, use of 

m agnetic current allows one avoid the use of dyadic analysis in solving for Jy.

It should also be pointed out th a t if J varies in all d irections x,  y  and z,  conversion 

to  m agnetic current will result in having to  solve two coupled scalar (m agnetic) wave 

equations as opposed to  three (electric).

In sum m ary, appropria te  use of m agnetic current (i.e. where V  ■ Jy = 0) reduces the 

d im ensionality  of solving the Vector Wave E quation by one.

T he relations for surface electric and m agnetic currents Jg and Mg are as follows [17]:

Ms =  (— )n X J8s (2.36)
iuj€

and

Js =  - i  —  )n  X Mbs  (2.37)
iue

where 6̂  is defined by the functional:

< 6 s , ( p > =  f  (p{p)dS = I  8s4>{p)dV (2.38)
J s  J v

The notion of 6s stem s from the Dirac D elta Function, from whose definition the  conversion 

of a line, surface or volume integral to  a point value of a function is possible. This gives 

one the  m eans to describe a d istribu tion  on a half-line or plane.

On th e  o ther hand, the definition of bg enables one to  convert a volume integral to  a 

surface integral. This gives one a tool to  describe a d istribu tion  on a surface which is not 

necessarily planar.

T he usefulness of surface m agnetic current follows from its relation to  surface electric 

curren t. T h a t is, th a t a surface electric current which is a function of two orthogonal 

vectors m ay be described l)y a m agnetic current which is a function of the th ird  only.

It is im m ediately clear in this circum stance th a t if the Vector Wave E quation  is to  be 

solved on a surface, appropriate use of surface m agnetic current gives the  same advantages 

as th e  appropria te  use of volume m agnetic current above.
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The key word here is ’appropriate’.

Above it was the use of vohime magnetic current to describe a rotating electric current 

with zero divergence.

Here its use is in describing a surface electric current, which is a function of two orthogonal 

vectors, in terms of a surface magnetic current which is a function of the third orthogonal 

vector only.
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2.8 T he Surface Equivalence Principle

Consider the situation depicted in the figure below. Here we have two regions of space Fi 

and F 2 separated by a mathematical surface S. One of the regions is unbounded.

Region 1 is homogeneous with electric and magnetic permeabilities ei and /ii where Region 

2 contains inhomogeneities that may include perfectly conducting materials.

OO

Figure 2.1: Two regions of space Fi and P2 separated by a mathematical surface S. Region 1 
is homogeneous with and Region 2 contains inhomogeneities that may include perfectly
conducting materials. A source (J2 ,-^ 2 ) in Region 2 produces fields {E2 , H2 ) throughout Region 
1. A second source located in Region 1 radiates fields throughout Region 1.

A source electric and magnetic current {J2 , M 2 ) is located in Region 2 and radiating in the 

presence of the inhomogeneities produces fields E 2 and H 2 throughout Region 1.

We postulate also a second source (Ji, Mi)  located in Region 1 but radiating fields Ei  and 

Hi  in an homogeneous space having constitutive parameters Ci and ni.

The fields of both sources satisfy the Sommerfeld radiation condition [4] on the boundary 

at infinity (5oo).
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The Surface Equivalence Principle can be w ritten  as follows - Peterson [16]:

V V  • + 0 ^  r
u ■ E^ip) =  u  -------------------/  ( - n  X H2{p'))—  r^ds'

iL o e  J  g 47t I p — p' 
r g-*/3|p-p'l

- u  • V  X { - E 2 { p ' ) x f i ) - — j--------— ds' (2.39)Js 47T I p  -  p ' I

This equation  is a sta tem en t th a t the field produced by {J2 , M 2 ) a t some location outside 

of Region 2 can be expressed in the form of an in tegration over the tangen tia l fields on the 

surface of Region 2.

T he equation is of the form of (2.32) which is the general solution for the  field rad ia ted  by 

a volum e or a surface current.

For th is reason we identify the tangential com ponent of the m agnetic field a t the surface as 

a surface electric current and the tangential com ponent of the electric field a t the sm'face 

as a surface m agnetic current.

T he Surface Equivalence Principle makes it reasonable to postu la te  th a t  the field scattered  

from  a surface can be com pletely specified according to an equation of the form of (2.39). 

P roof of the Surface Equivalence Principle is given in the A ppendix A.
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2.9 T he E lectric and M agnetic Field Integral Equations

The derivation of Electric Field Integral Equation (EFIE) is based on the following pos­

tulates - [5], [16];

E ‘'(f)  =  E ' ( p )  +  E^(p)  (2.40)

That is, the to tal observed field at a point equals the sum of the field incident from the

source plus the field re-radiated or scattered by the surface -

and

V V  . _l/52 r  - i ! 3 \ p - p ' \
E^{p)  = /  ( _ n  X  - d s '

iLoe J s  A n \ p  -  p ' \
f  Q-iP\p-p'\

- V  X /  ( - £ ( / )  X n ) —   - d s '
Js  “ I J r  I  P  -  P  I

(2.41)

- which means the scattered field can be expressed in terms of the tangential components 

of the to ta l electric and magnetic fields at the boundary, which is the Surface Equivalence 

Principle.

Identifying the surface integrals as Electric and Magnetic Vector Potentials, and substi­

tuting (2.32) into (2.40) yields:

-A + P^A
E ' i p )  =  E^{p)  - -  V X f

iLoe
(2.42)

Taking the tangential components of both sides yields

f V V  • A +
n  X E  (p) =  —Ms{p)  — n  X

lioe
(2.43)

- which is the EFIE.

The Magnetic Field Integral Equation (MFIE) is derived in a similar fashion yielding:

r v v - A  +
n  X H \ p )  =  J s { p )  — n  X V  X F

t u t
(2.44)

For a PEC the EFIE and MFIE are simplified by noting the tangential component of the 

to ta l electric field a t the interface is zero.
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COVERAGE ESTIMATION WITH INTEGRAL EQUATIONS

As outlined in the introduction, fast Integral Equation methods are the focus of this thesis, 

hi this chapter, a formalised approach to solving integral equations exactly is examined 

along with the results this method gives with the Forward Scattering Approximation. 

These results are compared with the measured results in superimposed plots, 

la C hapter 7, fast Integral Equation methods applied to the terrain profiles given here are 

examined chronologically, giving the reader an understanding of the evolution of the latest 

methods. The coverage results these fast methods give, will be compared with the results 

given here.

3.1 Surface Profiles, Terrain Composition and Transmitter Fre­

quencies

The sxirface profiles used in this thesis are:

1) l lK m  of gently undulating Danish (Hjorring) terrain. Profiles and measurements sup­

plied by Prof. Anderson of Alborg University.

2) 6Km of gently undulating Danish (Jerslev) terrain. Profiles and measurements sup­

plied by Prof. Anderson of Alborg University.

3) 3.8Km of mountainous German terrain provided by Deutsche Telekom AG (no mea­

surements available).

The Danish profiles will be used to illustrate:

1) The Forward Scattering Model.

2) The EFIE (PEC) methods.
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The German profiles will be used to illustrate:

1) The CFIE and CEFIE methods.

2) The EFIE (PEC) methods.

3) The effect of surface roughness on field coverage.

Dielectric terrain compositions considered are:

1) Dry clay with relative complex electrical permittivity 2.44-z0.098 at 970MHz.

2) Dry sand with relative complex electrical permittivity 2.55-z0.041 at 970MHz.

3) Dry loamy soil with relative complex electrical permittivity 2.48-^0.036 at 970MHz. 

These values were obtained from [19].

The transm itter frequencies used in this thesis are 144MHz and 970MHz.

1) A 144MHz transmitter frequency will be used to illustrate all EFIE (PEC) methods.

2) A 970MHz transmitter frequency will be used to illustrate all methods.

The transmitters will be placed 10.4M above the starting point of the Danish profiles 

and 52M above the German profile.

fn all cases the surface will be irradiated with T radiation emanating from the source, 

an infinite lA  carrying strip transverse to the 2-D surface profile.

The discretisation length used for the numerical evaluation of the integral equations is A/4 

and A/15 (A is the wavelength of the radiation emanating from the source) for PEC and 

dielectric surfaces respectively.

The resultant field will be observed 2.4M above the terrain profiles.

In the FAFFA, TIM and FEM group sizes of 100.0 and 3.0 times the radiation wavelength 

are used for the Danish and German profiles respectively unless otherwise stated.

In the TIM the tabulation is performed at intervals of tt/SOO.

All computations are coded in and run on an IBM RS6000 computer. Computa­

tion times are given in seconds for all methods. This information is in itself immaterial 

since computation times will vary depending on coding language, coding methodology, 

compiler/optimiser used etc. They are included to provide a means of approximate com-
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parisoii.

The im portant feature of each method is the order rf complexity of the solution and the 

memory requirements. Coding complexity is also as;essed. This is a relative assessment 

and somewhat subjective. The relative availability oi library code such as the FF T  is not 

given consideration.

The following are plots of the three profiles used.
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3.1.1 Surface Profiles
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Figuie 3.1: Danish (Jerslev) Terrain Profile. The surface co-ordinates are given at SOM intervals 
and are interpolated linearly.
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Figure 3.2: Danish (Hjorring) Terrain Profile. The surface co-ordinates are given at SOM intervals 
and are interpolated linearly.
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Figure 3.3: Germ an Terrain Profile. The surface co-ordinates are given at lOM intervals and are 
in terpolated  linearly.
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3.2 T h e  M e th o d  o f  M o m en ts  (M O M )

This is a  general m ethod for reducing functional equations defined in a linear space to  

n a tr ix  equations - H arrington  [18].

The E F IE  is such a functional equation.

Consider the  form of the E FIE  over a surface S  where source and observation points are 

f  and p' respectively (I have ignored the  constant factor /??//4 in the  E F IE  for sim plicity):

D iscretising a 2 — D  surface into N  segments allows us express the E FIE  as a sum m ation:

N

=  (3-2)
n = l

is the MOM, we express J(pn)  as a product ang{Pn), where a„ is a constant over the 

domain. g{p'n) is referred to as a basis function.

We fu rther enhance com putational freedom by tak ing  the inner p roduct over each dom ain 

with functions called weighting functions.

T hat is, we allow ourselves apply weights a t will should this be helpful to  us in speeding 

up the  sum m ations:

J{p' )G{p,p' )ds ' (3.1)

To have the  freedom to  evaluate this sum m ation and arrive a t a general algorithm , which

/  w{p) ■ E \ p ) d s  = f  w{p) ■^ J {p ' ^ ) G{p , p ' ^ ) As ' ^ds
Js Js   1

(3.3)

n=l
(3.4)

(3.5)

If we assum e a„ is constan t over the interval then  a„ can be taken outside the  in tegration

to  give:

N

E  {Pn^dSji ^ • g { p ' J G { p ,  p ' J A s y s n (3.6)
n = l
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There are N  such equations, describing the incident field on the surface intervals, which 

can be expressed in matrix form:

[1/| =  [Z\\J\ (3,7)

- where [V], the supply vector, contains the fields from the source incident on each surface 

interval.

[J], the current vector contains the surface currents on these intervals and [Z], known as 

the impedance matrix, relates the two.

In 2 — D the rank of [Z] is 0{N'^) and in 3 — it is 0{N^) .

Should we choose the same weighting and testing functions, we have Galerkin’s method. 

This often leads to simpler and symmetric impedance matrices [52].

If we choose the weighting functions to be Dirac Delta functions, we have what is known 

as the point matching method [52]. This method simplifies the calculation of [Z],
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3.3 T he Forward Scattering A pproxim ation (FSA )

The FSA assumes EM radiation propagates primarily in the forward direction (away from 

the source) i.e. backscattering effects are ignored.

Th;s corresponds to setting elements in the upper-right triangle of the impedance matrix to 

zero, retaining the lower-left triangle and the upper-left to lower-right diagonal elements. 

This approximation is good for undulating surfaces at grazing incidence where, due to the 

predominance of oblique angles of incidence of radiation on the surface, most radiation 

will not be reflected back towards the source.

The Forward Scattering Model is closely related to the PEC model in that oblique angles 

of incidence will give rise to total internal reflection.

Wlnre the Forward Scattering model applies, so too does the PEC model and vice-versa. 

Bota models are good approximations to the problem for slowly undulating terrain where 

the transmitter is surface based.

Evaluating the scattered field by the exact solution of the field integral equations without 

the use of the Forward Scattering model is cumbersome. The reason for this is not only 

that it is obviously more time-consuming but a very large amount of memory needs to be 

allocated to store the N  x N  impedance matrix. This is beyond the memory capacity of 

most, computers for terrain profiles of length greater than 2Km.

The following plots are those of the electric field coverage measured and calculated using 

the forward scattering model at 144MHz and 970MHz.

The measured data (courtesy of Prof. Bach Anderson of Alborg University in Denmark) 

will obviously contain some backscattering effects which from viewing the superimposed 

plots for Jerslev profile are clearly negligible.

The FSA is assumed throughout the remainder of this thesis.
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3.3.1 R esu lts
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Figure 3.4: Electric Field coverage at 144MHz over the Jerslev profile.
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Figure 3.5: Electric Field coverage at 970MHz over the Jerslev profile.
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Figure 3.6: Electric Field coverage at 144MHz over the Hjorring profile.
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Figure 3.7: Electric Field Coverage at 970MHz over the Hjorring profile.
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SCATTERING FROM DIELECTRIC SURFACES

T he task  is to  calculate the  to ta l field in the x  — y  plane in  an homogeneous m edium  a t a 

d istance above a surface which is invariant in the z direction (2-D surface).

The surface is irradiated by an infinite un it am plitude current carrying line source in the 

z direction, a  distance above the  surface.

The problem  geometr} is illu stra ted  in the following figure.

This figure will be referred to  th roughout this thesis

Source
M edium 1

O bservation Point

M edium 2

X

Figure 4.1: Terrain scattering geometry. The source, an infinite lA  carrying strip in the z 
direction, is placed above the starting point. Medium 1 is taken to be free space and Medium 2 
is a solid dielectric or perfectly conducting material. The observation point is a distance above 
the surface, p, p' and p" are position vectors.
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4.1  C oup led  E lectric  F ield  In tegral E q u ation s (C E F IE )

4 .1 .1  T h e o r y

The Coupled EFlEs take the following form - Peterson [16]:

n X E \ p ) =  — M s { p )  — h  X

- evaluated just outside the surface.

lue-i
(4.1)

5+

0  =  M , ( p ) - n x  V  X F 2 I  (4 .2)
lUJt2 )  s -

- evaluated just inside the surface.

Use of either the simpler EFIE or MFIE (these will be discussed in detail in subsequent 

chapters) alone necessitates evaluation of the fields at the surface. We may have good 

reason for not wanting to do this. Take for example the case of an infinitely thin PEC 

strip. Use of the EFIE for such a problem would be equivalent to imposing two conflicting 

boim dary conditions:

One th a t the tangential magnetic field exists a t the boundary and the other th a t it does 

not exist since the interior and exterior of the surface coincide.

In such a case one applies the EFIE simultaneously to the interior and exterior of the body 

[16].

Coupled EFIEs would normally be used however to calculate the surface currents on di­

electric m aterials because unlike on a PEC, magnetic currents will exist on the surface and 

so with two unknowns, simultaneous integral equations must be applied to solve.

Coupled Magnetic Field Integral Equations can be stated  in a similar fashion.

For the 2 — D TM^ case the above equations become:

E \ p ) =  M s { p )  +  X F \ \ g +  (4-3)

- evaluated just outside the sm'face.

0 =  — M s { p )  +  'i/?2'/?2^2 +  V-r X -F1 I5 -  (4 .4)

- where V t is the transverse gradient (in the x — y plane) and :

.4 = 5 /  J ( m o \ l} p u ’)ds' (4̂ 5)
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- where:

- is the 2 — D  G reen’s function.

From the  MOM (4.1) and (4.2) can be w ritten  in m atrix  form thus:

[F] =  [Z][J] (4.8)

where each entry in the above is related  by:

b W .

0 / \  C  D  \  M

where

Arr,.n =  ^  (4.9)4 5„

B„rm =  ^  (4.10)

B,nn =  ^  /  COS(0„ -  (j)ij)n‘'o\PoPij)ds' (4.11)
V Sn

in  /  n

C^n =  ^  I  (4.12)
J Sn

Dmm “ X (4-13)

D  =  ^■ ^ in n  j •4z
- /  cos((/)„ -  (pij)'H^o\p2pij)ds' (4.14)
 ̂ Js„
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m 7  ̂ n, from which J  and M  can be determ ined by the MOM.

T he to ta l field a distance above the surface is:

£ (p " )  =  +  W f  (A  I p. -  /  |)rfs' (4,15)

+  ^  /  cos(0„ -  (pil")'H^o\p2 I Pi -  p" |)c?s'
J Sn

T he results which follow are those given by the Coupled EFIE s applied to  the  G erm an 

te rra in  profile consisting of dry clay, sand and loam.
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4.1.2 Analysis of Results

The most striking feature of the results which follow are how they are correlated with the 

surface profile.

This result is to be expected as radiation intensity will be lower in the troughs - a phe­

nomenon referred to as ’shadowing’.

In the first and third troughs the radiation intensity increases noticably at the 500M and 

3100M points where direct illumination by the source occurs.

The second trough is not directly illuminated at any point so over this region there is no 

sharp transition in radiation intensity except on entry to the trough. The fact that there 

is any radiation at all in this region is an illustration of the scattering phenomenon - i.e. 

that irradiated terrain acts as an antenna.

Another salient feature of these results is that there is little difference in the results given 

by terrain composed of dry clay sand and loam respectively.

This indicates that in calculating the field scattered by terrain it is not necessary to segment 

the surface profile and analyse on the basis of terrain composition unless very accurate 

results are required.

The results were obtained in 30 days.

4.1.3 Tabulated C haracteristic  D ata

C om putational Cost M em ory R equirem ent Com plexity of Code

0{N^) 0{N) Complex

Table 4.1: Computational Features of the CEFIE
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4.1.4 R esu lts
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F gure 4.2; Electric Field Coverage at 970MHz over G erm an Terrain consisting of Dry Clay 
(e, =  2.44 -  zO.098).
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Fiffure 4.3; Electric Field Coverage at 970MHz over G erm an Terrain consisting of Dry Sand 
(e; =  2.55 -  i0.041).
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Figure 4.4: Electric Field Coverage at 970MHz over G erm an Terrain consisting of Dry Loam 
(e; =  2.48 -  i0.036).
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Figure 4.5: Com parative plot of Electric Field Coverage at 970MHz over Germ an Terrain con­
sisting of Dry Clay, Sand and Loam.
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4.2 Com bined Field Integral Equations (CFIE)

4.2.1 T heory

The Combined Field Integral Equations are used because of difficulties posed by the use of 

the EFIE or MFIE in obtaining a unique solution for bodies where resonance occurs [16]. 

The CFIE takes the following form [20]:

n  X E \ p) = n X
fVV-Ai  + 2̂̂ 1 ^  ̂ , V V - ^  + |̂A2

n X H \ p ) =  n  X

itoeQ

r VV • Fi +  ! 3 l F ,

V X Fi +
iuje2

V X F2

„ , V V - F 2  + PiF2 _
y  X Ai-\--------------------- — -  V X A2

(4.16)

(4.17)
IUI€q tUl€2

Obviously they are a couple comprised of a Combined EFIE and a Combined M FIE eval­

uated at the surface.

For the 2 — D TM^  case the above equations become:

E \ p )  — iujpo{Ao +  A2) +  Vt- X (Fq — F2) 

evaluated just outside the surface.

H ’ {p) =  V r X (Aq — A 2) + zweo(Fo +  F2) +  

where:

a (^o  -  ^ 2) 
ds

'I/ =
1

VrM{p')n^^\(3pu)ds'
4ujp

(4.16) and (4.17) can be written in m atrix form thus:

/F^ .4 B  

C D

J

M

where

Amn — ^  J  [  ^^o\PoPij) + ' ^ ‘o\P2Pij)ds'  
4 ./5„

B m m  0

Pi
Bmn =  ^  I  COS(0„- -  (})ij){'h6o\pQP ]̂) +  '^o'\PQPi3))ds'

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)

(4.23)
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m  7  ̂ n

D j n m  —  0

Cmn =  ^  /  cos(0„ -  (t>ij)i'H^o\PoPz]) +  'H^o\poPij))ds'
4i 'S n

D r .
^ JSr.

+  -
d d  1

+ T̂ 'o’iPoPij)( 2 ) ,

ds Js„ ds' iu j i

- ni 7  ̂ n, from which J  and M  can be determ ined by the  MOM. 

The derivatives are calculated using the finite difference m ethod.

ds'

(4.24)

(4.25)

(4.26)

The to ta l field a distance above the surface is as before: 

E(p") =  £ ' ( / )  +  ^  /  H f d h  I  A -  P" \)ds'
Sn

P2
+  ̂  I cos(0„ -  ( l ) U " ) ' H ^ o \ p 2  I Pi -  p" |)c?s'

Sn

(4.27)

T he results which follow are those given by the C FIE  applied to  the  G erm an te rra in  profile 

consisting of dry clay, sand and loam.
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4.2.2 Analysis of Resvilts

The results obtained for the field coverage using the CFIE are identical to those given by 

the CEFIE and were obtained in a somewhat longer time of 3.08 x 10®s.

This not only serves to confirm the results obtained using the CEFIE but also to deduce 

that internal resonance is not a feature of irradiated terrain in that it effects the results 

for coverage - Peterson [16]. This is not surprising since terrain is an open surface. 

However it is useful to note that pockets of resonance are not occurring where the surface 

is partially closed, say within a peak or a trough - a fact that will be underlined later in 

calculating the field coverage over rough surfaces.

The CEFIE is somewhat a less complex formulation than the CFIE.

The CFIE is used to calculate the scattered field in cases where resonance is likely to occur 

(i.e. from closed surfaces) - Peterson [16], Umashankar [20].

It may thus be safely said that the CEFIE is an appropriate algorithm with which to 

establish field coverage over terrain.

This fact will be used as a starting point in the justification of the use of the Electric Field 

Integral Equation (EFIE) - the PEC Model, in estimating coverage.

4.2.3 Tabvilated C haracteristic  D ata

C om putational Cost M em ory R equirem ent C om plexity of Code

0{N) Complex

Table 4.2; Computational Features of the CFIE
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4.2.4 Resvilts
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Figure 4.6: Electric Field Coverage at 970MHz over G erm an Terrain consisting of Dry Clay 
(e; =  2.44 -  i0.098).
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Figure 4.7: Electric Field Coverage at 970MHz over G erm an Terrain consisting of Dry Sand 
(e; =  2.55 -  i0.041).
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Figure 4.8: Electric Field Coverage at 970MHz over G erm an Terrain consisting of Dry Loam 
{e'r =  2.48 -  i0.036).
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Figure 4.9: Com parative plot of Electric Field Coverage at 970MHz over Germ an Terrain con­
sisting of Dry Clay, Sand and Loam.
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THE PEC MODEL

5.1 Introduction

Solving the Combined Field integral Equation and the Coupled Field Integral Equations 

is computationally extremely intensive.

The reasons for this are as follows:

1) The problem is 0 { N ‘̂) in two dimensions and 0{N^)  in three dimensions where N

is the number of discretisations taken on the surface.

2) To guarantee a convergent solution the discretisation length must be at least one quar­

ter of a wavelength.

we can do about 2).

In 2) it is necessary to take the discretisation length as one quarter the shortest wave­

length.

In the dielectric problem two radiation wavelengths exist, that of the incident field in 

Medium 1 and that radiation which penetrates Medixim 2.

These wavelengths are related by:

For the dielectric media we are considering (dry clay, sand and loam) this means the wave­

length of the radiation in these media is three to four times shorter than the incident 

radiation.

Were we able to consider the surface to be a PEC we could use a discretisation length that 

many times larger than for the equivalent dielectric problem. Also, the resulting integral

While there is no escaping the physics of the problem which implies 1), there is something

(5.1)
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equation is a single integral equation in one unknown by virtue of the fact th a t no fields 

exist inside the surface of a PEC and the to tal electric field on the surface of a PEC is 

zero.

Assuming the surface to be a PEC is equivalent to assuming all radiation incident on the 

siirface is reflected.

Recalling the Forward Scattering Approximation, where radiation is assumed to propa­

gate away from the source, this model and the PEC model are valid where the radiation 

incident on the surface is largely at grazing incidence. This corresponds to to ta l internal 

reflection in the case of a dielectric surface which is equivalent to assuming a PEC model. 

The PEC model is justified here m athematically for terrain and results are presented to 

validate the analysis and its conclusion.
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5.2 M athem atical Justification of the P E C  M odel Terrain

5.2.1 Theory

Consider the sum  of the coupled EFIEs:

n X E \ p) =  h X
r VV •

+h X

lujeQ
f VV • ^2 + I31A2 

icO€2

-  V X Fi
s+

where:

-4i =  /  Js{p')Gi{Pq \ p -  p' \)ds' 
Js+

(5.2)

(5.3)

^2 — /  J s{p')G2{P2 \ P — P'
J s -

F , =  [  M , { p ' ) G , { P o \ p - p ' \ ) d s '  
Js+

(5.4)

(5.5)

F2 = M,{p' )G2{p2\p-p' \ )ds'

and  the  G reens’ Functions are:

=  ~^1-6q \ i3q \ p — p ' \)

(5.6)

(5.7)

(5.8)

- for 2-D T M z -

I do no t expect significant resonance problem s w ith irrad ia ted  te rra in  because the  surface 

is no t closed which means I am  not obliged to  use the  Combined Field Integral E quations 

[16].

Now, I will simplify the above for the 2-D T M z  case.

N ote in (5.2):

VV • .4 =  0 (5.9)
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because;

V V - A  =  V V ’ /  { - f i x  H { p ' ) ) G { \ p - p ' \ ) d s '  
Js±

=  v  /  V - ( - n x f f ( p ' ) ) G ( | p - p ' | ) ) r f s '
Js±

LA'V / I  (n X H{p'))  • V G (| p -  p' I) +  G (| p -  p' |)V  • (n X H{p' ))  J 
=  0 (5.10)

because V G  is a vector in the x  — y  plane and h  x H{p')  is a  vector in the  z  direction. 

T ierefore the ir dot product is zero.

A'so

V • ( - n  X H{p'))  =  0

- Dy the continuity  equation. 

Taerefore (5.2) becomes:

7? X E \ p ) =  f i  X

X>1

o

+ fl X A2 V  X F2
I lUJtQ s+ 1 s

- whicli if  e v a lu a te d  a t the STirface becomes:

h X E \ p ) =  n  X i to J ^ H{p')){p.^Gx + H2G2)ds'

+ n  X j  { f i x  E{p' ))  X (V 'G i +  W ' C 2 ) d s '

Note:

, dG  ^ dG  
V G =  t t t -t  +  TT-r?/ o x  ay

(5.11)

(5.12)

(5.13)

(5.14)

V 'G  = ( x -  x ') n [ ‘\ /3  I p -  p' | ) i '  +  {y -  \ f  -  f>' |)i;'

for 2 — D TMz-

(5.15)

The slope of th is vector is clearly which is in the  direction of p — p' . 

Hence:

f t  X E \ p ) =  h  X iu j  { f i  X H { p ' ) ) {pqG\  +  p 2 G 2 ) d s '
Js

(5.16)
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- from the  definition of the cross product where 6 is the angle between n  x E(p ')  and  p — p' . 

This equation  could have been w ritten  here as a single in tegration  over S  b u t I choose to 

express it as two because the second integral is of sigiificance for terrain .

Obviously the  above equation has an infinite number of solutions (because it is a single 

equation in two unknowns) bu t the contribution of the second in tegration  will be small.

If it is sm all enough we can ignore it and we are left vdth the  following approxim ation:

h  X E \ p )  = h X ico y  (n X H{p')){pqGi + ii2 G 2 )ds' (5-17)

- which for non-m agnetic m aterials is:

fi X E \ p )  =  h  X iupo  /  ( n  X H{p')){Gi  +  G 2 )ds (5.18)
Js

- and so (5.2) and (5.13) take the form of the EFIE.

I will refer to  this form ulation as the Combined Electric Field Integral E quation  A pproxi­

m ation  (C EFIEA ).

For m ateria ls encountered in te rra in  e will norm ally have a small im aginary part.

This m eans G 2 —> 0 for « 7  ̂ j .

Then:

n  X E \ p )  =  h  X iujftQ /  ( n  x H{p'))G\ds '  (5.19)
Js

T his is the E FIE  for a PEC  which was arrived a t by elim inating relatively insignificant 

quan tities from the Coupled EFIEs for terrain.

To see how the second integral in (5.13) above m ay be ignored for te rra in , consider first a 

flat dielectric surface.

In th is case sin 6* will be zero and so the above approxim ation of (5.17) is exact. Should 

the  surface undula te, 9 varies positive and negative w .r.t. the tangen tia l com ponent of the 

electric field a t the surface.

T his m eans the second integral in (5.13) is not rnonotonically cum ulative and  as a result 

the  overall value of this integral will be small in com parison w ith the  first integral.

T he E FIE  for a PE C  is formally derived from the Coupled EFIEs by noting  the tangen tia l 

field on the surface is zero and no fields exist inside a  PEC.

To illu stra te  the  validity of the assum ptions made above the following are plots of the  field
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coverage obtained using (5.17) superimposed on plots of the field coverage obtained using 

the EFIE and the Coupled EFIEs and CFIE for the German profile consisting of clay. 

This is followed by a superposition of results obtained using dielectric methods on clay, 

sand and loam and the PEC model.

5.2.2 Analysis o f R esults

Figure 5.1 is a graphical representation of the progression from the CEFIE to the EFIE 

via the CEFIEA. The results given by the CEFIEA for the most part lie somewhere 

between the other two validating the assumptions which led to the CEFIEA formulation 

and ultim ately the EFIE approximation.

The comparative plots of coverage illustrate the accuracy of the PEC model for terrain. 

The PEC model is a better approximation for terrain consisting of dry clay or sand than 

for loam though not greatly so.

It is however to be concluded from this plot that the PEC model varies in its agreement 

with the exact results depending on terrain composition.

W ith both plots it is clear tha t transmission is taking place through the surface and it is 

significant. This is particularly apparent in the second and third troughs w^here shadowing 

is nmch less pronounced in the dielectric results in comparison with those given by the 

PEC model where no transmission through the surface is possible from Faraday’s law.

It is interesting to note tha t the results given by dielectric terrain are somewhat more 

closely correlated with the surface profile though this feature of the field results is not 

investigated in this thesis.
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5.2 .3  R esu lts
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Figure 5.1: C om parative Plot of Electric Field Coverage at 970MHz over G erm an Terrain con­
sisting of Dry Clay.

O

Figure 5.2: Com parative Plot of Electric Field Coverage at 970MHz over G erm an Terrain con­
sisting of Dry Clay, Sand, Loam and the PEC  Model.
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SCATTERING FROM PEC SURFACES

6.1 Introduction

Here the terrain is considered to be a PEC.

This difference simplifies the problem because:

1) Fields do not exist in the terrain.

2) Only surface electric (no magnetic currents) are induced at the terrain boundar}^

3) Greater length surface discretisations can be taken.

4) There is only one unknown involved in the problem - electric current - and so only a 

single field integral equation is required to solve.

It is for the reason of the above simplifications the PEC model for terrain is popular.

To solve we may use the EFIE or MFIE.

6.2 The Electric Field Integral Equation (EFIE)

6.2 .1  T h e o ry

The EFIE for the problem is:

(0 .1)

where

(6 .2 )
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fence:

n ( 2 ) { 0p )  =  -  j
llie to ta l field a distance d above the surface is then:

(6.3)

(6.4)

which is:

4ue '̂ ô\Pp") + f  J{p')T ô\P I P' -  P”
K Jc

(6.5)

Using unit weights and pulse basis functions, the Method of Moments [18] allows us express 

tie  EFIE in m atrix form thus:

(6 .6 )

w.iere (E)  and (.7) are rank N  column vectors and (Z ) is an x N  m atrix where N  is the 

ntm ber of discretisations taken of the surface (normally of length |  to ensure convergence). 

T ie entries in (E)  and ( J )  are:

E'(P,) (6.7)

aid

A p 'd (6 .8)

io: i, j  =  1 . . .  N'

Tlie entries in (Z)  are:

~  I pj -  p'i (6.9)

for i j  =  1 . . .  N] i  j.

The diagonal entries in the impedance m atrix require special attention because the Hankel
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function is singular at zero.

For small arguments the Hankel function can be replaced by a power series expansion [16]:

x M  . r  2n'^o\x) 1 -

7T Z
( 6 . 10)

where 7 =  1.781072418...

Assuming the curvature of the segment is small enough th a t it can be considered flat, 

the dominant terms in (6.10) can be retained to give:

' H f \ p x ) d x

which gives:

7  ~
4

f S „ / 2 ( 2
^ 2 1 — i — ln(-

J o 7T

2 ,
1 — In

1.781/?As'
7T\ 4e /

dx (6 .11)

(6 .12)

for i = j .

The solution for the current is obtained by inverting (Z).

Following an analysis, the field coverage results for the Danish and German profiles ob­

tained using the EFIE (PEC Model), are presented.
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6.2.2 A nalysis of R esu lts

The results for the Danish profiles are important in that they exhibit clearly field decay 

with distance from the source on the fashion of the inverse square root of this distance. 

The reason for this clarity is that most or all the surface is irradiated directly by the source 

and the surface profiles are relatively flat in comparison with the German profile.

Having previously noted the correlation between the coverage results and the surface a 

good ’rule of thumb’ in estimating field coverage over terrain is to correlate the field decay 

given by the inverse root of distance from the source with the surface profile.

The results obtained for the Danish and German profiles at lAAMHz  and 970MHz  all 

indicate that shadowing is more pronounced at higher frequencies.

6.2.3 T ab u la ted  C h arac te ris tic  D a ta

C o m p u ta tio n a l C ost M em ory  R eq u irem en t C o m p lex ity  of C ode

0 { N) Simple

Table 6.1: Com putational Features of the EFIE

Je rs lev H jo rrin g G erm an

900 3400 410

Table 6.2: C om putation times for Electric Field Coverage at 144MHz over the Jerslev (Danish), 
H jorring (Danish) and German profiles.

Je rs lev H jo rrin g G erm an

45000 170000 20500

Table 6.3: C om putation times for Electric Field Coverage at 970MHz over the Jerslev (Danish), 
H jorring (Danish) and German profiles.
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6 .2 .4  R esu lts
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Figure 6.1: Electric Field coverage at 144MHz over the Jerslev profile.
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Figure 6.2: Electric Field coverage at 970MHz over the Jerslev profile.
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Figure 6.3: Electric Field coverage at 144MHz over the H jorring profile.
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Figure 6.4: Electric Field coverage at 970MHz over the Hjorring profile.
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Figure 6.5: Electric Field coverage at 144MHz over the Germ an profile.
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Figure 6.6: Electric Field coverage at 970MHz over the G erm an profile.
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FAST INTEGRAL EQUATION METHODS

This chapter is the central focus of this thesis.

Here fast computational methods based on the EFIE are examined.

This chapter provides the basis for the assertion that the Field Extrapolation Method is 

the fastest and most efficient method yet developed for the terrain scattering problem. 

The fast integral equation methods are discussed in the following order:

1) The Natural Basis (NBS).

2) The Green’s Function Perturbation Method (GFPM).

3) The Fast Multipole Method (FMM)/Fast Far-Field Approximation (FAFFA).

4) The Tabulated Interaction Method (TIM).

5) The Field Extrapolation Method (FEM).

3) to 5) are methods which evaluate the scattered field by grouping terrain segments. 

For the Danish profiles groups of lOOA are taken whereas for the more demanding German 

profile the groups are 3A.

Henceforth the results generated by the EFIE for a PEC surface will be referred to as the 

’Exact’ results.



7.1. T he N atural B asis M eth od  (N B S ) 53

7.1 The N atural Basis M ethod (N B S)

7.1.1 Theory

The Method of Moments gives us the freedom to choose basis functions.

The closer the basis function chosen approximates the solution of the integral equation, 

the quicker the inversion of the impedance matrix.

One such assumption [57] is th a t the phase of the surface current is dom inated by, and is, 

7t / 2  radians out of phase with the field incident on the surface from the source.

This follows from Faraday’s Law.

The assumption is reasonable for slowly undulating surfaces (because for an infinite flat 

surface it would be exact) at a distance along the surface from the source where the 

am plitude of the scattered field is small in comparison to the field incident from the 

source.

This will occur due to scattering into the atmosphere and absorption of scattered radiation 

by the surface.

The beauty of the NBS is its simplicity and the statem ent it makes; th a t it is possible, 

a priori, to make assumptions about the nature of the solution.

As we shall see all the methods in this chapter can be interpreted as ’basis m ethods’, more 

sophisticated than the NBS in tha t a basis set is calculated dynamically.

The following table gives the salient data  for the NBS followed by the results for the Danish 

and German Profiles, supplied courtesy of Teltec Ireland. ’C ’ represents an arbitrary 

constant.
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7.1.2 Analysis of R esults

The NBS clearly gives excellent results for the Jerslev profile. This is accounted for by the 

fact that this is a smooth and relatively flat profile and importantly, all of it is irradiated 

directly by the source so the resultant total field coverage is dominated by the field incident 

from the source.

This is not true for the German profile and so significant deviation from the exact results 

occur especially in the second trough which is the steepest and is not illuminated directly 

by the source.

The results are somewhat better in the first and third troughs. The reason for this is that 

these troughs are partially illuminated by the source.

7.1.3 T abulated C haracteristic  D ata

C om putational Cost M em ory R equirem ent C om plexity of Code

0 { N / C f 0{N/C) Simple

Table 7.1: Com putational Features of the NBS

Jerslev G erm an

8 50

Table 7.2: Com putation times for Electric Field Coverage at 970MHz over the Jerslev (Danish) 
and G erm an profiles.



7.1. T he N atural B asis M eth od  (N B S ) 55

I

CO

IS

7,1.4 R esu lts

-30  

-4 0  
-f50 

-CSO 

-VO 

-HO

-s>o

- 1 OO

- I 1 c:>

- I 20

- I 30

-  1 4 0
O 2000  4 0 0 0  esooo HOOO 1 OOOO 12000

rs/I c t e I'si/n "i

Figure 7.1: Com parative Plot of the Electric Field Coverage at 970MHz over Danish (Jerslev) 
Terrain.
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7.2 T he Greens Function Perturbation M ethod  (G F P M )

7.2.1 Theory

Tliis m ethod developed by Moroney and Cullen [58] [59] [60] approximates the RHS of the 

EFIE with a convolution.

A convolution can be inverted using an inverse FF T  algorithm.

This is less computationally intensive than the MOM.

Consider the EFIE for a PEC:

(7.1)

Now we introduce the change of variable central to the desired conversion. 

Through the arc-length relation with the independent variable x,

(7.2)

the distance between the source and observation points on the surface:

\p -  p'\ =  \ / ( i  -  x ' Y  +  ( C ( i )  “ (7.3)

becomes

d{s,s') = ^{ f { p)  -  m y  + (c(/(p)) -  cifipw
-  9 { s ~ s ' )

(7.4)

- Vv̂ here d{s, s') and g{s — s') are the Euclidean distance and distance along the surface 

trajectory  respectively, between the points s and s ' .

We now write;

(7.5)

where:

T{s,s ' )  =  - 1  + /(p) - fiP') ' , rc(/(p))-c(/(pQ)]̂
9{s - s ' )  ) g{s -  s')

(7.6)
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and

I r  |< 1 (7.7)

which w ill be satisfied when:

,, d(s,s' )
g{s -  s') >  (7.8)

Hence (7.5) can be expanded using the B inom ial Theorem giving:

\ p - p ' \ )  =  w f  (/»»(» -  s') +  B{s,  s')Pg(3 -  »')) (7 J )

where:

^ m j
m = l  ^

(7.11)

= Vl  + T - 1

(7.9) can now be expanded as a Taylor series about Pg{s — s') giving:

W f( ,3  IP  -  P' I) =  W f  ( * ( »  -  « ')) +  E  -  * ') )  (7.12)

where:

n\
n = l

=  (713)

Replacing the Hankel function in (7.1) we have:

E ' {p )  =  j  j ( p ‘ ) H ' i \ 0 g ( s  -  s'))da' (7.14)

f  — s ' ) B Y '  ( 2 Y  ( n  /  i \ \ ^  I~ ^  -̂-------K  iP(j{s-s))ds
^ Js „ 1n = l

A pproxim ating (7.1) w ith  the first integral - which is a convolution in  s, we can solve for 

the current using an FFT.

Then:

J { p ' )  ^  T -1
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- from which the scattered field can be calculated using (2.40).

A CC reduction to 0{Nl og{N) )  is given by inversion using the FFT.

The method should be used only on slowly undulating terrain because the Euclidean 

distance and the distance along the surface trajectory have been approximated as being 

equal.

The salient data  regarding GFPM  is given in the table below followed by the results for 

the Danish and German profiles.
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7.2.2 A nalysis of R esu lts

The following results given by the GFPM show very good agreement with the exact results 

for the Danish profiles. This is to be expected because these profiles do not undulate rapidly 

or to any great degree. Hence the approximation of arc-length with Euclidean distance is 

shown to hold well enough to give good results for these profiles. The same does not hold 

true for the German profile which is mountainous. Here the GFPM results are so poor 

they indicate only an approximate average coverage and a decay in field intensity with 

distance from the source. Clearly GFPM is limited in its application to terrain profiles 

giving good results for smooth and slowly undulating profiles only. The reduction on order 

of complexity of the algorithm from 0{N^)  to 0 { N  log N) ,  though an improvement, does 

not represent a speedy solution (a matter of seconds). Hence the GFPM like the NBS, 

though able to give good results for the Danish profiles, are not sufficient in terms of speed 

and range of application to different type terrain profiles to justify use of integral equation 

methods to estimate field coverage over suburban terrain.

7.2.3 T ab u la te d  C h arac te ris tic  D a ta

C o m p u ta tio n a l C ost M em ory  R eq u irem en t C o m p lex ity  of C ode

0{Nlog{N)) 0{ N) Complex

Table 7.3: Computational Features of the GFPM

Jers lev H jo rrin g G erm an

6 20 12

Table 7.4: Computation times for Electric Field Coverage at 144MHz over the Jerslev (Danish), 
Hjorring (Danish) and German profiles.

Jerslev H jorring G erm an

25 100 50

Taljle 7.5: Computation times for Electric Field Coverage at 970MHz over the Jerslev (Danish), 
Hjorring (Danish) and German profiles.
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7 .2 .4  R esu lts
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Figure 7.3: Electric Field Coverage at 144MHz over the Jerslev profile.
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Figure 7.4: Electric Field Coverage at 970MHz over the Jerslev profile.
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Figure 7.5: Electric Field Coverage at 144MHz over the Hjorring profile.
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Figure 7.6: Electric Field Coverage at 970MHz over the Hjorring profile.



7.2. T he G reens Function  Pertvirbation M eth od  (G F P M ) 62

1 (>C>

- I 40
O 300  1 OOO 1500 2000  2 5 0 0  3 0 0 0  3500  4 0 0 0

IVI o t e

Figure 7.7: Electric Field Coverage at 144MHz over the G erm an profile.
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Figure 7.8: Electric Field Coverage at 970MHz over the G erm an profile.
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7.3 Fast M ultipole M eth od /F ast Far F ield A pproxim ation  

7.3.1 Theory (FMM)

Developed by Rokhlin[61], the FMM or variations thereof, according to  Peterson[16], ’ap­

pear to  offer the m ost efficient possibilities yet proposed for the  accurate num erical analysis 

of electrically large geom etries, where N  may be far g reater th an  10'^’.

It was th e  first m ethod to  propose dividing the scatterer into groups of in teg ration  in ter­

vals.

The FFFA  [8], TIM  [25] and my own m ethod, the FEM  [62], take th is approach.

This subsection gives the derivation of the FMM for the 2-D EM scattering  case for a PE C  

according to [9].

I will re la te  the FFFA  , TIM  and FEM  to the FMM on the  basis of this derivation which 

will provide the m athem atical insight necessary to  determ ine the range of application  of 

the fast m ethods which follow, as well as a m eans of com parison.

Consider the E FIE  in m atrix  form w ith un it pulse basis and  weighting functions:

groups.

For in teractions between groups Gi and Gii the im pedance m atrix  can be rew ritten:

(7,16)

The scattering  surface of N ,  ^  in tegration intervals, is divided in to  M  sub-scatterers or

where [-6]^, [^] and [B] are 1 x P, P  x P  and P  x 1 m atrices respectively. 

The en tries in [>1] and [B] are:

(7.17)

I p, -  p,. D e-’*”- " ” *"' (7.18)

and

(7.19)

- where (pw is the angle pi — pu makes w ith the horizontal and sim ilarly for

N / M  

1 = 1 , ieGi
(7.20)
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- where j  € G;' and /' =  1. . .

Fcr interactions between elements of the same group (7.16)is used. For (7.20) to be accurate 

P  Ri cM  where c is a constant.

Hence the com putational cost of the outer summation of (7.20) is 0{N'^)  and so there is 

no advantage at this point in this formulation of the EFIE.

However the CC of (7.20) can be substantially reduced if [A] can be diagonalized.

To this end we substitute the definitions for a and b given in Chew [7] [11] [12] [13] in 

(7.20) so it becomes:
oo

n ' c ' ( D  \ P i - P , \ ) =  E  Y .  (7 .21)
m = —OO n = —oo

Referring to (7.22), even though 'W^L„(a:) —»• oo when | m —n |—> oo, the above summations 

will converge because Jn{x)  —> 0 when | n |—> oo.

The inner summation is the convolution of two DFTs and hence can be expressed as the 

product of two functions if their DFTs are known.

The D FT of does not exist since ‘H n \ x )  oo when ] n |-^  oo.

However we can truncate the inner summation since it converges and write (7.22) as:

oo m + P

H f ( / J  I f t  -  f t  I) =  5 ^  (7.22)
m = —OO n —m —P

Via the identity [6]:

1
27t J o

and similarly for we can write:

1
’̂ o \ P p i j )  =  ^  b i i j { a ) a iv { a ) b u { a )d a  (7.24)

27T 7 o

where:
p

au-{a)  = Y ,  (7.25)
p = - p
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bi>j{a) =  (7.26)

and

b a { a )  =  (7.27)

where now the cylindrical waves of (7.22) appear as plane waves in the  in tegrand of (7.24)

and a  is replaced by the diagonal operator aw  {a ) .

Now using (7.24) in (7.20) we have:

K

^  a w { a ) Y ^ b i i { Q ) J A s ,  (7.28)
^  ieGi

which replaced by a Q point sum m ation yields:

Q N / M

E ^ i p j )  =  ^  ^  a u ' i a q )  b i l { a g ) J , A s ^  (7.29)
g=l  i=l^i:^V i^Gi

This is the  FMM form ulation.
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7.3.2 Theory (FAFFA)

The FAFFA developed by Chew [8] [9] is derived from the FMM. It can be considered to 

be a  form of the  FMM.

Considering (7.24), the FFFA  can be derived from the FM M  in the  following way:

Pi -  Pv

Figure 7.9: FAFFA scattering geometry. The upper diagram shows the angles 0̂ / and 4>u’ sub­
tended by group G; with the horizontal. The lower diagram shows groups G i and Gi> of A/4 
discretisations of the surface, their centrepoints I and the position vector pi — pp  connecting 
them and arbitrary points i and j  on the respective groups.

' ^ o ^ \ P p i j )  =  7 T  I  k ’j { ( y ) a w { a ) b i i { a ) d a  (7.30)
Jo

where:
p

a t , { a )  =  Y ,  (7.31)
P = - F

k,j{a) = (732)

and

6,,(a) =  (7.33)

aw ( a )  above diverges as P  —> oo, which does not occur if we use the far-held approxim ation 

to the order Hankel function:
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which allows us to wriie (7.31) as:

aw ( a )  ~  V

S m ((P + ^ )(.^ ;/ ' - g ) )
TTfiiiv sin(|(0H- -  a ))

As P  —> oo:

2* „-* /jp ,,,s ii((^+!)(< />» '- a ) )  7 r ( a -0 , ;O   ̂ ^

 u  ' ■ n t  MTTppiu sin{^{(pu'-  a))  sin{^{a -  4>w))

where:

a^co TTj;

- (5(x) is the D irac-delta function.

Hence:

=  \  - ] u  -  * '• )]j ttPpw sm{^{a -  (pw))

for P  ^  oo.

W ith this definition of o w (a )  (7.30) becomes:

’>^o\pPv)  -  ^  \ / “  (pii')bu{a)da 
27t U TT/yp,,/ Jo sm(2(o: -  (pw))

which from L’H opita l’s mle:

X
lim

-0 s in (-)  

becones:

- which w ith 6//j and bu in there  above defined form gives:

H ^ Q \ P p i j )  ~  J  ' -4>IIj)QipPil cos{4>i,,-4>ii)

(7.35)

(7.36)

(7.37)

(7.38)

(7.39)

(7.40)

(7.41)

(7.42)
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which substitu ted  into the discrete form of the  E FIE  yields:

Gi
E ‘ { p j ) =  (7A3)

j eGi ieF F ieGieFF
i<j

+ E wf(/3«iO^(ft)As'
ieGieNF

- which is the Fast Far-Field A pproxim ation.

This form ulation am ounts to  assum ing p in the  am plitude com ponent of the  far-field 

approxim ation  to  the Hankel function is constant:

pij Piv (7.44)

and in the phase component:

pij — Pw ■ Pi'j +  Pii' +  Pii' ■ Pii (’̂ •45)

Note as w ith (7.29) reduction in com plexity is achieved because the following sm n can be 

reused:

(7.46)
ieGieFF

Lu and Chew [8] propose further reduction in com plexity by perform ing the  above sum ­

m ation  for a num ber of values of the argum ent of the  exponential in the  range [—7 r , 7 r ]  

and using an in terpolation  procedure to arrive a t an approxim ation for the  com plete sum. 

This brings the  CC to

[47] propose nesting the algorithm  (a multilevel algorithm ) which in the lim iting  case 

brings the CC to  0 { N  log N ).

[14] also develops a variation to  the FMM —> FFFA  progression above.

It is w hat he term s a ’Ray Propagation  Fast M ultipole A lgorithm ’.

Like the FFFA  it is based on the FMM.

In contrast w ith  the FFFA, P  oo in (7.36) above b u t takes a large value giving aw  a 

spiked oscillatory form.

This is term ed a ’ray’ and interactions between groups take th e  form of th is ray w ith
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side-lobes filtered out.

It is a lucid formulation of an idea tackled by Canning [43] [44] [45] [46] - introducing 

sparsity to the impedance m atrix by defining a radiation pattern.

The salient facts about the FAFFA are given in the table, followed by results for the Danish 

and German profiles.
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7.3.3 Aralysis of R esults

the results given by the FAFFA show excellent agreement with the exact results for the 

Danish proiles. For the more demanding German profile the results deteriorate somewhat 

from the exact most noticeably in the troughs where the distance approximation is less 

accurate die to the greater surface curvature.

This can be overcome by choosing a smaller groupsize. Indeed a groupsize of one quarter 

the racliaticn wavelength leads to an numerically exact implementation of the EFIE.

The FAFFA is a clear improvement on the NBS and GFPM producing good results for the 

demanding German profile where the NBS and GFPM failed and doing so with a reduced 

order of conplexity in the algorithm.

7.3.4 Tabulated C haracteristic  D ata

C om putational Cost M em ory R equirem ent C om plexity of Code

0{CiN'^/M +  C^NM) 0{N/ M) Complex

Table 7.6: Com putational Features of the FAFFA

Jerslev H jorring G erm an

80 300 25

Table 7.7: Com putation times for Electric Field Coverage at 144MHz over the Jerslev (Danish), 
Hjorring (Da;iish) and German profiles.

Jerslev H jorring G erm an

4000 15000 1200

Table 7.8: Com putation times for Electric Field Coverage at 970MHz over the Jerslev (Danish), 
Hjorring (Danish) and German profiles.
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Figure 7.10: Electric Field Coverage at 144MHz over the Jerslev profile.
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Figure 7.11: Com parative Plot of the Electric Field Coverage at 970MHz over the Jerslev profile.
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Figure 7.12: Com parative Plot of the Electric Field Coverage at 144MHz over the Hjorring profile.
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Figm'e 7.13: Com parative Plot of the Electric Field Coverage at 970MHz over the H jorring profile.
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Figure 7.14: Com parative Plot of the Electric Field Coverage at 144MHz over the G erm an profile.
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Figure 7.15: Com parative Plot of the Electric Field Coverage at 970MHz over the G erm an profile.
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7.4 T he Tabulated Interaction M ethod (TIM )

7.4.1 T heory

Brennan and Cullen [25] ... [41] propose a separate program to precompute and store the 

summation in (7.46) for a range of incident and scattering angles 0/// — ipi'j and 0;// — (pu 

respectively.

Multitude of Reflected Plane Waves

Incident Plane Wave

Segment of Flat Terrain

Figure 7.16: TIM scattering geometry showing an incident plane wave on a flat segment of surface 
[jeing considered to scatter a multitude of plane waves.

From (7.44) and (2.40):

(7.47)

G,,=0

Where the groups can be taken to be flat plates without too much distortion of the surface,

(7.48) can be written locally (i.e. over a plate) to a good approximation:
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E ' M  = ( 7 .48)
Gi <iGii i < M

^  cos((/>„,-0iZ)

G, , =0  

^  JP lanei^P ii ^11'

- where Jpiane is obtained from the EFIE with incident field a unit am plitude plane wave. 

The functional dependence of the summation over the current on angle of incident and 

scattered radiation can be established by creating a lookup table for this sum m ation tab ­

ulated w.r.t. (j)ui — (pii and (pw -

E^{1) is the total field incident at point I on the Ith plate. As such it is the siun of the 

radiation incident on the Ith plate over a range of angles of incidence 0/;/ — (pu.

Hence:

( 7 .49)
' m a x

Gi=0 4>={4>iii-4>ii)
i< M

i=0

from which E^{pi) is determined.

The to ta l field above the surface is then:

E {p ")  =  E \ p " ) ( 7 .50 )
G[ <C.Gii i < MI pi, -  p" \ )E[pi )  ̂

G , = 0

^  J P la n e i .P i j  0 //'

The salient facts about TIM are given in the table followed by results for the Danish and 

German profiles.
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7.4.2 A nalysis  o f  R esu lts

The results given by the TIM are similar to those given by the FAFFA illustrating th a t it 

is possible to obtain good results with tabulation via a plane wave approximation.

This yields no computational advantage in itself but where a number of trials are per­

formed, computation times are much improved because it is necessary to create the table 

only once.

This is the useful feature of TIM and would come into play where one is investigating 

coverage over different terrain profiles where the same groupsize would be used.

Were coverage at different frequencies to be investigated it would be disadvantageous to 

use TIM since the table would have to be re-evaluated for each frequency.

TIM suffers from the disadvantage tha t unlike the FAFFA, this algorithm  does not con­

verge to the EFIE with decreasing groupsize. The reason for this is th a t edge effects 

become significant in the results generated for the table (from finite length plates) giving 

rise to greater inaccuracies as the groupsize gets smaller.

This means TIM unlike the FAFFA and the FEM (which is introduced presently) is limited 

in the types of terrain for which it can produce good results.

This lim itation is illustrated in the following results where the groupsize is taken to be one 

wavelength.

Here the results obtained, instead of converging to the exact, break down.
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7.4.3 Tabulated Characteristic Data

Computational Cost Memory Requirement Complexity of Code

0 { C { N/ Mf  + N/M) 0{N/M) Complex

0{CM^) 0{C) Simple

Table 7.9: Com putational Features of the TIM  (Main P rogram /T abulation  Program )

Jerslev Hjorring German

0.5 1.5 1

Table 7.10: C om putation times for Electric Field Coverage at 144MHz over the Jerslev (Danish), 
Hjorring (Danish) and G erm an profiles.

Jerslev Hjorring German

25 80 50

Table 7.11: Com putation tim es for Electric Field Coverage at 970MHz over the Jerslev (Danish), 
Hjorring (Danish) and G erm an profiles.
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7.4 .4  R esu lts
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Figure 7.17: Com parative Plot of the Electric Field Coverage a t 144MHz over the Jerslev profile.
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Figure 7.18; Com parative Plot of the Electric Field Coverage a t 970MHz over the Jerslev profile.
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Figure 7.19: Com parative Plot of the Electric Field Coverage at 144MHz over the Hjorring profile.
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Figure 7.20: Com parative Plot of the Electric Field Coverage at 970MHz over the Hjorring profile.
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Figure 7.21: Com parative Plot of the Electric Field Coverage at 144MHz over the G erm an profile.

1 OO

O 300 I OOO 1300 2000  2300  3000  3300  4000
rvi o t o 1's /11 ■»

Figm-e 7.22: Com parative Plot of the Electric Field Coverage at 970MHz over the G erm an profile.
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Figure 7.23: Com parative Plot of the Electric Field Coverage at 970MHz over the G erm an profile 
with plate length of lA.
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7,5 T he Field E xtrapolation  M ethod (FEM )

7.).1 Theory

TIis method eliminates the need to calculate or look up the summation over the current 

in the FAFFA formulation.

- vhere J{pi) has been replaced by the first term of the discrete form of the EFIE -

/, /' refer now to the last segment in the scattering and receiving groups (this is a matter 

of convenience which will become apparent).

Th' formulation of (7.52) thus amounts to considering interactions between the last seg- 

ineat in each group.

The contribution of the other segments to the solution is considered by their interaction 

wit .1  the last segment.

Nov I assume;

1) The total field over a segment or group of segments takes the form of the field in- 

cidtnt from the source.

2) All groups refer to approximately flat (but not necessarily horizontal) terrain.

3) Group - group interactions are characterised by very oblique angles of incidence 

(Forward Scattering Model).

Fr>m (7.1):

(7.51)
^Se l f

G,=0 i€C,

(7.52)

E { ) i ) / Z s e l f -

The Green’s ftinction is taken here as the far-field form of the Hankel function which 

is easy to manipulate algebraically.
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These assumptions allow me write:

E{p.) = (7.53)

as the form of the field incident on any group, where A is a constant.

Were we to consider a flat plate of finite length in free space illuminated by the source the 

total field incident on the last segment (due to the source and forward propagation from 

previous segments) would be:

- which is the FEM formulation.

It should be noted that 'C  needs to be evaluated only once throughout the program. 

Hence the summation of (7.55) has been eliminated from (7.52).

This is analogous to eliminating (7.46) from the FAFFA and TIM.

From (2.40) the scattered field above the surface is then:

(7.54)

Hence:

(7.55)

where

(7.56)

Now (7.52) can be written:
^  Gi<G,,

(7.57)

E(p,)H‘i \ l 3  I A -  p” |)A
G,<G, /

(7.58)
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- where C appears here having the same value as before.

The FEM is adaptive in th a t groups of unequal size may be used.

As a ’grouping’ algorithm the relationship between the FEM and the FMM based solutions 

(FMM, FFFA, TIM) is clear.

However from equations (7.24), (7.44) and (7.50) the FMM, FAFFA and TIM are N / M -  

point EFIE algorithms with unit pulse basis functions and weights bi'j and bu applied about 

the group centre-points as part of a dynamic algorithm (as opposed to a ’fixed’ algorithm 

such as the N atural Basis Method [57] which we have seen proposes a basis function of 

a îong the terrain).

The FEM distinguishes itself from these algorithms in tha t it cannot be interpreted so. 

The solution for the surface current is assumed in (7.55).

The salient facts for the FEM are given in the table followed by results for the Danish and 

German profiles.
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7.5.2 A nalysis of R esults

The results given by the FEM show excellent agreement with the exact results.

Again in the German profile there is some deviation from the exact, most noticeably in 

the second (steepest) trough, though not to the extent of any of the previous methods. 

Unlike the FAFFA and TIM, the FEM completely obviates the summation over the current, 

replacing it instead with a constant.

Unlike the TIM and like the FAFFA, the FEM converges to the EFIE for smaller group 

sizes.

7.5.3 T abulated  C haracteristic  D ata

C om puta tiona l Cost M em ory R equirem ent C om plexity  of Code

0 { N / M f ) 0{ N/ M) Very Simple

Table 7.12; Com putational Features of the FEM

Jerslev H jorring G erm an

0.0008 0.04 0.7

Table 7.13: Com putation tim es for Electric Field Coverage at 144MHz over the Jerslev (Danish), 
Hjorring (Danish) and German profiles.

Jerslev H jorring G erm an

0.04 0.2 35

Table 7.14; Com putation tim es for Electric Field Coverage at 970MHz over the Jerslev (Danish), 
Hjorring (Danish) and German profiles.
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7.5.4 R esu lts
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Figure 7.24: Electric Field Coverage at 144MHz over the Jerslev profile.
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Figure 7.25: Com parative Plot of the Electric Field Coverage at 970MHz over the Jerslev profile.
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Figure 7.26: Com parative Plot of the Electric Field Coverage at 144MHz over the Hjorring profile.

O

Figure 7.27: Com parative Plot of the Electric Field Coverage at 970MHz over the H jorring profile.
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Figure 7.28: Com parative P lot of the Electric Field Coverage at 144MHz over the G erm an profile.

-  I O O

>
I O O O

IS/I o I c ft;/1 n

Figure 7.29; Com parative Plot of the Electric Field Coverage at 970MHz over the G erm an profile.
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7.6 C om parison of PEC  M ethods  

7.6.1 Introduction

Here I will compare results given in this section. The purpose of this comparison is to 

advise the reader on the applicability of each method to the sub-urban scattering problem 

and also as a means of highlighting the effectiveness of the FEM.

GFPM and the Natural Basis have been ignored because they break down on the German 

profile.

It is clear there is little difference in the results given by the FAFFA, TIM and the FEM 

except at the second and third troughs of the German profile where the approximate 

methods diverge somewhat from the exact.

The second trough is the deepest in the German profile and so is the most demanding. 

The problem can be overcome by reducing the group-size in the FAFFA and FEM.

The order of complexity and memory requirements of the FEM are smaller than the FAFFA 

and the TIM. The code is very simple in comparison with the FAFFA and TIM. The FEM 

is thus the most appropriate fast integral equation algorithm to calculate field coverage 

over terrain.

The following tables are a compilation of the salient data for the above methods.
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7.6.2 T abulated  C haracteristic  D ata

M ethod CC M em ory Code C om plexity

FAFFA 0 { C i N y M

C2 NM)

+ 0(N/M) Complex

TIM 0 { C{ N/ Mf

N/M)

+ 0{N/M) Complex

TIM (Tab) 0{CM^) 0{M) Simple

FEM 0 { N / M f ) 0{N/M) Very Simple

Table 7.15: C om putational Features of the FAFFA, TIM  and FEM .

M ethod Jerslev H jorring G erm an

Exact 900/45000 3400/170000 410/20500

FAFFA 80/4000 300/15000 25/1200

TIM 0.5/25 1.6/80 1/50

TIM (Tab) 250/400 1000/1800 6500/8000

FEM 0.0008/0.04 0.004/0.2 0.7/35

Table 7.16: C om putation times for Electric Field Coverage at 144/970MHz over the Jerslev 
(Danish), H jorring (Danish) and G erm an profiles.
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7.6.3 R esu lts
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Figure 7.30: Com parative Plot of the Electric Field Coverage at 144MHz over the Jerslev profile.
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Figure 7.31: Com parative Plot of the Electric Field Coverage at 970MHz over the Jerslev profile.
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Figure 7.32: Com parative P lot of the Electric Field Coverage at 144MHz over the Hjorring profile.
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F igire  7.33: Com parative Plot of the Electric Field Coverage at 970MHz over the Hjorring profile.
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Figure 7.34: Com parative Plot of the Electric Field Coverage at 144MHz over the G erm an profile.
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Figure 7.35: Com parative Plot of the Electric Field Coverage at 970MHz over the Germ an profile.
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FEM APPLIED TO ROUGH SURFACES

8.1 Introduction

The terrain profiles used throughout this thesis are two dimensional coordinates given at 

every SOM and lOM along the 'X '  axis for the Danish and German profiles respectively. 

As a consequence of this the terrain profiles are composed of flat segments and the results 

for field coverage have been based on these profiles.

In reality however perturbations will exist on the surface which will not be accounted for 

by profile data. It is the purpose of this chapter to investigate whether such small-scale 

l)erturbations (clutter) will have a significant effect on coverage and on the FEM algo­

rithm.

In the FEM algorithm (7.56) will be used on a sample of rough surface. Following dis­

cussion on the generation of a rough surface profile, the modified FEM algorithm will be 

tested for convergence with the exact solution.

8.2 A Model for Clutter

The model for clutter developed here is a statistical model. Here I will use a Gaussian 

distribution to represent variations in surface height not included in the original profile.

I correlate this distribution with a Sine function to give an undulating effect. This is 

achieved by virtue of the sinusoidal form of the Sine function and also due to the fact that 

as a correlation function it acts to filter out high frequency undulations giving a realistic 

model for perturbations of the surface profile.

To see exactly how this is achieved I first present the procedure used to generate the model. 

It is generated independently and superimposed on the original profile.
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This procedure to generate the c lu tte r model is general so arb itra ry  probability  density 

functions and  correlation functions can be used.

1) G enerate  a  uniform ly d istribu ted  random  process ’y ’.

(This is done using the s tandard  ’C ’ library  function ’ra n d ()’.)

2) A pply th e  m apping y —> f(y) where;

f ( y )  =  V 2 a e r f - \ y )  (8.1)

3) O b tain  th e  FT  of f(y) and the  desired correlation function.

4) O b tain  th e  inverse F T  of the product.

The resu lt is a correlated s ta tionary  stochastic process w ith a G aussian p.d.f..

The theory behind this j)rocedure is as follows:

Consider th e  random  variable 'y'  representing surface height. Its  probability  d istribu tion  

function F (y )  is defined as:

P{y)  = Proh[y < a] (8.2)

- i.e. the probability  th a t the random  variable y  assumes a  value less than  some given 

num ber a.

The probability  density function is then defined as:

P { y )  =  ( S i )

which has th e  obvious property  th a t:

p{y)dy =  1 (8.4)

T he autocorrelation  (or the function w ith which the  probability  d istribu tion  is correlated) 

is defined as:

p ( t ) =  J  y{x)y{x + T)dx  (8.5)

- where x represents horizontal distance.

A stochastic process is said to be stric tly  s ta tionary  if all its s ta tis tica l properties are
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independent of time. Perturbations of the surface are clearly a strictly stationary  process. 

Taking the Fourier Transform of both sides we obtain the well known W iener-Kintchine 

relation which is:

T [ p { t )\  =  S{uj) (8.6)

=

- where £{<jo) is referred to as the power spectral density.

If £{ijj) is constant over u> then the random process is termed ’white noise’.

W hite noise is where a random variable distribution is uncorrelated (see below) and exists 

at all sampling frequencies.

The uniformly distributed process obtained in 1) is taken to be white which implies its 

auto correlation fimction is the Dirac delta function - 5(r).

As a uniformly distributed random variable its probability density function is a constant 

(say unity) over a finite range. To determine a random variable f {y)  which has a Gaus­

sian probability density function given the uniformly distributed random variable y, is to 

evaluate the function ' / '  given via the identity;

- which gives the mapping in 2).

Because the Sine  function is a pulse in the frequency domain, it acts as a low-pass filter. 

This rids us of the high-frequency (grassy) components.

The product of the Fourier Transforms of f {y)  and the Sine  function performs this filtering 

which is step 3) above.

The inverse Fourier Transform of the result (step 4 ))then gives the spatial domain ran­

domly distributed variable with a Gaussian distribution correlated with the Sine  function. 

1 have used the term ’Fourier Transform’ loosely above. Specifically, I have used the Dis­

crete Fourier Transform.

The Fourier Transform of a signal is defined as:

TUiy)) = FM
=  I  IW e-^’dy (8.8)
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The Discrete Time Fourier Transform is the Fourier Transform of a sampled signal and it 

follovs that it is defined by:

The Discrete Fourier Transform is then a sampled Fourier Transform of a truncated sam­

pled iignal.

It folows from this that it is defined by:

N - l

=  ^ (8 .10) 
fc=0

- where =  O....A  ̂— 1, from which one period of the output is taken.

The f-ubscript 's' denotes sampling and the superscript 'trunc' truncation.

The clgorithm used throughout this thesis where Fourier Transforms are encountered is 

the Fist Fourier Transform. A derivation of this algorithm and the latter two identities 

are given in the appendix.

Becaise the FEM is the most efficient method for evaluating field coverage over terrain, I 

now use it to estimate coverage over rough terrain using (7.56) on a sample of rough surface 

equal in length to the group-size. This effectivley models the distorted signal strength on 

rough surfaces as evinced by the following comparative plots at 144MHz and 970MHz on 

the German profile.

8.2.1 A nalysis o f  R esults

Correction of a Gaussian distribution with the Sine function gives a realistic model for sur­

face perturbations. The results show that with increased roughness due either to increased 

amp)li ude or frequency of the perturbations or both is mirrored by the results obtained 

for tilt field coverage, but as with the smooth profile itself, the field results for the smooth 

profik remain the mean. The FEM algorithm does not break down when applied to rough 

surfaces and internal resonance does not occur within the surface perturbations to the 

extent that they effect the overall results.

F o T F T U i y ) )  =  H f ( y ) )
n=+oo

(8.9)
n = — OO

T d f t  =
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8.2.2 R esu lts
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Figure 8.1: lOOM of Smooth and Rough German Terrain. Amplitude and frequency of the 'Sine' 
function are l.OM and 1.0 rad/s respectively.
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Figiue 8.2: lOOM of Smooth and Rough German Terrain. Amplitude and frequency of the ’Sine’ 
function are 5.0M and 1.0 rad/s respectively.



M
et

er
s

8.2. A  M o d el for C lutter 99

391
390
389
388
387
386
385
384

0 20 40 60 80 100
Meters

Figure 8.3; lOOM of Sm ooth and Rough G erm an Terrain. AmpHtude and frequency of the ’Sine’ 
function are l.OM and 5.0 rad /s  respectively.
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Figure 8.4: Comparative Plot of the Electric Field coverage at 144MHz over the rough German 
profile. Amplitude and frequency of the ’S i nd  function are I M  and Irad/s  respectively.
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Figure 8.5: Comparative Plot of the Electric Field coverage at 970MHz over the rough German 
profile.
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Figure 8.6: C om parative Plot of the Electric Field coverage a t 144MHz over the rough G erm an 
profile. A m plitude and frequency of the 'S ine'  function are IM  and 5rad/s  respectively.
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Figure 8.8: Com parative Plot of the Electric Field coverage at 144MHz over the rough G erm an 
profile. A m plitude and frequency of the 'Sine' function are 5M  and I rad /s  respectively.
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Figure 8.9: Com parative Plot of the Electric Field coverage at 970MHz over the rough Germ an 
profile. A m plitude and frequency of the 'Sine' function are 5A/ and Irad /s  respectively.
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Figure 8.10: Comparative Plot of the Field Coverage at 144MHz over Rough German Terrain. 
Amplitude and frequency of the ' S i nd  function are \ M  and Irad/s  respectively.
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Figure 8.11: Comparative Plot of the Field Coverage at 970MHz over Rough German Terrain. 
Amplitude and frequency of the ' S i nd  function are I M  and Irad/s  respectively.
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Figure 8.12: Com parative Plot of the Field Coverage at 144MHz over Rough G erm an Terrain. 
A m plitude and frequency of the 'S ine '  function are I M  and 5rad/s  respectively.
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Figure 8.13: Com parative Plot of the Field Coverage at 970MHz over Rough Germ an Terrain. 
Am plitude and frequency of the 'Sine '  function are \ M  and 5rad/s  respectively.



M
et

er
s 

M
et

er
s

8.2. A  M odel for C lu tter 105

-20 
-40 
-60 
-80 

-100 
-120 
-140 
-160

0 500 1000 1500 2000 2500 3000 3500 4000
Meters

Figure 8.14: Comparative Plot of the Field Coverage at 144MHz over Rough German Terrain. 
Amplitude and frequency of the 'Sine'  function are 5M and Irad/s  respectively.
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Figure 8.15: Comparative Plot of the Field Coverage at 970MHz over Rough German Terrain. 
Amplitude and frequency of the 'Sine'  function are 5M and I ra d /s  respectively.
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REVIEW OF SCATTERING METHODS

Here I will discuss briefly five non-integral equation methods th a t may be used to calculate 

the scattered field and im portantly point out the advantages and disadvantages of each. 

The purpose of this section is to prepare the reader for the conclusion to this thesis.

9.1 The Physical Optics Approximation (PO)

The Physical Optics approximation (PO) or Fresnel/KirchofT theory is the fastest approx­

im ate means with which to determine the field scattered by a surface, having 0 { N )  as its 

order of complexity. This feature of the PO has led to algorithms which model diffraction 

effects given by undulations on the surface with those effects given by fiat screens placed 

perpendicular to a flat surface. These results are then used in conjunction with the PO 

to  build up a canonical solution for the scattered field. The PO is easily explained by 

examining the MFIE:

n  X H' {p)  = ^ ( f i  X H{p')) -  j  { f i x  H{p')) X V ' X G(p, p')ds' (9.1)
2 Js

- where the above integral is a Cauchy integral. If the surface is infinite, flat and irradiated 

by a ubiquitous plane wave, the surface current is determined exactly from:

i ( n  X (9,2)

The reason for this is that the Cauchy integral is zero because the radiation scattered to 

a point from either side cancels completely. The approximation breaks down for finite 

an d /o r rough surfaces and where the source does not give ubiquitous near-plane wave 

coverage.
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A dvantages:

• The PO gives the fastest obtainable results for the scattered field.

• The PO algorithm is the simplest available.

D isadvantage:

• The PO gives reasonable results only where the surface is long and almost flat and the 

field incident on the surface is approximately plane.
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9.2 The Im pedance B oundary C ondition (IBC )

The Impedance Boundary Condition relates the Surface Electric and M agnetic Currents. 

It can be written:

Ms { t )  = V s J s { t )  X n{t) (9.3)

- where ris is the surface impedance - Peterson [16].

As a consequence of this relation, an Electric Field Integral Equation for a dielectric can 

be w ritten entirely in terms of the equivalent surface electric current.

This allows the EFIE for a dielectric to be stated as:

Kit) + + i(5r]oA^ +

where:

(9.4)
5+

F z { t )  =  ^  / ( 9 . 6 )

R  =  \ / {x{t) -  x{t ' )Y  +  {y{t) +  y{ t ' )y  (9.7)

and ?/o is the intrinsic impedance of free space.

A dvantage:

• IBC simplifies the calculation of the field scattered by a dielectric surface by reducing 

coupled integral equations to an integral equation in one unknown.

D isdvantages:

• i]s is an empirically derived constant and it is not uniform over an arbitrary  surface.

In fact rjs can depend strongly on angle of incidence for some m aterials - Hoppe [21].

It is suitable for application to materials with a high perm ittivity or permeability whose 

reflection characteristics do not depend strongly on the angle of incidence - Peterson [16].
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9.3 T he Parabolic Equation M ethod  (PE )

The Parabohc Equation [22] for fields is an approximation to the elliptic Helmholtz eqiia- 

tion.

The Parabolic equation has as its solution an inverse Fourier Transform.

In cylindrical coordinates the Helmholtz equation is:

d' l̂p Ids'll) 1(9')/' 7, , / X

Substituting:

i>{r,y) = u { r , y ) ^ ^  (9.9)
VPi'

we get the following equation in u:

1d'̂ u d‘̂ u jdu  2 tf - 1  +
(2/?r)2 ^

?i =  0 (9.10)

Assuming further that u/4r ‘̂ 0 and | | ^  |<C 2/? | |^  | yields:

2i/3—— I—\-/3 u = 0 (9.11)
dy'  ̂ di

- which is the desired parabolic form.

A dvantage:

• Coded FFT algorithms are widely available.

D isadvantages:

• Having as its solution an inverse Fourier Transform, the Parabolic Equation Method, 

like GFPM, suffers from the same restrictions giving poor results for uneven surfaces.

• The inverse transforms are taken along vertical domains.

In theory this domain is infinite. To counteract this the field is forced to taper to zero a 

distance above the surface.

This introduces a further approximation and added coding complexity.
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9.4 T he Im pedance M atrix Localisation M ethod  (IM L)

The aim of this method [43] [44] [45] [46] is to generate a sparse impedance m atrix which 

is cheaper to store and invert. This is done by choosing basis functions, which when used 

with the Green’s function, force points on the surface to radiate in a non-isotropic fashion. 

In other words, the basis ftmctions, chosen give mathematical expression to ’shining’ yield­

ing an impedance matrix with magnified and reduced entries corresponding to points on 

the surface which interact strongly and weakly respectively.

Those entries below a certain threshold can be set to zero producing a sparse matrix. 

A dvantage:

• This idea is useful for scatterers with a regular shape or where the geometry of the 

problem can be expressed simply in canonical form.

D isadvantages:

• Not suitable for rural terrain which is not easily reduced to a canonical form.

• Choice of the appropriate basis fimction to model interactions must be specific to the 

interaction being described.

Given there are many difi’erent types of interactions even for simple geometries, it would 

be difficult to generate good results.
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9.5 The G eom etrical/U niform  Theory of Diffraction (G T D /U T D )

As very high frequencies, the field can be described by geometrical optics.

T hat is:

E{p) = (9.12)

This expression for the field contains no diffraction effect.

GTD [54] is an extension of the above to include diffraction effects based on the following 

postulates;

1) Ferm at’s Principle [53] can be applied to diffracted rays. (For an homogeneous medium 

this means diffracted rays follow straight lines).

2) The m agnitude of the diffracted ray depends on the incident field and the nature of 

the boundary in the neighbourhood of the point of diffraction.

3) The phase of the diffracted ray is proportional to the optical length of the ray.

According to these postulates the diffracted field is proportional to the product of the 

incident field and a diffraction coefficient in the same way as the reflected field is propor­

tional to a reflection coefficient in geometrical optics [5].

The diffraction coefficient is determined by taking the asymptotic form of the exact solu­

tion of the canonical problem.

The complete solution for the scattered field is obtained by superposition of reflected and 

diffracted rays.

In GTD diffraction coefficients are singular at the boundary.

UTD [55] overcomes these by assuming the incident field is plane, giving less acciirate but 

robust diffraction coefficients.

Diffraction coefficients for various type boundaries are derived based on GTD and UTD 

in various texts, [5] [52].
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A dvantages:

• Very suitable for modelling propagation in urban environments because such a problem 

is easily reduced to a canonical form because of the generally regular shape of buildings.

• Calculation of field coverage diie to reflected rays is an easy m atter.

D isadvantages:

• Not suitable for rural terrain which is not easily reduced to a canonical form.

• To obtain good results, selection of the appropriate diffraction coefficient is necessary.
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CONCLUSION

The conclusions this thesis makes are as follows:

• The PEC Model is a suitable model for terrain scattering problems.

Results obtained for the German profile where the terrain is considered to be composed of 

clay, sand or loam, superimposed on the result for the PEC Model are similar.

It is thus clear the PEC Model is valid for undulating terrain.

The reason for this is th a t at grazing incidence most of the radiation is reflected from the 

surface i.e. the phenomenon of Total Internal Reflection [52].

• Terrain scattering does not present resonance problems.

Comparison of resiilts generated by the Coupled EFIEs and CFIE being virtually identical 

means resonance, which would manifest itself in poor results with the Coupled EFIE [16], 

is absent.

• Common terrain materials (clay, sand, loam) yield similar results for the scattered field.

• The FEM is the most appropriate algorithm to solve the terrain scattering problem.

By comparison it is clear the FEM algorithm has the lowest order of complexity of all 

integral equation methods presented in this thesis.

It is also the simplest algorithm and is easily adapted to include variable group sizes.

The speed a t which the FEM produces good coverage results for terrain is unrivalled.

The simplicity of the algorithm and tha t it converges to the exact solution w ith smaller 

group sizes suggest no reason why this algorithm cannot be applied to the urban scattering 

problem.
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• Small-scale clutter (amplitude < 5M) has a minor distortion effect on coverage.

The FEM converges to the exact solution on the rough terrain model.

• The results presented in this thesis justify the use of integral equations for sub-urban 

environments.

Further research based on the FEM should yield acceptable results for urban environments, 

up to now the domain of G TD /U TD  and Ray-Tracing algorithms.

This is evinced by the fact th a t the FEM gives accurate results in a fraction of the time 

taken by other fast integral equation methods for the German profile which is mountainous.
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A P P E N D IX  A

T he Surface Equivalence Principle

Consider the situation depicted in the figure below. Here we have two regions of space 

separated by a mathematical surface S. One of the regions is unbounded. Region 1 is 

homogeneous with electric and magnetic permeabilities ei and /ii where Region 2 contains 

inhomogeneities that may include perfectly conducting materials.

A source electric and magnetic current {J2 ,M 2 ) is located in Region 2 and radiating in

0 2̂ ) M',

Figure 10.1: T w o regions of space F i and F 2 separated by a m ath em atica l surface S. R egion 1 
is hom ogeneous w ith  ( e i , ^ i )  and R egion 2 contains inhom ogeneities th a t m ay include perfectly  
con d u ctin g  m aterials. A source (J 2 , A 2̂ ) in Region 2 produces fields (£'2 , i^ 2 ) throu gh ou t R egion  
1. A second source located in R egion 1 radiates fields throughout R egion 1.

the presence of the inhomogeneities produces fields E 2 and H2 throughout Region 1.
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We postulate also a second source (J i, Mi) located in Region 1 but radiating fields E i  and 

Hi  in an homogeneous space having constitutive param eters e\ and /ii.

The fields of both sources satisfy the Sommerfeld radiation condition [4] on the boundary 

at infinity (S'oo).

Throughout Region 1, Maxwell’s equations can be written:

V  X £ 'i  =  -  M l  ( 1 0 .1 )

V X Hi  =  —iujt iEi  — Ji (10.2)

V X i?2 — —iuJfiiHi ( 1 0 .3 )

V  X H 2 = —iuJtiEi (10-4) 

Therefore in Region 1 we can construct the following equations:

H'2. ■ ( ^  ^ ^ 1) ~  —iijJfiiH2 ■ Hi  — H 2 • Ml  (10.5)

E 2 • ( V  X H i ^  =  i u j ( . iE 2 ' E l  E 2 ' J i  ( 1 0 .6 )

H i  ■ V  X E 2 — —iuj fJi iHi  • H 2 ( 1 0 .7 )

• V X H 2 = iu c iE i  • E 2 (10.8)

Combining these eqiiations we get:

H 2 • V X El  — El ■ V X H 2 +  E 2 ■ V X Hi  — Hi ■ V x E 2 =  E 2 ■ Ji — H 2 • M i  (10.9) 

which is equivalent to:

V • (i?i X H 2 — E 2 X / / i)  =  E 2 ■ — H 2 • M l  (10.10)

This is a statem ent of the Lorentz Reciprocity Theorem.

Integrating both sides over Region 1 and applying the divergence theorem:

V ■ Qdv — Q ■ n d S  + / / Q ' (10.11)
P i  J  J  S  J  J  S qo
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- where n  is the normal vector on the surface pointing out of Region 1. 

Then:

(El X  H 2 - E 2 X  H i ) - h d S  =  j  J  J  { E 2  - J 1 - H 2 -  M x ) d v  (10.12)

- where the integral over the surface at infinity vanishes as a result of the radiation condi­

tion.

Vector identities dictate that:

El  X H2 ■ n = —El ■ (n x H2)  (10.13)

and

E2 X Hi  ■ h =  —Hi  ■ {E2 X n)  (10.14)

Hence:

El ■ { - h  X H 2 ) -  Hi  • { - E 2 X h)dS  =  y  J  J  {E2 - J i - H 2 - Mi )dv  (10.15)

- which is a general statem ent of reciprocity.

Let us suppose th a t sources in Region 1 are described :

J i = u 8 { p - p ' )  (10.16)

and

Ml = 0 (10.17)

- where p denotes the source point in Region 1 and p' represents the integration variable. 

Then:

u ■ E 2 |p= J  J  El ■ { - n  X  H 2 ) — Hi ■ ( - £ ' 2  X n)dS'  (10.18)

- where Ei  and Hi  are the fields produced at location p' in an infinite homogeneous space 

by sources J i and Mi  located at p.

These fields can be expressed as:

Ei{p' )  =
V'V' + (5^

iLoei
e

u-
47T I p  -  p ' I J (10.19)
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and

u-
47T I p -  p' I j

-where the derivatives are taken w.r.t. the primed coordinates. 

Because of the symmetry of the Green’s function:

( 10 .20 )

V'V '

and

y '  X

Hence:

u-
47T I p -  p' I J

U  1------------- r
47T I p — p' I ^

=  v v  • U -

- V  X II-
47T I p — p'

( 10.21)

( 10.22)

u ■ E 2 |p=
 ̂VV ■
, -iwei

+V  X

g - t / 3 |p - p ' |

47T I p — p' I ^
Q-iP\p-p'\ X

u - — 1--------— ■ { - E 2 X h)
J47T 1 p -  p' 1 J

• { - h  X H2)

dS'

( 10 .23 )

- where the integration is performed in primed coordinates over the surface S. 

The first term in the preceding equation can be modified using:

{ - n  X H2 ) ■ VV
47T I p — p' =  • { - n  X  H2)

i = \
dxi du

' Q-iP\p-p'\ '

i = l  ^

. 47T i p -  p' I  ̂

^ - i / 3 \ p - p ’

47T I p — p' I ^

U ■ VV • i - n  X H2 )-
- i l 3 \ p - p ' \

47T I p — p' I ^

- where Xi denote the three Cartesian variables and u is a variable defined along u. 

Furthermore:

( 10 .24 )

V X w,- ( - E 2 X n )  =  V u-
47T I p -  p' I ^ X u ■ {—E2 X h)
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-= — u  ■ V  

=  - u - V x

X { - E 2  X n )

( — £ ’2 X h ) u
47T I p  — p ' I ^

(10 .25)

- w hich allows us to  w rite:

V V  . +/?2 f  r  g-i/3|p-p'l
u ■ E 2  \p= u  ---- -̂---------  /  /  { - n  X H 2 ) -— j---------—J S '  (10.26)

lUJti j  Js 47T I p -  p' I
r r p-iP\p-p'\

—M • V X /  /  ( —n  X £ '2 )';;— I-------------- ;dS 'J  Js^ 'MttIp-p' I

- which is the Surface Equivalence Principle.
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A P P E N D IX  B

Fourier Series and Transforms

The Fourier Series of a periodic signal f(t) is defined as:

+ 0 0

FS{ f { t ) )  = (10.27)
— 00

where

Cl-=  i  y _ ’ / ( ( ) £ - “ *'<« (10 28)

- where k is integer and Vl the period of f(t).

For a non-periodic signal the Fourier Transform must be used.

Here we consider the complete signal (ie in the range — cx) to -l-oo) to be a single period 

of a periodic signal.

In other words we let T above tend to infinity.

The Fourier Transform is thus defined;

F{u^) =  T{ f [ t ) )

/ +00

(10.29)

•00

Because integration of a continuous signal is impossible with a computer we define the 

Discrete Time Fourier Transform as:

DT F T { f { t ) )  =
,  +00

^ F ( u ; - n c J o )  (10.30)
T

—  00

where
+  CXD
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- the sampled signal, where T  is the sampling period.

The Fourier Transform itself will be a sampled quantity on a computer and we can only 

sample a truncated signal so we must define and use the Discrete Fourier Transform:

DFT{f { t ) )  =
N - l

=  (10.32)
fc=0

- where k , n  = 0..........— 1.

Consider:
+ 00 +00

8{t - n T )  = Y  S(t -  nT)e-^'^\lt
— OO

+ 00 

E -
— OO 

+ 00

— OO

-H o o  ✓ ^

=  ^  [o 7  / — *̂ 0 ~ nu}p)e~'''^'
— OO 2 — OO

+ 00

=  luq ^(a; — nu>o) (10.33)

^ —  i u j n T

A l j t i T

— OO

+ 00 /  ̂ +00
- ik ^ u e

- by definition of the Fourier Series given above, where ujq = 

But:
+  OG ^  + 0 0

27TT{f{t)Y,Ht-rtT)) = ^F{u:)*r(Y,S(ui-nw„)
— OO

 ̂ +00

=  — F{ lo) *  o;o  6{u -  nuo)
Z7T ^

— OO

. +00

=  - Y ^ F { lv -  nuJo) ( 10.34)
— OO

Hence:
+00

T{fs{t ))  = - ^ F { u j - u u q )  ( 10.35)
T

— OO
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Also consider:
+ 0 0

HI M)  = / ^ /(()*((-nT)e-"‘*
— 00

-1-00

=  (10.36)
—  00

So:
N - l

• ^ ( / f  “""(0) =  (10.37)
n = 0

Hence:
N - l

^ s ( / “ (t)) =  /  E  -  k"^)du (10.38)
•J    n  ^n = 0

- where k =  0 N  — 1.

From which follows:
yv-i

■^s(/“ (0 ) =
71 =  0
N ~ \

=  ^  / ( n r ) e - * " / ^  (10.39)
n = 0

- which is the DFT.

To simplify the following analysis of the Inverse DFT we define the following:

lu =  (10.40)

The existence of the variable T  is assumed when referring to the integer k or n and F will 

denote the DFT of the signal f(t).

Then the D FT can be written:
i V - l

H k )  = Y f { n ) i o - ^ ^  (10.41)
71 =  0

- where k = 0....N — 1.
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Conversely the Inverse Discrete Fourier Transform is: 

f { n )  =  “  F{k)m‘,kn

N
k = 0

where n =  O....A'̂  — 1.

Hence:

k=0

W

k= 0  m = 0

- k m

But:
j V - l

E
fc=0

w [ n —ni)k
I  _  y j { n - i n ) N

1 — ryC"-"*)

and

=  e' 

=  1

we have:

1 _  H ,{n—'n )N

I  _  ^ { n - m )

I F F  n — m.

=  N

So:

t-= o

=  /(?^)

( 10.42)

( 10.43)

( 10.44)

( 10.45)

( 10.46)
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T he Fast Fourier Transform

The Fast Fourier transform is an algorithm designed to speed up the com putation time of 

the discrete Fourier Transform.

By definition the DFT and IDFT can be written in m atrix form thus:

/ \f (0 )

F ( l )

F(2)

F ( N - i ) y
w - 1

w - 2

W

W

- 2 W

\

W

XU

f \/(o)
/(I)
/ (2) 10.47)

If"! =

In the same m anner the Inverse FFT can be expressed as:

I / I  =

- where [IVat] is obtained from [Wj^\ by replacing w~^ with

(10.48)

(10.49)

Where is a power of ’2’ we then decompose the sequence / (n )  into two interleaved 

sequences, one with even arguments and the other with odd arguments.

Using this decomposition we can write the first y  members of the transform  sequence 

F{k)  as:

F(0)

F ( l )

F(2)

1

. w 

. w

/(O)

/ ( 2)

/ ( 3) (10.50)

J 1 w



The two la tter argument matrices, [W/2]  and [1^/2] are related by:

\

\WnI2]

)

0 0 0

0 0 0
\ W / 2 \  =

0 0 w~'^ 0

l o 0 0

[t'ViV/2] = [Wd][WNl2\

and so

'  -F(O) \ '' / (O )

F(l) / ( 2 )

f ( 2 ) =  [Wn /2] / ( 4 )

v f ( f - / ( w -

/ ( I )  

/ ( 3)
+ /(5 )

In a similar m anner the last y  members of the sequence F(/c) can be written as:

f ( f + 1)

f { f +  2)

F ( N - l )

f i O)

/ ( 2)
/ ( 4)

H N  - 2 )  )

- [WiWun]

/(I)
/ ( 3)
/ ( 5)

n N - l )  )

(10.51)

(10.52)

(10.53)

(10.54)

Clearly the calculations of F { k ) { k  =  0;A^/2 — 1) are identical to the calculations of
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F{k){k — N/2;  N  — 1) except for the sign change.

Thus we have succeeded in reducing the calculation of an N-point Fourier Transform to 

the calculation of two N/2-point transforms.

If this process is repeated a number of steps equal to:

N
logTV -  1 =  log2 ( y )  (10.55)

- then we arrive at transforms of order two.

Each of these two-point transforms has:

[Wi] = 1 1  (10-56)

- and no multiplications are needed.

Each stage of the reduction requires y  multiplications, therefore the to ta l number of 

(complex) multiplications required for the calculation of the complete transform  is:

.W =  ( j ) l o g 2 ( j )  (10.57)

and the to tal number of (complex) additions requires is:

A = N \ o g 2 N  (10.58)

which compares with {N — 1)^ multiplications and N { N  — 1) additions were the direct 

method to be used.
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