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SUMMARY

This thesis investigates the the appropriateness of integral equations for use in determining
electric field coverage over sub-urban terrain which is illuminated by an arbitrarily placed
transmitter.

Sub-urban terrain is the term used to describe undulating terrain with an homogeneous
or piecewise homogeneous distribution of clutter (vegetation, buildings, rocks etc.).

The exact numerical solution for electric field coverage is given in the form of coupled
integral equations.

These are the Coupled Electric Field Integral Equations (CEFIE) or the Combined Field
Integral Equations (CFIE).

The field coverage is evaluated numerically using these equations over different terrain
profiles consisting of various types of materials.

The CEFIE is reduced to a simpler Electric Field Integral Equation (EFIE) and its ap-
plication in determining field coverage is justified mathematically and with field coverage
results.

Published methods to speed up the calculation of coverage using the EFIE are imple-
mented on various profiles at different frequencies.

These methods are the Natural Basis Method [57], the Green’s Function Perturbation
Method [58], the Fast Multipole Method/Fast Far Field Approximation [61]/[6] and the
Tabulated Interaction Method [25].

These methods are then compared in terms of order of complexity of the algorithm, accu-
racy of results, memory requirement and complexity of code.

I introduce my own method, the Field Extrapolation Method (FEM) [62], and apply it as
with the published methods.

By mathematical evaluation and comparison of results I note this method to have the

lowest order of complexity, give the most accurate results, have the lowest memory re-
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quirements and have the simplest code.

I conclude it is the most appropriate fast integral equation method to calculate field cov-
erage over sub-urban terrain.

A statistical model for clutter is developed and the FEM is applied to this model over var-
ious profiles with varying degrees of clutter. The results confirm that the FEM is robust
in its application to this type of terrain and the extent of signal distortion due to surface
roughness mirrors the distortion of the original smooth surface.

Finally some of the better known non-integral equation methods for calculating field cov-
erage are discussed.

These are the Physical Optics approximation [52], the Parabolic Equation Method [22],
the Impedance Matrix Localisation Method [43], the Impedance Boundary Condition [21]
and the Geometric and Uniform Theory of Diffraction [55].

The salient advantages and disadvantages of each of these methods are listed.

This thesis concludes that integral equation methods are an efficient means of estimating
field coverage and that the FEM is the most appropriate of these methods for application
to suburban terrain.

Having demonstrated its worth in sub-urban terrain the conclusion also expresses the au-
thor’s belief that the FEM is the most promising integral equation method for coverage

estimation in urban terrain and suggests this as a course for future research.
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INTRODUCTION

The need to effectively communicate using wireless systems is not easy to satisfy due to
bandwidth limitations and to the complex behaviour of electromagnetic radiation as it
jropagates, scatters and attenuates.

cattering and attenuation are more pronounced at higher frequencies posing severe prob-
Ims in providing ubiquitous coverage for mobile communications providers whose band-
vidth is at the upper end of the Ultra High Frequency (UHF) radio wave spectrum

- (300 - 3000MHz).

The increased demand for better data transmission integrity, which is a current phe-
momenon in developed countries in the advent of the personal mobile phone and fax ma-
ciines, means the provision of adequate field coverage via surface based transmitters will
bacome an ever more challenging task.

[t is conceivable, if not indeed likely, that these mobile devices will ultimately provide the
services of a PC which will only exacerbate this demand.

Given the above demands, there is a relatively new interest in the use of integral equations
ir estimating field coverage because they are a form of the exact mathematical solution
fcr this problem - which is to calculate the field coverage given by an arbitrarily based
transmitter over an arbitrary surface profile.

To be in a position to offer a good mobile service, an effective transmitter network must
be in place. For this network to be effective it must be derived from a suitable planning
process (the alternative is an ad-hoc transmitter placement).

The purpose of this thesis is to aid this fast and accurate planning process by providing
fast and accurate solutions for field coverage over sub-urban terrain.

The solution to this problem is slow by its very nature.

Pcpular solutions achieve their speed through a compromise in accuracy which is often

unacceptable and leads to poor planning.



A concomitant fast and accurate planning tool can be provided using integral equation
nethods, the development of which is the focus of this thesis.

[he propagation and scattering problem itself is expressed exactly as an integral equation
wnd this provides the ideal starting point.

Jlements of this integral equation can, a prior:, be eliminated by virtue of their negligible
ontribution.

t is this feature of the integral equation formulation which makes it a suitable environment
or finding fast computational methods which do not significantly compromise accuracy.
lam concerned with the computation of UHF radio wave propagation in a suburban en-
ironment with application to cellular radio systems planning.

By suburban environment I mean undulating terrain with an homogeneous or piecewise
lomogeneous distribution of clutter (vegetation, buildings, rocks etc.).

[ wish to develop a fast, efficient deterministic approach to this problem, taking into ac-
ount clutter as a paramaterised random (probabilistic) distribution of scatterers on the
sirface.

I must be pointed out that the integral equations describing the problem can be written
it differential form and so the integral equation methods presented here have their analogy
it the differential domain.

Iitegral equations are by their nature easier to conceive, being as they are, simply sum-
nations. They are therefore preferable to use in the search for fast means of solving this
problem.

The exact numerical solution of the integral equations for the problem would take days to
sdve for a couple of kilometres of terrain, even on a high speed computer. Clearly this is
the reason that until recently integral equation methods were not popular.

Aa important model is commonly used with this problem which speeds up the algorithm
significantly. This is the PEC model.

Here the surface is assumed to be a PEC which allows use of the much simpler integral
equation for PECs.

Another important assumption is the Forward Scattering Approximation which assumes

that radiation propagates primarily in a forward direction away from the source.



Botk give comparable results with the exact solution in the case of grazing incidence which
imples a surface based transmitter on terrain which is gently undulating.

It should be noted that the computed coverage results presented in this thesis are derived
assuming the atmosphere and terrain have, respectively constant electrical permittivities
(o is used for the atmosphere).

Atmospheric effects such as poor weather, humidity and convection currents, to name but
a few, will result in greater attenuation, fading and scintillation effects respectivley [1], [2].
Wet or snow /ice-covered terrain will yield different coverage results than when the terrain
is dry [21].

Polarization effects are ignored; all scattered radiation is taken to have the same polariza-
tion as the incident field [5], and the possibility of resonance effects having a significant
effect on coverage is discounted as being unlikley at the frequencies considered (144 and
970MHz).

However, this phenomenon would likely become a significant problem as service providers
are forced to move up the UHF band. Here, raindrops and snowflakes would be likley to
form resonant cavities in which case rain/snow fall may cause effective blackouts [3].
This thesis attempts to provide the reader with an intuitively acceptable means with
which to understand integral equations in electromagnetics and the fast means used to
solve them.

Research presented in this thesis justifies the PEC model and provides the fastest and
most efficient method to date to calculate the field over sub-urban terrain.

The thesis will conclude with an analysis of coverage results which will be used as a base for
the argument that integral equation methods offer the best means to address the terrain

scattering problem.
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ELECTROMAGNETIC SCATTERING THEORY

Modern Electromagnetic Scattering Theory is found:d on the laws of Electromagnetism,

which are Maxwell’s Equations [5] and the constitutive relations for matter.

2.1 Maxwell’s Equations

Maxwell’s Equations are given here (a time dependerce of ™! is assumed) [52]:

V x H(p) = iwD(p) + J(p) (2.1)
V x E(p) = —iwB(p) (2.2)
V- D(p) = q(p) (2.3)
V-B(p) =0 (2.4)

- where w is the radiation frequency (rad/s), q is charge density and p is a position vector.
They are respectively the laws of Ampere and Maxwell, Faraday and Lenz, Gauss and
Biot and Savart.

Ampere’s law was corrected by Maxwell to include the Displacement Current term iwD.
The above position-only vectors are complex quantities and are related to the original

position and time dependent quantities by:

V(p.1) = Re [v<p>e"wt] (25)
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2.2 The Constitutive Relations for Linear Matter

The following consituitive relations apply for linear matter - Harrington[19]:

" _8F  _ &E
D:EE+€1—‘87+62§2—+ ..... (26)
N _ @ . @°H
B = AIH—}- ;LIW + [io 92 e (27)
_ _O0E _ &°FE
J:O'E+0'1§+0'2w+ .....

and can be approximated by:

D =¢E

vy

1
=R
)

(2.9)
J

Qi

E

(2.10)

a tensor.

(2.11)
Empirically:

- where the tilde superscript denotes a complex quantity and the bar superscript denotes

S0 =, o9
E=€+ J]—
w

(2.12)
Matter is termed ’simple’ if the above complex quantities denoted with the tilde superscript
can be replaced by scalars.

It is termed isotropic if the above tensors can be replaced by scalars.



2.3. The V.ctor Wave Equation 6

2.3 The Vector Wave Equation

The Vector Vave Equations in £ and H are derived from Maxwell’s equations by taking

the curl of (2.) and using the vector identity:
VxV>V=VV.V-V¥V (2.13)

- where V' is a arbitrary vector.

The Vector Wve Equation for the Electric Field is:
V x 77 x E(p) — w’e- E(p) = iwJ(p) (2.14)

- where i and-, the magnetic permeability and electric permittivity, are rank 2 tensors.

In an homogerzous isotropic medium the Vector Wave equation becomes:
V x V xE(p) — €€E(p) = iwuJ(p) (2.15)

- which can bewritten

V2E(p) + € E(p) = —iwp [er V?Y—] - J(p) (2.16)

-where [ is theidentity operator and p and e are scalars.

By the DualityPrinciple [5], (2.16) can be written in terms of H and M.

The Vector Ware Equation is comprised of three coupled scalar wave equations.

The derivation>f (2.16) is to be found in Chew][6].

The integral equations that describe the electromagnetic scattering problem we are about
to investigate ae derived from the wave equation via the application of the appropriate

boundary condiions.
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24 Green’s Functions

A Green’s Function is a physical system response to a Dirac delta type pulse.
Tie scalar Green’s function, g(p,p'), is the solution to the Scalar Wave Equation where
tle current is the Dirac Delta function and it is:

X 1
eBlp—p'|

A

9(p,p) (2.17)

Tanlp—r ]

- vhere [ is the wave number.
Tle Dyadic Green’s Function, so named because it is a dyad or rank two tensor, is the
amlogous solution to the Vector Wave Equation.

For an homogeneous isotropic medium it is:

Glo.r) = [T+ ) ato.) (2.18)

Derivations of (2.17) and (2.18) can be found in Chew[6] Because the Wave Equations are

lin:ar, the solution to an electromagnetic problem can be obtained by superposition.

2.5 Boundary Conditions

At the interface between two materials having relative permittivities €,, €, and perme-
abiities ji,1, /.o and where there are no sources, the following conditions can be shown to

holl at the boundary [5]:

Aix (B —Ey) =0 (2.19)
Ax(H - Hy)=0 (2.20)
fi+ (615 — €roBa) =0 (2.21)
7 - (e Hy — proHy) = 0 (2.22)

- where 1 is the outward normal unit vector.



2.6. The Electric and Magnetic Vector Potentials 8

2.6 The Electric and Magnetic Vector Potentials

Consider Electric and Magnetic Fields £4 and H4 due to the Electric Current J only.
Then [16] shows how:

_ VV-A+p5%4
Es= - (2.23)

- where A is the solution to:
VIA+ A= -J (2.24)

which gives:

y e—Ble—p'| ;
or
) e~ Blp—r'] y

- depending on whether one is solving the Wave Equation in a volume or on a surface.

By exact analogy with the above it can be shown that
Er=-VxF (2.27)

- where F is the solution to:

V2F + f*F=-M (2.28)
which is:
e~ Blp— pl K
or
/ e~ Blo—r'| y
F:/SM (p)m (2.30)

A and F are the Magnetic and Electric Vector Potentials respectively.

By Superposition the total Electric Field is then:

E=E,+Ep (2.31)
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Hence the general olution for the field radiated by a surface current is:

VvV +52/ e~ Blp—r'| / e~ Blp—r'|
E*(p) = —— [ Js(¢ -V x | M( s' 2532
(0) ve Js (v )47Tlp pl 47f|p /)I e

Use of the Vector Ptentials lead to intermediate differential equations which are uncoupled
and simple. That i, each component, of say A, depends on the corresponding component
of J only.

Use of A or F' dos not decouple the original vector wave equation as can the use of
Magnetic Current, vhich will be discussed in detail later.

Hence the only advatage in the use of A and F is in avoiding the use of complex operators

(such as dyads) in olving the Vector Wave Equation.
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2.7 Magnetic Current

The concept of Magnetic Current is to be used shortly in the Surface Equivalence Principle
and the Coupled and Combined Field Integral Equations.

Magnetic current does not exist in the sense of electric current. I will devote some space
here to explain what it is and where and why it should be used.

First it should be noted that magnetic current cannot be isolated because magnetic charges
do not exist.

Secondly, magnetic current is used only as a mathematical convenience. It is an alternative
representation for electric current.

In short, Magnetic Current (M) is an alternative representation in Faraday’s Law for the
Electric Current (J) which appears in Ampere’s Law. There is thus a transform that
relates both. Use of either or both is a question of convenience since the solution for the
field is unaffected.

From Van Bladel [17] volume electric and magnetic currents are related by:

My (o) = ()Y x Ju(p) (2.33)
and
1(0) = ()¥  Mylo) (2.34)

A good example of the usefulness of Magnetic Current is in magnetic materials where
rotating electric currents exist.

Applying the Continuity Equation to these electric currents yields:
Vo Jy =twg="10 (2:38)

- since there is no net inflow/outflow of charge.

Since any vector field is specified by its curl and divergence free components, this type of
electric current can be completely described by a magnetic current M.

If the original electric current is a function of two orthogonal vectors - say & and 7 - then
the equivalent magnetic current will be a function of the 2z vector only.

This means that the solution for J, can be found by solving the Magnetic Vector Wave
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Equation for M, and converting the result to the equivalent .J, using (2.33).

The alternative to this would be having to solve the Electric Vector Wave Equation for
J,, which means solving two coupled scalar wave equations.

Hence, where J, is rotating, does not diverge and is invariant in one direction, use of
magnetic current allows one avoid the use of dyadic analysis in solving for J,,.

It should also be pointed out that if J varies in all directions Z,7 and Z, conversion
to magnetic current will result in having to solve two coupled scalar (magnetic) wave
equations as opposed to three (electric).

In summary, appropriate use of magnetic current (i.e. where V - .J, = 0) reduces the
dimensionality of solving the Vector Wave Equation by one.

The relations for surface electric and magnetic currents J, and M; are as follows [17]:

RS L ) (2.36)
Twe
and
R
Js = —(—)n x Mé; (2.37)
iwe

where 0, is defined by the functional:

£ Ggs th = / é(p)dS = ‘ os(p)dV (2.38)
s %

The notion of 6, stems from the Dirac Delta Function, from whose definition the conversion
of a line, surface or volume integral to a point value of a function is possible. This gives
one the means to describe a distribution on a half-line or plane.

On the other hand, the definition of ¢, enables one to convert a volume integral to a
surface integral. This gives one a tool to describe a distribution on a surface which is not
necessarily planar.

The usefulness of surface magnetic current follows from its relation to surface electric
current. That is, that a surface electric current which is a function of two orthogonal
vectors may be described by a magnetic current which is a function of the third only.

It is immediately clear in this circumstance that if the Vector Wave Equation is to be
solved on a surface, appropriate use of surface magnetic current gives the same advantages

as the appropriate use of volume magnetic current above.
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The key word here is ’appropriate’.

Above it was the use of volume magnetic current to describe a rotating electric current
with zero divergence.

Here its use is in describing a surface electric current, which is a function of two orthogonal
vectors, in terms of a surface magnetic current which is a function of the third orthogonal

vector only.
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2.8 The Surface Equivalence Principle

Consider the situation depicted in the figure below. Here we have two regions of space I';
and 'y separated by a mathematical surface S. One of the regions is unbounded.

Region 1 is homogeneous with electric and magnetic permeabilities €; and p; where Region

2 contains inhomogeneities that may include perfectly conducting materials.

Figure 2.1: Two regions of space I'; and I'y separated by a mathematical surface S. Region 1
is homogeneous with (e, ;) and Region 2 contains inhomogeneities that may include perfectly
conducting materials. A source (Jy, My) in Region 2 produces fields (Fy, Hy) throughout Region
1. A second source (Jq, M) located in Region 1 radiates fields (E, Hy) throughout Region 1.

A source electric and magnetic current (.Jy, M3) is located in Region 2 and radiating in the
presence of the inhomogeneities produces fields E; and H, throughout Region 1.

We postulate also a second source (J;, M) located in Region 1 but radiating fields F; and
H; in an homogeneous space having constitutive parameters €; and .

The fields of both sources satisfy the Sommerfeld radiation condition [4] on the boundary

at infinity (Ss)-
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The Surface Equivalence Principle can be written as follows - Peterson [16]:

VV - 432 ) o—iBlo—p'|
- Bl =@ T e e P R
@ Bap) =1 I [ (o ) s
iV /( Ey(p') x 1) Sy
i e I (1) e e 2.39
s dn | pg—g | )

This equation is a statement that the field produced by (J2, M3) at some location outside
of Region 2 can be expressed in the form of an integration over the tangential fields on the
surface of Region 2.

The equation is of the form of (2.32) which is the general solution for the field radiated by
a volume or a surface current.

For this reason we identify the tangential component of the magnetic field at the surface as
a surface electric current and the tangential component of the electric field at the surface
as a surface magnetic current.

The Surface Equivalence Principle makes it reasonable to postulate that the field scattered
from a surface can be completely specified according to an equation of the form of (2.39).

Proof of the Surface Equivalence Principle is given in the Appendix A.



2.9. The Electric and Magnetic Field Integral Equations 15

2.9 The Electric and Magnetic Field Integral Equations

The derivation of Electric Field Integral Equation (EFIE) is based on the following pos-
tulates - [5], [16]:

E"(p) = E'(p) + E°(p) (2.40)

That is, the total observed field at a point equals the sum of the field incident from the
source plus the field re-radiated or scattered by the surface -

and

32 —iBlp—p|
= M /(_ﬁ x H(p')) ———_ds
we g dr | p—p' |

v /( E(p') x ) S
—V X —(p) X )—7——-1d8§
s dm | p—p' |

E*(p)

(2.41)

- which means the scattered field can be expressed in terms of the tangential components
of the total electric and magnetic fields at the boundary, which is the Surface Equivalence
Principle.

Identifying the surface integrals as Electric and Magnetic Vector Potentials, and substi-
tuting (2.32) into (2.40) yields:

VV - A+ (32A

we

El(p) = E"(p) - [ -V x F] (2.42)

Taking the tangential components of both sides yields:

VV A+ B2A
TWE

fi x B (p) = —M,(p) — 7 x [ —§ % F] (2.43)

- which is the EFIE.
The Magnetic Field Integral Equation (MFIE) is derived in a similar fashion yielding:

VV - A+ (%A

we

ax H(p) = Jo(p) — 7 x [ —V x F] (2.44)

For a PEC the EFIE and MFIE are simplified by noting the tangential component of the

total electric field at the interface is zero.
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COVERAGE ESTIMATION WITH INTEGRAL EQUATIONS

As outlined in the introduction, fast Integral Equation methods are the focus of this thesis.
In this chapter, a formalised approach to solving integral equations exactly is examined
along with the results this method gives with the Forward Scattering Approximation.
These results are compared with the measured results in superimposed plots.

In Chapter 7, fast Integral Equation methods applied to the terrain profiles given here are
examined chronologically, giving the reader an understanding of the evolution of the latest
methods. The coverage results these fast methods give, will be compared with the results

given here.

3.1 Surface Profiles, Terrain Composition and Transmitter Fre-

quencies

The surface profiles used in this thesis are:

1) 11Km of gently undulating Danish (Hjorring) terrain. Profiles and measurements sup-
plied by Prof. Anderson of Alborg University.

2) 6Km of gently undulating Danish (Jerslev) terrain. Profiles and measurements sup-
plied by Prof. Anderson of Alborg University.

3) 3.8Km of mountainous German terrain provided by Deutsche Telekom AG (no mea-

surements available).

The Danish profiles will be used to illustrate:
1) The Forward Scattering Model.
2) The EFIE (PEC) methods.
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The German profiles will be used to illustrate:
1) The CFIE and CEFIE methods.
2) The EFIE (PEC) methods.

3) The effect of surface roughness on field coverage.

Dielectric terrain compositions considered are:

1) Dry clay with relative complex electrical permittivity 2.44-i0.098 at 970MHz.

2) Dry sand with relative complex electrical permittivity 2.55-¢0.041 at 970MHz.

3) Dry loamy soil with relative complex electrical permittivity 2.48-i0.036 at 970MHz.

These values were obtained from [19].

The transmitter frequencies used in this thesis are 144MHz and 970MHz.
1) A 144MHz transmitter frequency will be used to illustrate all EFIE (PEC) methods.

2) A 970MHz transmitter frequency will be used to illustrate all methods.

The transmitters will be placed 10.4M above the starting point of the Danish profiles
and 52M above the German profile.

In all cases the surface will be irradiated with 7'M, radiation emanating from the source,
an infinite 1A carrying strip transverse to the 2-D surface profile.

The discretisation length used for the numerical evaluation of the integral equations is /4
and A/15 (A is the wavelength of the radiation emanating from the source) for PEC and
dielectric surfaces respectively.

The resultant field will be observed 2.4M above the terrain profiles.

In the FAFFA,| TIM and FEM group sizes of 100.0 and 3.0 times the radiation wavelength
are used for the Danish and German profiles respectively unless otherwise stated.

In the TIM the tabulation is performed at intervals of 7/500.

All computations are coded in C*t and run on an IBM RS6000 computer. Computa-
tion times are given in seconds for all methods. This information is in itself immaterial
since computation times will vary depending on coding language, coding methodology,

compiler /optimiser used etc. They are included to provide a means of approximate com-
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parison.

The important feature of each method is the order d complexity of the solution and the
memory requirements. Coding complexity is also asiessed. This is a relative assessment
and somewhat subjective. The relative availability oflibrary code such as the FFT is not
given consideration.

The following are plots of the three profiles used.
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3.1.1 Surface Profiles
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Figure 3.1: Danish (Jerslev) Terrain Profile. The surface co-ordinates are given at 50 M intervals
and are interpolated linearly.
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Figure 3.2: Danish (Hjorring) Terrain Profile. The surface co-ordinates are given at 50M intervals
and are interpolated linearly.



Meters

3.1. Surface Profiles, Terrain Composition and Transmitter Frequencies 20

400 T T T T T T T
350 T 4 Ty Mountainous German Profile —
300 N\ ‘ \ -
250 + e -
200 + ) ol
150 1 1 | I I Lt B I
0 500 1000 1500 2000 2500 3000 3500 4000
Meters

Figure 3.3: German Terrain Profile. The surface co-ordinates are given at 10M intervals and are
interpolated linearly.
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3.2 The Method of Moments (MOM)

This is a general method for reducing functional equations defined in a linear space to
natrix equations - Harrington [18].

The EFIE is such a functional equation.

Consider the form of the EFIE over a surface S where source and observation points are

¢ and p' respectively (I have ignored the constant factor 47/4 in the EFIE for simplicity):

E'(p) = [ 3(6)G(p. )5 (3.1)
S

Discretising a 2 — D surface into N segments allows us express the EFIE as a summation:
N

E'(p) =Y J(6,)G(p, p,)As, (3:2)
n=1

To have the freedom to evaluate this summation and arrive at a general algorithm, which
is the MOM, we express J(p/,) as a product a,g(p.,), where a, is a constant over the n'"
domain. g(p,) is referred to as a basis function.

We further enhance computational freedom by taking the inner product over each domain
with functions w,, called weighting functions.

That is, we allow ourselves apply weights at will should this be helpful to us in speeding

up the summations:

[ 0o By = [ we) 3 I4)G . ) Asds (33)

S n=1
N
- / w(p) Y ang(A)G (0, 6) A5 ds (3.4)
S n=1
N
=3 [ wn- sl )Glo. ) A, s, (35)
n=1 Sn

If we assume a,, is constant over the n'* interval then a,, can be taken outside the integration
to give:

N

/ wy - B (pn)dsn =) an / Wn - 9(0,)G(p, pr) Asydsy, (3.6)
J'5%

=1 n
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There are N such equations, describing the incident field on the surface intervals, which

can be expressed in matrix form:
V] =1[2]]J] (3.7)

- where [V], the supply vector, contains the fields from the source incident on each surface
interval.

[J], the current vector contains the surface currents on these intervals and [Z], known as
the impedance matrix, relates the two.

In 2 — D the rank of [Z] is O(N?) and in 3 — D it is O(N?®).

Should we choose the same weighting and testing functions, we have Galerkin’s method.
This often leads to simpler and symmetric impedance matrices [52].

If we choose the weighting functions to be Dirac Delta functions, we have what is known

as the point matching method [52]. This method simplifies the calculation of [Z].
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3.3 The Forward Scattering Approximation (FSA)

The FSA assumes EM radiation propagates primarily in the forward direction (away from
the source) i.e. backscattering effects are ignored.

This corresponds to setting elements in the upper-right triangle of the impedance matrix to
zero, retaining the lower-left triangle and the upper-left to lower-right diagonal elements.
This approximation is good for undulating surfaces at grazing incidence where, due to the
predominance of oblique angles of incidence of radiation on the surface, most radiation
will not be reflected back towards the source.

The Forward Scattering Model is closely related to the PEC model in that oblique angles
of incidence will give rise to total internal reflection.

Where the Forward Scattering model applies, so too does the PEC model and vice-versa.
Both models are good approximations to the problem for slowly undulating terrain where
the transmitter is surface based.

Evaluating the scattered field by the exact solution of the field integral equations without
the use of the Forward Scattering model is cumbersome. The reason for this is not only
that it is obviously more time-consuming but a very large amount of memory needs to be
allocated to store the N x N impedance matrix. This is beyond the memory capacity of
most computers for terrain profiles of length greater than 2Km.

The following plots are those of the electric field coverage measured and calculated using
the forward scattering model at 144MHz and 970MHz.

The measured data (courtesy of Prof. Bach Anderson of Alborg University in Denmark)
will obviously contain some backscattering effects which from viewing the superimposed
plots for Jerslev profile are clearly negligible.

The FSA is assumed throughout the remainder of this thesis.
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SCATTERING FROM DIELECTRIC SURFACES

The task is to calculate the total field in the x — y plane in an homogeneous medium at a
distance above a surface which is invariant in the z direction (2-D surface).

The surface is irradiatad by an infinite unit amplitude current carrying line source in the
z direction, a distance above the surface.

The problem geometry is illustrated in the following figure.

This figure will be referred to throughout this thesis

Y | Source )
g Medium 1

Observation Point

Medium 2

X

Figure 4.1: Terrain scattering geometry. The source, an infinite 1A carrying strip in the z
direction, is placed above the starting point. Medium 1 is taken to be free space and Medium 2
is a solid dielectric or perfectly conducting material. The observation point is a distance above
the surface. p, p’ and p” are position vectors.
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4.1 Coupled Electric Field Integral Equations (CEFIE)

4.1.1 Theory

The Coupled EFIEs take the following form - Peterson [16]:

VV.-A 2A
A x E(p) = —M,(p) — 7t X [ g l—VXFl] (4.1)
Wwey S+
- evaluated just outside the surface.
VV-A 2A
0= M,(p) — i X [ 2+ 5 2—Vxﬂ] (4.2)
1Wes e

- evaluated just inside the surface.

Use of either the simpler EFIE or MFIE (these will be discussed in detail in subsequent
chapters) alone necessitates evaluation of the fields at the surface. We may have good
reason for not wanting to do this. Take for example the case of an infinitely thin PEC
strip. Use of the EFIE for such a problem would be equivalent to imposing two conflicting
boundary conditions:

One that the tangential magnetic field exists at the boundary and the other that it does
not exist since the interior and exterior of the surface coincide.

In such a case one applies the EFIE simultaneously to the interior and exterior of the body
[16].

Coupled EFIEs would normally be used however to calculate the surface currents on di-
electric materials because unlike on a PEC, magnetic currents will exist on the surface and
so with two unknowns, simultaneous integral equations must be applied to solve.
Coupled Magnetic Field Integral Equations can be stated in a similar fashion.

For the 2 — D T M. case the above equations become:

E'(p) = My(p) +ibimA; + V. x Filgs (4.3)
- evaluated just outside the surface.

0= —M,(p) + iBamAs + V, x Fi|s- (4.4)

- where V, is the transverse gradient (in the z — y plane) and :

1

14:_
41

J(p')’HBQ)(ﬁp”/)ds’ (4.5)
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1

F=— [ MM (Bow)ds' (4.6)
- where:
+o0 iBlp—p'|
HPBp-p ) = / A 4.7
O(ﬁ'p p|) ¥ 47TIP—P'| ( )
- is the 2 — D Green’s function.
From the MOM (4.1) and (4.2) can be written in matrix form thus:
V] =1[2]lJ] (4.8)
where each entry in the above is related by:
E A B 5
0 C D M
where
; - B [ . (2) /
Amn - T Ho (ﬁlf)ll')ds (49)
J Sn
s = . (4.10)
mm 2 9
Bon =2 [ SHY ds’ 411
mn — 4_1 COS(¢’IL - (sz) 0 (60/)1]) S ( & )
-m#n
Cmn = .’824£ HSQ)(,BQp”l)dS/ (412)
S’rl
Bl (4.13)
mm — 2 "

Dmn = %/ COS(Q‘)TL - ¢13)H(()2)(ﬁ2/)z])(13l (4]‘4)
SY'L
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- m # n, from which J and M can be determined by the MOM.

The total field a distance above the surface is:

E(") = E'(o")+ _ﬁ_o477_0/s H(()Q)(ﬂo | s — p" |)ds' (4.15)

P2

gl

/ cos(pn — ¢z‘z”)7'((()2)(ﬁ2 | pi — p" |)ds’
371

The results which follow are those given by the Coupled EFIEs applied to the German

terrain profile consisting of dry clay, sand and loam.
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4.1.2 Analysis of Results

The most striking feature of the results which follow are how they are correlated with the
surface profile.

This result is to be expected as radiation intensity will be lower in the troughs - a phe-
nomenon referred to as 'shadowing’.

In the first and third troughs the radiation intensity increases noticably at the 500M/ and
3100M points where direct illumination by the source occurs.

The second trough is not directly illuminated at any point so over this region there is no
sharp transition in radiation intensity except on entry to the trough. The fact that there
is any radiation at all in this region is an illustration of the scattering phenomenon - i.e.
that irradiated terrain acts as an antenna.

Another salient feature of these results is that there is little difference in the results given
by terrain composed of dry clay sand and loam respectively.

This indicates that in calculating the field scattered by terrain it is not necessary to segment
the surface profile and analyse on the basis of terrain composition unless very accurate
results are required.

The results were obtained in 30 days.

4.1.3 Tabulated Characteristic Data

Computational Cost Memory Requirement Complexity of Code
O(N?) O(N) Complex
Table 4.1: Computational Features of the CEFIE
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Figure 4.2: Electric Field Coverage at 970MHz over German Terrain consisting of Dry Clay
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4.2 Combined Field Integral Equations (CFIE)

4.2.1 Theory

The Combined Field Integral Equations are used because of difficulties posed by the use of
the EFIE or MFIE in obtaining a unique solution for bodies where resonance occurs [16].

The CFIE takes the following form [20]:

VV - A, + 24 VV - 4, + B2A

A x El(p) =i x 4+ by b ht By 2—V><F2] (4.16)
L W€ WWEg S
(I L PiE VV-F+ 3

A x H'(p) =7 x ALl = N oy b ,2+62F2—VXA2] (4.17)
{ WEy Wey g

Obviously they are a couple comprised of a Combined EFIE and a Combined MFIE eval-
uated at the surface.

For the 2 — D T'M, case the above equations become:
E'(p) = iwpo(Ag + Az) + V, x (Fy — F) (4.18)

- evaluated just outside the surface.

(Vo — W
HI(/)) — RV (Ao — Ag) A iwfg(FO e Fg) + ——(—0(98—2) (419)
- where:
¥ = 1V M HP (Bpa)ds (4.20)
dwp
(4.16) and (4.17) can be written in matrix form thus:
E! A B ol
i+ C D M
where
s = 200 [ 02 HP (Bypi5)ds’ 421
Amn — 4 " 0 (/80/)1]) + 0 (ﬁ?plj) S ( ’ )
B =1 (4.22)
/j y /
Bon = / cos(dw — 6i) (Hy” (Bopis) + Hy” (Bopi))ds (4.23)
S
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-m#mn
Dpym =0 (4.24)
e / — 65) (H (Bopis) + HP (Bopi))ds’ (4.25)
mn = / d)n’ [EOHO (/BOpz]) + 627—(( (52,01])] i (426)
BRE
% . 57 Lo [H(()Q)(ﬁopij) = H(()Q)(ﬁoﬂij)] ds

- m # n, from which J and M can be determined by the MOM.

The derivatives are calculated using the finite difference method.

The total field a distance above the surface is as before:

/ /1 /)) i /. /!
B(#) = B'(#) + 25 [ H (o | = 0" s (4.27)
Sn
42 [ cos(6, = ow)HE B | = o s
S'"

The results which follow are those given by the CFIE applied to the German terrain profile

consisting of dry clay, sand and loam.
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4.2.2 Analysis of Results

The results obtained for the field coverage using the CFIE are identical to those given by
the CEFIE and were obtained in a somewhat longer time of 3.08 x 10°s.

This not only serves to confirm the results obtained using the CEFIE but also to deduce
that internal resonance is not a feature of irradiated terrain in that it effects the results
for coverage - Peterson [16]. This is not surprising since terrain is an open surface.
However it is useful to note that pockets of resonance are not occurring where the surface
is partially closed, say within a peak or a trough - a fact that will be underlined later in
calculating the field coverage over rough surfaces.

The CEFIE is somewhat a less complex formulation than the CFIE.

The CFIE is used to calculate the scattered field in cases where resonance is likely to occur
(i.e. from closed surfaces) - Peterson [16], Umashankar [20].

It may thus be safely said that the CEFIE is an appropriate algorithm with which to
establish field coverage over terrain.

This fact will be used as a starting point in the justification of the use of the Electric Field

Integral Equation (EFIE) - the PEC Model, in estimating coverage.

4.2.3 Tabulated Characteristic Data

Computational Cost Memory Requirement Complexity of Code
O(N?) O(N) Complex
Table 4.2: Computational Features of the CFIE
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4.2.4 Results
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Figure 4.6: Electric Field Coverage at 970MHz over German Terrain consisting of Dry Clay
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THE PEC MODEL

5.1 Introduction

Solving the Combined Field integral Equation and the Coupled Field Integral Equations
is computationally extremely intensive.

The reasons for this are as follows:

1) The problem is O(N?) in two dimensions and O(N?®) in three dimensions where N
is the number of discretisations taken on the surface.
2) To guarantee a convergent solution the discretisation length must be at least one quar-

ter of a wavelength.

While there is no escaping the physics of the problem which implies 1), there is something
we can do about 2).

In 2) it is necessary to take the discretisation length as one quarter the shortest wave-
length.

In the dielectric problem two radiation wavelengths exist, that of the incident field in
Medium 1 and that radiation which penetrates Medium 2.

These wavelengths are related by:

/\1 €9
et 5 e 1
N Ve (5.1)

For the dielectric media we are considering (dry clay, sand and loam) this means the wave-
length of the radiation in these media is three to four times shorter than the incident
radiation.

Were we able to consider the surface to be a PEC we could use a discretisation length that

many times larger than for the equivalent dielectric problem. Also, the resulting integral
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equation is a single integral equation in one unknown by virtue of the fact that no fields
exist inside the surface of a PEC and the total electric field on the surface of a PEC is
7Z€er0.

Assuming the surface to be a PEC is equivalent to assuming all radiation incident on the
surface is reflected.

Recalling the Forward Scattering Approximation, where radiation is assumed to propa-
gate away from the source, this model and the PEC model are valid where the radiation
incident on the surface is largely at grazing incidence. This corresponds to total internal
reflection in the case of a dielectric surface which is equivalent to assuming a PEC model.
The PEC model is justified here mathematically for terrain and results are presented to

validate the analysis and its conclusion.
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5.2 Mathematical Justification of the PEC Model Terrain

5.2.1 Theory

Consider the sum of the coupled EFIEs:

Ay + DA
7 x E'(p) = x [VV ,1+ﬁ0 N Fl]
1wey s
-A 2A
+ﬁx[vv ?+ﬂ22—vaﬂ (5.2)
1WEg S-
where:
:/ J(6)Ga(Bo | p = # )ds (53)
S+
= / J.(6)Ga(Be | p— o' |)ds’ (5.4)
/ M,(p)G1(Bo | p = ¢ |)ds’ (5.5)
S
Fo= [ MG | o= o s (5.6)
4.5
and the Greens’ Functions are:
1 /
Gi=H (Bl p=r')) (5.7)
1
Gr= M (Bl p =) (5.8)

- for 2-D T M.

I do not expect significant resonance problems with irradiated terrain because the surface
is not closed which means I am not obliged to use the Combined Field Integral Equations
[16].

Now, I will simplify the above for the 2-D T'M, case.

Note in (5.2):

VV-A=0 (5.9)
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bxcause:

VV.A = VV. / (=ix H)G( o~ o s

= V[ V(- x HEG( o= i

- v/ [(ﬁxmp'))-vc:up—p' D+G(lp— s |>v-<ﬁ><H<p'>>]ds’

= 0

(5.10)

because VG is a vector in the & — ¢ plane and 7 x H(p') is a vector in the 2 direction.

Therefore their dot product is zero.

Also
V-(-ax H())=0

- by the continuity equation.

Therefore (5.2) becomes:

3 3
ﬁxy@ﬁﬁx[fi&—VXﬂ] +ﬁx[fL%—VXR
St

TWEq WEy

- which if evaluated at the surface becomes:

n x E'(p) = 7 x 'iw/(’fl, X H(0')) (110G + poG2)ds'
s

+n X /(ﬁ X E(p/)) X (VIGI =t V’GQ)dSI
S

Note:

(2 aC", aCA,
VG_ETT +Wy

VGa=(z—2)YH B p—0 ) +y—y )YHDB | p-0 )y

-for2—-DTM,.
The slope of this vector is clearly z:;,' which is in the direction of p — p'.
Hence:

A x E'(p) = fx iw/(ﬁ X H(p'))(1oG1 + paGs)ds'
s

+ fx / 2| E(0) || V' Go+ V' Gy | sin()ds’
s

).

(5.11)

(5.12)

(5.13)

(5.14)

(5.15)

(5.16)
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- from the definition of the cross product where 6 is the angle between 7 x E(p') and p—p'.
This equation could have been written here as a singl: integration over S but I choose to
express it as two because the second integral is of sigrificance for terrain.

Obviously the above equation has an infinite number of solutions (because it is a single
equation in two unknowns) but the contribution of ths second integration will be small.
If it is small enough we can ignore it and we are left with the following approximation:

7 X El(p) = Tl X uu/(ﬁ X H(pl))(qul -1 M2G2)d81 (517)
3

- which for non-magnetic materials is:

n x El(p) = x iwu()/S(fL x H(p")) (G + Gy)ds (5.18)

- and so (5.2) and (5.13) take the form of the EFIE.
I will refer to this formulation as the Combined Electric Field Integral Equation Approxi-
mation (CEFIEA).
For materials encountered in terrain € will normally have a small imaginary part.
This means Gy — 0 for 7 # j.
Then:
i x E'(p) = 7 x iwpg /(fz x H(p'))Gds' (5.19)

S

This is the EFIE for a PEC which was arrived at by eliminating relatively insignificant
quantities from the Coupled EFIEs for terrain.

To see how the second integral in (5.13) above may be ignored for terrain, consider first a
flat dielectric surface.

In this case sin @ will be zero and so the above approximation of (5.17) is exact. Should
the surface undulate, 6 varies positive and negative w.r.t. the tangential component of the
electric field at the surface.

This means the second integral in (5.13) is not monotonically cumulative and as a result
the overall value of this integral will be small in comparison with the first integral.

The EFIE for a PEC is formally derived from the Coupled EFIEs by noting the tangential
field on the surface is zero and no fields exist inside a PEC.

To illustrate the validity of the assumptions made above the following are plots of the field
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coverage obtained using (5.17) superimposed on plots of the field coverage obtained using
the EFIE and the Coupled EFIEs and CFIE for the German profile consisting of clay.
This is followed by a superposition of results obtained using dielectric methods on clay,

sand and loam and the PEC model.

5.2.2 Analysis of Results

Figure 5.1 is a graphical representation of the progression from the CEFIE to the EFIE
via the CEFIEA. The results given by the CEFIEA for the most part lie somewhere
between the other two validating the assumptions which led to the CEFIEA formulation
and ultimately the EFIE approximation.

The comparative plots of coverage illustrate the accuracy of the PEC model for terrain.
The PEC model is a better approximation for terrain consisting of dry clay or sand than
for loam though not greatly so.

It is however to be concluded from this plot that the PEC model varies in its agreement
with the exact results depending on terrain composition.

With both plots it is clear that transmission is taking place through the surface and it is
significant. This is particularly apparent in the second and third troughs where shadowing
is much less pronounced in the dielectric results in comparison with those given by the
PEC model where no transmission through the surface is possible from Faraday’s law.

It is interesting to note that the results given by dielectric terrain are somewhat more
closely correlated with the surface profile though this feature of the field results is not

investigated in this thesis.
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5.2.3 Results
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Figure 5.1: Comparative Plot of Electric Field Coverage at 970MHz over German Terrain con-
sisting of Dry Clay.
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SCATTERING FROM PEC SURFACES

6.1 Introduction

Here the terrain is considered to be a PEC.

This difference simplifies the problem because:

1) Fields do not exist in the terrain.

2) Only surface electric (no magnetic currents) are induced at the terrain boundary.

3) Greater length surface discretisations can be taken.

4) There is only one unknown involved in the problem - electric current - and so only a

single field integral equation is required to solve.

It is for the reason of the above simplifications the PEC model for terrain is popular.

To solve we may use the EFIE or MFIE.

6.2 The Electric Field Integral Equation (EFIE)

6.2.1 Theory

The EFIE for the problem is:

E'p) =5 [ 6H 31 0o i (6.1)
where
P )
E'(p) = ~ 1o (Bp) (6.2)

dwe
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Fence:

HP(Bp) = — / JAYHEB | p— 7 )ds (6.3)

S

The total field a distance d above the surface is then:

E"(s") = E'(¢") + ES(p") (6.4)
which is:
BT =~ (w0 + |66 16 - o s (6.5)
pr)=—g—| " Bp L P p—p |)ds :

-}
Using unit weights and pulse basis functions, the Method of Moments [18] allows us express

tle EFIE in matrix form thus:
(E) =(2)(J) (6.6)

waere (F) and (J) are rank N column vectors and (Z) is an N x N matrix where N is the
number of discretisations taken of the surface (normally of length % to ensure convergence).

Tae entries in (£) and (J) are:

E'(p)) (6.7)
ard

J(p}) (6.8)
fori,j=1...N

The entries in (Z) are:

5y

Zij~ =M (B o — £ D As, (6.9)

fori,d=1...N;is].

The diagonal entries in the impedance matrix require special attention because the Hankel
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function is singular at zero.

For small arguments the Hankel function can be replaced by a power series expansion [16]:
HP (@)~ [1- cll PR 1Y e Y| + o) 6.10)
PHAES 1 T2 or 27 V2 - e

- where v = 1.781072418.. ..

Assuming the curvature of the segment is small enough that it can be considered flat,
the dominant terms in (6.10) can be retained to give:
Sn/2 2
HP (Bz)da ~ 2/ [1 - i—ln(ﬁ)] dx (6.11)
L 0 7T 2

which gives:

B, .2, (L781pAs
Z.,»,~—Ab4 1 Lwln T (6.12)

fard =,
The solution for the current is obtained by inverting (Z).

Following an analysis, the field coverage results for the Danish and German profiles ob-

tained using the EFIE (PEC Model), are presented.
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6.2.2 Analysis of Results

The results for the Danish profiles are important in that they exhibit clearly field decay
with distance from the source on the fashion of the inverse square root of this distance.
The reason for this clarity is that most or all the surface is irradiated directly by the source
and the surface profiles are relatively flat in comparison with the German profile.

Having previously noted the correlation between the coverage results and the surface a
good 'rule of thumb’ in estimating field coverage over terrain is to correlate the field decay
given by the inverse root of distance from the source with the surface profile.

The results obtained for the Danish and German profiles at 144M Hz and 970M Hz all

indicate that shadowing is more pronounced at higher frequencies.

6.2.3 Tabulated Characteristic Data

Computational Cost Memory Requirement Complexity of Code
O(N?) O(N) Simple
Table 6.1: Computational Features of the EFIE

Jerslev Hjorring German

900 3400 410

Table 6.2: Computation times for Electric Field Coverage at 144MHz over the Jerslev (Danish),
Hjorring (Danish) and German profiles.

Jerslev Hjorring German

45000 170000 20500

Table 6.3: Computation times for Electric Field Coverage at 970MHz over the Jerslev (Danish),
Hjorring (Danish) and German profiles.
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FAST INTEGRAL EQUATION METHODS

This chapter is the central focus of this thesis.

Here fast computational methods based on the EFIE are examined.

This chapter provides the basis for the assertion that the Field Extrapolation Method is
the fastest and most efficient method yet developed for the terrain scattering problem.

The fast integral equation methods are discussed in the following order:

1) The Natural Basis (NBS).

2) The Green’s Function Perturbation Method (GFPM).

3) The Fast Multipole Method (FMM)/Fast Far-Field Approximation (FAFFA).
4) The Tabulated Interaction Method (TIM).

5) The Field Extrapolation Method (FEM).

3) to 5) are methods which evaluate the scattered field by grouping terrain segments.
For the Danish profiles groups of 100\ are taken whereas for the more demanding German
profile the groups are 3.

Henceforth the results generated by the EFIE for a PEC surface will be referred to as the

"Exact’ results.
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7.1 The Natural Basis Method (INBS)

7.1.1 Theory

The Method of Moments gives us the freedom to choose basis functions.

The closer the basis function chosen approximates the solution of the integral equation,

the quicker the inversion of the impedance matrix.

One such assumption [57] is that the phase of the surface current is dominated by, and is,

7/2 radians out of phase with the field incident on the surface from the source.

This follows from Faraday’s Law.

The assumption is reasonable for slowly undulating surfaces (because for an infinite flat

surface it would be exact) at a distance along the surface from the source where the

amplitude of the scattered field is small in comparison to the field incident from the

source.

This will occur due to scattering into the atmosphere and absorption of scattered radiation

by the surface.

The beauty of the NBS is its simplicity and the statement it makes; that it is possible,
a priori, to make assumptions about the nature of the solution.

As we shall see all the methods in this chapter can be interpreted as ’basis methods’, more
sophisticated than the NBS in that a basis set is calculated dynamically.

The following table gives the salient data for the NBS followed by the results for the Danish
and German Profiles, supplied courtesy of Teltec Ireland. ’'C’ represents an arbitrary

constant.
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7.1.2 Analysis of Results

The NBS clearly gives excellent results for the Jerslev profile. This is accounted for by the
fact that this is a smooth and relatively flat profile and importantly, all of it is irradiated
directly by the source so the resultant total field coverage is dominated by the field incident
from the source.

This is not true for the German profile and so significant deviation from the exact results
occur especially in the second trough which is the steepest and is not illuminated directly
by the source.

The results are somewhat better in the first and third troughs. The reason for this is that

these troughs are partially illuminated by the source.

7.1.3 Tabulated Characteristic Data

Computational Cost Memory Requirement Complexity of Code
O(N/C)? O(N/C) Simple

Table 7.1: Computational Features of the NBS

Jerslev German

8 50

Table 7.2: Computation times for Electric Field Coverage at 970MHz over the Jerslev (Danish)
and German profiles.
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7.1.4 Results
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7.2 The Greens Function Perturbation Method (GFPM)

7.2.1 Theory

This method developed by Moroney and Cullen [58] [59] [60] approximates the RHS of the
EFIE with a convolution.
A convolution can be inverted using an inverse FFT algorithm.

This is less computationally intensive than the MOM.
Consider the EFIE for a PEC:

.ﬂuo=AJ@wﬁme—mwd (7.1)

Now we introduce the change of variable central to the desired conversion.

Through the arc-length relation with the independent variable z,

1¢(
5—/ \/1+ (611 dw (7.2)

the distance between the source and observation points on the surface:

o= Pl = V(@ =) +(¢() - ()’ (7.3)
becomes
d(s,s) = /(f(p) = F(p)2+ (C(f(p) — C(f()))? (7.4)
~ g(s— )

- where d(s,s’) and g(s — s') are the Euclidean distance and distance along the surface
trajectory respectively, between the points s and s'.

We now write:

1391 0= 1) =1 (Bl - )VIF TG (7.5)

where:

HOBFIGAE C(flp) = C(FONY?
] +[ i) ] (7.6)
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and
[T = T (7.7)
which will be satisfied when:
d /!
g(s—s") > —(82’—5) (7.8)
Hence (7.5) can be expanded using the Binomial Theorem giving:
HE (B | o= o 1) =M (Bg(s = ') + B(s, s)Bg(s = 5)) (7.9)
where:
S 1
B(s,s') = . ;
(5,5 m; (m> (7.10)
(7.11)
SR AR B
(7.9) can now be expanded as a Taylor series about Bg(s — s') giving:
@ (31— (2) [Bg(s ()" /
Ho (Ble—10p"1)=Hy (By(s Z H(o) (Bg(s—s'))  (7.12)
where:
HY (z) = <8 H (2) (7.13)
dxm :
Replacing the Hankel function in (7.1) we have:
O [
E'() = =L [ M Bats - )i (7.14)
B — [Bg(s — s")B
= B[y >0 BB (g s - pas

Approximating (7.1) with the first integral - which is a convolution in s, we can solve for

the current using an FFT.

Then:

sy 5 (2D m]

FIHY (Bg(p

(7.15)



7.2. The Greens Function Perturbation Method (GFPM) 58

- from which the scattered field can be calculated using (2.40).

A CC reduction to O(Nlog(N)) is given by inversion using the FFT.

The method should be used only on slowly undulating terrain because the Euclidean
distance and the distance along the surface trajectory have been approximated as being
equal.

The salient data regarding GFPM is given in the table below followed by the results for

the Danish and German profiles.
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7.2.2 Analysis of Results

The following results given by the GFPM show very good agreement with the exact results
for the Danish profiles. This is to be expected because these profiles do not undulate rapidly
or to any great degree. Hence the approximation of arc-length with Euclidean distance is
shown to hold well enough to give good results for these profiles. The same does not hold
true for the German profile which is mountainous. Here the GFPM results are so poor
they indicate only an approximate average coverage and a decay in field intensity with
distance from the source. Clearly GFPM is limited in its application to terrain profiles
giving good results for smooth and slowly undulating profiles only. The reduction on order
of complexity of the algorithm from O(N?) to O(N log N), though an improvement, does
not represent a speedy solution (a matter of seconds). Hence the GFPM like the NBS,
though able to give good results for the Danish profiles, are not sufficient in terms of speed
and range of application to different type terrain profiles to justify use of integral equation

methods to estimate field coverage over suburban terrain.

7.2.3 Tabulated Characteristic Data

Computational Cost Memory Requirement Complexity of Code
O(Nlog(N)) O(N) Complex
Table 7.3: Computational Features of the GFPM

Jerslev Hjorring German

6 20 12

Table 7.4: Computation times for Electric Field Coverage at 144MHz over the Jerslev (Danish),
Hjorring (Danish) and German profiles.

Jerslev Hjorring German

25 100 a0

Table 7.5: Computation times for Electric Field Coverage at 970MHz over the Jerslev (Danish),
Hjorring (Danish) and German profiles.
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7.3 Fast Multipole Method/Fast Far Field Approximation

7.3.1 Theory (FMM)

Developed by Rokhlin[61], the FMM or variations thereof, according to Peterson[16], "ap-
pear to offer the most efficient possibilities yet proposed for the accurate numerical analysis
of electrically large geometries, where N may be far greater than 10*.
It was the first method to propose dividing the scatterer into groups of integration inter-
vals.
The FFFA [8], TIM [25] and my own method, the FEM [62], take this approach.
This subsection gives the derivation of the FMM for the 2-D EM scattering case for a PEC
according to [9].
I will relate the FFFA | TIM and FEM to the FMM on the basis of this derivation which
will provide the mathematical insight necessary to determine the range of application of
the fast methods which follow, as well as a means of comparison.
Consider the EFIE in matrix form with unit pulse basis and weighting functions:

(£) =(2)(J) (7.16)

The scattering surface of V, % integration intervals, is divided into M sub-scatterers or
groups.

For interactions between groups GG; and G the impedance matrix can be rewritten:

(2] = [B]"[A](B] (7.17)
where [B]T,[A] and [B] are 1 x P, P x P and P x 1 matrices respectively.
The entries in [A] and [B] are:

anm(la ll) == H£z2—)n1(/3 ‘ pPL— pr |)e—i(n—m)¢”, (718)
and
bi(4, 1) = Fi(8 | or — pr )i (7.19)

- where ¢ is the angle p; — py makes with the horizontal and similarly for ¢y ;.

N/M

EI([)J‘) = 542[)[7:] Z ay ZbilJ(pi)ASi (720)

I=11£  ieG,
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- where j€ Gpand ' =1... &

Fcr interactions between elements of the same group (7.16)is used. For (7.20) to be accurate
P =~ ¢M where c is a constant.

Hence the computational cost of the outer summation of (7.20) is O(N?) and so there is
no advantage at this point in this formulation of the EFIE.

However the CC of (7.20) can be substantially reduced if [A] can be diagonalized.

To this end we substitute the definitions for a and b given in Chew (7] [11] [12] [13] in

(7.20) so it becomes:

(2)(6 I b _p] Z jm ﬁp " zm(d’;u =) Z H ﬂpl 1(m—n)¢,,, (721)

m=—00 n=—oo

x Tn(Bpir)e” "%

Referring to (7.22), even though Hf,z)_n(z) — 00 when | m—n |— oo, the above summations
will converge because 7, (z) — 0 when | n |— oo.

The inner summation is the convolution of two DFTs and hence can be expressed as the
product of two functions if their DFTs are known.

The DFT of H (z)e™™* does not exist since H'P (2) — oo when | n |— .

However we can truncate the inner summation since it converges and write (7.22) as

m+P
S8 pi - Z Tm(Bpv;)e™ it - Z HE (Bpw)e " m=mer (7.22)
m=—00 n=m—P
X Tn(Bpi)e "%
Via the identity [6]:
) 1 2r : N
jm(ﬁ[)['j)ezmd’“j _ 2_ / ezﬂp,;j cos(a—¢l,]—)+zm(a—7)da (723)
T Jo
and similarly for J;(Bpg)e™?t we can write:
(2) 1 2m
(Bpij) = 2—/ burj (@) a ()b (a)da (7.24)
™ Jo
where:
P .
aw(a) = Y HP (Bpw)e POwte3) (7.25)

p=—FP
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bllj(CY) =L eil@/’l’j cos(a—q&,:j) (726)
and
bu(a) = gtPpit cos(a—air) (7.2%)

where now the cylindrical waves of (7.22) appear as plane waves in the integrand of (7.24)
and a is replaced by the diagonal operator a; ().

Now using (7.24) in (7.20) we have:

N
M
El(pj) E ?/ b[f Z (L”l szl JAS, (728)

=LAl 1€G)

which replaced by a @ point summation yields:

N/M
VUNO Z )l’ a Z (Lul((Yq) Z b,-l(aq)JiAsi (729)
i=11A1" 1€G)

This is the FMM formulation.
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7.3.2 Theory (FAFFA)

The FAFFA developed by Chew [8] [9] is derived from the FMM. It can be considered to
be a form of the FMM.
Considering (7.24), the FFFA can be derived from the FMM in the following way:

N dw

Figure 7.9: FAFFA scattering geometry. The upper diagram shows the angles ¢;; and ¢y sub-
tended by group G; with the horizontal. The lower diagram shows groups G; and Gy of \/4
discretisations of the surface, their centrepoints [ and ', the position vector p; — py connecting
them and arbitrary points ¢ and 7 on the respective groups.

’ i) 2w
ng)(ﬁpz]) = —2?/ bl/j(a)a”:(a)bil(a)da (730)
0
where:
P .
aw (o) = Z HE (Bpu e~ P owte3) (7.31)
p=—P

bu(cr) = ePers os(o=du;) (7.32)
and

b”(a) — eiﬁpucos(a—rbu) (733)

aw («) above diverges as P — oo, which does not occur if we use the far-field approximation

th

to the p" order Hankel function:

_ ) y =
HP (z) = 4 ;T%e‘z("”f” (7.34)
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which allows us to wrie (7.31) as:
. P
am(a) =~ e~ Bru e~ (¢ —a) 7.35
w(@) Wﬁ’)u' :Z_: (750
_ —ippy SI(( + 3) (G — a))
7T/3)[[l SlIl (¢[[I = a))
As P — oc:
21 . sit((P + & =« T
l e—lﬁp”/ (( )(¢” )) - 7('(1 ¢ll) 6(0( ore. ¢ll’) (736)
Wﬁp”l SlIl( (d)ll’ - CY)) SIH(E(O{ o d)ll’))
where:
. sin(ax)
1 = ¥lq .
i sl (7.37)
- 6() is the Dirac-delta function.
Hence:
5 (o — o)
Ao = Bpyy S — b 738
ay (@ - a :
ur (@) 7B pw sin(3(a — ¢uw)) Cadiy 353
for P — oc.
With this definition of ay(a) (7.30) becomes:
2 = (o — o)
Bp; — Wu'/ b §(a — gy )by (a)da 7.39
( p]) \/”5/)[[’ A Sln(%(a—¢ul)) ( ¢”) l( ) ( )
which from L’Hopital’s rule:
lim —— =g (7.40)
s sin(%) '
becomnes:
MO (Bpi) = [ e by (G10)bul ) (7.41)
Tﬁpu'
- which with by; and by in there above defined form gives:
H(()2) (,{3sz) ~ 21’ e—i/3p“/ e’iﬂl’llj cos(¢“, -‘¢‘1'j)ei/3pil C05(¢“r —i1) (742)
\/ T Bpur
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which substituted into the discrete form of the EFIE yields:

Gl<Gll
EI(,O]') - Z 7_—((()2)(ﬂpw)eiﬁmz cos(¢yr —yr;)) Z J(pi)eiﬂA“ cos(q&,,,—(pi,))As; (7.43)
JEGUEFF 1€EGEFF
1<y
g ) HP (Bow) T (p)As'
1I€EGIENF

- which is the Fast Far-Field Approximation.

This formulation amounts to assuming p in the amplitude component of the far-field

approximation to the Hankel function is constant:
Pij = pu' (7.44)

and in the phase component:

=

pij = pw - prj+ pw + pw - pa (7.45)

Note as with (7.29) reduction in complexity is achieved because the following sum can be
reused:

> JlpePouoslinall gl (7.46)

i€GIEFF

Lu and Chew [8] propose further reduction in complexity by performing the above sum-
mation for a number of values of the argument of the exponential in the range [—7, 7]
and using an interpolation procedure to arrive at an approximation for the complete sum.
This brings the CC to O(N'3?).
[47] propose nesting the algorithm (a multilevel algorithm) which in the limiting case
brings the CC to O(N log V).
[14] also develops a variation to the FMM — FFFA progression above.
It is what he terms a 'Ray Propagation Fast Multipole Algorithm’.
Like the FFFA it is based on the FMM.
In contrast with the FFFA, P /4 oo in (7.36) above but takes a large value giving oy a
spiked oscillatory form.

This is termed a ’ray’ and interactions between groups take the form of this ray with
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side-lobes filtered out.

It is a lucid formulation of an idea tackled by Canning [43] [44] [45] [46] - introducing
sparsity to the impedance matrix by defining a radiation pattern.

The salient facts about the FAFFA are given in the table, followed by results for the Danish

and German profiles.
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7.3.3 Aralysis of Results

the results given by the FAFFA show excellent agreement with the exact results for the
Danish proiles. For the more demanding German profile the results deteriorate somewhat
from the exact most noticeably in the troughs where the distance approximation is less
accurate due to the greater surface curvature.

This can be overcome by choosing a smaller groupsize. Indeed a groupsize of one quarter
the radiaticn wavelength leads to an numerically exact implementation of the EFIE.

The FAFFA is a clear improvement on the NBS and GFPM producing good results for the
demanding German profile where the NBS and GFPM failed and doing so with a reduced

order of conplexity in the algorithm.

7.3.4 Tabulated Characteristic Data

Computational Cost Memory Requirement Complexity of Code
O(CiN?/M + C,NM) O(N/M) Complex
Table 7.6: Computational Features of the FAFFA

Jerslev Hjorring German

80 300 25

Table 7.7: Cemputation times for Electric Field Coverage at 144MHz over the Jerslev (Danish),
Hjorring (Danish) and German profiles.

Jerslev Hjorring German

4000 15000 1200

Table 7.8: Computation times for Electric Field Coverage at 970MHz over the Jerslev (Danish),
Hjorring (Danish) and German profiles.
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Figure 7.13: Comparative Plot of the Electric Field Coverage at 970MHz over the Hjorring profile.
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7.4 The Tabulated Interaction Method (TIM)

7.4.1 Theory

Brennan and Cullen [25] ... [41] propose a separate program to precompute and store the
summation in (7.46) for a range of incident and scattering angles ¢y — ¢y; and ¢y — ¢y
respectively.

Multitude of Reflected Plane Waves

Incident Plane Wave

)

Segment of Flat Terrain

Figure 7.16: TIM scattering geometry showing an incident plane wave on a flat segment of surface
being considered to scatter a multitude of plane waves.

From (7.44) and (2.40):

E' ) = E(pv) e
Gi1<Gy <M
Z M (Bpw) Z et cos(bur =du;) (B A cos(bw =¢il) 7 () A s,
Gy=0 =0

Where the groups can be taken to be flat plates without too much distortion of the surface,

(7.48) can be written locally (i.e. over a plate) to a good approximation:
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E'(pr) = E(pv) (7.48)
G <Gy <M
_ Z H(()Z)(ﬂpu')E(Pl') Z e(lﬁAHj C°5(¢u'—¢l'1)e(1ﬂAil cos(¢yyr —¢il)
GUZO =0

X JPlane(pia ¢ll’ N (bil)AS;'

- where Jpjane is obtained from the EFIE with incident field a unit amplitude plane wave.
The functional dependence of the summation over the current on angle of incident and
scattered radiation can be established by creating a lookup table for this summation tab-
ulated w.r.t. ¢y — ¢y and ¢y — @y

ET(1) is the total field incident at point [ on the Ith plate. As such it is the sum of the

radiation incident on the [th plate over a range of angles of incidence ¢y — ;.

Hence:
E'(p;) = E"(p) (7.49)

G <Gy ¢=(dyr —dit)maz

— N HPBow) > ET(dw — a)
Gi1=0 ¢=(byr —dit)min
i<M

X Z e(iﬁAllj COS(¢111—¢zlj)e(iﬁAu COS((b”I—d)”)JPlane(pi) ¢”, ., ¢il)A8'Ii
i=0

- from which E*(p;) is determined.

The total field above the surface is then:

E(p") = E'(p") (7.50)
G1<Gy i<M
B Z Hg?)(ﬂ | By — /)H |)E(pl) Z e(lﬂAl:j cos( ¢y —-¢uj)e(lﬂAit cos(¢yr —ir)
Gy=0 i=0

X Jpiane(pi b — du)As;

The salient facts about TIM are given in the table followed by results for the Danish and

German profiles.
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7.4.2 Analysis of Results

The results given by the TIM are similar to those given by the FAFFA illustrating that it
is possible to obtain good results with tabulation via a plane wave approximation.

This yields no computational advantage in itself but where a number of trials are per-
formed, computation times are much improved because it is necessary to create the table
only once.

This is the useful feature of TIM and would come into play where one is investigating
coverage over different terrain profiles where the same groupsize would be used.

Were coverage at different frequencies to be investigated it would be disadvantageous to
use TIM since the table would have to be re-evaluated for each frequency.

TIM suffers from the disadvantage that unlike the FAFFA| this algorithm does not con-
verge to the EFIE with decreasing groupsize. The reason for this is that edge effects
become significant in the results generated for the table (from finite length plates) giving
rise to greater inaccuracies as the groupsize gets smaller.

This means TIM unlike the FAFFA and the FEM (which is introduced presently) is limited
in the types of terrain for which it can produce good results.

This limitation is illustrated in the following results where the groupsize is taken to be one
wavelength.

Here the results obtained, instead of converging to the exact, break down.
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7.4.3 Tabulated Characteristic Data

Computational Cost

Memory Requirement

Complexity of Code

O(C(N/M)? + N/M)

O(N/M)

Complex

O(C'M?)

0(C)

Simple

Table 7.9: Computational Features of the TIM (Main Program/Tabulation Program)

Jerslev

Hjorring

German

0.5

1.5

1

Table 7.10: Computation times for Electric Field Coverage at 144MHz over the Jerslev (Danish),
Hjorring (Danish) and German profiles.

Jerslev

Hjorring

German

25

80

50

Table 7.11: Computation times for Electric Field Coverage at 970MHz over the Jerslev (Danish),
Hjorring (Danish) and German profiles.
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7.4.4 Results

-20

T T
-30 - Exact ]
3
-40 R —]
\
-50 |\ —
-0 |-

270 = TRuaa2 ™

DecibelsdB

- 80 |- | Sy G ) —
S Yo I = X R
-100 |-

-110 |~

A ¥/ . —
=120 I~

1 N\ —
-130 i

1 1
o 1000 2000 3000
Meters/im

Figure 7.17: Comparative Plot of the Electric Field Coverage at 144MHz over the Jerslev profile.
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Figure 7.18: Comparative Plot of the Electric Field Coverage at 970MHz over the Jerslev profile.
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Figure 7.19: Comparative Plot of the Electric Field Coverage at 144MHz over the Hjorring profile
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Figure 7.20: Comparative Plot of the Electric Field Coverage at 970MHz over the Hjorring profile.
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Figure 7.21: Comparative Plot of the Electric Field Coverage at 144MHz over the German profile.
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Figure 7.22: Comparative Plot of the Electric Field Coverage at 970MHz over the German profile.
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Figure 7.23: Comparative Plot of the Electric Field Coverage at 970MHz over the German profile
with plate length of 1.
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75 The Field Extrapolation Method (FEM)

7.5.1 Theory

Tlis method eliminates the need to calculate or look up the summation over the current

in the FAFFA formulation.

From (7.1):
E(p;
T = 22 (.51)
Sel f
G[<Gll
Bl = Z HP (Bow) S Zp‘ HP (Bpa)As' (7.52)

1€G)

- vhere J(p;) has been replaced by the first term of the discrete form of the EFIE -
E(2:)/Zseis-

[,l' refer now to the last segment in the scattering and receiving groups (this is a matter
of convenience which will become apparent).

Th formulation of (7.52) thus amounts to considering interactions between the last seg-
meat in each group.

The contribution of the other segments to the solution is considered by their interaction
wita the last segment.

Now [ assume:

1) The total field over a segment or group of segments takes the form of the field in-
cident from the source.

2) All groups refer to approximately flat (but not necessarily horizontal) terrain.

3) Group - group interactions are characterised by very oblique angles of incidence

(Forward Scattering Model).

The Green’s function is taken here as the far-field form of the Hankel function which

is easy to manipulate algebraically.
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These assumptions allow me write:
E(p:) = AR (Bp:) (7.53)

as the form of the field incident on any group, where A is a constant.

Were we to consider a flat plate of finite length in free space illuminated by the source the
total field incident on the last segment (due to the source and forward propagation from
previous segments) would be:

HP (B HE (Bpu)
E"(p) = AZ Bours ( l)As

1€G
@ a5

= E(pz)ZHO (ﬂpz)g" Bow) 5 g
icc, ZsasHy (Bor)

NIM 5 (2) ()
H o ; p
i=0 ZSelfHo (ﬂﬂl)
Hence:
E(p; E )
3 (0 31 (3 as’ = cELI A (7.55)
iy < RER Zself
where
N/M (2)
H, ; i) A 4
o= 3 oM ) (7.56)
i=0 ZSelfHo (ﬁﬂ)
Now (7.52) can be written:
G1<Gl/
E'(pr) = HY (B pu 7.57
/01 ZSelf GZ:O 5,011 ) ( )

- which is the FEM formulation.

It should be noted that 'C’ needs to be evaluated only once throughout the program.
Hence the summation of (7.55) has been eliminated from (7.52).

This is analogous to eliminating (7.46) from the FAFFA and TIM.

From (2.40) the scattered field above the surface is then:

G[<G[I

S E(HP (B | p—p" AS (7.58)

(1'[———0

C

ES /! —
(") Zouts
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- where C appears here having the same value as before.

The FEM is adaptive in that groups of unequal size may be used.

As a 'grouping’ algorithm the relationship between the FEM and the FMM based solutions
(FMM, FFFA, TIM) is clear.

However from equations (7.24), (7.44) and (7.50) the FMM, FAFFA and TIM are N/M-
point EFIE algorithms with unit pulse basis functions and weights b;/; and b; applied about
the group centre-points as part of a dynamic algorithm (as opposed to a ’fixed’ algorithm
such as the Natural Basis Method [57] which we have seen proposes a basis function of
¢~iP®(E' () along the terrain).

The FEM distinguishes itself from these algorithms in that it cannot be interpreted so.
The solution for the surface current is assumed in (7.55).

The salient facts for the FEM are given in the table followed by results for the Danish and

German profiles.
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7.5.2 Analysis of Results

The results given by the FEM show excellent agreement with the exact results.

Again in the German profile there is some deviation from the exact, most noticeably in
the second (steepest) trough, though not to the extent of any of the previous methods.
Unlike the FAFFA and TIM, the FEM completely obviates the summation over the current,
replacing it instead with a constant.

Unlike the TIM and like the FAFFA, the FEM converges to the EFIE for smaller group

sizes.

7.5.3 Tabulated Characteristic Data

Computational Cost Memory Requirement Complexity of Code
O(N/M)?) O(N/M) Very Simple
Table 7.12: Computational Features of the FEM

Jerslev Hjorring German

0.0008 0.04 0.7

Table 7.13: Computation times for Electric Field Coverage at 144MHz over the Jerslev (Danish),
Hjorring (Danish) and German profiles.

Jerslev Hjorring German

0.04 0.2 35

Table 7.14: Computation times for Electric Field Coverage at 970MHz over the Jerslev (Danish),
Hjorring (Danish) and German profiles.
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7.5.4 Results
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Figure 7.24: Electric Field Coverage at 144MHz over the Jerslev profile.
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7.25: Comparative Plot of the Electric Field Coverage at 970MHz over the Jerslev profile.
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Figure 7.27: Comparative Plot of the Electric Field Coverage at 970MHz over the Hjorring profile.
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7.6 Comparison of PEC Methods

7.6.1 Introduction

Here I will compare results given in this section. The purpose of this comparison is to
advise the reader on the applicability of each method to the sub-urban scattering problem
and also as a means of highlighting the effectiveness of the FEM.

GFPM and the Natural Basis have been ignored because they break down on the German
profile.

It is clear there is little difference in the results given by the FAFFA, TIM and the FEM
except at the second and third troughs of the German profile where the approximate
methods diverge somewhat from the exact.

The second trough is the deepest in the German profile and so is the most demanding.
The problem can be overcome by reducing the group-size in the FAFFA and FEM.

The order of complexity and memory requirements of the FEM are smaller than the FAFFA
and the TIM. The code is very simple in comparison with the FAFFA and TIM. The FEM
is thus the most appropriate fast integral equation algorithm to calculate field coverage
over terrain.

The following tables are a compilation of the salient data for the above methods.
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7.6.2 Tabulated Characteristic Data

Method cC Memory Code Complexity
FAFFA O(CiN?/M + | O(N/M) Complex
CoNM)
TIM O(C(N/M)? + | O(N/M) Complex
N/M)
TIM(Tab) O(CM?) O(M) Simple
FEM O(N/M)?) O(N/M) Very Simple
Table 7.15: Computational Features of the FAFFA, TIM and FEM.
Method Jerslev Hjorring German
Exact 900/45000 3400/170000 410/20500
FAFFA 80/4000 300/15000 25/1200
TIM 0.5/25 1.6/80 1/50
TIM(Tab) 250/400 1000/1800 6500/8000
FEM 0.0008/0.04 0.004/0.2 0.7/35

Table 7.16: Computation times for Electric Field Coverage at 144/970MHz over the Jerslev

(Danish), Hjorring (Danish) and German profiles.
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7.6.3 Results
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Figure 7.32: Comparative Plot of the Electric Field Coverage at 144MHz over the Hjorring profile.
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Figure 7.33: Comparative Plot of the Electric Field Coverage at 970MHz over the Hjorring profile.
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FEM APPLIED TO ROUGH SURFACES

8.1 Introduction

The terrain profiles used throughout this thesis are two dimensional coordinates given at
every 50M and 10M along the ‘X"’ axis for the Danish and German profiles respectively.
As a consequence of this the terrain profiles are composed of flat segments and the results
for field coverage have been based on these profiles.

In reality however perturbations will exist on the surface which will not be accounted for
by profile data. It is the purpose of this chapter to investigate whether such small-scale
perturbations (clutter) will have a significant effect on coverage and on the FEM algo-
rithm.

In the FEM algorithm (7.56) will be used on a sample of rough surface. Following dis-
cussion on the generation of a rough surface profile, the modified FEM algorithm will be

tested for convergence with the exact solution.

8.2 A Model for Clutter

The model for clutter developed here is a statistical model. Here I will use a Gaussian
distribution to represent variations in surface height not included in the original profile.

I correlate this distribution with a Sinc function to give an undulating effect. This is
achieved by virtue of the sinusoidal form of the Sinc function and also due to the fact that
as a correlation function it acts to filter out high frequency undulations giving a realistic
model for perturbations of the surface profile.

To see exactly how this is achieved I first present the procedure used to generate the model.

It is generated independently and superimposed on the original profile.
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This procedure to generate the clutter model is general so arbitrary probability density

functions and correlation functions can be used.

1) Generate a uniformly distributed random process 'y’.
(This is done using the standard ’C’ library function 'rand()’.)
2) Apply the mapping y — f(y) where:

f(y) = V20erf(y) (8.1)

3) Obtain the FT of f(y) and the desired correlation function.
4) Obtain the inverse F'T of the product.

The result is a correlated stationary stochastic process with a Gaussian p.d.f..

The theory behind this procedure is as follows:
Consider the random variable 'y’ representing surface height. Its probability distribution

function P(y) is defined as:
P(y) = Probly < a] (8.2)

- i.e. the probability that the random variable y assumes a value less than some given
number .

The probability density function is then defined as:
dP(y)
p(y) = !

dy
which has the obvious property that:

/ ply)dy = 1 (8.4)

(8.3)

The autocorrelation (or the function with which the probability distribution is correlated)

is defined as:

o(r) = / y(@)y(z + 7)dz (8.5)

- where x represents horizontal distance.

A stochastic process is said to be strictly stationary if all its statistical properties are
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independent of time. Perturbations of the surface are clearly a strictly stationary process.
Taking the Fourier Transform of both sides we obtain the well known Wiener-Kintchine

relation which is:

Flo(r)] = &) (8.6)
= | Fw) [’

- where € (w) is referred to as the power spectral density.

If £(w) is constant over w then the random process is termed 'white noise’.

White noise is where a random variable distribution is uncorrelated (see below) and exists
at all sampling frequencies.

The uniformly distributed process obtained in 1) is taken to be white which implies its
auto correlation function is the Dirac delta function - 6(7).

As a uniformly distributed random variable its probability density function is a constant
(say unity) over a finite range. To determine a random variable f(y) which has a Gaus-
sian probability density function given the uniformly distributed random variable ¥, is to

evaluate the function 'f’ given via the identity:

/(ly = ﬁ / e;rp_[%ﬁdf(y) (8.7)

- which gives the mapping in 2).

Because the Sinc function is a pulse in the frequency domain, it acts as a low-pass filter.
This rids us of the high-frequency (grassy) components.

The product of the Fourier Transforms of f(y) and the Sinc function performs this filtering
which is step 3) above.

The inverse Fourier Transform of the result (step 4))then gives the spatial domain ran-
domly distributed variable with a Gaussian distribution correlated with the Sinc function.
I have used the term "Fourier Transform’ loosely above. Specifically, I have used the Dis-
crete Fourier Transform.

The Fourier Transform of a signal is defined as:

F(fly) = Fw)
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The Discrete Time Fourier Transform is the Fourier Transform of a sampled signal and it

follows that it is defined by:

Forer(f(y) = F(f())

n=+oo

= 7 > Flo— ) (8.9)

n=—oo

The Discrete Fourier Transform is then a sampled Fourier Transform of a truncated sam-
pled signal.
It folows from this that it is defined by:

Forr = F(f*™(y))

N-1 :
e Z f(ky)e—127rnk/N (810)
k=0

- where n = 0....N — 1, from which one period of the output is taken.

The subscript 's’ denotes sampling and the superscript ‘trunc’ truncation.

The egorithm used throughout this thesis where Fourier Transforms are encountered is
the Fist Fourier Transform. A derivation of this algorithm and the latter two identities
are given in the appendix.

Becatse the FEM is the most efficient method for evaluating field coverage over terrain, I
now use it to estimate coverage over rough terrain using (7.56) on a sample of rough surface
equal in length to the group-size. This effectivley models the distorted signal strength on
rough surfaces as evinced by the following comparative plots at 144MHz and 970MHz on
the German profile.

8.2.1 Analysis of Results

Correation of a Gaussian distribution with the Sinc function gives a realistic model for sur-
face perturbations. The results show that with increased roughness due either to increased
ampliude or frequency of the perturbations or both is mirrored by the results obtained
for the field coverage, but as with the smooth profile itself, the field results for the smooth
profile remain the mean. The FEM algorithm does not break down when applied to rough
surfacss and internal resonance does not occur within the surface perturbations to the

extent that they effect the overall results.
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8.2.2 Results
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Figure 8.1: 100M of Smooth and Rough German Terrain. Amplitude and frequency of the 'Sinc
function are 1.0M and 1.0 rad/s respectively.
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Figure 8.2: 100M of Smooth and Rough German Terrain. Amplitude and frequency of the 'Sinc’
function are 5.0M and 1.0 rad/s respectively.



Meters

8.2. A Model for Clutter

99

291
390
389
388
387
386
385
384

br gl S
~"'~~
Y Bkt o o VST Y 6 3 4 G AWPNT 41

Rough

20

40

Meters

60

80

100

Figure 8.3: 100M of Smooth and Rough German Terrain. Amplitude and frequency of the ’Sinc’
function are 1.0M and 5.0 rad/s respectively.
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Figure 8.7: Comparative Plot of the Electric Field coverage at 970MHz over the rough German
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Figure 8.12: Comparative Plot of the Field Coverage at 144MHz over Rough German Terrain.
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REVIEW OF SCATTERING METHODS

Here I will discuss briefly five non-integral equation methods that may be used to calculate
the scattered field and importantly point out the advantages and disadvantages of each.

The purpose of this section is to prepare the reader for the conclusion to this thesis.

9.1 The Physical Optics Approximation (PO)

The Physical Optics approximation (PO) or Fresnel/Kirchoff theory is the fastest approx-
imate means with which to determine the field scattered by a surface, having O(N) as its
order of complexity. This feature of the PO has led to algorithms which model diffraction
effects given by undulations on the surface with those effects given by flat screens placed
perpendicular to a flat surface. These results are then used in conjunction with the PO
to build up a canonical solution for the scattered field. The PO is easily explained by
examining the MFIE:
1
7 x HY(p) = 5(7’1. x H(p")) - /(ﬁ x H(p')) x V' x G(p, p')ds’' (9.1)
S

- where the above integral is a Cauchy integral. If the surface is infinite, flat and irradiated

by a ubiquitous plane wave, the surface current is determined exactly from:
1. /
5 (> H(p)) (9.2)

The reason for this is that the Cauchy integral is zero because the radiation scattered to
a point from either side cancels completely. The approximation breaks down for finite
and/or rough surfaces and where the source does not give ubiquitous near-plane wave

coverage.
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Advantages:
e The PO gives the fastest obtainable results for the scattered field.

e The PO algorithm is the simplest available.

Disadvantage:
e The PO gives reasonable results only where the surface is long and almost flat and the

field incident on the surface is approximately plane.
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9.2 The Impedance Boundary Condition (IBC)

The Impedance Boundary Condition relates the Surface Electric and Magnetic Currents.

It can be written:
M, (t) =n,J(E) x AlE) (9.3)

- where 7, is the surface impedance - Peterson [16].
As a consequence of this relation, an Electric Field Integral Equation for a dielectric can
be written entirely in terms of the equivalent surface electric current.

This allows the EFIE for a dielectric to be stated as:

EL(t) + ns(t)J.(t) + iBnoA. + [%Fl% - aa};’ ] (9.4)
T -
where:
A(t) = 2117 / J.(t YHSP (BR)dt (9.5)
Bl = % / in (€)1 (Y H (BR)dt (9.6)
R =/(a(t) — =(t)? + (y(t) + y(t))? (9.7)

and 7 is the intrinsic impedance of free space.

Advantage:
e IBC simplifies the calculation of the field scattered by a dielectric surface by reducing

coupled integral equations to an integral equation in one unknown.

Disdvantages:

e 1), is an empirically derived constant and it is not uniform over an arbitrary surface.

In fact 7, can depend strongly on angle of incidence for some materials - Hoppe [21].

It is suitable for application to materials with a high permittivity or permeability whose

reflection characteristics do not depend strongly on the angle of incidence - Peterson [16].
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9.3 The Parabolic Equation Method (PE)

The Parabolic Equation [22] for fields is an approximation to the elliptic Helmholtz equa-
tion.
The Parabolic equation has as its solution an inverse Fourier Transform.
In cylindrical coordinates the Helmholtz equation is:
0 g7 10? 10
b O 10 10y

2,72
G op ol o UEESY (&8)

Substituting:

1/)(7“, y) = 'u(7 Y) 5//3_7 (9.9)

we get the following equation in u:
0*u ('3221 ou
_2ip2t : -1 = ,
o Tap Mg T [’7 * @pre (25) ] 1 (9.10)
Assuming further that u/4r?> — 0 and ‘) 4|« 26 | 2| yields:
0*u Ju
= - Bif— Pl —1|u=0 k|
a7 B + +/ [1] ] (9.11)

- which is the desired parabolic form.

Advantage:
e Coded FFT algorithms are widely available.

Disadvantages:

e Having as its solution an inverse Fourier Transform, the Parabolic Equation Method,
like GFPM, suffers from the same restrictions giving poor results for uneven surfaces.
eThe inverse transforms are taken along vertical domains.

In theory this domain is infinite. To counteract this the field is forced to taper to zero a
distance above the surface.

This introduces a further approximation and added coding complexity.
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9.4 The Impedance Matrix Localisation Method (IML)

The aim of this method [43] [44] [45] [46] is to generate a sparse impedance matrix which
is cheaper to store and invert. This is done by choosing basis functions, which when used
with the Green’s function, force points on the surface to radiate in a non-isotropic fashion.
In other words, the basis functions, chosen give mathematical expression to ’shining’ yield-
ing an impedance matrix with magnified and reduced entries corresponding to points on
the surface which interact strongly and weakly respectively.

Those entries below a certain threshold can be set to zero producing a sparse matrix.

Advantage:
e This idea is useful for scatterers with a regular shape or where the geometry of the

problem can be expressed simply in canonical form.

Disadvantages:

e Not suitable for rural terrain which is not easily reduced to a canonical form.

e Choice of the appropriate basis function to model interactions must be specific to the
interaction being described.

Given there are many different types of interactions even for simple geometries, it would

be difficult to generate good results.
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9.5 The Geometrical/Uniform Theory of Diffraction (GTD/UTD)

As very high frequencies, the field can be described by geometrical optics.
That is:

E(p) = E(0)e "l (9.12)

This expression for the field contains no diffraction effect.
GTD [54] is an extension of the above to include diffraction effects based on the following

postulates:

1) Fermat’s Principle [53] can be applied to diffracted rays. (For an homogeneous medium
this means diffracted rays follow straight lines).

2) The magnitude of the diffracted ray depends on the incident field and the nature of
the boundary in the neighbourhood of the point of diffraction.

3) The phase of the diffracted ray is proportional to the optical length of the ray.

According to these postulates the diffracted field is proportional to the product of the
incident field and a diffraction coefficient in the same way as the reflected field is propor-
tional to a reflection coefficient in geometrical optics [5].

The diffraction coefficient is determined by taking the asymptotic form of the exact solu-
tion of the canonical problem.

The complete solution for the scattered field is obtained by superposition of reflected and
diffracted rays.

In GTD diffraction coefficients are singular at the boundary.

UTD [55] overcomes these by assuming the incident field is plane, giving less accurate but
robust diffraction coefficients.

Diffraction coefficients for various type boundaries are derived based on GTD and UTD

in various texts, [5] [52].
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Advantages:
e Very suitable for modelling propagation in urban environments because such a problem
is easily reduced to a canonical form because of the generally regular shape of buildings.

e Calculation of field coverage due to reflected rays is an easy matter.

Disadvantages:
e Not suitable for rural terrain which is not easily reduced to a canonical form.

e To obtain good results, selection of the appropriate diffraction coefficient is necessary.
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CONCLUSION

The conclusions this thesis makes are as follows:

e The PEC Model is a suitable model for terrain scattering problems.

Results obtained for the German profile where the terrain is considered to be composed of
clay, sand or loam, superimposed on the result for the PEC Model are similar.

It is thus clear the PEC Model is valid for undulating terrain.

The reason for this is that at grazing incidence most of the radiation is reflected from the

surface i.e. the phenomenon of Total Internal Reflection [52].

e Terrain scattering does not present resonance problems.
Comparison of results generated by the Coupled EFIEs and CFIE being virtually identical
means resonance, which would manifest itself in poor results with the Coupled EFIE [16],

is absent.

e Common terrain materials (clay, sand, loam) yield similar results for the scattered field.

e The FEM is the most appropriate algorithm to solve the terrain scattering problem.
By comparison it is clear the FEM algorithm has the lowest order of complexity of all
integral equation methods presented in this thesis.

It is also the simplest algorithm and is easily adapted to include variable group sizes.
The speed at which the FEM produces good coverage results for terrain is unrivalled.
The simplicity of the algorithm and that it converges to the exact solution with smaller
group sizes suggest no reason why this algorithm cannot be applied to the urban scattering

problem.
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e Small-scale clutter (amplitude < 5M) has a minor distortion effect on coverage.

The FEM converges to the exact solution on the rough terrain model.

e The results presented in this thesis justify the use of integral equations for sub-urban
environments.

Further research based on the FEM should yield acceptable results for urban environments,
up to now the domain of GTD/UTD and Ray-Tracing algorithms.

This is evinced by the fact that the FEM gives accurate results in a fraction of the time

taken by other fast integral equation methods for the German profile which is mountainous.
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APPENDIX A

The Surface Equivalence Principle

Consider the situation depicted in the figure below. Here we have two regions of space
separated by a mathematical surface S. One of the regions is unbounded. Region 1 is
homogeneous with electric and magnetic permeabilities €; and p; where Region 2 contains
inhomogeneities that may include perfectly conducting materials.

A source electric and magnetic current (J, M,) is located in Region 2 and radiating in

Figure 10.1: Two regions of space I'; and I'; separated by a mathematical surface S. Region 1
is homogeneous with (e, 1) and Region 2 contains inhomogeneities that may include perfectly
conducting materials. A source (Jz, M3) in Region 2 produces fields (E,, Hy) throughout Region
1. A second source (J;, M)) located in Region 1 radiates fields (E;, H;) throughout Region 1.

the presence of the inhomogeneities produces fields £; and H, throughout Region 1.
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We postulate also a second source (J;, M;) located in Region 1 but radiating fields F; and
H; in an homogeneous space having constitutive parameters ¢; and ;.

The fields of both sources satisfy the Sommerfeld radiation condition [4] on the boundary
at infinity (S).

Throughout Region 1, Maxwell’s equations can be written:

V x E) = —iwu Hy — M, (10.1)
V x Hy = —iwe By, — J; (10.2)
V x By = —iwp H (10.3)
V x Hy = —iwe1 Fy (10.4)

Therefore in Region 1 we can construct the following equations:

Hy- (VX Ey) = —iwu Hy - Hy — Hy - M (10.5)
By (V x Hy) = iwe, By - By + By - Jy (10.6)
Hy -V x By = —iwm Hy - Hy (10.7)
E, -V x Hy = iwe E; - Ey (10.8)

Combining these equations we get:

Hy - VXE —E -VXxHy+E,-VxH —H -VxEy,=EFEy,-Jy —Hy-M; (10.9)
which is equivalent to:

V- (EyxHy—Ey,x H))=FE,-J1 — Hy- M (10.10)

This is a statement of the Lorentz Reciprocity Theorem.

Integrating both sides over Region 1 and applying the divergence theorem:

/.//FlV.de://LqQ-ﬁdS+//;'wQ.rﬁ/(1S (10.11)
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- where 7 is the normal vector on the surface pointing out of Region 1.

Then:

//S(E1 x Hy — By x Hy) - 7dS = ///F(E2 - Jy — Hy - My)dv (10.12)

- where the integral over the surface at infinity vanishes as a result of the radiation condi-
tion.

Vector identities dictate that:

E\ x Hy-n=—E; - (7 x Hy) (10.13)
and

Eyx H -n=—H, - (Ey X 1) (10.14)
Hence:

/ /SEI (—f x Hy) — Hy - (—Ey x 2)dS = ///F(EQ.J1 _H, Mydv  (10.15)

- which is a general statement of reciprocity.

Let us suppose that sources in Region 1 are described :

Jy=1a6(p—p) (10.16)
and

M, =0 (10.17)

- where p denotes the source point in Region 1 and p’ represents the integration variable.

Then:
1 [ // Ey - (—# x Hy) — H, - (—Ey x #)dS" (10.18)
S

- where E| and H; are the fields produced at location p’ in an infinite homogeneous space
by sources J; and M located at p.
These fields can be expressed as:

V'V + 32 e~ Blp—r'l
Bilp) = 1 10.1
(7)) iweq [1147T|/)—/)’| (10.19)
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and

H() =¥ [ e~ Blp—r'| ]
N=V'x | }—— 10.20
1o dr | p—p' | ( )

-where the derivatives are taken w.r.t. the primed coordinates.

Because of the symmetry of the Green’s function:

V'V [uﬂ] = [u_e-_ﬂli] (10.21)
At | p—p'| Ar | p—p' |
and
V' x [uﬂ] - _Vx [uﬂ] (10.22)
dm | p—p' | dm | p—p' |
Hence:

i Byl / /S [vv HE [ il ] T (10.23)

iwey | p—p' |
[ e~ Blp—r'l ] ( )] e
+V x fl,—— (=FEy xn S
A | p—0' | )

- where the integration is performed in primed coordinates over the surface S.

The first term in the preceding equation can be modified using:

A o—iBlo—7 3 b B e—Blp—r'|
(—’H,XHQ) \VAVAE [ —_] = Z_:az nXH2)8I16'U [——/-]

ravErd oo Am | p—p' |
B 3 e~ Ble—p'

- ?gaxl[ ”XH2)47r|p—p'|]

- - e—iBlo—r'| o

= 4-VV- |(-n =l

’ [( " 2)4Wlp—p’l](0 )

- where x; denote the three Cartesian variables and u is a variable defined along 4.

Furthermore:

. el E A - e—Ble—r| X = .
y—-- o — f — _— X o [ — 9 X
X[U47r|ﬂ—/)’|] (=B x ) [u47r|/)—p’|] Sl
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- which allows us to write:

VvV +p52

// —n X Hj)
ZCUEI
-1 - Vx// (—n x Ey)

i Ey |p=1-

- which is the Surface Equivalence Principle.

" v " e_iﬂlp_pl| "
—q i [UW] X (_EQ X ’I’L)
s [( = a e~ Blp—p'|
-1 -V X X N 10.25
’ dr | p—p' |]( )
e~ Blp—r'l .
10.26
T To=71 (i
e~ Blp—r'| o
47T|p o |
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APPENDIX B

Fourier Series and Transforms

The Fourier Series of a periodic signal f(t) is defined as:

+o0
FS(f(t) =Y CLE™! (10.27)
where
1. 1%
s —ik2x¢
Cr =5 §f(t)e Fldt (10.28)

- where k is integer and €2 the period of f(t).
For a non-periodic signal the Fourier Transform must be used.
Here we consider the complete signal (ie in the range —oo to +00) to be a single period
of a periodic signal.
In other words we let 7" above tend to infinity.
The Fourier Transform is thus defined:
Fw) = F(f(t))

+o0

f(t)e *“tdt (10.29)

Il

—0o0
Because integration of a continuous signal is impossible with a computer we define the

Discrete Time Fourier Transform as:

DTFT(f(t)) = F(f:)

+o00

= % > F(w — nw) (10.30)

where
+o0

f(8) =Y f(t)6(t — nT) (10.31)

—00
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- the sampled signal, where 7" is the sampling period.

The Fourier Transform itself will be a sampled quantity on a computer and we can only

sample a truncated signal so we must define and use the Discrete Fourier Transform:

DFT(f(t)) = F(f,""(1)

— f(kt)e—i27rnk/N

=
|

- where k,n =0.....N — 1.

Consider:

+oo +o0
F( 6(t—nT) = / > " 8(t — nT)e ™ dt

+0oo
o Z e—iwnT
+00 '
= Z ezwnT
- §(w —
— [u}o /io— Wo Zoo w nwo
= wp z O(w — nwy)
- by definition of the Fourier Series given above, where wy =
But:
+oo +o00
t)Z(S(t—nT)) = F ) * F( Zé (w — nwp)
1
= ﬁF(w) * W ; 6(w — nwy)
1w
= fZF(w—nwo)
Hence:

ZFw—nwo

F(fs())

(10.32)
—ik2Z ] iwn 2T
wo e wo
(10.33)
2
T -
(10.34)
(10.35)
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Also consider:

FUO) = [ Y5080 aT)eat

+o00 '
— Zf(nT)ezwnT
So:
N-1
t1 unc t) . Z e—iwnT
n=0
Hence:

N-1
Fl ) = / > e g(w — k%)dw

n=>0

- where £k =0.....N — 1.

From which follows:

fs(fstrun(:(t)) = f(nT)e—iwknT/N

g

20 3
|l
—_ O

= f(nT)e—iwknT/N

I
(e}

- which is the DFT.

To simplify the following analysis of the Inverse DF'T we define the following:

i2m
w=eNn

(10.36)

(10.37)

(10.38)

(10.39)

(10.40)

The existence of the variable T" is assumed when referring to the integer £ or n and F will

denote the DFT of the signal f(t).
Then the DFT can be written:

Zf w™

n=0

- where k =0...N — 1.

(10.41)
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Conversely the Inverse Discrete Fourier Transform is:

fn) = 5 3 Pkt

k=0

- where n =0....N — 1.

Hence:
=, 1 N-1 N-1
fn)=<Y Flkw™ = =) ™) fim)w™*™
N N
k=0 k=0 m=0
1 N—-1
= Zm =0 m [ w(”"m)k]
k=0
But
N-—1

and

N
w = €

we have:

= ,w(n~7n)N

1 — wm-m) o

-IFF n=m.

So:
LS pn = L
N = ’ N

(10.42)

(10.43)

(10.44)

(10.45)

(10.46)



124

The Fast Fourier Transform

The Fast Fourier transform is an algorithm designed to speed up the computation time of
the discrete Fourier Transform.

By definition the DFT and IDFT can be written in matrix form thus:

F(0) 1 1 1 1 f(0)
F(1) 1wt w2 . w1 f(1)
F(2) =1 w? T RN | f(2) 10.47)
F(N-1) 1 w V=1 g 2N-1) | gy=(N-1) f(N =1)
[F] = [W]l/] (10.48)

In the same manner the Inverse FFT can be expressed as:
7] = % WxllF] (10.49)
= '

- where [Wy] is obtained from [Wy] by replacing w™* with w*.

Where N is a power of '2” we then decompose the sequence f(n) into two interleaved
sequences, one with even arguments and the other with odd arguments.
Using this decomposition we can write the first % members of the transform sequence

F(k) as:

F(0) 1 1 1 f(0)
F(1) 1 w2, wAFD £(2)
F(2) =] 1 wHt.. wED £(3) (10.50)

F(%-1) 1 w AT D L wAE? f(N —=2)
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1 1 1 \ f(1)

| w™! . wm V- f(3)

+ 1 w2 e g AR f4)
\ s e AT e S b FIN=1) )

1 O A 0
2 0 4+ i 0 b
(W/2] = [Wi2] (10.51)
0 0 w? 0
0 0 0 w(ED
(W aj2] = [Wal[Way2] (10.52)
and so:
F(0) £(0) f(1)
F(1) f(2) f(3)
F2) | =Wwal| f@ | +WdWapl|  £(5) (10.53)
=1 f(N -2 f(N=-1)

F(%) £(0) £(1)
o +1) f(2) f(3)
FE+2) | =Wnpl | f@) | -WdWwpl | £05) (10.54)
PN 1) f(N-2) N ~1]

Clearly the calculations of F(k)(k = 0; N/2 — 1) are identical to the calculations of
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F(k)(k = N/2; N — 1) except for the sign change.
Thus we have succeeded in reducing the calculation of an N-point Fourier Transform to
the calculation of two N/2-point transforms.

If this process is repeated a number of steps equal to:
N
logN — 1= 10g2(7) (10.55)

- then we arrive at transforms of order two.

Each of these two-point transforms has:

. 1 1
[(Wa] = (10.56)
1 -1
- and no multiplications are needed.

Each stage of the reduction requires % multiplications, therefore the total number of

(complex) multiplications required for the calculation of the complete transform is:
N N
M = (E)logQ(—r)—) (10.57)

and the total number of (complex) additions requires is:
A= Nlog, N (10.58)

which compares with (N — 1)? multiplications and N(N — 1) additions were the direct

method to be used.
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