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Abstract

Software engineering in a distributed, heterogeneous environment is faced with a number of
challenges. With distribution comes the need for synchronisation, transactions, and fault-
tolerance while support for different operating systems also has to be taken into account.
The distributed and dynamic nature of applications in such an environment also imposes
special requirements in terms of adaptability: components being added to or removed from
the system may require applications to adapt themselves to the changed environment.

Development should moreover not be restricted to one particular programming language.

[t soon becomes apparent that a large amount of effort in the development of distributed
applications is spent on the specification and implementation of these non-functional re-
quirements. Moreover, the actual functional parts of the application become more and
more intertwined with and dependent on the parts that deal with the fulfillment of non-
functional requirements. As a consequence, little changes in the design of an application

may result in the modification of large amounts of code throughout the system.

[n order to tackle these problems modern software engineering is clearly advancing to-
wards middleware and component based systems such as the Common Object Request
Broker Architecture (CORBA), Enterprise Java Beans (EJB) and the System Object
Model (SOM). These systems define a platform-independent object model, usually with
support for distribution, persistence and transactions, which allow the rapid development

of applications in a heterogeneous, distributed environment.

However, these systems are primarily targeted towards the development of business appli-
cations and can hardly be employed for the development of low-level, performance critical
applications such as operating systems and embedded systems. Moreover, commercial sys-
tems are ‘closed” in the sense that users do not have direct control over the implementation
of the various facilities that they provide and can, in general, not provide customised or
additional services. Adaptation and customisation are however desirable properties in
order to keep pace with evolving and changing environments that are characteristic of

distributed systems.



Computational reflection and meta-level architectures offer an alternative approach to-
wards the development of complex systems in that they provide a clean separation of
concerns and a structured approach of making implementations more open. In order to
provide generic language support for distributed computing as well as the advantages of
component based programming, we have developed a composable and extensible meta-level
architecture for a compiled, object-oriented programming language. The model proposed
offers a high degree of flexibility and can be used to extend object-oriented programming
languages to support a variety of application-independent behaviours such as distribu-
tion, persistence, transactions and fault-tolerance. The main contributions of the work

described in this thesis consist of the provision of a reflective object-model that is

e Composable: We provide a mechanism that allows the automatic composition of
individually defined object behaviours. If the defanlt semantics does not yield the

desired behaviour, user defined composition rules can be applied manually.

e Dynamic: Running applications can dynamically switch between different object
models, allowing objects to evolve in changing environments. This kind of function-

ality could previously only be achieved in interpreted platforms.

e [fficient: By choosing a compiled language we achieve performance advantages over
interpreted languages and present an architecture that is suitable for application

domains such as legacy systems, operating systems and embedded systems.

As an outcome of our work we introduce the concept of a meta-type. Meta-types provide
a further level of abstraction that encapsulate most of the functionality offered by the
reflective language extension. In a number of case studies we have applied the reflective

programming model in order to validate our claims.



Contents

1 Introduction 9
1.1 Open Implementation . . . . . .. . ... ... e 10

1.2 Introduction to Reflection . . . . . . ... ... ... ... ... ... 11
1.2.1 Computational Reflection . . . .. ... ... ... ... ....... L1

[:2:2. Reficallion & & 5 » 6w 5% w @ 505 w5 55 e 5 Ge ot i s 6 ol ok 12

1.2.3  Structural versus Behavioural Reflection . . . . . . .. ... ... .. 13

1.2.4 Base—Meta Level Separation : « s « s « s 5 5 5 s 8 ¢ 50 55 5 5 0 mis 13

1.2.5 Metaobjects and Metaobject Classes . - . . . « v ¢ w6 v v v 0w oo 13

1.2.6  Metaobject Protocol . . . . . . . . ..o 14

[.2.7  Metaclasses . . . . . .. 14

1.3 Reflective Programming Languages . . . . . . . . . . . . ... . .. ... .. 14

[.4  Aims and Objectives . . . . . . . . . 15

| 1O Tguana . .0 o000 e 15
1.6 Contribution of this Thesis . . . . . . . ... o oo 16

I.7 Roadmap . . . . . .. I8

2 Reflective, Object-Oriented Programming Languages 19
2.1 General OVEIVIEW . . . . . . . L i e e e e e e e e e e e e e e e e e e e 21
2.2 Smalltalk . o000 23
. T 24
2.4 Objective-C . . . . . . . e e e e e e e e e e 26

2.5 Jdava .. e e e e e e e e e e e e e e e 28



CONTENTS

2.6

2.9

2.10

OpenCH4 V1 . . . o o e e e e 29
2:6.1  Typewlf Reflection’ ;. .« o0 o o o a8 o v e i i s 29
2.6:2 Reflective Faeilities . . . w o o v o sivns v wlsin v 0wl w ol wie o' o 29
2.6.3 Rrogramming:Moedels ...t el Spraiil E S0 el S 30
264  RKnown Appleations Vi« ' b Tl il o 0 s i R Sl 57
2.6.5. "Rerformancer . iy reinine o b dna iBUaUS T Sl SR i 33
2.6.6 Support for Meta-Types . . . . . . . .. . . e 33
QpetiCaREArTD | it ) S it o P 33
2.7.1 Typeof Reflection . . . ... ... . ... ... .. ... ....... 33
2.7.2 Reflective Facilities . . . . . . . . . . . e 34
2.7.3 Programming Model . . . u s @ 2 s 0w s s civn b e e e e 35
Duteds ReriOnTanCen T w Tt b i, W P CTE A . TN S 37
2.7.5 Known Applications . . . . . . . . . ... e e 38
2.7.6 Support for Meta-Types . « « ule « vie o i aob s w0 e i aom it 39
(17 | U ot AL W-SNCE T ol S SRR ool A1 R TR b P 40
281 Type of REMection -« & ¢ & 5 5 9 o 4 o vimue o 6 = o5 s 5 88 5 58 40
2:8.2 Reflective Facilities = : = ¢ =5 55 a0 56 26 5 6 % 55 83 a8 8 5 85 40
2.8.3 Programming Model « « : 52 v 5 2 55556285 a6 56 0m 50 ¢ w5 42
2.8.4  Known Applications . . . . . . ..o 42
2.8.5 Performance . . .. ... 43
2.8.6  Support for Meta-Types . . . . .. . ... 43
ABCL/R . . e e e e 44
2.9.1 Type of Reflection . . . . . . . ... ... 44
2.9.2 Reflective Facilities . . . . . . . .. . ... oo 44
2.9.3  Programming Model . . . . . ... oo 45
2:94 Performancel : « - s v 5 s 5 5 55 5 i G5 b s He BE ne e B s m e A7
2:9.56 Known ADpplications « « « + = « 5 ¢ w5 @ 2 5 6.5 & 5 % 55 & B E W 48
2.9.6 Support for Meta-TYPes « s « ¢ 5 ¢ w4 ws 55 s 5 5 5 6 5 5 8 8 5 & 35 # 48
IDISCUSSION! ¢ & & i 6 & & e = o5 & 6 a0 o & o 5w o b s e e s 48



6 CONTENTS

3 The Iguana Reflective Programming Model 50
3.1 General Overview . . . . . . . . o i e e e e e e e 51
3.2 Reification Categories . . . . . . . . . . e e 51

3.2.1 Structural Reification Categories . . . . . . . ... .. .. .. .... 52
3.2.2 Behavioural Reification Calegonies . . « « - o s ¢ v e o v iis £n 50k 52
3:2.8 Enctent of Reflection: « s 5 o ¢ s ¢ oot 0 oiwbi a5 s o b on s 53
3.24 Dependencies between Reification Categories . . . .. ... ... .. 53
3.2.5 Protocols and Protocol Selection. . . : . v . v o v v v hm b e w0 54
3:2.6 Shared BEhaVIGl 5 « « w0 « 5 & » @ & the 51 adosms sl e whs o el ol ool b 57
3.3 Metaobject Composition . . . . . . . . . ... e 58
3.8.1 Default ' Composition SEMantics « « « « 2 6 o 5 s 5w 9 o o boln oo o 59
3.3.2 Modifying Composition . . . ... ... ... .. ... ... 61
3.3.3 DDISCUSSION & : 5 5 v & « 55 5 8 5 5% o 8 5 @ 8 mie 555 56kl b g 64
3.3.4  The Iguana Syntax . . . . . . . .. ... e 64
3.4 SUMMATY . . v v v v o e e e e e e e e e e e e e e e e e e e e e e e e 65

4 The Iguana/C++ Implementation 67
4.1 Applying the Model . . . . . . .. 67
4.2 General Overview . . . . . . .. L 68
4.3 The Iguana Meta-Level Class Hierarchy . . . . . .. ... ... ... .... 69
4.4 The Pre-Processor . . . . . . . e 71
.5 Source-to-Source Translation . . . . .. .. .. ... ... ... T2

4.5.1 Protocol Definitions . . . . . ... ... T2
4.5.2  Adding Introspection . . . . . . ... 73
4.5.3  Bootstrapping . . . . . .. 74
4.5.4  Adding Intercession . . . . ..o {6
4.5.5 Instance protocol selection « « = s ¢ 5 v 5 s v 5 v @ 5 5 s & ¢ o5 g oW 79
4.5.6  Run-time Checks . . . . ... 0 . 79

Lo Nested EXPIESSIONS . o 5 o s 5 ¢« 5 6 62 96 5 06 @ @6 5 & o8 5 20



CONTENTS

4.6 Dynamic Meta-Type Selection . . . . . . . . .. ... ... ... ... .. 81
46,1 Meti-level RecBiliguration. « « s = » 5w sim 5 o & o 2% @ s o 5k s s b 81

4.7 The C++4 Default Protocol . . . .. ... ... ... 85
4.l NMethed INVoeation. = . o wi she s ik ons = 8 s i B w e ke 85
A2 ISTate AGEESSY |0 w et e b ey R T e e, 85
403" ObiectiCIeation, & -« % v swiiio : e wmme oot o s 87

4.8 “ReStTICTIONS « & w5 & 5 & 5 & @ 5 % 6o d B BE RS Fe s s B R h e e e 87
481 Auntomatic ObJeGhS &« s s s 5 s 5 S ) e Rl e s e e 87
I - 1 P R 88
i v R R e B i e 88

4.9 DUMMBTY : & s 6w 5 & b o 5w s s B oo el s e s o e e A 89
5 Reflective Programming with Iguana 91
Hulll SN INTEOSDECHION = ALt ot catsa fhiorictn (o AR el ) GRS oan PR el P i ety 91
5.2 Boundary ‘Chiecks Tor ATTaAYE i v o o o oo 5 oet i i o0 o o silaem o o &l w @ 92
5.3 Run-time Adaptation of Systems Software . . . . . . ... .. ... ... .. 93
5.3:1 The minimal Buffér Manager . . : o : « « 59 5 @ » o 5 5@ « & « 5 = 3 94
5.3:2 Adaptation using Design Patterns .. . v . s 6% 5« 56 a5 2 @ 5 & & 3 94
b:3:0 Adaptation uging Reflection « o v s » : 9 4 96 3 5 2 5w 56 % 8 5 55 : 95
5.3.4  State Transfer . . . . . ..o 97
5:3:D DISCUSSION » « 2 ¢ s 6 5 2«5 5 9@ : 56 94 § 8 685§ $6E 586 855 98

5.4 A Meta-Type for Persistent Objects . . . . . . ... ... ... .. ... 98
5.4.1 Overview of Object Persistence . . . . . .. . ... .. ... ..... 99
5.4.2  Implementing Persistent Objects using lguana/C++ . . . . . .. .. 99
5:4:.3 Using PersistenttObiects : o s v m e w6 o0 2 & o 5w o s s o5 58« @ 101
544 Adapting the Meta-Level . . . o . o ¢ o o v v v s« m s 5 5w o « 5 104
Bellh  IDISCUSSION & 5 » o 5 & 5 @ 5 s 3 56 88 508 & %5 @8 6 & 5 &8GR 105

5D DUMMIALY = 2 5 @ 2.6 56 ¢ 8 5 2 B@ £ 8% 5@ 968 08§ 68 48 5 8@ 6@ i &8 106

6 Evaluation 108



CONTENTS

6.1 Overhead, Where and Why . . . . . .. .. ... ... ... ... ...... 108
53 N (R DY U (50051 e o ey o v s Sl O gt SN ot e B R 109
6.1.2 Implementation Level . . . . . .. ... ... ... ... ... .... 109
6.1.3 Host-Language Level . . . . . . .. ... ... .. .. ... 111
6.1.4 Application Level . . . . . . . . . . ... ... 12

6.2 wiDiseusSIon: st E R I RS S e 113

6.3  Other Optimisation Techniques . . . . . . . . . ... ... .. ... ..... 114
6.3.1 Partial Evaluation . . . . .. ... ..o o o 114
6.3.2 Partial Evaluation of Iguana/C++ . . . ... ... .. ... ... .. 116
6.3.3 Elimination of Run-Time Checks . . . . . .. ... . ... ... ... 117

G SUINTNATY & ol B] ox otz % FORSA NN SN - MR e | oo T i S R 117

Conclusion and Future Work 118

7.1 Understanding Reflective Programming . . . . . .« . v v vov v oo v 120

7.2 Performance and Optimisafion  «: ¢« v s+ 5 o bos e 5@ @ @5 & o a5 s 121

T.3 Futufe Work . . o « o o s w 5 & 5 mov sim s 6« 5w o o 5 5 s sim o w % o o wis s 121
7.3.1 Reflection and Design Patterns . . . . .. .. ... . 121
7.3.2  Composition of Meta-Types . . . . . . ... ... ... .. ... .. 121
7.3.3  Compiler Support for Reflective Programming Languages . . . . . . 122
7.3.4  Formalisation of Meta-Types . . . .. ... .o 122

7.3.5  Applying Reflection . . . .. ..o 122



1

Introduction

REFLECTION, n. An action of the mind whereby we obtain a clearer view
of our relation to the things of yesterday and are able to avoid the perils that

we shall not again encounter. Ambrose Bierce, The Devil’s Dictionary.

Modern software engineering has to keep pace with ever evolving runtime environments
that place new demands on the development of computer applications. Since the ad-
vent and popularity of the Internet, for example, a completely different programming
environment has emerged, introducing a demand for distributed and concurrent applica-
tions. Long-running systems such as operating systems are moreover faced with dynamic
changes taking place at run-time, with components being added to or removed from the
environment, requiring the system to adapt itself to the changed surroundings. As sys-
tems grow larger and become increasingly complex, the question arises as to what extent

a programming language can assist developers in the task of developing such applications.

One approach is to provide direct support for some element of distributed computing
from within the programming language. Examples of those languages include C** [Tay93,
VCdP93], Emerald [JLHB88] and Java [GJS96]. C** is an extension of C++ and provides
the application programmer with support for persistence, distribution, and transactions.
[Cmerald provides object migration and an extended exception handling mechanism to
recover from partial failures [Hut96]. Java on the other hand features built-in support for
multi-threading and standard libraries for remote method invocation, making the devel-

opment of concurrent, distributed applications easier.

These languages may provide a tailored solution for one individual programming environ-
ment but are limited in the sense that the combination of multiple facilities is not possible.
The designer of a programming language is therefore faced with the dilemma of deciding

which concepts are to be directly supported by the language and which are not. Fach
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supported feature usually requires a specific syntax and/or run-time support, making the

language more complex and difficult to implement.

A different approach that addresses these problems is exemplified by component-based
systems such as Sun’s Enterprise Java Beans (EJB) [Mic01], the Common Object Request
Broker Architecture (CORBA) [Gro95] and IBM’s System Object Model (SOM) [Lau94].
These systems provide a platform-independent framework for building applications in a
distributed environment and usually come with built-in support for distribution, persis-
tence and transactions. Programmers simply select or deploy a pre-defined component

into their application, subject to some programming conventions that one has to obey.

However, these systems are primarily targeted towards the development of business appli-
cations and can hardly be employed for the development of low-level, performance critical
applications such as operating systems and embedded systems. Moreover, these systems
are ‘closed’ systems, meaning that users do not have direct control over the implementa-
tion of the various facilities and can in general not provide customised services. Support
for different operating systems, a major prerequisite for the development in a heteroge-
neous, distributed environment, might also not always be available. Interoperability be-
tween these systems does exist to some extent, for example, in the form of CORBA-COM
bridges, but these come at the price of increased complexity and introduce compatibility
problems.

Since the provider of a software component can in general not foresee all possible usage
scenarios and system requirements, a new programming model is needed that is in some

sense “open” and does not restrict its users by the decisions made by its designers.

1.1 Open Implementation

The traditional black-box model of software engineering is aimed at providing users with
software components that have some well-defined behaviour while at the same time shield-
ing them from complex or irrelevant implementation details. Kiczales proposed an alter-
native model of abstraction for software engineering known as the open implementation
model [Kic91, KLMT93, KTW92, KL93]. The basis of the open implementation model
is the argument that while the traditional black-box model of abstraction shields clients
from having to know the details of how a particular component is implemented, it also
prevents them from altering those details when desirable. An open implementation there-
fore exhibits some (but not all) internal details to its users, allowing them to customise

components if required.
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The open implementation approach should not be seen as a contradiction to the classical
black box approach. Instead, it should be understood as an extension to the former,
advocating a fairer trade-off between performance on the one hand and abstraction on
the other. Take the Unix system call madvise as an example. It allows programmers to
“advise” the underlying virtual memory manager about the usage pattern of a block of
memory mapped into the application’s address space. It therefore exposes some hidden
functionality of the underlying operating system to the user, resulting in a more efficient

implementation.

However, this example can merely be regarded as an ad hoc approach to open implemen-
tations and only allows very restricted access to the operating system’s internals. What
is therefore needed is a methodology that allows a more rigorous and structured access to
a component’s internals. Computational reflection, as described in the following sections,
can serve as an underlying technology for building open implementations in that it equips

a computational system with a separate representation of itself.

Inevitably, a number of issues arise, namely to what extent internal implementation details
should or can be exposed to the user and how the erroneous or deliberate misuse of such
information can be prevented. These issues will follow us through this thesis and will be

dealt with more thoroughly as they arise.

1.2 Introduction to Reflection

This section introduces some of the main concepts and terminology used throughout the
remainder of this thesis. In most cases the concepts and terminology presented here are
not specific to the author’s view and are widely used in the reflection community at large.
Unfortunately, there is not complete consensus on the use of all of these terms even within

the reflection community.

1.2.1 Computational Reflection

Computational reflection, or reflection for short, was described by [Mae87] as “the process
of reasoning about and/or acting upon oneself”. In a non-technical sense, humans “reflect”
when they reason about their own state of mind, leading to insights about their existence,
and inadvertedly generating new knowledge that in turn might feed back and change
their state of mind. When Descartes states “I think, therefore I am” [Des37], he reflects
and captures his own state of mind (I think™), leading to the realisation of his own

existence (“therefore I am™). Although this example is only used in a metaphorical sense,
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it illustrates some of the features that are characteristic of a reflective system, namely:

Introspection: Introspection is the process of observing one’s internal state or struc-
ture. For a system to be able to introspect and reason about itself it needs a self

representation.

Self representation: In the example above, "I’ represents Descartes himself, his notion

of himself.

Causal connection: A computational system contains an internal representation of
some part of the external world, its domain (for example in form of data and code).
A system is said to be causally connected to its domain if the internal structures and
the domain they represent are linked in such a way that if one of them changes, this
leads to a corresponding effect upon the other [Mae87]. A reflective system is one
whose self-representation is causally connected to itself, or which is self-referential.
Again, as Descartes deduces “therefore I am”, he generates new knowledge which in

turn feeds back into his self-representation in a causally connected way.

Reflection can be divers and occurs in many different domains. So how does the above
relate to object-oriented programming languages? An object-oriented programming lan-
euage (0oprL) provides concepts such as classes, inheritance, method invocation and state
access. Applications written in such a language conceptually consist of a set of objects
exchanging messages and performing computations upon reception of messages. In a re-
flective programming language, introspection enables objects to query their own state,
for example to find out about their class, the methods and attributes they provide, etc.!
Moreover, the self representation may also provide a description of the object’s behaviour,
i.c., code that describes the object specific semantic of message sending/receiving, method

dispatching, ete.

1.2.2 Reification

Any 0oPL supports a number of features such as object creation, method invocation, state
access and inheritance. A programming language therefore provides a syntax that is used
by the programmer to express a particular concept as well as a semantic that describes
how the concept is interpreted or executed. In traditional ooprLs the syntax/semantics

relationship is fixed, meaning that there is no (easy) way for a programmer to modify the

"This information might not always be apparent, especially if the language is not typed or if it features
dynamic typing.
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syntax of the language or to modify the way a specific language construct is interpreted.
Reification refers to the process of making the implementation of these features explicit
within the language so that they can be reflected upon. In particular, reification allows

the implementation of these features to be modified from within the language.

1.2.3 Structural versus Behavioural Reflection

Structural reflection is the ability of a language to provide a complete reification of both
the program currently being executed as well as complete reification of its abstract data
types (e.g. its classes) [DMO95]. Behavioural reflection on the other hand is the ability
of the language to provide a complete reification of its semantics. Behavioural reflection
requires a mechanism to intervene in the execution of the current program in order to

execute some reflective code that will analyse or modify the course of events.

1.2.4 Base—Meta Level Separation

In general we can distinguish between the base-level of a system and its meta-level. The
base-level contains the code and data concerned with the application domain while the
meta-level contains the code and data concerned with the base-level. We can talk about
a system executing at the base-level when performing domain-specific computation and
executing at the meta-level when carrying out computation about the base-level. Thus
the (self-)representation of the base-level exists as the data of the meta-level and reflective
computation is performed when executing at the meta-level. The transition from per-
forming domain computation to performing reflective computation is characterised as a

transition from base to meta-level execution.

1.2.5 Metaobjects and Metaobject Classes

In a reflective 00PL, a metaobject (also known as a meta-level object) is an object that
holds information about the implementation and interpretation of some object [Mae87].
The set of metaobjects that represent a particular object together form its meta-level.
The set of metaobjects representing all the base-level objects that make up an application

together form the application’s meta-level.

[n general, we can distinguish between structural and behavioural metaobjects. Structural
metaobjects are those whose only purpose is to store information about the objects that
they represent. For example, structural metaobjects might be used to store the identity

of an object’s class, the list of types that it implements, the identifiers of its methods, or
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even the code of its methods. On the other hand, behavioural metaobjects are used to
implement various aspects of an object’s behaviour. For example, behavioural metaobjects

might be used to implement object creation or method invocation.

1.2.6 Metaobject Protocol

Metaobjects provide the necessary functionality to control and represent base-level objects.
Communication between base and meta-level objects takes place through a well defined set
of interface functions. The set of these interface functions is referred to as the metaobject

protocol [KP96], or mop for short.

1.2.7 Metaclasses

Some object-oriented programming environments, including Smalltalk and SOM, provide
metaclasses as the natural base of their object model: metaclasses are classes whose in-
stances are themselves classes. They define the common properties that all classes should
provide, for example, how methods are dispatched. In Smalltalk there is a fixed one-to-one
relationship between a class and its metaclass, every metaclass is defined by the Smalltalk
run-time environment and cannot be altered by the application programmer. SOM on the

other hand allows the development and composition of independent metaclasses [FDM94].

1.3 Reflective Programming Languages

Rather than supporting a fixed set of facilities for a specific programming environment,
reflective programming languages are designed so that their implementation is more open,
allowing adaptation of the language to varying, non-functional requirements. In a reflective
programming language, programmers can alter the syntax and semantics of the language
itself and thereby adjust the behaviour of the language constructs to build a programming
environment that best fits their needs. For example, if the language does not have built-in
support for, let’s say, distribution, it can be extended to allow the invocation of remote
methods by modifying the semantics of a normal method call.

Lisp for example is a functional programming language with reflective facilities: functions
are first class entities that can be manipulated as can any other values. This is achieved
by the quoting mechanism where a function is simply represented as a quoted list of
instructions. The quoted expression can then be evaluated by an interpreter, the eval

function.
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1.4 Aims and Objectives

Generally speaking, we want to extend the existing object-model of a programming lan-
guage in such a way that it is possible to introduce new object semantics to that language.

| This extension should (from the application programmer’s point of view) be:

e Transparent: the reflective extension should be as transparent as possible, without

the need for application programmers to explicitly invoke meta-level computation.

e Composable: it should be possible to combine and augment object behaviours in

a meaningful way, so for example to allow the construction of both persistent and

remotely accessible objects.

e Dynamic: the object model should be able to evolve over time, enabling objects to

adapt themselves to a changing environment.

e Extensible: there should be no fixed set of object behaviours. It should be possible

to develop new or modify existing object models.

[DM95] describes what an ideal reflective language should offer:

"ldeally, a reflective language should support a methodology of reflective
computations giving its users as much flexibility as possible. It should be
possible to modify the behaviour of some construct for the whole execution of
a program, or for short period of (execution) time. It should also be possible
to modify the behaviour of some construct for all the program or only for some
of its subparts. None of the languages currently proposed achieves this level

of flexibility”

Mainly because of efficiency reasons, providing all of the functionalities as described above
may not be feasible. We therefore have to find a good compromise between functionality

on the one hand and performance on the other hand.

1.5 Iguana

As an approach towards providing full support for reflective programming, previous re-
search has resulted in the development of Iguana [Gow97], a reflective programming model
for object-oriented languages. It was first developed as an outcome of research into adapt-

able operating system software and is targeted towards application domains that are faced
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with evolving run-time environments, requiring the application to adapt itself to the new

environment, such as operating systems and middleware.

A design principle that has been influencing the Iguana model to a great extent was the
idea of a complete decomposition of the underlying object model, allowing a very fine
grained control over the reification of language features. However, in practical terms this
approach has been found as to be too complicated, leading to an overspecialisation of
MopPs [Paw98]. The following is a critique that summarises the main deficiencies of the

leuana model in its previous version:

e Complexity: The model was too complex, confronting the user with a number of
features whose semantics were not fully understood and/or practical. It also required
a knowledge of the intrinsic mechanisms of the host programming language which

defeated language independence and ease of use.

e Safety and robustness: Many issues concerning safety and robustness in reflective
programming had not been addressed sufficiently. Opening up a language and al-
lowing the programmer to intercede with the underlying object model requires a
profound understanding of the language’s intrinsic mechanisms. Users of a reflective
system not only have to make sure that their base-level application is semantically
correct, they must also ensure that the code at the meta-level is consistent. The
thoughtless use of reflection can easily affect the entire system and makes debugging

even harder as errors can occur at both the base and meta-level.

e Transparency: The previous version did not separate sufficiently between base and
meta-level code and exposed too many implementation details to the application
programmer. Again, this raises the issue as to what extent an implementation can
be opened up without leading to an overload of accessible features. Moreover, it was

not possible to use reflective and non-reflective objects interchangeably.

e Implementation: Only a partial implementation existed. The feasability and appli-

cability of the Iguana model in practical terms still had to be proven.

1.6 Contribution of this Thesis

Within the context of this thesis we undertook a substantial re-design and re-implementation
of the Iguana model. The focus was on simplifying the model in order to make it more

accessible to meta-level and application programmers alike.
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The challenge was to maintain the flexibility originally envisaged and to find a user in-
terface which is at the same time simple, robust and expressive. As an outcome of our
work we introduce the concept of a meta-type as such an interface that serves our purpose.
The meta-type of an object characterises its object model and as such its non-functional
behaviour. For example, a meta-type Persistent might correspond to an object-model
supporting object persistence while a different meta-type Remote might support remote
method invocation. We also provide a semantic for combining multiple meta-types by a
mechanism similar to class inheritance. As will become clearer later, meta-types differ
[rom metaclasses as described above in that we allow meta-types to be dynamically se-
lected by instances of potentially any class, subject to a few restrictions. Metaclasses on
the other hand define the behaviour of a class and thereby the behaviour of all instances
of that class.

By applying the Iguana model to a compiled language, in this case C++, we also demon-
strated that compiled platforms can exhibit a flexibility comparable to interpreted lan-
euages, while at the same time introducing only little or no overhead when the reflective

features are not used.

We have chosen C++ as a host language for a couple of reasons. First, it is widely used.
Second, it allows low-level access and is highly performant, both crucial properties for the
development of operating systems and embedded systems. The Apertos operating system
as described in [YKL94, LYil95] for example uses reflection as an underlying design prin-
ciple. Efficiency has been recognised as a major concern. Supporting run-time reflection
in a compiled language can advance the research in that area by providing a development

platform for efficient and low-level programming.

[t should be noted however that the programming model described in this thesis is intended
to be language independent and not restricted to C++ in particular. In fact, current work
is investigating the implementation of the Iguana model in Java [RC00]. More specifically,

we addressed the following issues in our implementation of meta-types:

Metaobject composition: [guana’s modular design allows the composition of meta-
level objects in order to combine two or more behaviours. As a new feature, we provide
automatic metaobject composition. If the default semantics does not yield the desired

behaviour, user defined composition rules can be applied easily.

Dynamic meta-typing: Dynamic meta-typing allows individual objects to dynami-
cally switch between different meta-level representations. This feature imposes special

requirements in terms of the compatibility, safety and robustness of such transitions. As



Introduction

a significant improvement to earlier versions of Iguana, we now provide a safe transi-
tion between different meta-level configurations, accomplished by a combination of static

sub-typing rules and run-time meta-type checking.

Understanding meta-level programming: In contrast to object-orientation, reflec-
tion remains a rather esoteric programming paradigm and has not found its way into
existing compiler technologies. In a number of case studies we show how meta-level pro-
gramming can provide a generic framework for building certain types of applications, for

example, systems that need to dynamically adapt to changing requirements.

Optimisation: The flexibility gained by extending the language and giving the users
the opportunity to adapt the language to their needs usually incurs substantial interpre-
tative overhead. Although this issue has been addressed by a number of researchers, it
has not sufficiently been solved in a way that it would have increased the acceptance of
reflective programming. We identify profitable targets and techniques for optimisation,
allowing a more efficient implementation of the reflective programming features. Practical
experiences with using reflection as a tool for providing properties such as fault-tolerance
and group-based distributed systems however have shown that the costs due to the use
ol a metaobject protocol are negligible with respect to the execution costs of the meta-

functional properties [FP98].

1.7 Roadmap

After this introduction to reflection and its terminology we will in the next chapter examine
and review a number of reflective extensions to object-oriented programming languages.
Since this thesis is primarily concerned with C++ as a target language, we will only briefly
review Java-based platforms. In chapter 3 we will then describe the Iguana reflective pro-
gramming model and the rationale behind its design. Chapter 4 then describes a concrete
implementation of the Iguana model for C++. In chapter 5 we present a number of pro-
gramming examples in order to fully demonstrate the application of the various reflective
features of Iguana. The performance of Iguana/C++ is then evaluated in chapter 6, while

chapter 7 summarises the work presented in this thesis and outlines future directions in

this area.
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Languages

REVIEW, v.t. To set your wisdom (holding not a doubt of it.
Although in truth there’s neither bone nor skin to it)
At work upon a book, and so read out of it

The qualities that you have first read into it.

Ambrose Bierce, The Devil’s Dictionary.

With traditional, object-oriented languages, the development of systems that are char-
acterised by a strong interdependency of functional and non-functional requirements can
result in code where parts dealing with the functional aspects of the application are to a
large extent intertwined with parts that deal with the non-functional aspects. Take remote
method invocations as an example. Implementing remote objects using an architecture
such as CORBA requires that arguments to remote methods are wrapped in special wrap-
per objects!. Although much of the functionality underlying remote objects can be hidden
by using normal class inheritance, the application now contains code to wrap and unwrap

arguments and return values of remote methods.

Reflective programming languages provide an alternative approach in the development of
such systems in that they allow the implementation of the host language’s object model
to be made more open, allowing different object models to be supported simultaneously
within a single language. In a reflective architecture, code dealing with the functional
requirements resides at the base-level whereas code dealing with non-functional require-

ments, such as persistence and distribution, resides at a separate meta-level. Commu-

"This is especially the case when using a strongly typed language such as Java since Java does not
automatically perform a type-cast from native data types to their equivalent CORBA types.
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nication between base and meta-level is achieved by interceding with the execution or

interpretation of language operations.

However, despite its obvious advantages, reflective programming remains to be a rather
neglected programming paradigm and hasn’t found its way into mainstream software de-
sign and implementation techniques. This lack of popularity stems from the fact that with
the additional functionality comes complexity, leading to the perception that meta-level
programming is hard and complicated. In fact, our view is that meta-level programming
is not trivial and requires a thorough understanding of the semantics of both the under-
lving object model and the non-functional requirements that are to be embedded into the
language’s object model. On the other hand, once this separation has been achieved, the
less experienced base-level programmer can gain from the clean separation of concerns and
should be able to apply the extended object behaviour without otherwise being concerned

about the existence of the meta-level architecture.

What is therefore needed is a new level of abstraction that encapsulates most of the imple-
mentation details of reflective programming for both the base and meta-level programimer.
To draw an analogy, the concept of inheritance in oopLs provides a powerful tool for en-
capsulating and combining software components. Inheritance as a concept would not have
been successful if programmers weren’t sufficiently shielded from its implementation de-
tails, so for example if they had to explicitly access and initialise virtual function tables.
Unfortunately, this is exactly what a number of reflective programming languages require,

namely the direct and explicit access of meta-level information.

In order to address the problems described above, we advocate a strong separation of the
roles of base-level (or application programmer) and meta-level programmer. The base-level
programmer should primarily be concerned with the implementation of the functional re-
quirements of an application and should to a greatest extent be unaware of the existence of
the reflective language extension. The (more experienced) meta-level programmer should
be able to provide the non-functional requirements independent of the actual base-level
code. As an interface for both the application and meta-level programmer, we introduced
the concept of a meta-type. From the application programmer point of view, meta-types
encapsulate most of the functionality of reflective programming and constitute simply
components that can be selected into an application. From the experienced meta-level
programmer point of view, meta-types build a framework for designing, composing and
implementing object models. Conceptually, meta-types should be transparent, extensible

and efficient in their implementation.

In this chapter we review a number of reflective programming languages and examine to

what extent they support our notion of meta-types.
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2.1 General overview

Reflective facilities can be found to a greater or lesser extent in most object-oriented pro-
gramming languages. C++ for example only provides rudimentary introspection in the
form of run-time type information (RTTI) [Str91], whereas Java is equipped with a full
introspection APl [Mic99]. However, mainstream programming languages only provide
basic reflective features, in general only structural reflection, which is not enough to sup-
port meta-types. Therefore, a number of object-oriented languages have been extended in

order to provide a more rigorous support for reflection.

Providing full structural and behavioural reflection is a task that largely depends on
whether the underlying programming language is interpreted or compiled. In an inter-
preted language for example, the interpreter already constructs a substantial amount of
meta-level information about the program to be interpreted. Extending the language to be
reflective only involves the exposition of this meta-level information and the interpretation
mechanism to the application programmer.

[n a typical compiled language (most notably C++) on the other hand little or no meta-
level information is kept in the run-time image. Adding reflection is dominated by the
problem of maintaining the structural information beyond the compilation process and of

extending the code with the appropriate hooks to exploit the meta-level information.

Figure 2.1 depicts the taxanomy of reflective programming languages. Depending on
the type of programming language, compiled or interpreted, we can distinguish between

various types of reflection: compile-time, run-time and load-time reflection.

With compile-time reflection, the compilation process of a program is controlled by a cor-
responding meta-level program. It can be viewed as a kind of "smart pre-processing” where
the semantics of the application code are modified in a context sensitive way. Examples

of these architectures are OpenC++ v2 [Chi96] and OpenJava [Chi95].

Run-time reflection allows the interpretation/execution of language constructs to be mod-
ified at run-time. This is in general achieved by interceding with the execution of language
operations. Run-time reflection offers the highest degree of flexibility but usually incurs

the most overhead.

With load-time reflection, code modifications are carried out while loading the bytecode
into the interpreter or virtual machine. Examples of load-time reflection include Javas-
sist [Chi00], Binary Code Adaptation (BCA) [Ral98] and OMOS [OLL95]. Binary Code
Adaptation can be used to add methods to class files in order to achieve integration and

evolution of components when the source code is not available. OMOS [OLL95] is an
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Object-Oriented
Programming Languages

Compiled
(C++, Objective C)

Interpreted
(Java, Smalltalk, ABCL/1)

Compile- Run-Time Load-
Time Time

OpenC++ V2 OpenC++ v1 Metaxa Binary Component

Opendava Iguana Guarana  Adaptation (BCA)
ABCL/R  Javassist
CodA

Figure 2.1: Taxanomy of reflective, object-oriented programming languages.

advanced linker/loader that inspects modules to be dynamically linked into applications.
Taking application specific behaviour into account?, it is possible to load specialised im-

plementations of system calls such as fork and malloc.

Roadmap

[n the remainder of this chapter we will first briefly review some of the more common
object-oriented programming languages and discuss the inherent reflective features they
provide. Then we will examine in turn a number of reflective extensions under the following

aspects:

Type of reflection: Describes whether the platform provides compile-time, run-time or

load-time reflection.

Reflective facilities: This section describes which features of the language are reified

and how they can be accessed.

Programming model: This section describes the user interface provided by each lan-
guage. More specifically, it describes how the programmer can define a new Mop

implementation and how it can be applied to the application.

“Application-specific behaviour might include whether the program is multithreaded or not.
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Performance: In this section we discuss the performance trade-offs which are incurred

with the use of reflection.

Known applications: Describes concrete applications that have been written in the spe-

cific language.

Support for meta-types: Discusses to what extent the language supports the concept
of meta-types. More specifically, we discuss whether the reflective language extension
allows to compose and dynamically reselect meta-level configurations, how transpar-

ently the extension can be applied and whether type orthogonality is achieved.

2.2  Smalltalk

Smalltalk [GR83] was developed in the Xerox Palo Alto Research Center and was first
released in 1980. It is an interpreted, fully object-oriented programming language featuring

weak typing, multiple inheritance and automatic garbage collection).

Inherent reflective features

Smalltalk contains many elements that can only be described as reflective. This can be
seen from its consequent underlying programming paradigm: everything is an object.
('lasses in Smalltalk are first class entities, instances of a subclass of MetaClass. Every

metaclass has exactly one instance, namely the class of the same name.

The class interface defines a number of methods that make it very easy to introspect on

classes and methods, as the following example illustrates.

[01] listMethods: targetObject
(02 | cl m |

[03] ¢l targetObject class.
[04] m cl methodDictionary.
[05] m inspect.

1}

Figure 2.2: Introspection in Smalltalk: the function 1istMethods lists all methods of the
object targetObject.

In the example above, function listMethods prints out a list of all methods for a given
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object targetObject. First, the class (meta-)object is looked up and stored (line [03]).
The method methodDictionary computes an ordered collection of all methods of that class,

which is finally printed out in line [05].

[1J89] discusses how further reflective features, such as customised method dispatching,

could be incorporated into Smalltalk.

2.3 CH++

('++ is an object-oriented extension of the C programming language and was designed
by Bjarne Stroustrup. It was standardised by the ISO C++ standards committee in 1997.
Because it originated from C, C++ is a hybrid language that supports the full range of low-
level programming, procedural programming, object-oriented programming up to generic

programming using templates.

Inherent reflective features

C++ allows the redefinition or overloading of specific operators. The new operator for
instance is a special method that is called whenever a new object is to be created on the
heap. Its task is to allocate the appropriate amount of raw memory to contain the object’s
attributes. The delete operator on the other hand is invoked when an object is deleted in

order to free the memory held by the object.

Overloading the new/delete operator can be viewed as reifying the memory management
of objects and provides a means of interceding in the creation/deletion mechanism of
objects. This can be useful to implement garbage collection or to allow objects to be
located at specific addresses in memory. Choices [MKIC92] for example is a framework
for constructing object-oriented operating systems that uses a reified heap manager which
can be replaced in a running system. The code in figure 2.3 is an example of a customised
new operator that prints out a message every time an object is created. sz contains the

size (in bytes) of the object.

RTTI

Run-time type information (RTTT) is an introspective feature of C++ that allows the
querying of an object’s type at run-time without entering it to perform an operation
[Str91]. The type of an object is reified by instances of class type_info. The operator

typeid() can be used to retrieve an object’s type. Type information can be exploited



2.3 C++

25

to perform optimised operations on objects, to realise object-oriented databases or for
debugging purposes. In the example below, the serialisation of a data structure can be

implemented in different ways if the actual type of the structure is known:

class list {

// implementation of a list

}

class linked list : public list {
// implementation of a linked list

o

int serialize(list *ls, ostream *os) { // dump a list to an output stream
const type_info &ti = typeid(*ls);  // *ls can be of type list or linked_list
if (ti == typeid(linked_list)){
// do linked_list stuff
} else {
// do list stuff

Exploiting type information as in the example above however should be avoided as it
defeats transparency and inhibits software reuse. Instead, polymorphic member functions

would be better used to implement type specific operations.

class Verbose {
void *operator new(size_t sz){
cout << "Calling Verbose:new(” << sz << 7)” << endl;
return malloc(sz);

}

Figure 2.3: Overloading the new-operator in C++.
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2.4 Objective-C

Objective-C' [PW91] is another object-oriented extension to C and shares common char-
acteristics with Smalltalk. It features dynamic typing and built in support for persistence

(serialisation) and remote-method invocations.

Inherent reflective features

Full type information (this includes name and type information of methods and instance
variables and type information of method arguments) is available at run-time. User-
defined classes in Objective-C are derived from a common base-class, class Object. This
class contains a reference to the object’s class definition and defines a number of methods
to introspect its inheritance relationship and interface definition. Figure 2.4 shows the

definition of class Object and its introspective member functions.

void listFields(id obj){
Class cl = [ob] class];
int i;
printf(”Instance variables of class %s”, cl->name);
for (i=0; i< cl->ivars—>ivar_count; i++){
printf("Field: %s Type: %s”, cl->ivars—>ivar_list[i].ivar_name,
cl->ivars—>ivar_list[i].ivar_type);

[igure 2.4: Introspection in Objective-C: the function hstFields lists the names and types
of the instance variables of a given object obj.

The code sequence in figure 2.4 illustrates how a list of instance variables together with a
description of their types can be retrieved for a given object. In Objective-C, all objects
are instances of a distinct data type id. Id contains an instance variable that points to the
object’s actual class. By sending an object the class message it is possible to look-up an

object’s class definition.
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@interface Object {
Class isa; /* A pointer to the instance’s class structure */
}
/* ldentifying classes */
- (Class)class;
(Class)superClass;
- (MetaClass)metaClass;
(const char *)name;

/* Testing object type */
(BOOL)isMetaClass;

- (BOOL)isClass;
(BOOL)isInstance;

/* Testing inheritance relationships */
- (BOOL)isKindOf:(Class)aClassObject;
- (BOOL)isMemberOf:(Class)aClassObject;
- (BOOL)isKindOfClassNamed:(const char *)aClassName;
- (BOOL)isMemberOfClassNamed:(const char *)aClassName;

/* Testing class functionality */
+ (BOOL)instancesRespondTo:(SEL)aSel;
- (BOOL)respondsTo:(SEL)aSel;

/* Introspection */
+ (IMP)instanceMethodFor:(SEL)aSel;
- (IMP)methodFor:(SEL)aSel;
+ (struct objc_method _description *)descriptionForlnstanceMethod:(SEL)aSel;
- (struct objc_method _description *)descriptionkForMethod:(SEL)aSel;
@end

Figure 2.5: Introspective member functions of class Object in Objective-C. A member
function preceded by a plus sign specifies a function that can be used by class objects
whereas a minus sign specifies a function that can only be used by instance objects.
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2.5 Java

Java [GJS96] is an object-oriented programming language developed by Sun Microsystems
and was first released in 1995. In common with Smalltalk it is byte-coded and interpreted
as well as garbage collected. It employs a strong type checking and exception handling

mechanism and provides built-in support for multi-threading.

Inherent reflective features

With the Java Core Reflection API included with Sun’s JDK versions 1.1 (1997) and 1.2
(1998) comes direct support for structural reflection from within a mainstream program-
ming language. It enables Java code to discover information about the fields, methods and
constructors of loaded classes. The majority of the methods provided by the Reflection
API are for passive examination of the structure and attributes of a class, method or field.
A small number of methods allow a new instance of a class to be created, a method to
be invoked, or a field value to be altered. It is not possible at runtime to create a new

instance of a method or field or to replace existing methods or fields.

The example shown in figure 2.6 illustrates the capabilities of the Java Reflection API to

list all public methods for a given object.

void listMethods(Object targetObj) {

String methClass, methName;

Class targetClass = targetObj.getClass();

System.out.println("Class = 7 + targetClass.getName());

Method[] targetMethods = targetClass.getMethods();

int i = targetMethods.length;

for(int n = 0; n < i; n++4) {
methClass = targetMethods[n].getDeclaringClass().getName();
methName = targetMethods[n].getName();
System.out.printIln(methName + 7 7 + methClass);

[Yigure 2.6: Introspection in Java: the function listMethods lists all public methods (in-
cluding inherited methods) of a given object.
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2.6 OpenC++4 vl

OpenC++ vl is a simple run-time MOP that can be used to intercede with method calls
and member variable access [Chi95], [Chi93]. It was developed by Shigeru Chiba at the

Masuda Laboratory, University of Tokyo, Japan.

2.6.1 Type of Reflection

[n OpenC++ vl, metaobjects exist during run time. However, declaring reflective meth-
ods/variables and associating a class with a metaobject class is done at compile time,

which means objects cannot change their metaobject during run time.

2.6.2 Reflective Facilities

OpenC++ vl only reifies a subset of the C++ object model, namely data member access,
member function invocation and object creation/deletion. These aspects are represented
by a single, predefined class called MetaObj. Figure 2.7 shows the specification of the

OpenC++ MOP (excerpt).

class MetaODbj {
public:
void Meta_MethodCall(ld method_id, Id category, ArgPac& args):
void Meta_Assign(Id varid, Id category, ArgPac& args);
void Meta_Read(ld var_d, Id category, ArgPac& reply);
protected:
void Meta_HandleMethodCall(1d method_id, ArgPac& args, ArgPac& reply);
void Meta_HandleAssign(ld varid, ArgPac& args);
void Meta_HandleRead(Id var_id, ArgPac& reply);
void Meta_AssignValue(ld var.id, ArgPac& args);
void Meta_ReadValue(ld var_id, ArgPac& reply);
const char* Meta_GetClassName();
const char* Meta_GetMethodName(ld method_id);
const char* Meta_GetVarName(ld var_id);

FFigure 2.7: The OpenC++ version 1 Mop. Class MetaObj defines the default behaviour
of method invocation and state access. The behaviour can be adjusted by deriving from
MetaObj and by redefining the handler methods.
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2.6.3 Programming Model

Defining a new MoP implementation The methods defined in class MetaObj imple-
ment the default (C++) behaviour of method invocation, state access and object creation.
Meta_HandleMethodCall() for instance is called in the event of a method invocation on a
reflective object. This default behaviour can be adjusted by deriving subclasses of MetaObj

and by redefining the handler methods.

Selecting a MoP At the base level, a class can be defined as either a normal C++ class
or as a reflective class. A reflective class is one that is defined to have reflect methods
and/or reflect instance variables and that has a metaobject class associated with it. The
metaobject class contains the code that redefines how invocations of the reflect methods
and accesses to the reflect instance variables in reflective instances of the base-level class

are handled.

Modifying the behaviour of data member access and member function invocation is ac-
complished by deriving from that class and by associating a baselevel class with the new
metaobject class. The code example shown in figure 2.8 illustrates the definition of a class

with a reflective member function.

class Person {
public:
Person( char* name, int age);
int Age():

//MOP reflect:
int IncAge(); /* This method is reflective */

private:
char* name;
int age;
/* Associating class Person with a metaobject class */

//MOP reflect class Person: VerboseClass

Figure 2.8: Definition of a class with reflective member functions in OpenC++ vl.
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The //MOP reflect directive declares the member function IncAge() as being reflective.
[nstances of class Person are associated with metaobjects of class VerboseClass using the
MOP reflect class directive. VerboseClass has to be a subclass of the predefined class

MetaOb;.

The OpenC++ compiler then will generate a subclass of Person, named refl_Person. In-
stances of refl Person are said to be reflective objects, as their behaviour is controlled by
metaobjects. Thus it is still possible to create non-reflective objects by instantiating class

Person directly.

Not necessarily all methods and member variables have to be reflective. Only those fol-

lowed by the //MOP reflect directive will be controlled by the metaobject.

Whenever a reflective method of class refl_Person is called (or a reflective data member is
accessed), the call is trapped and the flow of control is directed to the associated metaob-
ject. The metaobject handles the actual argument list and return value of a method call.
The argument list, return values and the values of variables are reified to be first-class
entities at the meta level, a process similar to the marshaling of parameters in Remote

Procedure Calls (RPC). The flow of control is depicted in figure 2.9.

metaobject (VerboseClass)

Trap void Meta_MethodCall() {
@ printf(...);
Meta_HandleMethodCall();
} | o
@ Meta-level

object (refl_Person)

Call

>

B int IncAge(

Return
B}

:

Base-level

Figure 2.9: Flow of control of a reflective member function. The invocation of a reflective
member function is trapped and diverted to the object’s metaobject. The metaobject can
perform additional tasks before handling the actual invocation.

The user can modify the behaviour of method invocation by redefining Meta_MethodCall()

of class MetaOb;j.

The example program shown in figure 2.10 illustrates how the OpenC++ MOP can be used

to achieve the task of retrieving a list of method descriptions for a given object.
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void listMethod( MetaMsgReceiptor* targetObject){
int i=0;
MetaObj* meta;
meta = targetObject->Base_GetMetaObj();
printf(”Class is %s”, meta—>Meta_GetClassName());
char**methods = targetObject—>Base_GetMethodNameList();
while (methods[i]){
printf("method %d %s”, i, methodsl[i]);
it

Figure 2.10: Introspection in OpenC++ vl: the function listMethods lists all methods of
a given object.

2.6.4 Known Applications

[SW95] describes the implementation of atomic data types using the OpenC++ mop. The
example is motivated by the fact that with traditional approaches application code is to
a large extent intertwined with non-functional code which deals with synchronisation and
recovery.

Atomic data types are associated with AtomicMetaObj, a metaobject class that provides
operations for implementing local atomicity. A customised method dispatcher (a redefi-
nition of method Meta_MethodCall) intercepts all method invocations and performs addi-
tional operations depending on the category of the target method. Subclasses of Atom-
icMetaObj can implement different concurrenct control schemes, so for example optimistic

or pessimistic concurrency control.

Base-level classes that are to support atomicity can to a large extent be written as usual,
i.e. the functional code can be written without atomicity in mind. However, it requires the
base-level programmer to categorise member functions as either being read or write oper-
ations®. This semantic distinction is necessary for the atomic MOP to acquire appropriate

locks before each operation.

The inability of the OpenC++ MOP to dynamically associate objects with metaobjects has

"OpenC++ provides a mechanism that allows the annotation of member functions and data members
with user defined categories.
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been mentioned by the authors as a major limitation. On the positive side, OpenC++

allows a clean separation of concerns: different schemes can be introduced separately.

2.6.5 Performance

An evaluation of the OpenC++MOP presented in [CM93] reveals that a method call carried
out via the meta-level is about 6-8 times slower than an C++ virtual function call. The
overhead increases in proportion with the number of arguments since all arguments are
copied separately via an ArgPac object. Compared to a non-virtual function call OpenC++

is about 10 times slower. Access to member variables is about 35 times slower.

2.6.6 Support for Meta-Types

Reflection in OpenC++ vl is not transparent as the programmer has to explicitly create
reflective objects. Although it is possible to create both reflective and non-reflective objects

of the same type, they can not be treated interchangeably.

As mentioned above, it is also not possible to dynamically rebind an object to another
metaobject at run time since this connection is established during compilation.

The combination of multiple, independently developed MoPs can indirectly be achieved by
arranging metaobject classes in a reflective tower where each intermediate level propagates
the operation to the immediate upper meta-level. This approach has been exercised in the
development of a fault-tolerant Mmop [FFP98]. In this example, a three meta-level model
was defined with separate levels implementing fault-tolerance, secure communication and

eroup-based distribution.

2.7 OpenC++ v2

The OpenC++ v2 MmoP provides control over the compilation process of application code.
It was also written by Chigeru Chiba at the Masuda Laboratory, University of Tokyo,

Japan.

2.7.1 Type of Reflection

Version 2 of the OpenC++ compiler is a compile-time architecture that is similar to a parse-

tree translator: The parse-tree of the (base-level) source-code is generated, traversed and
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transformed. The nodes of the parse-tree are metaobjects that can be customised in order

to control the translation of, for instance, a method invocation or a class declaration.

2.7.2 Reflective Facilities

The OpenC++ MoOP provides control over the compilation of class definition, member
access, virtual function invocation and object creation [Chi95]. This is achieved by reifying
the compiler’s parse tree as a collection of objects. The source-to-source translation of the
program as well as structural aspects, such as type information, are reified by either of

the following meta-level classes:

e Class metaobjects: As well as representing class definitions, they control the source-

to-source translation of the program.

e Ptree metaobjects: They represent the parse tree of a program. The parse tree is
implemented as a nested-linked list. Methods of class Ptree are used to manipulate

the list.
e Typelnfo metaobjects: They represent types that appear in the program.

e Environment metaobjects: They represent bindings between names and types and

are also used to insert declarations in the translated program.
Version 2.3 introduces 2 more meta-level classes, namely

e Member metaobjects: they provide a more abstract view of member functions and
allow the user to obtain information about a member of a class such as its signature,

name or whether it is virtual or not.

o Walker metaobjects: can be used to traverse a parse tree and to call a user defined

function each time a node object is visited.

Metaobjects of type Class play the key role in the MOP as they represent class definitions
and control the source-to-source translation. An overview of the functionality provided by
class Class is given in figure 2.11. Methods such as TranslateMemberCall() and Translate-
New() provide a way to translate expressions involving the class and thereby allow the user
to change the behavioural aspects of method invocation and object creation. Introspection
is supplied by methods such as Name() and NthMemberName() which return the name of

a classes and its n-th member function respectively.
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class Class {
public:

// Protocol for Introspection:
Ptree* Name();
Ptree* BaseClasses(); // Returns the base-classes field
Ptree®* Members(); // The body of the class declaration
Ptree* Definition(); // Returns the whole clas definition
Class* NthBaseClass(Environment *env, int n);

// Returns the n-th base class
Ptree* NthMemberName(int n);

// Protocol for Translation:

Ptree* TranslateClassName(Environment* env, Ptree* keyword, Ptree* name);
Ptree* TranslateSelf(Environment* env);

Ptree* TranslateMemberFunctionBody(...);

Ptree* TranslateNew(...);

Ptree* TranslateMemberCall(...);

Figure 2.11: The OpenC++ v2 Mmop. Metaobjects of type Class represent class definitions
and control the source-to-source translation.

2.7.3 Programming Model

Implementing a new MOP is accomplished by deriving from class Class and by redefining
the appropriate member functions that control the source translation. The new mop
implementation is then compiled by the OpenC++ compiler to produce a modified version

of itself. The new compiler is subsequently used to translate base-level programs.

Selecting a Mop
A base-level class can select a metaobject class either by a metaclass declaration or by
registrating a new keyword. Selecting a MOP is done on a per class basis, i.e. once a class

is associated with a Mmop, all instances will be modified by it.

The methodology for implementing a language extension consists of three steps:

I. Decide what the base-level program should look like.

2. Decide how it should be translated
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3. Write a meta-level program to perform the translation and write the run-time sup-

port code, if required.

The following is a variant of the verbose methods example used to exercise the steps above:

metaclass Account : PrintMethodCalls; //metaclass declaration
class Account {
protected:

Money balance;

public:
Account_Nr getAccountNumber();

void credit();

The metaclass declaration above associates the class Account with the metaclass Print-
MethodCalls. The next step is to decide how the base-level program will be translated so
that a message will be printed everytime an Account method is called. One way to do this
is to translate every expression containing a method call on an Account object so that it
prints out a message before actually calling the method. For example, if myAccount is an

Account object, then the statements:

myAccount.getAccountNumber()

myAccount.credit()

can be translated into:

(puts("getAccountNumber()”),myAccount.get AccountNumber())

(puts(Tcredit()”),myAccount.credit())

This example does not need any run-time support code, so the next step only involves
writing the metaclass PrintMethodCalls. PrintMethodCalls is sub-classed from the default
metaclass Class and overrides the default TranslateMemberCall method to translate expres-

sions involving the Account class.
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class PrintMethodCalls : public Class {
public:
PrintMethodCalls(Ptree* d, Ptree* m) : Class(d,m) {}

Ptree* TranslateMemberCall(Environment*, Ptree*, Ptree*, Ptree*, Ptree*);

Ptree* PrintMethodCalls :: TranslateMemberCall(Environment* env,
Ptree* object, Ptree* op, Ptree* member,Ptree* arglist) {
return Ptree::Make(” (puts(”%p()”),%p)”, member,

Class::TranslateMemberCall(env, object, op, member, arglist));

The TranslateMethodCall takes an expression such as myAccount.credit() and returns the
translated version. As mentioned above, it is actually parse trees that are perform the
translation. Both the given expression and the translated one are represented as parse
trees, Ptree is the data-type which represents a parse tree and Ptree::Make() is a method
to contruct a new parse tree.

The authors admit that writing a meta-level program using a compile time MOP is a
difficult task, as the user has to deal with the internal workings of the parse tree, transform
it and produce different code. However, version 2.3 of the OpenC++ compiler [Chi] is
said to overcome some of the problems mentioned above by providing better support for
introspection.

Figure 2.12 outlines the steps involved in writing an application in OpenC++. As men-
tioned above, the meta-level program written by the user is first translated by the OpenC++
compiler and linked with itself to generate an extended version. Compiling a base-level
program in OpenC++ v2 consists of three stages: preprocessing, source-to-source transla-

tion from OpenC++ to C++ and the compiler backend.

2.7.4 Performance

Implementing new object behaviour such as persistence or distribution is not involved
with run-time overhead due to the mop itself, as the metaobjects only insert additional

code that is needed to support the desired feature.
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Figure 2.12: Writing an application in Open C++4 v2.

2.7.5 Known Applications

| As with version 1, useful applications include language extensions for C++ to support fea-

| tures such as persistence, distribution and concurrency. For example [KYK™'99] describes
a Mop-implementation using OpenC++ v2 supporting persistence in C++ and explains in
great detail the linguistic issues involved in object checkpointing. As reflection only takes
place at compile-time, it is difficult to achieve the flexibility offered by run-time architec-
tures
As described in [KFRGC98], the OpenC++ compiler was used to implement a MOP support-
ing fault tolerance. The requirements for a fault tolerant object system using replication

strategies include the control over

e object creation/deletion: objects have to be created in multiple copies over different

nodes (replicas) and to subscribe to a communication group. When an object is
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deleted, all replicas have to be removed from that group.

e object invocation: all invocations on a fault tolerant object have to be broadcasted
to the replicas and the order of the messages has to be maintained in order to ensure
replica consistency. Replicas must also be able to handle multiple copies of the same

message and to synchronise themselves after the execution of the method.

e object state access: the evolution of an object’s state has to be propagated to the
system to ensure consistency among the copies. Under certain circumstances, objects
have to be stored on stable storage periodically in order to retrieve their state after

a system failure.

In order to trap all method invocations to an object, the OpenC++ compiler was used to
rename all methods, including constructors and destructors. An invocation is trapped by
an additional method with the original name that forwards the call to the metalevel. For
example, a method methodl is renamed into real_ methodl and a wrapper function, now
called method1 is added to the class definition. Figure 2.13 shows the modified code for a

class declaration.

Original Class Translated Class

class Base { class Base’ {
Base(); Base(); // Trap
“Base() ; “Base(); // Trap
void method1(); void method1(); // Trap
void method2(int); void method2(int); // Trap

e // original methods:

void real_Startup();
void real_Cleanup();
void real_method1();
void real_method2(int);

I

Figure 2.13: Code modifications performed by the OpenC++ MOP in order to trap invo-
cations on an object.

2.7.6 Support for Meta-Types

As a compile time architecture, OpenC++ v2 naturally lacks the flexibility of run time

architectures. MoPs control the translation of whole class definitions, thus it is neither
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possible to adjust the behaviour of individual instances of a class, nor to dynamically

modify the behaviour of objects at run time.

2.8 CodA

The CodA meta-level architecture is based on an operational decomposition of meta-
level behaviour into objects and the provision of a framework for managing the resultant

components [McA95b].

2.8.1 Type of Reflection

CodA is a reflective extension of Smalltalk and as such is a run-time meta-level architec-
ture. It provides behavioural reflection by interceeding with a number of events triggered
by the application objects, such as sending/receiving messages or accessing state. CodA

uses a modified virtual machine in order to intercept events.

2.8.2 Reflective Facilities

In CodA, the meta-level is decomposed into seven so-called meta-components that reify
different aspects of object behaviour such as sending/receiving a message, executing a
method or accessing state. Figure 2.14 depicts the events and meta-components involved

in the sending of a message M from object A to object B.

Object behaviour is modified by explicitly associating meta-components with an object.

The role of the meta-components is as follows:

Send The main role of the Send meta-component is to manage the sending of a mes-
sage to an object. This can involve supervision of the transmission of the message,
synchronisation of the sender and the receiver, protocol negotiation and resource

management.

Accept The Accept meta-component defines how the receiver of a message interacts with
the message sender. It therefore also has to deal with synchronisation and protocol
negotiation. It also determines if the message is valid and how the message should
be handled, that is, whether the message should be queued for processing or whether

it should be processed immediately.

Queue organises and holds messages which have been accepted but not yet received or

processed.
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[igure 2.14: Sample meta-level configuration in CodA. Sending a message between two
objects is implemented by a number of meta-components that represent different stages
during the processing of the message.

Receive The Receive meta-component is responsible for fetching the next message to be

processed. This may involve the selection of a message from one of a number of

message queues according to specified constraints.

Protocol The Protocol meta-component is responsible for mapping a message to be pro-
cessed onto a method to be executed. This requires the specification of how messages
and methods can be matched (for example, by using simple name matching), and
the specification of the search process (for example, whether single or multiple in-

heritance is to be used).

Execution The Execution meta-component specifies how an object interacts with the
system in order to execute one of its methods. For example, it determines whether
the method should be executed in debug mode or not. It also controls where and

when a method is executed, and is responsible for actually executing the method.

State The State meta-component organises and maintains information about the object
state, that is, its instance variables. It defines what instance variables an object has

and how these instance variables can be accessed.

The set of meta-components which define an object’s behaviour is called the meta of that

object.
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In the Smalltalk implementation of CodA, each meta-component is represented by a class.
The default classes provide the functionality associated with its role. For example, the
Send component provides methods for sending a message to a base-level object, the Queue

component allows the en- and dequeuing of messages etc ([McA95al).

2.8.3 Programming Model

Defining and Selecting a MoP is achieved by re-defining individual classes that provide
the intended behaviour and by replacing them with the default meta-components. New

components can either be selected on a per object, per class or on a system-wide basis.

FFor example, if an object wants to replace its Send component, it first has to instantiate

its meta level using the
Behaviour>>asExtendibleMetaFor:

method. This creates and installs the object’s default metaobject. The metaobject is an
instance of class CodAMeta. The class CodAMeta provides the necessary functionality to
install and replace meta-components. In a second step, the object actually has to replace

its Send component using
anObject meta componentAt: State put: myState for: anObject

This replaces the default state-component with the object myState.

[igure 2.15 depicts how the CodA meta-level architecutre is embedded into Smalltalk
objects. The classField slot is a hidden data member of every Smalltalk object which
points to the object’s class. The Smalltak virtual machine uses this information for method
dispatch: for every incoming message an appropriate method is searched in the object’s
class description. If the class object is replaced by an object which does not understand any
messages (as a subclass of nil for example), every incoming message is trapped. Adding
message handlers to the interceptor allows the individual selection of methods that are
reified and those that are not (by default no methods are reified). Trapping a message

causes the receiving object to re-invoke a reified send operation from the original sender.

2.8.4 Known Applications

CodA has been used to implement a variety of different object models, including con-

current, distributed and ported objects [McA95¢c]. The object models then have been
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Figure 2.15: Object layout in CodA: the hidden classField slot that is part of every
base-level object points to the interceptor (a subclass of nil). The interceptor in turn
points to the object’s set of meta-components.

applied to existing applications such as the 2D N-Body problem, an expert system and a

monitoring and analysis system called Vibes [McA95b].

2.8.5 Performance

In CodA, a fully reified send/receive cycle is said to increase the execution time “about
an order of magnitude” [McA95b]. McAffer claims that in real applications, where the
performance depends on the amount and type of reified components, applications tend to
be 3-5 times slower than in the absence of reflection. As an example, the implementation
of the 2D N-Body problem where concurrency and distribution was added was four times

slower.

2.8.6 Support for Meta-Types

Operations on reflective objects in CodA are by and large transparent to the user since
the underlying virtual machine intercepts with the Smalltalk message passing mechanism.
[However, CodA does not provide an automated mechanism for instantiating and modifying
meta-components. Instead, progammers have to explicitly instantiate an object’s meta-
level and insert those components that implement a particular behaviour. It is however
possible to insert and replace individual meta-components at run time, thereby allowing

objects to evolve in changing environments. Composition of multiple, independent meta-
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components is not directly addressed in the framework.

2.9 ABCL/R

ABCL/R [WYS88] is a reflective extension of the object-based concurrent programming
language ABCL/1 [YBS86]. It was developed by Takuo Watanabe and Akinori Yonezawa

at the Tokyo Institute of Technology and is based on Lisp.

2.9.1 Type of Reflection

ABCL/R is another example of a run-time architecture: the behaviour and state of base-

level objects is controlled by exactly one metaobject.

2.9.2 Reflective Facilities

In ABCL/R, an object is an autonomous, individual information processing agent, similar
to the actor model. It consists of a message queue, an evaluator and a set of state variables
and scripts, equivalent to member variables and methods in the C++ terminology. Figure
2.16 depicts the object model in ABCL/R. Objects communicate via message passing. All
message transmission is asynchronous. Sending and processing a message is associated

with the following set of events:

Arrival: The message arrives at the receiver object. The receiver starts processing the
message.

Receiving: The receiver object enqueues the arrived message in its message queue.

Acceptance: The receiver tries to find an appopriate script for the message by pattern-
matching. If the receiver accepts the message, it starts executing the script for that

message.
Execution: The script gets executed.
End of Processing a Message: The evaluation finishes and the next message is pro-

cessed.

In the reflective extension of ABCL/1, an object is fully represented by a metaobject. The
metaobject contains the representation of the message queue, the state memory, the set of

scripts and the evaluator. Besides this structural aspect, the computational aspect of the
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Figure 2.16: Object model in ABCL/R: an object consists of a message queue, an evaluator
and a set of state variables and scripts.

object — arrival, receiving and acceptance of a message and the execution of scripts, are
reified. The relationship between the base and the meta-level is depicted in figure 2.18.

The structure of object A is represented as the data in the state memory of the metaobject:
scriptset defines the set of scripts, state the current contents of the state variables,

evaluator and queue are objects defining the evaluator and the message queue resp. and

mode represents an objects mode (either dormant or active). The behavioural aspects of

an object — arrival, receiving and acceptance of messages as well as the execution of scripts

are described by the script-part (methods) of the metaobject.

2.9.3 Programming Model

The example program in figure 2.17 shows a simple object definition in ABCL/R. In this
case, we instantiate the object anObject that contains two state variables (2, y) and scripts

to set and retrieve the value of the state variables.

Objects are activated by message passing. For example, to set the value of the field
variable @ one can send the message setx to the object with an additional parameter as
in [anObject <== [:setx 23]].

Retrieving the metaobject of anObject is accomplished by evaluating the special form
[meta anObject]. The metaobject contains the following scripts that allow the dynamic

modification of its associated base-level object:
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[object anObject
(state [x := 0]
Oy = Q)
(script
(=> :getx 'x)
(=> :gety 'y)
(=> [:setx new_x]
[x := new_x])
(=> [:sety new_y]
[y := new_yl)
)]

Figure 2.17: Example object definition in ABCL/R. Here we define an object with two
state variables x and y and scripts to set and retrieve the value of the state variables.

e [:add-script s] : Adds a new script which is defined in s to the object.
e [:script m] : Retrieves a script whose message matches m.
e [:delete-script m] : Deletes a script whose message matches m.

e [:state] : Returns a description of the object’s state.

The interface described above can be used directly to look up scripts and to modify an
object’s state. For example, to add a new state variable to an object one can retrieve and

alter the object’s state as in:

[ st := [[meta anObject] <== :state]]
[ st <== [add-binding ’z 100]]

To modify the default behaviour of objects, one can replace the scripts that are executed
during the various stages of message processing. FFor example, to monitor the beginning
of a script execution, one can replace the :begin-script in the object’s meta-level. To
do so, an additional level of indirection has to be overcome: since every object is fully
represented by its metaobject, modifying an object’s metaobject can only be done via its
meta-meta-object. ABCL/R features a fully reflective tower and (theoretically) allows the
access to an infinite tower of meta-levels. This is achieved by creating metaobjects lazily,
i.e. when they are first accessed. The following code extract shows how the :begin script

can be replaced:
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Figure 2.18: Relationship between a base and a metalevel object in ABCL/R: the baselevel

object is fully represented by its metalevel object.

[mml := [meta [meta anObject]]] ; retrieve anObject’s meta-meta-level

[mml <== [:add-script ‘(=> :begin ...)]] ; replace begin-script

2.9.4 Performance

As reported in [MMAY95], the overhead introduced by meta-level computations when
directly using an unoptimised interpreter is high, by a factor of 100 and more. In order
to cope with this overhead, [MMAY95] describes the development of a compiler frame-
work that employs partial evaluation as its primary optimsation technique. Optimised
and compiled applications are reported to only exhibit an overhead of 10-30% compared
to hand-crafted source-code optimisations in a non-reflective language. However, this re-
stricts objects to select a meta-interpreter only at creation time, dynamic replacement or

customisation of the meta-interpeter is no longer possible.



Reflective, Object-Oriented Programming Languages

2.9.5 Known Applications

(WYS88] and [MMWY92] outlines an implementation of the Time Warp synchronisation
mechanism. The Time Warp mechanism is a synchronisation protocol that is targeted at
distributed event simulation and distributed database concurrency control [Jef85]. In this
scheme, processes communicate via messages, each message containing a timestamp. If
conflicts are detected, i.e. messages arrive out of order according to the timestamp they
contain, a rollback is performed restoring the state of the process to the time before the
conflict appeared. Rollback is performed by sending anti-messages, each anti-message re-
verts the side effect of exactly one original message. The implementation of anti-messages
and the rollback mechanism could in this case be completely separated from the applica-
tion code. Baselevel objects select a customised meta-level interpreter that handles the
processing of messages and captures the state of objects in order to allow to revert to

earlier stages.

2.9.6 Support for Meta-Types

As an interpreted language, interceding with the execution of language operations is trans-
parently carried out by the interpreter and meta-levels for objects are only created on
demand. There is no direct support for composing the behaviour of multiple metaobjects
in ABCR/R. However, since ABCL/R provides the (lazy) instantiation of a theoretically
infinite reflective tower, composition can indirectly be achieved by building multiple layers
of meta-levels, with each layer interceding with the level below, similar to the way as has

been described for OpenC++ v1.

To our knowledge, there is no means for objects to deselect their meta-interpreter. In
other words, once the meta-interpreter of an object has been instantiated, all following

operations will be diverted and objects can not revert to a non-reflective configuration.

2.10 Discussion

In this chapter we examined and reviewed a number of reflective extensions to object-
oriented programming languages. Compile-time reflection, while not introducing run-time
penalties, offers the least flexibility as reflection is restricted to the compilation phase. The
highest flexibility is provided by interpreted languages such as ABCL/R and CodA. This
is possible because the underlying interpreter or virtual machine is able to intercede with

the execution of the running program at any one time. However, interpreted languages do
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per se not perform as efficiently as compiled languages and are hardly suitable for building

performant, low-level applications such as operating systems and embedded systems.

Run-time reflection for compiled languages falls in between these two extremes. A major
restriction of existing run-time architectures is their lack of flexibility compared to inter-
preted languages. OpenC++ vl for example does not provide a mechanism for objects
to dynamically re-select their meta-level representation. Moreover, type othogonality is
not achieved since reflective objects have to be created explicitly and can not be used in
place of their non-reflective counterparts. We therefore conclude that none of the existing

architectures for compiled languages can be used to implement meta-types.

In the Iguana reflective programming model as described in the following chapter, we aimed
at overcoming the restrictions imposed by existing platforms while keeping the interpre-
tative overhead low. We are specifically interested in providing reflection for compiled

languages with a flexibility similar to that found in interpreted languages.
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The Iguana Reflective Programming
Model

The iguana that jumped from the high iroko tree
said he would praise himself if no one else did.

Nigerian Proverb

['rom our review of reflective programming languages in the previous chapter we have
identified a number of shortcomings in current architectures. Existing architectures for
compiled programming languages, as exemplified by OpenC++ vl are too static and do
not offer enough transparency since reflective and non-reflective objects have to be treated
separately. Other, more flexible architectures such as CodA, require the programmer to
explicitly create and access meta-level components, which again leads to a tangling of

functional and non-functional code.

Iguana in its previous version [Gow97] suffered from similar problems in that it did not
separate enough between the roles of base and meta-level programmer. As a consequence,
applications written in Iguana contained a large amount of direct meta-level invocations,
consisting of, for example, code for inserting or replacing metaobjects. Again, this defeats

the transparent use of reflection and its claim for achieving a clean separation of concerns.

We therefore undertook a substantial re-design and re-implementation of the Iguana model.
As explained before, our aim is to shield both the application and meta-level programmer
from the actual implementation details of the reflective programming features. Although
this thesis is primarily concerned with applying reflection to a compiled language, the
concepts presented in this chapter are meant to capture various features commonly found
in existing oopLs in order to make the model applicable to other programming languages
as well, including Java [RC00].
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3.1 General Overview

In Iguana, base-level objects are associated with a set of metaobjects, each representing
or implementing a specific language construct. Programmers can substitute the default
semantics of each of the language constructs individually by providing a customised im-

plementation.

A design issue that distinguishes Iguana from comparable platforms, is that it is dynamic
in nature: Iguana offers the dynamic and selective reification of language constructs at run-
time, meaning that customised object models can evolve as the system runs. This is par-
ticularly important for building applications that are faced with changing non-functional
requirements. Building those applications is inherently difficult as the designer cannot

always foresee every possible usage scenario and/or run-time environment.

3.2 Reification Categories

In lguana, reification categories represent language constructs whose implementation or
interpretation can be modified by the programmer. Among these language constructs
are structural categories such as information about classes, methods and attributes and
behavioural categories that implement for example object creation, deletion or method
invocation.

In contrast to earlier versions of Iguana, the number of reification categories has been
reduced significantly, from originally 29 to now 12. For example, Iguana v1 provided 7 dif-
ferent reification categories concerning methods and method invocation, namely Method,
MethodName, MethodAddress, Invocation, MethodAccess, MethodBefore and MethodAfter.
The main motivation behind this approach was concerned with performance: the use of
reflection should ideally only introduce overhead where the reflective features are explicitly

used.

In practical terms, we found that the overload of reification categories was more confusing
than beneficial, leading to an overlap of the semantics of the various categories. Moreover,
the ideal of selectively reifying only those language constructs that are of actual interest for
the meta-level programmer cannot always be met. For example, in order to reify method
invocation, it is surely necessary that structural information about methods, such as their
address, type and signature, is also present. This has lead to a number of dependencies

between different reification categories.

[n the revised model, structural information about methods, including the type, name,
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address and signature of methods, is combined into only one category. We believe that this
reduction has lead to a cleaner design and represents a more intuitive decomposition of
object models. Although dependencies between different categories still persist (see section
3.2.4), they have been reduced significantly. Moreover, the reduction has not lead to a
loss of expressive power. For example, in order to provide the functionality of before/after
methods, it is sufficient to only reify method invocation since the implementation of that
reification category can contain any code that is executed before and after the actual

method has been invoked.

A discussion of the available reification categories is presented below.

3.2.1 Structural Reification Categories

These represent structural aspects of the underlying object model, such as information
about classes, member functions and data fields. Structural reification categories allow
introspection and build the base for most of the behavioural reification categories described

later in this section.

In the revised model, Iguana supports five structural reification categories, namely:
Class: contains information about a class, such as its name, its superclasses and a
description of its methods and attributes.

Method: contains information about a method, such as its name, signature, type and

address.
Attribute: describes a class’s attribute (or data member): its name, type and size.

Constructor provides information about a constructor including its name, signature,

and address.

Array provides information about an array, for example, the number of elements in the

array.

3.2.2 Behavioural Reification Categories

Behavioural reification categories define the semantics of a specific language construct, for
example how objects are created/deleted, how methods are invoked and how state vari-
ables are accessed. Currently, lguana supports the following set of behavioural reification

categories:
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Creation: implements the process of object creation which usually involves memory
allocation for the object’s data members, initialising the object’s virtual function

table and calling its constructor.

Deletion: deleting an object usually involves calling its destructor and freeing up any

memory that the object holds.
Invocation: implements the invocation of a method at the receiver side.
StateRead: implements reading from an object’s data member.
StateWrite: implements writing to an object’s data member.

Send: intercedes with a method invocation on the caller side, i.e. before it is dispatched

by the reveiving object.

Dispatch: reifies the dispatching of an invocation to the correct method.

3.2.3 Extent of Reflection

A relevant design issue that has been taken into account is concerned with the extent
to which the reification categories should be applied. Should the reification of method
invocation and state access be applied to individual methods/attributes of a class or should
reification apply to the whole class? The former approach, as provided by OpenC++ v1,
allows a more fine grained control over the reification of events and might result in more
efficient implementations. However, this requires application programmers to individually
select those attributes and methods that are subject to reflection, which leads to a greater
dependency between base and meta-level code and defeats the transparent use of reflection.
We therefore advocate the latter approach where all methods and attributes of a class are

subject to reflection.

3.2.4 Dependencies between Reification Categories

In general, the behavioural reification categories can be applied independently of each
other. However, most of the reification categories (i.e., both structural and behavioural)
depend on one or more of the structural reification categories. For example, the be-
havioural reification category supporting method invocation requires that the structural
reification category providing information about methods is also selected in any MOP in
which it is included. Figure 3.1 summarises the Iguana reification categories and their

dependencies.
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Figure 3.1: Dependencies between reification categories in Iguana.

3.2.5 Protocols and Protocol Selection

The Iguana model provides the concept of a protocol both as a means of defining a new
MoP and of specifying the implementation of a Mop. In Iguana, the definition of a MmopP
specifies the set of reification categories to be applied to objects that select the MOP as
well as the set of metaobject classes to be used to implement those reification categories.

FFor example, the protocol definition

protocol DefaultProtocol {
reify Class : MClass;
reify Method : MMethod;

reify Invocation: MInvocation;

specifies that structural information about a class and its methods is to be reified by in-
stances of MClass and MMethod respectively. In addition, invocation is reified by instances
of class Mlnvocation.

[overy protocol defines a new meta-type. Objects that select a particular protocol can
be said to conform to or implement the corresponding meta-type. Every object has an
associated meta-type, its current meta-type, which can be changed dynamically. The
process by which the meta-type of an object is specified is called protocol selection. Three

forms of protocol selection are supported by lguana:
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e class protocol selection;
e default protocol selection; and

e instance protocol selection.

[fach of these forms of protocol selection is discussed in turn below. In all cases, the

meta-type is specified using the protocol selection operator ==

Class Protocol Selection

Class protocol selection allows the meta-type of all new instances of some class to be
specified and also defines their static meta-type. For example, to specify that all new
instances of class Car, a subclass of Vehicle, should have meta-type Persistent, the following

class declaration is used:

class Car : public Vehicle ==> Persistent {

// declaration of Car

('lass protocol selections are inherited. Thus, subclasses of Car inherit its protocol selec-
tion. A subclass can also override the protocol selection of its superclass. However, in
this case, the specified meta-type must be a sub-type of the meta-type specified for the

superclass. FFor example,

class Taxi : public Car ==> Atomic {

// declaration of Taxi

is only possible if Atomic is a sub-type of Persistent.

Default Protocol Selection

Default protocol selection allows the meta-type of all new instances of a set of classes
declared in a single source file to be specified. Logically, there is a default meta-type
associated with each source file. The default meta-type may be changed with a default

protocol selection declaration.
[For example, to declare that all new instances of the classes Car and Boat should have
meta-type Persistent, while new instances of Plane should have meta-type Atomic, where

Car. Boat, and Plane are declared in the same file, we can write:
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defaultProtocol ==> Persistent;
class Car : public Vehicle {

// declaration of Car

class Boat : public Vehicle {

// declaration of Boat

defaultProtocol ==> Atomic;

class Plane : public Vehicle {
// declaration of Plane

Instance Protocol Selection

Instance protocol selection allows the meta-type of a single object to be selected dynam-
ically. In other words, it allows the dynamic meta-type of an object to be specified.
For example, to specify that the object stored in variable myHouse is to have meta-type

Persistent from now on, the programmer can write
House myHouse ==> Persistent;

The dynamic meta-type of an object must be a sub-type of its static meta-type. For

example,

class Car : public Vehicle ==> Persistent {

// declaration of Car

Car myMerc ==> Atomic;

is only possible if Atomic is a sub-type of Persistent.
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Protocol Inheritance The set of active reification categories for a given object can
increase and decrease over time by means of protocol inheritance and dynamic protocol

selection. For instance, the following protocol definition

protocol AccessProtocol : DefaultProtocol {
reify StateRead : DefaultRead;
reify StateWrite: DefaultWrite;

is derived from DefaultProtocol and introduces two additional reification categories, namely
StateRead and StateWrite. Where a protocol is derived from another protocol, the resulting
protocol includes the full set of reification categories specified by both the base and derived

protocol.

In the case where a reification category is repeated in a derived protocol, the resulting
meta-type will include multiple implementations of that reification category. In other
words, rather than overriding or replacing the metaobject class specification in the base
protocol, derived protocols accumulate new metaobject class definitions which are com-
bined with those of the base protocol. As a result, multiple metaobjects control the

behaviour of a specific reification category.

Objects which are associated with DefaultProtocol can at run-time switch between the

base and its derived protocol and thereby adapt their behaviour dynamically.

3.2.6 Shared Behaviour

l[guana defines two sharing modes for reification categories: local and shared. Declaring a
reification category to be local implies that the metaobject implementing that particular
category is local to the associated base-level object. A shared metaobject on the other
hand is shared by all instances that have selected that mop. This feature is particularly
useful to achieve some sort of group behaviour where objects of different classes share a
common feature or common information. Typically, structural reification categories would
by default be considered as common to all instances of the same class and hence reified
in a shared mode. In order to modify the behaviour of individual objects one would
reify the corresponding behavioural reification category in a local mode. The following
code example shows a possible protocol definition, this time with both local and shared

reification categories.
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protocol DefaultProtocol {

shared:
reify Class : MClass;
reify Method : MMethod;
local:
reify Invocation : DefaultInvocation;

In this example, structural information about classes and methods is reified in a shared
mode whereas invocation is reified in a local mode. The corresponding meta-level config-

uration is depicted in figure 3.2.

/ Local MO Local MC/

LS K Bl . /Meta level

Base-level

Figure 3.2: Metalevel configuration with local and shared metaobjects.

3.3 Metaobject Composition

Composition of metaobjects provides a means for partitioning more complex behaviours
into separate “layers” where each layer is responsible for carrying out a specific task and
then transfers the flow of control to the next layer in the hierarchy. Moreover, composition
can be used to provide alternative implementations of a specific tasks, which can then be
combined arbitrarily. For example, a set of metaobjects implementing remote method

invocations could provide support for encryption. Conceptually, one layer of metaobjects



3.3 Metaobject Composition

59

can perform the encryption of data before the next layer sends the data across the net-
work. The network layer does not need to be aware of whether or how the data has been
encrypted. Moreover, a variety of encryption algorithms could be provided wich can then

be selected into the application.

Several reflective languages support composition of metaobjects in order to combine two
or more behavioural aspects. The Guarand meta-level architecture [OB98] is a good
example. Guarand associates a single (or primary) metaobject with each base-level object.
The primary metaobject acts as a composer that can delegate requests to its attached
metaobjects (which can themselves be composers) and then combine their results to form

its own result.

The need for composition has been recognised for a number of years ([Ber96], [NM94],
[FDM94]), but also introduces a number of problems that need to be addressed. As has
been noted in [MaPC95], combining different behaviours, or so-called customisations, is a
hard problem because of the semantic interference that may occur between the combined

behaviours.

[F'or example, say we have two independently developed protocols supporting persistent and
remotely invocable objects respectively (and which both make use of metaobject classes
implementing method execution). In principle, we would like to be able to define a new
protocol for objects that are both persistent and remotely invocable by means of multiple
protocol inheritance. However, the logic of the respective method invocation metaobjects
is most likely to work by attempting to locate the object, either in the persistent store or
distributed system, and then invoking it or throwing an exception if the object can’t be
located. When the protocols are combined, the desired behaviour would be to search for
the object as appropriate (depending on which metaobject is activated first), invoke it if

found or otherwise give the other metaobject a chance to locate and invoke the object.

lguana supports automatic meta-level composition by means of protocol inheritance: a
protocol can be derived from one or more super protocols. The resultant protocol imple-
mentation consists of the union of the selected reification categories and their implementing
metaobject classes. We intend metaobject composition to be a tool for the experienced
meta-level programmer who wants to modularise complex object behaviours, but we do

not advocate its use by the application programmer due to the difficulties outlined above.

3.3.1 Default Composition Semantics

With these considerations in mind, we provide a default semantic for composing two

or more protocols as well as the ability to specify application-specific compositions. In
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our implementation, multiple metaobjects implementing a single reification category are
chained together in a linked list. Metaobjects are usually written to transfer control to
their successors in the list. Thus, each metaobject has the chance to perform its own
processing and then delegate the task to the next object in the list or to terminate the
request. The final metaobject in the list is usually expected to be the default metaobject

for the reification category that knows how to implement the basic operation.

The following example illustrates a possible use of multiple protocol inheritance. The code
below defines three protocols, a default protocol that provides default behaviour, a verbose
protocol that will print out a message every time a method on an object is executed and a
persistent protocol whose task it is to retrieve the target object from the persistent store,

if necessary, before invoking it.

protocol DefaultProtocol {
reify Class : MClass;
reify Method : MMethod;

reify Invocation : DefaultInvocation;

protocol VerboseProtocol : DefaultProtocol {

reify Invocation : Verboselnvocation;

protocol PersistentProtocol : DefaultProtocol {

reify Invocation : Persistentlnvocation;

As VerboseProtocol is derived from DefaultProtocol, an object that selects VerboseProtocol
will have two metaobjects associated with it, one of class Verboselnvocation and one of

class DefaultInvocation.

Implementing execution of a method on a persistent object on the other hand entails
e looking up the target object in the persistent store,
e reading its state into memory, and eventually

e invoking the method using the default execution mechanism.
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If we want to combine the behaviour of the two protocols above in order to realise a

protocol for verbose, persistent objects, this can very easily be achieved with

protocol VerbPersProtocol : VerboseProtocol, PersistentProtocol {};

An object selecting this protocol will have three metaobjects attached to it implementing
verbose, persistent and default method execution. No further specifications are necessary,
as the metaobjects are organised so that metaobjects from a super-protocol are put towards
the end of the chain. Thus, the more specific behaviour (defined in the derived protocol)
is executed in preference to the more general behaviour (defined in the base protocol).
To prevent the same code from being executed twice, only one metaobject of a specific
metaobject class is added to the chain, similar to the virtual inheritance mechanism in

C++. Figure 3.3 shows the resulting metaobject configuration.

VerbPers-
Protocol

Verbose Persistent Default
Invocation Invocation  Invocatio

Figure 3.3: Composition of metaobjects in Iguana. By default, metaobjects are chained
in a linked list. Fach metaobject is responsible for delegating the call to the successor.

3.3.2 Modifying Composition

Under some circumstances the default behaviour as described above is not what is desired.
Imagine that we want to achieve "exactly one” semantics where exactly one of a set of
available metaobjects is invoked in the knowledge that it will perform the desired task. In
this scenario the idea is to compose the two behaviours using an intermediate metaobject

to delegate the call as appropriate. The necessary steps are outlined in the example below.
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protocol DefaultProtocol {
reify Class : MClass;
reify Method : MMethod;

reify Invocation : Defaultlnvocation;

protocol RemoteProtocol {
reify Class : MClass;
reify Method : MMethod;

reify Invocation : Remotelnvocation;

Here we define two protocols, a default protocol that provides the default behaviour for
method invocation and a protocol that allows methods on remote objects to be invoked.
Now consider that we want to combine the two protocols in order to implement a smart
proxy policy on the client side: when the target object is cached locally there is no need
to perform a remote method invocation and the default implementation can be used. In
any other case, the remote invocation protocol contacts the remote host and arranges for

the method to be invoked. This can be achieved using the following protocol definition:

protocol SmartProxyProtocol : DefaultProtocol, RemoteProtocol {

reify Invocation : SmartProxylnvocation;

[n this case, we only want to delegate the method call to the remote host if the target
object is not cached locally, otherwise we can use a normal method invocation. The Smart-
Proxylnvocation metaobject now acts as a dispatcher that delegates the call as appropriate.

A possible implementation is outlined in the following example:
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class SmartProxylnvocation : public MInvocation {
void *invoke(void *obj, MMethod method){
// get MO for default invocation
MInvocation *defaultlnv = next;
// get MO for remote invocation
MInvocation *remotelnv = next—>next;
if (is_in_cache(obj))
return defaultInv—>invoke(obj, method);
else

return remotelnv->invoke(obj, method);

Figure 3.4 shows the corresponding (logical) metaobject configuration.

As this example illustrates, multiple protocol inheritance can be used to resolve conflicts
that arise from combining existing behaviours. However, it is the responsibility of the
expert reflective programmer to meaningfully combine the existing behaviours. This in
general requires an understanding of the desired semantics of the combined protocols and
exploits knowledge about the organisation of the metaobject architecture. Although we
would like to shield even the reflective programmer as far as possible from such details, this
represents a common dilemma found in software reuse: combining existing components or

class hierarchies, for example, can often only be achieved by writing some “glue code” in

SmartProxy-
Protocol

Default
Invocation

SmartProxy

Invocation Remote

Invocation

Figure 3.4: Modified composition of metaobjectsin Iguana. Multiplexing between different
metaobjects can be achieved by defining a subprotocol that combines multiple metaobjects
in a meaningful way.
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order to achieve the desired behaviour.
3.3.3 Discussion
The preceding description can be summarised by the following four rules:

e cvery object has a single meta-type;

the meta-type of an object can be changed dynamically;

the meta-type selected by a class must be a sub-type of that selected by its superclass;

the dynamic meta-type of an object must be a sub-type of its static meta-type.

Of course, alternatives to each of these rules were considered in the design. In an earlier
version of lguana an object could be associated with multiple independent meta-types.
From the application programmer’s perspective, this represented a somewhat more com-
plicated model. From the implementation perspective it required the ability to combine
the metaobjects implementing the different meta-types in a meaningful way. Rules to
combine metaobjects from meta-types that were written independently of each other are
technically possible but unlikely to lead to meaningful combined behaviour when the
meta-types are unaware of each other. Thus, the current design only allows an object to
have a single meta-type. The meta-type in turn can be composed of multiple, but it is
the meta-level programmer’s responsibility to provide a meaningful composition semantic.
Put differently, the experienced meta-level programmer uses protocol inheritance in order
to compose meta-types, but from the application prgrammers point of view objects are at

any one time controlled by a single meta-type.

Another design point is concerned with whether or not it should be possible to change
the meta-type of an object dynamically. Clearly, static typing has proven to be extremely
useful and hence it could be argued that static meta-typing is sufficient. Moreover, always
knowing the meta-type of an object statically would certainly allow us to optimise our
implementation significantly. However, our view has been that meta-types are primarily
intended to be used to address non-functional requirements which are prone to change.

Hence, it appears unnecessarily restrictive to prevent dynamic change of meta-types.

3.3.4 The Iguana Syntax

[guana extends the C++ syntax with only a few constructs. The syntax extension is shown

in figure 3.5. It mainly consists of a construct for declaring meta-object protocols and the
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MOP selection operator (==>) that associates a MOP with objects.

3.4 Summary

This chapter described the Iguana reflective programming model. We introduced the
notion of a meta-type that provides a common abstraction for the reflective features in
lguana. From the application programmer point of view, meta-types constitute compo-
nents that can be selected into an application. From the experienced meta-level program-
mer point of view, meta-types build a framework for designing and implementing object
models. The model addresses the issues of composing and selecting meta-types dynami-
cally, thus both base and meta-level programmer are to a great extent shielded from the

reflective features.
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protocol-specifier:
protocol-heading protocol-body

protocol-name:
identifier

protocol-heading:
protocol protocol-name protocol-base-spec
protocol-base-spec:

protocol-base-list

protocol-base-list:
protocol-name
protocol-name , protocol-base-list

protocol-body:
{ protocol-member-list°"" }

protocol-member-list:
reification-list protocol-member-list°P?!

mode-specifier : protocol-member-list°P!

reification-list:
reification-declarator
reification-declarator reification-list

reification-declarator:
opt

reify reification-category metaobject-class-specifier
metaobject-class-specifier:
class-identifier

mode-specifier:
local
shared

assignment-erpression:
conditional-expression assignment-operator assignment-expression°’
identifier ==> protocol-name

Figure 3.5: The Iguana syntax definition.
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The Iguana/C++ Implementation

It is no disgrace to start all over. It is usually an opportunity.

George Matthew Adams

In this chapter we describe a concrete mapping of the Iguana model onto C++. Where

appropriate, we highlight the impact of the host language on the implementation.

4.1 Applying the Model

There are two principal routes one can take in order to extend an existing programming
language. A first approach would be to modify an existing compiler to incorporate the
language extension. Alternatively, one can apply an additional pre-processing stage that
translates a program in the extended language into the original language. The program
is then compiled as normal with the standard compiler. Early C++ implementations for
example took the latter approach in that they translated programs written in C++ back
to C.

There are a couple of issues related to each of the approaches: an additional pre-processing
stage complicates the development cycle and introduces dependencies between modules.
Under some circumstances, pre-processing might not even be applicable if parts of the
application are already compiled into object code and the source code is no longer available.
Moreover, in order to find a mapping from the extended language to the original, one
has to obey the typing rules of the native language, resulting in sometimes obfuscated
and less efficient code. The advantages are that the pre-processor approach allows rapid

prototyping and experimenting with different programming models.

Compilers on the other hand are complex pieces of software and, as such, difficult to

modify. This is especially true in the case of C++ due to its origin from C. On the positive



68

The Iguana/C++ Implementation

side, having direct access to the compiler would result in a tighter coupling between the

language extension and its translation into native machine code.

With these considerations in mind we decided to take the pre-processor approach, mainly
in order to prove the feasibility of the model and to create an environment that allows
experimentation with alternative designs. A first implementation using a pre-processor
can subsequently serve as an example of how the Iguana model can be embedded into

existing compiler technologies.

4.2 General Overview

igure 4.1 gives a high-level view of the components that constitute the lguana/C++
system. The C++ (base-level) code is augmented with meta-level directives and translated
by the Iguana pre-processor into standard C++. In addition, the pre-processor generates
code that contains run-time support that has to be linked with the final application. The

run-time support mainly consists of code implementing dynamic meta-type selection.

Iguana
Meta-Level
Class Hierarchy |

Modified
Source-Code

C++
Compiler

Iguana-extended
source-code

Run-Time

S rt
F RS Executable

Figure 4.1: Conceptual overview of the Iguana meta-level architecture. The Iguana ex-
tended base-level code is translated by a pre-processor into standard C++ and additional
run-time support. The final application is then compiled together with the Iguana meta-
level class hierarchy and subclasses thereof.

Reified language features are represented by a set of classes, the Iguana meta-level class
hierarchy. The classes of the meta-level class hierarchy constitute the self representation
of the C++ object model and have to be subclassed by the programmer who wants to
implement a customised language feature. As a starting point for developing MOP imple-

mentations we provide a default implementation, i.e., a set of concrete classes that provide
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the default C++ semantics of all of the reifiable language features. The meta-level class

hierarchy is described in section 4.3, the default implementation in section 4.7.

Iguana Metalevel Class Hierarchy
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+invoke()
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-next : MStateRead : +Type : String
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Figure 4.2: UML diagram of the lguana meta-level class hierarchy. Each of the structural
and behavioural reification categories is represented by a corresponding class.

4.3 The Iguana Meta-Level Class Hierarchy

The Iguana meta-level class hierarchy implements the self-representation of the C++ object
model: each of the structural and behavioural reification categories is represented by a
class. For example, structural information about methods is reified by objects of type
MMethod, creation is reified by objects of type MCreation etc. Figure 4.2 shows the design

of the class hierarchy in UML notation.

In our implementation, we did not explicitly reify Array and Constructor. This is due to
the fact that C++ does not provide language support for arrays (arrays are implemented
via pointers) and does not treat constructors differently from a normal method invocation.

This is in contrast to, for example, Java where arrays are first class entities and constructors
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are treated differently. We therefore implicitly reified arrays as simple attributes and

constructors as normal methods.

[Migure 4.3 shows an example meta-level configuration of a given object at run-time. MOb-
ject is the common base class of all reflective objects. It contains the necessary hooks
to metalevel objects and provides the interface to access and invoke metaobjects. Be-
havioural reification categories can be represented by zero or more metaobjects. In case
no metaobject is present for a particular reification category, this simply means that this
feature is currently not reified and the native C++ mechanism is used instead. Multiple
metaobjects for a particular reification category are chained together in a linked list so
that a composition of different behaviours can be obtained. For more about metaobject

composition see section 4.6

‘MMethod

MClass

MAttribute

MObiject

P MStateRead

Figure 4.3: Object layout in Iguana. Reflective objects are associated with a number
of metaobjects, each of which represents structural or behavioural aspects of the object.
Multiple metaobjects representing the same aspect are chained in a linked list.

In contrast to the previous implementation of the Iguana meta-level class hierarchy, we
took a different approach in binding objects to their meta-level representation. In the
previous version, base-level objects contained a single pointer, the so-called meta-pointer,
to their meta-level representation. The rationale behind this design was to allow a fast

and easy transition from one meta-level representation to another by simply re-directing
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the meta-pointer.

Mainly because of performance reasons we found the previous design was disadvantageous:
in order to access metaobjects, an additional level of indirection has to be overcome. This
overhead becomes significant when performing reified operations on objects such as state

read and state write.

We believe that during the life-cycle of an object the number of base-level operations exceed
the number of meta-level reconfigurations by far. In our design we therefore focused on
allowing a fast transition from base to meta-level computations by minimising the number
of indirections. Moreover, switching to a different meta-level representation by simply
redirecting the meta-pointer has shown to be a very unsafe operation since some sort of
compatibility between the old and new configuration is required. For example, it is not
meaningful to replace an object’s entire structural information with one that does not

reflect the object’s actual type.

4.4 The Pre-Processor

In the pre-processing phase the Iguana extended source-code is parsed and translated into

standard C++. Parsing is traditionally carried out in various stages ([ASUS6]):

I. Lexical analysis: the character stream of the source-code is scanned and grouped

into tokens

2. Syntactical analysis: the token stream generated during the lexical analysis is parsed
| and grouped into grammatical phrases.

\

|

|

3. Abstract Syntax Tree generation: during the syntactical analysis an Abstract Syn-
tax Tree (AST) is generated that represents the grammatical phrases of the source

prograin.

4. Semantic analysis and AST modification: in a last step the AST generated during
the syntactical analysis is walked and transformed by the parser to synthesise the

translated source code.

A number of tools exist that automate the process of parser writing. We chosed to use
the PCCTS parser generator ([Par96]) as it is freely available and comes with a (fairly)
complete C++ grammar. It generates a recursive descent parser from the grammar de-
scription. The grammar itself is written in EBNF-form and can be annotated to guide the

automated AST-construction and AST-transformation.
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4.5 Source-to-Source Translation

[n this section we present a detailed description of the code modifications that are carried

out by the lguana pre-processor.

4.5.1 Protocol Definitions

Protocol definitions associate a set of reification categories with their implementing classes
and define a new meta-type. During run-time, the set of metaobjects that constitute a
particular meta-type are subject to change in the event an object selects a new meta-type
dynamically. We therefore need to capture information about which set of metaobjects

are needed to implement a particular meta-type.

[Fach protocol definition is translated into a corresponding class definition. The corre-
sponding class contains functions to initialise and configure the meta-level that consitutes
a particular meta-type. For example, given a protocol definition MyProt, the correspond-

ing class definition would be:

class MyProt : public MObject {
public:
static MObject *InitMOP(MObject *meta){...}
static MObject *SetMOP (MObject *oldMOP,
bool isTargetProt, void *param = NULL){...}

('lass MyProt in the example above contains protocol specific code to create and initialise a
new meta-level configuration (InitMOP) that adheres to the protocol definition. Function
SetMOP on the other hand takes a compatible meta-level configuration and transforms it
to the target protocol. Compatible meta-level configurations are those which are either
defined in super or subprotocol definitions. Dynamic protocol selection and meta-level

reconfiguration are described in more detail in section 4.6.
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4.5.2 Adding Introspection

(C++, as a compiled language, retains only little structural information in the run time
image in the form of Run Time Type Information (RTTI). This information is not enough
to inspect on actual methods or attributes. Adding introspection is therefore faced with
the problem of maintaining structural information about classes, methods and attributes

beyond the compilation process. For instance, the following class declaration

class MyClass {
public:
int x;
double Sqrt(dcuble arg){

return sqrt(arg);

defines a simple class that contains one public attribute and one public member function.

The kind of structural information we are interested in is

e T'he name and size of MyClass.

e A list of its super-classes.

e A list of all attributes of MyClass: their type, name, size and location (displacement)
within objects.

o A list of all methods of MyClass: their type, name, signature and address.

Parts of this information, such as the name and type of attributes and methods, can be
gathered during the pre-processing stage. Other parts, such as the size of attributes and
the addresses of methods, are platform/compiler dependent or can only be determined at

run-time.

The lguana pre-processor augments class definitions with a static member function, Init-
MetalLevel, which captures the necessary structural information, as shown in figure 4.4, line
[08]. Run-time specific information is made available by the sizeof, offsetof and address of
(&) operators. In line [15] the newly created class metaobject is stored in a class table.

This allows applications to lookup class definitions given the class’s name. In addition,
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01] class MyClass : public MObject {

(01]

[02]

(03]  int x;

[(04]  double Sqrt (double arg ){

[05] return sqrt (arg);

[06]  };

[(07]  static MObject* MetaMyClass;

[08]  static void InitMetaLevel(){

[09] MetaMyClass = new MObject();

[10] MetaMyClass—>Class= new MClass(”MyClass”, sizeof(MyClass), SHARED):
(11] MetaMyClass—>AddAttribute(new MAttribute(”x”,”int”, offsetof(MyClass, x),
[12] sizeof(int), SHARED, 0));

[13] MetaMyClass—>AddMethod (new MMethod(”Sqrt”,(MAddress)&refl Sqrt,
[14] "(double)” ,PUBLIC, SHARED, "double”));

[15] ClassTable.push_back(MetaMyClass—>Class);

6] )

[17]  wvoid refl Sqrt(){

(18] double arg;

[19] Stack->pop(&arg);

[20] double tmp = MyClass::Sqrt(arg);

[21] Stack—>push(&tmp, sizeof(tmp));

(22] }

23] 1

Figure 4.4: Pre-processed class definition in Iguana/C++. Structural information about
methods and attributes is created in function InitMetalevel. In addition, the pre-processor
has added a wrapper function refl_Sqrt that intercepts calls to the original method.

the pre-processor has added a wrapper function refl_Sqrt, line [17], to the class definition.

Reified method invocations are carried out through this wrapper function.

4.5.3 Bootstrapping

At program start-up, a number of initialisation operations have to be carried out in order
to create the reflective run-time environment. So, for example, class metaobjects for all
user defined classes are created and stored in a class table. This is achieved by inserting
code that invokes the InitMetalevel-function for all user-defined classes. Storing class
metaobjects in a table enables applications to lookup class definitions at run-time. In

addition, the application stack is created. The application stack (an instance of class
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MStack) is used by objects that perform a reified method invocation and is used to pass

arguments to reflective methods.

Iguana Run-Time Environment

Protocol Table

Class Table

Invocation Stack
Invoke

Application Objects

Figure 4.5: Iguana run-time environment, consisting of a class table that stores class defi-
nitions, a protocol table that contains supporting functions for dynamic protocol selection,
and the invocation stack.

The protocol table contains a list of all protocol definitions and is accessible to the meta-
level programmer in order to change an object’s meta-type from the meta-level. In section
5.4 we describe how this functionality was used in the implementation of a persistent

meta-type. Figure 4.5 depicts the Iguana/C++ run-time environment.

4.5.4 Adding Intercession

The semantic analysis during the pre-processing stage identifies those parts in the appli-
cation program that perform a reified language operation and replaces them with code
that transfers control to the meta-level. The code translation is faced with the problem of
replacing an expression with one that is semantically equivalent and type conformant. The
following is a discussion of the code modifications for each of the behavioural reification

categories. A summary of the code modifications can be found in table 4.1.
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Simple Method Invocation

Method invocations can be of different kinds. The simplest case occurs when a method of

type void without any parameters is invoked. For example, the following expression
obj->method();
is translated into
obj—>invoke(indez);

where index denotes the index of the method in the method table.

Method with Return Value

In case the method invoked returns a value, for example of type int, the translated code

would be:
*(int*) obj->invoke(index);

The meta-level operation returns an untyped pointer to the result value which is then cast

to its appropriate type.

Method with Parameters

Argunients to methods are passed via a global stack object. A method invocation requiring

arguments as in
obj—>invoke(argy, ..., arg,):
is translated into
obj->invoke(index, (Stack—>push(arg,), ... , Stack—>push(arg,)));

The comma expression (Stack—>push(arg;), ...) is evaluated from the left to the right,
thus pushing the arguments onto the stack. Stack operations are templated so that data

objects of arbitrary type can be pushed onto the stack.
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State Read/Write

[oxample code modifications for read and write access to objects are given below. When
writing to a field, the new value is passed via the reified stack, similar to method invoca-

tions.

V. =HOD

v = *(int*)obj->read(index,);
translated into i gl i e

obj->x = val; obj->write(index,, Stack—>push(val));

translated into
Send

Sending a message to an object is basically a method invocation from within another
method. The invocation is redirected to the send metaobject of the calling object, which

is then responsible for forwarding the message to the target object.

Original code : Modified code:

MyClass::Method (){ MyClass::Method (){
TargetClass *targetObj = ...; TargetClass *targetObj = ...;
targetObj —> m(); this—>send(targetObj, index,, );

Whether or not the sending of a message is actually diverted to the send-metaobject also
depends on the target object: the target object is required to have invocation reified in
order to be able to receive the message and to invoke the baselevel operation. Thus, two
metaobjects have to be present: one for sending the message (at the caller side) and one
for receiving the message (at the receiver side). In order to ensure the safe transition to
meta-level operations, Iguana inserts run-time checks to the base-level code as described

in section 4.5.6.

Creation
Object creation is a relatively complicated task. In C++, it comprises of

e Allocating the appropriate amount of memory from the heap

e Initialising the virtual function table and pointers to virtual base classes (if any)
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e (Calling the constructor

Another issue that has to be addressed is the creation of dynamic arrays of objects. In this
case C++ first allocates the memory for the entire array and then invokes the constructor

for each object inidividually.

In Iguana, where metaobjects can be associated with individual objects, a fundamental
problem arises when interceding with object creation: since the object is not yet existent,
we first have to create the local metaobjects that will constitute the future object’s meta-
level. From that meta-level configuration the base-level object can be instantiated. Before
the constructor of the newly created object can be invoked, the meta-level has to be
bound to the base-level object since the constructor might rely on the existence of certain

structural and/or behavioural metaobjects.

The Iguana run-time support provides the necessary functionality for constructing meta-
level configurations (see also section 4.6). For example, given a protocol definition named
MyMOP, the pre-processor generates a function MyMOP::InitMOP that creates and config-
ures the behavioural metaobjects selected in the protocol definition. From that meta-level

configuration, the base-level object can be created. So for example
obj = new MyClass ==> MyMOP;
is translated into
MyMOP:InitMOP (MyClass::MetaMyClass)->create( 0);

In addition, the Iguana preprocessor inserts into class definitions a factory function that
handles both the construction of single objects and dynamic arrays. Taking our class

declaration from 4.5.2, the generated factory function would be:

static void refl MyClass(MObject *meta, int numObjs){
MyClass *newobj;
if (numObjs) // if we create array of objects
newobj = new MyClass[numObjs](meta);
else newobj = new MyClass(meta);

Stack—>push(newobj):
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The meta-level configuration that is in control of the creation of the object is passed as
a parameter (meta) to the factory function. It is bound to the object in the constructor
of MObject, the common base class of all reflective objects, and thus before the actual

constructor is called. numObjects determines the number of objects that have to be created.

Deletion

As with object creation, we have to distinguish between the deletion of single objects
and entire arrays. Again, this is handled by a wrapper function inserted into the class
definition. Given below are the code modifications carried out for object deletion, both
for single objects and dynamic arrays. A flag to the destroy operation indicates whether
or not a single object or an entire array has to be deleted.

delete obj; obj—>destroy();

delete[] obj:

03 7
translated into

- obj—>destroy(true);
translated into . y(true);
4.5.5 Instance protocol selection
Instance protocol selection allows individual objects to select their dynamic meta-type.
The lguana run-time support takes care of restructuring the object’s meta-level, as de-
scribed in section 4.6. For example, the expression

obj ==> dynMT;
selects a new meta-type for object obj and is translated into

dynMT::SetMOP (obj);

where SetMOP is a generated function that implements the meta-level reconfiguration.

4.5.6 Run-time Checks

l[guana allows the set of active reification categories for a given object to increase/decrease
over time by means of dynamic protocol selection. Of course we only want to divert an

operation if the target object has an appropriate metaobject that can handle the operation.

We achieve this functionality by guarding every object access with a run-time check. If

a specific reification category is not active, the native C++ mechanism is used, otherwise
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the event is trapped and diverted to the meta-level. For example, method invocations are

translated into:

META_INVOKE(obj) 7
obj->invoke(index) : obj->method();

The macro META_INVOKE() evaluates to true if invocation is reified for a given object.

If so, the reflective code is called. Otherwise, the native C++ invocation is executed.

Run-time checks have been introduced to the revised version of Iguana for a couple of
reasons. First, they support type orthogonality: reflective and non-reflective objects can be
used interchangeably. Second, they provide a convenient and efficient way of dynamically
switching between different sets of active reification categories: in case an object deselects

a particular reification category, it can revert to the native and efficient C++ mechanism.

As has been mentioned in section 4.5.4, a special case occurs for reifying sending of mes-
sages: both the sender and receiver need to be in possession of a metaobject to perform
the operation. In this case two run-time checks have to be performed, one for checking
whether the sending object has send reified and one for checking whether the receiver has
invocation reified.

[t is worth mentioning that run-time checks are only inserted where the semantic analysis
cannot determine whether or not a particular reification category is selected by an object.
For example, if the static meta-type associated with a class has invocation reified, the set
of selected reification categories is only allowed to increase in derived protocols. Thus, all
instances of that class will always have invocation reified and the run-time check guarding

invocations can be omitted.

4.5.7 Nested Expressions

[oxpressions in C++ can be complex and arbitrarily nested. Under these circumstances,
nested expressions have to be broken down into simpler ones, each of which is then trans-

lated separately. In the following example,
AObj->a->b();

a method on a nested object is invoked. In a first step, this expression is broken down,

introducing a temporary pointer to the nested object:

SomeClass *temp;
temp = AObj —> a;
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temp —> b();

In a second step, the two expressions above are translated separately into:

SomeClass *temp;
temp = (SomeClass*) AObj —> read(index,);

temp —> invoke(indexy);

As can be seen, the first expression is equivalent to a read access: the address of the

embedded object is read and stored in a temporary pointer variable.

4.6 Dynamic Meta-Type Selection

Protocol inheritance as described in section 3.2.5 allows the (static) combination and
augmentation of Mops. A feature that distinguishes Iguana from other architectures is
the ability to change an object’s metalevel dynamically: at any one time, an object can
select a meta-type that is a subtype of its static meta-type. Broadly speaking, from the
implementation point of view, dynamically selecting a meta-type means restructuring the
set of metaobjects that constitute the object’s current meta-type at run-time. This section

describes how dynamic meta-type selection is implemented.

4.6.1 Meta-level Reconfiguration

When migrating from one meta-type to another, we want to maintain the state of the
object’s current meta-level configuration, i.e. keep those metaobjects that are also part of
the target meta-type. In fact, dynamically selecting a new meta-type is a quite complex
task as it involves the automatic reconfiguration of an object’s meta-level, with metaobjects
being inserted to or deleted from the current meta-level configuration. The problem is to
identify those objects that do and do not constitute the target meta-level. As the type of
the metaobjects that build a particular meta-level configuration are protocol-specific, this

requires some sort of run-time support in the application.
[n general, we have to distinguish between the following cases:
e An object selects a meta-type that is derived from its current meta-type. This

involves the creation and insertion of the additional metaobjects into the current

meta-level configuration.
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e An object selects a meta-type that is a super-type of its current meta-type. This
involves the removal of superfluous metaobjects from the current meta-level config-

uration.

e An object selects a meta-type that is a sibling to its current meta-type, i.e., one that
is derived from its static meta-type. This involves both the removal and insertion of

metaobjects.

Consider the following example:

protocol MOP_A {

reify Invocation : Invoke_A;

protocol MOP_B : MOP_A{

reify Invocation : Invoke_B;

protocol MOP_C : MOP _A {

reify Invocation : Invoke_(';

class XY ==> MOP_A {

Here we define three protocols, each of which declares Invocation to be reified. Objects of

type XY now can at any one time select the meta-types defined by the protocols MOP_A,

MOP_B and MOP_C:

XY *obj = new XY(); // static meta-type is MOP_A
obj ==> MOP_C; // switch to meta-type MOP_C'

obj ==> MOP_B; // swilch to meta-type MOP_B
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. W Invoke_A
cbj == MOP_Bf
obj ==> MOP_A

. Invoke_B  Invoke_A w Invoke_C  Invoke_A

obj ==> MOP_C

Figure 4.6: Dynamic meta-type selection in Iguana. Selecting a new meta-type at run-time
involves the automatic creation, insertion and deletion of metaobjects.

\

Figure 4.6 illustrates the resulting meta-level configurations for the various meta-types.
Switching from protocol A to B requires the creation of metaobjects of type Invoke_B since
it is derived from protocol A. Switching to protocol C then requires the deletion of Invoke B

and the creation and insertion of Invoke_C.

As it cannot be known statically whether a newly selected meta-type is a super or a sub-
tyvpe, the algorithm that performs the dynamic reconfiguration has to cater for both cases.
The algorithm is outlined in figure 4.7. The Iguana pre-processor generates a function
for each of the protocols, function SetMOP, that reconfigures a meta-level configuration
so that it conforms to the destination protocol. This function iterates through the list of
metaobjects for each of the selected reification categories and marks all those metaobjects
that are part of its protocol definition (each protocol knows’ the type of metaobjects that
it contributes, line [4] and [5]). In order to do so, each metaobject contains the name of the
protocol to which it belongs. If such an object can’t be found, it creates the metaobject of
the appropriate type and inserts it to the list (line [7]). This function is recursively called
for all super-mops (each protocol "knows’ its direct super-protocols, lines [2] and [3]). The
destination protocol finally iterates through the list again and deletes all metaobjects that

have not been marked: these are the ones that do not constitute the target meta-level

configuration (lines [9] and [10]).
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]

] Vp € Super(Protocol X)) :

] p i Set MOP(oldMOP);

] tf 3m € M(ReificationC'ategory) : m € Protocol X
] mark(m)

] else

] create new m, insert it into M (ReificationCategory);
] of (Protocol X 1s target protocol)

] Vm € M(ReificationC'ategory) : mmark(m)

0] delete m

1

Figure 4.7: Algorithm for dynamic meta-type selection. Super(Protocol X') denotes the
set of all direct super protocols, M (RetficationCategory) is the set of metaobjects that
implement a particular reification category.
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4.7 The C++ Default Protocol

The Iguana/C++ default protocol is a concrete set of classes that provide the default
behaviour of C++ objects. It can be used as a basis for developing MOP implementations.
In this section we outline the implementation of the default protocol and highlight the

language issues that arose when developing the C++ default behaviour.

4.7.1 Method Invocation

One of the problems faced when implementing reified method invocations is how to deal
with user-defined data types as parameters and return values. OpenC++ vl for exam-
ple introduces a class ArgType that encapsulates arguments to functions. Application
programmers are required to derive from this class for each user defined data type in
order to provide specific marshalling and unmarshalling operations for each data type.
This approach places much of the burden of meta-level programming on the base-level

programmer and clearly defeats ease of use and transparency.

The previous version of lguana used a similar approach in passing parameters to functions:
arguments were passed via activation frame objects, appropriate subclasses for each user-
defined data type could be generated automatically by the preprocessor. The problems
with this approach were a) Scalability: this required for each method the generation of a
new class that contained the arguments as its data members. b) Performance: creating

and deleting activation frame objects incured substantial run-time overhead.

In the revised version of Iguana, arguments are passed via a global stack object. Stack
operations are templated so that push and pop operations for user-defined data types are

generated automatically by the compiler back-end.

4.7.2 State Access

The default implementation of the behavioural reification categories StateRead and State-
Write respectively calculate the address of the data member whose state has to be read/-
written. Address calculation depends on whether the data member is a single field, an
array of fixed or dynamic size, or a static data member (i.e., one whose data is shared

between all instances of the class). Consider the following example:
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class MyClass {
public:
static int statlnt;
int somelnt;
int Array[10];
int *dynArray;
MyClass(){
dynArray = new int[10];

The default implementation of StateRead/StateWrite has to distinguish between the fol-

lowing cases:

obj->statlnt = 456;
obj->somelnt = 123;
obj—>Array[index] = 234;

obj->dynArray[index] = 345;

(Case 1 shows a write access to a static data member. The address of a static data member
is the same for all objects of the class and can be determined by means of the addressof-
operator:

address = addressof (MyClass :: statInt) (4.1)

Case 2 shows a write access to a single field. The address of the data member is simply

the address of the object plus the displacement between the object and the data member:

address = addressof (obj) + offsetof (somelnt, MyClass) (4.2)

C'ase 3 shows a write access to an array of fixed size. In this case we first have to calculate
the begining of the array within the object (as above) and then add the displacement

within the array:

address = addressof (obj) + offsetof (Array, MyClass) + index * sizeof (int) (4.3)
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Case 4 shows a write access to a dynamic array of integers. Here, we first have to calculate
the location of the pointer variable within the object. The address at that location points

to the first element in the array, from where we can add the displacement within the array:

address = deref (addressof (obj) + offsetof (dynArray, MyClass))
+ index * sizeof (int) (4.4)

4.7.3 Object Creation

As has been described above, object creation in C++ is a relatively complicated task.
[t involves the allocation of the appropriate amount of memory to contain the object’s
attributes, initialisation of the object’s virtual function table and possibly the execution
of a constructor method. When creating dynamic arrays of objects, these steps have to

be repeated for all elements of the array.

As a matter of fact it is not possible in C++ to fully reify object creation for a number
of reasons. First, we can only intercede with the explicit creation of objects, indicated
by the use of the C++ new-operator. Second, certain aspects of the C++ object model are
not fully specified and hence compiler dependent, for example, the layout of objects in
memory and the implementation of the virtual function table. The default implementation
for the creation of objects therefore invokes a factory function that has been added to the
class definition by the pre-processor. The factory function in turn creates either single or

dyvnamic arrays of objects using the default C++ new-operator.

4.8 Restrictions

Providing full support for reflection in a complex programming language such as C++ is a
non-trivial task. Often we were confronted with the feature-richness and idiosynchracies
of that language. The following is a summary of the restrictions that we encountered when

applying the Iguana model to C++.

4.8.1 Automatic objects

C++ distinguishes between heap-allocated (or dynamic) and stack-allocated (or automatic)
objects. Heap allocated objects are created explicitly by means of the C++ new-operator
and persist until they are explicitly deleted by the delete-operator. Stack allocated

objects on the other hand are created automatically when the object goes into scope.
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Code for creating and deleting stack allocated objects is generated by the compiler and
cannot be replaced by the pre-processor. Is is thus not possible to intercede with the

creation/deletion mechanism of stack allocated objects.

4.8.2 Arrays

In contrast to Java, C++ does not have direct language support for arrays. Instead, arrays
are implemented using pointers. We therefore did not implement the reification category
Array. Instead, arrays are reified as attribute metaobjects with additional information

about the number of elements in the array.

4.8.3 Aliasing

Aliasing occurs in a program when two or more names exist for the same data object. In
('++ aliasing comes in two shapes, pointers and references. In practice this means that
under some cirumstances, due to a loss of type information, not every operation on an

object can be detected and transferred to the meta-level. Consider the following example:

class MyClass {
public: int i;
k
MyClass *obj = new MyClass(); //create new object
int *plnt = (int*)obj; // pInt is an alias for obj

*plnt = 23; // access member variable

Here we first create an object of type MyClass and then an alias to the object typed as a
pointer to int. Subsequently dereferencing the pointer variable is effectively a state access

to the object’s fields that cannot be intercepted.

Although the above example is not considered as being a good programming style, it illus-
trates one of the many ways in which invocation via the meta-level can be circumvented.
However, for a full reflective architecture it is necessary to detect all operations on ap-
plication objects, otherwise full causal connection between base and meta-level cannot be

guaranteed and inconsistencies are inevitable.

Problems of this kind can only be overcome by introducing an alias analysis for the ap-
plication code. As a matter of fact, it has been shown that a complete alias analysis for

pointer-induced aliasing becomes NP-hard and that no good approximation algorithms
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exist [LR91].

4.9  Summary

This chapter described Iguana/C++, a concrete mapping of the Iguana model onto C++.
l[guana/C++ is implemented by means of a pre-processor: the Iguana extended code is
parsed and translated back into standard C++. A number of code modifications are car-
ried out, most notably the insertion of code to capture structural information about the
application and run-time checks to guard and divert operations on objects. Table 4.1 sum-
marises the code modifications for the behavioural reification categories. For simplicity,

the run-time checks have been omitted.

We also described the process of instance protocol selection and meta-level reconfiguration.
This process allows individual objects to dynamically select a meta-type. Finally, we
outlined the implementation of the C++ default MOP, a meta-type that provides the default

semantics of C++.
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Reification Categories

Original Code

Translated Code

Invocation

obj—>my();

obj—>invoke(index,,);

Invocation + params

obj—>m/(arg);

obj—>invoke(index,,, Stack—>push(arg));

StateRead % = obj->a; x = *(T*)obj—>read(index,);
StateRead(array) x = obj—>ali]; x = *(T*)obj—>read(index,, i);
StateWrite obj—->a = v; obj—>write(index,, Stack—>push(v));
Send (inside method) | obj—>m(); this—>send(obj, index,, );

(‘reation

obj = new Class;

obj = Prot:InitMOP (Class::MetaClass)
~>create(0);

Creation(array)

obj = new Class[sz];

obj = Prot:InitMOP (Class::MetaClass)
~>create(sz);

Deletion

delete obyj;

obj—>destroy();

Deletion(array)

delete[] obj;

obj—>destroy(true);

Protocol Selection

obj ==> Prot;

Prot::SetMOP (obj);

-

checks omitted).

Table 4.1: Summary of code modifications for

the various reification categories (run-time
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Reflective Programming with Iguana

Whoever admits that he is too busy to improve his methods has acknowledged

himself to be at the end of his rope.

J. Ogden Armour

Object-oriented analysis and design are nowadays common practice and supported by a
number of design tools that help to manage and automate the transition from the analysis
to the design to the implementation phase. Reflective programming however lacks such a
common methodology, which has only recently became a focus of research [CST00a]. In
this chapter we will illustrate how the reflective features of Iguana can be used to extend
the C++ object model in order to provide support for, for example, software evolution
and persistence.  We will see that meta-level programming with Iguana is not unlike

conventional object-oriented design.

5.1 Using Introspection

Using introspection to look up the class definitions of objects is done in Iguana in similar
ways to what has been described for other reflective architectures in chapter 2. Finding
out about the structure of objects can for example be used to perform object serialisation
or to find out about the interface offered by object whose type is not known until run-
time. The example shown in figure 5.1 illustrates how introspection can be used in Iguana
to look-up the name, type and signature of methods. Since not necessarily all objects
contain class information (class information is only available if it is reified), we have to

check whether the target object contains a valid class descriptor.
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void listMethods(MObject *targetObject){
int =0
MClass *cl = targetObject—>Class;
if (cl){
MMethod *m;
while (m = cl->GetMethod(i)){
printf("Method %d: %s %s %s”,
i, m—>ReturnType, m—>Name, m—>Signature);
e

Figure 5.1: Introspection in Iguana.

5.2 Boundary Checks for Arrays

By default C++ does not carry out boundary checks when accessing array elements, i.e.
it is the programmer’s responsibility to either ensure that array indices are never out of
bounds or to perform run-time checks before each access. Using reflection, performing
boundary checks on arrays can be implemented very easily. Moreover, using Iguana’s
protocol selection mechanism, it can be applied to classes and/or objects individually.
Boundary checks can therefore be performed during the debugging phase and later simply

switched off.

In order to implement boundary checks for arrays, we build a hierarchy of protocols,
incrementally extending the functionality of the read/write operations as shown in figure
5.2. Starting with a simple protocol that only selects structural information to be reified,
we subsequently add default semantics and finally boundary checks to the read/write

operations.

The protocol BoundTest is derived from a protocol that implements the default semantics
for state access. Metaobjects of type BoundWrite and BoundRead respectively will perform
the boundary test before delegating the call to the default implementation. A simple
implementation could print out debugging messages for out-of-bound accesses, a more

sohpisticated implementation could realise a "smart-pointer” policy and dynamically resize
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protocol Typelnfo { // reify structural information
shared:

reify Class : MClass;

reify Attribute : MAttribute;

protocol DefaultMOP : Typelnfo { // provide default semantics
shared:

reify StateWrite: Default Write;

reify StateRead : DefaultRead;

protocol BoundTest : DefaultMOP { // perform additional boundary checks
shared:

reify StateWrite: Bound Write;

reify StateRead : BoundRead;

Figure 5.2: Protocol hierarchy implementing boundary checks for arrays. Starting with
a protocol definition that reifies only structural information about classes and attributes,
default semantics and boundary checks are added in subprotocols.

the array.

Since arrays in C++ are not first class entities, access to array elements can only be in-
tercepted if the array is embedded into an object. Using dynamic meta-type selection we
can switch on/off boundary checks for individual objects as the following code example

illustrates:
class MyClass ==> Typelnfo { ... };
MyClass obj = new MyClass(); // creating object without boundary tests

obj ==> BoundTest; // switching on boundary tests
obj->array[23] = 12;

5.3 Run-time Adaptation of Systems Software

One of the main motivations behind using reflection in software engineering is to build

applications which are faced with changing requirements, either statically or dynamically.
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[LYil95] for instance describes how reflection is used in the Apertos operating system
to support run-time adaptation. Other examples of reflection being used as a principle
tool for supporting adaptability, especially in the area of middleware, include [Led97]
and [KCR99]. In [DSCT00] we described how Iguana can be used to build flexible and

adaptable systems software.

[n this case study we examined how traditional, object-oriented design methodologies
compare with the use of reflection. As an example we choose a memory allocator, herinafter
called a buffer manager, a shared resource that allocates and releases contigous blocks of

memory on behalf of its clients.

[deally, the buffer manager should perform optimally for any sequence of allocate/release
operations with both operations running in near constant time. However, performance is
difficult to predict when subjected to an application-specific pattern of allocate and release
operations. Different strategies provided by the buffer manager can allow clients to select
an appropriate implementation which best fits their needs. Customised implementations

could include a first-fit, best-fit or worst-fit strategy for the allocate and release operations.

[n the following sections we will illustrate the steps involved with adding adaptation to
a canonical, non-adaptive version of the buffer-manager, first by employing a traditional,
object-oriented approach and then by using reflection. A more in-depth dicussion of the

various usage scenarios can be found in [DSCT00].

5.3.1 The minimal Buffer Manager

[n its minimal form, the public interface of the buffer manager provides operations for
allocating regions of memory. Internally, the buffer manager maintains a linked list of free
block of memory. The actual policy employed by the buffer manager is embedded in the

implementation of the allocate/release operations and cannot be changed, see figure 5.3.

5.3.2 Adaptation using Design Patterns

The strategy pattern is an object-oriented pattern [GHJV95] and has been used in the
design of dynamically adaptable systems such as TAO [KCR99]. The design principle un-
derlying the strategy pattern is to delegate the implementation of the exported operations
of the buffer manager to a replacable strategy object. Multiple strategies can be provided

by deriving from an abstract strategy class and compiling it into the system.

Figure 5.3 depicts the minimal buffer manager class and its extended version using the

strategy pattern. The extended version specifies an interface that allows clients to request
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a change of the implementation using the changeStrategy- operation. This operation
represents a declarative meta-interface to the buffer manager [KLLT97]. At any time, a
client can use knowledge of its own memory access patterns to select the most appropriate

allocation strategy.

BufferManager Hole
-FreeList : Hole Lnext : Hole
+allocate()

1 1
+release()

Minimal Buffer Manager Class

BufferManagerStrategy

FreeList : Hole Siaegy
-theStrategy : Strategy &

+allocate() +allocate()
+release() 1 ! +release()
+changeStrategy() /\

| FirstFit | IWorstFil | [ BestFit

Buffer Manager with Strategy Pattern

Figure 5.3: UML diagram depicting the class hierarchies for a simple memory allocator
(BufferManager) and its extended version using the strategy pattern.

5.3.3 Adaptation using Reflection

In the reflective version, adaptation is made available by reifying invocations on the original
buffer manager class and by providing a meta-interface (a so-called extension protocol)
that allows to rebind the code of the allocate/release operations. The code for the new

strategies can for example be provided in the form of a dynamic link library (DLL).

The steps for implementing the dynamically adaptable buffer manager are outlined below.

As in the previous example, we start with a simple protocol definition in order to reify
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structural information about classes. Behavioural reflection can then always be added
later in subprotocols. In a second step, we declare an extension protocol that provides
the code for switching to a new strategy. The purpose of an extension protocol is to
encapsulate and separate meta-level code from the actual MmopP implementations, allowing

the same extension protocol to be reused for multiple, compatible MOPs.

protocol Typelnfo {

shared:
reify Class : MClass;
reify Attribute : MAttribute;
reify Method : MMethod;

class Hole ==> Typelnfo {...};

class BufferManager ==> Typelnfo {...};

class AdaptationProtocol {
public:

void changePolicy(MObject *bufman, char *strategy);

——

When a client binds to a buffer manager object, it is provided with the strategy originally
employed by the buffer manager class. As long as the client does not request a different
strategy, invocation is not reified implying that the standard C++ invocation mechanism
is used.

When adaptation is triggered by the application, invocation is reified allowing to divert the
call to the new implementation. New strategies can be provided on the fly by subclassing
the original buffer manager class, redefining the allocate/release methods and by compiling
the code into a DLL.

The meta-level code for rebinding the implementation of the allocate/release methods

performs the following tasks:
l. open a DLL as specified by the strategy parameter;

2. rebind the code of the allocate/release methods. This is done by modifying the

method-metaobjects of the buffer manager class: each method metaobject contains
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a function pointer to the method which can be replaced to point to the new code.

3. reify invocation for the client: in order to divert all future invocations to the imported
code, invocation on the client side has to be reified. Reifying invocation simply
involves creating an invocation metaobject and inserting it to the buffer manager’s
meta-level configuration. Run-time checks ensure that all further invocations are

redirected to the meta-level.

igure 5.4 depicts the logical view of the adaptation mechanism. It is worth mentioning
that the original interface of the buffer manager class has not been altered, the additional
functionality to support adaptation is completely encapsulated in the extension protocol

and is orthogonal to the base-level application.

shared object
file

|
|
|

Metalevel

allocate / release ”

Baselevel

igure 5.4: Conceptual view of the adaptation mechanism using reflection: clients commu-
nicate with the buffer manager through the allocate/release interface. Method metaobjects
represent the implementation of these operations and can be replaced with code loaded
from a DLL.

5.3.4 State Transfer

A general problem arising out of the adaptation of software components has to deal with
a possible transfer of the internal state of the component. In our example, switching to
a new strategy may require the list of free memory blocks to be arranged in a different
order, for example according to their size. This can only be done with a knowledge of the

implementation details of the buffer manager.
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The implementor of a new strategy is therefore required to provide a callback function
that performs the transfer of state. Since a new strategy is provided by subclassing from
the original buffer manager class, we can assume that the implementor of the new strategy
has sufficient knowledge of how the list of free blocks is represented because the code that
implements the allocate/release methods relies on their internal representation anyway.
By using some sort of naming convention for the callback function, it is possible to link
the new method to the meta-level representation of the buffer manager and to invoke it

when adaptation has been triggered.

5.3.5 Discussion

The addition of the strategy pattern to the buffer manager to support dynamic adap-
tation necessitated the complete restructuring of the buffer manager class, thus leading
to a tangling of code that implements dynamic adaptation and original code. Delegat-
ing the implementation of the buffer manager’s methods to a strategy object also had
the undesirable side-effect of having to make its state public. Apart from associating the
buffer manager class with a protocol definition, the reflective version did not require any

modifications to the original class.

This example has illustrated how reflection can provide a general infrastructure (consisting
of MopP and extension protocol) for building applications that can dynamically adapt
to changing requirements. The additional functionality to support adaptation can be
completely encapsulated in meta-level code and is independent from the application’s
static class structure. It would be intersting to explore how other design patterns can be

implemented using a reflective programming language.

5.4 A Meta-Type for Persistent Objects

Many software applications require data to be retained between consecutive executions.
Programmers mainly use the file system or database management systems (DBMS) for
storing such persistent data. In either case, the data model supported by the storage
system is usually different from that of the programming language. This requires the
program to convert persistent data into the format expected by the file or database system
on storage and to re-convert it into the format normally used by the program on retrieval.
Although these contemporary systems have strengths, the development of conversion code
for every new application can be tedious, time-consuming and error-prone [CNTR97].

Moreover, it may be difficult to maintain pointer semantics and type checking between
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the two data models.

In modern object-oriented programs, data is represented in form of objects. Making
objects persistent is an efficient way of saving the program data into stable storage. In
persistent object systems, the internal (in the language) and external (in the stable storage)

data models are very similar to each other and the overhead of conversion is very small.

[n this section we describe the design and implementation of a meta-type that extends
objects with persistence, see also [HSCO1]. We will first describe a more naive implemen-
tation that is later optimised for speed. From the base-level programmer’s point of view

there is no difference between the two implementations in the use of object persistence.

5.4.1 Overview of Object Persistence

Because object references in C++ are implemented as memory addresses, they are essen-
tially volatile, i.e. do not retain their meaning between program executions. Such refer-
ences must therefore be replaced with persistent references when the objects in which they
are contained are stored in non-volatile memory - a process known as reference swizzling
[ACCR2]. Likewise, persistent references must be replaced with the appropriate memory

addresses when their containing objects are loaded into memory (unswizzling). Since the

targets of these references may not actually be loaded in the address space, some means of

handling attempts to access (i.e. by dereferencing a pointer to) such non-resident objects
must be implemented so that the target objects can be loaded on demand. This process

is usually referred to as object faulting.

In our case, non-resident objects are represented by proxy objects that occupy the same
amount of memory space as the objects that they represent. When a reference to a
non-resident object is unswizzled, its proxy is created, if necessary, using information in
the persistent reference. The persistent reference is then replaced with the appropriate
address within the space occupied by the proxy. Of course, subsequent attempts to use

the reference must then be caught.

5.4.2 Implementing Persistent Objects using Iguana/C++

Object persistence is implemented as a set of Iguana/C++ protocols as depicted in figure
5.5 and based on the Tigger object support framework [Cah99]. Any type can potentially
persist, provided it is associated with the Persistent protocol. Pointer semantics between
persistent objects are preserved. Classes can include primitive types, class, pointer and ar-

ray attributes. The broad range of C++ language issues arising when designing a persistent
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protocol Typelnfo {

shared:
reify Class : MClass;
reify Attribute : MAttribute;
reify Method : MMethod;

protocol Persistent : Typelnfo {

local:
reify Class . PersistentClass;
shared:
reify Creation : PersistentCreation;
reify Deletion : PersistentDeletion;

reify StateRead : PersistentRead;
reify StateWrite : Persistent Write;
reify Invocation : PersistentInvocation;

Figure 5.5: Protocol hierarchy implementing persistent objects.

('++ extension can be found in [KYKT99].

In our design, we adopt persistence by reachability to determine which objects are to
be retained. In other words, potentially persistent objects that are transitively reachable
from a distinguished persistent root via references will persist between program executions.
The states of these objects are stored in an underlying Persistent Object Store (POS). The
implementation of the Persistent protocol interfaces to the underlying POS and initiates
the loading and storing of objects in the POS as necessary as well as of detecting access

to non-resident objects.

While the use of reflection is essentially transparent to the programmer, the use of per-
sistence is not. For example, the application programmer must be aware of the specifics
of the model of persistence provided by the Persistent protocol, the implications of per-
sistence by reachability and the physical location of the POS files. When working with
persistent objects, the application programmer may need to distinguish between the cases
where a new object needs to be created and initialised for the first time versus the case

where the object has been created by a previous execution of the program.

T'he role of each of the metaobject classes being used is outlined below:

Class: PersistentClass extends MClass to include an object header for each persistent ob-
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ject. This header contains information about the object’s persistent reference, state
in memory (absent/present) and the number of references that it contains (includ-
ing references inherited from parent classes). Both object faulting and reference

swizzling and unswizzling are handled by PersistentClass when required.

Attribute: MAttribute metaobjects are used to store information about references (e.g.
type, size, access modifier, offset within the object) for swizzling/unswizzling of

references in persistent objects.

Creation: on object creation, PersistentCreation checks whether the object’s class has
been installed in the persistent class register. If not, it installs the class and then
initiates the creation of the the persistent object with an appropriately initialised

meta-level and object header.

Deletion: on deleting a persistent object, PersistentDeletion checks if the object has been
recorded with a name in the name service. If so, it removes the entry and then it
initiates the removal of the persistent object together with its meta-level and object

header.

Method Invocation: when a method is invoked on an object that is present in memory,
the default method invocation is carried out. When a method is invoked on a proxy,
control is passed to the PersistentClass metaobject that handles the object fault. All

persistent references in the object’s state are then unswizzzled.

State Read and Write: like method invocation, control is passed to the PersistentClass
metaobject that is responsible for handling the object fault if the state of a proxy is

accessed. Otherwise, the default state access is carried out.

5.4.3 Using Persistent Objects

Having outlined the design of a meta-type that equippes objects with persistent properties,

we will now focus on how the base-level programmer uses persistence.

When working with persistent objects, the application programmer may need to distin-
guish between the cases where a new object needs to be created and initialised for the
first time versus the case where the object has been created by a previous execution of the
program.

To allow programs to refer to previously created objects, a simple name service is provided,
which allows the association of symbolic names with persistent objects. The interface

to the name service is provided as an Iguana/C++ extension protocol called PEP - the
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Persistence Extension Protocol. Extension protocols are an Iguana/C++ concept used to
provide a secure and structured interface to the meta-level code. In this case, the Extension
Protocol simply constitutes an API for the base-level programmer who wants to make use
of object persistence, similar APIs can be found in other architectures [SKW92]. The PEP

is defined as:

class PEP {
public:
static bool init(char* filename);
static bool close();
static bool record(char* name, char* type, void* object);
static bool lookup(char* name, char* type, void*& object);

static bool remove(char* name);

PEP::record allows a symbolic name to be assigned to a persistent object. Upon successful
execution, this method makes the referred object a persistent root. PEP::lookup allows
the recall of any previously recorded persistent root object based on its assigned symbolic
name. The type argument is used to check whether the expected type and the type of the
restored object match. Finally, PEP::remove allows the removal of symbolic name/ob ject
associations. PEP::init initialises the POS and a call to PEP::close results in storing all

reachable persistent objects.

An application programmer who wants to avail of object persistence simply uses the de-

fault protocol selection to select the Persistent protocol. For example:

defaultProtocol ==> Persistent;

class Counter {

// Implementation of class counter
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will result in all instances of class Counter being potentially persistent. Within the same
source file, the programmer could define other (sub)classes that would also become poten-
tially persistent. If the programmer uses multiple source files, each source file with class
declaration(s) must include the same default protocol selection statement. In this case,
extra care must be taken by the programmer as there is a danger that persistent object

will hold references to non-persistent objects.

An example of an Iguana/C++ program that uses persistent objects is shown below. Note
that the program is coded to be aware of whether it needs to create a new object or use

a previously created one.

Counter *pcl;

PEP:init(” /mypos”);
if (firstTime) {
// create object and record it in the name service
pcl= new Counter(1);
PEP::record(” /this/counter”, "Counter”, pcl);
| else {
// get reference to object from name service

PEP::lookup(” /this/counter”, "Counter”, pcl));

if(pcl) {
// use object
cout << "Value is: 7 << pel— > getValue() << endl;

}
PEP::close();

Of course, it is not necessary to record every persistent objects in the name service. If a
persistent object contains references to other persistent objects, they will also persist and

are loaded as and when required in subsequent program executions.
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5.4.4 Adapting the Meta-Level

A problem with the implementation described above is that all language operations on a
potentially persistent object are trapped and carried out via the (slower) meta-level, even
if the object is already present in memory and could be treated as a normal C++ object.
To overcome this problem we will now present a refined version of the Persistent protocol
that takes advantage of dynamic meta-type selection. The protocol hierarchy is defined

as:

protocol Persistent : Typelnfo {

shared:
reify Creation : PersistentCreation;
reify Deletion . PersistentDeletion;

protocol PersistentProxy : Persistent {
shared:
reify Class : PersistentClass;
reify StateRead : PersistentRead;
reify StateWrite : Persistent Write;

reify Invocation : PersistentInvocation;

The Persistent protocol only intercepts object creation/deletion and represents an object
that is present in memory. The PersistentProxy protocol on the other hand intercedes with

all other language operations and represents an object that is absent.

Figure 5.6 outlines the meta-level configuration for persistent objects that are present in

memory. Important steps to point out are:

. Potentially persistent objects are associated with the persistent protocols, hence only

creation/deletion is reified.
2. Upon creation, the allocation of an object header is requested in the POS.

3. The POS completes the request.
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4. Method invocation, state read or write is not reified, thus these operations are carried

out without involving the meta-level.

2 i |
> {
! POS
3
‘ Y
. Persistent protocol ey
| protocol
meta-level
1 base-level
> BO

Figure 5.6: Meta-level configuration for present persistent objects. Operations are not
intercepted.

Figure 5.7 depicts the meta-level configuration for persistent objects that are absent, i.e.,
are referenced by resident objects but not loaded from the POS yet. Absent objects are
associated with the PersistentProxy protocol, all language operations are reified (1). When
an operation is requested on a proxy base-level object (2), the operation is directed to the
meta-level (3). The object fault is handled and the object is loaded from the POS (4). The
POS completes the request and reference unswizzling is performed (5). The object is now
present in memory and the meta-level configuration switches to the Persistent protocol,

consequently all further operations are now carried out directly (6).

5.4.5 Discussion

One of the goals of reflective programming is to provide a clean separation of concerns
between the application logic and the meta-level representation. However, in this example
full separation of concerns is not attainable: the logic of writing applications that make
use of persistent objects requires two different execution paths to be provided by the
programmer, one for a cold start when objects are created the first time and one for a
warm start when objects are retrieved from the persistent store. Registering and retrieving

persistent root objects also has to be done explicitly and cannot be shifted away to the
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Figure 5.7: Meta-level configuration for absent persistent objects. Operations are inter-
cepted and object faults are handled at the meta-level.

meta-level. As our experience has illustrated, the development of metaobject protocols

can to a large extent be implemented separately from the base-level application.

I'rom the base-level programmer’s point of view, the steps involved with adding support
for persistent objects to existing applications using Iguana consist of associating Persis-
tent with classes that are to be made persistent, the insertion of code to register/lookup
persistent objects and an additional pre-processing phase to apply the Iguana model. It
should not be denied that due to the complexity of C++ it is not trivial to provide a fully
reflective language extension. So for example it is only possible to make heap allocated
objects persistent due to the inability to intercede with the creation of stack allocated

objects, a restriction that also holds true for other systems.

5.5 Summary

The previous examples have illustrated how meta-level programming is done in Iguana/C++.
We have shown that the design and implementation in Iguanais not unlike conventional
object-oriented programming. Protocol definitions associate reified language operation
with their implementing classes, protocol inheritance allows to incrementally design, ex-

tend and combine object behaviours.

When adding more complex object behaviours, such as persistence, a fundamental question
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arises to what extend the semantics of an existing program can be maintained, or in
other words, how transparently can persistence (or a similar functionality) be added to a
language. Of course, working with persistent objects requires the base-lavel programmer
to distinguish between the cases where an object is created the first time versus when it
is retrieved from the object store. This semantic difference does however not arise due to

the use of a meta-level architecture, but is inherent to the use of object persistence.

Composition of complex and non-trivial object behaviours raises a number of issues, so for
example in which order metaobjects have to be processed and how conflicts are resolved
should they arise. The default composition rules in Iguana are simple and generic enough
to allow automatic and, if desired, user defined composition of metaobjects. As a ma-
jor advantage compared to other architectures, including the previous version of Iguana,
meta-level programmers do not need to explicitly access and restructure meta-level con-
figurations. Combining and composing MOP implementations with a non-trivial semantic

is the focus of ongoing research.
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[t is an immutable law in business that words are words, explanations are
explanations, promises are promises but only performance is reality.
Harold S. Geneen (1910 -)

The flexibility gained by opening up the language and allowing the programmer to cus-
tomise language semantics comes with a price: reflection intrinsically incurs interpretative
overhead. Although this problem has been addressed by a number of researchers ([Chi97],
[IMMWY92]), it has not been solved in a way that has increased the acceptance of reflective
programming. To draw an analogy, in order to justify the choice for an object-oriented
programming language over a simple procedural language, it has to be shown that the ben-
efits of object-orientation overweigh the additional complexity of the language (in form
of, for instance, single/multiple and virtual inheritance) and its decreased performance,
incurred by, for example, method dispatching. In order to identify profitable targets and

techniques for optimisation, it is crucial to understand where and why overhead occurs.

In this chapter we will present a detailed analysis of the overhead introduced by Iguana/C++

and show how further optimisation techniques could be incorporated into Iguana.

6.1 Overhead, Where and Why

Run-time penalties incurred by reflection are in general difficult to assess and depend on
a number of factors. We have identified four levels at which overhead can be incured and

that are consequently a suitable target for optimisation:

1. Design level: How does the Iguana model address performance and efficiency? Where

is overhead incurred due to the model?
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2. Implementation level: Is the implementation optimal?

3. Host-language level: Does the host language, in this case C++, affect the perfor-
mance? What is the overhead of the various reification categories? How efficient can

an operation at the base level be diverted and executed at the meta-level?

4. Application level: What is reified? How much use of reflective features is made by

the application?

We will examine the impact on performance under these four aspects in the following

sections.

6.1.1 Design Level

Performance has always been a major concern in the development of the Iguana model.
The idea of a fine-grained decomposition of the C++ object model and the selective reifica-
tion of language operations ideally only introduces overhead where the reflective features
are explicitly used. Unfortunately, following this approach scalability becomes a more
important issue: implementing language operations separately can lead to an explosion of
meta-level information since every base-level object is represented by a number of metaob-
jects. In the revised design we addressed this issue by reducing the number of reification

categories significantly, leading to a more intuitive and logical decomposition.

Another design issue that has been crucial to the Iguana model is the ability for objects
to individually select a meta-type at run-time. The examples presented in the previous
chapter have demonstrated that this flexibility is useful in that objects can select an
implementation that best represents their environment. However, with flexibility comes
complexity. Allowing dynamic meta-typing implies that some amount of the execution

time is spent in determining the run-time meta-type of objects.

We believe that the advantage of having dynamic meta-typing justifies this additional
overhead. Our implementation provides a fair compromise between flexibility and per-
formance. The overhead introduced by run-time checks is relatively low and only affects
those classes that are potentially reflective. Moreover, objects can still revert to the native

and more efficient C++ mechanism if the reflective features are no longer required.

6.1.2 Implementation Level

Source-to-source translation as a means of incorporating the Iguana model into C++ has

a couple of disadvantages as far as performance is concerned: the translated code is
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high-level and sub-optimal because it has to conform to the C++ typing system. Having
direct support for reflective programming by a compiler could lead to a more efficient
implementation since we could provide a tighter coupling between the language extension
and its translation into machine code. Moreover, since the C++ object model is not fully
specified!, compiler internal knowledge about, for example, the size and layout of data

objects could be exploited.

Take argument passing as an example: passing arguments to reflective functions via the
reified stack is a relatively expensive operation because the size of user-defined data types
is in general not known until run-time (the layout of data objects is compiler/platform
dependent). Knowing the size of data objects can result in more efficient stack operations
since we could either employ a byte-, word- or doubleword-wise copy of data objects. In
the current implementation we have to look-up the size of the data object at run-time
(using the C++ sizeof-operator) and then perform the copy operation?. If the size of a
data object is known in advance, we could provide specialised stack operations without

the need to invoking the sizeof-operator.

Overhead of Reified Operations Implementing reified language operations efficiently
is another crucial issue. This section presents an evaluation of the Iguana/C++ default
protocol that provides the default semantics of C++. The results are summarised in table

6.1.

Rows 2 and 3 of table 6.1 show the relative overhead in the creation of objects that have
structural information reified, i.e. Class, Method and Attribute. In this scenario, objects are
created with the C++ new-operator together with additional structural metaobjects that
are bound to the object’s meta-level. The number of metaobjects to be created depends on
the number of methods and attributes in the class: each method/attribute is represented
by one metaobject. Reifying structural information in a local mode is therefore linear
dependent on the number of methods and attributes in the class. In that case, we carry
out a deep copy of the object tree representing the object’s class structure. When reifying
structural information in shared mode, objects are bound to preexisting metaobjects and
the overhead can be regarded as constant. In that case, we only have to carry out a shallow

copy of the object’s class structure.

Significant overhead is involved with the creation of objects, see rows 4 and 5 of table

6G.1. Again, we compared the creation of objects in both local and shared mode. Object

"The ANSI specification for C++ does for example not specify how objects are laid out in memory.

el . TP . . .

“Carrying out the additional look-up has shown to be more efficient than always performing a byte-wise
copy of data objects.
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Reification Categories rel. overhead
1. plain CH++ 1
2. shared structural MOs 13
3. local structural MOs 50
4. Creation, shared 27
5. Creation, local 70
6. Creation+Deletion, shared 31
7. Creation+Deletion, local 74
8. Invocation (null method call) 12
Invocation, (int) 18
Invocation, (int, double) 20
9. Invocation + Send 143
10. StateRead 9
11. StateWrite 22

Table 6.1: Measurements showing the relative overhead of reified operations in
[guana/C++.

creation is complicated because we first have to instantiate the full object graph that
constitutes the future object’s meta-level. Similarly, the deletion of objects as entails the

deletion of the entire object’s (local) meta-level.

Row 8 shows the overhead of a reified method invocation with varying number of argu-
ments. In this scenario, arguments are passed via the reified stack, which introduces an

overhead that is linear dependent to the size and number of arguments.

[n lines 10-11 the overhead of the behavioural reification categories StateRead and StateWrite

is shown. In C++, a write operation only consists of a few machine instructions and can
be carried very efficiently. In the reflective version, the write operation is comparable to a
method invocation where the new value of the data member is passed as a parameter via

the reified stack, hence the overhead is relatively high.

6.1.3 Host-Language Level

By applying the Iguana model to C++, we were also confronted with the complexity and
feature-richness of the language. As has been described in section 4.7.2, meta-level code to
carry out a simple read or write operation is complicated because we have to distinguish
between simple attributes, arrays of either fixed or dynamic size and static attributes.
The creation and deletion of objects is also inherently complex since we have to distin-

guish between the creation/deletion of single objects and dynamic arrays of objects. Each
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semantic introduces interpretative overhead at the meta-level, resulting in less efficient
reflective code. An alternative implementation would be to provide separate reification
categories — and hence separate implementations — for the different scenarios. Our expe-
rience with the previous version of Iguana has shown that this only overcomplicates the

programming model and also defeats language independence.

6.1.4 Application Level

Although the overhead of a reified operation at a first glance seems to be high, applications
are in general not fully encumbered with the costs of reflection. Obviously, the amount of
time spent for meta-level computations depends on the set of active reification categories

and to which extent the application makes use of the reflective features.

In this section we measured the reflective overhead of 5 simple benchmark applications.
The example programs were taken from an existing benchmark suite (Bench++, [Oro98]).
We selected algorithms from that suite that make heavy use of object-oriented features in

C'++, including
. Permutations: Calculates the number of permutations of a set of numbers. Makes
lieavy use of array access.
2. Towers of Hanoi: Algorithm that solves the Towers of Hanoi puzzle, highly recursive.

3. Eight Queens: Algorithm that solves the Eight Queens puzzle, highly recursive and

extensive use of array access.

4. Quicksort: Implementation of the Quicksort sorting algorithm, highly recursive and

extensive use of array access.

Bubblesort: Implementation of the Bubblesort sorting algorithm. Makes heavy use

(& ]

of array access.

For each of the algorithms, eight measurements were conducted, each of which reifying a

different set of language constructs, namely

1. non-reflective: Plain C++ implementation.

2. n/r + run-time check: This measures the overhead of applying the Iguana model
without behavioural reflection, i.e. the costs of the run-time checks guarding method

invocations and state access.
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Reification Categories App. 1 App. 2 App. 3 App. 4 App. 5
1) plain C++ il 1 1 1 1

2) plain C++ & run-time check 1.60 1.33/1.92 1.60 1.25 1.62
3) Invocation 15.00 9.19/9.19 2:39 1.98 1.62
4) Invocation + Send 16.50 10.59/10.59 2.56 2.08 1.62
5) StateRead 4.42 3.11/5.63 4.09 5.00 9.79
6) StateWrite 8.50 5.66/8.86 8.76 3.79 6.79
7) StateRead+Write 11:65 8.13/12.57 154 7.60 14.72
8) Reify all 26.51 17.57/22.09 11.92 8.40 14572

Table 6.2: Measurements showing the relative overhead of Iguana/C++ for 5 benchmark
applications.

6.

[nvocation reified: Measures the overhead of reified method invocations.

. Invocation + Send: Measures the overhead of both reified method invocation and

send. Objects can also send messages to themselves, i.e. invoke their own methods.
Since most of the algorithms above are implemented in a recursive fashion, almost

every invocation is interceded with by the send-metaobject.

. StateRead: Measures the overhead of reified read access to objects.

StateWrite: Measures the overhead of reified write access to objects.

. StateRead + StateWrite: Measures the overhead of both reified read and write

access.

. reify all: Measures the overhead of all of the above reification categories.

For this set of benchmark applications we did not measure the overhead of object cre-

ation/deletion since all of the algorithms above only create one single instance of each

class that implements the algorithm. The costs of object creation and deletion are there-

fore negligible. All applications were compiled with gee version 2.96 and were run on a

IGHz Pentium PC under the Linux 2.4.1 operating system. The results are shown in table

6.2

6.2 Discussion

As one would expect, the overhead introduced by Iguana grows in proportion to the number

of selected reification categories and depends on the extent of which an applications makes
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use of a reified language feature. Application 5 for example, an implementation of the
bubble-sort algorithm, does not make use of method invocation but instead relies heavily

on array access.

Application 2, the towers of Hanoi, contained a helper class for which we reified the
operations in a separate measurement. The performance figures for this application hence
shows 2 values. The helper class only contained attributes and did not define any methods,

therefore reifying method invocation did not introduce additional overhead.

It is worth mentioning again that in case a particular reification category is not selected,
the native C++ mechanism is used together with a run-time check that enables objects to
enable that reification category at a later time. For the various applications this overhead
lies between 25 and 90%.

The default implementations for the various reification categories do not provide any extra
functionality and are only meant as a common base for the meta-level programmer who
wants to define own object semantics. In a real application extra functionality in terms of
meta-types implementing persistence or distribution would further diminish the costs of

reflection.

6.3 Other Optimisation Techniques

Suitable optimisation techniques for reflective programming languages have been identified
by a number of researchers, including [Chi97] and [MMWY92]. The common approach of
these is to carry out meta-level computation as early as possible, ideally during compile-
time, and reduce the amount of meta-level computation carried out during run-time. For
the remainder of this chapter we will examine optimisation techniques with respect to the

l[guana/C++ implementation.

6.3.1 Partial Evaluation

Yartial evaluation, or program specialisation, is an optimisation technique which, when

given some part of a program’s input data, generates a specialised or so called residual
program ([JGS93], [Jon96]). The residual program with the remaining input produces the
sane result as the original program with the entire input. More formally, given a program
P(x,y), partial evaluation of P with respect to the input = will generate a specialised
version P, (y) = PE(P, z) such that P.(y) = P(z,y).

Parts of the program which solely depend on the static input data can be evaluated
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at compile time and/or optimised for performance. Consider the following C-function
pow(x,y). If we know the value of the exponent y prior to execution, for example 3, partial
evaluation can generate a residual program which only relies on the dynamic input. In the
specialised version shown below, the value for y has been propagated through the function

and the loop has been unrolled.

Original program: Residual program:
int pow(int x, int y){ int pow 3(int x){
int i; int res = 1;

int res = 1; tes *= x;

for (i =0;i<y; i++){ res *= x;
res *= x; res *= x;

} return res;

return res; }

Tempo [CT96] and C-Mix [And94] are examples of partial evaluators for C programs. In
Tempo, specialisation is carried out in two stages (so called off-line partial evaluation): in a
first stage, the source code is analysed to gather and propagate information about known
and unknown values throughout the program. In a second stage, actual specialisation
values or invariants are provided by the user and the residual program is automatically
generated. In Tempo, the specialisation phase can be performed either at at compile-time
or at run-time. In the latter case, the invariants to parts of the program are provided at
run-time and the specialised version is generated by dynamic code generation. C-Mix on

the other hand only supports specialisation at compile-time.

Partial evaluation has been applied in a number of case studies to optimise reflective
programming languages. However, due to the nature of meta-level programming, only a

restricted use of partial evaluation is possible.

A major practical restriction is that partial evaluation is naturally more applicable to
functional languages and has to our knowlegde not yet been applied to object-oriented
programming languages. In [MMAY95] for example the reflective application code written
in ABCL/R is first translated to continuation passing style functions (CPS functions) and
then partially evaluated. Translating from an object-oriented language to a functional
language does not only require an additional translation phase but also entails the loss of

semantic information that can prevent a partial evaluator from identifying static program
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parts.

A second restriction arises due to the flexibility offered by meta-level architectures. If
it is possible for objects to dynamically alter and change their meta-interpreters at run-
time, partial evaluation cannot eliminate the interpretative overhead, simply because the
meta-level representation cannot be regarded as being static. Hence, in [MMAY95] partial
evaluation was applied as if the meta-level was statically fixed: objects are only allowed
to select their meta-interpreter at creation time. In Iguana on the other hand with its
emphasis on dynamic meta-type selection, we cannot regard the meta-level as being static

and hence cannot in general collapse base and meta-level to be flat.

Despite practical and theoretical shortcomings of partial evaluation of reflective program-
ming languages and in order to assess possible performance gains, we will simulate how

partial evaluation could be applied to Iguana/C++.

6.3.2 Partial Evaluation of Iguana/C++

In this section we will examine a possible application of partial evaluation in Iguana/C++.
As has been explained above, due to the dynamic nature of Iguana we cannot in general
fully collapse base and meta-level code. However, we can perform a faster transition from
base to meta-level computations based on partial evaluation if we assume an object’s

structural meta-level (i.e. its class definition) as being static.

Once again, consider the code generated to shift from base to meta-level computation in

the case of a state write operation:

ebj—>a = v; obj->write(index,, Stack—>push(v));

translated into’

index, in the example above denotes the index of the attribute in the attribute table.
The meta-level object which carries out the write-operation in general requires a reference
to the attribute metaobject. We therefore have to lookup the attribute metaobject in
the attribute table prior to performing the write operation. If we assume the object’s
structural meta-level as being static, we can consider the attribute metaobject as being

fixed and apply partial evaluation to generate a specialised write operation as in:
obj —> write, (Stack—>push(v));

In the specialised write operation we can cache a reference to the attribute metaobject and
thus speed up the lookup. Similar specialisations can be applied to all other reification

categories. Table 6.3 summarises the overhead of the behavioural reification categories
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Reification Categories unoptimised | optimised
Invocation (null method call) 12 11
StateRead 9 7
StateWrite 22 20

Table 6.3: Measurements showing the relative overhead of reified language operations,
optimised version.

in the optimised version. With a hand-crafted, specialised implementation we gained a
moderate speed up of reified language operations: 10% for state write, 8% for method

invocation and 25% for state read.

6.3.3 Elimination of Run-Time Checks

Run-time checks guarding method invocations and state accesses are a further target
for optimisation. Run-time checks are always inserted where it cannot be determined
statically whether or not an object has a particular operation reified. Under circumstances,
this affects code which does not make use of the reflective features at all. Analysing
techniques such as data-flow and control-flow analysis could determine more accurately
the set of active reification categories for a given object. This approach is used in various
optimising compilers (for example Vortex [DDG196]) that try to reduce the cost of method
dispatching: if the dynamic type of an object can be determined, a virtual function call
can be replaced with a static function call without the need to indirect via a function

table.

6.4 Summary

In this chapter we provided a detailed analysis of the overhead of the reflective program-
ming features in lguana/C++. We identified a number of inefficiencies in the current
implementation that are mainly due to the complexity of the host language and the lack
of compiler internal knowledge. We also investigated the application of high-level opti-
misation techniques such as partial evaluation and program specialisation. Due to the
dynamic nature of the Iguana model, these optimisation techniques would only achieve a

moderate speed-up for reflective applications.
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How nature loves the incomplete. She knows

If she drew a conclusion it would finish her.

Christopher Fry

In a distributed, heterogeneous environment applications are required to provide a number
of services such as persistence, distribution and fault-tolerance independently from the
actual functionality of the application. Providing these services is still a labour intensive
task and requires programmers to be aware of the non-functional requirements throughout
the design and implementation phase of their applications. Current approaches in form
of component based systems allow a more structured and rapid development cycle but
still lead to a tangling of functional and non-functional code. Moreover, these systems are
‘closed” in the sense that users do not have any control over the implementation of the

various facilities and can in general not provide customised or additional services.

The main motivation for the work described in this thesis therefore was to provide generic
language support for distributed computing that allows the development of distributed ap-
plications to be more open and independent from the functional specifications. Reflective
programming languages have been identified as a promising approach in that they provide
a structured approach to extending the semantics of existing languages and provide a clean

separation of concerns.

The goal of this thesis was to provide a programming environment so that the advantages of
component-based programming are made available for the developers of operating systems,
embedded systems and legacy systems alike. We provided such an environment in the form
of a meta-level architecture for a compiled, object-oriented programming language. We

introduced the concept of a meta-type as a common abstraction for the reflective features.



Conclusion and Future Work

119

As has been mentioned in section 1.5, the Iguana reflective programming model in its
previous version suffered from a number of shortcomings that we aimed to overcome in the
work described in this thesis. In the re-designed and re-implemented version we simplified
the model while at the same time maintaining most of its flexibility. More specifically, we

addressed

Complexity

Open implementations are faced with the dilemma of which and how many internal details
should be exposed to the user. Clearly, exposing too many details will lead to an overspec-
ification of some component and is potentially more harmful than beneficial. The previous
version of Iguana suffered from that problem in that it tried to reify every single language
construct separately, leading toc an overlap of the semantic of the various reification cate-
gories. In the revised model we reduced the number of reification categories significantly
in order to achieve a more intuitive and logical decomposition of the underlying object

model.

Meta-types hide much of the underlying complexity of meta-level programming. From
the application programmer point of view, meta-types constitute components that can be
linked into existing applications, similar to an ordinary class library. From the meta-level
programmer’s point of view, meta-types build a framework for developing extended object
models. The Iguana run-time support takes care of complex issues such as the meta-
level reconfiguration in the event of a dynamic meta-type selection and thereby relieves
also the meta-level programmer from knowing the implementation details of the reflective

architecture.

Safety and Robustness

Opening up a language and allowing the programmer to intercede with the execution of
language operations is a potentially dangerous task and requires a profound understanding

of the language’s intrinsic mechanisms.

By defining inheritance rules for meta-types and by defining a semantic for composing
and selecting meta-types we now provide a safe and automated mechanism to migrate
between different meta-level configurations. Consistency is ensured by a combination
of sub-typing rules and run-time meta-type checking. Application programmers are no
longer required to access meta-level configurations directly, a fact which made the previous
version too complex, error prone and exposed too many implementation specific details to

the programimer.
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Transparency

In principle, the meta-type of an object is orthogonal to both its type and class. Objects
of different types and classes might have the same meta-type, while objects of the same
type or class might have different meta-types. In our implementation type orthogonal-
ity is achieved by run-time checks that are inserted into the application code in case the
dynamic meta-type of an object cannot be determined otherwise. This is a major im-
provement to the previous version where reflective and non-reflective objects could not be

used interchangeably.

Implementation

Providing a full reflective extension to a complex language such as C++ is a non-trivial
task. Since C++ is a compiled language, only little structural information is kept in the
run-time image. Adding reflection is hence dominated by the problem of maintaining the

structural information beyond the compilation process.

We developed a concrete mapping of Iguana onto C++, implemented by means of a pre-
processor. The semantic analysis during the pre-processing stage identifies those language
constructs that are to be replaced with code that transfers control to the meta-level. We
also provided the C++ default MoP, i.e. a concrete set of metaobjects implementing the

C'++ object model.

7.1 Understanding Reflective Programming

Meta-level programming, compared to object-oriented programming, is still a rather ne-
glected programming paradigm and hasn’t found its way into mainstream programming
languages. With the additional functionality comes complexity, leading to the perception

that meta-level programming is hard.

The concepts introduced in Iguana, namely protocol definitions, protocol inheritance and
meta-types are therefore designed to resemble those in traditional object-oriented models
and should therefore lead to a flatter learning curve and wider acceptance. In a number
of concrete meta-type implementations we demonstrated how reflective programming can
be done in a fashion similar to conventional, object-oriented analysis and design. The
methodology is to provide a default behaviour for objects that is equivalent to the one
provided by the host language and to gradually augment, combine and specialise object

behaviour in subprotocols.
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7.2 Performance and Optimisation

‘or reflection to become a successful programming paradigm, it has to be shown that the
benefits gained by reflection justify the run-time overhead and that these costs are mini-
mal compared to the functionality provided. By understanding where and why overhead

occurs, profitable optimisation techniques can be developed.

We identified a number of inefficiencies in the current implementation that are mainly
due to the lack of compiler internal knowledge and the complexity of the underlying C++
programming language. In our implementation, both reflective and non-reflective code
coexists in the application that allows to switch between native and reflective objects.
This proved to be a safe and efficient way to achieve a flexibility that to date can only be

found in interpreted languages.

7.3 Future Work

7.3.1 Reflection and Design Patterns

['rom our experience with using a reflective programming language we have seen that re-
flection can be useful to implement certain types of applications, so, for example, those
that support some sort of adaptability and software evolution. With a conventional ap-
proach, adaptation can be achieved by using a design pattern, such as the strategy pattern
as described in section 5.3. The advantage of using reflection is that it can be used as a
tool that automates the development of this kind of applications. Future work could in-
vestigate if and how other design patterns could be incorporated into existing applications

using a reflective programming language.

7.3.2 Composition of Meta-Types

Composition of meta-types in practical terms is a whole area of research that still needs
to be explored. Some of the questions to be asked are what the semantics of composed
meta-types should be, whether and how different meta-type implementations interfere and

how these conflicts can be resolved.

[For example, say we have two meta-types implementing object persistence and remotely
accessible objects. How should a derived meta-type that combines the two behaviours
perform? Is there a semantic difference between having remote-persistent and persistent-

remote objects? Understanding these issues will help to improve the design and implemen-
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tation of meta-types, leading to more robust and modular meta-level code. A medium term
goal is to develop a library of meta-types that can be selected by base-level programmers

independently.

7.3.3 Compiler Support for Reflective Programming Languages

As has been noted before, implementing a language extension by means of a pre-processor
has a couple of disadvantages as far as performance and ease of use is concerned. An
additional pre-processing stage introduces further complexity and module dependencies.
Debugging of reflective programs for example has been found to be difficult because the
pre-processed application code is complex and obfuscated. The long term goal therefore
must be to incorporate the Iguana model into existing compilers. Direct compiler sup-
port for a reflective programming language would not only significantly increase the ease
and acceptance of reflective programming by making the additional pre-processing phase
redundant, it would also lead to a more efficient implementation by allowing a tighter

translation into machine code.

7.3.4 Formalisation of Meta-Types

The notion of meta-types as described in this thesis arose from the practical need for
encapsulating most of the functionality provided by the reflective programming model and
give the programmer a powerful construct to define extended object semantics. However,
for meta-types to become a successful concept, a formal specification is required. It is our
believe that once the formal foundations of meta-types have been established, a further

understanding of complex issues such as subtyping and type-safety will emerge.

7.3.5 Applying Reflection

So far the use of reflection has been limited to a few experimental platforms. Building
large-scale, long-running systems that take full advantage of the dynamic adaptation fea-
tures is the next logical step. Applying reflection in the area of operating systems and

middleware is therefore the focus of ongoing research.
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