
LEABHARLANN CHOLAISTE NA TRIONOIDE, BAILE ATHA CLIATH TRINITY COLLEGE LIBRARY DUBLIN
OUscoil Atha Cliath The University of Dublin

Terms and Conditions of Use of Digitised Theses from Trinity College Library Dublin

Copyright statement

All material supplied by Trinity College Library is protected by copyright (under the Copyright and
Related Rights Act, 2000 as amended) and other relevant Intellectual Property Rights. By accessing
and using a Digitised Thesis from Trinity College Library you acknowledge that all Intellectual Property
Rights in any Works supplied are the sole and exclusive property of the copyright and/or other I PR
holder. Specific copyright holders may not be explicitly identified. Use of materials from other sources
within a thesis should not be construed as a claim over them.

A non-exclusive, non-transferable licence is hereby granted to those using or reproducing, in whole or in
part, the material for valid purposes, providing the copyright owners are acknowledged using the normal
conventions. Where specific permission to use material is required, this is identified and such
permission must be sought from the copyright holder or agency cited.

Liability statement

By using a Digitised Thesis, I accept that Trinity College Dublin bears no legal responsibility for the
accuracy, legality or comprehensiveness of materials contained within the thesis, and that Trinity
College Dublin accepts no liability for indirect, consequential, or incidental, damages or losses arising
from use of the thesis for whatever reason. Information located in a thesis may be subject to specific
use constraints, details of which may not be explicitly described. It is the responsibility of potential and
actual users to be aware of such constraints and to abide by them. By making use of material from a
digitised thesis, you accept these copyright and disclaimer provisions. Where it is brought to the
attention of Trinity College Library that there may be a breach of copyright or other restraint, it is the
policy to withdraw or take down access to a thesis while the issue is being resolved.

Access Agreement

By using a Digitised Thesis from Trinity College Library you are bound by the following Terms &
Conditions. Please read them carefully.

I have read and I understand the following statement: All material supplied via a Digitised Thesis from
Trinity College Library is protected by copyright and other intellectual property rights, and duplication or
sale of all or part of any of a thesis is not permitted, except that material may be duplicated by you for
your research use or for educational purposes in electronic or print form providing the copyright owners
are acknowledged using the normal conventions. You must obtain permission for any other use.
Electronic or print copies may not be offered, whether for sale or otherwise to anyone. This copy has
been supplied on the understanding that it is copyright material and that no quotation from the thesis
may be published without proper acknowledgement.

Unified Pattern Recognition

and its Application to Handwriting

Recognition

Mark Venguerov

A thesis submitted for the degree of

Doctor of Philosophy in Computer Science

University of Dublin, Trinity College

Department of Computer Science

April 29*, 2002

Declaration

I declare that the work described in this thesis has not been submitted for a degree at

any other university, and that the work is entirely my own.

Signature

Mark Venguerov,

April 29‘̂ 2002

ii

Permission to lend and/or copy

I agree that the library in Trinity College Dublin may lend or copy this thesis upon

request.

Signature

Mark Venguerov

April 29*, 2002

iii

Acknowledgements

First and foremost, I would like to thank my supervisor Prof. Padraig Cunningham.

Without his encouragement, patience, and advice this work would never have been

completed.

I am very grateful to my wife Svetlana for her support and appreciation.

iv

Abstract

The goal of this thesis is the design and the implementation of a visual pattern recog­

nition system based on the analysis of fundamental principles of human perception.

The system must simultaneously be psychologically well founded and computation­

ally tractable. The benefit of this strategy is two-fold; first, it can be used as a model

of certain information processing mechanisms in human visual perception. Second, it

can be applied to the creation of computer systems, which have performance compa­

rable to that o f humans in notoriously difficult domains, e.g. speech perception, un­

constrained cursive handwriting recognition, real world scene analysis, etc.

It is not our intention to devise a complete theory of human visual perception.

Such an ambitious goal lies well beyond the scope of a single thesis. But we hope that

the thesis will serve as a cornerstone of such a theory. Nor is the goal of this thesis to

create an industrial quality system performing recognition in the chosen domain. We

demonstrate that it is possible to create such a system starting with fundamental prin­

ciples based on the psychological research of human perception and certain hypothe­

ses about information processing in the human brain, hi order to prove computational

viability of the model as well as its practical importance, we apply it for the recogni­

tion of unconstrained cursive handwriting.

The introductory part of the thesis consists of a review of existing pattern rec­

ognition methods, various system architectures (blackboard systems, production rule

systems, etc.) bearing close resemblance to our system, and methods used for cursive

handwriting recognition. Then we proceed with a review of the psychological re­

search of human visual pattern recognition emphasising those results which can be

used as guiding principles of the computer recognition system construction.

The main part of the thesis presents a detailed description of our system in­

cluding its knowledge base and the recognition algorithms. We proceed with the

demonstration of the application of our system to the recognition of cursive handwrit­

ing.

V

The main contributions of the thesis are:

- thorough theoretical analysis of human visual perception principles and

their applicability to the construction of computer pattern recognition sys­

tems;

- design and implementation of a visual pattern recognition system, which

performs simultaneous noise reduction, segmentation, feature extraction,

and model matching while starting processing at the level o f pixels;

- design and implementation of a new recognition algorithm employing do-

main-independent heuristics based on the most fundamental part/whole

and class/subclass relations;

demonstration of the viability of the system in the cursive handwriting rec­

ognition domain.

In the concluding part of the thesis we discuss possible technical improvements of the

system as well as directions for fiiture research, which can significantly broaden the

area of applicability of the system.

vi

Contents

D E C L A R A T IO N .. II

P E R M IS S IO N T O LEN D A N D /O R C O P Y ... I l l

A C K N O W L E D G E M E N T S ... IV

A B S T R A C T ...V

C O N T E N T S ... V II

L IS T O F F IG U R E S ... X

L IS T O F T A B L E S ..X I

IN T R O D U C T IO N ..1

P A T T E R N R E C O G N IT IO N M E T H O D S ... 4

2.1 Statistical P attern R e c o g n itio n ..7
2.2 Structural Pattern Re c o g n it io n .. 10
2.3 Syntactic P attern R e c o g n it io n .. 12

S Y S T E M A R C H IT E C T U R E S .. 15

3.1 B la ck bo a rd A r ch itecture; H earsay I I ..15
3.2 Sem antic N etw o rk s: E R N E S T ... 18
3.3 P r oductio n System s : SOAR and A c t -R ... 19
3 .4 A D IK .. 21
3.5 P a r a llel T erra ced Sc a n : Letter Sp ir it .. 24

H A N D W R IT IN G R E C O G N IT IO N ... 27

4.1 D ifficulties of Cursive H a n d w r itin g R e c o g n it io n ... 29
4.2 F ea tu re E x tr a c tio n ... 29
4.3 C h a r a c ter Seg m e n t a t io n ... 31
4.4 St r u c tu r a l Pattern R ec o g n itio n o f C h a r a c ter s ..32
4.5 H olistic W o r d Re c o g n itio n ... 34
4.6 P er ceptio n-orien ted m e t h o d s ...35

H U M A N V ISU A L P E R C E P T IO N ... 38

5.1 P erceptua l G r o u pin g ...39
5.2 P erception of Pa r t s ...41
5.3 T heories of Shape R e p r e s e n t a t io n .. 42

5.3.1 Templates... 43
5.3.2 Feature Theories... 43
5.3.3 Structural Description Theories...44

5.4 T heories of O bject Ca t e g o r is a t io n ..45
5.4.1 Perceptual Categories.. 45
5.4.2 Recognition by Components..47
5.4.3 Multiple Views Theories...48

5.5 V isual Language P e r c e p t io n ..49
5.5.1 Writing Systems... 49
5.5.2 Multimodal Visual Language Processing... 50
5.5.3 Word Superiority Effect... 51

5.5.4 The Interactive Activation M odel...51

G E N E R A L P R IN C IP L E S O F D E S IG N

6.1 T he Main Co n jec tu r e ...54
6.1.1 Pixels and Templates..56
6.1.2 Categorisation and A bstraction ... 57
6.1.3 Parts and W holes.. 59
6.1.4 Object Attributes and C onstraints .. 60

6.2 F eatures of Reco g n itio n A l g o r it h m ... 61
6.2.1 Multiple Hypothesis Testing ... 62
6.2.2 Context Sensitivity..63

6.3 K now ledge Represen ta tio n in Recognition Sy s t e m s ... 64
6.3.1 Recursive D efin itions ..64
6.3.2 Representation Abstraction Range ..65

6.4 L earning as the Process o f R ecognition Know ledge Base R e f in e m e n t66

R E C O G N IT IO N K N O W L E D G E B A S E ... 69

7.1 G eneral O rganisation of R ecognition Know ledge Ba s e ...69
7.2 N o d e T y p e s ...69

7.2.1 ‘S ta rt’ N ode .. 70
7.2.2 ‘Tem plate’N o d es ... 70
7.2.3 ‘Whole’ N odes ... 71
7.2.4 ‘C lass’N o d es .. 71

7.3 L in k T y p e s ...72
7.4 R e c u r s io n ... 72
7.5 A ttributes a nd Co n s t r a in t s ...73
7.6 A b str a c tio n : Rec o g n itio n K n ow ledge B ase Repr esen ta tio n ..75
7.7 La ttice of Specia lisa tio n s ... 76
7.8 R ecognition K now ledge B ase Specification La n g u a g e ..77

R E C O G N IT IO N A L G O R IT H M ... 81

8.1 Recognition A lgorithm O v e r v ie w ... 81
8.2 E lem enta ry Jobs a nd P riority Q u e u e ... 82
8.3 B otto m -up P r o c essin g ...83

8.3.1 Working M emory and Agenda Initialisation ..S3
8.3.2 Main processing cyc le ...83
8.3.3 ‘SEARCH’Jo b s ...84
8.3.4 ‘TEST’J o b s .. 84
8.3.5 Working M emory I tem s .. 85
8.3.6 Recognition as Evidence P ropaga tion ...86
8.3.7 Symmetry and P art Perm utations.. 87
8.3.8 Context-sensitive P rocessing ...87

8.4 Co m pu ta tio n a l Tr a c ta b ility P r o b lem s .. 88
8.5 D o m a in -in d epen d en t H e u r is t ic s ..89

8.5.1 Inhibition and Excitation: Search Tree Pruning ...89
8.5.2 Recursive Nodes G reedy P arsin g ..90
8.5.3 Mutual Inhibition o f Conflicting H ypotheses .. 91
8.5.4 Excitation: Target O rder Choice...91
8.5.5 Excitation: D elayed Specification .. 91

8.6 Recognition P rocess T e r m in a t io n .. 92
8.7 Com parison to Sim ila r A r c h it e c t u r e s ..93

L O W -L E V E L P R O C E S S IN G : F R O M P IX E L S T O C O N T O U R S .. 95

9.1 Recognition P rocess as S im ultaneou s Segm entation , Pr im itive E x tr a c tio n , and
M od el M a t c h in g ..95
9.2 Regions and Co n t o u r s ... 96
9.3 E dges from P ix e l s ...97
9.4 N o is e ..98
9.5 C u rves , Contour Sm ooth ing and M ultiple Scale Represen ta tio n s101
9.6 Occluded E dges and G o o d C o n tin u a tio n ..101

9.7 G e s t a l t G ro u p in g P r i n c i p l e s ...103

CURSIVE HANDWRITING RECOGNITION.. 104

10.1 C u r siv e H a n d w r it in g R e c o g n it io n F r a m e w o r k .. 104
10.1.1 From Lines to Letter Elem ents .. ; 0 5

10.1.2 Letters and W ords..106
10.2 E x pe r im e n t a l Re s u l t s ... 107

CONCLUSIONS... 110

11.1 L im ita tio n s o f C u r r e n t Im p l e m e n t a t io n ...110
11.1.1 Binarisation o f Grey-Scale Images..110
11.1.2 Restricted Set o f Sym bols ..I l l
11.1.3 Generality vs. Performance...I l l

11.2 F u t u r e D ir e c t io n s ... 112
11.2.1 Learning... 112
11.2.2 Neuronal Implementation.. 112

11.3 Su m m a r y ... 113

BIBLIOGRAPHY... 115

RECOGNITION KNOWLEDGE BASE DESCRIPTION LANGUAGE.. 123

FRAGMENTS OF RECOGNITION KNOWLEDGE BASE FOR HANDWRITING
RECOGNITION..127

List of Figures

F ig u r e 1 St a t is t ic a l P a t t e r n R e c o g n it io n Sc h e m e ... 7

F ig u r e 2 A sq u a r e a n d it s s t r u c t u r a l d e s c r ip t io n ..10

F ig u r e 3 T r ia n g l e d e f in it io n in A D IK .. 22

F ig u r e 4 G rid -f o n t l e t t e r s r e c o g n is e d b y th e L e t t e r Spir it E x a m in e r ..24

F ig u r e 5 E x a m pl e s o f p r in t e d , h a n d -p r in t e d , a n d h a n d -w r itten t e x t .. 28

F ig u r e 6 D iffic u l t ie s o f C u r s iv e H a n d w r it in g R e c o g n it io n .. 29

F ig u r e 7 B a sic fe a t u r e s u s e d in t h e N H R ™ T e c h n o l o g y ... 31

F ig u r e 8 R e c o g n it io n A l g o r it h m ... 81

F ig u r e 9 E d g e p ix e l t e m p l a t e s ..97

F ig u r e 10 D iffe r e n t t y pe s o f e d g e s e g m e n t s ... 98

F ig u r e 11 T h e r e su l t o f e d g e s e g m e n t s f it t in g .. 98

F ig u r e 12 B in a r isa t io n a r t e f a c t s ..99

F ig u r e 13 H ie r a r c h y o f c o n n e c t e d l in e s ...100

F ig u r e 14 G o o d c o n t in u a t io n p r in c ipl e a n d l in e in t e r s e c t io n s ... 101

F ig u r e 15 Cu r siv e H a n d w r it in g R e c o g n it io n Fr a m e w o r k .. 105

F ig u r e 1 6 T h e « 7MXL iE F r l e t t e r e l e m e n t .. 106

X

List of Tables

T a b l e 1 O pe r a t io n s a n d b u il t - in f u n c t io n s .. 74

T a b l e 2 E x a m pl e s o f n o d e d e f in it io n s ...

xi

Chapter 1
Introduction

The idea which lead to the emergence of the research area known today as pattern

recognition appeared long before even the first computer has been assembled. For

quite a while the pages of science fiction books have been populated with robots -

artificial creatures capable of seeing the surrounding world, hearing sounds and un­

derstanding their master’s orders given not through teletypes, as the first computers

did, but simply spoken aloud. On the other hand, there were very practical compelling

reasons for the emergence of the new discipline, for instance, the necessity of auto­

matic analysis of signals in military radar and sonar surveillance systems. All this lead

to the fact that almost simultaneously with the advent of the first computers the meth­

ods for solving problems of signal analysis and discovery of objects of interest in

those signals started to be developed.

Since its inception pattern recognition has achieved many remarkable suc­

cesses. Various powerfiil methods for classification and clustering of patterns in vari­

ous application areas have been developed. Still, there exist a number of difficult

problems defying attempts to solve them.

In this thesis we assume that consistent application of the results of psycho­

logical research of human perception, especially in those areas where people demon­

strate good performance (e.g. speech perception, real life scene analysis, and cursive

handwriting recognition), may help to create computer recognition system achieving

human-level performance.

We start with a review of the existing pattern recognition methods, highlight­

ing similarities and inherent problems of those methods and focusing on their com­

puter vision applications. Then we proceed with an overview of various system archi­

tectures similar to the architecture of our system. Those architectures come fi-om

different domains but share two important features: they work with explicitly struc-

1

tured data representations and they allow simultaneous assessment of conflicting hy­

potheses.

Since in this thesis we apply our recognition system for the recognition of cur­

sive handwriting, we provide an insight into the specific problems of this area and

methods used by researchers to solve them.

Chapter 5 is devoted to an overview of the psychological research of human

visual perception. Unlike some other authors we don’t focus solely on those areas of

the research, which are directly related to the specific implementation of our system

(the recognition of hand-written text), but try to take into account all relevant results.

These latter include laws of perceptual grouping (Gestalt laws), the use part/whole

relation for categorisation and recognition, the structure of perceptual categories, and

visual language processing. We try to emphasise those principles, which can be di­

rectly used as guidelines in the design of a computer recognition system.

In Chapter 6 we summarise and discuss general design principles of a recogni­

tion system following from the review in previous chapters.

Next 3 chapters contain a detailed description of the knowledge representation,

the recognition algorithm, and its application to low-level visual processing. The Rec­

ognition Knowledge Base is represented in our system as a graph. The recognition

algorithm can logically be split into two interacting parts; bottom-up and top-down

processes. After the discussion of the bottom-up process, we point out its high compu­

tational cost and introduce the top-down process, which uses a number of domain-

independent heuristics to improve the performance of the combined algorithm. We

briefly compare our architecture with similar architectures reviewed in Chapter 3.

Then we show how our system simultaneously performs edge extraction, segmenta­

tion, detection of straight-line segments and curved lines, etc.

In Chapter 10 we describe an extension of the Recognition Knowledge Base

facilitating recognition of letter parts, letters, and words. We conclude the chapter

with a presentation of experimental results obtained on various sample databases.

In the last chapter we discuss limitations of the current system implementa­

tion, possible technical improvements, and a few potential directions for ftiture re­

search. One obvious drawback of the system is its inability to learn from experience.

We discuss types of knowledge that the system should leam and learning algorithms

2

that can be apphed for this purpose. Another interesting area for the future research

would be a neuronal implementation of the algorithm. We discuss potential problems

with such an implementation. Finally, we provide a summary of the thesis.

The main contributions of the thesis are:

- thorough theoretical analysis of human visual perception principles and

their applicability to the construction of computer pattern recognition sys­

tems;

- design and implementation of a visual pattern recognition system, which

performs simultaneous noise reduction, segmentation, feature extraction,

and model matching while starting processing at the level of pixels;

- design and implementation of a new recognition algorithm employing do­

main-independent heuristics based on the most fundamental relations

part/whole and class/subclass;

demonstration of the viability of the system in the cursive handwriting rec­

ognition domain.

3

Chapter 2
Pattern Recognition Methods

There exists no single formal definition of the pattern recognition problem. This fact

can be related to the relative youth and immaturity of this research area. On the other

hand, it can be explained by the fact that pattern recognition stemmed fi'om various

practical problems, each of them contributing a definition suitable for that particular

problem. Here are some of the definitions:

“... pattern recognition ... is a vast and expUcit endeavor at mechani­
zation of the most fundamental human function of perception and con­
cept formation. “ - [115, p. vii]

“The patterns that we eventually want to study can range up to such
abstract and complex entities as the beauty of a woman’s face or a
piece of chamber music, the profundity of a mathematical theorem or a
haiku poem, or the pleasingness of certain smells, at certain times,
fi'om certain people.” - [109, p. 19]

“ ... the notion of pattern - some arbitrarily assigned structure or co­
herence in a collection of signals. Patterns are not restricted to struc­
ture which can be seen, of course; they are eminently handy in dealing
with acoustics, linguistics, games, diagnosis and many other ensem­
bles of symbols.” - [39]

“We shall use the term ‘pattern’ to denote the p-dimensional data vec­
tor. .. whose components x, are measurements of the features of an ob­
ject. ... a pattern classifier ..., so that it yields the optimal (in some
sense) response for a given pattern. This response is usually an esti­
mate of the class to which the pattern belongs.” - [116, p. 2]

“We are then given an image of an object, or a region in the image
containing a single object or a partial view of it (that is, the object may
be partially occluded). Given such a region, ... the problem is to iden­
tify, for example, to name, the object that gave rise to the image in
question.” - [111, p. 4].

As we can see even from this short list of definitions of the terms pattern and pattern

recognition range from very specific, tailored to describe specific pattern recognition

4

techniques to very generic, almost philosophical ones. Some authors ([54, p. 10]) even

claim that absence of the formal definition of the term pattern recognition is its main

problem.

Although, as it follows from the above definitions, patterns are not Umited to

one certain modality, in this thesis we deal with patterns that arise in human and com­

puter visual perception. These patterns possess special properties, some of which they

inherit fi-om the original input signal called in the case of visual recognition a (digi­

tised) image. Images are 2-dimensional and static (unless motion detection in the se­

quence of images is of interest, which we don’t consider in this thesis). Atomic ele­

ments of an image are called picture elements or pixels. Depending on the type of the

image, pixels can bear various amount of information, e.g. foreground/background

Boolean value for pixels in binary images, lightness value in grey-scale images, three

values for colours in colour images.

Another term, object recognition is often used in the context of computer vi­

sion research. To define the term object is at least as difficult as to define the term

pattern. For the purpose of the discussion in this thesis we shall assume that an object

is a special type of pattern produced by a real world item with a well-defined and rela­

tively constant shape. Thus, a rabbit is an object (even though as it moves its shape

changes), while water in the sea or air are not objects. In English objects are named by

count nouns; non-object entities have mass-noun names.

Visual pattern recognition is based on various types of pattern features: shape,

colour, texture, location, motion, etc. The main information source is the shape of an

object ([111, p.3]). Other sources of information are used as supplementary recogni­

tion cues, especially in those cases when the shape based recognition is hampered due

to noise or object occlusion in the image.

The problem of visual pattern recognition is difficult. One of the main prob­

lems is the fact that the information associated with each individual pixel doesn't bear

much relation to the properties of the pattern this pixel is a part o f As stated in [38, p.

2]:

“The problems inherent in computer vision occur because the units of
observation are not units of analysis. A pixel has the properties o f po­
sition and value. By itself, knowledge of the position and value of a
particular pixel almost always conveys no information related to the

5

recognition of an object, the description of an object's shape, its posi­
tion or orientation, the measurement of any distance on the object, or
whether the object is defective.”

In other words, at the level of pixels the problem of pattern recognition is very under­

constrained.

Another difficulty consists in the huge variability of images corresponding to

the same object under various illumination conditions, various object and observer

mutual positioning, etc.

To solve the latter problem the associative memories approach was suggested.

The systems based on this approach store big numbers of varied views of the same

object. When an object is to be recognised in an image, this image is compared to all

those views and the closest match determines which object is presented to the system.

The effectiveness of this scheme depends heavily on the similarity measure used to

compare the input image and the images stored in the system. Usually, the similarity

measures compare corresponding pixels in images and are very simple, e.g. Hanmiing

distance for binary images or norm for grey-level images. There is experimental

evidence proving that large-scale associative memories play an important role in the

animal or even insect visual perception ([112], [22]).

Unfortunately, the associative memory approach doesn't really solve the prob­

lem. One deficiency of this approach consists in the very big size of memories neces­

sary to store all possible views even for relatively simple objects. Another problem

arises because when simple similarity measures are used, due to various position of

the object, various illumination conditions, object occlusion, changing shape, etc. the

input image can be much more similar to images of other objects than to images o f the

same objects under different conditions. This effect is demonstrated in [66].

All methods of pattern recognition are usually divided into three broad groups;

statistical pattern recognition, structural pattern recognition, and syntactic pattern rec­

ognition. In the following sections we review all these groups paying special attention

to their similarities and specific problems of the recognition of visual patterns.

6

2.1 Statistical Pattern Recognition

Statistical pattern recognition, which historically was the first type of the recognition

algorithm, appeared in the early 60s. The basic scheme of this approach is presented

in Figure 1 (see [116] for further details).

Raw signal Feature vector
Measuring
Device
(Sensor)

Feature
Extractor

Classifier

Figure 1 Statistical Pattern Recognition Scheme

The process of recognition starts with a collection of raw sensory data. In the case of

visual pattern recognition the input device is usually a digital camera or a scanner.

Then the raw data is pre-processed in order to extract information useful for recogni­

tion, and get rid of redundant data and noise. This process is also called feature ex­

traction. Finally, the set of extracted features is supplied to the classifier, which esti­

mates a probability that the given input data belong to a class or set of classes. This

scheme is an oversimplification of the real recognition process, which can contain

multiple pre-processing stages, and even multiple classifiers working in parallel.

Sometimes the input signal of a pattern recognition system can be used for

classification without any pre-processing. More often, though, the input signal con­

tains significantly more variables than it is necessary for classification. As we pointed

out above, this is particularly true for digitised images, where the number of distinct

variables (pixels) can reach millions. On the other hand, values of these variables are

subject to change when external conditions and not the actual pattern change. Thus, in

order to improve classification performance of the system, to lower error rate, and to

extract features invariant under a certain task specific set of transformations, feature

selection and feature extraction methods are used.

Feature selection means that from the set of m input variables we choose n

variables (n<m) without any transformations. The choice is made according to various

optimality criteria (see [116], chapter 8 for details).

More often it is necessary to apply a linear or non-linear transformation to the

set of input variables in order to receive features suitable for classification. The proc-

7

ess is called feature extraction. Feature extraction methods are divided into linear

(principal component analysis, Karhunen-Loeve transformation, factor analysis) and

non-linear (e.g. multi-dimensional scaling). Linear feature extraction methods perform

linear transformations o f input variables based on the mean and standard deviation

values o f the input data.

The set o f features varies from application to application and there is no gen­

eral rule for how this set should be chosen for a new domain. As we discussed above,

visual pattern recognition input variables (e.g. grey-level pixel values) cannot be used

directly for classification and feature extraction methods are extremely important in

this domain. In section 4.2 we shall see how some of these generic methods are used

to extract character recognition specific features.

The set o f features obtained at the previous stage is treated as an element o f a

vector space, where each feature corresponds to a dimension o f the space. [116, p.6]

gives the following definition o f the feature space;

“Given a set of measurements obtained through observation and repre­
sented as a pattern vector x , we wish to assign the pattern to one o f C
possible classes, W/, i = 1,...,C. A decision rule partitions the meas­
urement space into C regions, z = 1,...,C. If an observation vector
is in fl, then it is assumed to belong to class w,. Each region may be
multiply connected - that is, it may be made up of several disjoint re­
gions. The boundaries between the regions Q, are the decision bounda­
ries or decision surfaces.

One o f the simplest classifiers is based on Bayes’ theorem for conditional probabili­

ties and is called Bayes decision rule for minimum error. According to this rule a vec­

tor X is assigned to the class co, if p(jc|w,)p(a)/)> p{x\wi^p{(jii^ for k= l,...,C and k ^ .

Here p(AlB) denotes conditional probability o f A given B. Methods based on the

Bayes decision rule and its modifications are collectively called decision theoretic

classification methods. Use o f these methods requires knowledge o f class-conditional

densities, e.g. parameters o f normal distributions, which are learned from training

data.

An alternative to decision theoretic methods is the group o f methods based on

the use o f discriminant functions. A discriminant function for a two-class problem is a

function o f pattern x, such that \if(x)< k then the pattern belongs to the class wi, oth­

erwise - to class U2, for some constant k. A discriminant function can be linear or

non-linear. Linear discriminant functions split the feature space into class regions with

hyperplanes. An important special case of a linear discriminant function is the nearest-

neighbour rule. Decision regions for linear discriminant functions are always convex,

which means that they cannot represent solutions of some classification problems.

Multi-layer perceptron (MLP) and radial-basis function (RBF) neural net­

works (see, for instance, [40]) are among the most important non-linear discriminant

fiinction methods. They use weighted sums of non-linear fiinctions o f a data vector

and a vector of weights scalar products. In the case of MLP this combination is the

projection of the data vector to the vector of weights, in the case of RBF it is a vector

difference. Other important non-linear discriminant fiinction methods include

multivariate adaptive regression splines, alternating conditional expectations, and

hinging hyperplanes (see [116] for details).

All the above methods are based on the approximation of an unknown dis­

criminant function by a sum of predefined non-linear functions and inferring parame­

ters of those functions from training data. A classification decision for a given feature

vector is made based on the consideration of all features simultaneously. An alterna­

tive to this is the decision tree approach, where different subsets of features are used

at multiple stages of the decision process. Decision tree based algorithms (for in­

stance, CART [11], IDS [83]) allow modelling very complex discriminant functions

and are used to solve various problems. They efficiently classify new samples and

demonstrated good generalisation capabilities.

The relative simplicity of the mathematical model underlying statistical pattern

recognition (i.e. finite-dimensional vector space) allows rigorous investigation of

properties of recognition problems and their solutions. Therefore, many concepts ini­

tially introduced in statistical pattern recognition, such as overfitting, decision region

boundaries, locally and globally optimal solutions, etc. are now used in other research

areas.

The main shortcoming of statistical pattern recognition methods is their inabil­

ity to treat the inherent structural nature of recognition problems. In many cases the

information about presence or absence of certain features in the input data doesn’t suf­

fice for the classification of the data and must be augmented with the information

about relationships of those features.

9

2.2 Structural Pattern Recognition

The basic idea of structural pattern recognition consists in the explicit use of the fact

that patterns contain parts that can be recognised easier than the whole pattern. When

those parts have been recognised and when recognised parts satisfy certain constraints

- we have recognised the whole pattern. Or, as Pavlidis puts it in [79, pp. 3-4];

“The basic idea was that a complex pattern could be described recur­
sively in terms o f simpler patterns. ... In essence, the structure o f the
objects was used for their description.”

In [95] the following formal definition of structural descriptions (representations) is

“A structural description D o f an object is a pair D = {P, R).
P={Pi,...,P„) is a set of primitives, one for each of the n primitive
parts of the object. Each primitive P, is a binary relation Pi A y. V
where ^ is a set of possible attributes and F is a set o f possible values.
R = {PRi ,...,PRk) is a set of named N-ary relations over P. For each
^=1,...,AT, PRk is a pair {NRk, Rk) where NRk is a name for relation Rk,
and for some positive integer Mk, Rk Q Thus, set P represents the
parts of an object, and set R represents the interrelationships among the
parts.”

Based on this definition, structural descriptions of objects are stored in a recognition

system. To recognise the object in the input image, primitives are extracted from the

image along with their relations. Then this structured description of the image is com­

pared to the descriptions of objects stored in the system (usually called object mod­

els). The closest match defines the object recognised in the image.

provided:

segment
straight-line

segment

straight-line
segment

straight-line
segment

straight-line
segment

R: A ngle(Segi,Seg2)=90'’ A Length(Segi)=Length(Seg2)

Figure 2 A square and its structural description

10

Figure 2 above shows an example of an object’s structural representation. The object

in this case is a square. It consists of 4 primitives - 4 straight-line segments. Not any 4

straight-line segments constitute a square; rather they have to satisfy a set of con­

straints or, in other words, they have to be members of certain spatial relations. The

relation in the case of the square is the same for 4 pairs of adjacent segments and is

denoted R in the figure. If we change the relation we get a description of a different

object (or a class of objects), e.g. if we remove the angle constraint the structural de­

scription would describe a set of rhombi.

If we treat the primitives and the relations of the above definition as individual

features the similarity of this approach to that described in the previous section be­

comes obvious. The main difference between statistical and structural pattern recogni­

tion consists in the use by the latter of explicitly structured representations for data.

This representation usually is a labelled graph with nodes corresponding to primitives

and edges corresponding to relations between those primitives. Correspondingly, the

process of matching the input data to the set of models stored by the recognition sys­

tem is the process of graph matching.

A structural matching algorithm has to take into account possible distortions of

the input data because of noise, object occlusion, object deformation, etc. Therefore,

the graph-matching algorithm was extended to perform inexact matching, i.e. partial

matching of input and model graphs with a quantitative measure of their difference.

We consider an example of such an algorithm in section 4.4. Other examples can be

found in [95].

The problem of graph matching is its computational intractability. The prob­

lem of inexact matching or sub-graph isomorphism has been proven to be NP-

complete (see [31] for details). The problem of graph isomorphism is not proven NP-

complete, but polynomial solutions in the general case haven’t been found either.

Since model graphs for complex objects can be quite big, the NP-completeness of the

sub-graph matching is a real problem. Many heuristics have been proposed to solve it.

A recent approach to this problem presented in [62] was to trade polynomial time for

exponential space. The algorithm in [62] pre-compiles a set of graph models of ob­

jects into a network allowing polynomial partial comparison between the set of mod­

els and an input graph.

11

The choice of proper primitives in the general case poses the same challenge

as the choice of a set of features for statistical pattern recognition.

Structural pattern recognition methods have an obvious advantage over statis­

tical ones in their explicit use of the input data structure. There exist also specific

problems in structural pattern recognition. One of them we mentioned above - this is

the problem of computational intractability of inexact graph matching. Another prob­

lem consists in the separation of the extraction process of primitives and their rela­

tions and the process of graph matching. This is an especially serious problem when a

big set of relations between primitives is used by a structural recognition system, hi

this case the system has to calculate all relations between primitives even if they are

never used in the subsequent matching process.

2.3 Syntactic Pattern Recognition

As defined in [30] and [29], syntactic pattern recognition is the application of methods

of mathematical linguistics to pattern recognition. This approach appeared in the early

60s when researchers noticed similarity between the hierarchical structure of sen­

tences, and the hierarchical structure of object images containing parts and subparts.

A well-established theory of formal languages and powerful practical methods of

parsing existed by that time in hnguistics. The idea of syntactic pattern recognition

was to apply this machinery to the recognition of generic patterns.

“This approach draws an analogy between the (hierarchical, or tree­
like) structure of patterns and the syntax of languages. Patterns are
specified as being built up out of sub-patterns in various ways of com­
position, just as phrases and sentences are built up by concatenating
words, and words are built up by concatenating characters.” - Fu [30].

One of the first attempts to extend linguistic methods to visual pattern recognition was

the picture description language (PDL, [96]). Each primitive in PDL has two connec­

tion points - head and tail. There are 4 binary operations - ‘+’, 7 ’ - corre­

sponding to the 4 ways two primitives can be combined together. There is one unary

operator, reversing head and tail order of a primitive. PDL expressions are made

of primitives and operators in the same way as usual algebraic expressions and can

contain parentheses. Using PDL’s notation pictorial patterns can be described as

strings. It is interesting to note that PDL introduces new terminals (unary and binary

12

I

operators) in order to represent spatial expressions between primitives in a string

grammar with just one relation - adjacency. The language has the following major

limitation: all connections between primitives and complex patterns are allowed only

at two points.

There were a few attempts to overcome PDL’s limitations. One of them, the

Plex grammar ([27]), allowed multiple connections between elements. The basic ele­

ment of the plex grammar is a nape — an n-attaching point set. Plex structures are cre­

ated by attaching napes to each other. A plex structure consists of a list o f napes, a list

of internal connections of napes, and a list of attachment points, which can be used to

attach this structure to another plex structure or a nape. The plex grammar suffers

from the same problem as PDL; different orderings of primitives produce different

description for the same object.

Syntactic pattern recognition methods are particularly suitable for recognition

of on-line handwriting, where explicit temporal ordering of elements is known and

primitives can be unambiguously mapped into a string grammar. [16] provides an ex­

ample of such an apphcation.

Generally speaking, all methods in syntactic pattern recognition can be divided

into two groups: the methods which try to describe patterns using string grammars,

and those ones which are based on multidimensional grarmnars (i.e. tree grammars,

array grammars, graph grammars, etc.). Each of these two approaches has its own

merits and drawbacks.

The string grammar approach (illustrated above by the PDL and Plex gram­

mars) tries to introduce new terminals in order to represent multidimensional spatial

relations in one-dimensional strings of terms with just one relation - that of adja­

cency. A big advantage of such a representation is that well-known efficient string

parsing methods can be used for recognition. The price to be paid for this efficiency is

the high sensitivity of the representation to noise and the lack of a unique representa­

tion for a given input pattern.

The approach based on the use of multidimensional grammai's doesn’t suffer

from these problems. Instead, there exists one major problem of parsing. Unlike in the

case of string grammars, there are no efficient generic methods for multidimensional

grammar parsing.

13

Another line of research in this area stems from the idea of expansion of exist­

ing one-dimensional programming languages to 2 dimensions, which would allow

diagram-like programming, description of technical drawings in linguistic terms, etc.

This research gave birth to a multitude of grammar definitions and methods for their

parsing. An example from this area can be found in [121], [122], and [123]. The au­

thors define a class of grammars, which they call ‘Relational Grammars’. Terminal

and non-terminal symbols in these grammars are augmented with attributes. Rules in a

relational grammar are the same as in normal string grammars, except that their right-

hand side parts contain an unordered set of grammar symbols and relations or con­

straints defined on attributes of those symbols. It turned out that the straightforward

application of well-known parsing methods from the domain of string grammars, such

as the Early parser or the chart parser ([123], [121]), is possible only in a few cases

when severe limitations are imposed on the structure of attributes and relations. In

other cases (which are the most interesting from the practical point of view) no com­

putationally tractable methods have been found.

As we could see from this short review of pattern recognition methods, there exists no

single universal method capable of solving all problems. Each approach has its own

merits and its inherent problems. In this thesis we try to demonstrate that by combin­

ing features of different pattern recognition approaches it is possible to improve the

performance of a recognition system.

14

Chapter 3
System Architectures

The systems presented in this chapter come from various research areas but share the

same important features; they work with expUcitly structured representations (and

therefore can be classified as either structural or syntactic recognition systems) and

they allow simultaneous testing of conflicting hypotheses. As we shall discuss in

Chapter 6, this latter is a very important requirement for a system, which is meant to

match human recognition performance.

3.1 Blackboard Architecture: Hearsay II

The blackboard architecture is a particular way of structuring high-level computing

systems. Each system based on the blackboard architecture contains three main parts;

- the blackboard - a global data structure, where the information about the

current state o f the system is stored in the form of individual items;

- the knowledge sources - computational modules, which operate upon the

data in the blackboard;

- the control mechanism making decisions about the order of evaluation of

individual knowledge sources.

The basic control cycle of a blackboard system consists of the following steps:

- determine which knowledge sources can be executed based on the current

state of the blackboard;

choose knowledge sources (usually just one) to execute;

execute knowledge sources.

The only way the knowledge sources of a blackboard system communicate with each

other is through the contents of the blackboard. A knowledge source can add new

15

items and delete or modify existing items. These actions in turn modify the status o f

other knowledge sources, i.e. new knowledge sources can be executed with the modi­

fied data in the blackboard. The system evaluates the main cycle until one of the three

events occurs: a solution is found; no knowledge source can be executed, which

means that the system failed to find a solution; a domain dependent job termination

condition evaluates to true.

There is no predefined order in which knowledge sources are executed. The

computation in the system can proceed in a number of directions creating and testing

conflicting hypotheses.

Usually, the blackboard is divided into a few levels, each containing data of

the different degree of abstraction.

Hearsay-II is the first and probably the best known and mostly cited black­

board system. The system was developed at Carnegie Mellon University in early

1970s as a part of a speech-understanding project. A detailed description of its archi­

tecture and the results obtained by the use of the system can be found in [26] and [70].

The system was followed by a number of successors which all shared the same set of

ideas developed in the Hearsay-II project.

The system blackboard consisted of 8 different levels', which stored interpre­

tations of the input signal in the hierarchical manner. Data items residing in the black­

board were called nodes and contained AND links coimecting parts of interpretations

and OR links connecting competing hypotheses.

The control mechanism of Hearsay-II was a priority queue, which contained

knowledge source activating records (KSARs). At each cycle the system executed the

knowledge source corresponding to the highest priority KSAR. Once a knowledge

source became available for execution a new KSAR for it was inserted into the queue.

A separate module of the system called the blackboard monitor performed this action.

Blackboard systems are very similar to production systems (see section 3.3 for

examples of production systems). In the case of production systems the blackboard is

called ‘the working memory’, knowledge sources correspond to production rules, and

the control strategy is called the conflict set resolution strategy. Still, as it is discussed

' This levels are sometimes icnown as presentation levels.

16

in [81, section 4], there are substantial differences between these two types of archi­

tectures.

The biggest difference is the granularity level of system knowledge sources.

In the case of a production systems all rules share the same ‘if ... then . . .’ form and

therefore are relatively simple. In the case of a blackboard system the knowledge

sources are procedures performing potentially complex computations.

The use of blackboard systems has the following benefits: high modularity of

the system; simultaneous testing of multiple conflicting hypotheses; ease of adding

new knowledge sources facilitating incremental development of a system; smooth in­

tegration of the bottom-up and the top-down processing order.

Along with these benefits the blackboard architecture has some disadvantages

when compared to traditional computer architectures. A system based on the black­

board architecture is difficult to test, as in most applications the state o f the black­

board can be determined by hundreds or thousands of individual items and thus is

very difficult to monitor. It is difficult to devise a good control strategy, especially for

a novel application (a review of the development of control strategies can be found in

[14]). The fact that the architecture is very generic is a benefit, but it also means that

there exist no clear guidelines on its applications in new domains.

Blackboard systems are usually less efficient than traditional systems perform­

ing the same job, and require higher development effort. And finally, as all communi­

cation within those systems is done through the blackboard, the blackboard access

synchronisation can become the system bottleneck in parallel multi-processor imple­

mentations.

Because of these drawbacks, blackboard systems didn’t get much appreciation

outside limited application areas. Currently, the research focus shifted fi-om this area

to multi-agent systems, which are meant to cure most problems of the blackboard ar­

chitecture and bring numerous advantages.

More detailed descriptions of the blackboard architecture can be found in [14],

[18], [26], and [70]. An example of a successful application of a blackboard system

for the recognition of 3-D objects and aerial images is provided in [101] and [102].

17

3.2 Semantic Networks: ERNEST

A semantic network is a knowledge representation scheme, which stores knowledge

in a graph with nodes denoting concepts and labelled edges denoting relations be­

tween concepts ([119], Chapter 2). The term ‘semantic’ is used in this context because

semantic networks convey meaning associated with the data stored in them. Semantic

networks usually are used in artificial intelligence systems performing symbolic rea­

soning (e.g. the KL-ONE system, [10]), but have also foimd their way into the pattern

recognition area.

The semantic network system ERNEST (Erlangen Semantic Network System

and Tools) was developed at the University of Erlangen-Niimberg in the mid-80s (see

[69], [68], [49], and [91] for details). The system was implemented to treat general

problems of image and speech understanding.

The system defines 3 main types of nodes (concept, modified concept, and in­

stance) and 5 types of links (specialisation, part, concrete, model, and instance). Aux­

iliary information is presented in substructure items and includes attribute, link, rela­

tion, modality, value, and fiinction descriptions. A node is a complex data structure

consisting of 26 slots. A modified concept is a specialisation of a concept through

tighter attribute range restrictions. The link types ‘specialisation’, ‘part’, and ‘in­

stance’ are standard link types in semantic networks. The other two link types were

introduced in ERNEST to facilitate connections between representations with differ­

ent degree of abstraction.

In order to provide task independent control algorithms the system poses cer­

tain restrictions on the structure of the network and types of links. Those restrictions

enforce partial ordering of nodes along ‘part’, ‘specialisation’, and ‘concrete’ dimen­

sions.

The following three domain independent rules govern the process of concept

instantiation (the process of recognition):

- If for a concept A there exist instances of those concepts that are referred

by parts or concrete slots in A then build a partial instance of A.

- If a partial instance of concept A exists and there exist instances for con­

text dependent parts of A, which are obligatory parts of A then build a new

instance of A.

18

If there exist an instance o f concept A and an instance of a concept that is

optional in the definition o f A then build an extended instance of A con­

taining the instance of the optional concept as its part.

Three more similar rules are applied for modified concepts. The rules are independent

o f any control mechanism and thus don’t specify any order o f processing.

The system works in the bi-directional mode. The primary process is top-down

search expansion o f the network nodes along ‘part’ and ‘concrete’ links given the goal

node. Simultaneously, the system tries to make use of the information about instances

available from pre-processing and segmentation by creating modified nodes, i.e.

nodes with restricted attribute ranges, in the bottom-up fashion. The algorithm alter­

nates between top-down node expansion and bottom-up modified concept instantia­

tion until a specified level o f abstraction has been reached. The direction is deter­

mined by the A * search algorithm.

The system was applied in a few domains o f pattern recognition. For instance,

it was used as a basis for the development o f the aerial image understanding system

MOSES ([84]).

3.3 Production Systems: SOAR and Act-R

A production system is a computational system based on the application o f ‘if-then’

rules. A production in this terminology denotes an ‘if-then’ rule. A production system

constantly tries to match items in its short-term memory with the ‘i f part o f produc­

tions stored in long-term memory. When this match succeeds the system ‘fires’ the

production, i.e. it performs the action o f the ‘then’ part. This action can generate one

or more new items in the short-term memory. The situation, when more than one pro­

duction is found that can be ‘fired’, is called a conflict. Various production systems

have various heuristic strategies for conflict resolution allowing them to choose at

each step only one production from the set o f conflicting productions. Production sys­

tems are as powerful as the Universal Turing machine.

The two most advanced production systems developed to date are Act-R ([3],

[46]) and SOAR ([51], [67], [46]). The goal o f both systems is modelling human

cognitive behaviour and, particularly, human problem solving mechanisms. As such.

19

those systems are not directly comparable to our system, but their analysis provides a

good insight into the functioning of modem production systems.

The Act-R system performs production condition matching in parallel and

chooses one production to ‘fire’. Its declarative memory contains a network of de­

clarative memory elements (DMEs). The procedural memory of Act-R contains pro­

duction rules. DMEs have activation values and associative strengths with other

DMEs. The actions of productions modify the declarative memory; the procedural

memory is unchanged while system processing. Act-R’s main cycle consists of three

steps: production instantiation for productions whose conditions match DMEs, selec­

tion of a single instantiation using conflict resolution mechanism, evaluation of the

production action for the chosen instantiation.

The processing of information by Act-R is goal-oriented. Goals can produce

sub-goals. The system maintains a single stack of sub-goals. The goal at the top of the

stack is the current goal of the system. It has activation weight 1, which is equally di­

vided between goals slots. A production rule can create a DME representing a new

goal. This DME is pushed to the top of the system’s goal stack. Only those produc­

tions, which match the current goal, can be instantiated by Act-R.

Act-R’s conflict resolution strategy is based on the estimation of utility of the

production instantiations available at each cycle. During the instantiation step of the

main cycle the system needs to decide whether to proceed with instantiations or to

‘fire’ the best instantiation available so far. Each instantiation has a utility value, cal­

culated as PG-C, associated with it. Here P is the probability to achieve the goal if the

production is ‘fired’, G is the expected utility of the goal, C is the cost of the produc­

tion action evaluation. Act-R stops to look for new instantiations when the difference

between their expected utilities and the expected utility of the current best instantia­

tion is less then the estimated cost of finding this new instantiations. The parameters P

and C are adjusted for each rule, based on the actual experience o f the system. Act-

R’s conflict resolution strategy is an example of an adaptive satisficing (sic!) process.

The Soar system is a parallel matching, parallel ‘firing’ system. At each cycle

the system ‘fires’ all the rules, which match the current state of its working memory.

Soar’s working memory contains only declarative knowledge. Every rule ‘fired’ in

20

one cycle can either propose an operator, or vote for or against an earlier proposed

operator, or modify working memory.

The problem space search approach is the base of Soar’s design. Each problem

is represented as a space of states with distinguished goal and initial states and a set of

operators performing transitions between states. In the main cycle the system first

‘fires’ rules that propose operators for the current state. Then it ‘fires’ operator prefer­

ential rules. Finally, the system selects the best operator and applies it to the current

state. When no operator can be selected, the system generates an impasse. For in­

stance, when multiple operators are available, and the system cannot choose the best

one, it creates an operator tie impasse by putting a new goal in the stack of goals. This

represents the problem of operator choice and has its own problem search space.

Therefore, the conflict resolution strategy in Soar is based on representing a conflict

as new problem to be solved by the system and then applying system’s standard prob­

lem solving process. Unlike in other production-based systems, the conflict resolution

strategy in Soar is completely knowledge-based.

The systems described in this section cannot be compared directly with other

recognition systems as they were created for completely different purposes, namely

for modelling human cognitive behaviour. Nevertheless, they provide interesting ex­

amples of a computer system architecture, which conforms to the requirements we

shall discuss in detail in Chapter 6.

3.4 ADIK

Adaptive Drawing Interpretation Kernel (ADIK, [78]) was developed by B. Pasternak

at the University of Hamburg for his doctorate dissertation. The system is based on

the blackboard architecture and used for the recognition of engineering drawings. It is

mentioned as one of the most advanced and promising drawing interpretation systems

in [104],

The system input consists of vector data created at a separate vectorisation

stage. The output of this stage contains straight-line segments, arcs, and text blocks.

The system processes these elements building from them higher-level geometrical

constructs: arrows, polygons, circles, connections, etc. These constructs are further

21

combined into meaningful aggregates depending on the specific domain where the

system is applied (electronics, electrical engineering, mechanical engineering).

The domain knowledge of the system is stored in its knowledge base consist­

ing of object descriptions. An object description consists of the following items;

- object name;

- a link to the more general object description (super-class);

- a list of named variables - part placeholders;

a ‘trigger’ reference to the placeholder that initiates construction;

a list of geometrical constraints for the parts of this object;

- possible permutations of parts of the object;

- a list of attributes and expressions for their calculation;

other items necessary for the recognition process control.

Name:
Variables:
Trigger:
Constraints:

Parts:
Partnames:

Triangle
LI L2L3 of type Line
LI
NEAR LI.end L2.start
NEAR L2.end L3.start
NEAR L3.end LI.start
(cyclic LI L2 L3)

first second third
line line line

Figure 3 Triangle definition in ADIK

Figure 3 presents the definition of a triangle object in ADIK. This definition states

that a triangle consists of three lines with endpoints adjacent to each other (in certain

order).

ADIK uses a rich system of geometric predicates and binary relations to de­

scribe constraints of object parts. This system includes predicates specifying position,

orientation, dimensions of an object and relations specifying mutual positions, orien­

tations, etc. of end-points of parts. The system is designed in such a way that resulting

constraints are position, orientation, and scale (where it is necessary) invariant. Be­

sides, these predicates and relations can be parameterised with constants or ranges.

An important feature of the system is its explicit use of graphic object tax­

onomies. Once the system recognises a generic object it immediately tries to recog-

22

nise all its specialisations, thus avoiding multiple recognition of the same object. Tax­

onomies of the system are based on the single-inheritance mechanism with some spe­

cial methods helping in those situations where multiple inheritance is necessary.

In order to be able to process input data distorted by noise, the system intro­

duces a set of quantitative and structural tolerances, e.g. distance tolerance, missing

part tolerance, broken line tolerance, etc.

ADIK’s processing mechanism is based on the blackboard architecture (see

section 3.1). The system reads an input file containing pre-processed vectorised data

in various CAD-compatible formats. Then some pre-processing including line split,

line merge takes places. The system initialises the blackboard with instances of ele­

mentary vector data (straight-line segments, arcs, and text-boxes) resulted from this

pre-processing stage. The control mechanism of the blackboard is based on fixed pri­

orities assigned to object descriptions so that an object description can be activated

only when all parts of this object have been already calculated. This control strategy is

equivalent to the breadth-first traversal of the system state space. The only violation

of this strict breadth-first strategy is the search for specialisations of a recognised ob­

ject, which is performed in the depth-first manner.

An elementary step of the recognition algorithm in ADIK consists in the

evaluation of an activated object description. A description becomes activated when

an instance of the trigger object for this description is bound with its placeholder. The

system then consequently checks relations and predicates o f the description. If a rela­

tion refers to an unbound placeholder, the system retrieves from the blackboard all

objects of the type, which can be bound with this placeholder, and then discards those

of the objects, which don’t satisfy constraints. Eventually, a list of objects correspond­

ing to the activated description is created and added to the blackboard. These new ob­

jects are bound to the trigger placeholders of the object descriptions they can be parts

o f This bounding in turn activates new descriptions and the process repeats until no

new active description exists.

An interesting feature of ADItC is its support for recursive object descriptions.

They are used to describe objects, which can contain unspecified number o f parts, e.g.

generic polygons.

23

ADIK is a very powerful system for processing of engineering drawings. It al­

lows recognition of drawings from various domains, potentially distorted by noise. Its

explicit use of taxonomies of graphical objects makes the knowledge base construc­

tion process significantly easier than it is in traditional drawing recognition systems.

A potential drawback of the system is the exhaustive manner, which is used to per­

form recognition. This feature can turn out too computationally expensive, thus mak­

ing the system non-scalable.

3.5 Parallel Terraced Scan: Letter Spirit

The motivation for the Letter Spirit project ([61], [42], and [43]) significantly differs

from other systems described above. The ultimate goal of the project was to model

high-level human creativity and its application to design of fonts. An essential part of

the system (and the only implemented to date) is a letter recogniser, called by the au­

thors the Examiner.

The Examiner is not designed as a generic recognition system. In order to re­

duce complexity of the implementation, the system imposes severe restrictions on the

type of characters it can recognise: 26 letters of Latin alphabet rendered in so-called

grid-fonts. Grid-font letters are produced by a combination of straight-line segments

belonging to the grid. Figure 4 shows examples of grid-font letters.

Figure 4 Grid-font letters recognised by the Letter Spirit Examiner

The process of character recognition in the Examiner is called parallel-terraced scan

and can be conceived as a combination of simulated annealing with beam search using

a highly dynamic heuristic value function.

24

The process starts when grid segments (called "quanta") are probabilistically

merged into parts - sets of several adjacent quanta. The parts are marked with labels

coming from the following 7 categories:

- height-width (no_height, very_short, short, medium, tall, very tall, etc.);

- curviness (closure, straight, concave, bow, etc.);

- weight (light, normal weight, heavy, huge);

- horizontalness (left, middle, right);

- verticalness (ascender, x-zone, descender, on baseline, etc.);

- low-resolution view (squarel,..., squarel2);

- tips (point, ttips, rh-tip, Ih-tip, etc.).

26 letters of the alphabet are represented in the system by 66 prototypes called

"wholes" or role-sets, with up to 4 prototypes per letter. The prototypes consist of

roles - highly abstract descriptions of letter parts shared by all letters - and r-roles, de­

scribing relations between roles of a letter. For instance, one of the prototypes of letter

■b' consists of two roles: left post and left bowl with two r-roles, describing how the

two roles are combined to produce the letter.

The total number of roles in the system is 47. Roles themselves are repre­

sented as collection of norms. The norms describe the labels that a part has to be as­

signed in order to match a role and also ratings for different labels. The higher the rat­

ing the more important is the label for the given role.

The recognition process consists effectively of several lower-level processes

running in parallel. One of the processes combines quanta into parts, another assigns

labels to parts, one more process matches parts and roles, etc. The overall process is

highly probabilistic, because all actions are performed randomly, with higher prob­

ability of those actions which are expected to produce better results (better labelling,

better matching, etc.).

The Examiner achieved some remarkable success in recognition of grid-font

letters (see [61] for details). Still, the authors claim that it should be relatively easy to

extend the system so it can recognise usual fonts, leave alone cursive handwriting, has

never been proven. Some design decisions of the Examiner are highly specific for the

concrete task of the grid-font letter recognition. For instance, the system has only two

levels of part-whole hierarchy: quanta are glued into parts, parts are combined to pro-

25

duce letters. While a reasonable simplification for grid-font letters, this rigid treatment

of the part-whole relation is not suitable in general case, as we shall see in section 6.1.

Besides, the system has a very big number of parameters, which are adjusted by hand.

There is no guarantee that such a highly parameterised system can find in general case

the optimal solution or any solution at all.

On the first glance the systems considered in this chapter don’t have much in com­

mon. Some of them, such as Act-R, Soar, and Letter Spirit were not even created for

pattern recognition. Nevertheless, the thorough review of those systems, which we

provided in this chapter, demonstrates many common intemal features. These features

include:

- the representation of a system knowledge in the explicit structured form;

- parallel processing of multiple concurrent hypothesis;

a sophisticated control mechanism choosing next action of the system fi'om
a set of possible actions;

- handling of the knowledge and input imprecision and distortion

26

Chapter 4
Handwriting Recognition

The specific area where we shall demonstrate practical application of the general

theoretical principles developed in this work is the area of cursive handwriting recog­

nition. The reasons for our choice of this area are two-fold. On one hand, the follow­

ing features simplify the handwriting recognition problem:

- 2-dimensionality: a text is a 2-dimensional image. This means that difficult

problems of restoring 3-dimensional structure from its 2-dimensional image

are avoided in this area.

- The image is static - no movement information has to be extracted from the

image.

- All the information in the text image is encoded in letter and word shapes,

rather than, for instance, colour.

- To extract letter shapes it is usually enough to perform binarisation of the im­

age - therefore the very difficult problem of segmentation object and back­

ground is simplified.

On the other hand, as we shall see in section 4.1, due to huge letterform variability in

handwriting, letter-part occlusion, very high context-sensitivity, presence of noise,

handwriting recognition is a hard shape recognition problem, which allows the dem­

onstration of the power of our recognition framework.

Handwriting recognition is the process of conversion of document’s digitised

images into machine-readable text. This type of recognition is called off-line recogni­

tion in contrast to on-line handwriting recognition, where special devices (digitising

tablets) are used for the input of information. The latter is quite a different task and is

easier because of the availability of the temporal information. Depending on the type

of text to be recognised, this process is usually divided into recognition of machine-

27

printed text, hand-printed text, and hand-vmtten (or cursive script) text. Figure 5 pro­

vides examples of these three categories of input. The recognition of machine-printed

text is also called optical character recognition (OCR).

The main difference between hand-printed and hand-written text is that in the

former characters are separated and therefore the problem of recognition of the text is

reduced to the problem of recognition of characters. This is a significant simplifica­

tion, because the problem of segmentation of words into characters is one of the most

difficult problems in the process of recognition of handwriting. With regard to this

problem, all recognition methods of cursive handwriting can be divided into global

(or holistic) (section 4.5) and those performing segmentation (section 4.3). It is inter­

esting to note, that in the case of Arabic language machine-printed text is also cursive

and the segmentation problem arises even in this case. Other reasons for segmentation

of characters in a machine-printed text are kerning, which can replace a pair of adja­

cent characters by one complex character (e.g. ‘fi’ -> ‘fi’), and noise, introduced by a

scanning device.

The images processed by character or handwriting recognition systems are

usually represented as binary or grey-scale bitmaps. Optical scanners, used to convert

paper documents into image data, usually have resolution in the range 200 - 1200 dpi

(dots per inch).

A detailed survey of the research in the area of optical character recognition

can be found in [65]. Methods used to recognise cursive script are reviewed in [53],

a) Optical Character Recognition
h) Of>i CK Q f Q c i e r He.coqnc

Figure 5 Examples of printed, hand-printed, and hand-written text

28

4.1 Difficulties of Cursive Handwriting Recognition

There are two major sources of difficulties in cursive handwriting recognition. The

first one is the high variability of the form of characters between texts written by dif­

ferent people and even texts written by the same person in different conditions. The

second difficulty is the fact that characters inside words are connected and it is hard to

determine where a character ends and another one starts. Sometimes this segmentation

is impossible without knowing the whole word being recognised.

a ct ^ ^ (A
C l - a C l - d

- d o r cl? - u r o r m ?

Figure 6 Difficulties of Cursive Handwriting Recognition

Figure 6 illustrates these problems. The first row demonstrates variability of the form

of lower-case letter ‘a’. These examples have different size, shape, and even topology

(i.e. shape connectedness). The second row demonstrates that hand-written letterforms

for different letters sometimes can look extremely similar. Finally, the third row dem­

onstrates the segmentation problem. Without context, judging just by letterforms it is

impossible to decide which letter or letter combination was initially meant by the

writer.

4.2 Feature Extraction

The feature extraction process is a very important part of traditional character and

handwriting recognition systems, both implementing statistical and structural strate­

gies of recognition. As stated in [106]:

“Selection of a feature extraction method is probably the single most
important factor in achieving high recognition performance.”

29

As we noted in section 4.1, one of the main difficulties of hand-written text recogni­

tion is high variability of the character form. Thus, features used for recognition

should be invariant in regard to the variability of a single character while providing

good separation of different characters. To find such features proved to be not an easy

task. Nevertheless, at least invariance in regard to simple transformations, such as

scaling, translation, and rotation can be achieved.

Some of the feature extraction methods can be applied to both grey-scale and

binary images, while others are representation specific. The simplest method of rec­

ognition omits the feature extraction step altogether and performs template matching,

it treats the whole image as a feature vector. Due to obvious limitations this method is

rarely used in practice.

The linear feature extraction methods considered in section 2.1 are also used

in character and handwriting recognition. Among the most popular are Karhunen-

Loeve, Fourier, Sine, Cosine, and slant transforms. These methods compute unitary

linear transformation of the image reducing the dimensionality of the classification

problem without significant loss of information. The features of this group are not ro­

tation or scale invariant, which means that image normalisation (i.e. rotation and size

adjustment) are necessary before feature extraction can be performed. These methods

c£in be applied to grey-scale images as well as to binary ones.

The next group of methods extracts features from character contour descrip­

tions. The contours can be easily extracted from binary images or obtained from grey­

scale images using edge detection methods ([13]). The methods include zoning, spline

approximation, elliptic and other Fourier descriptors. Zoning methods split a character

image into rectangular or square zones and calculate the number of lines with a given

direction in each zone. A vector of these numbers is used as a feature vector in subse­

quent classification. The spline approximation method uses parameters of spline

curves approximating the contour as a feature vector. Other methods extract Fourier

descriptors for closed contours.

Finally, a number of feature extraction methods working with vectorised rep­

resentation of characters were developed. They include discrete features such as the

number of loops, the number of T-joins, the number of intersections, width to height

ratio, total number of end-points, the number of crossings with vertical or horizontal

axes, etc.

O
Figure 7 Basic features used in the NHR™ Technology

An interesting set of features was used in [28]. The eight basic features of this

method are shown in Figure 7. This method was extended later to a more comprehen­

sive set including 64 features resulting in a very good recognition rate o f cursive

words ([23], [24]).

4.3 Character Segmentation

Initially, cursive handwriting recognition was conceived as a mere extension of opti­

cal character recognition. It was suggested that a cursive handwriting recognition sys­

tem should segment words into individual letters and then apply well-developed

methods of OCR in order to recognise them. It turned out though that the problem of

character segmentation in connected words is a hard one. No generic solution has

been found for the problem so far. Instead, many heuristics have been proposed ([15],

[55]), some of which we consider below.

Cursive word segmentation is usually performed in two steps: pre-segmen­

tation and segmentation. In the first step segmenting algorithms extract pre-segments

from words. There are two approaches to pre-segmentation: the first one tries to en­

sure that each pre-segment contains at most one character, the second one - that each

pre-segment contains at least one character. At the second step algorithms process

pre-segments so that resulting segments contain exactly one character.

The segmentation algorithm in [9] can segment non-slanted words with fully

connected lower contour. The pre-segmentation step of the algorithm finds potential

segmentation points (PSP). To calculate PSPs the algorithm searches for local minima

along the word’s lower contour. When a local minimum is found, the algorithm exam­

ines its left and right neighbourhoods to find eligible zones for PSPs. A zone is char­

acterised by a continuous sequence of single vertical runs and the density value less

than a pre-defined threshold. If a zone is found, a PSP is placed in its middle. Other-

31

wise the algorithm would put a PSP to the point with the lowest vertical projection

within a pre-defmed limit to the right of the minimum point. Then sequences of PSPs,

with the distance between them less than a threshold were replaced with a single PSP

located at the point with the lowest vertical projection. The algorithm as presented

here could miss segmentation points altogether, so its output was used in a complex

recognition algorithm which could compensate for certain segmentation errors.

Another segmentation algorithm, which can serve as a typical representative

of the whole class of segmentation algorithms is described in [98]. It is based on the

notion of regular and singular features. First, a word skeleton represented as chain

graphs is created at the pre-processing step. Then the skeleton is divided into its regu­

lar (axis) and singular (tarsi) parts. The axis of a word is the shortest path in its skele­

ton from word’s left boundary to the right one. The tarsi is the rest of the skeleton. It

can include forks, crossings, cusps, and loops. The segmentation is performed by the

combination of axis and tarsi features. All these features are stored in the system lexi­

con for each word the system can recognise.

The methods considered above are also useful in pure OCR systems as acci­

dental character connection happens quite often even in printed texts, especially after

low-resolution scanning. It is necessary to emphasise, though, that many years of re­

search in this area didn’t produce any reliable universal techniques. There is some

evidence that the main problem consists in the separation of segmentation and recog­

nition stages into independent modules - the same problem as in generic computer

vision.

4.4 Structural Pattern Recognition of Characters

An example of the application of structural pattern recognition to character recogni­

tion can be found in [89], where a method for recognition of multi-font printed char­

acters is suggested. This method is based on the algorithm for direct feature extraction

from grey-scale images, which was described in [114]. The algorithm detects two

kinds of features: regular (convex arcs and strokes) and singular (branch points, end­

ing points, concave vertices, sharp comers).

Extracted features are used to create a structural representation. Regular fea­

tures (arcs and strokes) constitute nodes of a graph, while singular features are repre-

32

sented as links between nodes of the graph. Singular features also represent spatial

relationships among regular features. Another important feature detected in low-level

processing is a gap. Gaps help to associate other features for recognition. They are

particularly important in the case of broken lines. Gap filling while graph matching is

the only operation changing topology of the graph.

An equivalence relation, homeomorphism, is defined on the set of feature

graphs. Two graphs are homeomorphic if one of them can be obtained fi'om the other

by the edge splitting operation, which preserves the topology of the initial graph.

The system contains a dictionary of character prototj^es represented as feature

graphs, similar to those generated from input images. The only difference is that pro­

totypes are the simplest representatives of equivalence classes induced by the homeo­

morphism relation. So, when matching input graphs to prototypes it is necessary only

to check the correspondence between paths in the input graph and edges in the proto­

type.

The process of inexact matching of input graphs with prototypes is described

in terms of graph transformations. A transformation can eliminate a singularity pre­

sent in an input graph which is absent from a prototype. The following transforma­

tions can be used by the system; concave vertex bypass, stroke straightening, stroke

into arc conversion, feature insertion or deletion, attribute transformation.

A measure of graph deformation is associated with each transformation. This

measure facilitates computation of the overall matching cost as the sum of transforma­

tion measures for a sequence of transformations applied to an input graph in order to

match it with a prototype. Then the optimal homeomorphism is defined as a homeo­

morphism of an input graph to a prototype with minimal cost over all prototypes and

transformation sequences. Finally, an input graph is considered to represent the same

character as that prototype, which is optimally homeomorphic with the input graph.

The procedure of inexact matching presented so far is computationally expen­

sive. So, in order to make it more tractable, the following two constraints are intro­

duced:

- geometrical assumption: a matching should preserve the relative order of

orientation of the features around two matched joints, and the overall ori­

entation of the features, since rotations near 90° are very unlikely;

33

- good-continuity assumption; the orientation of a feature is enough to de­

cide locally which feature to choose to extend a path, when the last joint is

a branch point.

Notwithstanding the fact that the complexity of the constrained algorithm still is ex­

ponential on the number of features in the graphs, its execution time is relatively

small, because the number of features or joints in a typical feature graph is usually

under 5.

The algorithm has been applied for the recognition of printed numerals from

the US Postal Service database of real printed addresses. Number of prototypes was

less than 2 per class on the average. The recognition rate achieved 98.13%.

A similar algorithm is applied in [28] to digit recognition. The main difference

between these two algorithms is the set of features used to construct graphs describing

input characters (see Figure 7) and the set of graph transformations applied to graphs

during the process of matching. The rate of recognition of 5-digit images from the

NIST special database 1 reported in [28] varies between 61.4% and 83.1%.

Other examples of structural character and handwriting recognition can be

found in [1], [9], [16], and [37].

4.5 Holistic Word Recognition

The failure to devise a reliable character segmentation algorithm for cursive handwrit­

ing recognition lead to the emergence of global or holistic word recognition methods.

Some authors (e.g. [35], Chapter 2) argue that cursive handwriting recognition should

be performed without recognition of individual letters because this is justified by psy­

chological research of human reading performance. In Chapter 6 we dispute this

claim. Nevertheless, the holistic approach has proven its merit in many systems inde­

pendent of its psychological relevance.

The method described in section 4.4 has been extended in [90] to allow recog­

nition of words without segmentation. The dictionary of the system in this case con­

tains graph representations not for separate characters but for entire words. Graphs for

words sharing letters or groups of letters are combined into a net, allowing more effi­

cient matching with multiple candidate words simultaneously.

34

In [2] the authors present a system which performs recognition of connected

characters without segmentation. The system extracts a set o f primitives from the im­

age using mathematical morphology methods and then tries to find the best grouping

of primitives into characters. The recognition part of the system consists of two mod­

ules - the global control module, which at each individual step chooses a primitive

from the set of available primitives and passes it to the second module - the matcher.

The matcher, given a primitive, tries to find other primitives, which together satisfy a

set of spatial constraints for a model of a symbol. The matcher is implemented as a

nearest-neighbour classifier. Unfortunately, the authors don’t provide any information

about the performance of the system.

The holistic approach to recognition of handwriting facilitated some remark­

able success. Systems based on word recognition have been implemented for the legal

amount recognition in checks and postal address recognition ([24], [23]). Still, some

hard problems in this area remain unsolved.

Holistic methods work best when the system dictionary is restricted as is the

case in check and postal address processing. In this situation the dictionary filtering

can amend even relatively poor performance at the level of feature extraction. A simi­

lar effect was observed in the Hearsay-II system (section 3.1), although in a com­

pletely different domain of pattern recognition. While the rate of correct recognition

of phonemes was about 40%, the rate of correct recognition of words stored in the

system achieved about 70% since the system could filter out all ambiguous phoneme

combinations not stored in the system dictionary. Adding new words in this case

would deteriorate system performance.

Another source of improvement comes from cross-checking of redundant in­

formation, e.g. legal and courtesy amounts on checks or city name and ZIP code in

addresses. These contextual sources o f information are highly domain specific and

cannot be relied upon in the general case. Therefore, most holistic recognition meth­

ods don’t scale up to general-purpose dictionaries.

4.6 Perception-oriented methods

In a recent review of offline cursive handwriting recognition [100] the authors have

expanded the traditional classification of handwriting recognition methods by adding

35

a new category, namely, the perception-oriented methods. Unlike all the methods pre­

sented above, methods of this group don’t work sequentially. Rather, they try to find

letters anywhere in the image using bottom-up processing. Then a decision procedure

retrieves the best non-overlapping set of letters from all the variants generated at the

previous step.

In [100] the authors state;

“... we find this approach significant as it seems to resemble a good
working model, namely the human reading scheme. However, there
are only a few methods that prefer this approach, perhaps because of
implementation issues.”

Based on the alignment of letter prototypes within word images, the method intro­

duced in [25] performs the following steps:

- anchor point extraction;

- stroke detection using affine transformations;

- letter hypotheses generation by matching with letter prototypes;

- instance filtering;

- interpretation;

- application of lexical knowledge.

The work by Cote et al. ([19], [20], [21]) is based on the Interactive Activation Model

(lAM)by McClelland and Rumelhart [60], which we shall discuss in more detail in

Chapter 5. Unlike lAM, which is purely a theoretical model of human perception of

printed words, the system PERCEPTO presented in [21] was designed to perform

recognition of cursive handwritten words. Therefore, it introduces a few new mecha­

nisms, primarily, in order to overcome major practical limitations o f JAM. These

mechanisms include pre-processing, baseline extraction, and feature extraction. The

system is based on the use of pre-segmentation, since its basic algorithm requires the

knowledge (if even approximate) of letter positions within the word. Besides, the sys­

tem uses extensive hard-wired knowledge of specific elements of handwritten words,

such as ascenders and descenders.

In the following chapters we shall see that the application of our recognition

framework to handwriting recognition according to the classification of this chapter

falls exactly into this category, namely, perception-oriented methods. It is not suipris-

36

ing, as the main motivation for our work, as well as for the approaches presented in

this section, is to try to model the human visual perceptual mechanism.

The methods we presented in this chapter (with the exception of the perception-

oriented group) can be considered as ‘standard’. They apply generic pattern recogni­

tion approaches: statistical, structural, and syntactic to the specific problem of charac­

ter and handwriting recognition. Therefore, the main focus of these methods is on the

proper choice of features for subsequent classification using statistical pattern recog­

nition techniques considered in the section 2.1. Alternatively, if the structural pattern

recognition approach (section 2.2) is used, those methods focus on the choice of

primitives and relations, whereas the matching procedure is given significantly less

attention.

In the last section of this chapter we look at the new, fast growing family of

perception-oriented methods. The methods in this group explicitly try to use results of

psychological research, but unlike our generic fi'amework are designed only for

handwriting recognition.

In contrast to cursive handwriting recognition the problem of optical character

recognition can be considered as solved - numerous OCR packages with almost 100%

recognition rate on standard fonts are available commercially. It is not true, though,

for arbitrary fonts. For instance, most decorative fonts of the type presented at [43, p.

413] are still well beyond the capabilities of contemporary OCR systems.

37

Chapter 5

Human Visual Perception

In this chapter we review psychological research of human visual perception. This

review will concentrate mostly on general principles of human perception organisa­

tion discovered by psychologists, rather than on particular models o f human vision. In

the following chapters we shall use these principles as guidelines for the design of a

computer pattern recognition system.

The chapter starts with the formulation and the analysis of the problem of per­

ceptual grouping. We provide a list of main grouping principles discovered by Gestalt

psychologists and point out the problems of the classical Gestalt approach. We review

contemporary efforts to solve those problems within theories of region segmentation.

Then we switch our attention to theories of shape representation in human vis­

ual processing. We consider strengths and weaknesses of those theories.

The following section is devoted to the analysis of theories of object categori­

sation. We present the two most popular theories: Recognition by Components and

Multiple Views and discuss their strengths and weaknesses.

Since the specific area of application of our generic recognition framework in

this thesis is recognition of handwriting, we also review psychological research of

visual language perception.

It is important to emphasise that we don’t hope to provide in this chapter a

comprehensive review of such a vast area of scientific research as psychology of vis­

ual perception^. Our review is with necessity very selective omitting, for instance,

perception of motion, stereo matching, perception of colour and depth, etc.

 ̂A relatively concise overview of the area [8] compiled more than a decade ago consists o f two
weighty large-format volumes!

38

5.1 Perceptual Grouping

The problem of perceptual grouping was first formulated by Gestalt psychologists in

20*'’ century. The question they tried to answer is; how can people perceive objects

with well-defined shape rather than a chaotic array of coloured pixels produced by the

retinal receptors. There must be a way for the human perceptual system to combine

those pixels into meaningful object descriptions. Moreover, this process must be a

pretty unique one since of all the myriads of possible pixel arrangements we usually

perceive only one. The study by Gestalt psychologists of this problem revealed a

number of general principles of grouping (“laws of grouping” in Gestalt terminology)

followed by the human perceptual system. The set of principles varies from a re­

searcher to a researcher, so here we list only those ones upon which everybody agrees.

The principles are:

- proximity, close visual elements tend to be grouped together;

- colour similarity,

- size similarity,

- orientation similarity,

- common fate principle: all else being equal, elements moving synchro­

nously tend to be grouped together;

- good continuation of lines and edges: all else being equal, elements

that can be seen as smooth continuation of each other tend to be

grouped together;

- closure: all else being equal, elements forming a closed figure tend to

be grouped together.

Most principles of perceptual grouping can be considered as the result of the adapta­

tion of the human visual system to conditions of the real world we live in. For in­

stance, the good continuation principle is valid only because most real-life object

boundaries are relatively smooth. We can imagine a world in which object boundaries

are fractal-like at any scale. In such a world the good continuation principle is mean­

ingless and visual perception would probably not use it.

The hypothesis of the adaptational nature of at least some perceptual grouping

principles is also supported by the study of perceptual grouping development in ba­

bies. This study was performed by Kellman and Spelke (see [48]) using the so-called

39

habituation paradigm. It turned out that 4-month old babies rely on the common fate

grouping principle and practically ignore static grouping principles, such as the good

continuation principled The ability to use the latter principle either is learned or de­

velops spontaneously between the 5*’’ and the 7* month of the baby’s life ([99]). Al­

though there doesn’t exist a complete theory that explains all the empirical facts in

this area, it seems that babies are bom with some mechanisms of perceptual grouping,

but most are learned later.

When we consider the definition of Gestalt grouping principles, the following

question arises immediately: where do elements, referred by the above principles,

come from? The visual elements used in Gestalt psychologists’ experiments were by

no means pixels, but rather small circles, squares, objects of arbitrary shape, etc. So,

to put the above question is other words: why are those elements perceived as units in

the first place?

To answer this question without completely abandoning Gestalt principles of

grouping. Palmer and Rock [74] came up with a new grouping principle, which they

called uniform connectedness. This principles states that connected regions of uniform

image properties (luminance, colour, texture, motion, binocular disparity) are per­

ceived as initial units of perceptual organisation, i.e. the elements of other grouping

principles.

The process of dividing an image into areas defined by the uniformity of a cer­

tain image property is called region segmentation. Region segmentation can be per­

formed either by finding region boundaries (boundary-based approaches) or by ‘grow­

ing’ regions based on neighbourhood relation between pixels with uniform property

(region-based approaches).

The most common way of finding region boundaries in boundary-based ap­

proaches is application of edge-detecting operators, e.g. the Marr-Hildreth edge detec­

tor ([58]). This edge detector finds pixels with zero-crossings of luminance second

derivatives. Those pixels constitute closed contours used to partition an image into

regions of roughly constant luminance. Unfortunately, this edge detector, as well as

all other edge detectors, tends to produce segmentations of real-life images, which

 ̂ i.e. the babies perceived as a whole two visually disconnected parts of a moving object (when the
middle part was obstructed), but when the object was static those parts were perceived as separate ob­
jects.

40

don’t correspond to intuitive segmentation performed by the human visual system.

Parts of the same object are segmented into different regions, whereas pieces of dif­

ferent objects are combined into one region if they have similar luminance. This be­

haviour is often a consequence of light and surface interaction, resulting in shadows

and highlights. Sometimes good region segmentation can be achieved by procedures

using texture-based techniques.

5.2 Perception of Parts

Most complex objects are perceived to be composed of parts - portions of the object,

which are perceived as objects themselves, hi order to form an object, its parts have to

satisfy a set of spatial relations, i.e. to take certain positions relative to each other.

Psychological evidence of part perception comes in the form of linguistic evidence,

phenomenological evidence, and perceptual experiments. Linguistic evidence is the

most straightforward one - when we talk about complex objects, we tend to describe

them as consisting of certain parts (e.g. a human body consisting of a head, torso,

arms, etc.).

A number of phenomenological demonstrations provided in [41] suggest that

even smooth and continuous objects are perceived to contain parts.

And finally, in [71] and [72] Palmer provides experimental evidence of part

perception. The stimuli in his experiments were 2-D nonsense figures. Those figures

couldn’t be described in any reasonable way, nevertheless, they were perceived as

having well-defined part structures.

There are two basic theories of the way human visual perception divides ob­

jects into parts {parses objects). The shape primitive theory states that there exists a

set of basic undividable shapes. Any object can be divided into parts, which are repre­

sented by primitive shapes. This approach is based on an analogy between visual per­

ception and languages, where words are constructed as strings made of a small set of

letters.

One of the problems of this theory is that it doesn’t take into account contex­

tual effects in part segmentation. Experiments (e.g. [72]) demonstrated that the same

part could be easily detected in one context and not in another. Another problem is

related to our ability to perceive parts to contain sub-parts. This means that a theory of

41

part segmentation has to explain complex part/whole hierarchies. The problem can be

solved within the primitive shapes theory by the introduction of multiple scales of de­

scription. Then the same primitive shape can play different roles at different scales.

Finally, despite certain claims (e.g. [4]), nobody has so far devised a set of primitive

shapes (to say nothing about a small set of primitive shapes!) capable of representing

the huge variety of real-life object shapes.

The boundary rules theory ([41]) assumes that objects can be divided into

parts in certain locations specified by a set of universal rules. The authors o f this the­

ory suggested the following rules:

- the concave discontinuity rule: the visual system divides an object into

parts at abrupt changes in surface orientation towards the interior of the

object (i.e. concave surface discontinuities);

- the deep concavity rule: the visual system divides an object into parts

at negative extrema of the object surface curvature.

Although this theory exhibits a number of difficulties, it is very popular in the com­

puter vision community as it can be easily implemented as a computer algorithm. The

first difficulty of the theory is that it specifies where to choose part dissection points,

but doesn’t specify which points to connect.

More profound difficulty stems fi'om the fact that people tend to perceive parts

even where no concavities or discontinuities exist at all. An example of such an object

is an egg. Although its shape normally is very smooth and doesn’t have any extrema

of negative curvature, people tend to distinguish the large end of an egg and the small

end"*.

5.3 Theories of Shape Representation

In [73, p. 363] Palmer states:

“Of all the properties we perceive about objects, shape is probably the
most important. Its significance derives from the fact that it is the most
informative visible property in the following sense: Shape allows a

On one occasion this part separation even lead to a war! See: Jonathan Swift, Gulliver's Travels.
W.W. Norton & Company Inc. New York, London, 2002, pp. 40-41 (originally published in 1726).

42

perceiver to predict more facts about an object than any other property.
... It is also the most complex.”

This observation emphasizes the difficulty and practical importance of understanding

shape representation in the human visual perception system. Unfortunately, no satis­

factory solution of this problem has been found so far, a solution that would capture

all the power and versatility of human shape perception. Below we review a few dif­

ferent theories (or, rather, types of theories) that more or less adequately explain cer­

tain aspects of shape perception.

5.3.1 Templates

Template theories were inspired by the associative memory approach in computer

recognition systems, which we mentioned in Chapter 2. The recognition process ac­

cording to a template theory is the process of consequent matching of the input image

with the set of stored template images. The measure of similarity between the input

image and a template is simply the ratio of the number of pixels with corresponding

colours to the total number of pixels in the image. The more pixels in the input image

and the template image coincide (in other words, the more is the ‘overlap’), the higher

is their similarity. After all similarity values for all templates are computed, decision-

theoretic methods are used to classify the input image as an instance of one of the

categories. This process of matching is neither scale, nor rotation, nor translation in­

variant and thus requires a pre-processing normalisation stage.

Considering the cellular structure of retina, we can assume that templates are

used at the lowest level of human vision, as they provide the only means to extract

initial information about primitive shapes such as lines and edges from the iconic im­

age created be the eye.

Template theories have never been seriously considered as general theories of

human perception as they exhibit the same set of problems as the associative memory

approach in pattern recognition. A more detailed account for template theories can be

found in [109].

5.3.2 Feature Theories

Feature theories appeared as an alternative to template theories. They suggest that a

set of « tests is applied to the image. The results of these tests constitute either a set of

43

n Boolean values or a vector in an «-dimensional linear space. A decision-theoretic

method is then used to classify the input image. Psychological feature theories were

inspired by the development o f statistical pattern recognition, as a comparison with

the description o f the latter in section 2.1 reveals.

There are two main types of feature theories - theories based on binary fea­

tures and theories with continuous values o f features. In the first case the categorisa­

tion of an input image is done on the basis o f similarity between the set o f binary fea­

tures o f the image and the stored feature representations of categories. The similarity

measure in such a theory is a function of the number of common features and the

numbers of features present in the image, but not in the stored representation and vice

versa. The most popular similarity measure o f this type was introduced in [107].

In the second case the set of feature measurements is treated as a vector of an

^-dimensional linear space. Then standard methods based on the use of discriminant

functions (described in section 2.1) perform image categorisation.

Similar to statistical pattern recognition methods, feature theories are criticised

on the basis that they cannot represent structural relationships between features. This

is not quite true, as a feature, extracted from an image, can be virtually anything

measurable in the image, including the Boolean value corresponding to a given rela­

tion between other features. Thus, at least in theory, a set of features can be extended

to reflect structural relationships between features. Unfortunately, the size o f the fea­

ture set in this case grows exponentially with the growth o f the number o f non­

relational features and the number of relations.

5.3.3 Structural Description Theories

The next group of theories state that images are stored in the form of their structural

descriptions, i.e. descriptions o f parts and spatial relations between them. Structural

descriptions are a very powerful method of visual information storage and they over­

come many problems o f template and feature-based descriptions. We discussed struc­

tural descriptions in section 2.2.

Unfortunately, there is a price to be paid for all the benefits o f structural de­

scriptions: as we saw in section 2.2, matching structural descriptions is a computa­

tionally expensive (intractable) process. Besides, in order to be able to represent sub-

44

tie differences between objects, for instance, in the case of face recognition, a suffi­

ciently rich set of parts and relations has to be provided. Finally, those pans and rela­

tions have to be computable from real-life images and this turns out be a rather diffi­

cult problem itself

In Chapter 6 we shall discuss how these problems are addressed in our recog­

nition fi'amework.

5.4 Theories of Object Categorisation

Recognition of an object is a two-fold process. On one hand, we can talk about recog­

nition of the object identity (e.g. is this John?); on the other hand, object recognition

can be considered as object categorisation (e.g. is this object a human being?). Object

categorisation is a very important process, which allows determining object function

and utility. Palmer ([73], p. 413) distinguishes four components of object categorisa­

tion:

- object representation;

- category representation;

- comparison process;

- decision process.

Any model of object categorisation must specify all four components. Before present­

ing the two most influential theories of human object categorisation below, we shall

discuss the nature of perceptual categories.

5.4.1 Perceptual Categories

The most important fact about categories (including perceptual categories) is

that they constitute a hierarchy. Any category can be a sub-category of a more general

category (e.g. the category of black cats is a sub-category of the category of cats).

Sometimes it is assumed that categories form a tree, that is, each category has just one

more general category. In reality, categories form a structure known in mathematics

as lattice. The above example of category of black cats can demonstrate it. On one

hand, this category is a sub-category of the category of all cats. On the other hand, it

is also a sub-category of the category of all black animals. Both these categories are

45

sub-categories of the category of all animals. This is an example of a (very simple)

lattice.

Since the classical analysis of the categorical structure provided by Aristotle,

categories are defined by their corresponding lists of constraints that an object has to

conform to, in order to belong to the category. These constraints are called necessary

and sufficient conditions of the category. This definition still dominates the main­

stream mathematics and mathematical logics. And for many years it was assumed that

this is the way categories are represented in human minds.

Experimental studies by the psychologist Eleanor Rosch ([85], [86], and

[87]), showed that all natural perceptual categories might be structured around one

distinguished exemplar, called a prototype. The prototype view of category formation

differs fi'om the classical one in three aspects:

- rule-based vs. instance based representation;

- binary vs. fuzzy membership;

- different degree of ‘typicality’ of objects.

The first aspect means that that a category is based on a certain measure of similarity

of a given object to the prototype object of the category and is represented in memory

not by the list of constraints, but rather by the prototype. The second aspect denoted

the fact that objects can belong to the category to a certain degree. And finally, even

among clear (100%) members of a category some are considered as more typical rep­

resentatives of the category and some - as less.

Another important study performed by Rosch sought to answer the question:

at what level of the categorical hierarchy categorisation initially happens? It tumed

out that most people initially recognise objects at some intermediate level of the hier­

archy. Rosch called categories at this level basic-level categories. More abstract

categories are called superordinate categories, more specific - subordinate categories.

Further studies ([47]) demonstrated effects consistent with the claim that typi­

cal members of a basic category are first classified to this category, whereas atypical

ones first classified to one of its subordinate categories. Those subordinate categories

got the name entry-level categories.

46

Some terminological confusion stems from the fact that perceptual classifica­

tion to the entry-level categories is called sometimes object recognition, which makes

it difficult to distinguish from recognition of object identity. For instance, in the con­

text of reading we speak of ‘recognition of letters and words’. This is a typical exam­

ple of entry-level categorisation.^

Unfortunately, the prototype theory of object categorisation is not free of prob­

lems. The basic problem lies in the fact that category membership is specified in

terms of some similarity measure between the category prototype and an object. In the

context o f experiments it was relatively easy to specify this measure, but it is much

more difficult, if possible at all, in general case. Originally Rosch provided three basic

criteria of basic-level category formation: shape similarity, motion similarity and

common attributes. But what is shape similarity, to start with? Another problem con­

sists in the fact that in the categorisation process people tend to take into account at­

tribute relations, such as higher variability of some attributes relative to others. Fi­

nally, the prototype theory does not answer the question of what makes a category

natural.

The two theories of object categorisation presented in the following sections

provide computational models of object categorisation. The first theory is based on

the assvraiption that categorisation is performed by perceiving object parts and spatial

relations between them. The second one uses an object and the category prototype

alignment.

5,4.2 Recognition by Components

The Recognition-by-Components (RBC) theory was developed by Biederman ([4]).

The theory is based on the following three observations of basic phenomena of human

visual recognition [4, p. 117]:

“1. Access to the mental representation of an object should not be de­
pendent on absolute judgments of quantitative detail, because such
judgments are slow and error prone....

“2. The information that is the basis of recognition should be relatively
invariant with respect to orientation and modest degradation.

 ̂How often are you interested in recognising that specific letter ‘L’ from the second line o f the third
page of your diary? This is an example of the ‘true’ letter recognition rather than categorisation.

47

“3. Partial matches should be computable. A theory of object interpre­
tation should have some principled means for computing a match for
occluded, partial, or new exemplars of a given category.”

RBC postulates that 3-D shapes are represented internally by a small set (usually 36)

of primitive shapes called ‘geons’, which can have quaUtative attributes. The set in­

cludes such simple shapes as boxes, cylinders, and wedges. Geons are claimed to be

easily detectable in images due to their non-accidental properties, i.e. properties which

are almost always (except in the case of an ‘accidental’ viewpoint) present in a 2-D

projection of a shape. Non-accidental properties include collinearity of point or lines,

curviliniarity of points or arcs, symmetry, parallelism of curves, and presence of ver­

tices.

As a representative of the class of structural description theories RBC is not a

novel theory. Similar theories were developed earlier by Marr and Nishimara ([59],

[58]), Binford ([5]), Tversky and Hemenway ([108]). The essence of RBC is the

specification of a small set of primitives (geons) and the claim that an arbitrary 3-D

shape can be represented as a hierarchical structural composition thereof

One of the drawbacks of the theory is its reliance on purely qualitative distinc­

tions between shapes. Quantitative (metric) information is important in recognition of

particular objects, e.g. distinguishing one face from another.

A more severe problem (which is faced by all structural description theories)

is the need for reliable detection of parts in images. There are many ways in which a

set of edges and edge junctions detected in a grey-level image can be matched to par­

ticular geons. This problem precluded application of RBC to recognition of objects in

real life images. Another serious problem is instability of structural representations,

i.e. existence of multiple structural representations for the same object, depending on

the set of primitives chosen to describe it.

In [44] the authors present a neural network-based implementation of the

model.

5.4.3 Multiple Views Theories

Recently, a new family of psychological theories of object recognition emerged,

which is supposed to solve problems of classical structural theories, such as RBC.

48

This is the class of so-called ‘multiple 2-D views’ theories, which claim that structural

3-D information is not stored by the human visual perception system. Rather, it stores

multiple 2-D views of the same object, which can be either templates or structural 2-D

descriptions, depending on a particular theory. An example of such a theory can be

found in [12] and [103].

5.5 Visual Language Perception

Visual language perception or, in other words, recognition of words and letters in the

process of reading is an important special area of psychological research of visual

perception. Its practical importance is related to the very important role o f reading in

contemporary society. Reading is much more complex process than the process of

recognition of words as its final result is the meaning of text. In the following sections

we will not deal with all the aspects of reading but rather focus on the first stage of the

process - recognition of word forms.

5.5.1 Writing Systems

All existing writing systems can be divided into four major classes: semasiographies,

logographies, syllabaries, and alphabets ([32, chapter 6], [33]).

The international system of road signs can serve as an example of a semasi-

ography. Distinguishing features of this type of a writing system are lack of phonetic

information associated with symbols and their propositional character.

Logographies are best represented by the Chinese hieroglyphic system. Hiero­

glyphs contain both semantic information (at the word level) and restricted phonetic

(based on similarity of pronunciation) information.

Unlike in semasiographies and logographies, symbols in syllabaries and al­

phabets don’t have any meaning associated with them and only represent sounds or

pronunciation. The difference between syllabaries and alphabets lies in the type of

phonetic information associated with their symbols, hi syllabaries the phonetic infor­

mation is represented at the level of the syllable, in alphabets - at the level o f the pho­

neme. The Japanese Katakana system consisting of 74 symbols is an example of a syl­

labary. Writing systems of such languages as Spanish or Russian are pure alphabets.

Some contemporary Western languages (e.g. English, French) cannot be de­

scribed as pure alphabetical systems. Since the spelling of many words significantly

differs from their contemporary pronunciation and, therefore, conveys only partial (if

any at all) phonetic information, the written form of these words should be considered

as a kind of hieroglyph®. Thus, the writing system of these languages has features of

both logographies and alphabets.

An essential factor for the recognition of language graphical symbols is the

manner in which the symbols are combined visually. In case of logographies they just

stand next to each other without explicit connection or overlapping. In case of con­

temporary alphabetic writing systems the symbols (letters) constituting one word and

written by hand or even printed (in the case of the Arabic language) are usually con­

nected, with words being separated from each other by some space. This feature

makes the recognition of cursive text particularly difficult, as it was demonstrated in

section 4.1.

5.5.2 Multimodal Visual Language Processing

On the level of the human nervous system, there exists a specialised mechanism for

processing of auditory language called Wernicke’s area. This can probably be ex­

plained by the long evolutionary adaptation of the brain to speech perception. There is

significantly less evidence for any biological specialisation related to reading and

writing, which is quite understandable from the evolutionary point of view - the vis­

ual form of language is a relatively modem invention. This fact suggests that proper

study of the human reading process should take into account interaction between

purely visual processing of visual language and the mechanisms of phonological and

semantic code formation.

There are two main differences of the auditory and visual information process­

ing in the human brain. The first one related to the fact that signals from eyes and ears

come to different regions of the brain. The second difference is in the nature of signals

coming from extemal sensors - eyes and ears. The information, conveyed through the

visual path, is static, whereas auditory information is a temporally arranged sequence.

® Naturally, this does not mean that separate letters contain any semantics, unlike parts o f real hiero­
glyphs.

50

5.5.3 Word Superiority Effect

The empirically found contextual dependence of performance in recognition of letters

is called the word superiority effect. It turns out that the letters can be reported more

easily when they appear in meaningful words rather than in arbitrary letter strings.

This effect was first reported by Cattell in 1886. Unfortunately, his experiments didn’t

allow for separations of effects in recognition performance vs. memorisation perform­

ance.

The definitive study was done almost a century later by Gerald Reichert, hi

1969 he performed modified experiments, which undeniably demonstrated the differ­

ence in the recognition performance, namely, that letters in words are identified more

accurately than letters in non-words. This effect is also called the word-nonword ef­

fect.

In a different experiment set-up Reichert also showed that letters within words

are recognised more accurately than single letters. This effect is called the word-letter

effect. Finally, it turned out that even non-words which are easily pronounceable, im­

prove the recognition accuracy. This is the pseudo-word superiority effect.

It is worth noting that similar object superiority effects were reported for ge­

neric objects ([117]).

All these effects demonstrate a very important feature of the human visual

perception; categorization of letters in words (as well as objects in scenes in more

general case) is highly context dependent.

5.5.4 The Interactive Activation Model

The Interactive Activation Model is one of the most influential computational models

of human word reading. It was introduced by McClelland and Rumelhart in 1981

([60]). The goal of this model is to simulate perceptual processes responsible for word

and letter categorization in human visual perception, and, specifically, provide an ex­

planation of the word superiority effect (see section 5.5.3).

Recognition of words in the lAM is performed by a 3-layer neural network.

The bottom layer of the network corresponds to letter features, the middle layer - to

whole letters and finally, the top layer - to words. The model can recognise 4-letter

words consisting of grid letters similar to those used in the Letter Spirit project (see

51

Figure 4). All letters are constructed as sets o f 12 grid segments. The recognition net­

work contains a node at the bottom layer for each grid segment in each of 4 possible

letter positions. Thus, the bottom layer consists of 48 nodes. These nodes are activated

when the corresponding grid segment is present in the letter at corresponding position

in the input word. The feature level has no feedback from upper layers.

The next layer consists o f 104 nodes, each representing one o f 26 letters in one

o f 4 possible positions. The letter nodes are connected by excitatory connections with

the segment nodes at the bottom layer present in the letter and by inhibitory with

those, which are absent. All letter nodes corresponding to the same position are con­

nected with inhibitory connections, which makes it a winner-takes-all type network,

allowing only one letter node to be active at each position one the activation pattern

has settled.

The topmost layer contains nodes corresponding to more than 1000 4-letter

words. They are coimected with inhibitory and excitatory connections with letter

nodes at the previous layer depending on the presence or absence o f the correspond­

ing letter at the corresponding position in the word. The word nodes are intercon­

nected with inhibitory connections similar to letter nodes in the previous layer. Be­

sides, there exist ‘word feedback’ connections with letter nodes. These connections

allow modelling of context-related aspects of human perception.

The model correctly simulates a number of contextual effects, such as the

word superiority effect, the pseudo-word superiority effect, and the word-letter effect.

A detailed survey of psychological models o f human word recognition can be

found in [45].

52

In this chapter we considered the following important features of human visual per­

ception:

- Gestalt principles of perceptual grouping;

- properties of shape representation and theories explaining them;

- use of parts for shape representation and object categorisation;

- structure of perceptual categories;

- contextual sensitivity;

- specific effects and models of word recognition.

Psychological research of human visual perception is a vast and quickly developing

research area. We didn’t hope to provide a comprehensive review of this area (it can

be found in [8] and [73]), but rather, we have chosen those specific lines of research,

which we perceived as mostly relevant to our goal - creation a computer pattem rec­

ognition system based on the same principles as himian pattem recognition. This

choice is with necessity a subjective one, but we hope to have managed to include into

this review all the important topics.

53

Chapter 6

General Principles of Design

In this chapter we shall present general design principles of a pattern recognition sys­

tem, which we derive from the results of the psychological research of human visual

perception reviewed in the previous chapter. Another source of design requirements is

the analysis of problems of the recognition systems reviewed in Chapter 2.

We start the chapter with the formulation of the thesis’ main conjecture. Then

we describe the system’s simplest objects — pixels - and their categorisation per­

formed by template matching. We proceed with the discussion of the following con­

cepts underlying our recognition framework: the abstraction relation of categories,

the part/whole relation and the combination operation, the categorisation process, and

properties of attributes and constraints.

Other elements of design presented in this chapter are parallel multiple hy­

potheses testing, contextual sensitivity, the system knowledge representation, and the

abiUty of the system to learn new information.

Some of the ideas presented in this chapter were introduced in [113].

6.1 The Main Conjecture

Comparing Chapter 2 and Chapter 5 one can notice an undeniable liaison between

psychology of visual perception and pattern recognition research. Historically, these

two areas of scientific research borrowed ideas and theories from each other. Many

psychological theories, especially those dealing with low-level visual processing,

claim that the human brain processes perceptual data exactly in the same way and

uses the same data structures as some specific pattern recognition algorithm, hi turn,

the behaviour of computer pattern recognition algorithms often is described in psy­

chological terms. Following this tradition we shall formulate the main conjecture of

this thesis, which is equally useful as a (yet another) psychological theory of percep-

54

tual categorisation, and as a guideline for the design and implementation of a pattern

recognition computer algorithm. In the following chapters we will not discuss psycho­

logical implications of our assumptions, but rather concentrate on the practical issues
of the algorithm implementation.

Before formulating the conjecture, let us recall that one of the most important

functions of the visual perception system is categorisation of objects’. Most theories

define categorisation as a two-step process. On the first step some functional modules

(different from theory to theory) extract information describing an object from the raw

image; on the second step this information is used for categorisation.

For instance, in the case of RBC (section 5.4.2), the first step consists of the

extraction of primitive shapes (geons) and their spatial relations from the image. On

the next step this structural information is matched against prototype models repre­

senting various categories, hi the case of feature-based theories, the first step consists

in the extraction of a vector of features from the image, whereas at the second step a

classification algorithm chooses the best-matching category for the object represented

by the vector of features.

In the contrast to the above, we conjecture that in the actual algorithm un­

derlying the functioning of the perceptual system these two steps are not sepa­

rated and constitute the indivisible body of the algorithm. The algorithm per­

forms categorisation as well as it builds complex objects from their constituting

parts at each conceptual step of recognition.

This conjecture has profound consequences for the design of the algorithm,

but before we proceed with their analysis, we shall consider some theoretical implica­

tions of the conjecture.

First of all, our theory, being obviously a structural representation type theory,

goes further in this direction than most theories of the class. The only unstructured

elements in our theory are pixels. All other objects are made of parts, combined in a

hierarchical manner. We claim that even objects, which are seemingly perceptually

indivisible (such as a circle), consist of parts (in the case of circle - arcs). Therefore,

’ In certain sense, even the dual problem of object identification can be expressed as a special case of
categorisation, where the category o f interest consists of just one element — the object itself.

55

we can state that our recognition framework is based on a consistent mereologicaf
approach.

Postulating the absence of elementary objects other than pixels we avoid many

problems of theories discussed in Chapter 5. All objects in our system are subject to

Gestalt grouping principles, although as we shall see later, different principles control

the recognition process at different scales. Moreover, some grouping principles are

implemented as properties of the recognition algorithm itself, whereas others are ex­

pressed through rules of composition in the knowledge base (e.g. the ‘good continua­

tion’ principle, section 9.6). This division roughly corresponds to the discussed in sec­

tion 5.1 division of the Gestalt grouping principles into innate and learned. Thus, we

don’t need to answer the question where the elements of Gestalt grouping principles

come from.

It is necessary to stress that we do not specify the exact hierarchy of parts as a

component of ow theory. The actual structure of parts and their relations is a subject

of empirical research. Moreover, it is very likely that some theories of object percep­

tion and object shape representation reviewed in Chapter 5 correctly describe percep­

tual processes at their specific scales. For instance, a RBC-like geon-based representa­

tion can be used by the human visual system for coarse 3-D models of objects,

whereas for human faces more fme-grain representations are used. All these represen­

tations can co-exist within the recognition knowledge base of our system. Thus, our

system can inherit strengths of the above theories while simultaneously solving their

problems.

6.1.1 Pixels and Templates

Pixels are the simplest, indivisible objects in our theory. They roughly correspond to

elementary responses of retina cells to external stimula. An individual pixel doesn’t

have any shape but, as any other object in our theory, can have a set of attributes as­

sociated with it. The most important pixel attributes are pixel’s coordinates.

This 2-D coordinate system is effectively a concise representation of all the

spatial relations between pixels. For instance, if we know coordinates of two pixels

* Mereology (meros, Greek “part”) is the logic of a whole conceived as though physically constituted
by its parts. It was created by the Polish logician Stanislaw Lesniewski ([56]).

56

we can calculate distance between them, whereas for three pixels we can calculate the
angle between the lines they define, etc.

Other pixel attributes contain the information that is available as the result of

the interaction of the system’s sensory elements with the environment. In the case of

black-and-white vision there is one numeric attribute - pixel’s luminance. For colour

vision there are three attributes corresponding to the light intensities in three inde­

pendent colour channels.

As we noted in section 5.3.1, in order to extract initial information from the

image consisting of pixels we have to compare the image with templates. Local tem­

plate matching is a special type of categorisation in our system. For instance, the

Marr-Hildreth edge detector can be implemented as a template, which categorises

pixels to those belonging to edges and the rest. In section 9.3 we describe a set of four

simple templates that we use to detect edge pixels in a binary image and to assign

them to one of four possible categories depending on the edge direction.

Categorisation performed by template matching can be explicit or implicit.

The two examples above demonstrated explicit categorisation when a new category

was assigned to a pixel. Instead, template matching can create new pixel attributes.

For instance, in the case of the luminance gradient calculation, each pixel is aug­

mented with new attributes corresponding to the gradient direction and absolute value.

This is an example of the implicit pixel categorisation.

6.1.2 Categorisation and Abstraction

As we mentioned in section 5.4.1, the classical way to define categories is to specify a

list of constraints an object has to conform to in order to belong to the category. The

other method of category specification includes the specification of a prototype object

and a similarity measure. Besides, it was noted that unlike categories in classical

logic, perceptual categories are fuzzy, i.e. each member belongs to them to a certain

degree, which ranging fi’om 0 (not a category member) to 1 (fiill category member).

In our system we define categories using the classical way of specifying a list

of constraints. This might seem to contradict to experimental results cited in section

5.4.1, but in reality it doesn’t. The constraints that we use dixe fuzzy constraints, and

calculate not Boolean true/false values, but rather a degree of the category member-

57

ship. Classical binary (or crisp) constraints constitute a special case of fuzzy con­
straints and also are used by the system.

What about prototypes and similarity measures? It turns out, that though not

formally defined, they are evolving properties of our categorisation algorithm. Indeed,

fuzzy constraints of a category will calculate maximum category membership value

for a certain (not necessarily unique!) set of object attributes. Any object with this set

of attributes can be considered as the category prototype; then category constraints

can be considered as the measure of similarity between an object and the category

prototype.

In section 5.4.1 we pointed out that categories (both perceptual and concep­

tual) are organised into the mathematical structure called ‘lattice’ with respect to the

abstraction relation. More specific categories are subcategories of more abstract ones.

This structure of perceptual categories is extensively used in the control mechanism of

the categorisation process (section 6.2) as well as for the knowledge base structuring

and refinement (sections 6.3 and 6.4). Therefore, proper understanding of how the ab­

straction relation of categories can be specified becomes very essential.

In mathematical logics a class (the concept corresponding to the ‘category’

concept in the context of psychology) can be specified either extensionally or inten-

sionally. The first specification explicitly lists all elements constituting the class. The

second provides a set of necessary and sufficient conditions, which a class element

has to satisfy. By analogy with this definition we call two mechanisms of an abstract

category specification extensional and intensional abstraction.

In the case of extensional abstraction an abstract category is defined as an ex­

plicit list of (more specific) subcategories. Indeed, the resulting category is an abstrac­

tion of any subcategory as it includes any element that the subcategory includes, but

the opposite is not true. An example of this type of abstraction can be found in lin­

guistics, where, for instance, the category of all verbs is a combination of the category

of transitive verbs and the category of non-transitive verbs.

When an abstract category is specified through a set of constraints which are

more permissive than constraints defining its specific subcategory, we call it inten­

sional abstraction. Intensional abstraction can be achieved either by dropping some of

constraints defining the subcategory, or by ‘relaxing’ them. An example o f this type

58

of abstraction is the category of elHpses, which is an abstraction of the category of

circles (naturally, if we consider a circle as a special ellipse, and not as a different

kind of a geometrical object). Note that neither of the two categories can realistically

be specified extensionally.

Finally, if we recall that any object in our system (apart from pixels) is made

of parts, we arrive at the third type of abstraction - structural abstraction. If categories

A and B have the same set of constraints, but objects of the category A consist of

more abstract parts than objects of the category B then the category A is structural

abstraction of the category B. An example of structural abstraction can be found, for

instance, in linguistics, where there exist general verbal phrases and more specific

transitive verbal phrases. Elements of these two categories consists of the same parts,

except that in the first case any verb can be a part of a phrase, whereas in the second -

only a transitive verb.

Two subcategories of the same abstract category are complementary, if they

don’t have common elements, or, alternatively, if they don’t have common subcatego­

ries. The fact of complementarity of two categories is used to optimise the categorisa­

tion process: if an object belongs to one of those categories, the membership test for

the second category can be omitted.

6.1.3 Parts and Wholes

In section 5.2 we reviewed evidence for the psychological importance of perception

of parts and wholes. The part/whole relation structures not only visual perception, but

also hearing (see section 3.1), perception of events, etc. Therefore, the main conjec­

ture can be also rephrased as a claim that human perception of different modalities

evolves around and is governed by the two universal relations: abstraction and

part/whole. The role of the former we have discussed in the previous section. In this

section we shall focus on the latter.

The universal nature of the part/whole relation has profound implications for

the representation of categories in our system. The fact that our categories are catego­

ries o f objects consisting o f parts induces the following taxonomy of constraints de­

fining categories:

59

- structural or relational constraints;

- part-type constraints;

- part-attribute constraints.

Structural constraints, as it follows from their name, define the way the parts of an

object have to relate to each other in order to form the object. Part-type constraints

specify categories of object parts. Part-attribute constraints further restrict the set of

objects, which can serve as parts of a member object of the category.

Let us consider as an example the category of squares with sides parallel to

coordinate axes. According to the above taxonomy, mutual position constraints (i.e.

adjacent sides with right angles between them) and length constraints (i.e. equal

length of all sides) are structural constraints. The definition of sides as straight-line

segments is a part-type constraint. And the fact that at least one of the sides has to be

parallel to a coordinate axis is a part-attribute constraint.

Unlike the above domain-independent classification of constraints, the nature

of structural and part-attribute constraints changes from domain to domain. In the case

of visual perception we deal with spatial constraints, i.e. relations between points,

lines, regions in the 2-D or 3-D Euclidean space, hi Chapter 9 and Chapter 10 we will

meet multiple examples of spatial constraints.

The taxonomy of constraints we provided in this section is important for the

understanding of the representation of intensional abstraction in our system as well as

for the understanding of the principles of the recognition knowledge base refinement

(section 6.4).

6.1.4 Object Attributes and Constraints

An individual object in our system is defined by the category it belongs to, by the

parts it consists of, and by its attributes.

What is the role of attributes in the representation of information necessary for

recognition? The most straightforward answer to this question is that attributes are

necessary for:

- calculation of constraints;

- calculation of a parent object’s attributes;

60

- storage of auxiliary information, e.g. in the case of handwriting recog­

nition the average slant of handwriting or other stylistic properties.

Another, a less obvious role of attributes is that they provide a means of implicit sub­

categorisation. This becomes more apparent if we consider a category of objects with

a nominal attribute. Such a category is a union of sub-categories, each containing only

the objects with one fixed value of the attribute. Note that in this representation the

attribute becomes redundant because its value for a given object is defined by the sub­

category the object belongs to.

In the case of numerical attributes the above explicit splitting of a category to

sub-categories becomes impossible (or, in the very least, impractical), as we would

need to represent a countable (or at least very large) number of distinct categories.

Nevertheless, we define by analogy with the previous case the implicit sub­

categorisation induced by numeric attributes. Reversing the above analysis we can

consider an attributed category as a union of ‘proper’ categories of purely symbolic,

attribute-fi'ee objects, which we combine into the attributed category for practical rea­

sons.

This role of attributes in a category definition is important for understanding

of learning processes discussed in section 6.4.

6.2 Features of Recognition Algorithm

Starting with Marr’s influential book [58], visual processing systems are designed

around the concept of modular structure. A system consists of a number of modules,

each fiilfilling its own fiinction and passing information to other modules.

Our recognition framework is a radical departure from this scheme. It consists

of just one module, which is fimctionally equivalent to multiple modules of traditional

systems. This is achieved by implementing various functional modules as virtual

processes within a single computational process.

The order of processing of various categorisation and composition operations

in our system is controlled by a set of static and dynamic priorities. This feature pro­

vides the system with the ability to run various virtual recognition sub-processes at

different speeds.

61

One of the consequences of the main conjecture is that visually perceived ob­

jects are built of parts, but are never parsed into parts. Thus, our approach avoids the

object parsing problem (section 5.2) altogether. At the same time the difference in the

speed of various virtual recognition sub-processes can explain subjective perceptual

phenomena in this area.

For instance, a simple region segmentation process based on uniform connect­

edness (section 5.1) can be very fast because it accesses only pixel attributes and

combines neighbouring pixels with equivalent attributes of some modality. The proc­

ess of determining fine-grain shapes of those regions can be much slower as it re­

quires significantly more complex processing, as we shall see in Chapter 9. The result

of this speed difference reveals itself as if the system first detected the regions and

then parsed them into constituting parts. The difference of processing speeds can ex­

plain also why some parts are perceived as ‘good’ and some as ‘bad’ ([71]).

As any structural description based recognition system, our recognition frame­

work is susceptible to the problem of computational intractability. One component of

the solution of this problem in our system is the representation of multiple object

models in the recognition knowledge base as a lattice of parts and wholes at different

levels of abstraction. This representation enables parallel simultaneous object model

matching. Another means of tackling the problem is a set of domain-independent heu­

ristics presented in section 8.5.

A lattice of category abstractions induces special ordering of the categorisation

process. First, the constraints of the most abstract category are tested. If this test fails,

testing of more specific categories can be omitted. Therefore, the system performs

category testing from the most abstract categories to the most specific and creates

only the most specific instances, which satisfy corresponding category constraints. A

detailed description of this process can be found in section 8.3.4.

6.2.1 Multiple Hypothesis Testing

As we noted in Chapter 2, pattern recognition is usually a severely underconstrained

process. At each step the system is presented with many ways to interpret the current

state of the recognition process and choose further actions. For instance, a system fit­

ting lines into sets of points can fit either a straight line, or a curve, or even a comer

into a particular set of points.

62

Various systems have various strategies of the ambiguity resolution, some of

them having been discussed in Chapter 3. So far, all the attempts to devise a single

universal strategy of ambiguity resolution failed. Practical experience shows that if a

system is designed to perform recognition in a real-life domain it has to be capable of

tracking simultaneously a number of conflicting interpretations of perceptual data and

postpone final decisions until later stages of the recognition process. Since the black­

board system architecture presented in section 3.1 was specially designed to have this

capability, we have chosen it as the basis for our system. We shall discuss details of

the implementation in Chapter 8.

6.2,2 Context Sensitivity

Context sensitivity can be seen as the ability of a system to resolve ambiguity in the

interpretation of a particular object by using its context.

hi the case of cursive handwriting recognition this feature of human percep­

tion acquires a paramount importance. As we demonstrated in Chapter 4 (see Figure

6) the interpretation of many handwritten letters and letter combinations depends on

the context they appear in. The reliance on this ability of human perception reaches its

peak in the contemporary shorthand writing ([34]), where the interpretation of every

element depends on its relative position, relative size, etc.

Our system permits the specification and the use of context dependencies for

categories that are specialisation of other, more abstract categories. A context depend­

ency is a reference to a property of a whole, which contains the context-referring ob­

ject as a part (not necessarily immediate). Consider, for instance, the interpretation of

the letter ‘e’ in a handwritten word. In some handwriting styles it can be distinguished

from the letter ‘1’ only by its size relative to the x-height attribute of the word it is a

part of.

The resolution of this type of context dependency is implemented as a top-

down process. The details of the implementation will be discussed in section 8.3.8.

Another type of context sensitivity, which we encountered in section 5.5.3, is

responsible for the acceleration of object recognition in familiar, firequently arising

contexts, hi our system this is achieved by the use of dynamic priorities o f individual

recognition sub-tasks modified by a top-down process (section 8.5.1).

63

6.3 Knowledge Representation in Recognition Systems

Since the purpose of a pattern recognition system is categorisation of its input data,

the main type of information stored in the knowledge base o f the system is a set of

category definitions. Each definition should include a set of constraints, definitions of

attributes of category objects, and the category label (e.g. a letter code for a category

representing a letter). Another type of important information, as it follows from the

discussion in section 6.1.2, is the abstraction relation between categories. A special

kind of category is a set of pixel categories induced by pixel-level templates. And fi­

nally, the knowledge base can store processing hints, e.g. priorities of different routes

in the part/whole hierarchy.

A detailed description of the representation of all this information in our sys­

tem can be found in Chapter 7. Here we just note that in order to increase the system

flexibility we tried to increase the proportion of leamable, declarative information.

Although the system as it stands now is not capable of learning, the analysis of the

information necessary for the system successfiil fimctioning undertaken in this thesis

is the important first step in this direction.

6.3.1 Recursive Definitions

The knowledge representation in our system allows for recursive definitions of object

categories, that is, a category can refer to itself in a part-type constraint.

By its definition (see [56]) the part/whole relation is a partial-order relation.

This means that the relation is:

- reflexive, i.e. an object is its own (improper) part;

- anti-symmetric, i.e. if the object A is a part of the object B and the object

B is a part of A then A = B;

- transitive, i.e. if the object A is a part of the object B and the object B is a

part of the object C then A is a part of C.

Anti-symmetricity of the part/whole relation ensures that the object cannot be a proper

(i.e. different from the whole) part of its own part. Therefore, recursive definitions

serve to describe those situations where an object can contain a proper part belonging

to the same category as the object itself. Consider, for instance, a straight-line seg­

ment, which is a composition of two adjacent straight-line segments with the same

64

direction. Similarly, a convex line can be obtained as a concatenation of two convex
lines if their connection is also convex.

Recursive category definitions sometimes reflect invariant properties of ob­

jects. In the above example of a straight line this is shift invariance in the direction of

the line, hi more complex situations it is not trivial to specify the transformation that

leaves the object unchanged.

As we shall see in Chapter 9, a recursive definition is a powerfiil tool allowing

for the concise specification of many geometrical categories. The downside of recur­

sive definitions is that if special care is not taken, they can easily slow dovm the rec­

ognition process so that it becomes impractically long (see details in section 8.5.2).

6.3.2 Representation Abstraction Range

One of the major problems of traditional pattern recognition systems is the change of

data representation between different modules comprising the system. Those modules

usually work at different levels of abstraction and therefore cannot share data repre­

sentations. We stressed this problem when reviewed blackboard architectures in sec­

tion 3.1. The problem is usually solved by introducing module interfaces, which con­

vert data from one format to another.

In contrast to this, our system has just one representation, and this representa­

tion is abstraction level independent. Each object (except pixels) is represented as a

combination of its parts and has a set of attributes, which are fiinctions of attribute

values of objects’ parts. The concrete meaning of attributes depends, naturally, on the

specific type of object. In Chapter 9 we shall see that the attributes of the most ab­

stract type of line, which has just one topological property - connectedness, are the

positions of the line’s ends and its minimum bounding rectangle. More specific line

types have other attributes defining their properties, e.g. average curvature of a

smooth curve.

Therefore, our approach allows change of the degree of abstraction without

changing actual representation.

65

6.4 Learning as the Process of Recognition Knowledge Base Refinement

Simon ([97]) defined learning as changes to the content and organisation of a sys­

tem’s knowledge enabling it to improve its performance on a particular task or set of

tasks. The performance of a recognition system is determined by its ability to make

correct recognition of the input, by the processing time, and by the generalisation abil­

ity of the system. The latter is defined as the ability of the system to recognise (cate­

gorise) correctly the input it has never encountered before. These three criteria are ob­

viously conflicting as, for instance, the best in terms of the correct recognition rate is

the system, v̂ ĥich just stores associations between input instances and corresponding

categories, but such a system would have a very poor generalisation capability as well

as it would be too slow for sufficiently variable input. Therefore, the process of opti­

misation of a recognition system has to find a suitable compromise between the above

three criteria.

At a very abstract level all recognition errors can be divided into two catego­

ries: errors caused by over-generalisation and errors caused by under-generalisation.

In the first case, the knowledge base definition of a category is more permissive than

it should be, and accepts objects, which in reality don’t belong to this category. In the

second case, the definition is too restrictive and forces the system to reject correct

categorisations. A mis-categorisation error is a combination of the above two errors.

Therefore, in order to improve the recognition performance of a recognition system it

is necessary to modify category definitions when the system makes an error.

Unlike in many other systems capable of learning (e.g. neural networks, case-

based reasoning systems, production rule systems), this modification of category defi­

nitions can be done in our recognition framework in an explicit and controlled man­

ner.

Let us consider, for instance, a case of a too restrictive category definition.

There are several ways to amend the definition:

- a constraint (relational or part-attribute) can be dropped from the cate­

gory definition;

- a constraint (relational or part-attribute) can be relaxed, e.g. by speci­

fying less steep fiizzy membership functions or by increasing the range

of acceptable values;

66

- a more abstract part type can be specified;

- a new category definition can be created, which would accept the mis-

categorised instance, and a new extensional abstraction of the two

categories is added to the knowledge base.

Any of the above actions can be performed more than one time and for multiple con­

straints. The goal of the procedure is to find the minimum modification of the knowl­

edge base allowing correct recognition of the mis-categorised object.

Over-generalisation can be cured by the following actions:

- a new constraint (relational or part-attribute) can be added to the category

definition;

- an existing constraint (relational or part-attribute) can be toughened, e.g.

by specifying more steep fuzzy membership functions or by reducing the

range of acceptable values;

- a less abstract part type can be specified;

- the category can be split into a set of more specific categories.

The process of the knowledge base refinement, as it stands now, is not sufficiently

formalised in order to implement it as an automatic learning procedure. Nevertheless,

our practical experience (see section 10.2) shows that it is possible to apply it in real-

life situations to correct recognition errors.

67

In this chapter we discussed general design principles of our recognition framework.

Some of these principles are direct consequences of what we learned about human

visual perception in Chapter 5. Others (e.g. the main conjecture) are plausible hy­

potheses about the organisation of perceptual processes, hi the following chapters we

shall describe how these general principles are implemented in our recognition sys­

tem.

We would like to emphasise at this point that the design principles we have

chosen as the basis for our system are not specific for a certain narrow area o f pattern

recognition, e.g. 2-D shape analysis. We intentionally tried to keep the system as ge­

neric as possible, so that it could be applied to solve various pattern recognition prob­

lems, provided the information necessary for recognition can be represented in the

form described in the next chapter.

68

Chapter 7

Recognition Knowledge Base

hi this chapter we describe the organisation of knowledge in our recognition system.

The data structure used to store the system knowledge is a graph. We provide a de­

tailed description of various types of nodes, links, constraints, and attributes constitut­

ing the knowledge base. We also discuss the external representation of the knowledge

base and review the language used for its specification.

7.1 General Organisation of Recognition Knowledge Base

The Recognition Knowledge Base (RKB) is represented in our system as a graph.

Nodes of this graph represent classes of pattern, whereas links between nodes repre­

sent part-whole, class-subclass, and abstract-specific relations. Spatial constraints of

parts constituting a ‘whole’ are stored in the corresponding node. Nodes also contain

definitions of attributes.

The RKB stores constraints and attributes in the form of expressions built of

constants, references to attributes of parts, and invocations of built-in functions.

7.2 Node Types

There are four different types of nodes in the recognition knowledge base: the unique

‘Start’ node, ‘Template’ nodes, ‘Whole’ nodes, and ‘Class’ nodes. Every node in the

RKB represents a class of patterns and, in the case of visual pattern recognition, every

pattern is a set of image pixels.

A node of type ‘Whole’ describes a class of patterns constructed as combina­

tions of other patterns - their parts. A node of type ‘Class’ describes a class of pat­

terns consisting of subclasses, which are described by other nodes. The class of pat-

69

tems represented by a ‘Template’ node contains those sets o f pixels, which match the

template. Finally, the ‘Start’ node corresponds to individual pixels.

Every node in the RKB has a unique name and sets o f incoming and outgoing
links associated with the node.

7.2.1 ‘StarVNode

The system automatically creates the unique ‘Start’ node. This node has links of the

type ‘part-of to all template nodes in the knowledge base. During the initialisation of

the system (see section 8.3.1 for details) in the ‘Pixel’ mode, for each foreground

pixel an item of the type ‘Start’ is created in the working memory and a ‘SEARCH’-

t>pe job is inserted into the agenda. This allows matching all foreground pixels with

all templates.

7.2.2 ‘Template’Nodes

The most basic, low-level type of a node in our recognition knowledge base is a tem­

plate. Template nodes are necessary in those cases when pixel attributes don't contain

the information necessary for constraint testing but this information is encoded in the

pixel neighbourhood relation.

Consider, for instance, a black-and-white image. Pixels of such an image have

only one Boolean attribute - IS FOREGROUND (another possible attribute -

IS BACKGROUND - is a simple negation of the former one). This attribute is not

sufficient to distinguish internal pixels (i.e. foreground pixels surrounded by only

foreground pixels) from edge pixels (i.e. foreground pixels having both background

and foreground pixels as their neighbours). The standard part-whole relation coding

scheme cannot be used in this case, as background pixels are not parts of an edge, but

their presence in the immediate neighbourhood of a foreground pixel make that pixel

an edge pixel.

Template nodes are specified as rectangles with left, top, right, and bottom co­

ordinates relative to the pixel with the neighbourhood of which the template is

matched, followed by two arrays with the size of the template rectangle. The first ar­

ray contains values for the attributes of corresponding pixels (e.g. in the black-and-

white case - foreground and background colours). The second array is a mask. TRUE

value of an element of this array means that the corresponding pixel needs to be

70

matched against the value in the first array, FALSE - that it should be ignored. This

scheme allows coding templates of any shape. For the image border pixels we use an

opportunistic strategy: all the pixels outside of the actual image are assumed to match

the template.

When a template ‘is applied’ to a pixel, the template matching procedure cal­

culates the number o f image pixels that match corresponding template pixels. Then

the ratio of this number and the total number of active pixels in the template (i.e. pix­

els with the TRUE value in the mask array of the template) is used as the degree of

matching.

Specific templates used in our implementation are presented in section 9.3

7.2.3 ‘Whole’Nodes

‘Whole’ nodes are the main means of structural description in the recognition knowl­

edge base. The following information is stored in each individual ‘Whole’ node:

- a set of parents, i.e. nodes of type ‘Whole’ of which this node is a part and

nodes of type ‘Class’ of which this node is a subclass;

- a set of constraints stored as a list of expressions (see section 7.8);

a set of parts;

- a set of attribute definitions (see section 7.5);

a mapping between global names of attributes and their slots in this node;

a set of nodes which are intensional abstractions of this node;

- a set of nodes which are intensional specialisations of this node;

- result nodes contain the result value (e.g. letter nodes in the case of

handwriting recognition contain the code of the letter).

‘Whole’ nodes correspond to production rules in production systems (section 3.3) as

they used by the recognition algorithm to construct new working memory items corre­

sponding to the ‘whole’ RKB node fi-om their parts.

7.2.4 ‘Class’Nodes

‘Class’ nodes serve to represent extensional abstraction in the system (see a discus­

sion of different types of abstraction in section 6.1.2).

71

The structure of a ‘Class’ node is similar to the structure of a ‘Whole’ node

represented in the previous section. The only difference is the interpretation of the set

of parts - in the case of ‘Class’ nodes their ‘parts’ are their subclasses. A ‘Class’ node

cannot have a set of constraints associated with it but can have a set of attributes.

Those attributes are inherited by all the children of the ‘Class’ node.

7.3 Link Types

All nodes in the system are connected with various types of links. These links repre­

sent the following relations between nodes:

The ‘part-of relation - links of this type connect ‘Template’, ‘Whole’, and

‘Class’ nodes with the ‘Whole’ node parts of which they are; the link con­

tains the position of a part in the whole (the part slot number).

The ‘subclass-of relation - links of this type connect ‘Template’, ‘Whole’,

and ‘Class’ nodes with the ‘Class’ node subclasses of which they are.

- The ‘abstraction-of relation - hnks of this type connect ‘Whole’ nodes

with ‘Whole’ nodes and represent the intensional abstraction relation (sec­

tion 6.1.2).

A link of each type has a corresponding link connecting nodes in the opposite direc­

tion. Each link also has a priority value associated with it and is used by the system

control mechanism as a multiplicative factor to calculate job priorities (see section

8.2). At the moment the priorities are chosen manually whereas in the future they may

be adjusted by the system automatically.

7.4 Recursion

As we already discussed in section 6.1.3, recursive definitions are necessary to de­

scribe situations where a whole is similar to its part at a certain level of abstraction.

We shall see in Chapter 8 that our system makes extensive use of recursive defini­

tions. Those recursive definitions are not explicitly specified in the knowledge base,

but rather are automatically detected when the knowledge base is initialised. Recur­

sive definitions are given special treatment by the system control mechanism (section

8.5.2).

72

7.5 Attributes and Constraints

In order to constitute a whole, a set of parts has to conform to a set of constraints spe­

cific for this whole. The set of constraints is stored as a list of expressions assumed to

be connected with the logical conjunction operator. Attribute definitions in the knowl­

edge base are represented simply as expressions used to calculate their values for spe­

cific items.

Expressions in our system are evaluated by the system expression interpreter.

Use of interpreted expressions leads to a certain degradations of the system perform­

ance but simplifies experimentation with various RKBs as it is not necessary to re­

compile the system to test a modification of the RKB. Our experiments showed that

the overhead of interpreted expressions is minimal and no significant performance

gain can be achieved by compiling them.

Attribute and constraint expressions can contain constants, references to at­

tributes of parts, and fimction calls connected by operations. Currently implemented

operations and built-in fiinctions are shown in Table 1. The value of an expression can

have one of the following types:

- number: numbers are represented in the double precision floating format;

- vector: a pair of integer numbers representing co-ordinates of a pixel in the

image or vector defined by two pixels;

- range: a pair of numbers representing an interval of real numbers;

- item: a reference to a working memory item;

- undefined.

Operations and functions produce new values with potentially different type.

For instance, the ‘dist’ function takes two arguments of type ‘Vector’ and returns a

result of type ‘Number’; the range creation operation (‘[]’) convert two numbers into

a result of type ‘Range’.

73

Table 1 Operations and built-in functions

Name Meaning

6 1 > i i <s|c? CO
' 9 ~ 9 9 ' Standard addition, subtraction, multiplication, and division

t A» Addition and subtraction of angles: the result is normahsed into
the]-PI, PI] interval

Unary Negation
(. 1 9 Union: applicable to ranges and numbers

Intersection of two ranges

‘ G ’ Creates a range from two real numbers

{a} is a shortcut for the [-a, a] range

in Tests if a number is inside a range

‘= ’, ‘ O ’ ,

‘<=’, ‘>=’
Tests if two values are equal, not equal, the first is less, greater,
less or equal, and greater or equal, correspondingly

C ^ 9 Fuzzy predicate modifier: applicable to ‘in’, binary predicates, and
predicate functions

C . 9 Combines alternatives; if the left-hand side expression is defined
returns its value; otherwise calculates and returns the value of the
right-hand side expression

M ’ Fuzzy Boolean value negation (calculated as 1 - fuzzy value)
‘« ’ or ‘«’ Fuzzy “significantly less than” predicate
‘» ’ or ‘»’ Fuzzy “significantly greater than” predicate
 ̂ _5 The sign of two numbers is the same

Different signs
abs Absolute value of a number or a vector(component-wise)

avg Average value of two numbers or two ranges

dist Distance between two points

connected Are two nodes connected?

angle Direction of the vector defined by two points

min Minimum of two numbers or lower bound of a range

max Maximum of two numbers or upper bound of a range

delta Span of a range

length Length of a vector

inside Is given shape inside of a combination of other shapes?

close Is given shape (or point) close to another shape (point)?

above Is given point (shape) above of another point (shape)?

left Is given point (shape) left of another point (shape)?

74

sin Sine
cos Cosine
tan Tangent

leftmost Returns the leftmost pointfrom the given set of points
rightmost Returns the rightmost point fi-om the given set o f points
topmost Returns the topmost point from the given set of points
lowest Returns the lowest point from the given set of points
X Returns the x-coordinate of a point

y Returns the y-coordinate of a point
point Combines two numbers into a point with corresponding coordi­

nates

Boolean values TRUE and FALSE are represented as numbers 1 and 0 correspond­

ingly. An expression can also calculate a fuzzy class membership value, which is rep­

resented as real number in the range [0,1]. Fuzzy constraints are calculated by fuzzy

predicates corresponding to binary predicates ‘in’, ‘= ’, ‘o ’, ‘<’, ‘>’, ‘<=’, ‘>=’, and

predicate functions. It is possible to define the steepness of a class membership func­

tion. The use of fuzzy predicates is explained in detail in section 8.3.6.

7.6 Abstraction: Recognition Knowledge Base Representation

As we have discussed earlier, there are two types of abstraction - intensional and ex-

tensional (see section 6.1.2). Correspondingly, there are two ways to represent ab­

straction in the RKB - through ‘abstraction-of links and ‘Class’ nodes.

Two nodes are connected with an ‘abstraction-of-type link when the follow­

ing conditions are satisfied:

- they have equal numbers of parts;

- part nodes of the first node coincide or are abstractions (either intensional

or extensional) of corresponding part nodes of the second node;

the set of constraints of the first node is a subset of the set of constraints of

the second node.

These conditions guarantee that an instance of the second node is also an instance of

the first node. A node which is a specialisation of another node inherits constraints

and attributes of the latter. This leads to a more compact representation of the RKB

75

because it is not necessary to repeat attribute and constraint definitions in the defini­

tion of the specialisation node. Besides, it leads to more efficient processing, as we

shall see in section 8.3.4. At the moment the system doesn’t create ‘abstraction-of

links between nodes and just checks the above conditions for existing in the knowl­

edge base links. In the future the system can be amended to infer the ‘abstraction-of

relation between nodes automatically.

Any node can be a subclass of some ‘Class’ node (except itself, obviously)

and any ‘Whole’ node can have a part represented by a ‘Class’ node.

7.7 Lattice of Specialisations

A node in the RKB can be a specialisation of multiple nodes. This case corresponds to

multiple inheritance in object-oriented programming. For instance, we want to repre­

sent in the RKB the concept of convex low-curvature line. It can be defined as the

low-curvature specialisation of the node representing the convex line concept or, al­

ternatively, as the convex specialisation of the low-curvature line concept. In both

cases the duplication of concept node is unavoidable if a node can be a specialisation

of only one other node. In our system we allow a node to be a specialisation of multi­

ple nodes and in the above example we create a single node, which is a specialisation

of the two nodes and thus represents the concept we need.

The abstraction relation is a partial order relation (see section 6.3.1 for the

definition of a partial order relation). A concept is its own (albeit a trivial) abstraction.

If the concept A is an abstraction of the concept B and the concept B is an abstraction

of A then A = B. Therefore, abstract and specific concepts constitute a mathematical

structure known as ‘lattice’. In the RKB this structure is represented by a directed

acyclic graph (DAG) containing nodes and ‘abstraction-of / ‘specialisation-of links.

As it was mentioned above, specialisation nodes automatically inherit attrib­

utes and constraints fi'om their abstractions. A node which is a specialisation of multi­

ple nodes inherits attributes and constraints of all those nodes. If the system detects a

conflict of attribute definitions, i.e. an attribute with the same name is defined for

multiple abstractions, it must be resolved by specifying this attribute explicitly for the

specialisation node.

76

Unlike in the case of attributes, inheritance of constraints doesn’t mean that

constraints are copied from abstract nodes to their speciaHsations. The effect of in­

heritance is achieved by choosing certain order of constraint evaluation, as it is de­
scribed in section 8.3.4.

7.8 Recognition Knowledge Base Specification Language

Full specification of the RKB description language in BNF is provided in Appendix

A. hi this section we discuss the main features of the language and provide examples

of its use.

The full definition of a domain specific RKB is stored outside o f the system in

a text file and is loaded during the system initialisation. The definition consists of

multiple sections describing constants, shared expressions, and nodes. One or more

empty lines separate sections from each other. The file can also contain C++ style

comments (i.e. line endings or entire lines delimited by the V/’ symbol combination).

These comments improve the readability of the definition and are ignored by the sys­

tem.

A definition of a shared expression starts with the symbol ‘$’ followed by the

expression name and the ‘=’ sign. The right-hand side of the definition contains the

body of the expression. This expression can be referred to in other expressions by its

name preceded by the ‘$’ sign. A definition of a constant is a special case of the

shared expression definition, where the right-hand side is a constant expression. The

system recognises by name the constant ‘PP.

A definition of a node can describe a ‘template’, a ‘whole’, or a ‘class’ node.

In the first case the definition specifies the template and the mask array sizes followed

by the specification of values of individual pixels (see section 7.2.2). The value ‘x ’

means that the pixel should be ignored during the template matching and correspond­

ing element of the mask array is set to FALSE.

A ‘whole’ node definition contains references to the part nodes constituting

this ‘whole’ connected by the ‘+’ sign. Each reference can contain a priority value in

parentheses and can be followed by the ‘!’ sign denoting exclusive use o f the corre­

sponding part. The definition can contain a constraints part denoted by the ‘WHERE’

clause. The clause consists of one or more constraint expressions connected by the

77

AND keyword, each starting on a new hne. The optional ‘SPECIALISATION OF’

clause specifies a list of nodes, for which the current node is a specialisation.

A ‘class’ node definition contains a list of references to subclass nodes con­
nected with the ‘1’ sign.

Both ‘whole’ node and ‘class’ node definitions can contain descriptions of

node attributes in the corresponding ‘ATTRIBUTES’ clause. The system supports a

set of predefined attributes such as ‘FLAGS’, ‘LABEL’, and ‘COLOUR’. Other at­

tributes are node specific ones. Their definitions start at a new line and contain the

attribute name followed by the ‘=’ sign and the expression used to calculate the at­

tribute.

Expressions in the system are represented in the usual infix forms used by

most contemporary programming languages. They can contain constants, attribute

references, mathematical operations signs, range manipulation operation, predicates

(both binary and fuzzy), function calls, and parentheses. The operation signs corre­

spond to those in the language C, except for the equality sign ‘=’ and non-equality

sign ‘o ’. There are two special operations for angles: ‘+'^’ and They normalise

the result of usual addition and subtraction to the]-PI, PI] range. The functions cur­

rently implemented in the system are hsted in Table 1.

Fuzzy constraints are specified by temary expressions, i.e. a normal binary

predicate or a predicate function followed by the ‘~’ sign and a numeric value defin­

ing the steepness of the class membership function (the ‘bell curve’).

Range operations include the union of two ranges (the ‘|’ sign), the intersec­

tion of two ranges (the ‘&’ sign), and the range operation (square brackets) which

creates a range from two numeric values.

Attribute references are represented as the symbol followed by the part

number (starting with 0), the sign and the attribute name. Special part reference

sign ‘@’ is used to reference an item as its own part, thus allowing attribute cross-

reference and helping to avoid multiple calculations of the same expression. The sys­

tem recognises a few predefined attribute names related to the attributes o f the mini­

mal bounding rectangle of an item and the beginning and the end points o f a contour

segment. Other attributes must be defined in node definitions. The system allows for­

ward attribute and node references.

78

A special type of attribute references is a context reference, which is repre­

sented by the ‘#’ symbol followed by the context node name, the sign and the at­

tribute name. Unlike normal attribute references, a context reference refers to an at­

tribute of a parent rather than a part. See details of their processing in section 8.3.8.

The description language of the system is case insensitive.

Table 2 Examples of node deflnitions

A ‘whole’ node definition A ‘class’ node definition
EDGE = EDGES(1.1) + EDGES (0.9)

WHERE @0.end=@l.beg
AND ®0.endAngle ®1.begAngle <> PI
ATTRIBUTES flags = TRACE

begAngle = @0.begAngle
endAngle = @1.endAngle

EDGES = RVE(0.3)) LVE(0.3) |
THE(0.3) 1 BHE(0.3) | RT | RB]
LT 1 LB 1 EDGE

ATTRIBUTES flags = TRACE

Table 2 provides an example of node definitions. According to these definitions the

‘whole’ node ‘EDGE’ consists of two parts, both having types ‘EDGES’. The defini­

tion specifies priorities of the evaluation for each part. The constraint part of the defi­

nition contains two constraints: the first one states that the end-point of the first node

should coincide with the start-point of the second part; the second constraint excludes

combinations when the two parts are exact opposites of each other. The node defini­

tion contains definitions of attributes, both system ones (‘flags’) and node-specific

(‘begAngle’ and ‘endAngle’).

The definition of a ‘class’ node ‘EDGES’ states that this class consists of the

subclasses ‘RVE’, ‘LVE’, ‘THE’, ‘BHE’, ‘RT’, ‘RB’, ‘LT’, ‘LB’, and ‘EDGE’, It

also contains the ‘ATTRIBUTES’ part.

It is easy to see that these two node definitions together provide an example of

a recursive node specification as an EDGE-type item can be a part of another EDGE-

type item.

79

In this chapter we provided a detailed description of the knowledge base structure

used by our system. We listed all types of nodes, links, attributes, and constraints and

explained their purpose in the system. We also described our expression language,

which facilitates specification of attributes and constraints.

The recognition knowledge base is stored in an external file in textual format

and is loaded when the system starts. The use of the textual external representation

allows easy prototyping, development, and maintenance of the recognition knowledge

base.

80

Chapter 8

Recognition Algorithm

This chapter provides a detailed description of our recognition algorithm. First, we

start with a general overview of the algorithm. It can be logically split into the bot-

tom-up process responsible for assembling wholes from parts and the top-down proc­

ess, which controls the bottom-up process by assessing hypotheses probabilities and

modifying the order of evaluation of individual elements of the bottom-up process.

We provide a detailed description of the processes and their interactions along with

some argument justifying the architecture. Finally, we contrast the architecture of our

system with some existing similar architectures including blackboard systems, pro­

duction systems, etc.

8.1 Recognition Algorithm Overview

A simplified diagram of the algorithm is shown in Figure 8.

New SEARCH
and CONTEXT
jobs

New TEST
jobs

New recognised
itemsItems to test

Job of type
TEST

Job of type
SEARCH

Agenda (Priority Queue)

Working
Memory

(Blackboard)

Figure 8 Recognition Algorithm

The entire recognition process is spHt into elementary jobs. These jobs correspond to

Knowledge Source Activating Records in blackboard systems (see section 3.1 for de­

tails). There exist a few different types of jobs. The main job types are ‘TEST’ and

‘SEARCH’. All jobs are stored in the system’s central priority queue. The processing

loop extracts the job with the highest priority from the queue and evaluates it. As the

result o f this evaluation new jobs can be added to the queue or newly recognised

items can be added to the system working memory. Unlike in other blackboard sys­

tems, our working memory is not split into ‘presentation levels’. Rather, each node in

the Recognition Knowledge Base has a list of recognised items associated with it.

‘SEARCH’-type jobs search the working memory for candidate sets of items,

which can constitute a whole, and insert ‘TEST’-type jobs into the queue for each

such set. ‘TEST’-type jobs test constraints associated with a given node in the RKB

and if those constraints are satisfied by the set of items, they create a new item and

insert a ‘SEARCH’-type job for this item into the queue.

8.2 Elementary Jobs and Priority Queue

A job in our system is a (relatively) simple indivisible operation, which is scheduled

through the system priority queue. Depending on its type, an individual job can check

‘Whole’ node constraints, add a new item to the working memory, or search working

memory for candidate item sets, etc.

The system priority queue contains all jobs in the system waiting for evalua­

tion. Since insertion of jobs into the queue and retrieval of the highest priority job are

the most frequent operations in the system processing cycle, a lot of attention was

given to the optimisation of this implementation. According to findings of compara­

tive studies of various priority queue implementations presented in [52] and [57], we

have chosen the 4-heap priority queue implementation. A 4-heap is an implicit array

representation of a frill tree with the branching factor of 4.

A job can be in one of two states: waiting in the job queue or being evaluated.

Job priorities in the queue can by dynamically modified as the result of evaluation of

other jobs. This dynamic priority mechanism facilitates the implementation of the dy­

namic inhibition/excitation propagation described in section 8.5.1.

82

8.3 Bottom-up Processing

The purpose of the bottom-up processing part of the algorithm is to construct new

items from their parts according to system knowledge stored in the Recognition

Knowledge Base. This is achieved in two steps, hi the first stage, for each newly cre­

ated item a job of type ‘SEARCH’ tries to find candidate items, which potentially can

be used to build a new item (if they satisfy spatial constraints associated with that

item type). To perform the actual constraint checking, new jobs of type ‘TEST’ are

inserted into the job queue. When such a ‘TEST’ job becomes the highest priority

jobs in the queue, it is extracted from the queue by the processing loop and evaluated.

If all constraints are satisfied a new item is created and added to working memory.

Simultaneously a new job of type ‘SEARCH’ for this item is inserted into the queue.

8.3.1 Working Memory and Agenda Initialisation

When the system starts recognition it finds all foreground pixels in the input image.

For each foreground pixel an item corresponding to the ‘Start’ node (section 7.2.1) is

created and a ‘SEARCH’-type job is inserted into the job queue. When this process of

the initial ‘seeding’ is finished the system starts its main processing cycle.

Alternatively, the system working memory can be initialised with nodes (and

their corresponding ‘SEARCH’ jobs) which represent elementary (1 pixel long) edges

with 4 possible orientations, hi this case the first recognition step, from pixels to ele­

mentary edges, is performed implicitly, during the system initialisation phase.

8.3.2 Main processing cycle

The main processing cycle consists of the following steps:

1. retrieve the highest priority job from the job queue;

2. evaluate the job;

3. check termination condition(s);

4. if termination condition(s) evaluates to false go to step 1;

5. scan working memory for ‘result’ items;

6. report results of recognition.

83

8.3.3 ‘SEARCH’Jobs

A job of type ‘SEARCH’ is associated with exactly one item in the working memory

Each ‘Whole’ node in the RKB contains a list of references to the ‘Whole’ nodes of

which this node can be a part and a list of references to possible siblings, i.e. nodes

which can be parts of the same ‘Whole’ node. Node references in those hsts are sorted

according to the priorities of corresponding links. A ‘SEARCH’ job traverses those

lists and examines working memory items connected to RKB nodes trying to find a

set of sibling items, which can potentially constitute the target ‘Whole’ node. For each

such set the ‘SEARCH’ job inserts a ‘TEST’ job into the system job queue.

In order to decide if a particular sibling item (or set of items) deserves a test

‘SEARCH’ jobs use dynamically created filters. A filter is a set of range constraints

on attributes of a sibling item. Those ranges are computed by the reverse traversal of

the target ‘Whole’ node’s constraints with substituting attribute values of the item as­

sociated with the ‘SEARCH’ job. The system effectively resolves equations for at­

tribute values of a sibling node using an opportunistic strategy: if it cannot resolve the

equation, it assumes the maximum attribute range calculated so far. Using these range

filters a ‘SEARCH’ job rejects candidate siblings with attribute values outside of the

ranges in the filter. This allows significant reducing of the number of generated

‘TEST’ jobs.

8.3.4 ‘TEST Jobs

The purpose of ‘TEST’ jobs is to test candidate sets of parts and, in the case they sat­

isfy constraints of a particular ‘Whole’ node, to create a new instance of this node,

which is then stored as an item in the system working memory.

This pretty straightforward scenario is complicated by the presence of the ‘ab-

straction-of relation between nodes, hi order to avoid redundant computations the

recognition algorithm makes extensive use of this relation. The rationale behind this

use is quite simple: a set of parts can constitute an instance of a specialisation node

only if they constitute an instance of its abstraction(s). On the other hand, once the set

of constraints of an abstract node is satisfied it is not necessary and moreover, it is

undesirable, to recalculate it for all specialisation nodes.

84

Therefore, the constraint testing procedure starts testing with the most abstract

node in a given lattice of specialisations (section 7.7). If the test fails (i.e. returns the

confidence value below the rejection threshold, see next section for details of the con­

fidence level computation), it just returns. Otherwise, it recursively calls itself for all

specialisation nodes of the current node. If the specialisation node test succeeds, the

procedure continues with the lattice downward recursion, until it encounters the most

specific node, i.e. a node without specialisation. If the constraint test succeeds for that

node, an item of corresponding type is added to the working memory of the system

and the procedure returns the ‘success’ return code. Otherwise, it returns the ‘failure’

return code. An instance for a node that has specification nodes is created only if all

invocations of the constraint testing procedure for those nodes return ‘failure’. This

algorithm facilitates minimal computations of constraint expressions and creation of

only most specific valid instances from a given set of parts. Special care is taken in

the case of a node with multiple abstractions. An instance for such a node can be cre­

ated only if all constraints of all abstraction nodes are satisfied.

8.3.5 Working Memory Items

Working memory items store information about instances of ‘Whole’ nodes com­

pletely or partially recognised by the system in the process of recognition. Each item

contains the following information;

a reference to its corresponding ‘Whole’ node;

- a list of instances of parts;

- a list of references to items of which this item is a part;

- the confidence value for the item;

- the dynamic processing priority of the item;

- the minimal bounding rectangle;

- the beginning and the end points for contour segments

- a list of jobs associated with the item;

- an array of attribute values computed for the item.

We use the R-Tree structure ([36]) to index items stored in the working memory. This

allows significant acceleration of item retrieval.

85

8.3.6 Recognition as Evidence Propagation

Every pattern recognition system has to deal with uncertainty in the decision process

There exist two main sources o f this uncertainty, namely distortions of the input data

and the fact that a certain pattern can be recognised as an instance of more than one

class (with different degrees of confidence). Our recognition system addresses the

problem of uncertainty using the evidence propagation paradigm and fuzzy con­

straints.

Each recognised item has a confidence level associated with it. From the point

of view of probability theory this confidence level describes the probability that the

item is actually an instance o f its corresponding class (that is, a posteriori probabil­

ity). The confidence level depends on the confidence levels of parts, on the degree of

the fuzzy constraint satisfaction, and on the missing parts. For a whole consisting of «

parts its confidence is calculated by the formula:

C onfidence = H con stra in ti • l / j i • (Xconfidencej)

C on stra in ti here is the degree of satisfaction of the /-th fuzzy constraint; Conf i -

dencej is the confidence level of y-th part, which is assumed to be 0 if the part is

missing.

The degree of satisfaction of a fuzzy constraint is computed by a fuzzy predi­

cate or a fuzzy predicate fiinction (section 7.5) using the formula:
. . . „ (- f act or- A^)Constrainti = c?

where ‘factor’ is a constant determining the ‘steepness’ of the fuzzy class membership

function and ‘A’ is the distance between the region described by the corresponding

binary predicate and actual value of the expression. For instance, in case of the ‘<’

(less than) predicate this distance is equal to 0, if the first operand is less than the sec­

ond, and the difference between the first and the second operands otherwise.

In order to avoid computation of items with low degree of confidence (‘noise’

items) the recognition algorithm uses the global rejection threshold. If the confidence

value of an item is less than this threshold then this item cannot be used as a part in

the construction of new items. If it has some parts missing, it is stored in the working

memory and waits for those parts to become available.

86

8.3.7 Symmetry and Part Permutations

Some ‘Whole’ nodes can contain parts of the same type. For instance, the structural

definition of the square in section 2.2 has four equivalent parts - straight line seg­

ments. For such nodes the recognition algorithm checks all suitable permutations of

the set of potential parts. The best permutation is then the one which maximises the

confidence value discussed in the previous section. This permutation is used to create

the ‘whole’ item. Special care has to be taken when specialisation nodes are tested, as

a permutation of parts, which is suitable for an abstract node, may turn out non-

suitable for its specialisation.

A permutation of parts is considered a suitable one when each part item in this

permutation has the type node specified at the corresponding part slot in the ‘Whole’

node or its specialisation.

8.3.8 Context-sensitive Processing

As we stated in section 6.2.2, context sensitivity is one of the most important desir­

able qualities of a recognition algorithm. In our system we provide explicit means to

specify context-sensitive processing. This is achieved by the coherent use of the ab-

stract-specific relationship between nodes in the knowledge base and the top-down

processing.

A constraint associated with a ‘Whole’ node, which is a specialisation of an­

other ‘Whole’ node, can refer to attributes of a parent node of the more abstract of the

two nodes. When the system encounters this situation, it doesn’t try to test the con­

straint (it cannot do it at this stage as the parent node doesn’t exist yet), but rather

posts a request for that parent node. Once the parent node instance, which is the par­

ent of the corresponding instance of the abstract node, is created the system starts top-

down processing by inserting a job of the type ‘CONTEXT’ to the system job queue.

This job performs the same processing as a ‘TEST’ job for the more specific of two

nodes mentioned above, except it uses the reference to the parent instance while cal­

culating the value of the constraint referring to the parent. Therefore, this mechanism

allows using context dependency in the knowledge base specification. We shall see an

application of this mechanism in section 10.1.2, where certain inherent letter-

87

specification ambiguities are resolved through references to attributes of the word
comprising the letter.

Comparing this mechanism to the notion of context dependency in the theory

of formal languages we notice that it can be described by a rule of the form

where A and C are non-terminal symbols, B and optional other symbols are terminals

or non-terminals, ‘ {} ’ around rule parts designate lack of Hnear precedence, A is a

specialisation of C in our terminology, and, finally, symbols B and the rest provide

the context in the standard terminology of formal languages. Thus, the context sensi­

tivity mechanism we introduced here is a special case of the generic context sensitiv­

ity notion but unlike the latter it facilitates computationally efficient processing.

8.4 Computational Tractability Problems

The bottom-up part of the recognition algorithm described so far performs exhaustive

search. Although this straightforward approach is guaranteed to find all instances ex­

isting in the image, it is computationally very expensive in all but the most trivial

cases. Even the process of extraction of straight-line segments of edges (section 9.3)

can become quite a lengthy procedure as it would generate (in terms of syntactic rec­

ognition methods) all possible parsing trees, the number of which grows exponentially

with the length of the segment being parsed. This fact is an unpleasant consequence of

the use of powerfiil recursive definitions. Besides, as most recognition problems are

severely under-constrained, the algorithm would generate an exponentially growing

set of conflicting hypotheses without any means to make a choice between them.

Therefore, it is necessary to keep a certain balance between the ability of the

algorithm to evaluate simultaneously multiple hypotheses and the computational cost

of the evaluation of too many hypotheses, hi our system this is achieved in two ways;

first, we use domain-independent heuristics to prune the search tree, second, we intro­

duced a top-down process, which controls the order of evaluation of conflicting hy­

potheses.

The overall bottom-up information processing in our system can be viewed as

a kind of parsing of a 2-dimensional pictorial language. Drawing further the analogy

between our recognition algorithm and bottom-up parsers used to parse natural and

computer languages we can state that our algorithm employs only the immediate

dominance relation and not the linear precedence relation. The processing time of the

standard bottom-up chart parser in this situation grows exponentially with the size of

the input, as at each scanning step it doesn’t have a way to choose the next input sym­

bol and has to consider all of them. Much of the effort in the design and the imple­

mentation of our system is devoted to devising heuristics which can solve this prob­

lem.

8.5 Domain-mdependent Heuristics

The domain-independent heuristics implemented in our system try to reduce the

amount of computation using only generic relationships between the recognition

knowledge base nodes, i.e. the part/whole, abstract/specific relationships.

8.5.1 Inhibition and Excitation: Search Tree Pruning

In order to describe the modification of the basic bottom-up algorithm that optimises

the order of computation in the system we will use neural networks terminology, spe­

cifically, the concepts ‘inhibition’ and ‘excitation’. This use is inspired mostly by the

analogy between the Interactive Activation Model ([60]), the Letter Spirit project

([61]), and our system.

The following operations on the job queue and knowledge base nodes can

modify the order of computation in our system:

- increase individual job priority (excitation);

- decrease individual job priority (relative inhibition);

- discard an individual job (absolute inhibition);

- increase priority of all jobs for a particular instance (instance excitation);

- decrease priority of all jobs for a particular instance (relative instance inhi­

bition);

- discard all jobs for a particular instance (absolute instance inhibition);

- discard all jobs corresponding to a particular node (absolute node inhibi­

tion);

89

- allow processing jobs trying to instantiate a particular node (node excita­
tion).

Apparently, only absolute inhibition operations reduce the number of jobs processed

by the system. Other operations only modify the order of evaluation. This reordering

accelerates finding the first suitable solution; besides, the reordering facilitates some

extra absolute inhibition operations, thus implicitly reducing the amount of computa­

tion. In the next sections we shall see domain-independent heuristics, which perform

excitation and inhibition operations.

There exist two main ways of reducing amount of computation in the system:

first, to try to prevent the system from performing redundant computations and, sec­

ond, to guide the system towards the most probable solution. The absolute inhibition

operations fulfil the former function, whereas relative inhibition and excitation fulfil

the latter.

8.5.2 Recursive Nodes Greedy Parsing

As was mentioned above, the main problem tends to be related to recursive nodes, as

they cause exponential growth of (mostly redundant) computations, hi order to solve

the problem, we adopted a greedy parsing approach for these nodes. This approach is

enforced by two restrictions of the basic algorithm:

- each instance can have only one parent instance corresponding to a recur­

sive node;

- a parent of the same type as the current instance (therefore, this is an in­

stance of a recursive node) inhibits all other parents.

This is a very powerful heuristic, which, on one hand, solves the problem of unafford­

able computation cost for recursive definitions; on the other hand, although disallow­

ing some valid parses, this heuristic produces sufficiently rich recognition output for

the recognition process to come to successful completion. As a matter of fact, as we

shall see in Chapter 10, this heuristic alone allows the system to achieve good per­

formance on a moderate-sized recognition knowledge base.

90

8.5.3 Mutual Inhibition o f Conflicting Hypotheses

Similar to other blackboard and neural-like systems, conflicting hypotheses in our

system perform mutual inhibition. This is achieved by decreasing job priorities for all

the jobs associated with a given working memory item, once a successful instantiation
of a parent of this item happens in a ‘TEST’ job.

8.5.4 Excitation: Target Order Choice

One factor that determines the order in which the algorithm tries to instantiate parents

for the given instance of a part node was mentioned in section 7.3: this is the static

priority of the link connecting the nodes. The system can also modify these priorities

dynamically, using top-down excitation. Once a parent node is partially instantiated, it

increases priorities of all jobs that can potentially create a missing part instance for the

parent instance. This process is localised, i.e. only jobs for those nodes that are situ­

ated in proximity of the (partially instantiated) parent node. Besides, it is used only for

those part nodes that don’t have clear target order preference specified by static link

priorities.

8.5.5 Excitation: Delayed Specification

A big well-designed recognition knowledge base consists of a large number of nodes

with abstract/specific relationships. Not all ‘specific’ nodes are met in the input with

the same frequency. Some of them are necessary to make correct recognition deci­

sions in only some specific contexts. Therefore, the system adopts a ‘lazy’ top-down

evaluation strategy for this type of nodes. It means that the nodes of this type are ini­

tially inhibited and the system doesn’t try to instantiate them in the basic bottom-up

part of the algorithm. Rather, if the situation arises, when a certain ‘specific’ parent

node requires one of its parts to be of the type of the inhibited node and the actual in­

stance corresponds to an abstraction of the inhibited node, the system insert a top-

down ‘TEST’ job for this node, which effectively means local excitation of the node.

The implementation of this procedure is similar to context-sensitive processing de­

scribed in section 8.3.8.

Another situation, where an initially inhibited node can be ‘unlocked’ arises

when the system tries to instantiate a node with number of parts more then 2. If all but

one part are instantiated (or, alternatively, when the confidence associated with this

91

partial instantiation reaches a certain threshold), the system performs the same top-
down excitation procedure.

8.6 Recognition Process Termination

The choice of termination criteria in blackboard systems is not a trivial problem. As

discussed in [14], due to the under-constrained nature of most tasks it is not realistic

to expect the system to try all possible routes leading to a solution and then terminate.

The problem was first encountered during the implementation of the Hearsay-II sys­

tem and since then no general solution has been found.

There are four termination criteria for the recognition of an individual input

image in our system. When the system job queue (agenda) becomes empty the system

stops and reports results of recognition. This criterion is the simplest and most obvi­

ous one. It is used also by other blackboard architecture systems where the process of

recognition is expected to go through all search paths in reasonable time, e.g. in

AD IK ([78]). Unfortunately, in handwriting recognition as well as in real world scene

analysis the number of hypothesis is so big that this criterion has to be supplemented

by additional ones.

The system can stop processing when the number of jobs evaluated or the time

limit for recognition is exceeded. The time limit and total number of jobs are two

global parameters, which can be configured in the system prior to the start of the rec­

ognition process.

The most sophisticated of all termination criteria is the degree of compression.

The threshold value for the degree of compression is another globally configurable

parameter. The value for the current degree of compression is computed as:

Compression = Nresults * ResPixels / TotPixels=

Here Nresults is the number of ‘result’ items, ResPixels - number of pixels in

them, Tot Pixels - total number of foreground pixels in the image.

When the system terminates the recognition process it examines its working

memory trying to find items corresponding to the nodes of the recognition knowledge

92

base marked as ‘results’. These items (except the ones that have ‘result’ type parents)
together constitute the result of the recognition process.

8.7 Comparison to Similar Architectures

Our knowledge representation is similar to that of ERNEST (section 3.2) or other se­

mantic network systems. The main difference is that the RKB is a static structure,

which is not modified during the process of recognition. Unlike in ERNEST, in our

system concept nodes and instance items are strictly separated and reside in the rec­

ognition knowledge base and working memory respectively. This separation also cor­

responds to the separation between declarative knowledge and working memory in

production systems ([3], see also section 3.3), or the separation between T-Box and

A-Box in the KL-ONE terminology ([10]).

The recognition algorithm used in our system belongs to the class of black­

board algorithms. Alternatively, the architecture of the system can be described as the

production system architecture (see section 3.1 for a discussion of differences be­

tween the two).

The evidence propagation mechanism used in our system to treat inherent un­

certainties of recognition is similar to those used in parsing of context-free stochastic

grammars ([30]) and Bayesian inference methods in computer vision ([6]).

A very similar approach to recognition as parsing of fuzzy shape grammars

was presented by Parizeau et al. in [75], [76], [77]. As it is the case with most hand­

writing recognition systems, their system is created specially to perform online hand­

writing recognition and cannot be used for anything else. Incidentally, the syntax of

the allograph model description language used by Parizeau et al. is very similar to

ours.

One of the features of our system distinguishing it from the other systems is

the extensive use of recursive definitions in the knowledge base and corresponding

mechanisms in the recognition algorithms, such as inhibition of certain processing

paths leading to exponential growth of computations. Recursive definitions are usu­

ally forbidden in recognition systems and only in ADIK (section 3.4) they are given

some peripheral attention.

93

Another important feature of our system is the constraint computation algo­

rithm for a lattice of specialisation nodes, which avoids multiple re-calculation of the

same expression. Although similar knowledge representation schemes can be found in

other recognition systems, such as ERNEST (section 3.2) or AD IK (section 3.4), none

of them try to optimise computations of structural constraints. It is necessary to point

out, that the very definition of the abstraction relation in our systems differs from cor­

responding definitions in ERNEST and ADIK. In ERNEST, a node is a specialisation

of another node if it imposes tighter restrictions on the attribute ranges, i.e. it is com­

pletely attribute-based. In ADIK, a specialisation node can be obtained from another

node by adding a part to the latter (e.g. the resistor and variable resistor example, [78,

p. 109]). In our system a specialisation node can constrain attribute ranges as well as

part types of its abstract counterpart.

While designing the system we tried to combine attractive features of the sys­

tems reviewed in Chapter 3: clear presentation and maintainability of knowledge in

semantic networks and simultaneous processing of multiple concurrent hypotheses in

blackboard and production systems.

94

Chapter 9

Low-level Processing: from Pixels to
Contours

Now that we have described the knowledge representation and the recognition algo­

rithm, we shall turn our attention towards the actual job of the low-level pattern rec­

ognition. In this chapter we describe how edge pixels are detected in a binary image,

how they are combined into straight edge segments, and how the latter combined into

contour descriptions.

A major obstacle for the reliable recognition is noise present in all real-life

images. A discussion of various sources of noise and various ways it can distort an

image is concluded with a description of how the system counteracts those distortions.

The application of the ‘good continuation’ principle in section 9.6 allows con­

necting occluded edge segments and finding line intersections. Finally, we shall dis­

cuss how other Gestalt grouping principles are implemented in the system and how

they affect recognition.

9.1 Recognition Process as Simultaneous Segmentation, Primitive Extraction,
and Model Matching

As we pointed out in section 6.2, the main feature of our recognition framework is the

absence of separate functional modules. This feature contrasts our system with all the

‘standard’ systems described in Chapter 4. All the operations performed by those sys­

tems in sequential modules, such as pre-processing, segmentation, feature extraction,

and classification, are performed in our framework implicitly, as the higher-level re­

sult of the evaluation of elementary jobs.

Segmentation of the input is produced as an implicit result of constructing

wholes firom parts. Each item in the working memory of the system corresponds to a

region in the input image. On the other hand, each item is created as an instance of a

95

node in the RKB. Thus, an item assigns a label of its corresponding node to the region

of the image. The same process can be considered as a feature extraction process or a

model matching process - depending on the level of objects in the part/whole hierar­

chy.

Therefore, although our recognition system contains just one computational

process, which is indivisible into separate modules, it effectively computes the same

information as pattern recognition systems with traditional modular architecture,

which we considered in Chapter 2 and Chapter 4.

9.2 Regions and Contours

All shape description methods can be divided into two big groups: region-based

methods and contour-based methods. The former use the shape internal points, the

latter - only the shape boundary points. Recent studies [92] demonstrated, that not­

withstanding the common belief, that human object recognition is mainly based on the

information contained in edges, contour information alone is not sufficient and has to

be combined with other sources of information, such as regions, surfaces, etc.

Nevertheless, in order to simplify the implementation of the system we chose

a purely contour-based representation, hi the future, especially for grey-level images,

this representation should be extended to include region information. This can be

done by defining a region as an object consisting of a contour and a blob, where the

contour is adjacent to the blob.

The following geometrical and topological properties of contours and contour

segments are used in the recognition process:

- cotmectedness, closedness;

- convexity/concavity;

- relative and absolute orientation;

- relative qualitative distance and size;

- relative and absolute qualitative curvature.

96

9.3 Edges from Pixels

In order to determine which pixels belong to edges, the system uses the set of tem­

plates shown in Figure 9, with black colour corresponding to foreground pixels and

white - to foreground. Template matching detects edge pixels and categorise them

according to the direction of the edge they belong to. The same pixel matching more

than one template can belong to different edges.

M J - veilictil e<l(|e

E H - left vertical ed g e

- bottom horizoiitiil e d g e

Q -to p horizon ta l ed g e

Figure 9 Edge pixel templates

Edge pixels detected by the template matching process are combined into straight

edge segments. The following fragment of the knowledge base describes the process

for right-hand side vertical edges:

RVEl = RVE + RVE
WHERE © O .en d = © l .b e g

RVE = RVEl I RV

The next step in the edge construction is based on the observation of the edge shape

representation in binary images.

Figure 10 below shows an enlarged image of the hand-written letter ‘M’. It is

easy to notice that the edge of the letter is made of step-wise edge segments. The fig­

ure also demonstrates 3 different types of edge segments - ‘step’, ‘bump’, and ‘hol­

low’. The system recognises these three types of segments and uses them in order to

compute approximate edge characteristics, such as direction, curvature, etc. Edge

segments of type ‘bump’ and ‘hollow’ are considered by the system as strictly vertical

or horizontal, whereas segments of type ‘step’ are assumed to approximate inclined

lines. The direction of a ‘step’ edge segment is assumed to coincide with the direction

of its diagonal.

97

edge segtn
of the type

edge segm
of the type

edge segm
of the type

edge segments
of the type 'bump'

edge segments
of the type 'step'

edge segment
of the type 'hollow'

Figure 10 Different types of edge segments

Thus, a combination of edge segments provides a piecewise linear approximation of a

(curved) edge. The result of edge segment fitting into an image of the uppercase letter

‘N’ is shown in Figure 11.

The image of the uppercase letter ‘M’ in Figure 10 is an ‘ideal’ image because all ar­

tefacts of the binarisation process were removed from that image by hand to make the

structure of edges more easily recognisable.

The image of the uppercase letter ‘N ’ containing typical binarisation noise is

shown in Figure 12.

Figure 11 The result of edge segments fitting

9.4 Noise

98

artefacts of the
binarisatioii process

Figure 12 Binarisation artefacts

As Figure 12 demonstrates, the most common manifestation of noise in binary images

is an edge segment of the type ‘bump’ or ‘hollow’ with the length of 1 pixel. Longer

segments of those types can arise due to noise, but can be proper edge segments, so

they cannot be simply ignored. It turns out that the simple straight edge segment fit­

ting process described in the previous section automatically performs smoothing of

this type of noise. The evidence can be seen in Figure 11, where connected straight

edge segments produce sufficiently smooth approximation of the letter’s contour.

On the other hand, the same image demonstrates that binarisation noise leads

to small fluctuations in the directions of lines. This effect has a few undesirable con­

sequences:

- it is impossible to calculate correctly the line curvature;

- concave or convex curves are split into segments interlaced with small

segments of opposite concavity;

- smooth curved or straight lines are split into small segments represented

by arcs or comers.

All these problems arise as a result of binary noise displacing ends of straight edge

segments and therefore changing their directions. It is much more difficult to find a

solution for these problems, as the interpretation of changes in the contour direction is

very context-dependent. Depending on where in the contour it appears and on its rela­

tive size, an element, consisting of two connected non-parallel straight segments, can

be interpreted as a comer, as a part of a curved line, or as a deviation from the actual

contour. It is also clear that the interpretation is highly scale-dependent.

99

A proper solution of the above problems requires the introduction of scale-

space representations of curves ([120], [63], and [64]). Although most approaches to

the scale-space representation use the Gaussian smoothing kernel, [93] presents a

completely symbol-based approach which is compatible with our recognition frame­

work. The implementation of the scale-space symbolic representation of curves is one

the topmost priorities for the future work.

At the moment we tackle the problem of smoothing of noise-disturbed con­

tours by introducing special nodes (CVX2 and CCV2, see Appendix B) in the knowl­

edge base. These nodes define a combination of two convex (respectively, two con­

cave) curves with a small concavity (resp. convexity) between them. This mechanism

facilitates correct recognition of convex and concave curves in the presence of moder­

ate noise.

Unfortunately, we didn’t manage to find a similar ad hoc solution for constant

curvature lines and we don’t use those lines in letter definitions (section 10.1.2). It

turned out though, that the system could properly recognise handwriting even when

constant curvature lines are not used.

dot

cusp

inner outer
convex

convex

vertical concave

concave

closed

horizontal

connected

low-curvature line

Figure 13 Hierarchy of connected lines

100

9.5 Curves, Contour Smoothing and Multiple Scale Representations

The low-level description of edges in the RKB contains a few levels of abstractness

At the highest level is the description of edges based on the property of connected­

ness. Any two edge segments at this level can be combined into a new edge if the end­

point of one of them coincides with the start-point of the other. This definition ignores

obviously any issues related to edge directions and allows the system to detect closed

contours of figures.

More specific definitions take into account such properties of edges as the mu­

tual and absolute orientation of edge segments, convexity or concavity of their com­

bination, approximated local curvature and so on. Based on those properties a simple

connected edge can be represented as a set o f partitions into instances of more specific

edge concepts. This representation allows detection of any properties of edges, fi"om

most abstract topological, such as closedness, to most specific metric, such as exact

length and curvature. For instance, in order to be able to describe qualitatively the

shape of curved edges without sharp comers, the system splits edges into low-

curvature and high-curvature parts (cusps).

9.6 Occluded Edges and Good Continuation

The system uses the ‘good continuation’ principle (section 5.1) in order to detect line

intersections. Figure 14 below illustrates this use.

Figure 14 Good continuation principle and line intersections

101

The below fragment of the recognition knowledge base contains the definitions of

nodes responsible for the implementation of the ‘good continuation’ principle^-.

Cornerl = LCL += ConcaveCusp

Corner2 = ConcaveCusp += LCL

Cont_candidate_l = LCL + LCL
WHERE #cornerl:0
SPECIALISATION OF LCL

Cont_cand.idate_2 = LCL + LCL
WHERE #corner2:0
SPECIALISATION OF LCL

Continued = Cont_candidate_l +- Cont_candidate_2
WHERE ©O.endAngle ©l.begAngle in {PI/6}
AND dist(@0.end,®1-beg)*2 < max(@0.len,@1.len) - 1
AND angle(@0.end,@ 1 .beg) ©O.endAngle in {$maxAngle}

The above fragment defines 5 nodes of the type ‘Whole’. The first two nodes contain

definitions of ‘concave comers’ - abrupt changes in the direction of low curvature

lines (LCL). The order of concatenation of the cusp and the line in those definitions is

important; hence we need two of them.

The next two nodes define candidate LCLs. This is an example of the context-

dependent category definition (section 7.8). The meaning of the ‘WHERE’ clause in

those definitions is that a candidate LCL must have a parent of the type ‘Comerl ’ or

‘Comer2’ respectively. This contextual condition allows filtering out the majority of

(approximately) collinear pairs of low curvature lines and focus only on those which

can really be parts of an occluded edge. Finally, the last node defines the category of

‘continued’ edges, i.e. edges occluded by other lines. The ‘+~’ sign in the definition

informs the system that the parts of the ‘continued’ edge need not to be adjacent. The

‘WHERE’ clause contains an analytical expression for the ‘smoothness’ condition of

the ‘good continuation’ principle.

The thin white line in Figure 14 shows a ‘continued’ edge discovered by the

system in the image.

An intersection of two lines is recognised as a combination of four occluded

edges (with corresponding positional constraints).

® Note that the ‘good continuation’ principle is implemented as a part o f the recogmtion knowledge
base, not a hard-coded feature o f the recognition algorithm.

102

9.7 Gestalt Grouping Principles

In the previous section we akeady saw how the use of the ‘good continuation’ princi­

ple facilitates detection of edge occlusion and line intersections. In this section we

shall discuss the way other grouping principles (see section 5.1) influence the low-

level image processing, as well as the implementation of the principles in our system.

The most important principle in this context is proximity. It is used to combine

disconnected letters into words, to recognise letters containing disconnected parts

(e.g. lowercase ‘i’). Finally, it is implemented as a built-in job priority criterion: the

closer are the parts of an object to each other the higher is the priority of their corre­

sponding ‘TEST’ job (see section 8.3.4). Size similarity underlies the scale space

based representations discussed in section 9.5. Orientation similarity is used when let­

ters are combined into words (section 10.1.2).

Some criteria, such as colour similarity and the common fate principle are not

applicable in the domain of handwriting recognition.

The most important difference between traditional visual pattern recognition systems

and the low-level processing algorithm described in this chapter is that the latter

doesn’t make final segmentation decisions, but rather submits a set of possible edge

interpretations to higher levels of the image processing. This set is also very different

from elementary edge segment lists used in some systems as it contains a wide spec­

trum of edge interpretations - from most abstract such as closed contours of figures,

to most specific, such as a straight-line edge segment. Moreover, the generation of

some segmentations with low probability can be delayed by the system until contex­

tual top-down influences will not ‘unblock’ them. This mechanism allows recognition

of rare ‘exotic’ situations without adding overhead to the system.

This feature of our recognition system doesn’t require any special interfaces

between low-level and high-level modules, as those modules just don’t exist. The

segmentation reiteration process employed by some advanced recognition systems in

order to improve system performance is also not required. All this is achieved by the

standard recognition algorithm described in Chapter 8 as a simple consequence of its

properties.

103

Chapter 10

Cursive Handwriting Recognition

In order to prove viability of our recognition system we applied it in a notoriously dif­

ficult domain - the recognition of unconstrained cursive handwriting. In this chapter

we present the test system we developed for this purpose and describe an extension of

the recognition knowledge base allowing the recognition of letter parts, letters, and

words. We conclude the chapter with a presentation of some examples of correctly

and incorrectly recognised input and discuss some methods to fix recognition errors.

10.1 Cursive Handwriting Recognition Framework

In order to prove practical usefiilness of the general ideas introduced in previous

chapters, we created a cursive handwriting recognition system. The program is written

in C++ using Microsoft® Foundation Classes and runs under the Windows® XP oper­

ating system. The main window of the program with the input bitmap window, the

output result window and controls is presented in the Figure 15.

This program was developed only for the demonstration of the viability o f our

approach. We made a number of simplifying assumptions about the nature of input

images and didn’t fulfil any comparative studies of the system performance, as at the

current stage of the program development those studies would be premature. In the

future, when the system’s noise tolerance is improved, we plan to compare our system

to a number of existing handwriting recognition systems, such as [21], [94], and [35].

104

Figure 15 Cursive Handwriting Recognition Framework

10.1.1 From Lines to Letter Elements

Contemporary handwriting is based on the use of pens, pencils, etc. The most distinc­

tive feature of these instruments is that they produce (relatively) thin lines, which con­

stitute characters and words. One can imagine writing systems based on a different

means, e.g. a writing system where meaning is encoded by changes of colour. If we

had such a system we would have to augment our low-level recognition knowledge

base with corresponding knowledge. Fortunately, it is not the case, and the low-level

elements present in our recognition knowledge base - curved edges, cusps, line inter­

sections, etc. - suffice for further construction of letter elements from them.

Appendix B contains knowledge base descriptions of letter elements and let­

ters. Here we shall discuss some typical examples.

Letter elements can be divided into a few basic groups. The first group con­

sists of the elements, which are defined by their absolute orientation. An example of

such an element is rtailjeft, which denotes a convex curve at the bottom of the letters

‘z’, 7 ’, etc. This element is used in many letter definitions, specifically for those let­

ters, which have down-to-up right-hand side connections. The element is defined by

the ranges for absolute angles of its begiiming and its end. This element can be con-

nected on the left-hand side with a concave cusp (the letters or with a ver­

tical low curvature line (the letters , 7 ’). On the right-hand side it can be connected

with the bottom-left connection point of the next letter in the word, or can be con­

nected with a convex cusp. The element is depicted in Figure 16 as a thin white line.

Figure 16 The rtail left letter element

Another example of an element with absolute orientation is a vertical poll (see vpoll_l

and vpoll_2 in Appendix B)

The second category of the letter elements comprises elements with intersec­

tions, such as a loop, a horizontal bar intersection in the letter ‘f , etc.

Finally, the third group consists of closed contour elements such as dots and

holes.

10.1.2 Letters and Words

Letters are constructed from letter parts described in the previous section. Since

handwriting in all European languages uses horizontal lines wntten from left to right,

we introduced common elements in all handwritten letters, namely cormections of let­

ters. Letters in words are coimected from left to right and those connections are ap­

proximately horizontal. Therefore, we introduced four optional connection points for

definitions of connected letters - top-left, bottom-left, top-right and bottom-right. Any

pair of connection points (left or right) can be absent if the letter is not cormected at

the corresponding side.

106

Other common letter attributes include the baseline position and direction, x-

height, and slant. Not all letter definitions can provide this information, e.g. in the

definition of the letter ‘1’ we don’t know the x-height attribute.

Most letters are defined by a few prototypes differing in some topological

properties. For instance, the letter ‘a ’ can have a closed contour inside when the upper

left curved line is connected with the right stem. Alternatively, it can be written as the

‘cl’ connected combination with the right upper end of the ‘c ’ character positioned

sufficiently close to the ‘1’ stem (see Appendix B).

Some letters are defined as specialisations of prototypes common for a set of

letters. An example of such a prototype in Appendix B is the Lad node describing

both letters ‘a ’ and ‘J ’. The difference between those letters is only in the relative

sizes of the stem and the loop. Therefore, the letters can be defined as specialisations

of the same prototype.

Some specialisations of this type require contextual information. The letters ‘1’

and ‘i’ (without the dot) can be distinguished only by their size relative to the x-height

parameter of the word they are imbedded into.

Letters are combined into words based on their connectedness or proximity.

Words themselves are not considered as results of the recognition process; rather, they

serve as context objects for the ambiguity resolution and filtering out inconsistent in

size, direction, and position letter instances. Word attributes include the averaged

baseline position and direction, the averaged x-height and slant.

10.2 Experimental Results

In order to test our system we used samples of handwriting gathered by A. Senior for

his Ph.D. thesis [94] and then made publicly available. In this section we shall present

images of some successfully recognised letters and words along with some perform­

ance statistics data. All measurements were performed on a PC compatible desktop

computer with the 1.9 GHz Intel IV processor and 768 MB of RAM.

107

Recognised letter: ‘a’ Recognised letter: ‘a’
Edge pixels: 197 Edge pixels: 201
Jobs: 1947 Jobs: 1891
Working memory items: 849 Working memory items: 838
Recognition time: 17ms Recognition time: 15ms

Recognised object: ‘d’ Recognised object: ‘c ’
Edge pixels: 298 Edge pixels: 114
Jobs: 3265 Jobs: 1416
W orking memory items: 1337 Working memory items: 551
Recognition time: 28ms Recognition time: 9ms

Pact.bmp

Recognised word: ‘act’
Edge pixels: 537
Jobs: 6356
Working memory items; 2485
Recognition time: 63ms

Recognised word:
Edge pixels:
Jobs:
Working memory items;
Recognition time:

‘done

13467

201ms

Recognised word; ‘and’
Edge pixels; 711
Jobs; 8904
Working memory items: 3860
Recognition time; 103ms

P he.bmp

Recognised word; ‘he’
Edge pixels: 488
Jobs: 6667
Working memory items: 2908
Recognition time: 65ms

109

Chapter 11

Conclusions

As promising as it is, our system is by no means perfect and complete. In this chapter

we examine the current limitations of the system and potential ways to overcome

those limitations. Then we discuss future directions for the system development. Fi­

nally, we summarise the thesis.

11.1 Limitations of Current Implementation

When we designed the system we made a few conscious decision which limited sys­

tem’s practical applicability but allowed significant simplification of the implementa­

tion. In this section we discuss these limitations, their influence on the system, and the

ways to overcome the limitations.

11.1.1 Binarisation o f Grey-Scale Images

Current implementation of our recognition system processes only binary images. This

is a significant technical simplification. We also implemented a number of algorithms

converting grey scale images into binary images. Some of those algorithms are quite

sophisticated and produce much better results than the primitive global threshold

method (see [105]). Still, even the best binarisation algorithms produce extra noise

and lead to loss of information in the image.

As argued in [114], binarised images don’t reflect the structure of the initial

document, because it can have coloured or textured background (e.g. magazines,

business forms, checks), or various colours of ink can be used. Besides, the imaging

process can introduce miscellaneous noise, for instance non-uniform illumination,

non-uniform paper reflection, convolution distortion because of the point spread func­

tion of the scanner, etc. All this leads to the input image containing a wide range of

110

grey scale pixels. Binarisation of such an input image leads to significant loss o f in­

formation, e.g. touching or broken characters.

The best solution of this problem would be not to improve binarisation meth­

ods, but to work directly with grey-scale images. It will require significant changes

and extensions to template nodes (section 7.2.2) in the recognition knowledge base as

well as some other low-level processing related nodes. The advantage of this change

is that will allow drastic expansion of the applicability area of the recognition sys­

tems. We plan to include this amendment in the future versions of the system.

11.1.2 Restricted Set o f Symbols

Currently the recognition knowledge base contains descriptions of only 26 lower-case

Latin letters. Even for those letters not all their variations are implemented. A practi­

cally usable system must obviously have descriptions for many more characters: up-

per-case letters, digits, punctuation marks, etc. There is nothing magical in adding this

information to the recognition knowledge base, rather - significant amount of tedious

work.

11.1.3 Generality vs. Performance

In order to preserve theoretical ‘purity’ of the implementation all the recognition pro­

cesses in our system are expressed in the recognition knowledge base. It doesn’t have

to be so. There exist many fast and reliable methods for edge extraction ([13]), curve

and straight line detection ([88], [118]), which work faster than the general algorithm

of our system. These methods can be integrated into the system to increase its speed.

Expressions for the constraint and attribute calculation (section 7.5) are inter­

preted during the recognition process. This is necessary to make experimentation with

the system easier (when an expression is changed, the program is not recompiled,

rather the recognition knowledge base is re-loaded). In a commercial system it is pos­

sible to compile those expression into machine codes to make their evaluation and

overall processing significantly faster.

Ill

11.2 Future Directions

In this section we focus on the possible directions for future research, which can sig­

nificantly improve the system and bring it even closer to the human level of recogni­

tion performance.

11.2.1 Learning

One of the main aspirations for the whole project, as discussed in section 6.4, was to

create a system capable of learning from experience. This issue has not been ad­

dressed directly in the thesis because current implementation of the system cannot

learn. We plan to augment the system with learning capabilities in future versions.

This problem is not an easy one to solve. The learning process that we foresee

for our system should not be restricted to a (relatively) simple adjustment of numeri­

cal parameters in order to improve system speed. Nor is it a kind of grammatical in­

ference process extending the knowledge base of the system. Rather, the learning

process should combine features of the two and be able to infer the following infor­

mation from training data:

- new nodes of type ‘Whole’ with constraint expressions and expressions to

calculate attributes of the node;

- new ‘Class’ nodes;

- priority values for the links of new nodes;

- steepness values for fuzzy class membership functions;

- intensional ‘abstraction-of relations between nodes.

Creation of an algorithm capable of inferring all this information is a very challenging

problem. Some attempts in this direction are reported in [17] and [7].

11.2.2 Neuronal Implementation

Contemporary approach to the modelling of human perceptual and cognitive activities

calls for the abstraction of the algorithm implementation, as it is stated, for instance,

in [58] and [5]. However, recent developments in cognitive science suggest that the

way the human mind is embedded into the human brain do matter for the functioning

of the mind (see [82], [50]). Therefore, we believe that for our recognition approach

to become a real model of human visual perception it has to be implemented on the

112

neural network basis. After all, the one thing that we know for sure about the human

brain is that it consists of a network of interconnected neurons.

We already noted that our algorithm bears certain similarity with the neuronal­

like model of word recognition introduced by McClelland and Rumelhart in [60] (see

also [19], [20], and [21] for a recent adaptation of this model for cursive script recog­

nition). This similarity suggests that there should exist a mapping of our algorithm to

the neuronal architecture. The main problem of this mapping is an explicit representa­

tion of the ‘part/whole’ relation in the neural network. Despite many efforts, a satis­

factory solution of this problem has not been found yet.

11.3 Summary

hi the thesis we presented a pattern recognition system designed according to funda­

mental principles of human visual perception and its application in the cursive hand­

writing recognition domain.

The system is based on the blackboard architecture and contains a knowledge

base storing information about patterns being recognised in the structured manner.

The knowledge base is represented by a graph with nodes corresponding to partial

graphical concepts, their aggregates, and their abstractions (intensional and exten-

sional). The knowledge base also contains links describing relationships between

nodes (such as ‘part-of, ‘subclass-of, and ‘abstraction-of), spatial constraints for

parts constituting a node, and descriptions of node attributes.

We provided a detailed description of the recognition algorithm. The algo­

rithm consists of elementary jobs, which are scheduled by the system job priority

queue. These jobs are used to find candidate sets of items, test their compatibility, and

create new items. We also described the system job scheduling strategy, which con­

sists of two virtual processes - the bottom-up process and the top-down process.

113

Then we presented the application of the system to the low-level visual proc­

essing, such as noise reduction, creating edges from pixels and lines from edges. Then

we described the specific implementation of the system for recognition of cursive

handwriting and experimental results obtained with this implementation.

Finally, we discussed the limitations of the current system implementation and

potential directions for future research.

114

Bibliography

1. Abuhaiba, I.S.I., Ahmed, P.: A Fuzzy Graph Theoretic Approach to Recognize the
Totally Unconstrained Handwritten Numerals. Pattern Recognition, vol. 26, no. 9,
pp. 1335-1350, (1993)

2. Al-Badr, B., Haralick, R.M.: Segmentation-Free Word Recognition with Applica­
tion to Arabic. ICDAR'95: Third International Conference on Document Analysis
and Recognition, Montreal, Canada, August 14-16 (1995)

3. Anderson, J.R.: Rules of the Mind. Lawrence Erlbaum Associates, Hillsdale, NJ
(1993)

4. Biederman, I.; Recognition-by-Components; A Theory of Human Image Under­
standing. Psychological Review, Vol. 94, No. 2, pp. 115-147 (1987)

5. Binford, T.O.: Visual perception by computer. Paper presented at the IEEE Sys­
tem Science and Cybernetics Conference, Miami, FL, December, (1971)

6. Binford, T.O., Levitt, T.S., Mann, W.B.: Bayesian Inference in Model-Based Ma­
chine Vision. In: Kanal, L.N., Levitt, T.S., Lemmer, J.F.(eds.): Uncertainty in AI
3. North Holland, New York, (1989)

7. Bischof, W. F., CaelH, T.: Visual Learning of Patterns and Objects. IEEE Transac­
tions on Systems, Man and Cybernetics, 27, 907-917, (1997)

8. Boff, K.R., Kaufman, R., Thomas, J.P. (eds.): Handbook of Perception and Hu­
man Performance, Vol. II: Cognitive Processes and Performance. John Wiley and
Sons, New York Chichester Brisbane Toronto Singapore (1986)

9. Bozinovic, R.M., Srihari, S. N.; Off-Line Cursive Script Word Recognition, IEEE
Trans, on Pattern Analysis and Machine Intelligence, vol. 11, no. 1, pp. 68-83,
1989.

10. Brachman, R.J., Schmolze, J.G.: An Overview of the KL-ONE Knowledge Repre­
sentation System. Cognitive Science, Vol. 9, pp. 171-216, (1985)

11. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regres­
sion Trees. Wadsworth International Group, Belmont, CA, (1984)

12. Bulthoff, H. H., Edelman, S. Y., Tarr, M. J.: How are three-dimensional objects
represented in the brain? Cerebral Cortex, Vol. 5, No. 3, pp. 247-260, (1995)

13. Canny, J.: A Computational Approach to Edge Detection, IEEE Transactions on
PAMI, Vol. 8, No. 6, pp. 679-698, (1986)

14. Carver, N., Lesser, V.: The Evolution of Blackboard Control Architectures. Expert
Systems with Applications, Special Issue on The Blackboard Paradigm and Its
Applications, Vol. 7, No. 1, pp. 1-30, (1994)

15. Casey, R., Lecolinet, E.: A Survey of Methods and Strategies in Character Seg­
mentation, IEEE Transactions on Pattern Analysis and Machine hvtelligence
(PAMI), Vol. 18, No. 7, pages 690-706, July 1996.

115

16. Chan, K., Yeung, D.: Recognizing On-line Handwritten Alphanumeric Characters
through Flexible Structural Matching. Pattem Recognition, Vol. 32, pp. 1099-
1114(1999)

17. Cho, K., Dunn, S. M.: Learning Shape Classes. ffiEE Transactions on PAMI, Vol.
16, No. 9, pp. 882-888,(1994)

18. Corkill, D.; Blackboard Systems, AI Expert, 6(9):40-47, September, 1991.

19. Cote, M.: Utilisation d'un modele d'acces lexical et de concepts perceptifs pour la
reconnaissance d'images de mots cursifs. These de I'Ecole Nationale Superieure
des Telecommunications (ENST), June, (1997)

20. Cote, M., Lecolinet, E., Cheriet, M., Suen, C.Y.: Using Reading Models for Cur­
sive Script Recognition, hi: Simner, M.L., Leedham, C.G., Thomassen, A.J.W.M.
(eds.): Handwriting and Drawing Research: Basic and Applied Issues, pp. 299-
313, lOS Press, Amsterdam, (1996)

21. Cote, M., Lecolinet, E., Cheriet, M., Suen, C.Y.: Automatic reading of cursive
scripts using a reading model and perceptual concepts. The PERPECTO system.
International Journal of Document Analysis and Recognition, Vol. 1, No. 1, pp. 3-
17, (1998)

22. Dill, M., Wolf, R., Heisenberg, M.: Visual Pattem recognition in Drosophila in­
volves retinotopic matching. Science, vol. 365, pp. 751-753, (1993)

23. Dzuba, G., Filatov, A., Gershuny, D., BCil, I., Nikitin, V.: Check amount recogni­
tion based on the cross validation of courtesy and legal amount fields. Int. Journal
of Pattem Recognition and Artificial Intelligence, Vol. 11, No. 4, pp. 639-655,
(1997)

24. Dzuba, G., Filatov, A., Volgunin, A.; Handwritten ZIP Code Recognition,
ICDAR’97, Proceedings of 4th Intemational Conference on Document Analysis
and Recognition, Uhn, Germany, pp.766-770, (1997)

25. Edelman, S., Flash, T., Ullman, S.: Reading cursive handwriting by alignment of
letter prototypes. Intemational Journal of Computer Vision, Vol. 5, No. 3, pp.
303-331,(1990)

26. Engelmore, R.S., Morgan, A. (eds.): Blackboard Systems, Addison-Wesley,
(1988)

27. Feder, J.: Plex languages. Information Sciences, Vol. 3, pp. 225-241, (1971)

28. Filatov, A., Gitis, A., Kil, I.: Graph-based Handwritten Digit String Recognition,
ICDAR’95, Proceedings of 3rd Intemational Conference on Document Analysis
and Recognition, Montreal, Canada, August 14-16, pp.845-848, (1995)

29. Flasinski, M.; Mathematical Linguistics Models for Computer Vision, Machine
GRAPHICS & VISION, vol. 5, */2,1996, pp.87-97.

30. Fu, K.S.; Syntactic Pattem Recognition and Applications, Prentice-Hall, Engle­
wood Chffs, New Jersey, 1982.

31. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman and Co., New York, (1979)

32. Gibson, E.J., Levin,H.: The psychology of reading. MIT Press, Cambridge, Mas­
sachusetts, (1975)

116

33. Gleitman, L.R., Rosin, P.: The structure and acquisition of reading I: Orthogra­
phies and the structure of language. In: Reber, A.S., Scarborough, D.L. (eds.);
Toward a psychology of reading. Erlbaum, Hillsdale, NJ, (1977)

34. Gregg, J.R., Zoubek, C.E., Condon, G.: Gregg Shorthand Dictionary (abridged).
Gregg/Community College Div., (1995)

35. Guillevic, D.; Unconstrained Handwriting Recognition Applied to the Processing
of Bank Cheques, Doctoral thesis. Computer Science Department, Concordia
University, Montreal, September 1995.

36. Guttman, A.: R-Trees: A Dynamic Index Structure for Spatial Searching. In:
Yormark, B., (ed.): SIGMOD’84, Proceedings of A nnu al Meeting, Boston, Mas­
sachusetts, June 18-21, pp. 47-57, (1984)

37. Haralick, R., Kanungo, T.: Model-based Character Recognition, DARPA Work­
shop on Document Understanding, pp. 1-5, Palo Alto, USA, May 6-8, 1992.

38. Haralick, R.M., Shapiro, L.G.: Computer and Robot Vision. Vol. 1, Addison
Wesley (1992)

39. Harmon, L.D.: Scanning the Issue. Proceedings of the IEEE, v.60. No. 10, p.l 117
(1972)

40. Haykin, S.: Neural Networks. A Comprehensive Foundation. Macmillan College
Publishing Inc., New York, (1994)

41. Hoffinan, D. D., Richards, W. A.: Parts of recognition. Special Issue: Visual cog­
nition. Congnition, Vol. 18, No. 1-3, pp. 65-96, (1984)

42. Hofstadter, D., McGraw, G.: Letter Spirit: An Emergent Model of the Perception
and Creation of Alphabetic Style, Indiana University, CRCC Technical Report 68,
1993.

43. Hofstadter, D.: Fluid Concepts and Creative Analogies. Allen Lane, The Penguin
Group, London New York Ringwood Toronto (1997)

44. Hummel, J., Biederman, I.: Dynamic binding in a neural network for shape recog­
nition. Psychological Review, Vol. 99, pp. 480-517, (1992)

45. Jacobs, A.M., Grainger, J.r Models o f visual word recognition: sampling the state
of the art. Joumal of Experimental Psychology: Human Perception and Perform­
ance, Vol. 20, N o.6,pp.l311-1334, (1994)

46. Johnson. T.R.: Control in Act-R and Soar. In; Shafto, M., Langley, P.(eds.): Pro­
ceedings of the Nineteenth Conference of the Cognitive Science Society, pp. 343-
348(1997)

47. Johcoeur, P., Gluck, M. A., Kosslyn, S. M.: Pictvires and names: Making the con­
nection. Cognitive Psychology, Vol. 16, No. 2, pp. 243-275, (1984)

48. Kellman, P. K., Spelke, E. S.: Perception of partly occluded objects in infancy.
Cognitive Psychology, Vol. 15, No. 4, pp. 483-524, (1983)

49. Kummert, F., Niemann, H., Prechtel, R., Sagerer, G.: Control and explanation in a
signal understanding envirormient. Signal Processing, Vol. 32, pp.l 11-145, (1993)

50. Lakoff, G., Johnson, M.; Philosophy in the Flesh. Basic Books, New York, (1999)

117

51. Laird, J., Newell, A., Rosenbloom, P.S.: SOAR; An architecture for general intel­
ligence. Artificial Intelligence, Vol. 33, pp. 1-64 (1987)

52. LaMarca, A., Ladner, R.: The hfluence of Caches on the Performance of Heaps.
Technical Report UW-CSE-96-02-03. Department of Computer Science, Univer­
sity of Washington, Seattle, (1996)

53. Lecolinet, E., Baret, O.: Cursive Word Recognition: Methods and Strategies, in
Fundamentals in Handwriting Recognition, S. Impedovo Ed., pages 235-263,
NATO ASI Series F: Computer and Systems Sciences, Vol. 124, Springer Verlag,
1994.

54. Lim, G.: Visual Object Shape Recognition Using Hierarchical Syntax Extraction.
Ph.D. Thesis, The University of Westem Austraha, Nedlands, Australia (1997)

55. Lu, Y., Shridhar, M.: Character Segmentation in Handwritten Words - an Over­
view, Pattern Recognition, vol. 29, no. 1, pp. 77-96, 1996.

56. Luschei, E. C.: The Logical Systems of Lesniewski. North Holland Publishing
Co., Amsterdam, London, (1962)

57. Marin, M.: An Empirical Comparison of Priority Queue Algorithms. Technical
report PRG-TR-10-97, Oxford University, (1997)

58. Marr, D.: Vision. Freeman, San Francisco, (1982)

59. Marr, D., Nishimara, H.K.; Representation and recognition of the spatial organiza­
tion of three dimensional structure. Proceedings of the Royal Society of London
B, Vol. 200, pp. 269-294, (1978)

60. McClelland, J.L., Rumelhart, D.E.: An interactive activation model of context ef­
fects in letter perception. Psychological Review, Vol. 88, pp. 375-407, (1981)

61. McGraw, G.: Emergent High-Level Perception of Letters Using Fluid Concepts,
Ph.D. Thesis, Lidiana University, 1995.

62. Messmer, B., Bunke, H.: A decision tree approach to graph and subgraph isomor­
phism detection. Pattern Recognition, Vol. 32, No. 12, pp. 1979 - 1998, (1999)

63. Mokhtarian, F., Mackworth, A.K.: Scale-based description and recognition of pla­
nar curves and two-dimensional shapes. IEEE Transactions on Pattern Analysis
and Machine IntelUgence, Vol. 8, pp. 34-43, (1986)

64. Mokhtarian, F., Mackworth, A.K.: A theory of multiscale, curvature-based shape
representation for planar curves. IEEE Transactions on Pattern Analysis and Ma­
chine Intelhgence, Vol. 14, pp. 789-805, (1992)

65. Mori, S., Suen, C.Y., Yamamoto, K.: Historical Review of OCR Research and
Development, Proceeding of the IEEE, vol. 80, no. 7, pp. 1029-1058, 1992.

66. Moses, Y., Adini, Y., Ullman, S.: Face recognition; the problem of compensating
for illimiination chages. Proceedings of the European Conference on Computer
Vision, pp. 286-296, (1994)

67. Newell, A.; Unified Theories of Cognition. Harvard University Press, Cambridge,
MA, (1990)

68. Niemann, H., Briinig, H., Salzbrunn, R., Schroder, S.; Literpretation of industrial
scenes by semantic networks. In Proc. lAPR hit. Workshop on Machine Vision
Applications, pages 39-42, Tokyo, 1990

118

69. Niemann, H., Sagerer, G., Schroder, S., Kummert, F.: ERNEST: A semantic net­
work system for pattern analysis. IEEE Trans. Pattern Analysis and Machine In­
telligence, 9:883-905, 1990

70. Nii, H. P.; Blackboard Systems: The blackboard model of problem solving and the
evolution of blackboard architectures. AI Magazine, Vol. 7, No. 2, pp. 38-53
(1986)

71. Palmer, S.E.: Hierarchical Structure in Perceptual Representation, Cognitive Psy­
chology, vol.9, pp. 441-474, (1977)

72. Palmer, S.E.: Structural Aspects of Visual Similarity, Memory & Cognition, vol.
6, no. 2,pp. 91-97, (1978)

73. Palmer, S.E.: Vision Science. Photons to Phenomenology. Bradford Book. The
MIT Press, Cambridge London (1999)

74. Palmer, S. E., Rock, I.: On the nature and order of organizational processing: A
reply to Peterson. Psychonomic Bulletin & Review, Vol. 1, pp. 515-519, (1994)

75. Parizeau, M.: Reconnaissance d'ecriture cursive par grammaires floues avec at-
tributs: etape vers la conception d'un bloc-notes electronique. Ph.D. Thesis, Ecole
Polytechnique de Montreal, (1992)

76. Parizeau, M., Plamondon R.: A Fuzzy Syntactic Approach to Allograph Model­
ling for Cursive Script Recognition, IEEE Transactions on Pattern Analysis and
Machine Intelligence, Vol. 17, No. 7, pp. 702-712, (1995)

77. Parizeau, M., Plamondon, R., Lorette, G.: Fuzzy-Shape Grammar for Cursive
Script Recognition, in Advances in Structural and Syntactic Pattern Recognition,
H. Bunke (Ed.), World Scientific Publishing, Singapore, New Jersey, London,
Hong Kong, pp. 320-332, (1993)

78. Pasternak, B.: Adaptierbares Kemsystem zur Interpretation von Zeichnungen Mo­
tivation - Entwurf - Realisierung. Dissertation zur Erlangung des akademischen
Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.), Fachbereich Infor-
matik der Universitat Hamburg, (1996)

79. Pavlidis, T.: Structural Pattern Recognition. Springer Series in Electrophysics I.
Springer Verlag, New York, (1977)

80. Pearce, A. R., CaeUi, T., and Bischof, W. B.: Learning Relational Structures: Ap­
plications in Computer Vision. Applied Intelligence: The International Journal of
Artificial Intelligence. Vol.4, pp. 257-268 (1994)

Sl.Pfleger, K., Hayes-Roth, B.: An Introduction to Blackboard-Style Systems Or­
ganization. Technical Report KSL-98-03, Knowledge Systems Laboratory, Stan­
ford University, (1998)

82. Putnam, H.: Representation and Reality. The MIT Press, Cambridge, MA, (1989)

83. Quinlan, J.R.: Induction of decision tress. Machine Learning, Vol.l, No.l, pp. 81-
106, (1986)

84. Quint, F.: MOSES; A Structural Approach to Aerial huage Understanding. In:
Gruen, A., Baltsavias, E., Henricsson, O.: Extraction of Man-Made Objects from
Aerial and Space Images, II. Birkhauser Verlag, Meeting held in Ascona, Switzer­
land, May 5-9, pp. 323-332, (1997)

119

85. Rosch, E.: Natural categories. Cognitive Psychology, Vol. 4, No. 3, pp. 328-350,
(1973)

86. Rosch, E.: On the internal structure of perceptual and semantic categories. In
Moore, T. E. (ed.): Cognitive development and the acquisition of language. New
York, Academic Press, (1973)

87. Rosch, E.: Cognitive reference point. Cognitive Psychology, Vol. 7, No. 4, pp.
532-547, (1975)

88. Rosin, P. L., West, G. A.: Segmentation of Edges into Lines and Arcs. Image and
Vision Computing, Vol. 7, No. 2, pp. 109-114, (1989)

89. Rocha, J., Pavlidis, T.: A Shape Analysis Model with Applications to a Character
Recognition System, IEEE Transactions on Pattern Analysis and Machine Intelli­
gence, Vol. 16, No. 4, pp. 393-404, (1994)

90. Rocha, J., Pavlidis, T.: Character Recognition Without Segmentation, IEEE Trans,
on Pattern Analysis and Machine InteUigence, vol. 17, no. 9, pp. 903-909, 1995

91. Salzbrunn, R., Niemann, H., Harbeck, M., Winzen, A.: Object recognition by a
robust matching technique. In H. Bunke, editor. Advances in Structural and Syn­
tactic Pattern Recognition, volume 5 of Series in Machine Perception and Artifi­
cial InteUigence, pages 481-495. World Scientific, 1992.

92. Sanoki, T., Bowyer K.W., Heath, M.D., Sarkar, S.: Are edges sufficient for object
recognition. Journal of Experimental Psychology: Human Perception and Per­
formance, Vol. 24, No. 1, pp. 1-10, (1998)

93. Saund, E.: Symbolic Construction of a 2-D Scale Space Image. IEEE Trans. On
Pattern Analysis and Machine Intelligence, Vol. 12, No. 8, pp. 817-830, (1990)

94. Senior, A.: Off-Line Handwriting Recognition Using Recurrent Neural Networks,
Ph.D. Thesis, University of Cambridge (1994)

95. Shapiro, L., Haralick, R.: Structural Descriptions and Inexact Matching, IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-3, no. 5,
pp. 504-519, 1981.

96. Shaw, A.C.: A formal picture description scheme as a basis for picture processing
systems, information Control, Vol. 14, pp. 9-52, (1969)

97. Simon, H.; The Sciences of the Artificial. MIT Press, Cambridge, Massachusetts,
(1981)

98. Simon, J.: Off-Line Cursive Word Recognition, Proceedings of the IEEE, vol. 80,
no. 7, pp. 1150-1161,(1992)

99. Spelke, E. S.:Principles of object perception. Cognitive Science, Vol. 14, No. 1,
pp. 29-56, (1990)

100. Steinherz, T., Rivlin, E., hitrator, N.: Offline cursive script word recognition -
a survey. International Journal of Document Analysis and Recognition, Vol. 2,
No. 2/3, pp. 90-110,(1999)

101. Stilla, U., Michaelsen, E., Lutjen, K.: Structural 3D-Analysis of Aerial Images
with a Blackboard-based Production System. In: Gruen, A., Kuebler, O. (eds.):
Automatic Extraction of Man-Made Objects from Aerial and Space Images, As-
cona Workshop (1995)

120

102. Stilla, U., Jurkiewicz, K.: Structural 3D-Analysis of Urban Scenes from Aerial
Images. In: Kraus, K., Waldhausel, P.(eds.): International Archives of Photo-
grammetry and Remote Sensing, Vol. 31, Part B3, p. 832-838 (1996)

103. Tarr, M.J., Biilthoff, H.H.: Is human object recognition better described by
geon-structural-descriptions or by multiple-views? Journal of Experimental Psy­
chology: Human Perception and Performance, Vol. 21, No. 6, pp. 1494-1505,
(1995)

104. Tombre, K.: Structural and Syntactic Methods in Line Drawing Analysis: To
which Extent do they Work? In: Advances in Structural and Syntactical Pattern
Recognition (Proceedings of SSPR'96, Leipzig, Germany). Lecture Notes in
Computer Science, Vol. 1121, Springer-Verlag, Berlin Heidelberg New York
(1996)310-321

105. Trier, 0.D., Jain, A.K.: Goal-Directed Evaluation of Binarization Methods.
IEEE Transactions on PAMI, Vol.l7, No. 12, pp. 1191-1201, (1995)

106. Trier, 0.D., Jain, A.K., Taxt, T.: Feature Extraction Methods for Character
Recognition - a Survey, Pattern Recognition,Vol.29, No. 4, pp. 641-662, (1996)

107. Tversky, A.: Features of similarity. Psychological Review, vol. 84, pp. 327-
352, 1977.

108. Tversky, A., Hemenway, K.: Objects, parts, and categories. Journal of
Experimental Psychology: General, Vol. 113, pp. 169-193, (1984)

109. Uhr, L.: Pattern recognition. Wiley & Sons, New York, (1966)

110. Uhr, L.: Pattern Recognition, Learning and Thought: Computer-Programmed
Models of Higher Mental Processes. Prentice Hall, Englewood Cliffs, NJ, 1973

111. Ullman, S.: High-level Vision. The MIT Press, Cambridge London (1996)

112. Vaughan, W., Jr., Greene, S.L.: Pigeon visual memory capacity. Journal of
Experimental Psychology: Animal Behavior Processes, vol. 10, pp. 256-271,
(1984)

113. Venguerov, M., Cunningham, P.: GeneraUsed Syntactic Pattern Recognition
as a Unifying Approach in Image Analysis. In: Amin, A., Dori, D., Pudil, P.,
Freeman, H., (eds.): Advances in Pattern Recognition. Lecture Notes in Computer
Science, Vol. 1451. Springer-Verlag, Berlin Heidelberg New York (1998) 913-
920

114. Wang, L., Pavlidis, T.: Direct Gray-Scale Extraction of Features for Character
Recognition. IEEE Transactions on PAMI, Vol. 15, No. 10, pp. 1053-1067,
(1993)

115. Watanabe, S.: Knowing and Guessing - A Quantitative Study of Inference and
Information, John Wiley and Sons, Inc., (1969)

116. Webb, A.: Statistical Pattern Recognition. Arnold, London Sydney Auckland
(1999)

117. Weisstein, N., Harris, C. S.: Visual detection of line segments: an object-
superiority effect. Science, Vol. 186, No. 4165, pp. 752-755, (1974)

118. West, G.A., Rosin P.L.: Techniques for Segmenting hnage Curves into
Meaningful Descriptions. Pattern Recognition, Vol. 24, No. 7, pp. 643-652 (1991)

121

119. Winston, P.H.: Artificial Intelligence, Third Edition. Addison-Wesley, Read­
ing, Menlo Park, New York, Wokingham, Amsterdam, Boon, Sydney. (1993)

120. Witkin, A.?.: Scale-space filtering. In Proceedings of the 8*'’ International
Joint Conference on Artificial InteUigence, pp. 1019-1022, (1983)

121. Wittenburg, K., Weitzman, L.; Relational Grammars: Theory and Practice in a
Visual Language Interface for Process Modeling. In K. Marriott and B. Meyer
(eds.). Visual Language Theory, Springer-Verlag, pp. 193-217, (1998)

122. Wittenburg, K.: Predictive Parsing for Unordered Relational Languages. In;
Bunt. H., Tomita, M. (eds.): Recent Advances in Parsing Technologies, Kluwer,
pp. 385-407, (1996)

123. Wittenburg, K.: Earley-style Parsing for Relational Languages. In Proceedings
of the IEEE Workshop on Visual Languages, University of Washington, Seattle,
pp. 192-199, (1992)

122

Appendix A

Recognition Knowledge Base
Description Language

Terminals

The set o f terminals includes literals (strings of characters in apostrophes), identifiers

(strings o f letters and digits starting with a letter), numbers (strings o f digits with a

potential separator), and the new line character (NL).

Grammar
RKB

Expr

ExprName

Node

ClassNode

Subclasses

NodeNamePrty

NodeName

Priority

Attributes

AttrDefs

AttrDef

Node NL NL RKB
I Expr NL RKB

ExprName '=' ExprBody

'$' Identifier

ClassNode
I WholeNode
I TemplateNode

NodeName '=' Subclasses NL Attributes I NodeName '=' Subclasses

NodeNamePrty
I NodeNamePrty ' Subclasses

NodeName '(' Priority ')'
1 NodeName

Identifier

Number

'ATTRIBUTES' AttrDefs

AttrDefI AttrDef NL AttrDefs

AttrName '=' ExprBody I 'FLAGS' '=' FlagList

123

AttrName

AttributeName

WholeNode

Parts

CondSpecAttrs

Conditions

CondExprs

Specs

SpecNodeList

TemplateNode

Template

Rect

PixelList

PixelValue

Ends

Corner

ExprBody

I 'LABEL' '=' Character
I 'COLOUR' '=' Number','Number','Number

AttributeName
1 '*' AttributeName

Identifier

NodeName '=' Parts NL CondSpecAttrs
1 NodeName '=' Parts

NodeRef
I NodeRef '+' Parts
I NodeRef '+=' Parts
I NodeRef '+~' Parts
I NodeRef '+&' Parts

= Conditions NL Specs NL Attributes
I Conditions NL Attributes
I Specs NL Attributes
I Attributes

'WHERE' CondExpr NL CondExprs
I 'WHERE' CondExpr

'AND' CondExpr NL CondExprs
I 'AND' CondExpr

'SPECIALISATION OF' SpecNodeList

NodeName ',' SpecNodeList
I NodeName

NodeName '=' Template NL Attributes
I NodeName '=' Template

'TEMPLATE' Rect ':' PixelList Ends

Number ',' Number ',' Number ',' Number

PixelValue
PixelValue ',' PixelList

Number
I 'X'

Corner ',' Corner

'RT'
I 'RB'
I 'LT'
1 'LB'

RelationalExpr
I RangeExpr

124

RelationalExpr

FuzzyRelExpr

BinaryRelExpr

RangeExpr

AdditiveExpr

MulExpr

UnaryExpr

FuncRangeExpr

ArgList

PrimaryExpr

Constant

AttributRef

FuzzyRelExpr
I BinaryRelExpr
BinaryRelExpr Number

RangeExpr 'in' RangeExpr
I RangeExpr '=' RangeExpr
I RangeExpr '<>' RangeExpr
I RangeExpr '<' RangeExpr I RangeExpr '>' RangeExpr
1 RangeExpr '<=' RangeExpr
I RangeExpr '>=' RangeExpr
I RangeExpr RangeExpr
I RangeExpr RangeExpr
I RangeExpr '<<' RangeExpr
I RangeExpr '>>' RangeExpr

RangeExpr '|' AdditiveExpr
I RangeExpr AdditiveExpr
I AdditiveExpr

AdditiveExpr '+' MulExpr
I AdditiveExpr MulExpr
I AdditiveExpr MulExpr
I AdditiveExpr MulExpr
I MulExpr

MulExpr '*' UnaryExpr
I MulExpr '/' UnaryExpr
I MulExpr '%' UnaryExpr
I NegExpr

'-' FuncRangeExpr
I '!' FuncRangeExpr
1 FuncRangeExpr

BuiltinFuncName '(' ArgList ')
I '[' RangeExpr ',' RangeExpr
I PrimaryExpr

RangeExpr ',' ArgList
I RangeExpr

Constant
I AttributeRef
1 PartRef
I '$' ExprName
I '(' RangeExpr ') '

Number
I 'PI'

PartRef '.' AttributeName
I ContextAttrRef

ContextAttrRef '#' NodeName AttributeName

PartRef

AttributeName

BuiItinFuncName

I PartNumber

Identifier

' abs'
I ' a v g '
I 'dist'
I 'connected'
I 'angle'
I 'min'
1 'max'
I 'delta'
I 'length'
I 'inside'
I 'close'
I 'above'
I 'left'
I 'sin'
) 'cos'
I 'tan'
I 'leftmost'
I 'rightmost'
I 'topmost'
I 'lowest'
I ' X '

I ' y '
I 'point'

126

Appendix B

Fragments of Recognition Knowledge
Base for Handwriting Recognition

Straight line segments:
RV = TEMPLATE 0,0,2,1:1,0:rt,rb

ATTRIBUTES flags = STRAIGHT

RVEl = RVE(l.l) + RVE(l.l)
ATTRIBUTES flags = STRAIGHT

RVE = RVEl I RV
ATTRIBUTES flags = STRAIGHT

begAngle = Pl/2
endAngle = Pl/2

LV = TEMPLATE -1,0,1,1=0,1:lb,It
ATTRIBUTES flags = STRAIGHT

LVEl = LVE(l.l) + LVE(l.l)
ATTRIBUTES flags = STRAIGHT

LVE = LVEl I LV
ATTRIBUTES flags = STRAIGHT

begAngle = -PI/2
endAngle = -PI/2

TH = TEMPLATE 0,0,1,2:1,0:It,rt
ATTRIBUTES flags = STRAIGHT

THEl = THE(1.1) + THE(1.1)
ATTRIBUTES flags = STRAIGHT

THE = THEl I TH
ATTRIBUTES flags = STRAIGHT

begAngle = PI
endAngle = PI

BH = TEMPLATE 0,-1,1,1:0,1:rb,lb
ATTRIBUTES flags = STRAIGHT

BHEl = BHE(l.l) + BHE(l.l)
ATTRIBUTES flags = STRAIGHT

BHE = BHEl I BH
ATTRIBUTES flags = STRAIGHT

begAngle = 0.
endAngle = 0.

127

RT = THE(0.9) + RVE(0.9)
WHERE @0.w+®l.h>=®0.w*@l.h
ATTRIBUTES flags = STRAIGHT

RB = RVE(0.9) + BHE(0.9)
WHERE @0.h+@l.w>=@0.h*®l.w
ATTRIBUTES flags = STRAIGHT

LT = LVE(0.9) + THE(0.9)
WHERE @0.h+®l.w>=@0.h*®l.w
ATTRIBUTES flags = STRAIGHT

LB = BHE(0.9) + LVE(0.9)
WHERE ®0.w+@l.h>=@0.w*®l.h
ATTRIBUTES flags = STRAIGHT

RR = RRl I RR2
ATTRIBUTES flags = STRAIGHT

begAngle = Pi/2
endAngle = Pl/2

RRl = RT(1.6) + BH(0.8)
ATTRIBUTES flags = STRAIGHT

RR2 = TH(0.8) + RB(1.6)
ATTRIBUTES flags = STRAIGHT

LL = LLl I LL2
ATTRIBUTES flags = STRAIGHT

LLl = BH(0.8) + LT(1.3)
ATTRIBUTES flags = STRAIGHT

LL2 = LB(1.6) + TH{O.B)
ATTRIBUTES flags = STRAIGHT

TT = TTl I TT2
ATTRIBUTES flags = STRAIGHT

TTl = LV(O.B) + RT(1.6)
ATTRIBUTES flags = STRAIGHT

TT2 = LT(1.6) + RV(O.a)
ATTRIBUTES flags = STRAIGHT

BB = BBl I BB2
ATTRIBUTES flags = STRAIGHT

BBl = RB(1.6) + LV(O.B)
ATTRIBUTES flags = STRAIGHT

BB2 = RV(O.B) + LB(1.6)
ATTRIBUTES flags = STRAIGHT

SL = SLSl(l.l) + SLSl(l.l)
WHERE ®0 .endAngle = ®1.begAngle
ATTRIBUTES begAngle = @0.begAngle

endAngle = @1 .endAngle

128

SLSl = RVE(0.3) ILVE(0.3) |THE(0.3) |BHE(0.3) |RT|RB|LT|LB|SL| RR | LL]TT|BB
ATTRIBUTES flags = STRAIGHT

begAngle = angle(®@.beg,@®.end)
endAngle = ®®.begAngle
dphi = 0
len = dist(®@.beg,®@.end)

SLS = SLSKO.3)

Topological definitions (connected and closed'):

$dphi = (@0.endAngle ®1.begAngle) + ©O.dphi + ©l.dphi

ConnO = SLS(0.8) | Connected
ATTRIBUTES dphi = $dphi

begAngle = ®0.begAngle
endAngle = @1.endAngle

Connected = ConnO + ConnO
ATTRIBUTES flags = TRACE

len = ®0.Ien+®1.len
begSeg = ©O.begSeg : ®0.1en
endSeg = ©l.endSeg : ©l.len
prevBegAngle = ®0.prevBegAngle : ®1.begAngle
prevEndAngle = ®1.prevEndAngle : ®0.endAngle

CntrX = ConnO(0.9) + ConnO(0.9)
WHERE @0.beg=@l.end
AND $dphi > 0
SPECIALISATION OF Connected
COMPLEMENTARY OF CntrO
ATTRIBUTES flags = REGION, TRACE label = *

len = @0.len+@l.len

Dot = ConnO(0.9) + ConnO(0.9)
WHERE @®.len <30
AND @®. w = @®. h ~ 1
SPECIALISATION OF CntrX
ATTRIBUTES flags = REGION, RESULT
label = .
colour = 200,255,144

CntrO = ConnO(0.9) + ConnO(0.9)
WHERE @0.beg=@l.end
AND $dphi < 0
AND ®®.len > 8
SPECIALISATION OF Connected
ATTRIBUTES flags = REGION, TRACE

len = ®0.Ien+®1.len

Curve primitives and Cusps:

$maxAngle = 0.32176 //atan(l/l) - atan(l/2) + eps

XCuspO = SLS(0.8) I XCusp_quasi (1.1)

XCusp_quasi = XCuspO + XCuspO
WHERE ®0.endAngle ®1.begAngle >= $maxAngle
SPECIALISATION OF Connected
ATTRIBUTES flags = TRACE

129

XCusp = XCuspO + XCuspO
WHERE $dphi > PI/4
SPECIALISATION OF XCusp_quasi
ATTRIBUTES flags = TRACE

OCuspO = SLS(0.8) I OCusp_quasi(1 .1)

OCusp_quasi = OCuspO + OCuspO
WHERE ©O.endAngle ©l.begAngle <= -$maxAngle
SPECIALISATION OF Connected

OCusp = OCuspO + OCuspO
WHERE $dphi < -PI/4
SPECIALISATION OF OCusp_quasi
ATTRIBUTES flags = TRACE

$sigma = 100.

LCL = SLS I LCLl

LCLl = LCL(0.8) + LCL(0.8)
WHERE (SO.endAngle (Sl.begAngle in {$maxAngle}
AND $dphi/®@.len < 0.008
SPECIALISATION OF Connected

CVX = SLS I CVXO

CVXO = CVXl I CVX2

CVXl = CVX + CVX
WHERE ©O.endAngle ©l.begAngle >= 0
SPECIALISATION OF Connected
ATTRIBUTES flags = TRACE

CVX2 = CVXO(0.5) + CVXO(0.5)
WHERE ®0.endAngle ©l.begAngle < 0
AND ®0.prevEndAngle ®1.prevBegAngle >= 0
AND ®0.endSeg * ©l.begSeg * sin(®l.begAngle ®0.endAngle) < 10
SPECIALISATION OF Connected
ATTRIBUTES flags = TRACE

CCV = SLS I CCVO

CCVO = CCVl I CCV2

CCVl = CCV + CCV
WHERE ®0.endAngle ®l.begAngle < 0
SPECIALISATION OF Connected
ATTRIBUTES flags = TRACE

CCV2 = CCVO(0.5) + CCVO(0.5)
WHERE ©O.endAngle ®l.begAngle > 0
AND ®0 .prevEndAngle ®1 .prevBegAngle < 0
AND ©O.endSeg * ®l.begSeg * sin(@0.endAngle ®l.begAngle) < 20
SPECIALISATION OF Connected
ATTRIBUTES flags = TRACE

Letter elements:

vpoll_up = VSTRl(O.l) += XCusp(0.1) += VSTRl(O.l)
WHERE ®0 .endAngle in [-3*PI/4,-Pl/4]
AND ®2.begAngle in [PI/4,3*PI/4]

130

ATTRIBUTES top = point(avg(x(®0 .end),x(®2 .beg)),®1■t)
begAngle = ©o.begAngle
endAngle = ®2.endAngle
dphi = $dphi
len = @0.len+@l.len+®2.len

vpoll_down = VSTRl(O.l) += XCusp(O.l) += VSTRl(O.l)
WHERE @0.endAngle in [PI/4,3*PI/4]
AND @2.begAngle in [-3*Pl/4,-pi/4]
ATTRIBUTES bottom = point(avg(x(@0.end),x(®2 .beg)),®1.b)

begAngle = @0.begAngle
endAngle = ®2.endAngle
dphi = $dphi
len = ®0 .len+@l.len+®2.len

vpoll_l = vpoll_down += vpoll_up
WHERE !connected(@0,®1,®0.beg,@l .end)
ATTRIBUTES top = @1.top

bottom = @0.bottom

vpoll_2 = vpoll_up += vpoll_down
ATTRIBUTES top = @0.top

bottom = ®1.bottom

vpoll = vpoll_up += vpoll_down
WHERE connected(®0,@1,®0.beg,@1.end)
SPECIALISATION OF vpoll_2
ATTRIBUTES flags = REGION

//---

c = c_left += XCusp += c_right
WHERE connected(®0,@1,®0.tr:@0.end,®1.beg)
ATTRIBUTES flags = REGION, TRACE

tl = @0.tl
bl = ®0.bl
tr = @2.end
br = ®0.br:®0.beg

// ---

$epsilon = 0.0001

c_left = c_left_start | c_left_conn

c_left_0 = SLS(0.8) 1 c_left_(l.l)

c_left_ = c_left_0 + c_left_0
WHERE ®1.endAngle in [PI/2+$epsilon,-PI/3]
AND @0.begAngle in [PI/2-$epsilon,-PI/3]
SPECIALISATION OF CVXO
ATTRIBUTES top_right =

rightmost(@0.top_right:@0.beg,@0.end,@l.top_right:®1.beg,@l.end)
flags = TRACE

c_left_topO = c_left_top(l.2) j c_left_0

c_left_top = c_left_topO + c_left_topO
WHERE ®1.endAngle in [PI/2+$epsilon,-3*Pl/4]
AND @0.begAngle in [-3*PI/4,-PI/3]
AND above(@1.end,@0.beg)
SPECIALISATION OF C_left_
ATTRIBUTES top_right =

rightmost(®0.top_right:®0.beg,®0.end,@1.top_right:®1.beg,®l.end)
flags = TRACE

c_left_top_conn = CCVO += c_left_top

ATTRIBUTES top_right = @l.top_right
cusp = ©l.beg
cuspAngle = ©l.begAngle

flags = TRACE

c_left_start = rtail_left(0.8) += c_left_top(0.8)
WHERE $dphi >= 3*PI/4
AND above(®1.end,@0.beg) ~ i
ATTRIBUTES top_right = ®1.top_right

c_left_conn = c_left_top_conn +~ i_left
WHERE above(@0.cusp,®1.cusp) - i
AND close(®0,®1,@0.cusp,®1.cusp) ~ 5
ATTRIBUTES top_right = ®0.top_right

tl = ®0.beg
bl = @1. end
tr = ®0.end
br = ©l.beg

flags = REGION

//---------------------------------------

c_right_0 = SLS(0.8) | c_right_(1.1)

c_right_ = c_right_0 + c_right_0
WHERE ©l.endAngle in [-PI/3,-2*PI/3]
AND ©O.begAngle in [-PI/3,-2*PI/3]
SPECIALISATION OF CCVO

c_rightO = c_right(1.2) | c_right_0

c_right = c_rightO + c_rightO
WHERE ©l.endAngle in [3*Pl/4,-2*Pl/3]
AND ©O.begAngle in [-PI/3,PI/4]
AND $dphi <= -PI
AND above(®0.beg,@1.end) ~ 1
SPECIALISATION OF c_right_

//---------------------------------------

_c_right_0 = SLS(O.S) | _c_right_(l.1)

_c_right_ = _c_right_0 + _c_right_0
WHERE ©l.endAngle in [-PI/3,-2*PI/3]
AND ©O.begAngle in [-PI/3,-2*PI/3]
SPECIALISATION OF CVXO

_c_rightO = _c_right{1.2) | _c_right_0

_c_right = _c_rightO + _c_right0
WHERE ®l.endAngle in [-PI/3,PI/4]
AND ©O.begAngle in [3*PI/4,-2*PI/3]
AND $dphi >= PI
AND above{©0.beg,@1.end) - 1
SPECIALISATION OF _c_right_

//---

_c_left_0 = SLS(0.8) I _c_left_(l.l)

_c_left_ = _c_left_0 + _c_left_0
WHERE ©l.endAngle in [3*Pl/4,PI/4]
AND ©O.begAngle in [3*PI/4,PI/4]
SPECIALISATION OF CCVO

_c_leftO = _c_left(1.2) I _c_left_0

c left = c lefto + _c_left0

132

WHERE ©l.endAngle in [-PI/4,PI/4]
AND ©O.begAngle in [3*Pi/4,-3 *pi/4]
a nd $dphi <= -PI
AND above(@1.end,®0.beg)
SPECIALISATION OF _C_left_

//--

i = i_start

i_start = rtail_left += vpoll_up += rtail_right
WHERE dist(®0.bottom,@2.bottom) < 20
ATTRIBUTES bottom = @0.bottom

top = @1.top

i_right = rtail_right | i_rightl | i_right2 | i_right3

i_rightl = XCusp += rtail_right
ATTRIBUTES bottom = @1.bottom

i_right2 = OCusp += XCusp += rtail_right
ATTRIBUTES bottom = @2.bottom

i_right3 = OCusp += vpoll_up += rtail_right
ATTRIBUTES bottom = @2.bottom

rtail_right_0 = SLS(0.8) | rtail_right_(l.1)

rtail_right_ = rtail_right_0 + rtail_right_0
WHERE ®l.endAngle in [PI/3,-2*PI/3]
AND ®0.begAngle in [PI/3,-2*PI/3]
SPECIALISATION OF CCVO
ATTRIBUTES bottom =

lowest(®0.bottom:®0.beg,@0.end,@l.bottom:®1.beg,®1.end)

rtail_rightO = rtail_right(1.2) | rtail_right_0

rtail_right = rtail_rightO + rtail_rightO
WHERE ®l.endAngle in [PI/2,-2*Pl/3]
AND ©O.begAngle in [PI/3,2*PI/3]
AND $dphi < 0
SPECIALISATION OF rtail_right_
ATTRIBUTES bottom =

lowest(®0.bottom:®0.beg,@0.end,@1.bottom:®1.beg,®1. end)

i_left = rtail_left += OCusp
ATTRIBUTES bottom =

lowest(®0.bottomree.beg,®0.end,@1.bottomr@l.beg,®1.end)
cusp = ®0.end
cuspAngle = ©O.endAngle

rtail_left_0 = SLS(0.8) | rtail_left_(l.1)

rtail_left_ = rtail_left_0 + rtail_left_0
WHERE ©l.endAngle in [-2*Pl/3,PI/3]
AND ©O.begAngle in [-2*PI/3,PI/3]
SPECIALISATION OF CVXO
ATTRIBUTES bottom =

lowest(®0.bottom:®0.beg,@0.end,®l.bottomr®l.beg,®l.end)

rtail_leftO = rtail_left(1.2) | rtail_left_0

rtail_left = rtail_leftO + rtail_leftO
WHERE ®l.endAngle in [-2*PI/3,-PI/6]
AND ©O.begAngle in [-Pl/2,PI/3]
AND $dphi > 0
AND left(®l.end,@0.beg)

SPECIALISATION OF rtail_left_
ATTRIBUTES bottom =

lowest(®0.bottom:@0.beg,®0.end,®i.bottom:@1.beg,®l.end)
//---

Idesc = ldesc_tail

ldesc_tail = ldesc_right += XCusp += ldesc_left
ATTRIBUTES bottom = @0.bottom

ldesc_left_0 = SLS(0.8) | ldesc_left_(l.1)

ldesc_left_ = ldesc_left_0 + ldesc_left_0
WHERE ©l.endAngle in [PI/3,PI/6]
AND ©O.begAngle in [PI/3,PI/6]
SPECIALISATION OF CCVO
ATTRIBUTES bottom =

lowest(@0.bottom:@0.beg,@0.end,@l.bottom:@1.beg,@1.end)

ldesc_leftO = ldesc_left(1.2) | ldesc_left_0

ldesc_left = Idesc leftO + Idesc leftO
WHERE ©l.endAngle in [-2*PI/3,-PI/3]
AND ®0.begAngle in [PI/6,-2*PI/2]
AND $dphi < -PI/3
AND above(®1.end,@0.beg)
AND left(®0.beg,®l.end)
SPECIALISATION OF ldesc_left_
ATTRIBUTES bottom =

lowest(@0.bottom:®0.beg,@0.end,@1.bottom:@1.beg,®l.end)

ldesc_right_0 = SLS(O.S) | ldesc_right_(l.1)

ldesc_right_ = ldesc_right_0 + ldesc_right_0
WHERE ®l.endAngle in [-5*PI/6,2*PI/3]
AND ®0.begAngle in [-5*PI/6,2*PI/3]
SPECIALISATION OF CVXO ATTRIBUTES bottom =

lowest(®0.bottom:®0.beg,®0.end,@1.bottom:@1.beg,®1.end)

ldesc_rightO = ldesc_right(1.2) | ldesc_right_0

ldesc_right = ldesc_rightO + ldesc_rightO
WHERE ®l.endAngle in [-5*Pl/G,Pl/3]
AND ®0.begAngle in [PI/3,2*PI/3]
AND $dphi >= PI/3
AND above(@0.beg,@1.end)
AND left(@1.end,®0.beg)
SPECIALISATION OF ldesc_right_
ATTRIBUTES bottom =

lowest (@0,bottom:®0.beg,@0.end,@l.bottom:@1.beg,®1.end)

//--

nm_top_0 = SLS(0.8) | nm_top_(1.1)

nm_top_ = nm_top_0 + nm_top_0
WHERE Sl.endAngle in [PI/3,-PI/2]
and ®0.begAngle in [PI/3,-PI/2]
SPECIALISATION OF CVXO
ATTRIBUTES top = topmost(®0 .top:®0 .beg,®0.end,@1.top:@1.beg,®1.end)

nm_topO = nm_top(1.2) 1 nm_top_0

nm_top = nm_top0 + nm_topO
WHERE Sl.endAngle in [PI/3,2*Pl/3]
AND ®0 .begAngle in [-Pl,-PI/2]

134

AND $dphi >= PI/2
AND left(@0.beg,@1.end)
AND above(@0-beg,®1.end)
SPECIALISATION OF nm_top_
ATTRIBUTES top = topmost (@0 . top:®0 .beg, @0 . end, @1. top: @1 .beg,@1. end)

nm_bottom_0 = SLS(0-8) | nm_bottom_(l. i)

nm_bottom_ = nm_bottom_0 + nm_bottom_0
WHERE ®l.endAngle in [0,-Pl/3]
AND ©O.begAngle in [0,-Pl/3]
SPECIALISATION OF CCVO
ATTRIBUTES top = topmost (@0 . top:@0 .beg, ® 0 . end, ®1 . top: ®1 • beg, ®1. end)

nm_bottomO = nm_bottom(l.2) | nm_bottom_0

nm_bottom = nm_bottomO + nm_bottomO
WHERE ©l.endAngle in [0,PI/2]
AND ©O.begAngle in [-2*PI/3,-PI/3]
AND $dphi <= -PI/2
AND left(®1.end,®0.beg)
AND above(®1.end,@0.beg)
SPECIALISATION OF nm_bottom_
ATTRIBUTES top = topmost(®0.top:@0.beg,®0.end,®1.top;®1.beg,@1.end)

//---

ni_top = nm_top += i_right
WHERE above(@0.beg,®1.end)
ATTRIBUTES top = ®0.top

bottom = ®1.bottom

ni_bottom = i_left += nm_bottom
WHERE above(@1.end,@0.beg)
ATTRIBUTES top = @1.top

bottom = @0.bottom

n_beg = vpoll_l //| n_conn

Letters:

letter = L_a | L_b | L_c | L_d | L_e] L_f | L_g | L_h | L_i | L_j | L_k |
L_L_ I L_m I L_n I L_o | L_p | L_q | L_r | L_s 1 L_t | L_u | L_v | L_w | L_x

I I
ATTRIBUTES colour = 255,0,0

baselineAngle= 0
x_height = @@.h * cos(baselineAngle)
slant = 0

//--

Ladl = i_left += c_left += i_right +& CntrO
WHERE connected(@0,@1,®0.end,@l.br:®1.beg)
AND connected(®1,®2,®1.tr:®1.end,®2.beg)
AND inside{@3,®0,®1,@2)
ATTRIBUTES flags = REGION, TRACE

*tr = ®2.end
*tl = ®l.tl
*bl = ®l.bl
*br = ®0.beg

Lad2 = c += i_conn
WHERE connected(®0,®1,®0.tr:@0.end,®l■tl)

135

AND connected(@0,®1,®0.br:®0.beg,®1.bl)
AND close (®0,@1,®0 . top_right) // -> not 'u'!
ATTRIBUTES flags = REGION, TRACE

*tr = ®l.tr
*tl = @0.tl
*bl = ®0.bl
*br = ®l.br

//----

L_a = Lai 1 La2
ATTRIBUTES label = a

Lai = i left += c_left += i_right +& CntrO
WHERE ®l.h >= ®2.h ~ $sigma
SPECIALISATION OF Ladl
ATTRIBUTES flags = REGION, TRACE, RESULT

La2 = c += i_conn
WHERE ®0.h >= ®l.h - $sigma
SPECIALISATION OF Lad2
ATTRIBUTES flags = REGION, TRACE, RESULT

//---

L_d = Ldl 1 Ld2
ATTRIBUTES label = d

Ldl = i left += c_left += i_right +& CntrO
WHERE ®l.h*1.5 < ®2.h ~ $sigma
SPECIALISATION OF Ladl
ATTRIBUTES flags = REGION, TRACE, RESULT

Ld2 = c += i conn
WHERE ®0.h*1.5 < ®l.h -- $sigma
SPECIALISATION OF Lad2
ATTRIBUTES flags = REGION, TRACE, RESULT

Words:
word = letter | connected_word

ATTRIBUTES tl = @0.tl
bl = ®0.bl
tr = ®l.tr
br = ®l.br
baseline = ®0.baseline
baselineAngle =

a v g (® 0 .baselineAngle,®!.baselineAngle,angle(@1.baseline,@0.baseline))
x_height = avg(®0.x_height,@l.x_height)
slant = avg(®0.slant, @1.slant)

connected_word = word += word
WHERE connected(®0,®1,@0.tr :®0.end,®1.tl)
AND connected(®0,®1,®0.br:@0.beg,®1.bl)
and ®0.baselineAngle = ®1 .baselineAngle ~ $sigma
AND angle(®1-baseline,®0.baseline) = ®0.baselineAngle - $sigma
a nd ®0.x_height = @l.x_height ~ 1
ATTRIBUTES flags = REGION, TRACE

