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Summary

T h is  tliesis in troduces  a novel m e th o d  for explain ing the  p red ic tions  of en 

sembles of artificial neural networks on a case liy case l)asis. C u rren t  research 

is ])riniarily d irec ted  towards build ing global m odel, t h a t  is, m odels  t h a t  fully 

describe all possible in p u t  conditions and  their  associated  ou tp u ts .  T he  a l te r 

na tive  case by case ajJi)roach is referred to as local exp lana tion . This thesis  

dem onstrates a 'process for performing local explanation.

T he  cu rren t  global approach  is considered ineffective due to  an im plic it  

t ra d e  oH' t h a t  nuist take place du r ing  its creation. T he  t ra d e  off is l)etweeu 

the  com prehensib ili ty  of the  rules and  the ir  fidelity to  the  original ensem 

ble i)redictions. In a dom ain  with poor coverage, th is  t ra d e  of!' m igh t be 

pa r t icu la r ly  de tr im enta l .

T he  local exp lana tion  approach  is accom plished by m odelling each of the  

netw orks as a  rule-set and  com pu ting  the  resu lting  coverage s ta t is t ic s  for each 

rule, given the  d a ta  used to  t ra in  the  network. Later ,  the  coverage s ta t is t ic s  

are  used to  choose the  rule or rules t h a t  best describe a p reviously unseen case 

u n d e r  investigation. This  approach  is based on the  ])remise t h a t  ensembles 

j)erform an  im])licit problem  space decom position, w ith  ensem ble m em bers  

specialis ing in different regions of the  ])roblem s])ace. Thus, the  exp lana tion  

of an  ensemble pred ic tion  involves explain ing the  ensemble m em bers  t h a t  

bes t  h t  the  case. A new rnetnc is ijitroduced, in this thesis, to assess this fi,t 

and hence rank the rules in order of importance.



In order to test the performauce and feasibility of the system, the k)cal 

ex])lanation process and rule ranking techniques were im])lemented in code. 

Ensembles with backi)ropagation neural networks [50] as members were used 

as tlie black box to be explained. The explanatory rules were generated 

using the c4.5rules package [47]. Backpropagation ensembles and c4.5rules 

are not the only possibilities, and other methods are also presented in the 

background chapters.

Two datasets were used during testing and an expert in each domain eval

uated the results. Both datasets were from the medical domain. The first 

datase t involved the j^rediction of which children disj^laying signs of bronchi

olitis should l)e adm itted  overnight to hospital. The second datase t involved 

the i^rediction of the Warfarin dosage to be administered to i)atients based 

on their i)rtn-ious history of taking the drug and their current symijtoins. 

Th(' bronchiolitis dataset represented j)00rer coverage of its domain than  the 

\\ 'arfarin  dataset.

The evaluaUon d em o n stra ted  that a sv,hset o f  the local expla.7uition’s top  

'ranked ‘rules fo rm ed  a concise and easily understood  explanation. F u r th er

more, in line with, expectations, the evaluatio ii  d em o n stra ted  that tJie local 

exp lanaiion  approach, is o f  par t icu lar  use in the m ore poorly  covered doma,i:n.
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Chapter 1 

Introduction

The i)reclictioii accuracy of neural networks and in i)articnlar neural network 

ensembles has improved, as a result of recent research, to the point th a t  they 

frefjuently outperform many traditional systems. Desi)ite this improvement, 

their ado])tion as a useful prediction tool in many areas has been slow to non 

existent.

"ilie reasons for this j)oor utilisation in the field of medical diagnosis, 

although the reasons are similar for other fields, is summarised in this in

troduction and further expanded throughout the thesis. This introduction 

also provides an overview of how the research described in this thesis can 

overcome these difficulties.

Medical datasets provide one of the richest sources of prediction prol)- 

lems ideally suited to prediction techniques. Medical staff could benefit enor

mously from systems th a t  could assist them  in diagnosing and understanding 

medical problems.

Theoretically, netiral networks could be used extensively in assisting in 

diagnosing a ])atient’s symptoms. Realistically, however, the black l)ox nature  

of neural networks i)recludes them from providing this assistance. Doctors 

are wary of relying on the unqualihed diagnoses returned by a conijjuter ju s t
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as people in general are wary of trusting any prediction (either from people 

or computers) w ithout an explanation. In addition, the presentation of a 

diagnosis in such a definitive form by neural netw'orks could lead the doctor 

to feel th a t  h is /her  role is being undermined or even usurj^ed. Providing 

an exi)lanation of the ou tpu t might improve confidence in the i^redictive 

cai)abilities of the system thus ensuring greater user acceptance.

In a more general context, the problem of lack of explanation may be 

even more critical. For instance, use of a neural network in au tom ated  safety 

critical tasks may be impossible, if operatioti of the network cannot l)e veri

fied.

To achieve the goal of using neural networks in medical research it is 

therefore necessary to:

•  Take advantage of ensembles of neural networks to provide i)redictions 

th a t  are as accurate as possible.

•  Provide comi)rehensible explanations for the user of the ou tpu t of the 

ensemble.

•  Present exi)lanations to the user, such as a doctor or other iHofessioual 

user, in such a way th a t  the information presented may be used to 

complement h is/her ])rofessional experience and judgem ent and not to 

replace it.

This thesis addresses each of these issues in turn  and provides ])ossible solu

tions.

This thesis also views the goal of providing coherent explanations for 

ensemble operations from a somewhat different angle, than  most current 

literature in the area.

13



Most researchers have focused on producing models of an entire phe

nomenon. These models will be referred to here as “global models” . The 

aim of these global models is to produce a comprehensible form th a t  pro

vides ai)proi)riate outputs  for all possible variations of inputs. This type of 

model is useful for explaining many types of problems.

For exami)le, a doctor involved in providing “In Vitro Fertilisation” (IVF) 

is more likely to be a specialist in this area. A global model can aid in the 

doctor’s understanding of the domain to the fullest extent by summarising 

all of the conditions under which IVF will be successful or unsuccessful. The 

global model may also help provide new insights into the domain. F urther

more, the global model may helj) doctors allocate scarce hospital resources 

to those cases where they will be of most benefit.

In ])ro(lucing these models, there is an implicit trade-off between compre

hensibility and fidelity:

• Coniprehtmsihility is an estimation of the understandability  of the model.

• Fidelity is a measure of how closely the derived model predicts the 

same outputs  as the the original model.

Simplifying a complex model (e.g. by pruning a decision tree) to make it 

more comprehensibile may result in a loss of fidelity, i.e. the derived m odel’s 

capacity to exj)lain the original network diminishes.

Glol)al models nnist balance carefully these two im portan t characteristics.

The a])proach taken by this thesis is th a t  these global models are not 

always appropriate. The inherent comi)rehensibility/fidelity trade-off may 

result in the wasting of im portan t information. Furthermore, a global model 

is wasteful in situations where the users do not have the luxury of time to 

study the model and become exj)erts in the particular domain.
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An example of a setting like this would be the busy accident and em er

gency ward of a hospital. Doctors here are concerned with the quick diagncxsis 

of patien t symptoms and less with the mimitiae of a problem domain. In this 

situation, alternatives to a global model may be more useful.

The alternative aj)proach will be referred to as local explanation. Local 

explanation can be seen as on-demand explanation. For each individual 

prediction made by the ensemble a tailored explanation is produced th a t  

best exi)lains it in terms of the input features. Delaying the production of 

an explanation like this allows the system to use all available d a ta  for every 

prediction. Tailoring the explanation according to the symj)toms displayed 

ensures th a t  the most appropriate explanation is output.

This thesis takes the approach of displaying a nimiber of j)Ossible expla

nations in order to ensure th a t  these local explanations act to complement 

the d oc to r’s reasoning.

global model can only provide a single explanation. This exi)lanation 

may fail to cai)ture all of the details of the prediction. This could be due 

to the comprehensibility/hdelity trade off encountered in its production. If 

there is more than one regularity in the d a ta  th a t  exj^lains this prediction 

the glol)al model may also fail to show this.

The local exjilanation approac:h of displaying several rules a t once, over

comes these difficulties. Because tlie rules explaining the prediction are not 

chosen until the last moment no details are lost as a result of comprehensibil- 

ity /hdelity  trade-offs. Also, the approach of displaying several rules at once 

means th a t  different regularities explaining the prediction th a t  were captured 

from the diverse ensemble members (that correctly predicted the result) can 

also be dis])layed.

The local a])proacli may actually i)roduce many more possible explana-
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tioiis than  are to be displayed. To overcome this, the rules are ranked using 

a novel ranking technique developed as part of this thesis. This technique 

allows rules to be selected as predictive with increased confidence even if 

the coverage of th a t  rule on the training da ta  is poor (this problem is often 

known as the small disjunct problem [35]).

The doctor can now decide on the validity behind the logic in each rule 

and thus the overall validity of tlie ensemble prediction itself.

1.1 Contributions of this Thesis

The princij^al contriljutions of this thesis to an understanding of explaining 

ensembles of neural networks are:

•  Demonstrates a process for exi)laining outputs  on a case by case basis.

•  Demonstrates an evaluation of the case by case basis to explanation 

th a t  shows th a t  local explanation is of particular use when the da ta  

coverage is j)oor.

• D emonstrates and introduces a new measure for determining the fit of 

an example to a rule.

•  D emonstrates th a t  a sul)set of rules ranked using the calculated rule fit 

forms a concise and easily understood explanation.

1.2 Structure of Thesis

The thesis begins with an overview of many of the current machine learn

ing algorithms th a t  are relevent to the goal of explaining neural network 

ensembles.
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Cliai)ter 2 explains backpropagation  neural networks wdiich are  the  n e t 

works used in the  Iini^leinentation section of th is  thesis due  to  the ir  proven 

track record [58, 53] (although  o ther  network types  could also be used). 

C h a p te r  3 presents  m ethods  for b o th  c rea ting  ensemble j^redictions and  com- 

l)ining th em  to  o b ta in  the  best results.

T he  first ha lf  of C h a p te r  4 covers decision tree  a lgorithm s, while the  

second ha lf  concen tra tes  on algorithm s th a t  can learn rules directly. T he  

purj)ose of th is  cha[)ter is tw'ofold. Firstly,  th e  m e th o d  chosen to  explain  

ind iv idual neural networks is to  build a m ore com prehensible  learner, e.g. 

a decision tree, to  model the  neural netAvork by using d a ta  t h a t  has been 

labelled l)v the  network. Any of the  m ethods  presented in t h a t  c h ap te r  

can be used to  do this. Secondly,  the  m e th o d  proposed for the  exp lana tion  

of ensembles of neural networks can in fact be generalised to  explain  an 

ensem ble of rules. T he  choice of which m eth o d  to  use is left entirely  to  the  

m odeller. T h is  choice could be guided by personal preference, perfo rm ance  

on p a r t icu la r  d a ta  or availability  of existing code or t im e to im p lem en t a 

HK'thod (a m odu la r  system  could swaj) one rule learner w ith  a n o th e r  w ith  

l it lle  troubk ; la ter  if required).

Chai)ter  5 looks a t  existing s tra teg ies  for explain ing ind iv idual neura l  

networks. Th is  cha])ter concludes w'ith a  look a t  w ha t  l i t tle  research has 

be('n done to  d a te  on the  i)roblem of explain ing ensembles.

C h a p te r  6 ])resents a solution to  the  problem  of exp lana tion , focusing on 

neural netw orks l)ut including a note  on using pure  rule based ensembles.

C h a p te r  7 outlines a brief descrip tion of the  solution im plem en ta tion .

C h a p te r  8 includes an evaluation  of the  m eth o d  in two dom ains  by experts  

in each dom ain .

C h a p te r  9 concludes the  thesis, draws conclusions and  presents  sugges-
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tions for future work.
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Chapter 2 

Neural Networks

Artificial neural networks are developing rapidly in the field of machine learn

ing. Already they have dem onstrated [58, 53] th a t  they generalise well for a 

broad array of both classification and regression problems. The fundamental 

idea driving the develo])ment of neural networks is to model the operation of 

the neurons in the l)rain.

Neural network units are interconnected by weights (similar in function 

to the axon and dendrites in the brain). Firstly, the to tal signal received by 

a unit is scaled and propagated to all connected units. Secondly, the signal 

reaches some outj)ut units th a t  trigger a physical reaction. The ou tpu t from 

a simpler artificial neural network could similarly be used to control some 

reaction, e.g. in a robot, bu t more often the ou tpu t is simply ou tpu tted  for 

use by the user.

Stepping up from their most basic structure, the overall function of these 

units is to partition  the input space into separate regions. The ou tpu t 

strength  varies across regions and is either directly interpretable in the case of 

regression j^roblems or can be rnajiped to a class for classification problems.

This representation of the search space is very powerful. W ith  the addi

tion of more units in the hidden layer of a typical back propagation neural

19



net,work, the network can be trained to api^roxiniate any contiinious function 

to any degree of accuracy [36]. In practice, however, this is rarely feasi

ble. The d a ta  available for training frequently represents only a subset of 

the entire function. Introducing many more hidden units for training in

volves tuning many more imrameters in the network and these param eters 

are likely to overfit the available data. By this it is meant th a t  the network 

will lose its ability to generalise to new instances.

The power of neural networks comes with a heavy cost, however, their 

operation is cjuite opaciue. It is imi)ossible for even an experienced user 

to visualise the regions (hyperplanes in the case of backproi)agation neural 

networks) separating the different outputs. Neural network oj)eration has a t 

tracted  the black box moniker for this oi)aque behaviour. Chapter 5 presents 

an overview of research th a t  tries to exj^lain the predictions of neural net

works.

Section 2.1 of this chapter will look at backpro})agatiou neural networks. 

Some other issues tha t must be taken into accotuit in neural netw'orks are 

discussed in Section 2.2.

2.1 B ackpropagation N eural N etw orks

2.1.1 Structure
Single Layer N etw orks

For simi)le learning tasks, it may be sufficient to use a single layer neural 

network. T h a t  is w'here input units are connected directly to a layer of 

ou tpu t units. Every input neuron is connected to every ou tpu t neuron. A 

diagram of such a network is given in hgure 2.1

Although sufficient for simple learning tasks, few real world problems 

can be modeled satisfactorily with a network like this. This problem was

20
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Figui'e 2.1: Single layer neural network 

Table 2.1: X O R  tru th  table
;ci O u tp u t
0 0 0
0 1 1
1 0 1
1 1 0

h igh ligh ted  d ra m a tica lly  by M insky &  Papert in the ir 1969 book Percejjtrons 

[42]. In  th is  book, they dem onstrated th a t a single layer neural netw ork was 

incapable o f learn ing even the sim ple X O R  logical function . The problem  is 

th a t the class ou tpu ts  o f th is  function  are not linea rly  separable. The tru th  

tab le  fo r th is  function  is set ou t in  tab le  2.1 and the problem  o f sepa rab ility  

is easily seen in  the d iagram  in  figure 2.2. No single line can be drawn to  

separate the o u tp u t classes.

In  m athem atica l terms, th is  problem  can be seen as follows. The re

sponse o f the o u tp u t o f a single layer neural network is t j i n -  T h is  response 

is determ ined by the inputs  and the weights connecting these inpu ts  to  the

O U t])U tS .

I j i i i  ̂^
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Figure  2.2: G rap h  of logical X O R  function

T he  decision l)oundary  for th is  in p u t  is de te rm ined  by the  relation;

De])ending on the  num ber  of inpu ts  in the  network, th is  equa tion  rep re

sents a line, p lane or hyperplane. In the  case of the  XOR problem , there  are 

two ini)uts and  the  region of jjositive classes is se])arated l)y the  region of 

negative classes by the  line:

For two in p u t  problem s such as logical A N D and  OR, functions there  

are  m any  values of b, 'ui[ and  u ’2 t h a t  will sej^arate these classes. For X O R 

howev('r, th is  is no t possil)le.

T he  answer to  th is  problem  was known and  lay in using m ore th a n  a 

single layer in the  network. T he  problem  now was how' to  u p d a te  the  in te r 

connecting  weights in a nuiltilayer netw'ork.

After the  in itia l  hype surround ing  neural networks, th is  discovery led to  

the  s ta g n a t io n  of the  field for m any  years.

M ulti-L ayered N etw orks

W’erbos [C6] in 1974 was the  first to  suggest a  solution to  the  p roblem  of 

u p d a t in g  weights in a  m ultilayer neural netw'ork. Th is  solution was no t

lUi b
:i>2 =  - I ' l --------------

W2 UI2
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highly pul)licised, however, and as a result neural network research slowed 

down throughout the 1970’s. It wasn’t until the mid 1980’s when Le Cun 

[38] independently solved the problem followed closely by R um m elhart et al. 

[50], who refined and further publicised LeCuns work th a t  backpropagation 

networks came of age.

The solution to the problem was, th a t  when backpropagating the error 

in order to update  the weights, the first derivative of this activation function 

shoukl be used to find the direction of the minimum error. This is the 

direction in which weights should l)e updated.

Good candidates for activation functions include the sigmoid, bipolar sig

moid and hyperbolic tangent functions. These ftuictions all have the common 

tra i ts  of being continuous along their operating range. A useful tra i t  of these 

functions is tha t their first derivative has a simple relationshij) to the original 

function out])ut thus decreasing the com putational burden during training. 

In general, any differential function th a t  has an approi)riate range for the 

ta rge t values should be acceptable for use in backpropagation training. 

Thresholding functions are only useful for categorical outputs.

2.1.2 Training

Certain  conditions nuist be met with regard to the initial setup of the network 

and the d a ta  to be used for training, before training of a neural network can 

begin.

To train  a neural netw'ork a numl)er of j^arameters should be set, these

are:

•  N umber of hidden units

•  Learning Rate
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•  Moineiituiii Rate

•  Initial weight values

•  Stopping criterion

There are no rules for automatically setting these values to the optirrnim 

values and hence tuning these values is somewhat of a black art  based on 

rules of thum b and user experience.

The number of hidden units will determine the complexity of the function 

thaL the neural network will learn. The number of units actually used nmst 

be carefully controlled. Too few units and the netw'ork will be unable to fit 

the learning da ta  and the bias will be high; too many units and the bias may 

be low, the training is likely to take significantly longer and the network may 

overht the training data.

The learning rate determines the proportion of the weight change as calcu

lated by the learning algorithm th a t  should be added to the original w'eights.

If the d a ta  has many outliers, a lot of noise or even wrong feature val

ues/class outputs, it is preferable not to make dram atic  changes of direction 

in th(' weight values. M omentum takes care of this by adding a j)roportion of 

the previous weight change(s) in addition to the usual proportion S])ecified 

by the learning rate. Training can proceed reasonably quickly as long as 

patterns are in the same direction, while still using a smaller learning rate to 

prevent a large response from any single training pattern.

W'hen initialising a backjn'opagation neural network, it is preferable to 

initialise the weights to  small random values. In this way, the activation 

functions are unlikely to reach sa turation and cause small weight updates 

initially th a t  will decrease the speed of learning.

Th(' d a ta  should also be adecjuately prepared before s tart ing  to train
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a backpropagatioii neural network. There are two particularly important 

points here.

Firstly the data  should be normalised, this helps even out the effect of 

data  points having different ranges in the activation functions.

Secondly, any symbolic features in the data set should be replaced by a 

inimber of units corresi)onding to the number of possil)le feature values, with 

the constraint tha t only one unit may be active in an example. Alternatively, 

if the number of possible values of the symbolic variable is large, a gray code 

may be used to encode the values of the symbolic feature. An appropriate 

number of units (log^ N,  where N  is the luimber of feature values) should 

then be added to the network to receive the code.

Finally, if there is a skewed class distribution, the minority class should 

be cojiied to make up the difference in numbers and/or the majority class 

should be reduced in size. This will avoid the network Ijeing biased toward 

any class tha t may have been seen more often during training.

The backpropagation neural network training algorithm(as described in 

[25]), is given l)elow. The variables in this algorithm corresi)ond to those 

marked in Diagram 2.3. The variables z J n  and y J n  not marked on the 

diagram correspond to the unsealed inputs to the hidden and outj)ut units 

respectively. The function /(•) is the activation function, used for scaling the 

units outputs, a  is the learinng rate being used.

S te p  0: Initialise weights. (Set to small random values).

S te p  1: While stopping condition is false, do Steps 2-9.

S te p  2: For each training pair do Stej)s 3-8.
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Figure 2.3: Multilayer backpropagation neural network 

Feedforward

S te p  3: Each input unit { X i , i  =  receives input signal

to all units in the layer al)ove(the hidden units).

S te p  4: Each hidden unit { Z j , j  =  1 , . . . , ] ) )  sums its weighted 

ini)ut signals,

applies its activation function to compute its outjjut signal.

and sends this signal to all units in the layer above(output 

units).

S te p  5: Each ou tpu t unit(lfc,A; =  l , . . . , m )  sums its weighted 

input signals.

71
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and a])plies its activation function to compute its output sig

nal,

Vk =  f { y - i n k ) .

B ackp ro p a g a t io n  o f  e rror

S te p  6: Each output unit(V/;, A: =  1 , . . . ,  n)) receives a target pa t

tern corresponding to the input training pattern, computes its 

error information term,

k  = {tk-  yk)f'{y-ink), 

calcuhites its weight correction term(used to update ’Wj). later),

calculates its bias correction term(used to update lUok later),

A'û ofc =  n ^ k - i

and sends to units in the layer below.

S tep  7: Each hidden un it(Z j , j  =  1, . . . , / ; )  sums its delta in-

l)uts(from units in the layer above),
k = i

S.m, =  ^  SkWjk,
rn

nuilti])lies by the derivative of its activation function to cal

culate its error information term,

6 j  =  S J 7 i j f ' { z J r i j ) ,

calculates its weight corrections term(used to update Vij later),

and calculates its bias correction terni(use to update v ĵ later),

A vqj =  a S y
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Update weights and biases:

Step  8: Each output uiiit(Vfc, A: =  1, . . .  ,m) updates its bias and 

weights(j = 0 , . . . , ; ; ) :

tOjkinew) =  iUjk{o\d) + Awjk

Each hidden nni t {Zj , j  = 1, . . .  ,p) updates its bias and weights 

(z =  0 , . . .  ,n):

?;,j(new) =  Uij(old) +  Avij.

Step 9: Test stopping condition.

2.1.3 Execution —  Steps 3 -5

Execution of the networlc is very fast. It conij^rises the feedforward section 

of the training algorithni only. The initial values of the example to l>e tested 

are passed to the input units(Step 3). These values are propagated to the 

hrst hidden layer and these units api)ly an activation function(Step 4). Next 

these hidden outputs are passed to the output layer. The output units also 

a])ply an activation function to the outpnts(Step 5). Finally, the result can 

b(‘ read l>y the user.

In the case of a backpropagation neural network having more than a 

single hidden layer, the outputs of the first hidden layer(Step 3) are passed 

into further hidden units and are again dealt with like Step 3, until the output 

units are reached and Stej) 4 is execiited.

2.1.4 Training —  Steps 3 -9

The training of a backpropagation neural network comprises the execution(Steps 

3-5), l)ackpropagation of error(Steps 6-7) and updating of weights(Steps 8- 

9) and finally a stopping condition is checked(Stej) 9).
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The network first executes the training data. This allows the network to 

assess the training error. This error is typically measured using the squared 

difference between the predicted value of the network and the true  func

tion value. W ith  an error calculated, the network can begin the process of 

backpropagating this error in order to adjust the value of the weights in the 

network.

Adjusting the value of the weights allows the formation of hyperplanes 

used to divide the input s])ace into regions th a t  predict different ou tpu t 

classes.

Two changes often made by practitioners to the basic backpropagation 

algorithm (lescril)ed above are tha t,  firstly, weight ui)dates are often done

in batches, this has the property of smoothing the u])dates and means the

weights make more precise jum ps and do not vary greatly during training. 

The Second change is the inclusion of a momentum parameter. The effect of 

this i)arameter has been (lescril)ed already. The revised weight updates  now 

ar(>:

Aw.jk(t + 1) = aS,,Zj + ii['U)jkit) -  Wjk[t -  1)]

+  1) =  nSjX,  +  li\vij{t) -  Vij{t -  1)]

2.2 C onsiderations w hen Training N eural N e t
works

2.2.1 Overfitting

W hen training the data, it is also necessary to ensure th a t  training is stopped 

when the network reaches the minimum generalisation error. T h a t is, net

work training should l)e term inated a t the point where it has reached the
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Figure 2.4: Graph of training and generahsation error

oi)tiniuni i)oint of learning. The optimum point of learning is where the 

network has reached a trade-off between learning the training examples and 

retaining the ability to ou tpu t aj)propriate values for unseen examples. The 

jjoint where training should be sto])ped is shown graphically in Figure 2.4 

In the gra])h in Figure 2.4, it is clear th a t  the ‘in sanii)le’ error(i.e. the 

training error) contiinies to fall while the generalisation error falls for a time, 

until th(' network reac.hes a point where it begins to overfit the training 

da ta  and hence gradually loses its ability to correctly predict the outputs  

for unseen cases. Checking these errors is straightforward during training, a 

validation set can bo used as an estimate for this generalisation error. Before 

training commences, the d a ta  should be S])lit into two sets, a training set 

and a validation set. D ata th a t  appears in the training set should not appear 

in the validation set. The network is trained using the training set and the 

error on this d a ta  is com])uted by executing th a t  network with the d a ta  after 

(n'ery e])och(or a preset number of epochs), this is the training error. After 

com puting the error on this training data, the network is then executed on 

the validation set. The error on the outputs  predicted by the network is 

taken as the generalisation error. Every time this error falls to a new mini-
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inuiii the network should be saved as the point of niaxirnuin generalisation. 

Once this error rises for a preset number of e])ochs or the training reaches 

a preset maxinnim number of epochs, training should be stopped and the 

saved network should be returned as the “best” network.

2.2.2 B ias & Variance in N eural Netw orks

Tlie final consideration when training neural networks is to balance the errors 

due to bias and variance. These two errors are not independent, reducing one 

will cause an increase in the other. In short, a network fitting the training 

data  closely will have a low bias but a higher variance, while a netw^ork with 

a low'er variance will lead to a decrease in the fit of the training data. For 

optimal learning it is necessary to l)alance both of these factors.

The bias/variance dilemma was studied in some detail by Geman et al. 

[30]. In this paper, the authors show in detail the bias/variance decomposi

tion of mean-S(iuared error. This is of particular interest for backproi)agation 

nc'ural networks as this is the most used error function for these networks.

E(iuation 2.1 shows the breakdown derived by Genian et al. for the mean 

scjuared error.

( / ( x ;P ) - i ? p [ / ( x ;P ) ] ) 2  

( 2 . 1 )

The bias and variance of this ecjuation are averaged over the possible 

training sets V.  The function / ( x ; P )  is the prediction of the network on an 

example x  given the network trained on the set T>. The desired response is

y-

The left hand side of this equation is the mean squared error fornmla, 

measuring the S(}uared distance from the function /  (the neural network)
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to the regression E[y\x\. This vahie is then averaged for the set of possible 

training sets V.

On the right the first part of this equation measures the bias. The bias 

can be thought of as the average distance of a network function /  trained 

on a set of data V  from the true regression for the same inj^ut x. If on 

average there is a big difference, the bias is said to be large. In general, this 

will depend on the probability distribution P  of the data  and how T> reflects 

this distribution. The same network may be biased in some cases but not in 

others.

The second part of this equation on the right hand side measures the 

variance. This measures the average distance of a network /  trained on a set 

of data  D from the average distance of other networks trained on different 

sets of data.

\  ariance for a single network can be controlh'd by combining examples 

tha t are nearby in the in])ut si)ace. However, this will ty])ically increase 

the bias of tha t network, as details of the regression are lost, e.g. peaks and 

valleys art' blurred. Bias for a single network can be controlled by introducing 

more hidden units into the network. This has the effect of increasing the 

complexity of the function that the neural network can learn. It is, however, 

likely to increase the variance significantly.

Therefore, to achieve a low error, it is necessary to reduce both the bias 

and the variance components. Typically, reducing one of these will cause an 

incr('ase in the other. This is commonly known as the l)ias/variance trade-off.

For more functions displaying the same flesirable ])roperties of the mean 

squared error studied by Geman et al., see Hansen & Heskes [34].
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Chapter 3 

Ensembles

Recent research in m achine learning and, in part icu la r ,  neura l  networks has 

begun  to  ex])loit the  power of t ra in in g  m ultip le  learners to  ap p ro x im ate  the  

sam e  function. These nuiltiple learners, collectively known as an  ensemble,  

were first in troduced  l)y Hansen & Salam on [32], By com bining  the  pred ic

tions from these learners, it is possible to increase the accuracy  of the  p re

d ictions  and  in the  process reduce the instab ility  of predictions. In stab il i ty  

ref('rs to  the  phenom enon  whereby two neural networks t ra ined  to  a pp rox 

im a te  the  sam e function m ay ac tua lly  o u tp u t  very different results  for new 

exam ples, de])ending on the  initial conditions and  the  t ra in ing  j)aram eters  

used.

It  is in te res ting  to  note  th a t  a lthough  the  idea of com bining  m ultip le  

macliine learners  is relatively recent, the  increased accuracy ob ta inab le  from 

a co m m it tee  of experts  is not. As long ago as 1784, the  M arquis  of C ondorce t  

])ut forw ard the  theorem , now known as the  C ondorcet Ju ry  T heo rem  [18]:

“If each voter  has a proba,hi,lif4j  p  of being correct and the proba.bility of a, 

ma'jority of  voters  being correct is M , then p >  0.5 implies M  >  p. In the 

l imit  M  approaches 1, for  all p  >  0.5 as the number of  voters approach,es 

infimty.  ”
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A more accessil:ile mocierii reference for this theorem is Nitzan and Paronsh 

[44]. The first part  of this theorem is not controversial, it is easy to show 

th a t  if a new committee member makes correct decisions more than  half of 

the time and makes different mistakes to the rest of the com mittee then the 

performance of the committee will improve with the addition of tliis new 

member. However, in practice the second claim is unlikely to be true. A 

very large committee will not, in practice, be right all of the time. It will 

not be j)ossible to find new members th a t  will increase the diversity of the 

connnittee; instead their voting behaviour will be collinear with some exist

ing members of the conunittee. Ty])ically the diversity of the ensemble will 

plateau as will the accuracy of the ensenil)le a t some size between 10 and 50 

members.

In order to get the l)est possible results from an ensemble, it is preferable 

th a t  a large degree of diversity exists among the members of th a t  enseml)le. 

T h a t  is, the members should all be experts in localised areas of the input 

sijace. The reason for this is (juite simple. If all of the members either predict 

the same answers or are all (^xperts in roughly the same area of the input 

space, then the existence of more than  one such learner does not supply 

any more information than  a single network alone. Methods of introducing 

diversity into these learners are outlined in section 3.1.

There are several methods available for combining the results. A few of 

these have been chosen and are outlined in section 3.2.

3.1 Training M ultiple D iverse Learners

\ \ ’hen train ing an ensemble of networks, it is necessary to tra in  each of the 

networks with the goals of an ensemble in mind. In particular, the bias vari

ance trade-off described in Section 2.2.2 is imi)ortant. It may make more
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sense to think of this trade-off in terms of the error/ambiguity model de

scribed first by Krogh &: Vedelsby [37].

Krogh & Vedelsby’s foriinila for describing the error/ambiguity of an en

semble is derived in full by Zenobi [67]. In their decomposition they ex]:)ress 

the bias and variance components of the ensemble error as the weighted en

semble error and the ensemble ambiguity (diversity). Their equation relating 

these variables is given in Equation (3.1) where E  is the ensemble error, E  

is the weighted ensemble error and A is the w'eighted ambiguity measure.

E = E - A  (3.1)

Instead of expressing the averages for error and ambiguity over different 

training sets, Krogh & Vedelsby use the weighted averages over the ensemble. 

If th(' enseml)le is strongly biased the ambiguity will be small, because the 

networks implement very similar functions and thus agree on inputs even 

outside the training set. A larger variance betw'een the networks will make 

the ambiguity higher and in this case the generalisation error will be smaller 

than the average generalisation error.

There are several methods connnonly used to introduce this ambiguity 

into ensembles. All of these methods work to some degree by skewing the 

number or type of examjiles being presented to the individual networks during 

training. The methods j)resented below include:

• Section 3.1.1 - Bagging

• Section 3.1.2 - Boosting

• Section 3.1.3 - Cross validation

• Section 3.1.4 - Feature Subsets
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By skewing the distribution of examples being presented to each of the 

networks using one of these methods, the networks training should be con

centrated  on different examples to other networks in the ensemble. In this 

way, the ambiguity can l)e increased between networks as they will make 

mistakes in different areas of the input space. This is equivalent to adding 

more members to the Marquis de Condorcet’s committee who have differ

ent opinions and hence make different mistakes thus increasing the overall 

i:>redictive accuracy of the committee.

3.1.1 B agging

Bagging, short for “boots trap  aggregating” , was introduced by Breinian [10]. 

The first part  of bagging is the process of t)00ts trapping the input examples. 

Bootstrai)ping is a popular statistical technique of sampling a datase t with 

replacement [10], When sampling N  times from a dataset of size N,  approx

imately 63% of the examples will be chosen a t least once. This set of d a ta  

is then used as the training da ta  for the chosen machine learning prediction 

algorithm. In the case of neural networks, the remaining d a ta  can be used 

to prevent overhtting during training. In bagging, Breinian suggests using 

an average as the method for combining the results. Averaging is covered in 

more detail in section 3.2.1.

3.1.2 B o o st in g

The original work on boosting was performed by Schapire [51]. The basic 

idea behind this work is to build a weak learner using the available d a ta  and 

using an equal i)robability for the selection of each example in the data . Once 

this learner has been built the probabilities of the examples in the datase t 

are adjusted so th a t  the more difficult examples are more likely to be chosen.
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One of the most popular implementations of this method is th a t  used by 

Freund & Schapire [26]. This is outlined in detail below:

The initial weights of each example in the training are set as uniform, i.e. 

Di{t)  =  jf ,  where N  is the total number or training examples. The objective 

now is to minimise the weighted error:

Cf, =  /  g,) (3.2)
i

where /  is the indicator function, lit is the current hypothesis and (ji is the 

true goal class.

If ^  2 ’ ou tpu t with T  = t — 1.

Otherwise set:

n^ =  log  ---- ^  (3.3)

and finally update  the distribution of weights on the training set:

A + i( '0  =  A (*)e  (3.4)

where Z/ is a normalisation factor (chosen so th a t  A + i  is distribution). 

The final ou tpu t classifier H{x)  is:

I I ( x)  = (ITg nmx  f  {x , g) = a r g m a x  ( > nt l {ht {x)  = g ) ) (3.5)
qec ' ' ' V ^ ^  ' /t=l

Diversity is thus built into the models during construction by virtue of 

the fact th a t  each model focuses its training on different examples.

Boosting does raise an overfitting problem. Particularly noisy d a ta  could 

train  some of the models on bad data. These models would provide very 

inaccurate predictions leading to an overall reduction in the accuracy of the
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ensemble. The i)ioblem of overfittiiig using boosting and in i)articular the 

AdaBoost method is raised in MacUn & Opitz [39].

3.1.3 Cross Validation Ensem bles

K-fold cross validation relies on sj^litting the available data, D,  for training 

into a total of K  sets, Di, D 2 , . . . ,  D^. This approach is used by Krogh & 

Vedelsby in their paj^er analysing the bias and variance components of neural 

networks in terms of error and ambiguity [37].

A total of K  networks are then trained on these sets, each time using all 

but one of the sets(D D^) as training data  and using the remaining set(Dk) 

for testing the generalisation error of the network during training and thus 

overhtting.

K-fold validation makes good use of the available data  and introduces 

reasonable diversity as long as all of the sets are a fair rei)resentation of the 

data  distribution.

3.1.4 Feature Subsets

A rc'cent method used to introduce diversity into ensemble members involves 

training each member using a different feature mask [68]. Each mask is a 

boolean string with a length ecjual to the number of features in the training 

data. In this string I ’s correspond to features that should l)e used in the 

training of a network and O’s correspond to features that should be omitted.

The masks axe produced using a wrapper method. The wrapper method 

a])proach involves estimating the “goodness” of each mask with respect to 

the bias of the individual network type. A summary of the mask production 

algorithm as described in [21] is shown below:

1. Generate a random mask and estimate its generalisation error using
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cross validation.

2. S ta r t  i te ra t in g  th rough  the  m ask

3. F lip  the  cu rren t b it  of the  m ask and  es tim a te  the  genera lisa tion  error 

of the  new m ask  using cross va lidation

4. If th e  new m ask  has a lower error th a n  the  previous m ask, th e n  accept 

this bit Hi]), otherwise reverse the  flip and  re ta in  the  orig inal m ask

5. Tf the  end of the  m ask has no t been reached then  continue  from  Stej) 3

C. If no bit Hips have been accepted then  o u tp u t  the  cu rren t  m ask  as 

oi^tinuun, o therwise continue from Step 2

A m ore  conij)lex varia tion  on th is  a lgorithm  is described by Zenobi [68]. 

In this varia tion , Zenobi describes how fea ture  subsets  can be found  th a t  

m axim ise  the  to ta l  aml)iguity in the  ensemble.

T he  a lte rna t ive  to  the  w rapper  approach  described al)Ove is to  s im ply 

use ran d o m  masks. R andom  m asks do help to  in troduce  diversity, b u t  a t  the  

cost of h igher error. A good wrapi)er techniciue should  on average out])erform  

random  masks.

3.2 Combining results

Once an ensernl)Ie of networks is t ra ined , the  results  from each netAvork m ust  

1 ) 0  com bined  so as to  present a single result to  the  user.

For classification tasks, the  s im plest m ethod  is to  sim ply vote  a m o n g  the  

networks, w ith  th e  m ajo r i ty  c;lass declared as the  j^redicted class.

T he  i)roblem is som ew hat m ore difficult for regression tasks. T h e re  are a 

large varie ty  of m ethods  to  combine regression results , each w ith  p a r t icu la r
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strengths. Three of these niethocis, averaging, linear regression and principal 

components regression are detailed below. A brief description of the ])roblems 

solved by these methods is included for clarity.

3.2,1 A veraging

Averaging results is the method used by Breirnan in his paper on bagging [10]. 

Perrone & Cooper [45] also make reference to this techni(}ue which they call 

the Basic Ensemble M ethod ( “BEM ” ). Averaging works by assigning equal 

weights(l/iV, where N  is the total number of networks in the enseml)le) to 

the predictions of each neural network in the ensemble.

1

1 = 0

3.2.2 Linear R egression

Linear regression has been independently studied by several researchers, [45, 

33].

Perrone <k Cooper refer to their method as the Generalised Ensemble 

M ethod(GEM ). In this method they minimise the mean sfjuared error in 

order to set the weights, ai, with respect to the target function f { x ) .  The 

formula they suggest for calculating these weights is shown in Eciuation 3.7.

rv, =  (3.7)
Ylk '^ j ^kj

In this formula, the defines the correlation matrix:
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The m i { x )  above are defined as the difference between the true value of 

the function and the value predicted l)y network i,  i.e. f { x )  — f i { x ) .

ft is im portan t to note th a t  the columns in the Ci j  m atrix  should be 

uncorrelated. Correlation between columns will lead to the m atrix  being 

unstable when inverted. To avoid this problem they suggest dropping all bu t 

one of any correlated grouj) of columns. This should not result in a great 

loss of accuracy. The ]:)robleni of correlated columns is dealt with again in 

Section 3.2.3.

The weights produced by Perrone & Cooper will be subject to the con

stra in t =  1- lu the more general case of linear regression, this

constraint is not applical)le.

3.2 .3  P rincipal C om p on en ts  R egression

Principal Components Regression(“P C R *” ), was developed by Merz & Paz- 

zani [40], PCR* was developed with the goal of eliminating the j^roblem 

of colliuearity of networks while still predicting weights th a t  j)rovide a high 

levc'l of accuracy. Collinearity can lead to very unstable matrices when in

verting matrices, an unavoidable step when using any linear regression i)ased 

method.

Merz & Pazzani identify three methods for reducing the problem of collinear

ity. They are;

•  Train models to have uncorrelated errors by adjusting the bias of the 

learning algorithm.

•  Use a gradient descent technique for setting the weights.

• Use a linear regression method with constraints on the possible weights 

l)roduced.
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None of these sohitions provide a full answer to the problem. Models 

naturally have a certain level of collinearity so even explicit training may not 

always eliminate this collinearity. Gradient descent techniques are j^rone to 

getting stuck in local minima and not finding optimal solutions. Finally, con

strained linear regression may also lead to sub optimal weighting solutions. 

The basic algorithm of PCR* is set out below:

InjMit: A^, the matrix of predictions of the models in F

1. C =  cov{k^'')

2. P C  =  PCA[C)

3. K  =  Choose_Cutoff(PC)

4. =  /^iPC, +  . . .  +  / 3 j , P C , =  ( P C ] ,P C a - ) -V  

6. Returncv

In the above algorithm, C is the covariance matrix for the predictions .4 '̂ 

and P C  is the set of princii)al components based on the matrix C.

The search aspect of PCR* is in step 3, where the mirnber of j)rincipal 

components tha t are going to be used in the determination of the weights 

is found. The authors of PCR* show how cross validation is one techniciue 

tliat may be used to judge the error on different subsets of the princij)al 

components. The optimal number of components to use is taken at the point 

of mininnim error.

In Step 4, linear least squares regression is used to derive an estimate of 

/’ using only the K  most important j^rincipal components tha t were found 

in the search stage. Finally Stej) 5 comjjutes the weights to be used for
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coinljining future predictions from the ensemble of networks by expanding 

the equation in Stej) 4 to PC^ =  7 k ,o / o  +  ■ ■ ■ +  j K , N f N  and setting each of 

the weights to be the coefhcients of the original networks(/j).

Although Merz & Pazzani developed PCR* to use all of the networks, 

sta ting  th a t  “correlation could be handled without eliminating any of the 

learned models” , it is only fair to refer to other work in the area of eliminating 

correlation. One such j)iece of work has been done by Zhou [70] in which he 

does drop models in order to reduce the correlation and hence instability in 

assigning weights to ensemble members.

3.3 Sum m ary

The ensembles used in the Evaluation chapter of this thesis were built us

ing bagging to obtain maximum diversity. Bagging is a flexible m ethod for 

building enseml)les providing good, stable performance over a wide variety of 

datasets. It makes good use of all of the da ta  in building the enseml)le and 

avoids problems of learning noise in the dataset sometimes associated with 

])oosting.

The datasets  evaluated were both classification j)roblems and hence a 

sim])le majority  voting scheme was used to coniliine the results.
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Chapter 4 

Rule Learning Algorithm s

Rules are arguably one of the simplest representations of knowledge in a 

machine learning system. Their simple, directly interpretable form has w'on 

them  a strong following throughout the machine learning fraternity. Decision 

trees represent a si)ecialised set of rules organised in branches and leaves. 

W'hen followed in an order determined by an exami)le case, the branches will 

lead to a single leaf node. This node will have a class associated witli it and 

this is used as the prediction output. Decision trees are readilj^ decomposable 

to i)ro])ositional rule sets.

Each rule is typically written in the form of an IF clause which contains 

one or more terms, the conditions of which must be met in order to “fire” 

th a t  rule. W hen a rule is fired, the class associated with the rule, usually 

w ritten  as a TH EN  clause is either counted as a vote toward an overall class 

prediction or it is presented directly to the user as the predicted class. An 

exam])le rule is shown below:

IF Sa_02_2 > 91.89 

AND Dehydration=None 

AND Retractions=0 

AND Age_in_Months > 1.87
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THEN DISCHARGE

Rules such as in the example above, may be generated by a variety of 

methods. Rule extraction from neural networks is covered in C hapter 5. 

An introduction to decision trees is covered in section 4.1 and rule extraction 

from these is covered in section 4.1.3. Algorithms for generating rules directly 

are covered in section 4.2, these include CN2, FOIL and FOCL.

Tom Mitchell’s book Machine Learning [43] is an excellent general intro

duction to the areas of decision trees and rules.

4.1 D ecision  Trees

Decision trees comprise a very popular set of machine learning methods. 

Their poj^ularity is due to their proven accuracy in modelling a wide range 

of problems [58, 53]. In addition to their good performance, they are easily 

iut('rpretable by experts involved in the field of study.

Decision trees operate l)y partitioning input features on axis-parallel bound

aries; each such partition is known as a decision node. Each decision node 

may have one or more child nodes. The child node(s) may be either a decision 

node or a leaf node. Leaf nodes have a class associated with them  and can 

not have any children. Once a leaf node has been reached when processing 

a decision tree, processing stops and the class associated with th a t  child is 

re turned  as a prediction to the user.

An example decision tree is shown in Figure 4.1. This tree is built using 

Fishers Iris d a ta  from the UCI repository. The Iris-setosa class is linearly 

separable from the other two, this is reflected by the first split in the tree. 

This split fully separates this class from the other classes. The remaining 

two classes are not as easily sejmrated and require several branches.



Peta l  Length <= 1.9 ; I r i s - s e t o s a  (50.0)
Peta l  Length > 1 . 9  :
I Peta l Width > 1 . 7  : I r i s - v i r g i n i c a  (4 6 .0 /1 .0 )
I Peta l  Width <= 1.7 :
I I Peta l  Length > 5 . 3  : I r i s - v i r g i n i c a  (2 .0)
I I Peta l  Length < = 5 . 3  :
i I I Peta l Length < = 4 . 9  : I r i s - v e r s i c o l o r  (4 8 .0 /1 .0 )
I I I Peta l Length > 4 . 9  :
I I I I Peta l Width <= 1.5 : I r i s - v i r g i n i c a  (2 .0)
I I I I Peta l Width > 1 . 5  : I r i s - v e r s i c o l o r  (2 .0)

Figure 4.1: Example decision tree using Iris d a ta

One m ajor disadvantage of trees is in the way th a t  they can only partition  

features on axis parallel boundaries. If a class is naturally  partitioned by a 

hyperi)lane th a t  does not lie parallel to axis boundaries, then many decision 

nodes on several features may l)e required to accurately re])resent this deci

sion boundary. This problem can be seen in Figure 4.2. In this figure, the 

splits nuide by the decision tree are represented by the broken line. A neural 

network would have little troul)le finding a compact solution to this problem, 

however, a human user of a system would have great troul)le visualising the 

m athem atical solution presented by the network.

4.1.1 C4.5

One of the most popular algorithms used for building decision trees is Quin

la n ’s C4.5. The popularity of this program stems from its freely available 

im plem entation (with accompanying source code) and its proven performance 

ov(!r a wide variety of domains.

B u ild in g  a Tree

Building a tree in C4.5 involves searching each of the features to find the one 

which i)rovides the most information in predicting one of the classes. Each
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Figure 4.2; Data that is ill suited for decision tree learning.

split of a feature is crucial. If the most discriminating features are chosen 

at each stage in building a decision tree, the tree will tend to i)e small. 

A small tree represents a concise concei)t description for the hypothesis, 

thus satisfying Occams razor (i.e. where tw'O or more descriptions exist, the 

simplest of these should l)e i)referr('d).

To understand the C4.5 measure of information, it is useful to look at 

ID3, an algorithm for building decision trees also i)roi)Osed by Quinlan [46]. 

In this algorithm, Quinlan used a gain criterion to assess the information 

content of s])littiug a set of data. Quinlan himself sums up this criterion 

with the statement: “The information conveyed by a message depends on its 

probability and can be measured in bits as minus the logarithm to base 2 of 

that ])robability.”

The probability of selecting a class, Cj from a set S  is

freq{Cj,  S)
|5|  ̂ ^

and so the informatioji conveyed by this is



- l o g ,  hits (4.2)

To find the expected information for a message with a class Cj  with 

res])ect to class membershij), sum over all the classes in proportion to their 

frequencies in S:

r n f o i S )  =  -  ±  X log, (4.3)

When applied to a set of training cases(T), i nf o{T)  measures the average 

am ount of information needed to identify the class of a case in T(also known 

as the entropy of the set S).

The exj)ected information recjuirement of the training set T  when split 

according to  a criterion A' can now be expressed as:

71 I r r i  I

i n f o x { T)  =  X J  ^  X ^nfo{Ti)  (4.4)

Finally the (juantity,

(javn[X)  =  i i i fo[T)  — i n f o x { T)  (4.5)

measures the information th a t  is gained by partitioning T  according to the 

test A". The gain criterion then selects the test th a t  maximises this infor

mation gain.

This gain criterion worked cpiite well, however it had one serious flaw th a t  

C^uiulan corrected in C4.5. The gain criterion is strongly biased in favour of 

tests with many outcomes. A worst case scenario would be a feature th a t  

comprises only unique values(i.e. every subset of this feature would contain 

only a single case). In this case, information gain would be maximal as 

infoA'CT) =  0. This was “corrected” in C4.5, by using a gain ratio criterion.
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C onsider the  inform ation  conten t of a  message th a t  indicates th e  inform ation  

con ten t  of a test. By analogy w ith  the  definition of i n f o { S ) ,  we have;

spl i t  m f o { X )  =  -  ^  ^  X log2 (4.6)

This  now represents the  i)otential in fo rm ation  of th is  test . By con tras t  

the  in form ation  gain m easures the  inform ation  relevant to  classification. By 

com bining  th e  two using the  fornnila below, it is possible to  m easure  the

p ropo rt ion  of useful in form ation  genera ted  l)y the  split.

( jam r a t i o { X)  =  go, in{X) / spl i t  i n f o { X )  (4.7)

P run ing a Tree

C4.5 continues to  subdiv ide the  d a ta  as described in the  previous section, 

selecting the  best splits of the  d a ta  until e ither  a  p a r t i t io n  consists only 

of a single class or no tes t  offers an im provem ent. T he  problem  w ith  this, 

howev('r, is t h a t  the  tree  m ay now “overfit” the  da ta .

In order to  rem edy th is  s itua tion  it is im p o r ta n t  to  p rune  the  genera ted  

tree. C4.5 uses post  p run ing  to  p rune  ex tra  s tru c tu re  from th e  tree. Th is  

can take  place in two difl'ereut ways. These are:

•  D iscard one or m ore sul)trees and  replace th em  w ith  a  leaf

•  Replace a  sub tree  by one of its branches

(Ju in lan  uses a  pessimistic  e s t im a te  of the  tree  branch. T he  erro r  is com 

p u ted  using the  resubs t i tu tion  error ( the error of the  tree  using the  t ra in ing  

d a ta ) .  T h is  techniciue allows C4.5 to  build a  tree using all of th e  available 

d a ta .  In con tras t,  cross va lida tion  technicjues can only build  a  tree  using a
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portion of the data  and must use the remaining out of sanijjle data for error 

estimation.

The resubstitution error can be viewed as the number of cases E  covered 

incorrectly from a total N  cases covered by a leaf. The probability of the 

same error being made by the entire population cannot be determined ex

actly from the resubstitution error, but this probability of error has itself a 

(posterior) probability distribution tha t is usually summarised by a pair of 

confidence limits. For a given confidence level C F  therefore, the upper limit 

of this probability distribution can be found from the confidence limits for 

the binomial distribution; the up])er limit is referred to here as Uc f {E,  N) .  

C4.5 simi)ly uses this upper limit as the predicted error at a leaf. C4.5 then 

conijjutes error estimates for all leaves and subtrees by assuming tha t they 

were comi)ut('d from a j)opulation with the same size as the training set. A 

leaf centering N  cases during training therefore, would l>e expected to have 

at most N  x Uc f { E , N)  errors. Similarly, the numl^er of j)redicted errors of 

a subtree is the the sum of the errors of its branches.

C'4.5 traverses the tree backwards. At each sul)tree it tests if a low'er 

('rror rate is achievable if the suljtree was replaced by either a leaf or one of 

its branches. A replacement is made if an error reduction is possible. This 

continues until no further replacements are possible without increasing the 

estimated error of the tree.

4.1.2 Classification and Regression Trees(CART)

Classification and Regression Trees, better known as CART, descril:>ed in 

Breiman et al’s book of the same name [11] is one of the first implementations 

of decision trees. Together with C4.5, CART is one of the most important 

references on the sul^ject of decision trees.
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B u ild in g  a Tree

Building a tree with CART begins with the generation of a set of questions, 

Q. These cjuestions will form the basis for the possible splits of nodes. For 

symbolic features, these questions wall be of the form (ji E [61, . . . ,  wdiere i 

denotes the feature. For numerical or ordered features, the possible questions 

are of the form qi < c. Each of these questions defines a possible split in the 

data, i.e. all examples in the data will fall on one side or the other of a 

question. Only one split is made at every node in the decision tree.

In order to decide the best split at any node in the tree, an impurity 

criterion is used. Impurity refers to the proportion of examples tha t fall inside 

a node on the tree. The criterion for an impurity function, i{f), in CART 

is that (f) is a non negative function of the probabilities p ( l—t ) , . .. ,p (n—t) 

with the following properties:

0 ( —, =  maxinuim (‘l-S)
n 71 71
0(1, () ,.. . ,()) =  0 (0 ,1 , . . . , ( ) )  =  . .. =  </.(0,0,.. . , ! )  =  () (4.9)

To actually decide on the best split it is necessary to choose the split tha t 

most reduces an impurity measure(i.e. brings the tree closer to the point 

where the node almost entirely com])rises a single class). Specific imj)urity 

measures used by CART are shown later.

This difference in impurity at any node can be w'ritten as:

Az(s, t) = i{t) -  pRi{tn) -  p i j i t i )  (4.10)

wdiere i{t) is the ])arent node impurity and pn and p i  are the new probat)ility 

estimates of the nmnber of examples that will be classified into the new' right 

and left hand nodes respectively. and i[tL) axe the new' impurities at
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the  r igh t and  left hand  nodes respectively. T he  split t h a t  m axim ises the  

difference in im purity  will be chosen as the  (luestion in the  nex t decision 

node of the  tree.

In the ir  l)ook, B re im an  e t al. describe several possible functions t h a t  

could be used to  m easure  the  “goodness” of a  split. T he  first of these is 

an  en tropy  based im pur ity  m easure. Th is  is a  simple and  well unders tood  

function  th a t  exhib its  the  desirable j)roperties for m easuring  impurity .

Two o ther  functions described for de te rm in ing  the  best sp li t  include the  

Gini function  for m easuring  node im purity  and  the  Tw oing rule.

T he  Gini im pur ity  m easure, assesses node im purity , no t  using the  p lu ra l 

ity rule ( the  m ost a b u n d a n t  class) b u t  instead  assigns an ob jec t  to  the  class i 

w ith  a p robab il ity  p ( i | t ) .  T he  probab il ity  of th is  ob jec t ac tua lly  being class j  

is therefore  T he  e s tim a ted  i)robability of misclassification under  th is

rule is therefore:

Unlike the  Gini criterion for de te rm in ing  the  best split  of a node, the  

Tw oing rule does not 0])crate on an  overall m easure  of im p u r i ty  i{i) ,  and  

hence finding an  overall tree im purity  / ( t ) ,  is no t j^ossible. T h is  is no t con

sidered a p roblem  as a sp li t t ing  criterion should  be judged  p r im ari ly  on how 

it perform s du r ing  tree  construction . T he  p i  and  pn  are the  p ro p o rt io n  of 

exami)les from the  pa ren t  node t reaching the  left, t i ,  and  riglit, Ir  respec

tively.

( 4 . 1 1 )

J

(4 .12)

P l P r
(4 .13)

J

T he  stop])ing cri ter ia  used by C A R T  is a simple thresho ld  value:
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max A /( s ,  t) <  ^  (4-14)
ses

\Mien the change in impurity for a node fails to exceed a threshold P,  

tha t node is no longer split. When this condition is reached for all term inal 

nodes, the tree growing phase is completed.

E stim atin g  Error

The simplest method used to estimate the error of a CART tree is to calculate 

the resubstitution estimate using the probability of misclassification. To

understand  this, it is first im portan t to note how CART assigns a class label

to a leaf node (i.e. any example reaching this leaf node will be assigned this 

class as a i)rediction). The class assigned is simply the class th a t  appeared 

most often from the original training da ta  in th a t  leaf node, i.e. the class j  

for which p{j \ t )  is greatest.

The resubstitution error is then the error produced when running the 

training d a ta  through the tree. This error may be easily calculated for a 

])articular node by summing up all the probabilities of finding each of the 

renudning classes not assigned by the assignment rule j{t):

E  (4.15)

or more simply:

r{t) =  1 — m ax j;( j | t )  (4-16)
3

However, tliis is not a comi)letely satisfactory metric for estimating the 

error. It tends to be overly optimistic when computing error, in jmrticular 

if the tree has overfitted to the data. A more precise m ethod of calculating 

error is to separate the available da ta  into two sets, a training set and a test
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set. Once the tree has been l:milt using the training set, the error on the 

tree is estimated by filtering the test set through the tree and calculating 

])robabilities of misclassification at each terminal node. These probabilities 

are then summed as in the simple resubstitution case described above.

VMiere insufficient d a ta  is available to sacrifice some d a ta  as a test set, 

/;:-fold cross validation may be used. A'-fold cross validation involves splitting 

the da ta  L  into k sets, { L i , . . . ,  L^}, and training k  trees leaving out each 

one of the sets of da ta  each time to use for estimating the tree error. Like 

the test set case, the set of d a ta  om itted from training is used to calculate 

error estimates for each terminal tree leaf. An overall error estimate is then 

found by finding the average of these k error estimates.

All of the above error estimates can be modified easily to include a mea

sure of the cost of misclassification. For the simple resubstitution error case, 

the misclassification cost is:

Y.cmp{;i\t) (4 . 17)

j
where C{i \ j )  is some function th a t  measures the cost of classifying an example 

with tru(’ class label j  as t. Using this costing analysis, different weights can 

be assigned to different misclassifications, thus perhaps biasing a tree towards 

making fewer expensive mistakes.

P run ing a Tree

The simple threshold stopping the tree described in the previous section 

proved unsatisfactory. A small value of /5 resulted in overly complex trees. 

Although they had small error estimates, this was due to overfitting of the 

training da ta ,  i.e. they had a low bias, but a high variance giving poor 

})erformance on unseen test data. As with neural networks, an optim um
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generalisation i)erformance nnist l)e found. Increasing the value of /3 failed 

to generate trees tha t were substantially better in i)erformance.

Instead of trying to stoj) tree growth at an optimum point, Breiman et al. 

implemented a post pruning strategy in CART. The tree was initially grown 

to be very complex and then nodes and branches of nodes were removed until 

an optinnmi tree structure remained (relative to the original tree).

The Ijasic form of pruning used by CART uses minimal cost-complexity 

as a measure of pruned tree ])erformance.

In this ])runing, the cost-complexity measure R„{T) is dehned as:

n,,{T) = R{T) + a \ f \  (4.18)

where T  is defined as the number of leaf nodes in the tree and (v >  0 is a 

real value calh'd the cost comjjlexity ])arameter.

For each value of (\ it is possible to hnd a subtree T{(v) < Tmax which 

minimises i.e.,

7?,,(T(«)) =  min i?„(T) (4.19)
^   ̂m a x

It is now i)ossible to find different measures of a that will give more 

pruned subtrees, T\ > T2 > ■ ■. > t\. The prol)lem now is to choose the best 

of these subtrees. This is done l)y estimating the error on the sub trees using 

one of the methods of assessing error described in the previous section, e.g. 

resubstitution error, cross validation, etc.

4.1.3 R ule E xtraction  from D ecision Trees

The method of rule extraction from decision trees described here is that 

described by (Quinlan [47] for C4.5. It could however be used for any decision



E xtractin g  R ules from  a Tree

The process of rule extraction is very simple due to the nature of the deci

sion tree. Individual rules are extracted from an unpruned decision tree l ŷ 

following the edges of the decision tree from the root node to each leaf node. 

Every decision node becomes another term in the rule clause while the leaf 

node becomes the predicted class for that rule(i.e. the THEN clause of the 

rule).

P run ing E xtracted  R ules

There are two methods by which the extracted rules may be pruned:

The first method is tha t the number of terms in the rule may l)e reduced. 

This may be done when removing a term in a rule does not significantly 

increase the number of errors made by that rule on the training set. In 

C4.5 a grc^edy search is performed on the terms of a rule clause. The cost 

associated with removing each one of the rule terms is calculated and if this 

cost does not exceed the original upper limit of the rule then it is removed. 

Using the same notation as (Juinlan, the upper error rate of the original rule 

is expressed as U c f { E ,  N)  where E is the number of cases covered erroneously 

by the rule and N is the total number of cases covered.

So for a rule /?, before removing condition A", R  covers I'l cases correctly 

and El cases incorrectly. After removing condition A' it now covers not only 

the original easels, but also a number of extra cases. These extra cases covered 

may include those of the same class as the original rule and those of incorrect 

classes. These extra cases are known as I 2 and E2 respectively. These errors 

are set out in table 4.1.

The original pessimistic error rate of this rule is therefore Ucf{Yii ^

After removing condition X of this rule, however, the error rate may be
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Table 4.1; Errors before and after rule pruning in C4.5
Class C Other Classes

Satisfies condition A"atisfies condition A" 1’] E\
Does not satisfy condition X  Y2 E 2Does not satisfy condition X

rewritten as Uc f O'i +   ̂2 , +  ^ '2  +  -Ei +  -E2 ), taking into account the extra

cases covered both correctly and incorrectly.

Conditions are then removed in a greedy fashion (i.e. the condition with 

the least error below the original rule error rate is removed first) and these 

pessimistic error rates are recomputed after every removal. This continues 

until as many conditions as possible have been removed.

The second method of pruning the extracted rules is to actually drop 

entire rules from the ruleset. In C4.5 rule utility is measured using a mininnim 

description length ( “MDL”)[49] approach. In MDL, the hypothesis wdiich 

n'ciuires the mininumi number of bits to transfer its encoded message and 

any exceptions is preferred above the others.

In sending the hyj^othesis, all terms in the rule clause nnist be sent, but 

since they may be sent in any order, the number of bits required to send this 

information is reduced by log2 (.x’!), where x  is the nmnber of terms in the 

rules.

Excei)tions are then encoded by specifying which of those examples that 

are covered are false positives and which of those examples not covered are 

false negatives. Thus the number of bits required for this encoding is simply;

The first term in ecjuation 4.20 is the bits needed to transfer the false 

positives(/p) while the second term indicates the number of bits recjuired to 

transfer the false negatives(/??,) from the total number of bits n.

(4.20)
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The total number of l)its recjuired to encode this theory is therefore the 

sum of the bits to encode the theory(i.e. the rule terms) plus the mimber of 

bits required to encode the exceptions. In practice however, Quinlan reduced 

this amount slightly after experiments demonstrated tha t in practice the 

number of bits was frecjuently overestimated. Therefore the true number of 

bits computed is as set out in equation 4.21.

ExceptionDits  +  \V  x T heoryB its  (4-21)

where IF is a constant value between 0 and 1.

Unlike the pruning of rule terms, i)runing of entire rules does not proceed 

using a greedy hill climbing search. Instead, if the niunber of rules is small all 

possible subsets are considered and with larger numbers of rules, a sinuilated 

annealing approach is used. In the case of simulated annealing, the system 

repeatedly picks a rule and adds it to the subset(5) if it is not already there 

and removes it otherwise. If, as a result of the action, the change in bits(Ai^) 

is positive then the change to S  is accepted with probability K  is a

synthetic temperature whose value is reduced during the course of execution 

and hence the i)robability of the change being accepted is also reduced.

A conseciuence tha t is important to be aware of, after rule pruning, is 

the ])ossibility tha t more than one rule may match a new test exam])le. It is 

important to have a strategy in ])lace to deal with this situation. The simple 

strategy used by C4.5 to resolve conflicts is to order the rules by the number 

of examples that they cover in the training set. The first rule to match an 

unseen example is therefore taken to be the prediction for tha t case.

The sec:ond conseciuence of rule pruning is that no rules may match an 

unseen example. C4.5 approaches this problem by setting aside a default 

class. TIh; default class is the class that covers the most uncovered training
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exaini)les after rule pruning. An unclassified exanij^le is predicted to be the 

default class, if no rule matches.

Figure 4.3 shows an exarnj^le of jiruned rules extracted from the decision 

tree shown in Figure 4.1.

Rule 1:
Petal Length <= 1.9
-> class Iris-setosa [97.3°/o]

Rule 4:
Petal Length > 1.9
Petal Length <= 5.3
Petal Width <= 1.7
-> class Iris-versicolor [90.4°/o]

Rule 6:
Petal Width > 1.7
-> class Iris-virginica [94.4%]

Rule 3:
Petal Length > 4.9
-> class Iris-virginica [91.8%]

Default class: Iris-setosa

Figure 4.3: Examj^le rules extracted from the decision tree in Figure 4.1.

4.2 R ule  Inducing  A lgorithm s

T he following sections describe common rule induction algorithms. Unlike 

rule extraction from neural networks or even decision trees, these algorithms 

are designed to ou tpu t rules directly. The algorithms described here represent 

some of the most i)rominent in the area.
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4.2.1 CN2

The CN2 algorithm for rule induction was introduced by Clark & Niblett 

[13]. This algorithm builds closely on the previous work by Michalski’s AQ 

algorithm [41],

CN2 works by performing a beam search across the possible attributes. A 

beam  search can be thought of as a number of parallel hill climbing searches. 

Or alternatively, may be thought of as a l^readth first search where only the 

most promising sut)seciuent nodes are expanded. Once a search has reached 

a j)oint where it cannot exi)and any more nodes, the algorithm returns the 

best complex (rule clause) found. The CN2 algorithm is outlined in Figure 

4.4.

There are two im portan t heuristics used in the search for rules. These

are:

•  Assess the (luality of the current complex

•  Assess the significance of the current complex

To assess the (juality of the current complex, the CN2 algorithm uses 

an entropy based measure. The set of examples E'  th a t  are covered l>y the 

complex (i.e. those examples th a t  are satisfied by the complex selectors) 

are found and the probability distribution P  — {p i , .. .pn)  of the classes of 

these examples is then computed. The entropy of these examples can then 

be com puted using the formula in equation 4.22.

Ent ropy  = -  ^  p, log2 (;j*) (4.22)
i

Entro])y is the favoured measurement of rule quality as it distinguishes 

l)robability distributions th a t  are more easily specialised. For instance, given
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1. Search for the best complex using the current training set E.

(a) While the possible set of complexes is not empty:

i. Create a new set of possible complexes by intersecting the 
current best complexes with the set of all possible selectors, 
removing any redundant and unchanged complexes.

ii. Test the quality of every new complex using Equation 4.22 
with resjject to the set of training examples E.

iii. Each complex tha t passes the quality test should be tested 
using Equation 4.23 to find the best complex found.

iv. Remove the worst complexes from the total set and continue 
from i.

(b) Return the l)est complex found.

2. If a complex is found;

(a) Remove the examples E' from the set of training examples E  that 
are covered Iw the com])lex.

(b) Assign the most common class C  in the set E' as the output for 
this complex.

(c) Add this rule to rule list.

(d) Continue from Step 1.

3. Return the conijjleted rule list to the user.

Figure 4.4: CN2 algorithm

the two distributions P\ = (0.7, 0.1, 0.1, 0.1) and P-i =  (0.7, 0.3, 0, 0), an 

entropy measurement will select the latter whereas a simpler maximum cor

rect may not. This is desirable because if the majority class is removed, 

the distributions will become Pi =  (0,0.33,0.33,0.33) and P2 =  (0,1,0,0) 

demonstrating how much simpler it is to specialise the second distribution 

to a definition describing a single class only.

The second heuristic used in the search for rules involves testing the 

significance of the current complex. This is done to ensure tha t the rule
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com plex  under consideration  is a genuine regularity  in the  d a ta  an d  no t 

m erely  one th a t  has occurred as a result  of noise in the  d a ta .  T he  fornuila  

used for com pu ting  th is  significance is the  liklihood ra tio  s ta tis tic :

where F  =  { . f i ,  ■ ■ ■, f n }  is the  observed frequency d is tr ib u t io n  satisifying a 

given complex and  E  =  { e i , . . . ,  e,i} is the  expected  d is tr ibu t ion  of the  sam e 

n u m b er  of exam ples under the  a ssum ption  th a t  the  complex selects exam ples  

random ly . I 'h e  lower the  score the  m ore likely t h a t  this com plex was form ed 

by chance.

FO IL  is a  first o rder rule learner {)roposcd by Q uin lan  [48]. F irs t  o rder  

rules are conunonly  known as Horn clauses. F irs t  order rules differ from the  

pro])ositional rules c rea ted  by a lgorithm s such as CN2(see Section 4.2.1), in 

t h a t  they  m ay  include variables. Variables are properties  of fea tures  t h a t  nuiy 

be a t ta c h e d  to  any exam ple con ta in ing  th a t  feature. P ropos it iona l  rules on 

th e  o th e r  han d  nnist  have precise values for every fea ture  of every example.

T h e  advan tage  of learning rules com prising Horn clauses is t h a t  these 

rules m ay  be in i)u tted  directly  into rule based languages such as P R O L O G .

T h e  FO IL  a lgo r ithm  is ac tua lly  very sim ilar in s tru c tu re  to  the  CN2 algo

r i th m  described  in Section 4.2.1. T he  ou ter  loop of the  CN2 a lgo r i thm  is very 

s im ila r  to  the  ou te r  loop of the  FO IL  a lgorithm , t ra in in g  continues until  the  

l)erform ance of the  next rule learned is below some th resho ld  value. In FO IL  

th e  inner  loop of CN2 is effectively ex tended  to  deal w ith  the  p roduction  of 

first o rder  rules.

T h e  m ain  differences between FO IL  and  the  previous a lgo r i thm  lie in the

(4.23)

4.2.2 FOIL
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method of generating candidate specialisations and in the gain criteria used 

to assess the goodness of new hypotheses.

To generate possible si)ecialisations of a riile, FOIL employs one of two 

methods. Firstly, it may add any of the possible predicates, so long as the 

variables in the predicates already exist in the rule. The second method is 

to check for equality between the values of two variables already existing in 

the rule.

In FOIL, the objective when adding new variables to literals is to cover as 

many positive examples as possible. To maximise this goal, the information 

theory method of miuinmm description length is used. The number of bits 

recpiired to encode the original rule and the augmented rule to be tested are 

computed and if the new rule reduces the number of bits significantly then 

the change is accepted. The ])recise fornuila used is in Equation 4.24.

FcnLG(mi{L, R) = t (  log^  \og^ — — ) (4.24)
V Pi +  7h po +  ??,() /

In this etjuation, p^ is the luunber of positive examples covered l)y the 

original rule and uq is the number of negative examples covered by the original 

rule. Similarly, ]>i and rij are the number of positive and negative examples 

covered by the new rule resj)ectively. Finally, t is the number of positive 

exam])les that are still covered by the new rule.

4.2.3 RIPPER

RIPPER [IG] is a rule learning algorithm that is based on the work of Quin

lan’s FOIL [48], Brunk & Pazzani’s “Reduced Error Pruning” (REP) [12] 

and Fiirnkranz & Widmer’s “Incremental Reduced Error Pruning” (IREP) 

|29|.

The ])asic algorithm of RIPPER is similar to that of FOIL. In j)articular
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the  G row R ule  procedure  is a p ropositional version of the  FO IL  algorithn i. 

It works by add ing  conditions of the  form An = v  or Ac < 0 or A^ > 6, 

where An  is a symbolic a t t r ib u te  and  v is a legal value and  Ac  is a niimeric 

a t t r ib u te  and  0 is a value for Ac t h a t  occurs in the  d a ta .  G row R ule  continues 

to  add  proposit ions  th a t  m axim ise F O IL ’s inform ation  gain criterion  until  no 

negative exam ples in the  growing set are covered by the  rule.

In R E P , the  t ra in ing  d a ta  is sjilit in to  two sets, a  growing set and  a 

p run ing  set. A ruleset is grown to overfit th e  t ra in ing  d a ta .  These  rules are 

])Ost p runed  using the  p run ing  set by ai)})lying one or m ore p run ing  o p e ra 

tors  to  any single rule. A hill c limbing technique is usefl to  select the  next 

0])erat0r to  apjjly. Simplification is coni])lete when ai)plying any o p e ra to r  

would increase the  error on the  ])runing set. R E P ’s m ajo r  sho rtcom ing  is 

its complexity. Cohen [15] showed th a t  given sufficiently noisy d a ta ,  R E P  

reciuired (){ir^) tim e. Even the  initial overh tt ing  of rules recjuired 0 { n ‘̂ ) t im e  

to comjjlete.

T he  m ost  successful response to  the  inefficiency of R E P  was th e  a lgo r ithm  

IR EP. IR E P  is comi)etitive w ith  R E P  in te rm s  of error ra tes  an d  was signifi

can tly  fas ter  th a n  REP. IR E P  builds a ruleset in a greedy fashion. Like R E P  

the  full t ra in in g  set is split  in to  a t ra in ing  set and  a p run ing  set. However, 

after  a rule is found and  pruned , it removes all positive and  negative exam 

ples from the  full t ra in ing  set before sp li t t ing  it again. T h is  continues until 

e ither  there  are no positive examples rem ain ing  or the  rule found by IR E P  

has an  unaccej^tably large error rate . I t  is on IR E P  th a t  R I P P E R  bases i t ’s 

error p run ing  technique.

In IR E P  prun ing , the  deletion th a t  m axim ises the  function

p  + (TV _ n)
v{B:ule, P r m i e P o s ,  P r u n e N e g )  =   p  j\j  ("^-25)

is chosen, where P  and  N are the  to ta l  num ber  of positive exam ples in
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PniiiePos and Pi nneNeg respectively and p and n  are the to ta l number of pos

itive and negative examples covered by the rule in PrunePos and PruneNeg 

respectively. This process is repeated until no deletion imj^roves the value of

V.

The ability to handle multi class problems is included in the R IP P E R  

imijlementation of IREP. This is accomplished by ordering the examples 

of each class in increasing order of prevalence, i.e. C i , . . .  ,Ck,  where Ci 

is the least prevalent class and Ck is the most prevalent class. Repeated 

calls to GrowRule are now made using the current least prevalent class with 

remaining examples uncovered as the ])ositive examples and all other classes 

are considered to be negative. This continues until only the most prevalent 

class Ck remains. This class becomes the default class.

R IPP E R  also extended the IREP algorithm to handle missing attributes. 

Any rule involving a test on an a t tr ibu te  ,4 are deemed to have failed if 

the value for th a t  a t tr ibu te  is missing in a given example. This behaviour 

was introfluced to separate the positive examples using only tests th a t  were 

known to succeed.

Three improvements were also made on the IR EP algorithm:

1. An alternative metric for assessing the value of rules in the j^runing 

phase of IREP.

2. A new heuristic for determining when to stoj) adding rules to a rule 

set.

3. A pos])ass th a t  “optimises” a rule set in an a t tem p t to more closely 

approxim ate conventional (i.e. non incremental) reduced error pruning.

Cohen found th a t  occasional failures of IR EP to converge as the number 

of examples increased could l)e traced to the metric used to guide pruning
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sliowii in equation 4.25. The original pruning metric would prefer a rule Ri  

tha t covered pi = lOOO iK)stive exani])les and rii =  1000 negative examples 

to a rule /?2 th a t  covered p 2 = 1000 positive examples and ri2 =  1 negative 

examples even though the rule R 2 is significantly more predictive. Instead of 

the original pruning metric, Cohen replaced it with:

v*(Rule,  P ru n eP o s ,  P n m e N e g )  =  - — -  (4.26)
p + n

where p and n  are the number of positive and negative exami)les of the 

pruning set covered by the rule.

Colien re]X)rts [16] th a t  IREP seems to be particularly sensitive to the 

small disjuncts problem [35]. Small rules th a t  cover few examples may have 

high error rates causing IREP to stop prematurely. To overcome this prob

lem R IP P E R  uses Minimum Description Length(MDL) theory to assess the 

length of the ruleset and the examples. No rules are added once this de- 

scri])tion becomes a constant “r/” bits longer than  the smallest description 

length.

The final improvement made to the IR EP algorithm in R IP P E R  involves 

an optimisation of the global ruleset. Each rule is optimised in the order 

which the rules were constructed. Two alternative rules are constructed. 

The first of these is known as the replacement rule. A rule is grown and 

then pruned with the objective of minimising the error of the entire rule set. 

The second rule constructed is formed by greedily adding conditions to the 

original rule, this is known as the revised rule. Finally a decision is made 

whether to retain the original rule, or replace it with the rej^lacement or the 

revised rules. MDL is used to make this decision. Each of the alternatives 

is inserted into the ruleset and rules th a t  are increasing the to ta l length of 

the ruleset and ('xamples are removed. Once a final decision has l)een made, 

the modified IR EP algorithm is reapplied to learn new rules for any positive

66



examples th a t  may be left uncovered after being removed during pruning.

4.2.4 SLIPPER

S L IP P E R  is a rule learning algoritlini introduced by Cohen & Singer [17]. 

Unlike the many other rule learners including R IPPER  and CN2, where 

covered examples are removed from the set of training examples, SLIPPER 

uses a boosting like approach to change the distribution of the examples, so 

more emphasis is placed on those examples misclassified in earlier rounds. 

Boosting is covered in the context of ensembles in Section 3.1.2.

Every rule in SLIPPER has a fixed confidence value associated with it. 

The sign of these confidence values determines the class of an example clas

sified by a rule. Rules not covering an example, ou tpu t a confidence of zero. 

Therefore, to classify an example using the strong hypothesis, it is only nec

essary to smn the confidence values of covering rules and return  the sign. 

Th(' confidence values are computed \ising the formula:

where 11'+ =  Ex.ey?.;. =  -  =  " I -  To prevent rules

covering few examples and having 1T_ =  0 leading to impractically large 

values, the confidence is “smoothed” by adding ^  to both  H + and

W hen growing a rule, SLIPPER restricts itself to positively correlated 

rules, hence the objective function th a t  is a t tem pted  to be maximised is:

Once a rule is grown, i.e. no negative examples in the GrowSet remain 

uncovered, there is a danger of th a t  rule overfitting the data. The rule is 

ther('fore pruned iinmediately after training by minimising the equation:

(4.27)

z = (4.28)
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(1 — 11 — V+) +  \ ' \exp  +  V-exj)^^R' (4.29)

The full algorithm for slipper is shown below:

1. Traill the weak learner using the current distribution D

(a) Split data  into GrowSet and PruneSet

(b) GrowRule: starting with the empty rule, greedily add conditions 

to maxmimise ecjuation 4.28

(c) PruneRule: starting with the output of GrowRule, delete some 

final sequence of conditions to minimise equation 4.29 where C r ' 

is computed using ecjuation 4.27 and GrowSet.

(cl) Return as Bt either the output of PruneRule, or the default rule, 

whichever minimises the e(}uation Z  =  1 — (v^U'+ — >/TTL)'' )̂.

2. Construct lit : x IK:

Let Cn, be given by ecjuation 4.27 (evaluated on the entire dataset).

Then
C r, \ i x  e  B.t 
0 otherwise

3. Ujjdate:

(a) For each .t , G Bt, set D{%) <-----

(a) Let Z, = E ” , D{.)

(a) For each ,t,, set D{t) f -

Oiitput the final hypothesis: H{x)  = iit-xeRi
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4.3 Sum m ary

This chapter presented a selection of methods tha t may be used for building 

rules th a t model a domain. In the implementation of this thesis, only C4.5 

was used for building rules. C4.5 was chosen because of its proven perfor

mance over a wide variety of data and readily available implementation.

The system presented in this thesis could easily be used with any of the 

other methods described here with virtually no changes required.
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C hapter 5 

Explaining Neural N etw orks

Neural iietAvorks have proved themselves as good predictors for a large variety 

of problems. Despite their successes, their use is frequently ruled oiit for 

many problems th a t  could benefit the most from their predictive accuracy. 

The reason for this is very simple. The domains in which they are not used are 

tyi)ically where explanation is considered as im portan t as prediction. These 

include safety critical or medical domains where reliance on unsui)ported 

predictions is simply not an option. The consequences of a bad prediction 

may be costly or even life threatening. Depending on the requirements of 

the domain, the ability to explain neural networks could be of use in several 

different ways:

•  The explanations could be used to verify the networks operation.

•  Failures th a t  may occur can be understood by looking a t the explana

tion of the neural network operation and steps can be taken to avoid 

similar failures in the future, e.g. Iw retraining with new examples.

•  The network may be replaced by the explainal)le model (e.g. a decision 

tree or set of rules), so tha t the operation can be guaranteed at all times.
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The final point in the above list may not seem sensible. If the network 

is to l)e replaced Ijy a set of rules or a decision tree why not build such a 

s tructure  from the s ta r t  and skip the intermediate step of building a neural 

network? The answer to this is quite simple, neural networks are good a t 

generalisation. Given a limited number of training examples, neural networks 

can make excellent ai)proximations to the true function being studied and 

therefore perform well on future unseen examples. This good lierformance 

can be used to tag a larger set of generated data. A more comprehensible 

learner can then use this larger collection of d a ta  to generate a s truc tu re  with 

similar characteristics to the original network.

This chai)ter jjrovides a brief outline of some of the areas of rule extrac

tion relevant to this thesis. For a more com])lete review of the area see [63, 5]. 

This chapter begins by outlining in Section 5.1 the two high level strategies 

th a t  may be adopted for network exj)lanation. These include netw'ork de- 

comi)osition in Section 5.1.1 and black box methods in Section 5.1.2. The 

issue of ('vahiating the cjuality of extracted exj)lanation rules is addressed in 

Section 5.2. Two explanation ai)proaches are then covered in Section 5.3. Fi

nally Section 5.4 concludes the chapter with a look a t explanation of neural 

network (‘nsembles.

5.1 Strategies

5.1.1 Network Decom position

Decomi)ositional methods translate  networks s tructure directly to  rules. In 

the case of backprojmgation networks, therefore, the aim would be to identify 

the hyperplanes partitioning the input space. At first this may appear to 

be a powerftil method of ex])laining neural networks, however, they  have 

the limitation of being architecture dependant. Many legacy netw'orks are
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excluded as they  were not t ra ined  w ith  exp lana tion  in m ind.

One of the  first m ethods  proposed for the  exp lana tion  of neural n e t

works involved direct decom position  of the  network. T he  m e th o d  K T  was 

proposed  by Fu [27]. T he  core idea beh ind  the  K T  a lgo r ithm  is pe rhaps  the  

m ost obvious approach  to  the  decom position  of m ost networks w ith  weighted 

in te rconnec tions  betw'een units. W hen  presented  w ith  an  in p u t  exam ple, the  

K T  a lgo r i thm  searches for the  sm allest possible com bina tion  of inpu ts  whose 

values will trigger the  desired o u tp u t .  A set of rules explain ing the  netw ork 

can be accum ula ted  in th is  way.

A good in troduc tion  to  decom positional m e th o d s  involves an u n d e rs ta n d 

ing of local func;tion networks. For an exam ple of these networks and  rule 

ex trac t io n  see A ndrew s [C]. T he  idea beh ind  these networks is t h a t  they  

have boundaries  in each dim ension and these boundaries  are ad ju s ted  as new 

examj)les are misclassified. T he  final boundaries  in each dim ension form the  

boundaries  of the  rule term s.

A no the r  local function network approach  is by B ertho ld  [8] and  involves 

the  use of R ec tangu la r  Basis Function Networks. T he  tra in ing  a lgo r i thm  

for these networks is l)ased on B er th o ld ’s j^revions work on D ynam ic  Decay 

A d ju s tm en t(D D A ) [7] for t ra in ing  Radial Basis Function  Networks.

R ec tan g u la r  Basis Function  networks work by c rea ting  hyperrec tang les  

th a t  encom pass areas of the  hyperspace dehned  by the  in p u t  features d im en 

sions.

Each h idden  un it  jf- of class c  and  index i { l  <  i <  tUc), rric l)eing the  

num ber  of h idden  un its  of t h a t  class) has a num ber  of p a ram ete rs  associated  

w ith  it. These  are:

•  An ac tivation

•  A reference vector (centre):
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•  An amplitude(weight):

•  Two sets of “radii” :

-  Set of axes along which the rectangle is spread out towards infinity 

A'°°

— Set of axes along which the rectangle is restricted with a radius 

of

The activation of a unit is 1 if a new training example of the same cla,ss 

is correctly classified i)y th a t  unit and zero otherwise. The first luiit to 

correctly classify the example has its weight increased l)y a constant amount. 

This weight will be used later during classification of unseen examples. The 

centre of a hidden unit is the first example th a t  causes a misclassification in 

another unit. The radii are the dimensions of the hyperrectangle around this 

centre.

Training begins with no hidden units. Hidden units are added only when 

('xisting units misclassify a new example. When a new hidden unit is added, 

the dimensions of th a t  unit nmst be shrunk so th a t  no conflicts exist between 

th a t  unit and all units of other classes and vice versa (it is not necessary to 

shrink th a t  units dimensions with respect to units of the same class).

A simple example of shrinking the dimensions of a rectangle is shown 

graphically in two dimensions in Figure 5.1. The example in a has been mis- 

clasified and it is necessary to shorten one of the dimensions of the enclosing 

rectangle. To do this there are three choices. In b the left dimension has been 

shrunk, in c the top dimension has been shrunk and in d both  dimensions 

have been shrunk. It can be seen clearly from this diagram th a t  to avoid 

the misclassification it is only necessary to shrink a single dimension so the 

solution jjrcsented in d can be discounted. To maximise the size of hyper-
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rectangles, it is reconniiencled to shrink the dimension th a t  will lead to the 

least reduction in area of the remaining rectangle. Clearly, this means tha t 

b is the correct dimension to shrink.

a) b) ' '

■ (

; ' ' '

0 //'I d) f 'T .........

i itts

Figure 5.1: Shrinking the dimension of a rectagle in rectangular basis function 
networks

Execution of the network proceeds by testing each hidden unit with the 

unseen example. If the example falls within the dimensions of th a t  u n i t’s 

hyperrectangle, then the ou tpu t imit adds th a t  units weight to the total 

score for th a t  (;lass. The class with the highest score is outjMitted as the 

prediction.

The extraction of rules from this network is very straightforward. Each 

hidden unit can be mapped directly to a single rule. This is easiest to visualise 

from Figure 5.2. In this figure, the centre of the rectangle is marked by the 

unit with the cross through it. The rectangle is unbounded on the top side. 

In the other dimensions, there are examples of another class th a t  caused 

those dimensions to be shrunk when they were misclassified. The rule th a t  

is extracted from this rectangle is:

IF .Ti <  V x  <  -̂ 2 a n d  yi < V y  t h e n  TRU E 

w'here find V y  are the values of the features X and Y to be tested by 

the rule.
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@ Class: TRUE 

•  Class: FALSE

I  I

I  I

I  I

--------------- ^ ^ ------- ► X
I  I

I  I

I  I

I  I

• T l  X'2

Figure 5.2: Extracting a rule from the hyperrectangle in a hidden unit

5.1.2 Black Box

In contrast to  direct deconi])osition methods, l)lack box methods recpiire 

no knowledge' of thi^ internal network structure. They operate solely by 

analysing the ])redicted outj)ut(s) on input vector(s). To analyse this rela

tionship black box methods tyi)ically use traditional rule learning algorithms 

to model the network.

A popular strategy adopted by researchers into black box methods is 

to use a second machine learning ap])roach th a t  models the in p u t /o u tp u t  

behaviour of the network. The second learning algorithm does not learn the 

target function directly, instead it learns the response of the neural netw'ork 

to the training inputs. In modelling the netAvork, it is hoped th a t  strong 

l)atterns th a t  are being used internally by the network for prediction wall 

be made clear and the second learning algorithm wall ou tpu t rules based on
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these patterns. Prominent examples of this type of learning are:

•  Thrun: Validity Interval Analysis(“VIA” ) [59]

•  Craven & Shavlik - TREPA N  [19]

•  Schmitz, Aldrich and Gouws - ANN-DT [52]

In his pai>er describing his technique for rule extraction from neural ne t

works, T hrun  outlines four criteria for successful explanation of a network. 

These are:

• No architectural reciuirements -  the proposed method should work with 

all tyj)es of networks.

• No training reciuirements -  special provisions during training should 

not l)e required, their presence would likely prevent the m ethod being 

used with legacy networks.

•  Correctness -  generated rules should reflect the knowledge contained in 

the network as accurately as possible and not merely be approximations 

to the network operation.

•  High expressive pow'er -  pow'erful languages for expressing the rules 

extracted from the network should l)e used. Com pact rulesets are more 

easily understood.

T hrun  presents his m ethod for network explanation using these criteria 

as goals.

T hrun  analyses back])ropagation-like networks by propagating entire ac

tivations intervals of units. These activation intervals comprise u])per and 

lower bounds tha t,  when satisfied, lead to a proval)ly correct activation si)ace.
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In the context of rule extraction, these intervals are used to prove or disprove 

conjectured rules. Initial intervals constraints are set using a linear prograni- 

niing m ethod (Thrun uses the Simplex method). Intervals are refined by 

propagating them  both forwards and backwards through the network. It 

should l)e noted th a t  these propagations are independent of network training 

(i.e. they have no relationship to the gradient updates in back i)ropagation 

networks).

Craven & Shavlik use a more conventional approach to the extraction of 

rules from a network for the purpose of explaining a network’s operation. 

Using the network as an oracle, a large number of generated examples are 

labelled. These generated examples in addition to the training set, define 

precisely the network response. Using these examples, a decision tree is 

built to model the dependencies captured in these examples. Decision trees 

are easily decomposed to rules and hence are good structures for explaining 

networks.

The decision tree algorithm used by Craven &; Shavlik, grows the tree in 

a best first m anner as opi)osed to the more traditional depth first approach 

of C4.5 and CART (both C4.5 and CART are described in full in Chapter 4. 

,A.t each node in the tree, TREPA N  stores:

•  A subset of training instances

•  A set of ciuery instances

•  A set of constraints

The subset of training instances are simply those training instances th a t  

rt'ached th a t  node. The (juery instances are used in conjunction with the 

train ing instances to either determine the next split of an internal node or
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alternatively set the class of a leaf node. Finally the set of constraints de

fine criteria th a t  instances must possess in order to reach this node. These 

constraints are used when generating a set of query instances for the node.

As mentioned previously, the TREPA N  decision tree algorithm grows 

the tree in a best-first manner. To determine the next best node to grow, 

Craven & Shavlik a t tem p t to estimate which node when grown will give the 

greatest increase in fidelity. This is justifiable because, the idea is to model 

the network as faithfully as possible. The equation for selecting this node is:

f { N )  =  reach{N)  x (1 — f i dc l i t y {N) )  (5-1)

where reach.{N)  is an estimate of the fraction of instances th a t  reach N  when 

jjassecl tlirougli the tree and f i deHty (N)  is the fidelity of those instances 

reaching N  with resj^ect to the original network.

The rc'HSoning behind a l)est hrst growth of the decision tree is botli 

jjractical and connnendable. The size and complexity of the tree can be 

finely controlled and a t any stage the tree can be verified l^y a user as an 

increasingly accurate glol)al model of the network.

The last major difference in the decision tree in TREPA N  is the stopping 

criterion. Three criteria are used, one local and two global. The local crite

rion is simply a probability measure th a t  the instances reaching the potential 

leaf node are all of a single class. When this ])robability reaches a preset con

s tan t  value the current node is marked as a leaf. The first of the global 

critera is a limit on the number of possil:)le internal nodes. The second global 

criteron uses a validation set to evaluate the fidelity of the increasingly more 

accurate trees for modelling the network. The tree with the lowest error is 

considered to l)e the best.

The final method for explaining neural networks th a t  is examined here is
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by Schiiiitz, Aldrich & Goiiws and is named ANN-DT. Like Craven & Shavlik, 

Schmitz et al. also aim to produce a decision tree as their final ou tpu t.  Also 

like Craven & Shavlik, Schmitz et al. use the network to label a collection of 

generated d a ta  to be used by the decision tree builder. Unlike the previous 

m ethods, though, ANN-DT focuses on explaining problems with a continuous 

numeric output. The basic steps followed in building the decision tree are 

similar to CART (which is described in Section 4.1.2 and hence only the 

differences are covered here).

The selection of a t tr ibu te  and threshold for splitting is done in two dif

ferent ways. The first is by minimisation of the weighted variance:

This is the same procedure as used in the CART algorithm when forming 

a regression tree.

The second m ethod is an analysis of a t tr ibu te  significance. This m ethod 

focuses on inter-relationships tha t occur inside the network function. If a t 

tributes can change their value indei)endently of one another then  the abso

lute value of the directional derivative integrated in a straight line between 

two points can be used as a measure of the significance of a single a t tr ibu te .  

However, if in the more likely case, there is a dependence between variables, 

this is not appro})riate.

The absolute variation between two points Xi and Xj  in the d a tase t is:

where u is the unity vector in the direction .x* — Xj.

The variation between a ttr ibu tes  having a large effect on the outj:)ut of the 

neural network, f { x )  and variations in the neural network outi)ut resj)onse

2

(5.2)

(5.3)
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will be liigiily correlated. Thus, a measure of the significance of a variable a 

over a data  set S  would be the correlation between the absolute variance of 

the function and the absolute variation of tha t attribute taken between all 

possible pairs of points in S:

o - ( / ) a  =  correlat^on{v^J{f),v^j{a))

Those attributes with the highest correlation between changes in the neu

ral network output and changes in the attribute value are the most significant 

and should be used for splits higher in the tree.

Schmitz et al note that where the number of computations is excessive, 

the result can be apjiroximated by selecting random pairs.

Th(' da ta  is recursively split in this way until either the standard deviation 

is zero or when some stopping criterion is reached. This criterion would 

prevent a split occuring where the outcome of one of the sub branches would 

not be statistically different from the outcome of the other branch. This 

prepruning is designed to help prevent overfitting of the decision tree and to 

improve overall comi^rehensibility of the presented rules.

One such test that can be used to determine if two branches are statisti

cally different from each other is the F-test (it tests if the standard deviation 

of two populations are eciual). This test is only applied to branches formed 

below a preset level in the tree. This helps ensure that tree growth is not 

stopped prematurely. In addition, branches containing only a single data 

point are also deemed to have failed. Finally, the maximum depth of trees is 

capj)ed at a preset maxinuim to jjrevent overly large and incomprehensible

-  ^(/)%(«) -  (̂«)
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trees.

The final stage of the ANN-DT algorithm is to prune the trees. The 

au thors  use a simple fast greedy pruning technique. They note however th a t  

the more sophisticated CART algorithm for pruning decision trees could also 

be used.

5.2 Evaluating Rule Quality

The process of extracting rules from neural networks is a trade-off. The 

following measures were proposed by Towell & Shavlik [61]:

•  Accuracy: The accuracy of the rule set is simply a measure of the rule 

sets ability to accurately predict unseen cases.

•  Fidelity: The fidelity of the rule set measures how well the rule set 

models th(> behaviour of the neural network. In cases where the rules 

ar(' Ix'ing used to verify the operation of the network, the rules should 

exhibit a high degree of fidelity.

•  Comprehensibility: The comprehensibility of the rule set is a measure 

of the ‘uuderstandability’ of the rules. This may be measured in two 

different ways. The first measures the global comprehensibility, i.e. 

the to tal rule set size. A bigger rule set is likely to be more difhcult to 

understand. Once it has been determined th a t  the extracted rules are 

potentially cxmiprehensible, the second measure looks a t the individual 

rules. If the number of terms in each rule is not too large, the rules 

may be easily assessed. This assessment may lead to new insight into 

the d a ta  being studied and may help prove or disprove theories, by 

indicating j)reviously unnoticed trends or confirming suspected trends 

th a t  exist within the data.
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Obviously  it is im p o r ta n t  th a t  the  rules exhib it  an  accuracy  as good as 

the  original network. However, it is also im p o r ta n t  th a t  th is  accm'acy reflects 

a  good  fidelity betw een the  rules o u tp u ts  and  the  network ou tp u ts .  A rule 

set w ith  a s im ilar acciuacy  to  a  neura l  network b u t  th a t  m akes m istakes 

on dift’e ren t exam ples to  the  neural network is no t a  pa rt icu la r ly  good de

scrip tion  of th a t  network. Th is  is the  reason why it is inadequa te  to  t ra in  a 

neura l  netw ork and  a  m ore com prehensible  learner, such as a  decision tree, 

separa te ly , and  conclude th a t  the  tree represents  the  knowledge in the  neura l  

network. A m ore  com m on approach  is th a t  the  decision tree  is l)uilt to  m odel 

the  behav iour of the  network by using the  network to  label a  set of d a ta .

An e(|ually im p o r ta n t  consideration is the  trade-off  between com prehen 

sibility  and  fidelity. A learner built to  m odel the  network w ith  perfect fidelity 

m ay  be to ta l ly  incomi)rehensible. A decision tree  m ay con ta in  m any  bushy  

subtree's th a t  are no easier to  unders tand  th a n  the  original neural network. 

However, p run ing  th a t  tree  will lead to  the  decision tree classifying exam ples  

differently to  the  network thus  reducing the fidelity.

F in d in g  a  good balance of these (luality m easures is essential in any algo

r i th m  th a t  a ttem ])ts  to  explain a neural network.

5.3 G lobal V Loccil Expla.na.tion

M ost researchers have focused on p roducing  global model explanations. These  

m odels  a im  to fully describe all s itua tions  in which a i)articu lar event will 

occur. In a global model, there  is an implicit trade-off  between the  com 

plexity  of the  m odel and  its fidelity. T h is  trade-off  can be seen in te rm s  of 

th e  fidelity and  com prehensib ili ty  evaluation  criterion proposed  by Towell & 

Sliavlik [61] t h a t  are listed in section 5.2. A m odel bu ilt  w ith  perfect fidelity 

m ay  be very complex and  the  com prehensibili ty  will therefore l>e reduced. A
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coiii])reheiisible model however may be useless for verifying the operation of 

the network because its fidelity is too low.

A lthough a global model may be useful in many situations, it is argued 

here th a t  it is not always appropriate. For example, it may be useful in the 

prol)lem of predicting success in IVF(in-vitro fertilisation) research, studied 

by Cunningham  et al.[22], to produce a global model of the phenomenon. 

Such a model would allow practitioners to spend time understanding the 

conditions leading to success and to focus their research on improving their 

techniques. Also, a global model would allow the targeting of potential re

cipients of the trea tm ent who have a higher probability of success. This 

would lead to a monetary saving for the health service and would avoid great 

disappointm ent for couples for whom the trea tm ent would most likely fail. 

A global model might also allow doctors to suggest changes a couple might 

make in order to improve their chances of succc'ss with the treatm ent.

In the accident and emergency departm ent of a busy hospital, the expla

nation requirement would be quite different. Here the need is for decision 

support ra ther than  knowledge discovery. W hat is needed is an explanation 

of a decision in terms of the symptoms presented by individual patients. This 

explanation task is described here as local explanation.

In the context of ensembles (see Chapter 3), the decision to use a global or 

local approach becomes an even bigger issue. Ensembles l)uilt for maxinnirn 

diversity may have many individual networks th a t  are experts in particular 

areas of the input space. Building a global model from an ensemble may 

result in a trade off where many of the finer details covered only by a small 

number of networks are dropped. The global model may fail to give the 

most precise rules as o])posed to if a local apjwoach had been used and the 

production of explanations had been delayed until the explanation is actually
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required.

O ther researchers who have also approached the jjroblein of local explana

tion include Smia [55] and his approach is reviewed in [14], Local explanations 

of time series predictions have also been explored by Das et al [23].

Although both  Sima and Das use local explanation in th a t  they both  

l^rovide explanations on a case by case basis, neither is directly comparable 

to this work. D as’ method focuses on finding repetitive patterns  in time 

series (and does not rely on neural networks). Sm ia’s m ethod does rely on 

a back])ropagation neural network but instead of i)roviding I’ules as explana

tions, outj^uts percentage importance values for each of the inj^uts based on 

a decomposition of the neiiral network weights.

5.4 R ule  E x trac tio n s  from  E nsem bles

Despite' the advantages of ensembles, little work has been done to provide 

exi)lanations for j)redictions made by ensembles, although the imi)ortance 

of finding a method for rule extraction from ensembles was highlighted by 

Craven [20].

Although little work has been done in rule extraction from ensembles, it is 

still i)ossible to use any of the black box methods introduced in section 5.1.2. 

However, this approach to the explanation of ensembles may not be oi)timal. 

A well built ensemble should com])rise diverse members, each of which are 

exi)erts in difl'erent areas of the inj)ut space. Modelling an ensemble as a 

black l)ox ignores this diversity and looks only a t the bigger picture. An 

algorithm th a t  a t tem pts  to harness this diversity to produce optim um  rules 

may outi)erform black l)ox methods.

The two methods th a t  are presented here for explaining neural network 

('usembles are;
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•  Domingos - Coinl)ined Multiple M odels(“CM M ” ) [24]

• Zhou - Rule Extraction from Neural network Ensenibles(“R E F N E ” )

In his algorithm CMM, Domingos [24] creates an ensemble of neural ne t

works using bagging. The ensemble is then used to assign labels both  to the 

original training exami)les and to a set of randomly generated instances of 

fixed size. The c4.5rules package [47] is then used to create a  set of pro

duction rules th a t  model the behaviour of the ensemble. C4.5 is described 

in more detail in Section 4.1.1. Domingos reports reasonable fidelity and 

accuracy using this approach.

A more recent article sj)ecifically addressing the extraction of rules from 

neural network ensembles has been published by Zhou [69]. The method pro

posed is called Rule Extraction From Neural network Ensembles(IiEFNE).

The trained ensemble is used to generate additional instances th a t  are 

used in the subseciuent rule extraction algorithm.

A rule is formed when a subset of a ttr ibu tes  are found to classify a set of 

examples th a t  fall into a single class.

The search for the subset of a ttr ibu tes  begins with the selection of a single 

symbolic a t tr ibu te  and testing all of the possible values of this a ttr ibu te .  If no 

value of this a t tr ibu te  classifies all examples it appears in to a single class, 

then all other single symbolic a ttr ibu tes  are similarly tested. If no single 

a t tr ibu te  can be foimd to fulfill the necessary criterion, then all subsets of 

two or more subsets of symbolic a ttr ibu tes  are considered. The process of 

adding syml)olic a t tr ibu tes  and searching all subsets of a particular size for 

a rule continues until no more symbolic a ttr ibu tes  are left. At this stage a 

continuous a t tr ibu te  is discretised and the search continues.
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Ill order to optimise the speed of this search, Zhou uses the “experience” 

of failed searches to guide later searches. An example of this is tha t if a set 

of symbolic attributes {a^} fails to find a rule and a continuous attribute 

h is discretised, then future rule searches should only examine subsets also 

containing h because all the other subsets of {a^} U h have already been 

examined.

In order to avoid suspect or poor rules, REFNE implements a number of 

optimisations. These include dropping any instances for which a tie exists. 

T ha t is, if an etjual number of networks in the ensemble predict different 

classes for an instance, it is not clear which label should be assigned to tha t 

instance. Also, REFNE may be tuned to ensure that any rules to be added 

to the output rule set increase the fidelity by at least a constant value.

Zhou rej)orts good results using REFNE when compared to the popular 

C4.5 rules packagt'.

5.5 S u m m ary

This chapter described some of the many methods that have been pr0j)0sed 

for explaining both individual neural networks and ensembles of networks.

The work presented in this thesis complements the methods presented 

for explaining a neural network as rules by introducing a ranking system for 

these rules tha t focus the user on the most imi)ortant variables influencing 

the prediction.

The decision to ])ursue local explanation rules out any method targetted 

at the output of a single global model of the ensemble, e.g. Domingos [24] and 

Zhous [69] algorithms or using a black box model to model the entire ensemble 

behaviour. Instead, one of the individual network explanation methods is 

recjiiired to produce rules for each of the networks in the ensemble.
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B o th  clec0ini)0s iti0ii and  black box m ethods  are available to  explain  ind i

v idual networks. I t  was decided to  use a  black box m eth o d  for the  ex trac t ion  

of rules from a  network. Black box m ethods  showed m uch promise for b o th  

com prehensib il i ty  a nd  fidelity m easures in m any  of the  papers  reviewed. Also, 

the  selection of a black box m eth o d  m ean t  t h a t  the  choice of netw ork was 

n o t  res tr ic ted  in any way.

T h e  ijrecise m e th o d  used was th a t  each network labelled a set of genera ted  

d a ta .  T h e  c4.5rules [47] package was then  used to  build a  set of p roduction  

rules t h a t  m odelled  the  networks behaviour. C4.5 was chosen as the  rule 

builder  because of its proven al)ility to genera te  com prehensible  and  accu 

ra te  (increased accuracy  when m odelling netw ork behav iour is equivalent to  

increased hdelity) trees and  rule sets. M axim ising b o th  of these variables is 

crucial in exp la in ing  neural networks.



Chapter 6 

Solution

The sohition presented in this chapter to the proi)lem of exphiining the ou t

puts of neural networks is in fact more flexible and can be applied to any 

machine learning ensemble where the individual members can be expressed 

as rules. For this reason the description of the process of translating  the 

networks to rules and the rule selection process have been decoupled in this 

cha])ter.

The idea l)ehind this solution is very simple. Section C.l defines how the 

solution itivolves building a ruleset cxi)laining each network. Section C.2 cov

ers the ])rocess of testing each rule with every one of the train ing d a ta  to find 

the coverage for each rule. Section G.2.1 then shows how this simple coverage 

information can be augmented with a more useful and precise descrij)tion of 

how the rule covers the training data. Section 6.2.2 then describes the online 

process of using this calculated coverage information for calculating a fitness 

score and ranking the rules using this fitness score. A worked example of this 

])r()cess is j)resented in Section 6.2.3. Finally Section 6.3 describes how extra  

diversity was added to the original networks by train ing them  on feature 

subsets to solve a problem involving extraneous terms in rule clauses.



6.1 Building an Ensemble of Rules from an 
Ensem ble of Neural Networks

T h e  neura l  net,works chosen for use in th is  system  were the  s ta n d a rd  back- 

l)roi)agation [50] type. These neural networks have been shown in the  pas t  

[58, 53]), to  have excellent generalisation for a  wade varie ty  of pred ic tion  

tasks. F u r the rm ore ,  it has also been shown [22] t h a t  for a large num ber  of 

these pred ic tion  tasks, ensembles have the  effect of increasing b o th  p red ic tion  

accuracy  and  stability.

An ensem ble of backpropagation  networks was built  l)y t ra in in g  ind iv id

ual networks on a  b o o ts t rap p e d  set of d a ta .  Boots tra ijp ing , described in the  

con tex t  of m achine  learning t)y B re im an  [10], random ly  selects t ra in in g  ex- 

am])les w ith  rep lacem ent from a set of examples. In this way, ap i)roxim ate ly  

two th irds  of exam ples will be selected a t  least once if the  to ta l  num ber  of 

exam ples  selected is the  sam e as the  num ber  of exam ples in the  com plete  

set. T he  rem ain ing  exam ples th a t  have not been selected a t  all a re  used for 

preven ting  overfitting du ring  tra in ing  of the  network.

For pro])lems involving d a ta  w ith  a skewed class d is tr ibu tion , the  m inority  

class was dup lica ted  in the  da ta .  Th is  prevented the  netw ork being biased 

tow ards the  nuijority  class.

T he  black box approach  was chosen in th is  work to  genera te  rules from 

these neura l  networks (see Section 5.1.2). T he  specific black box m eth o d  

used was the  C4.5 decision tree a lgorithm  an d  the  associated  c4.5rules pro

g ram  w’as used to  genera te  p roduction  rules for use in explanations . C4.5 

was used for genera ting  b o th  the  rules for ind iv idual netw'orks used in local 

exp lana tions  and  the  single giol)al decision tree /ru les .  Using C4.5 in th is  w'ay 

is s im ilar to  the  way in which Domingos [24] uses it.

A l though  C4.5 was chosen to  build the  rules in this pa r t icu la r  case, any
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rule learner could be used. The choice of which rule learner to apply is the 

choice of the modeller and the solution presented here is not dependent on 

this clioice.

Once trained, each network was used as an oracle on the training d a ta  and 

the ensemble of networks also acted as an oracle to label the da ta  used in the 

production of the global rules. Decision trees w'ere then built to model these 

targets(i.e. model the networks/ensemble). Finally, a ruleset was extracted 

from these decision trees.

To comjjensate for a lack of da ta  in some of the datasets studied, ex tra  

examples were; generated. These examples were generated using a very simple 

algorithm, namely:

• For every example in the training da ta

— For every feature in an example

* If the featiu'e is continuous add a small amount(zb5%) of noise 

to its value

W ith  these ex tra  data, the decision boundaries between classes should be 

c:lear and lead to a well defined tree.

6.2 Rule Coverage Statistics

The concept of rule coverage is pivotal to the operation of this system. It 

is l)y estim ating how well a rule covers the training d a ta  th a t  it is possible 

to estimate how well it will cover a future unseen exarni)le. The simplest 

measure of rule fit is the fraction of training examples th a t  hre a rule. A rule 

is considered fired by a single exami)le if the values of each feature in the 

example fit inside the boundaries of any term in the rule clause testing th a t  

feature. The coverage score of the rule is increased by a constant am ount
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each t im e  the  rule is fired. T h is  coverage p ropo rt ion  alone gives a  reasonable  

ind ica tion  of the  generality  of a rule. Due to  incom plete  d a tase ts ,  however, 

m any  rules m ay classify areas of the  inpu t  space incorrectly. Identify ing the  

areas of the  in p u t  space covered by the  rule and  in which we have the  m ost 

conhdence  in the  rule is the  sub jec t  of the  nex t section.

6.2.1 Advanced Rule Coverage Statistics

To im prove the  coverage inform ation, it is useful to  know w ha t  areas of the  

inj)ut space are well covered by the  term s in the  rule clause. Th is  can be 

accom plished by ca lcu la ting  some ex tra  sta tis tics .

W hen  com pu ting  the  sini])le p roportion  of exami)les t h a t  fire each of the  

rules, it is necessary to  save these exam ples in a list associated  w ith  th a t  rule. 

W hen  all of the  t ra in in g  examples have been tes ted  w ith  all of the  rules, the  

m ean  and  s ta n d a rd  devia tion  of each of the  features w ith  continuous values 

th a t  a p p e a r  in the  rule clause are calculated . Th is  is no t possible w ith  

symbolic features as these have an implicitly  perfect fit.

6.2.2 Rule Fit and Ranking

O nce the  off line process of ca lcu la ting  rule coverage s ta t is t ic s  is complete, 

it is possible to  ca lcu la te  an on-line rule fitness score for new exami)les w ith  

r('S])ect to  the  rules in the  system. However, no t  every rule is checked for 

ev('ry new example.

W hen  a  new exam ple  is in troduced  into the  system , e ither  the  rulesets 

or the  original neural networks vote on the outcom e. Only  the  ensemble 

m em bers  c o n tr ibu ting  to  the  m ajo r i ty  p red ic tion  are used in the  rank ing  of 

])redictive rules. Each of tlie rules in each of these “correc t” ru lesets  (or the  

ru lesets  corresponding  to  the  correct networks) are considered w ith  th is  new'
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exainj)le. All of the rules fired by this example are collected together.

At this stage, the system has identified a group of rules th a t  could po ten

tially be used to explain the example being tested. Using the rule coverage 

statistics calculated earlier, it is now possible to go one step further and rank 

these rules in order of our confidence in the predictiveness of each rule. This 

is done by calculating a fitness score for each rule. This fitness score is cal

culated l)y testing how similar the new example is to the training examples 

th a t  also fired this rule.

For every term  in each rule clause, a score is calculated using equation 6.1. 

The mean(//,) in this equation is the mean of the feature values for each term  

th a t  fired the rule and the s tandard  deviation((r) is the s tandard  deviation 

of the feature values for each term tha t fired the rule.

F itnessy =  max^ —̂

Once a fitness score for each of the terms in each rule has been calculated, 

each rule must be assigned an overall fitness score. The term  with the m ax

imum (i.e. poorest) fitness score is then selected as the fit for the rule as a 

whole. This is similar to the approach taken in Mycin [54] when comparing 

the conjunction of two hypotheses where the weakest measure of belief is also 

taken as the overall measure of belief.

There are two exceptions in the calculation of this fitness score:

• Rules whose terms are duplicates of others

• One sided rules, where the value of a feature lies on the unbounded 

side

Th(' first of these excej:)tions arises frecjuently for rules where a common 

pa tte rn  exists in the da ta  and several rulesets predict the outjjut class using
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X-

Figure 6.1: Number line showing unbounded rule

this rule. In order th a t  this rule is not presented more than  once to the 

user, du])licate rules are removed. The fitness of the final remaining rule is 

then  boosted by a small constant to reflect our increased confidence in the 

predictiveness of the rule.

I 'he  second exception is for one sided rules, these are rules th a t  are 

bounded on a single side only. If the value of the feature being tested is 

on the unbounded side of the mean, th a t  term  is autom atically  given a per

fect fitness score. This situation can be seen grai)hically in Figure C.l. This 

diagram  shows a number line rei)resenting the rule;

IF A' <  Xjj THEN TRU E 

The training examples tha t fitted this rule are marked along with their mean 

value. Any value of A' tha t fits this rule and is less than  the mean //, is 

autom atically  given a perfect fttness score.

This fitness measure gives us our main criteria for ranking rules. However, 

it is possible for ties to occur when a group of rules all have maxinumi fitness. 

Ties can be resolved in these situations by considering rule specificity, i.e. 

the mimber of terms in the rule. In situations where simple explanations are 

preferred, rules with few terms are [^referred. In situations where elaborate 

exi)laiuitions might be interesting rules with more terms in the left-hand-side 

can be ranked higher.

The doctor examining the results of the Bronchiolitis d a ta  (one of the
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datasets  used in the evaluation of this research) suggested tha t,  in practice, 

simple explanations might be appropriate for holding a patient overnight 

whereas more elaborate exj^lanations might be necessary for discharge. The 

logic behind this is th a t  a single symptom might be enough to cause concern 

about a child whereas to discharge a child no adverse symptoms shoidd be 

observable.

So in selecting and ranking rules to explain the Bronchiolitis d a ta  the 

main criterion was the ranking based on the rule fit. Ties were then resolved 

by selecting the simi^lest rules for admissions and the most complex rules for 

discharges. This jnoduced very satisfactory results.

In general therefore, a policy for resoh ing  ties should i)e agreed with a 

domain expert on a class by class i)asis.

6.2.3 Worked Exam ple of Calculating Rule Fit U sing  
Iris D ataset

To dem onstrate  how the fitness metric works, a simple example of analysing 

extracted rules is included in this section. The dataset used is Fishers Iris 

datase t from the UCI rej)ository [9].

This datase t comprises three classes with 50 examj)les of four features 

each. One of these classes is linearly sei)arable from the other two. For a 

back pro])agation network this is a straightforward task. In order to increase 

the difficulty of the ])roblem, the number of training examples in each class 

has been reduced to 17. Using bootstrap])ed sets, the number of examples 

from each class seen during training of individual networks will be varied 

thus giving i^etter diversity.

Nine unseen examples, three from each class were used to test the system. 

For each of these (examples, predictions were made and five ranked rules were
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o u tp u t as exi)laiiatioiis of these predictions.

These rules were then ranked by confidence of their fit to the unseen test 

example. A sample test example appears below along with two rules th a t  

were selected as ])redictive of the class.

sepal_length == 5.7
sepal_width == 2.6
petal_length == 3.5
petal_width == 1.0

[0.548107]

IF 0.497102 < petal_uidth <= 1.178020 
THEN Iris-versicolor

[1.552252]
IF 2.089680 < petal_length <= 4.198180 
THEN Iris-versicolor

The boundaries of these rules are shown graphically in figure C.2.

From this figure, it can be seen th a t  the Iris-versicolor test ])oint is signifi

cantly closer to the mean of the training points in the ])etaLwidth dimension 

than  it is to the mean of the points in the i)etalJength  dimension. This close

ness increases our confidence in recommending this rule as an explanation for 

the j:)rediction of the network for th a t  example, i.e. it is ‘like’ the examples 

on which this rule is based.

In the results on the Iris dataset several examples of rule duplication arise. 

For example, the following rule was ranked as one of the five most j)redictive
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Figure C.2: Grai)li of Iris da ta  in two dimensions

rules(tlie fitness for this rule is reported in scjuare brackets a t the top of the 

rule):

[0.940733]
IF sepal_width > 2.294270 
AND 2.089680 < petal_length <= 4.771990 
AND petal_width <= 1.711730 
THEN 1

In fact this rule appeared four times in the set of predictive rules. The 

other occurrences of this rule may have had slightly different limits, bu t for 

the purposes of du])licate boosting, it is im portan t only th a t  the example 

being tested fits each of the rules. To reflect this increased conhdence in this 

I'ule, its fitness value was ‘boosted’ by dividing its original htness by 1.2 for 

every du])licate occurence. The original htness of this rule before duplicates
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were taken into account was 1.95. W ithout the dupUcate rules this rule would 

not have been as good as the next ranked rule whose fitness was 1.86.

6.3 Rule Simplification

A m ajor problem encountered with many of the rules selected using the 

al)ove m ethod was tha t,  although, the rules contained many excellent terms 

in their clauses, there were frequently conditions which provided little extra  

information or were contradictory to the proposed class output. In order to 

try  to remove these extraneous terms, each of the networks was trained  using 

a subset of the available training features. This approach has the useful effect 

of increasing diversity in the ensemble, which should give an overall decrease 

in the ensemble error assuming the error in the individual networks does not 

increase substantially. In the case of this work, feature subsets were selected 

according to the w rapper based alg(Hithm described in [68] and described 

b('low:

•  Generate a random feature mask (i.e. a feature subset) and estimate 

the generalisation error for th a t  nuisk using cross validation

•  Cycle through the mask flipping each bit in turn  and if the estimation 

of generalisation error on this new mask is less than  before accept the 

flip, otherwise reject it and reset the bit

•  Repeat from step 1 until no improvements are found (i.e. no bit flips 

accepted) on a full traversal of the mask

Once the required number of masks has been found, each of the net

works in the ensemble is trained using sejiarate masks. Rule extraction then 

continues as described in Section 6.1.
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The rules extracted using this method are more focused on specific lo

cal i)atterns inside the data  and fewer extraneous terms appear inside rule 

clauses.
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Chapter 7 

Im plem entation

7.1 Introduction

The iiii])leineiitatioii of the ideas described in this thesis was for testing the 

feasibiUty and j)erforniance of the concej)ts described. The implementation 

comprised command Hne tools under Linux. Only the results of the im

plementation were jn'esented to the experts evaluating the results. Writing 

a graphical user interface ( “GUI” ) for interacting with the system was not 

included in the scope of the thesis and so this system is not necessarily 

representative of how' this work might be integrated into existing hospital 

databases.

The (lescrii)tions provided in this cluipter therefore concentrate on the 

tools th a t  were used to implement the system and why they were chosen.

7.2 Practical Im plem entation  Issues  

7.2.1 P rogram m ing

The inipk 'mentation to test this system was w ritten using only free software 

[5C] on Linux [60]. In to tal three languages were used in the develo])ment of 

tlu' system software. These were:
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C + +

•  Python

•  Bash shell script 

C + +

For reasons of efficiency, the neural networks were implemented using C + +  

[57] with the g++[2] compiler. C + +  is a good choice for this type of problem 

as it is a flexible language th a t  compiles directly to machine code.

W ith  the advent and adoption of the ANSI C + + [ l]  specification, C + +  

has become a significantly more portable language. In particular, the in

creased availability of the STL(Standard Tem])late Library) allows develop

ers to focus even more on solving problems rather than  tackling low level 

implementation details such as allocating and freeing memory. Good use 

was made of the S TL’s collection and stream classes for reading the database 

of examples.

P y t h o n

Python  [62] is a flexible high level scripting language and is well suited to 

the manijjulation of text files. W ith  the exception of the neural network 

im plem entation where C + +  was used. Python was the main language used. 

Python has many a ttractive features:

•  Perl-like regular exj^ressions

•  Object oriented

•  Flexil)le da ta  types(e.g. lists and associative arrays)

•  Functional programming tools(map, filter, reduce and lambda)
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The regular expressions were used to good effect while parsing the ou tpu t 

of c4.5rules. The text outiMit of this program included error information and 

headings th a t  were not recjuired for this system and these were easily excluded 

when searching for rules with regular expressions.

The object oriented nature of Python allowed for a good abstraction of 

the various parts  of the programs, e.g. reading the d a ta  format file (in C4.5 

“names” format), reading the data, reading the rules and separating each 

term  in each rule clause.

Lists and associative arrays are natura l d a ta  types for holding rules and 

examples and associating information with them. The functional j^rogram- 

ming like functions help speed up the time consuming task of iterating over 

s tructures in an interpreted language by performing the loop in the faster 

compiled code of the interpreter.

B ash  shell script

The final part of the implementation was written using Bash [31] shell script. 

This was used to tie the individual i)ython scripts and the neural network 

programs together.

Shell scri])ts can be used not only for s tarting  programs, but also to 

dynamically set and adjust the values of environment variables and even to 

looj) ov(>r groups of commands. The return values of programs can also be 

read to check for and report any runtime errors.

7.2.2 D istributing Work

The ])rocess of creating the masks (see Section 6.3) is very intensive, partic

ularly if the training set is large. For this reason, this work was distributed 

across a cluster of computers each running Linux.
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Figure  7 . 1 : M aste r /s lave  a rch itec tu re

T he  chister  is configured such t l ia t  users’ hom e directories are shared  

between all com puters  using NFS. All com pute rs  p a r t ic ip a t in g  in the  job  

therefore have access to  the  sam e j)ool of d a ta .  Each com jniter  has local disk 

space, so in te rm ed ia te  results  can be saved and  accessed (luickly on dem and .

I ’he (listril)utiou of work was carried ou t using the  m as te r /s lav e  parad igm .

In th is  scenario, one com pu te r  ac ts  as a  m aste r ,  while all o ther  com pute rs  

are considered slaves. T he  m aste r  coord ina tes  the  work to  be done and  is 

resi)onsible for colla ting results. Th is  d is tr ibu t ion  a rch itec tu re  can be seen 

graphically  in figure 7.1.

To fac ili ta te  com nnm ica tion , the  program  was w r i t ten  using the M PI(M essage  

Passing  Interface) [4]. Th is  interface defines a  flexible a rray  of functions for 

sending  an d  receiving messages. T he  im plem en ta t ion  used here was M PIch 

from the  A rgonne N ationa l L ab o ra to ry  [3], which is also available under a 

free software license.

T he  code for distril^uting the  work of tra in in g  the  neural networks for 

tes t ing  m ask  i)erformance was w ri tten  using the  C + +  M P I l)indings. Th is  

fac ili ta ted  simple in tegra tion  with the  neural netw ork code.
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Sum m ary and future of parallel com puting

The m ethods being used by machine learning researchers are becoming ever 

more com])utationally demanding and the problems being tackled are grow

ing ever more complex. Even the rapid advances in processing speed often 

cannot keep i)ace, in this environment, to provide real time results and in

teractivity.

The distribution of j)rocessing work across clusters of computers therefore 

holds great promise for researchers.

T he nature of the ])roblem described in this thesis is often known as 

“Embarrassingly Parallel” due to i t ’s olndous parallel solution. There is no 

need for comnnmication between different learners and the training time 

decreases in direct jwojiortion to the number of processors available.

For more complex problems however, there may be large comnuinications 

overhead between processes and it is in this environment th a t  a cluster will 

be of most benefit. The improvement over a single com puter is likely to be 

several orders of magnitude greater as j)rocesses do not need to be swa])i:)ed 

in and out of memory and ex])ensive kernel inter-process comnumication 

( “IP C ” ) calls can be avoided. Gigabit and faster networking speeds and 

the zero-copy implementation in the modern Linux make networks a viable 

transi)ort mechanism for most machine learning tasks involving extensive 

comnninication. Furthermore, clusters can comprise off'the shelf components 

and when conil)ined with the Linux operating system and other free software 

they make a cost effective yet easily uj)gradeable and scalable alternative to 

expensive ])roj)rietary supercomputers.
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Chapter 8 

Evaluation

The evahiatioii of the work nndertakeii in this thesis was not a straightfor

ward task. While accuracy of predictions can be assessed from a flataset, the 

cjuahty of associat(!(l explanations can only be assessed by experts working 

in the area of the prediction. For this j)articular reason, two domains, for 

which exi)erts were readily availal)le, were assessed. These domains were:

•  Predicting whether or not very young children showing signs of bron

chiolitis should bo adm itted  to hospital including explaining the reason 

behind adm itting  or discharging a child.

• Predicting the (juantity of the blood thinning drug Warfarin th a t  should 

be administered to patients based on their previous history of taking 

the drug and their current symptoms.

The same datasets were also used in evaluations of earlier \vork in this 

research, [C4, 65].

The iris dataset used in Section 6.2.3 to dem onstrate how the ideas of lo

cal exi)lanatiou and rule ranking are implemented is a useful introduction to 

the evaluation, although not part of the formal evaluation. The iris dataset 

dem onstrates th a t  the proposed system makes a reasonable attemj^t at find

ing the exj^lanations in which we have the most confidence.
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As s ta ted  above, the two domains chosen for evahiation by this thesis were 

medical. The principal reason for this selection is th a t  medical d a ta  provides 

a potentially rich soiu’ce of d a ta  for machine learning practitioners. Accuracy 

and explanation are both  very im portan t in terms of user acceptance of a 

machine learning based system. Work th a t  focuses only on accuracy may not 

be accepted in a live implementation, this would rule out many novel nem-al 

network baserl approaches.

Each of the selected domains are discussed separately, Bronchiolitis in 

Section 8.2 and Warfarin in Section 8.3.

It should be stressed, th a t  the selection of these medical domains for 

s tudy  is somewhat arl)itrary l)ut also driven by availability of experts in the 

area. The work is in no way restricted to these domains and the prim ary 

goal is to show th a t  local explanation is a vialjle approach to the ex])lanation 

rofiuirements when compared with a global a])proacli using a similar rule 

extraction method.

8.1 Evaluation Process

The process of evaluating the results was the same for both  datasets. This 

process consisted of the generation of rules from each of the networks in an 

ensemble along with a global set of rules modelling the ensemble operation. 

This process is described in more detail in Chapter 6.

As noted in Chapter 7, the work undertaken and the programs developed 

for the jMirposes of testing this thesis were not representative of how this 

system would actually be integrated into current medical systems. For this 

reason, the experts evaluating the results did not interact with the system 

and were simply presented with formatted results.

A total of ten examples were selected randomly from each of the datasets
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being studied. These examples were not used at any point during training 

of the networks or building of the subsequent rules, their use is confined 

to future tests of the ideas embodied by the programs. Predictions for, 

and explanations of, these examples were given to the experts for evaluation 

using both global and local approaches. A maximum of five ranked rules 

were produced by each example for each method.

The domain exj)erts evaluated the results by scoring each of the expla

nations l)ased on the ])redicte(l output. The scores given ranged from 1 - 5 .  

These scores translated into assessments of rule ciuality, with a higher score 

indicating a better rule.

1. Wrong

2. Poor

3. Fair

4. Good

5. A'ery good

For each set of scored rules (one set per dataset), a number of overall 

scores were calculated to determine how well the local and glolml rules per

formed.

These scores were as follows;

1. Average Top Rules

2. Average Top Correct Rules

3. All Predictions

4. All Predictions (Mininnun Rules)
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5. C orrec t  Pred ic tions

C. C orrec t  P red ic tions  (Miuiniuni Rules)

Scores 1 an d  2 are concerned only w ith  the  top  ranked rule from each 

m e th o d  for each of the  da tase ts .  T he  top  ranked rule is the  rule in which 

the  p ro g ra m  has  the  m ost confidence and  hence hopefully  the  one w ith  the  

m ost  ac cu ra te  inform ation . If the  system  was to  display only a  single rule it 

would be th is  one and  hence, this is an im p o r ta n t  score.

Score 3, takes into account the  scores for all rules displayed to  the  user of 

the  system . Again , if the  rule ranking  technique has worked well in the  local 

a])proach these  scores should not be too  low relative to the  global ap])roach 

or the  o th e r  scores. Score 4 is s im ilar to  this, b u t  uses only th e  m in im um  

n u m b er  of rules p roduced  by the m ethods  for ca lcu la ting  the  score for each 

tes t  case. For exam ple, if the  glol)al approach  uses two rules to  describe the 

tes t  case an d  the  local approach  uses four rules to  describe the tes t  case then  

only two ruh 's  from each approach  are used in ca lcu la ting  the  score.

Score 5 considers only the  rules in those tes t  cases correctly  p red ic ted  by 

the  system . T h is  score is im p o r ta n t  as it shows the perform ance of the  system  

w hen it has a lm os t  certa in ly  fully unders tood  the  case under  investigation. 

Finally , score 6 uses only the  m in im um  m im ber of rules in each of the  correctly  

l^redicted te s t  cases as described above.

T h e re  is no com parison  m ade  between these results  and  the  results  of 

o th e r  m e th o d s  of rule ex trac tion  from ensembles, e.g. Z h o u ’s R E F N E  [69] 

(see Section 5.4). Th is  is for two (related) reasons:

•  T h e  focus  of this thesis is on d e m o n s tra t in g  th a t  the  local exp lana tion  

api)roach is a  viable ap])roacli to  the  problem  of expla in ing  th e  o u tp u ts  

of an  ensemble. T here  is no sensible app lica tion  of m e th o d s  genera ting
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global rulesets explain ing ensembles for a single network.

•  C om i)aring the  results  ob ta ined  below w ith  the  results  o b ta in ed  from 

a global m odel from a  different m e th o d  is an unfair  com parison  be

tween two different rule learners - e ither  one could perform  b e t te r  on a 

p a r t icu la r  d a tase t .

For these  reasons, to  make a fair com parison  between local and  global 

rules, it is necessary to  use a  sim ilar m e th o d  for the  genera tion  of i)oth sets 

of rules. T h e  m eth o d  chosen was to  use the  C4.5 package and  th is  is described  

in m ore  de ta il  in C h a p te r  6.

8.2 B ronchiolitis  

8.2.1 D a ta

T he  bronchio lit is  d a ta se t  has the  s tru c tu re  shown in Table 8.1.

Table 8.1: Bronchiolitis  d a ta se t  s t ru c tu re
Total examjiles 118
C ontinuous Features 10
Symbolic Features 12
Missing Values Yes

T h e  bronchiolit is  d a ta se t  represents a som ew hat j)0 0 r coverage of the  

overall dom ain . T h is  was confirmed in 5-fold cross va lida tion  tes ts  done 

in th e  dom ain . For each cross va lida tion  tes t ,  an  ensemble com prising  5 

netw orks was built from the  tra in ing  d a ta  using bagging to  select the  da ta .  

Average accuracies were com pu ted  for each of the  25 networks a long  with 

average accuracies for the  5 ensembles. For each network tra ined , a ru leset 

was also ex tra c te d  to  model its behaviour. T he  accuracies of these ru lesets  

were recorded  and  likewise the  accnracy of these rulesets used as an  ensemble
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was also recorded. This provided an insight into how well the rules performed 

compared to the original networks. These accuracies are sliown in Table 8.2.

Tal)le 8.2: Results of 5-fold cross validation performed on bronchiolitis da ta
Av. ± S.D.

Average Ensemble Accuracy 72.5% ± 2.4
Average Rules Ensemble Accuracy 70.4% ± 2.8
Average Network Accuracy 68.8% ± 5.2
Average Rules Accuracy 66% ± 5.7
Average Network/Rules Fidelity 82% ± 7.6

This tal)le clearly dem onstrates the fact th a t  not only did the ensemble 

outperform the individual networks but the networks were also quite uns ta

ble. This instability is reflected in the s tandard  deviation figures reported 

next to the accuracies. In the case of the individual networks the s tandard  

deviation is more than double th a t  for the ensembles. This feature of an 

inc:rease in accuracy and stability is one of the positive features of using 

enseml)les.

8.2.2 Explanations

The explanations associated with the predictions from both  the local and 

global approaches were evaluated by Dr. Paul Walsh, an expert in the area 

of l)ronchiolitis.

An example of a rule produced using both  the local explanation method 

and a global explanation method for the example is shown in Tables 8.3 and 

8.4, res])ectively.

Before analysing these scores, however, it is useful to first see the accu

racies of the two methods using the ruleset ensembles for predictions on the 

tost data . This is shown in Table 8.5.
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Table 8.3; Example evaluated by expert (‘? ’ indicates a missing value)
Feature =  Value
Age in Months =  3.17
Anorexia =  0
Decreased Activity =  0
Smoking ANY =  1.22
Smoking M OTHER —  ?
Entry Tem perature =  37.00
HR =  162.00
HR gt 98% =  0
R R l =  38.00
Sa 0 2 =  97.00
HR 2 =  110.00
H R2 gt 98% =  0
RR2 =  28.00
Sa 0 2  2 =  95.00
Dehyflration =  None
LOG =  Alert
Retractions =  0
Griuiting =  0
BS =  0.00
DecBil =  0
Crac and Whez =  0
W'hez only =  1
Decision =  DISCHARGE

The first of the analyses performed on the scores, involved taking the 

average of the scores for each example. This was performed twice, once 

using all the rules and the second time using only the minimum num ber of 

rules i)roduced by the two methods, e.g. TW O for the example show^n in 

Table 8.4. In this way the same number of rules was used in the comparison. 

The number of wins, losses and draws for each method was then computed. 

This is given in Table 8.6.

Tal)le 8.G shows th a t  the local explanation approach performs ŵ ell. Tak

ing all of the rules into account for each example in the test set, the local
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approach is a clear winner. The i)robability of getting draws is much higher 

when using the minimum set of rules. If there is only a single rule produced 

using one of the methods, then, a draw results if the scores for these rules 

are the same. W hen averaging over all the rules, draws are much less likely.

Table 8.7 contains the overall scores calculated for the bronchiolitis re

sults. The descriptions for these scores are set out in Section 8.1 a t the s ta r t  

of this chapter.

The results from this table clearly show th a t  the local explanation ap

proach outperforms the globally extracted rules. The average scores are 

higher in all cases.

The final statistic th a t  was j)erformed was a j)ooled t-test. The average 

scores for all rules in l)oth local and global approaches were averaged and 

from these a pooled s tandard  deviation was calculated. The t-test was found 

to be significant a t a 90% confidence level. For the score of all the rules using 

only the mininnnn number in either method, this confidence level was 60%.

T-tests  were also carried out for the other scores. For the average top 

raidved rule score, the confidence level was found to be 70%, while for the 

averages top ranked rule in correctly identified cases, it was 60%. Lastly, for 

the correct predictions, the confidence level found was 70% and for the correct 

predictions using only the mininuun number of rules from both methods, it 

ŵ as 90%.

It is expected th a t  given a larger test, these scores would further im

prove.

8.3 W arfarin  

8.3.1 Data

The Warfarin datase t has the structure shown in Table 8.8.
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The evahiatioii of the Warfarin d a ta  is less straightforward. The da ta  sup- 

])lied for this domain represented excellent coverage of the domain. Therefore, 

the explanations extracted using the global approach could be expected to 

be reasonably accurate as the global model would miss few of the details in 

its construction. This was indeed confirmed to be the case.

A 5-fold cross validation of the dataset was also performed, similarly to 

the bronchiolitis data. This involved the construction of 5 ensembles com

prising 5 networks each. Each of the errors for the ensembles w'ere averaged 

and the average error of the 25 netw'orks was also recorded. These results 

are shown in Table 8.9.

It is clear from this table th a t  the ensemble failed to provide a significant 

boost in accuracy above th a t  of the individual networks. This is sym ptom atic  

of a well covered domain.

8.3.2 E xp lanations

The evaluation of the Warfarin results were carried out by Dr. Stephan 

Byrne, an expert in the area of administering the Warfarin drug.

One of the ten examples used in the final test set is shown in Table 8.10 

and the rules produced for this example are shown in Table 8.11.

The accuracies of both  methods using the derived rulesets for j)redictions 

on the ten test points can be seen in Table 8.12.

The first evaluation of this d a ta  simply takes the average of each of the 

scores for each example and calculates how well the local explanation ap

proach performs against the alternative rules built to model the ensemble. 

The results of this can be seen in Table 8.L3.

The results in Table 8.13 show tha t although the rules built to  model the 

ensemble do outperform the locally extracted rules, the gap between them is
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not very wide. The ‘Miniiimin Rules’ row of this table, is where the average 

scores of the niiniinuiii number of rules produced by both  methods for a 

particu lar example is calculated. So for the example show^n in Figure 8.10, 

this m inimum number would be o n e  rule.

The detailed analyses of the rules produced for each example is given 

in Table 8.14. Tliis table show th a t  the globally extracted rules i)erforni 

be t te r  than  the locally extracted rules (though both methods have relatively 

high scores for every category, neither fails dramatically  on any analysis). 

A description of these scores is contained in Section 8.1 at the s ta r t  of this 

chapter.

In favour of the local explanation, but not visible from these results, is 

the fact th a t  only the local explanation produced rules th a t  were marked 

as excellent by the expert in the area (half of the examples contained rules 

marked as excellent). Also weighting the scores somewhat in favour of the 

ensemble modelled global rules is the fact th a t  these rules failed to produce 

any explanation for one of the test exani])les. Thus the effective explanation 

(luality for this rule was ZERO, but this is not reflected by the averages.

As in the case of the bronchiolitis da ta  a pooled t- test was performed by 

averaging all of the rules for l:)oth the local and global approaches. Together 

w'ith a ])00led s tandard  deviation, a t-sta tistic  was found. This statistic was 

found to be significant a t the 95% confidence level. High confidence level 

wore maintained for the other scores. This aids in confirming the belief th a t  

the global rules had captured nuich of the most im portan t information very 

succintly.
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8.4 Summary

The evaluation of this work has shown th a t  where the coverage of d a ta  is 

IK)or, ensembles can be used to increase accuracy and stability over a single 

model. W here there is good coverage in the data, using an ensemble leads 

to  little, if any, improvement in the predictive accuracy.

Furthermore, explanation of predictions in a poorly covered domain are 

greatly imi)roved by the use of local explanation techniques. The local ap

proach delays the i)roduction of explanations until the last possible moment, 

thus maximising the information available and producing a better expla

nation. The bronchiolits da ta  dem onstrates this phenomenon. The rules 

])roduced by the global model lacked sufficient detail an d /o r  feature values 

were incorrect.

Although the scores given by the expert for the rules may seem low, there 

ar(' a number of reasons for this. There are general reasons th a t  api)ly to 

both  datasets  and more specific reasons for each dataset.

The (luality of rules ou tpu tted  l)y this system is highly dependent on 

the underlying rule generation technique. For this implementation C4.5 w'as 

used. A different rule inducer may i)roduce better results.

Medical d a ta  is also inherently noisy. This noise may come from several 

places, bu t two im portan t factors are:

•  Symptoms are recorded a t time of entry

• There are many extraneous factors not captured by the d a ta  available

The bronchiolitis dataset is very prone to the time sym])toms are recorded. 

W'hen i)resented with a child displaying symptoms of bronchiolitis, a doctor 

may use h is /her  experience and senses (e.g. touch and sight of the child)
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to aclinit th a t  child before the syrii])tonis l^ecome severe. In addition, when 

any doubt whatsoever exists, the child is more likely to be adm itted. The 

symi)toms presented to the machine learner, however, are those of the child 

a t time of entry and these may not yet liave progressed to a level m andating  

entry.

The problem of extraneous factors in the datase t is also clearly visible 

in the l)ronchiolitis dataset. The expert in this area posed the example of a 

child who was otherwise healthy l)ut whose mother abused drugs and hence 

the child w'ould most likely be adm itted  to hospital.

In the case of the bronchiolitis data, the criteria used by the doctor in 

evaluating the explanations was to compare the explanations to i)ublished 

criteria to be used when evaluating children presenting symi)tonis of bron

chiolitis. To exactly model these criteria is an extremely difficult proposition 

for any machine learning algorithm, particularly in the ])resence of the noise 

described al)0ve.

The results in tlu' case of the Warfarin dataset, could have been greatly 

improved by using the (uitire dataset. Only a subset of the d a ta  was used in 

order to increase the difhculty of the proljlem.

In contrast, global models nuist make a trade-off between fidelity and 

comprehensibility as they try  to explain an entire domain in a single model. 

As a consecjuence of this trade-off, im portan t tra its  and characteristics in 

the individual models may be lost. In a well covered domain, for exam])le 

W arfarin, the most ini])ortant characteristics of the da ta  are well represented 

and the global model rej)resents a good explanation of the domain. Even in 

this well covered domain, however, tlie global model lost some of the finest 

details. The best rules from the point of view of the expert, therefore, were 

I)roduced by the local explanation approach.
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It could be argued th a t  statistically it is more likely th a t  excellent rules 

will ai)i)ear in the local aj^proach as more rules are outputted . However, 

this ignores the fact th a t  the local api^roach nnist rank a potentially large 

num ber of rules and these excellent rules were consistently ranked highly and 

therefore ou tpu t to the user. Also if the global model had truly covered all 

details of the domain, it too would have been graded as excellent. This was 

not the case and it is therefore clear th a t  the comprehensibility/fidelity trade 

off was taking jjlace and im portan t details were being dropped. Also, the local 

approach does not rec}uire tha t a large number of rules are ou tpu tted  and it 

still (lisi)lays good performance when only the toi) ranked rule is considered. 

This shows th a t  the rule ranking technique works well.
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Table 8.4: Rules produced for the example in Table 8.3
Local Global

[0.00] [0.00]
IF Entry Temperature < = IF Sa 02  > 94.52
44.96 AND HR2 < =  131.23
AND Sa 0 2  > 93.18 AND Crac and Whez =  0
AND LOG =  Alert AND RR2 < =  29.37
AND Crac and Whez =  0 THEN DISCHARGE
AND BS < =  0.27
THEN DISCHARGE [0.00]

IF Sa 0 2  > 95.55
[0.00] AND RR2 < =  31.89
IF HR > 141.00 AND BS < =  0.10
AND Dehydration =  None AND Whez only =  1
AND Retractions =  0 THEN DISCHARGE
AND Age Months > 1.87
THEN DISCHARGE

[0.00]
IF Sa 0 2  > 93.50
AND LOG =  Alert
AND Crac and Whez =  0
AND BS < =  0.27
THEN DISCHARGE

[0.00]
IF Sa 0 2  2 > 91.89
AND Dehydration =  None
AND Retractions =  0
AND Age in Months > 1.87
THEN DISCHARGE

[0.00]
IF Age in Months > 1.87
AND Sa 0 2  > 95.30
AND Dehydration =  None
AND HR < =  166.00
THEN DISCHARGE

117



Table 8.5: Accuracies on test da ta
Accuracy

Local explanation 90%
Ensemble Model Rules 70%

Table 8.6: Wins, losses and draws for the rules comj^uted by the local expla
nation m ethod _________________________________________

Wins Losses Draws
All Rules 7 3 0
Minimum Rules 4 3 3

Table 8.7: Analysis of rules generated for bronchiolitis da ta

Locally Extracted Rules Global Rules
Average Top Rules 2.8 2.5
Average Top Correct Rule 2.89 2.71
All Predictions 2.84 2.42
All Predictions (Mininuun Rules) 2.53 2.42
Correct Predictions 2.76 2.5
Correct Predictions (Minimum Rules) 3.04 2.5

Tab e 8.8: Warfarin dataset structure
Total Examples 323
Continuous Features 8
Symbolic Features 5
Missing Values 0

Results of 5-fold cross validation performed on War
Av. ±  S.D.

Average Ensemble Accuracy 70.1% ±  7.9
Average Rules Enseml)le Ac:curacy 70.6% ±  6.0
A w rage Network Accuracy 70.7% ±  6.9
Average Rules Accuracy 71.1% ±  6.9
Average Network/Rules Fidelity 89.7% ±  4.9
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Table 8.10: Example evaluated by expert
Feature =  Value
Age =  75.00
\\'eight =  62.70
INRMeasuremeiit =  2.30
PreviousDose =  3.29
TlierapyDuratioii =  127.00
TargetlNR =  3.75
NoADR =  NoAdverse
Gender =  Female
CurreiitMediciues =  None
OTC =  None
Ak:ohol =  0.00
Compliance =  TooMuch
INR Delta =  1.45
Dosage =  2 < =  SiibsequeiitDose < 5
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Table 8.11: Rules produced for the exani})le in Table 8.10
Local

[0 .00 ]

IF Age >  73.39 
AND Alcohol < =  3.94 
AND INR Delta < =  1.84 
TH EN  2 < =  SubsequentDose <  5

[0.08]
IF Age >  59.25
AND 2.07 <  PrcviousDose <  =  
4.05
AND INR Delta > -1.02 
TH EN  2 < =  SubsequentDose < 5

[0 .31 )

IF Age >  51.33
AND 2.07 <  PreviousDose < =  
4.51
AND Alcohol < = 1 9 .7 0  
TH EN  2 < =  SubsequentDose < 5

[0.3C]
IF 1.58 <  INR.Measuremeut < =
3.53
AND 2.82 <  PreviousDose <  =
3.53
AND Alcohol < =  16.38 
TH EN  2 < =  SubsecjuentDose <  5

[0.56]
IF Age > 63.27
AND 1.63 <  PreviousDose <  =  
5.28
4TIEN 2 < =  SubsequentDose <

Global
Tim]
IF 1.53 <  INR Measurement <  =  
3.47
AND 0.90 <  PreviousDose <  =  
3.58
AND Alcohol < =  14.22 
AND INR Delta < =  2.31 
TH EN  2 < —  SubsequentDose < 
5
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Tal)le 8.12: Accuracies on test da ta
Accuracy

Local Explanation 80%
Ensemble Model Rules 70%

Table 8.13: Wins, losses and draws for the rules com puted by the local 
explanation method______________________________________

Wins Losses Draws
All Rules 3 6 1
Mininuim Rules 4 5 1

Table 8.14; Analysis of rules generated for the Warfarin da ta

Locally Extracted Rules Global Rules
Average Toj) Rules 3.3 3.78
Average Toj) Correct Rules 3.38 4
All Predictions 3.24 3.79
All Predictions (Minimum Rules) 3.21 3.79
Correct Predictions 3.38 3.92
Correct Predictions (Minimum Rules) 3.24 3.92
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Chapter 9 

Conclusions & Future Work

The research and factual da ta  used as part of this thesis clearly dem onstrates 

th a t  explanation on a case by case basis, also known as local ex[)lanation, 

is a viable approach for solving certain problems. Included among these 

problems are those where the j)rediction being explained must be acted upon 

in a timely fashion and where there is no need to fully anah^se the domain.

Local exi)lanation is of particular value in j)00rly covered domains. The 

bronchiolitis d a ta  studied in this thesis is an excellent example of such a 

domain. When producing a single global model of this domain many details, 

th a t  wvre included in the rules jn'esented on a case by case basis, were om itted  

from the final model .

In a domain with better coverage, such as the Warfarin domain, this the

sis flemonstrated th a t  the rules extracted from the global model performed 

ecjually well or outperformed those extracted locally. This is because imi)or- 

ta n t  tra its  in the d a ta  were w'ell rej^resented in the individual models and 

little information was lost in })reparing the full global model.

The rule ranking criteria ])roposed in this thesis performed well in select

ing some of the better  rules to be displayed to the user. F iuthermore, this 

rule ranking criteria intuitively selects rules th a t  are also likely to be selected
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by a  non-expert user.

Medical da ta  sets have long been an im portan t source of d a ta  for machine 

learning practitioners. Freciuently, however, more emphasis has been placed 

on making accurate predictions with little or even no im portance placed on 

explanation of the results. A principal aim of this thesis was to redress this 

imbalance by providing a general framework for explanation. W ith  more 

work in the area of explanation, we may see greater user acceptance of m a

chine learning software by the medical community and other users. When 

the user can decide for himself the correctness of the jjrediction, it will be 

perceived as less of a th rea t and more of an aid to the user.

Medical datasets also have i)roblems, which although perhaps not unicjue 

to them, are very apparent. For instance, different ou tpu t classes may have 

different explanation requirements. The complexity of the solution may vary 

according to the class being ])redicted. For examjjle, a child showing jus t  a 

single syni])tom of bronchiolitis should be aflmitted to hospital, whereas a 

child to be discharged must meet more stringent criteria. The explanation 

l)res('nted to the user for a prediction nnist therefore to the greatest extent 

])ossible follow these conditions.

There is perhaps an even greater problem when studying medical datasets. 

Often the examples provided for training re])resent as nuich inform ation as 

possible. However, external factors relative to the jjatient’s lifestyle and even 

doctor experience to adm it a patient before the p a t ien t’s sym ptom s become 

serious can mean th a t  the symptoms recorded may not reflect the true  seri

ousness or otherwise of a p a tien t’s illness. Many of the features th a t  might 

be expected to be very predictive of the ou tpu t do not perform th a t  well 

in practice. This has a knock on effect on the quality of the rules output. 

This limitation may need to be overcome by using a more select num ber of
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training examples th a t  include less overall noise.

9.1 Future W ork

Future work in the areas covered by this thesis could include:

• Problems involving regression outi)uts

•  Inijjroved feature selectors - possibly making use of F iirnkranz’s round 

robin technique [28]

•  Im])roved data  capture

•  Introchicing s tandard  measures of comprehensi[)ility

There are many interesting regression problems in both  the medical and 

hnancial fields. This may not be too difhcult to model. In the same way th a t  

a fit can be found for examples to the rule antecedent, a similar fit could also 

b(' found for the rule output.

An interesting jiroblem th a t  became c:lear during the research conducted 

for this thesis was the need for good feature selection. One approach to this 

proi)lem could include performing feature selection on a class by class basis. 

This would entail finding the most predictive features of each of the classes 

and only using those features for predicting th a t  class. It is not entirely clear 

how this could be done.

One possible solution may be to use round robin learning [28] and learn 

the best set of features for a class when trained with one other class. Training 

could also i)roceed using round robin learning and using the best subset of 

features for “learning” each class. The exjilanations are most likely to  contain 

the best features for those classifications when explaining the outputs.
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Although this thesis is not strictly focused a t the medical world, the need 

for improved data ca.pfure from medical systems is an im portan t recjuirement 

th a t  l)ecame apparent as the research progressed. From a machine learning 

perspective, this d a ta  capture could help improve on the current ad hoc 

methods of extracting the d a ta  for later analysis. W ith  careful consideration 

during the building of such a system, d a ta  could be more easily filtered to 

exclude possible outliers not representative of the problem being studied (e.g. 

patients whose diagnosis is not necessarily reflective of the sym ptom s hrst 

presented).

A final area of future work is also multi disciplinary. Current machine 

learning research focuses almost exclusively on accuracy as a means of identi

fying the most useful metliods. More work is re(juired to introduce standard  

measures o f com,prefiensibility th a t  can l^e used to assess the usability of 

methods.
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A ppendix A 

D ataset Features

Table A.l: Broiichiolitis d a ta  features

Age ill Months Age of a child in months
Anorexia Indicates if a child is sufl'ering from anorexia
Decreased Activity Indicates decreased activity of the child
Smoking AN^' Number of smokers in a household
Smoking M OTflER Smoking Mother?
Entry  Tem perature Tem])erature of child
HR Heart Rate
HR gt 98% Heart Rate greater than  98th j^ercentile
R R l Resting Rate
Sa 0 2 Oxygen blood sa turation level
HR2 Heart rate after trea tm ent
H R 2 gt 98% Heart Rate greater than  98th percentile after trea tm ent
RR2 Resting Rate
Sa 0 2  2 Oxygen blood sa turation level after trea tm ent
Dehydration Dehydration
LOG Level of Consciousness
Retractions Retractions
G runting Grunting
BS Breath Sounds
DecBil Decreased Billirubin
Crac and \Miez Crackles & Wheezes
WHiez only Wheezing Only
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Table A.2: Warfarin da ta  features

Age Age of patient
Weight Weight of patient
INR Measurement INR Measurement
PreviousDose Previous Dose of Warfarin administered
TherapyDuration Duration of theraj)y
TargetlNR Target INR
NoADR Number of ADR
Gender M ale/Female
CurrentMedicines Taking current medicine
OTC O TC
Aleohol Units of alcohol consumption in units
Compliance Compliance with drug regime
INR Delta Change of INR,
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