
LEABHARLANN CHOLAISTE NA TRIONOIDE, BAILE ATHA CLIATH TRINITY COLLEGE LIBRARY DUBLIN
OUscoil Atha Cliath The University of Dublin

Terms and Conditions of Use of Digitised Theses from Trinity College Library Dublin

Copyright statement

All material supplied by Trinity College Library is protected by copyright (under the Copyright and
Related Rights Act, 2000 as amended) and other relevant Intellectual Property Rights. By accessing
and using a Digitised Thesis from Trinity College Library you acknowledge that all Intellectual Property
Rights in any Works supplied are the sole and exclusive property of the copyright and/or other I PR
holder. Specific copyright holders may not be explicitly identified. Use of materials from other sources
within a thesis should not be construed as a claim over them.

A non-exclusive, non-transferable licence is hereby granted to those using or reproducing, in whole or in
part, the material for valid purposes, providing the copyright owners are acknowledged using the normal
conventions. Where specific permission to use material is required, this is identified and such
permission must be sought from the copyright holder or agency cited.

Liability statement

By using a Digitised Thesis, I accept that Trinity College Dublin bears no legal responsibility for the
accuracy, legality or comprehensiveness of materials contained within the thesis, and that Trinity
College Dublin accepts no liability for indirect, consequential, or incidental, damages or losses arising
from use of the thesis for whatever reason. Information located in a thesis may be subject to specific
use constraints, details of which may not be explicitly described. It is the responsibility of potential and
actual users to be aware of such constraints and to abide by them. By making use of material from a
digitised thesis, you accept these copyright and disclaimer provisions. Where it is brought to the
attention of Trinity College Library that there may be a breach of copyright or other restraint, it is the
policy to withdraw or take down access to a thesis while the issue is being resolved.

Access Agreement

By using a Digitised Thesis from Trinity College Library you are bound by the following Terms &
Conditions. Please read them carefully.

I have read and I understand the following statement: All material supplied via a Digitised Thesis from
Trinity College Library is protected by copyright and other intellectual property rights, and duplication or
sale of all or part of any of a thesis is not permitted, except that material may be duplicated by you for
your research use or for educational purposes in electronic or print form providing the copyright owners
are acknowledged using the normal conventions. You must obtain permission for any other use.
Electronic or print copies may not be offered, whether for sale or otherwise to anyone. This copy has
been supplied on the understanding that it is copyright material and that no quotation from the thesis
may be published without proper acknowledgement.

Explaining The Output Of Ensembles
On A Case By Case Basis

Robert Wall

A thesis submitted to the University of Dublin
for the degree of Doctor in Philosophy

April 2003

^TR\nny college^
211 MAY 2003

^ LIBRARY DUBLIN ^

Declaration

The work descril^ed in this thesis is, except where otherwise stated, entirely

th a t of the author and has not been subm itted as an exercise for a degree at

this or any other university.

Signed:

Rol>ert Wall

April 2003

Perm ission to Lend or Copy

I agree th a t Trinity College Library may lend or co{)y this thesis upon request.

Signed:

Robert Ŵ all

April 2003

Acknowledgem ents

I would like to acknowledge the heij) and support of numerous j^eoj^le during

the research and writing of this thesis:

• My friends inside and outside of college, in particular, Gabriele, Conor

and my girlfriend Deborah.

• iMy nnnn, dad, sister and brother for their encouragement.

• Doctors Paul Walsh and Stephen Byrne for the essential work of analysing

my results w ithout which this thesis would not have been j)ossible.

• D epartm ent of Com puter Science, Trinity College for its financial sup

port ovc’r the last three years.

Lastly, and most imj)ortant of all, I would like to thank my sui)ervisor P ro

fessor Padraig Cunningham for his excellent advice and support during my

time as a postgraduate - - mo mhi'le bui'ochas duit.

Summary

T h is tliesis in troduces a novel m e th o d for explain ing the p red ic tions of en

sembles of artificial neural networks on a case liy case l)asis. C u rren t research

is])riniarily d irec ted towards build ing global m odel, t h a t is, m odels t h a t fully

describe all possible in p u t conditions and their associated ou tp u ts . T he a l te r

na tive case by case ajJi)roach is referred to as local exp lana tion . This thesis

dem onstrates a 'process for performing local explanation.

T he cu rren t global approach is considered ineffective due to an im plic it

t ra d e oH' t h a t nuist take place du r ing its creation. T he t ra d e off is l)etweeu

the com prehensib ili ty of the rules and the ir fidelity to the original ensem

ble i)redictions. In a dom ain with poor coverage, th is t ra d e of!' m igh t be

pa r t icu la r ly de tr im enta l .

T he local exp lana tion approach is accom plished by m odelling each of the

netw orks as a rule-set and com pu ting the resu lting coverage s ta t is t ic s for each

rule, given the d a ta used to t ra in the network. Later , the coverage s ta t is t ic s

are used to choose the rule or rules t h a t best describe a p reviously unseen case

u n d e r investigation. This approach is based on the])remise t h a t ensembles

j)erform an im])licit problem space decom position, w ith ensem ble m em bers

specialis ing in different regions of the])roblem s])ace. Thus, the exp lana tion

of an ensemble pred ic tion involves explain ing the ensemble m em bers t h a t

bes t h t the case. A new rnetnc is ijitroduced, in this thesis, to assess this fi,t

and hence rank the rules in order of importance.

In order to test the performauce and feasibility of the system, the k)cal

ex])lanation process and rule ranking techniques were im])lemented in code.

Ensembles with backi)ropagation neural networks [50] as members were used

as tlie black box to be explained. The explanatory rules were generated

using the c4.5rules package [47]. Backpropagation ensembles and c4.5rules

are not the only possibilities, and other methods are also presented in the

background chapters.

Two datasets were used during testing and an expert in each domain eval

uated the results. Both datasets were from the medical domain. The first

datase t involved the j^rediction of which children disj^laying signs of bronchi

olitis should l)e adm itted overnight to hospital. The second datase t involved

the i^rediction of the Warfarin dosage to be administered to i)atients based

on their i)rtn-ious history of taking the drug and their current symijtoins.

Th(' bronchiolitis dataset represented j)00rer coverage of its domain than the

\\ 'arfarin dataset.

The evaluaUon d em o n stra ted that a sv,hset o f the local expla.7uition’s top

'ranked ‘rules fo rm ed a concise and easily understood explanation. F u r th er

more, in line with, expectations, the evaluatio ii d em o n stra ted that tJie local

exp lanaiion approach, is o f par t icu lar use in the m ore poorly covered doma,i:n.

Contents

1 In trod u ction 12

1.1 Coiitrii)utions of this T h e s i s .. 16

1.2 S tructure of T h e s i s ... 16

2 N eural N etw orks 19

2.1 Backi)ropagation Neural N e tw o rk s ... 20

2.1.1 Structure .. 20

2.1.2 T r a i n i n g .. 23

2.1.3 Execution -- Steps 3 - 5 .. 28

2.1.4 Training — Steps 3 9 .. 28

2.2 Considerations when Training Neural Networks 29

2.2.1 O verf i t t ing .. 29

2.2.2 Bias & Variance in Neural Networks 31

3 E nsem bles 33

3.1 Training Multii)le Diverse L e a r n e r s ... 34

3.1.1 B a g g i n g .. 36

3.1.2 B o o s t in g .. 36

3.1.3 Cross Validation E n s e m b l e s ... 38

3.1.4 Feature S u b s e t s .. 38

3.2 Combining r e s u l t s ... 39

6

3.2.1 A v e ra g in g ...

3.2.2 Linear Regression..

3.2.3 Principal Components R eg ress io n

3.3 Summary ...

4 R ule Learning A lgorithm s

4.1 Decision T r e e s ..

4.1.1 C 4 . 5 ...

4.1.2 Classification and Regression Trees (C A R T).................

4.1.3 Rule Extraction from Decision T r e e s

4.2 Rule Inducing Algorit h m s ...

4.2.1 C N 2 ...

4.2.2 F O IL ...

4.2.3 R I P P E R ..

4.2.4 S L I P P E R ...

4.3 Summary ...

5 E xplain ing N eural N etw orks

5.1 Strategies ...

5.1.1 Network Decomposition ..

5.1.2 Black B o x ...

5.2 Evaluating Rule Q u a l i t y ..

5.3 Global V Local E x i) la n a tio n ...

5.4 Rule Extractions from E n se m b le s ...

5.5 Summary ...

6 Solu tion

G.l Building an Ensemble of Rules from an Ensemble of Neural

Networks..

7

40

40

41

43

44

45

46

50

55

59

60

62

63

67

69

70

71

71

75

81

82

84

86

88

89

6.2 Rule Coverage S t a t i s t i c s ... 90

6.2.1 Advanced Rule Coverage S t a t i s t i c s 91

6.2.2 Rule Fit and Ranking .. 91

6.2.3 Worked Example of Calculating Rule Fit Using Iris

Dataset .. 94

6.3 Rule S im plif ica tion .. 97

7 Im plem entation 99

7.1 In tro d u c tio n 99

7.2 Practical Implementation I s s u e s ... 99

7.2.1 P ro g ra m m in g ... 99

7.2.2 Distributing Work ... 101

8 E valuation 104

8.1 Evahuition P r o c e s s ... 105

8.2 Bronchiolitis.. 108

8.2.1 D a t a ..108

8.2.2 Exi)lanations ... 109

8.3 W 'arfarin ... I l l

8.3.1 D a t a ..I l l

8.3.2 Ex])lanations ... 112

8.4 Suiiniiary ..114

9 C onclusions & Future W ork 122

9.1 Future W o rk .. 124

A D ataset Features 134

List o f Figures

2.1 Single layer neural n e tw o rk ... 21

2.2 G raph of logical XOR fu n c t io n .. 22

2.3 Multilayer hackpropagation neural n e tw o r k ..26

2.4 G raph of training and generalisation error 30

4.1 Example decision tree using Iris d a t a .. 46

4.2 D ata th a t is ill suited for decision tree learning....................................47

4.3 Example rules extracted from the decision tree in Figure 4.1. 59

4.4 CN2 algorithm .. 61

5.1 Shrinking the dimension of a rectagle in rectangular basis func

tion n e t w o r k s 74

5.2 Extracting a rule from the hyi)errectangle in a hidden unit . . 75

6.1 N umber line showing unbounded r u l e ... 93

6.2 Grai)h of Iris da ta in two d i m e n s io n s ... 96

7.1 Master/slave a rch i tec tu re ...102

9

List of Tables

2.1 XOR tru th table .. 21

4.1 Errors before and after rule])runing in C 4 . 5 57

8.1 Bronchiolitis dataset s t r u c t u r e .. 108

8.2 Results of 5-fold cross validation performed on bronchiolitis datalOO

8.3 Bronchiolitis example evaluated by expert 110

8.4 Rules produced for the example in Table 8 . 3117

8.5 Accuracies on test d a t a .. 118

8.6 Wins, losses and draws for the rules computed by the local

('xplanation m e t h o d .. 118

8.7 Analysis of rules generated for bronchiolitis d a t a118

8.8 Warfarin dataset s t r u c t u r e ... 118

8.9 Results of 5-fold cross validation performed on Warfarin d a ta . 118

8.10 Warfarin example evaluated by expert .. 119

8.11 Rules produced for the example in Table 8.10 120

8.12 Accuracies on test d a t a .. 121

8.13 Wins, losses and draws for the rules computed by the local

explanation m e t h o d .. 121

8.14 Analysis of rules generated for the Warfarin d a ta 121

A .l Bronchiolitis da ta f e a t u r e s ... 134

10

A.2 Warfarin d a ta features

Chapter 1

Introduction

The i)reclictioii accuracy of neural networks and in i)articnlar neural network

ensembles has improved, as a result of recent research, to the point th a t they

frefjuently outperform many traditional systems. Desi)ite this improvement,

their ado])tion as a useful prediction tool in many areas has been slow to non

existent.

"ilie reasons for this j)oor utilisation in the field of medical diagnosis,

although the reasons are similar for other fields, is summarised in this in

troduction and further expanded throughout the thesis. This introduction

also provides an overview of how the research described in this thesis can

overcome these difficulties.

Medical datasets provide one of the richest sources of prediction prol)-

lems ideally suited to prediction techniques. Medical staff could benefit enor

mously from systems th a t could assist them in diagnosing and understanding

medical problems.

Theoretically, netiral networks could be used extensively in assisting in

diagnosing a])atient’s symptoms. Realistically, however, the black l)ox nature

of neural networks i)recludes them from providing this assistance. Doctors

are wary of relying on the unqualihed diagnoses returned by a conijjuter ju s t

12

as people in general are wary of trusting any prediction (either from people

or computers) w ithout an explanation. In addition, the presentation of a

diagnosis in such a definitive form by neural netw'orks could lead the doctor

to feel th a t h is /her role is being undermined or even usurj^ed. Providing

an exi)lanation of the ou tpu t might improve confidence in the i^redictive

cai)abilities of the system thus ensuring greater user acceptance.

In a more general context, the problem of lack of explanation may be

even more critical. For instance, use of a neural network in au tom ated safety

critical tasks may be impossible, if operatioti of the network cannot l)e veri

fied.

To achieve the goal of using neural networks in medical research it is

therefore necessary to:

• Take advantage of ensembles of neural networks to provide i)redictions

th a t are as accurate as possible.

• Provide comi)rehensible explanations for the user of the ou tpu t of the

ensemble.

• Present exi)lanations to the user, such as a doctor or other iHofessioual

user, in such a way th a t the information presented may be used to

complement h is/her])rofessional experience and judgem ent and not to

replace it.

This thesis addresses each of these issues in turn and provides])ossible solu

tions.

This thesis also views the goal of providing coherent explanations for

ensemble operations from a somewhat different angle, than most current

literature in the area.

13

Most researchers have focused on producing models of an entire phe

nomenon. These models will be referred to here as “global models” . The

aim of these global models is to produce a comprehensible form th a t pro

vides ai)proi)riate outputs for all possible variations of inputs. This type of

model is useful for explaining many types of problems.

For exami)le, a doctor involved in providing “In Vitro Fertilisation” (IVF)

is more likely to be a specialist in this area. A global model can aid in the

doctor’s understanding of the domain to the fullest extent by summarising

all of the conditions under which IVF will be successful or unsuccessful. The

global model may also help provide new insights into the domain. F urther

more, the global model may helj) doctors allocate scarce hospital resources

to those cases where they will be of most benefit.

In])ro(lucing these models, there is an implicit trade-off between compre

hensibility and fidelity:

• Coniprehtmsihility is an estimation of the understandability of the model.

• Fidelity is a measure of how closely the derived model predicts the

same outputs as the the original model.

Simplifying a complex model (e.g. by pruning a decision tree) to make it

more comprehensibile may result in a loss of fidelity, i.e. the derived m odel’s

capacity to exj)lain the original network diminishes.

Glol)al models nnist balance carefully these two im portan t characteristics.

The a])proach taken by this thesis is th a t these global models are not

always appropriate. The inherent comi)rehensibility/fidelity trade-off may

result in the wasting of im portan t information. Furthermore, a global model

is wasteful in situations where the users do not have the luxury of time to

study the model and become exj)erts in the particular domain.

14

An example of a setting like this would be the busy accident and em er

gency ward of a hospital. Doctors here are concerned with the quick diagncxsis

of patien t symptoms and less with the mimitiae of a problem domain. In this

situation, alternatives to a global model may be more useful.

The alternative aj)proach will be referred to as local explanation. Local

explanation can be seen as on-demand explanation. For each individual

prediction made by the ensemble a tailored explanation is produced th a t

best exi)lains it in terms of the input features. Delaying the production of

an explanation like this allows the system to use all available d a ta for every

prediction. Tailoring the explanation according to the symj)toms displayed

ensures th a t the most appropriate explanation is output.

This thesis takes the approach of displaying a nimiber of j)Ossible expla

nations in order to ensure th a t these local explanations act to complement

the d oc to r’s reasoning.

global model can only provide a single explanation. This exi)lanation

may fail to cai)ture all of the details of the prediction. This could be due

to the comprehensibility/hdelity trade off encountered in its production. If

there is more than one regularity in the d a ta th a t exj^lains this prediction

the glol)al model may also fail to show this.

The local exjilanation approac:h of displaying several rules a t once, over

comes these difficulties. Because tlie rules explaining the prediction are not

chosen until the last moment no details are lost as a result of comprehensibil-

ity /hdelity trade-offs. Also, the approach of displaying several rules at once

means th a t different regularities explaining the prediction th a t were captured

from the diverse ensemble members (that correctly predicted the result) can

also be dis])layed.

The local a])proacli may actually i)roduce many more possible explana-

15

tioiis than are to be displayed. To overcome this, the rules are ranked using

a novel ranking technique developed as part of this thesis. This technique

allows rules to be selected as predictive with increased confidence even if

the coverage of th a t rule on the training da ta is poor (this problem is often

known as the small disjunct problem [35]).

The doctor can now decide on the validity behind the logic in each rule

and thus the overall validity of tlie ensemble prediction itself.

1.1 Contributions of this Thesis

The princij^al contriljutions of this thesis to an understanding of explaining

ensembles of neural networks are:

• Demonstrates a process for exi)laining outputs on a case by case basis.

• Demonstrates an evaluation of the case by case basis to explanation

th a t shows th a t local explanation is of particular use when the da ta

coverage is j)oor.

• D emonstrates and introduces a new measure for determining the fit of

an example to a rule.

• D emonstrates th a t a sul)set of rules ranked using the calculated rule fit

forms a concise and easily understood explanation.

1.2 Structure of Thesis

The thesis begins with an overview of many of the current machine learn

ing algorithms th a t are relevent to the goal of explaining neural network

ensembles.

16

Cliai)ter 2 explains backpropagation neural networks wdiich are the n e t

works used in the Iini^leinentation section of th is thesis due to the ir proven

track record [58, 53] (although o ther network types could also be used).

C h a p te r 3 presents m ethods for b o th c rea ting ensemble j^redictions and com-

l)ining th em to o b ta in the best results.

T he first ha lf of C h a p te r 4 covers decision tree a lgorithm s, while the

second ha lf concen tra tes on algorithm s th a t can learn rules directly. T he

purj)ose of th is cha[)ter is tw'ofold. Firstly, th e m e th o d chosen to explain

ind iv idual neural networks is to build a m ore com prehensible learner, e.g.

a decision tree, to model the neural netAvork by using d a ta t h a t has been

labelled l)v the network. Any of the m ethods presented in t h a t c h ap te r

can be used to do this. Secondly, the m e th o d proposed for the exp lana tion

of ensembles of neural networks can in fact be generalised to explain an

ensem ble of rules. T he choice of which m eth o d to use is left entirely to the

m odeller. T h is choice could be guided by personal preference, perfo rm ance

on p a r t icu la r d a ta or availability of existing code or t im e to im p lem en t a

HK'thod (a m odu la r system could swaj) one rule learner w ith a n o th e r w ith

l it lle troubk ; la ter if required).

Chai)ter 5 looks a t existing s tra teg ies for explain ing ind iv idual neura l

networks. Th is cha])ter concludes w'ith a look a t w ha t l i t tle research has

be('n done to d a te on the i)roblem of explain ing ensembles.

C h a p te r 6])resents a solution to the problem of exp lana tion , focusing on

neural netw orks l)ut including a note on using pure rule based ensembles.

C h a p te r 7 outlines a brief descrip tion of the solution im plem en ta tion .

C h a p te r 8 includes an evaluation of the m eth o d in two dom ains by experts

in each dom ain .

C h a p te r 9 concludes the thesis, draws conclusions and presents sugges-

17

tions for future work.

18

Chapter 2

Neural Networks

Artificial neural networks are developing rapidly in the field of machine learn

ing. Already they have dem onstrated [58, 53] th a t they generalise well for a

broad array of both classification and regression problems. The fundamental

idea driving the develo])ment of neural networks is to model the operation of

the neurons in the l)rain.

Neural network units are interconnected by weights (similar in function

to the axon and dendrites in the brain). Firstly, the to tal signal received by

a unit is scaled and propagated to all connected units. Secondly, the signal

reaches some outj)ut units th a t trigger a physical reaction. The ou tpu t from

a simpler artificial neural network could similarly be used to control some

reaction, e.g. in a robot, bu t more often the ou tpu t is simply ou tpu tted for

use by the user.

Stepping up from their most basic structure, the overall function of these

units is to partition the input space into separate regions. The ou tpu t

strength varies across regions and is either directly interpretable in the case of

regression j^roblems or can be rnajiped to a class for classification problems.

This representation of the search space is very powerful. W ith the addi

tion of more units in the hidden layer of a typical back propagation neural

19

net,work, the network can be trained to api^roxiniate any contiinious function

to any degree of accuracy [36]. In practice, however, this is rarely feasi

ble. The d a ta available for training frequently represents only a subset of

the entire function. Introducing many more hidden units for training in

volves tuning many more imrameters in the network and these param eters

are likely to overfit the available data. By this it is meant th a t the network

will lose its ability to generalise to new instances.

The power of neural networks comes with a heavy cost, however, their

operation is cjuite opaciue. It is imi)ossible for even an experienced user

to visualise the regions (hyperplanes in the case of backproi)agation neural

networks) separating the different outputs. Neural network oj)eration has a t

tracted the black box moniker for this oi)aque behaviour. Chapter 5 presents

an overview of research th a t tries to exj^lain the predictions of neural net

works.

Section 2.1 of this chapter will look at backpro})agatiou neural networks.

Some other issues tha t must be taken into accotuit in neural netw'orks are

discussed in Section 2.2.

2.1 B ackpropagation N eural N etw orks

2.1.1 Structure
Single Layer N etw orks

For simi)le learning tasks, it may be sufficient to use a single layer neural

network. T h a t is w'here input units are connected directly to a layer of

ou tpu t units. Every input neuron is connected to every ou tpu t neuron. A

diagram of such a network is given in hgure 2.1

Although sufficient for simple learning tasks, few real world problems

can be modeled satisfactorily with a network like this. This problem was

20

01
w2.

02
w i l l)

wn2

Om

Figui'e 2.1: Single layer neural network

Table 2.1: X O R tru th table
;ci O u tp u t
0 0 0
0 1 1
1 0 1
1 1 0

h igh ligh ted d ra m a tica lly by M insky & Papert in the ir 1969 book Percejjtrons

[42]. In th is book, they dem onstrated th a t a single layer neural netw ork was

incapable o f learn ing even the sim ple X O R logical function . The problem is

th a t the class ou tpu ts o f th is function are not linea rly separable. The tru th

tab le fo r th is function is set ou t in tab le 2.1 and the problem o f sepa rab ility

is easily seen in the d iagram in figure 2.2. No single line can be drawn to

separate the o u tp u t classes.

In m athem atica l terms, th is problem can be seen as follows. The re

sponse o f the o u tp u t o f a single layer neural network is t j i n - T h is response

is determ ined by the inputs and the weights connecting these inpu ts to the

O U t])U tS .

I j i i i ̂^

21

o

- o -

Figure 2.2: G rap h of logical X O R function

T he decision l)oundary for th is in p u t is de te rm ined by the relation;

De])ending on the num ber of inpu ts in the network, th is equa tion rep re

sents a line, p lane or hyperplane. In the case of the XOR problem , there are

two ini)uts and the region of jjositive classes is se])arated l)y the region of

negative classes by the line:

For two in p u t problem s such as logical A N D and OR, functions there

are m any values of b, 'ui[and u ’2 t h a t will sej^arate these classes. For X O R

howev('r, th is is no t possil)le.

T he answer to th is problem was known and lay in using m ore th a n a

single layer in the network. T he problem now was how' to u p d a te the in te r

connecting weights in a nuiltilayer netw'ork.

After the in itia l hype surround ing neural networks, th is discovery led to

the s ta g n a t io n of the field for m any years.

M ulti-L ayered N etw orks

W’erbos [C6] in 1974 was the first to suggest a solution to the p roblem of

u p d a t in g weights in a m ultilayer neural netw'ork. Th is solution was no t

lUi b
:i>2 = - I ' l --------------

W2 UI2

22

highly pul)licised, however, and as a result neural network research slowed

down throughout the 1970’s. It wasn’t until the mid 1980’s when Le Cun

[38] independently solved the problem followed closely by R um m elhart et al.

[50], who refined and further publicised LeCuns work th a t backpropagation

networks came of age.

The solution to the problem was, th a t when backpropagating the error

in order to update the weights, the first derivative of this activation function

shoukl be used to find the direction of the minimum error. This is the

direction in which weights should l)e updated.

Good candidates for activation functions include the sigmoid, bipolar sig

moid and hyperbolic tangent functions. These ftuictions all have the common

tra i ts of being continuous along their operating range. A useful tra i t of these

functions is tha t their first derivative has a simple relationshij) to the original

function out])ut thus decreasing the com putational burden during training.

In general, any differential function th a t has an approi)riate range for the

ta rge t values should be acceptable for use in backpropagation training.

Thresholding functions are only useful for categorical outputs.

2.1.2 Training

Certain conditions nuist be met with regard to the initial setup of the network

and the d a ta to be used for training, before training of a neural network can

begin.

To train a neural netw'ork a numl)er of j^arameters should be set, these

are:

• N umber of hidden units

• Learning Rate

23

• Moineiituiii Rate

• Initial weight values

• Stopping criterion

There are no rules for automatically setting these values to the optirrnim

values and hence tuning these values is somewhat of a black art based on

rules of thum b and user experience.

The number of hidden units will determine the complexity of the function

thaL the neural network will learn. The number of units actually used nmst

be carefully controlled. Too few units and the netw'ork will be unable to fit

the learning da ta and the bias will be high; too many units and the bias may

be low, the training is likely to take significantly longer and the network may

overht the training data.

The learning rate determines the proportion of the weight change as calcu

lated by the learning algorithm th a t should be added to the original w'eights.

If the d a ta has many outliers, a lot of noise or even wrong feature val

ues/class outputs, it is preferable not to make dram atic changes of direction

in th(' weight values. M omentum takes care of this by adding a j)roportion of

the previous weight change(s) in addition to the usual proportion S])ecified

by the learning rate. Training can proceed reasonably quickly as long as

patterns are in the same direction, while still using a smaller learning rate to

prevent a large response from any single training pattern.

W'hen initialising a backjn'opagation neural network, it is preferable to

initialise the weights to small random values. In this way, the activation

functions are unlikely to reach sa turation and cause small weight updates

initially th a t will decrease the speed of learning.

Th(' d a ta should also be adecjuately prepared before s tart ing to train

24

a backpropagatioii neural network. There are two particularly important

points here.

Firstly the data should be normalised, this helps even out the effect of

data points having different ranges in the activation functions.

Secondly, any symbolic features in the data set should be replaced by a

inimber of units corresi)onding to the number of possil)le feature values, with

the constraint tha t only one unit may be active in an example. Alternatively,

if the number of possible values of the symbolic variable is large, a gray code

may be used to encode the values of the symbolic feature. An appropriate

number of units (log^ N, where N is the luimber of feature values) should

then be added to the network to receive the code.

Finally, if there is a skewed class distribution, the minority class should

be cojiied to make up the difference in numbers and/or the majority class

should be reduced in size. This will avoid the network Ijeing biased toward

any class tha t may have been seen more often during training.

The backpropagation neural network training algorithm(as described in

[25]), is given l)elow. The variables in this algorithm corresi)ond to those

marked in Diagram 2.3. The variables z J n and y J n not marked on the

diagram correspond to the unsealed inputs to the hidden and outj)ut units

respectively. The function /(•) is the activation function, used for scaling the

units outputs, a is the learinng rate being used.

S te p 0: Initialise weights. (Set to small random values).

S te p 1: While stopping condition is false, do Steps 2-9.

S te p 2: For each training pair do Stej)s 3-8.

25

n j

Figure 2.3: Multilayer backpropagation neural network

Feedforward

S te p 3: Each input unit { X i , i = receives input signal

to all units in the layer al)ove(the hidden units).

S te p 4: Each hidden unit { Z j , j = 1 , . . . ,])) sums its weighted

ini)ut signals,

applies its activation function to compute its outjjut signal.

and sends this signal to all units in the layer above(output

units).

S te p 5: Each ou tpu t unit(lfc,A; = l , . . . , m) sums its weighted

input signals.

71

p

2G

and a])plies its activation function to compute its output sig

nal,

Vk = f { y - i n k) .

B ackp ro p a g a t io n o f e rror

S te p 6: Each output unit(V/;, A: = 1 , . . . , n)) receives a target pa t

tern corresponding to the input training pattern, computes its

error information term,

k = {tk- yk)f'{y-ink),

calcuhites its weight correction term(used to update ’Wj). later),

calculates its bias correction term(used to update lUok later),

A'û ofc = n ^ k - i

and sends to units in the layer below.

S tep 7: Each hidden un it(Z j , j = 1, . . . , / ;) sums its delta in-

l)uts(from units in the layer above),
k = i

S.m, = ^ SkWjk,
rn

nuilti])lies by the derivative of its activation function to cal

culate its error information term,

6 j = S J 7 i j f ' { z J r i j) ,

calculates its weight corrections term(used to update Vij later),

and calculates its bias correction terni(use to update v ĵ later),

A vqj = a S y

27

Update weights and biases:

Step 8: Each output uiiit(Vfc, A: = 1, . . . ,m) updates its bias and

weights(j = 0 , . . . , ; ;) :

tOjkinew) = iUjk{o\d) + Awjk

Each hidden nni t {Zj , j = 1, . . . ,p) updates its bias and weights

(z = 0 , . . . ,n):

?;,j(new) = Uij(old) + Avij.

Step 9: Test stopping condition.

2.1.3 Execution — Steps 3 -5

Execution of the networlc is very fast. It conij^rises the feedforward section

of the training algorithni only. The initial values of the example to l>e tested

are passed to the input units(Step 3). These values are propagated to the

hrst hidden layer and these units api)ly an activation function(Step 4). Next

these hidden outputs are passed to the output layer. The output units also

a])ply an activation function to the outpnts(Step 5). Finally, the result can

b(‘ read l>y the user.

In the case of a backpropagation neural network having more than a

single hidden layer, the outputs of the first hidden layer(Step 3) are passed

into further hidden units and are again dealt with like Step 3, until the output

units are reached and Stej) 4 is execiited.

2.1.4 Training — Steps 3 -9

The training of a backpropagation neural network comprises the execution(Steps

3-5), l)ackpropagation of error(Steps 6-7) and updating of weights(Steps 8-

9) and finally a stopping condition is checked(Stej) 9).

28

The network first executes the training data. This allows the network to

assess the training error. This error is typically measured using the squared

difference between the predicted value of the network and the true func

tion value. W ith an error calculated, the network can begin the process of

backpropagating this error in order to adjust the value of the weights in the

network.

Adjusting the value of the weights allows the formation of hyperplanes

used to divide the input s])ace into regions th a t predict different ou tpu t

classes.

Two changes often made by practitioners to the basic backpropagation

algorithm (lescril)ed above are tha t, firstly, weight ui)dates are often done

in batches, this has the property of smoothing the u])dates and means the

weights make more precise jum ps and do not vary greatly during training.

The Second change is the inclusion of a momentum parameter. The effect of

this i)arameter has been (lescril)ed already. The revised weight updates now

ar(>:

Aw.jk(t + 1) = aS,,Zj + ii['U)jkit) - Wjk[t - 1)]

+ 1) = nSjX, + li\vij{t) - Vij{t - 1)]

2.2 C onsiderations w hen Training N eural N e t
works

2.2.1 Overfitting

W hen training the data, it is also necessary to ensure th a t training is stopped

when the network reaches the minimum generalisation error. T h a t is, net

work training should l)e term inated a t the point where it has reached the

29

Eiror

G e n era lisa lio n
\ E ito j'

In - s a n ip le
E nor

T ra in in g T im e

Figure 2.4: Graph of training and generahsation error

oi)tiniuni i)oint of learning. The optimum point of learning is where the

network has reached a trade-off between learning the training examples and

retaining the ability to ou tpu t aj)propriate values for unseen examples. The

jjoint where training should be sto])ped is shown graphically in Figure 2.4

In the gra])h in Figure 2.4, it is clear th a t the ‘in sanii)le’ error(i.e. the

training error) contiinies to fall while the generalisation error falls for a time,

until th(' network reac.hes a point where it begins to overfit the training

da ta and hence gradually loses its ability to correctly predict the outputs

for unseen cases. Checking these errors is straightforward during training, a

validation set can bo used as an estimate for this generalisation error. Before

training commences, the d a ta should be S])lit into two sets, a training set

and a validation set. D ata th a t appears in the training set should not appear

in the validation set. The network is trained using the training set and the

error on this d a ta is com])uted by executing th a t network with the d a ta after

(n'ery e])och(or a preset number of epochs), this is the training error. After

com puting the error on this training data, the network is then executed on

the validation set. The error on the outputs predicted by the network is

taken as the generalisation error. Every time this error falls to a new mini-

30

inuiii the network should be saved as the point of niaxirnuin generalisation.

Once this error rises for a preset number of e])ochs or the training reaches

a preset maxinnim number of epochs, training should be stopped and the

saved network should be returned as the “best” network.

2.2.2 B ias & Variance in N eural Netw orks

Tlie final consideration when training neural networks is to balance the errors

due to bias and variance. These two errors are not independent, reducing one

will cause an increase in the other. In short, a network fitting the training

data closely will have a low bias but a higher variance, while a netw^ork with

a low'er variance will lead to a decrease in the fit of the training data. For

optimal learning it is necessary to l)alance both of these factors.

The bias/variance dilemma was studied in some detail by Geman et al.

[30]. In this paper, the authors show in detail the bias/variance decomposi

tion of mean-S(iuared error. This is of particular interest for backproi)agation

nc'ural networks as this is the most used error function for these networks.

E(iuation 2.1 shows the breakdown derived by Genian et al. for the mean

scjuared error.

(/ (x ;P) - i ? p [/ (x ;P)]) 2

(2 . 1)

The bias and variance of this ecjuation are averaged over the possible

training sets V. The function / (x ; P) is the prediction of the network on an

example x given the network trained on the set T>. The desired response is

y-

The left hand side of this equation is the mean squared error fornmla,

measuring the S(}uared distance from the function / (the neural network)

31

to the regression E[y\x\. This vahie is then averaged for the set of possible

training sets V.

On the right the first part of this equation measures the bias. The bias

can be thought of as the average distance of a network function / trained

on a set of data V from the true regression for the same inj^ut x. If on

average there is a big difference, the bias is said to be large. In general, this

will depend on the probability distribution P of the data and how T> reflects

this distribution. The same network may be biased in some cases but not in

others.

The second part of this equation on the right hand side measures the

variance. This measures the average distance of a network / trained on a set

of data D from the average distance of other networks trained on different

sets of data.

\ ariance for a single network can be controlh'd by combining examples

tha t are nearby in the in])ut si)ace. However, this will ty])ically increase

the bias of tha t network, as details of the regression are lost, e.g. peaks and

valleys art' blurred. Bias for a single network can be controlled by introducing

more hidden units into the network. This has the effect of increasing the

complexity of the function that the neural network can learn. It is, however,

likely to increase the variance significantly.

Therefore, to achieve a low error, it is necessary to reduce both the bias

and the variance components. Typically, reducing one of these will cause an

incr('ase in the other. This is commonly known as the l)ias/variance trade-off.

For more functions displaying the same flesirable])roperties of the mean

squared error studied by Geman et al., see Hansen & Heskes [34].

32

Chapter 3

Ensembles

Recent research in m achine learning and, in part icu la r , neura l networks has

begun to ex])loit the power of t ra in in g m ultip le learners to ap p ro x im ate the

sam e function. These nuiltiple learners, collectively known as an ensemble,

were first in troduced l)y Hansen & Salam on [32], By com bining the pred ic

tions from these learners, it is possible to increase the accuracy of the p re

d ictions and in the process reduce the instab ility of predictions. In stab il i ty

ref('rs to the phenom enon whereby two neural networks t ra ined to a pp rox

im a te the sam e function m ay ac tua lly o u tp u t very different results for new

exam ples, de])ending on the initial conditions and the t ra in ing j)aram eters

used.

It is in te res ting to note th a t a lthough the idea of com bining m ultip le

macliine learners is relatively recent, the increased accuracy ob ta inab le from

a co m m it tee of experts is not. As long ago as 1784, the M arquis of C ondorce t

])ut forw ard the theorem , now known as the C ondorcet Ju ry T heo rem [18]:

“If each voter has a proba,hi,lif4j p of being correct and the proba.bility of a,

ma'jority of voters being correct is M , then p > 0.5 implies M > p. In the

l imit M approaches 1, for all p > 0.5 as the number of voters approach,es

infimty. ”

33

A more accessil:ile mocierii reference for this theorem is Nitzan and Paronsh

[44]. The first part of this theorem is not controversial, it is easy to show

th a t if a new committee member makes correct decisions more than half of

the time and makes different mistakes to the rest of the com mittee then the

performance of the committee will improve with the addition of tliis new

member. However, in practice the second claim is unlikely to be true. A

very large committee will not, in practice, be right all of the time. It will

not be j)ossible to find new members th a t will increase the diversity of the

connnittee; instead their voting behaviour will be collinear with some exist

ing members of the conunittee. Ty])ically the diversity of the ensemble will

plateau as will the accuracy of the ensenil)le a t some size between 10 and 50

members.

In order to get the l)est possible results from an ensemble, it is preferable

th a t a large degree of diversity exists among the members of th a t enseml)le.

T h a t is, the members should all be experts in localised areas of the input

sijace. The reason for this is (juite simple. If all of the members either predict

the same answers or are all (^xperts in roughly the same area of the input

space, then the existence of more than one such learner does not supply

any more information than a single network alone. Methods of introducing

diversity into these learners are outlined in section 3.1.

There are several methods available for combining the results. A few of

these have been chosen and are outlined in section 3.2.

3.1 Training M ultiple D iverse Learners

\ \ ’hen train ing an ensemble of networks, it is necessary to tra in each of the

networks with the goals of an ensemble in mind. In particular, the bias vari

ance trade-off described in Section 2.2.2 is imi)ortant. It may make more

34

sense to think of this trade-off in terms of the error/ambiguity model de

scribed first by Krogh &: Vedelsby [37].

Krogh & Vedelsby’s foriinila for describing the error/ambiguity of an en

semble is derived in full by Zenobi [67]. In their decomposition they ex]:)ress

the bias and variance components of the ensemble error as the weighted en

semble error and the ensemble ambiguity (diversity). Their equation relating

these variables is given in Equation (3.1) where E is the ensemble error, E

is the weighted ensemble error and A is the w'eighted ambiguity measure.

E = E - A (3.1)

Instead of expressing the averages for error and ambiguity over different

training sets, Krogh & Vedelsby use the weighted averages over the ensemble.

If th(' enseml)le is strongly biased the ambiguity will be small, because the

networks implement very similar functions and thus agree on inputs even

outside the training set. A larger variance betw'een the networks will make

the ambiguity higher and in this case the generalisation error will be smaller

than the average generalisation error.

There are several methods connnonly used to introduce this ambiguity

into ensembles. All of these methods work to some degree by skewing the

number or type of examjiles being presented to the individual networks during

training. The methods j)resented below include:

• Section 3.1.1 - Bagging

• Section 3.1.2 - Boosting

• Section 3.1.3 - Cross validation

• Section 3.1.4 - Feature Subsets

35

By skewing the distribution of examples being presented to each of the

networks using one of these methods, the networks training should be con

centrated on different examples to other networks in the ensemble. In this

way, the ambiguity can l)e increased between networks as they will make

mistakes in different areas of the input space. This is equivalent to adding

more members to the Marquis de Condorcet’s committee who have differ

ent opinions and hence make different mistakes thus increasing the overall

i:>redictive accuracy of the committee.

3.1.1 B agging

Bagging, short for “boots trap aggregating” , was introduced by Breinian [10].

The first part of bagging is the process of t)00ts trapping the input examples.

Bootstrai)ping is a popular statistical technique of sampling a datase t with

replacement [10], When sampling N times from a dataset of size N, approx

imately 63% of the examples will be chosen a t least once. This set of d a ta

is then used as the training da ta for the chosen machine learning prediction

algorithm. In the case of neural networks, the remaining d a ta can be used

to prevent overhtting during training. In bagging, Breinian suggests using

an average as the method for combining the results. Averaging is covered in

more detail in section 3.2.1.

3.1.2 B o o st in g

The original work on boosting was performed by Schapire [51]. The basic

idea behind this work is to build a weak learner using the available d a ta and

using an equal i)robability for the selection of each example in the data . Once

this learner has been built the probabilities of the examples in the datase t

are adjusted so th a t the more difficult examples are more likely to be chosen.

36

One of the most popular implementations of this method is th a t used by

Freund & Schapire [26]. This is outlined in detail below:

The initial weights of each example in the training are set as uniform, i.e.

Di{t) = jf , where N is the total number or training examples. The objective

now is to minimise the weighted error:

Cf, = / g,) (3.2)
i

where / is the indicator function, lit is the current hypothesis and (ji is the

true goal class.

If ^ 2 ’ ou tpu t with T = t — 1.

Otherwise set:

n^ = log ---- ^ (3.3)

and finally update the distribution of weights on the training set:

A + i('0 = A (*)e (3.4)

where Z/ is a normalisation factor (chosen so th a t A + i is distribution).

The final ou tpu t classifier H{x) is:

I I (x) = (ITg nmx f {x , g) = a r g m a x (> nt l {ht {x) = g)) (3.5)
qec ' ' ' V ^ ^ ' /t=l

Diversity is thus built into the models during construction by virtue of

the fact th a t each model focuses its training on different examples.

Boosting does raise an overfitting problem. Particularly noisy d a ta could

train some of the models on bad data. These models would provide very

inaccurate predictions leading to an overall reduction in the accuracy of the

37

ensemble. The i)ioblem of overfittiiig using boosting and in i)articular the

AdaBoost method is raised in MacUn & Opitz [39].

3.1.3 Cross Validation Ensem bles

K-fold cross validation relies on sj^litting the available data, D, for training

into a total of K sets, Di, D 2 , . . . , D^. This approach is used by Krogh &

Vedelsby in their paj^er analysing the bias and variance components of neural

networks in terms of error and ambiguity [37].

A total of K networks are then trained on these sets, each time using all

but one of the sets(D D^) as training data and using the remaining set(Dk)

for testing the generalisation error of the network during training and thus

overhtting.

K-fold validation makes good use of the available data and introduces

reasonable diversity as long as all of the sets are a fair rei)resentation of the

data distribution.

3.1.4 Feature Subsets

A rc'cent method used to introduce diversity into ensemble members involves

training each member using a different feature mask [68]. Each mask is a

boolean string with a length ecjual to the number of features in the training

data. In this string I ’s correspond to features that should l)e used in the

training of a network and O’s correspond to features that should be omitted.

The masks axe produced using a wrapper method. The wrapper method

a])proach involves estimating the “goodness” of each mask with respect to

the bias of the individual network type. A summary of the mask production

algorithm as described in [21] is shown below:

1. Generate a random mask and estimate its generalisation error using

38

cross validation.

2. S ta r t i te ra t in g th rough the m ask

3. F lip the cu rren t b it of the m ask and es tim a te the genera lisa tion error

of the new m ask using cross va lidation

4. If th e new m ask has a lower error th a n the previous m ask, th e n accept

this bit Hi]), otherwise reverse the flip and re ta in the orig inal m ask

5. Tf the end of the m ask has no t been reached then continue from Stej) 3

C. If no bit Hips have been accepted then o u tp u t the cu rren t m ask as

oi^tinuun, o therwise continue from Step 2

A m ore conij)lex varia tion on th is a lgorithm is described by Zenobi [68].

In this varia tion , Zenobi describes how fea ture subsets can be found th a t

m axim ise the to ta l aml)iguity in the ensemble.

T he a lte rna t ive to the w rapper approach described al)Ove is to s im ply

use ran d o m masks. R andom m asks do help to in troduce diversity, b u t a t the

cost of h igher error. A good wrapi)er techniciue should on average out])erform

random masks.

3.2 Combining results

Once an ensernl)Ie of networks is t ra ined , the results from each netAvork m ust

1) 0 com bined so as to present a single result to the user.

For classification tasks, the s im plest m ethod is to sim ply vote a m o n g the

networks, w ith th e m ajo r i ty c;lass declared as the j^redicted class.

T he i)roblem is som ew hat m ore difficult for regression tasks. T h e re are a

large varie ty of m ethods to combine regression results , each w ith p a r t icu la r

39

strengths. Three of these niethocis, averaging, linear regression and principal

components regression are detailed below. A brief description of the])roblems

solved by these methods is included for clarity.

3.2,1 A veraging

Averaging results is the method used by Breirnan in his paper on bagging [10].

Perrone & Cooper [45] also make reference to this techni(}ue which they call

the Basic Ensemble M ethod (“BEM ”). Averaging works by assigning equal

weights(l/iV, where N is the total number of networks in the enseml)le) to

the predictions of each neural network in the ensemble.

1

1 = 0

3.2.2 Linear R egression

Linear regression has been independently studied by several researchers, [45,

33].

Perrone <k Cooper refer to their method as the Generalised Ensemble

M ethod(GEM). In this method they minimise the mean sfjuared error in

order to set the weights, ai, with respect to the target function f { x) . The

formula they suggest for calculating these weights is shown in Eciuation 3.7.

rv, = (3.7)
Ylk '^ j ^kj

In this formula, the defines the correlation matrix:

40

The m i { x) above are defined as the difference between the true value of

the function and the value predicted l)y network i, i.e. f { x) — f i { x) .

ft is im portan t to note th a t the columns in the Ci j m atrix should be

uncorrelated. Correlation between columns will lead to the m atrix being

unstable when inverted. To avoid this problem they suggest dropping all bu t

one of any correlated grouj) of columns. This should not result in a great

loss of accuracy. The]:)robleni of correlated columns is dealt with again in

Section 3.2.3.

The weights produced by Perrone & Cooper will be subject to the con

stra in t = 1- lu the more general case of linear regression, this

constraint is not applical)le.

3.2 .3 P rincipal C om p on en ts R egression

Principal Components Regression(“P C R *”), was developed by Merz & Paz-

zani [40], PCR* was developed with the goal of eliminating the j^roblem

of colliuearity of networks while still predicting weights th a t j)rovide a high

levc'l of accuracy. Collinearity can lead to very unstable matrices when in

verting matrices, an unavoidable step when using any linear regression i)ased

method.

Merz & Pazzani identify three methods for reducing the problem of collinear

ity. They are;

• Train models to have uncorrelated errors by adjusting the bias of the

learning algorithm.

• Use a gradient descent technique for setting the weights.

• Use a linear regression method with constraints on the possible weights

l)roduced.

41

None of these sohitions provide a full answer to the problem. Models

naturally have a certain level of collinearity so even explicit training may not

always eliminate this collinearity. Gradient descent techniques are j^rone to

getting stuck in local minima and not finding optimal solutions. Finally, con

strained linear regression may also lead to sub optimal weighting solutions.

The basic algorithm of PCR* is set out below:

InjMit: A^, the matrix of predictions of the models in F

1. C = cov{k^'')

2. P C = PCA[C)

3. K = Choose_Cutoff(PC)

4. = /^iPC, + . . . + / 3 j , P C , = (P C] ,P C a -) -V

6. Returncv

In the above algorithm, C is the covariance matrix for the predictions .4 '̂

and P C is the set of princii)al components based on the matrix C.

The search aspect of PCR* is in step 3, where the mirnber of j)rincipal

components tha t are going to be used in the determination of the weights

is found. The authors of PCR* show how cross validation is one techniciue

tliat may be used to judge the error on different subsets of the princij)al

components. The optimal number of components to use is taken at the point

of mininnim error.

In Step 4, linear least squares regression is used to derive an estimate of

/’ using only the K most important j^rincipal components tha t were found

in the search stage. Finally Stej) 5 comjjutes the weights to be used for

42

coinljining future predictions from the ensemble of networks by expanding

the equation in Stej) 4 to PC^ = 7 k ,o / o + ■ ■ ■ + j K , N f N and setting each of

the weights to be the coefhcients of the original networks(/j).

Although Merz & Pazzani developed PCR* to use all of the networks,

sta ting th a t “correlation could be handled without eliminating any of the

learned models” , it is only fair to refer to other work in the area of eliminating

correlation. One such j)iece of work has been done by Zhou [70] in which he

does drop models in order to reduce the correlation and hence instability in

assigning weights to ensemble members.

3.3 Sum m ary

The ensembles used in the Evaluation chapter of this thesis were built us

ing bagging to obtain maximum diversity. Bagging is a flexible m ethod for

building enseml)les providing good, stable performance over a wide variety of

datasets. It makes good use of all of the da ta in building the enseml)le and

avoids problems of learning noise in the dataset sometimes associated with

])oosting.

The datasets evaluated were both classification j)roblems and hence a

sim])le majority voting scheme was used to coniliine the results.

43

Chapter 4

Rule Learning Algorithm s

Rules are arguably one of the simplest representations of knowledge in a

machine learning system. Their simple, directly interpretable form has w'on

them a strong following throughout the machine learning fraternity. Decision

trees represent a si)ecialised set of rules organised in branches and leaves.

W'hen followed in an order determined by an exami)le case, the branches will

lead to a single leaf node. This node will have a class associated witli it and

this is used as the prediction output. Decision trees are readilj^ decomposable

to i)ro])ositional rule sets.

Each rule is typically written in the form of an IF clause which contains

one or more terms, the conditions of which must be met in order to “fire”

th a t rule. W hen a rule is fired, the class associated with the rule, usually

w ritten as a TH EN clause is either counted as a vote toward an overall class

prediction or it is presented directly to the user as the predicted class. An

exam])le rule is shown below:

IF Sa_02_2 > 91.89

AND Dehydration=None

AND Retractions=0

AND Age_in_Months > 1.87

44

THEN DISCHARGE

Rules such as in the example above, may be generated by a variety of

methods. Rule extraction from neural networks is covered in C hapter 5.

An introduction to decision trees is covered in section 4.1 and rule extraction

from these is covered in section 4.1.3. Algorithms for generating rules directly

are covered in section 4.2, these include CN2, FOIL and FOCL.

Tom Mitchell’s book Machine Learning [43] is an excellent general intro

duction to the areas of decision trees and rules.

4.1 D ecision Trees

Decision trees comprise a very popular set of machine learning methods.

Their poj^ularity is due to their proven accuracy in modelling a wide range

of problems [58, 53]. In addition to their good performance, they are easily

iut('rpretable by experts involved in the field of study.

Decision trees operate l)y partitioning input features on axis-parallel bound

aries; each such partition is known as a decision node. Each decision node

may have one or more child nodes. The child node(s) may be either a decision

node or a leaf node. Leaf nodes have a class associated with them and can

not have any children. Once a leaf node has been reached when processing

a decision tree, processing stops and the class associated with th a t child is

re turned as a prediction to the user.

An example decision tree is shown in Figure 4.1. This tree is built using

Fishers Iris d a ta from the UCI repository. The Iris-setosa class is linearly

separable from the other two, this is reflected by the first split in the tree.

This split fully separates this class from the other classes. The remaining

two classes are not as easily sejmrated and require several branches.

Peta l Length <= 1.9 ; I r i s - s e t o s a (50.0)
Peta l Length > 1 . 9 :
I Peta l Width > 1 . 7 : I r i s - v i r g i n i c a (4 6 .0 /1 .0)
I Peta l Width <= 1.7 :
I I Peta l Length > 5 . 3 : I r i s - v i r g i n i c a (2 .0)
I I Peta l Length < = 5 . 3 :
i I I Peta l Length < = 4 . 9 : I r i s - v e r s i c o l o r (4 8 .0 /1 .0)
I I I Peta l Length > 4 . 9 :
I I I I Peta l Width <= 1.5 : I r i s - v i r g i n i c a (2 .0)
I I I I Peta l Width > 1 . 5 : I r i s - v e r s i c o l o r (2 .0)

Figure 4.1: Example decision tree using Iris d a ta

One m ajor disadvantage of trees is in the way th a t they can only partition

features on axis parallel boundaries. If a class is naturally partitioned by a

hyperi)lane th a t does not lie parallel to axis boundaries, then many decision

nodes on several features may l)e required to accurately re])resent this deci

sion boundary. This problem can be seen in Figure 4.2. In this figure, the

splits nuide by the decision tree are represented by the broken line. A neural

network would have little troul)le finding a compact solution to this problem,

however, a human user of a system would have great troul)le visualising the

m athem atical solution presented by the network.

4.1.1 C4.5

One of the most popular algorithms used for building decision trees is Quin

la n ’s C4.5. The popularity of this program stems from its freely available

im plem entation (with accompanying source code) and its proven performance

ov(!r a wide variety of domains.

B u ild in g a Tree

Building a tree in C4.5 involves searching each of the features to find the one

which i)rovides the most information in predicting one of the classes. Each

46

Figure 4.2; Data that is ill suited for decision tree learning.

split of a feature is crucial. If the most discriminating features are chosen

at each stage in building a decision tree, the tree will tend to i)e small.

A small tree represents a concise concei)t description for the hypothesis,

thus satisfying Occams razor (i.e. where tw'O or more descriptions exist, the

simplest of these should l)e i)referr('d).

To understand the C4.5 measure of information, it is useful to look at

ID3, an algorithm for building decision trees also i)roi)Osed by Quinlan [46].

In this algorithm, Quinlan used a gain criterion to assess the information

content of s])littiug a set of data. Quinlan himself sums up this criterion

with the statement: “The information conveyed by a message depends on its

probability and can be measured in bits as minus the logarithm to base 2 of

that])robability.”

The probability of selecting a class, Cj from a set S is

freq{Cj, S)
|5| ̂ ^

and so the informatioji conveyed by this is

- l o g , hits (4.2)

To find the expected information for a message with a class Cj with

res])ect to class membershij), sum over all the classes in proportion to their

frequencies in S:

r n f o i S) = - ± X log, (4.3)

When applied to a set of training cases(T), i nf o{T) measures the average

am ount of information needed to identify the class of a case in T(also known

as the entropy of the set S).

The exj)ected information recjuirement of the training set T when split

according to a criterion A' can now be expressed as:

71 I r r i I

i n f o x { T) = X J ^ X ^nfo{Ti) (4.4)

Finally the (juantity,

(javn[X) = i i i fo[T) — i n f o x { T) (4.5)

measures the information th a t is gained by partitioning T according to the

test A". The gain criterion then selects the test th a t maximises this infor

mation gain.

This gain criterion worked cpiite well, however it had one serious flaw th a t

C^uiulan corrected in C4.5. The gain criterion is strongly biased in favour of

tests with many outcomes. A worst case scenario would be a feature th a t

comprises only unique values(i.e. every subset of this feature would contain

only a single case). In this case, information gain would be maximal as

infoA'CT) = 0. This was “corrected” in C4.5, by using a gain ratio criterion.

48

C onsider the inform ation conten t of a message th a t indicates th e inform ation

con ten t of a test. By analogy w ith the definition of i n f o { S) , we have;

spl i t m f o { X) = - ^ ^ X log2 (4.6)

This now represents the i)otential in fo rm ation of th is test . By con tras t

the in form ation gain m easures the inform ation relevant to classification. By

com bining th e two using the fornnila below, it is possible to m easure the

p ropo rt ion of useful in form ation genera ted l)y the split.

(jam r a t i o { X) = go, in{X) / spl i t i n f o { X) (4.7)

P run ing a Tree

C4.5 continues to subdiv ide the d a ta as described in the previous section,

selecting the best splits of the d a ta until e ither a p a r t i t io n consists only

of a single class or no tes t offers an im provem ent. T he problem w ith this,

howev('r, is t h a t the tree m ay now “overfit” the da ta .

In order to rem edy th is s itua tion it is im p o r ta n t to p rune the genera ted

tree. C4.5 uses post p run ing to p rune ex tra s tru c tu re from th e tree. Th is

can take place in two difl'ereut ways. These are:

• D iscard one or m ore sul)trees and replace th em w ith a leaf

• Replace a sub tree by one of its branches

(Ju in lan uses a pessimistic e s t im a te of the tree branch. T he erro r is com

p u ted using the resubs t i tu tion error (the error of the tree using the t ra in ing

d a ta) . T h is techniciue allows C4.5 to build a tree using all of th e available

d a ta . In con tras t, cross va lida tion technicjues can only build a tree using a

49

portion of the data and must use the remaining out of sanijjle data for error

estimation.

The resubstitution error can be viewed as the number of cases E covered

incorrectly from a total N cases covered by a leaf. The probability of the

same error being made by the entire population cannot be determined ex

actly from the resubstitution error, but this probability of error has itself a

(posterior) probability distribution tha t is usually summarised by a pair of

confidence limits. For a given confidence level C F therefore, the upper limit

of this probability distribution can be found from the confidence limits for

the binomial distribution; the up])er limit is referred to here as Uc f {E, N) .

C4.5 simi)ly uses this upper limit as the predicted error at a leaf. C4.5 then

conijjutes error estimates for all leaves and subtrees by assuming tha t they

were comi)ut('d from a j)opulation with the same size as the training set. A

leaf centering N cases during training therefore, would l>e expected to have

at most N x Uc f { E , N) errors. Similarly, the numl^er of j)redicted errors of

a subtree is the the sum of the errors of its branches.

C'4.5 traverses the tree backwards. At each sul)tree it tests if a low'er

('rror rate is achievable if the suljtree was replaced by either a leaf or one of

its branches. A replacement is made if an error reduction is possible. This

continues until no further replacements are possible without increasing the

estimated error of the tree.

4.1.2 Classification and Regression Trees(CART)

Classification and Regression Trees, better known as CART, descril:>ed in

Breiman et al’s book of the same name [11] is one of the first implementations

of decision trees. Together with C4.5, CART is one of the most important

references on the sul^ject of decision trees.

50

B u ild in g a Tree

Building a tree with CART begins with the generation of a set of questions,

Q. These cjuestions will form the basis for the possible splits of nodes. For

symbolic features, these questions wall be of the form (ji E [61, . . . , wdiere i

denotes the feature. For numerical or ordered features, the possible questions

are of the form qi < c. Each of these questions defines a possible split in the

data, i.e. all examples in the data will fall on one side or the other of a

question. Only one split is made at every node in the decision tree.

In order to decide the best split at any node in the tree, an impurity

criterion is used. Impurity refers to the proportion of examples tha t fall inside

a node on the tree. The criterion for an impurity function, i{f), in CART

is that (f) is a non negative function of the probabilities p (l—t) , . .. ,p (n—t)

with the following properties:

0 (—, = maxinuim (‘l-S)
n 71 71
0(1, () ,.. . ,()) = 0 (0 ,1 , . . . , ()) = . .. = </.(0,0,.. . , !) = () (4.9)

To actually decide on the best split it is necessary to choose the split tha t

most reduces an impurity measure(i.e. brings the tree closer to the point

where the node almost entirely com])rises a single class). Specific imj)urity

measures used by CART are shown later.

This difference in impurity at any node can be w'ritten as:

Az(s, t) = i{t) - pRi{tn) - p i j i t i) (4.10)

wdiere i{t) is the])arent node impurity and pn and p i are the new probat)ility

estimates of the nmnber of examples that will be classified into the new' right

and left hand nodes respectively. and i[tL) axe the new' impurities at

51

the r igh t and left hand nodes respectively. T he split t h a t m axim ises the

difference in im purity will be chosen as the (luestion in the nex t decision

node of the tree.

In the ir l)ook, B re im an e t al. describe several possible functions t h a t

could be used to m easure the “goodness” of a split. T he first of these is

an en tropy based im pur ity m easure. Th is is a simple and well unders tood

function th a t exhib its the desirable j)roperties for m easuring impurity .

Two o ther functions described for de te rm in ing the best sp li t include the

Gini function for m easuring node im purity and the Tw oing rule.

T he Gini im pur ity m easure, assesses node im purity , no t using the p lu ra l

ity rule (the m ost a b u n d a n t class) b u t instead assigns an ob jec t to the class i

w ith a p robab il ity p (i | t) . T he probab il ity of th is ob jec t ac tua lly being class j

is therefore T he e s tim a ted i)robability of misclassification under th is

rule is therefore:

Unlike the Gini criterion for de te rm in ing the best split of a node, the

Tw oing rule does not 0])crate on an overall m easure of im p u r i ty i{i) , and

hence finding an overall tree im purity / (t) , is no t j^ossible. T h is is no t con

sidered a p roblem as a sp li t t ing criterion should be judged p r im ari ly on how

it perform s du r ing tree construction . T he p i and pn are the p ro p o rt io n of

exami)les from the pa ren t node t reaching the left, t i , and riglit, Ir respec

tively.

(4 . 1 1)

J

(4 .12)

P l P r
(4 .13)

J

T he stop])ing cri ter ia used by C A R T is a simple thresho ld value:

52

max A /(s , t) < ^ (4-14)
ses

\Mien the change in impurity for a node fails to exceed a threshold P,

tha t node is no longer split. When this condition is reached for all term inal

nodes, the tree growing phase is completed.

E stim atin g Error

The simplest method used to estimate the error of a CART tree is to calculate

the resubstitution estimate using the probability of misclassification. To

understand this, it is first im portan t to note how CART assigns a class label

to a leaf node (i.e. any example reaching this leaf node will be assigned this

class as a i)rediction). The class assigned is simply the class th a t appeared

most often from the original training da ta in th a t leaf node, i.e. the class j

for which p{j \ t) is greatest.

The resubstitution error is then the error produced when running the

training d a ta through the tree. This error may be easily calculated for a

])articular node by summing up all the probabilities of finding each of the

renudning classes not assigned by the assignment rule j{t):

E (4.15)

or more simply:

r{t) = 1 — m ax j;(j | t) (4-16)
3

However, tliis is not a comi)letely satisfactory metric for estimating the

error. It tends to be overly optimistic when computing error, in jmrticular

if the tree has overfitted to the data. A more precise m ethod of calculating

error is to separate the available da ta into two sets, a training set and a test

53

set. Once the tree has been l:milt using the training set, the error on the

tree is estimated by filtering the test set through the tree and calculating

])robabilities of misclassification at each terminal node. These probabilities

are then summed as in the simple resubstitution case described above.

VMiere insufficient d a ta is available to sacrifice some d a ta as a test set,

/;:-fold cross validation may be used. A'-fold cross validation involves splitting

the da ta L into k sets, { L i , . . . , L^}, and training k trees leaving out each

one of the sets of da ta each time to use for estimating the tree error. Like

the test set case, the set of d a ta om itted from training is used to calculate

error estimates for each terminal tree leaf. An overall error estimate is then

found by finding the average of these k error estimates.

All of the above error estimates can be modified easily to include a mea

sure of the cost of misclassification. For the simple resubstitution error case,

the misclassification cost is:

Y.cmp{;i\t) (4 . 17)

j
where C{i \ j) is some function th a t measures the cost of classifying an example

with tru(’ class label j as t. Using this costing analysis, different weights can

be assigned to different misclassifications, thus perhaps biasing a tree towards

making fewer expensive mistakes.

P run ing a Tree

The simple threshold stopping the tree described in the previous section

proved unsatisfactory. A small value of /5 resulted in overly complex trees.

Although they had small error estimates, this was due to overfitting of the

training da ta , i.e. they had a low bias, but a high variance giving poor

})erformance on unseen test data. As with neural networks, an optim um

54

generalisation i)erformance nnist l)e found. Increasing the value of /3 failed

to generate trees tha t were substantially better in i)erformance.

Instead of trying to stoj) tree growth at an optimum point, Breiman et al.

implemented a post pruning strategy in CART. The tree was initially grown

to be very complex and then nodes and branches of nodes were removed until

an optinnmi tree structure remained (relative to the original tree).

The Ijasic form of pruning used by CART uses minimal cost-complexity

as a measure of pruned tree])erformance.

In this])runing, the cost-complexity measure R„{T) is dehned as:

n,,{T) = R{T) + a \ f \ (4.18)

where T is defined as the number of leaf nodes in the tree and (v > 0 is a

real value calh'd the cost comjjlexity])arameter.

For each value of (\ it is possible to hnd a subtree T{(v) < Tmax which

minimises i.e.,

7?,,(T(«)) = min i?„(T) (4.19)
^ ̂m a x

It is now i)ossible to find different measures of a that will give more

pruned subtrees, T\ > T2 > ■ ■. > t\. The prol)lem now is to choose the best

of these subtrees. This is done l)y estimating the error on the sub trees using

one of the methods of assessing error described in the previous section, e.g.

resubstitution error, cross validation, etc.

4.1.3 R ule E xtraction from D ecision Trees

The method of rule extraction from decision trees described here is that

described by (Quinlan [47] for C4.5. It could however be used for any decision

E xtractin g R ules from a Tree

The process of rule extraction is very simple due to the nature of the deci

sion tree. Individual rules are extracted from an unpruned decision tree l ŷ

following the edges of the decision tree from the root node to each leaf node.

Every decision node becomes another term in the rule clause while the leaf

node becomes the predicted class for that rule(i.e. the THEN clause of the

rule).

P run ing E xtracted R ules

There are two methods by which the extracted rules may be pruned:

The first method is tha t the number of terms in the rule may l)e reduced.

This may be done when removing a term in a rule does not significantly

increase the number of errors made by that rule on the training set. In

C4.5 a grc^edy search is performed on the terms of a rule clause. The cost

associated with removing each one of the rule terms is calculated and if this

cost does not exceed the original upper limit of the rule then it is removed.

Using the same notation as (Juinlan, the upper error rate of the original rule

is expressed as U c f { E , N) where E is the number of cases covered erroneously

by the rule and N is the total number of cases covered.

So for a rule /?, before removing condition A", R covers I'l cases correctly

and El cases incorrectly. After removing condition A' it now covers not only

the original easels, but also a number of extra cases. These extra cases covered

may include those of the same class as the original rule and those of incorrect

classes. These extra cases are known as I 2 and E2 respectively. These errors

are set out in table 4.1.

The original pessimistic error rate of this rule is therefore Ucf{Yii ^

After removing condition X of this rule, however, the error rate may be

56

Table 4.1; Errors before and after rule pruning in C4.5
Class C Other Classes

Satisfies condition A"atisfies condition A" 1’] E\
Does not satisfy condition X Y2 E 2Does not satisfy condition X

rewritten as Uc f O'i + ̂2 , + ^ '2 + -Ei + -E2), taking into account the extra

cases covered both correctly and incorrectly.

Conditions are then removed in a greedy fashion (i.e. the condition with

the least error below the original rule error rate is removed first) and these

pessimistic error rates are recomputed after every removal. This continues

until as many conditions as possible have been removed.

The second method of pruning the extracted rules is to actually drop

entire rules from the ruleset. In C4.5 rule utility is measured using a mininnim

description length (“MDL”)[49] approach. In MDL, the hypothesis wdiich

n'ciuires the mininumi number of bits to transfer its encoded message and

any exceptions is preferred above the others.

In sending the hyj^othesis, all terms in the rule clause nnist be sent, but

since they may be sent in any order, the number of bits required to send this

information is reduced by log2 (.x’!), where x is the nmnber of terms in the

rules.

Excei)tions are then encoded by specifying which of those examples that

are covered are false positives and which of those examples not covered are

false negatives. Thus the number of bits required for this encoding is simply;

The first term in ecjuation 4.20 is the bits needed to transfer the false

positives(/p) while the second term indicates the number of bits recjuired to

transfer the false negatives(/??,) from the total number of bits n.

(4.20)

57

The total number of l)its recjuired to encode this theory is therefore the

sum of the bits to encode the theory(i.e. the rule terms) plus the mimber of

bits required to encode the exceptions. In practice however, Quinlan reduced

this amount slightly after experiments demonstrated tha t in practice the

number of bits was frecjuently overestimated. Therefore the true number of

bits computed is as set out in equation 4.21.

ExceptionDits + \V x T heoryB its (4-21)

where IF is a constant value between 0 and 1.

Unlike the pruning of rule terms, i)runing of entire rules does not proceed

using a greedy hill climbing search. Instead, if the niunber of rules is small all

possible subsets are considered and with larger numbers of rules, a sinuilated

annealing approach is used. In the case of simulated annealing, the system

repeatedly picks a rule and adds it to the subset(5) if it is not already there

and removes it otherwise. If, as a result of the action, the change in bits(Ai^)

is positive then the change to S is accepted with probability K is a

synthetic temperature whose value is reduced during the course of execution

and hence the i)robability of the change being accepted is also reduced.

A conseciuence tha t is important to be aware of, after rule pruning, is

the])ossibility tha t more than one rule may match a new test exam])le. It is

important to have a strategy in])lace to deal with this situation. The simple

strategy used by C4.5 to resolve conflicts is to order the rules by the number

of examples that they cover in the training set. The first rule to match an

unseen example is therefore taken to be the prediction for tha t case.

The sec:ond conseciuence of rule pruning is that no rules may match an

unseen example. C4.5 approaches this problem by setting aside a default

class. TIh; default class is the class that covers the most uncovered training

58

exaini)les after rule pruning. An unclassified exanij^le is predicted to be the

default class, if no rule matches.

Figure 4.3 shows an exarnj^le of jiruned rules extracted from the decision

tree shown in Figure 4.1.

Rule 1:
Petal Length <= 1.9
-> class Iris-setosa [97.3°/o]

Rule 4:
Petal Length > 1.9
Petal Length <= 5.3
Petal Width <= 1.7
-> class Iris-versicolor [90.4°/o]

Rule 6:
Petal Width > 1.7
-> class Iris-virginica [94.4%]

Rule 3:
Petal Length > 4.9
-> class Iris-virginica [91.8%]

Default class: Iris-setosa

Figure 4.3: Examj^le rules extracted from the decision tree in Figure 4.1.

4.2 R ule Inducing A lgorithm s

T he following sections describe common rule induction algorithms. Unlike

rule extraction from neural networks or even decision trees, these algorithms

are designed to ou tpu t rules directly. The algorithms described here represent

some of the most i)rominent in the area.

59

4.2.1 CN2

The CN2 algorithm for rule induction was introduced by Clark & Niblett

[13]. This algorithm builds closely on the previous work by Michalski’s AQ

algorithm [41],

CN2 works by performing a beam search across the possible attributes. A

beam search can be thought of as a number of parallel hill climbing searches.

Or alternatively, may be thought of as a l^readth first search where only the

most promising sut)seciuent nodes are expanded. Once a search has reached

a j)oint where it cannot exi)and any more nodes, the algorithm returns the

best complex (rule clause) found. The CN2 algorithm is outlined in Figure

4.4.

There are two im portan t heuristics used in the search for rules. These

are:

• Assess the (luality of the current complex

• Assess the significance of the current complex

To assess the (juality of the current complex, the CN2 algorithm uses

an entropy based measure. The set of examples E' th a t are covered l>y the

complex (i.e. those examples th a t are satisfied by the complex selectors)

are found and the probability distribution P — {p i , .. .pn) of the classes of

these examples is then computed. The entropy of these examples can then

be com puted using the formula in equation 4.22.

Ent ropy = - ^ p, log2 (;j*) (4.22)
i

Entro])y is the favoured measurement of rule quality as it distinguishes

l)robability distributions th a t are more easily specialised. For instance, given

GO

1. Search for the best complex using the current training set E.

(a) While the possible set of complexes is not empty:

i. Create a new set of possible complexes by intersecting the
current best complexes with the set of all possible selectors,
removing any redundant and unchanged complexes.

ii. Test the quality of every new complex using Equation 4.22
with resjject to the set of training examples E.

iii. Each complex tha t passes the quality test should be tested
using Equation 4.23 to find the best complex found.

iv. Remove the worst complexes from the total set and continue
from i.

(b) Return the l)est complex found.

2. If a complex is found;

(a) Remove the examples E' from the set of training examples E that
are covered Iw the com])lex.

(b) Assign the most common class C in the set E' as the output for
this complex.

(c) Add this rule to rule list.

(d) Continue from Step 1.

3. Return the conijjleted rule list to the user.

Figure 4.4: CN2 algorithm

the two distributions P\ = (0.7, 0.1, 0.1, 0.1) and P-i = (0.7, 0.3, 0, 0), an

entropy measurement will select the latter whereas a simpler maximum cor

rect may not. This is desirable because if the majority class is removed,

the distributions will become Pi = (0,0.33,0.33,0.33) and P2 = (0,1,0,0)

demonstrating how much simpler it is to specialise the second distribution

to a definition describing a single class only.

The second heuristic used in the search for rules involves testing the

significance of the current complex. This is done to ensure tha t the rule

61

com plex under consideration is a genuine regularity in the d a ta an d no t

m erely one th a t has occurred as a result of noise in the d a ta . T he fornuila

used for com pu ting th is significance is the liklihood ra tio s ta tis tic :

where F = { . f i , ■ ■ ■, f n } is the observed frequency d is tr ib u t io n satisifying a

given complex and E = { e i , . . . , e,i} is the expected d is tr ibu t ion of the sam e

n u m b er of exam ples under the a ssum ption th a t the complex selects exam ples

random ly . I 'h e lower the score the m ore likely t h a t this com plex was form ed

by chance.

FO IL is a first o rder rule learner {)roposcd by Q uin lan [48]. F irs t o rder

rules are conunonly known as Horn clauses. F irs t order rules differ from the

pro])ositional rules c rea ted by a lgorithm s such as CN2(see Section 4.2.1), in

t h a t they m ay include variables. Variables are properties of fea tures t h a t nuiy

be a t ta c h e d to any exam ple con ta in ing th a t feature. P ropos it iona l rules on

th e o th e r han d nnist have precise values for every fea ture of every example.

T h e advan tage of learning rules com prising Horn clauses is t h a t these

rules m ay be in i)u tted directly into rule based languages such as P R O L O G .

T h e FO IL a lgo r ithm is ac tua lly very sim ilar in s tru c tu re to the CN2 algo

r i th m described in Section 4.2.1. T he ou ter loop of the CN2 a lgo r i thm is very

s im ila r to the ou te r loop of the FO IL a lgorithm , t ra in in g continues until the

l)erform ance of the next rule learned is below some th resho ld value. In FO IL

th e inner loop of CN2 is effectively ex tended to deal w ith the p roduction of

first o rder rules.

T h e m ain differences between FO IL and the previous a lgo r i thm lie in the

(4.23)

4.2.2 FOIL

62

method of generating candidate specialisations and in the gain criteria used

to assess the goodness of new hypotheses.

To generate possible si)ecialisations of a riile, FOIL employs one of two

methods. Firstly, it may add any of the possible predicates, so long as the

variables in the predicates already exist in the rule. The second method is

to check for equality between the values of two variables already existing in

the rule.

In FOIL, the objective when adding new variables to literals is to cover as

many positive examples as possible. To maximise this goal, the information

theory method of miuinmm description length is used. The number of bits

recpiired to encode the original rule and the augmented rule to be tested are

computed and if the new rule reduces the number of bits significantly then

the change is accepted. The])recise fornuila used is in Equation 4.24.

FcnLG(mi{L, R) = t (log^ \og^ — —) (4.24)
V Pi + 7h po + ??,() /

In this etjuation, p^ is the luunber of positive examples covered l)y the

original rule and uq is the number of negative examples covered by the original

rule. Similarly,]>i and rij are the number of positive and negative examples

covered by the new rule resj)ectively. Finally, t is the number of positive

exam])les that are still covered by the new rule.

4.2.3 RIPPER

RIPPER [IG] is a rule learning algorithm that is based on the work of Quin

lan’s FOIL [48], Brunk & Pazzani’s “Reduced Error Pruning” (REP) [12]

and Fiirnkranz & Widmer’s “Incremental Reduced Error Pruning” (IREP)

|29|.

The])asic algorithm of RIPPER is similar to that of FOIL. In j)articular

63

the G row R ule procedure is a p ropositional version of the FO IL algorithn i.

It works by add ing conditions of the form An = v or Ac < 0 or A^ > 6,

where An is a symbolic a t t r ib u te and v is a legal value and Ac is a niimeric

a t t r ib u te and 0 is a value for Ac t h a t occurs in the d a ta . G row R ule continues

to add proposit ions th a t m axim ise F O IL ’s inform ation gain criterion until no

negative exam ples in the growing set are covered by the rule.

In R E P , the t ra in ing d a ta is sjilit in to two sets, a growing set and a

p run ing set. A ruleset is grown to overfit th e t ra in ing d a ta . These rules are

])Ost p runed using the p run ing set by ai)})lying one or m ore p run ing o p e ra

tors to any single rule. A hill c limbing technique is usefl to select the next

0])erat0r to apjjly. Simplification is coni])lete when ai)plying any o p e ra to r

would increase the error on the])runing set. R E P ’s m ajo r sho rtcom ing is

its complexity. Cohen [15] showed th a t given sufficiently noisy d a ta , R E P

reciuired (){ir^) tim e. Even the initial overh tt ing of rules recjuired 0 { n ‘̂) t im e

to comjjlete.

T he m ost successful response to the inefficiency of R E P was th e a lgo r ithm

IR EP. IR E P is comi)etitive w ith R E P in te rm s of error ra tes an d was signifi

can tly fas ter th a n REP. IR E P builds a ruleset in a greedy fashion. Like R E P

the full t ra in in g set is split in to a t ra in ing set and a p run ing set. However,

after a rule is found and pruned , it removes all positive and negative exam

ples from the full t ra in ing set before sp li t t ing it again. T h is continues until

e ither there are no positive examples rem ain ing or the rule found by IR E P

has an unaccej^tably large error rate . I t is on IR E P th a t R I P P E R bases i t ’s

error p run ing technique.

In IR E P prun ing , the deletion th a t m axim ises the function

p + (TV _ n)
v{B:ule, P r m i e P o s , P r u n e N e g) = p j\j ("^-25)

is chosen, where P and N are the to ta l num ber of positive exam ples in

64

PniiiePos and Pi nneNeg respectively and p and n are the to ta l number of pos

itive and negative examples covered by the rule in PrunePos and PruneNeg

respectively. This process is repeated until no deletion imj^roves the value of

V.

The ability to handle multi class problems is included in the R IP P E R

imijlementation of IREP. This is accomplished by ordering the examples

of each class in increasing order of prevalence, i.e. C i , . . . ,Ck, where Ci

is the least prevalent class and Ck is the most prevalent class. Repeated

calls to GrowRule are now made using the current least prevalent class with

remaining examples uncovered as the])ositive examples and all other classes

are considered to be negative. This continues until only the most prevalent

class Ck remains. This class becomes the default class.

R IPP E R also extended the IREP algorithm to handle missing attributes.

Any rule involving a test on an a t tr ibu te ,4 are deemed to have failed if

the value for th a t a t tr ibu te is missing in a given example. This behaviour

was introfluced to separate the positive examples using only tests th a t were

known to succeed.

Three improvements were also made on the IR EP algorithm:

1. An alternative metric for assessing the value of rules in the j^runing

phase of IREP.

2. A new heuristic for determining when to stoj) adding rules to a rule

set.

3. A pos])ass th a t “optimises” a rule set in an a t tem p t to more closely

approxim ate conventional (i.e. non incremental) reduced error pruning.

Cohen found th a t occasional failures of IR EP to converge as the number

of examples increased could l)e traced to the metric used to guide pruning

65

sliowii in equation 4.25. The original pruning metric would prefer a rule Ri

tha t covered pi = lOOO iK)stive exani])les and rii = 1000 negative examples

to a rule /?2 th a t covered p 2 = 1000 positive examples and ri2 = 1 negative

examples even though the rule R 2 is significantly more predictive. Instead of

the original pruning metric, Cohen replaced it with:

v*(Rule, P ru n eP o s , P n m e N e g) = - — - (4.26)
p + n

where p and n are the number of positive and negative exami)les of the

pruning set covered by the rule.

Colien re]X)rts [16] th a t IREP seems to be particularly sensitive to the

small disjuncts problem [35]. Small rules th a t cover few examples may have

high error rates causing IREP to stop prematurely. To overcome this prob

lem R IP P E R uses Minimum Description Length(MDL) theory to assess the

length of the ruleset and the examples. No rules are added once this de-

scri])tion becomes a constant “r/” bits longer than the smallest description

length.

The final improvement made to the IR EP algorithm in R IP P E R involves

an optimisation of the global ruleset. Each rule is optimised in the order

which the rules were constructed. Two alternative rules are constructed.

The first of these is known as the replacement rule. A rule is grown and

then pruned with the objective of minimising the error of the entire rule set.

The second rule constructed is formed by greedily adding conditions to the

original rule, this is known as the revised rule. Finally a decision is made

whether to retain the original rule, or replace it with the rej^lacement or the

revised rules. MDL is used to make this decision. Each of the alternatives

is inserted into the ruleset and rules th a t are increasing the to ta l length of

the ruleset and ('xamples are removed. Once a final decision has l)een made,

the modified IR EP algorithm is reapplied to learn new rules for any positive

66

examples th a t may be left uncovered after being removed during pruning.

4.2.4 SLIPPER

S L IP P E R is a rule learning algoritlini introduced by Cohen & Singer [17].

Unlike the many other rule learners including R IPPER and CN2, where

covered examples are removed from the set of training examples, SLIPPER

uses a boosting like approach to change the distribution of the examples, so

more emphasis is placed on those examples misclassified in earlier rounds.

Boosting is covered in the context of ensembles in Section 3.1.2.

Every rule in SLIPPER has a fixed confidence value associated with it.

The sign of these confidence values determines the class of an example clas

sified by a rule. Rules not covering an example, ou tpu t a confidence of zero.

Therefore, to classify an example using the strong hypothesis, it is only nec

essary to smn the confidence values of covering rules and return the sign.

Th(' confidence values are computed \ising the formula:

where 11'+ = Ex.ey?.;. = - = " I - To prevent rules

covering few examples and having 1T_ = 0 leading to impractically large

values, the confidence is “smoothed” by adding ^ to both H + and

W hen growing a rule, SLIPPER restricts itself to positively correlated

rules, hence the objective function th a t is a t tem pted to be maximised is:

Once a rule is grown, i.e. no negative examples in the GrowSet remain

uncovered, there is a danger of th a t rule overfitting the data. The rule is

ther('fore pruned iinmediately after training by minimising the equation:

(4.27)

z = (4.28)

G7

(1 — 11 — V+) + \ ' \exp + V-exj)^^R' (4.29)

The full algorithm for slipper is shown below:

1. Traill the weak learner using the current distribution D

(a) Split data into GrowSet and PruneSet

(b) GrowRule: starting with the empty rule, greedily add conditions

to maxmimise ecjuation 4.28

(c) PruneRule: starting with the output of GrowRule, delete some

final sequence of conditions to minimise equation 4.29 where C r '

is computed using ecjuation 4.27 and GrowSet.

(cl) Return as Bt either the output of PruneRule, or the default rule,

whichever minimises the e(}uation Z = 1 — (v^U'+ — >/TTL)'')̂.

2. Construct lit : x IK:

Let Cn, be given by ecjuation 4.27 (evaluated on the entire dataset).

Then
C r, \ i x e B.t
0 otherwise

3. Ujjdate:

(a) For each .t , G Bt, set D{%) <-----

(a) Let Z, = E ” , D{.)

(a) For each ,t,, set D{t) f -

Oiitput the final hypothesis: H{x) = iit-xeRi

68

4.3 Sum m ary

This chapter presented a selection of methods tha t may be used for building

rules th a t model a domain. In the implementation of this thesis, only C4.5

was used for building rules. C4.5 was chosen because of its proven perfor

mance over a wide variety of data and readily available implementation.

The system presented in this thesis could easily be used with any of the

other methods described here with virtually no changes required.

69

C hapter 5

Explaining Neural N etw orks

Neural iietAvorks have proved themselves as good predictors for a large variety

of problems. Despite their successes, their use is frequently ruled oiit for

many problems th a t could benefit the most from their predictive accuracy.

The reason for this is very simple. The domains in which they are not used are

tyi)ically where explanation is considered as im portan t as prediction. These

include safety critical or medical domains where reliance on unsui)ported

predictions is simply not an option. The consequences of a bad prediction

may be costly or even life threatening. Depending on the requirements of

the domain, the ability to explain neural networks could be of use in several

different ways:

• The explanations could be used to verify the networks operation.

• Failures th a t may occur can be understood by looking a t the explana

tion of the neural network operation and steps can be taken to avoid

similar failures in the future, e.g. Iw retraining with new examples.

• The network may be replaced by the explainal)le model (e.g. a decision

tree or set of rules), so tha t the operation can be guaranteed at all times.

70

The final point in the above list may not seem sensible. If the network

is to l)e replaced Ijy a set of rules or a decision tree why not build such a

s tructure from the s ta r t and skip the intermediate step of building a neural

network? The answer to this is quite simple, neural networks are good a t

generalisation. Given a limited number of training examples, neural networks

can make excellent ai)proximations to the true function being studied and

therefore perform well on future unseen examples. This good lierformance

can be used to tag a larger set of generated data. A more comprehensible

learner can then use this larger collection of d a ta to generate a s truc tu re with

similar characteristics to the original network.

This chai)ter jjrovides a brief outline of some of the areas of rule extrac

tion relevant to this thesis. For a more com])lete review of the area see [63, 5].

This chapter begins by outlining in Section 5.1 the two high level strategies

th a t may be adopted for network exj)lanation. These include netw'ork de-

comi)osition in Section 5.1.1 and black box methods in Section 5.1.2. The

issue of ('vahiating the cjuality of extracted exj)lanation rules is addressed in

Section 5.2. Two explanation ai)proaches are then covered in Section 5.3. Fi

nally Section 5.4 concludes the chapter with a look a t explanation of neural

network (‘nsembles.

5.1 Strategies

5.1.1 Network Decom position

Decomi)ositional methods translate networks s tructure directly to rules. In

the case of backprojmgation networks, therefore, the aim would be to identify

the hyperplanes partitioning the input space. At first this may appear to

be a powerftil method of ex])laining neural networks, however, they have

the limitation of being architecture dependant. Many legacy netw'orks are

71

excluded as they were not t ra ined w ith exp lana tion in m ind.

One of the first m ethods proposed for the exp lana tion of neural n e t

works involved direct decom position of the network. T he m e th o d K T was

proposed by Fu [27]. T he core idea beh ind the K T a lgo r ithm is pe rhaps the

m ost obvious approach to the decom position of m ost networks w ith weighted

in te rconnec tions betw'een units. W hen presented w ith an in p u t exam ple, the

K T a lgo r i thm searches for the sm allest possible com bina tion of inpu ts whose

values will trigger the desired o u tp u t . A set of rules explain ing the netw ork

can be accum ula ted in th is way.

A good in troduc tion to decom positional m e th o d s involves an u n d e rs ta n d

ing of local func;tion networks. For an exam ple of these networks and rule

ex trac t io n see A ndrew s [C]. T he idea beh ind these networks is t h a t they

have boundaries in each dim ension and these boundaries are ad ju s ted as new

examj)les are misclassified. T he final boundaries in each dim ension form the

boundaries of the rule term s.

A no the r local function network approach is by B ertho ld [8] and involves

the use of R ec tangu la r Basis Function Networks. T he tra in ing a lgo r i thm

for these networks is l)ased on B er th o ld ’s j^revions work on D ynam ic Decay

A d ju s tm en t(D D A) [7] for t ra in ing Radial Basis Function Networks.

R ec tan g u la r Basis Function networks work by c rea ting hyperrec tang les

th a t encom pass areas of the hyperspace dehned by the in p u t features d im en

sions.

Each h idden un it jf- of class c and index i { l < i < tUc), rric l)eing the

num ber of h idden un its of t h a t class) has a num ber of p a ram ete rs associated

w ith it. These are:

• An ac tivation

• A reference vector (centre):

72

• An amplitude(weight):

• Two sets of “radii” :

- Set of axes along which the rectangle is spread out towards infinity

A'°°

— Set of axes along which the rectangle is restricted with a radius

of

The activation of a unit is 1 if a new training example of the same cla,ss

is correctly classified i)y th a t unit and zero otherwise. The first luiit to

correctly classify the example has its weight increased l)y a constant amount.

This weight will be used later during classification of unseen examples. The

centre of a hidden unit is the first example th a t causes a misclassification in

another unit. The radii are the dimensions of the hyperrectangle around this

centre.

Training begins with no hidden units. Hidden units are added only when

('xisting units misclassify a new example. When a new hidden unit is added,

the dimensions of th a t unit nmst be shrunk so th a t no conflicts exist between

th a t unit and all units of other classes and vice versa (it is not necessary to

shrink th a t units dimensions with respect to units of the same class).

A simple example of shrinking the dimensions of a rectangle is shown

graphically in two dimensions in Figure 5.1. The example in a has been mis-

clasified and it is necessary to shorten one of the dimensions of the enclosing

rectangle. To do this there are three choices. In b the left dimension has been

shrunk, in c the top dimension has been shrunk and in d both dimensions

have been shrunk. It can be seen clearly from this diagram th a t to avoid

the misclassification it is only necessary to shrink a single dimension so the

solution jjrcsented in d can be discounted. To maximise the size of hyper-

73

rectangles, it is reconniiencled to shrink the dimension th a t will lead to the

least reduction in area of the remaining rectangle. Clearly, this means tha t

b is the correct dimension to shrink.

a) b) ' '

■ (

; ' ' '

0 //'I d) f 'T

i itts

Figure 5.1: Shrinking the dimension of a rectagle in rectangular basis function
networks

Execution of the network proceeds by testing each hidden unit with the

unseen example. If the example falls within the dimensions of th a t u n i t’s

hyperrectangle, then the ou tpu t imit adds th a t units weight to the total

score for th a t (;lass. The class with the highest score is outjMitted as the

prediction.

The extraction of rules from this network is very straightforward. Each

hidden unit can be mapped directly to a single rule. This is easiest to visualise

from Figure 5.2. In this figure, the centre of the rectangle is marked by the

unit with the cross through it. The rectangle is unbounded on the top side.

In the other dimensions, there are examples of another class th a t caused

those dimensions to be shrunk when they were misclassified. The rule th a t

is extracted from this rectangle is:

IF .Ti < V x < -̂ 2 a n d yi < V y t h e n TRU E

w'here find V y are the values of the features X and Y to be tested by

the rule.

74

Y

@ Class: TRUE

• Class: FALSE

I I

I I

I I

--------------- ^ ^ ------- ► X
I I

I I

I I

I I

• T l X'2

Figure 5.2: Extracting a rule from the hyperrectangle in a hidden unit

5.1.2 Black Box

In contrast to direct deconi])osition methods, l)lack box methods recpiire

no knowledge' of thi^ internal network structure. They operate solely by

analysing the])redicted outj)ut(s) on input vector(s). To analyse this rela

tionship black box methods tyi)ically use traditional rule learning algorithms

to model the network.

A popular strategy adopted by researchers into black box methods is

to use a second machine learning ap])roach th a t models the in p u t /o u tp u t

behaviour of the network. The second learning algorithm does not learn the

target function directly, instead it learns the response of the neural netw'ork

to the training inputs. In modelling the netAvork, it is hoped th a t strong

l)atterns th a t are being used internally by the network for prediction wall

be made clear and the second learning algorithm wall ou tpu t rules based on

75

these patterns. Prominent examples of this type of learning are:

• Thrun: Validity Interval Analysis(“VIA”) [59]

• Craven & Shavlik - TREPA N [19]

• Schmitz, Aldrich and Gouws - ANN-DT [52]

In his pai>er describing his technique for rule extraction from neural ne t

works, T hrun outlines four criteria for successful explanation of a network.

These are:

• No architectural reciuirements - the proposed method should work with

all tyj)es of networks.

• No training reciuirements - special provisions during training should

not l)e required, their presence would likely prevent the m ethod being

used with legacy networks.

• Correctness - generated rules should reflect the knowledge contained in

the network as accurately as possible and not merely be approximations

to the network operation.

• High expressive pow'er - pow'erful languages for expressing the rules

extracted from the network should l)e used. Com pact rulesets are more

easily understood.

T hrun presents his m ethod for network explanation using these criteria

as goals.

T hrun analyses back])ropagation-like networks by propagating entire ac

tivations intervals of units. These activation intervals comprise u])per and

lower bounds tha t, when satisfied, lead to a proval)ly correct activation si)ace.

76

In the context of rule extraction, these intervals are used to prove or disprove

conjectured rules. Initial intervals constraints are set using a linear prograni-

niing m ethod (Thrun uses the Simplex method). Intervals are refined by

propagating them both forwards and backwards through the network. It

should l)e noted th a t these propagations are independent of network training

(i.e. they have no relationship to the gradient updates in back i)ropagation

networks).

Craven & Shavlik use a more conventional approach to the extraction of

rules from a network for the purpose of explaining a network’s operation.

Using the network as an oracle, a large number of generated examples are

labelled. These generated examples in addition to the training set, define

precisely the network response. Using these examples, a decision tree is

built to model the dependencies captured in these examples. Decision trees

are easily decomposed to rules and hence are good structures for explaining

networks.

The decision tree algorithm used by Craven &; Shavlik, grows the tree in

a best first m anner as opi)osed to the more traditional depth first approach

of C4.5 and CART (both C4.5 and CART are described in full in Chapter 4.

,A.t each node in the tree, TREPA N stores:

• A subset of training instances

• A set of ciuery instances

• A set of constraints

The subset of training instances are simply those training instances th a t

rt'ached th a t node. The (juery instances are used in conjunction with the

train ing instances to either determine the next split of an internal node or

77

alternatively set the class of a leaf node. Finally the set of constraints de

fine criteria th a t instances must possess in order to reach this node. These

constraints are used when generating a set of query instances for the node.

As mentioned previously, the TREPA N decision tree algorithm grows

the tree in a best-first manner. To determine the next best node to grow,

Craven & Shavlik a t tem p t to estimate which node when grown will give the

greatest increase in fidelity. This is justifiable because, the idea is to model

the network as faithfully as possible. The equation for selecting this node is:

f { N) = reach{N) x (1 — f i dc l i t y {N)) (5-1)

where reach.{N) is an estimate of the fraction of instances th a t reach N when

jjassecl tlirougli the tree and f i deHty (N) is the fidelity of those instances

reaching N with resj^ect to the original network.

The rc'HSoning behind a l)est hrst growth of the decision tree is botli

jjractical and connnendable. The size and complexity of the tree can be

finely controlled and a t any stage the tree can be verified l^y a user as an

increasingly accurate glol)al model of the network.

The last major difference in the decision tree in TREPA N is the stopping

criterion. Three criteria are used, one local and two global. The local crite

rion is simply a probability measure th a t the instances reaching the potential

leaf node are all of a single class. When this])robability reaches a preset con

s tan t value the current node is marked as a leaf. The first of the global

critera is a limit on the number of possil:)le internal nodes. The second global

criteron uses a validation set to evaluate the fidelity of the increasingly more

accurate trees for modelling the network. The tree with the lowest error is

considered to l)e the best.

The final method for explaining neural networks th a t is examined here is

78

by Schiiiitz, Aldrich & Goiiws and is named ANN-DT. Like Craven & Shavlik,

Schmitz et al. also aim to produce a decision tree as their final ou tpu t. Also

like Craven & Shavlik, Schmitz et al. use the network to label a collection of

generated d a ta to be used by the decision tree builder. Unlike the previous

m ethods, though, ANN-DT focuses on explaining problems with a continuous

numeric output. The basic steps followed in building the decision tree are

similar to CART (which is described in Section 4.1.2 and hence only the

differences are covered here).

The selection of a t tr ibu te and threshold for splitting is done in two dif

ferent ways. The first is by minimisation of the weighted variance:

This is the same procedure as used in the CART algorithm when forming

a regression tree.

The second m ethod is an analysis of a t tr ibu te significance. This m ethod

focuses on inter-relationships tha t occur inside the network function. If a t

tributes can change their value indei)endently of one another then the abso

lute value of the directional derivative integrated in a straight line between

two points can be used as a measure of the significance of a single a t tr ibu te .

However, if in the more likely case, there is a dependence between variables,

this is not appro})riate.

The absolute variation between two points Xi and Xj in the d a tase t is:

where u is the unity vector in the direction .x* — Xj.

The variation between a ttr ibu tes having a large effect on the outj:)ut of the

neural network, f { x) and variations in the neural network outi)ut resj)onse

2

(5.2)

(5.3)

79

will be liigiily correlated. Thus, a measure of the significance of a variable a

over a data set S would be the correlation between the absolute variance of

the function and the absolute variation of tha t attribute taken between all

possible pairs of points in S:

o - (/) a = correlat^on{v^J{f),v^j{a))

Those attributes with the highest correlation between changes in the neu

ral network output and changes in the attribute value are the most significant

and should be used for splits higher in the tree.

Schmitz et al note that where the number of computations is excessive,

the result can be apjiroximated by selecting random pairs.

Th(' da ta is recursively split in this way until either the standard deviation

is zero or when some stopping criterion is reached. This criterion would

prevent a split occuring where the outcome of one of the sub branches would

not be statistically different from the outcome of the other branch. This

prepruning is designed to help prevent overfitting of the decision tree and to

improve overall comi^rehensibility of the presented rules.

One such test that can be used to determine if two branches are statisti

cally different from each other is the F-test (it tests if the standard deviation

of two populations are eciual). This test is only applied to branches formed

below a preset level in the tree. This helps ensure that tree growth is not

stopped prematurely. In addition, branches containing only a single data

point are also deemed to have failed. Finally, the maximum depth of trees is

capj)ed at a preset maxinuim to jjrevent overly large and incomprehensible

- ^(/)%(«) - (̂«)

80

trees.

The final stage of the ANN-DT algorithm is to prune the trees. The

au thors use a simple fast greedy pruning technique. They note however th a t

the more sophisticated CART algorithm for pruning decision trees could also

be used.

5.2 Evaluating Rule Quality

The process of extracting rules from neural networks is a trade-off. The

following measures were proposed by Towell & Shavlik [61]:

• Accuracy: The accuracy of the rule set is simply a measure of the rule

sets ability to accurately predict unseen cases.

• Fidelity: The fidelity of the rule set measures how well the rule set

models th(> behaviour of the neural network. In cases where the rules

ar(' Ix'ing used to verify the operation of the network, the rules should

exhibit a high degree of fidelity.

• Comprehensibility: The comprehensibility of the rule set is a measure

of the ‘uuderstandability’ of the rules. This may be measured in two

different ways. The first measures the global comprehensibility, i.e.

the to tal rule set size. A bigger rule set is likely to be more difhcult to

understand. Once it has been determined th a t the extracted rules are

potentially cxmiprehensible, the second measure looks a t the individual

rules. If the number of terms in each rule is not too large, the rules

may be easily assessed. This assessment may lead to new insight into

the d a ta being studied and may help prove or disprove theories, by

indicating j)reviously unnoticed trends or confirming suspected trends

th a t exist within the data.

81

Obviously it is im p o r ta n t th a t the rules exhib it an accuracy as good as

the original network. However, it is also im p o r ta n t th a t th is accm'acy reflects

a good fidelity betw een the rules o u tp u ts and the network ou tp u ts . A rule

set w ith a s im ilar acciuacy to a neura l network b u t th a t m akes m istakes

on dift’e ren t exam ples to the neural network is no t a pa rt icu la r ly good de

scrip tion of th a t network. Th is is the reason why it is inadequa te to t ra in a

neura l netw ork and a m ore com prehensible learner, such as a decision tree,

separa te ly , and conclude th a t the tree represents the knowledge in the neura l

network. A m ore com m on approach is th a t the decision tree is l)uilt to m odel

the behav iour of the network by using the network to label a set of d a ta .

An e(|ually im p o r ta n t consideration is the trade-off between com prehen

sibility and fidelity. A learner built to m odel the network w ith perfect fidelity

m ay be to ta l ly incomi)rehensible. A decision tree m ay con ta in m any bushy

subtree's th a t are no easier to unders tand th a n the original neural network.

However, p run ing th a t tree will lead to the decision tree classifying exam ples

differently to the network thus reducing the fidelity.

F in d in g a good balance of these (luality m easures is essential in any algo

r i th m th a t a ttem])ts to explain a neural network.

5.3 G lobal V Loccil Expla.na.tion

M ost researchers have focused on p roducing global model explanations. These

m odels a im to fully describe all s itua tions in which a i)articu lar event will

occur. In a global model, there is an implicit trade-off between the com

plexity of the m odel and its fidelity. T h is trade-off can be seen in te rm s of

th e fidelity and com prehensib ili ty evaluation criterion proposed by Towell &

Sliavlik [61] t h a t are listed in section 5.2. A m odel bu ilt w ith perfect fidelity

m ay be very complex and the com prehensibili ty will therefore l>e reduced. A

82

coiii])reheiisible model however may be useless for verifying the operation of

the network because its fidelity is too low.

A lthough a global model may be useful in many situations, it is argued

here th a t it is not always appropriate. For example, it may be useful in the

prol)lem of predicting success in IVF(in-vitro fertilisation) research, studied

by Cunningham et al.[22], to produce a global model of the phenomenon.

Such a model would allow practitioners to spend time understanding the

conditions leading to success and to focus their research on improving their

techniques. Also, a global model would allow the targeting of potential re

cipients of the trea tm ent who have a higher probability of success. This

would lead to a monetary saving for the health service and would avoid great

disappointm ent for couples for whom the trea tm ent would most likely fail.

A global model might also allow doctors to suggest changes a couple might

make in order to improve their chances of succc'ss with the treatm ent.

In the accident and emergency departm ent of a busy hospital, the expla

nation requirement would be quite different. Here the need is for decision

support ra ther than knowledge discovery. W hat is needed is an explanation

of a decision in terms of the symptoms presented by individual patients. This

explanation task is described here as local explanation.

In the context of ensembles (see Chapter 3), the decision to use a global or

local approach becomes an even bigger issue. Ensembles l)uilt for maxinnirn

diversity may have many individual networks th a t are experts in particular

areas of the input space. Building a global model from an ensemble may

result in a trade off where many of the finer details covered only by a small

number of networks are dropped. The global model may fail to give the

most precise rules as o])posed to if a local apjwoach had been used and the

production of explanations had been delayed until the explanation is actually

83

required.

O ther researchers who have also approached the jjroblein of local explana

tion include Smia [55] and his approach is reviewed in [14], Local explanations

of time series predictions have also been explored by Das et al [23].

Although both Sima and Das use local explanation in th a t they both

l^rovide explanations on a case by case basis, neither is directly comparable

to this work. D as’ method focuses on finding repetitive patterns in time

series (and does not rely on neural networks). Sm ia’s m ethod does rely on

a back])ropagation neural network but instead of i)roviding I’ules as explana

tions, outj^uts percentage importance values for each of the inj^uts based on

a decomposition of the neiiral network weights.

5.4 R ule E x trac tio n s from E nsem bles

Despite' the advantages of ensembles, little work has been done to provide

exi)lanations for j)redictions made by ensembles, although the imi)ortance

of finding a method for rule extraction from ensembles was highlighted by

Craven [20].

Although little work has been done in rule extraction from ensembles, it is

still i)ossible to use any of the black box methods introduced in section 5.1.2.

However, this approach to the explanation of ensembles may not be oi)timal.

A well built ensemble should com])rise diverse members, each of which are

exi)erts in difl'erent areas of the inj)ut space. Modelling an ensemble as a

black l)ox ignores this diversity and looks only a t the bigger picture. An

algorithm th a t a t tem pts to harness this diversity to produce optim um rules

may outi)erform black l)ox methods.

The two methods th a t are presented here for explaining neural network

('usembles are;

84

• Domingos - Coinl)ined Multiple M odels(“CM M ”) [24]

• Zhou - Rule Extraction from Neural network Ensenibles(“R E F N E ”)

In his algorithm CMM, Domingos [24] creates an ensemble of neural ne t

works using bagging. The ensemble is then used to assign labels both to the

original training exami)les and to a set of randomly generated instances of

fixed size. The c4.5rules package [47] is then used to create a set of pro

duction rules th a t model the behaviour of the ensemble. C4.5 is described

in more detail in Section 4.1.1. Domingos reports reasonable fidelity and

accuracy using this approach.

A more recent article sj)ecifically addressing the extraction of rules from

neural network ensembles has been published by Zhou [69]. The method pro

posed is called Rule Extraction From Neural network Ensembles(IiEFNE).

The trained ensemble is used to generate additional instances th a t are

used in the subseciuent rule extraction algorithm.

A rule is formed when a subset of a ttr ibu tes are found to classify a set of

examples th a t fall into a single class.

The search for the subset of a ttr ibu tes begins with the selection of a single

symbolic a t tr ibu te and testing all of the possible values of this a ttr ibu te . If no

value of this a t tr ibu te classifies all examples it appears in to a single class,

then all other single symbolic a ttr ibu tes are similarly tested. If no single

a t tr ibu te can be foimd to fulfill the necessary criterion, then all subsets of

two or more subsets of symbolic a ttr ibu tes are considered. The process of

adding syml)olic a t tr ibu tes and searching all subsets of a particular size for

a rule continues until no more symbolic a ttr ibu tes are left. At this stage a

continuous a t tr ibu te is discretised and the search continues.

85

Ill order to optimise the speed of this search, Zhou uses the “experience”

of failed searches to guide later searches. An example of this is tha t if a set

of symbolic attributes {a^} fails to find a rule and a continuous attribute

h is discretised, then future rule searches should only examine subsets also

containing h because all the other subsets of {a^} U h have already been

examined.

In order to avoid suspect or poor rules, REFNE implements a number of

optimisations. These include dropping any instances for which a tie exists.

T ha t is, if an etjual number of networks in the ensemble predict different

classes for an instance, it is not clear which label should be assigned to tha t

instance. Also, REFNE may be tuned to ensure that any rules to be added

to the output rule set increase the fidelity by at least a constant value.

Zhou rej)orts good results using REFNE when compared to the popular

C4.5 rules packagt'.

5.5 S u m m ary

This chapter described some of the many methods that have been pr0j)0sed

for explaining both individual neural networks and ensembles of networks.

The work presented in this thesis complements the methods presented

for explaining a neural network as rules by introducing a ranking system for

these rules tha t focus the user on the most imi)ortant variables influencing

the prediction.

The decision to])ursue local explanation rules out any method targetted

at the output of a single global model of the ensemble, e.g. Domingos [24] and

Zhous [69] algorithms or using a black box model to model the entire ensemble

behaviour. Instead, one of the individual network explanation methods is

recjiiired to produce rules for each of the networks in the ensemble.

86

B o th clec0ini)0s iti0ii and black box m ethods are available to explain ind i

v idual networks. I t was decided to use a black box m eth o d for the ex trac t ion

of rules from a network. Black box m ethods showed m uch promise for b o th

com prehensib il i ty a nd fidelity m easures in m any of the papers reviewed. Also,

the selection of a black box m eth o d m ean t t h a t the choice of netw ork was

n o t res tr ic ted in any way.

T h e ijrecise m e th o d used was th a t each network labelled a set of genera ted

d a ta . T h e c4.5rules [47] package was then used to build a set of p roduction

rules t h a t m odelled the networks behaviour. C4.5 was chosen as the rule

builder because of its proven al)ility to genera te com prehensible and accu

ra te (increased accuracy when m odelling netw ork behav iour is equivalent to

increased hdelity) trees and rule sets. M axim ising b o th of these variables is

crucial in exp la in ing neural networks.

Chapter 6

Solution

The sohition presented in this chapter to the proi)lem of exphiining the ou t

puts of neural networks is in fact more flexible and can be applied to any

machine learning ensemble where the individual members can be expressed

as rules. For this reason the description of the process of translating the

networks to rules and the rule selection process have been decoupled in this

cha])ter.

The idea l)ehind this solution is very simple. Section C.l defines how the

solution itivolves building a ruleset cxi)laining each network. Section C.2 cov

ers the])rocess of testing each rule with every one of the train ing d a ta to find

the coverage for each rule. Section G.2.1 then shows how this simple coverage

information can be augmented with a more useful and precise descrij)tion of

how the rule covers the training data. Section 6.2.2 then describes the online

process of using this calculated coverage information for calculating a fitness

score and ranking the rules using this fitness score. A worked example of this

])r()cess is j)resented in Section 6.2.3. Finally Section 6.3 describes how extra

diversity was added to the original networks by train ing them on feature

subsets to solve a problem involving extraneous terms in rule clauses.

6.1 Building an Ensemble of Rules from an
Ensem ble of Neural Networks

T h e neura l net,works chosen for use in th is system were the s ta n d a rd back-

l)roi)agation [50] type. These neural networks have been shown in the pas t

[58, 53]), to have excellent generalisation for a wade varie ty of pred ic tion

tasks. F u r the rm ore , it has also been shown [22] t h a t for a large num ber of

these pred ic tion tasks, ensembles have the effect of increasing b o th p red ic tion

accuracy and stability.

An ensem ble of backpropagation networks was built l)y t ra in in g ind iv id

ual networks on a b o o ts t rap p e d set of d a ta . Boots tra ijp ing , described in the

con tex t of m achine learning t)y B re im an [10], random ly selects t ra in in g ex-

am])les w ith rep lacem ent from a set of examples. In this way, ap i)roxim ate ly

two th irds of exam ples will be selected a t least once if the to ta l num ber of

exam ples selected is the sam e as the num ber of exam ples in the com plete

set. T he rem ain ing exam ples th a t have not been selected a t all a re used for

preven ting overfitting du ring tra in ing of the network.

For pro])lems involving d a ta w ith a skewed class d is tr ibu tion , the m inority

class was dup lica ted in the da ta . Th is prevented the netw ork being biased

tow ards the nuijority class.

T he black box approach was chosen in th is work to genera te rules from

these neura l networks (see Section 5.1.2). T he specific black box m eth o d

used was the C4.5 decision tree a lgorithm an d the associated c4.5rules pro

g ram w’as used to genera te p roduction rules for use in explanations . C4.5

was used for genera ting b o th the rules for ind iv idual netw'orks used in local

exp lana tions and the single giol)al decision tree /ru les . Using C4.5 in th is w'ay

is s im ilar to the way in which Domingos [24] uses it.

A l though C4.5 was chosen to build the rules in this pa r t icu la r case, any

89

rule learner could be used. The choice of which rule learner to apply is the

choice of the modeller and the solution presented here is not dependent on

this clioice.

Once trained, each network was used as an oracle on the training d a ta and

the ensemble of networks also acted as an oracle to label the da ta used in the

production of the global rules. Decision trees w'ere then built to model these

targets(i.e. model the networks/ensemble). Finally, a ruleset was extracted

from these decision trees.

To comjjensate for a lack of da ta in some of the datasets studied, ex tra

examples were; generated. These examples were generated using a very simple

algorithm, namely:

• For every example in the training da ta

— For every feature in an example

* If the featiu'e is continuous add a small amount(zb5%) of noise

to its value

W ith these ex tra data, the decision boundaries between classes should be

c:lear and lead to a well defined tree.

6.2 Rule Coverage Statistics

The concept of rule coverage is pivotal to the operation of this system. It

is l)y estim ating how well a rule covers the training d a ta th a t it is possible

to estimate how well it will cover a future unseen exarni)le. The simplest

measure of rule fit is the fraction of training examples th a t hre a rule. A rule

is considered fired by a single exami)le if the values of each feature in the

example fit inside the boundaries of any term in the rule clause testing th a t

feature. The coverage score of the rule is increased by a constant am ount

90

each t im e the rule is fired. T h is coverage p ropo rt ion alone gives a reasonable

ind ica tion of the generality of a rule. Due to incom plete d a tase ts , however,

m any rules m ay classify areas of the inpu t space incorrectly. Identify ing the

areas of the in p u t space covered by the rule and in which we have the m ost

conhdence in the rule is the sub jec t of the nex t section.

6.2.1 Advanced Rule Coverage Statistics

To im prove the coverage inform ation, it is useful to know w ha t areas of the

inj)ut space are well covered by the term s in the rule clause. Th is can be

accom plished by ca lcu la ting some ex tra sta tis tics .

W hen com pu ting the sini])le p roportion of exami)les t h a t fire each of the

rules, it is necessary to save these exam ples in a list associated w ith th a t rule.

W hen all of the t ra in in g examples have been tes ted w ith all of the rules, the

m ean and s ta n d a rd devia tion of each of the features w ith continuous values

th a t a p p e a r in the rule clause are calculated . Th is is no t possible w ith

symbolic features as these have an implicitly perfect fit.

6.2.2 Rule Fit and Ranking

O nce the off line process of ca lcu la ting rule coverage s ta t is t ic s is complete,

it is possible to ca lcu la te an on-line rule fitness score for new exami)les w ith

r('S])ect to the rules in the system. However, no t every rule is checked for

ev('ry new example.

W hen a new exam ple is in troduced into the system , e ither the rulesets

or the original neural networks vote on the outcom e. Only the ensemble

m em bers c o n tr ibu ting to the m ajo r i ty p red ic tion are used in the rank ing of

])redictive rules. Each of tlie rules in each of these “correc t” ru lesets (or the

ru lesets corresponding to the correct networks) are considered w ith th is new'

91

exainj)le. All of the rules fired by this example are collected together.

At this stage, the system has identified a group of rules th a t could po ten

tially be used to explain the example being tested. Using the rule coverage

statistics calculated earlier, it is now possible to go one step further and rank

these rules in order of our confidence in the predictiveness of each rule. This

is done by calculating a fitness score for each rule. This fitness score is cal

culated l)y testing how similar the new example is to the training examples

th a t also fired this rule.

For every term in each rule clause, a score is calculated using equation 6.1.

The mean(//,) in this equation is the mean of the feature values for each term

th a t fired the rule and the s tandard deviation((r) is the s tandard deviation

of the feature values for each term tha t fired the rule.

F itnessy = max^ —̂

Once a fitness score for each of the terms in each rule has been calculated,

each rule must be assigned an overall fitness score. The term with the m ax

imum (i.e. poorest) fitness score is then selected as the fit for the rule as a

whole. This is similar to the approach taken in Mycin [54] when comparing

the conjunction of two hypotheses where the weakest measure of belief is also

taken as the overall measure of belief.

There are two exceptions in the calculation of this fitness score:

• Rules whose terms are duplicates of others

• One sided rules, where the value of a feature lies on the unbounded

side

Th(' first of these excej:)tions arises frecjuently for rules where a common

pa tte rn exists in the da ta and several rulesets predict the outjjut class using

92

X-

Figure 6.1: Number line showing unbounded rule

this rule. In order th a t this rule is not presented more than once to the

user, du])licate rules are removed. The fitness of the final remaining rule is

then boosted by a small constant to reflect our increased confidence in the

predictiveness of the rule.

I 'he second exception is for one sided rules, these are rules th a t are

bounded on a single side only. If the value of the feature being tested is

on the unbounded side of the mean, th a t term is autom atically given a per

fect fitness score. This situation can be seen grai)hically in Figure C.l. This

diagram shows a number line rei)resenting the rule;

IF A' < Xjj THEN TRU E

The training examples tha t fitted this rule are marked along with their mean

value. Any value of A' tha t fits this rule and is less than the mean //, is

autom atically given a perfect fttness score.

This fitness measure gives us our main criteria for ranking rules. However,

it is possible for ties to occur when a group of rules all have maxinumi fitness.

Ties can be resolved in these situations by considering rule specificity, i.e.

the mimber of terms in the rule. In situations where simple explanations are

preferred, rules with few terms are [^referred. In situations where elaborate

exi)laiuitions might be interesting rules with more terms in the left-hand-side

can be ranked higher.

The doctor examining the results of the Bronchiolitis d a ta (one of the

93

datasets used in the evaluation of this research) suggested tha t, in practice,

simple explanations might be appropriate for holding a patient overnight

whereas more elaborate exj^lanations might be necessary for discharge. The

logic behind this is th a t a single symptom might be enough to cause concern

about a child whereas to discharge a child no adverse symptoms shoidd be

observable.

So in selecting and ranking rules to explain the Bronchiolitis d a ta the

main criterion was the ranking based on the rule fit. Ties were then resolved

by selecting the simi^lest rules for admissions and the most complex rules for

discharges. This jnoduced very satisfactory results.

In general therefore, a policy for resoh ing ties should i)e agreed with a

domain expert on a class by class i)asis.

6.2.3 Worked Exam ple of Calculating Rule Fit U sing
Iris D ataset

To dem onstrate how the fitness metric works, a simple example of analysing

extracted rules is included in this section. The dataset used is Fishers Iris

datase t from the UCI rej)ository [9].

This datase t comprises three classes with 50 examj)les of four features

each. One of these classes is linearly sei)arable from the other two. For a

back pro])agation network this is a straightforward task. In order to increase

the difficulty of the])roblem, the number of training examples in each class

has been reduced to 17. Using bootstrap])ed sets, the number of examples

from each class seen during training of individual networks will be varied

thus giving i^etter diversity.

Nine unseen examples, three from each class were used to test the system.

For each of these (examples, predictions were made and five ranked rules were

94

o u tp u t as exi)laiiatioiis of these predictions.

These rules were then ranked by confidence of their fit to the unseen test

example. A sample test example appears below along with two rules th a t

were selected as])redictive of the class.

sepal_length == 5.7
sepal_width == 2.6
petal_length == 3.5
petal_width == 1.0

[0.548107]

IF 0.497102 < petal_uidth <= 1.178020
THEN Iris-versicolor

[1.552252]
IF 2.089680 < petal_length <= 4.198180
THEN Iris-versicolor

The boundaries of these rules are shown graphically in figure C.2.

From this figure, it can be seen th a t the Iris-versicolor test])oint is signifi

cantly closer to the mean of the training points in the])etaLwidth dimension

than it is to the mean of the points in the i)etalJength dimension. This close

ness increases our confidence in recommending this rule as an explanation for

the j:)rediction of the network for th a t example, i.e. it is ‘like’ the examples

on which this rule is based.

In the results on the Iris dataset several examples of rule duplication arise.

For example, the following rule was ranked as one of the five most j)redictive

95

2.5
I r i s - s e to sa

I r i s -v e r s ic o lo r
I r i s -v i rg in ica

EE

□□
- C

■3
■5

+ '+

0.5

2 4 6 7
petal length

----------- Rule boundaries
 A ntecedent M eans
 ► Iris-versico lor testing point

Figure C.2: Grai)li of Iris da ta in two dimensions

rules(tlie fitness for this rule is reported in scjuare brackets a t the top of the

rule):

[0.940733]
IF sepal_width > 2.294270
AND 2.089680 < petal_length <= 4.771990
AND petal_width <= 1.711730
THEN 1

In fact this rule appeared four times in the set of predictive rules. The

other occurrences of this rule may have had slightly different limits, bu t for

the purposes of du])licate boosting, it is im portan t only th a t the example

being tested fits each of the rules. To reflect this increased conhdence in this

I'ule, its fitness value was ‘boosted’ by dividing its original htness by 1.2 for

every du])licate occurence. The original htness of this rule before duplicates

96

were taken into account was 1.95. W ithout the dupUcate rules this rule would

not have been as good as the next ranked rule whose fitness was 1.86.

6.3 Rule Simplification

A m ajor problem encountered with many of the rules selected using the

al)ove m ethod was tha t, although, the rules contained many excellent terms

in their clauses, there were frequently conditions which provided little extra

information or were contradictory to the proposed class output. In order to

try to remove these extraneous terms, each of the networks was trained using

a subset of the available training features. This approach has the useful effect

of increasing diversity in the ensemble, which should give an overall decrease

in the ensemble error assuming the error in the individual networks does not

increase substantially. In the case of this work, feature subsets were selected

according to the w rapper based alg(Hithm described in [68] and described

b('low:

• Generate a random feature mask (i.e. a feature subset) and estimate

the generalisation error for th a t nuisk using cross validation

• Cycle through the mask flipping each bit in turn and if the estimation

of generalisation error on this new mask is less than before accept the

flip, otherwise reject it and reset the bit

• Repeat from step 1 until no improvements are found (i.e. no bit flips

accepted) on a full traversal of the mask

Once the required number of masks has been found, each of the net

works in the ensemble is trained using sejiarate masks. Rule extraction then

continues as described in Section 6.1.

97

The rules extracted using this method are more focused on specific lo

cal i)atterns inside the data and fewer extraneous terms appear inside rule

clauses.

98

Chapter 7

Im plem entation

7.1 Introduction

The iiii])leineiitatioii of the ideas described in this thesis was for testing the

feasibiUty and j)erforniance of the concej)ts described. The implementation

comprised command Hne tools under Linux. Only the results of the im

plementation were jn'esented to the experts evaluating the results. Writing

a graphical user interface (“GUI”) for interacting with the system was not

included in the scope of the thesis and so this system is not necessarily

representative of how' this work might be integrated into existing hospital

databases.

The (lescrii)tions provided in this cluipter therefore concentrate on the

tools th a t were used to implement the system and why they were chosen.

7.2 Practical Im plem entation Issues

7.2.1 P rogram m ing

The inipk 'mentation to test this system was w ritten using only free software

[5C] on Linux [60]. In to tal three languages were used in the develo])ment of

tlu' system software. These were:

99

C + +

• Python

• Bash shell script

C + +

For reasons of efficiency, the neural networks were implemented using C + +

[57] with the g++[2] compiler. C + + is a good choice for this type of problem

as it is a flexible language th a t compiles directly to machine code.

W ith the advent and adoption of the ANSI C + + [l] specification, C + +

has become a significantly more portable language. In particular, the in

creased availability of the STL(Standard Tem])late Library) allows develop

ers to focus even more on solving problems rather than tackling low level

implementation details such as allocating and freeing memory. Good use

was made of the S TL’s collection and stream classes for reading the database

of examples.

P y t h o n

Python [62] is a flexible high level scripting language and is well suited to

the manijjulation of text files. W ith the exception of the neural network

im plem entation where C + + was used. Python was the main language used.

Python has many a ttractive features:

• Perl-like regular exj^ressions

• Object oriented

• Flexil)le da ta types(e.g. lists and associative arrays)

• Functional programming tools(map, filter, reduce and lambda)

100

The regular expressions were used to good effect while parsing the ou tpu t

of c4.5rules. The text outiMit of this program included error information and

headings th a t were not recjuired for this system and these were easily excluded

when searching for rules with regular expressions.

The object oriented nature of Python allowed for a good abstraction of

the various parts of the programs, e.g. reading the d a ta format file (in C4.5

“names” format), reading the data, reading the rules and separating each

term in each rule clause.

Lists and associative arrays are natura l d a ta types for holding rules and

examples and associating information with them. The functional j^rogram-

ming like functions help speed up the time consuming task of iterating over

s tructures in an interpreted language by performing the loop in the faster

compiled code of the interpreter.

B ash shell script

The final part of the implementation was written using Bash [31] shell script.

This was used to tie the individual i)ython scripts and the neural network

programs together.

Shell scri])ts can be used not only for s tarting programs, but also to

dynamically set and adjust the values of environment variables and even to

looj) ov(>r groups of commands. The return values of programs can also be

read to check for and report any runtime errors.

7.2.2 D istributing Work

The])rocess of creating the masks (see Section 6.3) is very intensive, partic

ularly if the training set is large. For this reason, this work was distributed

across a cluster of computers each running Linux.

101

Slave

Slave

Slave Slave

Master

Slave

Figure 7 . 1 : M aste r /s lave a rch itec tu re

T he chister is configured such t l ia t users’ hom e directories are shared

between all com puters using NFS. All com pute rs p a r t ic ip a t in g in the job

therefore have access to the sam e j)ool of d a ta . Each com jniter has local disk

space, so in te rm ed ia te results can be saved and accessed (luickly on dem and .

I ’he (listril)utiou of work was carried ou t using the m as te r /s lav e parad igm .

In th is scenario, one com pu te r ac ts as a m aste r , while all o ther com pute rs

are considered slaves. T he m aste r coord ina tes the work to be done and is

resi)onsible for colla ting results. Th is d is tr ibu t ion a rch itec tu re can be seen

graphically in figure 7.1.

To fac ili ta te com nnm ica tion , the program was w r i t ten using the M PI(M essage

Passing Interface) [4]. Th is interface defines a flexible a rray of functions for

sending an d receiving messages. T he im plem en ta t ion used here was M PIch

from the A rgonne N ationa l L ab o ra to ry [3], which is also available under a

free software license.

T he code for distril^uting the work of tra in in g the neural networks for

tes t ing m ask i)erformance was w ri tten using the C + + M P I l)indings. Th is

fac ili ta ted simple in tegra tion with the neural netw ork code.

102

Sum m ary and future of parallel com puting

The m ethods being used by machine learning researchers are becoming ever

more com])utationally demanding and the problems being tackled are grow

ing ever more complex. Even the rapid advances in processing speed often

cannot keep i)ace, in this environment, to provide real time results and in

teractivity.

The distribution of j)rocessing work across clusters of computers therefore

holds great promise for researchers.

T he nature of the])roblem described in this thesis is often known as

“Embarrassingly Parallel” due to i t ’s olndous parallel solution. There is no

need for comnnmication between different learners and the training time

decreases in direct jwojiortion to the number of processors available.

For more complex problems however, there may be large comnuinications

overhead between processes and it is in this environment th a t a cluster will

be of most benefit. The improvement over a single com puter is likely to be

several orders of magnitude greater as j)rocesses do not need to be swa])i:)ed

in and out of memory and ex])ensive kernel inter-process comnumication

(“IP C ”) calls can be avoided. Gigabit and faster networking speeds and

the zero-copy implementation in the modern Linux make networks a viable

transi)ort mechanism for most machine learning tasks involving extensive

comnninication. Furthermore, clusters can comprise off'the shelf components

and when conil)ined with the Linux operating system and other free software

they make a cost effective yet easily uj)gradeable and scalable alternative to

expensive])roj)rietary supercomputers.

103

Chapter 8

Evaluation

The evahiatioii of the work nndertakeii in this thesis was not a straightfor

ward task. While accuracy of predictions can be assessed from a flataset, the

cjuahty of associat(!(l explanations can only be assessed by experts working

in the area of the prediction. For this j)articular reason, two domains, for

which exi)erts were readily availal)le, were assessed. These domains were:

• Predicting whether or not very young children showing signs of bron

chiolitis should bo adm itted to hospital including explaining the reason

behind adm itting or discharging a child.

• Predicting the (juantity of the blood thinning drug Warfarin th a t should

be administered to patients based on their previous history of taking

the drug and their current symptoms.

The same datasets were also used in evaluations of earlier \vork in this

research, [C4, 65].

The iris dataset used in Section 6.2.3 to dem onstrate how the ideas of lo

cal exi)lanatiou and rule ranking are implemented is a useful introduction to

the evaluation, although not part of the formal evaluation. The iris dataset

dem onstrates th a t the proposed system makes a reasonable attemj^t at find

ing the exj^lanations in which we have the most confidence.

104

As s ta ted above, the two domains chosen for evahiation by this thesis were

medical. The principal reason for this selection is th a t medical d a ta provides

a potentially rich soiu’ce of d a ta for machine learning practitioners. Accuracy

and explanation are both very im portan t in terms of user acceptance of a

machine learning based system. Work th a t focuses only on accuracy may not

be accepted in a live implementation, this would rule out many novel nem-al

network baserl approaches.

Each of the selected domains are discussed separately, Bronchiolitis in

Section 8.2 and Warfarin in Section 8.3.

It should be stressed, th a t the selection of these medical domains for

s tudy is somewhat arl)itrary l)ut also driven by availability of experts in the

area. The work is in no way restricted to these domains and the prim ary

goal is to show th a t local explanation is a vialjle approach to the ex])lanation

rofiuirements when compared with a global a])proacli using a similar rule

extraction method.

8.1 Evaluation Process

The process of evaluating the results was the same for both datasets. This

process consisted of the generation of rules from each of the networks in an

ensemble along with a global set of rules modelling the ensemble operation.

This process is described in more detail in Chapter 6.

As noted in Chapter 7, the work undertaken and the programs developed

for the jMirposes of testing this thesis were not representative of how this

system would actually be integrated into current medical systems. For this

reason, the experts evaluating the results did not interact with the system

and were simply presented with formatted results.

A total of ten examples were selected randomly from each of the datasets

105

being studied. These examples were not used at any point during training

of the networks or building of the subsequent rules, their use is confined

to future tests of the ideas embodied by the programs. Predictions for,

and explanations of, these examples were given to the experts for evaluation

using both global and local approaches. A maximum of five ranked rules

were produced by each example for each method.

The domain exj)erts evaluated the results by scoring each of the expla

nations l)ased on the])redicte(l output. The scores given ranged from 1 - 5 .

These scores translated into assessments of rule ciuality, with a higher score

indicating a better rule.

1. Wrong

2. Poor

3. Fair

4. Good

5. A'ery good

For each set of scored rules (one set per dataset), a number of overall

scores were calculated to determine how well the local and glolml rules per

formed.

These scores were as follows;

1. Average Top Rules

2. Average Top Correct Rules

3. All Predictions

4. All Predictions (Mininnun Rules)

106

5. C orrec t Pred ic tions

C. C orrec t P red ic tions (Miuiniuni Rules)

Scores 1 an d 2 are concerned only w ith the top ranked rule from each

m e th o d for each of the da tase ts . T he top ranked rule is the rule in which

the p ro g ra m has the m ost confidence and hence hopefully the one w ith the

m ost ac cu ra te inform ation . If the system was to display only a single rule it

would be th is one and hence, this is an im p o r ta n t score.

Score 3, takes into account the scores for all rules displayed to the user of

the system . Again , if the rule ranking technique has worked well in the local

a])proach these scores should not be too low relative to the global ap])roach

or the o th e r scores. Score 4 is s im ilar to this, b u t uses only th e m in im um

n u m b er of rules p roduced by the m ethods for ca lcu la ting the score for each

tes t case. For exam ple, if the glol)al approach uses two rules to describe the

tes t case an d the local approach uses four rules to describe the tes t case then

only two ruh 's from each approach are used in ca lcu la ting the score.

Score 5 considers only the rules in those tes t cases correctly p red ic ted by

the system . T h is score is im p o r ta n t as it shows the perform ance of the system

w hen it has a lm os t certa in ly fully unders tood the case under investigation.

Finally , score 6 uses only the m in im um m im ber of rules in each of the correctly

l^redicted te s t cases as described above.

T h e re is no com parison m ade between these results and the results of

o th e r m e th o d s of rule ex trac tion from ensembles, e.g. Z h o u ’s R E F N E [69]

(see Section 5.4). Th is is for two (related) reasons:

• T h e focus of this thesis is on d e m o n s tra t in g th a t the local exp lana tion

api)roach is a viable ap])roacli to the problem of expla in ing th e o u tp u ts

of an ensemble. T here is no sensible app lica tion of m e th o d s genera ting

107

global rulesets explain ing ensembles for a single network.

• C om i)aring the results ob ta ined below w ith the results o b ta in ed from

a global m odel from a different m e th o d is an unfair com parison be

tween two different rule learners - e ither one could perform b e t te r on a

p a r t icu la r d a tase t .

For these reasons, to make a fair com parison between local and global

rules, it is necessary to use a sim ilar m e th o d for the genera tion of i)oth sets

of rules. T h e m eth o d chosen was to use the C4.5 package and th is is described

in m ore de ta il in C h a p te r 6.

8.2 B ronchiolitis

8.2.1 D a ta

T he bronchio lit is d a ta se t has the s tru c tu re shown in Table 8.1.

Table 8.1: Bronchiolitis d a ta se t s t ru c tu re
Total examjiles 118
C ontinuous Features 10
Symbolic Features 12
Missing Values Yes

T h e bronchiolit is d a ta se t represents a som ew hat j)0 0 r coverage of the

overall dom ain . T h is was confirmed in 5-fold cross va lida tion tes ts done

in th e dom ain . For each cross va lida tion tes t , an ensemble com prising 5

netw orks was built from the tra in ing d a ta using bagging to select the da ta .

Average accuracies were com pu ted for each of the 25 networks a long with

average accuracies for the 5 ensembles. For each network tra ined , a ru leset

was also ex tra c te d to model its behaviour. T he accuracies of these ru lesets

were recorded and likewise the accnracy of these rulesets used as an ensemble

108

was also recorded. This provided an insight into how well the rules performed

compared to the original networks. These accuracies are sliown in Table 8.2.

Tal)le 8.2: Results of 5-fold cross validation performed on bronchiolitis da ta
Av. ± S.D.

Average Ensemble Accuracy 72.5% ± 2.4
Average Rules Ensemble Accuracy 70.4% ± 2.8
Average Network Accuracy 68.8% ± 5.2
Average Rules Accuracy 66% ± 5.7
Average Network/Rules Fidelity 82% ± 7.6

This tal)le clearly dem onstrates the fact th a t not only did the ensemble

outperform the individual networks but the networks were also quite uns ta

ble. This instability is reflected in the s tandard deviation figures reported

next to the accuracies. In the case of the individual networks the s tandard

deviation is more than double th a t for the ensembles. This feature of an

inc:rease in accuracy and stability is one of the positive features of using

enseml)les.

8.2.2 Explanations

The explanations associated with the predictions from both the local and

global approaches were evaluated by Dr. Paul Walsh, an expert in the area

of l)ronchiolitis.

An example of a rule produced using both the local explanation method

and a global explanation method for the example is shown in Tables 8.3 and

8.4, res])ectively.

Before analysing these scores, however, it is useful to first see the accu

racies of the two methods using the ruleset ensembles for predictions on the

tost data . This is shown in Table 8.5.

109

Table 8.3; Example evaluated by expert (‘? ’ indicates a missing value)
Feature = Value
Age in Months = 3.17
Anorexia = 0
Decreased Activity = 0
Smoking ANY = 1.22
Smoking M OTHER — ?
Entry Tem perature = 37.00
HR = 162.00
HR gt 98% = 0
R R l = 38.00
Sa 0 2 = 97.00
HR 2 = 110.00
H R2 gt 98% = 0
RR2 = 28.00
Sa 0 2 2 = 95.00
Dehyflration = None
LOG = Alert
Retractions = 0
Griuiting = 0
BS = 0.00
DecBil = 0
Crac and Whez = 0
W'hez only = 1
Decision = DISCHARGE

The first of the analyses performed on the scores, involved taking the

average of the scores for each example. This was performed twice, once

using all the rules and the second time using only the minimum num ber of

rules i)roduced by the two methods, e.g. TW O for the example show^n in

Table 8.4. In this way the same number of rules was used in the comparison.

The number of wins, losses and draws for each method was then computed.

This is given in Table 8.6.

Tal)le 8.G shows th a t the local explanation approach performs ŵ ell. Tak

ing all of the rules into account for each example in the test set, the local

110

approach is a clear winner. The i)robability of getting draws is much higher

when using the minimum set of rules. If there is only a single rule produced

using one of the methods, then, a draw results if the scores for these rules

are the same. W hen averaging over all the rules, draws are much less likely.

Table 8.7 contains the overall scores calculated for the bronchiolitis re

sults. The descriptions for these scores are set out in Section 8.1 a t the s ta r t

of this chapter.

The results from this table clearly show th a t the local explanation ap

proach outperforms the globally extracted rules. The average scores are

higher in all cases.

The final statistic th a t was j)erformed was a j)ooled t-test. The average

scores for all rules in l)oth local and global approaches were averaged and

from these a pooled s tandard deviation was calculated. The t-test was found

to be significant a t a 90% confidence level. For the score of all the rules using

only the mininnnn number in either method, this confidence level was 60%.

T-tests were also carried out for the other scores. For the average top

raidved rule score, the confidence level was found to be 70%, while for the

averages top ranked rule in correctly identified cases, it was 60%. Lastly, for

the correct predictions, the confidence level found was 70% and for the correct

predictions using only the mininuun number of rules from both methods, it

ŵ as 90%.

It is expected th a t given a larger test, these scores would further im

prove.

8.3 W arfarin

8.3.1 Data

The Warfarin datase t has the structure shown in Table 8.8.

I l l

The evahiatioii of the Warfarin d a ta is less straightforward. The da ta sup-

])lied for this domain represented excellent coverage of the domain. Therefore,

the explanations extracted using the global approach could be expected to

be reasonably accurate as the global model would miss few of the details in

its construction. This was indeed confirmed to be the case.

A 5-fold cross validation of the dataset was also performed, similarly to

the bronchiolitis data. This involved the construction of 5 ensembles com

prising 5 networks each. Each of the errors for the ensembles w'ere averaged

and the average error of the 25 netw'orks was also recorded. These results

are shown in Table 8.9.

It is clear from this table th a t the ensemble failed to provide a significant

boost in accuracy above th a t of the individual networks. This is sym ptom atic

of a well covered domain.

8.3.2 E xp lanations

The evaluation of the Warfarin results were carried out by Dr. Stephan

Byrne, an expert in the area of administering the Warfarin drug.

One of the ten examples used in the final test set is shown in Table 8.10

and the rules produced for this example are shown in Table 8.11.

The accuracies of both methods using the derived rulesets for j)redictions

on the ten test points can be seen in Table 8.12.

The first evaluation of this d a ta simply takes the average of each of the

scores for each example and calculates how well the local explanation ap

proach performs against the alternative rules built to model the ensemble.

The results of this can be seen in Table 8.L3.

The results in Table 8.13 show tha t although the rules built to model the

ensemble do outperform the locally extracted rules, the gap between them is

112

not very wide. The ‘Miniiimin Rules’ row of this table, is where the average

scores of the niiniinuiii number of rules produced by both methods for a

particu lar example is calculated. So for the example show^n in Figure 8.10,

this m inimum number would be o n e rule.

The detailed analyses of the rules produced for each example is given

in Table 8.14. Tliis table show th a t the globally extracted rules i)erforni

be t te r than the locally extracted rules (though both methods have relatively

high scores for every category, neither fails dramatically on any analysis).

A description of these scores is contained in Section 8.1 at the s ta r t of this

chapter.

In favour of the local explanation, but not visible from these results, is

the fact th a t only the local explanation produced rules th a t were marked

as excellent by the expert in the area (half of the examples contained rules

marked as excellent). Also weighting the scores somewhat in favour of the

ensemble modelled global rules is the fact th a t these rules failed to produce

any explanation for one of the test exani])les. Thus the effective explanation

(luality for this rule was ZERO, but this is not reflected by the averages.

As in the case of the bronchiolitis da ta a pooled t- test was performed by

averaging all of the rules for l:)oth the local and global approaches. Together

w'ith a])00led s tandard deviation, a t-sta tistic was found. This statistic was

found to be significant a t the 95% confidence level. High confidence level

wore maintained for the other scores. This aids in confirming the belief th a t

the global rules had captured nuich of the most im portan t information very

succintly.

113

8.4 Summary

The evaluation of this work has shown th a t where the coverage of d a ta is

IK)or, ensembles can be used to increase accuracy and stability over a single

model. W here there is good coverage in the data, using an ensemble leads

to little, if any, improvement in the predictive accuracy.

Furthermore, explanation of predictions in a poorly covered domain are

greatly imi)roved by the use of local explanation techniques. The local ap

proach delays the i)roduction of explanations until the last possible moment,

thus maximising the information available and producing a better expla

nation. The bronchiolits da ta dem onstrates this phenomenon. The rules

])roduced by the global model lacked sufficient detail an d /o r feature values

were incorrect.

Although the scores given by the expert for the rules may seem low, there

ar(' a number of reasons for this. There are general reasons th a t api)ly to

both datasets and more specific reasons for each dataset.

The (luality of rules ou tpu tted l)y this system is highly dependent on

the underlying rule generation technique. For this implementation C4.5 w'as

used. A different rule inducer may i)roduce better results.

Medical d a ta is also inherently noisy. This noise may come from several

places, bu t two im portan t factors are:

• Symptoms are recorded a t time of entry

• There are many extraneous factors not captured by the d a ta available

The bronchiolitis dataset is very prone to the time sym])toms are recorded.

W'hen i)resented with a child displaying symptoms of bronchiolitis, a doctor

may use h is /her experience and senses (e.g. touch and sight of the child)

114

to aclinit th a t child before the syrii])tonis l^ecome severe. In addition, when

any doubt whatsoever exists, the child is more likely to be adm itted. The

symi)toms presented to the machine learner, however, are those of the child

a t time of entry and these may not yet liave progressed to a level m andating

entry.

The problem of extraneous factors in the datase t is also clearly visible

in the l)ronchiolitis dataset. The expert in this area posed the example of a

child who was otherwise healthy l)ut whose mother abused drugs and hence

the child w'ould most likely be adm itted to hospital.

In the case of the bronchiolitis data, the criteria used by the doctor in

evaluating the explanations was to compare the explanations to i)ublished

criteria to be used when evaluating children presenting symi)tonis of bron

chiolitis. To exactly model these criteria is an extremely difficult proposition

for any machine learning algorithm, particularly in the])resence of the noise

described al)0ve.

The results in tlu' case of the Warfarin dataset, could have been greatly

improved by using the (uitire dataset. Only a subset of the d a ta was used in

order to increase the difhculty of the proljlem.

In contrast, global models nuist make a trade-off between fidelity and

comprehensibility as they try to explain an entire domain in a single model.

As a consecjuence of this trade-off, im portan t tra its and characteristics in

the individual models may be lost. In a well covered domain, for exam])le

W arfarin, the most ini])ortant characteristics of the da ta are well represented

and the global model rej)resents a good explanation of the domain. Even in

this well covered domain, however, tlie global model lost some of the finest

details. The best rules from the point of view of the expert, therefore, were

I)roduced by the local explanation approach.

115

It could be argued th a t statistically it is more likely th a t excellent rules

will ai)i)ear in the local aj^proach as more rules are outputted . However,

this ignores the fact th a t the local api^roach nnist rank a potentially large

num ber of rules and these excellent rules were consistently ranked highly and

therefore ou tpu t to the user. Also if the global model had truly covered all

details of the domain, it too would have been graded as excellent. This was

not the case and it is therefore clear th a t the comprehensibility/fidelity trade

off was taking jjlace and im portan t details were being dropped. Also, the local

approach does not rec}uire tha t a large number of rules are ou tpu tted and it

still (lisi)lays good performance when only the toi) ranked rule is considered.

This shows th a t the rule ranking technique works well.

116

Table 8.4: Rules produced for the example in Table 8.3
Local Global

[0.00] [0.00]
IF Entry Temperature < = IF Sa 02 > 94.52
44.96 AND HR2 < = 131.23
AND Sa 0 2 > 93.18 AND Crac and Whez = 0
AND LOG = Alert AND RR2 < = 29.37
AND Crac and Whez = 0 THEN DISCHARGE
AND BS < = 0.27
THEN DISCHARGE [0.00]

IF Sa 0 2 > 95.55
[0.00] AND RR2 < = 31.89
IF HR > 141.00 AND BS < = 0.10
AND Dehydration = None AND Whez only = 1
AND Retractions = 0 THEN DISCHARGE
AND Age Months > 1.87
THEN DISCHARGE

[0.00]
IF Sa 0 2 > 93.50
AND LOG = Alert
AND Crac and Whez = 0
AND BS < = 0.27
THEN DISCHARGE

[0.00]
IF Sa 0 2 2 > 91.89
AND Dehydration = None
AND Retractions = 0
AND Age in Months > 1.87
THEN DISCHARGE

[0.00]
IF Age in Months > 1.87
AND Sa 0 2 > 95.30
AND Dehydration = None
AND HR < = 166.00
THEN DISCHARGE

117

Table 8.5: Accuracies on test da ta
Accuracy

Local explanation 90%
Ensemble Model Rules 70%

Table 8.6: Wins, losses and draws for the rules comj^uted by the local expla
nation m ethod ___

Wins Losses Draws
All Rules 7 3 0
Minimum Rules 4 3 3

Table 8.7: Analysis of rules generated for bronchiolitis da ta

Locally Extracted Rules Global Rules
Average Top Rules 2.8 2.5
Average Top Correct Rule 2.89 2.71
All Predictions 2.84 2.42
All Predictions (Mininuun Rules) 2.53 2.42
Correct Predictions 2.76 2.5
Correct Predictions (Minimum Rules) 3.04 2.5

Tab e 8.8: Warfarin dataset structure
Total Examples 323
Continuous Features 8
Symbolic Features 5
Missing Values 0

Results of 5-fold cross validation performed on War
Av. ± S.D.

Average Ensemble Accuracy 70.1% ± 7.9
Average Rules Enseml)le Ac:curacy 70.6% ± 6.0
A w rage Network Accuracy 70.7% ± 6.9
Average Rules Accuracy 71.1% ± 6.9
Average Network/Rules Fidelity 89.7% ± 4.9

118

Table 8.10: Example evaluated by expert
Feature = Value
Age = 75.00
\\'eight = 62.70
INRMeasuremeiit = 2.30
PreviousDose = 3.29
TlierapyDuratioii = 127.00
TargetlNR = 3.75
NoADR = NoAdverse
Gender = Female
CurreiitMediciues = None
OTC = None
Ak:ohol = 0.00
Compliance = TooMuch
INR Delta = 1.45
Dosage = 2 < = SiibsequeiitDose < 5

119

Table 8.11: Rules produced for the exani})le in Table 8.10
Local

[0 .00]

IF Age > 73.39
AND Alcohol < = 3.94
AND INR Delta < = 1.84
TH EN 2 < = SubsequentDose < 5

[0.08]
IF Age > 59.25
AND 2.07 < PrcviousDose < =
4.05
AND INR Delta > -1.02
TH EN 2 < = SubsequentDose < 5

[0 .31)

IF Age > 51.33
AND 2.07 < PreviousDose < =
4.51
AND Alcohol < = 1 9 .7 0
TH EN 2 < = SubsequentDose < 5

[0.3C]
IF 1.58 < INR.Measuremeut < =
3.53
AND 2.82 < PreviousDose < =
3.53
AND Alcohol < = 16.38
TH EN 2 < = SubsecjuentDose < 5

[0.56]
IF Age > 63.27
AND 1.63 < PreviousDose < =
5.28
4TIEN 2 < = SubsequentDose <

Global
Tim]
IF 1.53 < INR Measurement < =
3.47
AND 0.90 < PreviousDose < =
3.58
AND Alcohol < = 14.22
AND INR Delta < = 2.31
TH EN 2 < — SubsequentDose <
5

120

Tal)le 8.12: Accuracies on test da ta
Accuracy

Local Explanation 80%
Ensemble Model Rules 70%

Table 8.13: Wins, losses and draws for the rules com puted by the local
explanation method______________________________________

Wins Losses Draws
All Rules 3 6 1
Mininuim Rules 4 5 1

Table 8.14; Analysis of rules generated for the Warfarin da ta

Locally Extracted Rules Global Rules
Average Toj) Rules 3.3 3.78
Average Toj) Correct Rules 3.38 4
All Predictions 3.24 3.79
All Predictions (Minimum Rules) 3.21 3.79
Correct Predictions 3.38 3.92
Correct Predictions (Minimum Rules) 3.24 3.92

121

Chapter 9

Conclusions & Future Work

The research and factual da ta used as part of this thesis clearly dem onstrates

th a t explanation on a case by case basis, also known as local ex[)lanation,

is a viable approach for solving certain problems. Included among these

problems are those where the j)rediction being explained must be acted upon

in a timely fashion and where there is no need to fully anah^se the domain.

Local exi)lanation is of particular value in j)00rly covered domains. The

bronchiolitis d a ta studied in this thesis is an excellent example of such a

domain. When producing a single global model of this domain many details,

th a t wvre included in the rules jn'esented on a case by case basis, were om itted

from the final model .

In a domain with better coverage, such as the Warfarin domain, this the

sis flemonstrated th a t the rules extracted from the global model performed

ecjually well or outperformed those extracted locally. This is because imi)or-

ta n t tra its in the d a ta were w'ell rej^resented in the individual models and

little information was lost in })reparing the full global model.

The rule ranking criteria])roposed in this thesis performed well in select

ing some of the better rules to be displayed to the user. F iuthermore, this

rule ranking criteria intuitively selects rules th a t are also likely to be selected

122

by a non-expert user.

Medical da ta sets have long been an im portan t source of d a ta for machine

learning practitioners. Freciuently, however, more emphasis has been placed

on making accurate predictions with little or even no im portance placed on

explanation of the results. A principal aim of this thesis was to redress this

imbalance by providing a general framework for explanation. W ith more

work in the area of explanation, we may see greater user acceptance of m a

chine learning software by the medical community and other users. When

the user can decide for himself the correctness of the jjrediction, it will be

perceived as less of a th rea t and more of an aid to the user.

Medical datasets also have i)roblems, which although perhaps not unicjue

to them, are very apparent. For instance, different ou tpu t classes may have

different explanation requirements. The complexity of the solution may vary

according to the class being])redicted. For examjjle, a child showing jus t a

single syni])tom of bronchiolitis should be aflmitted to hospital, whereas a

child to be discharged must meet more stringent criteria. The explanation

l)res('nted to the user for a prediction nnist therefore to the greatest extent

])ossible follow these conditions.

There is perhaps an even greater problem when studying medical datasets.

Often the examples provided for training re])resent as nuich inform ation as

possible. However, external factors relative to the jjatient’s lifestyle and even

doctor experience to adm it a patient before the p a t ien t’s sym ptom s become

serious can mean th a t the symptoms recorded may not reflect the true seri

ousness or otherwise of a p a tien t’s illness. Many of the features th a t might

be expected to be very predictive of the ou tpu t do not perform th a t well

in practice. This has a knock on effect on the quality of the rules output.

This limitation may need to be overcome by using a more select num ber of

123

training examples th a t include less overall noise.

9.1 Future W ork

Future work in the areas covered by this thesis could include:

• Problems involving regression outi)uts

• Inijjroved feature selectors - possibly making use of F iirnkranz’s round

robin technique [28]

• Im])roved data capture

• Introchicing s tandard measures of comprehensi[)ility

There are many interesting regression problems in both the medical and

hnancial fields. This may not be too difhcult to model. In the same way th a t

a fit can be found for examples to the rule antecedent, a similar fit could also

b(' found for the rule output.

An interesting jiroblem th a t became c:lear during the research conducted

for this thesis was the need for good feature selection. One approach to this

proi)lem could include performing feature selection on a class by class basis.

This would entail finding the most predictive features of each of the classes

and only using those features for predicting th a t class. It is not entirely clear

how this could be done.

One possible solution may be to use round robin learning [28] and learn

the best set of features for a class when trained with one other class. Training

could also i)roceed using round robin learning and using the best subset of

features for “learning” each class. The exjilanations are most likely to contain

the best features for those classifications when explaining the outputs.

124

Although this thesis is not strictly focused a t the medical world, the need

for improved data ca.pfure from medical systems is an im portan t recjuirement

th a t l)ecame apparent as the research progressed. From a machine learning

perspective, this d a ta capture could help improve on the current ad hoc

methods of extracting the d a ta for later analysis. W ith careful consideration

during the building of such a system, d a ta could be more easily filtered to

exclude possible outliers not representative of the problem being studied (e.g.

patients whose diagnosis is not necessarily reflective of the sym ptom s hrst

presented).

A final area of future work is also multi disciplinary. Current machine

learning research focuses almost exclusively on accuracy as a means of identi

fying the most useful metliods. More work is re(juired to introduce standard

measures o f com,prefiensibility th a t can l^e used to assess the usability of

methods.

125

Bibliography

[1] C + + standard, h t tp :/ /w w w .an s i .o rg / .

[2] Gnu compiler collection(gcc). h t tp ; / /g e e .gnu.org/.

[3] Mpich. h t tp :/ /w w w -un ix .m cs.an l.gov /m pi/m pich /.

[4] Mpi forum, h ttp :/ /w w w .m pi-fon im .o rg /.

[5] R. Andrews, .1. Diederich, and A. B. Tickle. Survey and criticjue of

techniciues for extracting rules from trained artificial neural networks.

Knowledge Based Systems, 8(6), 1995.

[6] R. Andrews and S. Geva. R U L E X & C E B P Networks as the Basis fo r

a Rule Refi.nem.ent System, pages 1-12. lOS Press, 1995.

[7] Micha('l R. Berthold and ,T. Diamond. Boosting the i)erformance of

RBF networks with dynamic decay adjustment. In Adva.nces in Neiiral

In,forma,tion Processing Systems. MIT Press, 1995.

[8] Michael R. Berthokl and Klaus-Peter Huber. From radial to rectangular

basis Rmctions: A new approach for rule learning from large datasets.

Technical report. University of Karlsruhe, 1995. 15-95.

[9] C.L. Blake and C. J. Merz. UCI repository of machine learning databases,

1998.

126

[10] Leo Breiman. Bagging predictors. Machine Learning, 24(2):123-140,

1994.

[11] Leo Breiman, Jerome H. Friedman, Richard A. Olshen, and Charles J.

Stone. Classification and Regression Trees. Wadsworth, 1984.

[12] C.A. Brunk and M.J. Pazzani. An investigation of noise-tolerant rela

tional concept learning algorithms. In L. B irnbaum and G. Collins, edi

tors, Proceedings o f the 8th International Workshop on Machine Learn

ing, pages 389 393. Morgan Kaufmann, 1991.

[13] Peter Clark and Tim Niblett. The CN2 induction algorithm. Machine

Learning, 3:261-283, 1989.

[14] I. Cloete and .T.M. Znrada, editors. Knoxuledge Based Neurocomputing.

The MIT Press, 2000.

[15] William W. Cohen. Efficient pruning methods for separate-and-conquer

rule learning systems. In Proceedings of the 13th International Joint

Conference on Artifiical Intelligence. Chambery, 1993.

[16] W illiam W. Cohen. Fast effective rule induction. In International Con

ference on Machine Learning, pages 115-123, 1995.

[17] William W. Cohen and Yoram Singer. A simple, fast, and effective

rule learner. In Proceedings of the Sixteenth National Conference on

Artificial Intelligence, Eleventh Conference on Innovative Applications

of Artifi,cud Intelligence. American Association of Artifical Intelligence,

1999.

[18] Marcjuis .T.A. Condorcet. Sur les Electioris par Scrutiny. Histoire de

I’Acadamie Royale de Sciences, 1784.

127

[19] M.W. Craven and J.W. Shavlik. Extracting tree-structured representa

tions of trained networks. In David S. Toiu'etzky, Michael C. Mozer, and

Michael E. Hasselmo, editors, Advances in Neural Information Process

ing Systems, volume 8, pages 24-30. The MIT Press, 1996.

[20] M.W. Craven and J.W. Shavlik. Rule extraction; Where do we go from

here? Technical report. D epartm ent of C om puter Sciences, University

of Wisconsin, 1999. Machine Learning Research Group Working Paper

99-1.

[21] Pfidraig Cunningham and John Carney. Diversity versus quality in clas

sification ensembles based on feature selection. In 11th European Con-

Jerence on Machine Learning (ECM L 2000). Springer-Verlag, 2000.

[22] Padraig Cunningham, John Carney, and Saji Jacob. Stability problems

and the enseml)le solution. Artificial Intelligence in Medicine, 20(3):217

225, 2000.

[23] G au tum Das, King-Ip Lin, Heikki Mannila, Gopal Renganathan, and

Padhraic Smyth. Rule discovery from time series. In Knowledge Discov

ery and Dai,a Mimng, pages 16-22, 1998.

[24] P. Domingos. Knowledge discovery via multiple models. Intelligent Data

Analysis, 2(3), 1998.

[25] L. Fausett. Fundamentals o f Neural Networks: architectures, algorithms,

and applications. Prentice-Hall, Inc., 1994.

[26] Yoav Freund and Robert E. Schapire. Experiments with a new boosting

algorithm. In International Conference on Machine Learning, j)ages

148-156, 1996.

128

[27] L. Fu. Rule learning by searching on adapted nets. In Proceedings of the

9th National Conference on Artifical Intelligence, pages 590-595, 1991.

[28] Fiirnkranz, Johannes. Pairwise classification as an ensemble technique.

In 13th European Conference on Machine Learning (ECML 2002), pages

97-110. Springer-Verlag, 2002.

[29] Fiirnkranz, Johannes and Widmer, Gerhard. Incremental reduced error

pruning. In International Conference on Machine Learning, pages 70-

77, 1994.

[30] S. Geman, Bienenstock E., and R. Doursat. Neural networks and the

bias/variance dilemma. Neural Computation, 4, 1992.

[31] GNU. Bash shell, h ttp ://w w w .gnu.org/softw are/bash/bash.htnd.

[32] L.K. Hansen and P. Salamon. Neural network ensembles. IE E E Ttnns-

actions oji Patterns and Machine Intelligence, pages 993-1001, 1990.

[33] Sherif Hasheni. Optimal Linear Combinations of Neural Networks. Neu

ral Networks, 10(4):599-C14, Augtist 1997.

[34] Tom Heskes. Bias/variance decompositions for likelihood-based estim a

tors. Neural Computation, 10(6): 1425-1433, 1998.

[35] R . C. Holte, L. Acker, and B. W. Porter. Concept learning and the prob

lem of small disjuncts. In Proceedings of the International Joint Confer

ence on Artificial Intelligence, pages 813-818. M organ-Kaufmann, 1989.

[36] K. Hornik, M. Stinchcombe, and H. W hite. Multilayer feedforward net

works are universal approximators. Neural Networks, 2:359"366, 1989.

129

[37] Anders Krogh and Jesper Vedelsby. Neural network ensembles, cross val

idation, and active learning. In G. Tesauro, D. Tonretzky, and T. Leen,

editors. Advances in Neural Information Processing Systems^ volume 7,

pages 231-238. The MIT Press, 1995.

[38] Y. Le Cun. Learning processes in an asymmetric threshold network,

1986.

[39] Richard Maclin and David Oi)itz. An empirical evaluation of bagging

and boosting. In A A A I /IA A I , pages 546-551, 1997.

[40] Christoi:)her J. Merz and Michael J. Pazzani. A principal comjjonents

approach to combining regression estimates. Machine Learning, 36(1-

2):9 32, 1999.

[41] R.S. Michalski, I. Mozetic, J. Hong, and H. Lavrac. The nuilti-])urpose

incremental learning system AQ15 and its testing application to three

medical domains. In Proceedings of the 5th Na.tional Conference on A I,

j)ages 1041 1045. Morgan Kaufmann, 1986.

[42] M. Minsky and S. Papert. Perceptrons : an introduction to cornputa-

tional geometry. MIT Press, expanded edition, 1998.

[43] Tom J \ I . Mitchell. Machine Learning. McGraw-Hill, 1997.

[44] S.I. Nitzan and J. Paroush. Collective Decision Making. Cambridge

University Press, 1985.

[45] M. P. Perrone and L.N. Cooper. When networks disagree: Ensemble

m ethods for hybrid neural networks. In R. J. Mammone, editor. Neural

Net/works fo r Speech and Image Processing, pages 126 T42. Chapm an-

Hall, 1993.

[46] Ross J. Quinlan. Induction of decision trees. Machine Learning, 1:81-

106, 1986.

[47] Ross J. Quinlan. C4-5 Programs for Machine Learning. Morgan Kauf-

niann Publishers Ltd, 1988.

[48] Ross J. Quinlan. Learning logical definitions from relations. Machine

Learning, 5:239-266, 1990.

[49] J. Rissauen. Universal coding. IEEE Transactions on Information The

ory, 4:629-636, 1984.

[50] D.E. Rum elhart, G.E. Hinton, and R.J. Williams. Learning internal

representation by error i)ro])agation, 1986.

[51] Rotx 'rt E. Schapire. The strength of weak learnability. Machine Learn

ing, 5(2):197 227, 1990.

[52] Gregor P.J. Schmitz, Chris Aldrich, and Francois S. Gouws. ANN-DT:

An algorithm for Extraction of Decisioji Trees from Artificial Neural

Netiiiorks, pages 369-401. In Cloetc and Zurada [14], 2000.

[53] J. W. Shavlik, R. J. Mooney, and G. G. Towell. Symbolic and neural

learning algorithms: An experimental comparison (revised). Technical

Report TR, 955, University of Wisconsin-Madison, 1990.

[54] E.H. Shortliffe. Computer Based Medical Consultations: MYCIN. Else

vier, 1976.

[55] Jiff Sima and Jiri Cervenka. Neural Knowledge Processing in E:i:pert

Systems, pages 419-466. In Cloete and Zurada [14], 2000.

131

[56] R. M. Stallman. The free software definition,

http: / /w ww.gnu.org/philosophy/free-sw.html.

[57] B. Stroustrup. C + + , h ttp :/ /w w w .research .a t t .com / bs/homepage.html.

[58] S. Thrun , J. Bala, E. Bloedorn, I. Bratko, B. Cestnik, J. Cheng, K. De

Jong, S. Dzeroski, R. Haniann, K. Kaufman, S. Keller, I. Kononenko,

J. Kreuziger, R.S. Michalski, T. Mitchell, P. Pachowicz, B. Roger,

H. Vafaie, W. Van de Velde, W. Wenzel, J. Wnek, and J. Zhang. The

m o n k ’s problems: A performance comi)arison of different learning al

gorithms. Technical R,eport CMU-CS-91-197, Carnegie Mellon Univer

sity, Com puter Science Departm ent, 1991.

[59] Sebastian B. Thrun. Extracting provably correct rules from artificial

neural networks. Technical Report IAI-TR-93-5, Carnegie Mellon Uni

versity, Dept, of Com puter Science, 1, 1993.

[60] L. Torvalds. Linux, h ttp :/ /w w w .liiu ix .o rg /.

[61] Geoffrey G. Towell and Jude W. Shavlik. Extracting refined rules from

knowledge-based neural networks. Machine Learning, 13:71 101, 1993.

[62] G. Van R.ossum. Python, h t tp :/ /w w w .p y th o n .o rg / .

[63] R . Wall and P. Cunningham. Exploring the potential for rule extrac:tion

from ensembles of neural networks. In J. Griffith and C. O ’Riardan,

editors, 11th Irish. Conference on Artifi,cial Intelligence and Cognitive

SciencefA IC S 2000), 2000. (Also available as Trinity College Dul)lin

Com puter Science Technical Report TCD-2000-24).

[64] R. Wall, P. Cunningham, and P. Walsh. Exj)laining the predictions of

ensembles of neural networks on a case by case basis. In T. Elomaa,

132

H. Maiinila, and H. Toivonen, editors, Principles of Data Mining and

Knowledge Discovery ~ 6th European Conference, PKDD 2002, Helsinki,

Finland, August 19-23, 2002, Proceedings, 2002.

[65] R. Wall, P. Cunningham, P. Walsh, and S. Byrne. Explaining the O utput

of Ensembles in Medical Decision Support on a Case by Case Basis.

In Cloete I. and Rohr K., editors, Artificial Intelligence in Medicine:

Knowledge Based Neurocornpiiting Methods, 2003.

[66] P. Werbos. Beyond B.egression: Neiu Tools for Prediction and Analysis

in the Behavioral Sciences. PhD thesis. Harvard U., 1974.

[67] G. Zenobi. A detailed derivation of the relationship between generali

sation error and aml)iguity in regression ensembles. Technical Report

TR-CS-1999-76, Computer Science Department, Trinity College Dublin,

December 1999.

[68] C. Zenobi and P. Cunningham. Using ambiguity in prei)aring ensembles

of classifiers based on different feature subsets to minimise gen(>ralisation

error. In Lecture Notes m Artificial Intelligence. Springer-\ erlag, 2001.

(12th European Conference on Machine Learning).

[69] Z.-Ii. Zhou, Y. Jiang, and S.-F. Chen. Extracting symbolic rules from

trained neural network ensembles. A I Comnmnications, 2002. in press.

[70] Z.-H. Zhou, .1. Wu, and W. Tang. Ensembling neural netwx)rks: many

could be better than all. Artificial Intelligence, pages 239-263, 2002.

133

A ppendix A

D ataset Features

Table A.l: Broiichiolitis d a ta features

Age ill Months Age of a child in months
Anorexia Indicates if a child is sufl'ering from anorexia
Decreased Activity Indicates decreased activity of the child
Smoking AN^' Number of smokers in a household
Smoking M OTflER Smoking Mother?
Entry Tem perature Tem])erature of child
HR Heart Rate
HR gt 98% Heart Rate greater than 98th j^ercentile
R R l Resting Rate
Sa 0 2 Oxygen blood sa turation level
HR2 Heart rate after trea tm ent
H R 2 gt 98% Heart Rate greater than 98th percentile after trea tm ent
RR2 Resting Rate
Sa 0 2 2 Oxygen blood sa turation level after trea tm ent
Dehydration Dehydration
LOG Level of Consciousness
Retractions Retractions
G runting Grunting
BS Breath Sounds
DecBil Decreased Billirubin
Crac and \Miez Crackles & Wheezes
WHiez only Wheezing Only

134

Table A.2: Warfarin da ta features

Age Age of patient
Weight Weight of patient
INR Measurement INR Measurement
PreviousDose Previous Dose of Warfarin administered
TherapyDuration Duration of theraj)y
TargetlNR Target INR
NoADR Number of ADR
Gender M ale/Female
CurrentMedicines Taking current medicine
OTC O TC
Aleohol Units of alcohol consumption in units
Compliance Compliance with drug regime
INR Delta Change of INR,

135

