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Summary

This thesis introduces a novel method for explaining the predictions of en-
sembles of artificial neural networks on a case by case basis. Current research
is primarily directed towards building global model, that is, models that fully
describe all possible input conditions and their associated outputs. The alter-
native case by case approach is referred to as local explanation. This thesis
demonstrates a process for performing local explanation.

The current global approach is considered ineffective due to an implicit
trade off that must take place during its creation. The trade off is between
the comprehensibility of the rules and their fidelity to the original ensem-
ble predictions. In a domain with poor coverage, this trade off might be
particularly detrimental.

The local explanation approach is accomplished by modelling each of the
networks as a rule-set and computing the resulting coverage statistics for each
rule, given the data used to train the network. Later, the coverage statistics
are used to choose the rule or rules that best describe a previously unseen case
under investigation. This approach is based on the premise that ensembles
perform an implicit problem space decomposition, with ensemble members
specialising in different regions of the problem space. Thus, the explanation
of an ensemble prediction involves explaining the ensemble members that
best fit the case. A new metric is introduced, in this thesis, to assess this fit

and hence rank the rules in order of importance.



In order to test the performance and feasibility of the system, the local
explanation process and rule ranking techniques were implemented in code.
Ensembles with backpropagation neural networks [50] as members were used
as the black box to be explained. The explanatory rules were generated
using the c4.5rules package [47]. Backpropagation ensembles and c4.5rules
are not the only possibilities, and other methods are also presented in the
background chapters.

Two datasets were used during testing and an expert in each domain eval-
uated the results. Both datasets were from the medical domain. The first
dataset involved the prediction of which children displaying signs of bronchi-
olitis should be admitted overnight to hospital. The second dataset involved
the prediction of the Warfarin dosage to be administered to patients based
on their previous history of taking the drug and their current symptoms.
The bronchiolitis dataset represented poorer coverage of its domain than the
Warfarin dataset.

The evaluation demonstrated that a subset of the local explanation’s top
ranked rules formed a concise and easily understood explanation. Further-
more, in line with expectations, the evaluation demonstrated that the local

explanation approach is of particular use in the more poorly covered domain.
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Chapter 1

Introduction

The prediction accuracy of neural networks and in particular neural network
ensembles has improved, as a result of recent research, to the point that they
frequently outperform many traditional systems. Despite this improvement,
their adoption as a useful prediction tool in many areas has been slow to non
existent.

The reasons for this poor utilisation in the field of medical diagnosis,
although the reasons are similar for other fields, is summarised in this in-
troduction and further expanded throughout the thesis. This introduction
also provides an overview of how the research described in this thesis can
overcome these difficulties.

Medical datasets provide one of the richest sources of prediction prob-
lems ideally suited to prediction techniques. Medical staff could benefit enor-
mously from systems that could assist them in diagnosing and understanding
medical problems.

Theoretically, neural networks could be used extensively in assisting in
diagnosing a patient’s symptoms. Realistically, however, the black box nature
of neural networks precludes them from providing this assistance. Doctors

are wary of relying on the unqualified diagnoses returned by a computer just
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as people in general are wary of trusting any prediction (either from people
or computers) without an explanation. In addition, the presentation of a
diagnosis in such a definitive form by neural networks could lead the doctor
to feel that his/her role is being undermined or even usurped. Providing
an explanation of the output might improve confidence in the predictive
capabilities of the system thus ensuring greater user acceptance.

In a more general context, the problem of lack of explanation may be
even more critical. For instance, use of a neural network in automated safety
critical tasks may be impossible, if operation of the network cannot be veri-
fied.

To achieve the goal of using neural networks in medical research it is

therefore necessary to:

e Take advantage of ensembles of neural networks to provide predictions

that are as accurate as possible.

e Provide comprehensible explanations for the user of the output of the

ensemble.

e Present explanations to the user, such as a doctor or other professional
user, in such a way that the information presented may be used to
complement his/her professional experience and judgement and not to

replace it.

This thesis addresses each of these issues in turn and provides possible solu-
tions.

This thesis also views the goal of providing coherent explanations for
ensemble operations from a somewhat different angle, than most current

literature in the area.
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Most researchers have focused on producing models of an entire phe-
nomenon. These models will be referred to here as “global models”. The
aim of these global models is to produce a comprehensible form that pro-
vides appropriate outputs for all possible variations of inputs. This type of
model is useful for explaining many types of problems.

For example, a doctor involved in providing “In Vitro Fertilisation” (IVF)
is more likely to be a specialist in this area. A global model can aid in the
doctor’s understanding of the domain to the fullest extent by summarising
all of the conditions under which IVEF will be successful or unsuccessful. The
global model may also help provide new insights into the domain. Further-
more, the global model may help doctors allocate scarce hospital resources
to those cases where they will be of most benefit.

In producing these models, there is an implicit trade-off between compre-

hensibility and fidelity:
e Comprehensibility is an estimation of the understandability of the model.

e Fidelity is a measure of how closely the derived model predicts the

same outputs as the the original model.

Simplifying a complex model (e.g. by pruning a decision tree) to make it
more comprehensibile may result in a loss of fidelity, i.e. the derived model’s
capacity to explain the original network diminishes.

Global models must balance carefully these two important characteristics.

The approach taken by this thesis is that these global models are not
always appropriate. The inherent comprehensibility/fidelity trade-off may
result in the wasting of important information. Furthermore, a global model
is wasteful in situations where the users do not have the luxury of time to

study the model and become experts in the particular domain.
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An example of a setting like this would be the busy accident and emer-
gency ward of a hospital. Doctors here are concerned with the quick diagnosis
of patient symptoms and less with the minutiae of a problem domain. In this
situation, alternatives to a global model may be more useful.

The alternative approach will be referred to as local explanation. Local
explanation can be seen as on-demand explanation. For each individual
prediction made by the ensemble a tailored explanation is produced that
best explains it in terms of the input features. Delaying the production of
an explanation like this allows the system to use all available data for every
prediction. Tailoring the explanation according to the symptoms displayed
ensures that the most appropriate explanation is output.

This thesis takes the approach of displaying a number of possible expla-
nations in order to ensure that these local explanations act to complement
the doctor’s reasoning.

A global model can only provide a single explanation. This explanation
may fail to capture all of the details of the prediction. This could be due
to the comprehensibility /fidelity trade off encountered in its production. If
there is more than one regularity in the data that explains this prediction
the global model may also fail to show this.

The local explanation approach of displaying several rules at once, over-
comes these difficulties. Because the rules explaining the prediction are not
chosen until the last moment no details are lost as a result of comprehensibil-
ity /fidelity trade-offs. Also, the approach of displaying several rules at once
means that different regularities explaining the prediction that were captured
from the diverse ensemble members (that correctly predicted the result) can
also be displayed.

The local approach may actually produce many more possible explana-



tions than are to be displayed. To overcome this, the rules are ranked using
a novel ranking technique developed as part of this thesis. This technique
allows rules to be selected as predictive with increased confidence even if
the coverage of that rule on the training data is poor (this problem is often
known as the small disjunct problem [35]).

The doctor can now decide on the validity behind the logic in each rule

and thus the overall validity of the ensemble prediction itself.

1.1 Contributions of this Thesis

The principal contributions of this thesis to an understanding of explaining

ensembles of neural networks are:
e Demonstrates a process for explaining outputs on a case by case basis.

e Demonstrates an evaluation of the case by case basis to explanation
that shows that local explanation is of particular use when the data

coverage 1S poor.

e Demonstrates and introduces a new measure for determining the fit of

an example to a rule.

e Demonstrates that a subset of rules ranked using the calculated rule fit

forms a concise and easily understood explanation.

1.2 Structure of Thesis

The thesis begins with an overview of many of the current machine learn-
ing algorithms that are relevent to the goal of explaining neural network

ensembles.

16



Chapter 2 explains backpropagation neural networks which are the net-
works used in the Implementation section of this thesis due to their proven
track record [58, 53] (although other network types could also be used).
Chapter 3 presents methods for both creating ensemble predictions and com-
bining them to obtain the best results.

The first half of Chapter 4 covers decision tree algorithms, while the
second half concentrates on algorithms that can learn rules directly. The
purpose of this chapter is twofold. Firstly, the method chosen to explain
individual neural networks is to build a more comprehensible learner, e.g.
a decision tree, to model the neural network by using data that has been
labelled by the network. Any of the methods presented in that chapter
can be used to do this. Secondly, the method proposed for the explanation
of ensembles of neural networks can in fact be generalised to explain an
ensemble of rules. The choice of which method to use is left entirely to the
modeller. This choice could be guided by personal preference, performance
on particular data or availability of existing code or time to implement a
method (a modular system could swap one rule learner with another with
little trouble later if required).

Chapter 5 looks at existing strategies for explaining individual neural
networks. This chapter concludes with a look at what little research has
been done to date on the problem of explaining ensembles.

Chapter 6 presents a solution to the problem of explanation, focusing on
neural networks but including a note on using pure rule based ensembles.

Chapter 7 outlines a brief description of the solution implementation.

Chapter 8 includes an evaluation of the method in two domains by experts
in each domain.

Chapter 9 concludes the thesis, draws conclusions and presents sugges-

17



tions for future work.
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Chapter 2

Neural Networks

Artificial neural networks are developing rapidly in the field of machine learn-
ing. Already they have demonstrated [58, 53] that they generalise well for a
broad array of both classification and regression problems. The fundamental
idea driving the development of neural networks is to model the operation of
the neurons in the brain.

Neural network units are interconnected by weights (similar in function
to the axon and dendrites in the brain). Firstly, the total signal received by
a unit is scaled and propagated to all connected units. Secondly, the signal
reaches some output units that trigger a physical reaction. The output from
a simpler artificial neural network could similarly be used to control some
reaction, e.g. in a robot, but more often the output is simply outputted for
use by the user.

Stepping up from their most basic structure, the overall function of these
units is to partition the input space into separate regions. The output
strength varies across regions and is either directly interpretable in the case of
regression problems or can be mapped to a class for classification problems.

This representation of the search space is very powerful. With the addi-

tion of more units in the hidden layer of a typical back propagation neural
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network, the network can be trained to approximate any continuous function
to any degree of accuracy [36]. In practice, however, this is rarely feasi-
ble. The data available for training frequently represents only a subset of
the entire function. Introducing many more hidden units for training in-
volves tuning many more parameters in the network and these parameters
are likely to overfit the available data. By this it is meant that the network
will lose its ability to generalise to new instances.

The power of neural networks comes with a heavy cost, however, their
operation is quite opaque. It is impossible for even an experienced user
to visualise the regions (hyperplanes in the case of backpropagation neural
networks) separating the different outputs. Neural network operation has at-
tracted the black box moniker for this opaque behaviour. Chapter 5 presents
an overview of research that tries to explain the predictions of neural net-
works.

Section 2.1 of this chapter will look at backpropagation neural networks.
Some other issues that must be taken into account in neural networks are

discussed in Section 2.2.

2.1 Backpropagation Neural Networks

2.1.1 Structure
Single Layer Networks

For simple learning tasks, it may be sufficient to use a single layer neural
network. That is where input units are connected directly to a layer of
output units. Every input neuron is connected to every output neuron. A
diagram of such a network is given in figure 2.1

Although sufficient for simple learning tasks, few real world problems

can be modeled satisfactorily with a network like this. This problem was
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Figure 2.1: Single layer neural network

Table 2.1: XOR truth table
T, T ‘ Output

0 0 0
0 1 1
10 1
I8l 0

highlighted dramatically by Minsky & Papert in their 1969 book Perceptrons
[42]. In this book, they demonstrated that a single layer neural network was
incapable of learning even the simple XOR logical function. The problem is
that the class outputs of this function are not linearly separable. The truth
table for this function is set out in table 2.1 and the problem of separability
is easily seen in the diagram in figure 2.2. No single line can be drawn to
separate the output classes.

In mathematical terms, this problem can be seen as follows. The re-
sponse of the output of a single layer neural network is v;,. This response
is determined by the inputs and the weights connecting these inputs to the

outputs.
Yin = b+ g T;W;
i

21



Figure 2.2: Graph of logical XOR function

The decision boundary for this input is determined by the relation:

0=0+ Z TiW;

Depending on the number of inputs in the network, this equation repre-
sents a line, plane or hyperplane. In the case of the XOR problem, there are
two inputs and the region of positive classes is separated by the region of

negative classes by the line:

W b
Ty = ——X| — —
Wo Wo

For two input problems such as logical AND and OR functions there
are many values of b, w; and w, that will separate these classes. For XOR
however, this is not possible.

The answer to this problem was known and lay in using more than a
single layer in the network. The problem now was how to update the inter-
connecting weights in a multilayer network.

After the initial hype surrounding neural networks, this discovery led to

the stagnation of the field for many years.
Multi-Layered Networks

Werbos [66] in 1974 was the first to suggest a solution to the problem of

updating weights in a multilayer neural network. This solution was not
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highly publicised, however, and as a result neural network research slowed
down throughout the 1970’s. It wasn’t until the mid 1980’s when Le Cun
[38] independently solved the problem followed closely by Rummelhart et al.
[50], who refined and further publicised LeCuns work that backpropagation
networks came of age.

The solution to the problem was, that when backpropagating the error
in order to update the weights, the first derivative of this activation function
should be used to find the direction of the minimum error. This is the
direction in which weights should be updated.

Good candidates for activation functions include the sigmoid, bipolar sig-
moid and hyperbolic tangent functions. These functions all have the common
traits of being continuous along their operating range. A useful trait of these
functions is that their first derivative has a simple relationship to the original
function output thus decreasing the computational burden during training.
In general, any differential function that has an appropriate range for the
target values should be acceptable for use in backpropagation training.

Thresholding functions are only useful for categorical outputs.

2.1.2 Training

Certain conditions must be met with regard to the initial setup of the network
and the data to be used for training, before training of a neural network can
begin.

To train a neural network a number of parameters should be set, these

are:
e Number of hidden units

e [ecarning Rate

23



e Momentum Rate
e [nitial weight values
e Stopping criterion

There are no rules for automatically setting these values to the optimum
values and hence tuning these values is somewhat of a black art based on
rules of thumb and user experience.

The number of hidden units will determine the complexity of the function
that the neural network will learn. The number of units actually used must
be carefully controlled. Too few units and the network will be unable to fit
the learning data and the bias will be high; too many units and the bias may
be low, the training is likely to take significantly longer and the network may
overfit the training data.

The learning rate determines the proportion of the weight change as calcu-
lated by the learning algorithm that should be added to the original weights.

If the data has many outliers, a lot of noise or even wrong feature val-
ues/class outputs, it is preferable not to make dramatic changes of direction
in the weight values. Momentum takes care of this by adding a proportion of
the previous weight change(s) in addition to the usual proportion specified
by the learning rate. Training can proceed reasonably quickly as long as
patterns are in the same direction, while still using a smaller learning rate to
prevent a large response from any single training pattern.

When initialising a backpropagation neural network, it is preferable to
initialise the weights to small random values. In this way, the activation
functions are unlikely to reach saturation and cause small weight updates
initially that will decrease the speed of learning.

The data should also be adequately prepared before starting to train



a backpropagation neural network. There are two particularly important
points here.

Firstly the data should be normalised, this helps even out the effect of
data points having different ranges in the activation functions.

Secondly, any symbolic features in the data set should be replaced by a
number of units corresponding to the number of possible feature values, with
the constraint that only one unit may be active in an example. Alternatively,
if the number of possible values of the symbolic variable is large, a gray code
may be used to encode the values of the symbolic feature. An appropriate
number of units (log, N, where N is the number of feature values) should
then be added to the network to receive the code.

Finally, if there is a skewed class distribution, the minority class should
be copied to make up the difference in numbers and/or the majority class
should be reduced in size. This will avoid the network being biased toward
any class that may have been seen more often during training.

The backpropagation neural network training algorithm(as described in
[25]), is given below. The variables in this algorithm correspond to those
marked in Diagram 2.3. The variables z_in and y_n not marked on the
diagram correspond to the unscaled inputs to the hidden and output units
respectively. The function f(-) is the activation function, used for scaling the

units outputs. « is the learning rate being used.

Step 0: Initialise weights. (Set to small random values).

Step 1: While stopping condition is false, do Steps 2-9.

Step 2: For each training pair do Steps 3-8.
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Figure 2.3: Multilayer backpropagation neural network

Feedforward

Step 3: Each input unit (X;,2 = 1,...,n) receives input signal

to all units in the layer above(the hidden units).

Step 4: Each hidden unit (Z;,5 = 1,...,p) sums its weighted

input signals,

n
24N = Upn - E TiVij

=1

applies its activation function to compute its output signal,
gy = fleing)
and sends this signal to all units in the layer above(output

units).

Step 5: Each output unit(Y,,k = 1,...,m) sums its weighted

input signals,

p
Y_ing = Wok + g Z5 W5k
d=1
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and applies its activation function to compute its output sig-

nal,
yr = f(y-ing).
Backpropagation of error

Step 6: Each output unit(Yy, &k = 1,...,m) receives a target pat-
tern corresponding to the input training pattern, computes its

error information term,
0 = (te — yx) f (y-ing),
calculates its weight correction term(used to update w; later),
A’ll)jk = (Y(Sij,
calculates its bias correction term(used to update woy later),
Awgr, = ady,

and sends 0, to units in the layer below.
Step 7: Each hidden unit(Z;,j = 1,...,p) sums its delta in-

puts(from units in the layer above),

k=1
0in; = E Op Wik,
m

multiplies by the derivative of its activation function to cal-

culate its error information term,
8y = ddn,; f'{zing),
calculates its weight corrections term(used to update v;; later),
Avy; = ab;z;,
and calculates its bias correction term(use to update v; later),

A’U()j = (.Y(Sj 0

A



Update weights and biases:
Step 8: Each output unit(Yy, £ = 1,...,m) updates its bias and

weights(j = 0,...,p):
wjk(new) = wjg(old) + Awj

FEach hidden unit(Z;, j = 1, ..., p) updates its bias and weights
=10, .0k

vilnew) = vglold) + Avy.

Step 9: Test stopping condition.

2.1.3 Execution — Steps 3-5

Execution of the network is very fast. It comprises the feedforward section
of the training algorithm only. The initial values of the example to be tested
are passed to the input units(Step 3). These values are propagated to the
first hidden layer and these units apply an activation function(Step 4). Next
these hidden outputs are passed to the output layer. The output units also
apply an activation function to the outputs(Step 5). Finally, the result can
be read by the user.

In the case of a backpropagation neural network having more than a
single hidden layer, the outputs of the first hidden layer(Step 3) are passed
into further hidden units and are again dealt with like Step 3, until the output

units are reached and Step 4 is executed.

2.1.4 'Training — Steps 3-9

The training of a backpropagation neural network comprises the execution(Steps
3-5), backpropagation of error(Steps 6-7) and updating of weights(Steps 8-

9) and finally a stopping condition is checked(Step 9).
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The network first executes the training data. This allows the network to
assess the training error. This error is typically measured using the squared
difference between the predicted value of the network and the true func-
tion value. With an error calculated, the network can begin the process of
backpropagating this error in order to adjust the value of the weights in the
network.

Adjusting the value of the weights allows the formation of hyperplanes
used to divide the input space into regions that predict different output
classes.

Two changes often made by practitioners to the basic backpropagation
algorithm described above are that, firstly, weight updates are often done
in batches, this has the property of smoothing the updates and means the
weights make more precise jumps and do not vary greatly during training.
The Second change is the inclusion of a momentum parameter. The effect of
this parameter has been described already. The revised weight updates now

are:

Awjp(t + 1) = adrzj + plw;r(t) — wir(t — 1))

Avii(t + 1) = adjz; + plvi(t) — vy (t — 1))

2.2 Considerations when Training Neural Net-
works

2.2.1 Overfitting

When training the data, it is also necessary to ensure that training is stopped
when the network reaches the minimum generalisation error. That is, net-

work training should be terminated at the point where it has reached the
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Figure 2.4: Graph of training and generalisation error

optimum point of learning. The optimum point of learning is where the
network has reached a trade-off between learning the training examples and
retaining the ability to output appropriate values for unseen examples. The
point where training should be stopped is shown graphically in Figure 2.4
In the graph in Figure 2.4, it is clear that the ‘in sample’ error(i.e. the
training error) continues to fall while the generalisation error falls for a time,
until the network reaches a point where it begins to overfit the training
data and hence gradually loses its ability to correctly predict the outputs
for unseen cases. Checking these errors is straightforward during training, a
validation set can be used as an estimate for this generalisation error. Before
training commences, the data should be split into two sets, a training set
and a validation set. Data that appears in the training set should not appear
in the validation set. The network is trained using the training set and the
error on this data is computed by executing that network with the data after
every epoch(or a preset number of epochs), this is the training error. After
computing the error on this training data, the network is then executed on
the validation set. The error on the outputs predicted by the network is

taken as the generalisation error. Every time this error falls to a new mini-



mum the network should be saved as the point of maximum generalisation.
Once this error rises for a preset number of epochs or the training reaches
a preset maximum number of epochs, training should be stopped and the

saved network should be returned as the “best” network.

2.2.2 Bias & Variance in Neural Networks

The final consideration when training neural networks is to balance the errors
due to bias and variance. These two errors are not independent, reducing one
will cause an increase in the other. In short, a network fitting the training
data closely will have a low bias but a higher variance, while a network with
a lower variance will lead to a decrease in the fit of the training data. For
optimal learning it is necessary to balance both of these factors.

The bias/variance dilemma was studied in some detail by Geman et al.
(30]. In this paper, the authors show in detail the bias/variance decomposi-
tion of mean-squared error. This is of particular interest for backpropagation
neural networks as this is the most used error function for these networks.

Equation 2.1 shows the breakdown derived by Geman et al. for the mean

squared error.

Ep|(f(x; D)-E[ylx]))*| = (Ep[f(x; D)]-Ely

x)))*+Ep [ ((x; D)~ Ep[f (x; D)))?]
(2.1)
The bias and variance of this equation are averaged over the possible
training sets D. The function f(x;D) is the prediction of the network on an
example x given the network trained on the set D. The desired response is
Y.
The left hand side of this equation is the mean squared error formula,

measuring the squared distance from the function f (the neural network)
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to the regression E[y|x]|. This value is then averaged for the set of possible
training sets D.

On the right the first part of this equation measures the bias. The bias
can be thought of as the average distance of a network function f trained
on a set of data D from the true regression for the same input x. If on
average there is a big difference, the bias is said to be large. In general, this
will depend on the probability distribution P of the data and how D reflects
this distribution. The same network may be biased in some cases but not in
others.

The second part of this equation on the right hand side measures the
variance. This measures the average distance of a network f trained on a set
of data D from the average distance of other networks trained on different
sets of data.

Variance for a single network can be controlled by combining examples
that are nearby in the input space. However, this will typically increase
the bias of that network, as details of the regression are lost, e.g. peaks and
valleys are blurred. Bias for a single network can be controlled by introducing
more hidden units into the network. This has the effect of increasing the
complexity of the function that the neural network can learn. It is, however,
likely to increase the variance significantly.

Therefore, to achieve a low error, it is necessary to reduce both the bias
and the variance components. Typically, reducing one of these will cause an
increase in the other. This is commonly known as the bias/variance trade-off.

For more functions displaying the same desirable properties of the mean

squared error studied by Geman et al., see Hansen & Heskes [34].
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Chapter 3

Ensembles

Recent research in machine learning and, in particular, neural networks has
begun to exploit the power of training multiple learners to approximate the
same function. These multiple learners, collectively known as an ensemble,
were first introduced by Hansen & Salamon [32]. By combining the predic-
tions from these learners, it is possible to increase the accuracy of the pre-
dictions and in the process reduce the instability of predictions. Instability
refers to the phenomenon whereby two neural networks trained to approx-
imate the same function may actually output very different results for new
examples, depending on the initial conditions and the training parameters
used.

It is interesting to note that although the idea of combining multiple
machine learners is relatively recent, the increased accuracy obtainable from
a committee of experts is not. As long ago as 1784, the Marquis of Condorcet
put forward the theorem, now known as the Condorcet Jury Theorem [18]:

“If each voter has a probability p of being correct and the probability of a
majority of voters being correct is M, then p > 0.5 implies M > p. In the
limit M approaches 1, for all p > 0.5 as the number of voters approaches

mfinity.”
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A more accessible modern reference for this theorem is Nitzan and Paroush
[44]. The first part of this theorem is not controversial, it is easy to show
that if a new committee member makes correct decisions more than half of
the time and makes different mistakes to the rest of the committee then the
performance of the committee will improve with the addition of this new
member. However, in practice the second claim is unlikely to be true. A
very large committee will not, in practice, be right all of the time. It will
not be possible to find new members that will increase the diversity of the
committee; instead their voting behaviour will be collinear with some exist-
ing members of the committee. Typically the diversity of the ensemble will
plateau as will the accuracy of the ensemble at some size between 10 and 50
members.

In order to get the best possible results from an ensemble, it is preferable
that a large degree of diversity exists among the members of that ensemble.
That is, the members should all be experts in localised areas of the input
space. The reason for this is quite simple. If all of the members either predict
the same answers or are all experts in roughly the same area of the input
space, then the existence of more than one such learner does not supply
any more information than a single network alone. Methods of introducing
diversity into these learners are outlined in section 3.1.

There are several methods available for combining the results. A few of

these have been chosen and are outlined in section 3.2.

3.1 Training Multiple Diverse Learners

When training an ensemble of networks, it is necessary to train each of the
networks with the goals of an ensemble in mind. In particular, the bias vari-

ance trade-off described in Section 2.2.2 is important. It may make more
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sense to think of this trade-off in terms of the error/ambiguity model de-
scribed first by Krogh & Vedelsby [37].

Krogh & Vedelsby’s formula for describing the error/ambiguity of an en-
semble is derived in full by Zenobi [67]. In their decomposition they express
the bias and variance components of the ensemble error as the weighted en-
semble error and the ensemble ambiguity(diversity). Their equation relating
these variables is given in Equation (3.1) where E is the ensemble error, F

is the weighted ensemble error and A is the weighted ambiguity measure.

E=E-A (3.1)

Instead of expressing the averages for error and ambiguity over different
training sets, Krogh & Vedelsby use the weighted averages over the ensemble.
If the ensemble is strongly biased the ambiguity will be small, because the
networks implement very similar functions and thus agree on inputs even
outside the training set. A larger variance between the networks will make
the ambiguity higher and in this case the generalisation error will be smaller
than the average generalisation error.

There are several methods commonly used to introduce this ambiguity
into ensembles. All of these methods work to some degree by skewing the
number or type of examples being presented to the individual networks during

training. The methods presented below include:
e Section 3.1.1 - Bagging
e Section 3.1.2 - Boosting
e Section 3.1.3 - Cross validation

e Section 3.1.4 - Feature Subsets



By skewing the distribution of examples being presented to each of the
networks using one of these methods, the networks training should be con-
centrated on different examples to other networks in the ensemble. In this
way, the ambiguity can be increased between networks as they will make
mistakes in different areas of the input space. This is equivalent to adding
more members to the Marquis de Condorcet’s committee who have differ-
ent opinions and hence make different mistakes thus increasing the overall

predictive accuracy of the committee.

3.1.1 Bagging

Bagging, short for “bootstrap aggregating”, was introduced by Breiman [10].
The first part of bagging is the process of bootstrapping the input examples.
Bootstrapping is a popular statistical technique of sampling a dataset with
replacement [10]. When sampling N times from a dataset of size N, approx-
imately 63% of the examples will be chosen at least once. This set of data
is then used as the training data for the chosen machine learning prediction
algorithm. In the case of neural networks, the remaining data can be used
to prevent overfitting during training. In bagging, Breiman suggests using
an average as the method for combining the results. Averaging is covered in

more detail in section 3.2.1.

3.1.2 Boosting

The original work on boosting was performed by Schapire [51]. The basic
idea behind this work is to build a weak learner using the available data and
using an equal probability for the selection of each example in the data. Once
this learner has been built the probabilities of the examples in the dataset

are adjusted so that the more difficult examples are more likely to be chosen.



One of the most popular implementations of this method is that used by
Freund & Schapire [26]. This is outlined in detail below:

The initial weights of each example in the training are set as uniform, i.e.
b )= %, where NV is the total number or training examples. The objective

now is to minimise the weighted error:

€ = Z D, ()1 (hy(z;) # i) (3.2)

where [ is the indicator function, h; is the current hypothesis and ¢; is the
true goal class.
If ¢, > 5 goto output with 7" =1 — 1.

Otherwise set:

I —¢
i = log —— (3.3)
€
and finally update the distribution of weights on the training set:
, o zoel(hy(@)=g;)
Dyy1(1) = Dy(i)e Zy (3.4)

where Z; is a normalisation factor (chosen so that D, is a distribution).

The final output classifier H(z) is

Hie) = oy g max Fig.n) = arg max (Zm (hslz) = g )) (3.5)

gel 9eG
Diversity is thus built into the models during construction by virtue of
the fact that each model focuses its training on different examples.
Boosting does raise an overfitting problem. Particularly noisy data could
train some of the models on bad data. These models would provide very

inaccurate predictions leading to an overall reduction in the accuracy of the
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ensemble. The problem of overfitting using boosting and in particular the

AdaBoost method is raised in Maclin & Opitz [39)].

3.1.3 Cross Validation Ensembles

K-fold cross validation relies on splitting the available data, D, for training
into a total of K sets, Dy, Dy, ..., Dy. This approach is used by Krogh &
Vedelsby in their paper analysing the bias and variance components of neural
networks in terms of error and ambiguity [37].

A total of K networks are then trained on these sets, each time using all
but one of the sets(DD Dy) as training data and using the remaining set (D)
for testing the generalisation error of the network during training and thus
overfitting.

K-fold validation makes good use of the available data and introduces
reasonable diversity as long as all of the sets are a fair representation of the

data distribution.

3.1.4 Feature Subsets

A recent method used to introduce diversity into ensemble members involves
training each member using a different feature mask [68]. Each mask is a
boolean string with a length equal to the number of features in the training
data. In this string 1’s correspond to features that should be used in the
training of a network and 0’s correspond to features that should be omitted.

The masks are produced using a wrapper method. The wrapper method
approach involves estimating the “goodness” of each mask with respect to
the bias of the individual network type. A summary of the mask production

algorithm as described in [21] is shown below:
1. Generate a random mask and estimate its generalisation error using
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cross validation.

o

Start iterating through the mask

3. Flip the current bit of the mask and estimate the generalisation error

of the new mask using cross validation

4. If the new mask has a lower error than the previous mask, then accept

this bit flip, otherwise reverse the flip and retain the original mask

If the end of the mask has not been reached then continue from Step 3

t

6. If no bit flips have been accepted then output the current mask as

optimum, otherwise continue from Step 2

A more complex variation on this algorithm is described by Zenobi [68].
In this variation, Zenobi describes how feature subsets can be found that
maximise the total ambiguity in the ensemble.

The alternative to the wrapper approach described above is to simply
use random masks. Random masks do help to introduce diversity, but at the
cost of higher error. A good wrapper technique should on average outperform

random masks.

3.2 Combining results

Once an ensemble of networks is trained, the results from each network must
be combined so as to present a single result to the user.

For classification tasks, the simplest method is to simply vote among the
networks, with the majority class declared as the predicted class.

The problem is somewhat more difficult for regression tasks. There are a

large variety of methods to combine regression results, each with particular
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strengths. Three of these methods, averaging, linear regression and principal
components regression are detailed below. A brief description of the problems

solved by these methods is included for clarity.

3.2.1 Averaging

Averaging results is the method used by Breiman in his paper on bagging [10].
Perrone & Cooper [45] also make reference to this technique which they call
the Basic Ensemble Method (“BEM”). Averaging works by assigning equal
weights(1/N, where N is the total number of networks in the ensemble) to

the predictions of each neural network in the ensemble.

3.2.2 Linear Regression

Linear regression has been independently studied by several researchers, [45,
33

Perrone & Cooper refer to their method as the Generalised Ensemble
Method(GEM). In this method they minimise the mean squared error in
order to set the weights, «;, with respect to the target function f(z). The

formula they suggest for calculating these weights is shown in Equation 3.7.

>, Cy'

s (3.7)
>k 2Ok
In this formula, the Cj; defines the correlation matrix:
Ci; = Elmi(z)m;(z)] (3.8)
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The m;(z) above are defined as the difference between the true value of
the function and the value predicted by network i, i.e. f(x) — fi(z).

It is important to note that the columns in the Cj; matrix should be
uncorrelated. Correlation between columns will lead to the matrix being
unstable when inverted. To avoid this problem they suggest dropping all but
one of any correlated group of columns. This should not result in a great
loss of accuracy. The problem of correlated columns is dealt with again in
Section 3.2.3.

The weights produced by Perrone & Cooper will be subject to the con-
straint le\;] a; = 1. In the more general case of linear regression, this

constraint is not applicable.

3.2.3 Principal Components Regression

Principal Components Regression(“PCR*”), was developed by Merz & Paz-
zani [40]. PCR* was developed with the goal of eliminating the problem
of collinearity of networks while still predicting weights that provide a high
level of accuracy. Collinearity can lead to very unstable matrices when in-
verting matrices, an unavoidable step when using any linear regression based
method.

Merz & Pazzani identify three methods for reducing the problem of collinear-

ity. They are:

e Train models to have uncorrelated errors by adjusting the bias of the

learning algorithm.
e Use a gradient descent technique for setting the weights.

e Use a linear regression method with constraints on the possible weights

produced.
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None of these solutions provide a full answer to the problem. Models
naturally have a certain level of collinearity so even explicit training may not
always eliminate this collinearity. Gradient descent techniques are prone to
getting stuck in local minima and not finding optimal solutions. Finally, con-
strained linear regression may also lead to sub optimal weighting solutions.

The basic algorithm of PCR* is set out below:
Input: A, the matrix of predictions of the models in F
1. C = cov(A")
2: PC = PCA(C)

3. K = Choose_Cutoff(PC)

4. ff = BPC; + ...+ BxPCgwhere = (PCLPCg) 'y
5. a; = Z,{;l Be e
6. Returna

In the above algorithm, C is the covariance matrix for the predictions A
and PC is the set of principal components based on the matrix C.

The search aspect of PCR* is in step 3, where the number of principal
components that are going to be used in the determination of the weights
is found. The authors of PCR* show how cross validation is one technique
that may be used to judge the error on different subsets of the principal
components. The optimal number of components to use is taken at the point
of minimum error.

In Step 4, linear least squares regression is used to derive an estimate of
f using only the K most important principal components that were found

in the search stage. Finally Step 5 computes the weights to be used for
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combining future predictions from the ensemble of networks by expanding
the equation in Step 4 to PCk = ’YK,o.fo + ...+ ny,NfN and setting each of
the weights «; to be the coefficients of the original networks(fj).

Although Merz & Pazzani developed PCR* to use all of the networks,
stating that “correlation could be handled without eliminating any of the
learned models”, it is only fair to refer to other work in the area of eliminating
correlation. One such piece of work has been done by Zhou [70] in which he
does drop models in order to reduce the correlation and hence instability in

assigning weights to ensemble members.

3.3 Summary

The ensembles used in the Evaluation chapter of this thesis were built us-
ing bagging to obtain maximum diversity. Bagging is a flexible method for
building ensembles providing good, stable performance over a wide variety of
datasets. It makes good use of all of the data in building the ensemble and
avoids problems of learning noise in the dataset sometimes associated with
boosting.

The datasets evaluated were both classification problems and hence a

simple majority voting scheme was used to combine the results.
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Chapter 4

Rule Learning Algorithms

Rules are arguably one of the simplest representations of knowledge in a
machine learning system. Their simple, directly interpretable form has won
them a strong following throughout the machine learning fraternity. Decision
trees represent a specialised set of rules organised in branches and leaves
When followed in an order determined by an example case, the branches will
lead to a single leaf node. This node will have a class associated with it and
this is used as the prediction output. Decision trees are readily decomposable
to propositional rule sets.

Each rule is typically written in the form of an IF clause which contains
one or more terms, the conditions of which must be met in order to “fire”
that rule. When a rule is fired, the class associated with the rule, usually
written as a THEN clause is either counted as a vote toward an overall class
prediction or it is presented directly to the user as the predicted class. An

example rule is shown below:

IF Sa_02_2 > 91.89
AND Dehydration=None
AND Retractions=0

AND Age_in_Months > 1.87
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THEN DISCHARGE

Rules such as in the example above, may be generated by a variety of
methods. Rule extraction from neural networks is covered in Chapter 5.
An introduction to decision trees is covered in section 4.1 and rule extraction
from these is covered in section 4.1.3. Algorithms for generating rules directly
are covered in section 4.2, these include CN2, FOIL and FOCL.

Tom Mitchell’s book Machine Learning [43] is an excellent general intro-

duction to the areas of decision trees and rules.

4.1 Decision Trees

Decision trees comprise a very popular set of machine learning methods.
Their popularity is due to their proven accuracy in modelling a wide range
of problems [58, 53]. In addition to their good performance, they are easily
interpretable by experts involved in the field of study.

Decision trees operate by partitioning input features on axis-parallel bound-
aries; each such partition is known as a decision node. Each decision node
may have one or more child nodes. The child node(s) may be either a decision
node or a leaf node. Leaf nodes have a class associated with them and can
not have any children. Once a leaf node has been reached when processing
a decision tree, processing stops and the class associated with that child is
returned as a prediction to the user.

An example decision tree is shown in Figure 4.1. This tree is built using
Fishers Iris data from the UCI repository. The Iris-setosa class is linearly
separable from the other two, this is reflected by the first split in the tree.
This split fully separates this class from the other classes. The remaining

two classes are not as easily separated and require several branches.



Petal Length <= 1.9 : Iris-setosa (50.0)

Petal Length > 1.9

Petal Width > 1.7 : Iris-virginica (46.0/1.0)

Petal Width <= 1.7

| . Petal Length > 5.3 : Iris—wirginica (2.0)

|  Petal Length <= 5.3

| |  Petal Length <= 4.9 : Iris-versicolor (48.0/1.0)
| | Petal Length > 4.9

| I | Petal Width <= 1.5 : Iris-virginica (2.0)

| |

l
|
|
|
|
I
|
[ | Petal Width > 1.5 : Iris-versicolor (2.0)

Figure 4.1: Example decision tree using Iris data

One major disadvantage of trees is in the way that they can only partition
features on axis parallel boundaries. If a class is naturally partitioned by a
hyperplane that does not lie parallel to axis boundaries, then many decision
nodes on several features may be required to accurately represent this deci-
sion boundary. This problem can be seen in Figure 4.2. In this figure, the
splits made by the decision tree are represented by the broken line. A neural
network would have little trouble finding a compact solution to this problem,
however, a human user of a system would have great trouble visualising the

mathematical solution presented by the network.

4.1.1 C4.5

One of the most popular algorithms used for building decision trees is Quin-
lan’s C4.5. The popularity of this program stems from its freely available
implementation(with accompanying source code) and its proven performance

over a wide variety of domains.
Building a Tree

Building a tree in C4.5 involves searching each of the features to find the one

which provides the most information in predicting one of the classes. Each
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Figure 4.2: Data that is ill suited for decision tree learning.

split of a feature is crucial. If the most discriminating features are chosen
at each stage in building a decision tree, the tree will tend to be small.
A small tree represents a concise concept description for the hypothesis,
thus satisfying Occams razor (i.e. where two or more descriptions exist, the
simplest of these should be preferred).

To understand the C4.5 measure of information, it is useful to look at
ID3, an algorithm for building decision trees also proposed by Quinlan [46].
In this algorithm, Quinlan used a gain criterion to assess the information
content of splitting a set of data. Quinlan himself sums up this criterion
with the statement: “The information conveyed by a message depends on its
probability and can be measured in bits as minus the logarithm to base 2 of
that probability.”

The probability of selecting a class, C'; from a set S is

freq(C;, S)
S|

and so the information conveyed by this is

(4.1)
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~lom (T

To find the expected information for a message with a class C; with

)bits (4.2)

respect to class membership, sum over all the classes in proportion to their

frequencies in S:

k
info(S) = — Z M x log, <M>bit3 (4.3)
2 5] S
When applied to a set of training cases(T"), info(T) measures the average
amount of information needed to identify the class of a case in T'(also known
as the entropy of the set 5).

The expected information requirement of the training set 7" when split

according to a criterion X can now be expressed as:

infox(T) = EH: ITi| x info(T;) (4.4)

Finally the quantity,

gain(X) =info(T) —infox(T) (4.5)

measures the information that is gained by partitioning 7" according to the
test X. The gain criterion then selects the test that maximises this infor-
mation gain.

This gain criterion worked quite well, however it had one serious flaw that
Quinlan corrected in C4.5. The gain criterion is strongly biased in favour of
tests with many outcomes. A worst case scenario would be a feature that
comprises only unique values(i.e. every subset of this feature would contain
only a single case). In this case, information gain would be maximal as

infoy (7)) = 0. This was “corrected” in C4.5, by using a gain ratio criterion.
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Consider the information content of a message that indicates the information

content of a test. By analogy with the definition of info(S), we have:

split info(X) = — T x lo 7] 4.6
’T’ g2
=

T

This now represents the potential information of this test. By contrast
the information gain measures the information relevant to classification. By
combining the two using the formula below, it is possible to measure the

proportion of useful information generated by the split.

gain ratio(X) = gain(X)/split info(X) (4.7)
Pruning a Tree

C4.5 continues to subdivide the data as described in the previous section,
selecting the best splits of the data until either a partition consists only
of a single class or no test offers an improvement. The problem with this,
however, is that the tree may now “overfit” the data.

In order to remedy this situation it is important to prune the generated
tree. C4.5 uses post pruning to prune extra structure from the tree. This

can take place in two different ways. These are:
e Discard one or more subtrees and replace them with a leaf
e Replace a subtree by one of its branches

Quinlan uses a pessimistic estimate of the tree branch. The error is com-
puted using the resubstitution error (the error of the tree using the training
data). This technique allows C4.5 to build a tree using all of the available

data. In contrast, cross validation techniques can only build a tree using a
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portion of the data and must use the remaining out of sample data for error
estimation.

The resubstitution error can be viewed as the number of cases E covered
incorrectly from a total N cases covered by a leaf. The probability of the
same error being made by the entire population cannot be determined ex-
actly from the resubstitution error, but this probability of error has itself a
(posterior) probability distribution that is usually summarised by a pair of
confidence limits. For a given confidence level C'F' therefore, the upper limit
of this probability distribution can be found from the confidence limits for
the binomial distribution; the upper limit is referred to here as Uqop(E, N).
C4.5 simply uses this upper limit as the predicted error at a leaf. C4.5 then
computes error estimates for all leaves and subtrees by assuming that they
were computed from a population with the same size as the training set. A
leaf covering N cases during training therefore, would be expected to have
at most N x Uep(E, N) errors. Similarly, the number of predicted errors of
a subtree is the the sum of the errors of its branches.

C4.5 traverses the tree backwards. At each subtree it tests if a lower
error rate is achievable if the subtree was replaced by either a leaf or one of
its branches. A replacement is made if an error reduction is possible. This
continues until no further replacements are possible without increasing the

estimated error of the tree.

4.1.2 Classification and Regression Trees(CART)

Classification and Regression Trees, better known as CART, described in
Breiman et al’s book of the same name [11] is one of the first implementations
of decision trees. Together with C4.5, CART is one of the most important

references on the subject of decision trees.
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Building a Tree

Building a tree with CART begins with the generation of a set of questions,
(. These questions will form the basis for the possible splits of nodes. For
symbolic features, these questions will be of the form ¢; € [by,...,b,], where ¢
denotes the feature. For numerical or ordered features, the possible questions
are of the form ¢; < ¢. Each of these questions defines a possible split in the
data, i.e. all examples in the data will fall on one side or the other of a
question. Only one split is made at every node in the decision tree.

In order to decide the best split at any node in the tree, an impurity
criterion is used. Impurity refers to the proportion of examples that fall inside
a node on the tree. The criterion for an impurity function, i(¢), in CART
is that ¢ is a non negative function of the probabilities p(1—t),... ,p(n—t)

with the following properties:

1Lt 1
Pl—y =y vs v ) = IREEIIEN (4.8)
n’ n n

$(1,0,...,0) = ¢(0,1,...,0)=...=4(0,0,...,1)=0 (49)

To actually decide on the best split it is necessary to choose the split that
most reduces an impurity measure(i.e. brings the tree closer to the point
where the node almost entirely comprises a single class). Specific impurity
measures used by CART are shown later.

This difference in impurity at any node can be written as:

where i(t) is the parent node impurity and py and p;, are the new probability
estimates of the number of examples that will be classified into the new right

and left hand nodes respectively. i(tg) and i(f;) are the new impurities at
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the right and left hand nodes respectively. The split that maximises the
difference in impurity will be chosen as the question in the next decision
node of the tree.

In their book, Breiman et al. describe several possible functions that
could be used to measure the “goodness” of a split. The first of these is
an entropy based impurity measure. This is a simple and well understood

function that exhibits the desirable properties for measuring impurity.

i(t) = = > pilt) log (i) (4.11)

Two other functions described for determining the best split include the
Gini function for measuring node impurity and the Twoing rule.

The Gini impurity measure, assesses node impurity, not using the plural-
ity rule (the most abundant class) but instead assigns an object to the class ¢
with a probability p(i|t). The probability of this object actually being class j
is therefore p(j|t). The estimated probability of misclassification under this
rule is therefore:

ity = S pltp(le) (4.12)
i#]

Unlike the Gini criterion for determining the best split of a node, the
Twoing rule does not operate on an overall measure of impurity i(¢), and
hence finding an overall tree impurity /(¢), is not possible. This is not con-
sidered a problem as a splitting criterion should be judged primarily on how
it performs during tree construction. The p; and pg are the proportion of
examples from the parent node ¢ reaching the left, ¢;, and right, tz respec-

tively.

®(s.1) = LR[S [a) = pllt) || (4.13)

The stopping criteria used by CART is a simple threshold value:



max Al(s,t) < (4.14)

SES
When the change in impurity for a node fails to exceed a threshold /5,
that node is no longer split. When this condition is reached for all terminal

nodes, the tree growing phase is completed.

Estimating Error

The simplest method used to estimate the error of a CART tree is to calculate
the resubstitution estimate using the probability of misclassification. To
understand this, it is first important to note how CART assigns a class label
to a leaf node (i.e. any example reaching this leaf node will be assigned this
class as a prediction). The class assigned is simply the class that appeared
most often from the original training data in that leaf node, i.e. the class j
for which p(j|t) is greatest.

The resubstitution error is then the error produced when running the
training data through the tree. This error may be easily calculated for a
particular node by summing up all the probabilities of finding each of the

remaining classes not assigned by the assignment rule j(¢):

> oY) (4.15)
J#£5(1)
or more simply:

r(t)=1-— mjaxp(ﬂt) (4.16)

However, this is not a completely satisfactory metric for estimating the
error. It tends to be overly optimistic when computing error, in particular
if the tree has overfitted to the data. A more precise method of calculating

error is to separate the available data into two sets, a training set and a test



set. Once the tree has been built using the training set, the error on the
tree is estimated by filtering the test set through the tree and calculating
probabilities of misclassification at each terminal node. These probabilities
are then summed as in the simple resubstitution case described above.

Where insufficient data is available to sacrifice some data as a test set,
k-fold cross validation may be used. K-fold cross validation involves splitting
the data L into k sets, {Li,..., L}, and training k trees leaving out each
one of the sets of data each time to use for estimating the tree error. Like
the test set case, the set of data omitted from training is used to calculate
error estimates for each terminal tree leaf. An overall error estimate is then
found by finding the average of these k£ error estimates.

All of the above error estimates can be modified easily to include a mea-
sure of the cost of misclassification. For the simple resubstitution error case,

the misclassification cost is:

ZC(MJ)p(JIt) (4.17)

where C'(7|7) is some function that measures the cost of classifying an example
with true class label j as 7. Using this costing analysis, different weights can
be assigned to different misclassifications, thus perhaps biasing a tree towards

making fewer expensive mistakes.

Pruning a Tree

The simple threshold stopping the tree described in the previous section
proved unsatisfactory. A small value of § resulted in overly complex trees.
Although they had small error estimates, this was due to overfitting of the
training data, i.e. they had a low bias, but a high variance giving poor

performance on unseen test data. As with neural networks, an optimum



generalisation performance must be found. Increasing the value of /3 failed
to generate trees that were substantially better in performance.

Instead of trying to stop tree growth at an optimum point, Breiman et al.
implemented a post pruning strategy in CART. The tree was initially grown
to be very complex and then nodes and branches of nodes were removed until
an optimum tree structure remained (relative to the original tree).

The basic form of pruning used by CART uses minimal cost-complexity
as a measure of pruned tree performance.

In this pruning, the cost-complexity measure R, (7") is defined as:

R.(T) = R(T) + T (4.18)

where 7" i1s defined as the number of leaf nodes in the tree and o > 0 is a
real value called the cost complexity parameter.
For each value of « it is possible to find a subtree T'(«) < T,,,, which

minimises R, (7)), i.e.,

Ry(T(a)) = min R,(T) (4.19)

T s

[t is now possible to find different measures of o that will give more
pruned subtrees, T} > T, > ... > t;. The problem now is to choose the best
of these subtrees. This is done by estimating the error on the sub trees using
one of the methods of assessing error described in the previous section, e.g.

resubstitution error, cross validation, etc.

4.1.3 Rule Extraction from Decision Trees

The method of rule extraction from decision trees described here is that
described by Quinlan [47] for C4.5. It could however be used for any decision

tree.



Extracting Rules from a Tree

The process of rule extraction is very simple due to the nature of the deci-
sion tree. Individual rules are extracted from an unpruned decision tree by
following the edges of the decision tree from the root node to each leaf node.
Every decision node becomes another term in the rule clause while the leaf
node becomes the predicted class for that rule(i.e. the THEN clause of the

rule).

Pruning Extracted Rules

There are two methods by which the extracted rules may be pruned:

The first method is that the number of terms in the rule may be reduced.
This may be done when removing a term in a rule does not significantly
increase the number of errors made by that rule on the training set. In
C4.5 a greedy search is performed on the terms of a rule clause. The cost
associated with removing each one of the rule terms is calculated and if this
cost does not exceed the original upper limit of the rule then it is removed.
Using the same notation as Quinlan, the upper error rate of the original rule
is expressed as Uqp(E, N) where E is the number of cases covered erroneously
by the rule and N is the total number of cases covered.

So for a rule R, before removing condition X, R covers Y; cases correctly
and FE) cases incorrectly. After removing condition X it now covers not only
the original cases, but also a number of extra cases. These extra cases covered
may include those of the same class as the original rule and those of incorrect
classes. These extra cases are known as Y5 and Ej respectively. These errors
are set out in table 4.1.

The original pessimistic error rate of this rule is therefore Uop (Y7, Y1+E)).

After removing condition X of this rule, however, the error rate may be



Table 4.1: Errors before and after rule pruning in C4.5
Class C | Other Classes

Satisfies condition X Y) E,
Does not satisfy condition X Y, E,

rewritten as Uop(Y) + Ys, Y1 + Yo + Ey + E,), taking into account the extra
cases covered both correctly and incorrectly.

Conditions are then removed in a greedy fashion (i.e. the condition with
the least error below the original rule error rate is removed first) and these
pessimistic error rates are recomputed after every removal. This continues
until as many conditions as possible have been removed.

The second method of pruning the extracted rules is to actually drop
entire rules from the ruleset. In C4.5 rule utility is measured using a minimum
description length (“MDL”)[49] approach. In MDL, the hypothesis which
requires the minimum number of bits to transfer its encoded message and
any exceptions is preferred above the others.

In sending the hypothesis, all terms in the rule clause must be sent, but
since they may be sent in any order, the number of bits required to send this
information is reduced by log,(z!), where z is the number of terms in the
rules.

Exceptions are then encoded by specifying which of those examples that
are covered are false positives and which of those examples not covered are

false negatives. Thus the number of bits required for this encoding is simply:

o () + () o

The first term in equation 4.20 is the bits needed to transfer the false
positives(fp) while the second term indicates the number of bits required to

transfer the false negatives(fn) from the total number of bits n.



The total number of bits required to encode this theory is therefore the
sum of the bits to encode the theory(i.e. the rule terms) plus the number of
bits required to encode the exceptions. In practice however, Quinlan reduced
this amount slightly after experiments demonstrated that in practice the
number of bits was frequently overestimated. Therefore the true number of

bits computed is as set out in equation 4.21.

ExceptionBits + W x TheoryBits (4.21)

where W is a constant value between 0 and 1.

Unlike the pruning of rule terms, pruning of entire rules does not proceed
using a greedy hill climbing search. Instead, if the number of rules is small all
possible subsets are considered and with larger numbers of rules, a simulated
annealing approach is used. In the case of simulated annealing, the system
repeatedly picks a rule and adds it to the subset(S) if it is not already there
and removes it otherwise. If; as a result of the action, the change in bits(AB)
is positive then the change to S is accepted with probability e(%). Kisa
synthetic temperature whose value is reduced during the course of execution
and hence the probability of the change being accepted is also reduced.

A consequence that is important to be aware of, after rule pruning, is
the possibility that more than one rule may match a new test example. It is
important to have a strategy in place to deal with this situation. The simple
strategy used by C4.5 to resolve conflicts is to order the rules by the number
of examples that they cover in the training set. The first rule to match an
unseen example is therefore taken to be the prediction for that case.

The second consequence of rule pruning is that no rules may match an
unseen example. C4.5 approaches this problem by setting aside a default

class. The default class is the class that covers the most uncovered training



examples after rule pruning. An unclassified example is predicted to be the
default class, if no rule matches.
Figure 4.3 shows an example of pruned rules extracted from the decision

tree shown in Figure 4.1.

Rule 1:

Petal Length <= 1.9

-> class Iris-setosa [97.3%]
Rule 4:

Petal Length > 1.9

Petal Length <= 5.3

Petal Width <= 1.7

-> class Iris-versicolor [90.4%]
Rule 6:

Petal Width > 1.7

-> class Iris-virginica [94.4%]
Rule 3:

Petal Length > 4.9
-> class Iris-virginica [91.8%]

Default class: Iris-setosa

Figure 4.3: Example rules extracted from the decision tree in Figure 4.1.

4.2 Rule Inducing Algorithms

The following sections describe common rule induction algorithms. Unlike
rule extraction from neural networks or even decision trees, these algorithms
are designed to output rules directly. The algorithms described here represent

some of the most prominent in the area.



4.2.1 CN2

The CN2 algorithm for rule induction was introduced by Clark & Niblett
[13]. This algorithm builds closely on the previous work by Michalski’s AQ
algorithm [41].

CN2 works by performing a beam search across the possible attributes. A
beam search can be thought of as a number of parallel hill climbing searches.
Or alternatively, may be thought of as a breadth first search where only the
most promising subsequent nodes are expanded. Once a search has reached
a point where it cannot expand any more nodes, the algorithm returns the
best complex (rule clause) found. The CN2 algorithm is outlined in Figure
4.4.

There are two important heuristics used in the search for rules. These

are:
e Assess the quality of the current complex
e Assess the significance of the current complex

To assess the quality of the current complex, the CN2 algorithm uses
an entropy based measure. The set of examples E’ that are covered by the
complex (i.e. those examples that are satisfied by the complex selectors)
are found and the probability distribution P = (py,...p,) of the classes of
these examples is then computed. The entropy of these examples can then

be computed using the formula in equation 4.22.

Entropy = — Zpi log, (p:) (4.22)

Entropy is the favoured measurement of rule quality as it distinguishes

probability distributions that are more easily specialised. For instance, given
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1. Search for the best complex using the current training set F.

(a) While the possible set of complexes is not empty:

1. Create a new set of possible complexes by intersecting the
current best complexes with the set of all possible selectors,
removing any redundant and unchanged complexes.

ii. Test the quality of every new complex using Equation 4.22
with respect to the set of training examples F.

iii. Bach complex that passes the quality test should be tested
using Equation 4.23 to find the best complex found.

iv. Remove the worst complexes from the total set and continue
from 1.

(b) Return the best complex found.
2. If a complex is found:

(a) Remove the examples E' from the set of training examples E that
are covered by the complex.

(b) Assign the most common class C' in the set E' as the output for
this complex.

(¢) Add this rule to rule list.
(d) Continue from Step 1.

3. Return the completed rule list to the user.

Figure 4.4: CN2 algorithm

the two distributions P, = (0.7,0.1,0.1,0.1) and P, = (0.7,0.3,0,0), an
entropy measurement will select the latter whereas a simpler maximum cor-
rect may not. This is desirable because if the majority class is removed,
the distributions will become P; = (0,0.33,0.33,0.33) and P, = (0,1,0,0)
demonstrating how much simpler it is to specialise the second distribution
to a definition describing a single class only.

The second heuristic used in the search for rules involves testing the

significance of the current complex. This is done to ensure that the rule
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complex under consideration is a genuine regularity in the data and not
merely one that has occurred as a result of noise in the data. The formula

used for computing this significance is the liklihood ratio statistic:

n "

2;,@ log (€—> (4.23)
where F'' = {f,..., [} is the observed frequency distribution satisifying a
given complex and E = {e},...,e,} is the expected distribution of the same
number of examples under the assumption that the complex selects examples

randomly. The lower the score the more likely that this complex was formed

by chance.

4.2.2 FOIL

FOIL is a first order rule learner proposed by Quinlan [48]. First order
rules are commonly known as Horn clauses. First order rules differ from the
propositional rules created by algorithms such as CN2(see Section 4.2.1), in
that they may include variables. Variables are properties of features that may
be attached to any example containing that feature. Propositional rules on
the other hand must have precise values for every feature of every example.

The advantage of learning rules comprising Horn clauses is that these
rules may be inputted directly into rule based languages such as PROLOG.

The FOIL algorithm is actually very similar in structure to the CN2 algo-
rithm described in Section 4.2.1. The outer loop of the CN2 algorithm is very
similar to the outer loop of the FOIL algorithm, training continues until the
performance of the next rule learned is below some threshold value. In FOIL
the inner loop of CN2 is effectively extended to deal with the production of
first order rules.

The main differences between FOIL and the previous algorithm lie in the
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method of generating candidate specialisations and in the gain criteria used
to assess the goodness of new hypotheses.

To generate possible specialisations of a rule, FOIL employs one of two
methods. Firstly, it may add any of the possible predicates, so long as the
variables in the predicates already exist in the rule. The second method is
to check for equality between the values of two variables already existing in
the rule.

In FOIL, the objective when adding new variables to literals is to cover as
many positive examples as possible. To maximise this goal, the information
theory method of minimum description length is used. The number of bits
required to encode the original rule and the augmented rule to be tested are
computed and if the new rule reduces the number of bits significantly then

the change is accepted. The precise formula used is in Equation 4.24.

: , D1 Po
Foil Gain(L, R) =t log, —-'— — log, —*—) 4.24
oil Gain(L, R) 0g, ——— 0g, L ( )

In this equation, py is the number of positive examples covered by the
original rule and ng is the number of negative examples covered by the original
rule. Similarly, p; and n; are the number of positive and negative examples
covered by the new rule respectively. Finally, ¢ is the number of positive

examples that are still covered by the new rule.

4.2.3 RIPPER

RIPPER [16] is a rule learning algorithm that is based on the work of Quin-
lan’s FOIL [48], Brunk & Pazzani’s “Reduced Error Pruning” (REP) [12]
and Firnkranz & Widmer’s “Incremental Reduced Error Pruning” (IREP)
[29].

The basic algorithm of RIPPER is similar to that of FOIL. In particular
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the GrowRule procedure is a propositional version of the FOIL algorithm.
It works by adding conditions of the form A, = v or A, < # or A, > 0,
where A4, is a symbolic attribute and v is a legal value and A, is a numeric
attribute and 6 is a value for A. that occurs in the data. GrowRule continues
to add propositions that maximise FOIL’s information gain criterion until no
negative examples in the growing set are covered by the rule.

In REP, the training data is split into two sets, a growing set and a
pruning set. A ruleset is grown to overfit the training data. These rules are
post pruned using the pruning set by applving one or more pruning opera-
tors to any single rule. A hill climbing technique is used to select the next
operator to apply. Simplification is complete when applying any operator
would increase the error on the pruning set. REP’s major shortcoming is
its complexity. Cohen [15] showed that given sufficiently noisy data, REP
required O(n') time. Even the initial overfitting of rules required O(n?) time
to complete.

The most successful response to the inefficiency of REP was the algorithm
IREP. IREP is competitive with REP in terms of error rates and was signifi-
cantly faster than REP. IREP builds a ruleset in a greedy fashion. Like REP
the full training set is split into a training set and a pruning set. However,
after a rule is found and pruned, it removes all positive and negative exam-
ples from the full training set before splitting it again. This continues until
either there are no positive examples remaining or the rule found by IREP
has an unacceptably large error rate. It is on IREP that RIPPER bases it’s
error pruning technique.

In IREP pruning, the deletion that maximises the function

P+ (N —n)

v(Rule, PrunePos, PruneNeg) = PN

(4.25)
is chosen, where P and N are the total number of positive examples in
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PrunePos and PruneNeg respectively and p and n are the total number of pos-
itive and negative examples covered by the rule in PrunePos and PruneNeg
respectively. This process is repeated until no deletion improves the value of
v.

The ability to handle multi class problems is included in the RIPPER
implementation of IREP. This is accomplished by ordering the examples
of each class in increasing order of prevalence, i.e. C4,...,C%, where C
is the least prevalent class and C) is the most prevalent class. Repeated
calls to GrowRule are now made using the current least prevalent class with
remaining examples uncovered as the positive examples and all other classes
are considered to be negative. This continues until only the most prevalent
class (), remains. This class becomes the default class.

RIPPER also extended the IREP algorithm to handle missing attributes.
Any rule involving a test on an attribute A are deemed to have failed if
the value for that attribute is missing in a given example. This behaviour
was introduced to separate the positive examples using only tests that were
known to succeed.

Three improvements were also made on the IREP algorithm:

1. An alternative metric for assessing the value of rules in the pruning

phase of IREP.

2. A new heuristic for determining when to stop adding rules to a rule

set.

3. A pospass that “optimises” a rule set in an attempt to more closely

approximate conventional (i.e. non incremental) reduced error pruning.

Cohen found that occasional failures of IREP to converge as the number

of examples increased could be traced to the metric used to guide pruning
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shown in equation 4.25. The original pruning metric would prefer a rule R,
that covered p; = 1000 postive examples and n; = 1000 negative examples
to a rule Ry that covered p, = 1000 positive examples and n, = 1 negative
examples even though the rule R, is significantly more predictive. Instead of
the original pruning metric, Cohen replaced it with:

p—n

v*(Rule, PrunePos, PruneNeg) = (4.26)

p+n
where p and n are the number of positive and negative examples of the
pruning set covered by the rule.

Cohen reports [16] that IREP seems to be particularly sensitive to the
small disjuncts problem [35]. Small rules that cover few examples may have
high error rates causing IREP to stop prematurely. To overcome this prob-
lem RIPPER uses Minimum Description Length(MDL) theory to assess the
length of the ruleset and the examples. No rules are added once this de-
scription becomes a constant “d” bits longer than the smallest description
length.

The final improvement made to the IREP algorithm in RIPPER . involves
an optimisation of the global ruleset. Each rule is optimised in the order
which the rules were constructed. Two alternative rules are constructed.
The first of these is known as the replacement rule. A rule is grown and
then pruned with the objective of minimising the error of the entire rule set.
The second rule constructed is formed by greedily adding conditions to the
original rule, this is known as the revised rule. Finally a decision is made
whether to retain the original rule, or replace it with the replacement or the
revised rules. MDL is used to make this decision. Each of the alternatives
is nserted into the ruleset and rules that are increasing the total length of
the ruleset and examples are removed. Once a final decision has been made,

the modified IREP algorithm is reapplied to learn new rules for any positive
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examples that may be left uncovered after being removed during pruning.

4.2.4 SLIPPER

SLIPPER is a rule learning algorithm introduced by Cohen & Singer [17].
Unlike the many other rule learners including RIPPER and CN2, where
covered examples are removed from the set of training examples, SLIPPER
uses a boosting like approach to change the distribution of the examples, so
more emphasis is placed on those examples misclassified in earlier rounds.
Boosting is covered in the context of ensembles in Section 3.1.2.

Every rule in SLIPPER has a fixed confidence value associated with it.
The sign of these confidence values determines the class of an example clas-
sified by a rule. Rules not covering an example, output a confidence of zero.
Therefore, to classify an example using the strong hypothesis, it is only nec-
essary to sum the confidence values of covering rules and return the sign.

The confidence values are computed using the formula:

.1, Wi+ E
CR = —177/<Y+721”) (427)

2 SW_+ 5
where W, = > _ cry; = Tl and W_ = ZMER:% = —1. To prevent rules
covering few examples and having W_ = 0 leading to impractically large

values, the confidence is “smoothed” by adding 2_177 to both W, and W_.
When growing a rule, SLIPPER restricts itself to positively correlated

rules, hence the objective function that is attempted to be maximised is:

Z = /W, — /W_ (4.28)
Once a rule is grown, i.e. no negative examples in the GrowSet remain

uncovered, there is a danger of that rule overfitting the data. The rule is

therefore pruned immediately after training by minimising the equation:
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(1-V_ -V )+ V+e.7;p_éli’ -+ Vaemp"h(}R’ (4.29)

The full algorithm for slipper is shown below:

1. Train the weak learner using the current distribution D

(a) Split data into GrowSet and PruneSet

(b) GrowRule: starting with the empty rule, greedily add conditions

to maxmimise equation 4.28

(c) PruneRule: starting with the output of GrowRule, delete some
final sequence of conditions to minimise equation 4.29 where é[{/

is computed using equation 4.27 and GrowSet.

(d) Return as R, either the output of PruneRule, or the default rule,

whichever minimises the equation Z = 1 — (VW — /W_)?).

2. Construct h; : x = R

Let C'r, be given by equation 4.27 (evaluated on the entire dataset).

Then )
ol { Cr, ifz e R,

0 otherwise
. Update:
. D(i
(a) For each x; € Ry, set D(i) + (J)((?l'

(a) Let Z, =) -, D(3)

1=

D(1)
Zy

(a) For each z;, set D(i)

Output the final hypothesis: H(x) = sign(}_z ..cr, Cr,)
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4.3 Summary

This chapter presented a selection of methods that may be used for building
rules that model a domain. In the implementation of this thesis, only C4.5
was used for building rules. C4.5 was chosen because of its proven perfor-
mance over a wide variety of data and readily available implementation.
The system presented in this thesis could easily be used with any of the

other methods described here with virtually no changes required.
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Chapter 5

Explaining Neural Networks

Neural networks have proved themselves as good predictors for a large variety
of problems. Despite their successes, their use is frequently ruled out for
many problems that could benefit the most from their predictive accuracy.
The reason for this is very simple. The domains in which they are not used are
typically where explanation is considered as important as prediction. These
include safety critical or medical domains where reliance on unsupported
predictions is simply not an option. The consequences of a bad prediction
may be costly or even life threatening. Depending on the requirements of
the domain, the ability to explain neural networks could be of use in several

different ways:
e The explanations could be used to verify the networks operation.

e [ailures that may occur can be understood by looking at the explana-
tion of the neural network operation and steps can be taken to avoid

similar failures in the future, e.g. by retraining with new examples.

e The network may be replaced by the explainable model (e.g. a decision

tree or set of rules), so that the operation can be guaranteed at all times.
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The final point in the above list may not seem sensible. If the network
is to be replaced by a set of rules or a decision tree why not build such a
structure from the start and skip the intermediate step of building a neural
network? The answer to this is quite simple, neural networks are good at
generalisation. Given a limited number of training examples, neural networks
can make excellent approximations to the true function being studied and
therefore perform well on future unseen examples. This good performance
can be used to tag a larger set of generated data. A more comprehensible
learner can then use this larger collection of data to generate a structure with
similar characteristics to the original network.

This chapter provides a brief outline of some of the areas of rule extrac-
tion relevant to this thesis. For a more complete review of the area see [63, 5].
This chapter begins by outlining in Section 5.1 the two high level strategies
that may be adopted for network explanation. These include network de-
composition in Section 5.1.1 and black box methods in Section 5.1.2. The
issue of evaluating the quality of extracted explanation rules is addressed in
Section 5.2. Two explanation approaches are then covered in Section 5.3. Fi-
nally Section 5.4 concludes the chapter with a look at explanation of neural

network ensembles.

5.1 Strategies
5.1.1 Network Decomposition

Decompositional methods translate networks structure directly to rules. In
the case of backpropagation networks, therefore, the aim would be to identify
the hyperplanes partitioning the input space. At first this may appear to
be a powerful method of explaining neural networks, however, they have

the limitation of being architecture dependant. Many legacy networks are
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excluded as they were not trained with explanation in mind.

One of the first methods proposed for the explanation of neural net-
works involved direct decomposition of the network. The method KT was
proposed by Fu [27]. The core idea behind the KT algorithm is perhaps the
most obvious approach to the decomposition of most networks with weighted
interconnections between units. When presented with an input example, the
KT algorithm searches for the smallest possible combination of inputs whose
values will trigger the desired output. A set of rules explaining the network
can be accumulated in this way.

A good introduction to decompositional methods involves an understand-
ing of local function networks. For an example of these networks and rule
extraction see Andrews [6]. The idea behind these networks is that they
have boundaries in each dimension and these boundaries are adjusted as new
examples are misclassified. The final boundaries in each dimension form the
boundaries of the rule terms.

Another local function network approach is by Berthold [8] and involves
the use of Rectangular Basis Function Networks. The training algorithm
for these networks is based on Berthold’s previous work on Dynamic Decay
Adjustment(DDA) [7] for training Radial Basis Function Networks.

Rectangular Basis Function networks work by creating hyperrectangles
that encompass areas of the hyperspace defined by the input features dimen-
sions.

Each hidden unit p¢ of class ¢ and index (1 < ¢ < m,), m, being the
number of hidden units of that class) has a number of parameters associated

with it. These are:
e An activation R¢(-)

e A reference vector(centre): 7% = (rf,,---,75.)



e An amplitude(weight): A¢
e Two sets of “radii”:

— Set of axes along which the rectangle is spread out towards infinity

K

— Set of axes K¢ along which the rectangle is restricted with a radius

of o,

The activation of a unit is 1 if a new training example of the same class
is correctly classified by that unit and zero otherwise. The first unit to
correctly classify the example has its weight increased by a constant amount.
This weight will be used later during classification of unseen examples. The
centre of a hidden unit is the first example that causes a misclassification in
another unit. The radii are the dimensions of the hyperrectangle around this
centre.

Training begins with no hidden units. Hidden units are added only when
existing units misclassify a new example. When a new hidden unit is added,
the dimensions of that unit must be shrunk so that no conflicts exist between
that unit and all units of other classes and vice versa (it is not necessary to
shrink that units dimensions with respect to units of the same class).

A simple example of shrinking the dimensions of a rectangle is shown
graphically in two dimensions in Figure 5.1. The example in a has been mis-
clasified and it is necessary to shorten one of the dimensions of the enclosing
rectangle. To do this there are three choices. In b the left dimension has been
shrunk, in ¢ the top dimension has been shrunk and in d both dimensions
have been shrunk. It can be seen clearly from this diagram that to avoid
the misclassification it is only necessary to shrink a single dimension so the

solution presented in d can be discounted. To maximise the size of hyper-
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rectangles, it is recommended to shrink the dimension that will lead to the
least reduction in area of the remaining rectangle. Clearly, this means that

b is the correct dimension to shrink.

e ST N
\
’

Figure 5.1: Shrinking the dimension of a rectagle in rectangular basis function
networks

Execution of the network proceeds by testing each hidden unit with the
unseen example. If the example falls within the dimensions of that unit’s
hyperrectangle, then the output unit adds that units weight to the total
score for that class. The class with the highest score is outputted as the
prediction.

The extraction of rules from this network is very straightforward. Each
hidden unit can be mapped directly to a single rule. This is easiest to visualise
from Figure 5.2. In this figure, the centre of the rectangle is marked by the
unit with the cross through it. The rectangle is unbounded on the top side.
In the other dimensions, there are examples of another class that caused
those dimensions to be shrunk when they were misclassified. The rule that
is extracted from this rectangle is:

IF z; < Vx <13 AND y;, < Vyy THEN TRUE
where Vy and Vv are the values of the features X and Y to be tested by

the rule.
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& Class: TRUE

@ Class: FALSE

Figure 5.2: Extracting a rule from the hyperrectangle in a hidden unit

5.1.2 Black Box

In contrast to direct decomposition methods, black box methods require
no knowledge of the internal network structure. They operate solely by
analysing the predicted output(s) on input vector(s). To analyse this rela-
tionship black box methods typically use traditional rule learning algorithms
to model the network.

A popular strategy adopted by researchers into black box methods is
to use a second machine learning approach that models the input/output
behaviour of the network. The second learning algorithm does not learn the
target function directly, instead it learns the response of the neural network
to the training inputs. In modelling the network, it is hoped that strong
patterns that are being used internally by the network for prediction will

be made clear and the second learning algorithm will output rules based on
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these patterns. Prominent examples of this type of learning are:

Thrun: Validity Interval Analysis(“VIA”) [59]
Craven & Shavlik - TREPAN [19]

Schmitz, Aldrich and Gouws - ANN-DT [52]

In his paper describing his technique for rule extraction from neural net-

works, Thrun outlines four criteria for successful explanation of a network.

These are:

No architectural requirements — the proposed method should work with

all types of networks.

No training requirements — special provisions during training should
not be required, their presence would likely prevent the method being

used with legacy networks.

Correctness — generated rules should reflect the knowledge contained in
the network as accurately as possible and not merely be approximations

to the network operation.

High expressive power — powerful languages for expressing the rules
extracted from the network should be used. Compact rulesets are more

easily understood.

Thrun presents his method for network explanation using these criteria

as goals.

Thrun analyses backpropagation-like networks by propagating entire ac-

tivations intervals of units. These activation intervals comprise upper and

lower bounds that, when satisfied, lead to a provably correct activation space.

76



In the context of rule extraction, these intervals are used to prove or disprove
conjectured rules. Initial intervals constraints are set using a linear program-
ming method (Thrun uses the Simplex method). Intervals are refined by
propagating them both forwards and backwards through the network. It
should be noted that these propagations are independent of network training
(i.e. they have no relationship to the gradient updates in back propagation
networks).

Craven & Shavlik use a more conventional approach to the extraction of
rules from a network for the purpose of explaining a network’s operation.
Using the network as an oracle, a large number of generated examples are
labelled. These generated examples in addition to the training set, define
precisely the network response. Using these examples, a decision tree is
built to model the dependencies captured in these examples. Decision trees
are casily decomposed to rules and hence are good structures for explaining
networks.

The decision tree algorithm used by Craven & Shavlik, grows the tree in
a best first manner as opposed to the more traditional depth first approach
of C4.5 and CART (both C4.5 and CART are described in full in Chapter 4.

At each node in the tree, TREPAN stores:

e A subset of training instances
e A set of query instances
e A set of constraints

The subset of training instances are simply those training instances that
reached that node. The query instances are used in conjunction with the

training instances to either determine the next split of an internal node or



alternatively set the class of a leaf node. Finally the set of constraints de-
fine criteria that instances must possess in order to reach this node. These
constraints are used when generating a set of query instances for the node.
As mentioned previously, the TREPAN decision tree algorithm grows
the tree in a best-first manner. To determine the next best node to grow,
Craven & Shavlik attempt to estimate which node when grown will give the
greatest increase in fidelity. This is justifiable because, the idea is to model

the network as faithfully as possible. The equation for selecting this node is:

f(N) =reach(N) x (1 — fidelity(N)) (6:1)

where reach(N) is an estimate of the fraction of instances that reach N when
passed through the tree and fidelity(N) is the fidelity of those instances
reaching N with respect to the original network.

The reasoning behind a best first growth of the decision tree is both
practical and commendable. The size and complexity of the tree can be
finely controlled and at any stage the tree can be verified by a user as an
increasingly accurate global model of the network.

The last major difference in the decision tree in TREPAN is the stopping
criterion. Three criteria are used, one local and two global. The local crite-
rion is simply a probability measure that the instances reaching the potential
leaf node are all of a single class. When this probability reaches a preset con-
stant value the current node is marked as a leaf. The first of the global
critera is a limit on the number of possible internal nodes. The second global
criteron uses a validation set to evaluate the fidelity of the increasingly more
accurate trees for modelling the network. The tree with the lowest error is
considered to be the best.

The final method for explaining neural networks that is examined here is
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by Schmitz, Aldrich & Gouws and is named ANN-DT. Like Craven & Shavlik,
Schmitz et al. also aim to produce a decision tree as their final output. Also
like Craven & Shavlik, Schmitz et al. use the network to label a collection of
generated data to be used by the decision tree builder. Unlike the previous
methods, though, ANN-DT focuses on explaining problems with a continuous
numeric output. The basic steps followed in building the decision tree are
similar to CART (which is described in Section 4.1.2 and hence only the
differences are covered here).

The selection of attribute and threshold for splitting is done in two dif-
ferent ways. The first is by minimisation of the weighted variance:

2\ N

Vo= —=Var(Oy) (5.2)

n
k=1

This is the same procedure as used in the CART algorithm when forming
a regression tree.

The second method is an analysis of attribute significance. This method
focuses on inter-relationships that occur inside the network function. If at-
tributes can change their value independently of one another then the abso-
lute value of the directional derivative integrated in a straight line between
two points can be used as a measure of the significance of a single attribute.
However, if in the more likely case, there is a dependence between variables,
this is not appropriate.

The absolute variation between two points z; and z; in the dataset is:

By = /“J |Af(z) - uldx (5.3)

xT;

where u is the unity vector in the direction z; — ;.
The variation between attributes having a large effect on the output of the

neural network, f(z) and variations in the neural network output response
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will be highly correlated. Thus, a measure of the significance of a variable a
over a data set S would be the correlation between the absolute variance of
the function and the absolute variation of that attribute taken between all

possible pairs of points in S:

o(f)a = correlation(vi(f),vij(a))

- b Z"N vi; (f) — 9(f)vij(a) — v(a) (5.4)

SO () - 9y T, val@) — @)

Those attributes with the highest correlation between changes in the neu-

ral network output and changes in the attribute value are the most significant
and should be used for splits higher in the tree.

Schmitz et al note that where the number of computations is excessive,
the result can be approximated by selecting random pairs.

The data is recursively split in this way until either the standard deviation
is zero or when some stopping criterion is reached. This criterion would
prevent a split occuring where the outcome of one of the sub branches would
not be statistically different from the outcome of the other branch. This
prepruning is designed to help prevent overfitting of the decision tree and to
improve overall comprehensibility of the presented rules.

One such test that can be used to determine if two branches are statisti-
cally different from each other is the F-test (it tests if the standard deviation
of two populations are equal). This test is only applied to branches formed
below a preset level in the tree. This helps ensure that tree growth is not
stopped prematurely. In addition, branches containing only a single data
point are also deemed to have failed. Finally, the maximum depth of trees is

capped at a preset maximum to prevent overly large and incomprehensible
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trees.

The final stage of the ANN-DT algorithm is to prune the trees. The
authors use a simple fast greedy pruning technique. They note however that
the more sophisticated CART algorithm for pruning decision trees could also

be used.

5.2 Evaluating Rule Quality

The process of extracting rules from neural networks is a trade-off. The

following measures were proposed by Towell & Shavlik [61]:

e Accuracy: The accuracy of the rule set is simply a measure of the rule

sets ability to accurately predict unseen cases.

e Fudelity: The fidelity of the rule set measures how well the rule set
models the behaviour of the neural network. In cases where the rules
are being used to verify the operation of the network, the rules should

exhibit a high degree of fidelity.

e Comprehensibility: The comprehensibility of the rule set is a measure
of the ‘understandability’” of the rules. This may be measured in two
different ways. The first measures the global comprehensibility, i.e.
the total rule set size. A bigger rule set is likely to be more difficult to
understand. Once it has been determined that the extracted rules are
potentially comprehensible, the second measure looks at the individual
rules. If the number of terms in each rule is not too large, the rules
may be easily assessed. This assessment may lead to new insight into
the data being studied and may help prove or disprove theories, by
indicating previously unnoticed trends or confirming suspected trends

that exist within the data.
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Obviously it is important that the rules exhibit an accuracy as good as
the original network. However, it is also important that this accuracy reflects
a good fidelity between the rules outputs and the network outputs. A rule
set with a similar accuracy to a neural network but that makes mistakes
on different examples to the neural network is not a particularly good de-
scription of that network. This is the reason why it is inadequate to train a
neural network and a more comprehensible learner, such as a decision tree,
separately, and conclude that the tree represents the knowledge in the neural
network. A more common approach is that the decision tree is built to model
the behaviour of the network by using the network to label a set of data.

An equally important consideration is the trade-off between comprehen-
sibility and fidelity. A learner built to model the network with perfect fidelity
may be totally incomprehensible. A decision tree may contain many bushy
subtrees that are no easier to understand than the original neural network.
However, pruning that tree will lead to the decision tree classifying examples
differently to the network thus reducing the fidelity.

Finding a good balance of these quality measures is essential in any algo-

rithm that attempts to explain a neural network.

5.3 Global VvV Local Explanation

Most researchers have focused on producing global model explanations. These
models aim to fully describe all situations in which a particular event will
occur. In a global model, there is an implicit trade-off between the com-
plexity of the model and its fidelity. This trade-off can be seen in terms of
the fidelity and comprehensibility evaluation criterion proposed by Towell &
Shavlik [61] that are listed in section 5.2. A model built with perfect fidelity

may be very complex and the comprehensibility will therefore be reduced. A
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comprehensible model however may be useless for verifying the operation of
the network because its fidelity is too low.

Although a global model may be useful in many situations, it is argued
here that it is not always appropriate. For example, it may be useful in the
problem of predicting success in IVF (in-vitro fertilisation) research, studied
by Cunningham et al.[22], to produce a global model of the phenomenon.
Such a model would allow practitioners to spend time understanding the
conditions leading to success and to focus their research on improving their
techniques. Also, a global model would allow the targeting of potential re-
cipients of the treatment who have a higher probability of success. This
would lead to a monetary saving for the health service and would avoid great
disappointment for couples for whom the treatment would most likely fail.
A global model might also allow doctors to suggest changes a couple might
make in order to improve their chances of success with the treatment.

In the accident and emergency department of a busy hospital, the expla-
nation requirement would be quite different. Here the need is for decision
support rather than knowledge discovery. What is needed is an explanation
of a decision in terms of the symptoms presented by individual patients. This
explanation task is described here as local explanation.

In the context of ensembles (see Chapter 3), the decision to use a global or
local approach becomes an even bigger issue. Ensembles built for maximum
diversity may have many individual networks that are experts in particular
areas of the input space. Building a global model from an ensemble may
result in a trade off where many of the finer details covered only by a small
number of networks are dropped. The global model may fail to give the
most precise rules as opposed to if a local approach had been used and the

production of explanations had been delayed until the explanation is actually
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required.

Other researchers who have also approached the problem of local explana-
tion include Sima [55] and his approach is reviewed in [14]. Local explanations
of time series predictions have also been explored by Das et al [23].

Although both Sima and Das use local explanation in that they both
provide explanations on a case by case basis, neither is directly comparable
to this work. Das’ method focuses on finding repetitive patterns in time
series (and does not rely on neural networks). Sima’s method does rely on
a backpropagation neural network but instead of providing rules as explana-

tions, outputs percentage importance values for each of the inputs based on

a decomposition of the neural network weights.

5.4 Rule Extractions from Ensembles

Despite the advantages of ensembles, little work has been done to provide
explanations for predictions made by ensembles, although the importance
of finding a method for rule extraction from ensembles was highlighted by
Craven [20].

Although little work has been done in rule extraction from ensembles, it is
still possible to use any of the black box methods introduced in section 5.1.2.
However, this approach to the explanation of ensembles may not be optimal.
A well built ensemble should comprise diverse members, each of which are
experts in different areas of the input space. Modelling an ensemble as a
black box ignores this diversity and looks only at the bigger picture. An
algorithm that attempts to harness this diversity to produce optimum rules
may outperform black box methods.

The two methods that are presented here for explaining neural network

ensembles are:
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e Domingos - Combined Multiple Models(“CMM”) [24]

e Zhou - Rule Extraction from Neural network Ensembles(“REFNE”)
[69]

In his algorithm CMM, Domingos [24] creates an ensemble of neural net-
works using bagging. The ensemble is then used to assign labels both to the
original training examples and to a set of randomly generated instances of
fixed size. The c4.5rules package [47] is then used to create a set of pro-
duction rules that model the behaviour of the ensemble. C4.5 is described
in more detail in Section 4.1.1. Domingos reports reasonable fidelity and
accuracy using this approach.

A more recent article specifically addressing the extraction of rules from
neural network ensembles has been published by Zhou [69]. The method pro-
posed is called Rule Extraction From Neural network Ensembles(REFNE).

The trained ensemble is used to generate additional instances that are
used in the subsequent rule extraction algorithm.

A rule is formed when a subset of attributes are found to classify a set of
examples that fall into a single class.

The search for the subset of attributes begins with the selection of a single
symbolic attribute and testing all of the possible values of this attribute. If no
value of this attribute classifies all examples it appears in to a single class,
then all other single symbolic attributes are similarly tested. If no single
attribute can be found to fulfill the necessary criterion, then all subsets of
two or more subsets of symbolic attributes are considered. The process of
adding symbolic attributes and searching all subsets of a particular size for
a rule continues until no more symbolic attributes are left. At this stage a

continuous attribute is discretised and the search continues.
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In order to optimise the speed of this search, Zhou uses the “experience”
of failed searches to guide later searches. An example of this is that if a set
of symbolic attributes {a;} fails to find a rule and a continuous attribute
b is discretised, then future rule searches should only examine subsets also
containing b because all the other subsets of {a;} U b have already been
examined.

In order to avoid suspect or poor rules, REFNE implements a number of
optimisations. These include dropping any instances for which a tie exists.
That is, if an equal number of networks in the ensemble predict different
classes for an instance, it is not clear which label should be assigned to that
instance. Also, REFNE may be tuned to ensure that any rules to be added
to the output rule set increase the fidelity by at least a constant value.

Zhou reports good results using REFNE when compared to the popular

C4.5 rules package.

5.5 Summary

This chapter described some of the many methods that have been proposed
for explaining both individual neural networks and ensembles of networks.

The work presented in this thesis complements the methods presented
for explaining a neural network as rules by introducing a ranking system for
these rules that focus the user on the most important variables influencing
the prediction.

The decision to pursue local explanation rules out any method targetted
at the output of a single global model of the ensemble, e.g. Domingos [24] and
Zhous [69] algorithms or using a black box model to model the entire ensemble
behaviour. Instead, one of the individual network explanation methods is

required to produce rules for each of the networks in the ensemble.
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Both decomposition and black box methods are available to explain indi-
vidual networks. It was decided to use a black box method for the extraction
of rules from a network. Black box methods showed much promise for both
comprehensibility and fidelity measures in many of the papers reviewed. Also,
the selection of a black box method meant that the choice of network was
not restricted in any way.

The precise method used was that each network labelled a set of generated
data. The c4.5rules [47] package was then used to build a set of production
rules that modelled the networks behaviour. C4.5 was chosen as the rule
builder because of its proven ability to generate comprehensible and accu-
rate (increased accuracy when modelling network behaviour is equivalent to
increased fidelity) trees and rule sets. Maximising both of these variables is

crucial in explaining neural networks.
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Chapter 6

Solution

The solution presented in this chapter to the problem of explaining the out-
puts of neural networks is in fact more flexible and can be applied to any
machine learning ensemble where the individual members can be expressed
as rules. For this reason the description of the process of translating the
networks to rules and the rule selection process have been decoupled in this
chapter.

The idea behind this solution is very simple. Section 6.1 defines how the
solution involves building a ruleset explaining each network. Section 6.2 cov-
ers the process of testing each rule with every one of the training data to find
the coverage for each rule. Section 6.2.1 then shows how this simple coverage
information can be augmented with a more useful and precise description of
how the rule covers the training data. Section 6.2.2 then describes the online
process of using this calculated coverage information for calculating a fitness
score and ranking the rules using this fitness score. A worked example of this
process is presented in Section 6.2.3. Finally Section 6.3 describes how extra
diversity was added to the original networks by training them on feature

subsets to solve a problem involving extraneous terms in rule clauses.
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6.1 Building an Ensemble of Rules from an
Ensemble of Neural Networks

The neural networks chosen for use in this system were the standard back-
propagation [50] type. These neural networks have been shown in the past
[58, 53]), to have excellent generalisation for a wide variety of prediction
tasks. Furthermore, it has also been shown [22] that for a large number of
these prediction tasks, ensembles have the effect of increasing both prediction
accuracy and stability.

An ensemble of backpropagation networks was built by training individ-
ual networks on a bootstrapped set of data. Bootstrapping, described in the
context of machine learning by Breiman [10], randomly selects training ex-
amples with replacement from a set of examples. In this way, approximately
two thirds of examples will be selected at least once if the total number of
examples selected is the same as the number of examples in the complete
set. The remaining examples that have not been selected at all are used for
preventing overfitting during training of the network.

For problems involving data with a skewed class distribution, the minority
class was duplicated in the data. This prevented the network being biased
towards the majority class.

The black box approach was chosen in this work to generate rules from
these neural networks (see Section 5.1.2). The specific black box method
used was the C4.5 decision tree algorithm and the associated c4.5rules pro-
gram was used to generate production rules for use in explanations. C4.5
was used for generating both the rules for individual networks used in local
explanations and the single global decision tree/rules. Using C4.5 in this way
is similar to the way in which Domingos [24] uses it.

Although C4.5 was chosen to build the rules in this particular case, anz
g !
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rule learner could be used. The choice of which rule learner to apply is the
choice of the modeller and the solution presented here is not dependent on
this choice.

Once trained, each network was used as an oracle on the training data and
the ensemble of networks also acted as an oracle to label the data used in the
production of the global rules. Decision trees were then built to model these
targets(i.e. model the networks/ensemble). Finally, a ruleset was extracted
from these decision trees.

To compensate for a lack of data in some of the datasets studied, extra
examples were generated. These examples were generated using a very simple

algorithm, namely:
e For every example in the training data

— For every feature in an example
« If the feature is continuous add a small amount(4+5%) of noise

to its value

With these extra data, the decision boundaries between classes should be

clear and lead to a well defined tree.

6.2 Rule Coverage Statistics

The concept of rule coverage is pivotal to the operation of this system. It
is by estimating how well a rule covers the training data that it is possible
to estimate how well it will cover a future unseen example. The simplest
measure of rule fit is the fraction of training examples that fire a rule. A rule
is considered fired by a single example if the values of each feature in the
example fit inside the boundaries of any term in the rule clause testing that

feature. The coverage score of the rule is increased by a constant amount
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each time the rule is fired. This coverage proportion alone gives a reasonable
indication of the generality of a rule. Due to incomplete datasets, however,
many rules may classify areas of the input space incorrectly. Identifying the
areas of the input space covered by the rule and in which we have the most

confidence in the rule is the subject of the next section.

6.2.1 Advanced Rule Coverage Statistics

To improve the coverage information, it is useful to know what areas of the
input space are well covered by the terms in the rule clause. This can be
accomplished by calculating some extra statistics.

When computing the simple proportion of examples that fire each of the
rules, it is necessary to save these examples in a list associated with that rule.
When all of the training examples have been tested with all of the rules, the
mean and standard deviation of each of the features with continuous values
that appear in the rule clause are calculated. This is not possible with

symbolic features as these have an implicitly perfect fit.

6.2.2 Rule Fit and Ranking

Once the off line process of calculating rule coverage statistics is complete,
it is possible to calculate an on-line rule fitness score for new examples with
respect to the rules in the system. However, not every rule is checked for
every new example.

When a new example is introduced into the system, either the rulesets
or the original neural networks vote on the outcome. Only the ensemble
members contributing to the majority prediction are used in the ranking of
predictive rules. Each of the rules in each of these “correct” rulesets (or the

rulesets corresponding to the correct networks) are considered with this new
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example. All of the rules fired by this example are collected together.

At this stage, the system has identified a group of rules that could poten-
tially be used to explain the example being tested. Using the rule coverage
statistics calculated earlier, it is now possible to go one step further and rank
these rules in order of our confidence in the predictiveness of each rule. This
is done by calculating a fitness score for each rule. This fitness score is cal-
culated by testing how similar the new example is to the training examples
that also fired this rule.

For every term in each rule clause, a score is calculated using equation 6.1.
The mean(y) in this equation is the mean of the feature values for each term
that fired the rule and the standard deviation(o) is the standard deviation
of the feature values for each term that fired the rule.

Ti — M

(6.1)

Fitnessy = max;
= o;

Once a fitness score for each of the terms in each rule has been calculated,
each rule must be assigned an overall fitness score. The term with the max-
imum (i.e. poorest) fitness score is then selected as the fit for the rule as a
whole. This is similar to the approach taken in Mycin [54] when comparing
the conjunction of two hypotheses where the weakest measure of belief is also
taken as the overall measure of belief.

There are two exceptions in the calculation of this fitness score:
e Rules whose terms are duplicates of others

e One sided rules, where the value of a feature lies on the unbounded

side

The first of these exceptions arises frequently for rules where a common

pattern exists in the data and several rulesets predict the output class using
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1

Figure 6.1: Number line showing unbounded rule

this rule. In order that this rule is not presented more than once to the
user, duplicate rules are removed. The fitness of the final remaining rule is
then boosted by a small constant to reflect our increased confidence in the
predictiveness of the rule.

The second exception is for one sided rules, these are rules that are
bounded on a single side only. If the value of the feature being tested is
on the unbounded side of the mean, that term is automatically given a per-
fect fitness score. This situation can be seen graphically in Figure 6.1. This
diagram shows a number line representing the rule:

IF X < X;, THEN TRUE
The training examples that fitted this rule are marked along with their mean
value. Any value of X that fits this rule and is less than the mean g is
automatically given a perfect fitness score.

This fitness measure gives us our main criteria for ranking rules. However,
it is possible for ties to occur when a group of rules all have maximum fitness.
Ties can be resolved in these situations by considering rule specificity, i.e.
the number of terms in the rule. In situations where simple explanations are
preferred, rules with few terms are preferred. In situations where elaborate
explanations might be interesting rules with more terms in the left-hand-side
can be ranked higher.

The doctor examining the results of the Bronchiolitis data (one of the
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datasets used in the evaluation of this research) suggested that, in practice,
simple explanations might be appropriate for holding a patient overnight
whereas more elaborate explanations might be necessary for discharge. The
logic behind this is that a single symptom might be enough to cause concern
about a child whereas to discharge a child no adverse symptoms should be
observable.

So in selecting and ranking rules to explain the Bronchiolitis data the
main criterion was the ranking based on the rule fit. Ties were then resolved
by selecting the simplest rules for admissions and the most complex rules for
discharges. This produced very satisfactory results.

In general therefore, a policy for resolving ties should be agreed with a

domain expert on a class by class basis.

6.2.3 Worked Example of Calculating Rule Fit Using
Iris Dataset

To demonstrate how the fitness metric works, a simple example of analysing
extracted rules is included in this section. The dataset used is Fishers Iris
dataset from the UCI repository [9].

This dataset comprises three classes with 50 examples of four features
each. One of these classes is linearly separable from the other two. For a
back propagation network this is a straightforward task. In order to increase
the difficulty of the problem, the number of training examples in each class
has been reduced to 17. Using bootstrapped sets, the number of examples
from each class seen during training of individual networks will be varied
thus giving better diversity.

Nine unseen examples, three from each class were used to test the system.

For each of these examples, predictions were made and five ranked rules were

94



output as explanations of these predictions.
These rules were then ranked by confidence of their fit to the unseen test
example. A sample test example appears below along with two rules that

were selected as predictive of the class.

sepal_length == 55T
sepal_width == 2.6
petal_length == 3.5
petal_width == 1.0
[0.548107]

IF 0.497102 < petal_width <= 1.178020

THEN Iris-versicolor

[1.552252]
IF 2.089680 < petal_length <= 4.198180

THEN Iris-versicolor

The boundaries of these rules are shown graphically in figure 6.2.

From this figure, it can be seen that the Iris-versicolor test point is signifi-
cantly closer to the mean of the training points in the petal_width dimension
than it is to the mean of the points in the petal length dimension. This close-
ness increases our confidence in recommending this rule as an explanation for
the prediction of the network for that example, i.e. it is ‘like’ the examples
on which this rule is based.

In the results on the Iris dataset several examples of rule duplication arise.

For example, the following rule was ranked as one of the five most predictive
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Figure 6.2: Graph of Iris data in two dimensions

rules(the fitness for this rule is reported in square brackets at the top of the

rule):

[0.940733]

IF sepal_width > 2.294270

AND 2.089680 < petal_length <= 4.771990
AND petal_width <= 1.711730

THEN 1

In fact this rule appeared four times in the set of predictive rules. The
other occurrences of this rule may have had slightly different limits, but for
the purposes of duplicate boosting, it is important only that the example
being tested fits each of the rules. To reflect this increased confidence in this
rule, its fitness value was ‘boosted’” by dividing its original fitness by 1.2 for

every duplicate occurence. The original fitness of this rule before duplicates
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were taken into account was 1.95. Without the duplicate rules this rule would

not have been as good as the next ranked rule whose fitness was 1.86.

6.3 Rule Simplification

A major problem encountered with many of the rules selected using the
above method was that, although, the rules contained many excellent terms
in their clauses, there were frequently conditions which provided little extra
information or were contradictory to the proposed class output. In order to
try to remove these extraneous terms, each of the networks was trained using
a subset of the available training features. This approach has the useful effect
of increasing diversity in the ensemble, which should give an overall decrease
in the ensemble error assuming the error in the individual networks does not
increase substantially. In the case of this work, feature subsets were selected
according to the wrapper based algorithm described in [68] and described

below:

e Generate a random feature mask (i.e. a feature subset) and estimate

the generalisation error for that mask using cross validation

e Cycle through the mask flipping each bit in turn and if the estimation
of generalisation error on this new mask is less than before accept the

flip, otherwise reject it and reset the bit

e Repeat from step 1 until no improvements are found (i.e. no bit flips

accepted) on a full traversal of the mask

Once the required number of masks has been found, each of the net-
works in the ensemble is trained using separate masks. Rule extraction then

continues as described in Section 6.1.
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The rules extracted using this method are more focused on specific lo-
cal patterns inside the data and fewer extraneous terms appear inside rule

clauses.
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Chapter 7

Implementation

7.1 Introduction

The implementation of the ideas described in this thesis was for testing the
feasibility and performance of the concepts described. The implementation
comprised command line tools under Linux. Only the results of the im-
plementation were presented to the experts evaluating the results. Writing
a graphical user interface (“GUI”) for interacting with the system was not
included in the scope of the thesis and so this system is not necessarily
representative of how this work might be integrated into existing hospital
databases.

The descriptions provided in this chapter therefore concentrate on the

tools that were used to implement the system and why they were chosen.

7.2 Practical Implementation Issues
7.2.1 Programming

The implementation to test this system was written using only free software
[56] on Linux [60]. In total three languages were used in the development of

the system software. These were:
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o C++
e Python
e Bash shell script

C++

For reasons of efficiency, the neural networks were implemented using C++
[57] with the g++[2] compiler. C++ is a good choice for this type of problem
as it is a flexible language that compiles directly to machine code.

With the advent and adoption of the ANST C++[1] specification, C++
has become a significantly more portable language. In particular, the in-
creased availability of the STL(Standard Template Library) allows develop-
ers to focus even more on solving problems rather than tackling low level
implementation details such as allocating and freeing memory. Good use
was made of the STL’s collection and stream classes for reading the database

of examples.

Python

Python [62] is a flexible high level scripting language and is well suited to
the manipulation of text files. With the exception of the neural network
implementation where C++ was used, Python was the main language used.

Python has many attractive features:
e Perl-like regular expressions
e Object oriented

Flexible data types(e.g. lists and associative arrays)

Functional programming tools(map, filter, reduce and lambda)
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The regular expressions were used to good effect while parsing the output
of ¢4.5rules. The text output of this program included error information and
headings that were not required for this system and these were easily excluded
when searching for rules with regular expressions.

The object oriented nature of Python allowed for a good abstraction of
the various parts of the programs, e.g. reading the data format file (in C4.5
“names” format), reading the data, reading the rules and separating each
term in each rule clause.

Lists and associative arrays are natural data types for holding rules and
examples and associating information with them. The functional program-
ming like functions help speed up the time consuming task of iterating over
structures in an interpreted language by performing the loop in the faster

compiled code of the interpreter.

Bash shell script

The final part of the implementation was written using Bash [31] shell script.
This was used to tie the individual python scripts and the neural network
programs together.

Shell scripts can be used not only for starting programs, but also to
dynamically set and adjust the values of environment variables and even to
loop over groups of commands. The return values of programs can also be

read to check for and report any runtime errors.

7.2.2 Distributing Work

The process of creating the masks (see Section 6.3) is very intensive, partic-
ularly if the training set is large. For this reason, this work was distributed

across a cluster of computers each running Linux.
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Master

Figure 7.1: Master/slave architecture

The cluster is configured such that users’ home directories are shared
between all computers using NEFS. All computers participating in the job
therefore have access to the same pool of data. Each computer has local disk
space, so intermediate results can be saved and accessed quickly on demand.

The distribution of work was carried out using the master/slave paradigm.
In this scenario, one computer acts as a master, while all other computers
are considered slaves. The master coordinates the work to be done and is
responsible for collating results. This distribution architecture can be seen
graphically in figure 7.1.

To facilitate communication, the program was written using the MPI(Message
Passing Interface) [4]. This interface defines a flexible array of functions for
sending and receiving messages. The implementation used here was MPIch
from the Argonne National Laboratory [3], which is also available under a
free software license.

The code for distributing the work of training the neural networks for
testing mask performance was written using the C++ MPI bindings. This

facilitated simple integration with the neural network code.
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Summary and future of parallel computing

The methods being used by machine learning researchers are becoming ever
more computationally demanding and the problems being tackled are grow-
ing ever more complex. Even the rapid advances in processing speed often
cannot keep pace, in this environment, to provide real time results and in-
teractivity.

The distribution of processing work across clusters of computers therefore
holds great promise for researchers.

The nature of the problem described in this thesis is often known as
“Embarrassingly Parallel” due to it’s obvious parallel solution. There is no
need for communication between different learners and the training time
decreases in direct proportion to the number of processors available.

For more complex problems however, there may be large communications
overhead between processes and it is in this environment that a cluster will
be of most benefit. The improvement over a single computer is likely to be
several orders of magnitude greater as processes do not need to be swapped
in and out of memory and expensive kernel inter-process communication
(“IPC”) calls can be avoided. Gigabit and faster networking speeds and
the zero-copy implementation in the modern Linux make networks a viable
transport mechanism for most machine learning tasks involving extensive
communication. Furthermore, clusters can comprise off the shelf components
and when combined with the Linux operating system and other free software
they make a cost effective yet easily upgradeable and scalable alternative to

expensive proprietary supercomputers.
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Chapter 8

Evaluation

The evaluation of the work undertaken in this thesis was not a straightfor-
ward task. While accuracy of predictions can be assessed from a dataset, the
quality of associated explanations can only be assessed by experts working
in the area of the prediction. For this particular reason, two domains, for

which experts were readily available, were assessed. These domains were:

e Predicting whether or not very young children showing signs of bron-
chiolitis should be admitted to hospital including explaining the reason

behind admitting or discharging a child.

e Predicting the quantity of the blood thinning drug Warfarin that should
be administered to patients based on their previous history of taking

the drug and their current symptoms.

The same datasets were also used in evaluations of earlier work in this
research, (64, 65].

The iris dataset used in Section 6.2.3 to demonstrate how the ideas of lo-
cal explanation and rule ranking are implemented is a useful introduction to
the evaluation, although not part of the formal evaluation. The iris dataset
demonstrates that the proposed system makes a reasonable attempt at find-

ing the explanations in which we have the most confidence.
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As stated above, the two domains chosen for evaluation by this thesis were
medical. The principal reason for this selection is that medical data provides
a potentially rich source of data for machine learning practitioners. Accuracy
and explanation are both very important in terms of user acceptance of a
machine learning based system. Work that focuses only on accuracy may not
be accepted in a live implementation, this would rule out many novel neural
network based approaches.

Each of the selected domains are discussed separately, Bronchiolitis in
Section 8.2 and Warfarin in Section 8.3.

It should be stressed, that the selection of these medical domains for
study is somewhat arbitrary but also driven by availability of experts in the
area. The work is in no way restricted to these domains and the primary
goal is to show that local explanation is a viable approach to the explanation
requirements when compared with a global approach using a similar rule

extraction method.

8.1 Evaluation Process

The process of evaluating the results was the same for both datasets. This
process consisted of the generation of rules from each of the networks in an
ensemble along with a global set of rules modelling the ensemble operation.
This process is described in more detail in Chapter 6.

As noted in Chapter 7, the work undertaken and the programs developed
for the purposes of testing this thesis were not representative of how this
system would actually be integrated into current medical systems. For this
reason, the experts evaluating the results did not interact with the system
and were simply presented with formatted results.

A total of ten examples were selected randomly from each of the datasets
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being studied. These examples were not used at any point during training
of the networks or building of the subsequent rules, their use is confined
to future tests of the ideas embodied by the programs. Predictions for,
and explanations of, these examples were given to the experts for evaluation
using both global and local approaches. A maximum of five ranked rules
were produced by each example for each method.

The domain experts evaluated the results by scoring each of the expla-
nations based on the predicted output. The scores given ranged from 1 — 5.
These scores translated into assessments of rule quality, with a higher score

indicating a better rule.
1. Wrong
2. Poor
3. Fair
4. Good
5. Very good

For each set of scored rules (one set per dataset), a number of overall
scores were calculated to determine how well the local and global rules per-
formed.

These scores were as follows:
1. Average Top Rules

2. Average Top Correct Rules
3. All Predictions

4. All Predictions (Minimum Rules)
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5. Correct Predictions

6. Correct Predictions (Minimum Rules)

Scores 1 and 2 are concerned only with the top ranked rule from each
method for each of the datasets. The top ranked rule is the rule in which
the program has the most confidence and hence hopefully the one with the
most accurate information. If the system was to display only a single rule it
would be this one and hence, this is an important score.

Score 3, takes into account the scores for all rules displayed to the user of
the system. Again, if the rule ranking technique has worked well in the local
approach these scores should not be too low relative to the global approach
or the other scores. Score 4 is similar to this, but uses only the minimum
number of rules produced by the methods for calculating the score for each
test case. For example, if the global approach uses two rules to describe the
test case and the local approach uses four rules to describe the test case then
only two rules from each approach are used in calculating the score.

Score 5 considers only the rules in those test cases correctly predicted by
the system. This score is important as it shows the performance of the system
when it has almost certainly fully understood the case under investigation.
Finally, score 6 uses only the minimum number of rules in each of the correctly
predicted test cases as described above.

There is no comparison made between these results and the results of
other methods of rule extraction from ensembles, e.g. Zhou’s REFNE [69]

(see Section 5.4). This is for two (related) reasons:

e The focus of this thesis is on demonstrating that the local explanation
approach is a viable approach to the problem of explaining the outputs

of an ensemble. There is no sensible application of methods generating

107



global rulesets explaining ensembles for a single network.

e Comparing the results obtained below with the results obtained from
a global model from a different method is an unfair comparison be-
tween two different rule learners - either one could perform better on a

particular dataset.

For these reasons, to make a fair comparison between local and global
rules, it is necessary to use a similar method for the generation of both sets
of rules. The method chosen was to use the C4.5 package and this is described

in more detail in Chapter 6.

8.2 Bronchiolitis
8.2.1 Data
The bronchiolitis dataset has the structure shown in Table 8.1.

Table 8.1: Bronchiolitis dataset structure

Total examples 118
Continuous Features | 10
Symbolic Features 12
Missing Values Yes

The bronchiolitis dataset represents a somewhat poor coverage of the
overall domain. This was confirmed in 5-fold cross validation tests done
in the domain. For each cross validation test, an ensemble comprising 5
networks was built from the training data using bagging to select the data.
Average accuracies were computed for each of the 25 networks along with
average accuracies for the 5 ensembles. For each network trained, a ruleset
was also extracted to model its behaviour. The accuracies of these rulesets

were recorded and likewise the accuracy of these rulesets used as an ensemble
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was also recorded. This provided an insight into how well the rules performed

compared to the original networks. These accuracies are shown in Table 8.2.

Table 8.2: Results of 5-fold cross validation performed on bronchiolitis data

Av =k 8.1
Average Ensemble Accuracy 2.0 % b2 d
Average Rules Ensemble Accuracy | 70.4% + 2.8
Average Network Accuracy 68.8% + 5.2
Average Rules Accuracy 66% =+ 5.7
Average Network/Rules Fidelity B2% L+ 7.6

This table clearly demonstrates the fact that not only did the ensemble
outperform the individual networks but the networks were also quite unsta-
ble. This instability is reflected in the standard deviation figures reported
next to the accuracies. In the case of the individual networks the standard
deviation is more than double that for the ensembles. This feature of an
increase in accuracy and stability is one of the positive features of using

ensembles.

8.2.2 Explanations

The explanations associated with the predictions from both the local and
global approaches were evaluated by Dr. Paul Walsh, an expert in the area
of bronchiolitis.

An example of a rule produced using both the local explanation method
and a global explanation method for the example is shown in Tables 8.3 and
8.4, respectively.

Before analysing these scores, however, it is useful to first see the accu-
racies of the two methods using the ruleset ensembles for predictions on the

test data. This is shown in Table &8.5.
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Table 8.3: Example evaluated by expert (‘?” indicates a missing value)

Feature = Value
Age in Months =317
Anorexia ==
Decreased Activity =0
Smoking ANY = [ .
Smoking MOTHER = ?
Entry Temperature = 37.00
HR = 162.00
HR gt 98% =il

RR1 =.88.010
Sa 02 = 97.00
HR2 = 0.0
HR2 gt 98% = [
RR2 = 2800
Sa 02 2 = 95.00
Dehydration = None
LOC = Alert
Retractions =0
Grunting =1()

BS = 0.00
DecBil =0
Crac and Whez == ]
Whez only = |
Decision = DISCHARGE

The first of the analyses performed on the scores, involved taking the
average of the scores for each example. This was performed twice, once
using all the rules and the second time using only the minimum number of
rules produced by the two methods, e.g. TwWO for the example shown in
Table 8.4. In this way the same number of rules was used in the comparison.
The number of wins, losses and draws for each method was then computed.
This is given in Table 8.6.

Table 8.6 shows that the local explanation approach performs well. Tak-

ing all of the rules into account for each example in the test set, the local
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approach is a clear winner. The probability of getting draws is much higher
when using the minimum set of rules. If there is only a single rule produced
using one of the methods, then, a draw results if the scores for these rules
are the same. When averaging over all the rules, draws are much less likely.

Table 8.7 contains the overall scores calculated for the bronchiolitis re-
sults. The descriptions for these scores are set out in Section 8.1 at the start
of this chapter.

The results from this table clearly show that the local explanation ap-
proach outperforms the globally extracted rules. The average scores are
higher in all cases.

The final statistic that was performed was a pooled t-test. The average
scores for all rules in both local and global approaches were averaged and
from these a pooled standard deviation was calculated. The t-test was found
to be significant at a 90% confidence level. For the score of all the rules using
only the minimum number in either method, this confidence level was 60%.

T-tests were also carried out for the other scores. For the average top
ranked rule score, the confidence level was found to be 70%, while for the
average top ranked rule in correctly identified cases, it was 60%. Lastly, for
the correct predictions, the confidence level found was 70% and for the correct
predictions using only the minimum number of rules from both methods, it
was 90%.

It is expected that given a larger test, these scores would further im-

prove.

8.3 Warfarin
8.3.1 Data

The Warfarin dataset has the structure shown in Table 8.8.
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The evaluation of the Warfarin data is less straightforward. The data sup-
plied for this domain represented excellent coverage of the domain. Therefore,
the explanations extracted using the global approach could be expected to
be reasonably accurate as the global model would miss few of the details in
its construction. This was indeed confirmed to be the case.

A 5-fold cross validation of the dataset was also performed, similarly to
the bronchiolitis data. This involved the construction of 5 ensembles com-
prising 5 networks each. Each of the errors for the ensembles were averaged
and the average error of the 25 networks was also recorded. These results
are shown in Table 8.9.

[t is clear from this table that the ensemble failed to provide a significant
boost in accuracy above that of the individual networks. This is symptomatic

of a well covered domain.

8.3.2 Explanations

The evaluation of the Warfarin results were carried out by Dr. Stephan
Byrne, an expert in the area of administering the Warfarin drug.

One of the ten examples used in the final test set is shown in Table 8.10
and the rules produced for this example are shown in Table 8.11.

The accuracies of both methods using the derived rulesets for predictions
on the ten test points can be seen in Table 8.12.

The first evaluation of this data simply takes the average of each of the
scores for each example and calculates how well the local explanation ap-
proach performs against the alternative rules built to model the ensemble.
The results of this can be seen in Table 8.13.

The results in Table 8.13 show that although the rules built to model the

ensemble do outperform the locally extracted rules, the gap between them is
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not very wide. The ‘Minimum Rules’ row of this table, is where the average
scores of the minimum number of rules produced by both methods for a
particular example is calculated. So for the example shown in Figure 8.10,
this minimum number would be ONE rule.

The detailed analyses of the rules produced for each example is given
in Table 8.14. This table show that the globally extracted rules perform
better than the locally extracted rules (though both methods have relatively
high scores for every category, neither fails dramatically on any analysis).
A description of these scores is contained in Section 8.1 at the start of this
chapter.

In favour of the local explanation, but not visible from these results, is
the fact that only the local explanation produced rules that were marked
as excellent by the expert in the area (half of the examples contained rules
marked as excellent). Also weighting the scores somewhat in favour of the
ensemble modelled global rules is the fact that these rules failed to produce
any explanation for one of the test examples. Thus the effective explanation
quality for this rule was ZERO, but this is not reflected by the averages.

As in the case of the bronchiolitis data a pooled t-test was performed by
averaging all of the rules for both the local and global approaches. Together
with a pooled standard deviation, a t-statistic was found. This statistic was
found to be significant at the 95% confidence level. High confidence level
were maintained for the other scores. This aids in confirming the belief that
the global rules had captured much of the most important information very

succintly.
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8.4 Summary

The evaluation of this work has shown that where the coverage of data is
poor, ensembles can be used to increase accuracy and stability over a single
model. Where there is good coverage in the data, using an ensemble leads
to little, if any, improvement in the predictive accuracy.

Furthermore, explanation of predictions in a poorly covered domain are
greatly improved by the use of local explanation techniques. The local ap-
proach delays the production of explanations until the last possible moment,
thus maximising the information available and producing a better expla-
nation. The bronchiolits data demonstrates this phenomenon. The rules
produced by the global model lacked sufficient detail and/or feature values
were incorrect.

Although the scores given by the expert for the rules may seem low, there
are a number of reasons for this. There are general reasons that apply to
both datasets and more specific reasons for each dataset.

The quality of rules outputted by this system is highly dependent on
the underlying rule generation technique. For this implementation C4.5 was
used. A different rule inducer may produce better results.

Medical data is also inherently noisy. This noise may come from several

places, but two important factors are:

e Symptoms are recorded at time of entry

e There are many extraneous factors not captured by the data available

The bronchiolitis dataset is very prone to the time symptoms are recorded.
When presented with a child displaying symptoms of bronchiolitis, a doctor

may use his/her experience and senses (e.g. touch and sight of the child)
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to admit that child before the symptoms become severe. In addition, when
any doubt whatsoever exists, the child is more likely to be admitted. The
symptoms presented to the machine learner, however, are those of the child
at time of entry and these may not yet have progressed to a level mandating
entry.

The problem of extraneous factors in the dataset is also clearly visible
in the bronchiolitis dataset. The expert in this area posed the example of a
child who was otherwise healthy but whose mother abused drugs and hence
the child would most likely be admitted to hospital.

In the case of the bronchiolitis data, the criteria used by the doctor in
evaluating the explanations was to compare the explanations to published
criteria to be used when evaluating children presenting symptoms of bron-
chiolitis. To exactly model these criteria is an extremely difficult proposition
for any machine learning algorithm, particularly in the presence of the noise
described above.

The results in the case of the Warfarin dataset, could have been greatly
improved by using the entire dataset. Only a subset of the data was used in
order to increase the difficulty of the problem.

In contrast, global models must make a trade-off between fidelity and
comprehensibility as they try to explain an entire domain in a single model.
As a consequence of this trade-off, important traits and characteristics in
the individual models may be lost. In a well covered domain, for example
Warfarin, the most important characteristics of the data are well represented
and the global model represents a good explanation of the domain. Even in
this well covered domain, however, the global model lost some of the finest
details. The best rules from the point of view of the expert, therefore, were

produced by the local explanation approach.



It could be argued that statistically it is more likely that excellent rules
will appear in the local approach as more rules are outputted. However,
this ignores the fact that the local approach must rank a potentially large
number of rules and these excellent rules were consistently ranked highly and
therefore output to the user. Also if the global model had truly covered all
details of the domain, it too would have been graded as excellent. This was
not the case and it is therefore clear that the comprehensibility /fidelity trade
off was taking place and important details were being dropped. Also, the local
approach does not require that a large number of rules are outputted and it
still displays good performance when only the top ranked rule is considered.

This shows that the rule ranking technique works well.
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Table 8.4: Rules produced for the example in Table 8.3

Local

Global

[0.00]

IF Entry Temperature <=
44.96

AND Sa O2 > 93.18

AND LOC = Alert

AND Crac and Whez = 0
AND BS <= 0.27

THEN DISCHARGE

[0.00]

IF HR > 141.00

AND Dehydration = None
AND Retractions = 0
AND Age Months > 1.87
THEN DISCHARGE

[0.00]

IF Sa O2 > 93.50

AND LOC = Alert

AND Crac and Whez = 0
AND BS <= 0.27

THEN DISCHARGE

[0.00]

IF Sa 02 2 > 91.89

AND Dehydration = None
AND Retractions = 0
AND Age in Months > 1.87
THEN DISCHARGE

[0.00]

IF' Age in Months > 1.87
AND Sa 02 > 95.30

AND Dehydration = None
AND HR <= 166.00
THEN DISCHARGE

[0.00]

1B:Sa(@2: > 94152

AND HR2 «= 131:23
AND Crac and Whez = 0
AND RR2 <= 29.37
THEN DISCHARGE

[0.00]

IF' Sa O2 > 95.55
AND RR2 <= 31.89
AND BS <= 0.10
AND Whez only =1
THEN DISCHARGE



Table 8.5: Accuracies on test data

Accuracy

Local explanation

90%

Ensemble Model Rules 70%

Table 8.6: Wins, losses and draws for the rules computed by the local expla-

nation method

Wins | Losses | Draws
All Rules 7 3 0
Minimum Rules 4 3 3

Table 8.7: Analysis of rules generated for bronchiolitis data

Locally Extracted Rules

Global Rules

Average Top Rules 2.8 2.5
Average Top Correct Rule 2.89 2.7k
All Predictions 2.84 2.42
All Predictions (Minimum Rules) 2.53 2.42
Correct Predictions 2.76 2.5
Correct Predictions (Minimum Rules) 3.04 2.5

Table 8.8: Warfarin dataset structure

Total Examples

323

Continuous Features | 8

Symbolic Features 5

Missing Values

0

Table 8.9: Results of 5-fold cross validation performed on Warfarin data

Av. .50,

Average Ensemble Accuracy

70.1% + 7.9

Average Rules Ensemble Accuracy | 70.6% £+ 6.0

Average Network Accuracy

70.7% £ 6.9

Average Rules Accuracy

71.1% + 6.9

Average Network/Rules Fidelity 89.7% £ 4.9
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Table 8.10: Example evaluated by expert

Feature = Value

Age = Th.0f)
Weight = 62 70
INRMeasurement = 2.30
PreviousDose = 3.29
TherapyDuration = 127.00
TargetINR = J.¢0
NoADR = NoAdverse
Gender = Female
CurrentMedicines = None
OTEC = None
Alcohol = 0.00
Compliance = TooMuch
INR Delta = 1.45
Dosage = 2 <= SubsequentDose < 5
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Table 8.11: Rules produced for the example in Table 8.10

Local Global
[0.00] [0.71]
IF Age > 73.39 IF 1.53 < INRMeasurement <=
AND Alcohol <= 3.94 a7
AND INR Delta <= 1.84 AND 0.90 < PreviousDose <=
THEN 2 <= SubsequentDose < 5 | 3.58

[0.08]

IF' Age > 59.25

AND 2.07 < PreviousDose <=
4.05

AND INR Delta > -1.02

THEN 2 <= SubsequentDose < 5

[0.31]

IF' Age > 51.33

AND 2.07 < PreviousDose <=
4.51

AND Alcohol <= 19.70

THEN 2 <= SubsequentDose < 5

[0.36]

IF 1.58 < INRMeasurement <=
AND 2.82 < PreviousDose <=
3:53

AND Alcohol <= 16.38

THEN 2 <= SubsequentDose < 5

[0.56]

IF Age > 63.27

AND 1.63 < PreviousDose <=
5.28

THEN 2 <= SubsequentDose <

)

AND Alcohol <= 14.22
AND INR Delta <= 2.31
THEN 2 <= SubsequentDose <

5
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Table 8.12: Accuracies on test data

Accuracy

Local Explanation

80%

Ensemble Model Rules 70%

Table 8.13: Wins, losses and draws for the rules computed by the local

explanation method

Wins | Losses | Draws
All Rules 3 6 1
Minimum Rules 4 5 |

Table 8.14: Analysis of rules generated for the Warfarin data

Locally Extracted Rules

Global Rules

Average Top Rules 3.3 3.78
Average Top Correct Rules 3.38 4

All Predictions 3.24 3.79
All Predictions (Minimum Rules) 3.21 3.79
Correct Predictions 3.38 3.92
Correct Predictions (Minimum Rules) 3.24 3.92
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Chapter 9

Conclusions & Future Work

The research and factual data used as part of this thesis clearly demonstrates
that explanation on a case by case basis, also known as local explanation,
is a viable approach for solving certain problems. Included among these
problems are those where the prediction being explained must be acted upon
in a timely fashion and where there is no need to fully analyse the domain.

Local explanation is of particular value in poorly covered domains. The
bronchiolitis data studied in this thesis is an excellent example of such a
domain. When producing a single global model of this domain many details,
that were included in the rules presented on a case by case basis, were omitted
from the final model .

In a domain with better coverage, such as the Warfarin domain, this the-
sis demonstrated that the rules extracted from the global model performed
equally well or outperformed those extracted locally. This is because impor-
tant traits in the data were well represented in the individual models and
little information was lost in preparing the full global model.

The rule ranking criteria proposed in this thesis performed well in select-
ing some of the better rules to be displayed to the user. Furthermore, this

rule ranking criteria intuitively selects rules that are also likely to be selected
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by a non-expert user.

Medical data sets have long been an important source of data for machine
learning practitioners. Frequently, however, more emphasis has been placed
on making accurate predictions with little or even no importance placed on
explanation of the results. A principal aim of this thesis was to redress this
imbalance by providing a general framework for explanation. With more
work in the area of explanation, we may see greater user acceptance of ma-
chine learning software by the medical community and other users. When
the user can decide for himself the correctness of the prediction, it will be
perceived as less of a threat and more of an aid to the user.

Medical datasets also have problems, which although perhaps not unique
to them, are very apparent. For instance, different output classes may have
different explanation requirements. The complexity of the solution may vary
according to the class being predicted. For example, a child showing just a
single symptom of bronchiolitis should be admitted to hospital, whereas a
child to be discharged must meet more stringent criteria. The explanation
presented to the user for a prediction must therefore to the greatest extent
possible follow these conditions.

There is perhaps an even greater problem when studying medical datasets.
Often the examples provided for training represent as much information as
possible. However, external factors relative to the patient’s lifestyle and even
doctor experience to admit a patient before the patient’s symptoms become
serious can mean that the symptoms recorded may not reflect the true seri-
ousness or otherwise of a patient’s illness. Many of the features that might
be expected to be very predictive of the output do not perform that well
in practice. This has a knock on effect on the quality of the rules output.

This limitation may need to be overcome by using a more select number of
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training examples that include less overall noise.

9.1 Future Work

Future work in the areas covered by this thesis could include:
e Problems involving regression outputs

e Improved feature selectors - possibly making use of Fiirnkranz’s round

robin technique [28]
e Improved data capture
e Introducing standard measures of comprehensibility

There are many interesting regression problems in both the medical and
financial fields. This may not be too difficult to model. In the same way that
a fit can be found for examples to the rule antecedent, a similar fit could also
be found for the rule output.

An interesting problem that became clear during the research conducted
for this thesis was the need for good feature selection. One approach to this
problem could include performing feature selection on a class by class basis.
This would entail finding the most predictive features of each of the classes
and only using those features for predicting that class. It is not entirely clear
how this could be done.

One possible solution may be to use round robin learning [28] and learn
the best set of features for a class when trained with one other class. Training
could also proceed using round robin learning and using the best subset of
features for “learning” each class. The explanations are most likely to contain

the best features for those classifications when explaining the outputs.
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Although this thesis is not strictly focused at the medical world, the need
for improved data capture from medical systems is an important requirement
that became apparent as the research progressed. From a machine learning
perspective, this data capture could help improve on the current ad hoc
methods of extracting the data for later analysis. With careful consideration
during the building of such a system, data could be more easily filtered to
exclude possible outliers not representative of the problem being studied (e.g.
patients whose diagnosis is not necessarily reflective of the symptoms first
presented).

A final area of future work is also multi disciplinary. Current machine
learning research focuses almost exclusively on accuracy as a means of identi-
fying the most useful methods. More work is required to introduce standard
measures of comprehensibility that can be used to assess the usability of

methods.
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Appendix A

Dataset Features

Table A.1: Bronchiolitis data features

Age in Months
Anorexia
Decreased Activity
Smoking ANY
Smoking MOTHER
Entry Temperature
HR

HR gt 98%

RR1

Sa 02

HR2

HR2 gt 98%

RR2

8a 02 2
Dehydration

LOC

Retractions
Grunting

BS

DecBil

Crac and Whez
Whez only

Age of a child in months

Indicates if a child is suffering from anorexia
Indicates decreased activity of the child
Number of smokers in a household

Smoking Mother?

Temperature of child

Heart Rate

Heart Rate greater than 98th percentile
Resting Rate

Oxygen blood saturation level

Heart rate after treatment

Heart Rate greater than 98th percentile after treatment
Resting Rate

Oxygen blood saturation level after treatment
Dehydration

Level of Consciousness

Retractions

Grunting

Breath Sounds

Decreased Billirubin

Crackles & Wheezes

Wheezing Only
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Table A.2: Warfarin data features

Age

Weight
INRMeasurement
PreviousDose
TherapyDuration
TargetINR
NoADR

Gender
CurrentMedicines
oTC

Alcohol
Compliance

INR Delta

Age of patient

Weight of patient

INR Measurement

Previous Dose of Warfarin administered
Duration of therapy

Target INR

Number of ADR

Male/Female

Taking current medicine

oTC

Units of alcohol consumption in units
Compliance with drug regime
Change of INR




