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Abstract

The exploitation of flow pulsation is a potentially useful technique for enhanced cooling in

single-phase cooling systems. This thesis contains parametric analyses of the hydrodynamics

and heat transfer of a laminar hydrodynamically- and thermally-developed sinusoidally-

pulsating flow in a rectangular channel using experimental measurements, novel analytical

solutions and numerical CFD simulations. The pulsating velocity profiles over two bisecting

planes of the channel cross-section are taken using particle image velocimetry (PIV). The

pulsating wall temperature and convective heat flux profiles are measured using infrared ther-

mography (IRT). To the best of the author’s knowledge, the velocity measurements constitute

the first experimental verification of theory over two dimensions of a rectangular channel,

while the local time-dependent temperature measurements are the first in a heated pipe or

channel. It is found that the temperature profile is formed primarily by fluid displacement

against the axial temperature gradient, although appreciable thermal diffusion occurs for low

Prandtl numbers and long pulsation time scales. As a result, the local displacement gradient

at the wall is approximately proportional to the local temperature gradient for the ideal

constant temperature boundary condition. For realistic boundary conditions, the increased

instantaneous near-wall velocity gradients of pulsating flow act to increase the heat flux at

the wall. However, the velocity and temperature fields also interact through the non-obvious

second order effect of oscillation-induced diffusivity that moves heat towards the channel

entrance and reduces advective heat transfer with respect to steady flow. The time-averaged

change in Nusselt number is universally negative, although intervals and local regions of heat

transfer enhancement exist. The results are subject to the assumptions of a unidirectional,

hydrodynamically- and thermally-developed flow with flow reversal precluded and negligible

axial temperature gradient fluctuations, axial conduction and viscous heating.
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z Acting about ẑ axis
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Chapter 1

Introduction

1.1 Research Motivation

The background to this research is a collaboration between the Fluids and Heat Transfer

Research Group of Trinity College Dublin and the Thermal Management Research Group

of Bell Labs Ireland. Thus, the motivations primarily concern advances in the thermal

management of telecommunications technology. This chapter briefly explores the background,

practical benefits and applications of the research work.

1.1.1 Thermal Challenges in Electronics and Photonics Devices

Modern technological innovation in the ICT sector remains continually dependent on the

removal of the significant amounts of heat generated by electronic and photonic components.

In computing applications, the persistent size and cost reduction of semiconductor discretes

has enabled the integration of hundreds of millions of transistors in three-dimensional

architectures within microprocessors [1]. Although this spatial optimisation reduces physical

distances and communication times between cores and memory, the increased power densities

and thermal fluxes require the integration of smart thermal solutions at the design stage [2].

In telecommunications, the demand for global mobile connectivity imposed by online utilities

such as cloud computing and the Internet of Things (IoT) is causing network requirements

to grow exponentially, surpassing 1 Pb/s by 2020 according to projections [3]. It is widely

accepted that network traffic is outgrowing system capacity with the present rate of evolution
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1.1. RESEARCH MOTIVATION

[4], meaning that a transformation in network architecture must accommodate these advances

in web-based consumer technology. While a transition from the use of copper to fibre optics

to transfer information is already underway, the current photonics integrated circuits (PICs)

which integrate multiple optical devices are expensive, not scalable and thermally inefficient.

While the lasers used dissipate just 100 mW each, their small volume results in very high

localized heat fluxes of the order of 1 kW/cm2 [5]. The enhanced functionality and continued

miniaturisation of these packages are causing traditional cooling solutions to approach their

upper limit and new thermal solutions must be developed.

1.1.2 Microfluidic Liquid-Cooling

Since the early work of Tuckerman and Pease [6], liquid-cooling systems involving mi-

crochannel (10 µm < Dh ≤ 200 µm) heat sinks have been commonly cited as a solution

to the high heat fluxes that result from the sustained miniaturisation of electronics pack-

ages [7]. While the high heat transfer rate of two-phase flow boiling in these architectures

has been widely acclaimed as the most promising technique, it is still a number of years

away from becoming a plausible solution due to the stability problems with which it is

associated [8]. Hence, heat transfer augmentation in single-phase flow remains an entirely

active research area. Thermal technologies involving microchannel heat sinks have been

implemented by Fujitsu in high-end servers [9] and by IBM for cooling high power chips

[10]. Similarly, the use of microchannels embedded in a submount has been suggested to

Figure 1.1: Microchannels integrated with photonics integrated circuits (PICs), Jeffers et al. [5].
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facilitate the integration of electrical and photonic components [5], as illustrated in Figure

1.1. The self-contained flow loop depicted in Figure 1.2 is driven by a fluid micropump

integrated within the optoelectronic package, which must be compact, reliable and energy

efficient. Microscale pumping solutions were originally proposed about thirty years ago [11]

and remain an active area of research due to the demanding pumping requirements and space

constraints in electronics packages [12]. Most systems use large external pumps, though the

ideal solution involves the integration of the micropump directly into the microchannel heat

sink, since the size, channel length and pressure drop are reduced [13]. For example, pumps

and channels have been integrated into self-cooled printed circuit boards (PCBs) [14]. A

common structure of micropumps involves a deflectable membrane that vibrates in a pumping

chamber, with one or more valves to direct the flow, as depicted in Figure 1.3. Actuation

methods include piezoelectric, electrostatic, peristaltic, thermo-pneumatic and liquid-vapour

phase change techniques. The flow rate and pressure drop of the inherently unsteady flow

generated depend on features of the pump including the actuator type and chamber geometry.

The type and number of valves affects the rectification of the flow and shape of the overall

flow rate pulsations.

Figure 1.2: Schematic of microfluidic flow loop, Enright et al. [3].
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1.1.3 Applications of Unsteady Flow

Interestingly, the inherent pulsations generated using a piezoelectric element and vibrating

membrane have been found to enhance heat transfer by as much as 40% in minichannel heat

sinks at low Reynolds numbers [16]. Also, the diaphragm of an integrated micropump has

been found to enhance heat transfer in channels, with large heat fluxes expected using larger

diaphragms [17]. While Poiseuille flow velocity profiles are self-similar – and therefore bound

the Nusselt number – it is thought that pulsation alters the thickness of the hydrodynamic

and thermal boundary layers, the near-wall gradients and the overall thermal resistance to

heat transfer. Single-phase pulsating (non-zero mean) and oscillating (zero mean) flows have

been successfully implemented in a variety of applications. Wälchli et al. [18] exploited this

mechanism to spread heat to a large area in the primary liquid cooling loop of a thin form

factor solution for blade server modules, with heat being exchanged to a secondary cooling

Figure 1.3: Structure and operating principle of diaphragm micropump that may be driven by
piezoelectric element, Laser and Santiago [15].
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loop of oscillating air flow. With moderately high frequencies, a peak cooling performance

of 180 W/cm2 was achieved using a pumping power of 1 W [19]. Walsh et al. [20] employed

an oscillatory flow device in a microelectronic PC cabinet to reduce component operating

temperature by as much as 40% from steady flow temperatures. Kurzweg and Zhao [21]

patented a capillary tube bundle that uses oscillatory flow to transport heat from a hot to a

cold reservoir without accompanying net mass transport [22], with applications including

heat removal from radioactive fluids and heat transfer in zero gravity.

At the macroscale of industrial processes, Keil and Baird [23] demonstrated heat transfer

enhancement of up to 31% compared to steady flow in a shell and tube heat exchanger.

However since space restrictions aren’t necessarily strict, the low additional cost of a unit

with a larger footprint with sufficient capacity may limit adoption of the technology on

the basis of thermal performance alone. More significant in such applications may be

the capability of flow unsteadiness to mitigate fouling [24], the global cost of which has

been estimated at greater than $4.13 billion in the petrochemical industry, due to increased

capital expenditure, maintenance costs, and productivity losses [25]. Fouling increases the

thermal resistance, causes local hotspots by maldistribution of fluid in parallel channels, and

demands additional pumping power because of the diminished cross-sectional area. The

high near-wall velocity gradients of pulsating flow break up deposits at the heat exchanger

surface, as demonstrated in the removal of bacteria from stainless steel equipment [26]

and in the prevention of deposits in biomaterials processing [27]. Also, utilisation of the

mechanical and thermal effects of fluid flow, rather than the chemistry of cleaning agents,

may reduce the toxicity and environmental impact of chemicals required in retrospective

cleaning applications. Gillham et al. [28] found that the cleaning rates of whey protein

agglomerates, deposited in the thermal treatment of milk and dairy products, were especially

sensitive to pulse amplitude and the presence of reverse flow. Enhanced cleaning and heat

transfer rates of 250% and 100%, respectively, were measured using low-frequency, large

amplitude pulsations.

Hence, pulsating flow may improve the performance of heat exchangers by enhancing

heat transfer, preventing fouling and aiding cleaning with applications in the electronics

cooling, food processing and petrochemical industries. The practical benefits depend on

the input frequency and amplitude variables but, more specifically, on the influence of these
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parameters on features of the flow such as near-wall velocity gradients and flow reversal.

1.2 Research Objectives

A multitude of applied studies have successfully demonstrated the feasibility of unsteady

cooling solutions; however, the top-down or black box approach to system design has failed

to identify the underlying physical mechanisms. To this day, the literature continues to assert

that the results of existing studies are contradictory or inconsistent [29, 30]. This owes in

part to high variability in a large parameter space, which contains geometric dissimilarities,

differing material properties, varying unsteady characteristics, and disagreements in the

definition of heat transfer enhancement. For example, the heat transfer characteristics for

even the simplest cases of pulsating flow in two-dimensional channels are not well understood.

The primary aim of this PhD thesis is simple:

• to investigate whether a hydrodynamically- and thermally-developed sinusoidally-

pulsating flow enhances heat transfer in a rectangular channel geometry.

Since pulsating flow is of primary interest, heat transfer enhancement is defined rela-

tive to a steady flow with a flow rate equal to the time-average of the pulsating flow rate.

Although the mechanical and thermal problems are inextricably linked, decoupling of the

local instantaneous parameters provides insight into underlying physical mechanisms. The

principal objective may hence be split into secondary objectives:

• to investigate and characterise the fluid mechanics of pulsatile flow using complemen-

tary analytical, numerical and experimental analyses.

• to investigate and characterise the heat transfer of pulsatile flow using similar analyses.

• to couple the hydrodynamic and thermal problems on a local time-dependent basis to

understand any underlying mechanisms and exploit and optimise any potential heat

transfer enhancement.

The variation of the pertinent parameters with channel aspect ratio is beyond the scope of

this thesis. Since local verification of the hydrodynamic and thermal models is desired, the
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research is focused on a macro-scale channel, with the hope that future work might validate

the theory at the microscale. While this bottom-up approach is further removed from the

implementation of unsteady cooling solutions at an applications level, it is hoped that such an

investigation can facilitate the understanding and optimisation of future heat removal systems.

Finally, it is hoped that this fundamental problem can act as a general case study, which can

identify the manner in which the hydrodynamic and thermal problems are coupled, and how

they are affected by superimposed unsteadiness on a local time-dependent basis.

1.3 Outline of Thesis

The chapters of this thesis are structured to achieve the primary and secondary research

objectives in a logical systematic manner. Initially, the hydrodynamic and heat transfer

problems are discussed in isolation before being consolidated in the final chapters. Chapter

2 performs a review of the literature, addressing any contradictions and inconsistencies found

with respect to the question of heat transfer enhancement. Sections 2.1 and 2.2 overview the

relevant hydrodynamic and thermal studies, respectively. Chapter 3 develops an analytical

framework for modelling pulsating flow. Section 3.2 expands an existing analytical solution to

the hydrodynamic problem, while Section 3.3 derives a novel solution to the thermal problem.

Chapter 4 overviews the design and analysis of separate hydrodynamic (Section 4.1.1)

and thermal (Section 4.1.2) test facilities for measuring the local time-dependent velocities

and temperatures of pulsating flow. Chapter 5 develops a computational fluid dynamics

(CFD) model for the hydrodynamic and thermal characteristics of pulsating flow. Chapter 6

validates the hydrodynamic models using particle image velocimetry (PIV) measurements,

and investigates any underlying hydrodynamic mechanisms using the complete data provided

by the theoretical solutions. Chapter 7 investigates any underlying thermal mechanisms

using the complete data provided by the theoretical models. Chapter 8 assesses the validity

of assumptions made in the idealised analytical thermal model, especially in the near-wall

region, using infrared thermography (IRT). Chapter 10 provides an overview of the work

done and summarises the main findings from the research.
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Chapter 2

Literature Review

As stated in Chapter 1, the current research is concerned with a laminar incompressible

hydrodynamically- and thermally-developed sinusoidally-pulsating flow in a rectangular

channel geometry. As expected, this flow is fundamentally similar to flow in a circular pipe

[31] and a flat plate boundary layer (as discussed in Section 2.1), but also contains physical

similarities to acoustically-excited compressible flows (as discussed in Section 2.2.2.2). In

contrast, pulsating and synthetic jet flows are quite different, owing to vortices and turbulence.

By definition, pulsating or modulating flow has a non-zero mean flow rate while oscillating,

reciprocating, or periodically-reversing flow has zero-mean advection. However, since the

governing momentum and energy equations are linearised (this is developed rigorously in

Chapter 3), the flows are superposable and are discussed interchangeably throughout this

thesis.

The complexity of the unsteady internal flow problem necessitates a detailed review of

the interdependence of the fundamental flow variables on a parametric basis. While the

mechanical and thermal fields are inextricably linked, it is useful to temporarily decouple

the respective problems to give insight into underlying physical mechanisms that may

effect a change in heat transfer. Many aspects of the hydrodynamic problem are well

understood. A multitude of analytical studies have analysed the interdependence of the

velocity, wall shear stress and pressure gradient with time and frequency, using mathematical

solution techniques including Fourier expansion [32], Laplace transform [33] and Green’s

function [31] methods. Moreover, confirmatory experimental works have measured the
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time-dependent velocity profiles in a pipe using experimental techniques including hot wire

anemometry, laser Doppler velocimetry and flow visualisation. The heat transfer problem

is less developed in comparison. Early analytical solutions were highly idealised, using

the slug flow assumption [34] or focusing on the behaviour of slowly pulsating flows [35].

Comprehensive analytical solutions in pipes have only become available in recent times

using the method of undetermined coefficients [29] and the Laplace transform technique [30].

Furthermore, the literature contains a comparative lack of experimental data, especially with

respect to local time-dependent measurements. The handful of studies that do exist have

used a thermo-sensitive liquid-crystal tracer technique and planar laser-induced fluorescence

(PLIF).

2.1 Hydrodynamics of Unsteady Flow

Unsteady flow was treated mathematically as early as 1851 with Stokes’ second problem

[36], which considers the one-dimensional shear flow of a viscous fluid near a flat plate

vibrating in a direction parallel to its length. The flow is laminar and propagation in the

transverse direction is solely as a result of viscosity in a phenomenon that is essentially a

diffusion of vorticity and momentum by molecular action. Figure 2.1(a) presents the velocity

oscillations for the flow, which models the spreading of transverse velocity oscillations from

the boundary. The amplitudes of the velocity oscillations decay exponentially with distance

from the wall and the phase lag increases. The region affected by oscillations is constrained

since gradients in the flow are repeatedly annulled by those with opposite sign and a finite

layer of vorticity forms close to the surface called the Stokes boundary layer. The extent

of this layer may be arbitrarily defined based on the relative size of the near-wall and free

stream velocity amplitudes. Typically, the Stokes layer thickness is chosen as the distance at

which fluid elements experience 1% of the effects of the boundary oscillations.

The linearity of the governing momentum equation (discussed further in Chapter 3)

imposes an inherent similarity between wall-driven fluid oscillations and those resulting

from a harmonically-oscillating pressure gradient acting over the cross-sectional area of

the fluid. Hence, the latter may be constructed by superposition of solutions. To realise

the no-slip boundary condition at the wall, the solution can be subtracted from a globally
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2.1. HYDRODYNAMICS OF UNSTEADY FLOW

Figure 2.1: Stokes’ second problem (a) flow above an oscillating infinite plate (b) an oscillating stream
above a fixed plate, White [37].

uniform velocity oscillation imposed by an oscillating pressure gradient applied uniformly

in the transverse direction. Figure 2.1 illustrates the similarity of these flows with entirely

different driving forces. Despite its convenient construction from Stokes’ second problem, the

similarly-shaped velocity profiles of a quickly oscillating body of fluid are not a consequence

of viscous lag between fluid layers. Viscous stresses reduce the momentum of fluid layers
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near the wall, which are inclined to reverse quickly when the pressure gradient reverses. A

steady flow may also be added to simulate a pulsating flow. Furthermore, the boundary layer

problem is a generalisation of the internal flow in an enclosed vessel and the behaviour of the

pertinent parameters is characteristically similar.

2.1.1 Dimensionless Hydrodynamic Parameters

A sinusoidal pulsation is characterised by its mean, amplitude and frequency. The dimen-

sionless parameter for the steady component of the flow is the Reynolds number Re0, which

gives the prominence of viscous forces relative to inertial forces:

Re0 =
〈û0〉Dh

ν
=
〈û0〉/Dh

ν/D2
h

(2.1)

where 〈û0〉 is the spatially-averaged dimensional velocity, ν is the kinematic viscosity, and

the hydraulic diameter Dh is a measure of the cross-sectional size of the vessel. Square and

circular ducts with the same Dh have the same pressure gradient per unit length. Alternatively,

the equivalent diameter is used where the cross-sectional area is kept constant [31]. The

Reynolds number also conveys the ratio of convective and diffusive time scales. In contrast,

the behaviour of an unsteady flow is described by the Womersley number [38], which

measures the ratio of oscillatory and diffusive time scales:

Wo =
Dh

2

√
ω

ν
(2.2)

where ω is the angular frequency. Wo equivalently defines the relative size of the duct in

comparison with the Stokes layer thickness. Alternatively, the kinetic Reynolds number

Reω = 4Wo2 is used, so-called because the dimensionless frequency plays the same role

as the Reynolds number does in uni-directional steady flow. Analogous to the study of

laminar/turbulent flow transition the frequency-dependent evolution of the interaction between

viscous and inertial forces governs transition between characteristic regimes of unsteadiness.

In an oscillatory flow, the magnitude of oscillations may be measured by the dimensionless

amplitude parameter:
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A0 =
2〈χ̂A〉

Dh
(2.3)

where 〈χ̂A〉 is the amplitude of the spatially-averaged dimensional displacement (equal to half

of the tidal displacement). A0 measures the length over which a fluid element is displaced

during a cycle, compared with the hydraulic diameter. Often in pulsating flows, the flow rate

amplitude QA/Q0 is used instead.

Interestingly, the steady component has no effect on the characteristic behaviour of

a pulsating flow (assuming that it is not high enough to trigger turbulence) and only the

oscillating components of the flow need generally be considered. Furthermore, the amplitudes

of the pertinent parameters are found to be directly proportional to the driving pressure

gradients [39], such that the hydrodynamics of pulsating and oscillating flows are completely

characterised by the frequency parameter alone. The evolving relationships between the

time-dependent velocity profiles, flow rate, wall shear stress and pressure gradient with

varying pulsation parameters are conveniently captured by the historical development of

analytical solutions and subsequent experimental confirmation.

2.1.2 Velocity Profiles, Flow Rate and Pressure Gradient

Holmes and Vermeulen [40] measured the velocity profiles of rectangular ducts with aspect

ratios of 1, 0.25, 0.15 and 0.1 using a flow visualisation technique, finding the results to be in

excellent agreement with theory. In the narrower channels, the measurements – which appear

to have been taken over the longer dimension only – have a maximum error near the wall.

This is attributed to the high near-wall velocity gradients associated with ducts of this form

factor that generate a high percentage error for a relatively small discrepancy in slope.

In acoustical studies on Helmholtz resonator tubes, Richardson [41] became the first

to observe the near-wall velocity maximum that is uniquely characteristic of oscillating

flow. Velocity measurements were taken by traversing a hot wire anemometer across the

mouth of the orifice with a compressible reciprocating flow generated by the motion of a

piston coupled to an electric motor by a long crank. While the phenomenon has come to

be known as Richardson’s annular effect, it is actually not related to geometry and was

correctly attributed to the lesser inertia of the viscously-damped outter annuli of the tube. In
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Figure 2.2: Near-wall velocity overshoot in a square section for Wo = 34.6, 48.9, 58.5, 69.2 and 77.4,
Richardson and Tyler [42].

a subsequent confirmatory work, Richardson and Tyler [42] measured the effect in ducts with

alternative shapes, such as that shown for a square section in Figure 2.2. Ironically, it seems

that the latter pioneering work – which precedes even the mathematical solutions – contains

the only published experimental velocity data in a channel other than that of the current

authors. However, the results differ significantly from the theory of Chapter 3, away from

the phenomenon of interest for the solitary phase values investigated. While the magnitude

and location of the overshoot were captured reasonably well for the slower oscillations, an

error in magnitude of as much as 23% at higher frequencies has been estimated using a plot

digitiser. Furthermore, the accuracy of the centreline velocity was poor, differing by as much

as a factor of 2.5 at the high frequencies. It is likely that much of this error originates from

the measurement technique. The hot-wire probe causes a blockage that disturbs the flow field.

Hence, non-intrusive techniques have more recently been utilised.

Understanding of the behaviour over the complete oscillation cycle followed from analyt-

ical theory, beginning with Sexl [43] who solved the Navier-Stokes equations for velocity

in a pipe geometry. Uchida [32] extended the solution to study its relationship with the

flow rate, pressure gradient and wall shear stress in a comprehensive parametric study. Fan

and Chao [31] developed analytical solutions for steady, oscillating and pulsating flows in

a two-dimensional channel using the method of Green’s functions. Figure 2.3 presents the

oscillating velocity profiles for a fixed cosine wave pressure gradient in a narrow rectangular
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duct for low and high frequencies. At very low frequencies, the velocity profiles are parabolic

– each resembling a steady laminar profile at that instantaneous flow rate oscillating in phase

with the flow rate and pressure gradient. At large frequencies, the velocity profiles become

flatter near the centre of the pipe with a maximum flow velocity that is offset from the centre-

line and the phase difference between the pressure gradient and flow rate is π/2. The study

also found that the minimum pressure gradient occurred for a square duct. The method of

Fourier analysis pioneered by Uchida lends itself well to the analysis of amplitude and phase

alterations experienced by the important flow variables, as a function of frequency. Figure

2.4 plots the behaviour of the amplitude and phase of flow rate, for fixed pressure gradient

oscillations. As expected, less flow is induced owing to an increase in work input required to

maintain harmonic motion, and the phase delay approaches π/2 at high frequencies.

With a series of predictive equations developed, a series of experimental works set about

confirming the relationships between the important variables using various flow measurement

techniques. By introducing a thin filament of black ink into a pulsating pipe flow, Linford

and Ryan [44] performed a frame-by-frame analysis of the velocity at various radial positions

to within 2.5 mm of the wall, observing the behaviour of the near-wall overshoot with

time. Measurements were performed over the range 1.83 ≤Wo≤ 21, though the sinusoidal

pulsations contained higher harmonics at high frequencies, probably due to turbulence. Also,

the flow rate was calculated as a function of pressure gradient measurements, with the error in

pressure measurements less than 5% of the amplitude. As predicted by theoretical solutions

and partially shown by the experimental results of Hershey and Song [45], the pressure drops

associated with higher values of Wo were larger.

With a view to developing a technique for measuring the rheological properties of

viscoelastic fluids, Harris et al. [46] generated oscillatory motion in a Newtonian mixture of

glycerol and propane using a bellows coupled to a gear box which allowed the frequency to

be varied over 4.4≤Wo≤ 11.6. Cams with differing eccentricities allowed the volumetric

displacement to be varied to A0 = 0.98 and 1.43. The velocity profiles were estimated using a

flow visualisation technique where the tracks of suspended 250 µm polystyrene spheres were

photographed by a camera operating a long exposure. Results were found to be in excellent

agreement with the theoretical solution adjusted in terms of track length of the particles. Muto

and Nakane [47] used a similar visualisation technique to investigate oscillating (1.3 ≤Wo≤
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Figure 2.3: Oscillating velocity profiles in a narrow rectangular duct with an aspect ratio of 10 for
Wo = 0.4 (ψ = 0.5) and Wo = 12.9 (ψ = 500) at duct centre (ξ = 0) and near the wall (ξ = 0.8), Fan
and Chao [31].

23) and pulsating (2≤Wo≤ 12, 0.5≤QA/Q0≤2) flows in a circular tube. Oscillatory motion

was induced by a reciprocating piston with the dimensionless amplitude kept approximately

constant A0 = 0.53−0.64, while the optional mean flow was superimposed using a pump.

250 µm diameter aluminium particles suspended in a viscous glycerin-water solution were

illuminated using a light source concentrated into a thin sheet using a pair of slits. The tracks
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Figure 2.4: Amplitude (= σu) and phase (= δu) of flow rate with frequency Wo (= ka) for constant
pressure gradient oscillations in a pipe, Uchida [32].

were photographed using a camera triggered by motion of the piston and exposed for a time

interval. The velocity could therefore be calculated by measuring the length of the particle

tracks. The results were found to coincide well with theory.

Laser Doppler velocimetry was used by Denison and Stevenson [48] to measure oscillat-

ing flows (1.71≤Wo≤ 14.1) in a pipe. The directionally-sensitive laser velocimeter operates

by detecting the Doppler frequency shift produced when coherent light is scattered from

small moving particles seeded in the flow. Oscillations between two water tanks were gener-

ated by controlling pressure fluctuations in the enclosed air space at one side. Theoretical

velocity profiles were computed from the instantaneous pressure gradient measurements and

compared to the experimental distributions. The maximum velocity at the centreline was

found to be in agreement to within 1.4% and the RMS error across the profile did not exceed

2% for any of the profiles. In a subsequent work, Denison et al. [49] investigated pulsatile

flow in developing and fully-developed flows using the same technique. Oscillations were

generated using a piston driven by a Scotch yoke, and superimposed on a mean flow with

QA/Q0 = 0.16. For the range of frequencies tested (4 ≤Wo≤ 6), the results were found to

corroborate theory. Similarly, Einav and Lee [50] used laser Doppler velocimetry to study

oscillating flows (1.12 ≤Wo≤ 8.23) in a tube between a pair of pistons coupled to a motor,

finding agreement to within 1.1% of the results of Denison and Stevenson and theory.

In their carefully-controlled experiments on transition to turbulence, Eckmann and Grot-
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berg [51] constructed a sinusoidal drive mechanism to generate an oscillatory flow in a

straight circular tube. A variable-speed electric motor and speed reduction gear were used

to generate rotational motion over a high range of frequencies, 9≤Wo≤ 33. A gradation

of eccentric tapped holes on the drive wheel of the Scotch yoke allowed the oscillation

amplitude to vary between 2.4≤ A0 ≤ 21.6. Measurements of the laminar velocity profiles

made using laser-Doppler velocimetry were generally found to be within 1-2% of theoretical

prediction. To the same end, Clamen and Minton [52] used the hydrogen bubble technique to

validate laminar velocity distributions over the range 11.2≤Wo≤ 26.7. The oscillatory flow

of water was generated by a Scotch-yoke mechanism.

More recently, Ünsal et al. [53] measured velocity profiles over the range 0.8 ≤Wo≤

6.6 using a hot-wire probe at the end of a tube. The pulsating air flow was generated using

a purpose-built mass flow rate PID control system designed by Durst et al. [54]. Using the

same experimental setup, Ray et al. [55] synchronised the system with a distribution of low

time-scale transducers to measure the amplitude and phase of the pressure gradient over a

range of frequencies between Wo= 0.15 and 21 (varying the amplitude of flow rate pulsations

was found to have no effect on the timing). The experimental results were found to be in very

close agreement with the analytic solution based on the Fourier analysis method of Uchida

[32], reorganised in terms of a prescribed flow rate. Now the behaviour of the parameters

could be analysed for constant flow rate amplitude pulsations. In the low-frequency range, the

instantaneous pressure gradient values were found to be approximately equal those of similar

steady flows. At intermediate frequencies, the amplitude of the pressure gradient increased

compared to the corresponding steady flow value and at high frequencies the ratio of the

pulsating to steady pressure drop was seen to approach zero along with the known phase shift.

The behaviour of the amplitude and phase of pressure with frequency, plotted in Figure 2.5,

clearly suggests the existence of three unique oscillation regimes, which will be classified on

a quantitative basis presently (see Section 2.1.4). Haddad et al. [56] expanded their analytical

solution for a parallel plate channel, though using twice the hydraulic diameter of the pipe.

The study found that there is both a larger pressure gradient amplitude and a larger phase shift

for channel flow than pipe flow at the same frequency. The relative difference is negligible in

the low-frequency regime, grows quickly in the mid-frequency regime and levels off in the

high-frequency regime. The study also performed a comprehensive analysis of parameters
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predicting and quantifying the phenomenon of flow reversal.

Figure 2.5: Amplitude (= P∗A) and phase (= ∆θ ) of pressure gradient with frequency Wo (=
√

2πF)
for constant flow rate amplitude (= m∗A) in a pipe, Ray et al. [55].

2.1.3 Wall Shear Stress

The analytical solution of Uchida [32] predicts the behaviour of the amplitude and phase of

wall shear stress with varying frequency. Figure 2.6 indicates that the magnitude of the wall

shear stress decreases, since the flow rate amplitude decreases with increasing frequency at

constant driving pressure. However, the reducing flow rate conceals the augmented near-wall

velocity gradients experienced at high frequencies, which result from a thinning Stokes

boundary layer. Haddad et al. [56] investigated the frequency-dependent behaviour for

constant flow rate pulsations in a pipe and a parallel plate channel, finding the amplitude of

the wall shear stress to increase with frequency with the magnitude higher for the channel

geometry. The phase delay relative to the pressure gradient tends to π/4 for both vessels,

though the phase lag is higher for the non-circular geometry in the mid-frequency range.

Since the cross-section of a pipe is one-dimensional, the wall shear stress profile is uniform at

the perimeter. Experimental verification of the wall shear stress in a tube at a given frequency

thus requires a single estimation of the slope of the velocity profile at the wall. Nonetheless,
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only a handful of studies have estimated this parameter, despite a multitude of experimental

studies measuring the instantaneous velocity profiles.

In a biomechanical study, Hughes and How [57] measured pulsating velocity profiles

in a tube using an ultrasound Doppler velocimeter, chosen for its potential applicability to

Figure 2.6: Amplitude (= στ ) and phase (= δτ ) of wall shear stress with frequency Wo (= ka) for
constant pressure gradient oscillations in a pipe, Uchida [32].

Figure 2.7: The pulsatile behaviour of (a) the pulsating velocity profiles, (b) the flow rate, and (c) the
wall shear rate for Wo = 15 and QA/Q0 = 0.7 in a pipe. Solid lines and markers represent analytical
solutions and experimental measurements, respectively. The dashed line of (c) represents the linear fit
to the theoretical velocity profile as discussed in the text, Hughes and How [57].
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opaque liquids. Synchronised measurements of the velocity profile and pressure gradient

were achieved using an external trigger signal from the modulating piston pump for 9.6

≤Wo≤ 15. Figure 2.7(a) depicts the accuracy of the reproduced pulsating velocity profiles,

which contain flow reversal despite an invariably positive pulsating flow rate. Maximum

error in the centreline velocity and over the entire profile were 11% and 8.8% respectively,

relative to the mean flow velocity. The largest discrepancies were observed during intervals

of reversed flow, at maximum acceleration or at times when inflection points exist in the

profile. The flow rate waveforms, again achieved by integration, were found to agree well in

both magnitude and phase with a maximum error of 6.4% relative to the mean (see Figure

2.7(b)). Experimental wall shear rates – computed using a single velocity point closest to the

wall (0.2 mm from the wall) – are compared to a pair of theoretical values in Figure 2.7(c):

(i) the true magnitude at the wall, and (ii) a linear fit between the velocity at 0 and 0.2 mm on

the theoretical velocity profile. The latter, plotted in Figure 2.8 for different proximities to

the wall, quantifies the under-estimation introduced by the limited near-wall resolution of the

technique. It is clear that the amplitude and mean value of the wall shear rate decrease and

the phase lag increases as the fit is extended to points farther from the wall. This explains

a certain amount of the attenuation and lag found in the experimental values compared to

theory. With respect to the true shear rate, the maximum errors of the mean and peak to

peak wall shear rates were 14% and 35%. The latter reduced to 21% when compared to

the linear-fitted theoretical value. Of course, the under-estimate increases with frequency

as the Stokes layer becomes thinner. A data point a given distance from the wall attempts

to approximate a larger percentage of the boundary layer, and a velocity distribution which

is hence less linear. For example at Wo = 9.6 and 15, the regions between the wall and the

nearest data point cover 9.6% and 15% of the Stokes boundary layer, respectively.

Ojha et al. [58] created a pulsating flow (Wo = 7.52, QA/Q0 = 0.6) in a pipe by super-

imposing the steady flow of a gear pump on that from a cam-driven piston pump. Flow

visualisation was performed using a tracer technique, which makes use of the photochromic

properties of a normally colourless indicator in the working fluid. A pulsed UV laser beam

changes the indicator to a coloured dye, producing a trace in the laser plane direction that may

be photographed a short time after its creation. The flow rates may be determined through

integration of the velocity profiles. By fitting a sine wave to the data (see Figure 2.9(a)) the
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Figure 2.8: Effect of near-wall resolution on the wall shear rate estimate in a pipe. Curve 1 corresponds
to a data point nearest the wall at 0.2 mm in the experiment. The true value is given by the dashed line,
Hughes and How [57].

values of Q0 and QA are determined and the corresponding predicted velocity profiles may

be compared to experiment. Furthermore, the shear stress at opposing sides of the tube was

computed by evaluating the derivative of a fitted polynomial to the near wall velocity data.

The results, plotted in Figure 2.9(c), were accurate to within 7% of the theoretical value

with the phase error less than 9◦. While a slight asymmetry between the walls is present,

the accuracy of the near-wall shear stress measurements illustrates well the superior spatial

resolution of the technique compared to LDA.

Zhao and Cheng [59] used an indirect technique to compute frictional stresses in a pipe

Figure 2.9: (a) Pulsating flow rate, (b) centreline velocity and (c) wall shear stress for Wo = 7.52 and
QA/Q0 = 0.6. Solid lines and markers represent analytical solutions and experimental measurements,
respectively, with the differing markers indicating behaviour at opposing sides of the tube, Ojha et al.
[58].
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flow of air, using calculations based on the momentum integral balance (see Section 2.1.4).

Reciprocating flow was generated using a double-acting pump connected to a crank shaft and

yoke sinusoidal mechanism. The velocity and axial pressure gradient were measured using a

hot wire anemometer and differential pressure transducer, respectively, with phase accurately

measured using an angular position encoder. The experimental values of the friction factor

magnitude were found to be in good agreement with theory for a range of values 2.4 ≤Wo≤

9.9 and 16.5 ≤ A0 ≤ 26.4. The corresponding phase was not estimated. The cycle-averaged

friction factor of the measured data had a maximum deviation of 14.8% from the analytic

solution.

Figure 2.10: Pulsating contributions of viscous (=C) and inertial (= B) stresses to the pressure drop
(= A) in a pipe for Wo = 4 and QA/Q0 = 1, Uchida [32].

2.1.4 Momentum Balance

Uchida [32] went on to investigate the contributions of viscous and inertial stresses to the

overall pressure drop through the momentum balance equation (developed mathematically

in Chapter 3). The relative contributions of the individual losses vary periodically as a

function of time, as displayed graphically in Figure 2.10. Ohmi et al. [60] investigated the

behaviour of these contributions with frequency to define boundaries to the characteristic

regimes. The behaviour of four parameters was analysed: a couple measuring the relative

contributions of the viscous and inertia terms, as well as the phases of the flow rate and wall

shear stress. Figure 2.11 presents the contributions of the inertial and viscous stresses with

frequency, indicating that behaviour tends to asymptotic regimes at the limit of low and high

frequency. The low-frequency regime is characterised by predominantly viscous stresses
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and negligible phase delay. Further, the rate of change of these values is small. Conversely,

inertial stresses – and associated phase delays – dominate the high-frequency regime. The

momentum distribution cannot follow the changes in the flow rate without retarding. At

mid-frequencies, the frequency-dependent behaviour is characterised by rapid changes in the

momentum contributions and phase. The boundaries for the pipe geometry were arbitrarily

defined at frequencies where the viscous and inertia terms comprised 95% of the overall

pressure gradient. Below Wo = 2.36, frictional losses result largely from viscosity. The

quasi-steady approximation is valid and the flow rate and shear stress are in phase with driving

pressure gradient. Above Wo = 28, the flow is dominated by inertia and the assumption of

inviscid flow holds throughout the channel. Hence, the boundaries to the regimes are defined

based on adherence to certain mathematical approximations, and also by the flow’s dominant

characteristics.

Figure 2.11: Contributions of (a) inertial stresses and (b) viscous stresses to the pressure drop with
frequency Wo (=

√
ω ′), Ohmi et al. [60].

2.1.5 Summary of Unsteady Hydrodynamics Review

It is clear that oscillating flow involves complex relationships between the hydrodynamic vari-

ables that require a comprehensive parametric analysis on a local- and frequency-dependent

basis. Analytical models are hence invaluable, offering complete information of the flow

field, which is difficult to obtain experimentally. Solutions that decompose parameters into

amplitude and phase values [32] allow convenient manipulation while those that study be-

haviour relative to a prescribed flow rate rather than pressure gradient [55] are perhaps more

intuitive.
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Of course, experimental works are of vital importance in the validation of theory. Heuris-

tically, the analytical predictions for velocity and wall shear stress profiles and the pressure

gradient should be verified experimentally in each of the three behavioural regimes [60]

for a given geometry. A review of experimental works on the fluid mechanics of pulsating

and oscillating flows indicates that the complete set of instantaneous velocity profiles in

a pipe have been validated experimentally over a large range of frequencies (0.8 ≤Wo ≤

33) spanning the quasi-steady, transitional and inertia-dominated regimes. Synchronised

measurements of the flow rate and pressure gradient have confirmed the evolving ratio of

amplitudes and phase predicted by theory up to a moderate frequency (0.25 ≤Wo≤ 15) for

flow in a pipe with high precision. The accuracies of available wall shear stress measure-

ments in a pipe are comparably poor and span only a portion of the transitional frequency

10 0 10 1 10 2

Wo

[55]
[59]
[46]
[47]
[48]
[50]
[51]
[52]
[53]
[57]
[58]

Chapter 6
(i) (ii) (iii)

û+ τ̂

û

∇p̂

Figure 2.12: Parameter spaces covered by the reviewed hydrodynamic experiments in pipes, and the
experiments of Chapter 6 in a rectangular channel. The legend indicates the hydrodynamic parameters
measured in each case – velocity û, wall shear stress τ̂ and pressure gradient ∇p̂. Dotted lines partition
the characteristic regimes: (i) quasi-steady, (ii) intermediate, and (iii) inertia-dominated.
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regime (7.52 ≤Wo≤ 15). The apparent gaps reflect the practical difficulties associated with

generating rapidly-oscillating flows experimentally and with measuring the near-wall area

with high resolution and precision. Furthermore, the Stokes layer narrows at intermediate to

high frequencies, and measurement of the spatial gradients in the near-wall area becomes

increasingly difficult. Experiments in rectangular channels are conspicuously absent from

the literature, apart from the very early work of Richardson and Tyler whose limitations have

been previously outlined. This is probably attributable to a velocity profile containing an

extra spatial dimension, as well as wall shear stress distributions that are non-constant over

the cross sectional perimeter. Paradoxically, thermal studies in channel heat sink geometries

are common owing to their relative ease of manufacture.

The parameter spaces covered by the hydrodynamic experiments are displayed graphically

in Figure 2.12, with the different colours indicating the type of variable measured. The

measurements of the current research alone, presented in Chapter 6, were performed in a

non-circular two-dimensional channel. The hydraulic diameter of the rectangular channel

(described in Chapter 4) is small compared with those reviewed, as presented in Table

2.1. Experiments that achieved higher values of Womersley number used larger hydraulic

diameters, which reduces the requisite dimensional frequency of oscillation.

As discussed in Chapter 1, the proposed photonics application involves single-phase

liquid-cooling flow in a micro- (10µm < Dh ≤ 200µm) or mini- (200µm < Dh ≤ 3mm) chan-

nel heat sink, driven by a pulsating micropump. The influence of Wo is of vital importance

to the thermal problem since the shear stress at the wall and thickness of the hydrodynamic

boundary layer are expected to affect the heat flux at the wall and thermal boundary layer

thickness. The high frequency regime achieves the highest increase in wall shear stress.

However, to achieve non-quasi-steady flow in microchannels, very high frequency pulsations

(to the order of kHz) are required to overcome the strong viscous effects brought about by

the small hydraulic diameters. For example, the 60 Hz maximum operating frequency of a

commercially-available micropump [61], driving a pulsating flow of water through a large

microchannel with Dh = 200 µm gives a Womersley number of just 2.2. In contrast, Persoons

et al. [16] achieved Womersley numbers between 6 and 17 using a larger minichannel. The

requisite work input is higher for pumps that are inherently unsteady for a fixed delivered flow

rate, with the pressure drop increasing with increasing frequency of the vibrating diaphragm.
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The augmented pressure losses are due to a combination of increased inertial losses and

steeper near-wall velocity gradients caused by changes in the transverse velocity distribution.

This adds to a work input that is already high in small-scale channels, owing to a pressure

drop that scales inversely with the fourth power of hydraulic diameter in the laminar regime.

The pulsations incur further losses pumping through an array of channels rather than pipes

for a given flow rate.
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Table 2.1: Details of reviewed hydrodynamic experiments, and of the current experimental setup of Chapter 4.

Reference Flow Geom. Dh [mm] Fluid Measurement Technique Var. Wo A0

Richardson [41] Osc © 35, 60 Air Hot Wire Anemometry û 5-35
Richardson & Tyler [42] Osc © � 62, 48 Air Hot Wire Anemometry û 5-25
Linford & Ryan [44] Puls © 25 Newtonian Flow Visualisation û, ∇ p̂ 1.83-21
Harris et al. [46] Osc © 25 Newtonian Flow Visualisation û 4.4-11.6
Muto & Nakane [47] Both © 60 Newtonian Flow Visualisation û 2-12 0.53-0.64
Denison & Stevenson [48] Osc © 19 Newtonian Laser Doppler Velocimetry û, ∇ p̂ 1.71-14.1
Denison et al. [49] Puls © 19 Newtonian Laser Doppler Velocimetry û, ∇ p̂ 4-6
Einav & Lee [50] Osc © 25 Water Laser Doppler Velocimetry û 1.12-8.23
Eckmann & Grotberg [51] Osc © 32 Newtonian Laser Doppler Velocimetry û 9-33 2.4-21.6
Clamen & Minton [52] Osc © 51 Water Hydrogen Bubble û 11.2-26.7
Ünsal et al. [53] Puls © 15 Air Hot Wire Anemometry û 0.8-6.6
Ray et al. [55] Puls © 14 Air Pressure Transducer ∇ p̂ 0.15-21
Hughes & How [57] Puls © 10 Newtonian Ultrasound Doppler Velocimetry û, τ̂ 9.6-15
Ojha et al. [58] Puls © 5 Newtonian Flow Visualisation û, τ̂ 7.52
Zhao & Cheng [59] Osc © 13.5 Air Pressure Transducer ∇ p̂ 2.4-9.9 16.5-26.4
Current Research Puls � 7.1 Water Particle Image Velocimetry û, τ̂ 1.4-7.0 0.36 - 8.9

Variable(s) Measured
û, local time-dependent velocity and time-dependent flow rate
∇p̂, time-dependent pressure gradient and time-dependent flow rate
τ̂ , time-dependent wall shear stress
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2.2 Heat Transfer of Unsteady Flow

As described by Stokes’ second problem, unsteadiness causes time-dependent velocity

gradients to diffuse from the wall in a single well-defined manner resulting from the no-slip

boundary condition. In contrast, the characteristics of heat diffusion vary depending on the

properties of the wall, which affect the manner of heating. For example, a thick-walled

copper tube approximates the constant temperature boundary condition, while a thin stainless

steel foil approximates the constant heat flux boundary condition. Since solutions to the

energy equation may be obtained using either of these idealisations or by some more realistic

hybrid, the underlying theory of the thermal problem is more complex and the heat transfer

mechanisms are not well understood. The larger parameter space may explain why less

attention has been paid to the behaviour of the local time-dependent temperature field and its

derivatives, to which solutions exist in a pipe geometry. Also, unlike the hydrodynamic theory

– which has been reasonably well characterised over the parameter space in a pipe – analytical

theory for heat transfer has not been linked to confirmatory experimental measurements. Most

importantly, the focus on time- and space-averaged heat transfer fails to distinguish between

underlying mechanisms of enhancement. It is thus vital to build on the local time-dependent

theory of the fluid mechanics, focusing particularly on the interplay of hydrodynamic and

thermal parameters, in order to optimise the unsteady heat transfer problem.

2.2.1 Dimensionless Thermal Parameters

The flow of heat is interwoven with the hydrodynamics of the fluid, and thus the dimensionless

hydrodynamic parameters of Section 2.1.1 remain key indicators of heat transfer behaviour.

The Prandtl number Pr quantifies the rate of viscous diffusion relative to the thermal diffusion:

Pr =
ν

α f
(2.4)

where the thermal diffusivity is given by α f = k f /ρ f cp, f (where k f and cp, f are the thermal

conductivity and specific heat capacity of the fluid). Newton’s law of cooling states that heat

flux q̂ is proportional to the difference between the wall temperature Tw,0 and the representa-

tive fluid temperature Tf ,0 for steady forced convection. The constant of proportionality is

29



2.2. HEAT TRANSFER OF UNSTEADY FLOW

the dimensional heat transfer coefficient h0 = q̂/(Tw,0−Tf ,0). At the wall, heat is diffused

solely by conduction and the heat flux is proportional to the temperature gradient as captured

by Fourier’s law q̂ = k f (∂T/∂ ŷ). The dimensionless Nusselt number Nu0 expresses the

convective heat transfer of a steady flow with respect to that of conductive heat transfer in the

same quiescent fluid:

Nu0 =
h0Dh

k f
=

(∂T/∂ ŷ)Dh

(Tw,0−Tf ,0)
(2.5)

Within this thesis, heat transfer enhancement is defined relative to a steady flow with a

flow rate equal to the time-average of the pulsating flow rate:

∂Nu =
Nu−Nu0

Nu0
(2.6)

where Nu is the time-averaged Nusselt number of a pulsating flow.

2.2.2 Mechanisms

The velocity and temperature profiles of steady flow are self-similar and therefore bound the

Nusselt number. Equivalently, the driving temperature difference increases in proportion to

any rise in heat flux. However, the proportionality is not fixed in a time-dependent flow and

hence the physical meaning of a time-dependent heat transfer coefficient is ambiguous (this is

discussed further in Chapter 7). This can result from a phase difference (at high frequencies)

or a difference in the frequency of oscillation of each of the temperature parameters, for

example. Furthermore, the heat flux is fixed while the bulk temperature may vary with time

under the isoflux boundary condition.

By inspection of Equation 2.5, the non-steady Nusselt number may be enhanced by

increasing the temperature gradient at the wall, or by reducing the driving temperature

difference. In theory, it possible that certain hydrodynamic features of the flow act favourably

with respect to one method of enhancement and adversely with respect to the other. Hence,

this section considers the effect of oscillations on thermal behaviour in terms of individual

mechanisms: (i) those that act on the bulk temperature, and (ii) those acting on the wall

temperature gradient. Unfortunately, the mathematical toolkit used in theoretical analyses
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turns out to be restrictive and ideal boundary conditions may obscure the effect of these

underlying mechanisms. For example, the constant heat flux boundary condition fixes

the numerator of Equation 2.5, while the constant wall temperature boundary condition

heavily biases the denominator. As a final consideration, the effect of localised flow reversal

is likely to lead to non-linear effects on heat transfer, which are distinct from the linear

mechanisms discussed. However, no satisfactory theory exists for dealing with bidirectional

flow, highlighting the importance of experiment.

2.2.2.1 Mechanism 1: Enhanced Axial Diffusivity

Mass Transfer Much of the initial progress was made in the analogous problem of mass

transfer in tubes with impermeable walls. In a steady flow, Taylor [62] analysed specific

fundamental cases of the dispersion of a volume of contaminant, including the diffusion

of a cylindrical volume of a solute with a constant initial concentration, and solute of

constant concentration entering a tube of zero concentration. It was determined that the axial

concentration distribution spreads symmetrically from a plane that travels with the mean

velocity of the flow, in spite of the velocity profile’s asymmetry. Furthermore, the axial

diffusion was enhanced compared to longitudinal molecular diffusion alone. Taylor was so

surprised by the predicted behaviour that he set up an apparatus to validate the theoretical

concentration profiles of these fundamental cases, finding good agreement with his analytical

solution. The mechanism is explained with the aid of Figure 2.13. Consider the diffusion of

an initially cylindrical volume of a solute with a constant initial concentration. Advection

according to the velocity profile causes the initial volume at the line B to be distorted into the

shape of a paraboloid. While not intuitive, the concentration is now symmetrical in the axial

dimension between lines A and C, owing to the intrinsic nature of the paraboloid geometry.

Subsequently, the variation in the transverse concentration profile causes transverse diffusion

to occur. Hence, the enhanced diffusion mechanism results from the combined effect of

axial convection and transverse diffusion. In applications where efficient removal of the

concentrate is desired, such diffusion acts against the advective transport of the fluid.

Chatwin [64], Watson [65] and Smith [66] determined analytically that a similar mecha-

nism exists in unsteady flow; however, the effect is lessened since the process cannot establish
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Figure 2.13: The augmented diffusion mechanism in steady flow, Chatwin [63].

itself fully before the flow conditions are changed. At large oscillation periods for example,

the effects of the negative velocity profile cancel those of the corresponding positive velocity

profile. The cloud of contaminant expands during one half-cycle and contracts during the

second half-cycle, with the net effect of the full cycle being a slight overall increase in

length. The theoretical results were corroborated by the experiments of Joshi et al. [67], who

measured augmented diffusion in a pulsating pipe flow with 1.6≤Wo≤ 7.8 and flow rate

amplitude 600≤ QA/Q0 ≤ 30001. At low amplitudes and frequencies, a quasi-steady situa-

tion results with diffusion similar to the steady value [62]. Axial mass diffusion is enhanced

with the square of A0 due to the fluid being displaced over larger axial distances with higher

temperature differences. For constant frequency, diffusivity increases with tidal displacement.

For constant dimensionless amplitudes 9.2≤ A0 ≤ 39.6, enhanced diffusivity increases in

proportion to Wo at high frequencies and approaches 1 at the limit of low frequency, with

the limiting behaviours connected by a transition region (see Figure 2.14). At constant flow

rate amplitude, diffusivity decreases with increasing frequency. Experiments of Jaeger and

Kurzweg [68] in a pulsating flow (3.5≤Wo≤ 9.1) of oxygen gas have also confirmed the

square power law relationship between the enhanced dispersion and dimensionless amplitude,

and the proportionality between the dispersion coefficient and frequency. The values of

diffusivity ranged from 300 to over 8000 times that predicted by molecular diffusion.

1This very large flow rate amplitude owes to a miniscule steady component, used to offset the axial diffusion
of the concentrate and create a steady-state exchange process. The steady component was found to have no
effect.
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Figure 2.14: Enhanced diffusivity (= K/κ) relative to molecular conduction with frequency Wo (= α)
for constant dimensionless amplitudes A0 (=

√
(V 2/a6)/4π2, Joshi et al. [67].

Heat Transfer The mass diffusion problem may be viewed as a generalisation of the

corresponding thermal problem, which generally deals with concentration (i.e. temperature)

gradients rather than finite volumes of concentration. Kurzweg [69] predicted that an equiv-

alent thermal mechanism exists and developed a comprehensive theory for a parallel plate

geometry with linear axial temperature gradient. By analogy, the non-porous walls of the

former studies became thermally-insulated walls with no heat addition. It was determined

that enhanced axial thermal diffusivities four orders of magnitude higher than those due to

molecular diffusion could be achieved. For example, an axial heat transport of 1.8× 106

W/cm2 was achievable using pressurised water, which was two orders of magnitude higher

than liquid-metal heat pipe technology at the time. While input of power is required, the ratio

of power consumption to heat transferred is commonly less than 1% for typical operating

conditions [70]. As before [65], the enhanced thermal diffusivity increases with the square of

tidal displacement. Also, thermal diffusivity increased with frequency with behaviour differ-

ing at low and high frequencies. With such alternative limiting forms, the study identified

that the parameters could be tuned to maximise heat transfer. By plotting ’tuning curves’,

it was found that optimal axial heat transfer was achieved when the time taken for heat to

diffuse from the centre of the channel to the wall was equal to one half of the oscillation

period.
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The predicted axial heat transfer was validated to within a factor of a half (as explained

by the change from a tube to a parallel plates geometry) by the experiments of Kurzweg and

Zhao [21], who implemented an oscillatory flow (25≤Wo≤ 50, 3≤ A0 ≤ 20) in a bundle

of capillary tubes between a pair of fluid reservoirs maintained at different temperatures.

Effective axial conduction was enhanced by a factor of 1.79× 104 compared with the

molecular thermal diffusion value of water without accompanying net mass transport. The

axial heat flux value of 292 W/cm2 is comparable with heat pipes. A numerical study by

Zhang and Kurzweg [70] solved the energy equation in an oscillating pipe flow numerically

without prior assumptions, finding their simulated tuning curves to be in good agreement with

the earlier analytical predictions [69]. Furthermore, the time-dependent axial temperature

distributions remained approximately linear as low as Wo = 1, as depicted in Figure 2.15.

However, the second power relationship between enhanced thermal diffusivity and tidal

displacement declined at large displacements, which reduced the axial temperature gradient

and the resulting axial diffusion. The numerical study also investigated the effect of wall

parameters in detail, finding that a wall thickness about 10% of the pipe diameter was optimal.

Since conducting walls increase heat capacity, conducting walls enhance the axial heat

transfer process.

Ozawa and Kawamoto [71] used a thermo-sensitive liquid-crystal tracer technique to

qualitatively measure the 2-D temperature field of an oscillatory liquid flow in an insulated

square channel between constant temperature hot and cold reservoirs at Wo = 4.4 and Wo =

12.2. Figure 2.16 presents the raw images at the higher frequency. Moving from hot to cold,

the colour changes through blue, green, yellow, red and brown. The unprocessed images

were in qualitative agreement with the upward and downward peaks of isotherms, generated

using a complementary two-dimensional numerical model. Further analysis of the model

indicated that, over the range 2 ≤ Pr ≤ 100, the thickness of the thermal boundary layer

coincided with the Stokes layer thickness. This suggests that the transverse temperature

gradient is formed primarily as a result of the velocity profile. While the study by Kurzweg

[69] is referenced in the paper, the results are not compared with their 1-D analytical model,

perhaps since the geometry of the channel was square. Finally, being primarily concerned

with axial heat transfer, the authors used a lumped-parameter model in conjunction with

axial temperature measurements to estimate the effective thermal diffusivity over a range of
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Figure 2.15: Pulsating axial temperature profiles in oscillating pipe flow for Wo = 1, Zhang and
Kurzweg [70].

frequencies 7.1≤Wo≤ 23.3 and amplitudes 9≤ A0 ≤ 36.1.

The analytical study of Faghri et al. [35] laid the groundwork to improving our un-

derstanding of the principal mechanisms in pulsating flow. Similar to the oscillating case,

the velocity and temperature oscillations interact to give a non-zero mean heat flux in the

axial direction. An axial advective term – involving the fluctuations of the two transient

components – was retained in the time-averaged equation to incorporate any non-linearities

inherent to the problem which may have been removed by linearisation of the time-dependent

energy equation. This simplification is typically applicable to situations where the wall

temperature distribution can be linearly approximated or the swept length of the oscillating

flow is much shorter than the characteristic length [72]. Heat transfer was found to increase

by up to 6% above the steady state value with increasing velocity amplitude and decreasing

Prandtl number. It was suggested that the approximations made in the study suppressed any

dependency on frequency and axial periodicity in the wall temperature and Nusselt number,

which were observed previously in an analytical study by Siegel and Perlmutter [34] in the

thermal entrance and thermally-developed region of a parallel plate channel. For the case

of constant wall temperature, the heat flux was found to oscillate with downstream distance.
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Figure 2.16: Visualised temperature field in an insulated square channel using liquid-crystal tracer for
Wo = 12.2, A0 = 5, Pr = 7.9, ∂T/∂ x̂ = 13.5 [K/m], Ozawa and Kawamoto [71].
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Conversely, the wall temperature oscillations were found to contain spatial periodicity in the

axial dimension for the case of constant heat flux. Figure 2.17 plots the axial temperature

distributions for Wo = 0.28, 2.8 and 5.6 for constant flow rate amplitude. Figure 2.17(a)

depicts the pulsating axial temperature distributions at the lowest frequency. The oscillating

axial temperature distributions – which are computed by subtracting the steady component

(which corresponds to the curve at 90◦) from the pulsating components – are approximately

parallel and are well-predicted using the quasi-steady assumption. In the time taken to com-

plete a cycle, a pulsating fluid element and a steady fluid element are displaced by the same

distance. Hence, the nodes of Figure 2.17 – where the oscillating component of temperature

is zero – correspond to the locations in the channel where the steady and unsteady fluid

elements have received the same level of heating for the same time duration. At the lowest

frequency, the distance travelled during a pulsation (and hence the distance at which the

curves converge towards the steady profile) is much longer than the channel length. The

amplitudes of the temperature fluctuations are found to decrease with increasing frequency

(at constant pressure gradient amplitude) and increasing Prandtl number. It was found that the

presence of pulsations only slightly altered total heat transfer over a wide range of amplitudes

and frequencies.

Siegel [73] argued that the enhanced axial diffusion mechanism inhibited the heat transfer

process in pulsating flow owing to the sign of the temperature gradient. In a steady flow,

the uniform heat flux along a channel wall induces a linearly increasing axial fluid tem-

perature profile in the fully developed region. The overall energy balance dictates that the

mean temperature gradient stays the same in a pulsating flow. Hence, the flow oscillations

interacting with this positive temperature gradient will induce an increased axial heat flow

towards the channel inlet, raising the temperature level within the channel and increasing the

wall temperature required to transfer the same amount of heat.

Kim et al. [74] conducted numerical simulations in a parallel plate channel to assess the

suitability of the simplifying assumptions and approximations in earlier analytical works

in a less-restricted parameter space, Wo ≤ 28 and 0 ≤ QA/Q0 ≤ 0.75 under the constant

temperature boundary condition. In contradiction with the analytical work, the study found

that the oscillatory component of the axial temperature gradient was an order of magnitude

smaller in the downstream region. While some heat transfer enhancement was found near
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Figure 2.17: Time-dependent axial temperature profiles at the wall θw for Pr = 0.7 and (a) Wo = 0.28,
(b) Wo = 2.8, and (c) Wo = 5.6, Siegel and Perlmutter [34].

the entrance of the channel, little change in Nu was found in the thermally-developed region.

The effects of pulsation were more significant at low frequencies and high amplitudes. The

numerical simulations of Cho and Hyun [75] investigated the effect of pulsations in a pipe

(0 < QA/Q0 ≤ 0.3) with a constant wall temperature, finding that the time-averaged Nusselt

number generally decreased (to the order of 1%) compared to the steady value, away from

the entrance region. The alteration in heat transfer increased with increasing amplitude and

decreasing Prandtl number. Oscillations were contained to a narrow region near the wall at

the entrance of the pipe before spreading further into the bulk of the flow with increasing
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downstream distance. Thus, annular effects are present in the pulsating temperature profiles.

The amplitudes decreased with frequency as expected. For high frequencies in the fully

developed region the oscillating part of temperature was found to lag the inlet flow by 90◦ in

accordance with a previous numerical work on the flow over a flat plate [76].

Moschandreou and Zamir [77] obtained an analytical solution for the Nusselt number in

fully developed pipe flow that showed a maximum point at moderate frequencies at which

heat transfer would be enhanced by up to 20% with pulsation. Hemida et al. [29] commented

that their results showed unrealistically that the Nusselt number continued to change at large

values of frequency, since any inertial system should have a cut-off beyond which it should

not respond to external excitations. A new analytical solution was provided using a Green’s

function method, which predicted that the difference in Nusselt number tends to zero as

frequency tends to infinity. Their solution showed that the time-averaged Nusselt number

was reduced relative to the steady flow value. The reduction was highest at low frequencies

for constant flow rate amplitudes, in qualitative agreement with earlier mass transfer studies.

Hemida et al. went on to explore the physical mechanisms underlying the selective

behaviour of local heat transfer enhancement or reduction in the thermally developing

region. It was found that heat transfer enhancement varied sinusoidally as a function of

downstream displacement and frequency, damping out as thermally-developed conditions

were approached. As previously noted by Siegel and Perlmutter [34], the spatial wavelength

was found to depend on the frequency of pulsation and it was suggested that the origin of

the oscillations is related to the convection of upstream conditions along the pipe length.

This mechanism is depicted in Figure 2.18 for a square wave pulsating flow with a flat

velocity profile that starts after a long steady period. Figure 2.18(b) plots the slope of the

axial temperature rise in the pipe during the high and low cycle velocities, along with the

average. Initially, the temperature distribution corresponds to the average slope. During

the first half-period, the velocity is high and each particle undergoes a rise in temperature

along the low slope, resulting in the axial temperature distribution of Figure 2.18(c). Each

particle starts from this temperature distribution at the start of the second half period and

experiences a temperature rise along the high slope, corresponding to a low velocity. This

results in the temperature distribution as shown in Figure 2.18(d). Continuing this trend, we

obtain a spatial wave with wavelength proportional to the mean velocity and the oscillation
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period. The oscillations damp out as we move along the duct, as a result of axial mixing. In

reality, the velocity profile is not one-dimensional and is characteristically dissimilar during

each half-period. The decelerating half-cycle contains steeper near-wall velocity gradients

compared to the accelerating half-cycle, as discussed in Section 2.1. With a non-fixed heat

flux at the wall, the transverse temperature gradient at the wall, and hence the heat transfer

coefficient, may also be higher as a result (this is developed in Section 2.2.2.2). Hence, the

fluid temperature and driving temperature difference oscillate with axial length and time,

such that different axial locations experience differing amplitudes of temperature oscillation.

Furthermore, these temperature oscillations have different phase with respect to the velocity

oscillations, and thus to the phase of the heat transfer coefficient. The time-averaged heat

transfer coefficient will be higher than the steady value at a given axial location if the velocity

profile associated with a high heat transfer coefficient occurs when the driving temperature

difference is a maximum, and vice versa.

Figure 2.18: Mechanism for the development of spatial periodicity in the axial temperature profile: (a)
time variation of velocity; (b) slope of spatial variation of T ; (c) situation after the first half cycle; (d)
situation after one cycle, Hemida et al. [29].
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Brereton and Jiang [30] used an alternative method based on the Laplace transform to

develop an analytical expression for the thermal field. Using this representation, the driving

temperature difference is expressed in the physical domain in terms of a convolution with

flow rate. This explicitly demonstrates that the instantaneous heat transfer depends on the

complete history of the transient flow rate (with weighting functions effectively representing

the memory of the flow), in contradiction with the quasi-steady assumption. The theoretical

study found that a pseudo-sine wave pulsation – involving modulation of the flow rate above

and below its initial value – produced a slight overall reduction of the order of that found by

Hemida et al. It was suggested that the effect of positive and negative excursions about the

mean flow rate on the Nusselt number effectively cancel each other out. Interestingly, it was

found that modulation of the flow rate either above or below its initial value (see Figure 2.19)

leads to opposing effects on time-averaged heat transfer. Heat transfer was diminished with

variation above the mean and enhanced (by as much as 40%) with variation below the mean.

Larger amplitudes, especially those where flow reversal took place, were found to lead to

greater augmentations over the range of Womersley number shown. Further, while the rest

period between pulsations was arbitrarily chosen as the same length as the transient the effect

of shortening the rest period was to increase the enhancement. These flow rate pulsations –

which resemble truncated sine waves – could be generated using a number of check valves.

In fact, commercially-available micropumps generate flow using an oscillating diaphragm

and valves and could possibly be used to enhance heat transfer in microfluidic systems using

existing technology.

Nield and Kuznetsov [78] used a perturbation approach to develop an analytical solution

for the velocity and temperature distribution in a pipe and parallel plate channel under

constant heat flux. The Nusselt number was found to contain a fluctuating component whose

magnitude and phase changed with frequency, although no time-averaged change in value

was found. At low and high frequencies, the amplitude was zero while a peak was observed

at moderate frequencies, that decreases as Pr increases. No dependence of the transient

component on Pr was found at low and high frequencies.

The enhanced axial diffusion mechanism acts on a local time-dependent basis, causing a

net transport of a substance from high to low concentration without net advective transport.

The time-averaged effect – which is detrimental in the case of pulsating flow – increases
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Figure 2.19: Pulsations of the flow rate below its initial value found to enhance heat transfer, Brereton
and Jiang [30].

with increasing Wo, increasing A0 and decreasing Pr. Studies have typically measured the

effect relative to molecular diffusion, which is a weak method of heat transfer. Hence,

enhancement relative to a steady flow would be a more informative metric. While the

analytical models capture this principal mechanism, Hemida et al. [29] argued that the

constant heat flux condition is too restrictive – tying the heat transfer process and reducing

the effect of pulsation – and showed that the approximation reduced the effect of pulsations

in the thermally-developing region. Studies that incorporate conduction in the walls (i.e. a

finite wall thermal resistance) may be less restrictive.

2.2.2.2 Mechanism 2: Enhanced Wall Shear Stress Analogy

While the work of Kurzweg [69] focused primarily on axial heat transfer, the theory permits

normal conduction in the thick walls of the channel array. The value of wall conductivity

is varied between kw = 0 (corresponding to the constant heat flux boundary condition) and

kw = ∞ (the constant temperature boundary condition). For the case of a finite wall thermal

resistance 0 < kw < ∞, a finite amount of heat conduction takes place at the boundary

between the fluid and solid, though the time-average must be zero. The outer boundary

of the wall is adiabatic. Gedeon [79] developed a similar solution (though not allowing

for variable wall thickness), focusing on transverse heat transfer at the walls. Similar to

the phase shift that may exist between wall shear stress and velocity in the hydrodynamic
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problem, a phase shift develops between the transverse temperature gradient at the wall and

the driving temperature difference with increasing frequency. At low frequencies, the heat

flux and driving temperature difference are in phase, and hence have a ratio that is universally

constant. However, at high frequencies a phase difference exists such that the instantaneous

heat flux is not dependent on the instantaneous temperature difference. This contradicts the

quasi-steady assumption and indicates that flow history has a strong impact, as noted by a

number of other studies [30, 80]. To deal with this phase discrepancy (and with a temperature

difference in the denominator that became zero instantaneously), a complex Nusselt number

was defined, which used the cross-sectional mean temperature as the representative fluid

temperature, rather than the bulk temperature. As a result, the theory fails to capture the

effect of the enhanced axial diffusion mechanism of Section 2.2.2.1. However, the magnitude

of the temperature gradient at the wall, and hence the magnitude of the Nusselt number, are

found to increase with increasing frequency. The largest increases are found for the case of a

constant temperature wall, though substantial augmentations of the heat transfer coefficient

can be achieved at high frequencies for realistic wall resistances. Liao et al. [81] incorporated

an oscillating heat flux (with a time-average of zero) at the outer edge of the thick bottom

wall to simulate cooling of electronic components on printed circuit boards (PCBs). The

average Nusselt number increased with frequency and tidal displacement with a maximum

enhancement of 200% compared to the steady flow case at the highest frequency investigated.

The phase of the oscillatory heat flux appears to have been kept constant with respect to the

pressure gradient, though any analysis performed on a non-time-averaged basis is highly

involved and beyond the scope of the current research. Furthermore, the equations required

to solve a geometrically-asymmetrical conjugate heat transfer problem are quite lengthy.

Shi et al. [82] developed the technique of planar laser-induced fluorescence (PLIF)

to measure unsteady heat transfer processes in an acoustically-excited compressible air

flow. The plates forming a parallel plate channel, like those in heat exchangers of thermoa-

coustic devices, were heated at one end and cooled at the other, introducing a non-linear

step-like change in temperature gradient near the joint. The frequency was maintained at

Wo = 11.3±2.1 (with the discrepancy deriving from the temperature-dependent kinematic

viscosity) while low (A0 = 1.3) and high (A0 = 3.8) amplitudes were investigated. The latter

had a more significant effect on the temperature field, though the tidal displacement was

43



2.2. HEAT TRANSFER OF UNSTEADY FLOW

larger than the length of the channel itself. A sinusoidal variation of Nusselt number was

determined from the slope of temperature profiles at the wall whose amplitude increased

with displacement. However, the Nusselt number was defined using a fluid reference tem-

perature at the junction of the hot and cold heat exchangers rather than the mean or bulk

temperature, the physical meaning of which is not clear. Yu et al. [80] used the same setup to

complement thermal results with particle image velocimetry (PIV). Figure 2.20 presents the

processed transverse/axial temperature profiles for 20 phase values. Also, a numerical study

was conducted to investigate a higher range of frequencies 9.2≤Wo≤ 26.3 and amplitudes

0.4≤ A0 ≤ 4.2. The study qualitatively described the characteristic overshoots and under-

shoots of temperature, and briefly noted their apparent similarity with the overshoots of the

Lagrangian displacement profile of the fluid. The annular effects increased with increasing

temperature gradient.

Experiments by Persoons et al. [16] found that pulsating thermal behaviour in their short

aluminium minichannel heat sink was well modelled by a constant temperature boundary

condition at the four walls on a time-averaged basis. The enhancement (as high as 40% at

large amplitudes) was approximated well using Reynolds analogy of momentum and heat

transfer. In Chapter 7, an argument is presented that some proportionality also exists in a long

channel; however, it should be noted that heat transfer in the thermally-developing region is

more susceptible to heat transfer enhancement [29]. Furthermore, it was noted that the flow

inlet and outlet configuration – that forced the flow to enter and exit abruptly at 90◦ angles –

may also have contributed to higher enhancement.

Interestingly, while a large number of problems with various boundary conditions exist,

models that are seemingly quite different may still capture the same physical characteristics of

oscillatory flow. For example, a series of numerical studies have investigated the problem of a

fluid flow oscillating between two cold reservoirs with the tidal displacement longer than the

short isothermal- or isoflux-heated tube length [83, 84, 85]. Zhao and Cheng [84] validated

their numerical model (over 2.40≤Wo≤ 10.77 and 8.5≤ A0 ≤ 35) using measurements of

the time-dependent axial temperatures at the wall and centre line of a thick-walled copper

tube heated by an insulated flexible heater. The transverse temperature profiles were seen

to contain annular effects, resulting in steeper temperature profiles at the heated surface at

high frequencies. The entry region contained the largest overshoots, since the absence of
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Figure 2.20: Oscillating temperature field (in ◦C) of a compressible air flow in a parallel plate channel
for Wo = 11.3, A0 = 3.7, Yu et al. [80].

a temperature gradient at the mid-length reduces the effect of displacement. The Nusselt

number was defined with a fluid temperature at the reservoir, such that it represents the

thermal potential from the heated wall of the pipe to the cold fluid at the entrance and

exit of the pipe rather than local instantaneous heat transfer at the wall. As expected from

the temperature profiles, the time and space averaged Nu was dominated by the entrance

region, reaching its smallest value near the middle of the pipe. Moreover, heat transfer

increased with Wo and A0 due to the reduced thickness of thermal boundary layer and larger

displacements respectively. On a time-dependent basis, heat transfer was found to reach a

maximum corresponding to the time of maximum velocity [84].
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Figure 2.21: Oscillating temperature profiles of a compressible air flow in a parallel plate channel for
Wo = 11.3, A0 = 3.7, Yu et al. [80].

By permitting variation of the transverse temperature gradient at the wall, theoretical and

experimental studies have typically found that heat transfer at the wall is augmented, with

the performance increasing with Wo and A0. This matches the behaviour of the wall shear

stress, whose magnitude similarly increases with frequency and amplitude (as reviewed in

Section 2.1). Interestingly, the enhancement through heat flux at the wall is not necessarily in

contradiction with the deterioration through the bulk temperature found in Section 2.2.2.1.

In fact, the mechanisms are distinct and could operate simultaneously, in theory. It is clear

that the relationship between heat flux and driving temperature difference is more complex

than the simple proportionality experienced by steady flows, and this leads to problems

with the definition of Nusselt number. While a definition using the mean temperature is

mathematically convenient, the effect on the bulk temperature must be manually accounted

for.

2.2.2.3 Further Mechanisms: Bulk-mean Flow Reversal

Small changes of the time-averaged heat or mass transfer rate are typically found for small

amplitude oscillations. Conversely, experiments have demonstrated that significant heat

transfer enhancement may be achieved where bulk mean flow reversal occurs. The differing

effects are well-illustrated by a series of mass transfer experiments measuring the wall mass

transfer of a pulsating pipe flow using the diffusion-controlled electrode technique. The
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concentration boundary layers were developing due to the length of the short transfer surface.

Patel et al. [86] investigated small amplitude oscillations such that reverse flow did not occur

(QA/Q0 < 0.2) over the range 1.86≤Wo≤ 8.57. At constant pressure head, the amplitude

of the wall mass transfer coefficient decreased and phase lag increased with increasing

frequency. While values are not actually presented, the alteration of the time-averaged mass

transfer rate compared to the steady case is apparently small. The results were compared

with an early low-frequency boundary layer heat transfer solution [87]. Agreement was poor,

likely due to discrepancies in test parameters between experiment and theory including the

frequency range, geometry and boundary conditions. Gupta et al. [88] focused primarily

on large amplitude fluctuations (0.06 ≤ QA/Q0 ≤ 4 for 2.29 ≤Wo ≤ 3.79). The time and

space-averaged transfer rate was found to tend to the steady value with increasing frequency.

Little to no change was found for very small amplitudes QA/Q0 = 0.06−0.12, in agreement

with Patel et al. [86]. For QA/Q0 = 1.15− 1.5, a slight decrease in the transfer rate was

found, with a reduction of as much as 6% at low frequencies. Over QA/Q0 = 1.5−2, mass

transfer was unchanged. For high amplitudes QA/Q0 > 2.5, there was a relative increase

in the transfer rate compared to steady flow with a maximum enhancement of about 21%

recorded. The trend with amplitude was explained using the developing length. Steady flows

experience a reduction in heat transfer as the flow becomes thermally developed. As the

amplitude is increased, heat transfer is reduced for some unexplained reason. For QA/Q0 > 1,

heat transfer rates continue to fall at the upstream end, but start growing at the downstream

end due to flow reversal. Initially, this increase is too small to offset any decrease at the

upstream end. However, at very large amplitudes, the enhancement at the downstream end

compensates for the reduction at the upstream end and the overall time- and space-averaged

rate is augmented.

By studying the instantaneous wall transfer rates, it was demonstrated that non-linear

effects were significant at the higher flow rate amplitudes under bulk-mean flow reversal

conditions. Also, pressure gradient measurements were taken to infer the instantaneous

behaviour of hydrodynamic parameters such as the wall shear stress from existing analytical

solutions. At low amplitudes (QA/Q0 = 0.404), the time-dependent mass transfer was

approximately sinusoidal as shown in Figure 2.22(a). As the amplitude ratio was increased to

QA/Q0 = 0.94, the second harmonic became significant at low frequencies (Figure 2.22(b)),
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Figure 2.22: Pulsating mass transfer rate and pressure drop in a pipe for (a) QA/Q0 = 0.4 and low
frequency, (b) QA/Q0 = 0.94 and low frequency, (c) QA/Q0 = 0.96 and high frequency, Gupta et al.
[88].

and less so at high frequencies (Figure 2.22(c)). For QA/Q0 > 1, the flow experienced

bulk-mean reversal. Since the upstream and downstream developing lengths now alternate,

a second maximum appeared during an oscillation cycle corresponding to the maximum

velocity in the negative direction (see Figure 2.23). The amplitude of the mass transfer

signature was in agreement with theory up to QA/Q0 = 0.44 for all frequencies. For QA/Q0 =

0.85− 0.95, experimental values were in agreement for large frequencies but fell below

theoretical predictions for small frequencies. The agreement of phase lag was not good for

QA/Q0 = 0.3−0.95 at low to moderate values of frequency. Hence, the second harmonic of

Nusselt number must not be neglected at high amplitudes, as it is by theory. Mass transfer
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is partially governed by second harmonics and the location and size of transfer maxima are

dependent on both frequency and amplitude. Unlike the momentum problem, it is likely that

amplitude innately affects characteristic thermal behaviour over a certain threshold. Large

amplitudes and small frequencies portray the most complex behaviour.

Figure 2.23: Pulsating mass transfer rate and pressure drop in a pipe for (a) QA/Q0 = 3.37 and low
frequency, (b) QA/Q0 = 3.37 and high frequency, Gupta et al. [88].

Persoons et al. [16] investigated the effect of flow pulsation on the heat transfer perfor-

mance of a minichannel in an aluminium heat sink for 6 ≤Wo ≤ 17, 0.002 ≤ QA/Q0 ≤ 3.

While no consistent dependence with frequency was found, regimes of slight reduction and

significant enhancement were observed with changing pulsation amplitude separated by a

critical value of QA/Q0 = 0.23, as shown in Figure 2.24. At low pulsation amplitudes, the

heat transfer from the heat sink is reduced by less than 1%. At higher pulsation amplitudes,

heat transfer enhancement increased with pulsation amplitude up to a maximum of about

40% at QA/Q0 = 2.25. The enhancement found at higher pulsation amplitudes is compa-

rable to the numerical results of Craciunescu and Clegg [89] in their modelling of blood

flow in human arteries at constant wall temperature. For the overlap in parameter space

(20 ≤ Re0 ≤ 120, 0.6 ≤Wo ≤ 4, QA/Q0 = 1), the numerical endeavour recorded positive

heat transfer enhancements of between 6.3% and 11%; slightly lower than the experimental
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study. The trends with flow rate amplitude are also qualitatively similar to the experiments of

Gupta et al. [88], though the mass transfer study found that frequency did have an effect with

higher transfer rates observed at lower frequencies.

Figure 2.24: Heat transfer enhancement δNu of pulsating flow with flow rate amplitude QA/Q0
(=Rep/Re) for frequencies 6≤Wo≤ 17 with (a) linear and (b) nonlinear axis scales, Persoons et al.
[16].

Unlike the momentum problem, the relationship with amplitude is apparently non-linear

above a certain threshold. Such conditions are difficult to replicate analytically or numerically,

and a satisfactory theory has not been developed that can predict this form of enhancement.

The features of flow reversal are reasonably complex, and details such as its location, mag-

nitude and duration have been derived analytically in a pipe and parallel plate channel by

Haddad et al. [56]. The parameters investigated in this study could prove useful when the

heat transfer associated with bulk-mean reversal is characterised.

2.2.3 Summary of Unsteady Heat Transfer Review

The commonly-asked question of whether unsteadiness enhances heat transfer is mostly likely

conditional on the parameters of the problem and the definition of enhancement. Theoretical

works typically find negligible or slight alterations in heat transfer, while experimental studies

are more likely to predict larger enhancements. Some of this conflict is likely explained by
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the practical difficulties of generating a thermally-developed flow experimentally. It is also

possible that experimental uncertainty in the measurement of the miniscule changes in heat

flux, wall temperature or bulk temperature that occur with superimposed unsteadiness is to

blame. For example, theory predicts that a 1% change in Nusselt number corresponds to a

change in bulk temperature of 0.034 ◦C, using the experimental parameters of Chapter 4.

A review of the literature suggests that unsteadiness acts to (i) induce an enhanced axial

heat flux towards the entrance of the vessel and (ii) augment the temperature gradient at the

wall. Table 2.2 compiles the heat and mass transfer experiments performed on pulsating

and oscillating flows. Analytical studies have consistently shown that oscillation causes a

time-averaged enhanced axial heat flow against the temperature gradient, which is an adverse

effect with respect to heat removal in pulsating flow. This second order effect is a non-

obvious result of the interactions of the hydrodynamic and thermal fields and has the potential

to remove heat without accompanying net mass transport. While experiments measuring

time-dependent temperature profiles are lacking as a whole, the enhanced axial diffusivity

mechanism has been reasonably characterised on a time-averaged basis by heat and mass

transfer experiments over a high range of frequencies (1.6≤Wo≤ 50). This owes largely

to a movement attempting to commercialise a technology that exploited the phenomenon in

the 1980s [22]. However, the local time-dependent profiles have been visualised by a single

qualitative experiment [71] at a pair of frequencies Wo = 4.4 and 12.2. Furthermore, the

time-dependent behaviour of the axial heat flux, which oscillates with twice the oscillation

frequency, has only been studied theoretically.

The adverse effect of the enhanced axial diffusion mechanism on pulsating flows gives

a plausible explanation for the lack of experimental measurements of any accompanying

wall heat flux enhancement. The more intuitive mechanism of enhanced wall temperature

gradient has been suppressed in the majority of analytical studies owing to the ideal constant

heat flux boundary condition. The local time-dependent profiles – with sinusoidally-varying

temperature gradient at the wall – have been measured in a couple of experiments [80, 82]

for a compressible flow with a step change in axial temperature gradient at a single frequency

Wo = 11.3. Also, evidence for the existence of the mechanism has been found in the

relationship between flow rate amplitude and time- and space-averaged heat transfer, which

was well-approximated by the Reynolds analogy of momentum and heat transfer for a
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thermally-developing pulsating flow (6≤Wo≤ 17) heated at a constant temperature [16].

To the best of the author’s knowledge, no experiments have been performed for the common

flow condition of an incompressible flow in a heated vessel.

As a whole, thermal studies have tended to restrict their focus to time- and space-

averaged heat transfer. However, averaging ultimately results in a loss of information and any

potential optimisation requires the understanding of the instantaneous interplay of competing

mechanisms. For example, the effect of each mechanism may vary in both space and time,

such that certain time intervals or locations experience an overall net favourable outcome.

Also, comparatively few experiments have measured the more complex thermal problem,

compared with Section 2.1, probably since temperature visualisation and measurement

techniques are less developed than their velocimetry counterparts. Furthermore, many of the

experiments are in the thermally-developing region, use compressible fluids or are concerned

with mass transfer. Heat transfer experiments have been performed predominantly in two-

dimensional channels; however, the results have been compared solely to numerical models

since an analytical solution does not appear to exist.

2.3 Implications for Research Objectives

In this chapter, an overview of the studies relating to pulsating and oscillating flows in pipes

and channels has been performed. The gaps in the literature are significant in terms of both

theory and experiment:

• An existing 2-D analytical solution to the momentum equation has not been validated

experimentally.

• Thermal measurements in channel geometries have only been compared to numerical

solutions, since a 2-D analytical solution to the energy equation does not exist.

• Local time-dependent temperature measurements have not been performed for the

common flow condition of an incompressible flow in a heated vessel of any geometry.

• The intricate coupling between the localised instantaneous fluid dynamics and heat

transfer has not been studied with a view to potential optimisation.
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These gaps create problems in characterising the heat transfer performance of a photonics-

cooling solution involving pulsating flow in a channel heat sink. This research aims to build

a theoretical framework of understanding, by developing analytical solutions and numerical

models for the hydrodynamic and thermal problems. The theory will be validated using

hydrodynamic and thermal experiments that approximate any idealisations in the theory. In

particular, the interdependence of the hydrodynamic and thermal fields will be considered in

order to exploit any potential optimisation.
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Table 2.2: Details of reviewed heat and mass transfer experiments, and of the current experimental setup of Chapter 4.

Reference Flow Type q̂ Geom. Dh [mm] Fluid Measurement Technique Var. Wo A0

Joshi et al. [67] Puls Mass 0 © 10 Methane Infrared-absorption T̄ ′b 1.6-7.8 9.2-39.6
Jaeger & Kurzweg [68] Puls Mass 0 © 63, 79 Oxygen Concentration Detector T̄ ′b 3.5-9.1
Kurzweg & Zhao [21] Osc Heat 0 © 12.7 Water Thermometer T̄ ′b 25-50 3 – 20
Ozawa & Kawamoto [71] Osc Heat 0 � 9 Water Thermo-sensitive Tracer T 4.4-12.2
Yu et al. [80] Osc Heat > 0 � 12 Air∗ PLIF T 11.3
Shi et al. [82] Osc Heat > 0 � 12 Air∗ PLIF T 11.3 1.3-3.8
Persoons et al. [16] Puls Heat > 0 �† 1.9 Water Thermocouple ∂Nu 6-17
Zhao & Cheng [84] Osc Heat > 0 ©† 15.7 Water Thermocouple ∂Nu 2.4 - 10.8 8.5-35
Patel et al. [86] Puls Mass > 0 ©† 14.3 Electrolyte Diff. Contr. Electrode q̂ 1.86-8.57
Gupta et al. [88] Puls Mass > 0 ©† 12.7 Electrolyte Diff. Contr. Electrode q̂ 2.3 - 3.8 8.5-35
Current Research Puls Heat > 0 � 3.6 Water Infrared Thermography Tw 1.75 4.6

Wall Heat/Mass Transfer
q̂ = 0, adiabatic/impermeable wall
q̂ > 0, heated/permeable wall

Geometry
†thermally−developing

Working Fluid
∗compressible

Variable Measured
T̄ ′b, space- and time-averaged enhanced axial diffusivity mechanism
T , local time-dependent fluid temperature
Tw, local time-dependent wall temperature
∂Nu, space- and time-averaged heat transfer enhancement
q̂, time-dependent wall heat/mass transfer
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Chapter 3

Analytical Theory

As reviewed in Chapter 2, several methods of solving the unsteady Navier-Stokes equations

have been used in previous works. The Fourier series approach [32] involves decomposition

of the complex pressure signal into individual modes in order to exploit the linearity of the

governing momentum equation. The general solution is constructed from a summation taken

over the individual harmonic frequencies and can handle any arbitrary time-periodic pressure

fluctuation. The resulting equations are reorganised to represent the different physical

quantities as an amplitude and phase lag. In existing solutions in rectangular channels [31],

the amplitudes and phases of the principal flow variables are not immediately discernible

since the parameters are given as an infinite sum of sinusoidal functions. As a result, the

parameters need to be computed at numerous time steps – rather than a single instant – adding

to the computational expense. Also, the time-dependent behaviour of the parameters is given

relative to a prescribed pressure gradient rather than a positively-displaced flow rate, and

difficulties arise in shifting to a flow rate-fixed model. In another work by the author [90],

an existing solution in real coordinates is reorganised in terms of a single sine wave with an

explicit amplitude and phase (which yields a 24-fold computation time improvement over

20 time intervals). In this thesis, complex coordinates are preferred for consistency with the

newly-derived solution to the energy equation in a rectangular channel, which is solved using

the method of undetermined coefficients. To the best of the author’s knowledge, an analytical

heat transfer model is not currently available for a two-dimensional geometry. The solution

uses simplifying assumptions similar to those of recent analytical solutions in pipes [29, 30].
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3.1. DESCRIPTION OF FLOW AND GOVERNING EQUATIONS

Hence, the aim of the current chapter is to advance the state-of-the-art in thermo-fluidic

analytical models of pulsating flow in a rectangular channel.

3.1 Description of Flow and Governing Equations

The laminar pulsating flow of interest has localised and time-dependent velocity û(ŷ, ẑ, t̂)

in the x̂ direction and temperature T (x̂, ŷ, ẑ, t̂), where hat symbols represent dimensional

quantities. The assumptions of a unidirectionality and hydrodynamic development of the

velocity field impose linearity on the hydrodynamic problem. Similarly, the temperature

field in the channel is assumed to be thermally-developed. The flow has high Péclet number

Pe > 100 such that axial conduction is negligible [91] and viscous heating is neglected, since

high Prandtl number fluids like oils are not considered [70]. Thermophysical properties are

approximated as constant to focus on the principal mechanisms without non-linear secondary

effects. The remaining non-linearites – contained within the advective term of the energy

equation – are dealt with in Section 3.1.4. The unsteady Navier-Stokes and energy equations

Figure 3.1: Coordinate system of rectangular channel, and temperature profile of a steady flow with
two heated long walls H2(2L).
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3.1. DESCRIPTION OF FLOW AND GOVERNING EQUATIONS

in Cartesian coordinates are simplified to [92]:

ν

(
∂ 2û
∂ ŷ2 +

∂ 2û
∂ ẑ2

)
− ∂ û

∂ t̂
=

1
ρ f

∇p̂ (3.1a)

α f

(
∂ 2T
∂ ŷ2 +

∂ 2T
∂ ẑ2

)
− ∂T

∂ t̂
= û

∂T
∂ x̂

(3.1b)

where ρ f , ν and α f are the density, kinematic viscosity and thermal diffusivity of the fluid

respectively. As is typical in unidirectional flow, the unsteady pressure gradient ∇ p̂(t) =

d p̂/dx̂ acts in the direction of the streamlines. Since the flow is incompressible, any change

in the gradient is instantaneous throughout the system. For mathematical convenience, the

origin is set at the corner of the channel such that 0≤ ŷ≤ â and 0≤ ẑ≤ b̂, as illustrated in

Figure 3.1.

3.1.1 x-Momentum Balance

The attributes of the various flow regimes are well-illuminated by inspection of the balance

between individual terms. In the force balance of Equation 3.1a for example, the flow rate

varies slowly at low frequencies and the ∂ û/∂ t̂ inertia term can be neglected everywhere.

Thus, the Laplacian term is balanced by the imposed pressure term and the velocity and flow

rate vary periodically in the same phase as the pressure gradient. At large values of Wo, the

Laplacian term in the momentum equations can be neglected everywhere except in the very

narrow Stokes layer. In the inviscid part of the flow, the unsteady inertia term is balanced by

the sinusoidally-varying pressure gradient, and the velocity lags the pressure gradient by π/2.

The interaction of these terms may be investigated using the momentum balance equation.

Equation 3.1a is integrated over the cross-section to give:

− 4 ˆ〈τ〉
Dh
−ρ

〈
∂ û
∂ t̂

〉
= ∇p̂ (3.2)

where Dh is the hydraulic diameter, τ̂ is the wall shear stress and angled brackets denote

spatial averaging. Equation 3.5a quantifies the pressure drop in a channel, resulting from

viscous and inertial contributions.
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3.1. DESCRIPTION OF FLOW AND GOVERNING EQUATIONS

3.1.2 Vorticity and Stokes Boundary Layer Thickness

The viscous term – equivalently written as ν(−∂ω̂z/∂ ŷ+∂ω̂y/∂ ẑ) where ω̂ is vorticity, e.g.

ω̂y = ∂ û/∂ ẑ – describes vorticity gradients in the channel, or the rate of change of normal

and tangential stresses acting on fluid elements in a manner analogous to applied forces

and torques in rigid body dynamics. For a steady developing flow, vorticity created at the

wall diffuses into the flow and slows it through the development of a boundary layer. This

layer consumes the entire cross-section in the fully-developed region, effectively halting

the generation of vorticity. For a fully-developed steady flow, the term ν∇ω̂z = 0 at walls

ẑ = [0, b̂], and the flow of positive vorticity away from the wall is given by ν∇ω̂y,0 =

(1/ρ)∇p̂0, where the latter term is a measure of the vorticity source strength per unit area

[93]. Hence, vorticity diffuses steadily from the boundary before reaching the opposing

wall. For the oscillating case, the accelerations involved in oscillatory flow instigate the

continuous generation of vorticity [94]. The flow of positive vorticity away from the wall (at

walls ẑ = [0, b̂]) has magnitude ν∇ω̂ ′′y = (1/ρ)∇ p̂′′ and is in phase with the pressure gradient

φ∇ω̂y = π/2.

Stokes’ second problem (plotted in Figure 2.1(a)) models the spreading of transverse

velocity oscillations from the boundary with normal velocity
√

2νω , an oscillation amplitude

that decays exponentially with displacement from the plate and a phase lag proportional to

the distance from the wall. From the diffusion equation, the time for a property to diffuse

a distance δ̂ν is given by δ̂ 2
ν/ν where ν is the constant of diffusion (see for example the

denominator of Equation 2.1 quantifying the convective time scale). For time scales of the

same order t̂ ∝ δ̂ 2
ν/ν , it follows that the thickness of the Stokes’ boundary layer must be of

the order
√

ν/(1/t̂). The distance at which fluid elements experience 1% of the effects of

viscous diffusion in Stokes flow, given by:

δ̂ν ≈ 4.6
√

2ν/ω (3.3)

is similarly used to quantify the Stokes layer thickness in a rectangular channel.
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3.1. DESCRIPTION OF FLOW AND GOVERNING EQUATIONS

3.1.3 Non-dimensionalisation of Principal Parameters

The parameters are non-dimensionalised according to:

u =
û
〈û0〉

; θ =
k f (T −Tin)

q̂Dh
; t =

4ν t̂
D2

h
; p =

p̂
ρ〈û0〉2

; x =
4x̂

Dh Re0
; y =

2ŷ
Dh

; z =
2ẑ
Dh

(3.4)

where k f is the fluid’s thermal conductivity, q̂ is the heat flux at the boundary of the channel,

Dh is the hydraulic diameter, 〈û0〉 is the space-averaged velocity, θ is the dimensionless

temperature and Re0 = 〈û0〉Dh/ν is the Reynolds number. The dimensionless frequency and

amplitude parameters were defined in Section 2.1.1. In dimensionless form, Equations 3.1a

and 3.1b become:

(
∂ 2u
∂y2 +

∂ 2u
∂ z2

)
− ∂u

∂ t
= ∇p (3.5a)

1
Pr

(
∂ 2θ

∂y2 +
∂ 2θ

∂ z2

)
− ∂θ

∂ t
= u

∂θ

∂x
(3.5b)

3.1.4 Linearisation

The linearity of Equation 3.5a permits decoupling of the mean and unsteady equations of

motion such that the pertinent parameters are composed of steady and oscillating flow parts

e.g. u(y,z, t) = u0(y,z)+ u′(y,z, t). The mean flow is essentially irrelevant as long as the

added inertia does not trigger turbulence. Equation 3.5b is non-linear owing to the axial

advective term:

u
∂θ

∂x
= u0

∂θ0

∂x
+u0

∂θ ′

∂x
+u′

∂θ ′

∂x
+u′

∂θ0

∂x
(3.6)

In a steady flow, the uniform heat flux along a channel wall induces a linearly increasing

axial fluid temperature profile in the fully developed region. In a pulsatile flow, the overall

energy balance dictates that the time-averaged temperature gradient stays the same. Equation

3.5b is linearised by assuming that the time-dependent component of the axial temperature

gradient in Equation 3.6 is small compared with the steady component |∂θ ′/∂x| � ∂θ0/∂x,
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3.1. DESCRIPTION OF FLOW AND GOVERNING EQUATIONS

following recent analytical studies in pipes [29, 30, 69, 79]. Zhang and Kurzweg [70] found

that the so-called Chatwin approximation has proven accurate for frequencies as low as

Wo = 1 if Equation 3.5b is solved numerically without prior assumptions. Similarly, Kim et

al. [74] found that the fluctuating component of temperature gradient was relatively small

in the downstream region of a parallel plate channel with a constant wall temperature. In

contrast, Siegel and Perlmutter [34] used the slug-flow assumption, which approximates

the velocity distribution as uniform across the channel, to simplify the equation rather

than negating the oscillatory temperature gradients. The hydrodynamics are effectively

one-dimensional though allowed to vary with time which has been found to lead to the

essential physical behaviour of the systems considered [95]. The study found that the wall

temperature oscillated with axial distance for the case of constant heat flux, even in the

thermally-developed region. In other words, the oscillating component of axial temperature

gradient was not negligible. The suitability of this idealised model will be assessed in Chapter

7. By negating the fluctuating component of the axial temperature gradient, the oscillating

component of the temperature field is independent of x and the energy equation may be

decoupled θ(x,y,z, t) = θ0(x,y,z)+θ ′(y,z, t) to give the steady relation:

1
Pr

∇
2
θ0 = u0

∂θ0

∂x
(3.7)

and the oscillating expression:

1
Pr

∇
2
θ
′− ∂θ ′

∂ t
= u′

∂θ0

∂x
(3.8)

3.1.5 Boundary Conditions

Table 3.1: Nomenclature for boundary conditions, Shah and London [92].

T temperature constant both peripherally and axially
H1 temperature constant peripherally, and heat flux constant axially
H2 heat flux constant both peripherally and axially

Solutions to Equation 3.7 may be sought for a variety of boundary conditions [92] –

summarised in Table 3.1 – which are more numerous for a 2-D geometry. The T condition is

the classical constant temperature boundary condition, which considers temperature constant
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3.1. DESCRIPTION OF FLOW AND GOVERNING EQUATIONS

Table 3.2: Nomenclature for combination of heated (symbolised by solid lines) and adiabatic (symbol-
ised by solid lines with diagonal hatching) walls, Gao and Hartnett [96].

4 four heated sides

3L three heated sides and one insulated short side

3S three heated sides and one insulated long side

2L two heated long sides and two insulated short sides

2S two heated short sides and two insulated long sides

2C one heated long side, one heated short side, and two insulated sides

1L one heated long side, three insulated sides

1S one heated short side, three insulated sides

Figure 3.2: Comparison of steady temperature profiles in a rectangular channel with b/a = 4 for the
T(4), H1(4) and H2(4) boundary conditions, Morini [97].

both peripherally and axially. The H2 condition is the classical constant heat flux boundary

condition, considering heat flux constant both peripherally and axially. In a 1-D pipe, the

H2 condition results in a temperature that is naturally uniform at the perimeter. In contrast,

the wall temperature varies peripherally under the same condition in a 2-D channel. Hence,

a hybrid type boundary condition – the H1 condition – exists in a 2-D geometry where a

constant temperature at the perimeter is imposed, while a constant heat flux is imposed in

the axial direction (i.e. the temperature increases linearly). In a pipe, the H1 condition and

H2 condition are equivalent. Furthermore, these heating conditions may be imposed on a

combination of the four wetted walls, as listed in Table 3.2. Morini [97] presents an overview

of the heat transfer of steady flows heated under the T, H1 and H2 boundary conditions

for the case of four heated walls. The differences in temperature profiles may be inspected

from Figure 3.2. In the current research, a heat flux constant in the transverse and axial

dimensions (i.e. the H2 boundary condition) is of interest, in order to match the experimental
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3.2. SOLUTION FOR VELOCITY FIELD

conditions of thin-foil infrared thermography, described in Chapter 4. Spiga and Morini [98]

give a rigorous analysis of different versions of heating for the H2 boundary condition. The

boundary condition is formulated as:

(
∂θ0

∂y

)
y=0,a

=−d1

2
,
d2

2
;
(

∂θ0

∂ z

)
z=0,b

=−d3

2
,
d4

2
(3.9)

where the values of the binary constants d indicate the unique version of heating (see Table

3.3). An energy balance gives ∂θ0/∂x = c/Pr where c = L/(2a+2b) is the heated fraction

of the cross-sectional perimeter.

The boundary conditions for Equation 3.8 are zero since heat addition is accounted for in

the steady equation:

(
∂θ ′

∂y

)
y=0,a

= 0;
(

∂θ ′

∂ z

)
z=0,b

= 0 (3.10)

3.2 Solution for Velocity Field

Solution to Equation 3.5a is achieved using the method of Green’s functions described by

Fan and Chao [31], adjusted for complex coordinates and the non-dimensionalised form.

The ∇p term is replaced by an impulsive pressure gradient −δ (t), where δ (t) is the Dirac

delta function. The fluid is at rest in the time leading up to t = 0 and the momentum

equation reduces to ∂u/∂ t = δ (t). Immediately after the impulse is applied, the velocity is

u(y,z,0+) =
∫

ε

0 δ (t)dt = 1, ε → 0+ and there is no driving force acting on the flow. Hence,

the governing equation becomes homogeneous:

∇
2u− ∂u

∂ t
= 0 (3.11)

Table 3.3: Values of binary constants d of analytical solution for unique version of heating, Spiga and
Morini [98].

Version 1L 1S 2L 2S 2C 3L 3S 4
d1 0 0 0 1 0 0 1 1
d2 0 1 0 1 1 1 1 1
d3 0 0 1 0 0 1 0 1
d4 1 1 1 0 1 1 1 1
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3.2. SOLUTION FOR VELOCITY FIELD

but with an inhomogeneous initial condition u(y,z,0+) = 1. The solution to Equation 3.11 is

defined as the Green’s function for velocity of the system:

Gu(y,z, t) =
16
π2

∞

∑
m=1,3...

∞

∑
n=1,3...

e−βmntΦ1

mn
(3.12)

with:

Φ1 = sin
(mπy

a

)
sin
(nπz

b

)
(3.13a)

βmn = π
2
(

m2

a2 +
n2

b2

)
(3.13b)

By convolving the Green’s function with an arbitrary time-dependent accelerative function

f (t) = ∇p′ the solution for the induced velocity profile is determined:

u(y,z, t) =−
∫ t

0
f (λ )Gu(y,z, t−λ )dλ (3.14)

The convolution is performed with an oscillating pressure gradient ∇p′ = ∇pAeiWo2t to

determine the pulsating velocity field:

u′(y,z) =R(ψueiWo2t) (3.15a)

ψu =−
16∇pA

π2

∞

∑
m=1,3...

∞

∑
n=1,3...

Φ1

mn
1

βmn + iWo2 (3.15b)

where the behaviour during the rise time, governed by the e−νβmnt term, has been negated. If

Wo = 0, Equation 3.15b represents the steady solution with ψu = u0 and ∇pA = ∇p0. The

local amplitudes and phases may be easily obtained from the length and angle of the complex

vector:

uA = |ψu| (3.16a)

φu = tan−1
[
I(ψu)

R(ψu)

]
(3.16b)
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3.3. SOLUTION FOR TEMPERATURE FIELD

The expressions for flow rate ψQ =
∫ a

0
∫ b

0 ψudydz and local wall shear stress ψτ̂zx(y) =

µ(∂ψû/∂ ẑ)|ẑ=0 are reported in the Appendix. The acceleration profiles are ∂ û/∂ t̂ =

R[ψ∂ û/∂ t̂eiω t̂ ] with ψ∂ û/∂ t̂ = iωψû. The mean acceleration is 〈ψ∂ û/∂ t̂〉. The displacement

profiles are given by χ ′ = R[ψχeiWo2t ] with ψχ = ψu/iWo2. The mean displacement am-

plitude (equal to half of the tidal displacement) is 〈χA〉= |〈ψχ〉| where the angled brackets

denote averaging over the cross-section. Equation 1a gives the velocity data relative to a

cosine wave pressure gradient. The time-dependent values relative to a fixed sinusoidal flow

rate are found using a phase shift:

u′′ =R[ψuei(Wo2t−φQ−π/2)] (3.17)

The calculation time of Equation 3.15b for the first 100 terms of each sum at 106 nodes is

28.2 minutes on a PC with Intel Core i7-4771 3.5 GHz processor and 32 GB RAM.

3.3 Solution for Temperature Field

The steady solution [98], reorganised in terms of the non-dimensionalised parameters of

Equation 3.4, is detailed in the Appendix. Siegel and Savino [99] and Savino and Siegel

[100] give the solution for the steady flow conjugate problem in a rectangular channel. The

change in wall temperature profile with lateral conduction in the wall is depicted in Figure

3.3. The conjugate analytical solution for the oscillating temperature profile in a parallel plate

channel [69] adjusted to the same non-dimensionalised form as Section 3.1.3 is also given

in the Appendix. Currently a solution for the oscillatory component in a two-dimensional

channel is not available in the literature. A solution is sought in the form:

θ
′(y,z, t) =R

(
∂θ0

∂x
ψθ eiWo2t

)
(3.18)

where ψθ (y,z) is the spatial distribution of the oscillating temperature profile. It should be

noted that θ ′ is not necessarily in phase with u′ since ψu and ψθ are both complex quantities.

Substituting into Equation 3.8 gives:
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3.3. SOLUTION FOR TEMPERATURE FIELD

Figure 3.3: Steady wall temperature profiles with lateral conduction in the wall for aspect ratios
b/a = 1, 2 and 5. The case of K = 0 corresponds to the constant heat flux boundary condition. The
experimental geometry of Section 4 corresponds to K = 0.42, Siegel and Savino [99].

1
Pr

∇
2
ψθ − iWo2

ψθ = ψu (3.19)

Hence, a periodic time-dependent problem in the real domain is transformed into a steady-

state problem in the complex domain. A general solution to the homogeneous equation is

given by:

ψθ =
∞

∑
j=0

∞

∑
k=0

A jkΦ2 (3.20)

where the Neumann boundary conditions at the walls instead require cosinusoidal eigenfunc-

tions:

Φ2 = cos
(

jπy
a

)
cos
(

kπz
b

)
(3.21)

Using the method of undetermined coefficients, Equations 3.20 and 3.21 are substituted

into Equation 3.19 to give:
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3.3. SOLUTION FOR TEMPERATURE FIELD

A jk =−
(4/ab)Pr

β jk + iWo2Pr

a∫
0

b∫
0

ψuΦ2dydz (3.22)

β jk = π
2
(

j2

a2 +
k2

b2

)
(3.23)

The orthogonality of the eigenfunctions in Φ1 and Φ2 ensures that integrals involving

odd values of j and k disappear, such that:

ψθ (y,z) =
64∇pAPr

π4

∞

∑
j=0,2...

∞

∑
k=0,2...

∞

∑
m=1,3...

∞

∑
n=1,3...

·
a jkΦ2

(βmn + iWo2)(β jk + iWo2Pr)( j2−m2)(k2−n2)

(3.24)

with:

a jk =


1 j = 0,k = 0

2 j = 0,k 6= 0 or j 6= 0,k = 0

4 j 6= 0,k 6= 0

(3.25)

The oscillating temperature profiles are hence obtained using Equations 3.18, 3.24

and 3.25. The local amplitudes and phases of temperature are θA = (∂θ0/∂x)|ψθ | and

φθ = tan−1[I(ψθ )/R(ψθ )]. The rate of change of the temperature profile is ∂θ/∂ t =

R[ψ∂θ/∂ teiWo2t ] with ψ∂θ/∂ t = iWo2ψθ . With j = k = 0, Equation 3.24 is uniform over the

cross section and proportional to the mean cross-sectional displacement. Conveniently, no

singularity exists at Pr = 1 like in the existing solution in a parallel plate channel [69]. The

time-dependent values relative to a fixed sinusoidal flow rate are found using a phase shift:

θ
′′ =R

[
∂θ0

∂x
ψθ ei(Wo2t−φQ−π/2)

]
(3.26)

3.3.1 Bulk Temperature and Nusselt Number

Steady Case Newton’s law of cooling states that heat flux is proportional to the temperature

difference for steady forced convection. The constant of proportionality is the dimensional
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3.3. SOLUTION FOR TEMPERATURE FIELD

heat transfer coefficient h0 = q̂/(〈Tw,0〉−Tb,0), where 〈Tw,0〉 is the mean temperature of the

heated walls only. In steady unidirectional flow in a vessel, it is conventional to use the flow

rate weighted average of the fluid temperature called the bulk temperature to describe the

thermal energy state of the fluid:

Tb,0 =

â∫
0

b̂∫
0

û0T0 dŷ dẑ

â∫
0

b̂∫
0

û0 dŷ dẑ

(3.27)

The Nusselt number expresses the convective heat transfer of a steady flow with respect

to that of conductive heat transfer in the same quiescent fluid:

Nu0 =
h0Dh

k f
=

1
〈θw,0〉−θb,0

(3.28)

where the mean wall temperature corresponds to heated walls only. For steady laminar

fully-developed flow in a pipe with uniform surface heat flux, it is found that the Nusselt

number is a constant, independent of the Reynolds number, Prandtl number and axial location.

The H2 condition exhibits the lowest Nusselt numbers of all boundary conditions owing to

higher corner temperatures [97]. Figure 3.2 depicts the temperature profile for the case of

four heated walls case H2(4) in a square channel (with Nu0 = 3.09), which is most similar to

the constant heat flux condition in a steady pipe flow (where Nu0 = 4.36). The heat transfer

performance decreases as the channel narrows. The highest heat transfer coefficients are

found for the case of two heated long walls H2(2L) – depicted graphically in the schematic of

Figure 3.1 – which appear to approach the well-known planar channel value of Nu0 = 8.235

with decreasing aspect ratio. The opposing relationships between heat transfer and aspect

ratio for the 2L and 4 cases may be explained by the concentration of energy in regions of

poor convection [101]. For the case of plug flows, Gao and Hartnett [96] and Morini [97]

found a geometry-independent value of Nu0 = 6, illustrating the influence of the velocity

profile.

Time-averaged Case The definition of bulk temperature and Nusselt number is not a trivial

matter in unsteady flow. Guo and Sung [102] showed that alternative definitions of Nusselt
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3.3. SOLUTION FOR TEMPERATURE FIELD

number could indicate either enhancement or reduction in heat transfer. Similarly in the

field of dropwise condensation [103] (where heat flux and temperature difference are not

proportional), the error bounds of calculating h from ∆T could yield contradictory results,

and the concept of a mean heat-transfer coefficient is not considered helpful.

Hemida et al. [29] performed a rigorous analysis of the correct definition of bulk

temperature, concluding that, to allow its use in a steady flow thermal energy balance

Qw = ṁcp(Tb,out−Tb,in) [104], it should be defined as:

θb =

λ∫
0

a∫
0

b∫
0

uθ dy dz dt

λ∫
0

a∫
0

b∫
0

u dy dz dt

(3.29)

where λ is the dimensionless oscillation period. The overall bulk temperature contains

four components resulting from the product of the decoupled velocity and temperature

uθ = (u0 +u′)(θ0 +θ ′), of which only two remain after the integration with respect to time.

The time-averaged change in the bulk temperature due to unsteadiness is dependent on the

interactions between the fluctuating components of velocity and temperature:

θ̄
′
b = 1/λ

∫
λ

0
θ
′
b dt (3.30)

where the overbar denotes averaging with respect to time and:

θ
′
b =

a∫
0

b∫
0
R(ψueiWo2t)R(∂θ0

∂x ψθ eiWo2t) dy dz

Q0
(3.31)

This term is related to the enhanced axial diffusion term of heat and mass transfer

studies reviewed in Chapter 2. The heat transfer is independent of x and does not affect

∂θ0/∂x. Equation 3.31 is compatible with the first definition of time-averaged Nusselt

number proposed by Guo and Sung:

Nu =
1

〈θw,0〉− (θb,0 + θ̄ ′b)
(3.32)

The bulk temperature has been time-averaged prior to division in Equation 3.32. This

so-called quotient of the mean Nuqm must be used to analyse whether heat transfer has been
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enhanced or diminished relative to a steady flow [30]. The conclusion results from an analysis

of the enthalpy at the outlet, relative to that at the inlet for a fixed time-averaged flow rate

(see also the discussion of convected energy flux in [105]). The corresponding heat transfer

coefficient is hqm = q̂/∆T . However, the above definition gives no information on time-

dependent heat transfer and the mean of the quotient hmq = q̂/(〈Tw〉−Tb) is sometimes used.

Calculating instantaneous values effectively changes the order of averaging and division.

However, q̂ does not always have the same value as hmq∆T as a result of coupling effects.

For example, the instantaneous and time-averaged problems may be described as [106]:

q̂+q′ = (hmq +h′)(∆T +∆T ′) (3.33a)

q̂ = hmq∆T +h′∆T ′ (3.33b)

where the h′∆T ′ term captures non-linearities in the heat transfer problem. Zudin [107]

called hqm the "experimental heat transfer coefficient" (EHTC) and hmq the "averaged true

heat transfer coefficient" (ATHTC), with respect to semi-analytical analyses of conjugate

problems. It is found that hmq = hqm for the constant temperature boundary condition, hmq

is virtually independent of wall properties, and that hqm is always less than or equal to hmq

in the thermally-developed region [107]. Mathie and Markides [106] showed that hmq may

be greater in the thermally-developing region, and used the non-linearity to quantify a heat

transfer augmentation ratio A = 1+ h′∆T ′/h̄∆T where the heat transfer is compared to a

"steady equivalent", rather than a literal steady flow.
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Chapter 4

Experimental Methods, Analysis and

Uncertainty

In Chapter 3, an analytical model was developed for the velocity and temperature profiles

of an incompressible pulsating flow in a rectangular channel heated under constant heat

flux. As concluded by the literature review of Chapter 2, none of the hydrodynamic and

thermal parameters have received any form of quantitative experimental validation under

these specific conditions. This chapter relays the design of the experimental apparatus

and testing procedure, as well as techniques used in data analysis and the evaluation of

experimental uncertainty.

4.1 Experimental Methods

This section describes the design of two separate experimental rigs, constructed to measure

the local time-dependent velocities and wall temperatures, respectively. The experimental

setup should isolate the heat transfer enhancement due to pulsation alone, by ensuring that

the flow is hydrodynamically and thermally-developed and devoid of secondary flow effects.

Also, the simplest case of sinusoidal pulsations in the periodic steady-state are of interest.

Since the velocity and temperature field are identical in each subsequent period, the harmonic

flow pattern is exploited to decouple the experimental testing procedures and simplify the test

facilities. It is expected that the construction of separate rigs to facilitate hydrodynamic and
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thermal measurements will reduce the experimental error. For example, the channel tailored

for hydrodynamic measurements will adhere to a smooth-walled rectangular geometry

more accurately, since no cutout is required to facilitate infrared (IR) camera access of

the heater using materials transparent in these wavelengths. Furthermore, the momentum

and heat transfer problems contain unique design considerations and a compromise within

practical constraints is difficult. A larger channel is desirable to facilitate particle image

velocimetry (PIV) in two separate planes while a slightly smaller channel ensures a shorter

thermal development length. Dimensional analysis may subsequently be used to recouple the

problems.

4.1.1 Hydrodynamic Testing

The velocity is the principal hydrodynamic parameter from which many other parameters

such as wall shear stress and vorticity derive. Table 2.1 summarises the techniques used

by the reviewed studies of Section 2 to measure the velocity field. The measurement

technique of particle image velocimetry (PIV) is considered a mature technology and has

been implemented previously to measure the unsteady velocity profiles of a compressible

flow around parallel-plate structures of thermoacoustic devices [108, 109].

4.1.1.1 Experimental Apparatus

Test Section Figure 4.1 depicts a model of the hydrodynamic test facility. The test section

consists of a rectangular channel bound by four 10 mm thick optically transparent acrylic

walls, which are bonded and sealed using chloroform. The pieces are orientated as illustrated

in Figure 4.2, so that the body of water within is visible through unmachined surfaces of the

material, preventing the need for polishing. The dimensions – reported in Table 4.1 – are

small compared with experiments in the reviewed literature of Section 2.1 (see Table 2.1).

The vertical orientation in which the test section is mounted enables the easy evacuation of

air bubbles. It also ensures that the laser and camera are traversed in a plane parallel to the

floor. Furthermore, the laser never shines vertically and can be maintained below waist height.

The inlet and outlet are oriented at 90◦ to the channel axis and a conservative length of at

least 50×Dh has been maintained upstream of the testing window to ensure hydrodynamic
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(1)

(2)

(3)
(4)

(5)

Figure 4.1: Model of the hydrodynamic test rig, containing (1) channel test section, (2) gear pump, (3)
flow meter, (4) degassing system and (5) fluid reservoir.
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4.1. EXPERIMENTAL METHODS

development (this is discussed further in Section 4.2). The test section is connected to the

flow loop by stainless steel connections and tubing, used so that pulsation does not induce

strain in the walls of the tubes.

Table 4.1: Hydrodynamic channel dimensions.

Width, â [mm] 30
Height, b̂ [mm] 4
Length, L̂ [mm] 500
Hydraulic Diameter, Dh [mm] 7.1

Gear Pump A HNP Mikrosysteme mzr-4605 micro annular gear pump (0.012-72 mL/min)

and Terminal Box S-G05 drive are used to generate steady and pulsating flows, which

draw from a 236 mL Koolance reservoir. Unlike piston/diaphragm pump methods of flow

oscillation, the flow rate is controlled rather than the volumetric displacement per cycle and

the relevant amplitude parameter is the dimensionless flow rate amplitude QA/Q0, rather than

the dimensionless amplitude A0. To generate pulsations, a program has been written using

Matlab software with parameters that are controlled via a graphical user interface (GUI).

A sinusoidal flow rate of a given mean, amplitude and frequency is discretised into a finite

number of time steps. At each interval, a timer function executes and writes a motor speed

to the controller based on the phase of the period. If the flow is discretised into sufficiently

small intervals, the inertia of the pump causes a smooth temporal flow rate. For flow with

very long time periods, a maximum interval of 0.5 s was used to ensure a wave free from step

changes in flow. A counter implemented in the timer function records the phase of the output

(1)

(2)
(3)

y

z

x

(4)

(a) (b) 

Figure 4.2: Orientation of (1) camera, (2) laser optics and (3) acrylic channel to capture the x̂ velocity
component (out of plane) of (4) the fluid body over the (a) ŷ dimension and (b) ẑ dimension.
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flow. At desired phase values (0, 0.1π , 0.2π ...), the error output pin of the pump controller

is set to high and sent to the imaging system to trigger image capture. The 24 V signal is

ramped down to 5 V using a pair of resistors in a voltage divider circuit.

According to the manufacturer, the accuracy of the pump rotational speed is ±3 rpm,

dependent on the operational conditions. Since the pump cannot achieve negative flow rate,

the flow rate amplitude is limited to QA/Q0 ≤ 1. The working range of Reynolds numbers in

the 30 mm× 4 mm channel is 10≤Re0≤ 88. Unknown at the time of testing, the acceleration

is set to 500 rps/s by default but can be increased. Thus, pulsation speeds higher than the

0.5 Hz limit determined in Section 6 may be achievable. Interestingly, the precision of the

pump has been exploited to simulate a heart beat pulsating flow of artificial blood through

capillary-shaped microchannels [110].

Flow Meter The steady flow rate is measured using an Atrato 710-V00-D ultrasonic flow

meter (2 – 500 mL/min), accurate to ±1% of the reading according to the manufacturer. The

instrument uses the non-intrusive time of flight measuring method with symmetrical sound

waves generated by the excitation of annular crystals. The up- and downstream flight times

in the 1 mm diameter bore are measured to within 250 ps. The velocity of the fluid is equal

to half the difference. Interestingly, the shape of the velocity profile is not important.

Degassing System A Minimodule G543 deaerater is used to remove bubbles and dissolved

gases in the working fluid. This operates using 50 polypropylene hollow fibre membranes

(with a lumenside inner diameter of 200 µm) in polyurethane potting resin. The module

is attached to an Agilent Varian SH100 single-stage dry hermetic scroll vacuum pump by

polyurethane (PU) and polyamide (PA) tubing, which is stiff enough to prevent collapse in

the vacuum pressure required to achieve effective degassing (< 200 mbar). To minimise

the amount of water vapour from entering the air side, the vacuum is maintained above the

23.4 mbar vapour pressure of water (for a nominal room temperature of 20◦C). Further, a

water trap is utilised to prevent any water from entering the pump. To prevent any miniscule

particles in the flow from clogging its pores during testing, the degasser can be cut off from

the flow loop using 3-way ball valves.
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Particle Image Velocimetry System The velocity field of the flow is measured using a

TSI particle image velocimetry (PIV) system, composed of a laser system, an optical system,

a camera and data acquisition/processing software all controlled by a dedicated computer.

The fluid is seeded with 4 µm diameter nylon-12 tracer particles (TSI P/N 10084), with a

density of 1140 kg/m3. The Quantel Twins Big Sky Laser system is comprised of a pair of

rugged, lamp-pumped Nd:YAG, 200 mJ per pulse, 1064 nm lasers with a pulse repetition

rate of 15 Hz. Mounted side-by-side, the beams of the individual lasers are combined in a

single optical axis to produce collimated green light of 532 nm wavelength. The beam leaves

the laser with a waist diameter of 5.2 mm and a divergence half-angle of 3.8 mrad.

(1)

(2)

(3)

Figure 4.3: Model of the optical setup, containing (1) lens tube, (2) laser arm, and (3) rotating stage.

PIV is a volume measurement technique by nature, such that the velocity measured at

a point amounts to the Gaussian-weighted average of particle velocities illuminated by the

thick laser sheet. Since the channel height is 4 mm, an analysis is performed to determine

the associated error using the analytical solution of Section 3. The error is highest when

measuring the velocity profile in the ŷ dimension. The volume illuminated by a laser sheet

with a thickness an order of magnitude smaller than the channel height contains velocities at

least 1% lower than those at the mid-dimensions. Using a laser sheet thickness two orders

of magnitude smaller reduces the discrepancy to 0.01%. Hence, a custom optical setup is

assembled (depicted in Figure 4.3), using three lenses to achieve an adjustable focal length

and laser sheet thickness. The characteristics of the laser beam such as the focal length, waist
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diameter and Rayleigh range are estimated after each lens using the formulations of Self

[111] for spherical Gaussian beams. A 25 mm diameter spherical plano-concave (diverging)

lens with −75 mm focal length is mounted in the base of a lens tube, which stays in a fixed

location. In the translating part of the lens tube are mounted a 25 mm diameter spherical

plano-convex (converging) lens with 100 mm focal length and a 12.5 mm diameter cylindrical

plano-concave (diverging) lens with a focal length of −12.5 mm. The focal length, beam

waist diameter and Rayleigh range are varied according to the distance between the former

optical pair. The lenses have wavelength ranges compatible with the collimated green light

of 532 nm wavelength of laser. The minimum thickness of a single burst of the lasers on

laser alignment paper placed at the theoretical focus is 266 µm, as measured using a digital

microscope (see Figure 4.4). The optical setup is coupled to a rotating stage on a vertically-

translating mount. Translation in the remaining dimensions is facilitated by a traversal. The

cylindrical lens may be rotated to align the laser sheet to the dimensions of the channel.

The TSI 4 MP PowerView CCD camera (Model 630090) has a frame rate of up to

16 frames per second (fps) at full pixel resolution. To achieve a picture with maximum

pixel density of the channel, a Nikon AF Nikkor lens with a 50 mm focal length is used in

conjunction with either 12 or 48 mm of extension, dependent on the channel dimension being

observed. The camera has a resolution of 2352×1768 pixels, which amounts to 34.25 ×

25.75 mm2 or 11.76 × 8.84 mm2 in physical units, depending on the extension. The lens

aperture is set to f/11 to ensure appropriate illumination of the channel. The depth of field

(DOF) may be estimated using VWDOF calculator software [112]. The sensor size is 12.9

mm × 9.7 mm and defocused points are defined as having a circle of confusion less than or

equal to the 5.5 µm pixel size. The DOF varies from 2.6 mm to 257 µm dependent on the

extension tubes used.

The LaserPulse Synchroniser (Model 610035) connects to all components of the imaging

system and acts as the timing and control module. The timing electronics govern signal

generation to the laser flash lamps and Q-switches, the camera and the frame grabber to

completely automate the timing between laser pulses and camera exposure times with 1 ns

time resolution. The camera is interfaced to the PC using an Xcelera frame grabber. The

control unit also reads an external 800 µs TTL pulse trigger signal from the pump controller

to phase-lock measurements to the sinusoidal oscillation of the flow. The time step between
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Figure 4.4: Single burst of the lasers on laser alignment paper placed at the theoretical focus measured
using a digital microscope.

individual captures is kept below 0.5% of the oscillation period to minimise averaging errors

resulting from the ever-changing flow field. Connected to a computer via serial interface, the

entire PIV system can be completely controlled using TSI’s Insight 4G (version 10.0.3.0)

data acquisition software.

4.1.1.2 System Calibration

Pump The volumetric displacement per revolution of the pump is calibrated for steady

flow rates using an ultrasonic flow meter (see Figure 4.5). As is typical with gear pumps,

the volumetric efficiency reduces with rising differential pressure (see right of Figure 4.5).

However, the changes in pressure drop with flow rate and imposed unsteadiness are assumed

insignificant relative to the 10 bar pump rating. An estimate of the flow rate is hence achieved

by approximating the flow as positively-displaced.

PIV System Calibration of the optical alignment is performed prior to taking measurements

for each of the two perpendicular plane orientations (depicted in Figure 4.2). To calibrate

the laser beam, crosshairs are attached to the end of the laser arm and aimed at a sheet of

laser alignment paper. The angles of the mirrors are adjusted until a pattern symmetric in the

up-down and left-right directions is achieved. The rig and traverses are leveled with a spirit

level by adjusting the feet on the end of the profile. The laser arm is further mounted onto

a rotating stage to enable fine rotation of the light sheet and ensure accurate alignment. A

minimum and uniform sheet thickness is ensured by positioning the centre of the test window
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Figure 4.5: (a) Calibration curve for the pump flow rate as a function of motor speed with linear fit,
(b) Manufacturer specifications for decreasing volumetric efficiency with rising differential pressure
for liquid water (µ = 1 mPa · s).

at the focal point of the laser’s converging lens. The laser sheet is preliminarily aligned

with the principal axes of the channel using a calibration target and laser alignment paper.

Precise alignment is achieved using an iterative procedure involving velocity measurements

in steady flow. A series of image pairs are captured for steady flows corresponding to the

maximum and minimum flow rates of the pump. The angle of the laser sheet is adjusted until

the ensemble-averages of the processed velocity profiles are symmetric with flat ridges. To

determine the midpoint, the laser sheet is traversed between the boundaries of the channel.

The processed spatial velocity distributions are processed and integrated to determine the

flow rate at each increment. The maximum of the resulting curve of flow rate versus position

provides the centre point of the channel. The angle of the camera traverse is finely adjusted

by capturing images and ensuring vertical orientation of the channel walls. The angle of the

camera is adjusted such that the particles in a flow circulated through the test section appear

in focus across the entire width of the channel.

4.1.1.3 Experimental Procedure

Deionised water is added to the flow loop through the fluid reservoir and circulated for one

hour through the deaerater. While the particles should be neutrally buoyant, those that settle

near the middle of the solution are added to the flow using a pipette and allowed to disperse

through the body of water for several minutes.

To confirm that the flow is fully-developed in the experimental setup, steady flows over
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Table 4.2: Experimental parameter space.

Frequency, f [Hz] 0.02 0.1 0.5
Womersley number, Wo 1.4 3.1 7.0
Flow rate amplitude, QA/Q0 0.9 0.9 0.9
Tidal displacement, 2χ̂A [mm] 2.5 12.6 62.8
Dimensionless amplitude, A0 0.36 1.78 8.9

the range 10≤ Re0 ≤ 80 are circulated through the test section. The Reynolds number of the

steady component of the pulsations is Re0 = 40. Since the distinct characteristics of pulsation

vary solely with Wo, the pulsation speed is varied according to Table 4.2 while QA/Q0 is

maintained at 0.9. This high flow rate amplitude was chosen to capture the interesting effects

of local flow reversal at high frequencies. The desired mean, frequency and amplitude of

the flow rate for a given test are input using the Matlab GUI for the pump controller. The

phase values where image capture is triggered are adjusted, depending on the pulsation

speed. At lower frequencies, all required phases are captured in one cycle, while the limited

repetition rate of the laser requires multiple cycles to capture the required data points at

higher frequencies. The TSI Insight 4G software is set to capture an overall number of image

pairs, amounting to 100 at each phase value (for ensemble-averaging). The data acquisition

is set to wait for the first trigger signal, which corresponds to a zeroth phase value of the

sinusoidal pump flow rate in the periodic steady-state (i.e. a number of cycles after the rise

time). The images are saved in .tif format. As discussed in Section 4.2.1, the images are

processed using Insight’s in-built algorithms, and the processed vectors (in .vec format) are

exported to Matlab for post-processing.

4.1.2 Heat Transfer Testing

Section 2.2 reviews the experimental techniques used to measure the local time-dependent

temperature field of oscillating flows, as summarised by Table 2.2. While the bulk temperature

is an important parameter for predicting enhancement of heat transfer in pulsating flow

relative to steady flow, the behaviour of the temperature profile near the wall determines the

explicit heat flux. Hence the infrared thermography (IRT) technique is preferred to planar

measurement techniques that would require high resolution and precision in the near-wall

region. This non-intrusive technique is proficient at resolving two-dimensional surface
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temperatures with high spatial resolution [113], and has been used in the Fluids and Heat

Transfer Research Group of Trinity College Dublin to measure the impacts of rising bubbles,

the wakes of sliding bubbles and electrospray cooling [114, 115, 116]. To the best of the

author’s knowledge, IRT has not implemented with pulsating or oscillating flow in any vessel

geometry. Thin foils approximate the constant heat flux boundary condition and amplify

wall temperature fluctuations. For example, Mosyak et al. [117] found that the temperature

fluctuations of a thin stainless steel foil were an order of magnitude higher than a thick copper

plate.

4.1.2.1 Experimental Apparatus

Test Section The experimental test section consists of a channel plate and heater support

plate, clamped between a pair of aluminium supports, as depicted in Figure 4.1.2.1. Sealing

is achieved using a 0.2 mm silicone rubber gasket. The inlet and outlet are machined into the

channel plate and are oriented at right angles to the channel axis. The support frames allow

the piece to be mounted to aluminium profile and also to help to distribute the stresses on the

acrylic pieces more evenly to prevent cracking. As before, stainless steel connections and

tubing are used such that pulsation does not induce strain in the walls of the tubes.

Channel The channel is milled from an acrylic plate. The dimensions, reported in Table

4.3, are small compared with experiments in the reviewed literature of Section 2.2 (see Table

2.2) and have been reduced compared with the unheated channel since thermal development

requires a larger axial length in water. Also, the smaller channel width reduces deformation

and vibration of the unsupported thin fourth wall of the channel, as discussed below. A

distance of 94×Dh has been maintained upstream of the testing window, as the inlet and outlet

are at 90◦ to the principal axis. Since the thickness of the compressible gasket contributes to

the channel height, a vernier calipers is first used to obtain ten measurements of the overall

height of the clamped test section without the gasket. By performing the same measurement

with the gasket in place, allows the difference (and channel height) to be determined.

Heated Foil The fourth wall of the channel is formed by a tensioned 25 µm thick annealed

Inconel 625 foil (Ni61/Cr22/Mo 9/Fe 5). Inconel was chosen for its high electrical resistivity
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(1)
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(3)
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(5)

Figure 4.6: Exploded view of test section, containing (1) channel plate, (2) heater support plate, (3)
electrodes, (4) IR glass, and (5) aluminium supports.
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Table 4.3: Heated channel dimensions.

Width, â [mm] 20
Height, b̂ [mm] 2
Length, L̂ [mm] 460
Hydraulic Diameter, Dh [mm] 3.6

of 129 µΩcm and low thermal conductivity (such that lateral conduction within the foil is

reduced). Foil preparation is a delicate and time-consuming process. Since high emissivity

surfaces are preferred [113] the camera-side of the foil needs to be painted black. This also

acts to reduce reflections and the Narcissus effect (where the camera sees reflection of its

own sensor). The foil is cut to 42 mm wide × 700 mm long using a scalpel and cleaned

using isopropanol (IPA). Ideally, the entire width would be coated with paint to negate end

effects at the side walls; however, the electrodes need to contact the alloy near the channel,

as depicted in Figure 4.7. Also, a long paint layer (in the axial direction) ensures consistency

while the flow develops thermally. The borders around a 22 mm wide x 350 mm long area are

masked with tape, accurate to ±0.5 mm. The matte black paint (Electrolube, RS Stock No.

374-8654) is applied using an air brush, which facilitates fine tuning of air pressure (15 psi

found to be optimal) and spray angle. The properties of the foil and paint are listed in Table

4.4, where the thermal conductivity of the paint has been tested by Thermoconcept using the

transient plane source (TPS) technique [114]. The density and specific heat capacity data of

Raghu and Philip [118] are used. The foil properties are supplied by the manufacturer. After

testing, three profile measurements of the paint thickness are taken using a Dektak surface

profiler with a resolution of ±0.5 nm. The paint has a mean thickness of 6.59 µm with a

standard uncertainty of ±1.12 µm.

Table 4.4: Foil and paint properties [114, 118, 119].

Foil, s Paint, p
Thickness, ŵ [µm] 25 6.59
Density, ρ [kg/m3] 8440 1162
Thermal conductivity, k [W/(m ·K)] 9.8 0.095
Specific heat, cp [J/(kg ·K)] 410 2835
Emissivity, ε 0.13 0.95
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Heater Support The foil is clamped and tensioned in the longitudinal direction, as shown

in Figure 4.8. The foil wraps around rollers before being clamped between aluminium pieces

with serrated inner surfaces for grip. A separate pair of longitudinal copper electrodes are

used to supply current to the foil, housed in the PEEK heater support plate. The electrodes

touch the foil (through a layer of silver conductive grease) near the corners of the channel,

such that foil is only heated at a single wall of the channel, minimising heat leakage into

the channel from the sides (see Figure 4.7). The test section design also maintains a layer

of insulating PEEK between the electrodes and air gap, to minimise heat leakage into the

channel from the air gap. Each pair of electrodes has two screw connections, which are

connected to power via copper cables to a Lambda GENESYS GEN6-200 DC power supply,

capable of 6 V and 200 A output. 59.8 A is supplied with constant current mode ensuring

steady heating of the foil. An interesting analysis by Mathie [106] shows that constant current

mode is optimal, since the power delivered to the foil is independent of any change in foil or

cable resistance as a result of heating. Since PEEK is not infrared transparent, a section has

Figure 4.7: Cross-section of test section showing the (1) channel, (2) air gap, (3) IR glass, (4) heated
foil, (5) electrodes and (6) camera.
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(1)

(2)

(3)

(4)

(5)

(6)(7)

(8)

Figure 4.8: Model of heat transfer test rig, containing (1) test section, (2) tensioning system, (3) gear
pump, (4) flow meter, (5) secondary heat exchanger, (6) thermal camera, (7) degassing system and (8)
fluid reservoir.

been removed to allow thermal measurements of the rear face of the heated foil to be taken

with an IR camera. A sapphire glass (Al2O3) window, 95×52×1 mm3, is used to create a

stagnant air gap, with dimensions 75 mm long × 20 mm wide × 15 mm high. While sapphire

has a high percentage transmissibility within the 2.5 – 5.1 µm range of the infrared camera

(see Figure 4.9), a temperature calibration is performed with the window in the optical path

prior to testing, as detailed in Section 4.1.2.2. A heated length of 83×Dh is maintained

upstream of the viewing window to ensure that the flow is thermally developed. To provide
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insulation, an air gap is maintained between the foil and glass. The foil is unsupported since

rigid backing supports must be transparent to the IR radiation and may contribute to the

energy balance [120]. Hence, the pressure in the liquid channel flow may cause deformation

and vibration of the channel boundary. The energy balance of the foil is discussed in Section

4.2.2.2.
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Figure 4.9: Transmissivity of IR light with wavelength for 0.1 mm thick sapphire (Al2O3) glass,
Crystran [121].

Liquid-cooling Flow Loop Figure 4.8 depicts the single phase flow loop used to cool the

heated channel. The hot working fluid exiting the test section is cooled by a fan-driven

plate-fin heat exchanger with the circuit driven by the gear pump and drive described in

Section 4.1.1.1. The 236 mL reservoir increases the volume of liquid to hold the bulk liquid

temperature constant during operation and also to allow for easy filling and emptying of

the flow loop. Deionised water – which has been degassed using the degassing system of

Section 4.1.1.1 – is used as the coolant. The thermal properties of the fluid at 30◦C (i.e. the

temperature near the end of the heater and viewing window) are listed in Table 4.5.

Flow Meter For heat transfer testing, the steady flow rate is measured using a Bronkhorst

model M14 flow meter (500 mL/min), which uses the Coriolis measurement technique.

The instrument contains a uniquely-shaped, single-loop sensor tube which forms part of a
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system oscillating at its natural frequency. As the flow passes through the vibrating tube,

Coriolis forces are generated causing very small tube displacements which are detected by

optimally-positioned sensors connected to an integrally mounted printed circuit board (PCB).

The phase shift of the sensor signals is proportional to the mass flow rate. The meter is

mounted to a vibration-free, heavy mounting block which has a mass and stiffness precisely

tuned for this specific model. This ensures optimal accuracy of measurements. More than

20 pipe diameters was allowed between the instrument and any abrupt turns in connecting

tubing.

Thermocouples The temperatures at the inlet and outlet, and two air gap temperatures

(separated by 20 mm in x̂) are taken using calibrated T-type copper-constantan thermocouples.

The thermocouples are connected to a NI-9214 temperature input module, which samples

up to 16 channels at a maximum combined frequency of 68 Hz in high-speed timing mode.

The thermocouple card is holstered in a one-slot N-CompactDAQ-9171 chassis. Each

thermocouple is programmed to take 10 measurements per second using a timer function in

Matlab software.

Infrared Thermography System Thermal behaviour is measured using the infrared ther-

mography (IRT) system, comprised of a camera, an optical system and data acquisition

software run by a dedicated computer. The outer wall temperature of the heater is imaged by

a high-speed FLIR SC6000 series camera, whose specifications are given in Table 4.6. The

camera operates using a focal plane array (FPA) of indium antimonide (InSb) detectors, sen-

sitive in the mid-wavelength infrared (MWIR) spectral range where the sapphire IR window

is highly transmissible. The detectors are cooled to 78 K using a miniature Stirling engine to

prevent the system being flooded with infrared light from its own surroundings. The camera

Table 4.5: Water properties at 30◦C [104].

Density, ρ f [kg/m3] 995.8
Dynamic viscosity, µ f [kg/(m · s)] 8×10−4

Thermal conductivity, k f [W/(m ·K)] 0.62
Specific heat, cp, f [J/(kg ·K)] 4178.4
Expansion coefficient, β f [1/K] 3×10−4

Prandtl number, Pr 5.6
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uses 14 bit signal discretisation such that each pixel detects between 0 and 16383 counts.

An integration (exposure) time of 1.7 ms is chosen to maximise use of this range, while

ensuring that the sensor never becomes saturated during testing. The camera is mounted to

aluminium profile and views the heated surface from below, as depicted in Figure 4.8. To

achieve a high spatial resolution of the channel wall, a MW G0.5 F/3.0 close up lens (L0510

LC) with a 46.12± 0.5 mm focal length and maximum 19.2 x 15.36 mm2 field of view is

used with an image size of 320×256 pixels (and an x offset of 160). The lens has > 93%

transmission. The channel width measures 116 pixels, giving a spatial resolution of 172.4

µm/pixel. The camera is tilted at an angle of 5◦ to reduce reflections from the glass window,

known as the Narcissus effect. Furthermore, a single axial location away from the centre of

the focal array is used. The camera is instructed using FLIR ExaminIR integrated software

(version 1.30.0). The camera reads external TTL pulse trigger signals from the motor drive

(see Section 4.1.1.1) to phase-lock image measurements to the sinusoidal oscillation of the

flow. The video files are exported to Matlab for analysis.

Table 4.6: Specifications of infrared camera.

Resolution [pixels] 640 × 512
Wavelength Range [µm] 3 – 5
Full frame rate [Hz] 126
Thermal Sensitivity [mK] < 20

4.1.2.2 System Calibration

Thermocouples The temperatures at four locations – the inlet, outlet, near air gap and

far air gap – are measured using thermocouples that are accurate to within the greater of

1◦C or 0.75%, according to the manufacturer. The four probes are calibrated in a Julabo

F25 constant-temperature water bath – with a maximum spatial temperature variation of

0.5◦C according to the manufacturer (though variation as high as 0.8◦C has been measured) –

against a Stanford Research Systems calibrated thermistor and programmable temperature

controller (with 0.001◦C systematic uncertainty). To negate the error of bath non-uniformity,

one thermocouple at a time is coupled to the thermistor probe and wrapped in insulation

before immersion in the bath. With the water at the inlet and outlet unheated, the transverse

temperature profiles are constant and the measured value is the average temperature at the
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Figure 4.10: Calibration curves for the (a) inlet, (b) outlet, (c) near air gap, and (d) far air gap
thermocouples with linear fits.

cross section of the tubing. The linear fits of the thermocouples are depicted in Figure 4.10.

Thermal Camera Thermal cameras are prone to fixed pattern noise, since individual

detectors in the focal plane array (FPA) exhibit varying degrees of response to incoming

radiation energy (i.e. they have unique gain and zero offset values). Also, inhomogeneities

in the lens may distort the counts readings. A two-point non-uniformity correction (NUC)

is performed prior to temperature calibration to reduce spurious temperature differences

in space. The technique involves observing a constant temperature heat source at two

temperatures, such that a linear fit between the two temperature/counts pairs (with a given

slope and intercept) may be determined for each of the sensors. The heat source is an
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Figure 4.11: Calibration curve for the thermal camera with 3rd order polynominal fit.

Infinity Series black body generator with temperature probe and controller, manufactured by

Santa Barbara Infrared (SBIR). The SBIR Model 104i precision thermometer with 0.0001◦C

resolution is calibrated to 0.007◦C accuracy. The surface of the black body consists of an

industry standard high emissivity coating with a uniform emissivity of 0.95 over 3 - 14 µm

of the wavelength spectrum. The temperature is spatially uniform to the higher of ±1% or

±0.01◦C over 90% of the surface area. The temperature stability is < 1 mK. The black body

is heated in turn to 25◦C and 40◦C – corresponding to room temperature and the approximate

maximum temperature experienced during testing – and 50 images are recorded and averaged.

The FLIR ExaminIR software outputs the gains and offsets as .scg and .sco files, and bad

pixels in .sbp format.

Accurately mapping the relationship between temperature and radiation of an IR camera

using a radiometric analysis is an arduous task, requiring detailed knowledge of the equipment

and the characteristics of radiative emission, absorption and transmissivity. Figure 4.12

illustrates that the radiation energy measured by a sensor is composed of radiation emitted by

the heater Uob j, radiation emitted by the window Uw, radiation emitted by the hot gas in the air
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Figure 4.12: Radiation detected by thermal camera, Ochs et al. [122].

gap Uhg, radiation emitted by the optics U1, and reflections of atmosphere-emitted radiation

from the sapphire window Uamb and heater Us. Furthermore, the radiation is attenuated

according to the transmissivity of the atmosphere τatm, air gap τhg, sapphire window τw and

camera optics τ1. Planck’s law gives the spectral distribution of radiation intensity Eb emitted

from a black body. An opaque object emits radiation according to Eob j = εEb where ε is the

emissivity coefficient. The calibration function is ED(λc,Tob j) = Eob j(λc,Tob j)+Eo f f (λc)

where λc is the wavelength, ED is the number of counts measured by the 14-bit detector, Eob j

is the number of counts that were emitted by the object and Eo f f accounts for the remainder

of counts. Calibration constants within the E values take into account Planck’s constant, and

factors dependent on the environment and the experimental setup [113].

A radiometric temperature calibration is performed in situ with the IR window in place

to implicitly capture the calibration constants [122]. To shield the camera from external

reflections, the path between the camera and foil is surrounded by a matte black enclosure.

To reduce the Narcissus effect, the features of the camera apart from the lens are covered

with black felt material. Water from a Julabo F25 chiller is circulated through the channel at

5◦C intervals. The calibrated temperature range reaches beyond the minimum and maximum

temperatures experienced, such that operating temperatures remain well-approximated by a
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low order fitted curve. Thermal equilibrium (monitored using the inlet, outlet, two air gap

temperatures and counts readings) is reached within a maximum of 1 hour and 45 minutes.

The air gap is found to take much longer to stabilise than the inlet and outlet temperatures.

After sufficient time, the count value is determined by averaging over a 91×18 pixel area

(reaching about 5 pixels from each wall) to reduce noise. The temperature value is taken using

an average of the inlet and outlet temperatures over 10 seconds at 10 Hz. The polynominal

fit of the temperature calibration – calculated using the Matlab functions polyfit and

polyval – is depicted in Figure 4.11.

4.1.2.3 Experimental Procedure

To set up the test section, the painted foil is first aligned with the heater support, and clamped

and tensioned using the tensioning system. The electrodes are inserted into the base and

silver conductive grease applied. The base is raised up to the level of the foil using the lower

aluminium support and adjustable profile. The gasket and channel plate are placed on top,

and the test section is clamped. As before, deionised water is added to the flow loop through

the reservoir and circulated for one hour through the degassing system. It is ensured that no

air bubbles are contained with the channel test section. Finally, the apparatus is levelled with

a spirit level to ensure 1-D conduction in the air gap (see Section 4.1.2).

As before, the steady component of flow rate is Re0 = 40. The channel geometry is

characterised for a pulsating flow with frequency Wo = 1.76 ( f = 0.1 Hz). At higher

frequencies, the amplitudes of the temperature oscillations are too small to measure reliably.

Since local flow reversal may cause non-linear effects (see Section 2.2.2.3), a pulsation

amplitude QA/Q0 = 0.7 is used. Since the frame rate of the high-speed camera is 430.8 Hz

(for the 320× 256 image size), thermal images are recorded at all 20 phase values in one

cycle. The small transverse temperature differences involved mean that the second derivative

of temperature contains high noise, even when ensemble averaged over 1000 images. Hence,

the FLIR ExaminIR software is set to capture a total number of just 2000 images, or 100

at each phase value. The pulsating flow rate is input using the Matlab GUI for the pump

controller and the pump turned on. The power supply is also switched on, and the system

allowed to reach the periodic steady state of thermal equilibrium. After this time, the pump
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flow rate is quickly reset, such that the first trigger signal (and zeroth phase value of the

sinusoidal pump flow rate) can be identified by the waiting data acquisition software. This

first trigger signal is sent a number of cycles after the reset, to neglect behaviour during the

rise time. The images are saved as a FLIR .sfmov movie file with the temperature in counts,

and exported to Matlab for processing, as discussed in Section 4.2.2.

4.2 Experimental Analysis

The analytical theory described in Chapter 3 adheres to a number of physical approximations.

For example, the flow is laminar, hydrodynamically- and thermally-developed, and buoyancy

effects are neglected. In this section, the compliance of the experimental rigs (outlined

in Section 4.1) with these simplifications is analysed, using experimental and numerical

correlations, dimensionless numbers and a lumped analysis. Also, the techniques applied in

processing, post-processing and analysis of the particle image velocimetry (PIV) and infrared

thermography (IRT) data are detailed.

4.2.1 Velocity Data Analysis

Hydrodynamic Development While the channel is characterised experimentally to ensure

flow development in Chapter 6, the topic is discussed theoretically for completeness. Corre-

lations for flow development with a slope but no intercept, e.g. Le/Dh = 0.05Re [104], are

insufficient since they fail to account for the effect of the axial diffusion term (∝ ∂ 2u/∂x2) in

developing flow. Thus, Durst et al. [123] performed numerical simulations to determine the

value of the coefficients Le/Dh =C0 +C1Re, giving a new correlation for the entry length in

a channel:

Le/Dh = [(0.631)1.6 +(0.0442Re0)
1.6]1/1.6 (4.1)

where Le is the entrance length for a uniform inlet velocity in a plane channel. At the

maximum Reynolds number experienced Remax = Re0 +ReA = 76, this predicts an entry

length Le = 24.7 mm. Furthermore, the entry length for pulsating pipe flow has been shown

numerically to vary sinusoidally with an amplitude less than or equal to the steady flow value

92



4.2. EXPERIMENTAL ANALYSIS

[124]. At low frequencies, the amplitude of the entry length is equal to the steady flow value,

while the amplitude reduces with increasing frequency. Theory cannot compensate for inlet

and outlet geometry of the channel which likely elongates this region. The results of Moissis

[125] and Maslen [126] indicate that secondary flows do not occur in fully-developed laminar

flow in a rectangular channel.

Transition to Turbulence in Pulsating Flow The steady flow Reynolds number Remax is

significantly less than the critical value of 2300 that is found empirically [104]. Depending

on the frequency and amplitude, pulsations may induce intermittent turbulent bursts, which

occur for Reδν
= 〈uA〉δν/ν > 500 in oscillatory flow [127] (where Reδν

is the Reynolds

number based on the Stokes layer thickness). The parameters of Table 4.2 correspond to

Reδν
= 102.6, 45.9 and 20.5 for Wo = 1.4, 3.1 and 7.0, respectively.

4.2.1.1 Vector Field Processing

Vector Processing and Post-Processing An overview of the technical background of the

particle image velocimetry (PIV) method is given by Raffel et al. [128]. The image pairs

in .tif format are processed using TSI Insight’s in-built processing algorithms. First,

the intensities of the images are normalised to reduce effects of brightness. The window

cross-correlations are generated using the fast Fourier transform (FFT) technique with peaks

determined by three-point fitted Gaussian curves in two dimensions to achieve sub-pixel

accuracy. A multi-step interrogation scheme is used to increase spatial resolution near the

wall without significantly reducing the signal-to-noise ratio. The estimated displacements

of 64 × 32 pixel samples are used to offset a Nyquist grid of 64 × 16 pixel interrogation

windows with respect to each other during the second pass. In physical units, the initial

window sizes correspond to 0.93 × 0.47 and 0.32 × 0.16 mm2 in the longer and shorter

dimension, respectively. Between passes the data are scanned for outliers using median tests

in local neighbourhoods of 3 × 3 vectors and failed vectors are replaced by either of two

valid secondary peaks from the cross-correlation. Post-processing involves further local

vector validation, similar to before though with a less strict failure criterion. A replacement

scheme fills holes created by the validation step as well as those resulting from peaks below

a signal to noise ratio of 1.5 with the mean of its local neighbourhood. The files are exported
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as .vec files.

Further Processing The text contained in the .vec files is parsed in Matlab. A spatial

calibration is performed for each of the camera and laser orientations shown in Figure 4.2.

Using the steady flow images, the spatial calibration is performed by manually identifying

the pixel values of the two opposing walls of the known channel width. The phase values are

ensemble-averaged over their 100 image pairs, and reordered for the quickly pulsating flows

that captured the complete set of phases out of sequence. The steady velocity profile measured

in a separate test is subtracted from the pulsating distribution to give the oscillating velocity

profile. Since PIV struggles to resolve vectors near to solid boundaries, the accurate vectors

nearest the wall are analysed manually. The experimental values of the wall shear stress at

the midpoint of the channel width are computed using the slope between the velocity vector

nearest to the wall and the wall itself, introducing an error that grows as the boundary layer

thins. With measurements taken to within 0.3 and 0.1 mm of walls ŷ = [0, â] and ẑ = [0, b̂]

respectively, the displacements of the outermost data points amount to 1.8%, 4.1% and 9.1%

of the Stokes layers in the ŷ dimension, and 0.6%, 1.4%, 3.0% and 4.3% in the ẑ direction for

Womersley numbers of 1.4, 3.1, 7.0 and 9.9, respectively. This is a well-documented problem

in fluid mechanics and is the main reason for the poor accuracy of many existing oscillating

wall shear stress measurements. Hughes and How [57] have analysed the growth of this error

with proximity to the wall in detail for pulsatile flows. Accordingly, the maximum errors in

the experimental data tend to be experienced at the higher frequencies.

An analytical model of the pulsating flow is computed with the input flow rate given by

the gear pump calibration of Figure 4.5(a). The number of nodes is chosen to match the

window size of the PIV processing algorithms, such that the error may be calculated at each

grid point. The oscillation of the velocity and wall shear stress with time relative to the fixed

sinusoidal flow rate is inspected at each spatial node using Matlab’s inbuilt function fitnlm

that iterates from initial values to calculate the least squares fit of the data to a non-linear

regression model of the form:

Y = f (X ,B)+ ε (4.2)
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where Y and X are the response and predictor matrices, B are the unknown parameters to

be estimated, ε are the error terms with mean zero and variance σ2. The initial guesses are

taken as the theoretical values for the amplitude and phase. This is similar to the method of

Eckmann and Grotberg [51]. An R2 value is calculated to evaluate the quality of the fit.

4.2.2 Thermal Data Analysis

Thermal Development and Transition to Turbulence The hydrodynamic entry length

for the smaller channel at Remax is Le = 11.5 mm using Equation 4.1 [123]. The thermal

entrance length is predicted using Pr ·Le = 64.3 mm, which is less than one quarter of the

300 mm heated length that is maintained upstream of the viewing window. Furthermore,

theory predicts the shortest thermal entrance lengths occur for high aspect ratio channels

[129]. The maximum Reynolds number, based on the Stokes layer thickness, is Reδν
= 81,

which is low enough that intermittent turbulent bursts do not occur [127].

Natural Convection The Grashof number is the ratio of buoyancy forces to viscous forces

in the velocity boundary layer:

Gr =
gβ f (Tw−Tf )D3

h
ν2 (4.3)

where g is the acceleration due to gravity, β f is the thermal expansion coefficient of the fluid

and Tf is the fluid temperature. For Gr/Re2
0� 1, the effects of buoyancy are negligible [104].

Using the difference between the mean wall temperature and bulk temperature, the Grashof

number is Gr = 486.4 and Gr/Re2
0 ≈ 0.3 such that a mixed convection flow develops in the

channel. The effect of buoyancy is quantified in Chapter 8 using a numerical model.

Lumped Thermal Capacitance The Fourier number quantifies the rate of conduction

relative to the rate of storage in the solid:

Fo =
αs

ωŵ2
s

(4.4)

where αs is the thermal diffusivity of the foil and ŵs is the foil thickness. At large Fo� 1, the

second derivative of the temperature profile in the solid is small and the temperature profile
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can be approximated as linear. The parameters described in Section 4.1.2.3 correspond to

a Fourier number in the foil of Fo = 7211.7. The Biot number quantifies the ratio of the

temperature gradient in the solid to the temperature difference between the wall and fluid:

Bi =
hŵs

kw
(4.5)

where kw is the thermal conductivity of the wall and h is the convective heat transfer coeffi-

cient. If the Biot number is much less than unity, Bi < 0.1, the solid domain can be neglected

and the problem becomes non-conjugate [104, 130]. A channel with a single isoflux-heated

long wall approximates the H2(1L) boundary condition, described in Section 3.1.5. Using

analytical theory, the steady Nusselt number for the channel is Nu0 = 4.55 (h0 = 772.4

W/m2 ·K), which corresponds to a Biot number Bi = 0.002. Hence, the lumped thermal

capacitance method may be used to obtain accurate results, by assuming a uniform normal

solid temperature at every instant. The time constants for the wall ŵ2
s/αs and paint ŵ2

p/αp

are 0.2 ms and 11.5 ms, respectively, which are significantly lower than the time constant of

the pulsations of 10 s.

4.2.2.1 Thermal Image Processing

The .sfmov movie files are converted to a temperature array in 2-D space and time using

Matlab. The spatial calibration is performed by manually identifying the pixel values of the

two opposing walls of the known channel width. Correction of perspective distortion is not

required since the camera is tilted (by 5◦) in a plane that lengthens the channel width equally

at all axial locations. The gain and offset are applied manually using the .scg and .sco

files, and the bad pixels are accounted for using the .sbp file, which were saved during

calibration (see Section 4.1.2.2). Since the files are exported in counts, the temperature in

degrees Celsius is calculated manually using the polynomial equation of the fitted temperature

curve in Figure 4.11. The data are ensemble-averaged over the 100 images of each phase

and the time-averaged component subtracted, to determine the oscillating wall temperature.

Due to end effects near the channel walls, the accurate readings near the wall are analysed

manually. An analytical solution for the pulsating flow is calculated using the experimental

parameters given in Section 4.1.2.3. The case for 1 heated long wall – the H2(1L) boundary
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condition – is used, which assumes an infinitely thin wall. Similarly, a solution is found for a

1-D parallel plate channel [69] with non-thin Inconel 625 walls. The amplitude and phase of

the experimental temperature oscillations at each node are determined using the fitnlm

Matlab function as before, with the initial values input as the theoretical values given by

the analytical solution. The heat generated by the foil and other modes of heat transfer are

calculated as discussed in Section 4.2.2.2.

4.2.2.2 Element Energy Balance

The aim of the experimental setup of Section 4.1.2 is to minimise secondary losses, such that

the convective heat transfer takes up a large proportion of the heat generated within the foil.

In this section, the secondary terms such as lateral conduction, radiation and conduction in

the air gap are calculated using an energy balance at each pixel.

A differential control volume for the foil and paint layer with dimensions dx̂×dŷ× (ŵs +

ŵp) is illustrated in Figure 4.13. Heat generated in the foil is transferred between bordering

foil and paint elements by lateral conduction, to the fluid by forced convection and radiation,

and to the air gap by 1-D conduction and radiation. The energy may also be used to increase

the temperature of the foil. The pixels of the camera are square dŷ = dẑ. The change in the

thermal conductivities with temperature is assumed negligible. The material thicknesses

are assumed constant, with negligible contact resistance between the foil and paint layers

[118, 131]. Using the conservation of energy with the notation introduced in Figure 4.13

[104, 120]:

[q̂x]s +[q̂y]s +[q̂x]p +[q̂y]p + ˆ̇qgen dx̂ dŷ · ŵs−

[q̂x+dx]s− [q̂y+dy]s− [q̂x+dx]p− [q̂y+dy]p−

q̂conv dx̂ dŷ− q̂cond dx̂ dŷ− q̂rad dx̂ dŷ− q̂cap dx̂ dŷ = 0 (4.6)

where subscripts s and p denote the foil and paint layers respectively, ˆ̇qgen is the heat generated

per unit volume, q̂conv is the convective heat flux to the fluid, q̂cond is the heat flux to the

air gap, q̂rad is the radiative heat flux to the surroundings from the foil and paint, and q̂cap
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is the heat storage. The terms in square brackets are in Watts. Using Fourier’s law of

heat conduction q̂x = −k · ŵ · dŷ(∂T/∂ x̂) and q̂y = −k · ŵ · dx̂(∂T/∂ ŷ) for the differential

conduction terms in the foil and paint, Equation 4.6 becomes:

q̂gen = q̂conv + q̂cap + q̂cond + q̂rad− (ksŵs + kpŵp)

(
∂ 2T
∂ x̂2 +

∂ 2T
∂ ŷ2

)
(4.7)

where the last term corresponds to lateral conduction in the foil and paint layers q̂lc. The

quantities of Equation 4.7 describe the pulsating (i.e. time-average plus time-dependent) heat

fluxes. The equation may be time-averaged to give:

q̂gen,0 = q̂conv,0 + q̂cond,0 + q̂rad,0 + q̂lc,0 (4.8)
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Figure 4.13: Energy balance in a single heater element with surface area dx̂×dŷ with foil and paint
thickness, ŵ f and ŵp.
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where the time-average of the capacitive term is zero. The time-dependent relation is:

0 = q̂′′conv + q̂′′cap + q̂′′cond + q̂′′rad + q̂′′lc (4.9)

where the heat generation is assumed uniform in time, and the oscillating components

are calculated by subtracting the mean components from the pulsating components. The

convention is used that heat flow out of an element has positive sign. Hence, the generated heat

in the foil is removed by forced convection of the flow, but heat transfer by lateral conduction,

heat storage, conduction in the air gap and radiation must be accounted for. The space-

averaged values of the steady components and the amplitudes of the fluctuating components

are summarised in Table 4.7 for each of the terms in the energy balance. According to

analytical theory [99, 100], thick walls should alter the steady component of the temperature

profile in a rectangular channel due to augmented lateral conduction in the solid. The effect

on the steady wall temperature profile in the ŷ direction is illustrated graphically in Figure 3.3

for aspect ratios b̂/â = 1, 2 and 5, where the experimental geometry corresponds to K = 0.42.

It is expected that a thick wall affects the oscillating temperature profiles less significantly,

since the fluctuating component of the lateral conduction is smaller, has a time-average

of zero and thus cannot establish itself fully before conditions are reversed. Hence, the

fluctuating components – which should resemble the analytical solutions of Chapter 3 more

closely – are of primary concern. Nonetheless, the trends observed in the steady components

should remain qualitatively similar to the theoretical steady components.

Table 4.7: Heat fluxes of the steady components 〈q̂0〉 and the amplitudes of oscillating components
〈q̂A〉 for terms in the energy balance (Equation 4.7), averaged over channel width.

[W/m2] 〈q̂0〉 〈q̂A〉
q̂gen 2334.8 0
q̂lc -60.7 5.2
q̂cap 0 27.3
q̂cond -15.3 -0.8
q̂rad 61.6 2.5

Heat Generated Assuming that electrical energy generation is uniform in the foil, the heat

generated by Joule heating in each element is:
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q̂gen =
I2R
Lsâ

(4.10)

where I and R are the current through and resistance across the foil, and Ls is the length of

the foil in the axial direction. The resistance of the foil is determined using the electrical

resistivity as R = ρ̃sWs/(Lsŵs) where ρ̃s is the electrical resistivity of the foil, Ws is the heated

length of the foil in the transverse direction and Lsŵs is the cross-sectional area of the foil

in the ŷ dimension. As illustrated by Figure 4.7, the heated transverse length Ws is between

21 mm (the distance between the sharp tips of the electrodes) and 31 mm (which includes

an added 5 mm length at either side where the foil contacts the flat surface of the electrodes

through electrically conductive grease). The resultant heat flux generation varies over 1581.6

- 2334.8 W/m2. Since the heat supplied to the fluid, calculated using the inlet and outlet

temperatures measured by thermocouples is 2380.6 W/m2, the higher estimate is used.
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Figure 4.14: Oscillating lateral conduction term q̂′′lc for Wo = 1.76, QA/Q0 = 0.7. Solid lines and
markers represent analytical solution (–) and experimental measurements (•), respectively.

Lateral Conduction The Péclet number Pe = Pr ·Re0 = 224 measures the ratio of ad-

vective and diffusive transport rate. For Pe > 100, it should be possible to neglect axial

conduction in the fluid and wall (∝ ∂ 2T/∂ x̂2) [91]. Mosyak [117] found that axial heat

conduction was less than 0.5% of that normal to the wall for a thin stainless steel wall. From
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the thermal data, it is found that the ∂ 2T/∂ x̂2 component is less than 10% of the ∂ 2T/∂ ŷ2

component and can be neglected. The lateral conduction becomes:

q̂lc = (ksŵs + kpŵp) ·
∂ 2T
∂ ŷ2 (4.11)

where the material properties of the foil and paint are presented in Table 4.4. The second

derivative is calculated by using Matlab’s gradient function twice. Since noise in the

data may be amplified through differentiation, filtering procedures are often used [113].

In the current work, a median filter is applied using the medfilt2 function before each

numerical differentiation. While the analytical solution of Chapter 3 does not account for

lateral conduction in the wall, Figure 4.14 compares the results to the second derivative of the

temperature field at the wall ∂ 2T ′′w /∂ ŷ2 according to theory. The space-averaged amplitude

of the fluctuating component of the lateral conduction term is 〈q̂lc,A〉 = 5.2 W/m2. The

lateral conduction in the paint layer comprises only 0.4% of the total. The measurements

follow theory quite well up to about 1 mm from the side wall. While not shown, the steady

component is approximately zero and flat over the range 2≤ ŷ≤ 18 mm in agreement with

theory. However, the term becomes highly negative near the corners q̂lc,0 = −600 W/m2,

indicating that heat is flowing into this region, in opposition with theory. This may be due to

end effects or heat leakage from the electrodes. As a result the space-averaged value over the

channel width is −60.7 W/m2, or about 2.6% of the generated heat flux.

Heat Storage Since the flow is pulsating, the ∂T/∂ t̂ is non-zero and heat storage must be

considered:

q̂′′cap =−(ρscp,sŵs +ρpcp,pŵp) ·
∂T
∂ t̂

(4.12)

According to Section 3.3, the rate of change of the temperature is ∂T/∂ t̂ =R[iωψT eiω t̂ ]

(where the i acts only to move the phase forward by 90◦), as plotted by the solid lines in

Figure 4.15. Similarly, the experimental temperature measurements are multiplied by the

angular frequency and phase shifted to give the experimental values, plotted by the markers.

The overshoots and inflection points observed in the experimental and theoretical heat storage

profile are found to be characteristically similar, although discrepancies exist in the local
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Figure 4.15: Oscillating capacitance term q̂′′cap for Wo = 1.76, QA/Q0 = 0.7. Solid lines and markers
represent analytical solution (–) and experimental measurements (•), respectively. While all 20 phase
values are plotted, the legend only identifies 10 for brevity.

amplitudes of oscillation near the corners. The space-averaged amplitude of the capacitance

term is 27.3 W/m2, or 1.1% of the generated heat flux. Heat storage in the paint layer

comprises only 29.2% of the total.

Heat Losses to Air Gap The design of the air gap enclosed by the sapphire window is to

create stagnant air which insulates the foil at the rear side. No circulation occurs in a cavity

heated directly from above and the mode of heat transfer is 1-D conduction [132]. This

results in a temperature that varies linearly in ẑ, and according to the temperature distribution

of the foil in x̂ and ŷ. Fourier’s law in ẑ gives:

q̂cond =−ka
dT
dẑ

(4.13)

where ka is the thermal conductivity of air and dT/dẑ is the linear temperature gradient

normal to the foil. The air gap temperatures are measured using a pair of thermocouples

located 13.5 mm from the heater in the 15 mm high air gap (the holes were drilled by a CNC

machine). Figure 4.16 plots the fluctuating component of the 1-D conduction term, which

has the same shape as the oscillatory temperature profile and a space-averaged amplitude

of 〈q̂cond,A〉 = −0.8 W/m2. The space-averaged value of the steady conduction term is

〈q̂cond,0〉 = −15.3 W/m2, which is about 0.7% of the generated heat flux. If the heated

surface contains any vertical component, a thermal boundary layer forms and the temperature
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field is no longer 1-D. The resultant change in heat transfer is dependent on the Rayleigh

number, which measures the ratio of conductive and convective heat transfer for natural

convection flows:

Ra =
gβa(Tw−Ta)L3

c
νaαa

(4.14)

where βa, νa, αa and Ta are the thermal expansion coefficient, kinematic viscosity, thermal

diffusivity and temperature of air respectively, and Lc is a characteristic length. It has been

calculated that a 1◦ offset causes a 3% change of the air-side Nusselt number compared to

the pure conduction case [132], and hence the channel was levelled using a spirit level prior

to testing. The negative value of q̂cond indicates that heat flows from the air gap into the foil,

due to heat leakage from the electrodes (which are at about 60◦C). Correlations typically

exist for cavities heated at a single wall, with natural convection occurring for Ra > 1708

for the isothermal boundary condition. Using the channel half-width as the characteristic

length (with symmetry assumed at the mid-plane) and the temperature difference between

the electrodes and the mean air gap temperature, a Rayleigh number Ra = 1625 is estimated.

Nonetheless, even large changes in the mode of heat transfer by 2-D effects or natural

convection appear to contribute negligibly relative to the generated heat flux.

Radiation Losses Planck’s law gives the spectral distribution of radiation intensity emitted

from a black body Eb. An opaque object emits radiation according to Eob j = εEb where ε is

the emissivity coefficient. While radiation emitted from the foil in the 3 – 5 µm wavelength

range is measured by the thermal camera, radiation is in fact emitted over the entire spectral

range. The radiation losses at longer wavelengths are accounted for by the radiation losses

term q̂rad . Inconel 625 has a low emissivity (about 14% that of the paint). Furthermore,

the mean temperature of the unheated walls of the channel is about 3◦ lower than the mean

heated wall temperature, according to theory. Hence, radiation from the water side is assumed

negligible. Radiative losses on the air side are approximated as:

q̂rad = εpσ
(
T 4

w −T 4
∞

)
(4.15)

where εp is the emissivity of the paint, σ is the Stefan-Boltzman constant, Tw is the foil and
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Figure 4.16: Oscillating conduction term q̂′′cond for Wo = 1.76, QA/Q0 = 0.7. Markers represent
experimental measurements (•). While all 20 phase values are plotted, the legend only identifies 10
for brevity.

paint temperature and T∞ is the temperature of the surrounding walls, assumed to be at the

ambient air temperature. The fluctuating component of the radiation term (plotted in Figure
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Figure 4.17: Oscillating radiation term q̂′′rad for Wo = 1.76, QA/Q0 = 0.7. Markers represent exper-
imental measurements (•). While all 20 phase values are plotted, the legend only identifies 10 for
brevity.
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4.17) has a spatially-averaged amplitude of 〈q̂rad,A〉= 2.5 W/m2. The steady component has

〈q̂rad,0〉= 61.6 W/m2, which constitutes about 2.6% of the generated heat flux.

4.3 Experimental Uncertainty

As discussed in Chapter 1, the fundamental aim of the current research is to perform com-

plementary experimental, analytical and numerical analyses of the velocity and temperature

fields. The experiments – with high time expense – are used to verify the theoretical models

at certain points of the parameter space, with behaviour of the entire domain validated using

the cheaper simulations. The aim of this section is to quantify the accuracy of the analytical

model for parameters that have been both measured and modelled, using the analytical theory

and experimental characterisation established in Chapter 3 and Section 4.1. Currently, quanti-

fying the quality of the predictions in interpolated or extrapolated regions is an unresolved

research area [133]. The continual advances in computing power and numerical solution al-

gorithms have lead numerical simulations to replace a substantial amount of experimentation

in thermo-fluids engineering. Nonetheless, experiment remains paramount as the most robust

technique of model validation.

4.3.1 Uncertainty of Velocity Measurements

The ISO guide [134] designates two distinct types of uncertainty analysis: (i) a type A analysis

estimates uncertainty by using statistical techniques on measurements such as calibration

data, and (ii) a type B uncertainty analysis uses alternative techniques such as analytical

modelling of the flow and its boundary conditions. As discussed below, the multitude of

optical and algorithmic parameters from the initial illumination of the particle to the final

analysis of the processed displacment vector greatly complicates the error analysis of the PIV

measurement technique. An A-type analysis of PIV uncertainty may involve acquiring actual

PIV images of a pattern of dots mounted on a translation stage that are displaced according to

a known profile [135], while B-type analyses involve the generation of synthetic PIV images.

Alternatively, approximate methods based on algorithms are commonly used. For example,

the latest versions of Insight 4G software (unfortunately not available to the author) base their
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uncertainty analysis on its correlation with image quality, or specifically, with the relative

height of the secondary peak to the primary peak [136]. After many decades of research, no

unified standard exists for the quantification of PIV measurement uncertainty. The following

sections discuss the attempts to minimise measurement uncertainty using the general design

rules for PIV developed by Keane and Adrian [137, 138], and the makeup of the components

of the error between the experimental measurements and the analytical solution.

4.3.1.1 PIV Uncertainty

To illustrate the complexity of the problem, consider the popular method that uses synthetic

PIV data, with the predictions compared to theory or experimental data. All parameters

may be controlled to study their influence on the measurement error, which varies both

locally and instantaneously. The particles are approximated as Gaussian distributions of

intensity, where the magnitude of the peak is a function of the scattering efficiency of the

particle and the location within the thick light sheet (which also has Gaussian intensity

profile). The parameter space includes variables associated with image generation (the

particle image diameter, seeding density and background noise), the underlying flow (the

particle image displacement, velocity gradients, accelerations, 3-D velocity components and

path curvatures), and interrogation parameters (such as the sample window size, spacing

and offset). Even this substantial set of parameters often fails to capture realistic optical

setups, with the errors predicted by the numerical models smaller than those experienced for

real PIV images. Raffel et al. [128] have overviewed the measurement uncertainty of the

major parameters using Monte Carlo simulations. The majority of the error between the true

displacement and the measured displacement results from estimation of the correlation peak

with sub-pixel accuracy, and the presence of velocity gradients within a single interrogation

window [135].

Particle Image Diameter The particle image diameter is dependent on characteristics of

the optical setup such as the camera pixel size and the size of the seeding particles, which are

detailed in Section 4.1.1. Simulations show that error in velocity measurements is strongly

dependent on the diameters of particle images [139]. The optimal particles have a diameter

of the order of 2-3 pixels to achieve sub-pixel accuracy of peak estimators. For small particle
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Figure 4.18: Raw PIV image over channel width illustrating particle image diameter of 2-3 pixels and
particle image density of 30 per window.

images, the displacements become biased towards integer values in an effect known as

peak-locking. This constitutes a systematic error predominantly caused by the sub-pixel peak

estimator. Above the optimum, the uncertainty increases linearly with increasing diameter.

The inset of Figure 4.18 shows a 64 × 32 pixel interrogation window where the particles

have the optimal diameter size of between 2 and 3 pixels.

Particle Image Shift Uncertainty is approximately constant, except for displacements

below 0.5 pixels where it decreases linearly. This behaviour has been observed by experiment

[135] and confirmed by theory [140]. To exploit this phenomenon, the image is sampled

over two interrogation windows that are offset according to the mean displacement vector,

as discussed in Section 4.2.1.1. This greatly reduces the measurement uncertainty, as well

as improving the detectability of correlation peaks such that a higher number of particle

matches is achieved [138]. Common multi-grid PIV algorithms are typically found to have a

displacement error of about ±0.1 pixels [141].

Particle Image Density Increasing particle image density acts to (i) increase the probability

of valid displacement detection and (ii) influence the measurement uncertainty directly by

increasing the signal strength of the correlation peak. Keane and Adrian [138] showed that

the success of image pairing is dependent on the particle image density, and the levels of
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in-plane and out-of-plane displacement, as captured by the product NIFIFO, where NI is the

effective particle image pair density in the interrogation window, FI is a factor expressing the

in-plane loss of pairs and F0 is a factor expressing the out-of-plane loss of pairs. The window

offsetting technique minimises the loss of pairs in-plane, i.e. FI → 1. Furthermore, FO→ 1

since the flow is unidirectional and the optical setup has been aligned with the channel axes.

When NIFIFO > 8, a 95% probability of valid detection is achieved [138] 1. The inset of

Figure 4.18 indicates that about 30 particles are contained in a 64×32 interrogation window.

Displacement Gradients Displacement gradients present within an interrogation window

(which is represented by a single displacement vector) cause bias in the data, since particle

images in the first window disappear in the second even if the windows are offset according

to the mean displacement. It is found that small interrogation windows permit higher

displacement gradients (see Figure 4.19), since the spread of the correlation window scales

linearly with the size of the interrogation window. In the current setup, the interrogation

windows are large in the axial direction, since the flow is fully-developed and contains no

velocity gradients. In the transverse dimension, the maximum displacment gradient of the

data is about 0.11 pixels/pixel very near the wall. Using Figure 4.19, this corresponds to an

1This is true for double exposure/single frame PIV, and the number is less for single exposure/double frame.
Furthermore, high particle image densities (e.g. NI = 20) reduce the measurement uncertainty in the presence of
displacement gradients, as shown in Figure 4.19. The current PIV system uses double exposure/double frame.

Figure 4.19: Uncertainty as a function of displacement gradient with varying particle image density
and window size for a 2 pixel diameter particle size.
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RMS-Uncertainty of 0.3 pixels for the 32 pixel width of the window.

4.3.1.2 Verification and Validation Method

PIV is an advanced measurement technique capable of measuring complex velocity fields –

to which an analytical solution may not be known – with high spatial and temporal resolution.

In contrast, the current research studies the intricate coupling of local time-dependent temper-

ature and velocity fields of a less complex flow (e.g. laminar, unidirectional) to a level that is

perhaps not possible with more complex flow fields. The need to perform vector processing

on an artificial 3-D model containing a light sheet and particles is precluded, since an exact

solution to the velocity field – and hence the error compared to theory – are already known.

The concepts involved with the verification and validation (V&V) technique – an actual

ASME standard [142] – were originally developed for estimating the error of CFD simulations

using experimental measurements [143]. The verification step involves the analysis of

numerical accuracy, while the validation step assesses how accurately the model represents

the real world. Of course, both the experimental measurements and model contain errors,

and a simultaneous verification is in action. The technique is equally valid for estimating

the experimental error from the analytical solution. Following the method and notation of

Coleman and Steele [133], the validation comparison error:

E = S−D (4.16)

is the difference between the analytical solution value S and the experimental measurement

D. The errors in the solution δS and measurement δD values are:

δS = S−T (4.17a)

δD = D−T (4.17b)

where T is the true value. The validation error is the amalgamation of the model and

experiment errors:
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E = (T +δS)− (T +δD) = δS−δD (4.18)

The δD term contains errors due to the experimental setup and processing, while δS

consists of errors due to modelling assumptions δmodel , uncertainties in the input parameters

δinput and inaccuracies associating with the numerical calculation δnum of the solution in

Matlab:

δS = δmodel +δnum +δinput (4.19)

While both δinput and δD concern errors of the experimental instrumentation, the values

are independent since the experiment measures the velocity directly. Equations 4.18 and 4.19

give:

E = δmodel +δnum +δinput−δD (4.20)

where the terms on the right hand side are systematic errors. The standard uncertainties

of the errors u estimate the standard deviations of the parent populations that the errors δ

originate from. The total uncertainty utot is an estimate of the standard deviation of the parent

distribution of combined errors. Assuming that the errors are independent:

utot =
√

u2
model +u2

num +u2
input +u2

D (4.21)

The expanded uncertainty is given by:

U = t95u (4.22)

where the interval ±U contains the true value to a given level of confidence. Typically a

95% confidence interval is used in accordance with Kim et al. [144]. t95 is determined using

the student’s t-distribution for N−2 degrees of freedom using the Matlab function tinv.

Since each local instantaneous velocity vector is ensemble averaged over 100 images, t95 ≈ 2.

The aim is to quantify the error between the velocity measured by experiments ûD and the

analytical velocity ûS. From Equation 1b, the functional dependence of the analytical solution
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is:

ûS = f (Q,ω, â, b̂,ρ f ,ν) (4.23)

where the applied flow rate Q is used to calculate the pressure gradient ∇p̂. The variation

in ρ f and ν may reasonably be assumed negligible. The expanded uncertainty of the input

parameters Uinput , which derive from the use of experimental conditions as inputs to the

model, may be determined using the Taylor series method (TSM) for the propagation of

uncertainties. Assuming that the input variables of Equation 4.23 are independent:

U2
input =

(
∂ ûS

∂Q

)2

U2
Q+

(
∂ ûS

∂ω

)2

U2
ω +

(
∂ ûS

∂ â

)2

U2
â +

(
∂ ûS

∂ b̂

)2

U2
b̂

+

(
∂ ûS

∂ρ f

)2

U2
ρ f
+

(
∂ ûS

∂ν

)2

U2
ν

(4.24)

The derivatives are calculated using the numerical forward finite-difference approach, for

example:

∂ ûS

∂Q
≈ ∆ûS

∆Q
≈

ûQ+∆Q− ûQ

∆Q
(4.25)

For pulsations with QA/Q0 = 0.9 and Re0 = 40, the gear pump speed varies in the range

283 – 5368 rpm. The ±3 rpm accuracy of the pump rotational speed corresponds to about

1% of the lowest value. Furthermore, the gear pump is calibrated for steady flow rates using

an ultrasonic flow meter, accurate to ±1%. The variation in angular frequency ultimately

derives from the accuracy of the timing in Matlab. A timer object executes at defined

intervals; however, the time was found to be overly sensitive to factors such as the busyness

of the operating system. Hence, tic and toc are used to record the time that has elapsed

since the last execution of the timer callback. From Matlab 2006b onwards, the tic and

toc functions use a clock with a frequency of 106 Hz such that the resolution is 0.000001 s

[145]. The shortest time between phase intervals is 0.1 s for a pulsation frequency of 0.5 Hz.

Errors of 1% are assumed for the remainder of the parameters.

The expanded uncertainty due to the input parameters is calculated at Uinput = ± 0.07

mm/s. While the equations are solved analytically, the numerical uncertainty of calculating

the first 100 terms of the solution has been estimated at 0.8% in the velocity at the duct
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centre at the mid-dimensions such that Unum = 0.01 mm/s. There is no robust method of

quantifying δmodel , other than estimating the other terms in Equation 4.20 [133]. Furthermore,

the evaluation of the experimental error δD is difficult without performing an extensive

parametric analysis using synthetic PIV images. Hence, the experimental measurements

give an indication of the accuracy of model assumptions and approximations in addition

to the analytical theory giving an estimate of experimental uncertainty. Since the model is

analytical rather than numerical, and the model assumptions (discussed in Section 4.2.1 of

the experimental analysis) are reasonable, it is likely that the majority of the discrepancy

between experiment and theory is due to experimental uncertainty. In Chapter 6, the relative

error E/S of the velocity amplitude distributions values (see Figure 6.5) – calculated using

the regression algorithm described in Section 4.2 – are within 5% at Wo = 1.4 and 3.1 and

within 10% at Wo = 7.0.

4.3.2 Uncertainty in Temperature Measurements

Subsequent to the in-situ temperature calibration (see Figure 4.11), the regression model is

used in place of original data, since it essentially models the relationship between the mean

values of temperature T and counts X . The uncertainty of the curve fit between counts and

temperature must be determined to indicate the confidence interval. Analogous to Equation

4.38, the standard error of regression estimates the standard deviation of the Ti measurements

for no uncertainty in the Xi values:

s∗T =

[
∑

N
i=1(Ti−T )

N−4

]1/2

(4.26)

where N is the number of temperature measurements and T is the value of the fitted curve at

a given value of X . The 4 in the denominator owes to the loss of four degrees of freedom in

evaluating the third order polynomial fit constants. The expanded uncertainty is (see Equation

7.17 of [133]):

UT = t95

[
s2

T

(
1
N
+

(X− X̄)

sXX

)]1/2

(4.27)

where X̄ is the sample mean of N measurements Xi:
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X̄ =
1
N

N

∑
i=1

Xi (4.28)

and the term in brackets is analogous to standard uncertainty (see Equation 4.22) with:

sXX =
N

∑
i=1

X2
i −

(∑N
i=1 Xi)

2

N
(4.29)

Using Equation 4.27, it is found that the uncertainty of the fit is approximately constant

over the temperature range 20 – 40◦C with UT = ±0.04 K. The analytical solution for

dimensional temperature contains more input parameters. From Equations 3.4, 3.18, 3.24

and 3.25 of Chapter 3, the functional dependence is:

TS = f (Q,ω, â, b̂, q̂,c,Pr,k f ) (4.30)

where c is the fraction of the perimeter that is heated. Furthermore, the experimental

uncertainty is generally higher for the thermal parameters. Neglecting errors in the heated

length of the perimeter, the uncertainty in the generated heat flux is 5.1% due to accumulation

of uncertainty in the variables in Equation 4.10. Also, the uncertainty in b̂ is higher, since

the gasket contributes to the channel height. Thermophysical properties are approximated as

constant, introducing an error of a few percent in the heat transfer coefficient for an unsteady

liquid flow with a wall-bulk temperature differential of the order of tens of degrees [30]. The

maximum value of expanded uncertainty of the input parameters over the channel cross-

section is calculated at Uinput = ±0.033 ◦C, which is about 17% of the mean temperature

amplitude. The analytical solutions for temperature contain two more summations that

greatly increases the computation time, since for loops are implemented in the Matlab code.

Incidentally, it might be possible to vectorise the calculations to reduce the computational

expense in future. As a result, only the first 30 terms of each of the infinite sums are included,

which has been estimated to introduce an error of 0.00028 ◦C. For a 201×101 grid, the steady

and oscillating temperature profiles take 7.8 and 170.9 minutes to calculate, respectively.

Equation 4.20 may be rearranged to determine the uncertainty associated with the analytical

model:
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δmodel = E− (δnum +δinput−δD) (4.31)

where δmodel results from assumptions made in the model derivation. A greater number of

approximations have been made in solution of the energy equation in comparison with the

assumptions made in the solution of the momentum equation, as discussed in Section 4.2.2

of the experimental analysis. For example, the Grashof number of the experimental setup

indictates that a degree of mixed convection occurs. The validation uncertainty of the model

is:

uval =
√

u2
num +u2

input +u2
D (4.32)

where δmodel falls within the interval E±uval .

4.3.3 Uncertainty in Heat Flux

From the energy equation (Equation 4.7), the expanded uncertainty in the convective heat

flux is:

Uq̂conv =
[
(Uq̂gen)

2 +(Uq̂lc)
2 +(Uq̂cond)

2 +(Uq̂rad)
2]1/2

(4.33)

where the uncertainty of each of the heat flux components on the right hand side is determined

using the Taylor series method for the propagation of uncertainty (similar to Equation 4.24)

on a pixel by pixel basis. The second derivative of the lateral conduction term is computed

using the gradient function twice, which uses the central difference method (for interior

data points). The subsequent operations may be combined into a single step as:

q̂lc,s, j ≈−(ksŵs) ·
(

Tj+2−2Tj +Tj−2

4∆y2

)
(4.34)

where q̂lc,s, j is the lateral conduction at node j and ∆y is the pixel size. Using the TSM:
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where the final three terms account for the correlated systematic error of the nearby pixels

that are used to compute a single value of the second derivative. As is typical, the correlation

between the random errors of each pixel are assumed to be zero. The cross-correlation ρn

between samples separated by a number of pixels n is [146, 147]:

ρn =
γn

s2
T

(4.36)

where γn is the cross-covariance:

γn =
∑

N
i=1(Tj− T̄ )(Tj+n− T̄ )

N−1
(4.37)

and s2
T is the variance, or the square of the standard deviation of the sample distribution:

sT =

[
∑

N
i=1(Tj− T̄ )2

N−1

]1/2

(4.38)

While the heat storage term contains a derivative with respect to time, the value is

determined according to the harmonic nature of temperature (see Section 4.2.2.2) rather

than temperature at two subsequent time steps. Hence, an auto-correlation term ρ∗
λ

– which

determines the amount of correlation between samples measured with time interval λ – is

not included. The degree of auto-correlation should be considered during a temperature

calibration, since it determines the optimal sampling rate. Subsequent samples become

statistically independent with a time step greater than the integral time scale:

t∗ =
∫

∞

0
ρ
∗
λ

dλ (4.39)
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The integral time scale is estimated at 1.4 s, using steady flow data (where samples have

been taken at 10 Hz).

Table 4.8 presents the maximum values of the expanded uncertainty of the heat flux

components in the energy balance. While the uncertainty of the temperature measurements UT

is low, the error accumulates in determination of the lateral conduction term, as demonstrated

by Equation 4.35. Interestingly, the correlation terms are found to reduce the uncertainty.

The applied median filters are found to substantially reduce the maximum error of the noisy

second derivative of the temperature data. This noise is a consequence of the small overall

temperature difference (≈ 3 ◦C) between the wall and bulk fluid, compared to studies on

bubble impacts, sliding bubbles and electrospray cooling [114, 115, 116].

Table 4.8: Expanded uncertainty U of measured heat flux components.

Heat flux component U [W/m2]
Heat generated, q̂gen ±76.81
Lateral conduction, q̂lc ±32.99
Heat storage, q̂cap ±2.41
Conduction losses, q̂cond ±0.22
Radiation losses, q̂rad ±0.57
Convective heat flux, q̂conv ±83.65
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Chapter 5

Numerical Methods

The novel thermo-fluidic solution presented in Chapter 3 adds to the short list of known

analytical solutions to the energy equation. Solutions obtained using exact techniques are

continuous in space and time, independent of the nodes and time steps at which values are

computed. As a result, mesh independency analyses are not required and divergence is not

encountered. Furthermore, the relationships between the governing parameters are explicitly

identified by the equations for the solved parameters. However, while solutions including

the effects of lateral wall conduction in steady flow in a rectangular channel [99, 100], of

natural convection in a vertical rectangular duct [148], and of the dissipation of kinetic energy

(or viscous heating) in a parallel plate channel [149] have been found, known solutions are

generally limited to simpler geometries with non-linear terms excluded. In contrast, solutions

using numerical techniques accommodate a greater complexity of flows.

While complementary experimental and analytical treatments offer a robust verification

of underlying theory, measurements in two spatial dimensions (over which velocity and wall

shear stress are non-constant) and time require high amounts of raw data and computational

processing power. Furthermore, pulsations become increasingly difficult to generate at high

frequencies and measurement of the velocity gradients in the thin Stokes layer become

increasingly inaccurate. Hence, a numerical CFD model is developed – offering complete

information of the flow field – to verify analytical theory in the parameter space that is

difficult to measure. Also, the numerical model will test the validity of assumptions made

during solution of the momentum and energy equations, by solving the governing equations
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without some of the contentious prior assumptions. The author is indebted to a colleague, Dr.

Sajad Alimohammadi, for performing the CFD simulations contained within this thesis, over

an extensive range of flow conditions that were not possible with the current analytical model.

Alimohammadi et al. [150, 151] have previously modelled the convective heat transfer of

steady, pulsating and synthetic jets. In future, it is hoped that the numerical model can be

used to investigate the entry region as well as more complex geometries and flow conditions,

having been validated by the analytical solution in the overlapping parameter space. Hence,

the numerical model comprises a final vital component of the theoretical infrastructure of

this research.

5.1 Geometry and Boundary Conditions

While the analytical model of Chapter 3 is hydrodynamically- and thermally-developed (and

hence two-dimensional), the numerical model requires a 3-D geometry, as depicted in Figure

5.1. The flow is prescribed as laminar and incompressible, with fluid properties independent

of temperature. The boundary conditions of no-slip and constant heat flux are imposed at

the wall, and a spatially-uniform time-dependent velocity is applied at the inlet. To reduce

convergence times, a pulsating cosinusoidal flow rate is used, rather than a fixed sinusoidal

flow rate. To ensure that the flow is fully-developed and devoid of end effects, the transverse

velocity and temperature profiles are typically tested at the mid-length of the channel.

Figure 5.1: Schematic of the 3-D numerical model for Case 2 (two isoflux heated long walls). Contours
and vectors depict the temperature and velocity fields, respectively.
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Cases 1 and 2: Large Adiabatic and Heated Channels The first and second case studies

use a rectangular channel cross-section with dimensions matching the experimental channel

of the hydrodynamic test facility of Section 4.1.1.1. To permit comparison to a parallel plate

geometry, the flow is heated at the two longer walls with symmetry assumed at the channel

mid-planes. This also acts to increase computational efficiency by reducing the domain to

one quarter of its original size. The length of the channel is 900 mm, such that the pulsating

and oscillating behaviour of the axial temperature profiles can be analysed (in Chapter 7). To

shorten the thermal development length, the fluid parameters are tailored to give a Prandtl

number Pr = 1. Finally, viscous heating and buoyancy effects are precluded, though the

former has been found to have no effect on the results.

Case 3: Small Heated Channel The third case uses a rectangular channel cross-section

with dimensions 20 mm wide × 2 mm with heat applied at a single wall, replicating the

experimental conditions of the thermal test facility (see Section 4.1.2.1). Symmetry is

assumed at the mid-channel width, while the flow is non-symmetrical in the z dimension.

Since realistic fluid properties of water are used (see Table 4.5), the length of the channel is 4

m to allow thermal development. Also, it has been found qualitatively that a single heated

wall requires a longer entry length. Solutions are found with and without natural convection

and lateral conduction in the heated wall, as described in Section 5.3.

Figure 5.2: Structured non-uniform mesh with 140×75 nodes.
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5.2 Solver Settings

While the parametric inputs and raw outputs of the model have been designed and processed

by the author, no interaction with the CFD software itself was undertaken. For this reason,

only a brief overview of the numerical solver settings is provided. The commercial CFD

package ANSYS CFX 17.1 is employed to solve the governing equations numerically, using

an element-based finite volume solution method [152]. A structured hexahedral mesh is

used to maintain alignment with the principal channel axes. By performing a comprehensive

mesh independency analysis with various grid densities (5e4, 1e5, 5e5, 1e6, 2e6, and 5e6),

it is found that a mesh with 140×75×50 nodes provides a grid-independent solution (for

Case 1). Due to high velocity gradients in the Stokes layer at high Wo, the mesh is refined

in the near-wall region (to a minimum of 0.005 mm from the short wall and 0.002 mm from

the long wall), as depicted in Figure 5.2. An inlet velocity is assigned by a user defined

function (UDF) to define a FORTRAN based routine which integrates the sinusoidal velocity

signal into the CFD model. Second order upwind discretisation schemes are used for a

stable convergence. With respect to time, a second order backward Euler scheme is used to

minimise the discretisation error in time which would otherwise tend to numerically diffuse

steep temporal gradients. The explicit Eulerian method used here demands the maximum

value of the Courant number – the characteristic flow speed (û∆t̂/∆x̂) – to be less than 1.

Accordingly, the time-step ∆t̂ or the number of iterations per cycle n = 1/ f ∆t̂ are selected at

certain values to attain the correct result. Theoretically speaking, this assures that the flow

of data though each time step of the unsteady simulation is not propagating through more

than one grid cell, guaranteeing stable convergence in the whole computational domain. The

convergence criteria are 10−7 for the equations in the steady simulation and 10−5 for the

unsteady cases. The unsteady simulations are considered periodic when the RMS deviations

of the time-averaged velocity and pressure values between two successive cycles do not

exceed 0.1%. This occurs after about 5 full cycles of flow pulsation subject to the frequency

of pulsation.
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5.3 Numerical Procedure

Initially, a numerical model with a 2-D geometry with matching hydraulic diameter is

validated using the known analytical solutions for a parallel plate channel. For the extended 3-

D geometry, the pulsation frequency and amplitude parameters match those of the respective

analytical models. Each case study is run for a steady flow with Re0 = 40 and for a pulsating

flow with parameters described by Tables 5.1, 5.2 and 5.3. Chapter 6 presents the local

time-dependent hydrodynamic parameters of the large adiabatic channel (Case 1) over the

parameter space of Table 5.1. Chapter 7 presents the local time-dependent thermal parameters

of the large heated channel (Case 2) over the parameter space of Table 5.2. Chapter 8 presents

the local time-dependent thermal parameters of the small heated channel (Case 3) for a single

frequency and amplitude. The effects of natural convection and lateral conduction in the

heated wall are studied according to Table 5.3.

Table 5.1: Numerical parameter space for large adiabatic channel (Case 1) of Chapter 6.

Wo 0.1 0.3 0.7 1.4 3.1 7 9.9 19.8 31.3 54.2
QA/Q0 0.9

Table 5.2: Numerical parameter space for large heated channel (Case 2) of Chapter 7.

Wo 1.4 3.1 7 22.1
QA/Q0 0.7
A0 8.77 1.75 0.35 0.035
Buoyancy 7

Lateral wall conduction 7

Table 5.3: Numerical parameter space for the small heated channel (Case 3) of Chapter 8.

Wo 1.76
QA/Q0 0.7
A0 5.39
Buoyancy 7 X
Lateral wall conduction 7 7
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5.4 Numerical Analysis

The numerical model outputs velocity, wall shear stress, and temperature profiles as a three-

dimensional arrays ŷ× ẑ× t̂ in .mat format. The axial temperature gradient at the wall and

centre of the channel are output as x̂× t̂, and the pressure gradient is output as a vector with

1× t̂. After importing the files to Matlab for processing, the data are manually phase-shifted

from the fixed cosinusoidal flow rate to a sinusoidal flow rate. The oscillatory component may

be independently generated using the analytical equations, based on the rotational speed of the

gear pump. In contrast, the steady component is subtracted from numerical pulsating values.

The amplitude and phase values at each grid point are determined using fitnlm, similar to

Chapter 4. Parameters such as displacement, mean wall shear stress, acceleration, viscous

and inertial stresses, bulk temperature, mean temperature and time-averaged Nusselt number

are calculated using numerical techniques. The parameters may also be non-dimensionalised.

Finally, the hydrodynamic and thermal parameters are compared to the analytical model and

experimental measurements on a local time-dependent basis.
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Chapter 6

Hydrodynamics of Laminar Pulsatile

Flow in a Rectangular Channel

6.1 Introduction

Chapters 6, 7 and 8 set out to resolve the primary aim of this thesis outlined in Chapter 1:

to analyse the heat transfer enhancement potential of a hydrodynamically- and thermally-

developed sinusoidally-pulsating flow in an empty rectangular channel. The current chapter

describes a comprehensive parametric analysis of the hydrodynamics of the flow using

particle image velocimetry (PIV) measurements, CFD simulations and novel respresentations

of the analytical solutions, which conveniently decompose parameters into amplitude and

phase values relative to a prescribed flow rate. Chapter 7 analyses the mechanisms of heat

transfer enhancement using idealised analytical and numerical models. Chapter 8 aims to

verify the local time-dependent behaviour of the models using infrared thermography (IRT)

measurements, by accounting for the more realistic effects of lateral conduction, radiation

and natural convection.

The interdependence of wall shear stress and heat transfer has remained underdeveloped

in the literature for the case of fully-developed unsteady flow in an enclosed vessel. While

Reynolds analogy does not hold in an enclosed vessel, the governing mechanical and en-

ergy equations are of a similar form (see Equations 3.1a and 3.1b). Specifically, heat and

momentum are diffused in the same manner, with kinematic viscosity analogous to thermal
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diffusivity. To elucidate their relationship, the wall shear stresses should be analysed on a

local instantaneous basis, and coupled with spatially- and temporally-varying heat fluxes.

The thermal problem is intrinsically dependent on the hydrodynamic problem, since it the

energy equation takes the velocity field as an input (see 3.5b). Hence, it is useful to decouple

the local time-dependent parameters to study the underlying mechanisms of the velocity field

independently.

It is clear from the literature review of Section 2.1 that the number of existing studies

for the rectangular channel geometry is inadequate. While many of the mechanisms bear

similarities to those of pipe flow, some of the geometrical features are unique to the rectangular

channel. For example, the velocity profile contains two dimensions and the wall shear stress

is non-uniform at the perimeter. The contributions of viscous and inertial stresses may differ

owing to the corner regions, and hence the critical points of transition between the quasi-

steady, intermediate and inertia-dominated regimes may occur at different frequencies. Also,

a non-unity aspect ratio is likely to affect the relative magnitudes of wall shear stress at each

wall, and the behaviour of the near-wall overshoot and flow reversal. Although an analytical

solution exists [31], it is less mature than the corresponding pipe flow representations, where

the parameters have been conveniently decomposed into amplitude and phase values relative

to a prescribed flow rate. Using a pair of values rather than a single instantaneous value may

give further insight into the evolution of underlying physical mechanisms and the transition

between frequency-dependent regimes. Furthermore, the 2-D theory has not been subject to

the same comprehensive parametric analyses, which describe the intricate relationships of

pressure gradient, velocity and wall shear stress in the parameter space. For example, the

frequency-dependent behaviour of the wall shear stress has not been studied satisfactorily.

Confirmatory experimental works have verified the 1-D theory over much of the parameter

space (however, the quality and quantity of wall shear stress measurements are relatively

poor). Conversely, the velocity field of an incompressible pulsating or oscillating flow in

a rectangular channel has not been measured experimentally, to the best of the author’s

knowledge. The unavailability of data likely owes to the extra dimension, which squares the

requisite raw data and computational processing expense. In contrast, heat transfer studies in

channel heat sink geometries are relatively common. This apparent gap between the thermal

results and the underlying mechanics of the fluid flow means that a coupled thermo-fluidic

124



6.2. PARAMETRIC ANALYSIS OF FLOW HYDRODYNAMICS

analysis should not proceed prior to experimental verification of the velocity field.

The new representations of the 2-D analytical solution – developed in Section 3.2 –

warrant a comprehensive parametric analysis. In particular, the decomposition of parameters

in terms of amplitude and phase values may give insights into the evolution of physical

mechanisms. The aims of the current chapter are thus to characterise pulsating channel

flow hydrodynamics to form a basis for subsequent heat transfer studies, using (i) novel

representations of the analytical solution for the hydrodynamics parameters in a rectangular

channel, (ii) particle image velocimetry (PIV) measurements, and (iii) numerical CFD

simulations.

6.2 Parametric Analysis of Flow Hydrodynamics

The amplitudes of the flow rate, acceleration and wall shear stress parameters are directly

proportional to the driving pressure gradients in the laminar flow regime, as illustrated by

Figure 6.1. Hence, the characteristic behaviour of oscillatory flow is determined solely by

the frequency parameter, and a constant flow rate amplitude is used during the parametric

analysis. The local behaviour is compared with experimental measurements at three distinct

frequencies (Wo= 1.4, 3.1 and 7.0). For completeness, pulsations with a very high Womersley

number Wo = 31.3 ( f = 10 Hz), which are unachievable with the gear pump pulsator, are

studied analytically and numerically. The frequency-dependent behaviour is compared with

experimental measurements at four distinct frequencies (Wo = 1.4, 3.1, 7.0 and 9.9) and with

the numerical solution at ten frequencies over the range 0.1 ≤Wo ≤ 54.2 (see Table 5.1).

While the modification of behaviour with channel aspect ratio is beyond the scope of this

thesis, the trends have generally been found to be representive of rectangular geometries as a

whole.

6.2.1 Velocity Profiles

Characterisation of the velocity field establishes a foundation from which to develop the

theory of underlying physical mechanisms in Section 6.2.1.2. Furthermore, the wall shear

stress and x-momentum balance terms of Sections 6.2.2 and 6.2.3, respectively, derive from
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the velocity field.

The PIV measurements of velocity profiles of steady flows typical of microchannels

with 10 ≤ Re0 ≤ 80 are depicted graphically by the symbols of Figure 6.2. To illustrate

hydrodynamic development, the velocity profiles in the ŷ dimension are plotted at axial

distances x̂ = 330, 335, 340, 345 and 350 mm. The agreement between the constant flow rate

measurements and the analytical solution affirms that the flow approaches its asymptotic state

prior to measurement. Hence, hydrodynamic development is confirmed beyond the maximum

Reynolds number of the tested parameter space. Figure 6.3 presents the velocity profiles

normalised by the mean velocity in the channel, indicating that the flow field is independent

of Reynolds number in the range considered, although the lowest flow rate contains a larger

relative error. The steady component used for the unsteady tests is described by the curves

at Re0 = 40. The steady component plays a subsidiary role – assuming that it is not high

enough to trigger turbulence – and only the oscillating components of the flow are considered

(except in the case of local flow reversal).
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∇p̂A/∇p̂0

0

1

2

3

4

5
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〈τ̂yx,A〉/〈τ̂yx,0〉

Wo = 1.4

Wo = 3.1

Wo = 7.0

Figure 6.1: Amplitudes of flow rate (−), mean wall shear stress over long walls (· · ·), short walls (·−)
and whole perimeter (−−) with pressure gradient amplitude.
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Figure 6.2: Steady velocity profiles for Re0 = 10−80. Solid lines and symbols represent analytical
solutions and experimental measurements respectively. To illustrate hydrodynamic development,
velocity profiles in the ŷ dimension are plotted at axial distances x̂ = 330, 335, 340, 345 and 350 mm.
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Figure 6.3: Steady velocity profiles normalised by the mean channel velocity for Re0 = 10−80. Solid
lines and symbols represent analytical solutions and experimental measurements respectively.

Figure 6.4 presents the phase-averaged experimental velocity measurements across two

bisecting planes of the channel cross-section. The data are shown to accurately recover

the distinct frequency-dependent features of the formerly-unverified analytical solutions
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Figure 6.4: Oscillating velocity profiles for QA/Q0 = 0.9 and (a) Wo = 1.4, (b) Wo = 3.1, (c) Wo = 7.0,
(d) Wo = 31.3. Solid lines and symbols represent analytical solutions and experimental measurements
respectively. Dotted lines mark the Stokes layer thickness δ̂ν .

(Equation 1a), which include inflection points and overshoots that result from the interplay

between viscous and inertial stresses (discussed in Section 6.2.1.2). While not shown the

velocity profiles generated by the numerical solution are in excellent agreement. The low

and high frequencies depicted typify the limiting cases of unsteadiness where the profiles

are quasi-steady and plug-like, respectively. The intermediate transition regime (Wo = 3.1

and 7.0) is perhaps most interesting, containing a relatively diverse range of unique velocity

profiles.

The velocity data may alternatively be expressed in terms of local amplitude and phase

values, as accommodated by the complex representation (see Equation 3.16). With oscillating

magnitudes normalised by the local values of the steady flow component, such representa-
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tions are useful for characterising the degree of unsteadiness in a quantitative and compact

manner. Furthermore, decomposition may give further insight into the origin and evolution of

distinguishing inertial features. Figure 6.5 shows that the regressed experimental amplitudes

capture theoretical behaviour well, with magnitudes generally within about 5% of theoretical

predictions based on the flow rate of the gear pump. The ẑ values at Wo = 7.0 are slightly
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ẑ [mm]

Figure 6.5: Velocity amplitude and phase profiles for QA/Q0 = 0.9. Solid lines and symbols represent
analytical solutions and experimental measurements respectively. Dashed lines plot the bulk mean
values.
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less accurate, deviating by a maximum of 10% from the analytical solution. As expected, the

uncertainty is highest in the near-wall region where the displacement gradient is high (see

Figure 4.19). The measured phase values are universally within 0.05 radians (3◦) of rotation.

The mean R2 value of the fitted sine waves at each node of each frequency is 0.9978. The

near-constant amplitude distribution ûA/û0 ≈ 0.9 exemplifies the quasi-steady nature of the

low-frequency flow; however, some unsteady effects are observable in the near-wall region

as demonstrated by the non-constant phase distribution. This positive phase shift constitutes

the origin of a near-wall velocity overshoot, described in detail in Section 6.2.1.2. The phase

of the outer annuli and main body are seen to vary even further with the development of an

inviscid region. At Wo = 7.0, the bulk mean phase of the ŷ velocity profile at the mid-channel

height lags behind the mean flow rate by 0.18 radians as marked by the lowermost dashed

line of Figure 6.5. With complete inertial dominance (Wo = 31.3), the fluid is largely in

phase but for a very narrow region near the wall. The amplitude increases further near the

walls as the flow behaves largely as an irrotational plug.

6.2.1.1 Local Flow Reversal

Local flow reversal occurs in regions ûA/û0 > 1 of Figure 6.5. At Wo = 7.0, inertial effects

dictate near-wall behaviour and the flow is intermittently reversed near the entire perimeter,

despite a mean flow rate that never drops below zero. The features of flow reversal are

reasonably complex, and details such as its location, magnitude and duration have been

derived analytically in a pipe and parallel plate channel by Haddad et al. [56]. That study also

distinguished between wall-attached-reversal and off-wall reversal, a phenomenon of pulsatile

flow alone that results from superpositioning steady and oscillating velocity distributions.

This unusual profile containing a double inflection point is measured experimentally for the

first time at 1.7π in Figure 6.6. In a two-dimensional channel with high aspect ratio, the

feature seems only to appear near walls ŷ = [0, â]. In fact, flow reversal is more prevalent

near the shorter walls as a whole, due to the shallower near-wall gradients of the steady

component in this dimension. For example, reversal occurs at lower frequencies and has a

larger amplitude. At Wo = 3.1, Figure 6.5 indicates that local flow reversal occurs near ŷ = 0

but not near ẑ = 0. At Wo = 7.0, reversal occurs near both walls; however, it begins sooner
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and ends later near the short wall (with a duration about twice as long). For example, Figure

6.6 indicates that the flow is reversed in the ŷ profile but not the ẑ profile at 1.6π .
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Figure 6.6: Pulsating velocity profiles for QA/Q0 = 0.9 and Wo = 7.0. Solid lines and symbols
represent analytical solutions and experimental measurements respectively.

In heat transfer applications, local flow reversal will act to carry hot fluid in the direction

of the channel entrance, altering the temperature difference and heat flux. However, this

potentially undesirable outcome emanates from augmented near-wall velocity amplitudes

and local flow rates, which may also enhance heat removal from the walls of the channel.

Furthermore, a mean steady flow component could easily be tailored to prevent negative flow.

Even very slowly oscillating flows have been shown to display unsteady attributes in the

above analysis and thermal behaviour is likely to be affected.

6.2.1.2 Vorticity and the Velocity Overshoot Mechanism

The velocity overshoot mechanism may be studied using the local stress balance given by the

time-dependent Navier-Stokes equation. The local accelerations are:

∂ û′′

∂ t̂
= ν

(
∂ 2û′′

∂ ŷ2 +
∂ 2û′′

∂ ẑ2

)
− 1

ρ f
∇ p̂′′ (6.1)
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where the viscous Laplacian term describes the local vorticity flow. The acceleration at

a point is proportional to the sum of the local instantaneous viscous and pressure stress

distributions. Over the period of one cycle, vorticity diffuses a finite distance before being

annulled by vorticity with opposing sign. This is in contrast to steady flow, where the entire

duct is consumed by viscous effects. The thickness is well-approximated by the distance at

which fluid elements experience 1% of the effects of viscous diffusion in Stokes flow, since

momentum is diffused perpendicular to the walls and vorticity source strength is uniform at

the perimeter of the channel (see Section 3.1.2). For Wo = 1.4, 3.1 and 7.0, the Stokes layer

thicknesses are 16.4, 7.3 and 3.3 mm, respectively (marked by dotted lines in Figure 6.4).

Hence, the Stokes layer may be either all-encompassing or negligible, depedendent on the

frequency parameter. For the slowly oscillating flow, viscous stresses diffuse throughout the

entire duct and their relative dominance results in steady-like profiles that are almost identical

during pumping and suction. As the time scale of pulsations is reduced, the Stokes layer

narrows, creating an inviscid body in the fluid’s core. For both Wo = 3.1 and Wo = 7.0, δ̂ν is

larger than the channel height, though less than the channel half-width. As a result, viscous

features permeate the entire velocity profile in the ẑ direction, though only some of that in

ŷ. At the high frequency, the Stokes layer thickness is significantly less than the channel’s

hydraulic diameter.

The near-wall velocity overshoot is caused by slight misalignment of the phases of

pressure gradient and the flow rate or, more specifically, the local vorticity flux density. In

other words, the readjustment of the flow to imposed stresses is limited by the speed of

viscous diffusion. In a steady flow (with ∂ û/∂ t̂ = 0), the Laplacian term is constant over

the cross-section and balanced by the pressure gradient term, which acts immediately and

uniformly throughout the fluid. In contrast, the phase shift resulting from a very slight

unsteadiness causes non-zero, non-uniform accelerations, which are plotted in Figure 6.7(a)

for phases 0 – π . From 0.4π−π , the acceleration magnitudes of the near-wall fluid layers

are lower than the main body, though proportionally large enough – compared with their

momentum – to reverse flow ahead of the main body. Interestingly, the phase shift is smaller

near walls ẑ = [0, b̂] at lower frequencies, owing to steeper velocity gradients and higher

viscous stresses, which act against the driving pressure gradient. As the discrepancy between

the viscous and oscillation time scales increases, the time history of boundary-diffused
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vorticity may not always produce a damping effect in a given fluid layer. Consider the

acceleration at 0.6π in Figure 6.7(c) for example. The difference between this distribution

and the uniform pressure term (plotted by the horizontal dashed lines) represents the local

value of the vorticity term. Hence, viscous stresses act temporarily in the same direction

as the pressure gradient with a magnitude largest near the wall, leading to the augmented

near-wall velocity amplitudes of Figure 6.5. Specifically, the evolution of the amplitudes and

phases of the near-wall velocities – resulting from local imbalances between viscous damping

and imposed driving stresses – appear to enhance and degrade shear stress magnitudes at the

wall. The localised instantaneous behaviour of this parameter is quantified in the following

section, along with the requisite work input to induce pulsations.
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Figure 6.7: Main: Acceleration profiles ∂ û′′/∂ t̂ = ν(∂ 2û′′/∂ ŷ2 +∂ 2û′′/∂ ẑ2)− (1/ρ)∇p̂′′ for (a) Wo
= 1.4, (b) Wo = 3.1, (c) Wo = 7.0, (d) Wo = 31.3. Inset: Contribution of pressure term, which acts
uniformly over the cross-section as illustrated by the dashed lines in (c) at 0.6π .
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6.2.2 Wall Shear Stress and Pressure Drop
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Figure 6.8: Oscillating flow rate, wall shear stresses at the mid-dimensions and pressure gradient for
QA/Q0 = 0.9 and dimensionless frequency (a) Wo = 1.4, (b) Wo = 3.1, and (c) Wo = 7.0. Solid lines
and symbols represent exact solution and experimental measurements respectively.

The temporal behaviour of the measured shear stress at the wall in relation to the flow

rate and driving pressure gradient are plotted in Figure 6.8. Experimental values of the wall

shear stress at the midpoint of the channel width and height are computed using the slope

between the velocity vector nearest to the wall and the wall itself, introducing an error that

grows as the Stokes layer thins. With measurements taken to within 0.3 and 0.1 mm of walls

ŷ = [0, â] and ẑ = [0, b̂], the displacements of the outermost data points amount to 1.8%, 4.1%

and 9.1% of the Stokes layers in the ŷ dimension for Wo = 1.4, 3.1 and 7.0, and 0.6%, 1.4%,

3.0% and 4.3% in the ẑ direction for Womersley numbers of 1.4, 3.1, 7.0 and 9.9, respectively.

This is a well-documented problem in fluid mechanics and is the main reason for the poor

accuracy of many existing oscillating wall shear stress measurements. Hughes and How [57]

have analysed the growth of this error with proximity to the wall in detail for pulsatile flows.

Accordingly, the maximum errors in the experimental data tend to be experienced at the

higher frequencies.

The evolution of amplitude and phase of wall shear stress parameters with frequency has

not been studied in a two-dimensional channel. The behaviour is reasonably complex, owing

to the non-axisymmetric nature of the vessel that contains unique distributions at each wall

(for non-square cross-sections). Figure 6.9 depicts the experimental amplitude and phase

values at each wall as a function of frequency. At the wall ẑ = 0 (i.e. the zx components), the

regressed amplitude and phase differ by 11.32% and 7.5◦ from theory at the highest frequency.

The errors are 1% and 1.4◦ at the mid-frequency and 0.4% and 2.2◦ at the low frequency.
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Near the wall ŷ = 0, the error of the wall shear stress measurements is higher owing to the

obstruction of the channel bonding. For Wo = 1.4, 3.1, 7.0 and 9.9, the amplitude and phase

errors are 2% and 2.8◦, 0.2% and 4◦, 11.9% and 12.4◦, and 0.7% and 14.1◦. The mean R2

value of the sine waves fitted to the shear stress data is 0.9953. The numerical values of a

collection of mean and local wall shear stress parameters and pressure gradient are plotted at

a higher range of frequencies in Figure 6.9. The same values calculated from the numerical

solution do not suffer from the issues associated with experimental measurement, and differ

by a maximum of 2.6%, 1.9◦ at the long wall and 7%, 4.8◦ at the short wall at the highest

frequency Wo = 54.2. Furthermore, the mean value at each wall and over the entire perimeter

are shown to agree with analytical theory. The amplitudes are near-constant at low frequencies

and in phase with the flow rate. The amplitudes increase gradually with increasing frequency,

before a rapid increase begins at moderate to high frequencies as an inviscid core develops in

the channel. The shear stress near the short wall experiences higher amplification, though this

results from normalisation by its lesser steady flow value. In fact, the absolute value of the

shear stress parameters at each wall equalise, resulting from a flow that is well-approximated

by a Stokes boundary layer near each boundary. The high augmentation near the corners is
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Figure 6.10: Amplification of pressure gradient relative to mean wall shear stress and flow rate for
QA/Q0 = 0.9. Solid lines and dots and represent analytical and numerical solutions, respectively.

136



6.2. PARAMETRIC ANALYSIS OF FLOW HYDRODYNAMICS

shown by the mean values that increase more substantially relative to their steady components

than the mid-dimensional values. The evolution of phase is particularly interesting, where

the mid yx component leads in phase at moderate frequencies and lags behind the mid zx

component at high frequencies. This relationship appears to be captured by the experimental

and numerical estimates, despite error in the absolute values. The frequency at which the

phase components at each wall become equal approximately coincides with that where the

amplitudes become equal, suggesting that it too is correlated with the development of the

inviscid core. Figure 6.10 plots the amplification of the mean wall shear stress and flow

rate relative to the pressure gradient amplification with frequency. As a consequence of

inertial forces associated with unsteady plug flows, the pressure gradient amplitude increases

more substantially compared to the wall shear stress parameters and the phase lag tends to

π/2, which is typical of first-order systems. The relationships with frequency contained

within Figures 6.9 and 6.10 are fundamentally similar to those in pipes (see Figures 2.4 and

2.5), implying that the characteristic behaviour is subject to the assumptions and boundary

conditions of the problem, rather than geometry.

The wall shear stress profiles are non-constant over two dimensions of the cross-sectional

perimeter and experimental measurement is impractical. With all but points at the mid-

dimensions of the channel unknown, local behaviour is investigated using the analytical and

CFD solutions. Figure 6.11 illustrates the local behaviour of wall shear stress at distinct

frequencies. The numerical data are shown to accurately recover the local behaviour of the

analytical solution. Intricately related to the velocity field, the profiles have the same distinct

shapes as the plots of Figure 6.4, though qualitatively similar profiles have a phase advance

relative to the flow rate that increases with frequency. For slow oscillations, the wall shear

stress profiles are quasi-steady with lower magnitudes at the short wall, owing to higher

viscous stresses in the region. As the frequency is increased the local wall shear stresses

universally increase due to higher near-wall velocity gradients. The local amplification

of the wall shear stress is depicted in Figure 6.12. In the insets, the phase shifts of the

mean shear stresses at each wall have been removed to facilitate direct comparison of

corresponding profiles, e.g. τ̂ ′′′zx (ŷ, t̂) = τ̂zx,A(ŷ) · sin(ω t̂ +φτ̂zx(ŷ)−φ〈τ̂zx〉). The dashed lines

plot the equivalent behaviour of completely steady flows with matching instantaneous flow

rates, τ̂ ′′zx,0(ŷ, t̂) = τ̂zx,0,A(ŷ) · sin(ω t̂). At the low-frequency, the shear rate is either augmented
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Figure 6.11: Oscillating wall shear stress profiles for QA/Q0 = 0.9. Solid lines and markers represent
analytical (–) and numerical (•) solutions, respectively.

or diminished locally as a result of the slight overshoots and undershoots in the velocity

profiles of Section 6.2.1. The local time-dependent amplifications, defined along the longer

wall by:

∂τ
′′′
zx (ŷ) =

τ̂ ′′′zx (ŷ)
τ̂zx,0,A(ŷ)

(6.2)

are plotted explicitly by solid lines in the main plot of Figure 6.12(a) for positive half-

cycle phase values φτ̂zx(ŷ)− φ〈τ̂zx〉 = 0− π . Steady flows with matching flow rates are

defined by uniform amplification over the cross-section, as shown by the dashed lines

∂τ ′′zx,0(ŷ) = τ̂ ′′zx,0(ŷ)/τ̂zx,0,A(ŷ). At the low frequency, the magnitude of the spatial gradients

of ∂τ ′′′ are similar during acceleration and deceleration and the plots are symmetric about

the corresponding ∂τ ′′0 . While the flow is nearly identical to a steady flow on average
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ẑ [mm]

0 5 10 15

0

1

2

3

4
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Figure 6.12: Main: Wall shear stress amplification of oscillating flows ∂ τ̂ ′′′ (solid lines) and steady
flows with matching flow rate ∂ τ̂ ′′′ (dashed lines). Horizontal grey lines mark the positive half-cycle
space and time average over each wall (2/π)〈τ̂A〉/〈τ̂0,A〉. Inset: Wall shear stress profiles of oscillating
flow (solid lines) and steady flow references (dashed lines). Dotted lines mark the Stokes layer
thickness δ̂ν . All data is generated using the analytical solution.

〈τzx,A〉/〈τzx,0,A〉 = 1.003, the wall shear rate is greater near the corner over the interval

0− 0.5π and smaller over 0.6π −π , compared with the central wall. Thus, quasi-steady

pulsations may be ineffective in applications concerned with time- and space-averaged

augmentation, though it may be possible to alter heat transfer or particulate removal locally

for portions of the cycle with very little work expense (∇p̂A/∇ p̂0)/(QA/Q0) = 1.03. During

the intermediate regime, the proximity of the velocity maximum to the boundary begins

to dictate near-wall behaviour and the characteristic shapes of the unsteady flows begin to

differ during acceleration and deceleration. The interval of greater wall shear stress at the

corner lengthens, spanning the majority of the half-period when full inertial-dominance is
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achieved. Furthermore, the values near the centre of the wall tend to become higher than their

similar steady flow values, as captured by the corresponding positive half-cycle space- and

time-averaged values (plotted by grey lines). Along the shorter wall, the mean leads in phase

and increases more substantially, mimicking the previously noted inclination for flow reversal.

At the high frequencies of Wo = 7.0 and 31.3, the oscillating shear-rates are much larger

than their steady counterparts at the longer wall, 〈τzx,A〉/〈τzx,0,A〉= 1.55 and 6.08, though the

pressure cost is increased 5.84 and 100 times, respectively. The total pressure drop hence

grows at a faster rate than the wall shear stress. While some of this is attributed to increased

frictional losses, work is also required to accelerate the flow.

6.2.3 x-Momentum Balance
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Figure 6.13: Oscillating viscous, inertial and pressure stresses relative to the pressure gradient
amplitude for (a) Wo = 1.4, (b) Wo = 3.1, (c) Wo = 7.0 and (d) Wo = 31.3. Solid lines and markers
represent analytical (–) and numerical (•) solutions, respectively.

The relationships of the spatially-averaged viscous, inertial and pressure stresses may

be investigated through the momentum integral balance (see Section 3.1.1 of the analytical
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theory chapter). Figure 6.13 tracks the time-dependent relative contributions of the individual

stresses to the overall pressure drop. Also plotted are the temporal evolutions of the flow rate

oscillations, normalised by the pressure gradient amplification. The instantaneous make-up of

the force balance varies with time for a given frequency, based on the phases and amplitudes

of the distinct terms. For a slowly oscillating flow, the acceleration of the fluid is negligible

and viscous forces predominate. The flow rate and mean wall shear stress have the same

amplitude as steady flows with matching flow rates and oscillate in phase with the pressure

gradient. With increasing frequency, the value of the inertial term becomes appreciable, with

an amplitude of the order of the frictional term. The characteristics of the flow are neither

viscous nor inertial, and the resultant phase of the pressure gradient is somewhere between

that of the individual contributors. A phase shift appears between the flow rate and pressure

gradient, which increases more considerably. At Wo = 7.0, the majority (though less than

95%) of forces in the system are inertial and the phase of the pressure gradient approaches

that of the acceleration. Moreover, the phase difference between the pressure gradient and

the flow rate increases. At Wo = 31.3, the flow is dominated by inertia with nearly the entire

driving pressure used to accelerate the fluid. The pressure gradient is in phase with the

accelerative stresses, leading the rate of flow by π/2. It should be noted that the amplitudes

of the stress contributors do not necessarily sum to one, as illustrated in Figure 6.13 for Wo =

3.1. Figure 6.14 plots the momentum balance in terms of phasors, as accommodated by the

complex solution representations. A triangular force balance exists between the momentum

terms, where the sum of the viscous and inertial vectors is equal to the pressure vector. The

flow rate terms are at right angles to the inertial terms. At low frequencies, the pressure and

viscous vectors are approximately unidirectional. The angle between the phasors increases

with frequency, simultaneously decreasing the angle between the pressure and acceleration

phasors, which become collinear at high frequencies.

Figures 6.9, 6.13 and 6.14 indicate that distinguishing behavioural characteristics are

attained at the limits of low and high frequencies, with transitional behaviour observed at

moderate frequencies. Boundaries to the three regimes may be defined where the value of a

certain parameter reaches 5% of its asymptotic value. For example, Ohmi et al. [60] studied

the behaviour of the phase of flow rate and mean wall shear stress for a pipe geometry, before

defining limits at Wo = 1.32 and 28, based on the amplitudes of the viscous and inertial terms
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Figure 6.14: Phasors of viscous, inertial and pressure stresses relative to the pressure gradient
amplitude for (a) Wo = 1.4, (b) Wo = 3.1, (c) Wo = 7.0 and (d) Wo = 31.3.

relative to the pressure gradient amplitude in the pipe geometry. This definition is useful for

characterising the work input requirements of oscillations at a certain frequency, as well as

reducing computation times using mathematical approximations. With few inertial losses in

the system, the quasi-steady assumption is valid. When the majority of the pressure drop is

due to inertia, the assumption of inviscid flow holds. Ray et al. [55] opted to use the ratio of

flow rate and pressure gradient amplifications. While the choice of parameter is arbitrary, the
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gradient amplitude. Solid lines and markers represent analytical (–) and numerical (•) solutions,
respectively. Vertical dotted lines delineate the frequency regime boundaries.
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wall shear stress is a critical parameter with respect to heat transfer and the pressure gradient

is an ever-present design consideration of thermal solutions. Figure 6.15 plots the amplitudes

of the frictional and inertial stresses relative to the pressure gradient amplitude as a function

of frequency, with vertical lines plotted where the distributions have a value of 95%. The

boundaries of Wo = 1.6 and 27.6 for a rectangular channel are similar to the values in a

tube and do not appear to vary significantly with aspect ratio. Hence, the critical points of

transition are approximately geometry-independent. The ratio of viscous to pressure gradient

amplitude is a pseudo-performance coefficient, equivalent to the frictional parameter plotted

in Figure 6.10. The overall fluid mechanical performance of pulsating flow has analytically

determined values of 0.97, 0.67, 0.27 and 0.06 at Wo = 1.4, 3.1, 7.0 and 31.3 respectively,

demonstrating the increasing work input required to overcome inertia.

6.3 Conclusions

This chapter has described a parametric analysis of the decoupled momentum problem of

laminar pulsating flow in a rectangular channel, with experiments measuring the velocity

profile and wall shear stresses using particle image velocimetry (PIV). Since the amplitudes

are directly proportional to pressure, local behaviour was investigated at constant flow rate

amplitude over the range 1.4 ≤ Wo ≤ 7.0. To the best of the author’s knowledge, the

results constitute the first verification of a two-dimensional rectangular analytical solution.

Furthermore, the wall shear stress measurements add to the very limited number of studies

that exist for any vessel geometry. The accuracy compares favourably with existing results

in pipes. As an interesting aside, the phenomenon of off-wall reversal has been observed

experimentally.

Analytical and numerical analyses provide complete data, such as the local wall shear

stress variation, that is difficult to obtain experimentally in a 2-D geometry. The exact

solution has been derived in complex notation, such that amplitudes and phases are easily

calculated. This facilitates a shift to a flow rate-fixed model, reduces computational expense

and provides further insight into the evolution of inertial effects. Phase alteration occurs

even in the quasi-steady regime, causing slight near-wall overshoots and wall shear stresses

that are amplified by varying amounts during a cycle. Amplitude augmentation occurs when
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viscous and driving stresses act briefly in tandem, due to the phase discrepancy between

boundary-diffused vorticity and instantly-transmitted pressure stresses, to enhance the time-

averaged wall shear stress. The amplification of wall shear stress relative to steady flow is

an important thermal indicator that may be coupled with future heat transfer measurements.

The amplitudes and phases of local and mean wall shear stress measures are augmented with

frequency compared to steady flow (especially near the short walls and corners), as a result of

growing phase delays and higher amplitudes in the near-wall region of the velocity profiles.

Furthermore, the local time-dependent amplification varies depending on the regime of

unsteadiness: (i) For quasi-steady flows, the local values are similar during acceleration and

deceleration though amplification is greater near the corners over the interval 0−0.5π . (ii) At

intermediate frequencies, local behaviour begins to differ during accelerating and decelerating

periods and the interval of greater wall shear stress near the corners lengthens. (iii) Plug-like

flows experience universally high amplifications, with wall shear stress greater near the

corners for the majority of the positive half-cycle. The phases of wall shear stress differ at

each wall at moderate frequencies – with the bulk-mean values at the short wall leading those

at the long wall – and tend to π/4 in the limit of high frequency. The amplitudes of pressure

gradient increase more significantly than wall shear stress magnitudes due to accelerative

forces. It is useful to define boundaries to the characteristic regimes of oscillatory flow in

order to (i) make computationally-efficient mathematical approximations in its modelling,

and (ii) characterise its fluid mechanical performance in practical applications. Based on

the relative contributions of spatially-averaged viscous and inertial stresses to the overall

pressure drop [60], the critical frequencies are Wo = 1.6 and 27.6 in a rectangular channel. In

practical heat transfer applications, a trade-off scenario exists where increases in wall shear

stress are balanced by increased pressure demands.

The analytical framework for the pulsating flow hydrodynamics, developed in Section

3.2, has been validated by measurements and numerical calculations over a high range of

Womersley numbers, providing a platform from which the heat transfer of the problem can

be studied. Chapter 7 will analyse the coupled behaviour of the local time-dependent velocity

and temperature fields to identify the mechanisms of any change in heat transfer due to

pulsation.
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Chapter 7

Idealised Heat Transfer of Laminar

Pulsatile Flow in a Rectangular Channel

7.1 Introduction

Superimposed unsteadiness has been found to improve the heat transfer performance of cool-

ing solutions in a number of experimental investigations. The mechanism of enhancement is

commonly reasoned using analogies with the flow hydrodynamics, or the second mechanism

of enhancement reviewed in Chapter 2. In Chapter 6, the fluid mechanics were characterised

on a parametric basis using theory and experiment over a high range of frequencies. The

Stokes boundary layer was found to narrow with increasing frequency, leading to fuller

velocity profiles and augmented wall shear stresses at the boundary. It seems physically

intuitive that a simultaneous reduction in the thermal boundary layer must occur, augmenting

temperature gradients at the wall and enhancing heat transfer. Generally, the relationship

between wall shear stress and heat transfer has remained underdeveloped in the literature

for the case of a non-zero pressure gradient. While the problems are not similar in the

exact mathematical sense of Reynolds analogy, heat and momentum are diffused in the same

manner with kinematic viscosity analogous to thermal diffusivity. Theoretical investigations

on turbulent heat transfer in steady pipe flows with Pr = 1 often assume similarity between

the velocity and temperature profiles in a practical sense [153]. Hence, the local wall shear

stress is proportional to the local heat transfer coefficient calculated using the temperature

145



7.1. INTRODUCTION

gradient at the wall, which is the same result as Reynolds analogy. It has also been determined

that this relationship holds true in the direction normal to the wall of non-circular polygonal

tubes if the angles between walls are not too small [154, 155] (see also Figure 7 of [153]).

However, the theory has not been established for an unsteady flow, to the best of the author’s

knowledge.

The field of heat transfer is often treated as a macroscopic science, using engineering

correlations between large quantities of parameters in the form of dimensionless numbers.

While convective heat transfer is generally unsteady and spatially non-uniform, the heat

transfer is typically averaged in time and space. This is useful for characterising experi-

ments and predicting the overall performance of thermal engineering solutions. However,

the treatment may obscure the time-dependent behaviour of counteracting physical mecha-

nisms. For example, the discrepancy between heat transfer enhancement through the bulk

temperature (mechanism 1) and by the temperature gradient at the wall (mechanism 2) has

not been highlighted in the literature, since enhancement is typically described using the

time-averaged Nusselt number. Since the dimensionless heat transfer coefficient describes the

ratio of heat flux to driving temperature difference, any change with pulsation encompasses

the overall net effect of changes in the numerator and denominator. As reviewed by Adiutori

[156], the origins of the heat transfer coefficient and the so-called Newton’s law of cooling

are usually traced to Sir Isaac Newton for his article published anonymously in Latin in

1701 [157] and Joseph Fourier’s seminal treatise on heat transfer [158]. The intentions of

this constant of proportionality were to tie the flow in the solid with the flow at the surface,

and to identify that the heat flux and temperature differential are proportionate under steady

convective heat transfer. In the analysis to follow, the heat transfer coefficient is used solely

to compare the time-averaged heat transfer of pulsating flow to the steady scenario. In fact,

as will be shown, time-dependent heat transfer does not work with the classical concept of

the heat transfer coefficient, since the heat flow and driving thermal force are not always

proportional with time. It becomes necessary to deal with the quantities independently, in a

manner that conforms with Adiutori’s vision for heat transfer [159], which rejected classical

thermal engineering concepts including dimensionless correlations, power laws, and heat

transfer coefficients in place of the explicit dimensional variables. In the case of pulsating

flow heat transfer, the Nusselt number combines the characteristics of two non-proportional
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quantities, such that its decomposition into a heat flux and temperature difference provides

more information about the state of heat transfer. Since analytical models give complete

information of the velocity and temperature field, experimental correlations are not required.

Hence, the aim of the current chapter is to build on the experimental and theoretical

hydrodynamic analyses of the previous chapter by theoretically investigating the mechanisms

responsible for any change in heat transfer. In particular, the local time-dependent interde-

pendence of the mechanical and thermal fields will be inspected using a novel analytical

solution to the energy equation and a numerical CFD model, to form a basis for subsequent

experimental studies. The mechanisms affecting the temperature difference and heat flux are

dealt with independently. In Section 7.2, a parametric analysis is performed on the novel

solution in a rectangular channel, which holds the heat flux constant to analyse the behaviour

of the driving temperature difference. In Section 7.3, the wall temperature is fixed to inspect

the behaviour of the temperature gradient at the wall using an existing 1-D solution.

7.2 Mechanism 1: Enhanced Axial Diffusivity

The first mechanism – which occurs regardless of the boundary condition at the wall – is

illuminated by the solution for a thin-walled two-dimensional channel derived in Chapter 3.

Since the heat flux is fixed, any change in heat transfer with varying frequency, amplitude and

Prandtl number owes to alteration of the bulk temperature. In order to inspect coupling with

the velocity field, the local time-dependent behaviour of the temperature field is investigated

at the same dimensionless frequencies as the previous chapter for a rectangular channel with

a/b = 7.5 with two heated long walls H2(2L). The requisite number of terms included in

the sums increases steadily with frequency, and hence Wo = 22.1 is the highest frequency

considered (which takes over a week to compute accurately).

7.2.1 Transverse Temperature Profiles

The steady component of dimensionless temperature, which is independent of Prandtl number,

is plotted in Figure 7.1 for a rectangular channel with a/b = 7.5 with two heated long walls

H2(2L). The analytical and numerical solutions are in excellent agreement. To the best of
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Figure 7.1: Steady temperature profile in a rectangular channel with a/b = 7.5 with two heated
long walls H2(2L). Solid lines and markers represent analytical (–) and numerical (•) solutions,
respectively.
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Figure 7.2: Oscillating temperature profiles for Pr = 5.6 and (a) Wo = 1.4, (b) Wo = 3.1, (c) Wo = 7.0,
(d) Wo = 22.1 in a rectangular channel with two heated long walls H2(2L) and a/b = ∞ (solid lines),
compared to the solution in a parallel plate channel with insulated walls kw = 0 (dotted lines) [69].
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the author’s knowledge, no independent verification for the analytical solution for steady

temperature profiles in a rectangular channel [98] has been given in the literature.
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Figure 7.3: Oscillating temperature profiles (solid lines) and displacement profiles (dashed lines) for
Pr = 5.6 and (a) Wo = 1.4, (b) Wo = 3.1, (c) Wo = 7.0, (d) Wo = 22.1 in a rectangular channel with
a/b = 7.5 with two heated long walls H2(2L). Dotted lines mark the Stokes layer thickness δν .

Figure 7.2 illustrates the agreement between the temperature profiles generated by the

insulated form of the existing parallel plate model [69] and the current two-dimensional

solution with two isoflux heated broad walls (the H2(2L) boundary condition). As expected,

the solutions coincide over a plane bisecting the 2-D channel width at very high aspect ratios.

The pressure gradient and hydraulic diameter are maintained as constant, since flow rate is

infinite for the parallel plate geometry.

Figure 7.3 presents the normalised temperature and displacement profiles across two

bisecting planes of the channel cross-section for a realistic Prandtl number of water Pr = 5.6

in a channel with aspect ratio of 7.5. It is immediately apparent that the temperature

distributions mimic behaviour previously observed in the velocity and wall shear stress
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profiles (see Chapter 6), especially at the higher frequencies of Wo = 7.0 and 22.1. In

fact, these thermal profiles closely resemble those of displacement, which have the same

characteristic shape as velocity though lagging in phase by π/2. Fluid displaced in the

negative x direction has been carried against the positive axial temperature gradient (from

a hotter region of the fluid) such that the time-dependent fluid temperature is increased. It

is found that a larger temperature gradient produces larger temperature variations. This is

in agreement with the mechanism of positive and negative forcing of the temperature field

described by Brereton and Jiang [30]. At high frequencies, the oscillations are quick enough

that the temperature field cannot readily readjust. Furthermore, no significant transverse

diffusion occurs since the temperature profiles are plug-like in the fluid core. A near-wall

overshoot is observed, causing high near-wall temperature gradients, except at the walls

where the gradients of the oscillating temperature profiles are zero. The inflection point very

near the wall appears unnatural and may relate to the restrictions imposed by the constant

heat flux boundary condition as discussed in Section 2.2.2. Any coupling that exists between

the wall and the fluid is precluded when the thermal behaviour at the wall is explicitly

prescribed. For the more realistic case of a finite wall thermal resistance, the slope of the

temperature gradient at the wall will be non-zero with the maximum experienced for the

constant wall temperature boundary condition [69]. The regions containing annular effects are

well-approximated by the Stokes layer thickness (marked by dotted lines). Hence, the region

containing transverse temperature gradients does not actually correspond with a thermal

penetration length δα = δν/
√

Pr for a pulsating flow with constant heat flux, since the heat

addition to the time-dependent problem is zero and the oscillatory component of the flow

is effectively insulated. At Wo = 1.4 and 3.1, thermal diffusion – whose time scale is short

compared with the period of oscillation – acts to differentiate the temperature profiles from

the displacement profiles, especially in the near-isothermal short channel dimension.

In the hydrodynamic problem the velocity amplitudes were similar at fixed flow rate

pulsations. In contrast, the amplitudes of temperature oscillations decrease further at higher

frequencies, and the pulsating temperature profiles deviate less significantly from the steady

temperature profile, as plotted in Figure 7.4 for the lower two frequencies. The volume

displaced during a half-cycle is proportional to the area under the pulsating flow rate curve.

Since the amplitude of the flow rate is constant, decreasing the wavelength of the pulsation
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Figure 7.4: Pulsating temperature profiles for Pr = 5.6 and (a) Wo = 1.4, (b) Wo = 3.1 in a rectangular
channel with a/b = 7.5 with two heated long walls H2(2L).
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(or increasing the frequency) decreases the volumetric displacement and hence the mean

displacement amplitude. The fluid elements are displaced over smaller axial distances with

smaller axial temperature differences. Since displacement is the primary driver of temperature

oscillations, the amplitude is reduced. It is for this reason that the experimental parameter

space of Chapter 8 contains a single low frequency.
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Figure 7.6: Oscillating temperature profiles (solid lines) and displacement profiles (dashed lines) for
Pr = 1 and (a) Wo = 1.4, (b) Wo = 3.1, (c) Wo = 7.0, (d) Wo = 22.1 in a rectangular channel with
a/b = 7.5 with two heated long walls H2(2L). Solid lines and markers represent analytical (–) and
numerical (•) solutions, respectively. Vertical dotted lines mark the Stokes layer thickness δν .

Figure 7.5 decomposes the same data into amplitude and phase values (as accommodated

by the complex solutions). The plots are normalised by their respective bulk-mean amplitudes,

since the aim is to elucidate similarities between the dynamic and thermal parameters. On

average, the temperature and displacement profiles are precisely out of phase, independent of

frequency (φ〈χ〉−φ〈θ〉 = −π), suggesting that the temperature profile is formed primarily

as a result of fluid advection. At low frequencies, heat diffuses from the core to the wall
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such that the near-wall region lags the main body, in contradiction with the hydrodynamic

parameters. Near the corners, the phase lag is larger since the lines of heat flow from the wall

to the bulk fluid are longer. At high frequencies, the temperature at the wall still lags the main

body (since any change in temperature must occur by transverse diffusion alone); however,

the near-wall temperature oscillations now lead in phase relative to those at the mid-channel

with amplitudes that are high compared to quasi-steady oscillations in the same region.

The same parameters are plotted in Figure 7.6 for a Prandtl number Pr = 1. The numerical

data are shown to accurately recover the local behaviour of the analytical solution. While

not plotted, the numerical displacement profiles are also found to match. The temperature

profiles are differentiated from their corresponding displacement profiles and the thermal

boundary layer is less well predicted by the Stokes layer thickness, since thermal diffusion

is appreciable with respect to viscous diffusion at low Prandtl numbers. The difference is

most easily recognised between the temperature/displacement profile overlays at Wo = 7.0,

Pr = 1 and Wo = 7.0, Pr = 5.6 of Figure 7.3. At the highest frequency, the time scale of the

pulsations remains short enough, compared to the time scale of thermal diffusion, that the

transverse spreading of heat is small.

Hence while diffusion obscures the mechanism at low frequencies and Prandtl numbers,

temperature oscillations are predominantly caused by fluid displacement. Similarly, as

Prandtl number is reduced, thermal diffusion becomes appreciable at higher frequencies and

acts to smooth the temperature profiles. At the limit of high Prandtl number, the temperature

profiles are the inverse of the displacement profiles for all frequencies.

7.2.2 Axial Temperature Profiles

Similar to the current study, more recent analytical studies have tended to neglect the

fluctuating component of the axial temperature gradient [29, 30, 69, 79]. However, it appears

that the early analytical study of Faghri et al. [35] permitted spatial fluctuations in the axial

temperature distribution. While other idealisations were made, this study predicted heat

transfer enhancement for the case of a slowly pulsating flow. By instead using the slug flow

assumption, Siegel and Perlmutter [34] found that the oscillating axial temperature gradient

was non-negligible. As indicated by Figure 2.17, the slopes were approximately 100%, 64%
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and 14% of the mean axial temperature gradient for Wo = 0.28, 2.8 and 5.6, respectively. A

single numerical study [70] tested this assumption for a constant heat flux boundary condition,

finding that the pulsating temperature profiles were indeed approximately linear at Wo = 1

(see Figure 2.15). Hence, contradictions exist in the literature and the assumptions made in

the linearisation of the energy equation (see Section 3.1.4) need to be critically assessed.
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Figure 7.7: Pulsating axial temperature profiles of numerical CFD model (see Chapter 5) for Pr = 1
in a rectangular channel with a/b = 7.5 with two heated long walls H2(2L).

Figure 7.7 presents the pulsating axial temperature profiles at the centroid of the channel

for Pr = 1. The behaviour is representative of that at the wall. For all frequencies, the

temperature profiles are approximately linear at each time instant far from the channel

entrance. This confirms findings in earlier numerical studies [70, 74], and validates the

assumption made in the current research and earlier analytical studies [29, 30]. At Wo = 1.4,

the linearity condition is achieved after an axial distance much greater than the thermal

development length.

To the best of the author’s knowledge, the oscillating component of the axial temperature
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Figure 7.8: Oscillating axial temperature profiles of numerical CFD model (see Chapter 5) for Pr = 1
in a rectangular channel with a/b = 7.5 with two heated long walls H2(2L).

distribution has not been analysed since Siegel and Perlmutter [34]. Figure 7.8 presents the

oscillating axial temperature profiles at the centroid of the channel. As before, behaviour

is found to be qualitatively similar at the wall. The amplitudes of the axial temperature

fluctuations are highest at low frequencies. In each case, the amplitude of the temperature

oscillations in the linear region corresponds to the first term of the double sum (with j = k = 0)

in the analytical expression for temperature (Equation 3.24). This term is uniform over the

cross section and proportional to the mean displacement amplitude ψθ | j=k=0 =−〈ψχ〉/Pr.

The axial distributions are predominantly parallel at the higher frequencies Wo = 3.1 and

7.0. In the upstream region at the lowest frequencies Wo = 1.4 and 3.1, the temperature

distributions are found to contain spatial periodicity that appears similar in nature to those

observed in Figure 2.17. Furthermore, the spatial wavelength of the oscillations is larger

at smaller frequencies, since the distance travelled during one pulsation cycle (= χ0 =

(1/ f )〈û0〉) is larger. At the lowest frequencies, the distances are χ0 = 226.7 and 45.3 [mm],
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respectively, which seem to correspond with the troughs of the spatial curves. Siegel and

Perlmutter [34] found that the magnitude of the temperature oscillations was zero at each

node χ0. In contradiction with that early analytical study, every axial location experiences

non-zero temperature fluctuations since fluid is continuously displaced over axial temperature

differences in the heated channel. Also, the oscillations are found to damp out completely

with sufficient axial length. The mechanism responsible for this axial behaviour was discussed

in conjunction with Figure 2.18. Since the temperature field varies in the x̂ dimension near

the entrance of the channel, the difference between the wall and bulk temperatures is not

uniform axially. Hence, Nusselt number enhancement may be experienced at some axial

locations. While this region of the channel is beyond the scope of the current thesis, it is

suggested as an area of future research (see Chapter 10).

The amplitude of the temperature oscillations (calculated using non-linear regression)

as a function of axial distance is plotted in Figure 7.9(a). Figure 7.9(b) plots the oscillating

temperature gradient normalised by the steady temperature gradient at Wo= 1.4 for the length

of channel. Very near the channel entrance the oscillating component of the temperature

gradient has approximately the same magnitude as the steady component, implying a quasi-

steady nature. While not plotted, the ratio between the components is just less than 0.4 in

the same region of the channel for Wo = 3.1. Hence, the magnitudes in the entry region

are of the order of those determined from Figure 2.17, though the magnitudes become

negligible downstream. Hence, the CFD model of the current research has found that the
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Figure 7.9: (a) Amplitude of axial temperature oscillations, (b) Relative size of axial temperature
gradient compared to steady axial temperature gradient for Wo = 1.4, using numerical CFD model
(see Chapter 5).
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assumptions made in the analytical solution hold true in the far downstream region of the

channel, though the spatial oscillations may extend beyond the region where the temperature

profile is thermally-developing.

7.2.3 Time-averaged Heat Transfer
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Figure 7.10: Reduction in Nusselt number with frequency Wo at constant flow rate amplitudes QA/Q0
for Pr = 1 in a square channel with four heated walls H2(4). Symbols represent the solution of
Hemida et al. in pipes [29].

Analytical theory predicts a steady flow Nusselt number of Nu0 = 5.9805. The Nusselt

number of the numerical solution predicts a Nusselt number Nu0 = 5.9293, which represents

a 0.86% error compared to the analytical solution. The effect of the temperature oscillations

on the time-averaged heat transfer is presented in Figure 7.10 for pulsating flows at constant

Pr = 1 in a square channel with 4 heated walls, which is comparable with existing studies in

pipes. Enhancement is universally negative over the parameter space with the magnitude of

the reduction deceasing with frequency and increasing with flow rate amplitude. The results

are in qualitative agreement with the trends observed by Hemida et al. [29] in a pulsating

pipe flow, though heat transfer is reduced more substantially in the non-circular conduit.

For positive-leading pseudo-sine modulations in a pipe, Brereton and Jiang [30] found a

reduction of 0.1% at Wo= 2.5, QA/Q0 = 2 and Pr = 7, with the alteration increasing at higher

amplitudes. The reduction increases with decreasing Prandtl number and increasing aspect
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ratio. Figure 7.11 presents the effect of the temperature oscillations on the time-averaged

heat transfer for pulsating flows in a rectangular channel with two heated walls at Pr = 1.

The numerical results are in reasonable agreement with analytical theory, with the larger

discrepancy at Wo = 1.4 likely due to the slight waviness in the axial temperature profiles

throughout the channel (see Figure 7.8(a)). For reference, the temperature oscillations shown

in Figure 7.3 (two heated long walls, Pr = 5.6) correspond to Nusselt number reductions

of 0.82%, 0.21%, 0.0014% and 0.0003% at Wo = 1.4, 3.1, 7.0 and 22.1, respectively. Such

changes are near impossible to measure experimentally, further highlighting the importance

of the complete data set provided by the theoretical solutions.
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Figure 7.11: Reduction in Nusselt number with frequency Wo for QA/Q0 = 0.7 and Pr = 1 in a
rectangular channel with a/b = 7.5 with two heated long walls H2(2L). Solid lines and markers
represent analytical (–) and numerical (•) solutions, respectively.

Similar to existing solutions in circular geometries, the steady flow solution is not

approached as frequency is reduced at constant flow rate amplitude. This apparently counter-

intuitive result is actually in agreement with the theory and measurements of the enhanced

axial diffusivity phenomenon in oscillatory flows [64, 65, 67]. The mechanism may be

explained by the periodic variation of the transverse temperature gradients, which interact

with axial displacement to induce an effective conduction towards the channel entrance: For

φ < 0.5π and φ > 1.5π in Figure 7.3, the displacement is negative and the temperatures in

the fluid core are higher than those in the Stokes layer. Hence, heat is flowing to the walls of

the channel when it has been displaced in the negative x direction. For 0.5π < φ < 1.5π , the
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Figure 7.12: Reduction in Nusselt number with frequency Wo at constant dimensionless amplitudes
A0 for Pr = 1 in a square channel with four heated walls H2(4).

displacement is positive and the temperature in the core is lower than that near the wall. Heat

is transported toward the core as the core is displaced positively. The early mass diffusion

studies [65, 67] found that axial mass diffusion is enhanced with the square of A0 since the

fluid is displaced over larger axial distances with higher temperature differences. In contrast,

the volumetric displacement and dimensionless amplitude parameter continue to rise as the

frequency is reduced at constant flow rate amplitude (as quantified by Table 5.2). Hence, the

combined effect of varying A0 and Wo conceals any underlying trends. Figure 7.12 illustrates

that the relative reduction in Nusselt number increases with frequency and approaches zero

at low frequencies for constant A0. The low and high frequency behaviour appears to be

connected by a transition region, similar to that observed by Joshi et al. [67] (see Figure

2.14). Similarly, Kurzweg [69] found that the behaviour of enhanced thermal diffusivity

differed at low and high frequencies. The reduction increases with A0 at constant frequency

since a higher volume of heat-carrying fluid is displaced over larger axial distances with

higher temperature differences. According to theory, the reduction increases indefinitely

with increasing pulsation amplitude, although this will be limited in cooling applications by

practical constraints in the length of channel.

The Nusselt number reduction is caused by a time-averaged decrease in the bulk tem-

perature (θ̄ ′b < 0 in Equation 3.32). The steady flow thermal equation may be described
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as Qw = ṁcp(Tb,out −Tb,in) [104], where Qw is the rate of heat transferred in Watts. Since

pulsation acts to reduce Tb,out , the temperature difference between the inlet and outlet is now

smaller. While the same fixed amount of heat flux is transferred to the fluid, the axial heat

flux in the negative x direction acts against the removal of heat, meaning that heat transfer

has been reduced compared to a steady flow. In other words, the energy convected by the

fluid through the outlet is reduced compared to that convected by the fluid through the inlet

(though the time-averaged flow rate through each is fixed). Conversely, if the bulk temper-

ature is increased, more heat has been removed and the heat transfer has been augmented.

Since displacing a fluid backwards increases the bulk temperature, Brereton and Jiang [30]

suggested that modulations acting to reduce the flow rate below its initial value increase

Nu compared to steady flow. The effect of a time-varying bulk temperature on the Nusselt

number may be studied analogously in a steady flow with time-varying inlet temperature

[105].

7.2.4 Time-dependent Heat Transfer
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Figure 7.13: Pulsating bulk temperature ∂θ ′′b = [〈θw,0〉−(θb,0+θ ′′b )]/(〈θw,0〉−θb,0), wall temperature
∂θ ′′w = (〈θw,0〉+θ ′′w)/(〈θw,0〉−θb,0) and driving temperature difference ∂ (θ ′′w−θ ′′b ) = [〈θw,0〉+θ ′′w−
(θb,0 +θ ′′b )]/(〈θw,0〉−θb,0) for Pr = 5.6 and (a) Wo = 1.4, (b) Wo = 3.1, (c) Wo = 7.0, (d) Wo = 22.1
in a rectangular channel with a/b = 7.5 with two heated long walls H2(2L).
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The axial heat flow of a pulsating flow is captured by the behaviour of the overall

bulk temperature, which contains components resulting from the product of the decoupled

velocity and temperature uθ = (u0 + u′)(θ0 + θ ′). Using the 2-D analytical solution, it

has been determined that u0θ ′ and u′θ0 contribute equally at low frequencies, though u0θ ′

doesn’t contribute at high frequencies, in agreement with the analytical study of Nield and

Kuznetsov [78]. The enhanced axial diffusion mechanism is captured by the product of the

unsteady components that contributes to an alteration of the time-averaged value (described

by Equation 3.31). Hence, the phase between the oscillating velocity and temperature

profiles determines whether heat transfer is enhanced or diminished. Since the net result

of both half-cycles is to move heat towards the entrance of the channel, the axial heat flow

oscillates with twice the frequency of pulsation (see Figure 7.13). The phenomenon is

analogous to mass diffusion studies, where the cloud of contaminant expands during one

half-cycle and contracts during the second half-cycle, with the net effect of the full cycle

being a slight overall increase in length [64, 65, 66]. Periodically-reversing flows, which

contain a phase difference between the velocity and temperature fields, present a problem

for the classical theory of bulk temperature. In order to isolate the axial heat flow induced

solely by the transverse diffusion mechanism, the component relating to the one-dimensional

displacement of fluid is removed. This corresponds to the first term of the double sum (with

j = k = 0) in Equation 3.24, which is uniform over the cross section and proportional to the

displacement ψθ | j=k=0 =−〈ψχ〉/Pr. Negating this term does not affect the time-average θ̄ ′b.

For illustrative purposes, an instantaneous measure of the temperature difference is calculated

using a wall temperature parameter where the same 1-D term has been removed. This is

justified, since neglecting the uniform term does not affect the temperature profile’s shape

and any driving temperature gradients. Figure 7.13 indicates that the temperature difference

is not sinusoidal in time, as the wall temperature oscillates with the fundamental pulsation

frequency. The instantaneous nature of heat transfer is dependent on the amplitude and

phase relations of the wall and bulk temperatures. Although the governing energy equation

is linear, a non-linear coupling has arisen between the oscillating velocity and temperature

components.

The physical meaning of a time-dependent heat transfer coefficient is ambiguous where

heat flux and temperature difference are not proportional. In the field of dropwise condensa-
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tion [103], for example, the error bounds of calculating h from ∆T can yield contradictory

results, and the concept of a mean heat-transfer coefficient is not considered helpful. While

the magnitudes may give some indication of heat transfer effectiveness, they should be

considered approximate. Furthermore, errors in h, which is inversely proportional to ∆T ,

become large when the fluctuations in the temperature difference are small. Similarly, the

heat flux is not proportional to the driving temperature difference for the case of constant

heat flux (see Figure 7.13). It appears that non-dimensionalisation of the temperature by the

driving temperature difference permitted the definition of a time-dependent Nusselt number

in complex notation for Nield and Kuznetsov [78]. However, the amplitude of the flow

rate pulsations was assumed small and the product of the fluctuating components u′θ ′ was

neglected, such that no time-averaged change in the Nusselt number was found.

Table 7.1: Comparison of time-averaged Nusselt number definitions. The steady Nusselt number is
Nu0 = 5.9805 [98].

Wo 1.4 3.1 7.0 22.1
Nuqm 5.9311 5.9678 5.9796 5.9805
Numq 6.2919 6.1379 6.04 5.9883

For illustrative purposes, the mathematical problems associated with the heat transfer

Figure 7.14: Network showing generalised impedance Z(t) = 1/Nu(t) for constant heat flux q = 1
and generalised potential θw−θb.
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coefficient are explicitly quantified for a pulsating flow under constant heat flux. As discussed

in Section 3.3.1, time-averaging of the numerator and denominator of Nu = 1/(θw− θb)

should be performed prior to performing the division (Nuqm) to facilitate direct comparison

to a steady flow [29, 30]. Calculating instantaneous values of the Nusselt number effectively

changes the order of averaging and division (Numq). As a result, the time-average of any

temporal plot of the dimensionless heat transfer coefficient does not agree with the time-

averaged definition given in Equation 3.31 and can actually falsely predict heat transfer

enhancement. Also, it is not clear whether the temperature-velocity product uθ should be

divided by the time-averaged flow rate or the instantaneous flow rate, since no rigorous

definition of a time-dependent bulk temperature has been established. After much analysis

of both definitions, the author has opted to divide by the time-averaged flow rate since the

definition achieves more accurate values of Nuqm at intermediate to high frequencies. Table

7.1 gives the values of the Nusselt number, where the order of averaging and division has been

changed. For these calculations, the component relating to the one-dimensional displacement

of fluid has been retained (unlike Figure 7.13). Its removal appears to give better estimates

at very low frequencies (e.g. Wo = 0.03) where θw−θb approaches zero during the cycle

(some studies allow Nusselt number to become infinite momentarily [105]). However, the

predicted Numq is still higher than Nuqm. Mathie and Markides [106] used this non-linearity

to quantify a heat transfer augmentation ratio A = 1+h′∆T ′/h̄∆T where the heat transfer is

compared to a "steady equivalent", rather than a literal steady flow. Since Nuqm < Numq, the

h′∆T ′ term in Equation 3.33 is negative. Hence, both the definition of enhancement used in

the current work (Equation 2.6) and A become increasingly negative at low frequencies. It

appears that the non-linearity of the problem does indeed relate to heat transfer reduction.

For the reasons discussed in this section, a complex representation is not used and the heat

transfer performance is interpreted instead as an impedance Z:

Z(t) =
1

Nu(t)
= θw(t)−θb(t) (7.1)

where the simple relationship between Z and ∆θ is linear (see Figure 7.14). A heat transfer

coefficient is not necessary as the exact state of heat transfer has been described in terms of

the unsteady axial heat flux and the driving temperature difference. Degiovanni and Remi
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[160] have proposed using a generalised impedance as an alternative to the heat transfer

coefficient for modelling thermal boundary conditions varying in space and time. The green

line of Figure 7.13 is illustrative of the component of the time-varying impedance that effects

a time-averaged change of heat transfer. However, a robust definition of the time-varying

bulk temperature has not been established. Furthermore, the time-dependent behaviour of the

impedance changes substantially depending on the definition. Hence, no definitive comment

can be made on optimisation of heat transfer with respect to the time-varying temperature

difference.
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Figure 7.15: Oscillating temperature profiles (solid lines) and displacement profiles (dashed lines) for
Pr = 5.6 and (a) Wo = 1.4, (b) Wo = 3.1, (c) Wo = 7.0, (d) Wo = 22.1 in a parallel plate channel with
constant temperature walls kw = ∞ and ŵ = 100Dh [69]. Dotted lines mark the Stokes layer thickness
δν .
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7.3 Mechanism 2: Enhanced Wall Shear Stress Analogy

As discussed, the similarity between the turbulent diffusivity of momentum and heat has

been identified in steady flow in a pipe for Pr = 1 [153], such that the temperature profile

may be estimated if the velocity profile is known. Furthermore, the relationship holds true

in the direction normal to the wall of non-circular polygonal tubes if the angles between

walls are not too small [154, 155], although a balance of stresses and heat fluxes (through

Equations 3.1a and 3.1b) will not hold true near the corners. The similarity between the

velocity and temperature field has not been established for the case of unsteady flow. In the

previous section, the similarity of the local time-dependent temperature and displacement

profiles in the main fluid body – especially at high frequencies and Prandtl numbers – was

demonstrated for the constant heat flux boundary condition (see Figure 7.3). However, the

slopes of the time-dependent temperature profiles at the wall are fixed at zero such that the

second mechanism of heat transfer enhancement is precluded and corresponding profiles

differ significantly in the close near-wall region. The aim of this section is to address the

discrepancy at the wall, showing that the difference in behaviour owes entirely to the constant

heat flux boundary condition. In fact, the near-wall behaviour matches if the slope at the

wall is permitted to vary at constant temperature. Previously, the agreement between the

temperature profiles generated by the insulated form of the conjugate analytical solution in a

parallel plate geometry [69] and the two-dimensional solution with two isoflux heated broad

walls (the H2(2L) boundary condition) was illustrated (see Figure 7.2). In future, the solution

of the 2-D energy equation of Section 3.3 should be modified for the case of constant wall

temperature. For now, similarity is assumed to extend the 1-D solution to an approximate

2-D analysis. The conjugate 1-D solution [69] adjusted to the same non-dimensionalised

form as Section 3.1.3 is detailed in the Appendix.

7.3.1 Transverse Temperature Profiles

Figure 7.15 exhibits the normalised temperature and displacement profiles in a parallel plate

channel with thick constant temperature walls for a realistic Prandtl number of water. A

significant improvement in similarity has been achieved compared to the z temperature

distributions of Figure 7.3, particularly near the wall and at low frequencies. Since the
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Figure 7.16: Oscillating heat flux and wall displacement gradient for Pr = 100 and (a) Wo = 1.4, (b)
Wo = 3.1, (c) Wo = 7.0, (d) Wo = 22.1 in a parallel plate channel with constant temperature walls
kw = ∞ and ŵ = 100Dh.
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Figure 7.17: Amplitude of heat flux and wall displacement gradient with frequency Wo in a parallel
plate channel with constant temperature walls kw = ∞ and ŵ = 100Dh for Pr = 1 (dotted lines),
Pr = 5.6 (solid lines) and Pr = 100 (dashed lines).
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profiles are normalised by their space-averaged values, the similarity works equally well

in dimensional variables. At low frequencies, the amplitudes of temperature oscillations

are well predicted, though discrepancies remain in the local phase values. At the limit of

high Prandtl number, the profiles are found to become identical at all transverse locations.

Figure 7.16 plots the amplitudes and phases of the time-dependent wall temperature and

displacement gradients for Pr = 100, where a negative value means that heat is flowing to the

wall (i.e. 〈T 〉> Tw). The π radian phase difference between the temperature and displacement

fields has been removed for clarity, χ ′′′ =R[ψuei(Wo2t−φQ−π/2−π)]. The similarities of the

amplitudes with frequency are plotted in Figure 7.17 for various Prandtl numbers. The offset

between the magnitudes at each Prandtl number is likely proportional to some measure of the

thermal diffusion. Also, the magnitudes of the heat flux are independent of the steady heat

flux component. Assuming sufficiently high frequency and Prandtl number, the equality of

the dimensional wall heat flux and displacement gradient is thus:

q̂′′zx =−k f ·
(

∂T ′′w
∂ ẑ

)
≈−k f ·

〈TA〉
〈χ̂A〉

·∇χ̂
′′′
w (7.2)

where ∇χ̂ = ∂ χ/∂ ẑ. Dimensional analysis indicates that the terms on the right of Equation

7.2 have units W/m2. This is equivalently given in terms of the velocity and wall shear stress

parameters by:

q̂′′zx =R(ψq̂zxe
i(Wo2t−φQ−π/2))

ψq̂zx ≈−
k f

µ
·
|ψ〈T 〉|
|ψ〈û〉|

·ψτ̂

(7.3)

Hence, the displacement profile may be used as an approximate solution for constant

temperature in a parallel plate channel. The heat flux in a rectangular channel may now be

estimated using the known hydrodynamic parameters with Equation 7.3. The case of four

walls heated at a constant temperature is considered to illustrate the equivalent behaviour

along the short wall (i.e. the yx component). Figure 7.18 depicts the local time-dependent

heat fluxes, which are qualitatively similar to the wall shear stress profiles of Figure 6.11.

Further processing would give local heat flux enhancements relative to equivalent steady

flows, analogous to the local wall shear stress enhancement of Figure 6.12. Furthermore,

heat transfer for the more realistic case of a finite wall thermal resistance (i.e. somewhere in
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between isoflux and isothermal heating) could be approximated by including capacitive and

lateral conduction terms (with distributions such as the solid lines of Figures 4.15 and 4.14)

in an energy balance.

7.3.2 Nusselt number

Gedeon [79] developed the idea of a complex Nusselt number for an oscillatory flow in a thick-

walled channel using a Nusselt number that uses the cross-sectional mean temperature and the

fluid reference temperature Num = q′Dh/[k f (T ′w−〈T ′〉)]. The heat flux q′ =R[ψq · eiWo2t ]

and ∆T ′ =R[ψ∆T ·eiWo2t ] oscillate with the same frequency and the exponential terms vanish.

The wall of the channel is fixed at very large thickness such that the wall temperature is
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ẑ/b̂

0 0.2 0.4
ŷ/â
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Figure 7.18: Oscillating heat flux profiles calculated using Equation 7.3 for Pr = 5.6 and (a) Wo =
1.4, (b) Wo = 3.1, (c) Wo = 7.0, (d) Wo = 22.1 in a rectangular channel. Dotted lines mark the Stokes
layer thickness δν .
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Figure 7.19: Oscillating wall temperature gradient and temperature difference for Pr = 5.6 and (a) Wo
= 1.4, (b) Wo = 3.1, (c) Wo = 7.0, (d) Wo = 22.1 in a parallel plate channel with constant temperature
walls kw = ∞.

invariant in both time and space. The solution has been extended by the author for a wall

with variable thickness (see Appendix). The wall may have high thermal conductivity but a

low thermal mass, such that the temperature is constant in space but not time (this acts to

reduce the augmentation of the temperature gradient at the wall). For a slowly oscillating

flow, q′ and ∆T ′ are in phase and the Nusselt number is constant in time since the quantities

always have the same ratio (see Figure 7.19(a)). Furthermore, the phasor representation has

solved the problem of division by zero by transforming to a domain where the amplitudes in

the denominator are non-zero. Nu is a complex-valued coefficient that relates the relative

phase difference between the heat flux and temperature difference. For higher frequencies,

the heat flux and temperature difference are out of phase. Figure 7.20 indicates that the

Nusselt number is enhanced with increasing frequency in a parallel plate channel. Although

the amplitude of the temperature gradient at the wall decreases with increasing frequency

(see Figure 7.17), the amplitude of the temperature difference decreases at a faster rate.

Since the mean temperature is used, the solution fails to capture any change in heat

transfer as a result of the bulk temperature variation. Furthermore, the complex representa-

tion of single-frequency time-dependent variables requires a linear (albeit complex-valued)
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Figure 7.20: Enhancement of Nusselt number based on the mean temperature with frequency Wo
at constant flow rate amplitude QA/Q0 = 0.7 for Pr = 5.6 in a parallel plate channel with constant
temperature walls kw = ∞ and ŵ = 100Dh.

relationship between the quantities. Since the bulk temperature contains second harmonics

of the pulsation frequency (see Figure 7.13), the Nusselt number based on bulk temperature

varies in time such that the heat flux is q′(t) = (k f /Dh)Nu′(t)δT ′(t). This system is not

linear, i.e. it can not be treated by mapping all single-frequency temperature differences

to all single-frequency heat fluxes by a matrix of constant (i.e. frequency-dependent but

not time-dependent) complex coefficients. In other words, the heat flux contains spectral

frequencies other than the pulsation frequency.

7.4 Conclusions

This chapter built on the results of Chapter 6 to characterise the unique mechanisms of heat

transfer enhancement using (i) a novel analytical solution in a rectangular channel heated

under constant heat flux and (ii) an existing analytical solution in a parallel plate channel

heated by constant temperature walls [69]. The first mechanism (through bulk temperature

modulation) is elucidated by the isoflux solution, while the second mechanism (through

augmented near-wall temperature gradients) is illustrated by the isothermal solution. To

the best of the author’s knowledge, the 2-D solution for temperature constitutes the first
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in a channel with a two-dimensional cross-section. The oscillatory temperature profiles,

computed in a narrow channel with two heated long walls, are found to coincide well with

the 1-D solution. The change in Nusselt number due to pulsations, computed in a square

channel with four heated walls, is in reasonable agreement with existing solutions in pipes.

Also, the solution has been verified over a portion of the parameter space using a numerical

CFD model.

It is well-known that the thermal problem is heavily dependent on the hydrodynamics

of the flow. However, no framework is available in the literature for extending the effect

of time-varying displacements to likely effects on instantaneous heat transfer. It is found

that the temperature profile is formed primarily as a result of fluid displacement against the

temperature gradient, such that the normalised temperature profiles are the inverse of the

displacement profiles when diffusion is negligible and the wall is at a constant temperature.

In contrast to steady flow, where the problems are similar at Pr = 1, the oscillating velocity

and temperature profiles are most similar at high Prandtl numbers. Hence, the temperature

profile may be estimated if the velocity profile is known, provided that the frequency and

Prandtl number are not too low (see Figure 7.17). Furthermore, the local wall shear stress

may be mapped to the local wall heat flux using Equation 7.3. In a rectangular channel, the

similarity may not hold near the perpendicular boundaries at the corners, since the balance of

stresses and heat fluxes are less similar. In future, it may be possible to modify the similarity

equation to account for the effect of thermal diffusion and the offset between the estimates

of Figure 7.17. Ideally, the high accuracy achievable with velocity measurement techniques

could be applied in the study of heat transfer. For example, accurate estimates of second order

parameters such as vorticity typically require time-averaging over 1000 image pairs with

particle image velocimetry (PIV). Local temperature measurement techniques such as planar

laser-induced fluorescence (PLIF), which are less mature, cannot achieve the same estimates.

This perhaps explains this reason that the theory associated with the second derivative of

the temperature field has not been developed (nor has the parameter been given a name!).

However, its role in the balance of local heat flow in the fluid is analogous to the role that

vorticity plays in the balance of stresses (see Figure 6.7). Hence, it is useful to use analogies

with the flow hydrodynamics.

The phases of temperature and velocity in the hydrodynamically- and thermally-developed
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region result in a universal reduction in heat transfer by the first mechanism. Since transverse

diffusion drives the mechanism, the reduction decreases with increasing frequency and

Prandtl number (see Figure 7.10). The second mechanism acts to augment the heat fluxes

at the wall during portions of the cycle, although the time-averaged augmentation is zero.

Similarly, the Nusselt number enhancement (based on the mean temperature) increases

with increasing frequency and Prandtl number (see Figure 7.20). According to the linear

theory, the heat flux and temperature difference increase in proportion and hence the flow

rate amplitude has no effect on the Nusselt number. Since Persoons et al. [16] found that

the Nusselt number enhancement increased with flow rate amplitude (see Figure 2.24), it is

expected that enhancement was due to the bulk-mean reversal mechanism.

Optimal enhancement on a time-averaged basis is hence achieved by high frequencies,

high Prandtl numbers and high wall thermal conductivities. On a time-dependent basis,

optimisation may be achieved through inspection of the oscillating temperature difference

and heat flux. It is generally found that any heat transfer enhancement through the heat flux

mechanism is offset by a heat transfer reduction through the bulk temperature mechanism.

For example, Figures 7.13 and 7.16 indicate that both the temperature difference and heat

flux at the wall are increased over the interval π/2−3π/2. To increase the heat flux from

the wall to the fluid (or equivalently, to decrease the slope of the temperature gradient at the

wall), the mean temperature must be reduced with respect to the wall temperature. However,

this has the added effect of reducing the bulk temperature, which increases the temperature

difference. The overall effect likely depends on parameters such as the frequency, amplitude

and Prandtl number. Chapter 8 sets out to verify the predictions for the wall temperature in a

rectangular channel on a local time-dependent basis using infrared thermography (IRT).
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Chapter 8

Experimental Heat Transfer of Laminar

Pulsatile Flow in a Rectangular Channel

8.1 Introduction

As discussed in Chapter 1, the fundamental aim of this thesis is to characterise the heat

transfer enhancement potential of pulsating flow using complementary analytical, numerical

and experimental analyses. Using the complete data provided by the novel analytical solution

(derived in Section 3.3), the mechanisms of enhancement were investigated on a local time-

dependent basis in Chapter 7. The analytical model was found to agree with the numerical

CFD model at Pr = 1. Heat transfer is altered through either (i) the bulk temperature or

(ii) the wall heat flux, though both mechanisms result from the displacement of fluid in the

presence of an axial temperature gradient. Nonetheless, experimental analysis is an important

step in the verification of underlying theory and should proceed in a manner similar to the

hydrodynamic study of Chapter 6. Generally, the local time-dependent measurements of

the velocity field were in consistent agreement with theory, as reviewed in Chapter 2. In

contrast, heat transfer studies tend to find disagreement, with theory finding negligible or

slight changes in heat transfer and experiment finding enhancements as high as 40% [16].

Some of this discrepancy may arise from the larger parameter space of the thermal problem –

where complexity is added by parameters such as the Prandtl number and the spectrum of

boundary conditions at the wall – and the difficulties in generating a thermally-developed
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8.1. INTRODUCTION

flow experimentally.

While experiments measuring the temperature profiles of unsteady flows are lacking as a

whole, a number of heat and mass transfer experiments have characterised the overall effect

of the first mechanism of heat transfer enhancement (through bulk temperature modulations).

However, the time-averaged analyses employed ultimately result in a loss of information since

any potential optimisation requires understanding of the instantaneous mechanism. Over

the time interval π/2−3π/2 for example, an overall enhancement of heat flux at the wall

appears to be observed (see Figure 7.16). While a multitude of experimental measurement

techniques have been used to verify the velocity field on a local time-dependent basis, planar

measurement techniques such as planar laser-induced fluorescence are less mature than

their velocimetry counterparts. Oscillating temperature profiles have been visualised by a

single qualitative experiment at a pair of frequencies corresponding to Wo = 4.4, and 12.2

for an incompressible flow [71]. The sinusoidally-varying temperature gradient at the wall

has been measured in a couple of experiments [80, 82] for a compressible flow with a step

change in axial temperature gradient at a single frequency Wo = 11.3. Furthermore, the

experimental measurements were compared solely to numerical models. To the best of the

author’s knowledge, no experiments have been performed for the common flow condition of

an incompressible flow in a heated vessel.

Since convective heat flux takes place at the wall, heat transfer enhancement is primarily

dependent on the near-wall behaviour of the velocity and temperature field. In Chapter

6, it was necessary to take single measurements of the non-uniform shear stress at each

wall using the planar particle image velocimetry (PIV) measurement technique. Similarly,

a planar temperature measurement technique (e.g. PLIF) performs zero order heat flux

measurements at the wall. Hence, the technique of infrared thermography (IRT) is used to

achieve high spatial resolution of the non-uniform convective heat flux at the wall. IRT acts

to approximate the constant heat flux boundary condition such that temperature variations in

the flow are accentuated; however, the ideal isoflux state actually precludes any variation in

convective heat flux (as discussed in Chapter 7). In contrast, constant temperature heat sources

experience the highest enhancement due to unsteady effects in the flow, though the non-

variation of temperature means that the heat flux enhancement can not readily be measured

with good spatial and temporal resolution. For example, Mosyak [117] used a thick copper
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8.2. WALL TEMPERATURE AND CONVECTIVE HEAT FLUX PROFILES

plate and thin stainless steel foil to approximate the isothermal H1 and isoflux H2 boundary

conditions, respectively, in turbulent flow, finding that the temperature fluctuations of the

latter were an order of magnitude higher. While not quite Heisenberg’s uncertainty principle,

some accuracy in the quantification of enhancement is sacrificed to allow measurement of

the thermal phenomena. For this reason, IRT is commonly viewed as a technique that is

particularly good at identifying regions of local relative heat transfer enhancement.

Generally, the relationship between wall shear stress and convective heat flux has remained

underdeveloped in the literature. In Figure 6.12, the local time-dependent amplification of

wall shear stress with pulsation was predicted. An analysis of the similarity between the

gradients of the velocity and temperature fields at the wall under various conditions was

performed in Chapter 7. It has been proposed that the qualitative behaviour (and perhaps

quantitative behaviour) of the wall heat flux may be approximated from the wall shear stress.

Finally, using the hydrodynamic prediction tools developed in Chapter 6 and the infrastructure

for quantifying similarity, the local enhancement of convective heat flux may be tested on

an experimental basis. Hence, the aim of the current study is to build on the experimental

hydrodynamic results to measure the local time-dependent variation in wall temperature for

pulsating flow in a heated rectangular channel.

8.2 Wall Temperature and Convective Heat Flux Profiles

To permit comparison with analytical theory the flow should be thermally-developed and

devoid of secondary flow effects. Theoretical predictions of the thermal development length

for steady flow were discussed in the experimental analysis of the heat transfer apparatus

(see Section 4.2.2). In general, it has been found by experiment and CFD that thermal

development takes much longer than that predicted by Pr ·Le. The 300 mm heated length

upstream of the viewing window is just enough to ensure thermal development for Re0 < 80

(Pr ·Le ≈ 300 mm for Re0 = 200), which is inspected through the uniformity of the transverse

temperature profiles with increasing downstream distance. The solid lines and dots of Figure

8.1 plot the steady temperature profiles predicted by the analytical and numerical models for

the channel heated at a single long wall H2(1L). The idealised models assume that no lateral

conduction, radiation or buoyancy take place and that the rear side of the wall is perfectly
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8.2. WALL TEMPERATURE AND CONVECTIVE HEAT FLUX PROFILES

0 2 4 6 8 10
18

20

22

24

26

28

30
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Figure 8.1: Steady temperature profiles for Re0 = 40. Solid lines and dots represent analytical (–)
and numerical (•) solutions, respectively, without buoyancy. Dashed lines and symbols represent the
numerical solution with buoyancy (−−) and the experimental measurements (4), respectively. The
wall at ẑ = b̂ is heated.

insulated. Table 4.7 indicates that the space-averaged value of lateral conduction, conduction

through the insulating air gap and radiative losses are small compared with the generated

heat flux. However, the heat flux by lateral conduction is appreciable near the corners owing

to the steep transverse temperature gradient. This acts to equalise the temperature profile

at the wall of a channel [99, 100] (see Figure 3.3). Also, the low Reynolds number flow

(with Gr/Re2
0 ≈ 0.3) may result in heat transfer by mixed convection, as discussed in Section

4.2.2. For these reasons, the steady component of the experimental measurements (plotted by

markers) differs quite substantially from the thin-walled theory. Furthermore, the non-zero

slope and positive value of ∇2T near the corner indicate that heat is flowing to this region,

rather from this region as predicted by theory. This suggests that the foil outside of the

channel boundary is indeed heated. The dashed lines of Figure 8.1 model the same steady

flow with buoyancy using the numerical CFD model (but without wall conduction). Much

of the discrepancy between the idealised predictions and the experimental measurements

appears to result from buoyancy effects in the channel. In future, it may be necessary to

change the fluid to prevent mixed convection, since higher Reynolds numbers require longer

development lengths. Nonetheless, the time-dependent components of lateral wall conduction
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8.2. WALL TEMPERATURE AND CONVECTIVE HEAT FLUX PROFILES

and buoyancy will be much smaller than their time-averaged counterparts, and the effects

cannot establish themselves fully before conditions are reversed (the time-averaged value is

zero). Hence, a lesser impact is expected on the time-dependent temperature field that is of

primary concern in this research.
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Figure 8.2: Oscillating wall temperature profiles for Wo = 1.76, QA/Q0 = 0.7, Pr = 5.6. Solid lines
and dots represent analytical solutions (–) and experimental measurements (•), respectively. Dotted
lines mark the Stokes layer thickness δ̂ν . While all 20 phase values are plotted, the legend only
identifies 10 for brevity.

Figure 8.2 compares the phase-averaged oscillating temperature profiles at the heated

wall of the channel for Wo = 1.76, QA/Q0 = 0.7 measured using IRT, to the novel analytical

solution of Section 3.3. The data are found to capture the unique frequency-dependent

characteristics of the analytical solution such as inflection points and near-wall overshoots,

which are similar to those observed in the experimental velocity profiles of Chapter 6. The

region containing the annular effects is well-predicted by the Stokes layer thickness (marked

by dotted lines) suggesting that the temperature profile is formed primarily as a result of

the displacement of fluid against the axial temperature gradient. The lack of fluid motion

very near the corner means that heat transfer occurs primarily by diffusion and a phase lag

develops with respect to the main fluid body. Annular effects in the temperature profile have

been observed previously in experiments [71, 82] and numerical models [83, 85], though

not for an incompressible flow in a heated vessel. The amplitude of temperature oscillations
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8.2. WALL TEMPERATURE AND CONVECTIVE HEAT FLUX PROFILES

of 0.3 ◦C near the mid-wall are in agreement with the analytical solution, although the

amplitudes are slightly larger than predictions near the corner. This may result from the

same heat leakage that affected the steady temperature profiles in this region, which causes a

non-zero slope at the corners. Furthermore, the uncertainty associated with the experiment is

large compared with the measured values, especially near the corners. Figure 8.3 presents the

sinusoidal behaviour of the space-averaged wall temperature in relation to the flow rate. As

before, the amplitude of the experimental measurements is larger than that of the analytical

solution. The phase difference of 66◦ between the flow rate induced by the gear pump and

the wall temperature measured by the thermal camera is well-predicted by the theoretical

value of 74◦.
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Figure 8.3: Oscillating mean wall temperature and flow rate for Wo = 1.76, QA/Q0 = 0.7, Pr = 5.6.
Solid lines and dots represent analytical solutions (–) and experimental measurements (•), respectively.

Figure 8.4 plots the normal temperature profiles in the wall and fluid according to the 1-D

and 2-D analytical solutions characterised in Chapter 7. Firstly, the fluid temperature profiles

of the 1-D (marked by solid lines) and 2-D (marked by dashed lines) solutions under constant

heat flux are similar, with the discrepancy arising from the difference in aspect ratio between

the parallel plate and rectangular (â/b̂ = 10) geometries. Secondly, while a very slight

conjugation exists due to the wall thickness, the time-dependent problem approximates the

isoflux boundary condition well, according to the 1-D solution. The amplitude of temperature

oscillations at the wall for the ideal boundary condition (plotted by dotted lines) is just 2.7%
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Figure 8.4: Oscillating fluid and wall temperature profiles in normal ẑ direction for Wo = 1.76,
QA/Q0 = 0.7, Pr = 5.6. The solid lines (–) represent the 1-D solution with conducting Inconel 625
walls with thickness ŵ = 25 µm. The dashed (−−) and dotted (· · ·) lines represent the 2-D and 1-D
constant heat flux solutions.

greater than the realistic case (plotted dashed lines), although transient lateral conduction

in the walls may augment this discrepancy. The distribution within the wall (whose scale

has been enhanced for clarity) is approximately uniform and clearly adheres to the lumped

capacitance model, as analysed in Section 4.2.2 using the Biot number. The slowly-oscillating

flow with Wo = 1.76 falls near the boundary of the quasi-steady and transitional regimes of

unsteadiness (see Chapter 6), and the time-scale of the pulsations is long compared with that

of thermal diffusion. As a result, the wall-normal temperature profiles are relatively uniform

compared with the corresponding velocity profiles, which are subject to the no-slip boundary

condition. As the time-scale of oscillations is decreased, less heat is diffused to the wall and

the amplitudes of wall temperature oscillations drop significantly, such that wall temperature

and heat flux variations are difficult to measure using IRT. The smaller wall temperature

oscillations at higher frequencies may be inspected from Figure 7.3. While adherence to

the isoflux condition results in larger temperature oscillations that are measurable using

IRT, a price of measurement is paid in the estimate of convective heat flux enhancement.
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According to 1-D theory, the enhanced heat flux at the wall of the experimental setup is just

0.0003% of that achievable using a constant temperature boundary condition. According to

the analytical solution, the change in bulk temperature is -0.0086 [K] which is not measurable

using thermocouples. This amounts to a 0.25% reduction in the Nusselt number from its

steady value of Nu0 = 4.52.

0 2 4 6 8 10
ŷ [mm]

-100

-50

0

50

100

q̂′
′ co
n
v
[W

/m
2
]

(a)

0.1π 0.3π 0.5π 0.7π 0.9π 1.1π 1.3π 1.5π 1.7π 1.9π

0 2 4 6 8 10
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Figure 8.5: Oscillating convective heat flux profiles for Wo = 1.76, QA/Q0 = 0.7, Pr = 5.6. Solid
lines and dots represent analytical solutions (–) and experimental measurements (•), respectively.
Dotted lines mark the Stokes layer thickness δ̂ν .

Figure 8.5(a) presents the local time-dependent convective heat flux to the fluid calculated

using the energy balance of Figure 4.13. The time-dependent heat flux profiles of lateral

conduction, heat storage, conduction through the air gap and radiation were analysed in

Section 4.2.2.2. Figure 8.5(b) uses the analytical distributions of ∂ 2T/∂ ŷ2 and ∂T/∂ t̂ at the

infinitely-thin wall, along with the experimental wall properties of Table 4.4, to predict the

combined effect of the capacitive and lateral conduction terms for a finite wall thickness.

In other words, it is assumed that lateral conduction in the wall does not affect the fluid

temperature profile. The contributions of heat flux by lateral conduction and capacitance

distort the heat flux profiles compared to the idealised profiles for a constant temperature

that were similar to the wall shear stress profiles (see Figure 7.18). Hemida et al. [29]

found numerically that wall thermal inertia damps out pulsation effects, especially at high
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frequencies. For the ideal case of constant heat flux, the time-dependent component of the

convective heat flux is zero since all generated heat is transferred to the fluid at all times.

The convective heat flux is found to vary with an amplitude of 20 W/m2 in the central wall

region, which constitutes a maximum enhancement of less than 1% of the generated heat

flux. In Chapter 6, the local time-dependent amplification of wall shear stress with pulsation

was studied with Figure 6.12. Even at the lowest frequency (Wo = 1.4), slight enhancements

and reductions were observed near the corners, which resulted from the development of a

near-wall velocity overshoot. Furthermore, the wall shear stress could be both instantaneously

enhanced and reduced at different locations of the wall. The same qualitative behaviour is

observed in Figure 8.5. Hence, it appears that heat transfer may be slightly enhanced and

diminished near the corners of a rectangular channel with very little work expense. However,

it should be noted the relative uncertainty of the convective heat flux measurements is large,

especially near the corners.

8.3 Conclusions

This chapter has complemented the experimental velocity measurements of Chapter 6 with

thermal measurements of the oscillating wall temperatures for a pulsating flow with Wo =

1.76 in a rectangular channel. To the best of the author’s knowledge, the results constitute

the first experimental measurements of the temperature profiles of a sinusoidally-pulsating

incompressible flow in a heated vessel. The low Reynolds number flows mean that the steady

temperature profiles are affected quite significantly by natural convection. For a microchannel

(with Dh = 200 µm) heated at a constant heat flux of 1000 W/cm2 and cooled by water, it

has been calculated that mixed convection effects are negligible for Re0 > 15. The amplitude

of oscillation near the centre of the wall of 0.3 K is in agreement with that predicted by the

novel analytical solution in a rectangular geometry. Near the corner, the profiles contain

similar frequency-dependent characteristics such as inflection points and overshoots. The

annular effects are contained within a region well defined by the Stokes layer thickness. The

time-dependent behaviour of the mean temperature is approximately sinusoidal and leads the

flow rate, with a phase advance of 66◦ relative to the flow rate, in reasonable agreement with

theory.
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Infrared thermography (IRT) is preferred to planar measurement techniques to measure

the local time-dependent variation of the convective heat flux. The time-dependent convective

heat flux profile is well predicted using the behaviour of the 2-D analytical solution at the

infinitely-thin wall. While heat storage and lateral conduction distort the shape of the wall

heat flux profile compared to the corresponding wall shear stress profile, local enhancements

and reductions are observed that are qualitatively similar to the wall shear stress amplification

of Figure 6.12. As concluded in Chapter 6, pulsations may be used to enhance and reduce

heat transfer near the corners of rectangular channels at low frequencies. While the local time-

dependent relationship between wall shear stress and convective heat flux was developed by

the theory of Chapter 7, a connection has been made using experimental measurements. The

heat transfer enhancement by the second mechanism is approximately 1% of the generated

heat flux. However, this is a small fraction of that achievable as the constant temperature

boundary condition is approached, according to theory. While beyond the scope of the current

research, an experimental quantification of the heat transfer enhancement experienced by

constant heat flux and constant temperature heaters is an interesting endeavour that can give

insight into the usefulness of IRT as a quantitative heat transfer measurement technique.

The convective heat flux of the isothermal source would require measurements with high

resolution in the near-wall region, using a planar fluid measurement technique such as PLIF.

In the current thesis, thermal behaviour in the fluid has been analysed using analytical

solutions.
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Chapter 9

Discussion

This research has sought to improve understanding of the mechanisms of heat transfer

enhancement of unsteady fluid flow pulsations using complementary analytical, experimental

and numerical techniques. The velocity field is the foundation from which higher level

mechanisms and heat transfer behaviour ultimately derive, such that all of the results of

this thesis may be related back to the parametric analysis of the velocity problem presented

in Chapter 6. Chapter 7 established the connection between the fluid mechanics and heat

transfer using a novel 2-D analytical solution and an existing 1-D conjugate solution. Finally,

Chapter 8 presented experimental measurements of the wall temperature and convective heat

flux, to test the developed theory and measure any heat transfer enhancement by pulsation.

Since the parameter space is large, heat transfer is often treated as a macroscopic science,

with engineering correlations used between dimensionless numbers and time- and space-

averaged variables. A multitude of applied thermal studies have successfully demonstrated the

feasibility of unsteady cooling solutions using a top-down or black box approach. However,

the approach has failed to establish consensus on the question of heat transfer enhancement,

as reviewed in Chapter 2. In general, a dichotomy exists between hydrodynamic and thermal

experiments measuring pulsating flow. While the velocity field has been measured on a

local time-dependent basis, heat transfer studies have chased time- and space-averaged heat

transfer enhancement. However, convective heat transfer is often unsteady and spatially

non-uniform. Hence, the thermal problem should be characterised in a manner similar to the

hydrodynamic problem. Since analytical models give complete information of the velocity
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and temperature field, classical engineering concepts such as correlations, regimes and the

heat transfer coefficient are not actually required. Parametric analyses instead present the

explicit interdependencies of the pertinent variables. This thesis set out to use a bottom up

approach to the designs of liquid cooling solutions, which has involved adding layers of

complexity beginning from the time-dependent velocity and temperature fields.

Compared to the steady state, transient thermal processes are useful for illuminating

the underlying physics of heat transfer since complexity arises with the departure from a

quasi-steady state. The simplest transients involve impulsive changes in the parameters such

as heat flux or wall temperature [161], such that the response of the other flow variables

may be inspected. The sinusoidal pulsation is perhaps the simplest transient that achieves a

periodic steady-state. The evolution of the near-wall overshoot was traced to small local phase

differences between boundary-diffused viscous stresses and instantly-transmitted pressure

stresses that occur even at low frequencies. This phase alteration leads to local instantaneous

amplifications and reductions of wall shear stress, which average to zero. Although in the

quasi-steady state, the approximation of a regime results in a loss of information. Larger

phase differences caused viscous and driving stresses to act briefly in tandem to enhance the

time-averaged wall shear stress. Thus, the phases of parameters – which were neglected by

existing versions of the solutions for the velocity field – may give insight into underlying

hydrodynamic mechanisms. In the thermal problem, phase remains just as important. In fact,

heat transfer enhancement ultimately depends on the respective phases of temperature and

velocity which govern the driving temperature difference between the wall and bulk fluid

temperatures.

Analogous to the time dimension, the addition of a spatial dimension adds complexity in

space. In this regard, 1-D solutions in pipe are less informative than their 2-D counterparts

since the local effects of physical mechanisms may not be as readily inspected. To the best

of the author’s knowledge, the solution for the rectangular geometry constitutes the first

time-dependent solution in a two-dimensional vessel and thus gives the unique opportunity to

study local time-dependent heat transfer simultaneously. For example, the local behaviour of

the amplitude and phase of the shear stress at each wall was studied for the first time. While

the mechanism of heat transfer enhancement by bulk-mean reversal has not been studied in

detail, the results may be more illustrative in a rectangular channel, where the local behaviour
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of flow reversal is more complex. The addition of a third dimension and an axial temperature

gradient with spatial periodicity adds further complexity that will gives further insight into

the optimisation of heat transfer.

The interdependence of the velocity and temperature field is often stated, but rarely

quantified. According to Reynolds analogy, the velocity and temperature profiles of a steady

flow along a flat plate with no pressure gradient at Pr = 1 are similar, so long as similar

boundary conditions exist for the hydrodynamic and thermal problems. In steady internal

flow, the governing equations are not mathematically similar owing to a non-zero pressure

gradient, though heat and momentum are diffused in the same manner with kinematic

viscosity analogous to thermal diffusivity [153]. Practically, this means that the temperature

profile can be calculated if the velocity profile and pressure gradient are known. In unsteady

flow, annular effects in the temperature profile have been observed previously in experiments

[71, 82] and numerical models [83, 85]. While it is known that the wall shear stress is a

key indicator of thermal performance, the similarity between the time-dependent problems

has not been rigorously established. The temperature profile is formed primarily as a

result of fluid displacement against the temperature gradient, although appreciable thermal

diffusion may occur at low Prandtl numbers and for long pulsation time periods. The local

displacement gradient at the wall is proportional to the local temperature gradient for the

constant temperature boundary condition, and thus local wall shear stress data may be used to

estimate the local heat flux enhancement. In Figure 6.12, the local time-dependent wall shear

stress amplification of pulsating flow was mapped theoretically. In Chapter 8, qualitatively

similar behaviour was observed in the experimental measurements of convective heat flux

enhancement for a quasi-steady flow (see Figure 8.5). As intuitively proposed in Chapter

1, the simultaneous thinning of the hydrodynamic and thermal boundary layers does indeed

act to increase the temperature gradients at the wall. However, the hydrodynamic and

thermal fields also interact through the less obvious second order effect of oscillation-induced

diffusivity, which acts to move heat in the axial direction against the increasing temperature

gradient and reduce advective heat transfer with respect to steady flow. For both mechanisms,

the heat transfer performance is improved with increasing frequency and flow rate amplitude,

although the pressure cost increases too. A further mechanism exists in the presence of

flow reversal although the problem is non-linear and difficult to model using analytical or

185



numerical techniques. Nonetheless, experiments with periodically-reversing local velocities

tend to find significant heat transfer enhancement.

For the case of a unidirectional, hydrodynamically- and thermally-developed flow with

flow reversal precluded and negligible axial temperature gradient fluctuations, axial con-

duction and viscous heating, it has been shown that time-averaged heat transfer is reduced;

however, it may be possible to optimise the flow rate pulsations using knowledge of the

instantaneous behaviour of the bulk temperature and wall heat flux. The mechanisms are

not entirely independent and enhancement of heat flux is typically offset by a reduction in

bulk temperature. For example, the mean temperature must be reduced with respect to the

wall temperature to increase the heat flux from the wall to the fluid (i.e. to decrease the

slope of the wall temperature gradient). However, this also acts to increase the temperature

difference (and reduce the Nusselt number) by reducing the bulk temperature. The concept

of a heat transfer coefficient is not as meaningful on a time-dependent basis, since the heat

flux and temperature difference are not proportional under constant heat flux. Furthermore,

the bulk temperature oscillates with twice the pulsation frequency. Hence, a time-dependent

impedance may be preferrable to characterise the resistance to heat transfer through the

temperature difference, although a robust definition of a time-dependent bulk temperature

needs to be established from first principles. In applications where a comparison with an

actual steady flow is not required, the degree of non-linearity may give some indication of

heat transfer effectiveness [106].

While a hydrodynamically- and thermally-developed sinusoidally-pulsating flow has

been the primary focus, it is hoped that the generalised analyses of the local time-dependent

mechanisms will permit extension to more complex geometries and flow rate modulations.

For example, simple transients such as impulsive changes in heat flux or wall temperature

[161] constitute generalisations of the periodic-steady state where the variables interact based

on continuous periodic changes. Similarly, the case of a time-varying inlet temperature under

a steady flow [105] can give insights into the behaviour of a time-varying bulk temperature

that results from an unsteady flow. In the same manner, it is hoped that the behaviour of

heat transfer under laminar fully-developed sinusoidal pulsations can give insights into more

complex heat transfer scenarios by identifying how the velocity and temperature fields are

affected by superimposed unsteadiness on a local time-dependent basis.
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Chapter 10

Conclusions

This study has characterised the behaviour of hydrodynamically- and thermally-developed

sinusoidal pulsations in a rectangular channel geometry using a combination of complemen-

tary analytical, experimental and numerical techniques. The complete data sets provided by

the theoretical models compensate for the expensive nature of experiments while the lack

of complexity offered by analytical theory is addressed by the experimental and numerical

analyses. To simplify the problem, hydrodynamic behaviour was initially decoupled to

investigate the underlying mechanics that may lead to a change in heat transfer performance.

The interdependencies of the velocity and temperature fields were subsequently demonstrated,

and a theory linking the wall shear stress with convective heat flux was developed. With a the-

oretical framework in place, the heat transfer performance of a pulsating flow liquid-cooling

flow loop was measured and analysed.

Separate hydrodynamic and thermal experimental test rigs have been designed and

constructed that facilitate the measurement of hydrodynamically- and thermally-developed

sinusoidal pulsations. The measurements of the velocity field over the range 1.4 ≤Wo ≤ 7.0

using particle image velocimetry (PIV) constitute the first local time-dependent measurements

in a two-dimensional vessel to the author’s knowledge. Furthermore, the accuracy of the

wall shear stress measurements compares favourably with existing results in pipes. As an

interesting aside, the phenomenon of off-wall reversal has been observed experimentally.

The local time-dependent wall temperature and convective heat flux measurements – taken

using infrared thermography (IRT) at a frequency of Wo = 1.76 – are the first of a pulsating
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or oscillating incompressible flow in a heated vessel, to the best of the author’s knowledge.

The maximum instantaneous enhancement of the convective heat flux is approximately

1% of the heat flux generated in the thin foil. However, this is small compared to the

instantaneous enhancements that may be achieved with thick-walled heaters, according to

theory. Reasonable agreement with the newly-derived analytical solution to the 2-D energy

equation and an existing 1-D conjugate solution has been demonstrated by the thermal

measurements. Good agreement was found between the experimental velocity data and

the new representations of the solutions to the momentum equation, which decompose the

parameters into local amplitude and phase values. This facilitates the shift to a flow rate-fixed

model, reduces computational expense and gives added insight into the evolution of inertial

features. The analytical solutions of Chapter 3 add to the short list of complete thermo-

fluidic solutions of common engineering flows. To the best of the author’s knowledge, the

solution to the energy equation constitutes the first in two dimensions. Hence, an analytical

framework has been developed that permits the inspection of coupled hydrodynamic and

thermal behaviour on a local and time-dependent basis.

Many of the novelties described above have filled gaps in the literature that were identified

(see Section 2.3) after the comprehensive review of Chapter 2. Furthermore, analysis of

the data has lead to an increased understanding of the coupling between the velocity and

temperature fields and underlying mechanisms. Pulsations affect the bulk temperature and

wall temperature gradient through displacement. The wall shear stress is an important

thermal indicator that may predict the enhanced temperature gradients at the wall for realistic

boundary conditions. Under the ideal constant heat flux boundary condition, heat transfer to

the fluid is invariant. The convective heat flux is closely tied with the wall shear stress profile

for the case of constant temperature. For the realistic case of a finite wall thermal resistance,

the capacitive and lateral conduction terms distort the heat flux profile from the wall shear

stress profile.

The fundamental question of this thesis has concerned the enhancement of heat transfer

using flow pulsation. It is found that pulsation acts to reduce time- and space-averaged

heat transfer for the case of a unidirectional, hydrodynamically- and thermally-developed

flow with flow reversal precluded and negligible axial temperature gradient fluctuations,

axial conduction and viscous heating. However, time intervals and local regions of heat
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transfer enhancement have been predicted and measured. The bulk temperature oscillates

with twice the pulsation frequency such that the impedance may be intermittently enhanced

and reduced during a cycle, with an overall time-averaged reduction. The wall heat flux

is both enhanced and diminished during a cycle with a time-average of zero. The thermal

performance improves with increasing frequency and flow rate amplitude, though the pressure

gradient may increase substantially. In the thermally-developing region, the spatial variation

of the axial temperature gradient may result in regions of time-averaged enhancement. Hence,

it may be possible to optimise heat transfer on a time- or space-averaged basis using tailored

flow rate pulsations or channel geometries.

10.1 Future Work

This research has concluded that time- and space-averaged heat transfer is reduced in the

hydrodynamically- and thermally-developed region for the case of sinusoidal pulsations.

In general, future work should move towards greater flow complexity through the time-

dependent behaviour of the flow rate pulsations and the channel geometry. The author

has explored a number of different avenues of research that were not included in this

thesis. As concluded in Chapter 10, sinusoidal pulsations (without bulk-mean flow reversal)

are found to reduce time- and space-averaged heat transfer in the hydrodynamically- and

thermally-developed region. However, time intervals and local regions of heat transfer

enhancement have been predicted and measured. Careful investigation of the time-dependent

behaviour of the mechanisms of heat transfer enhancement may provide insight into flow

rate pulsations that enhance heat transfer on an overall time-averaged basis. Analysis of the

thermal performance in the presence of spatial variations of the axial temperature gradient

may give insight into the optimisation of heat transfer in the thermally-developing region and

complex channel geometries.

10.1.1 Flow Rate Pulsations

The instantaneous behaviour of the wall heat flux is given by Figure 7.16, while an illustrative

example of the instantaneous temperature difference is plotted in Figure 7.13. To establish
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the exact time-dependent behaviour of impedance, the instantaneous definition of bulk

temperature needs to be derived in a robust manner, analogous to that of the time-averaged

quantity [29]. The wall heat flux is enhanced over the half-cycle π/2− 3π/2, where the

flow rate decreases from its maximum value to its minimum value. In general, intervals over

which the time-averaged wall heat flux is increased relative to the time-averaged temperature

difference will result in a time-averaged heat transfer enhancement over the interval. If

possible, flow rate pulsations should be tailored to mimic the characteristics of the intervals

that enhance heat transfer. The time-dependent flow rate can be decomposed into a sum of

sinusoidal functions using a Fourier series, and solutions to the velocity and temperature

fields obtained using the same analytical techniques described in Chapter 3.

Flow rate pulsations that experience bulk mean flow reversal QA/Q0 > 1 appear to achieve

the highest enhancements [16, 88]. It has also been proposed that modulation of the flow rate

either above or below its initial value leads to opposing effects on time-averaged heat transfer,

with the enhancement and reduction over the half-cycles cancelling for pseudo-sinusoidal

pulsations [30]. Modulation of the flow rate below its initial value was found to enhance

heat transfer by up to 40%. Figure 2.19 illustrates the flow rate pulsations that were found to

enhance heat transfer, which resemble a truncated sine waves that could be generated by a

vibrating element and check valves. Persoons et al. [16] found that the inherent pulsations

generated using a piezoelectric element, vibrating membrane and valves enhanced heat

transfer by as much as 40% in minichannel heat sinks at low Reynolds numbers. Thus, it

may be possible to exploit the flow rates delivered by commercially-available micropumps to

deliver heat transfer enhancement in electronics and photonics cooling applications.

The gear pump used in the current research cannot generate pulsations that experience

negative flow rate. Furthermore, valves cannot be used to truncate a universally-positive

flow rate. With this in mind, an oscillating piston pump was designed and manufactured as

pictured in Figure 10.1. The McLennan 34HSX-108 stepper motor reaches up to 25 Hz with

a resolution of up to 20000 steps per revolution. The Applied Motion ST5-Q-NN drive and

encoder has the ability to accelerate and decelerate the motor for portions of the revolution,

such that a large and highly-controlled variety of flow rate pulsations could be generated.

The rotary motion of the stepper motor is converted into linear oscillatory motion of a piston

diaphragm using a Scotch yoke mechanism. The flow generated by the piston pump was
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measured by the author in an empty rectangular channel using PIV; however, the amplitudes

of the measured velocity oscillations were about 8% lower than that predicted by theory at

Wo = 3.1, perhaps due to discrepancies in the bore of the cylinder, the stroke of the piston or

the angular frequency of the motor.

(1)

(2)

(4)

(3)

(5)

Figure 10.1: Model of the piston pump, containing (1) stepper motor, (2) crank, (3) sliding yoke, (4)
piston-cylinder and (5) support.

10.1.2 Channel Geometry and Developing Flow

Changes in heat transfer result from the displacement of fluid in the presence of a tem-

perature gradient. With a temperature gradient that is uniform in time and space (i.e.

a hydrodynamically- and thermally-developed flow), this research has shown that time-

averaged heat transfer is reduced. However, the variations in the entry region may cause

local regions of time-averaged enhancement [29, 74]. The phases of temperature and velocity
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determine heat transfer augmentation, which may be positive in the thermally-developing

region [106]. Thermally-developing flow was touched upon during the study of the axial

temperature gradient in Section 7.2.2. However, an analysis of the time-averaged Nusselt

number enhancement with axial length was not performed and it may be possible to choose a

channel length that experiences a space-averaged enhancement. In a tapered geometry, the

asymmetry of oscillatory velocity profiles during accelerative and decelerative half-cycles

may cause bidirectional drift, where fluid particles near the walls drift to the wider end

and particles in the core towards the narrower end [162]. The resulting axial transport of a

concentration is either greater than or less than the straight vessel, dependent on the frequency

and amplitude parameters [163]. Hence, the numerical model – which has been validated in

the fully-developed region – can be utilised to investigate the entry region as well as more

complex flow geometries, which are currently beyond the reach of exact solutions.
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Appendix A

A.1 Solutions for Flow Rate and Wall Shear Stress

The flow rate is given by:

Q′ =R(ψQeiWo2t) (1a)

ψu =−
64ab∇pA

π4

∞

∑
m=1,3...

∞

∑
n=1,3...

1
m2n2

1
βmn + iWo2 (1b)

and the dimensional wall shear stress at ẑ = [0, b̂] is:

τ̂
′
zx =R(ψτ̂zxe

iω t̂) (2a)

ψτ̂zx =−
16ν∇ p̂A

b̂π

∞

∑
m=1,3...

∞

∑
n=1,3...

sin(mπ ŷ
â )

m
1

νβmn + iω
(2b)

The mean over the wall is determined using ψ〈τ̂zx〉 = (1/â)
∫ â

0 ψτ̂zx∂ ŷ. The mean over

the entire perimeter is the weighted mean of the individual wall averages ψ〈τ̂〉 = (âψ〈τ̂zx〉+

b̂ψ〈τ̂yx〉)/(â+ b̂). As with velocity, the above equations represent the steady solution with

∇pA = ∇p0, ψQ = Q0 and ψτ̂zx = τ̂zx,0 if Wo = 0 and ω = 0.

A.2 Solution for Steady Temperature Profile

The solution of Spiga and Morini [98], reorganised in terms of the non-dimensionalised

variable of Equation 3.4, may be described as a sum of five distinct terms, with four accounting
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for the effects of prescribed heat transfer to the channel at each boundary and one applying

the effects of advection. Using the non-dimensionalised parameters of Equation 3.4, the

steady temperature profile is given by:

θ0(x,y,z) =
a

π2

∞

∑
j=1

(−1) jd2 +d1

j2 cos
(

jπy
a

)
+

b
π2

∞

∑
k=1

(−1)kd4 +d3

k2 cos
(

kπz
b

)
+

∂θ0

∂x

∞

∑
j=0,2...

∞

∑
k=0,2...

A jk,0Φ2

(3)

with:

A jk,0 =



x j = 0,k = 0

128∇p0Pr

π4

∞

∑
m=1,3...

∞

∑
n=1,3...

1

βmnβ jk( j2−m2)(k2−n2)
j = 0,k 6= 0 or k = 0

256∇p0Pr

π4

∞

∑
m=1,3...

∞

∑
n=1,3...

1

βmnβ jk( j2−m2)(k2−n2)
j 6= 0,k 6= 0

(4)

The values of the binary constants d indicate the unique version of heating (see Table

3.3). An energy balance gives ∂θ0/∂x = c/Pr where c = L/(2a+2b) is the heated fraction

of the cross-sectional perimeter.

A.3 1-D Parallel Plates Solution for Oscillatory Temperature

Profile

The solutions for velocity and temperature in a parallel plate channel are given by Kurzweg

[69]. For convenience, the origin is maintained at the mid-channel height −(b/2+w) ≤

z≤ (b/2+w) and the results subsequently shifted in space to match the origin of the 2-D

solution. Using the same non-dimensionalisations as Section 3.1.3, the velocity under an
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oscillating pressure gradient p′ =R(∇pAeiWo2t) is given by:

u′(z) =R(ψueiWo2t) (5a)

ψu =−i
∇pA

Wo2

[
cosh(

√
iWo z)

cosh(
√

iWo/2)
−1
]

(5b)

The oscillating temperature profiles in the fluid −b/2≤ z≤ b/2 and foil −(b/2+w)≤

z≤−b/2 are given by:

θ
′
f (z) =R(ψθ , f eiWo2t) (6a)

θ
′
s(z) =R(ψθ ,seiWo2t) (6b)

ψθ , f = Φ f · cosh(
√

iPr Wo z)+
∇pA

Wo4Pr(Pr−1)
+

1
Wo2(Pr−1)

·ψu (6c)

ψθ ,s = Φs · cosh[
√

iσPr Wo (z+1/2+w)] (6d)

with the constants given by:

Φ f =−
∇pA

Wo4Pr(Pr−1)cosh(
√

iPr Wo/2)
· κ
√

Pr tanh(
√

i Wo/2)+
√

σ tanh(
√

iσPr Wo ws)

κ tanh(
√

iPr Wo/2)+
√

σ tanh(
√

iσPr Wo ws)

(7a)

Φs =
1

cosh(
√

iσPr Wo ws)

[
Φ f · cosh(

√
iPr Wo/2)+

∇pA

Wo4Pr(Pr−1)

]
(7b)

and κ = k f /ks, σ = α f /αs, ws = 2ŵs/Dh. The constant temperature boundary condition

is given by ks→ ∞ while the constant heat flux boundary condition corresponds to ks→ 0.

The slope at the wall is (ψ∂θ f /∂ z)|z=−b/2. The mean temperature in the fluid is ψ〈θ f 〉 =

(1/b)
∫ b/2
−b/2 ψθ , f dz. The complex Nusselt number is similar to that defined by Gedeon [79],

but with variable wall thickness (such that the wall may have constant temperature but a low

thermal mass):

Num =−2
(ψ∂θ f /∂ z)|z=−b/2

ψθw−ψ〈θ f 〉
(8)
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While not presented in this thesis, the unsteady conjugate problem in a parallel plate

geometry has been solved by the author for the case of top and bottom walls with differing

thicknesses and thermal conductivities (as experienced in the experimental setup). However,

it is found that the solution is approximately symmetric if the bottom wall is thin, the top

wall has low thermal conductivity and the outer edges of the walls are insulated. Hence, the

solution of Kurzweg [69] is used for simplicity.
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