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Abstract: Time domain spectroscopy is used to determine the THz electromagnetic response of
amorphous transition metal dichalcogenides WSe2 and MoSe2 in thin-film form. The dielectric function
is obtained using a rigorous transmission model to account for the large etalon effect. The Drude–Smith
model is applied to retrieve the dielectric function, and from there, the sample conductivity.

Keywords: THz time domain spectroscopy; transition metal dichalcogenides; dielectric function;
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1. Introduction

Transition metal dichalcogenides (TMDs) are characterized by a layered structure, responsible
for their peculiar intrinsic 2-D electronic properties. Each crystal plane is based on the chemical
configuration MX2, where M is a metal and X is a chalcogen [1,2]. Adjacent layers are held together by
van der Waals forces, which inhibits free charge mobility across MX2 planes. TMDs in thin-film form
offer a large variety of compounds with adjustable band gaps [3,4] and present a good transparency in
the THz band that might pave the way to the development of a promising class of novel devices for
THz optoelectronics [4]. Different from other tunable band gap systems like graphene, TMDs can also
exploit an additional external parameter to control their own electro-optic properties as the magnetic
field because of the spin-dependent band gap [5].

Furthermore, it has been shown [1,6,7] that the energy band structure of TMDs presents an
interesting and unique dependence on the layer number, and a band gap transition from indirect to
direct one for monolayer samples. Consequently, there is a consistent and growing demand in thin-film
characterization, for the possible development of novel fast electronic [8,9] and/or electro-optical
systems [10,11]. Recent advances in materials, sources, and detectors from the sub-THz and THz [3]
to the mid-infrared [1,4,6] highlight the importance of time domain spectroscopy (TDS) to determine
material properties at very high frequencies, such as the refractive index, absorption loss, and complex
conductivity [12–15].

Nowadays, experimental strategies (see, for instance, Reference [16]), along with the application
of proper theoretical models [17] and computational techniques [18–21], render the use of THz waves
a robust and effective tool for thin-film characterization. Nevertheless, the presence in a majority
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of cases of a substrate unavoidably affects the fast (1–2 ps) time signal and produces a number of
reflected copies, introducing sinusoidal (Fabry–Perot) oscillations in the Fourier transform of the
transmitted and/or reflected wave. As long as the substrate is reasonably thick to induce a consistent
time shift between the main signal and its copies, it is possible to cut them, applying a proper temporal
windowing [22,23]. Of course, this procedure is recommended only when it does not affect the structure
of the main signal. Otherwise, in the extraction of the electrodynamic parameters (EPs) of the sample
under test, one runs the risk of losing relevant information.

Among several TMD composites, the Se based thin-films still lack investigation with linear THz
spectroscopy. Here, we extract the electrodynamic parameters of amorphous WSe2 and MoSe2 films,
20 nm thick, deposited on a crystalline SiO2 substrate having a thickness of about 300 µm (d ≈ λ).
Choosing a relatively thin substrate, the measurements suffer lower losses, but the transmitted signal
shows a reflected copy too close to the main signal to be cut away. To minimize the unavoidable
Fabry–Perot oscillations in EPs, we apply a reliable and simple method based on the transfer function
(TF) equations [17]. In particular we retrieve the dielectric function (ε̃), and from there, we extract
intrinsic parameters, such as the plasma frequency and the DC conductivity through the Drude–Smith
model [24].

2. Thin-Film Fabrication and Characterization

2.1. TMD Deposition, and Morphological and Compositional Analysis

The TMD films have been deposited using a process known as thermally assisted conversion
(TAC). TAC has the capability of depositing a continuous large-scale film with multiple layers [25].
The appropriate transition metal (Mo, W) films were deposited using a sputter coater (PECS, Gatan,
Pleasanton, CA, USA) at <2 Å/s to form a smooth conformal coating 10 nm thick on a c-axis SiO2

substrate. In order to convert the metal films with their respective diselenides, they were exposed
to selenium vapor at an elevated temperature in a home-built hot-wall chemical vapor deposition
reactor with a process that has been described in more detail previously [3]. Specifically, metal films
were converted to selenide in the reactor with chamber temperature at 600 ◦C under a flow of about
150 sccm of argon with the Se powder source held upstream at 219 ◦C for 2 h. Previous characterization
indicated that the final thickness of selenide (MoSe2, WSe2) was 20 nm, which was double the initial
metal thickness. To protect the films from oxidants in the atmosphere, they were encapsulated with
5 nm of Al2O3 using atomic layer deposition carried out over 46 cycles at 80 ◦C and a pressure of
2.2 Torr.

Using a shadow mask, samples were deposited on one half of SiO2 c-axis substrates having a
total area of 2 cm × 1 cm. The second half was intentionally left bare, so that one could retrieve the
thin-film parameters employing the exact film thickness and refractive index ñs of the specific substrate
on which each sample was deposited. As it will be shown in detail in the next paragraph, this was
the only effective procedure to minimize the error introduced by the unavoidably slight difference in
substrate parameters [16,23].

To evaluate the thickness profile and roughness, and check the morphology of the films under
investigation, atomic force microscopy (AFM) measurements were carried out in a non-contact mode
by using a Park Instruments XE-100 atomic force microscope in tapping mode.

To evaluate the chemical composition of the sample, X-ray photoelectron spectroscopy (XPS) was
performed using a VG Scientific ESCAlab MKII system with a CLAM2 analyzer and PSP twin anode,
unmonochromatized Al Kα X-ray source. Spectral fitting was performed using CasaXPS software.
Charge compensation used the adventitious carbon peak at 284.6 eV. A Shirley background subtraction
was performed, followed by the fitting of transition metal and chalcogen doublet peaks with mixed
Gaussian and Lorentzian character.
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2.2. Experimental Techniques

The measurement setup was similar to the one adopted in other experiments performed
earlier [26,27]. Briefly, the sample was mounted over a hollow support of aluminum allowing us
to measure, in a row, the signal transmitted through the free space, Eair(t), the bare substrate, Esub(t),
and the film, E f ilm(t). A step motor controlled the position where the THz pulse impinged the support.
The procedure is schematically shown in Figure 1. The size of the Gaussian profile of the focused THz
pulse, estimated with the standard knife-edge technique, was of the order of 2 mm. In order to remove
unwanted spectral features related to water absorption, measurements were performed in an N2

environment with a nominal humidity level below 1%. TDS was performed using a commercial THz
system (Menlo SystemsTM, Martinsried, Germany) that generated and detected a pulsed THz signal,
having a repetition rate of about 80 MHz. The physical process, for both generation and detection,
was based on the down conversion of an optical pulse exciting a photoconductive antenna nested over
a GaAs film. Temporal pulsed signals, of duration 1–2 ps, were acquired for about 200 ps, resulting in
a frequency resolution of about 5 GHz and a useful bandwidth in the interval 0.15–3 THz.
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Figure 1. Sketch of the experimental setup. The blue area represents the film deposited on half the
SiO2 substrate (depicted in yellow). A step motor controlled the position of the sample with respect to
the impinging THz pulse.

3. Theoretical Background

Routine procedures for the retrieval of the complex electrodynamic parameters of a single or a
multilayer sample have been settled for years and goes under the name of the transfer function (TF)
model [28,29]. Specifically, when the electromagnetic signal passes through a film having thickness t
deposited on a dielectric substrate, the transfer function in the frequency domain can be written as [17]:

T̃(ω) = Ẽ f (ω)/Ẽs(ω) = 2
ñ f (ña + ñs)(
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)(
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) exp
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}
represents the Fabry–Perot factor [29]. Subscripts a, s, and f in the complex refractive index ñ = n + ik
refers to air, the substrate, and the TMD film respectively. Equation (1) suggests that ñ f and ñs affect
the modulus and phase of transmission in such a way that a specific numerical algorithm has to
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be applied [28]. Specifically, this algorithm, called the total variation technique (TVT) extracts the
refractive index of the sample by minimizing the difference between the experimental and theoretical
transmission curve [28]. We first extracted the refractive index ñs of the substrate by employing
the simple expression of the transfer function for a single layer [29]. The use of the TVT in the
simple case of a thick substrate enabled us to get both ñs and also the effective thickness deff of the
substrate [18]. In our measurements, ñs as well as deff values were extracted by using the commercial
software TeralyzerTM (Martinsried, Germany). Since deff was determined with an accuracy of ±2 µm,
this translates into a relative error lower than 1% for both the real and imaginary components of
the substrate dielectric function. Once ñs and deff were known, Equation (1) was then applied to get
ñ f = n f + i n f using the total variation technique routine, with a total relative error estimated to be
about 10% for the samples under investigation. The error in the evaluation of ñ f was mostly related to
the uncertainty in the film thickness due to the surface roughness that in our case was of the order of
4 nm. In the following graphs, this error was usually well within the scattered data point size.

In general, once ñ is found, the real and imaginary parts of the dielectric function ε̃ could be
obtained using the standard formulas εr = n2 − k2 and εi = 2nk.

Within the TF model, the effective thickness deff and refractive index ñs of the bare substrate are
given by the values determining the minimum FP oscillations [19]. However, “residual ripples” are
always present in all calculated electrodynamic parameters, hence a systematic approach to smooth
them without altering the effective physical quantities is a recommended strategy. Towards this aim,
it is worth first to mention that it is better to deal with FP residual oscillations only at the very end of
the retrieval process, once a “universal” dielectric function (expressible as the sum of the monotonic
trend and the oscillating contribution) ε̃ = ε̃avg + ε̃osc has been determined with an accurate measure
of the substrate thickness. In this way, a reference frequency interval ∆f to apply an adjacent point
average procedure with is univocally determined by the physical condition on the extinction coefficient
of the substrate: ks(ω) ≥ 0. Then, the number of points used for the smoothing process is essentially
set by the number of points contained in a single FP oscillation, which in our case was of the order
of 50.

To describe the dependence of the complex dielectric/conductivity function on the intrinsic
material parameters related to the mean dynamics of free charges, the standard and widely used
approach is the Drude–Smith (DS) model [24]. In this framework the dielectric function ε̃ is given by

ε̃(ω) = ε∞ −
{

ω2
p

ω2 + iωωτ

(
1 + c1

ωτ

ωτ − iω

)}
(2)

whereωp is the plasma frequency,ωτ = 1/τ is the relaxation frequency, ε∞ is an asymptotic constant,
and c1 accounts for the backscattered particles and assumes values between −1 and 0. From the
dielectric function the complex conductivity can be easily obtained using the relation

σ̃(ω) = −i[ε̃(ω)− ε∞]ε0ω (3)

where ε0 is the vacuum permittivity. After the fitting procedure, one can yield the sample zero
frequency conductivity as σdc = (1 + c1) ω

2
pε0/ωτ.

4. Results

An AFM image of the MoSe2 sample is reported in Figure 2a. The image shows the step generated
by the shadow mask between the substrate and the film enabling us to measure the surface profile
along the red line as presented in Figure 2b. Because of the shadow mask, the MoSe2 thickness slowly
decreased from about 20 nm to 0 with a roughness of 4 nm at most. The WSe2 sample was characterized
by similar roughness, although the film edge was decorated by a series of flakes a few microns large
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Figure 2. Characterization of TMD films. (a) AFM image of MoSe2. The area between 30 and 40 µm
represents the bare SiO2 substrate. (b) Surface profile of MoSe2 according to the red line presented in
panel (a). (c,d) XPS data and spectral fitting of WSe2 and MoSe2, respectively.

A core level XPS spectrum of WSe2 grown at 600 ◦C is shown in Figure 2c. A deconvolution
process allowed for highlighting, through Gaussian-Lorentzian like curves, the binding energies
of atoms composing the material. The majority of the metal was bound to selenium, which was
manifest as the large doublet (blue) at 33 eV with some residual oxides present (green). The spin-orbit
splitting in the W 4f doublets was 2.18 eV and the branching ratio (W 4f5/2 to W 4f7/2) was 3:4.
A background contribution existed around the selenium peak (orange), which could have been due
to excess amorphous Se on the surface. Using relative sensitivity factors (RSFs) and comparing the
area under the peaks, the atomic ratio was found to be 1.7, with a possible underestimation due to the
difficulty in deconvoluting the Se peak from the background.

As shown in Figure 2d, the Mo 3d core-level could be fitted with one main component at a binding
energy of 228–229 eV for the Mo 3d5/2 peak (blue), which originated from selenised Mo, and one
smaller component on the high binding energy side of the peak (green), which was most likely related
to residual oxides [25]. The spin-orbit splitting in the Mo 3d doublets was 3.14 eV and the branching
ratio (Mo 3d3/2 to Mo 3d5/2) was 2:3. All components of the Mo 3d line have been fitted using a
mixed Gaussian-Lorentzian line shape with a FWHM of 1.3 ± 0.2 eV. These spectra were complicated
to deconvolute by the fact that they lie on top of the Se 3s level, which has been fitted with a FWHM of
3.5 eV (purple) and normalized to the Se 3d. The Se 3d core-level (orange) could be fitted with only
one component at a binding energy of 55 eV, indicating that there was no unreacted selenium on the
surface. The stoichiometric atomic ratio was found to be close to 2. Thus, the oxide contributions were
found to be minimal, below 5%, which was most likely a surface oxide, occurring while the samples
were exposed to an ambient environment prior to XPS analysis.

In Figure 3a,b, the temporal evolution of the electric field signals transmitted across the WSe2

and MoSe2 samples, given by blue curves, is reported. In the same graphs, black curves represent
the free space transmission, whereas red curves refer to signals passing through the bare substrate.
Peak amplitude in the substrate was always around 20% lower than the free space case, and its delay
of about δt ≈ 2 ps described the proper change in refractive index (since the nominal thickness was
300 µm, this corresponds to ns ≈ 2 for the crystalline SiO2). The presence of the WSe2 and MoSe2

thin-film induced a further reduction in the transmitted signal (blue curves) of about 30% and 10%,
respectively, when compared to the bare substrate. In all cases, THz waves impinging and passing
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through each sample caused an etalon effect with the first reflected signal manifesting itself with a
delay of almost 5 ps from the main peak. Time dependent signals were then converted in the frequency
domain using a fast Fourier transform (FFT) method, since EPs are directly related to the transmission
function T̃(ω) = Ẽ f (ω)/Ẽs(ω), where the complex quantities Ẽ f (ω) and Ẽs(ω) are the FFT curves
of the sample and bare substrate, respectively. In the inset of Figure 4a,b, the modulus and phase
of the transmission functions for the two TMD samples are reported, respectively. Both quantities∣∣∣T̃(ω)

∣∣∣ and φT = Arg
(

Ẽs

)
− Arg

(
Ẽr

)
show a robust FP oscillation whose period was of the order

of ∆ fFP ≈ 0.2 THz, in agreement with the fact that the first echo had a delay with respect to the
main signal of the order of δτ ≈ 1/∆ fFP ≈ 2δt [29]. Since we observed no substantial difference
between the THz signals acquired on a bare substrate and one covered by 5 nm of Al2O3, in the data
extraction, we neglected the presence of alumina on the TMD surface. On average, the transmission
modulus of the MoSe2 film was about 0.9, whereas in the WSe2 sample, it strongly oscillated around
0.6. As for the phase, in the case of WSe2, it remained substantially constant around zero, as opposed
to the MoSe2, where it showed a slight decrease, reflected in a larger dynamics of refractive index
[n(ω) ≈ 1 − c φT(ω)/ωd] [29]. Applying the total variation technique, we found that the effective
thickness of the substrates were deff (WSe2) = (332 ± 2) µm and deff (MoSe2) = (316 ± 2) µm. Using
these values, we could then find ñs = ns + iks. In the inset of Figure 4d, the refractive index and the
extinction coefficient of the c-axis SiO2 substrate are reported. At f = 1 THz, ns = 2.05 ± 0.02 and
ks =(4.00 ± 0.04)× 10−3 in substantial agreement with previous works [30,31].
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Figure 3. (a) Black, red, and blue solid lines represent the time dependent THz signals referred for
free space, SiO2 substrate, and WSe2 film + substrate, respectively. (b) Similar to (a), with the blue
curve showing the measurement on the MoSe2 film + substrate. Left and right insets: Comparison
between the magnitude T(ω) and phase φT(ω) respectively of the transmission function for the two
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Table 1. Best fit parameters for the dielectric functions of WSe2 and MoSe2 films using the DS model.
Parameter accuracy is of the order of 5%.

Sample ωp (THz) ωτ (THz) c1 σdc (S/cm) ε∞

WSe2 850 16 −0.22 3000 1200
MoSe2 270 9.5 −0.35 444 1220
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Sample  ( )  ( )   ( / )  
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MoSe2 270 9.5 −0.35 444 1220 

The higher conductivity of WSe2 with respect to MoSe2 mainly resulted in larger values of ω  
and smaller values of , as expected. 

Nevertheless, the frequency response of the dielectric function and the values retrieved for the 
DC conductivity using the DS model was in clear contrast to what is observed in single crystal 
samples [33]. The observed metallic behavior may be ascribed to the presence of conductive channels 
in grain boundaries. A high density of metallic grain boundaries can in fact spontaneously form in 

Figure 4. (a,b) show the refractive index n and the absorption coefficient respectively of the two
samples. (c,d) report the real (εr) and imaginary (εi ) parts of dielectric function of TMD’s films as
extracted by using the TF model. The red line corresponds to the Drude–Smith model fit whose
parameters are reported in Table 1. Inset: refractive index and extinction coefficient versus frequency of
the SiO2 substrate.

5. Discussion

The substrate refractive index can be used by Equation (1) to calculate ñ f . In Figure 4a,b,
the refractive index n f and the absorption coefficient α f = 2ωk f /c of the two TMD films are shown,
respectively. WSe2 showed a higher value of both the refractive index and extinction coefficient
compared to MoSe2. In particular, absorption in WSe2 was higher than in MoSe2 by almost a factor
of 5, with a well-defined positive slope, whereas α f ,MoSe2 saturated at about 2000 cm−1 in the range
of 0.5–1.5 THz. n f and α f in the measured WSe2 and MoSe2 samples were consistent with those of a
doped semiconducting material. Indeed, they were larger than GaAs [22], but lower than pure metallic
thin-films [20].

Same results are presented in Figure 4c,d, here in terms of the real and imaginary part respectively
of the complex dielectric function. The real part εr (Figure 4c) displays substantial flat dynamics,
with MoSe2 characterized by a very high dielectric constant (≈1000) and WSe2 values being slightly
negative. Imaginary parts εi of the two films are reported in Figure 4d, showing the expected
free-charge decrease, although values for εi (WSe2) were larger than for εi (MoSe2) by a factor of
5 or more. The MoSe2 film, therefore, showed a semiconducting behavior [20,31] with the real part
being strictly positive and a fast decay of εi versus frequency [32]. On the other hand, the WSe2 sample
clearly presented a weak metallic behavior in the THz region, showing a complete negative εr and
large values for εi.

Fitting curves on the retrieved dielectric functions of WSe2 and MoSe2 films, obtained via the
DS model, are reported as continuous red lines in the same figures. The used fitting parameters are
reported in Table 1, with an uncertainty of about 5%.
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The higher conductivity of WSe2 with respect to MoSe2 mainly resulted in larger values of ωp

and smaller values of c1, as expected.
Nevertheless, the frequency response of the dielectric function and the values retrieved for the

DC conductivity using the DS model was in clear contrast to what is observed in single crystal
samples [33]. The observed metallic behavior may be ascribed to the presence of conductive channels
in grain boundaries. A high density of metallic grain boundaries can in fact spontaneously form in
slightly Se-deficient Mo thin films grown by molecular-beam epitaxy molecular-beam epitaxy [34].
We speculate that the same mechanism may apply to WSe2 samples. This would also explain the larger
values of conductivity in the latter case.

6. Conclusions

We have retrieved the dielectric function of conducting MoSe2 and WSe2 TMDs by using time
domain terahertz spectroscopy. Thin films have been created via a thermally assisted conversion
process, which produced samples with good homogeneity. XPS measurements revealed the presence of
a residual portion of uncombined metal particles, and therefore a TM:Se ratio smaller than 1:2. Ab initio
thermodynamic simulations have shown [35] that this may favor the formation of dichalcogen-deficient
grain boundaries instead of Se vacancies during the growth process. We have extracted the
electrodynamic parameters of thin films deposited on 300 µm thick substrates, which introduce a
relatively strong FP effect in transmission data. By applying a rigorous protocol based on the TF model
and a self-consistent moving average procedure, we have minimized the periodic FP oscillations and
fitted ε̃ with the Drude–Smith function. The relatively high conductivity observed in both compounds
may be ascribed to a high density of line defects presenting a metallic character.

The relatively high transparence along with the conducting features are encouraging in view of
a possible use of TMD-based thin-films for applications as tunable metadevices in the THz region.
The observed conducting nature can represent a promising alternative for the realization of new
devices with higher currents and lower contact resistance.
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