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Abstract—We investigate energy efficient packet scheduling
and power allocation problem for the services which require
reliable communication to guarantee a certain quality of experi-
ence (QoE). We establish links between average transmit power
and reliability of data transfer, which depends on both average
amount of data transfer and short term rate guarantees. We
consider a slow-fading point-to-point channel without channel
state information at the transmitter side (CSIT). In the absence
of CSIT, the slow fading channel has an outage probability
associated with every transmit power. As a function of data
loss tolerance parameters, and minimum rate and peak power
constraints, we formulate an optimization problem that adapts
rate and power to minimize the average transmit power for
the user equipment (UE). Then, a relaxed optimization problem
is formulated where transmission rate is assumed to be fixed
for each packet transmission. We use Markov chain to model
constraints of the optimization problem. The corresponding
problem is not convex for both of the formulated problems, there-
fore a stochastic optimization technique, namely the simulated
annealing algorithm, is used to solve them. The numerical results
quantify the effect of various system parameters on average
transmit power and show significant energy savings when the
service has less stringent requirements on timely and reliable
communication.

Index Terms—Energy efficiency, power control, packet
scheduling, bursty packet loss, stochastic optimization, simulated
annealing, URLLC.

I. INTRODUCTION

Internet of things (IoT) is one of the use cases of 5G

wireless communications to serve the heterogeneous services.

Services like smart city, smart buildings and smart trans-

portation systems depend heavily on efficient information

processing and reliable communication techniques. The use of

thousands of smart and tiny sensors to communicate regular

measurements, e.g., temperature, traffic volume, etc., makes

it extremely important to look at the energy efficiency aspect
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of the problem. Achieving ultra reliability and low latency

communication (URLLC) at low energy for the emerging

applications in 5th generation (5G) of wireless communication

is considered very challenging [2]. Due to short packet size

in IoT and machine type communication, finite block-length

channel codes, novel diversity techniques, packet dropping

mechanisms and control plane communication strategies are

considered to enable URLLC [3]–[6].

In 5G networks, context aware scheduling is believed to play

key role in smart use of resources [7] and the requirements

on reliability and latency are dictated by the nature of the

application. More specifically, IoT applications have extremely

heterogenous requirements in terms of (average or deadline)

latency, reliability and frequency of packet transmissions, and

require quality of service (QoS) aware resource allocation

mechanisms [8]. Depending on the application’s context, it

may not be necessary to receive every packet correctly at the

receiver side to avoid experiencing a serious degradation in

quality of experience (QoE). For instance, ITU recommenda-

tion ITU-T G.1080 (12/2008) specifies a set of requirements

for picture/audio that define the quality impairments in ad-

dition to average packet loss rates [9]. If some packets are

lost, the application may tolerate the loss without requiring

retransmissions of the lost packets. The application loss toler-

ance without degrading quality can effectively be exploited to

reduce average energy consumption of the devices.

We investigate energy efficient power allocation for the

wireless systems with data loss constraints. The packet loss

constraints are defined in terms of average packet loss and the

maximum number of successively lost packets. The reliability

aspect of the communication systems is conventionally han-

dled at upper layers of communication using error correction

codes and/or hybrid automatic repeat request (HARQ). Feed-

back based link adaptation applied in HARQ is dictated by

the latency constraints of the application [10]. Our approach

is different from the HARQ scheme because the simple

device nodes do not possess a data buffer, which makes

implementing HARQ systems impossible. Instead, we assume

that the applications’s QoE does not require every packet to

be received successfully, i.e., loss of successive packets can

be tolerated, but it must be bounded and parameterized. Video

streaming, video conferencing, disaster management systems

and interactive gaming are examples of such applications.

In literature, some earlier works have addressed similar

problems in different settings and contexts (more at network
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level). In video streaming applications, it is important to select

source coding parameters for various encoded representations

of the same content in order to minimize the consumption

power while maintaining a high quality of experience for

the users [11]. Packet scheduling for media streaming with

network coding has been studied in [12] with the objective

to improve the perceived media quality. Wu et al. address

the problem of bursty packet loss over internet in [13]. The

authors propose a transmission scheme that trades delay to

reduce the distortion in transmitted data. Similar works in

[14], [15] address delay-quality tradeoff in video transmission

over communication links. In [16], the authors evaluate the

subjective and objective performance of video traffic for

bursty loss patterns. Reference [17] considers real-time packet

forwarding over wireless multi-hop networks with lossy and

bursty links. The objective is to maximize the probability that

individual packets reach their destination before a hard delay

deadline. In a similar study, the authors in [18] investigate a

scenario where multimedia packets are considered lost if they

arrive after their associated deadlines. Lost packets degrade the

perceived quality at the receiver, which is quantified in terms

of the ”distortion cost” associated with each packet. The goal

of the work in [18] is to design a scheduler which minimizes

the aggregate distortion cost over all receivers.

The energy efficiency aspect of the problem has been

discussed in many works. Energy can be saved by relaxing

various QoS constraints for data transmission. Delay and loss

tolerance are two key dimensions to exploit for reducing

transmit power. Various works in literature deal with exploiting

delay tolerance to optimize transmit power in time varying

wireless channels, e.g. [19]–[22]. If the latency requirements

for the data permit, the transmission can be delayed and the

effect of the random nature of fading wireless channels can be

minimized by opportunistic scheduling schemes. The energy

aspect of the problem has been addressed in [23] where the

authors investigate intentional packet dropping mechanisms for

delay limited systems to minimize energy cost over fading

links.

Most of the works in literature characterize performance of

the wireless network for average packet loss. In addition to av-

erage packet loss, bursty data loss is an important phenomenon

which needs to be defined, characterized and analyzed. Some

works analyze system for bursty traffic, e.g., the effect of

access router buffer size on packet loss rate is studied in [24]

when bursty traffic is present. However, assumption of bursty

traffic is different from the notion of bursty data loss. An

analytical framework to dimension the packet loss burstiness

over generic wireless channels is considered in [25] and a new

metric to characterize the packet loss burstiness is proposed.

However, these works do not characterize the effect of average

and bursty packet loss on the consumed energy at link level.

Some recent studies in [1], [26], [27] characterize the effect of

packet loss burstiness on average system energy for a multiuser

wireless communication system where the transmit channel

state information (CSIT) is fully available or erroneous.

In this work, no CSIT is assumed to be available, which

poses new challenges for communication and scheduler de-

sign. When CSIT is not available for slow fading channels,

channel state dependent power control cannot be applied and

outage free communication cannot be guaranteed. For the no-

CSIT case, we characterize the average power consumption

of the point-to-point wireless channel for various average

and bursty packet drop parameters, as well as the outage

probability that the application can tolerate loss of a full

sequence of packets (successively).

The main contributions of the work are summarized as

follows:

• We model and formulate the power optimization problem

for a point to point system using a Markov chain. The

problem constraints involve various parameters that help

characterizing QoE for a particular application, including

average and successive packet loss bounds, as well as

minimum packet size and long term average rate guaran-

tees. We show that the formulated optimization problem

is combinatorial and no closed form solution exists.

• We propose a solution of the optimization problem based

on a low complexity stochastic optimization algorithm,

namely Simulated Annealing (SA). The algorithm is

based on randomization of input parameters. We numer-

ically evaluate the performance of the proposed solution

and verify that the algorithm produces results that are

very close to the analytical solution for a special case of

the problem.

• To reduce the complexity of the problem, we propose a

fixed-rate adaptive power transmission scheme. The fixed

rate transmission scheme inherits all the constraints of the

original optimization problem, but the transmitted rate is

the same for every transmission. This helps in reducing

computational complexity for the problem.

• Simulation results show that our power allocation scheme

exploits packet loss tolerance of the application to save

considerable amount of energy; and thereby significantly

improves the energy efficiency of the network as com-

pared to lossless application case.

The rest of the paper is organized as follows. The system

model for the work is introduced in Section II and state space

description of the proposed scheme is discussed in Section III.

We formulate the optimization problem to minimize average

transmit power in Section IV. Then, we discuss a modified

optimization problem in Section V where all the transmis-

sions are of fixed rate. We discuss solution of both of the

optimization problems using SA algorithm in Section VI.

The performance of the proposed framework is numerically

evaluated in Section VII and Section VIII summarizes the main

results of the paper.

II. SYSTEM MODEL

We consider a point-to-point system such that the trans-

mitter user equipment (UE) has a single packet to transmit

in each time slot. The packets are assumed to be variable in

size, measured in bits/s/Hz. This is achieved by rate adaptation

at physical layer using well known adaptive modulation and

coding techniques. Time is slotted and the UE experiences

quasi-static independent and identically distributed (i.i.d) block

flat-fading such that the fading channel remains constant for
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the duration of a block, but varies from block to block whereas

duration of the block equals one time slot.

We assume no CSIT, but the transmitter is aware of the

fading channel distribution. Depending on the scheduling state

i (explained later in Section III), the UE transmits with a fixed

power Pi ≤ Pm to transmit a packet with size Ri bits/s/Hz,

and waits for the feedback. Pm is the peak transmit power

constraint for the transmitter. For convenience, the distance

between the transmitter and the receiver is assumed to be

normalized.

For a transmit power Pi, and channel fading coefficient

h, the outage probability for the failed transmission (channel

outage) is denoted by ǫi such that,

ǫi = Pr

[

log2

(

1 +
Pi|h|

2

N0

)

< Ri

]

(1)

where N0 is additive white Gaussian noise power.

If the transmitted packet is received at the receiver correctly,

the receiver sends back a positive acknowledgement (ACK)

message to the UE. If it is not decoded at the receiver, a

negative acknowledgement (NAK) is fed-back to the UE. The

feedback is assumed to be perfect without error. Note that a

power and/or rate adaptation based on the feedback can be

applied even without CSIT. Feedback based power allocation

belongs to Restless Multi-armed Bandit Processes where the

states of the UE in the system stochastically evolve based

on the current state and the action taken. The UE receives

a reward depending on its state and action. The next action

depends on the reward received and the resulting new state.

In this work, we investigate the effect of feedback based

sequential decisions in terms of UE consumed average power.

A. Problem Statement

A single packet arrives at the transmit buffer of the UE

in every time slot. The UE’s data buffer has no capacity to

store more than one packet.1 This is a typical scenario for a

wireless sensor network application where data measurements

arrive constantly after regular fixed time intervals. The UE

is battery powered, which needs to be replaced after regular

intervals. It is therefore, important to save transmit energy as

much as possible. Depending on the application, the UE has

two constraints on the reliability of data packet transfer [26],

[27]:

1) Average packet drop/loss rate γ is the parameter that

constraints the average number of packets dropped/lost,

γ = lim
t→∞

Packets dropped

Packets transmitted
(2)

2) Maximum number of packets dropped successively. This

is called bursty packet drop constraint. The parameter

N denotes the maximum number of packets allowed to

be dropped successively without degrading QoE below

a certain level. Mathematically, the distance r(q, q − 1)

1Note that the buffer capacity is given by the largest rate Rmax bits/s/Hz,
that can be transmitted in any state.

Packet

Time span to transmit at least 

one packet for N = 2

Fig. 1. Schematic diagram of the system with N = 2. The transmitted
packets can be of variable size as shown in the diagram. The time span for
the successive packet loss constraint has been drawn. The red period shows
the instance when violation of successive packet loss occurs. The transmission
of green packet in third time slot shows that constraint N = 2 was met.

between qth and qth−1 correctly received packets mea-

sured in terms of number of successively lost packets is

constrained by parameter N , i.e.,

r(q, q − 1) ≤ N. (3)

Due to transmit power constraint, it is not possible to provide

the guarantee in (3) with probability one. Given at least N

packets have been lost successively by time instant t− 1, we

define a parameter ǫout at an instant t by the probability that

the N + 1− th packet is lost, i.e.,

ǫout = Pr
(

rt(q, q−1) = rt−1(q, q−1)+1|rt−1(q, q−1) ≥ N
)

(4)

Fig. 1 shows the schematic diagram for the system. The

successive packet drop parameter N equals 2 in the diagram.

Whenever a packet is transmitted successfully, it is permitted

to drop 2 packets in the next 2 time slots. If a packet is not

transmitted successively in 3rd successive time slot, it counts

as an outage ǫout. The span of 3 successive packet drops have

been depicted as red in the schematic diagram. Note that the

transmitted packets have variable size in bits/s/Hz, which is

constrained by minimum and maximum rate Rmin and Rmax,

respectively. If a packet is transmitted immediately after the

transmission of a packet in previous time slot, its size (rate) is

more as compared to the packets transmitted when the packets

have been lost already. We come back to rate adaptation and

optimization later in the next section.

All of these parameters described in this section contribute

to the QoE for the application. The average packet drop rate is

commonly used to characterize a wireless network and bounds

the QoE for the application. However, bursty packet loss in

the applications like smart monitoring sensors can degrade

the performance enormously due to absence of contiguous

data measurements. On the other hand, the UE can exploit the
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parameters γ and N to optimize average energy consumption

if the application is more loss tolerant. If the application is

loss tolerant and packet size is fixed, it is advantageous to

transmit with a small power if a packet has just been received

successfully in the last time slot because the impact of packet

loss due to outage is not so severe on cumulative QoE. The

consideration of bursty (successive) packet loss poses a new

challenge in system modeling as the number of packets lost

in previous time slots affect the power allocation decision at

time slot t. Clearly, there is a trade-off between transmitting

a packet at time t with small power based on the success of

transmission in time slots [t − 1, t− 2, . . . ], and transmitting

with large power to lower the risk of outage. This trade-off

determines the power allocation policy. Let us illustrate the

impact of ACKs and NAKs on the tightness of the constraints

in the following:

If the permitted average packet loss rate γ is very high but

N is small, i.e., it is not permitted to lose more than N packets

successively without degrading QoE, the effective average

packet drop rate becomes much lower than the permitted γ

in this case. It may work to transmit with small power due to

large γ, but parameter N does not allow it. Due to successive

packet drop constraint N , transmission of a packet in a time

slot t may not be as critical as in any other time slot with

t′ 6= t. If a packet was transmitted successfully in a time

slot t − 1, it implies that transmitting a packet with a lower

power is not as risky in time slot t. However, when the number

of successively lost packets approaches N , power allocation

needs to be increased proportionally to avoid/minimise the

event of missing N packets successively, which may cause

loss of important information for wireless sensor networks.

A similar justification can be provided for rate adaptation

for transmission in various states. If a transmission is made

in the beginning, packet rate can be chosen a bit higher as

risk involved due to dropping of a packet is not that great.

When more successive packets are dropped, the rate must be

decreased to increase the probability of success as depicted

in Fig. 1. The rate is lower bounded by Rmin, a system

parameter, while the upper bound is obtained from the Shanon

capacity with the peak power constraint Pm such that,

Rmax = log2

(

1 +
Pm|h|2

N0

)

(5)

With every unsuccessful packet transmission, the response of

the transmitter is to reduce the rate to increase the success

probability, though it is not straight forward to see how this

adaptation needs to be applied. The objective is to reduce the

average transmit power, therefore rate and power adaptation

with every unsuccessful transmission should be optimized in a

way that QoE in terms of successful data transfer according to

the parameters provided should be met and the transmit power

is not wasted unnecessarily.

III. STATE SPACE DESCRIPTION

To model the problem, we take history of the packet

transmissions in the last N time slots into account. If a NAK

is received in time slot t − 1, it needs to be determined

whether transmission in time slot t− 2 was an ACK or NAK.

To capture the time evolution of the packet transmissions in

successive time slots, we model the problem using a Markov

chain where the next state only depends on the current state

and is independent of the history. In a Markov chain, Markov

state i is defined by the number of packets lost successively at

the transmit time t. If a packet was transmitted successfully in

time slot t−1, the current state i = 0. If two successive packets

are lost in time slots t − 1 and t − 2, i = 2. The maximum

number of Markov states is determined by parameter N ,

i.e., the bursty packet drop constraint. In the following, we

explain how Markov chain process can effectively be used to

model and formulate power allocation optimization problem

for average and bursty packet drop constraints.

To explain the state transition mechanism, let us examine the

power allocation policy first. At the beginning of the Markov

chain process, a packet is transmitted with power P0 and rate

R0 in a time slot t with initial Markov state i = 0. The channel

has an outage probability of ǫi (defined in (1)). If the received

feedback is ACK, the process moves back to state 0, otherwise

moves to state 1. The lost packet is dropped permanently as

UE has no buffer. In state i = 1, the new arriving packet is

transmitted with power P1 and rate R1 ≥ Rmin. Thus, power

allocation in state i is a function of outage probability ǫi and

the rate Ri,

Pi = f(ǫi, Ri). (6)

If the packet is transmitted successfully, the next state is zero,

2 otherwise. Similarly, the Markov chain makes a transition

to either state i+1 or state zero corresponding to the event of

unsuccessful or successful transmission, respectively. When

i = N (termination state) and a packet is not transmitted

successfully, this defines the outage event for successive packet

loss. This is modeled by self state transition probability αNN

of staying in state SN such that,

αNN = ǫN = Pr(St+1 = N |St = N). (7)

PN is chosen such that αNN ≤ ǫout where ǫout is a system

parameter defined in (4). If a packet is lost in state N , we

want Markov process to stay in state N for the next time slot

to minimize further degradation in QoE as rate and power

levels in state N are designed to maximize the possibility of

successful transmission.

The state transitions from state i to j occur with a state

transition probability αij . It is a function of parameters γ,N

and channel distribution. For every transmit power Pi, there

is an associated state transition probability αij .

Formally, the state transition probability αij from the cur-

rent state St = i to next state St+1 = j is defined by,

αij = Pr(St+1 = j|St = i) (8)

=































1− ǫi, if ACK Received, ∀i, j = 0

ǫi, if NAK Received, i 6= N, j = i+ 1,

0 ≤ ǫi ≤ 1

ǫN , if NAK Received, i = N, j = N

0, otherwise

(9)
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Fig. 2. State diagram for the Markov chain for the UE power allocation
scheme.

where ǫi is given by (1). The resulting state diagram is shown

in Fig. 2. The state transition probability matrix A = [αij ]
N
i,j=0

takes the form

A =















1− ǫ0 ǫ0 0 . . . 0
1− ǫ1 0 ǫ1 . . . 0

. . .
. . .

. . .
. . .

. . .

1− ǫN−1 0 0 . . . ǫN−1

1− ǫN 0 0 . . . ǫN















(10)

For a time homogeneous Markov chain, the steady state

probability for state j, πj is defined by

πj =
∑

i∈S

αijπi (11)

where S defines the state space for the UE states. Assuming

N0 = 1, for Rayleigh fading and state i, the outage probability

is given by,

ǫi = 1− exp
(−(2Ri − 1)

Pi

)

(12)

After some algebraic manipulation, the required transmit

power Pi is calculated by,

Pi =
1− 2Ri

log(1− ǫi)
(13)

From the transmit power for every state i, the average

transmit power consumed is given by,

P̄ =

N
∑

i=0

Piπi. (14)

IV. OPTIMIZATION PROBLEM FORMULATION

The optimization problem is to jointly compute a vector of

power values P = [P0, P1, . . . PN ] and R = [R0, R1, . . . RN ]
, which satisfies the constraints on packet dropping param-

eters and minimizes average system energy. The problem is

mathematically formulated as,

min
P,R

P̄ =

N
∑

i=0

Piπi (15)

s.t.



















C1 :
∑N

i=0 Riπi ≥ R, 0 ≤ i ≤ N

C2 :
∑N

i=0 ǫiπi ≤ γ

C3 : ǫN ≤ ǫout

C4 : Rmin ≤ Ri ≤ Rmax

(16)

The constraints are explained in the following:

• C1 is the average rate constraint, i.e., the average trans-

mitted rate should be greater than R.

• C2 is the average packet loss constraint for the target

average packet loss probability γ. The left hand side term

is denoted by achieved average packet loss probability γr.

From the state space model described in Section III, it is

computed by the sum of the products of steady state and

forward state transition probabilities.2

The outage probability ǫi and the corresponding transmit

power Pi for a UE in state i is computed such that the

average packet dropping probability constraint C2 holds.

• C3 is the outage constraint. For i = N , ǫN ≤ ǫout where

ǫout is defined in (4). ǫi cannot be determined directly

and needs to be optimized for the system parameters.

ǫi = f(γ,N, ǫout, hX(x), R) (17)

where hX(x) is the fading channel distribution.

• In C4, rate Ri is constrained by Rmin ≤ Ri ≤ Rmax.

Rmin is the minimum rate that a packet is expected to

provide; and depends on the application and the chosen

modulation and coding schemes. If we take the example

of IoT, we can define a minimum non-zero value of the

rate Rmin that carries the minimum information about

the sensed data.

This solution of the problem provides successive as well as

average packet loss guarantees. Similar to effective capacity,

which gives the delay-limited capacity depending on the

buffer decay rate [28], this solution also provides a minimum

statistical rate guarantee Rmin with outage ǫout over the span

of N successive time slots and average rate guarantee R when

t → ∞. The packet size Ri is an optimization variable to be

jointly computed with Pi for ∀i. The offline computed power

allocation solution holds for online power allocation as long

as the channel distribution remains the same.

The optimization problem is to jointly find rate R and

power P vectors that result in minimum average power. If

we choose Pi too high for small states (states with low

number of successive outages), the packets will more likely

be transmitted too early at the expense of larger power budget

without exploiting loss tolerance of the application and provide

good (but unnecessary) QoE. On the other side, if Pi is chosen

too low in the beginning, the packets will be lost mostly and

we have to transmit with much higher power to meet the forced

condition that at least one packet has to be transmitted to avoid

the sequence of N lost packets.

The formulated optimization problem covers the discussed

practical aspects of the IoT applications. We take care of

both packet reception frequency (average), packet reception

order (successive packet) as well as min rate Rmin transmitted

within any span of N transmissions, and long term average

rate R transported by these packets.

A. Complexity of the Programming Problem

There are two main difficulties associated with program-

ming problem (15). The first challenge is to get a tractable

2State N is exception where self state transition represents packet loss.
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expression for the steady state distribution π. It is obtained

from the eigenvector of the state transition matrix A whose

components αij depend on the outage probability vector ~ǫ

which depends on the transmission rate and power allocation

(and thus on the optimization variables P and R). Even though

the state transition matrix A has a special structure as pointed

out in (10), there is no closed form solution for the eigenvec-

tors of this structured matrix. Therefore, the dependency of π

on P,R via A prohibits an analytical presentation.

The second challenge arises from the structure of the

programming problem as such. In order to derive an efficient

algorithm to solve (15), the problem should be jointly convex

in R and P. Let us only consider the constraint on the average

dropping rate
∑N

i=0 ǫiπi ≤ γ. The left side contains the

expression ǫi = 1−exp
−

1−2
R
i

Pi = φ(Ri, Pi) which is a function

of Ri and Pi. The constraint in (16) requires an upper bound

on the average dropping rate. Since φ(Ri, Pi) is a concave

function, this leads to a non-convex constraint. Therefore, even

if a closed form solution for the steady state distribution could

be derived, it will not lead to a convex programming problem.

In order to gain more insights into the solution structure of

the programming problem (15), we consider the special case

N = 1 next.

B. Special Case: N = 1

In this case, the state transition probability matrix A reads,

A =

(

1− ǫ0 ǫ0
1− ǫ1 ǫ1

)

(18)

Steady state transition probabilities for states 0 and 1 are

calculated as,

π0 =
1− ǫ1

1 + ǫ0 − ǫ1
(19)

π1 =
ǫ0

1 + ǫ0 − ǫ1
. (20)

Computing γr for ǫ1 = ǫout and π0 and π1 calculated above

γr =
ǫ0

1 + ǫ0 − ǫout
. (21)

We can compute the value of ǫ0 in closed form that satisfies

constraints C2 and C3 with equality. Solving (21) and C2 in

(16) with equality gives,

ǫ0 = (1− ǫout)
γ

1− γ
. (22)

To compute power levels P0 and P1 for the computed ǫ0 and

ǫ1, we require rates R0 and R1 that meet C1 and C4 and the

resulting power levels minimize P̄ from (14). There could exist

many (R0, R1) pairs that meet C1 and C4 and computing the

unique combination that minimizes P̄ in closed form is not

possible. However, under certain assumption on C1 and C4, it

is possible to compute achievable rates R0, R1 in closed form

(but not the optimal ones). As minimum acceptable transmit

rate is Rmin from C4 and we have N as the critical state,

we assume that the rate transmitted in state N is Rmin to

maximize the chance of successful transmission.

For N = 1 case, using R1 = Rmin, and meeting C1 with

equality, the rate R0 turns out to be,

R0 =
R−Rminπ1

π0
. (23)

Note that the solution is feasible only if R0 ≤ Rmax. If R0 >

Rmax, it implies Rmin is not enough to meet C1 and needs to

be increased.

The resulting power allocation P0 and P1 are given by

P0 =
1− 2

(

R−Rminπ1

π0

)

log(1− γ(1−ǫout)
1−γ

)
(24)

P1 =
1− 2Rmin

log(1− ǫout)
(25)

The resulting average power P̄ in closed form is given by

using (14),

P̄ =
1− 2

(

R−Rminπ1

π0

)

log
(

1− γ(1−ǫout)
1−γ

)
π0 +

1− 2Rmin

log(1− ǫout)
π1 (26)

For this specific case, we evaluate the average power in Fig.

3. We fix ǫ1 = ǫout and compute ǫ0 using (22). Then, for the

(ǫ0, ǫ1) pair, we vary R1 = Rmin and compute P̄ for R0 in

(23). For a fixed rate R, γ, ǫ0 and ǫ1, various combinations of

(R0, R1) provide various average power. We chose values of

ǫ1 such that it is less than γ in Fig. 3(a) and equal to γ in Fig.

3(b). For every ǫout, minimum P̄ is achieved at a certain Rmin.

Please note that the intention is not to optimize P̄ in Fig. 3;

but to show how P̄ varies as a function of R0 and there is no

mechanism to compute optimal P̄ in closed form even for the

simplest case of N = 1. The optimal power allocation can be

computed only by jointly searching all possible combinations

of (ǫ0, ǫ1) and (R0, R1). We observe that as ǫout increases,

minimum power is achieved at large R1. At ǫout = 0.1, the

optimal policy is to transmit with very small R1 = Rmin

while optimal power is achieved at larger R1 = Rmin when

ǫout = 0.2.

Fig. 3 provides us an interesting insight on optimal power

allocation for the problem formulated in (15). When ǫout
and/or target rate R is high, the difference between R0 and

R1 is not very large for the optimal power allocation. We

use this intuition to propose a relaxed optimization problem

in next section and compare performance of solutions of both

problems in Section VII.

V. FIXED RATE TRANSMISSION

In the optimization problem formulated in Section IV, the

short term rate guarantee Rmin over N successive time slots

can be quite small as compared to average rate R. However,

some applications require higher short term minimum rate

guarantees such that Rmin → R. This leads us to a more

restrictive optimization problem where packet size for each
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Fig. 3. System parameters are R = 1, γ = 0.2, N = 1, N0 = 1.

transmission is fixed to R bits/s/Hz. The resulting optimization

problem is formulated as,

min
P

P̄ (27)

s.t.



















C1 : γr ≤ γ, 0 ≤ γ ≤ 1

C2 : ǫN ≤ ǫout 0 ≤ ǫout ≤ 1

C3 : Ri = R ∀i

C4 : Pi ≤ Pm, ∀i, j

(28)

where C3 represents the fixed rate constraint and C4 is the peak

power constraint. This implies that largest transmit power at

the UE cannot exceed Pm in any state i, regardless of the rate.

Note that peak power constraint does not explicitly appear in

(16) because Rmax depends on Pm via (5) and appears in

C4. For the modified optimization problem, the objective is

to compute power vector P for fixed rate transmission. The

constraints related to packet reception remain the same.

Lemma 1. For the optimal power allocation in the fixed rate

transmission, it holds Pi ≤ Pi+1 for all i ∈ [0, N ].

Proof. It is straight forward to prove by contradiction. If Pi >

Pi+1 and the UE is allowed to enter state i + 1, an optimal

decision is not to transmit in state i at all and wait for a

transmission in state i+ 1 which requires less power. This is

a birth death process where after every N − 1 time slots, one

transmission is made in state N with power PN . This clearly

is suboptimal solution, and makes solving problem for most

of the realistic γ and N values infeasible.

Corollary 1. The peak power constraint Pi ≤ Pm, ∀i, j,

reduces to PN ≤ Pm.

Proof. From Lemma 1, Pi ≤ Pi+1, ∀i. This implies, PN is the

largest transmit power for any state. Constraining PN ≤ Pm

is therefore, enough to apply peak power constraint to full

system.

From Corollary 1, PN is constrained by Pm. However,

PN is also constrained by the power resulting from system

parameter ǫout via C2. This implies that the problem is only

feasible if the solution satisfies both outage probabilities result-

ing from the peak power constraint and the outage constraint

ǫout. Denoting power consumption from ǫout by Pout, the

solution is feasible if

Pout ≤ PN ≤ Pm. (29)

This problem is less flexible as compared to the general

optimization problem as no rate adaptation is required at the

transmit side. It is worth noting that in spite of reduction in

complexity of the problem, the closed form solution of the

problem is still not possible due to the challenges explained

in Subsection IV-A. In the next section, we discuss special

case to get some insight into the problem for the fixed rate

transmission case.

A. N = 1 Case for Fixed Rate Transmission

Let us analyze a special case with N = 1 for the fixed

transmission case. We compute ǫ0, ǫ1 for a given γ for the the

fixed transmission rate case, i.e., R0 = R1 = R (as in Section

IV-B). It is possible to compute power levels P0 and P1 for

the fixed transmission case.

The power levels P0 and P1 are computed from (13) and

yield,

P0 =
1− 2R

log(1− γ(1−ǫout)
1−γ

)
(30)

P1 =
1− 2R

log(1− ǫout)
(31)

The resulting average power P̄ in closed form is given by

using (14),

P̄ =
1− 2R

log
(

1− γ(1−ǫout)
1−γ

)
π0 +

1− 2R

log(1 − ǫout)
π1 (32)

= (1 − 2R)

(

1

log
(

1− γ(1−ǫout)
1−γ

)
π0 +

1

log(1− ǫout)
π1

)

We can classify two distinct regions for the analysis of P̄ .
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• ǫout ≤ γ: For this case, ǫN = ǫout and the closed form

expressions above hold. When ǫout ≤ γ, it implies that

outage ǫN in state N should be less than the average

outage probability γ. The optimal decision in the sense

of power efficiency in this case is to transmit with power

PN that results in maximum permitted outage ǫout. This

region is termed as bursty packet loss dominant region.

• ǫout > γ: For this case, ǫN = γ. Though, it is permitted

to transmit with power PN that results in ǫN < γ, but

this is not optimal in the sense of minimizing P̄ . If

ǫout > γ, the optimal decision is to transmit with power

Pi, ∀i that results in ǫi = γ, i.e. the power allocation

policy is independent of successive packet loss and only

determined by average packet loss parameter γ.

From the above characterization, it is clear that ǫout ≤ γ is

the most critical region where average power consumption is

determined by both the constraints on average packet loss and

burst packet loss. We numerically verify in Section VII that

the power levels computed in closed form for the boundary

condition ǫN = ǫout are not optimal for ǫout > γ.

As with variable rate problem, the expressions for the power

levels cannot be obtained in closed form for N > 1 when

ǫout ≤ γ in spite of fixing rate R for each transmission. The

variables ǫ0, ǫ1 . . . ǫN are unknown and it is not possible to

compute a unique set of ǫi, ∀i in closed form that satisfies C1
in (28). The optimization problem in (27) is a combinatorial

problem as it is hard to compute a unique solution in terms

of ǫi, ∀i due to sum of product term in computation of γr. It

is therefore, difficult to compute P that minimizes P̄ using

convex optimization techniques.

B. Characterization of Critical Regions

In the optimization problem in (27), average packet drop

rate γ, successive packet loss constraint N and outage prob-

ability ǫout affect the average power consumption. It is worth

noting that parameter γ is the only parameter that controls the

’quantity’ of data loss. The parameters N and ǫout determine

the qualitative effect for the average packet loss rate γ, i.e.,

for a fixed γ, different values of N and ǫout result in different

QoE for the end user. If we relax N and ǫout constraints, we

can save more energy at the expense of degradation in QoE

without actually dropping more packets.

It is trivial that an increase in the acceptable average packet

loss rate γ results in a monotonic decrease of average power

consumption. However, it is not straightforward to understand

the effect of parameters N and ǫout on the average power. In

[26], it has been characterized that there exists a maximum N

for a fixed γ that results in maximum energy efficiency for the

system. Increasing N further, does not result in higher energy

efficiency. We further characterize the energy efficiency as a

function of qualitative parameters N, ǫout by the following

lemma:

Lemma 2. For a fixed γ and N , there exists a maximum

ǫout = γ that results in minimum average power consumption.

Increasing ǫout > γ does not help to reduce average power

consumption.

Lemma 2 can be proved following the proof of Lemma 1

in [26].

We numerically quantify the effect of these parameters on

the average system energy consumption in Section VII. For

a fixed γ, increasing N and/or ǫout helps in saving energy

in the beginning. This implies that the system is in a region

where avoiding successive packet loss has significant effect

on average power consumption. An increase in N and/or ǫout
helps system to drop a fraction γ of the packets with more

degrees of freedom. When we increase N further, the system

enters the region where the gap of N packet drops between

two successful packet receptions almost never happens for a

given γ. At this point, it does not matter if the system is

allowed to drop more than N successive packets are not. Note

that increasing ǫout has similar effect as increasing N ; both

permitting packets to be dropped successively within some

margins. For small N , increasing ǫout has significant effect

on average energy consumption as compared to large N . We

provide numerical evidence of this characterization in Section

VII.

VI. STOCHASTIC OPTIMIZATION

The combinatorial optimization problems in (15) and (27),

which are not solvable with regular optimization techniques,

can approximately be solved using stochastic optimization

methods. There are a few heuristic techniques in literature to

solve such problems like genetic algorithm, Q-learning, neural

networks, etc. All of these techniques rely on randomized

inputs to compute a solution at reduced computational com-

plexity as compared to exhaustive search. Simulated Annealing

(SA) is another similar stochastic optimization algorithm with

the distinct feature that it helps avoid the solution to get stuck

in local minima by introducing a probabilistic process called

’muting’ as explained later in this section. The algorithm was

originally introduced in statistical mechanics, and has been

applied successfully to networking problems [26], [27]. Based

on its ability to compute global minima with high probability,

we use SA algorithm to solve optimization problem in (15)

and (27).

In SA algorithm, a random configuration in terms of tran-

sition probability matrix A is generated in each iteration.

Average power P̄ is evaluated only if constraints in (16) are

met. If the evaluated P̄ is less than the previously computed

best solution, the candidate set of outage probabilities ǫi,

∀i are selected as the best available solution. However, the

candidate set ǫi, ∀i can be treated as the best solution with

a certain temperature dependent probability even if the new

solution is worse than the best known solution. This step is

called muting and helps the system to avoid local minima.

The muting occurs frequently at the start of the process as the

selected temperature is very high and decrease as temperature

is decreased gradually, where temperature denotes a numerical

value that controls the muting process.

In literature, various cooling temperature schedules have

been employed according to the problem requirements, such

as Boltzmann annealing, fast annealing and adaptive cooling.

The cooling schedule determines the convergence rate of the
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Algorithm 1: Optimization by SA Algorithm for the

General Case

Input: (A, Tm, γ, ǫout, Pm);

Tm = lower bound on temperature;

Pa,0= Compute P̄ as a function of initial A;

P̄ ∗ = Pa,0; A∗ = A;

Tb = T0;

while Tb ≥ Tm do

Tb =
T0

csa·b+1 ;

for i=0 to n do

Generate a random Â;

Compute γr for Â;

Evaluate C2 and C3;

if C2 and C3 satisfied then

for j=0 to r do

Generate R and evaluate C1 and C4;

if C1 and C4 are satisfied then

Solution feasible;

Compute power vector P̂ as a

function of Â using (13);

Compute average power P̂a in (14);

s = A random number in range [0, 1];

if s < exp
(

−( ˆ̄P−P̄a)
T

)

then

P̄a = P̂a;

if ( ˆ̄P ≤ P̄ ∗) then

P̄ ∗ = ˆ̄P ;

end if

end if

end if

else

Solution Infeasible;

end if

end for

end if

else

Solution Infeasible;

end if

end for

end while

Output: (P̄ ∗,A∗);

solution. If temperature cools down at a fast rate, the optimal

solution can be missed. On the other hand, if it cools down

too slowly, optimization requires large amount of time. In this

work, we employ fast annealing (FA) [29] because it provides

us reasonably good results. In FA, it is sufficient to decrease

the temperature linearly in each step b such that,

Tb =
T0

csa · b+ 1
(33)

where T0 is a suitable starting temperature and csa is a

constant, which depends on the requirements of the problem.

After a fixed number of temperature iterations, when muting

fully stops, the best solution is accepted as an approximation

to the optimal solution. Note that the solution provided after

Algorithm 2: Optimization by SA Algorithm For Fixed

Rate Transmission

Tb =
T0

csa·b+1 ;

for i=0 to n do

Generate a random Â and compute PN ;

if (max(P) ≤ Pm)AND(PN ≥ Pout) then

Solution feasible;

Compute γr for Â;

if γr < γ then

Compute power vector P̂ as a function of Â

using (13);

Compute average power P̂a in (14);

s = A random number in range [0, 1];

if s < exp
(

−( ˆ̄P−P̄a)
T

)

then

P̄a = P̂a;

if ( ˆ̄P ≤ P̄ ∗) then

P̄ ∗ = ˆ̄P ;

end if

end if

end if

end if

else

Solution not feasible;

end if

end for

Output: (P̄ ∗,A∗);

a fixed number of temperature iterations is used to keep the

computational complexity manageable. To show the conver-

gence behaviour of the solution provided by SA, we compare

the SA approximated results with the analytical results for the

N = 1 case.3

To apply the SA algorithm and solve the optimization

problem in (15), we use the following 2-step process:

1) First generate a random set of ǫi∀i and evaluate if C2
and C3 are met. The candidate solutions which do not

meet C2 and C3, are not feasible solutions and they are

dropped.

2) For the candidate solutions that meet C2 and C3, we solve

the following programming problem:

Find R that meets C1 and C4. That constitutes a feasible

solution. For all feasible solutions, we evaluate P̄ and

choose the P,R vectors that minimize P̄ . Note that we

need to generate randomized vector R between values

Rmin and Rmax to generate a candidate solution.

Pseudocode for the optimization of problem using SA is pre-

sented in Algorithm 1. The complexity of the solution depends

on parameter N . For large N , size of transition probability

matrix grows and it becomes computationally expensive to

calculate the optimal matrix.

The solution for the fixed rate transmission optimization

problem in (27) is computed using the SA algorithm in a

3A lot of literature is available on providing more accurate measures of
convergence for SA algorithm [30], but going in rigorous mathematical details
on the convergence of the approximated solution is out of scope of this paper.
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similar way, but it is relatively less complex. As rate is fixed

for every transmission, a one step feasible solution compris-

ing ǫi∀i is selected from the randomly generated candidate

solutions that meets C1 − C4. For every feasible solution, the

objective function is evaluated and the solution that minimizes

P̄ is selected. To minimize the repetition, pseudocode for one

temperature iteration is presented in Algorithm 2.

VII. NUMERICAL RESULTS

We perform a numerical evaluation of the proposed schedul-

ing scheme in this section. We consider a Rayleigh fading

channel with mean 1 for the point to point link. Peak power

is set to 20 dBW for all numerical examples while the

noise variance N0 equals one. Rmin is set to a small value

of 0.001 bits/s/Hz to allow system to choose almost any

R0 ≤ Rm, R1 ≤ Rm combination that minimizes P̄ . The

cooling schedule from (33) is applied in SA algorithm where

number of iterations per temperature value is fixed.

We study the effect of packet loss parameters on the average

power consumption for the special case N = 1 in Fig. 4, where

the results are evaluated using both closed form expressions

derived in Sections IV-B and V-A; and the SA framework

developed in Section VI. Average transmit power is plotted

for N = 1 and γ = 0.2 in Fig. 4. Note that ǫout = ǫN in the

closed form expression. For the fixed power case, the average

power consumption is a convex function in ǫout for a fixed

γ and N , and a unique optimal ǫout can be identified. Let

us call it ǫ∗out. If system parameter ǫout ≤ ǫ∗out, it results in

high average power. However, if ǫout > ǫ∗out, the system has

more flexibility and it is optimal to set ǫN = ǫ∗out instead to

save power. The optimized results with the SA method match

closely with the analytically computed results for ǫout ≤ ǫ∗out
which validate the accuracy of the solution provided by the

SA algorithm. For ǫout > ǫ∗out, SA method provides the

optimal solution in contrast to the suboptimal solution where

ǫN = ǫout is enforced. For the case of variable rates power

allocation, the analytical results and the solutions from the SA

method match closely. However, the difference is more in the

case of fixed rate. Note that the results for the analytical case

cannot be fully computed in closed form and the optimal rate

is computed using a scalar search for the optimal Rmin at

fixed ǫ0 values which introduces numerical inaccuracy for the

’semi-analytical’ solution for N = 1.

Fig. 5 compares the average power for both schemes for

N = 1 case. We use the SA method to compute the results

for all the examples in rest of this section.4 The results clearly

show that variable rate scheme performs better than the fixed

scheme at small ǫout. This is attributed to more flexibility in

choosing rates for different states. Another important obser-

vation can be noted for R = 3 bits/s/Hz. Fixed rate scheme

cannot provide any quality of service for ǫout < 0.07 and

γ = 0.2. The flexibility of variable rate scheme allows to

achieve almost identical average power for all ǫout including

the smaller ones. This leads us to the conclusion that rate

4It should be noticed that the results obtained from the SA algorithm
always show some irregular points due to inherent randomness of the heuristic
algorithm in computing the solution.
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Fig. 5. Average power consumption for variable and fixed rate schemes for
N = 1 and the SA algorithm.

adaptation is useful at small ǫout, while fixed rate transmission

becomes almost as efficient at high ǫout at reduced complexity.

This is clearly more evident at higher rates (R = 3 bits/s/Hz).

In Fig. 6, we investigate the power allocation for individual

states for both schemes. Interestingly, power allocation is

opposite in both schemes at small ǫout. For the fixed rate

scheme, the optimal power allocation requires to transmit with

small power in state ’0’ and large power in state ’1’. As R = 1
in both states, it implies ǫ0 ≤ ǫ1 ≤ ǫout for the optimal power

allocation. For the variable rate case when Rmin is small

(0.001 bits/s/Hz) as in Fig. 6(b) and Fig. 6(d), the optimal

power allocation requires P0 ≥ P1. The optimal policy is to

transmit with higher rate and power P0 ≤ Pm in state ’0’ and

with substantially small power and rate in state 1. This results

in optimal average power when rate adaptation is allowed.

In Fig. 6(c), when Rmin is increased to 0.5 bits/s/Hz for

R = 1, the power allocation for variable rate scheme resembles
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Fig. 6. Power levels for the fixed and variable rate scheme for the individual states. The system parameters are N = 1, γ = 0.2.

more to fixed rate scheme due to decrease in flexibility in

rate allocation. The fixed transmission policy suffers from

the constraint R0 = R and any dropped packets have to be

compensated in state 1 with more power. When ǫout → ǫ∗out
for variable rate power allocation, P1 is relatively small as

compared to P0 if R is small (Fig. 6(b)) and peak power

constraint is large. If R is large as in Fig. 6(d), P1 is increased

to meet the rate constraints. However, the intention of the

system is to exploit state ’0’ by adapting power and rate as

there is no constraint on ǫ0.

Fig. 7 compares the average power consumption for the

fixed rate scheme for the case N = 1, 2, 3 and γ = 0.2. The

power levels are optimized using SA algorithm. It is evident

that the resulting average power converges for all N to the

same minimum value at ǫ∗out. When ǫout ≤ ǫ∗out, an increase

in N for a fixed γ helps to reduce average power consumption

in general (specially at small ǫout). More flexibility in packet

dropping parameters provides more degrees of freedom and

results in energy savings. When ǫout > ǫ∗out, the effect of

large N vanishes and power saving depends solely on average

packet dropping parameter.

VIII. CONCLUSION

We consider energy efficient scheduling and power allo-

cation for the loss tolerant IoT applications. Data loss is
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Fig. 7. Average power as a function of packet loss parameters for different
N for the fixed rate scheme. γ is fixed to 0.2 and R = 1 bits/s/Hz.

characterized as a function of average and successive packet

loss, and the probability that the successive packet loss con-

straint is not met. These parameters jointly define the QoE

and context for an IoT application. In contrast to average
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packet loss parameter, other loss parameters depend on the

packet loss order without actually changing the number of lost

packets. By considering bursty packet loss a form of contextual

information, we provide another degree of freedom in the

scheduling algorithm which can be exploited to reduce energy

consumption. Without CSIT, we formulate the average power

optimization problem as a function of data loss parameters.

First, the generalized power optimization problem is discussed

where the transmitted packets are adapted in size such that an

average rate and minimum packet size guarantee is provided.

Then, we relax the problem to the case where the packet

size is fixed for all transmissions. Both of the optimization

problems are combinatorial in nature and require a stochastic

optimization technique to solve them. For both problems,

we compute analytical expressions of average power as a

function of system parameters for the special case N = 1
and compare it with the solution obtained from the proposed

simulated annealing algorithm. Both of the analytical results

match quite well and validate the solution provided by the

heuristic simulated annealing algorithm. We numerically study

performance of both schemes and show dependency of power

consumption on the parameters that depend on the order of

packet drop in addition to packet drop rate.
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