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ABSTRACT: A mild, inexpensive and general photocatalytic initiation protocol for anti-

Markovnikov hydrothiolation of olefins using carbon nanomaterial/metal oxide (Carbon NM-

MO) composites is reported. Graphene oxide (GO), nanodiamonds (ND) and carbon nano-onions 

(CNO) displaying bismuth or tungsten oxide nanoparticles adhered to the surface, function as 

highly efficient photocatalysts for thiol-ene ligation under both UV and visible-light-mediated 
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conditions. The straightforward catalyst preparation, excellent overall yields, ease of purification 

and broad substrate scope render this a highly versatile method for bioconjugation.  

Introduction 

Thiyl-radical mediated reactions are widely utilized in nature for a range of essential 

biochemical processes.
1
 Cysteinyl residues play a key role as reactive species in many 

enzymatic pathways including the deoxygenation of ribonucleotides in the de novo 

synthesis of DNA precursors.
2-3

 The broad application of thiyl radicals in biological 

processes arises from their exceptional reactivity and chemoselectivity. It is therefore not 

surprising that thiyl-radical mediated reactions have been harnessed by synthetic chemists 

for a diverse range of chemical transformations.
1, 4

 Thiol-ene ligation is widely utilized 

for the formation of carbon-sulfur bonds in chemical synthesis
5-10

, catalysis
4
, 

bioconjugation
11-12

, polymerisation
13-15

 and surface modification.
16

 The process is 

cytocompatible
17

 and adheres to the concept of a ‘click’ reaction as defined by Sharpless 

in 2001.
18

 Radical thiol-ene ligation reactions are typically carried out under UV 

conditions in the presence of a radical initiator such as 2,2-dimethoxy-2-phenyl-

acetophenone (DPAP).
1, 7

 Recently, visible-light-mediated photoredox catalysis has 

emerged as a convenient alternative to UV initiation, allowing for greater substrate 

compatability.
19-25

 Yoon and co-workers demonstrated efficient thiol–ene reactions under 

photoredox conditions using ruthenium catalysts with visible light.
23-24

 Stephenson and 

co-workers reported a similar strategy for radical thiol-ene coupling in which a 

trichloromethyl radical genereated via single-electron reduction of 

bromotrichloromethane acted as a radical chain carrier.
21

 Recently, metal oxides such as 
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TiO2 or BiO3 have been investigated as catalysts for thiol-ene ligation, however the 

requirement for stoichiometric quantities of the metal oxide or the addition of chain 

carrier reagents such as BrCCl3 render these methods unsuitable for certain biological 

applications
20

 (Figure 1). Despite the bourgeoning interest in photocatalysed thiol-ene 

ligation, the application of carbon nanomaterials (CNMs) remains unexplored. It is known 

that highly efficient photocatalysts can be prepared as composite semi-conducting 

materials composed of metal oxides adhered to the surface of carbon nanomaterials.
26-29

 

These low-cost photocatalysts have been investigated for environmental applications 

including water purification.
30-31

 Carbon carbon nanomaterial/metal oxide (NM-MO) 

composites are readily prepared through a number of methods including the simple 

stirring of the two materials at room temperature.
32

 The carbon NM-MO composite offers 

a synergic effect induced by the presence of carbon materials in the hybrid 

photocatalyst.
33

 This is mainly attributed to the decrease of electron/hole recombination, 

bandgap tuning and increase in the adsorptive active sites.
34

 Herein we present the 

application of both CNMs and carbon NM-MO composites as highly-efficient 

photocatalysts for light-mediated thiol-ene ligation reactions. Characterisation of the 

composite materials is presented and a putative mechanism for the catalytic cycle is 

depicted. Substrate scope is explored across inter- and intramolecular thiol-ene ligation 

and intermolecular thiol-yne reactions. Of particular note is the short reaction times, 

quantitative yields and ease of purification of the products. 
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Figure 1: Pathway for photocatalysed thiol-ene ligation reactions (a) conventional UV mediated 

conditions (b) visible-light mediated catalysts (c)  overview of catalyst described herein. 

Results and discussion 

The utility of Bi2O3 as a photocatalyst in visible-light-mediated thiol-ene ligation was 

reported by Pfizer as part of a methodology development effort.
35

 However, the metal 

oxide alone was found to be an inefficient photocatalyst for thiol-ene coupling (TEC) and 

BrCCl3 was added as a chain carrier. Bi2O3, which possesses a bandgap of 2.6-2.8 eV
36

 

(477-442 nm), is a well-studied metal oxide semiconductor, but its efficiency as a 

photocatalyst is often low because of the rapid recombination of the photo-generated 

electrons and holes.
35

 We set out to investigate if the photocatalytic properties of Bi2O3 
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could be enhanced in a non-toxic and environmentally benign manner through the use of 

carbon material/Bi2O3 nano-composites. In our initial studies, the TEC between allyl 

benzoate and thioacetic acid was investigated as a model system to screen suitable 

photocatalysts. A range of carbon nanomaterials were screened for TEC in the presence 

of a metal oxide. The results of these initial screening studies are presented in Table 1. It 

was determined that all of the nanomaterials screened, when combined with Bi2O3 (2 

mol%) or WO3 (2 mol%), resulted in the complete conversion of the starting allyl 

benzoate 1 into the desired thioester 2 under UV irradiation after 1 hour (Table 1, entries 

1-10). These promising results showed that the photocatalytic activity was general across 

the range of carbon nanomaterial/metal oxide composites investigated. Absorption of 

compounds 1 and 2 is negligible in the region >320 nm; therefore, under the reaction 

conditions used, photocatalysis can only result from photoexcitation of the composite 

nano materials. Interestingly, the nanomaterials in the absence of any metal oxide were 

also able to propagate the radical reaction, albeit without full conversion to the thioester 

(Table 1, entries 11-15). Overall good conversions, varying from 65% (p-CNO, entry 12) 

to 94% (PEG-CNO, entry 14), were determined for all the screened nanomaterials. That 

the metal oxide was required for full conversion to the desired thioester product suggests 

a synergic effect induced through the combination of carbon nanomaterials and metal 

oxide in the hybrid photocatalysts (see proposed mechanism).  
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Table 1. Nanomaterials screened for the thiol−ene ligation reaction of allyl benzoate with 

thioacetic acid. 

 

Entry NM Photocatalyst 2 Yield (%)
b
 

1 ND Bi2O3 >99 

2 p-CNO Bi2O3 >99 

3 Ox-CNO Bi2O3 >99 

4 PEG-CNO Bi2O3 >99 

5 GO Bi2O3 >99 

6 ND WO3 >99 

7 p-CNO WO3 >99 

8 Ox-CNO WO3 >99 

9 PEG-CNO WO3 >99 

10 GO WO3 >99 

11 ND - 89 

12 p-CNO - 65 

13 Ox-CNO - 70 

14 PEG-CNO - 94 

15 GO - 84 

 

NM = nanomaterials; ND = nanodiamonds; CNO = carbonanoonions; GO = graphene oxide; 
a
Reactions were conducted by irradiating allyl benzoate 1 (0.5 mmol), thioacetic acid (2.0 

mmol), the NM (10 mg/mL, 7 µl) and the photocatalyst (0.02 equiv) in degassed EtOAc (0.7 

mL) with 365 nm lamps for 1 h. 
b 1

H-NMR conversion. 
 

 

Following the success of the model studies, we set out to investigate the effect of catalyst 

loading on the yield of the thiol-ene ligation. In this study, the nanocomposite was freshly 

prepared prior to addition to the thiol-ene ligation reaction. Preparation of the 

nanocomposite involved a two-step protocol whereby the carbon nanomaterial and metal 
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oxide were first sonicated together in EtOAc and subsequently filtered through a nylon 

syringe filter (pore size 1 μm) in order to remove large particles, resulting in an optically 

transparent dispersion of the photocatalytic nanocomposite. In the case of the GO- and 

CNO-Bi2O3 nanocomposites, the material was fully characterised using a range of 

techniques and determined to be composed of bismuth oxide nanoparticles adhered to the 

surface of the carbon nanomaterial (see materials characterisation). Varying volumes of 

the CNO-MO composites were added to the thiol-ene reaction (Table 2, entries 1-4), until 

complete conversion into the desired thioester was achieved (Table 2, entry 4). The 

possible contribution/participation of water in the radical reaction was investigated by 

varying the water concentration under identical reaction conditions. The use of the dry 

ethyl acetate (Table 2, entry 4) did not result in any significant change in yield compared 

to when a wet solvent was employed (Table 2, entry 5). On the contrary, the addition of a 

small amount of water (100 µL) led to a decrease in the product conversion (Table 2, 

entry 6). Once the optimal reaction conditions for a fast and complete thioester 

conversion were established with CNOs, we also tested the commercially available 

graphene oxide (GO) as the carbon component of the nanocomposite. As reported in 

Table 2, entry 7, the GO-Bi2O3 nanocomposite was efficient in delivering full conversion 

of the thiol-ene ligation. The crude 
1
H-NMR of the reaction mixture after 1 h, without any 

aqueous work-up, is shown in Figure 2 and demonstrates the efficacy of the 

photocatalytic process. This finding is significant since both GO and Bi2O3 are cheap, 

commercially available materials. Furthermore the ease of removal of these reagents upon 

aqueous work-up is ideal for synthetic chemistry. 

Table 2. Carbon NM-MO composites screened at varying volumes of addition. 
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Entry NM NM/Bi2O3 composite solvent 2 Yield (%)
b
 

1 Ox-CNO 10 g/mL EtOAc 90 

2 Ox-CNO 20 g/mL EtOAc 91 

3 Ox-CNO 40 g/mL EtOAc 92 

4 Ox-CNO 80 g/mL EtOAc >99 

5 Ox-CNO 80 g/mL EtOAc (dry) >99 

6 Ox-CNO 80 g/mL EtOAc 

(+H2O) 

39 

7 GO 80 g/mL EtOAc >99 

 

CNO = carbon nanoonions; GO = graphene oxide; 
a
Reactions were conducted by irradiating 

allyl benzoate 1 (0.5 mmol), thioacetic acid (2.0 mmol) and the NM-MO composite (56 µl) in 

degassed EtOAc (0.7 mL) with 365 nm lamps for 1 h. 
b 1

H-NMR conversion. 
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Figure 2: 600 MHz 
1
H-NMR spectrum of crude ligation product 2 after photolysis in 

degassed EtOAc for 1 h in the presence of GO-Bi2O3 (Table 2, Entry 7). 

In order to investigate the scope of our catalytic approach, the thiol-ene ligation reaction 

was also carried out under visible-light-mediated initiation using blue-LEDs (Table 3). In 

general, very good conversion values were obtained for all the screened nanomaterial 

composites, although, in contrast to the UV mediated process, no full-conversion could be 

obtained (Table 3, entries 1-5). When the nanocomposite concentration was increased up 

to 80 µg/mL, with both Ox-CNO (entry 6) and GO (entry 7), a slightly higher yield was 

achieved. It is possible that further tuning of the nanomaterial composition would render 

the visible-light-mediated process as efficient as the UV reaction.  

2
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Table 3. Carbon NM-MO composites screened for the thiol-ene ligation under visible- 

light-mediated conditions. 

 

Entry NM/Bi2O3 composite 2 Yield (%)
b
 

1 ND (10 g/mL) 90 

2 p-CNO (10 g/mL) 79 

3 Ox-CNO (10 g/mL) 70 

4 PEG-CNO (10 g/mL) 78 

5 GO (10 g/mL) 71 

6 Ox-CNO (80 g/mL) 79 

7 GO (80g/mL) 78 

8 GO (80 g/mL), 3 h 80 

   

   

 

NM = nanomaterial; ND = nanodiamonds; CNO = carbon nanoonions; GO = graphene oxide; 
a
Reactions were conducted by irradiating allyl benzoate 1 (0.5 mmol), thioacetic acid (2.0 mmol) 

and the NM-MO (56 µl), in degassed EtOAc (0.7 mL) with 405 nm lamps for 1 h. 
b1

H-NMR 

conversion. 
 
 

With the optimized photocatalytic conditions in hand, we set out to investigate the scope 

and limitations of the nanocomposite for TEC across a broad variety of thiols and alkenes. 

As depicted in Figure 3, all the TEC products were obtained in high isolated yields. Both 

thioacids and alkylthiols were compatible with the photocatalytic process to furnish 

thioesters and thioethers. Boc-protected cysteine derivatives 5, 7 and the peracetylated 

thiosugars 8, 9 demonstrated the compatibility of the nanocomposite catalytic approach 

with the preparation of bioconjugates. The GO-Bi2O3 nanocomposite was also extremely 
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efficient in catalysing the thiol-yne ligation with the dual-addition product 11a formed in 

58% and the corresponding mono-addition product 11b isolated in 35%. In addition, we 

also investigated the nanocomposites as photocatalysts for the intramolecular thiol -ene 

process to furnish 10. This fast cyclisation process offers access to unique families of 

sulfur containing heterocycles including thiosugars.
37-39

 Of particular importance in these 

synthetic studies was the ease of purification of the products which could be achieved 

through simple filtration. This offers a significant advantage over the traditional 

DPAP/MAP initiated processes, where extensive column chromatography is required to 

seperate the product from the degraded initiator and photosensitizer. In addition, no 

discolouration of the reaction mixture was observed during either the UV or visible-light-

mediated photolysis, ensuring that the photoinitiation was not compromised at any point. 

This is a major advantage over previously reported processes where milligram quantities 

of metal oxide are utilized and strong discolouration and precipitation of metal oxides is 

observed. 
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a
Reactions were conducted by irradiating alkene (1 equiv.), thiol (4 equiv. with the 

exception of compounds 9 and 10 where 1.5 equiv. was used), NM-MO (composite with 

Bi2O3), (56 µl) in EtOAc (0.7 mL) with 365 nm lamps for 1 h; 
b
Isolated yield. 

 
Figure 3: Carbon NM-MO catalysed thiol-ene ligation, expansion of synthetic scope. 

 

Materials Characterization 

The morphology and crystallography of the GO-Bi2O3 and CNO-Bi2O3 samples was 

characterized by transmission electron microscopy (TEM). Bright-field TEM imaging of 

the Bi2O3/ox-CNO composite and Bi2O3/GO composite was performed on a Jeol JEM-

1011 instrument equipped with a thermoionic tungsten source operated at 100 kV. 

Samples were prepared by spreading a droplet of the dispersed composite material in 

ethanol on a copper grid coated with a lacey carbon film. Figure 4A shows a TEM image 

of Bi2O3 nanoparticles, which display mainly a spherical shape with a size ranging from 

10 to 20 nm. Figure 4B shows a TEM image of GO, which displays the typical 

transparent paper-like structure of GO with a lateral size of about 1 µm and around 15-18 

layers, which is in agreement with the Sigma-Aldrich specifications. Interestingly, in 

comparison with the TEM image of graphene nanosheets, the TEM image of the 

Bi2O3/GO composites (Figure 4C) shows that the surface of the graphene–bismuth oxide 

composite is much rougher than that of graphene nanosheets. This observation may be 

attributed to the presence of bismuth oxide nanoparticles on graphene sheets. Moreover, 

the TEM images suggest that the bismuth oxide nanoparticles (about 10nm in size) are 

uniformly distributed on 2D graphene nanosheets (Figure 4C). Similarly, TEM images of 

the ox-CNO composite material show homogenous black spots arrayed on the ox-CNO 
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surfaces, a feature quite different in respect to the smooth ox-CNO with size ranging from 

20 to 40 nm (Figure 4D). For both composites, TEM images indicate that the catalyst is 

well dispersed and attached to the graphene oxide and to the oxidized carbon nano-onion 

surfaces.  In the Powder X-ray diffraction pattern (XRD) of the Bi2O3 oxide, the main 

peaks match the reflections, respectively, characteristic of the α-Bi2O3 polymorph 

(Supporting Information). 

 

Figure 4. TEM images of (A) Bi2O3 nanoparticles; (B) GO nanosheets; (C) Bi2O3/GO 

nanocomposite; and (D) Bi2O3/ox-CNO composite. 

Proposed Mechanism 

A proposed mechanism for the overall photocatalytic process is outlined in Scheme 1. 

Bi2O3 has a bandgap of 2.6-2.8 eV and a conduction band edge at -4.8 eV vs. vacuum (i.e. 

+0.4 eV vs. NHE).
40

 Pristine few layer graphene has a zero bandgap and a work function 

(WF) of 4.2 eV;
41

 however the presence of oxidised groups can result in an increase in 

WF of up to ~2 eV and the creation of localized states within the π-π* gap.
42

 XPS 

analysis of Bi2O3 showed no discernible change after exposure to UV for 1 h suggesting 

A B

C D



 14 

no other oxides are formed under these conditions (ESI S3 and S4). Scheme 1 shows the 

position of semiconductor levels relative to those of a generic graphene oxide material. 

Considering that oxidation of alkylthiols and thioacetic acid are observed at 

E°(RS,H
+
/RSH) = 1.3-1.7 VNHE

43
 and  E°(AcS,H

+
/AcSH) = 1.4 VNHE,

44
 it is clear from 

the scheme that photoexcitation of Bi2O3 can result in the direct oxidation of RSH species 

by photogenerated holes to form thiyl radicals and protons (eqn. 1) 

RSH + h
+
 → RS

•
 + H

+
 (eqn. 1) 

Organosulfides are in fact well known to act as substrates for the direct reaction of 

photogenerated holes in the case of TiO2 photooxidative processes.
45

 The thiyl radical 

initiates the TEC process through anti-Markovnikov addition onto an alkene and 

generation of an alkyl radical, which propagates the reaction by abstracting a hydrogen 

atom from the starting thiol (Scheme 2). High concentrations of RS
•
 radical initiators are 

desirable for achieving fast thiol-ene reaction rates, and these should be facilitated by (a) 

removal of competing reductants and (b) long hole lifetimes. In the presence of water, 

reactions compete with water oxidation so that lower thiol-ene reaction efficiencies in 

water-rich solutions should be expected. This is in agreement with observed trends in 

reaction yields after the use of dry and water-spiked EtOAc as solvent in our experiments 

(Table 2; entry 4 and 6). UV and blue excitations used in our experiments can be 

absorbed by both Bi2O3 and the carbon nanomaterials, however, the presence of a 

composite in which the oxide and the carbon material are in intimate contact results in 

high reaction efficiencies. This suggests that the two materials function in synergy and a 

likely explanation is that the composite improves charge separation and reduces h-e 

recombination rates. The addition of carbon nanomaterials has been explored as a strategy 
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for enhancing photoconversion yields of semiconductor particles. Most notably, coupling 

of TiO2 to a range of carbon nanomaterials has been widely explored for oxidative 

degradation of organics,
46

 and enhancements have been observed with oxides such as 

WO3
47

 and BiVO4.
48

 The enhancement mechanism remains under debate and hypotheses 

include
46

 the transfer of conduction band electrons from the oxide to carbon acceptor 

states which can be further enhanced by optical excitation of the carbon nanomaterial.  

The first report of Bi2O3 catalyzed thiol-ene reactions leveraged the photoinduced 

reductive cleavage of an organohalide (BrCCl3) for the generation of the radical 

initiator.
35

 In the case of our work no initiator is needed for the reaction to go to 

completion, while the addition of carbon as an electron trapping agent appears essential. 

In the light of this finding it is interesting to speculate whether the role of the 

organobromide in carbon-free reactions is that of acting as both a radical initiator and an 

electron trap, as proposed for similar reactions of other organohalides.
49

  

 

Scheme 1. (a) Conduction (CB) and valence band (VB) edges of Bi2O3 and of a generic 

graphene oxide (GO) nanomaterial, and their relative alignment with respect to the standard 



 16 

redox potentials of alkylthiols and thioacetic acid. Photoexcited electrons in the CB of Bi2O3 can 

be trapped e.g. by local states (path a) or by holes in the VB of photoexcited GO (path b).  

 

Scheme 2. Thiol-ene reaction propagation following photocatalytic initiation by the metal oxide-

nanomaterial nanocomposite. 

Conclusions 

We have developed an efficient, robust and readily accessible general photocatalytic 

process for the thiol-ene ‘click’ reaction. The use of metal oxide-carbon nanocomposites 

renders the process highly efficient for photocatalysis. The process appears to be general 

for a wide range of ligation reactions including, inter- and intramolecular thiol-ene, and 

thiol-yne ligation. The nanomaterials were fully characterised as bismuth oxide 

nanoparticles adhered to the surface of the carbon nanomaterials, and a putative reaction 

mechanism for the catalytic cycle is presented. The simple catalyst preparation, high-

yields, ease of purification and biocompatibility render this a highly attractive option for 

cytocompatible thiol-ene ligation reactions.  

Supporting Information 
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The Supporting Information is available free of charge on the ACS Publications website at 

DOI:xxxxx  

Experimental procedures for nanocomposites preparation, Bright-field TEM of Bi2O3 - ox-

CNO/GO nanocomposites, XPS of Bi2O3, 
1
H- and 

13
C-NMR Spectra of thioether and thioester 

products. 
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