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Abstract Pair-copula constructions (or vine copulas) are
structured, in the layout of vines, with bivariate copulas and
conditional bivariate copulas. The main contribution of the
current work is an approach to the long-standing problem:
how to cope with the dependence structure between the two
conditioned variables indicated by an edge, acknowledging
that the dependence structure changes with the values of the
conditioning variables. The changeable dependence prob-
lem, though recognized as crucial in the field of multivariate
modelling, remains widely unexplored due to its inherent
complication and hence is themotivation of the current work.
Rather than resorting to traditional parametric or nonpara-
metric methods, we proceed from an innovative viewpoint:
approximating a conditional copula, to any required degree
of approximation, by utilizing a family of basis functions.We
fully incorporate the impact of the conditioning variables on
the functional form of a conditional copula by employing
local learning methods. The attractions and dilemmas of the
pair-copula approximating technique are revealed via simu-
lated data, and its practical importance is evidenced via a real
data set.
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1 Introduction

Pair-copula constructions (or vine copulas), introduced by
Joe (1996) and further developed by Bedford and Cooke
(2001), Bedford and Cooke (2002) and Aas et al. (2009),
provide an adaptable and manageable way of modelling
the dependence structure within a random vector. While a
multivariate copula is superior to a multivariate joint distri-
bution (in that the former divides the problem of specifying
a full joint distribution into two: the problem of mod-
elling marginal distributions and the problem of modelling
multivariate dependence structure), a vine copula is more
preferable than a multivariate copula (in that, compared with
bivariate copulas, multivariate copulas developed in the lit-
erature are quite few and are incapable of capturing all the
possible dependence structures within a random vector). A
vine copula owes its flexibility and competence in modelling
multivariate dependence to its vine hierarchy—a graphical
tool for stacking (conditional) bivariate copulas. Over the
past decade, vine copulas have been used in a variety of
applied work, including finance, hydrology, meteorology,
biostatistics, machine learning, geology and wind energy;
see, e.g., Soto et al. (2012), Fan and Patton (2014), Hao
and Singh (2015) and Valizadeh et al. (2015). Pircalabelu
et al. (2015) incorporated vine copulas into Bayesian net-
work to deal with continuous variables, while Panagiotelis
et al. (2012) studied the problem of applying vine copulas to
discrete multivariate data. We refer the reader to Joe (2014)
for a comprehensive review on vine copulas and related
topics.

A vine copula is a hierarchy of bivariate copulas and con-
ditional bivariate copulas. For a conditional bivariate copula,
the dependence structure between the two conditioned vari-
ables (i.e., the functional form of the conditional copula) can
be highly influenced by the conditioning variables. Though
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theoretical and applied literature on vine copulas is quite
large, the vast majority of the documented work adopted
the simplifying assumption that the functional form of a
conditional bivariate copula does not change with the con-
ditioning variables (Acar et al. 2012). To name a few, Haff
(2013) extended the work of Aas et al. (2009) to develop
a stepwise semi-parametric estimator for parameter esti-
mation of vine copulas; both Aas et al. (2009) and Haff
(2013) assumed that the parameters of conditional bivari-
ate copulas are all fixed. Later, Haff and Segers (2015)
developed a method for nonparametric estimation of vine
copulas. Again, they employed the simplifying assump-
tion. Likewise, by adopting the simplifying assumption,
Kauermann and Schellhase (2014) approximated conditional
bivariate copulas by tensor product of a family of basis
functions. So and Yeung (2014) assumed that certain depen-
dence measures, e.g., rank correlation, change with time yet
not with conditioning variables. See Stöber et al. (2013)
for a discussion on limitations of simplified pair-copula
constructions.

Apparently, ignoring the role of the conditioning variables
in a conditional bivariate copula will contaminate the whole
performance of the fitted multivariate copula. A natural prac-
tice to model a changeable conditional bivariate copula is to
employ a parametric copula of which the involved parameter
is a function of the conditioning variables; see, e.g., Gijbels
et al. (2011), Veraverbeke et al. (2011) and Dißmann et al.
(2013). Acar et al. (2011) approximated the function by local
polynomials. Lopez-Paz et al. (2013) employed a type of
parametric copulas that can be fully determined by Kendall’s
τ rank correlation coefficient; they related Kendall’s τ rank
correlation coefficient to conditioning variables by the stan-
dard normal distribution. We shall point out that, on the
one hand, the choice of a parametric copula is always pre-
conceived, usually from the existing parametric copulas in
the literature. On the other hand, the functional form, relat-
ing the copula parameter and the conditioning variables, is
always subjectively determined. Themain contribution of the
current work is a generic approach to the changeable depen-
dence problem. One distinguishing feature of our approach
is that we do not impose any structural assumption on the
true (conditional) bivariate copula, except that (1) the cop-
ula is continuous w.r.t. its two arguments and its parameters
and (2) the parameters are continuous functions of the con-
ditioning variables. We approximate the true copula by a
family of basis functions (to any required degree of approx-
imation). The feasibility of the pair-copula approximating
approach is guaranteed by the theoretical work developed
in Bedford et al. (2016).

The remainder of the paper is organized as follows.
In Sect. 2, we give a brief summary of vine copula and
relative information. In Sect. 3, we present the general pro-
cedure for approximating bivariate copulas and conditional

bivariate copulas. Section4 is devoted to dealing with some
technical issues when approximating a conditional copula.
In Sect. 5, the attractions and dilemmas of the pair-copula
approximating technique are revealed via simulated data,
and its practical importance is evidenced via a real data
set.

2 Vine copula and relative information

2.1 Vine copula

Vine is a graphical tool for helping construct multivariate
distributions in a flexible and explicit manner. A vine on n
variables is a nested set of connected trees: {T1, . . . , Tn−1} in
which the edges of tree Ti (i = 1, . . . , n−2) are the nodes of
tree Ti+1, and each tree has the maximum number of edges.
A regular vine on n variables is a particular vine in which
two edges in tree Ti (i = 1, . . . , n − 2) are joined by an
edge in tree Ti+1 if and only if the two edges share a com-
mon node. Formally, a vine is defined as follows (Kurowicka
2011, Chapter 3).

Definition 1 V is a vine on n variables with E(V) = E1 ∪
· · · ∪ En−1 denoting the set of edges if

1. V = {T1, . . . , Tn−1};
2. T1 is a tree with nodes N1 = {1, . . . , n} and a set of

(n − 1) edges denoted by E1;
3. for i = 2, . . . , n − 1, Ti is a tree with nodes Ni = Ei−1.

V is a regular vine on n variables if, additionally,
4. ∀ e = {e1, e2} ∈ Ei (i = 2, . . . , n − 1), we have

#{e1�e2} = 2.

Here, � is the symmetric difference operator, and # is the
cardinality operator. A regular vine (called D-vine) on 4 vari-
ables is exemplified in Fig. 1.

In Fig. 1, T1 is a tree with nodes N1 = {1, 2, 3, 4} and
edges E1 = {{1, 2}, {2, 3}, {3, 4}}, and T2 is a tree with nodes
N2 = E1 and edges E2 = {{1, 3|2}, {2, 4|3}}. For an edge,

1T

2T

3T

Fig. 1 A regular vine on four variables
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the set of variables to the right of the vertical slash is called
a conditioning set, and the set of variables to the left of the
vertical slash is called a conditioned set. The constraint set,
conditioning set and conditioned set of an edge are defined
as follows.

Definition 2 ∀ e = {e1, e2} ∈ Ei (i = 2, . . . , n − 1), the
constraint set related to edge e is the subset of {1, . . . , n}
reachable from e. Write U∗

e for the constraint set of e. The
conditioning set of e is De = U∗

e1 ∩U∗
e2 , and the conditioned

set of e is {U∗
e1 \ De, U∗

e2 \ De}.
Here, U∗

e1 \ De represents the relative complement of De in
U∗
e1 . We might write ė1 for U∗

e1 \ De and ė2 for U∗
e2 \ De.

Hence the conditioned set of e is {ė1, ė2}. Throughout the
work, we represent edge e by {ė1, ė2|De}. Referring to Fig. 1,
the set of edges for tree T3 contains only one element: E3 =
{{1, 4|2, 3}}; the constraint set of the edge is {1, 2, 3, 4}, the
conditioned set of the edge is {1, 4}, and the conditioning
set of the edge is {2, 3}. If e = {e1, e2} ∈ E1, we have
U∗
e = {e1, e2} and De is empty.
An n-variate copula is an n-variate probability distribution

defined on the unit hypercube [0, 1]n with uniform marginal
distributions. There is a one-to-one correspondence between
the set of n-variate copulas and the set of n-variate distribu-
tions, as was stated in a theorem by Sklar (1959).

Theorem 1 Given random variables X1, . . . , Xn having
continuous distribution functions F1(x1), · · · , Fn(xn) and
a joint distribution function F(x1, . . . , xn), there exists a
unique n-variate copula C(·) such that

F (x1, . . . , xn) = C(F1(x1), . . . , Fn(xn)),

∀ (x1, . . . , xn) ∈ R
n . (1)

And conversely, given continuous distribution functions
F1(x1), · · · , Fn(xn) and an n-variate copula C(·),
F(x1, · · · , xn) defined through Eq. (1) is an n-variate dis-
tribution with marginal distribution functions F1(x1), . . .,
Fn(xn).

The coupling of regular vines and bivariate copulas pro-
duces a particularly versatile tool, called vine copula or
pair-copula construction, for modelling multivariate data.
The backbone of vine copula is re-forming, according to the
structure of a regular vine, a multivariate copula into a hier-
archy of (conditional) bivariate copulas. Given a regular vine
V , for any e ∈ E(V)with the conditioned set {ė1, ė2} and the
conditioning set De, let XXXe = (Xv : v ∈ De) denote the vec-
tor of random variables indicated by the conditioning set De.
Throughout the work, all vectors are defined to be row vec-
tors. Define Cė1ė2|De(·) (resp. cė1ė2|De(·)) to be the bivariate
copula (resp. copula density) for the edge e. Cė1ė2|De (·) and
cė1ė2|De (·) are conditioned on XXXe. Let xė1 , xė2 and xe, respec-
tively, denote, from the generic point of view, the value of

Xė1 , Xė2 and XXXe. We have the following theorem (Bedford
and Cooke 2001).

Theorem 2 Let V = {T1, . . . , Tn−1} be a regular vine on
the random variables {X1, . . . , Xn}, and let the marginal
distribution function Fi (xi ) and density function fi (xi )
(i = 1, . . . , n) be given. Then the vine-dependent n-
variate distribution is uniquely determined with density
function

f (x1, . . . , xn) =
n∏

i=1

fi (xi )

×
∏

e∈E(V)

cė1ė2|De

(
uxe , wxe | XXXe = xe

)
.

Here, uxe = Fė1|De(xė1 | XXXe = xe) and wxe = Fė2|De (xė2 |
XXXe = xe) are two conditional marginal distributions, both
conditioned on XXXe. All the involved conditional marginal
distributions can be derived from the marginal distribution
functions and copula densities. (SeeSection2.2 of the supple-
mentarymaterial formore discussion on deriving conditional
marginal distributions.) Theorem 2 claims that we are able
to derive the n-variate density function, once we are given
the n marginal distribution functions and all the bivariate
copulas originated from the regular vine. The n marginal
distribution functions can be readily estimated from col-
lected data, either parametrically or empirically, by using
standard univariate methods. The estimation of the involved
bivariate copulas is, however, non-trivial and still remains
an open problem. Note that the form of the copula den-
sity cė1ė2|De(·) (namely the dependence structure between
Fė1|De (Xė1 | XXXe = xe) and Fė2|De (Xė2 | XXXe = xe)) can
be highly influenced by the value of XXXe. The dependence
of the form of cė1ė2|De(·) on XXXe is always intentionally
ignored in the community of vine copula, due to certain
practical concerns such as computational load and the curse
of dimensionality (see, e.g., Kauermann and Schellhase
2014).

In Sect. 3, we will introduce a family of minimally
informative copulas that can cope with the dependence of
cė1ė2|De (·) on XXXe. Deriving a minimally informative copula
involves the notion of relative information (Kullback–Leibler
divergence).

2.2 Relative information

Definition 3 The relative information of Q from P is a non-
symmetricmeasure of the information lostwhen aprobability
measure P is approximated by another probability measure
Q (over a set�). P should be absolutely continuous w.r.t. Q.
The relative information of Q from P , denoted by I (P|Q),
is defined by
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I (P|Q) =
∫

�

log

(
dP

dQ

)
dP.

Here, dP
dQ is the Radon–Nikodym derivative of P w.r.t. Q. If

μ is any measure on � for which dP
dμ and dQ

dμ exist, then the
relative information of Q from P can be written into

I (P|Q) =
∫

�

p log

(
p

q

)
dμ,

where p = dP
dμ and q = dQ

dμ .

Relative information is always nonnegative and is minimized
to 0 when P = Q almost everywhere.

Relative information is a popular “metric” for measur-
ing probability distance. There are two elegant properties
of relative information, making it a natural criterion for
copula selection. Firstly, relative information is invariant
under monotonic transformation. For example, let n-variate
distributions f (x1, . . . , xn) and g(x1, . . . , xn) have iden-
tical marginal distributions: fi (xi ), i = 1, . . . , n. Write
c f (·) for the copula density of f (x1, . . . , xn), and cg(·)
for the copula density of g(x1, . . . , xn). If we want to
approximate

f (x1, . . . , xn) =
n∏

i=1

fi (xi )c f (F1(x1), . . . , Fn(xn)) ,

by

g(x1, . . . , xn) =
n∏

i=1

fi (xi )cg (F1(x1), · · · , Fn(xn)) ,

then we have

I ( f |g) =
∫

Rn
f (x1, . . . , xn) log

(
f (x1, . . . , xn)

g(x1, . . . , xn)

)
dx1 · · · dxn

=
∫

Rn
c f (F1(x1), . . . , Fn(xn)) log

(
c f (F1(x1), . . . , Fn(xn))

cg(F1(x1), . . . , Fn(xn))

)

dF1(x1) · · · dFn(xn). (2)

Therefore, if f (x1, . . . , xn) is the true law and cg(F1(x1),
. . ., Fn(xn)) has the minimum relative information w.r.t.
c f (F1(x1), . . ., Fn(xn)), then g(x1, . . . , xn)has theminimum
relative information w.r.t. f (x1, . . . , xn). In what follows,
we say an n-variate copula is minimally informative if
the relative information of it from the independence cop-
ula is minimal. Therefore, a minimally informative copula

is the most “independent” copula among all the qualified
copulas. See (Jaynes 2003, Chapter 11) for an enlight-
ening explanation on relative information (therein called
entropy), which gives justification for the employment of
minimally informative copulas for analyzing multivariate
data. Given a multivariate data set, Eq. (2) reduces the
problem of finding the minimally informative multivariate
distribution to the problem of finding the minimally infor-
mative multivariate copula. Then, how to find the minimally
informative multivariate copula? The second property of rel-
ative information claims that a vine-dependent distribution
is minimally informative if and only if all its bivariate cop-
ulas are minimally informative (Bedford and Cooke 2002).
Therefore, to guarantee that a multivariate copula be min-
imally informative, we only need to find the minimally
informative bivariate copula for each edge in the regular
vine.

We now frame our line of approach to modelling multi-
variate data as follows. Given a multivariate data set and
a regular vine on the involved random variables, we will
formulate the optimal bivariate copula for every edge in
the regular vine from the top level to the bottom level.
A bivariate copula is optimal in the sense that it meets
all the specified constraints and is minimally informative,
making the corresponding multivariate copula minimally
informative. Clearly, there are two problems related to our
approach, which will be attended to in the following sec-
tion: (1) the type of constraints that a bivariate copula needs
to meet and (2) how to analytically formulate the optimal
copula.

Remark 1 Here, we presume that the structure of the regular
vine is given. The determination of the structure of a regular
vine is an open topic of great importance. A well-structured
vine copula can capture the underlying multivariate law by
copulas in the lower hierarchy of the vine and therefore can
reduce computational load and mitigate the curse of dimen-
sionality by simplifying copulas in the deeper hierarchy of
the vine (Dißmann et al. 2013). This topic is beyond the scope
of the current work and will be addressed in the future.

3 Minimally informative copula

In the following, for exposition convenience, we assume that
the n random variables X1, . . ., Xn are uniformly distributed.
(We can readily transform an arbitrary multivariate data set
into a data set with uniform marginal distributions by taking
the probability integral transformation.) The constraints that
a qualified copula for an edge needs to meet are called expec-
tation constraints. We illustrate, via an example, the manner
and rationale of specifying expectation constraints, while a
more detailed explanation is given by Bedford et al. (2016).
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Example 1 Let V = {T1, . . . , Tn−1} be a regular vine on the
uniform random variables {X1, . . . , Xn}. For now, we con-
centrate on an edge e ∈ E1; that is, the conditioning set of
e is empty. Let Xi and X j (1 ≤ i < j ≤ n) be the two
uniform random variables joined by the edge e. A bivariate
copula density c̈e(xi , x j ) for the edge e is said to be qual-
ified, if the following k (≥ 1) expectation constraints are
satisfied:

α� =
∫ 1

0

∫ 1

0
h�(xi , x j )c̈e(xi , x j )dxidx j , � = 1, . . . , k.

(3)

Here, the real-valued functionsh1(xi , x j ), . . . , hk(xi , x j ) are
linearly independent, modulo the constants; {α1, . . . , αk} are
known, whose values can be obtained from data or expert
elicitation. Equation (3) says that a qualified copula should
satisfy the constraints that the expected value of the random
variable h�(Xi , X j ) is α� for � = 1, . . . , k. For example,
when hk(Xi , X j ) = Xi X j , then the rank correlation of a
qualified copula should be αk .

In practice, we know a priori the expected values of
the random variables {h1(Xi , X j ), . . . , hk(Xi , X j )}; then,
every qualified copula for edge e should satisfy the con-
straints given in Eq. (3), and we select from these qualified
copulas the minimally informative one. Many constraints
can be written in the form of expectation constraints. For
example, constraints are commonly specified in the form
of probabilities. Yet, a probability can be expressed as
the expectation of an identity function. Another conven-
tional way to specify constraints is in the form of various
kinds of correlations, such as product-moment correlations.
Yet, due to the one-to-one correspondence between the
set of n-variate copulas and the set of n-variate distribu-
tions, any correlation can be expressed as an expectation
w.r.t. an appropriate copula. The way of specifying expec-
tation constraints also allows a wider range of constraints if
desired.

Another major advantage of specifying expectation con-
straints is that the minimally informative bivariate copula for
an edge, satisfying all the specified expectation constraints,
can be readily determined.

Example 2 (continued) According to Nussbaum (1989) and
Borwein et al. (1994) (see Bedford and Wilson (2014) for
a summary), there exists uniquely a minimally informative
bivariate copula satisfying all the expectation constraints in
(3) with the copula density given by

ĉe(xi , x j ) = d1(xi )d2(x j ) exp
(
λ1h1(xi , x j ) + · · ·

+ λkhk(xi , x j )
)
. (4)

The Lagrange multipliers λ1, . . . , λk are unknown and
depend nonlinearly on α1, . . . , αk . The functions d1(·) and
d2(·) are two regularity functions, making ĉe(xi , x j ) a copula
density. Let A(xi , x j ) denote the exponential part:

A(xi , x j ) = exp
(
λ1h1(xi , x j ) + · · · + λkhk(xi , x j )

)
.

Though A(xi , x j ) has a closed-form expression, the two
regularity functions don’t. Hence, ĉe(xi , x j ) need to be deter-
mined numerically. (See Section 1 of the supplementary
material for the determination of the two regularity functions
and the Lagrange multipliers.)

Let CCC([0, 1]2) denote the space of continuous functions
defined on the unit square [0, 1]2. Though ĉe(xi , x j ) is
minimally informative, it may not well approximate the
underlying true copula density ce(xi , x j ).Wewant to approx-
imate ce(xi , x j ) by ĉe(xi , x j ) to any required degree, which
is accomplished by letting h1(xi , x j ), . . . , hk(xi , x j ) be
elements of a particular basis for the spaceCCC([0, 1]2). Specif-
ically, define C( f ) by

C( f ) = {
cė1ė2|De (·) : ∀e ∈ E(V)

}
.

Namely, C( f ) is the set of all possible bivariate cop-
ula densities originated from the multivariate distribution
f (x1, . . . , xn) and therefore is infinite. Furthermore, define
L( f ) by

L( f ) = {log(c) : c ∈ C( f )}
= {

log(cė1ė2|De (·)) : ∀e ∈ E(V)
}
.

It has been proved by Bedford et al. (2016) that the set
C( f ) (and therefore L( f )) is relatively compact in the space
CCC([0, 1]2). Therefore, by selecting sufficiently many basis
functions, {h1(xi , x j ), . . ., hk(xi , x j )}, fromaparticular basis
for the spaceCCC([0, 1]2), we can approximate log(ce(xi , x j ))
to any required degree ε(>0) by a linear combination of
h1(xi , x j ), . . ., hk(xi , x j ):

sup
(xi ,x j )∈[0,1]2

|| log (
ce(xi , x j )

)

−λ1h1(xi , x j ) − · · · − λkhk(xi , x j )|| < ε.

Then ĉe(xi , x j ) defined in Eq. (4) shall well approximate the
true copula density ce(xi , x j ). Here, the metric employed on
the space CCC([0, 1]2) is the sup norm, hence only requiring
the continuity of ce(xi , x j ).

For later reference, we call the set of basis functions
{h1(xi , x j ), . . . , hk(xi , x j )} as “information set.” We fur-
ther explain Example 2 from a backward point of view.
We knew that the set C( f ) is relatively compact in the
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space CCC([0, 1]2). Let {h1(·), . . . , hk(·), . . .} be a countable
set of basis functions that span the space CCC([0, 1]2). Then
for any copula density in C( f ) and any required level ε,
we can select from {h1(·), . . . , hk(·), . . .} finite appropriate
basis functions whose linear combination can approximate
the copula density to the required level. However, the
resulted linear combination is not minimally informative.
Then we turn back to the logarithmic counterpart of C( f ),
i.e., L( f ). Due to the one-to-one correspondence, L( f )
is also a relatively compact set in the space CCC([0, 1]2).
Therefore, for any element in L( f ) and any required
level δ(>0), we can select from {h1(·), . . . , hk(·), . . .}
finite appropriate basis functions whose linear combina-
tion can approximate the element to the required level δ.
By the theoretical work given in Nussbaum (1989) and
Borwein et al. (1994), we are able to derive the mini-
mally informative copula density from the linear combi-
nation, i.e., Eq. (4). The derived minimally informative
copula density well approximates the true underlying cop-
ula density.

There are many bases for the space CCC([0, 1]2), e.g.,
{x p

i x
q
j : p, q ≥ 0}. Note that we are not selecting basis

functions from a whole basis, which is impossible and
unnecessary. We are indeed selecting from a finite set, e.g.,
{x p

i x
q
j : 0 ≤ p, q ≤ r} with an appropriate power limit

r . Theoretically, by letting k be sufficiently large, we can
well approximate any copula density in C( f ) by the same
information set {h1(xi , x j ), . . ., hk(xi , x j )}. However, more
basis functions will bring about more λ�’s to be estimated
and, consequently, more computational load. Hence, when
approximating an individual copula density, we can deter-
mine the entry of a basis function into the information set
according to its contribution to the approximation. Specifi-
cally, let {(x (v)

i , x (v)
j ) : 1 ≤ v ≤ m} denote a sample of m

data points from ce(xi , x j ). Let B denote a finite set of can-
didate basis functions, e.g., B = {x p

i x
q
j : 0 ≤ p, q ≤ r}.

The procedure for selecting basis functions is outlined in
Algorithm 1.

Algorithm 1 Information Set Determination
1: Set the information set to be empty.
2: Select from B the basis function that yields the largest value of the

log-likelihood

m∑

v=1

log(ĉe(x
(v)
i , x (v)

j )). (5)

3: while the stopping criterion is not met do
4: Move the selected basis function from B into the information set.
5: Select from B the basis function which, together with the basis

functions in the information set, yields the largest value of the log-
likelihood (5).

6: end while

For ease of exposition, in what follows, we refer the log-
likelihood from fitting a minimally informative copula to
a data set as “estimated log-likelihood” and refer the log-
likelihood from fitting the true underlying copula to a data
set as “true log-likelihood.” We should note the following
points.

– The stopping criterion in Algorithm 1 could be the
maximal number of basis functions or the minimal
improvement in the estimated log-likelihood. By adding
a new basis function to the information set, the esti-
mated log-likelihood will always increase. Hence, there
is no optimal number of basis functions. The choice
of the number of basis functions involves the trade-
off between approximation accuracy and computational
load.

– Selecting basis functions according to the estimated
log-likelihood is in consistent with information mini-
mization. It is well known that the values of the Lagrange
multipliers λ� (� = 1, . . . , k), satisfying the expecta-
tion constraints, are also maximum likelihood estimates
(see, e.g., Barron and Sheu 1991).

A distinguishing feature of our approach is that we have
made no assumption on the structure of the underlying
multivariate distribution f (x1, . . . , xn), except that all the
(conditional) bivariate copulas should be continuous. The
expectation constraints are extracted from available data or
expert judgement, andwill be further studied in the following
section.

4 Conditional copula approximation

For the practical implementation of our approach, one fun-
damental problem needs to be solved: how to evaluate
{α1, . . . , αk} according to the data at hand. InSect. 3,we took,
for example, an edge in E1. Therein, α� (� = 1, . . . , k) can
be readily evaluated by calculating the sample mean of the
random variable h�(Xi , X j ). For example, if hk(Xi , X j ) =
Xi X j , then αk can be approximated by the sample mean of

Xi X j : αk = 1
m

∑m
v=1 x

(v)
i x (v)

j . It should be noted that for an
edge e in tree Ti (i = 2, . . . , n−1), the conditioning set De is
no longer empty. For notational simplicity, we define Uxe =
Fė1|De (Xė1 | XXXe = xe) andWxe = Fė2|De(Xė2 | XXXe = xe). Let
uxe (resp. wxe ) denote the generic value of Uxe (resp. Wxe ).
The expectation constraints now should take into account the
value of XXXe:

α�(xe) =
∫ 1

0

∫ 1

0
cė1ė2|De

(
uxe , wxe | XXXe = xe

)

× h�(uxe , wxe )duxedwxe . (6)
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Fig. 2 An illustrative scatter plot of {(x(v)
e , h�(ux(v)

e
, wx(v)

e
)) : 1 ≤

v ≤ 5000}

Clearly, α�(·) is now a function of XXXe—the conditioning ran-
dom vector related to the edge e. If, at a point XXXe = xe,
we have a sizable sample of (Uxe ,Wxe ), we intuitively esti-
mate α�(xe) by the sample mean of the random variable
h�(Uxe ,Wxe ). Furthermore, if there are sufficiently many
realizations of the conditioning vector—conditioned on each
of which we have a sizable sample of (Uxe ,Wxe )—we
will be able to approximate the functional form of α�(XXXe),
which is a classical regression problem. Apparently, col-
lected real-life data will never be what we are fancying
here. Because {X1, . . . , Xn} are continuous random vari-
ables, for any point XXXe = xe, there will be only one
realization of the random variable h�(Uxe ,Wxe ). We cer-
tainly cannot replace “estimating α�(xe) by the sample mean
of h�(Uxe ,Wxe )” with “estimating α�(xe) by one realization
of h�(Uxe ,Wxe ).” One simple explanation is that we con-
ventionally treat a realization of a random variable as the
mode of the distribution of that random variable (e.g., when
conducting maximum likelihood estimation). The mean and
the mode of a distribution usually take different values, and
the relationship between them changes from distribution
to distribution. As stated in “Appendix,” under some mild
assumptions, α�(xe) (and, therefore, the Lagrange multipli-
ers {λ1, . . . , λk}) is a continuous function of xe. One may
suggest to approximate such function by fitting a regression
model to the data {(x(v)

e , h�(ux(v)
e

, wx(v)
e

)): 1 ≤ v ≤ m}
(with {x(v)

e : 1 ≤ v ≤ m} being the predictors). How-
ever, the fact is that there is no deterministic relationship
between h�(ux(v)

e
, wx(v)

e
) and x(v)

e ; the scatter plot of the data

{(x(v)
e , h�(ux(v)

e
, wx(v)

e
)): 1 ≤ v ≤ m} is rather erratic (see

Fig. 2).
We have to come up with an efficient surrogate for the

sample mean of the random variable h�(Uxe ,Wxe ).
Bedford et al. (2016) approached the above problem by

dividing the domain of XXXe into equal-volume subregions and

assuming that the copula density cė1ė2|De(·) dose not change
when XXXe varies within an individual subregion. Evidently,
their approach suffers from certain inherent drawbacks. For
example, the partition of the domain of XXXe is rather sub-
jective. Even if they divide the domain by using, say, the
CART (classification and regression tree), the fitted copula
density is still not appealing: It is bumpy. In the following,
we propose to relax the conditional expectation (6) and com-
pute an average over a neighborhood of XXXe = xe, which
is achieved by invoking the kernel-regression technique; see
(Hastie et al. 2009, Chapter 6) for a brief introduction on
kernel regression. Compared with parametric methods, ker-
nel smoothing methods have the advantage that they make
relatively milder structural assumptions. By employing ker-
nel smoothing methods, two approximations are happening
here:

– expectation is approximated by averaging over sample
data;

– conditioning at a point is relaxed to conditioning on a
region encircling that point.

Remark 2 Note that Eq. (6) provides a method to test if the
simplifying assumption can be employed for a particular
edge. Specifically, if the simplifying assumption holds, then
the conditional copula cė1ė2|De

(
uxe , wxe | XXXe = xe

)
does not

depend on the value of XXXe. Therefore, α�(xe) should be a
constant:

α� =
∫ 1

0

∫ 1

0
cė1ė2|De

(
uxe , wxe

)
h�(uxe , wxe )duxedwxe .

Hence, for each value of XXXe = xe, we calculate α�(xe).
If α�(xe) is constant (or varies within a small range), then
we might employ the simplifying assumption. Otherwise, if
α�(xe) varies within awide range or demonstrates an obvious
relationship with xe, then we cannot employ the simplifying
assumption.

4.1 Weighted average and weighted linear regression

For an edge e ∈ Ei (2 ≤ i ≤ n − 1), Xė1 and
Xė2 are the two conditioned random variables, and XXXe

is the conditioning random vector (having (i − 1) ele-
ments). Let (x (v)

ė1
, x (v)

ė2
, x(v)

e ) denote the vth realization
of (Xė1 , Xė2 , XXXe) for v = 1, . . . ,m. We now approx-
imate the conditional expectation of the random variable
h�(Uxe , Wxe), for 1 ≤ � ≤ k and an arbitrary point XXXe = xe.

Let Kμ(xe, x) be a kernel function, allocating an appro-
priate weight to x (∈ [0, 1]i−1) according to its distance from
xe. For example, the radial Epanechnikov kernel is defined
by
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Kμ(xe, x) = D

( ||xe − x||
μ

)
,

in which || · || is the Euclidean norm, and

D(z) =
{
3(1 − z2)/4, if |z| < 1;
0, otherwise.

Here, the parameterμ(>0), controlling the range of the local
neighborhood, is usually called the bandwidth or window
width. (Section 2.2 of the supplementary material discusses
the high-dimensional problem for local learning methods.)
The normal kernel with D(z) = φ(z) is another popular
kernel, where φ(z) is the standard normal density func-
tion. The radial Epanechnikov kernel is optimal in terms
of mean squared error (Epanechnikov 1969), while the nor-
mal kernel is more mathematically tractable. Intuitively, we
can approximate α�(xe) by the Nadaraya–Watson kernel-
weighted average α̂�(xe, μ):

α̂�(xe, μ) =
∑m

v=1 Kμ(xe, x(v)
e )h�(ux(v)

e
, wx(v)

e
)

∑m
v=1 Kμ(xe, x(v)

e )
, (7)

in which ux(v)
e

= Fė1|De(x
(v)
ė1

| XXXe = x(v)
e ) and wx(v)

e
= Fė2|De

(x (v)
ė2

| XXXe = x(v)
e ). The weighted average α̂�(xe, μ) puts

more weight on the data points that fall within distance μ

from xe.
One drawback of locally weighted average is that it can

be biased approaching the boundary of the domain of XXXe,
because of the asymmetry of the data near the boundary.
Locally weighted linear regression can help reduce bias dra-
matically at a modest cost in variance (Fan 1992). It exploits
the fact that, over a small enough subset of the domain, any
sufficiently nice function can be well approximated by an
affine function. (See “Appendix” for the continuity and dif-
ferentiability of the function α�(·).)

However, locally weighted linear regression cannot be
directly applied here, because it may return an imprac-
tical estimate of α�(xe). We take the polynomial basis
{x p

i x
q
j : p, q ≥ 0}, for example. For any basis function

from the polynomial basis, the value of the conditional
expectation α�(xe) should falls within the interval (0, 1).
However, locally weighted linear regression cannot guaran-
tee that its estimate falls into the interval (0, 1). To avoid
impractical estimates, we put an inequality restriction on
regression coefficients. The inequality-constrained weighted
linear regression approach to approximating α�(xe) pro-
ceeds as follows. Let θθθ = (θ0, θ1, . . . , θi−1) be a vector
of coefficients. At any point XXXe = xe, solve the following
inequality-constrained least-square problem:

θ̂θθ(xe, μ) = argmin
θθθ

m∑

v=1

Kμ(xe, x(v)
e )

×
[
h�(ux(v)

e
, wx(v)

e
) − (1, x(v)

e )θθθ tr
]2

,

subject to 0 < (1, xe)θθθ tr < 1. Here, “tr” is the transpose
operator. Then the optimal estimate of α�(xe) is

α̂�(xe, μ) = (1, xe)θ̂θθ(xe, μ)tr. (8)

Guaranteed by the additional constraint, the estimate
α̂�(xe, μ) will always be practical. The estimate θ̂θθ(xe, μ)

can be calculated by Dantzig–Cottle algorithms (Cottle and
Dantzig 1968). According to Theorem 1 of Liew (1976),
it is easy to prove that, when m is sufficiently large, the
inequality-constrained least-square problem will reduce to
a non-constrained least-square problem. Note that though
we fit a linear model to the data within the neighborhood of
XXXe = xe, we only utilize the fitted linear model to evaluate
α̂�(xe, μ) at the single point XXXe = xe. Apparently, com-
pared with locally weighted average, inequality-constrained
locally weighted linear regression is more computationally
demanding.

Like any local learning problem, one needs to determine
the optimal range of the neighborhood, i.e., the value of
μ. A variety of automatic, data-based methods have been
developed for optimizing the bandwidth, with the general
consensus that the plug-in technique (Sheather and Jones
1991) and cross-validation technique (Rudemo 1982) are
the most powerful; see Köhler et al. (2014) for a recent
review. Plug-in methods require subjective estimators of
certain unknown functions and perform badly in multivari-
ate regression. Hence, we here illustrative the leave-one-out
cross-validation approach to determining the optimal band-
widthμ. For five- or tenfold cross-validation, the appropriate
translations are obvious.

For an edge e ∈ Ei (2 ≤ i ≤ n − 1), given the data {(x (v)
ė1

,

x (v)
ė2

, x(v)
e ): 1 ≤ v ≤ m}, we in turn approximate α�(x

(v)
e )

for 1 ≤ v ≤ m. For a particular v and given the informa-
tion set {h1(u, w), . . . , hk(u, w)}, utilize the remaining data
{(x ( j)

ė1
, x ( j)

ė2
, x( j)

e ): 1 ≤ j 
= v ≤ m} and Eqs. (7) or (8) to

calculate the estimate of α�(x
(v)
e ), denoted by α̂�(x

(v)
e , μ) for

� = 1, . . . , k. According to {α̂1(x
(v)
e , μ), · · · , α̂k(x

(v)
e , μ)},

we can readily approximate the true copula density cė1ė2|De

(u, w| XXXe = x(v)
e ) by ĉė1ė2|De

(
u, w| XXXe = x(v)

e ; μ
)
:

ĉė1ė2|De

(
u, w|XXXe = x(v)

e ; μ
)

= d(v)
1 (u;μ)d(v)

2 (w;μ)

× exp
(
λ

(v)
1 (μ)h1(u, w) + · · · + λ

(v)
k (μ)hk(u, w)

)
,
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where the two regularity functions, d(v)
1 (u;μ) and

d(v)
2 (w;μ), and the Lagrange multipliers {λ(v)

1 (μ), . . .,

λ
(v)
k (μ)} are all calculated in the manner of Section 1 in the

supplementary material.
The optimal bandwidth for edge e, denoted by μ∗̇

e1ė2|De
,

is

μ∗̇
e1ė2|De

= argmax
μ

m∑

v=1

log

(
ĉė1ė2|De

(
ux(v)

e
, wx(v)

e
| XXXe = x(v)

e ; μ
))

.

Note that the optimal bandwidths for different edges are dif-
ferent.

4.2 Basis function selection for conditional copulas

Recall that for an unconditional copula, we select from B
the basis function that most improves the log-likelihood
(5); if we have m data points, then the log-likelihood is a
summation of m elements. However, for each conditional
copula, the corresponding log-likelihood contains only one
element. For example, if we have data {(x (v)

ė1
, x (v)

ė2
, x(v)

e ) :
1 ≤ v ≤ m} for edge e, then we will have m dif-

ferent conditional copulas: cė1ė2|De

(
u, w| XXXe = x(v)

e

)
, for

1 ≤ v ≤ m. Of all the m data points {(ux(v)
e

, wx(v)
e

) :
1 ≤ v ≤ m}, only the datum (ux(v)

e
, wx(v)

e
) comes from

the conditional copula cė1ė2|De(u, w| XXXe = x(v)
e ). There-

fore, the estimated log-likelihood contains only one element:
log(ĉė1ė2|De(ux(v)

e
, wx(v)

e
| XXXe = x(v)

e ;μ)). If we select basis

functions for cė1ė2|De

(
u, w| XXXe = x(v)

e

)
according to the

estimated log-likelihood, then the selected basis functions are
optimal only in terms of the single datum (x (v)

ė1
, x (v)

ė2
, x(v)

e ).
Consequently, the approximating copula ĉė1 ė2|De (u, w|XXXe =
x(v)
e ;μ) will be overfitting. Another problem related to
selecting basis functions for conditional copulas is the huge
computational load. If we are dealing with an n-variate vine
copula, then we will have to approximate m × (n−1)(n−2)

2
conditional bivariate copulas. Even worse, taking account
of cross-validation, if we determine the optimal value of μ

among, say, a set of 100 values, then the computational load
is 100 × m × (n−1)(n−2)

2 .
To alleviate the above-mentioned two problems, we here

develop a two-stage procedure for approximating all the con-
ditional copulas related to an edge e ∈ Ei (2 ≤ i ≤ n − 1);
see Algorithm 2.

Algorithm 2 Two-Stage Procedure
1: procedure Stage One
2: Divide the domain of XXXe into z regions: [0, 1]i−1 = R1 ∪ R2 ∪

· · · ∪ Rz .
3: Divide the data {(ux(v)

e
, wx(v)

e
) : 1 ≤ v ≤ m} into z subsets:

{(ux(v)
e

, wx(v)
e

) : x(v)
e ∈ R j , 1 ≤ v ≤ m}, j = 1, . . . , z.

4: for j = 1, . . . , z do
5: Treat the data {(ux(v)

e
, wx(v)

e
) : x(v)

e ∈ R j , 1 ≤ v ≤ m} as
coming from an unconditional copula and determine the information
set, denoted by Bj , for them by using Algorithm 1.

6: end for
7: end procedure
8: procedure Stage Two
9: Let μ denote the value of the bandwidth.
10: for 1 ≤ v ≤ m do
11: If x(v)

e ∈ R j , then the information set used for approximating

the conditional copula cė1 ė2|De (u, w| XXXe = x(v)
e ) is Bj .

12: Use a local learning method to calculate
{α̂1(x

(v)
e , μ), . . . , α̂k(x

(v)
e , μ)}, where k = #Bj .

13: Use the method developed in Section 1 of the supplementary
material to calculate the Lagrangemultipliers {λ(v)

1 (μ), · · · ,λ(v)
k (μ)}

and numerically determine the two regularity functions d(v)
1 (u; μ)

and d(v)
2 (w; μ).

14: The minimally informative copula for

cė1 ė2|De

(
u, w| XXXe = x(v)

e

)
is

ĉė1 ė2|De

(
u, w|XXXe = x(v)

e ; μ
)

= d(v)
1 (u; μ)d(v)

2 (w; μ)

exp
(
λ

(v)
1 (μ)h1(u, w) + · · · + λ

(v)
k (μ)hk(u, w)

)
,

where {h1(u, w), . . . , hk(u, w)} are the basis functions in Bj .
15: end for
16: Calculate

m∑

v=1

log
(
ĉė1 ė2|De

(
ux(v)

e
, wx(v)

e
| XXXe = x(v)

e ; μ
))

. (9)

17: Repeat steps 9–16 for different values ofμ and select the optimal
one that maximizes the estimated log-likelihood (9).

18: end procedure

We should note the following points.

– The two-stageprocedure utilizes the continuity of cė1 ė2|De

(u, w| XXXe = xe) on xe. According to Appendix A, the
dependence structure cė1ė2|De (u, w| XXXe = xe) changes
continuously with xe. Therefore, for a small region, we
can assign the same information set to all the conditional
copulas whose conditioning variables are in that region.
Though the basis functions are the same, the Lagrange
multipliers will be different for different conditional cop-
ulas.
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– For a conditional copula in tree T2, it has only one
conditioning variable. Since every individual variable is
uniformly distributed, we can divide the domain (i.e., the
[0, 1] interval) into a few equal-length subintervals. For
a conditional copula in tree Ti (i ≥ 3), the elements of
the conditioning random vector are mutually dependent.
Instead of subjectively dividing the domain of XXXe into
z regions, we can employ k-means clustering to parti-
tion the observations {x(v)

e : 1 ≤ v ≤ m} into z clusters,
such that the within-cluster distance is minimized and the
between-cluster distance is maximized; see, e.g., Har-
tigan and Wong (1979). The “kmeans” function in R
software serves this purpose.

– If parallel computing is possible, Stage Two can be cal-
culated parallel on each tree level.

5 Numerical study

In this section, we examine the performance of the two-stage
procedure via simulated data. Due to lack of space, a real
data set is analyzed in the supplementary material.

For illustrative purpose, we focus on the D-vine structure
of 6 random variables, with the nodes in tree T1 from left
to right being labeled by {X1, X2, X3, X4, X5, X6}. All the
bivariate copulas originated from f (x1, . . . , x6) are from the
same family. For example, all the bivariate copulas originated
from a 6-variate t-copula are t-copulas and have the same
degrees of freedom.

Three types of bivariate copulas are examined: the Gaus-
sian copula, t-copula and Gumbel copula. The Gaussian
copula and t-copula are able to model moderate and/or

heavy tails; the Gumbel copula is able to capture asymmetric
dependence. In terms of tail dependence, the Gaussian cop-
ula is neither lower nor upper tail dependent; the t-copula
is both lower and upper tail dependent; the Gumbel cop-
ula is upper tail dependent. Due to lack of space, we here
only present simulation results of the t-copula. Simulation
results of the other copulas are given in the supplementary
material. The bivariate t-copula with υ (> 2) degrees of free-
dom is given by Cρ,υ(u, w) = tρ,υ(t−1

υ (u), t−1
υ (w)), where

tυ(·) is the cdf of the one-dimensional t-distribution with υ

degrees of freedom, and tρ,υ(·) is the cdf of the bivariate
t-distribution with υ degrees of freedom and correlation ρ

∈ (−1, 1). The superscript “−1” denotes the inverse of a
function.

The parameter setting for simulating data is described as
follows. For the five bivariate t-copulas in tree T1, the correla-
tion parameterρ takes in turn (from left to right) the following
five values: {0.3, 0.4, 0.5, 0.6, 0.7}, which indicates that the
dependence structure evolves from weak dependence to
strong dependence. All the bivariate t-copulas have 3 degrees
of freedom. For a conditional bivariate t-copula related to an
edge e, the correlation parameter and the conditioning vari-
ables have the following relation:

ρ(xe) = 1.4 × (x̄e − 0.5), (10)

in which x̄e is the average of the values of the condition-
ing variables. Consequently, α�(xe) is differentiable. Under
the above parameter setting, we randomly simulate a sample
of 1000 data points from the 6-variate t-copula. The scatter
plots for copulas c12(u, w) and c56(u, w) are given in Fig. 3,
inwhich scatter plots for twoGaussian copulas and twoGum-

Fig. 3 Scatter plots of samples
with size 1000 from different
bivariate copulas
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Table 1 The evolution of the estimated log-likelihood by gradually adding basis functions: t-copula

Copula ρ Estimated log-likelihood True log-likelihood

B c12(u, w) 0.3 {46.7498, 72.9410, 78.0555, 80.8781, 81.9875} 95.7630

c23(u, w) 0.4 {56.2788, 100.0158, 108.9762, 112.5108, 115.3198} 135.3031

c34(u, w) 0.5 {78.4825, 124.6716, 161.8266, 164.9900, 166.4577} 172.6276

c45(u, w) 0.6 {114.0621, 204.3366, 238.3059, 241.0224, 245.2159} 246.2912

c56(u, w) 0.7 {168.3862, 308.7592, 350.1087, 353.5052, 355.7738} 366.3090

P c12(u, w) 0.3 {49.1366, 53.8103, 61.8424, 64.0455, 72.5107} 95.7630

c23(u, w) 0.4 {76.2565, 86.2504, 92.4941, 98.2177, 99.0780} 135.3031

c34(u, w) 0.5 {123.2001, 132.2268, 139.3346, 144.1076, 147.4368} 172.6276

c45(u, w) 0.6 {173.8291, 187.4981, 201.6163, 209.5390, 216.7686} 246.2912

c56(u, w) 0.7 {271.1958, 292.0212, 309.8739, 317.4228, 327.6366} 366.3090

bel copulas are also included. τ represents the Kendall rank
correlation coefficient. Figure3 shows that, when ρ = 0.3 or
τ = 0.3, the simulated data do not have an evident pattern;
when ρ = 0.7 or τ = 0.7, the relation between the involved
two random variables is noticeable from the data.

Two different bases are used to construct two differ-
ent families of minimally informative copulas: the Bern-
stein basis functions,

{(6
p

)
u p(1 − u)6−p

(6
q

)
wq(1 − w)6−q :

0 ≤ p, q ≤ 6
}
, and the polynomial basis functions {u pwq :

0 ≤ p, q ≤ 6}. Here the polynomial degree is 6. (Via
intensive simulation study, we found that increasing the
power to larger than 6 will improve a little the approxi-
mation, but will impose a lot of additional computational
load.) Although we can approximate a bivariate copula to
any required degree, given only a finite set of candidate
basis functions, different bases will have different efficiency.
Hence, we want to compare Bernstein basis with the poly-
nomial basis.

We now approximate the five bivariate copulas in tree T1
by minimally informative copulas. The estimated and true
log-likelihoods are summarized in Table1.

In Table1, rows 2–6 stand for approximating the five
copulas by Bernstein basis functions, and rows 7–11 stand
for approximating the same five copulas by polynomial
basis functions. For example,when approximating c12(u, w),
the estimated log-likelihood after selecting the first opti-
mal Bernstein basis function (resp. polynomial basis func-
tion) is 46.7498 (resp. 49.1366). After adding the second
optimal Bernstein basis function (resp. polynomial basis
function), the estimated log-likelihood increases to 72.9410
(resp. 53.8103). After selecting five Bernstein basis func-
tions (resp. polynomial basis functions), the final estimated
log-likelihood is 81.9875 (resp. 72.5107), while the true log-
likelihood is 95.7630. It is observed from Table1 that, for
Bernstein basis, the joining of the fifth basis function does not
contribute much to the estimated log-likelihood. In Table1,

for each edge, the estimated log-likelihood with five Bern-
stein basis functions is larger than that with five polynomial
basis functions. Indeed, for each edge, the estimated log-
likelihood with three Bernstein basis functions is already
larger than that with four polynomial basis functions, show-
ing the competence of Bernstein basis.

Surface plots and contour plots for copulas c12(u, w) and
c56(u, w) are drawn in Figs. 4 and 5.

In Fig. 4 (resp., Fig. 5), the left two panels are the surface
plot and contour plot for the true bivariate t-copula c12(u, w)

(resp., c56(u, w)); the middle two panels are the surface plot
and contour plot for the minimally informative copula hav-
ing five Bernstein basis functions; the right two panels are
the surface plot and contour plot for the minimally informa-
tive copula having five polynomial basis functions. Figures4
and 5 show that, compared with the minimally informative
copula having polynomial basis functions, the minimally
informative copula having Bernstein basis functions bears a
stronger resemblancewith the true copula. Simulation results
in the supplementary material also verified that Bernstein
basis is more efficient than polynomial basis. Moreover, it is
found that a combination of four Bernstein basis functions
is capable of producing a good approximation. Hence, in the
following, only Bernstein basis is used, and the cardinality
of the information set for a conditional copula is set to be
four.

We simulate another sample of 1000 data points from
the 6-variate D-vine t-copula and approximate the five
bivariate t-copulas in tree T1 by minimally informative cop-
ulas having five Bernstein basis functions selected from{(6

p

)
u p(1 − u)6−p

(6
q

)
wq(1 − w)6−q : 0 ≤ p, q ≤ 6

}
.

For each t-copula in tree T1, we calculate the correlation
coefficient from the 1000 data points, which is a sample
value of ρ for that copula. We denote such a value by ρ̂.
The correlation between the two random variables of a min-
imally informative copula can be evaluated via numerical
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Fig. 4 Surface plots and
contour plots of the true
bivariate t-copula with ρ = 0.3
(left), of the minimally
informative copula having five
Bernstein basis functions
(middle), and of the minimally
informative copula having five
polynomial basis functions
(right)

Fig. 5 Surface plots and
contour plots of the true
bivariate t-copula with ρ = 0.7
(left), of the minimally
informative copula having five
Bernstein basis functions
(middle), and of the minimally
informative copula having five
polynomial basis functions
(right)

integration. We denote such a value by ρ̄. Apparently, if
the minimally informative copula well approximates the true
copula, the two sample values, ρ̂ and ρ̄, should be close. We
repeat the above procedure for 100 times and obtain, for each
t-copula in tree T1, two sequences: {ρ̂i : i = 1, · · · , 100}
and {ρ̄i : i = 1, . . . , 100}. We plot them in Fig. 6, in which
the five colors {“black,” “red,” “blue,” “green,” “purple”},
respectively, correspond to the five t-copulas having correla-

tion coefficients {0.3, 0.4, 0.5, 0.6, 0.7}. Solid lines represent
the sequence {ρ̄i : i = 1, . . . , 100}, and dotted lines repre-
sent the sequence {ρ̂i : i = 1, . . . , 100}. It is observed from
Fig. 6 that, for each t-copula, the two sample values ρ̂i and
ρ̄i are close to each other, showing the competence of the
minimally informative copula.

We now approximate the conditional copulas in tree T2
by minimally informative copulas. Note that, since there
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Fig. 6 Evolving paths of the five sequences {ρ̂i : i = 1, . . . , 100}
(dotted lines) and of the five sequences {ρ̄i : i = 1, . . . , 100} (solid
lines). (Color figure online)

are 1000 data points, there will be 1000 × 4 different
conditional copulas. Separately determining the informa-
tion set for each of them is time consuming and may
result in overfitting. Hence, we divide the [0, 1] interval
into four subintervals: [0, 1/4), [1/4, 2/4), [2/4, 3/4) and
[3/4, 1]. For an edge, e.g., {1, 3|2}, we group the data
{(F1|2(x (v)

1 |x (v)
2 ), F3|2(x (v)

3 |x (v)
2 )) : 1 ≤ v ≤ 1000} into four

subsets, respectively, corresponding to x (v)
2 falling into subin-

tervals [0, 1/4), [1/4, 2/4), [2/4, 3/4) and [3/4, 1]. Then
we employ Algorithm 2 to approximate each of the 1000×4
conditional copulas. To determine the optimal value ofμ, we
select it from a set of 10 candidates: {0.1, 0.2, . . . , 0.9, 1}.
The candidate bandwidths are determined to balance the
computational load and the approximation accuracy. We

approximate {α1(xe), . . ., αk(xe)} using locally weighted
average.

The total true log-likelihoods for edges {{1, 3|2}, {2, 4|3},
{3, 5|4}, {4, 6|5}} are {97.9351, 138.6133, 125.5207,
158.8430}; the corresponding total estimated log-likelihoods
are {93.6227, 115.3315, 91.7621, 121.9359}. The four opti-
mal bandwidths {u∗

13|2, u∗
24|3, u∗

35|4, u∗
46|5} are {0.3, 0.3, 0.2,

0.3}. The total estimated log-likelihoods are close to the total
true log-likelihoods, showing the feasibility of the two-stage
procedure. To check whether every conditional copula is
well approximated, for each edge in T2 and for each of the
1000 conditional copulas, we calculate the log-likelihood
deviation: the true log-likelihood subtracting the estimated
log-likelihood. The four sequences of log-likelihood devia-
tions are plotted in Fig. 7.

For example, the top-left panel shows the evolution of the
log-likelihood deviation for edge {1, 3|2}, when the value
of X2 increases from 0 to 1. Figure 7 shows that the true
log-likelihood is generally larger than the estimated log-
likelihood, and the log-likelihood deviation fluctuates within
a small range around zero.

From Remark 2, we know that Eq. (6) can be used to test
the simplifying assumption. As here we know the underlying
true law, to examine the performance of the two-stage pro-
cedure, we can also compare the true expected value α�(xe)
with its estimate α̂�(xe, μ∗):

α̂�(xe, μ∗) =
∫ 1

0

∫ 1

0
ĉė1ė2|De (u, w| XXXe = xe; μ∗)

h�(u, w)dudw,

Fig. 7 Evolving paths of the
difference between the true
log-likelihood and the estimated
log-likelihood (tree T2)
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Fig. 8 Evolving paths of the
true expected values {α�(xe)}
(red) and of the estimated
expected values {α̂�(xe, μ∗)}
(black). (Color figure online)
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where ĉė1ė2|De (·) is the approximating minimally informa-
tive copula. Note that, for testing purpose, h�(u, w) need
not belong to the information set of ĉė1ė2|De(·). Here we
might set h�(u, w) to be

(6
3

)
u3(1 − u)3

(6
3

)
w3(1 − w)3. Fig-

ure 8 plots the evolving paths (black) of the four sequences
{α̂�(x

(v)
2 , μ∗

13|2): 1 ≤ v ≤ 1000}, {α̂�(x
(v)
3 , μ∗

24|3): 1 ≤
v ≤ 1000}, {α̂�(x

(v)
4 , μ∗

35|4): 1 ≤ v ≤ 1000} and {α̂�(x
(v)
5 ,

μ∗
46|5): 1 ≤ v ≤ 1000}. In each panel, the red smooth curve

is the evolving path of the true expected values {α�(xe)}. For
each of the top two panels, there are two jumps. The bot-
tom left panel has one jump, and the bottom right panel has
two small jumps. The jumps in Fig. 8 are due to the fact that
we assign different information sets to different subintervals.
As we divide the [0, 1] interval into four subintervals, there
are at most three jumps. Yet, the four panels in Fig. 8 all
have jumps fewer than three, implying that the minimally
informative copula evolves slowly even when the value of
the conditioning variable crosses a splitting point. Figure8
shows that the estimated expected values are close to the true
expected values; the relative errors are all within the interval
(−0.02, 0.08). Figures7 and 8 (and figures in the supplemen-
tary material) show that the two-stage procedure is capable
of approximating conditional copulas.

We reuse the previously simulated 100 sets of data
points (each with size 1000). For each data set, we have
approximated the five bivariate copulas in tree T1; we now
approximate the conditional copulas in tree T2. Note that, for
each edge in tree T2, the conditioning variable always dis-
tributes uniformly in the [0, 1] interval. Hence, it suffices to
study only one edge, say edge {1, 3|2}. For each value of X2,
we first calculate the correlation coefficient of the true condi-
tional copula and then numerically calculate the correlation

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

5
0.

0
0.

5

X2

P
ea

rs
on

 c
or

re
la

tio
n 

co
ef

fic
ie

nt

Fig. 9 The true and estimated correlation coefficients, varyingwith the
value of the conditioning variable X2. The true correlation coefficient
is shown as a dashed curve, the average of the estimates taken over
100 Monte Carlo samples is displayed by the solid curve and the 90%
Monte Carlo confidence intervals are given by dotted curves

coefficient of the approximating minimally informative cop-
ula that is obtained from one data set. Since we have 100 data
sets, we will have 100 such minimally informative copulas.
In other words, for each value of X2, we will have one true
correlation coefficient and 100 estimating correlation coeffi-
cients. We draw the 90% point-wise confidence intervals at
41 equally spaced grid points from 0 to 1; see Fig. 9.

In Fig. 9, it is observed that when X2 varies in, say, interval
(0.2, 0.8), the estimated correlation coefficient is close to the
true correlation coefficient. However, when X2 is too large
or too small, the estimated correlation coefficient is biased.
This is because the locally weighted average becomes biased
approaching the boundary of the domain of X2, due to the
asymmetry of the data near the boundary. One solution is to
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Fig. 10 Evolving paths of the difference between the true log-likelihood and the estimated log-likelihood (trees T3, T4 and T5)

use the locally weighted linear regression. Figures6 and 9
suggest that minimally informative copulas are competent
and the two-stage procedure is robust.

We now approximate the conditional copulas in trees T3,
T4 and T5, in the same manner as approximating the con-
ditional copulas in tree T2, except that we do not divide the
domain of the conditioning random vector into equal-volume
subregions. We employ k-means clustering to partition the
1000 observations of the conditioning random vector into 4
clusters. For T3, the longest distance between two points in
the domain ofXe is

√
2; hence, the set of candidate values of

μ is {0.1, 0.2, . . . , 1.4}. Similarly, for T4, the set of candidate
values of μ is {0.1, 0.2, . . . , 1.7}; for T5, the set of candidate
values of μ is {0.1, 0.2, . . . , 2}.

The total true log-likelihoods for edges {{1, 4|2, 3},
{2, 5|3, 4}, {3, 6|4, 5}} are {110.8164, 121.1668, 123.3986};
the corresponding total estimated log-likelihoods are
{71.5413, 93.2329, 86.5560}. The three optimal bandwidths
{u∗

14|23, u∗
25|34, u∗

36|45} are {0.6, 0.5, 0.5}. The total true
log-likelihoods for edges {1, 5|2, 3, 4} and {2, 6|3, 4, 5} are
108.7813 and 101.3734, respectively; the corresponding
total estimated log-likelihoods are 59.4642 and 55.2778.
The two optimal bandwidths u∗

15|234 and u∗
26|345 are 0.8

and 0.7, respectively. The total true log-likelihood for edge
{1, 6|2, 3, 4, 5} is 62.5579; the corresponding total estimated
log-likelihood is 21.6081. The optimal bandwidth u∗

16|2345 is
0.9.

The 1000 log-likelihood deviations for each edge in trees
T3, T4 and T5 are plotted in Fig. 10.

The upper three panels correspond to tree T3, the bottom
left two panels correspond to tree T4, and the bottom right-
most panel corresponds to tree T5. Figures7 and 10 show that
the two-stage procedure performs well; the estimated log-
likelihoods are close to the true log-likelihoods. Compared
with Fig. 7, the log-likelihood deviation in Fig. 10 fluctuates
more violently, implying that the performance of the two-
stage procedure deteriorates with the tree level increasing.
This is because the estimation error accumulates over tree
level.

To show that our final 6-variate minimally informa-
tive vine copula well fits the given data, we randomly
simulate 1000 data points from it. We first calculate the
upper tail-dependence coefficient (Frahm et al. 2005). The
upper tail-dependence coefficients of the five bivariate cop-
ulas in T1, calculated from the original data, are {0.2837,
0.3546, 0.4145, 0.4848, 0.5776}. The upper tail-dependence
coefficients of the corresponding copulas, calculated from
the simulated data, are {0.2648, 0.3442, 0.4324, 0.4892,
0.5334}. The upper tail-dependence coefficients from the
simulated data are very close to those from the original data.
Given a bivariate data set {(ui , wi ) : 1 ≤ i ≤ m}, the bivari-
ate empirical cumulative distribution function (BECDF) is
defined as
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Fig. 11 Q–Q plots for the five
copulas in tree T1. The x-axis
represents the quantiles of the
simulated data calculated using
Ĥ0(u, w), and the y-axis
represents the quantiles of the
simulated data calculated using
Ĥ1(u, w)
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Ĥ(u, w) = #{i : ui ≤ u, wi ≤ w}
m + 1

.

For a bivariate copula in T1, we let Ĥ0(u, w) denote the
BECDF obtained from the original data; let Ĥ1(u, w) denote
the BECDF obtained from the simulated data. We then cal-
culate the quantiles of the simulated data. To draw the Q–Q
plot, we calculate two sets of quantiles: one set of quantiles
are calculated using Ĥ0(u, w) and the other set of quantiles
are calculated using Ĥ1(u, w). Then the Q–Q plots for the
five bivariate copulas in T1 are given in Fig. 11.

It is clear from Fig. 11 that, for each bivariate copula, the
two BECFDs are very close to each other. Consequently, we
can conclude that our final 6-variate minimally informative
vine copula well fits the given data.

6 Conclusions

In this paper, we addressed the problem of approximating
a conditional copula, the parameters of which change with
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its conditioning variables. To avoid overfitting and to reduce
computational load, we developed a two-stage procedure.
Numerical study showed that the two-stage procedure is
both feasible and competent. We use (reuse) all the data
points that are local; hence, the two-stage procedure can be
applied to relatively higher-dimensional vine copulas than
the method developed by Bedford et al. (2016). From the
illustrative examples, it is clear that modelling data by a vine
hierarchy of minimally informative copulas will demand a
lot of computing effort. Unfortunately, increased compu-
tational load is what we have to pay if we stand by the
viewpoint that a conditional copula should change with its
conditioning variables—we have to approximate the con-
ditional copula for every configuration of its conditioning
variables.

In our approach, there are a number of parameters whose
values need to be subjectively determined. After intensive
numerical study, we list below some rules of thumb for ref-
erence.

– To numerically determine the two regularity functions,
d1(·) and d2(·), it is acceptable to break up the [0, 1]
interval into 200 equal-length subintervals. (We tried four
values, {100, 200, 300, 400}, and found that the esti-
mated log-likelihoods are almost the same for 200, 300
and 400.)

– For an unconditional copula, three to five basis functions
from {(6p

)
u p(1−u)6−p

(6
q

)
wq(1−w)6−q : 0 ≤ p, q ≤ 6}

yield an acceptable compromise between approximation
accuracy and overfitting.

– For a conditional copula, three to four basis functions
from {(6p

)
u p(1−u)6−p

(6
q

)
wq(1−w)6−q : 0 ≤ p, q ≤ 6}

yield an acceptable compromise between approximation
accuracy and computational load.

– In stage one of the two-stage procedure, the number of
regions {R1, . . . , Rz} is usually determined with the pur-
pose of maintaining a sizable sample in each region.

Note that the optimal number of basis functions for a par-
ticular bivariate data set may depend on multiple factors:
the data size, the correlation coefficient, the tail-dependence
coefficient, etc. For example, if the correlation coefficient is
small and we use five basis functions, we may have the over-
fitting problem. On the other hand, if the tail-dependence
coefficient is large and we use three basis functions, the
approximation may be of low accuracy. One approach is
to split the data into a training set and a testing set. For
this issue, more intensive numerical study is needed. To
select the optimal (number of) basis functions, an alter-
native approach is the regularization method: imposing an
appropriate penalty on the log-likelihood [see, e.g., Kauer-
mann and Schellhase (2014)]. However, in terms of the set
{(6p

)
u p(1 − u)6−p

(6
q

)
wq(1 − w)6−q : 0 ≤ p, q ≤ 6}, the

penalized log-likelihood function will have no less than 49
unknown parameters. Consequently, one has to develop a
robust optimization method. Moreover, it is likely that the
penalty parameter has to be numerically determined by using
cross-validation technique.

This work can be enriched in several ways. One promising
direction is to study when we can employ the simplify-
ing assumption. With the number of conditioning variables
increasing, their effect will be complicated and may cancel
out. Hence, in high-dimensional problems, it may be better to
employ the simplifying assumption on copulas in the deeper
hierarchy of a vine.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

Appendix: Properties of the expected value function

We rewrite Eq. (6) here (dropping the subscript “�”):

α(xe) =
∫ 1

0

∫ 1

0
cė1ė2|De (u, w| Xe = xe) h(u, w)dudw.

In Sect. 4, we approximated α(xe) by utilizing two local
learning methods with the assumption that α(xe) is a nice
function of xe. Hence, herein, we study some properties of
α(xe).

The dependence of a conditional copula on its condition-
ing variables is commonly expressed through the parameters
of the conditional copula. Specifically, if θ is the parameter
of cė1ė2|De (·), then cė1ė2|De (u, w| Xe = xe) is usually formu-
lated as cė1ė2|De (u, w; θ(xe)), indicating that the value of the
parameter depends on the conditioning variables. Through-
out, we might assume that θ(xe) is differentiable w.r.t. xe.

To examine the continuity of α(xe), we only need to
prove that, for all ε > 0, there exists a δ > 0, such that
for all ẍe ∈ [0, 1]i−1 with ||ẍe − xe|| < δ, we have that
|α(ẍe) − α(xe)| < ε. A sufficient condition for α(xe) to
be continuous is that cė1ė2|De (u, w; θ(xe)) is continuous in
θ(xe). To see this, we note that because θ(xe) is a continuous
function and cė1ė2|De (u, w; θ(xe)) is continuous in θ(xe),
then cė1ė2|De (u, w; θ(xe)) is a continuous function of xe.
Hence, for all ε > 0 there exists a δ > 0 such that for
all ẍe ∈ [0, 1]i−1 with ||ẍe − xe|| < δ, we have

|cė1ė2|De (u, w; θ(ẍe)) − cė1ė2|De (u, w; θ(xe)) |
<

ε
∫ 1
0

∫ 1
0 h(u, w)dudw

,
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assuming
∫ 1
0

∫ 1
0 h(u, w)dudw is finite. Consequently we

have

|α(ẍe) − α(xe)| <

∫ 1

0

∫ 1

0
|cė1ė2|De (u, w; θ(ẍe))

− cė1ė2|De (u, w; θ(xe)) |h(u, v)dudw < ε.

To examine the differentiability of α(xe), we take partial
derivative w.r.t. x1e , the first variable of xe:

∂α(xe)
∂x1e

=
∫ 1

0

∫ 1

0

∂cė1ė2|De (u, w; θ(xe))
∂x1e

h(u, w)dudw.

If cė1ė2|De (u, w; θ(xe)) is differentiable w.r.t. θ(xe), thenwe
have

∂cė1ė2|De (u, w; θ(xe))
∂x1e

= ∂cė1ė2|De (u, w; θ(xe))
∂θ(xe)

∂θ(xe)
∂x1e

.

Hence, a sufficient condition for α(xe) to be differentiable is
that cė1ė2|De (u, w; θ(xe)) is differentiable w.r.t. θ(xe). Com-
monly used copulas, e.g., Gaussian copula, are all continuous
and differentiable w.r.t. the involved parameters.

Remark 3 With xe varying within a small region, we can
closely approximate cė1ė2|De (u, w; θ(xe)) using a single
information set (with the information set containing sufficient
basis functions). Since cė1ė2|De (u, w; θ(xe)) is a continuous
function of xe, it is easy to prove that each of the Lagrange
multipliers in the minimally informative copula is a contin-
uous function of xe.
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