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Summary

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by 

progressive weakening of limb and bulbar muscles resulting in paralysis and death from 

respiratory failure within three to five years of symptom onset. The disease manifests 

as a consequence of sudden and rapid degeneration of upper and lower motor neurones, 

for which the causative biomolecular processes are still relatively unknown. There is no 

cure. A number of genes have been shown to cause the condition; however a substantial 

proportion of its heritability is still unexplained by genetics. In an attempt to address this, 

a number of genome-wide association studies (GWAS) have been attempted in recent years 

in ALS, in several populations including the Irish.

This thesis describes work that was carried out to investigate the contribution of ge

netic variation to the pathogenesis of ALS. Four separate bodies of work are represented 

in the thesis. The first investigated the contribution of genetic variation across the ANG 

locus (a known ALS gene) to serum, plasma and cerebrospinal fluid levels of angiogenin 

in ALS patients and controls from Ireland, Sweden and Poland. This study confirmed 

previously reported associations of ANG polymorphisms with ALS. Furthermore, angio

genin levels were observed to be lower in ALS patients than in controls and there was a 

tissue-differentiated dysregulation of the protein observed in ALS.

Secondly, the genome-wide single nucleotide polymorphism (SNP) dataset from the 

2008 Irish ALS GWAS was augmented by further genotyping and this larger dataset was



used in several analyses to identify regions of the genome implicated in ALS aetiology. As

sociation testing, copy number variation mapping and mapping of recurrent, overlapping, 

ALS-specific runs of homozygosity were carried out using these data, revealing several 

genomic intervals that may harbour genes that play a role in the pathogenesis of ALS. 

Through these analyses, several genes were also identified as candidates for follow-up work.

The third body of work was aimed at assaying the contribution of rare variation to 

ALS aetiology through next-generation sequencing of the exons of candidate genes that 

overlapped with regions identified in the work on genome-wide SNPs. A large number of 

rare variants were identified in the dataset, for which control sequencing will be required so 

that Irish population variants can be ruled out. Nevertheless, many interesting findings are 

presented from this work, including the observation of a possible burden of rare variants 

in HYDIN, a gene already implicated in neurological development and function, as well 

as rare variants in UNCI3A, a gene previously associated with ALS through GWAS.

Finally, both the augmented genome-wide SNP dataset and the rare variant data gen

erated in the NGS project were used to investigate the optimal design of future studies 

involving exome sequencing. This was primarily achieved through assessment of identity- 

by-descent (IBD) in the Irish population, using a British dataset as a comparison. IBD 

was found to be higher within the Irish population than within the British, and individ

uals showed some clustering of inter-relatedness as well geographical clustering. Exome 

sequencing of as few as three or four inter-related cases and two hypernormal controls 

could reveal novel variants associated with ALS.

In summary, the work presented in this thesis has attempted to describe the contri

bution of genetic variation to ALS aetiology, primarily in the Irish population. In doing 

so, several avenues for future research have been indicated. It is hoped that this work 

will contribute to a better understanding of ALS aetiology and help towards the future 

development of a cure.
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Chapter 1

Introduction

The completion of the human genome project (HGP) in 2001 heralded a paradigm shift 

for biomedical research [1,2]. Over the course of ten years, at a cost of around 2.7 billion 

dollars, thousands of research scientists at twenty sequencing centres across the planet 

painstakingly pieced together the three billion bases of instructions for making a human. 

Ten years on from the initial release of the draft human genome sequence, it is possible 

for a single laboratory to sequence an entire human genome within weeks at a cost ap)- 

proaching one millionth of that of the HGP. This is attributable to the many scientific 

and technological advances that were made as a direct consequence of the HGP, but it is 

also only possible thanks to the immediate product of the project itself: the provision of a 

reference sequence for the human genome which could be used in any subsequent project. 

The various efforts downstream of the HGP have been diverse, allowing humankind to 

take a close look at the variations between individuals and populations, the differences 

that cause disease in some individuals, the specificities that make humans different to 

other species, and the historical events that shaped our evolution.

One of the major derivatives of the HGP was the International SNP Map Working 

Group, which assessed the prevalence and distribution of single nucleotide polymorphisms 

(SNPs) across the human genome in a panel of ethnically diverse individuals [3]. A SNP

1



is a site in the genome where an alternate allele exists at appreciable frequency for one 

base in the genetic sequence. SNPs are typically biallelic and their frequencies within 

populations are usually represented in terms of the minor (less frequent) allele; thus minor 

allele frequency (MAF) is a commonly*used term.

The major finding of the International SNP Map Working Group was that SNPs are 

frequent across the human genome; at the time the authors reported an average density of 

one SNP every 1.9 kilobases (kb). These findings directly fuelled the first iteration of the 

International HapMap Project [4,5] which sought to investigate the patterns of genomic 

variation between individuals by analyzing the co-occurrences of SNPs on haplotypes 

within and betv.^een individuals derived from, at first, four different populations [5,6], later 

to be extended to 11 populations [7]. This also provided a snapshot of the global variation 

in genetic diversity as the allele frequencies of all SNPs assayed could be interrogated and 

compared between populations.

The findings of the International HapMap Project were numerous, but one of its major 

outcomes was a detailed description of the extent of linkage disequilibrium (LD) between 

SNPs across the genome. LD is a statistical measure of the co-occurrence of particular 

alleles of neighbouring SNPs, and exists because genetic recombination affects large chunks 

of the genome at a time, meaning that genetic variation is passed on in chunks. When the 

presence of one allele of a SNP has no predictive effect on which allele occurs at another 

SNP, this is called linkage equilibrium, and any departure from this is LD, measured on 

a scale of 0 to 1. LD is often quantified by one of two statistical metrics, D' or r^, where, 

for a 2-SNP haplotype comprising SNPs A and B,

D' = -p\q\
min(pigi,p292)’

(1.1)



and

2 {xn-PiqiY r =
PiqiP2Q2

(1.2)

where Xij is the observed frequency of the haplotype AiBj, pi is the frequency of Ai and 

qi is the frequency of Bj. In words, D' describes the normalised deviation of the haplo

type frequency from linkage equilibrium, and is a measure of the statistical correlation 

between a pair of SNPs.

Using these measures of LD between the millions of SNPs characterized in the HapMap 

project, a reduced marker set could be ascertained that captured the majority of human 

genetic variation in Europeans [8]. This permitted the development of genome-wide SNP 

arrays that could genotype hundreds of thousands of SNPs in a single experiment. Two 

companies emerged as the main competitors for provision of the technology, Illumina and 

Affymetrix [9], each of which used subtly different strategies to decide their marker sets. 

While Affymetrix included SNPs so that the whole genome was covered relatively regularly, 

Illumina based their marker set design on LD patterns revealed by HapMap to maximise 

the amount of common genetic variation captured [10]. This resulted in demonstrably 

better coverage of the genome with a similar number of markers [11], and improved power 

to detect associations with disease [12]. Consequently, the Illumina SNP array has since 

been the tool of choice for many research groups in the design of genome-wide association 

studies (GWAS).

1.1 SNP chips and genome-wide association studies

The essential principles of the Illumina bead chip and the Infinium assay, which forms 

the biochemical basis for genotyping on Illumina SNP arrays, are summarised in figure 

1.1. DNA is added to the SNP chip and, following the single base extension process, 

fluorescence signals are read from the chip by an array scanner. This way, in a single



straightforward assay, most of the common variation (MAF > 1%) in an individual’s 

genome can be determined. When this is carried out on many individuals across many 

SNP chips, a dataset can be generated for use in a GWAS.

The common disease-common variant hypothesis, on which GWAS are based in prin

ciple, is an idea that began to emerge in the early days of the HGP [13-15]. Scientists 

became increasingly aware that common variation in the human genome may contribute 

to the genetic risk for diseases that are common in the population, and that assaying the 

common variation across the genome in a panel of individuals selected by disease pheno

type may yield associations of these common variants with disease when compared with a 

panel of controls assayed for the same variation. Risch and Merikangas issued a “charge 

to the molecular technologists to develop the tools to meet this challenge,” [13] which 

would come to be realised by the likes of Illumina and Affymetrix in the aftermath of the 

HapMap project.

The potential of GWAS was popularized in a widely-cited early example, a study 

conducted in age-related macular degeneration (AMD). This research compared genotypes 

for 105,980 SNPs in 96 cases and 50 controls [16]. Although successful in identifying 

strongly associated SNPs with AMD, this was a small study by modern standards and for 

most complex genetic diseases this sample size would be at least one order of magnitude 

too small to have the power to detect the more modest effects expected (see section 3.1.1 

and [12]). Nevertheless, it acheived success in its goals and paved the way for many 

subsequent study designs in a variety of conditions and traits.

The use of GWAS as an approach for studying the genetics of human diseases has 

generated an abundance of novel data that will take many years of research to disentangle 

fully. Indeed, for the second quarter of 2011, the National Human Genome Research 

Institute’s GWAS catalogue [17] cited 1,449 published GWAS that demonstrate significant 

associations with disease at p < 5 x 10“® for 237 traits, indicating that the method



Figure 1.1: The Illumina Infinium assay-based genome-wide SNP array. Each ‘chip’ has 
hundreds of thousands of beads with 40-mer oligonucleotide sequences immobilized on 
their surfaces. These oligonucleotides are complementary to the sequences prior to SNPs of 
interest, and each bead represents one SNP. When fragmented DNA is added, it hybridizes 
to the immobilized DNA and a single base extension is carried out with fluorescently- 
labelled nucleotides. This way, the two alleles of the SNP of interest can be characterized 
by reading an overall fluorescence signal from the bead, where red or green means that 
the individual is only carrying allele A or B (interpreted as a homozygote AA or BB) and 
a composite yellow signal means that the individual is heterozygous, carrying both alleles 
A and B.



is succeeding triumphantly in generating new hypotheses. Nevertheless, as long as the 

GWAS method assays only common variation in the human genome, it will stay bound 

by that limitation, and some of the heritability of complex genetic diseases will remain 

enigmatic. In many cases, some of this heritability is likely to be driven by rare variants 

that are either not in strong LD with the common SNPs interrogated in GWAS, or by 

multiple rare variants within a locus that have arisen on different haplotype backgrounds, 

thus being tagged differently. While it has been argued that multiple rare variants can 

drive synthetic association of common variants with disease [18], it has been elegantly 

demonstrated by Wray and colleagues that this is unlikely for the majority of GWAS [19].

The only solution that GWAS methodology' has to addressing the contribution of rare 

variants to genetically heterogenous diseases is the genotyping of huge numbers of indi

viduals. This is potentially problematic for rare diseases for which it could take several 

years to build a sample cohort large enough to meet such needs. Furthermore, multiplicity 

of rare disease-causing variants at a particular locus has the potential to quench GWAS 

signals. For example, if a locus has two possible haplotypes of equal frequency, each tagged 

by opposite alleles of the same SNP, and one disease-causing mutation arises on each hap

lotype simultaneously, a GWAS conducted on a future generation would not detect the 

locus (assuming no genetic drift or selection on a very large, randomly-breeding popula

tion). While purely hypothetical, this situation illustrates how multiple rare variants at a 

disease locus could remain undetected by GWAS.

Therefore, the inability of GWAS to identify disease-associated loci in such cases high

lights the need to assay rare variation in many complex genetic diseases (complex diseases 

are diseases that are likely to have several contributory elements, many of which are ge

netic). A very large international project called The 1000 Genomes Project [20] has been 

underway for some time to investigate rare genetic variation in humans across the planet, 

making data available to the research community as it is generated. The prinicpal techno-



logical innovation that has made such a project possible is the advent of next-generation 

sequencing (NGS) technologies. As well as assessing population genetic phenomena in 

projects such as The 1000 Genomes Project, NGS has potential in the design of experi

ments assaying causative variants in complex genetic diseases.

1.2 Next-generation sequencing

For over three decades, Sanger sequencing [21] has been the most widely-used method 

for determining the sequence of bases in a DNA molecule. However, the upper limits 

of throughput have been reached with current technologies despite a continually growing 

interest in large scale genetic variation. This has necessitated the development of tech

nologies that can sequence DNA in ultra-high throughput, a challenge which has been met 

by a few NGS methods, including those of Roche/454, Applied Biosystems and Illumina. 

The underlying principles of all three technologies are similar: DNA is highly fragmented, 

these fragments are sequenced in parallel in an ultra-high throughput manner (tens of 

millions of molecules at a time), then the resulting sequence reads are aligned to the refer

ence genome, allowing some variation in the sequence. The resulting alignments can then 

be assessed for sequence variants. Such methods have revolutionized the field of genomics 

research on a scale similar to GWAS, with many studies now harnessing the technologies 

in the assessment of genetic variation in a variety of fields.

Technical details of NGS are discussed extensively in chapter 4. One disease that is a 

suitable candidate for both NGS and GWAS is amyotrophic lateral sclerosis (ALS). ALS 

is a complex genetic disease, the aetiology of which has only partially been explained by 

genetic factors. The utility of genomic studies such as GWAS and NGS in ALS is the 

focus of this thesis.



1.3 Amyotrophic lateral sclerosis

ALS is a fatal neurodegenerative condition characterised by progressive loss of motor 

neurones, resulting in death from respiratory failure typically within three to five years 

of disease onset. The lifetime risk for adults developing the condition is roughly 1 in 

400 [22-24], but prevalence at any given time is fairly low (around 4-6 per hundred thou

sand person-years [25]) due to its poor prognosis. With a few exceptions, there is little 

geographic variation in the incidence; in Ireland the incidence has been estimated to be 

around 2.8 per hundred thousand person-years for adults [25]. The geographical outliers 

for incidence include the Pacific Island of Guam and the Kii Peninsula in Japan, where 

an agressive form of ALS/Parkinson-dementia complex is more common [26], possibly due 

to the biomagnification of the neurotoxin BMAA in the diets of the inhabitants of these 

areas [27].

The diagnosis of ALS is made by a combination of neurological examination, electro- 

physiological testing and in some cases, family history. A requisite for its diagnosis is the 

exclusion of other clinically similar conditions which can mimic the symptoms of ALS. 

In order for ALS to be clinically ‘definite’ or ‘probable’, signs of both upper and lower 

motor neurone damage must be present (figure 1.2, [28]). In around 75% of cases, the 

disease manifests first in an extremity such as an arm or leg (commonly termed limb onset 

or spinal onset); in the remainder of cases the site of onset is in the muscles of the face, 

head and neck (bulbar onset). Approximately 5% of ALS patients also have frontotempo

ral dementia (FTD), and as much as 30-50% may have milder cognitive impairment, the 

identification of which requires detailed neuropsychological testing [29,30].

The consequence of motor neurone death is progressive muscle weakness, as decreasing 

efferent innervation leads to muscle atrophy. This effect spreads from the site of onset even

tually to involve the majority of skeletal muscles, although generally autonomic function 

is spared, along with muscles that control eye movement and bladder and bowel function.
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Coronal section of brain
Upper motor neurone
Signs of damage: 

Weakness 
Spasticity 
Hyperreflexia 
Extensor plantar reflex

Ubiquitinated inclusions
Positive for:

TDP-43
FUS

Lower motor neurone
Signs of damage: 

Weakness 
Fasiculations 
Muscle hypotonicity 
Muscle atrophy 
Hyporeflexia

Spinal cord cross-section

Figure 1.2: Features of ALS [31-34]. In order for ALS to be clinically definite or prob
able [28], signs of both upper and lower motor neurone damage must be evident. The 
biochemical hallmark of ALS is cytoplasmic ubiquitinated inclusions that immunostain 
positively for TDP-43 [33] or FUS [34].



Patients therefore end up profoundly disabled and completely dependent on care-givers, as 

well as being dysarthric (unable to speak) and dysphagic (unable to swallow). Progressive 

weakening of the respiratory muscles causes increasing difficulty in breathing, which leads 

to death from either respiratory failure or respiratory infection in the majority of cases [35]. 

At the time of writing, the only FDA-approved drug used to treat the progression of ALS 

is riluzole (Rilutek) [36], which prolongs survival by a just a few months [37]; otherwise 

the only treatment is palliative care [38]. The exact mechansim of action of riluzole in 

slowing ALS progression is unclear; however, it may act by increasing glutamate reuptake 

in the spinal cord, thus limiting the excitotoxic effects of the neurotransmitter [39].

In around 5% of the cases of ALS a family history of the condition is observed [40]. The 

remainder of ALS conditions are termed ‘sporadic’ ALS; however, it is widely accepted 

that a genetic component plays a role in the aetiology of the disease and therefore this 

terminology could be interpreted as somewhat of a misnomer. With the exception of the 

putatively environment-driven cases of ALS in Guam and the Kii Peninsula, there have 

been few, if any, conclusive causative links between environmental risk factors and ALS. 

Coupled with twin-based heritability estimates of 0.61 [41], this suggests a sizeable genetic 

component to the aetiology of the disease. Indeed, to date there have been several genes 

implicated in the pathogenesis of ALS. Generally, a pathophysiological hallmark of the 

disease is ubiquitinated inclusions in the cytoplasm of affected neurones; these inclusions 

have been shown to be positive for the proteins TDP-43 and FUS (figure 1.2, [33,34]).

The first genetic locus to be implicated in ALS was the long arm of chromosome 21, 

identified through familial linkage [42], which was later revealed to be due to mutations 

in SODl [43]. In this discovery, Rosen et al. observed eleven heterozygous mutations in 

SODl [43], and since then, over 150 mutations in this gene have been implicated in the 

aetiology of ALS, although not all of these variants are necessarily pathogenic [44]. SODl 

mutations have been estimated to be the cause of 12-23% of familial ALS cases and 2-3%
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of sporadic ALS cases [45].

Since the discovery of SODl as a cause of ALS, several other genes have been implicated 

in the disease, including ANG [46], DCTNl [47-49], TARDBP [50], FUS [51,52], OPTN 

[53-55], ATXN2 [56], ALS2 [57,58], SETX [59-61], SIGMARl [62], VAPB [63] and 

UBQLN2 [64], and many more have been studied in the disease (figure 1.3). Some of the 

genes in figure 1.3, for example APEX, have been studied in ALS by virtue of LD with 

the causative gene, and many of the studies report negative findings, so this list of genes 

is somewhat longer than the list of genes currently known to cause ALS directly.

Despite many genes being implicated in ALS, a large proportion of its heritability 

remains unexplained. It is such observations that have motivated several GWAS attempts 

in ALS, which are reviewed in chapter 3. Of note, mutations in a further gene, C9orf72, 

have recently been successfully identifed as a cause of ALS with one of the lines of evidence 

that led to this discovery being a strong GWAS signal in the region [66,67] (although this 

was already a known locus identified through familial linkage studies [68]) and a few other 

speculative loci have been identified by GWAS (in particular UNCI 3A [67]). Additionally, 

NGS has had some success, with mutations in VCP being identified in ALS by NGS within 

an extended pedigree [69].

Although many research efforts have identified many genes to be involved in ALS 

aetiology, the pathophysiology of the disease is still incompletely understood, and this is 

in part due to the catalogue of genetic variants known to cause ALS being incomplete. 

Therefore, a better understanding of the underlying genetics of ALS is required, and the 

use of modern genomics technologies in addressing this issue is the focus of this thesis.

1.4 Scope and structure of thesis

This thesis presents research exploring the complex genetics of ALS, mainly within the 

Irish population (within this work, ‘Ireland’ and ‘the Irish population’ refer to the island

11
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of Ireland and the combined population of both The Republic of Ireland and Northern 

Ireland). The research is geared towards a better understanding of the underlying disease 

mechanisms behind ALS and is somewhat representative of the shifting trends in complex 

disease genetics research. Chapter 2 investigates genetic variation across a single locus and 

its effects on protein levels, building on previous observations describing ANG mutations 

in ALS. Chapter 3 scales from a single locus to the whole genome, augmenting an already 

existing whole-genome SNP dataset and assaying common variation across the genome in 

ALS. Chapter 4 uses candidate regions generated in chapter 3 to inform the selection of 

genes for rare variant discovery by NGS. Finally, chapter 5 analyses the data generated 

in chapters 3 and 4 to make inferences about optimal design in future research into the 

genetics of ALS in Ireland.
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Chapter 2

Angiogenin in amyotrophic lateral

sclerosis

2.1 Introduction

In 1999, Hayward et al. demonstrated an association of the D148E variant in APEX, on 

chromosome 14qll.2, with ALS susceptibility in 153 Scottish ALS patients [70]. Greenway 

et al. postulated that the causative variant may not lie within APEX, but instead within 

a nearby gene in LD with the associated variant [71], Examining the local region for 

candidate ALS genes based on function, they speculatively identified ANG due to its 

functional similarity to VEGF [72], a gene which had previously been shown in animal 

studies to be linked to an ALS-like phenotype [73]. A subsequent sequencing study revealed 

an association of the rsll701 polymorphism in ANG with ALS and a novel mutation, K40I, 

in two patients. Two years later, the same authors published results showing that ANG 

mutations segregate with ALS in families, and are also observed in ALS patients with 

the ‘sporadic’ form of the disease [46]. They identified seven novel missense mutations 

in patients of European descent and showed common haplotypes for the K17I and K40I 

mutations in Irish and Scottish patients, suggesting common founders for the mutations.
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The authors also demonstrated that the observed mutations predict loss of RNAse and 

angiogenic function.

Since the observations of Greenway et ai, however, the role of ANG in ALS has been 

the subject of some debate. Initial failure to replicate the findings in Italian cohorts [74,75] 

was countered by an Italian study [76] that demonstrated an ANG mutation in a patient 

that was absent in 332 controls, and a later study that showed several mutations in a 

large Italian ALS cohort [77]. ANG mutations have also been observed in French [78,79], 

German [80] and American [81] patients, but replication in further populations has not 

been demonstrated. Despite the uncertainty around the association of ANG mutations 

with ALS, the product of the ANG gene, angiogenin, has been shown to be an important 

neurodevelopmental protein with neuroprotective properties [82] and ANG mutations lead 

to loss of function in angiogenin [81,83], implicating the gene further in the pathogenesis 

of ALS.

Angiogenin is the 14.1 kD product of ANG [84] and was originally discovered as a 

result of its properties as a potent inducer of neovascularization [85]. It also functions as 

a ribonuclease [86] and it is upregulated in response to hypoxia [87,88]. It is functionally 

similar to vascular endothelial growth factor (VEGF) [72], for which ALS risk promoter 

haplotypes have been described in European ALS populations [89]. Vegf^/*^ mice show 

an adult-onset ALS phenotype [73] and when G93A SODl ALS model rats are treated 

with intracerebroventricular Vegf, disease onset is prolonged [90]. Combined evidence from 

animal models suggests that VEGF isoforms have a neuromodulatory and neuroprotective 

role in the CNS [91].

Because altered regulation of VEGF is linked to ALS disease pathology, study of 

the possible altered regulation of ANG and angiogenin in ALS could be fruitful. Serum 

angiogenin levels have been shown to differ in ALS compared to controls in the Irish pop

ulation [92]. However, the patterns of plasma and cerebrospinal fiuid (CSF) angiogenin
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expression have not previously been investigated, and there have been no studies to deter

mine whether ANG haplotypes modulate protein expression, as is the case with VEGF. 

Further study is needed to delineate the role of angiogenin and genetic variation at the 

ANG locus in ALS.

2.1.1 Research aims

This chapter details work carried out to investigate a number of unknown factors related 

to the role of angiogenin in ALS. Using serum, plasma, DNA and CSF samples, the aim 

was to investigate how genetic variation at the ANG locus relates to expression of the 

angiogenin protein, both in ALS patients and in neurologically normal controls. This also 

afforded the opportunity to examine the relationship between plasma and CSF angiogenin 

levels, as well as re-evaluating the previously published finding of altered expression of 

angiogenin in ALS patients [92].

2,2 Methods

2.2.1 Sampling

In total, 859 ALS patients and 1,047 unrelated control subjects with no family history 

of ALS participated in the study. 467 participants were from Ireland, 763 were from 

Sweden and 676 were from Poland. DNA and serum samples were drawn from Irish and 

Polish participants; DNA, plasma and cerebrospinal fluid (CSF) samples were drawn from 

Swedish participants. The mean age of onset (± SD) for ALS patients was 57.7 ± 12.9 

years; the mean age of controls was 56.3 ± 14.7 years. The numbers of participants in 

each study group and their demographics are detailed in figure 2.1. All patients fulfilled 

the El Escorial criteria for clinially definite or probable ALS [28] and informed written 

consent was obtained from all participants. ALS patients with atypical phenotypes and 

Swedish ALS patients with mutations in SODl were excluded from analysis.

17



IRELAND
ALS

Mean age at onset: 58 ± 12.8 years

SWEDEN
ALS

Mean age at onset: 59 ± 13.0 years

POLAND
ALS

118 males; 113 females; 4 unknown 
Mean age at onset: 56 ± 12.9 years

Control

Mean age: 53 ± 13.6 years

Control

Mean age: 60 ± 12.4 years

Control

191 males; 246 females; 4 unknown 
Mean age: 56 ± 16.9 years

Figure 2.1; Numbers of individuals and demographics of the three study populations. 
Error values for mean ages represent standard deviation.
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For Irish serum samples, approximately 4.5 ml of whole blood was drawn into a 4.9 ml 

Monovette® serum separation tube (Sarstedt, Niimbrecht, Germany) and immediately 

centrifuged at 3,000 RPM for 10 minutes. Approximately 1.5 ml of supernatant was 

then stored at -80° C until assay. Swedish plasma samples and Polish serum samples 

were drawn and extracted using similar methods by collaborators in Sweden and Poland. 

Swedish collaborators also provided CSF samples drawn by spinal tap. For Irish DNA 

samples, approximately 5 ml of whole blood was drawn into two 2.7 ml Monovette® 

tubes (Sarstedt) supplemented with ethylenediaminetetraacetic acid (EDTA) and DNA 

was extracted commercially by KBioscience (Herts, UK).

2.2.2 SNP genotyping

Using data from the CEPH panel of the International Hapmap Project data [5], 5 infor

mative single nucleotide polymorphism (SNP)s with inter-marker r^ < 0.8 and MAF > 5% 

were chosen for genotyping across the ANG locus, capturing the majority of genetic varia

tion across the locus (assessed using the Tagger tool implemented within Haploview [93]). 

DNA samples from Ireland, Sweden and Poland were quantified using a Nanodrop ND-1000 

(Thermo Fisher Scientific) and a minimum of 5 ng of DNA was provided for genotyping 

at KBioscience (Herts, UK) using competitive allele-specific PCR-based KASPar assays. 

Standard quality control checks were performed after genotyping (genotypes formed three 

distinct clusters, water controls were negative, call rate was greater than 90%).

2.2.3 Quantification of angiogenin in CSF, plasma and serum

Angiogenin concentrations in serum, plasma and CSF were measured by enzyme-linked 

immunosorbent assay (ELISA) according to manufacturer’s guidelines (Quantikine Duoset, 

R&D Systems, Abingdon, UK) by collaborators in University of Limerick. All samples 

were assayed in duplicate and calibrated against serially diluted standards of known mass.

19



Pooled CSF and plasma quality control samples were both assayed in duplicate on each 

mitrotiter plate, allowing for estimation of the precision of the assay across all microtitre 

plates.

2.2.4 Statistical analysis

Unless otherwise stated, all statistical analyses were performed using the R statistical 

programming environment [94]. Assessment of allele frequencies and calculation of as

sociation statistics were conducted using the computer programmes Haploview [93] and 

PLINK [95]. Allelic association statistics were calculated using the test, with the multi

ple testing issue being addressed by replication in the three populations and also using the 

permutation algorithm implemented within Haploview. Haplotype blocks were defined as 

a group of SNPs whose upper 95% confidence bound for D' exceeded 98% with the lower 

bound above 70% [96] and a haplotype was examined if it occurred in more than 1% of 

individuals. Haplotypes were tested for association with ALS risk using the x^ test.

Because angiogenin has not been shown to have any binding partners in the blood, 

plasma and serum angiogenin levels were deemed comparable. This was confirmed by 

comparing the levels derived from the two blood components using the Mann-Whitney- 

Wilcoxon test.

A pipeline was developed using the R programming environment to analyse, quality 

control and visualise the ELISA and SNP data together (LvGPlot.R; see appendix B). 

Data for angiogenin levels were first assessed for the reported influence of age and sex [97]. 

Using data pooled from cases and controls in all three populations, angiogenin levels were 

regressed against age and sex and an outlier was identified and removed if its studentized 

residual exceeded the critical t statistic for the group’s Bonferroni-corrected 5% significance 

threshold. This regression analysis was then re-iterated until no further outliers could be 

identified. Four Swedish plasma values and four Swedish CSF values were removed this
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way.

The resulting linear models from the regression analyses were used to adjust the values 

in the respective groups based on age and sex. The influences of genotypes across the five 

SNPs were then assessed by analysis of variance (ANOVA) for each SNP and the differences 

between case and control angiogenin levels for each genotype were assessed for statistical 

significance using the Mann-Whitney-Wilcoxon test. Finally, using data from the Swedish 

population, corrected plasma angiogenin levels were assessed for correlation with corrected 

CSF angiogenin levels in ALS patients and in controls independently.

2.3 Results

2.3.1 ANG SNP and haplotype association

The mean genotyping call rate across all SNPs in the three populations was 98.4%. No 

SNP deviated significantly from Hardy-Weinberg equilibrium in any study population (p > 

0.01 for all SNPs in all populations). Table 2.1 shows the results for the allelic association 

tests for the five SNPs, and linkage disequilibrium (LD) between SNPs is shown in figure 

2.2. All five SNPs showed association with risk for ALS in the Irish study group, with one 

SNP, rsl7114699, replicating in the Swedish population {pirish = 0.03; pswedish = 0.001). 

No SNP showed association in the Polish population. A haplotype block was identified 

in all three populations, incorporating SNPs rs9322855, rs8004382 and rs4470055 (figme 

2.2). The AAG and CGA haplotypes at these three SNPs associated with ALS in the Irish 

data, while the AGG haplotype showed strong association with ALS in the Swedish data 

(table 2.2).

2.3.2 Plasma, serum and CSF angiogenin levels

Collaborators reported an inter-assay coefficient of variation of 6% and 8% for the high 

and low plasma quality control. An inter-assay coefficient of variation of 9% was obtained
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for CSF. In the initial regression analysis, age and sex both had a significant effect on 

angiogenin levels in plasma/serum and in CSF (P(>|t|) < 0.0001 for all covariates); the 

coefficients from the linear models were used to adjust the values for angiogenin levels. 

When corrected plasma and serum angiogenin levels were compared, they did not differ 

significantly (figure 2.3(a); p = 0.93, Mann-Whitney-Wilcoxon test), demonstrating that 

data could be pooled irrespective of the blood component from which the data were de

rived. Using data pooled from the three populations and after correcting for age and sex, 

angiogenin levels were significantly lower in ALS patients them in controls in plasma/serum 

(figure 2.3(b); mean ± SD = 438.2 ± 112.2 ng/ml for the ALS group and 467.6 ± 105.4 

ng/ml for controls; p = 0.001, Mann-Whitney-Wilcoxon test) and in CSF (mean ± SD = 

5.582 ± 1.754 ng/ml for the ALS group and 6.197 ± 1.987 ng/ml for controls; p = 0.01, 

Mann-Whitney-Wilcoxon test).

There was a significant positive correlation (p < 0.0001, Pearson product-moment cor

relation) between corrected CSF angiogenin levels and corrected plasma angiogenin levels 

in controls, whereas in ALS patients (p = 0.21) this was not statistically distinguishable 

from a correlation of 0 (figure 2.4; control — 0.13, ALS — 0.011)

2.3.3 Contribution of SNP genotypes to angiogenin levels

In the initial regression analyses to correct for age and sex, angiogenin levels were found 

to vary considerably around the fitted models (multiple serum/plasma — 0.074; multiple 

r^C5F = 0.16). ANOVA was used to assess the contribution of genotype at each SNP to 

the overall variance in the data and the Mann-Whitney-Wilcoxon test was used to assess 

the differences between corrected plasma/serum levels in ALS patients and controls for 

each SNP, separated by genotype. Data were analysed both as independent populations 

and also as a pooled dataset. The results of these tests, along with the group means, are 

reported in figure 2.5.
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(b)

(c)

Figure 2.3: Notched boxplots showing differences in angiogenin levels, (a) Corrected 
angiogenin levels in Swedish plasma samples compared with pooled Irish and Polish serum 
samples (b) Corrected serum/plasma angiogenin levels in controls compared with ALS 
patients, (c) Corrected CSF angiogenin levels in controls compared with ALS patients.
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Figure 2.4: Correlation of CSF angiogenin levels with serum angiogenin levels in the 
Swedish population. ALS patients are shown in red and controls are shown in blue. Dashed 
lines indicate 95% confidence intervals of the regression lines, r^ values are: controls, 0.13; 
ALS, 0.011.
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In the large Swedish dataset, an allele dose-dependent regulation of plasma angiogenin 

was readily observable for all SNPs in controls and perturbation of this pattern was seen 

in ALS patients at SNPs rs9322855, rs8004382 and rsllTOl. These findings are reflected in 

the pooled dataset. In the pooled data, allele dose-determined angiogenin levels for ALS 

patients were not consistent with controls for SNP rsl7114699. Only at SNP rsllTOl was 

a significant contribution of genotype to the variance in controls observable in all three 

populations; however, in the pooled dataset genotypes at every SNP except rs9322855 were 

shown to contribute significantly to variance in controls. No SNP contributed significantly 

to variance in ALS patients in any dataset, wih the exception of SNP rs 11701 in the Polish 

dataset.

Figure 2.6 shows the same analysis applied to CSF levels in Swedish patients. The 

allele dose-dependent relationship between ANG SNP genotypes and angiogenin levels 

in CSF was not as readily observable as with plasma angiogenin. The same patterns 

as plasma were observed in CSF at SNPs rs8004382, rsll701 and rsl7114699, however 

genotypes were not shown to contribute significantly to variance in levels for any of these 

SNPs. Dysregulation of CSF angiogenin levels was observed for the majority of the SNPs 

in ALS cases, with very little variation in the mean CSF angiogenin level for any SNP 

genotype.

2.4 Discussion

This study set out to identify the contribution of genetic variation across the ANG locus 

to levels of angiogenin detected in serum, plasma and CSF. It also assessed the relation

ship between serum/plasma angiogenin and CSF angiogenin, and has highlighted some 

discrepancies with the extant literature on the level of expression of angiogenin in ALS 

patients compared to controls.

Section 2.3.1 confirms the previously observed association between ANG polymor-
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Figure 2.5: Mean corrected serum or plasma angiogenin concentrations as a function of 
ANG SNP genotypes. ALS patients are shown in red aud controls are shown in blue. 
Significant differences between ALS patients and controls are denoted by solid lines and 
significant F-statistics within groups are denoted by asterisks. Error bars are standard 
error of the mean. Numbers of observations for each genotype at each SNP are indicated 
in the table below each plot.
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are standard error of the mean. Numbers of observations for each genotype at each SNP 
are indicated in the table below each plot.
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phisms and ALS in the Irish population [46], with 5 SNPs across the ANG gene showing 

association with ALS. One SNP, rsl711699, replicated in the Swedish cohort, showing 

strong association with ALS risk (p = 0.001). It has also been shown that two ANG hap- 

lotypes in the Irish and one in the Swedish associate with ALS, with the A AG haplotype 

being protective in the Irish population, and the remainder of associated haplotypes being 

associated with increased risk for ALS. The combined SNP and haplotype association re

sults add strength to the argument that ANG is implicated in the pathogenesis of sporadic 

ALS.

Although replication in the Swedish population improves the argument for confidence 

in the Irish findings, no SNP or haplotype associated with ALS in the Polish popula

tion. Similarly, in a recent screen for replication of findings firom the Irish genome-wide 

association study for ALS risk [98] using a Polish dataset, the results were surprisingly 

uninformative [99]. The failure to replicate in the Polish population may reflect true 

population-based differences, with the aetiology of ALS in Poland being explained by a 

different set of genetic factors with different founders, or, at least, the absence of a founder 

for A AG-associated ALS. Thus, the complex genetics of ALS may be different between 

European populations, which has been suggested previously by van Es et al. [100], and the 

Swedish population may represent a better replication population for discoveries in Irish 

ALS patients than the Polish.

Figure 2.5 (notably parts a and c) demonstrates the need for large datasets when 

analysing data that vary so substantially by chance; this is also exemplified by the large 

spread of data in figure 2.4. However, the large Swedish dataset permits a reasonable 

estimate of the contribution of SNP genotypes to angiogenin levels, and it is evident that 

angiogenin expression in plasma is allele dose-dependent for SNPs across the ANG locus. 

This is also noted in data pooled from the three populations, although a caveat here is that 

if the arguments made about population-specific differences are correct, then the pooled
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data would not be as representative for disease-driven phenomena as data that exclude 

the Polish levels. Nevertheless, the effect is indeed seen in the pooled data.

The relationship between angiogenin levels and allele dose that was observed in controls 

was not consistent in ALS patients. In the majority of cases, angiogenin levels were lower 

in ALS patients than in controls, regardless of SNP genotype. Moreover, SNP genotypes 

did not significantly contribute to the variance in the level of angiogenin in ALS patients, 

as determined by analysis of variance (with the exception of SNP genotypes for rsllTOl in 

the Polish dataset), suggesting that the regulation of angiogenin levels by genetic variation 

across the ANG locus is not present in ALS cases.

The previous finding by Cronin et al. that serum angiogenin levels are elevated in 

ALS patients [92] was not replicated in this study. In fact, it was found that corrected 

serum/plasma angiogenin were significantly lower in ALS patients than in controls (p < 

0.001, figure 2.3(b)). This discrepancy is most likely to be due to the statistical approach 

implemented when analyzing the data. In this study, a statistically robust estimate of 

the influence of age and sex on angiogenin levels was made using the complete dataset 

of values, totalling 532 individuals. Using the coefficients derived from the linear model 

applied to the data, the same correction factors were applied to both case and control 

data, under the assumption that age and sex determination of angiogenin levels would 

not be altered by disease status. Conversely, Cronin et al. made independent estimates 

in cases and controls, fitting separate models to the case cohort of just 79 patients and 

the control cohort of just 72 individuals, and correcting the levels thereafter. For data 

that vary so substantially around the fitted models, the better method is likely to be the 

one which used a greater number of values to estimate the regression coefficients. Indeed, 

applying the methods of Cronin et al. to this dataset, fitting different models to cases and 

controls, results in a significantly higher mean corrected angiogenin level in ALS patients 

than in controls (p < 0.0001), however, this is driven by the difference in the age and sex
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coefficient estimates and the consequent different levels of correction applied to the two 

cohorts.

In neurologically normal controls, plasma angiogenin concentration weakly, but signif

icantly, predicts CSF angiogenin concentration (p < 0.0001, = 0.13, figure 2.4). When

corrected CSF angiogenin level is regressed against corrected plasma angiogenin level for 

ALS cases, however, the observed correlation (r^ = 0.011) is not statistically distinguish

able from a correlation of 0 (p = 0.21). This may suggest a tissue-specific dysregulation 

of angiogenin expression in ALS. This could be due to a number of factors, including 

perturbation of angiogenin transport in ALS, however an interesting possibility could be 

micro RNA (miRNA) regulation of angiogenin expression. Altered miRNA regulation of 

progranulin has been reported recently in frontotemporal dementia [101]. As progranulin 

is functionally similar to angiogenin, and there is significant clinical overlap between fron

totemporal dementia and ALS [102], a similar form of altered regulation of angiogenin 

may apply in ALS. A search of the EBI’s miRBase Sequence Database [103] using the 

online Microcosm web application reveals 19 potential miRNA binding sites in the ANG 

gene for 24 human miRNAs, some of which may be preferentially expressed in the central 

nervous system [104]. This suggests a possible mechanism for the observed tissue-specific 

differences indicating that further investigation of miRNA regulation of angiogenin could 

be fruitful.

In summary, this work has confirmed that ANG variants associate with ALS in the 

Irish and also in the Swedish. It also demonstrates that angiogenin expression is modu

lated by genetic variation across the ANG gene in an allele-dose dependent manner, and 

that this regulation is disrupted in ALS patients. The finding that plasma angiogenin 

level does not predict CSF angiogenin level in ALS patients suggests a tissue-specific reg

ulation of angiogenin that may be perturbed by genetic or phenotypic variation in ALS. 

Cumulatively, the results suggest dysregulation of angiogenin in ALS. Given that it is un-
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likely that the differences in levels are entirely driven by disease-associated mutations in 

ANG, the mechanisms behind the dysregulation probably lie within biochemical signalling 

pathways and regulatory networks to which angiogenin and ANG belong. Further study 

geared towards elucidating the complexities of regulation of angiogenin may yield fur

ther information about the pathogenesis of ALS and consequent potential for therapeutic 

intervention.
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Chapter 3

Genome-wide SNP analysis in

ALS

3.1 Introduction

There have been several ALS GWAS attempts carried out in multiple populations, with 

multifarious findings. An early GWAS was carried out by Schymick et al. in 2007 on 276 

sporadic ALS patients and 271 controls in the USA [105]. The authors found that no 

SNP was associated with ALS at a level of significance that was strong enough to draw 

firm conclusions; however they reported an over-representation of genes associated with 

regulation of the actin cytoskeleton. As a commentary on the size of the study and the 

power to detect significant associations, the authors stressed the need for replication of 

their findings, a sentiment that would come to be reflected in several subsequent GWAS. 

A second GWAS from the USA followed shortly [106], which analyzed genome-wide SNPs 

in a discovery set of 386 ALS patients and 542 controls followed by genotyping of the top 

384 SNPs in a replication panel of 766 patients and 750 controls. Top findings were then 

further assessed by re-analysis of the dataset of Schymick et al. [105]. Interestingly, the 

authors used a pooled genotyping approach, in which they performed only two genotyping
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experiments for the full set of 386 patients and only one for the 542 controls, where each 

experiment was performed on a sample containing DNA mixed from many individuals. 

They subsequently used MAF estimates derived from the genotyping data to ascertain 

association statistics. A single SNP was associated at genome-wide significance (see section 

3.1.1), mapping to the uncharacterized gene FLJ10986, which the authors demonstrated 

to be detectable in CSF.

A three-stage GWAS came from The Netherlands soon after the American studies [107], 

which identified associations with ALS in a panel of 461 patients and 450 controls, following 

up the 500 most associated SNPs in 291 Belgian and 272 further Dutch cases and 267 

Belgian and 336 Dutch controls. The third stage was to genotype the 17 most associated 

SNPs from stage 2 in a Swedish population of 313 cases and 303 controls. The reported 

best result from this study was an association for a SNP lying within ITPR2, and when 

the authors assessed the expression levels of ITPR2 mRNA in blood cells, it was found to 

be lower in ALS cases than in controls.

In 2008, Cronin et al. published the results of a GWAS of sporadic ALS in 221 Irish 

cases and 211 controls [98]. The authors used the first USA GWAS [105] and Dutch phase 

1 GWAS [107] as replication datasets. In the study, no SNP associated with ALS at 

genome-wide significance in the Irish population alone or when the data from Ireland, the 

USA and the Netherlands were pooled. However, the top association of a SNP in DPP6 

was reported, a finding which was also published in almost the same dataset at roughly the 

same time by van Es et al. [108]. DPP6 was later also identified as a variant in a Dutch 

study on copy number variation in ALS [109]. However, in a screen for replication of Cronin 

et al.'s GWAS findings in a Polish dataset [99], the DPP6 result was not replicated; the 

authors suggested population-specific differences in disease allele frequencies. Replication 

has since also been troublesome in other populations [110-113].

Ohio et al. cast further doubt on the realness of the DPP6 associations, as well as the
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ITPR2 findings of van Es et al. [113], by showing lack of replication of these findings in a 

tv/o-stage Italian GWAS in 277 cases and 1,510 controls, supplemented with the 276 ALS 

cases from Schymick et al. [105] and 828 controls from the USA. The second stage of this 

GWAS focussed on 7,600 top SNPs from the first stage genotyped in a further 2,160 cases 

and 3,008 controls, all of European descent. The authors cited the possibility that the 

causative variants at these loci may not be in strong LD with the associated SNPs in the 

previous GWAS, therefore leading to false refutation of these loci in the Italian study, but 

concluded that the findings generally point towards greater genetic heterogeneity in the 

disease than previously anticipated.

Two strong association signals were observed in a GWAS by Laaksovirta et al. in the 

Finnish population, mapping to chromosome 21q22 (driven by the SODl D90A allele) 

and the chromosome 9p locus previously identified in familial linkage studies [114-118]. 

Chromosome 9p21 was also identified in two large international GWAS [66,67], along with 

UNC13A, which has also been shown to correlate with a short disease duration [119]. 

These three studies [66,67,120] represent the most successful GWAS in ALS to date; this 

is probably mostly due to the large sample sizes involved, and in the case of the Finnish 

study, because of the very large proportion of the ALS in this population attributable 

to either SODl or C9orf72, the gene later discovered to be responsible for the signal at 

chromosome 9p21 [121,122].

The findings of the many GWAS efforts in ALS have, however, demonstrated that ALS 

is likely to be a genetically heterogenous disease, and discovery of disease-associated SNPs 

by GWAS requires very large sample sizes. However, the difficulty in generating replicable 

associations is neither an indication that the disease does not have a large genetic compo

nent, nor is it a refutation of the common disease-common variant hypothesis. Indeed, the 

twin study-based heritability estimate of 0.61 for ALS [41] suggests that efforts to search 

the genome for loci involved in ALS aetiology should continue. This could be acheived
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through further manipulation of GWAS datasets, but for the smaller studies it may re

quire the focus of researchers to shift from the canopy of the strongest association signals 

towards the undergrowth of more moderately associated signals, so that true associations 

are not missed in, for example, two-stage designs that only consider top results in the first 

stage. Additionally, other patterns may exist in the SNP data that are uninterrogable 

by traditional GWAS design. Therefore, further generation and analysis of genome-wide 

SNP datasets is warranted. There are many considerations in the design of GWAS and the 

analysis of such data, the majority of which are based on statistical factors that become 

apparent when analyzing such large volumes of data.

3.1.1 Statistical considerations in GWAS design and analysis

With genome-wide SNP datasets, the contribution of genetic variation to disease aetiology 

can be assessed using a statistic as straightforward as the test with one degree of free

dom. However, given that there would be a non-trivial amount of chance variation within 

the data as well as systematic (disease-driven) variation, a high false positive rate would 

become a problem as a consequence of the very large number of independent statistical 

tests that are performed on the dataset (say, 500,000). Therefore, traditional p-value cut

offs determining significance are too high; with a = 0.05 roughly 5% of the data (25,000 

SNPs) would be associated by chance and with a = 0.01 approximately 1% of the data 

(5,000 SNPs) would be associated by chance.

The most popular way to defend against such high numbers of type I errors is to define 

a Bonferroni-corrected p-value threshold, which is simply calculated by dividing a by the 

number of independent statistical tests that were performed. Therefore, for a dataset of 

500,000 SNPs and an uncorrected p-value threshold of 0.05 a Bonferroni-corrected p-value 

threshold would be a = 1 x 10~^. This, however, introduces a new problem: statistical 

power. In order to acheive power to detect such associations, very large sample sizes
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are generally needed. To put this in context, the power of the 2008 Irish GWAS [98] 

to detect an association of a medium-frequency (25%) variant with ALS at genome-wide 

significance, assuming full penetrance under a multiplicative model and a modest genotype 

relative risk of 1.5, was 2% (assessed using the CaTS Power Calculator [123]).

Despite stringent significance thresholds being set to reduce the possibility of false 

positives, rigorous quality control of a genome-wide SNP dataset is required to eliminate 

the potential for spurious associations that can arise as a consequence of systematic biases 

present in the data. This is usually acheived through exclusion of SNPs that do not 

meet criteria such as Hardy-Weinberg equilibrium [124,125], systematic missingness (for 

example, more missing genotypes in controls than in cases) and allele frequency. In a 

population-based GWAS, the presence of cryptically related individuals in the case or 

control cohort could influence association statistics also, as related individuals are likely 

to share more of their genotypes by descent from a common ancestor, and such individuals 

should be removed.

Another important factor to control with a GWAS is the ancestry of the genotyped 

individuals. In a case where more than one population is present in the case-control 

cohort, if the populations are not carefully balanced between cases and controls, this 

can lead to spurious associations through population stratification (figure 3.1). A good 

method for controlling against this is to select only individuals derived from the same 

population for genotyping, although the ancestry of individuals within a genotyped cohort 

can be checked using ancestry-informative markers compared against reference panels 

(for example, HapMap individuals) or by performing principal components analysis on 

genome-wide SNP markers [126], and outliers can subsequently be removed.

Although the power to detect associations with disease is low with a small genome

wide SNP dataset, a GWAS is not the only application of such data for identification of 

regions that may be linked to disease aetiology. Alternative methods, such as analysis of

39



I Individuals only carrying 
reference allele for SNP

I Individuals carrying 
alternate allele for SNP

Figure 3.1: An illustration of an extreme example of population stratification in a case- 
control association study. In the orange population, 20% of individuals carry the alternate 
allele for the SNP of interest, whereas in the blue population it is present in 50%. In this 
situation, where there is an imbalanced assignment of the populations to the case and 
control cohorts, the odds ratio for having disease if the individual is a carrier of the minor 
allele of the SNP is = 2.236, with a statistic of 12.24, p = 4.68 x 10““*. However, 
this strong association is being driven entirely by the population-differentiated nature of 
the SNP. Within either population, there is no association of the SNP with the disease 
(for both populations, p = 1.)
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copy number variants (CNVs) or mapping of homozygous segments of the genome, have 

been shown to be successful in mapping disease loci in a number of studies.

3.1.2 Alternative uses of a genome-wide SNP dataset 

Copy number variation

Copy number variation describes the situation where individuals differ in their number 

of copies of certain chromosomal segments. Whereas most parts of the human genome 

should be diploid, any individual could posess genomic segments that have either been 

duplicated or deleted, resulting in that individual posessing more or less of the genetic 

material corresponding to the segments. It is suggested that microhomology-mediated 

break-induced replication of genomic segments provides a mechanistic explanation for the 

phenomenon [127], which is an important source of genetic variation, accounting for up 

to 12% of possible human genetic variation [128] and even existing within individuals 

[129] and between monozygotic twins [130,131]. Copy number variation is therefore an 

important possibility to consider when investigating the genetics of complex diseases.

Gold standard technologies used to map CNVs in the genome include array compara

tive genomic hybridization (aCGH) and quantitative polymerase chain reaction (qPCR). 

However, CNVs can also be inferred using data generated during SNP genotyping on a 

genome-wide SNP array. Such techniques typically make use of two values that can be 

generated from such data: the log R ratio (LRR), which is a normalized measure of the 

overall intensity of the signal measured from the SNP array (per SNP), and the B allele 

frequency (BAF), a normalized measure of the relative intensity of the ‘B’ allele’s signal 

(per SNP) when the beadchip is scanned. CNVs can be identified in such data when 

long stretches of consecutive SNPs differ significantly from expected values (figure 3.2). 

Specifically, under copy-neutral conditions, assuming no variation in genome-wide inten

sity values, LRR = 0 and BAF € {0,0.5,!}. In practice, there is a large amount of
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Figure 3.2; Copy number variation in SNP intensity data, (a) A 2.8 Mb copy number gain 
in an ALS patient on chromsome 18. Each point represents a SNP, and the CNV lies in the 
middle of the two plots, marked by an overall increase in LRR and a separation of BAF 
from the expected {0,0.5,!} to {0,0.33,0.67,1}, representing the genotypes AAA,AAB,ABB 
and BBB. (b) A 2.1 Mb copy number deletion in a different ALS patient on chromosome 
11. This time, the CNV is indicated by an overall decrease in LRR and a loss of the 
heterozygous state in BAF {BAF € {0,1}, representing hemizygous genotypes A and B 
only). Interestingly, two copy-neutral runs of homozygosity sure also visible in this plot at 
around 41-42 and 43-44 Mb. The centromere is visible at around 52-55 Mb, demarcated 
by an absence of genotyped SNPs.

random variation in LRR and BAF across the genome (including systematic bias caused 

by local GC content) so algorithms designed to detect CNVs must be able to account for 

this in identifying true CNVs.

A paper which compared seven different methods for mapping CNVs using SNP in

tensity data [132] concluded that the best-performing algorithm assessed was the method 

implemented in QuantiSNP [133]. This uses an objective-Bayes (OB) hidden Markov 

model (HMM) to infer copy number variation and implements an expectation maximiza

tion (EM) algorithm to generate an associated statistic, the Bayes factor (reported by the 

algorithm as log{B ayes factor)), which can be used to set a cutoff false positive rate for 

CNVs called by the algorithm. A similar method is PennCNV [134], which also uses a 

HMM to infer copy number variation but does not report quality statistics such as Bayes 

factor; instead the documentation recommends identifying outlying data post hoc.
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Copy number variation has been assessed in ALS in the Irish population in two separate 

studies [109,135]. In the first, Cronin et al. identified putative regions of copy number 

variation using QuantiSNP in 408 Irish and 868 Dutch individuals and found that although 

no CNVs associated significantly with ALS, a number of ALS-specific CNVs were observed 

in both the Irish and the Dutch datasets [135]. In a much larger multi-population study, 

Blauw et al. performed a genome-wide CNV association study using PennCNV with 1,875 

cases and 8,731 controls, replicating top results in a cohort of 2,559 cases and 5,887 

controls [109]. The main finding was an association of CNVs in DPP6 with ALS; the 

authors also observed a number of rare CNVs specific to ALS.

In a large work that built up a comprehensive map of copy number variation across 

the genome [136], Conrad et al. concluded that common CNVs are unlikely to account for 

the missing heritability of complex genetic disorders that has remained following GWAS. 

This, however, does not speak for the potential contribution of rare or very rare CNVs 

to ALS susceptibility and so the assessment of copy number variation in ALS is still 

possibly a worthwile pursuit (although a conclusion of Blauw et al. was that ‘rare CNVs 

with high effect size do not play a major role in ALS pathogenesis’). If neither common 

CNVs [136] nor rare CNVs [109] are going to be associated with ALS, there is little point 

in attempting per-CNV association tests like those performed by Cronin et al. [135] and 

Blauw et al. [109], and in most cases the statistical power to discover associations would 

suffer the same shortcomings as GWAS. It therefore may be more prudent in the design 

of any CNV experiment investigating the contribution of rare CNVs to ALS aetiology to 

search, for example, for ALS-specific copy number gains and deletions.

Runs of homozygosity

The labelling of non-familial ALS cases as sporadic is somewhat incompatible with the 

frequently stated fact that a large proportion of ALS cases should be explained by genetic
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factors. One possible explanation for the seeming sporadic nature of many cases of ALS 

is that they are inherited recessively, meaning that individuals are required to inherit two 

copies of the disease allele in order to present with the disease. There is much less famiality 

observed with recessive traits, as affected members of a pedigree tend to segregate within 

a single generation; the disease seems to ‘spread horizontally’. Even then, however, the 

disease may still seem sporadic in cases where only one sibling in a family is affected by 

virtue of the fact that each sibling only has a one-in-four chance of inheriting two copies of 

a disease allele from carrier parents. The argument that ALS may be inherited recessively 

in many cases is supported by evidence forwarded by Hemminki et al. [137], who observed 

higher risk for ALS between siblings with unaffected parents.

One method that can be used to search for recessive loci is homozygosity mapping [138]. 

This technique searches for portions of the genome that contain an unlikely number of 

consecutive markers that are homozygous; these are termed runs of homozygosity (ROMs). 

Homozygosity mapping successfully identified OPTN as an ALS gene from a screen for 

ROHs in six consanguineous families [53], and similar techniques have enjoyed recent 

success in a number of other conditions (six articles detailing homozygosity mapping in 

consanguineous families were published in November 2011 alone [139-144]). However, this 

technique requires the serendipitous finding of a pedigree (or many thereof) that has several 

affected members and a history of some kind of consanguinity, which is problematic. An 

alternative approach is to apply a homozygosity mapping technique on a population-based 

sample.

The idea of mapping homozygous stretches to identify recessive disease loci was sug

gested as early as 1987 [138], but the finding in 2006 that ROHs are common in the 

HapMap populations [145] popularized the technique of ROH mapping in genome-wide 

SNP datasets. In a larger study on non-HapMap European populations, McQuillan et 

al. [146] showed that ROHs are common in outbred populations, and the proportion of
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the genome that lies within ROHs (Fj-oh) performs well at distinguishing populations, 

with a high correlation between Froh and inbreeding estimates. Furthermore, Nalls et 

al. [147] demonstrated that younger generations have, on average, a lower proportion of 

their genome in ROHs than older generations, presumably as a consequence of increased 

mobilization within the human race causing a trend towards more cosmopolitan societies 

in modern times, resulting in increased panmixia and decreased consanguinity.

Population-based ROH mapping on unrelated individuals was applied by Lencz et al. 

[148] to identify several potential recessive loci for schizophrenia. Similar approaches were 

used by Nalls et al. [149] to map candidate genes associated with late-onset Alzheimer’s 

disease and Hildebrandt et al. [150] described a ROH mapping technique that, when 

applied to a dataset of 72 mostly-unrelated individuals from outbred populations, correctly 

identified the loctions of known homozygous mutations.

Population-based ROH mapping has been shown by these studies to be a potentially 

powerful and fruitful technique. However, such studies rarely harness the rich abundance 

of extra information available to them: the actual genotypes being mapped as homozygous. 

This could help to determine whether ROHs identified as being linked to pathogenicity 

in multiple affected individuals are indeed identical-by-descent (IBD) segments of genome 

potentially harbouring recessive disease-causing mutations. Additionally, it could help 

to reduce false negatives at loci that have a high degree of homozygosity in the control 

population as well as in the case population. For example, figure 3.3 shows a scenario 

in which a genomic region would not be identified as associated with disease by simply 

counting the region’s ROH status for cases and controls, despite the fact that the region 

does have one haplotype that, when homozygously inherited, results in recessive segrega

tion of a disease-causing allele. Factoring in the genotypes within discovered ROHs could 

yield novel disease-linked loci.
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Figure 3.3: ROH mapping. A hypothetical scenario is depicted where ROHs are mapped 
in 100 cases and 100 controls. A haplotype that has a population frequency of 25% is 
detected as a ROH in 6 cases and 6 controls (blue), which would be the expectation, while 
a haplotype at population frequency of 1% is detected as a ROH in zero controls (power 
to detect this would be around 1%). However, because the case population is enriched for 
putative disease-causing variants, under assumptions of recessive inheritance the haplotype 
on which the disease-causing variant arose would be expected to appear homozygously 
more often than in the control population. A naive ROH mapping/association strategy 
would not identify this region as associated with disease (8/100 cases, 6/100 controls; 
p = 0.58). However, if the genotypes were considered within the region, the red ROH 
would be identified as recurrently disease-specific.
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3.1.3 Research aims

In this chapter, the Irish ALS GWAS dataset of 2008 [98] is augmented by further genotyp- 

ing within the Irish ALS population and this larger dataset is used to generate candidate 

intervals for candidate exonic sequencing in chapter 4. Although straightforward associa

tion testing is one of the methods employed, an attempt is made to address power issues 

enforced by the small dataset by, where the analysis type permits, searching for features 

that are specific to ALS (that is, seen in exactly zero controls).

3.2 Methods

3.2.1 The 2008 dataset

561,466 SNP genotypes for 221 sporadic ALS cases and 211 controls ft-om the 2008 Irish 

GWAS [98] were made available for use in this study. Additionally, for CNV analysis 

(section 3.2.4), the unprocessed intensity data for the same individuals were used for 

generation of the necessary datasets using Illumina® BeadStudio v2.0.

3.2.2 Genotyping of 308 further samples

Using the Irish ALS DNA bank, samples that had not been included in the original 2008 

GWAS [98] were selected based on availability and quality of DNA, totalling 142 cases and 

152 controls. For assessment of genotyping quality, eight samples that had been genotyped 

in the 2008 study were also included, and six samples in the new cohort were replicated, 

resulting in a total of 308 DNA samples being genotped. All patients had clinically definite 

or probable ALS [28] diagnosed by a neurologist with expertise in ALS, and of the 142 

patients, 23 had positive family history of ALS.

Samples were genotyped for 620,901 polymorphic markers commercially by deCODE 

Genetics (Reykjavik, Iceland) using the Illumina® Human610-Quad BeadChip. Twenty
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cases and eighteen controls did not pass initial call score-based quality checks at deCODE 

Genetics and were therefore not included in further processing of the data. Genotype calls 

for the remaining 270 samples were subjected to a number of quality control steps, first 

using Illumina® BeadStudio v2.0, then using PLINK vl.07 [95].

Using BeadStudio, all SNPs were reclustered following exclusion of individuals with 

low call rates. Any marker with a call rate lower than 98% or a cluster separation less than 

0.3 was set to have missing genotypes across all samples. Call rates were then recalculated 

and checked for all samples, and final reports for all samples and markers were generated. 

Using an in-house script, the Illumina® final reports were parsed into a single PLINK- 

format .ped file for further quality control and analysis.

Using PLINK, 620,901 markers output from BeadStudio were merged with the unpro

cessed data from the 2008 study (561,466 markers) using the —bmerge option, resulting 

in a total of 630,738 markers in 352 cases and 355 controls. Markers with greater than 

1% missing data were then removed using the PLINK —geno option, which also removed 

markers that had been set to missing across all samples in either of the two datasets, or 

markers that were not common to both datasets. With the 527,364 SNPs that remained, 

the PLINK —update-map option was used to update positions to NCBI build 36 coor

dinates (at the time of analysis the GRCh37 build was just being released). Using this 

approach, 598 SNPs were not remapped, so these SNPs were removed using the —extract 

command to retain only remapped SNPs.

The PLINK —check-sex option was used to identify individuals whose gender, as 

inferred by X chromosome heterozygosity, did not match the gender recorded for the 

individual in the DNA bank database. This identified three individuals whose sex did not 

match the database, as well as one individual whose X chromosome inbreeding estimate 

led to an ambiguous call about inferred gender {F = 0.5878). These individuals were 

excluded from further analysis.
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The merged, remapped dataset was then checked for systematic missingness, which 

can arise from batch effects in sample treatment, using the —test-missing option with 

a threshold p-value of 0.05, removing 862 SNPs. Using both the —hairdy and —hardy2 

options, 17,736 SNPs that deviated significantly (p < 0.01) from Hardy-Weinberg Equi

librium were removed. Following this extensive treatment, a further check for missingness 

within individuals was performed, although no individuals failed this check. Finally, 23,266 

SNPs with a minor allele frequency of less than 0.01 were excluded (using —maf), along 

with 120 genotypes from non-autosomes, leaving a clean dataset of 484,882 markers.

Using the set of high-quality genotypes, samples were screened for cryptic relatedness 

by generating a matrix of identity by state (IBS) values with PLINK’s —cluster and 

—matrix options. This method also identified replicate arrays, providing an indication 

of their accuracy. Sixteen pairs and one trio of individuals were identified as cryptically 

related (IBS score greater than 75%) using this approach; from each of the pairs, one 

individual was excluded and from the trio of individuals two were excluded.

Finally, to check for population stratification, which can cause mistaken assignment of 

population-differentiated SNPs as disease-associated SNPs, STRUCTURE v2.3.3 [151] and 

the SMARTPCA algorithm [126] implemented in EIGENSOFT were used. The STRUC

TURE analysis compared the newly-generated genotypes against genotype data derived 

from The International HapMap Project’s CEPH, YRI, CHB and JPT panels [5], using a 

subset of 1,969 unlinked ancestry-informative SNPs and an assumed population count {K) 

of 3. The same approach identified one individual with approximately 50% probability of 

being derived from the same population as the CHB/JPT panel in the 2008 dataset [98]; 

all newly-genotyped individuals had a high probability of being derived from the same 

population as the CEPH panel. Using SMARTPCA, the principal components of varia

tion within the full genome-wide SNP datasets were assessed between cases and controls, 

showing no discernible population stratification.
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The final dataset consisted of 484,882 high-quality genotypes in a panel of 344 unrelated 

Irish ALS cases and 331 age- and population-matched controls. The mean age of disease 

onset (± SD) in the ALS cohort was 61.7 ± 12.1 years and the mean age at sampling (± 

SD) in the control cohort was 58.4 ± 13.6 years. 73% of the ALS samples had spinal onset 

ALS; 27% had bulbar onset. The male:female ratio was 43%:57% for cases and 41%:59% 

for controls.

3.2.3 Allelic association

To test genome-wide SNPs for association with ALS, the PLINK —model option was 

implemented, which provides statistics for association with disease following a number of 

tests (basic allelic test, Cochran-Armitage trend test, genotypic test, and tests under 

dominant and recessive models). The output from this analysis was then used as input 

for the PLINK —clump command, which can be used for generating associated genomic 

intervals based on very low p-values accompanied by neighbouring low p-values in regions 

of LD. For this, the threshold for index SNPs (the lower p-value threshold for primary 

identification of associated regions) was set at 0.0001, and the threshold for clumped SNPs 

(the higher p-value threshold for determination of associated intervals) was set at 0.01, 

with a modest value of 0.5 to indicate LD surrounding an associated SNP.

3.2.4 Analysis of putative copy number variation

To generate datasets for identification of regions of putative CNV, log-R ratio (LRR) 

and B-allele frequency (BAF) values for all SNPs that passed BeadStudio quality control 

steps were generated for all samples that passed the quality control steps described in 

section 3.2.2 using Beadstudio. Genomic regions of putative CNV were then identified 

using QuantiSNP v2.3 [133] and PennCNV (August 2009 release) [134]. QuantiSNP was 

run using default parameters; for PennCNV default parameters were also used but the
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provided hhall.* files were used to set some of the parameters correctly for the 610k 

data. Inbuilt genomic GC content-based correction algorithms were implemented in both 

cases. The R statistical programming package [94] was then used to interpret the output, 

in particular the influence of variance in LRR and BAF, and suitable cutoffs and standards 

were determined based on the findings of these investigations.

The script replicate_overlap.pl was used to assess the concordance of the output 

of the two algorithms with datasets derived from replicate samples. Based on assessment 

of algorithm accuracy, the optimal strategy was to take the intersection of the results of 

both algorithms as the best estimate of true CNVs (figure 3.6); this was accomplished 

with overlap.pl, which also separated results into copy number gains or losses. Scripts 

append.pl and count_status_per_SNP.pl were used to combine all results into a single 

file and list case and control numbers for each SNP if a copy number loss or gain was 

detected. This facilitated the identification of recurrent ALS-specific CNVs.

3.2.5 Mapping runs of homozygosity

Runs of homozygosity were determined in the SNP dataset using the PLINK —homozyg 

argument. This algorithm takes a sliding window whose size is user-defined and scans 

across the genome, determining whether SNPs within the window look like they are in a 

ROH (based on user-provided definitions). Then, for each SNP, the proportion of windows 

that traversed the SNP that were homozygous are counted and, if this is above a user- 

defined threshold, the ROH is called.

The —homozyg algorithm takes many user-defined parameters, summarised in table 

3.1; settings for these parameters were largely derived from analysis of the SNP dataset. 

Interpreting the logic forwarded by Lencz et al. [148], the minimum length I (in terms 

of number of consecutive SNPs) to call a ROH can be described in terms of the mean 

heterozygosity, het, the number of SNPs in the dataset, Ug and the number of individuals
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in the dataset, rij, such that a proportion lower than a of the ROHs that are revealed 

could have occured by chance:

(1 — hety ■ Hs ■ Ui = a. (3.1)

This equation can be rearranged so that I can be calculated:

log( ) 
log(l — het)

(3.2)

However, the non-independence of SNP genotypes brought about by LD could result in the 

algorithm simply just describing extended LD, so it is useful to incorporate an estimation 

of the extent of LD in the dataset into the calculation. Specifically, Lencz et al. suggest 

that the minimum ROH length should be infiated proportionally to the ratio of the number 

of tag groups, rit, identifiable within the dataset to the number of SNPs within the dataset. 

Thus, an LD-corrected statistic for I can be defined:

log(l — het) ■ nt
(3.3)

Given 484,882 SNPs with a mean heterozygosity of 32%, 671 individuals, and 297,330 

separable tag groups (determined using the PLINK —indep-pairwise argument to prune 

out SNPs with r^ greater than 0.65), equation 3.3 evaluated to 104 SNPs. This number 

was assigned to the —homozyg-snp parameter to define the minimum run of consecutive 

homozygous SNPs required to call a ROH. ROHs were called using the default sliding 

window length (—homozyg-window-snp) of 50 SNPs.

With the definition of a ROH and the sliding window size both set in terms of number 

of SNPs, the parameters —homozyg-window-kb and —homozyg-kb were not required and 

so they were set to be very large (10,000 kb) and very small (1 kb) respectively, so that
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Table 3.1: Parameters passed to the PLINK —homozyg algorithm

Parameter Description Setting
—homozyg-window-kb Sliding window size in kb 10000
—homozyg-kb Minimum ROH size in kb 1
—homozyg-window-het Number of permitted heterozygotes 0
—homozyg-window-missing Number of permitted missing genotypes 1
—homozyg-window-threshold Proportion of overlapping ‘homozygous’ windows 

necessary to call a SNP ‘in an ROH’
0.001

—homozyg-window-snp Sliding window size in SNPs 50
—homozyg-snp Minimum ROH size in SNPs 104
—homozyg-density Required minimum density 50
—homozyg-gap Pairwise maximum distance for two SNPs in one 

ROH
100

—homozyg-group Invokes grouping algorithm NA
—homozyg-mat ch Threshold for matching groups 1

they did not contribute to the definition of a ROH.

Within a ROH, no heterozygotes were permitted: —homozyg-window-het can be used 

to tolerate miscalled genotypes in a dataset (homozygotes miscalled as heterozygotes), but 

given that the genotype concordance rate (± SD) between replicate arrays was 99.99839 ± 

1 X 10'^%, the average ROH length required to incorporate one miscall was 62,112 SNPs, 

and this was therefore deemed a very unlikely event (for reference, there were 37,468 

chromosome 1 SNPs in the dataset). However, when considering missing genotypes, the 

average missingness per individual was 0.07%, therefore the typical ROH length required 

to incorporate one missing genotype was 1428.57 SNPs. For this reason, one missing 

genotype was tolerated (using the —homozyg-window-missing parameter).

The final two parameters in table 3.1 are for grouping individuals based on mutual 

overlap of ROHs and allelic matching of overlapping regions. —homozyg-group invokes 

an algorithm that pools individuals together based on mutual overlap of homozygous 

regions and —homozyg-match subdivides these pools into groups of individuals whose 

alleles within the ROH match each other. The latter parameter was set to 1, meaning 

that alleles, where called, must match at 100% of the overlapping sites to be considered 

part of the same group.

Software was developed to parse, visualise and interpret the resulting output. Firstly,
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ALS-specific groups were extracted from the .horn.overlap output file using the script 

parsePLINKROH.pl, which extracts groups from pools when the phenotype for the group 

is exclusively ALS (with exactly zero controls). The PLINK algorithm had a tendency 

to output duplicate groups that would only be discovered following the treatment of 

parsePLINKROH.pl, so these were then removed using removedups.pi. Groups could 

be visually inspected using showSNPs. php to confirm bona fide homozygosity and allelic 

matching.

In order that only properly overlapping homozygous regions were carried forward for 

further analysis, recipOverlap.pl was used to calculate a score, St for each individual 

Ps segment within a group of n individuals, based on the extent of its overlap with the 

rest of the group, as described by:

s< = E
j=i

min(6i, bj) — max(oi, Oj) 
{n-l){bj-aj)

(3.4)

where a is the start of a segment, b is the end of a segment and i ^ j- A segment was 

deleted if its Si score was less than 0.5. Derivation of this formula can be found in appendix 

A.l.

Finally, groups were only considered for further analysis if they survived the various 

treatment steps described with more than three individuals still present; sub-threshold 

groups were removed with remove_small_tables. pi. The resulting groups of high-quality, 

recurrent, overlapping, ALS-specific ROHs were collapsed down into single intervals using 

create_intervals.pl. In doing so, the interval was defined by the minimum and maxi

mum genomic coordinates within the group, however particularly long ROHs (defined as 

intervals whose length exceeded the median length -|- 2 x the interquartile range of all the 

lengths across all groups) were not considered in this definition.
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(a) STRUCTURE plot

(b) Principal components analysis (c) Quantile-quantile plot

Figure 3.4: Checks for population stratification in the genome-wide SNP dataset, (a) 
STRUCTURE plot of the SNP dataset along with HapMap individuals under the assump
tion of 3 populations {k = 3). Population flags: 1, controls in the SNP dataset; 2, ALS 
cases; 3, CEPH HapMap individuals; 4, CHB HapMap individuals; 5, JPT HapMap indi
viduals; 6, YRI HapMap individuals, (b) Scatterplot of the first two principal components 
of variation as determined by the SmartPCA algorithm implemented in EIGENSOFT. 
There was no discernable difference between the case (red circles) and control (blue tri
angles) populations for all principal components characterised (principal components 1 to 
10). (c) Quantile-quantile plot of allelic association statistics showing observed p-values 
plotted against expected p-values, demonstrating that it is unlikely that there is any strat
ification within the sample causing spurious results.

3.3 Results

3.3.1 Genotyping

The majority of the results obtained during genotyping and quality control are detailed 

within section 3.2.2. The results from the STRUCTURE analysis to identify population 

outliers are shown in figure 3.4(a), demonstrating that all newly-genotyped individuals 

had a high probability of being European. Principal components analysis revealed no 

discernible population stratification between cases and controls (figure 3.4(b)).
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3.3.2 Allelic association

Figure 3.5 summarises the results of the allelic association tests and figure 3.4(c) shows 

the quantile-quantile plot for expected distribution of the allelic association statistics. The 

critical Bonferroni-corrected p-value threshold for genome-wide significance, given 484,882 

SNPs was 1.03 x 10“^. No SNP was associated with ALS susceptability at genome

wide sigificance, however some came close. Table 3.2 shows all association statistics at 

p < 1 X lO-'*.

3.3.3 CNV analysis

PennCNV called a total of 164,184 CNVs; QuantiSNP called 25,692. The median length 

of CNVs called by PennCNV was 6,735 bp; for QuantiSNP the median length was 93,558 

bp.

Ten pairs of samples that had been assayed in duplicate (four 610k/610k pairs and 

six 610k/550k pairs) were assessed for consistency of CNVs called by QuantiSNP and 

PennCNV. A broad measure of accuracy was defined by the total length of concordant calls 

between replicates as a percentage of the total length of CNVs called within a replicate. 

Figure 3.6(a) shows the accuracy obtained for each replicate pair. The mean accuracy 

was calculated for PennCNV, QuantiSNP, QuantiSNP {\og{Bayesfactor) > 10) and the 

overlap between PennCNV and QuantiSNP {log{B ayes factor) > 10) and is shown in 

figure 3.6(b).

On inspection of the data, it was noted that variance within the LRR and BAF datasets 

had a profound effect on the number of CNVs called by PennCNV (figure 3.7 parts (a) 

and (b)). At the time of analysis, the documentation for PennCNV recommended that 

a cutoff of 0.24 for LRRJSD, the within-individual LRR standard deviation, be used to 

identify outliers, and that any individual showing greater than 50 CNVs is an outlier. 

While it is unlikely that these are arbitrarily chosen numbers, it is not obvious how these
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Figure 3.5: Statistics from tests of allelic association of 484,882 SNPs with ALS. Manhat
tan plot shows — logiQ{p—values) for the basic allelic association test, with above-threshold 
results shown in red along with above-threshold results for the other four tests (in this 
case, ‘threshold’ means p = 1 x 10“'^, which was the threshold for defining index SNPs 
with the PLINK —clump method). For index SNPs, only the best p-value from the five 
tests is shown. If a SNP’s upper 95 % confidence bound for odds ratio exceeded 5, the 
error bar is truncated. Where no unique SNPs were clumped with an index SNP, the 
interval length represents a haplotype block length surrounding the index SNP (35.7 kb). 
Plot generated using plotNatureStyle.R; style based on Sawcer et al. (2011) [152].
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Table 3.2: Association statistics at p < 1 x 10-4

Chromosome Position (bp, NCBI36) SNP rsID RA OR - login(p) Test
4 182374181 186836317 G 0.3141 1.77 (1.4-2.23) 6.30 Dominant
18 50980784 rs4801145 A 0.4028 1.62 (1.3-2.01) 5.97 Recessive
5 82196556 rs6859331 A 0.4119 1.49 (1.2-1.86) 5.34 Recessive
2 20574316 r8l2474095 T 0.4504 1.42 (1.14-1.76) 5.15 Recessive
4 44003303 rsl490452 A 0.4813 1.46 (1.18-1.82) 4.97 Dominant
4 55883043 rsl1728305 T 0.7362 1.65 (1.29-2.11) 4.86 Dominant
3 150240824 r8l457604 T 0.7348 1.57 (1.23-2) 4.82 Dominant
13 114092979 r87316983 T 0.06166 2.83 (1.72-4.67) 4.82 Trend
13 114108120 rs3813131 A 0.06148 2.83 (1.72-4.67) 4.82 Trend
20 52081236 r8290457 G 0.6535 1.63 (1.3-2.05) 4.66 Allelic
6 84856391 rs2497129 A 0.9163 2.38 (1.58-3.6) 4.66 Allelic
6 84859041 rs2480199 C 0.9163 2.38 (1.58-3.6) 4.66 Allelic
13 114108294 rs3813133 A 0.06074 2.78 (1.69-4.59) 4.64 Trend
1 160060235 r8ll581556 G 0.6748 1.46 (1.16-1.83) 4.60 Recessive
2 77240715 rs2919058 A 0.2896 1.52 (1.2-1.92) 4.59 Recessive
5 137551328 rs2864 A 0.6133 1.49 (1.2-1.86) 4.53 Dominant
5 137563031 182057831 G 0.6126 1.5 (1.21-1.87) 4.53 Dominant
10 20117446 r8l411823 C 0.5007 1.44 (1.16-1.78) 4.52 Recessive
6 1389293 r89328053 T 0.6533 1.53 (1.22-1.92) 4.52 Dominant
7 36754881 r8l0239402 C 0.4348 1.58 (1.27-1.97) 4.49 Allelic
12 31689061 r8l2579938 A 0.6148 1.59 (1.28-1.99) 4.46 Allelic
10 124193637 r82421027 A 0.8895 2.09 a.47-2.99) 4.46 Allelic
10 34300269 r82800816 T 0.5815 1.53 (1.23-1.91) 4.43 Dominant
4 7823074 rs4234829 A 0.94296 2.74 (1.65-4.55) 4.41 Trend
4 12513904 rs223931 T 0.3733 1.38 (1.1-1.72) 4.40 Dominant
4 12520825 r8l70371 A 0.3726 1.37 (1.1-1.71) 4.40 Dominant
20 52077174 rsl58549 A 0.6719 1.54 (1.22-1.93) 4.40 Dominant
20 52079435 rs290453 C 0.6719 1.54 (1.22-1.93) 4.40 Dominant
1 66407508 rsl1208807 C 0.683 1.62 (1.29-2.04) 4.40 Allelic
16 74701278 r8257821 T 0.5267 1.57 (1.26-1.94) 4.39 Allelic
20 52072283 r8l58541 C 0.6748 1.56 (1.24-1.96) 4.39 Dominant
20 52097189 rs290421 C 0.6748 1.56 (1.24-1.96) 4.39 Dominant
18 5595988 rsl0221410 C 0.8919 2.09 (1.46-3) 4.39 Allelic
14 33092583 r8l0142154 C 0.3252 1.62 (1.28-2.04) 4.38 Allelic
6 129613022 rs3816665 T 0.1304 1.98 (1.42-2.75) 4.37 Allelic
15 27547807 1816955485 G 0.3919 1.39 (1.12-1.73) 4.36 Recessive
6 84934534 rs6905922 C 0.92296 2.38 (1.55-3.66) 4.35 Allelic
15 87756365 rsl50311 A 0.4393 1.47 (1.18-1.82) 4.35 Dominant
2 239336344 rs4643485 A 0.5252 1.53 (1.23-1.9) 4.34 Dominant
22 17810471 rs885975 C 0.2459 1.59 (1.24-2.05) 4.34 Dominant
1 237250396 r8l915250 T 0.08741 2.25 (1.5-3.38) 4.32 Trend
8 72405227 rsl2679427 T 0.6874 1.43 (1.14-1.81) 4.31 Recessive
15 27559563 r8733612 C 0.3333 1.39 (1.11-1.75) 4.31 Recessive
12 18758875 187974908 T 0.1978 1.7 (1.29-2.23) 4.28 Dominant
8 138983253 rsl7695537 T 0.2104 1.73 (1.32-2.26) 4.28 Allelic
4 13998452 rsl013284 A 0.6748 1.6 (1.27-2.02) 4.26 Allelic
1 56060311 rs6588574 T 0.2244 1.53 (1.18-1.98) 4.26 Dominant
8 107608916 r8l901783 G 0.3388 1.42 (1.13-1.78) 4.25 Dominant
2 141267819 rs6735489 A 0.72 1.53 (1.2-1.94) 4.25 Dominant
20 39912916 rs2866823 A 0.4148 1.44 (1.16-1.79) 4.25 Recessive
2 239580116 r86723715 G 0.1689 1.7 (1.27-2.28) 4.20 Dominant
2 239581071 r8l2328525 G 0.1689 1.7 (1.27-2.28) 4.20 Dominant
12 3729334 rsl 1062786 G 0.5578 1.49 (1.2-1.85) 4.19 Recessive
16 6181183 r8l946127 C 0.3652 1.56 (1.25-1.96) 4.19 Trend
22 45675237 rs4823889 C 0.7337 1.64 (1.28-2.09) 4.15 Allelic
20 47036647 rsl569750 A 0.6956 1.51 (1.2-1.91) 4.13 Dominant
6 96189807 rs4388292 G 0.857 1.77 (1.3-2.42) 4.12 Dominant
8 104296121 r87001084 A 0.4763 1.35 (1.09-1.68) 4.12 Dominant
3 11981891 rsl7035544 T 0.96444 3.64 (1.84-7.2) 4.12 Allelic
3 11982207 r8l7035545 A 0.96444 3.64 (1.84-7.2) 4.12 Allelic
3 11986717 rsl2629521 T 0.96444 3.64 (1.84-7.2) 4.12 Allelic
14 47524431 r8712439 G 0.5416 1.42 (1.15-1.77) 4.11 Recessive
16 74673563 rs977045 T 0.5274 1.54 (1.24-1.91) 4.09 Allelic
11 126147508 r8l946075 G 0.91037 2.17 (1.46-3.21) 4.09 Allelic
15 64880684 r84381541 G 0.5556 1.4 (1.13-1.73) 4.08 Dominant
2 170679239 rs6731008 A 0.8526 1.84 (1.35-2.5) 4.05 Trend
15 60214655 rs6494311 C 0.56 1.54 (1.24-1.91) 4.05 Allelic
22 48224667 rsl36800 G 0.6956 1.43 (1.13-1.8) 4.04 Dominant
17 67580692 rsll868311 T 0.92444 2.31 (1.5-3.55) 4.04 Allelic
9 100373273 rs928425 G 0.6341 1.37 (1.1-1.71) 4.03 Dominant
16 9965210 r84782109 T 0.2111 1.45 (1.11-1.89) 4.03 Genotypic
17 23625259 r82006933 T 0.8027 1.58 (1.21-2.08) 4.02 Dominant
6 96684599 rs9390903 A 0.2407 1.49 (1.16-1.92) 4.02 Recessive
6 39998244 rs2984659 C 0.5815 1.24 (1-1.55) 4.02 Recessive
3 16151301 rs2657606 G 0.2504 1.63 (1.27-2.1) 4.02 Trend
2 152195819 rs4233653 T 0.7074 1.36 (1.07-1.72) 4.01 Recessive
18 50592345 r87238224 G 0.48 1.53 (1.24-1.9) 4.01 Allelic
10 21665980 r87920204 C 0.843 1.81 (1.34-2.44) 4.01 Allelic
5 164912172 r82216637 G 0.4311 1.54 (1.24-1.91) 4.00 Allelic
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values were derived and the validity of their use in these datasets was unclear.

With this in mind, a method was developed to use the empirical distribution of the 

datasets under analysis to decide suitable cutoff values (figure 3.8). This method makes 

the assumption that the data are derived from two superimposed distributions: one which 

is unaffected by any systematic bias in LRRSD, and one which contains upwardly biased 

values. A second assumption of the method is that the unbiased distribution is lognormal, 

and that the intrusion of the biased dataset on the first and second quartiles of the log- 

transformed unbiased dataset is minimal. Working with these assumptions, a ‘fitted’ mean 

(representing the modal value) and SD for the log-transformed unbiased distribution can 

be estimated using the data that lie between mm{LRRJSD) and the maximum of the 

kernel density estimate (generated with the R stats: :density function) for the dataset.

Using this method, 131 individuals from the 550k dataset and 39 from the 610k dataset 

were identified as having LRRSD values that were too high to produce reliably high- 

quality inferences about copy number states when analysed with PennCNV. On the other 

hand, LRR.SD and BAFSD had no discernible effect on the number of CNVs called by 

QuantiSNP (figure 3.7 (c and d)). For outlier identification in the QuantiSNP dataset, the 

certainty metric \og{Bayesf actor) was used to examine the data’s tendency to converge 

to low CNV calls when high stringencies are applied (figure 3.8 (c and d). This resulted 

in far fewer individuals being flagged as outliers (just four in the 550k dataset).

As a consequence of all the quality control observations, the final strategy employed 

for generating the best dataset possible was to exclude the four individuals flagged in 

figure 3.8(c) (as well as all replicate individuals) and to take results that represented the 

intersection of PennCNV and QuantiSNP {\og{Bayesfactor) > 10) results. Using this 

approach, a total of 2,492 CNVs were called in cases and 2,548 in controls. Candidate 

regions to be carried forward to analysis in chapter 4 were chosen if they were recurrent 

and ALS-specific. Using this criterion, there were 37 ALS-specific copy number losses and
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(a) PennCNV, 550k (b) PennCNV, 610k

0.10 0.15 0.20 0.2S 0.30 0.35 0.40 0.45

LRR SO

0.10 0.15 0.20 0.25 0.30 0.35 0 40 0.45

(c) QuantiSNP, 550k (d) QuaJitiSNP, 610k

Figure 3.7: 3D scatterplots demonstrating the effect of LRRSD and BAF standard de
viation {BAF_SD) on the number of CNVs called by PennCNV and QuantiSNP (before 
processing), (a and b) LRR^SD and BAF^SD were reasonably correlated in both datasets 
from the PennCNV output = 0.4232; = 0.652), suggesting collinearity between
LRR.SD and BAFSD and that the same system was causing an upward bias of both 
metrics. Therefore, for simplicity, only LRRSD was used in further analyses of out
liers. (c and d) LRRSD and BAFSD had no effect on the number of CNVs called by 
QuantiSNP.
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k>fl,o(LRR_SD)

(a) PennCNV, 550k dataset

-0.8 -0.6 -0.4

log,B(LRR_SD)

(b) PennCNV, 610k dataset

(c) QuantiSNP, 550k dataset (d) QuantiSNP, 610k dataset

Figure 3.8: Outlier identification in the 550k and 610k CNV outputs, (a, b) PennCNV 
outlier identification using LRR^SD. The dashed blue line shows the kernel density esti
mation for the underlying distribution and fi represents the ‘fitted’ mean of the unbiased 
distribution derived from the maximum of this estimate. Based on this, the dashed red 
line represents the assumed underlying (unbiased) distribution, generated by mirroring 
the kernel density estimate for {mm{LRRjSD),... ,/i} around fi. Taking data between 
mm{LRR_SD) and ft, the standard deviation s could be estimated, and a cutoff derived 
based on 2.326 x s. The solid red line shows a normal distribution with mean fi and 
standard deviation s, demonstrating a close fit to normality of the theoretical distribu
tion (p550fc = 0.4196; peiofe = 0.4838, Shapiro-Wilk test for normality), (c, d) The effect 
of varying the log{Bayesfactor) cutoff on number of valid CNVs called by QuantiSNP, 
and its use in identifying outliers. Each plot shows one grey line per individual, and the 
black line shows the mean of the individual lines. Outliers were identified from these plots 
arbitrarily based on whether the number of CNVs called dropped to below 20 when the 
log{B ayes factor) exceeded 20; these individuals are marked.
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25 ALS-specific copy number gains (table 3.3).

3.3.4 ROH analysis

Following mapping of ROHs using the parameters defined in section 3.2.5, there was no 

significant difference between cases and controls in terms of the number or average length 

of ROHs called (figure 3.9). The median number of ROHs called per individual was 43 

and the median total length of ROHs, per individual, was 35.7 Mb. The median of all 

within-individual mean ROH lengths was 831.4 kb. A total of 7,989 recurrent regions of 

ROH in the overall dataset were called by PLINK. Table 3.4 shows the number of regions 

that remained after each subsequent processing step. In general, recurrent ALS-specific 

ROHs overlapped well within groups (figure 3.10). The final number of groups was 448, 

with the largest group containing 8 overlapping individuals; however, after consolidating 

overlapping groups into single intervals, only 270 intervals remained.

3.4 Discussion

This work has performed genome-wide SNP analysis on a previously-published GWAS 

dataset in the Irish population [98], made roughly 1.5x larger by further genotyping of 

cases and controls in the same population. Three methods were used to attempt to assess 

the contribution of genetic variation to ALS aetiology: SNP association, analysis of copy 

number variation and homozygosity mapping. All three methods yielded results that were 

carried forward to chapter 4 for greater depth of analysis by next-generation sequencing.

3.4.1 Summary of findings and their significance 

Association

Using 484,882 high-quality genome-wide SNP genotypes, five different tests for association 

with ALS were performed: a basic allelic t^st, the Cochran-Armitage trend test, a
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Table 3.3: Recurrent, ALS-specific copy number gains and losses

ALS-specific copy number gains
Chromosome Start position (bp, NCBI36) End position (bp, NCBI36) Length (bp) No. cases
11 50950526 54533370 3582844 6
12 34496692 36718276 2221584 6
1 103904580 104063231 158651 5
8 2334306 2394805 60499 4
1 156783977 159944878 3160901 3
3 87410591 87993621 583030 3
8 144684227 144768796 84569 3
10 134641871 134682390 40519 3
3 83619218 84627172 1007954 2
4 57834727 58261378 426651 2
11 65013905 65193464 179559 2
4 129993825 130147254 153429 2
3 90088422 90173309 84887 2
1 2349841 2413982 64141 2
14 103624674 103683231 58557 2
1 9243828 9302280 58452 2
10 44550157 44594503 44346 2
9 138606913 138638786 31873 2
6 135009308 135039881 30573 2
5 104745638 104775166 29528 2
19 58206416 58232152 25736 2
17 53738052 53760857 22805 2
2 45188917 45201781 12864 2
14 105138663 105143361 4698 2
6 162798397 162800693 2296 2

ALS-specific copy number losses
Chromosome Start position (bp, NCBI36) End position (bp, NCBI36) Length (bp) No. cases
15 85631534 92033269 6401735 5
8 2118532 2158362 39830 5
8 3987468 6156320 2168852 4
22 24017514 24240667 223153 4
6 162863051 162886421 23370 4
16 82466542 82484740 18198 4
5 109391074 109403379 12305 4
4 42400885 42404178 3293 4
20 28059305 28118678 59373 3
13 83000441 83055928 55487 3
17 63660583 63681642 21059 3
4 157183142 157186835 3693 3
3 190848118 190849457 1339 3
2 205824033 212891941 7067908 2
7 75981641 76348155 366514 2
1 166709802 166967709 257907 2
7 145088739 145332649 243910 2
17 30708148 30787791 79643 2
1 194097653 194138918 41265 2
19 48613901 48646755 32854 2
5 2094665 2119165 24500 2
5 98803229 98825827 22598 2
5 120714197 120731816 17619 2
5 109610790 109624892 14102 2
21 23820287 23834001 13714 2
16 3647748 3658849 11101 2
17 6237444 6247972 10528 2
9 11641144 11650080 8936 2
3 175382584 175391369 8785 2
7 1716791 1723762 6971 2
12 98526152 98532904 6752 2
3 56528363 56534273 5910 2
14 21816895 21822713 5818 2
10 135279590 135284293 4703 2
10 13096593 13100416 3823 2
5 103041190 103042663 1473 2
6 30889981 30890214 233 2

Table 3.4: Refinement of ROH results

Step Algorithm Groups
Identification of recurrent ROHs PLINK —homozyg argument 7,989
Extraction of ALS-specific groups parsePLINKROH.pl 881
Removal of duplicate groups removedups.pi 605
Extraction of adequately overlapping groups recipoverlap.pl and 

remove_small_tables .pi
448

Consolidation of overlapping groups interval-overlap.pi 270
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(a) Number of ROMs (b) Average length of ROMs

I -

□ czzr._____

Number of irtdividuets in group

(c) Number of groups of each size

Figure 3.9: Statistics from ROH mapping, (a, b) Notched boxplots showing; (a) the 
number of ROHs called per individual; (b) the average length of ROHs per individ
ual. There was no significant difference between cases and controls for either category 
{Pnumber = 0.8453; piength = 0.2192, Mann-Whitney-Wilcoxon test), (c) The number of 
groups of ROHs with 3-8 individuals overlapping.
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genotypic test, and tests under dominant and recessive models. No SNP showed association 

at genome-wide significance (1.03 x 10“^), however several showed speculative association 

(table 3.2). Weak association signals in regions of LD around these ‘peaks’ were used to 

elucidate intervals that may contain causative alleles.

The best result for SNP association with ALS was for rs6836317 on chromosome 4q34.3, 

p — 5.043 X 10~^, OR = 1.767 (95% Cl 1.399-2.233) under the dominant model (figure 

3.5). This was narrowly higher than the critical Bonferroni-corrected {>value threshold of 

1.03 X 10“^. The SNP rs6836317 is intergenic, with the nearest RefSeq gene, ODZS, lying 

1.11 Mb telomeric to the SNP’s GRCh37 genomic coordinate. However, it lies within 

a region of high conservation (determined from alignments [153] in the UCSC genome 

browser [154]) that overlaps with several conserved transcription factor binding sites (figure 

3.11(a)), and it is 56.9 kb telomeric to the long noncoding RNA (ncRNA) LINC00290. 

Long ncRNAs have been shown to direct recruitment of FUS to the promoters CCNDl in 

response to DNA damage signals [155]. The observation that ncRNAs are part of biological 

signalling pathways with the known ALS gene FUS make them an interesting candidate 

species for study into their implications in ALS. The result that an association peak lies 

in reasonably close proximity to this peirticulax ncRNA corroborates such study further, 

although currently little is known about the biological importance of LINC00290.

The second-best result, rs4801145 on chromosome 18q21.2 (p = 1.06 x 10“® under 

the recessive model, OR = 1.616 [95% Cl 1.297-2.013]), was also intergenic, this time 

mapping 59.8 kb centromeric to TCF4, a gene for which deletions are implicated in Pitt- 

Hopkins syndrome [156]. This syndrome has several neurological components including 

severe mental retardation, microcephaly, respiratory pattern abnormalities, epilepsy and 

an excess of slow waves on electroencephalography [157]. This gene could therefore be 

implicated in neurological function and development, and it is possible that less severe 

variants in the gene could drive ALS pathology.
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Figure 3.11; The genomic architecture of the region surrounding two of the top GWAS 
‘hits’, visualized using the UCSC genome browser [154]. In both cases, the associated SNP 
is in the centre of the region depicted in the figure (SNPs are shown in the bottom track 
in both figures).

Two further SNPs were significant at the p < 10 ® level, rs6859331 on chromosome 

5ql4.2 (p = 4.521 x 10"®, OR = 1.494 [95% Cl 1.201-1.858]) and rsl2474095 on chromo

some 2p24.1 (p = 7.074 X 10“® OR = 1.419 [95% Cl 1.144-1.760]), both under recessive 

models. For rs6859331, the nearest gene is TMEM167A, which is 188 kb telomeric to 

the SNP, and for rsl2474095 the closest gene, RHOB, is 61.6 kb telomeric. However, 

rsl2474095 lies within a region for which there is strong evidence for the presence of reg

ulatory elements, as visualized using the track in the UCSC genome browser derived from 

ENCODE data [158] (figure 3.11(b)).

The finding that no SNP showed association above the genome-wide p-value threshold 

of 1.03 X 10~^ was disappointing but not surprising given the low power to detect an 

association with just 344 cases and 331 controls. Nevertheless, Cronin et al. (2008) argue
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that the slightly higher homogeneity of the genetic structure of the Irish population may 

mean that fewer genome-wide markers are truly independent and thus the stringency of 

Bonferroni correction in a dataset derived from this population may be higher than is 

necessary [98]. However, there were no single stand-out peaks of association as would 

be seen in larger studies such as those that correctly identified chromosome 9p21 as an 

associated locus [66,67]. Instead, a handful of meirkers showed speculative association 

and a larger number showed weak association with ALS. In total, 79 independent SNPs 

showed association with ALS at p < lx 10““^ (table 3.2); these results were used to 

generate LD-based intervals that were carried forward to chapter 4 for further analysis by 

NGS.

Analysis of putative copy number variation

PennCNV [134] and QuantiSNP [133] were used to scan LRR and BAF values generated 

from the raw intensity data derived from SNP genotyping to identify regions of putative 

copy number variation. Quality assessment was made on the resulting data to control for 

false positives. The resulting dataset was used to search for recurrent copy number gains 

and losses that were specific to ALS cases.

PennCNV was shown to be less accurate than QuantiSNP (figure 3.6), although the raw 

output of QuantiSNP was not particularly accurate itself. The inaccuracy of PennCNV is 

discordant with a benchmark test of its accuracy [132] which praised its low false positive 

rate. This is likely to be due to differences in sample quality between data used in this 

study and the data used by Dellinger et al. [132]; indeed, figure 3.7 (a) and (b) shows that 

PennCNV is highly sensitive to upwardly-biased LRR_SD and BAF_SD values and data 

derived from samples with high variance in LRR and BAF have a much higher CNV call 

rate (and therefore, presumably, a higher false positive rate).

The use of the per-individual quality metric, \og{Bayesf actor) helped to address the
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inaccuracy of the QuantiSNP’s results by only including CNV calls above a certainty 

threshold. However, PennCNV has no inbuilt method for quality-controlling the output 

on a per-individual basis, making the handling of false positives difficult. Taking only 

results that intersect with QuantiSNP helped to address this, although it was not perfect 

in that the ‘inaccuracy’ reported in figure 3.6 probably reflects a moderate false-negative 

rate as well as a moderate false-positive rate, and these false negatives would remain a 

problem if only intersecting results were taken forward for further analysis. Nevertheless, 

using the intersection between the two methods was deemed the most accurate strategy, 

which is in line with recommendations [159].

The best ‘hit’ for the CNV analysis was joint between two regions of putative copy 

number gain on chromosomes 11 and 12. However, both of these regions span the cen

tromeres of the chromosomes, suggesting that they are likely to be artefacts of the calling 

algorithms. The best region of copy number loss identified was tied between a large 6.4 

Mb region on chromosome 15 and a 39.8 kb region on chromosome 8. The chromosome 

8 locus contained no genes but some evidence of regulatory regions. The chromosome 15 

region, on the other hand, mapped to a gene-rich portion of the genome, with SEMA^B 

in the middle of the region. SEMA^B is an excellent candidate gene for ALS aetiology; it 

belongs to a family of genes that encode proteins involved in axon guidance and a related 

gene, SEMA6A, has been implicated in ALS by GWAS [160]. Additionally, another related 

gene, SEMA6D, lies within a familial linkage region for autosomal recessive juvenile onset 

ALS [161]. Evidence from the Database of Genomic Variants [162] only shows duplications 

for the genomic regions overlapping SEMA4B, adding weight to the argument that the 

discovery of deletions in this dataset could be an ALS-specific phenomenon driving some 

of the aetiology of ALS.

In total, 37 ALS-specific copy number losses and 25 ALS-specific copy number gains 

of various lengths were identified using the approaches described (table 3.3); these re-
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gions were carried forward to chapter 4 for consideration in next generation sequencing 

experiments.

Homozygosity mapping

The ROH mapping technique successfully identified several overlapping allelically-matching 

runs of homozygous SNPs whose haplotypes were unique to ALS. Using these stringent 

parameters, the largest group identified was eight individuals that shared an allelically- 

matching ROH on chromosome 3pl2.2-3pl2.1 (figure 3.12(a)). This overlapped with an 

uncharacterized gene (identified as BC068246 in figure 3.12(a)) as well as mapping to the 

5' end of CADM2. The bodies of seven of the eight ROHs mapped to a region of the 

genome showing strong evidence for the presence of regulatory elements, potentially the 

promoter region for CAD M2. This gene is a reasonable candidate for ALS pathophysiol

ogy, as a member of the large immunoglobulin superfamily which contains cell adhesion 

molecules that act at synapses in the central nervous system [163]. Furthermore, a recent 

paper demonstrated a link between CADM2 and autism spectrum disorder, using highly 

similar methods to those described in this study [164].

Possibly the best result, however, was for a region on chromosome 13q21.1 overlapping 

with the 3' region of PCDH17. This region had two independent ROH groups map to 

similar locations, totalling 13 patients (figure 3.12(b)). PCDH17 is a member of the 

cadherin superfamily, a group of genes whose protein products are responsible for cell

cell connections [165]. A recent study on cadherin expression in the various layers of the 

somatosensory cortex demonstrated a specific expression of mouse PcdhlT in layer V of 

the somatosensory cortex, along with weak expression in layers VI and I [166]. Primary 

motor cortex layer V is the origin of upper motor neurones, so dysregulation of PCDHl 7 

expression could, in theory, lead to disruption of the maintenance of motor neurones 

and thus a syndrome like ALS. This ROH region also overlaps with the human mRNA
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Figure 3.12: The best groups identified in the ROH analysis visualized using the UCSC 
genome browser [154]. (a) Eight individuals mapped to a region on chromosome 3pl2.2- 
3pl2.1; the end coordinates of ROHs for individuals 119 and 59 extend oflf the edge of the 
figure, (b) Two ROH groups mapped to the 5' end of PCDH17, totalling 13 patients. The 
start and end coordinates for several of the individuals are truncated.
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AK124674, which was one of 21,243 expressed RNA sequences discovered in a large-scale 

cDNA sequencing project [167], in this case, from amygdala tissue.

The technique employed to map ROMs has an important limitation. In order for a 

discovered ROH to survive control-based filtering, the haplotype identified in the case 

group has to be present homozygously in exactly zero controls. This necessitates a low 

haplotype frequency for ROHs to smrvive filtering, because the recessive disease allele 

would, in all likelihood, have arisen on an already existing haplotype, so future generations 

would have two variants of this same haplotype: one containing the disease allele and one 

not. Therefore, it is possible that a control could have a ROH that allelically matches a 

disease-causing ROH, while not carrying the disease allele homozygously. This limitation 

is addressed to some extent by the relatively low number of controls used to screen for 

non-pathogenic ROHs, thus rendering the power low to detect even medium-frequency 

haplotypes homozygously by chance. This, coupled with the reassuring fact that putatively 

disease-causing ROHs are observed in several cases, makes this limitation less of a problem.

A second limitation of this approach is that it could incorrectly identify copy number 

losses such as the scenario depicted in figure 3.2(b) as a ROH. However, given the relative 

rarity of CNVs in the genome compared to runs of homozygosity, this is not a large enough 

problem that the results of the ROH analysis would be affected.

Using this ROH mapping approach, 270 intervals were identified as loci potentially 

carrying recessive disease-causing mutations and these were brought forward to chapter 4 

for further study by next-generation sequencing.

3.4.2 Conclusion

With a complex disease like ALS, which is likely to be caused by several genetic factors, 

many of which are rare and some of which are probably recessive and potentially in

completely penetrant, GWAS is an ambitious endeavour and its success is probably most

73



sensitive to sample size above all other factors. This is reflected in the body of literature 

that has been published on the subject [66,67,98,113,168]. However, GWAS is not the 

only analysis available with a genome-wide SNP dataset. In this chapter, an attempt has 

been made to draw on evidence from an Irish ALS genome-wide SNP dataset to iden

tify ALS-specific regions of the genome that may harbour rare disease variants. Further 

interrogation by NGS of the intervals that have been identified is reported in chapter 4.
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Chapter 4

Targeted high-throughput 

resequencing of ALS candidate

genes

4.1 Introduction

Following many GWAS attempts in ALS, a substantial proportion of the heritability of 

the disease still remains unexplained, a finding that is also true for several other complex 

genetic conditions. It is likely that this is, in part, due to inadequate statistical power to 

detect associations by GWAS under the common disease-common variant hypothesis. It is 

also equally likely that multiple rare variants within various disease loci are contributing 

to disease pathogenesis. These may not be detectable by GWAS so the attention of 

many research scientists is now turning to methods for high-throughput assessment of rare 

variation in disease. The main method currently in use to perform such studies is high- 

throughput resequencing, also (at present) termed next-generation sequencing (NGS).

The principle behind current NGS methodologies is relatively straightforward. Instead 

of sequencing long stretches of DNA, which, at the time of writing, cannot be performed
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in a high-throughput manner due to technological limitations, genomic DNA samples are 

highly fragmented and short sequencing reads (for example, 100 base pairs) are gener

ated from these fragments by massively parallel sequencing. These reads are then aligned 

against a reference genome (allowing some differences in the sequence), from which se

quence variants can be identified and examined for their potential pathogenicity. Figure 

4.1 summarizes a typical pipeline for an NGS experiment from preparation of genomic 

DNA to generation of sequencing reads.

A number of different technological platforms exist to perform next-generation se

quencing [169]. The common theme between all sequencing methods (including those 

available from Roche/454, Illumina and Applied Biosystems) is that millions of single- 

stranded template molecules are immobilized on a surface and are sequenced by synthesis 

of new, complementary strands from which fluorescence signals are detected representing 

the incorporation of labelled nucleotides. The order in which the fluorescence signals are 

read translate to the order of bases in the sequence reads. The differences between the 

technologies lie in the preparation of DNA, the way it is immobilized during sequencing, 

and the particular method of sequencing-by-synthesis. Roche/454 systems use an emulsion 

PCR-based template preparation method which results in highly amplified DNA molecules 

immobilized on beads which are then trapped within picotitre plate wells where sequenc

ing by synthesis takes place. Similar DNA preparation methods are used in the Applied 

Biosystems platform, although sequencing is performed through ligation of labelled 8-mer 

probes [170].

The Illumina sequencing technology, which is implemented in the Genome Analyzer 

and the HiSeq 2000, uses alternative methodologies, summarized in figure 4.1. Template 

DNA is fragmented and adapter-ligated (usually with a PCR step), then following an 

optional target enrichment step, the DNA is added to a flow cell in a cluster generation 

station. Cluster generation is the process of repeated bridge PCR amplification/denatu-
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Figure 4.1; Overview of pipeline for DNA sequencing library preparation, target enrich
ment and next-generation sequencing using the Illumina sequencing method. dsDNA, 
double-stranded DNA; RNA, ribonucleic acid; PCR, polymerase chain reaction.
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ration on the flowcell surface that results in single molecules being represented by many 

clonal copies in close proximity (a cluster). This way, when sequencing by synthesis is 

carried out, the fluorescence signals are detectable and consistent within a cluster, repre

senting the sequence of bases being incorporated [170].

All NGS technologies generate an unavoidable amount of erroneous data, derived ei

ther during library preparation (for example, nucleotide misincorporation during PCR 

steps) or during the actual sequencing itself (for example, nucleotide misincorporation 

during sequencing by synthesis or base-calling error induced by uncertainty when reading 

the fluorescence signal due to overlapping emission spectra of fluorophores or run-time 

issues such as phasing and pre-phasing [171]). For this reason, quality scores are typically 

included with sequence reads representing the probabilities that base calls were made cor

rectly. These scores can be used in downstream analyses to improve confidence in read 

mapping and variant calls.

Using NGS technologies, an enormous amount of data can be generated in a single 

experiment. However, for many sequencing experiments, the portion of the genome of 

interest is usually just a small fraction, and in such experiments the sequencing of the 

genome’s entirety would be wasteful and potentially problematic in downstream analyses. 

For this reason, strategies for target enrichment have been devised that allow DNA samples 

to be refined down to just portions of the genome that are of interest. Such strategies 

have been developed to match the level of throughput that NGS affords and they permit 

the enrichment of many megabases of sequence. This is acheived through hybridization 

of probes that are complementary to the genomic intervals of interest, either through 

array-based technologies [172,173] or in-solution technologies [174,175].

Agilent’s Sureselect technology [174] employs an in-solution capture method, using 

biotinylated 120-mer RNA probes designed to be complementary to the sequences of ge

nomic target intervals. These probes can then easily be isolated using streptavidin-coated
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magnetic beads; the strong biotin-streptavidin interaction permits specific enrichment of 

DNA that is bound to biotinylated RNA probes (figure 4.1). This in-solution method 

has been shown to be more effective than array-based methods in terms of sensitivity, 

specificity, uniformity and reproducibility [176].

4.1.1 Methodological and statistical considerations in the generation 

and analysis of NGS data

While NGS has multiple diverse applications (such as assessment of mRNA expression 

levels by RNA-seq [177] or investigation of protein-DNA interactions by ChIP-seq [178]), 

the focus of this work is on discovery of sequence variants in genomic DNA samples from 

patients with ALS. For this, NGS can be used to discover both single nucleotide variants 

(SNVs) and insertions/deletions (indels) through deep re-sequencing of candidate genomic 

intervals in several individuals. The design of such an experiment is dependent on many 

considerations derived from known capabilities and limitations of the technologies used, 

as well as expected findings and analysis methodologies.

An important consideration in the design of a project using NGS is target depth of 

coverage. In order that sequencing error or errors introduced in sample library preparation 

do not lead to false positive variant calls, NGS experiments are typically designed so that 

there is a large amount of redundancy in the coverage of aligned reads. This is also 

permissive to genotypes being called correctly, in particular for heterozygous variants 

and polymorphisms. Kenny et al. found that 8x coverage was sufficient to obatain 99% 

concordance with genotypes assayed using SNP arrays [179]. Conversely, Li et al. have 

demonstrated that a target depth of 4x coverage maximizes power to detect association 

of low-frequency variants with disease, given large sample sizes [180]. However, this may 

not be an optimal strategy if accurate inference of genotypes for individuals is of interest. 

In fact, for sequencing experiments where accurate genotype calls are required, the target
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sequence depth is typically much higher. For a given mean sequencing depth, there will be 

substantial variation around this mean across the genome and for this reason, researchers 

typically aim for a target depth of 30 x for genotype calling across many loci in many 

samples.

NGS sample preparation methodologies usually involve one or more PCR amplifica

tion steps so that a sufficient number of molecules are available to the sequencing machine. 

This results in a different kind of redundancy, where two sequenced molecules are repre

sentative of the same starting template molecule, thus providing no extra information and 

potentially being misleading in downstream analyses. Typically, such duplicate reads are 

removed in downstream processing of the data. However, these duplicate reads do have 

the potential to be informative of sequencing error, so the removal of duplicate reads in 

downstream sequence analysis steps would usually take this into account, keeping the read 

that is sequenced most accurately (determined by the mapping quality score of the read).

Given a set of mapped, unique sequence reads, variant calls can be made, for use in 

subsequent analyses. The benefit of NGS experiments is that, for an individual, the full 

complement of variants at a locus is identified (assuming adequate sequencing coverage), 

unlike GWAS which only assays genetic variation that is common within the population. 

This permits the assessment of rare variants, which are variants whose alternate allele has 

a frequency of less than 1%. However, if a particular rare variant is assumed to be the 

cause of a disease, sufficient sample numbers must be assayed in order to acheive adequate 

power to detect the variant at all. Gonversely, if many individuals are sequenced, a large 

number of rare variants will be identified, and determining which variants are important 

from a disease perspective and which are simply background genetic variation becomes an 

issue. For this reason, a control dataset for comparison, representing background genetic 

variation is useful. The public data releases from the 1000 Genomes Project [20] are useful 

datasets for such purposes, although ideal comparative data would be derived from the
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same population as the case cohort.

Nevertheless, the very large number of variants discovered in a large sequencing study, 

even with representative population-based controls, may prohibit the identification of obvi

ous disease-causing variants. On the other hand, rare variants are in their nature less likely 

to be discovered in a restricted set of individuals, so it is possible that many pathogenic 

variants could easily be missed. For these reasons, given the hypothesis that multiple rare 

variants could be the cause of many complex genetic diseases, a prudent approach is to 

consider not just single variants that are discovered in the case cohort, but the sum of 

variants discovered within the bounds of a locus, for example, a gene. This approach is 

termed burden analysis, for which several techniques have been forwarded [181-184]. Such 

analyses benefit most from a well-matched control population.

4.1.2 Research aims

This chapter represents the work carried out in the initial case-only phase of a large project 

involving the sequencing of a set of candidate ALS genes in ALS cases and controls. The 

ultimate goal is to investigate rare genetic variation within ALS patients and identify 

disease-causing variants that lie within regions that have shown some evidence of poten

tially being involved in ALS aetiology. Candidate genes are chosen based on results from 

chapter 3 and are sequenced using the Illumina sequencing method in a cohort of Irish 

ALS patients. 1000 Genomes Project data are used for comparison.

4.2 Methods

4.2.1 Design of RNA sequence capture library

In order to enrich genomic DNA samples for exonic intervals of interest, an RNA bait 

library for in-solution target enrichment (Agilent Sureselect) was designed. Included in 

the design were exons of 395 genes that overlapped with associated intervals identified
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Table 4.1: Genes included in the target gene set due to prior evidence linking to ALS

Symbol Name Evidence
ALS2 Alsin [57,58]
ANG Angiogenin [46]
C9orf72 Chromosome 9 open reading frame 72 [66-68,121,122]
CHMP2B Charged multivesicular body protein 2b [185,186]
DCTNl Dynactin [47-49]
DPP6 Dipeptidyl aminopeptidase-like protein 6 [98,109,187]
ELPS Elongator complex protein 3 [188]
FGGY FGGY carbohydrate kinase domain containing [106]
FIG4 Polyphosphoinositide phosphatase [189]
FUS Fused in sarcoma [51,52]
GRN Progranulin [190]
HFF Human hemochromatosis protein [191,192]
IFNK Interferon kappa [66-68]
ITPR2 Inositol 1,4,5-trisphosphate receptor, type 2 [107]
MAPT Microtubule-associated protein tau [193]
M0BKL2B Mps One Binder kinase activator-like 2B [66-68]
NFFH Neurofilament, heavy polypeptide [194,195]
NFFL Neurofilament, light polypeptide [194,195]
NFFM Neurofilament, medium polypeptide [194,195]
NIPAl Non-imprinted in Prader-Willi/Angelman syndrome [109]
OPTN Optineurin [53-55]
PARK! Parkinson disease protein 7 [196]
PONl Paraoxonase 1 [197-200]
P0N2 Paraoxonase 2 [197-200]
PONS Paraoxonase 3 [197-200]
PRPH Peripherin [201-203]
SFTX Senataxin [59-61]
SIGMARl Sigma non-opioid intracellular receptor 1 [62]
SMNl Survival motor neuron protein 1 [204]
SMN2 Survival motor neuron protein 2 [204]
SODl Superoxide dismutase 1 [42,43]
SPG 11 Spatacsin [205]
TARDBP TAR DNA-binding protein 43 [33,50]
UNC13A Unc-13 homolog A [67,119]
VAPB VAMP-associated protein B [63]
VGP Valosin-containing protein [69]

in section 3.3.2, 127 genes that overlapped with reccurrent ALS-specific deletions iden

tified in section 3.3.3 and 1,411 genes that overlapped with recurrent ALS-specific runs 

of homozygosity identified in section 3.3.4. Extensive overlap between association, CNV 

and ROH datasets reduced the final number of candidate genes to 1,577. The sequencing 

experiment was also used as an opportunity to conduct a comprehensive Irish population- 

based screen of genes that have previously been implicated in ALS. Table 4.1 shows the 

known or suspected ALS genes that were included in the target set.

For all genes in the target set, genomic coordinates of exons for every known transcript
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of each RefSeq gene (GRCh37 build) were downloaded from the UCSC genome browser 

[154]. The script parse_exons.pl was used to convert the output from the UCSC browser 

to lists of exon start and end positions, one list for genes on the positive strand and one list 

for the negative strand. Overlapping exonic coordinates representing alternate transcripts 

were then consolidated into single intervals using interval_overlap.pl. The resulting 

files containing genomic intervals for 2.77 Mb of target exons were uploaded to Agilent’s 

online eArray tool (erray.chem.agilent.com/earray) so that 120-mer RNA probes could be 

designed against the human genome reference sequence. To avoid capture of repetitive 

sequence across the genome, the recommended maximum of 20 base pairs of overlap with 

repeat intervals identified by RepeatMasker was observed. This often resulted in the 

exclusion of large regions that could be rescued by more careful bait placement than 

the automated solution implemented by eArray. Such gaps were tolerated in the large 

candidate ALS gene set, but for screening the known or suspected ALS genes in table 

4.1 this was suboptimal, so the script rescue_intervals.pl was used to identify gaps 

and attempt improved baiting for known or suspected ALS genes. Baits were tiled across 

target regions at 2x frequency. Occasionally, however, only one bait was generated for an 

interval so to avoid potential bias introduced by this the script double_up_singletons .pi 

identified these intervals and designed a second bait overlapping the singleton.

4.2.2 Subjects

A total of 106 individuals were chosen for sequencing based on availability and quality of 

DNA. Samples were also chosen to maximise the potential to detect variants; an attempt 

was made to have a representative sample from as many of the homozygous and CNV 

groups as possible as well as choosing individuals that were driving the association signals. 

All individuals had previously been genotyped in the CWAS projects (chapter 3 and [98]) 

and all patients had clinically definite or probable ALS [28], as determined by a neurologist
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with expertise in ALS. The mean age of onset of the 106 individuals was 64.1 years and 

the ratio of spinal onset:bulbar onset ALS was 74%:26%. Four of the cases had familial 

ALS, as determined by patient-reported family history. The study was carried out as part 

of a larger project approved by the Beaumont Hospital ethics committee.

4.2.3 Sequencing library preparation and target enrichment

Sequencing libraries were constructed using genomic DNA from patients in preparation 

for multiplexed high-throughput resequencing of targeted exonic regions, using the mul

tiplexing method of Craig et al. [206]. This method introduces, for each sample within a 

multiplexed pool, a unique 6-mer sequence to the 5' end of the template DNA molecule 

in the adapter ligation step, which is consequently read by the sequencing machine and 

included at the beginning of each sequence read for that sample. A ten-sample pilot was 

first run on a single lane of an Illumina Genome Analyzer to confirm target depth of 

coverage (30x) was acheivable with the methods of multiplexing and target enrichment. 

Based on this, subsequent samples were prepared as 24-plexed libraries.

Sequencing libraries were prepared according to established protocols (figure 4.1, [207]). 

Briefly, for each sample, 1 pg of DNA was fragmented using either the Covaris™ adap

tive focussed acoustics system or NEBNext™ dsDNA Fragmentase™. Fragmented DNA 

molecules were end-repaired using a cocktail of T4 polymerase, Klenow polymerase I, T4 

polynucleotide kinase and, in the case of Fragmentase™, E. coli DNA ligase for Frag

mentase™. A 5' adenine overhang was then added using Klenow polymerase I fragment 

(3' —> 5' exo-) and barcoded sequencing adapters (10 picomoles, table 4.2) were ligated 

to the A-tailed DNA fragments using Quick T4 DNA Ligase. All enzymes were purchased 

from New England Biolabs (Massachusetts, USA). Between steps, DNA was purified from 

the enzyme reactions using Agencourt® Ampure® XP beads (Beckman Coulter, Califor

nia, USA).
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Table 4.2: Adapter and primer sequences used in sequencing library preparation

Description Sequence______________________________________________________________________ ___________ _
Adapter 1 5'-p-XXXXXAGATCGGAAGAGCGGTTCAGCAGGAATGCCGAG-3'
Adapter 2 5'-ACACTCTTTCCCTACACGACGCTCTTCCGATCTXXXXX*T-3'
Primer 1 5'-AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATC-3' 
Primer 2 5^-CAAGCAGAAGACGGCATACGAGATCGGTCTCGGCATTCCTGCTGAACCGCTCTTCCGATCT-3' 

Adapterl and 2 were duplexed by gradual cooling from 99 °C 
p 5' phosphate group 
* Phosphorothioate bond 
XXXXX unique index for adapter

Table 4.3: PCR cycle conditions used after library preparation and target enrichment 

Post-library preparation Post-target emichment
°C m:s °C m:s
98 0:30 98 0:30
98 0:10 -j 98 0:10
65 0:30 x5-7 57 0:30
72 0:30 J 72 0:30
72 10:00 72 7:00
4 hold 4 hold

cll-13

Adapter-ligated libraries were size-separated by electrophoresis on a 1.5% low melting 

point agarose gel supplemented with IxSYBR green (Invitrogen, California, USA) and 

libraries sized between 300 and 400 bp were excised. DNA was subsequently purified from 

the gel using a Qiagen gel extraction kit (Qiagen GmbH, Hilden, Germany). Size-selected 

libraries were then amplified with between five and seven cycles of PCR using the primers 

detailed in table 4.2 and the PCR cycle conditions described in table 4.3.

Prepared sequencing libraries were quantified using the Quant-iT^'^ high-sensitivity 

assay performed with a Qubit® spectrophotometer (Invitrogen, California, USA) and 

pooled in equimolar quantities totalling 500 ng. Pooled samples were then subjected to 

target enrichment using the Agilent SureSelect RNA library described in section 4.2.1 

according to manufacturer’s protocol.

4.2.4 High-throughput resequencing of targeted exons

Target-enriched multiplexed sequencing libraries were quantified with a Qubit® spec

trophotometer using the Quant-iT™ high-sensitivity assay, as well as the DNA-1000 assay
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on an Agilent Bioanalyzer. Libraries were standardized to 5 jiM concentration and pro

vided for 80 bp paired-end sequencing on an Illumina Genome Analyzer at the TrinSeq 

facility in the Trinity Centre for Health Sciences, Saint James’s Hospital, Dublin.

4.2.5 Sequence alignment and processing

Sequence data were provided as large text files in the FASTQ format [208]. This format 

lists sequence reads, four lines per read, where the first and third lines are headers (unique 

identifiers for the read), the second line contains the sequence itself and the fourth line 

contains an encoded quality string representing the Phred-scaled [209] probability that 

the base was called incorrectly by the sequencing machine. For each base position, the 

quality of the base call is represented by a character in standard American Standard Code 

for Information Interchange (ASCII) format.

Using these FASTQ files, data were split according to the unique barcode string present 

at the start of each read using the script split_seq_data.pl. This script creates an 

internal lookup table of identifiers for each barcode and matches the 6-mer barcode at 

the start of forward sequencing reads to individuals, outputting one new FASTQ file per 

individual. If a read’s barcode does not match any barcodes in the lookup table, the script 

checks the reverse read’s barcode for matches and outputs to the relevant file. If neither 

barcode has a match, the script outputs to a file that catches sequencing reads of unknown 

source.

Sequence reads for each individual were aligned to the hgl9 build of the human genome 

using the Burrows-Wheeler Aligner (BWA) [210]. First, the aln method was implemented, 

finding the suffix array coordinates of the sequencing reads. In this step, the -q switch 

was set to 20, which results in the sequence reads being soft clipped according to the result 

of cirg'maxxYli=x+i{Q ~ 9i)) where Q is the user-specified quality threshold, / is the read 

length and qi is the base position’s quality score. Thus, only high-quality portions of
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reads were considered in subsequent analyses. The sampe method of BWA was then used 

to generate paired-end alignments in the sequence alignment/map (SAM) format [211]. 

Individual SAM files were converted to compressed binary SAM files (BAM files) using 

SAMtools [211] and merged to form single BAM files, one per lane of sequencing, using 

Picard (http;//picard.sourceforge.net).

To reduce false-positive SNPs resulting from poor alignment around insertions or dele

tions (indels) and to improve the potential to detect indels, local realignment was per

formed around clusters of SNPs as well as at known sites of indels using the Genome Anal

ysis Toolkit (GATK) [212]. Firstly, the IndelTargetCreator algorithm was applied to the 

merged BAM files to generate target intervals for realignment, then the IndelRealigner 

method was implemented to find the optimal alternate alignment for problematic reads.

Following realignment, duplicate reads were removed using MarkDuplicates, a method 

within Picard which identifies and removes reads that have identical start and end coordi

nates, keeping only the read with the best mapping quality. This is necessary because the 

PGR steps involved in sequencing library preparation result in many copies being made 

of the same starting molecule; thus, if more than one of these copies is sequenced the two 

resulting reads are only truly representative of one sequence from the starting genome.

The base quality scores in the resulting unique, realigned BAM file were recalibrated 

using the GATK methods CountCovaxiates and TableRecalibration to remove any sys

tematic bias in the assignment of quality scores and to generate a quality score distribution 

that is more representative of the underlying variance within quality scores. Four covari

ates were used for recalibration: dinucleotide, read group (groups of per-individual, per- 

sequencing run reads), quality score and machine cycle number. The distribution of qual

ity scores were assessed before and after recalibration using GATK’s AnalyzeCoveiriates 

tool.

87



4.2.6 Variant calling and annotation

The resulting high-quality sequence reads from section 4.2.5 were used to call variants 

in the sequence by implementing the mpileup method in SAMtools. This produced a 

variant call format (VCF) file [213], which was filtered for variant call score, keeping only 

variant calls with quality score greater than 20 (representing a 1% probability that the 

variant call is incorrect), which was then passed to ANNOVAR to annotate variants based 

on their positions within genes (http://www.openbioinformatics.org/annovar/). Variants 

were defined as non-silent if they were expected to alter protein structure based on gene 

annotation. This comprised all variant annotations except synonymous single nucleotide 

variants (SNVs). In the assessment of putative variant pathogenicity, only non-silent 

variants were considered.

As a comparison dataset, the 1000 Genomes Project’s [20] October 2011 integrated 

variant call set (ftp;//ftp.lOOOgenomes.ebi.ac.uk/voll/ftp/release/20110521/) was used 

extensively to assess the frequency of ALS variant calls in an alternative population of 

1,092 ethnically diverse individuals. Variants discovered in the ALS dataset were defined 

as rare if, within the 1000 Genomes dataset, they were either not present or present at a 

frequency of less than 1%. This definition was used to refine the call set to variants that 

are rare globally using the script filter_lkg.pl. A comparison dataset of rare variants 

in the 1000 Genomes data was also produced this way and this was used with the script 

count_variaiits_per_gene.pl to compare the number of rare variants discovered in the 

ALS dataset to the number of rare variants discovered in the 1000 Genomes data. This 

permitted a speculative burden analysis on the data to reveal genes that have improbably 

high numbers of rare variants in the ALS dataset.

To identify possible recessive ALS-causing variants, intervals that were mapped ho- 

mozygously in section 3.3.4 were passed to the script find_homies.pi to find homozygous 

genotypes for individuals in which the ROHs were originally mapped. Because minor al-
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leles segregate homozygously only of the time, where q is the MAF, frequency-based 

variant filtration was not deemed necessary prior to this step. Variants were flagged as 

potential recessive ALS-causing mutations if they were present homozygously in the in

dividuals in which the ROHs were mapped, and either not present in the 1000 Genomes 

dataset, or present only heterozygously.

4.3 Results

4.3.1 Sequence alignment and processing

Following successful alignment of 529 million reads (95.46% of total) to the human genome, 

local realignment around indels and removal of reads marked as PCR duplicates (14% of 

alignable reads), the mean peak non-zero coverage for target genomic regions was 28.5x 

(figure 4.2(a)), representing an on-target rate of 25%. Base quality score recalibration 

successfully adjusted quality scores to be more representative of the bases’ probabilities of 

mismatching the reference allele at variant sites (figures 4.2(b) and 4.2(c)).

4.3.2 Variant calling

After initial calling of 6,903 non-reference sequence variants in the target gene set, 346 

were discarded based on sub-threshold quality score, leaving a total of 6,557 high-quality 

variants within target intervals (figure 4.3(a)). Figme 4.3(b) shows the allele frequency 

spectrum of the remaining high-quality variants, demonstrating an excess of rare variants 

called in the target gene set. Of the high-quality variants, 103 were indels and 6,454 were 

single nucleotide varieints. Figure 4.3(c) shows the relative quantities of variants based 

on annotation. 641 of the discovered variants were polymorphisms that are included in 

the Illumina genome-wide SNP dataset generated in chapter 3; genotypes for these SNPs 

with greater than eight supporting high-quality base calls [179] were used to check for 

concordance between the GWAS dataset and the current NGS dataset. A mean (ih SD) of
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Figure 4.2: Statistics following sequence alignment and processing, (a) Mean coverage 
within target regions for all samples. The black line shows the kernel density estimate 
generated using R’s density function (bandwidth=0.8043). (b) and (c) Example plots, 
for one representative individual, of observed versus expected base quality score before 
and after base quality score recalibration using GATK.
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99.92 ± 0.15 % concordance for genotypes was observed, and no individual showed lower 

than 99.12% concordance.

4.3.3 Assessment of candidate disease variants

Rare VEiriants

After only keeping variants at less than 1% in the 1000 Genomes dataset, there were 3001 

remaining variants in 917 genes in the ALS dataset, of which 1036 were synonymous SNVs. 

The majority of these variants were also below 1% alternate allele frequency in the ALS 

dataset (figure 4.4(a)), and figure 4.4(b) shows a similar distribution of variant annotation 

to the unfiltered variant set shown in figure 4.3(c). The subset of rare variants discovered 

in the ALS dataset that are expected to affect protein structure at more than one amino 

acid are detailed in table 4.4.

Burden of rare variants in candidate genes

The relative quantity of rare variants discovered in the ALS dataset compared to the 

1000 Genomes dataset was assessed for each gene. Figure 4.5 shows the ratio of rare 

variants in the ALS set to rare variants in the 1000 Genomes dataset, where both values 

are standardized to the length of the gene and the number of individuals sequenced in 

each experiment. Twelve genes were identified that had, in ALS, greater than lOx the 

standardized number of rare variants. These genes are detailed in table 4.5. One gene, 

HYDIN, stood out in particular; for this gene, every rare non-silent variant discovered in 

the ALS dataset is detailed in table 4.6.

Putative recessive disease-causing mutations

For homozygous intervals identified in section 3.3.4, genotypes for non-silent variants dis

covered in the ALS dataset were investigated for putative recessive disease-causing in-
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Figure 4.3: Characteristics of variants called in target intervals, (a) Distribution of variant 
quality scores determined by SAMtools mpileup method. The majority of variant calls 
were very high quality and for the remainder a cutoff for marginal quality calls was set 
at 20; 95.0% of variants were above this threshold. VQS, variant quality score, (b) 
Distribution of alternate allele frequencies in high-quality variant calls. A large proportion 
(37.4%) of discovered variants were rare (alternate allele frequency < 1%) and there was 
a slight excess (2.6%) of variants with alternate allele frequency greater than 99%, which 
possibly represent variants for which the reference allele is actually the minor allele. MLE, 
maximum likelihood estimate; AAF, alternate allele frequency, (c) Relative quantities of 
six different types of variant. SNV, single nucleotide variant.
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Table 4.4: Rare variants expected to alter protein structure at several amino acids
Gene Type Mutation Coding change Chr Pos AAF
ACADL Frameshift deletion 1147.1148del 383^83del 2 211057579 0.004721
A COS Frameshift insertion 1926-1927insC P642f8 22 41922430 0.1333
AD AM 20 Stopgain SNV G1814A W605X 14 70989811 0.004717
ANKRD30A Stopgain SNV G328T EllOX 10 37419292 0.02367
ANKRD30A Frameshift deletion 3771-3772del 1257.1258del 10 37508579 0.01415
AOAH Stopgain SNV G1453T G485X 7 36561695 0.005455
ATF6 Stopgain SNV C1294T Q432X 1 161816345 0.004718
BEST3 Frameshift deletion 173delA Q58fs 12 70088224 0.06137
BMP2K Stopgain SNV C3481T Q1161X 4 79833182 0.00472
BTBD8 Stopgain SNV T344G L115X 1 92554449 0.004718
ClOorfeS Frameshift deletion 1477.1478del 493_493del 10 33136820 0.08072
Cl 0orf68 Stopgain SNV C21G Y7X 10 32873210 0.009704
Clorfl68 Stopgain SNV G1420T E474X 1 57209907 0.004902
CALML4 Frameshift deletion 581delG R194fs 15 68486363 0.004744
CCDC14I Frameshift deletion 282delG E94fs 2 179843346 0.004735
CCDC66 Stopgain SNV C1381T R461X 3 56628033 0.009437
CENPE Stopgain SNV G6145T E2049X 4 104061005 0.004721
CNTNAP5 Frameshift insertion 197_198in8G G66f8 2 124999786 0.032
CPA4 Stopgain SNV G678A W226X 7 129948221 0.004892
DEPDC5 Stopgain SNV G2055A W685X 22 32218727 0.02109
DEPDC5 Stopgain SNV C1699T R567X 22 32215040 0.004982
DNAHll Stopgain SNV C7301G S2434X 7 21765441 0.00472
DNAHll Stoploss SNV A9957T X3319C 7 21828869 0.004956
DNAHI4 Frameshift deletion 1867delT S623fs 1 225231640 0.00961
DNAHI4 Stopgain SNV G10171T E3391X 1 225528175 0.009434
DNAHI4 Stoploss SNV A13548T X4516Y 1 225586971 0.004736
DNAHI4 Stopgain SNV C409T R137X 1 225152222 0.009627
DYSF Frameshift insertion 3840-3841insC G1280fs 2 71827918 0.1143
EFCAB4B Frameshift deletion 2132-2133del 711_711del 12 3724584 0.00584
FAMlllA Frameshift insertion 791.792insGCAGATACTT F264fs 11 58919932 0.009434
FM03 Stopgain SNV G913T E305X 1 171083232 0.00472
GBPS Frameshift insertion 500-501insCTGA A167fs 1 89732765 0.009453
GBPS Frameshift deletion 1314-1315dei 438-439del 1 89729466 0.004736
HYDIN Stopgain SNV C1204T R402X 16 71163647 0.004717
HYDIN Stoploss SNV T3052C X1018Q 16 71061495 0.4985
HYDIN Frameshift deletion 11708delT I3903f8 16 70896017 0.4931
IFNK FTameshift insertion 37^8in8TTGT WlSfs 9 27524371 0.03678
KLLN FTameshift deletion 339-340del 113.114del 10 89621905 0.0093
KRT76 Stopgain SNV G826T E276X 12 53167416 0.009758
LGSN Frameshift insertion 1515-1516insA L505fs 6 63989941 0.00481
LOC729020 Stopgain SNV C178T Q60X 10 105005931 0.004723
LRBA Stoploss SNV T3178G X1060E 4 151773684 0.004717
LRPIB FTameshift substitution 4170.4170TAA, NA 2 141625832 0.03042
M ANSA 2 Stopgain SNV C1234T Q412X 15 91452594 0.005143
MME FVameshift deletion 467delC Pisefs 3 154834480 0.00488
MS4AI4 Frameshift insertion 1905.1906insA K635f8 11 60184346 0.004752
NDUFA6 Frameshift deletion 35_36del 12.12del 22 42486791 0.00844
0LFM4 Stopgain SNV C640T R214X 13 53617309 0.01457
OR4C4S FVameshift insertion 767.768insCT P256f8 11 48367052 0.5
ORSM3 Stopgain SNV C421T R141X 11 56237553 0.004717
ORST3 Frameshift deletion 999-lOOOdel 333^34del 11 56020674 0.004719
OR8I2 FTameshift substitution 523-525CT, NA 11 55861306 0.1038
OR8K3 Stopgain SNV C778T Q260X 11 56086560 0.02357
PAPSS2 FTameshift deletion 1759delG E587f8 10 89505641 0.004792
PAPSS2 Frameshift deletion 381.381del 127_127del 10 89473067 0.03096
PDEllA FTameshift deletion 907delT F303f8 2 178681636 0.004723
PDEllA Stopgain SNV C169T R57X 2 178879181 0.01417
PEGIO Stoploss SNV T1717C X573Q 7 94294357 0.004731
PKD1L3 Frameshift insertion 3689-3690insAACA Q1230fs 16 71981420 0.7494
PKHDlLl Stopgain SNV C9124T R3042X 8 110491814 0.004723
PON3 Stopgain SNV C94T R32X 7 95024007 0.004772
PPARD FTameshift insertion 759_760insCA T253f8 6 35392237 0.005751
PRKCH Stopgain SNV C811T R271X 14 61917668 0.004719
PRSS48 FTameshift insertion 131_132in8GTCAG S44f8 4 152201026 0.5413
PTH2R Stopgain SNV C245A S82X 2 209302328 0.03304
PTH2R FTameshift deletion 594_597del 198.199del 2 209308157 0.004721
PTPMTl Stoploss SNV G605C X202S 11 47593180 0.009652
RFX3 Stopgain SNV G2000A W667X 9 3248000 0.004723
SCIN Stopgain SNV G1212A W404X 7 12689163 0.004733
SFIl Stopgain SNV C235T R79X 22 31924818 0.004719
SLC13A1 Stopgain SNV C34T R12X 7 122839967 0.004719
SLC13A1 Stopgain SNV G144A W48X 7 122821111 0.004717
SLC17A2 Stopgain SNV G265T E89X 6 25921616 0.004782
SLC17A4 Stopgain SNV C1297T Q433X 6 25778182 0.009437
SLC9B1 Stopgain SNV C913T R305X 4 103832611 0.2263
SO ATS Frameshift deletion 798delC P266f8 12 53512153 0.004771
TTC9 FTameshift insertion 338_339insG GllSfs 14 71109184 0.2899
TTN Stopgain SNV C12190T R4064X 2 179598098 0.004812
VWDE FTameshift deletion 3644delG C1215f8 7 12395838 0.004734
XIRP2 Frameshift deletion 3802^803del 1268.1268del 2 168102370 0.004717
ZNF187 FTameshift insertion 236_237insG C79f8 6 28239933 1
ZNF839 FTameshift deletion 524.525del 175,175del 14 102792557 0.004743

Pos, base pair position in GRCh37 coordinates 
AAF, alternate allele frequency 
SNV, single nucleotide variant 
NA, not applicable
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(a) Alternate allele frequencies of rare variants (b) Annotation of reire variants

Figure 4.4: Characteristics of rare ALS variants with alternate allele frequencies < 1% in 
1000 Genomes data. MLE, maximum likelihood estimate; AAF, alternate allele frequency; 
SNV, single nucleotide variant.

Table 4.5: Genes demonstrating a burden of rare variants in ALS (lOx more rare variants 
per base per person in ALS)

Gene Length (bp) nALS nikg ScoreALS Scoreikg Ratio
CREG2 3488 2 2 1.89x10-^ 1.83x10-3 10.3
GABPBl 1635 1 1 9.43x10-3 9.16x10-^ 10.3
GOLGA6B 3178 1 1 9.43x10-3 9.16x10-1 10.3
HYDIN 15685 49 20 4.62x10-1 1.83x10-2 25.2
OR14J1 966 3 3 2.83x10-2 2.75x10-3 10.3
GRIDS 939 2 1 1.89x10-2 9.16x10-^ 20.6
OR4C3 990 16 8 1.51x10-1 7.33x10-3 20.6
OR4C45 919 11 3 1.04x10-1 2.75x10-3 37.8
OR8U1 930 8 8 7.55x10-2 7.33x10-3 10.3
OR8U8 906 1 1 9.43x10-3 9.16x10-1 10.3
RPS3 841 2 2 1.89x10-2 1.83x10-3 10.3
TTC9 5217 2 1 1.89x10-2 9.16x10-1 20.6
WDR26 6872 1 1 9.43x10-3 9.16x10-1 10.3
HALS) number of rare variants discovered in the ALS cohort 
nikg, number of rare variants discovered in the 1000 Genomes cohort 
ScoreALSi Scorejkg, Number of rare variants discovered 4- (nxlength of gene) 
Ratio, ScoreALS-^Scoreikg
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Table 4.6: Variants discovered in HYDIN that are rare or not present in 1000 Genomes 
data

Mutation Type Pos Coding change Ref Alt AAF
G13535A Nonsynonymous SNV 70867931 R4512H C T 0.005
A12869T Nonsynonymous SNV 70883630 K4290M T A 0.005
C12805T Nonsynonymous SNV 70883694 H4269Y G A 0.052
G12475C Nonsynonymous SNV 70884524 E4159Q C G 0.500
A12260G Nonsynonymous SNV 70891640 K4087R T C 0.176
G12121A Nonsynonymous SNV 70893976 A4041T C T 0.023
G12073A Nonsynonymous SNV 70894024 A4025T C T 0.208
A12010G Nonsynonymous SNV 70894087 T4004A T C 0.467
11708delT Frameshift deletion 70896017 I3903fs GAA GA 0.493
G11692A Nonsynonymous SNV 70896033 V3898M C T 0.160
G11635A Nonsynonymous SNV 70896090 D3879N C T 0.010
T11603G Nonsynonymous SNV 70896122 M3868R A C 0.436
G11515C Nonsynonymous SNV 70897039 V3839L C G 0.496
G11429A Nonsynonymous SNV 70900111 R3810H C T 0.005
C11239T Nonsynonymous SNV 70902541 R3747C G A 0.043
G11212A Nonsynonymous SNV 70902568 A3738T C T 0.495
C10438T Nonsynonymous SNV 70913316 R3480W G A 0.024
G10402A Nonsynonymous SNV 70913352 A3468T C T 0.005
G10223A Nonsynonymous SNV 70913649 R3408H C T 0.005
T9944C Nonsynonymous SNV 70917855 L3315P A G 0.503
G9868C Nonsynonymous SNV 70917931 A3290P C G 0.503
C9344G Nonsynonymous SNV 70926334 T3115R G C 0.241
C8792T Nonsynonymous SNV 70937582 P2931L G A 0.030
T8078G Nonsynonymous SNV 70942688 I2693S A C 0.497
A7763G Nonsynonymous SNV 70954513 K2588R T C 0.475
G7705A Nonsynonymous SNV 70954571 D2569N C T 0.482
G7670A Nonsynonymous SNV 70954606 G2557E C T 0.479
A7585G Nonsynonymous SNV 70954691 K2529E T C 0.207
7545-7559del Non>frameshift deletion 70954717 2515-2520del GTGCGCTCCTTCTCC NA 0.263
A7331T Nonsynonymous SNV 70954945 N24441 T A 0.496
C6889G Nonsynonymous SNV 70972620 R2297G G C 0.458
A6824G Nonsynonymous SNV 70975565 Q2275R T C 0.213
A6427G Nonsynonymous SNV 70986425 K2143E T C 0.034
C6256T Nonsynonymous SNV 70989335 R2086C G A 0.507
T6136A Nonsynonymous SNV 70993553 S2046T A T 0.116
G6050A Nonsynonymous SNV 70993639 R2017H C T 0.068
G5852A Nonsynonymous SNV 70995975 R1951Q C T 0.043
G5149A Nonsynonymous SNV 71007809 V1717M C T 0.071
G3682C Nonsynonymous SNV 71026076 V1228L C G 0.500
A3291G Nonsynonymous SNV 71054116 I1097M T C 0.005
T3052C Stoploss SNV 71061495 X1018Q A G 0.499
C2795T Nonsynonymous SNV 71065636 T932I G A 0.005
A2149G Nonsynonymous SNV 71101200 T717A T C 0.506
C1832A Nonsynonymous SNV 71103393 T611N G T 0.019
T1763C Nonsynonymous SNV 71113844 I588T A G 0.009
C1204T Stopgain SNV 71163647 R402X G A 0.005
A1121G Nonsynonymous SNV 71171057 Y374C T C 0.005
G856C Nonsynonymous SNV 71186628 E286Q C G 0.005
G212A Nonsynonymous SNV 71220668 R71Q C T 0.005

Ref, reference allele 
Alt, alternate allele 
AAF, alternate allele frequency 
SNV, single nucleotide variant 
NA, not applicable
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heritance by searching for genotypes for the same variants in the 1000 Genomes dataset. 

Variants that were present in the ALS dataset in the correct individuals within the cor

rect intervals, but that were not discovered in the 1000 Genomes dataset or that had no 

homozygous genotypes in the 1000 Genomes data, are detailed in table 4.7.

4.3.4 Assessment of rare variants in genes previously implicated in ALS

Rare, non-silent variants in known or suspected ALS genes (table 4.1) that were identified 

in the ALS dataset are detailed in table 4.8. For the majority of genes in table 4.1, no 

rare variants were discovered. Of the variants in table 4.8, only one has previously been 

shown to be involved in ALS (the G59S mutation in DCTNl [47]).
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4.4 Discussion

The work detailed in this chapter set out to assess the incidence of rare variation in a set of 

ALS candidate genes using a cohort of 106 ALS patients. The work represents the initial 

case-only phase of a larger project which aims to look at further cases and population- 

matched controls in the same set of 1,577 candidate ALS genes. Initial results reported 

here are informative of the expected outcome and analysis strategy of the larger project. 

In particular, the need for a set of population matched controls is addressed.

4.4.1 Summary of findings and their significance

1,577 candidate genes, along with 36 genes previously implicated in ALS (table 4.1) were 

sequenced in a panel of 106 ALS patients. Genomic DNA samples were enriched for candi

date genes using a custom Agilent SureSelect in-solution RNA bait library [174], yielding 

an on-target rate of just 25% after sequence alignment and processing. Furthermore, many 

target regions were covered at Ox depth for several individuals (figure 4.2(a)). Taken to

gether, these two results represent a relatively underwhelming performance from the target 

enrichment method.

It is likely that the poor on-target rate is at least partially due to the indexing strategy 

that was employed for sample multiplexing. The protocol for SureSelect target enrichment 

involves the addition of several oligonucleotide blocks designed to hybridize to sequenc

ing adapters during the RNA bait/sequencing library hybridization step, so that the only 

sequence that is visible to the RNA baits is target sequence in template DNA. The in

corporation of a 6-mer oligonucleotide barcode between the sequencing adapter and the 

template molecule alters the sequence that is visible to the RNA baits and increases the 

likelihood that off-target sequence will be captured. Improved methodologies in the fu

ture might involve the addition of oligonucleotide blocks specific to the barcodes used. 

Alternatively, a different indexing method could be used which places the barcode in the
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Table 4.8: Rare variants discovered in genes previously implicated in ALS

Gene Type Chr Pos Ref Alt Coding change AAF
ALS2 nonsynonymous SNV chr2 202609053 T C T700A 0.0047
ALS2 nonsynonymous SNV chr2 202580536 G A P1288L 0.0049
ALS2 nonsynonymous SNV chr2 202575717 T G I1373M 0.0048
ALS2 nonsynonymous SNV chr2 202622481 G C P372R 0.0047
ALS2 nonsynonymous SNV chr2 202622313 G T T428N 0.0047
DCTNl nonsynonymous SNV chr2 74605231 C T G59S 0.0048
DCTNl nonsynonymous SNV chr2 74605315 A G S31P 0.0053
DCTNl nonsynonymous SNV chr2 74594037 A G I780T 0.0048
ELP3 nonsynonymous SNV chr8 27957364 G A A47T 0.0048
ELP3 nonsynonymous SNV chr8 27957431 G T R69L 0.0048
HFE nonsynonymous SNV chr6 26091185 A T S65C 0.0143
IFNK frameshift insertion chr9 27524371 NA TTGT W13fs 0.0368
ITPR2 nonsynonymous SNV chrl2 26755563 C T R1180Q 0.0098
ITPR2 nonsynonymous SNV chr 12 26755617 A C V1162G 0.0050
ITPR2 nonsynonymous SNV chrl2 26755367 C T R1205Q 0.0047
ITPR2 nonsynonymous SNV chrl2 26493117 C T A2668T 0.0049
NEFM nonsynonymous SNV chr8 24774791 G A A99T 0.0047
OPTN nonsynonymous SNV chr 10 13167989 C G Q398E 0.0047
PONl nonsynonymous SNV chr 7 94937419 G A A201V 0.0047
PON2 nonsynonymous SNV chr7 95039247 A C S209A 0.0047
PON2 nonsynonymous SNV chr 7 95034794 G A R293C 0.0094
PON3 stopgain SNV chr7 95024007 G A R32X 0.0048
PON3 nonsynonymous SNV chr7 95001590 T C M88V 0.0047
SETX nonsynonymous SNV chr9 135204010 T C K992R 0.0189
SETX nonsynonymous SNV chr9 135203756 C T D1077N 0.0047
SETX nonsynonymous SNV chr9 135202325 A C C1554G 0.0094
SETX nonsynonymous SNV chr9 135140020 A G I2547T 0.0142
SPG 11 nonsynonymous SNV chr 15 44918690 C T A695T 0.0190
SPG 11 nonsynonymous SNV chr 15 44907562 T C K1013E 0.0094
SPG 11 nonsynonymous SNV chr 15 44890484 A G I1327T 0.0048
SPG 11 nonsynonymous SNV chr 15 44859744 C T R2098H 0.0095
SPG 11 nonsynonymous SNV chr 15 44855327 C G A2329P 0.0047
SPG 11 nonsynonymous SNV chrl5 44944037 C T E370K 0.0283
SPG 11 nonsynonymous SNV chrl5 44925740 A C D566E 0.0378
UNCI 3A nonframeshift deletion chr 19 17766941 TGC NA 344.345del 0.0324
UNC13A nonsynonymous SNV chr 19 17746950 A T V1033D 0.0049
If a variant has previously been implicated in ALS, it is shown in bold 
Chr, chromosome
Pos, base pair position in GRCh37 coordinates 
Ref, reference allele 
Alt, alternate allele 
AAF, alternate allele frequency 
SNV, single nucleotide variant 
NA, not applicable
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middle of the sequencing adapter, thus rendering it unable to interfere with template DNA 

sequence [214].

Despite the disappointing performance of the target enrichment strategy, a large vol

ume of usable data was generated, from which many variant calls could be made. The first 

application of these variant calls was to confirm that genotypes called in individuals that 

had been sequenced were concordant with genotypes that had been generated in chapter 

3. This confirmed concordance of well over 99%, which gave confidence in genotype calls 

and confidence that the correct individuals were sequenced.

The allele frequency spectra generated after variant calling demonstrated that the ma

jority of variants that were discovered were less than 1% firequency (figures 4.3(b) and 

4.4(a)). However, a small number of variants were present at much higher alternate al

lele frequencies. This could be due to a number of factors. Although unlikely, the 1000 

Genomes Project could have acheived poor coverage for the region, thus missing the vari

ant call, and the variant was therefore not flagged as common in the current analysis. 

Alternatively, these variants could represent errors in the reference sequence that were ac

counted for in the generation of the 1000 Genomes dataset. In many cases, however, these 

higher-frequency variants could represent alleles that have very low frequency worldwide, 

but that have drifted to higher frequency in the Irish population. Further sequencing 

of these genomic regions in a control cohort would be informative of population-specific 

variants, thus making the interpretation of pathogenicity of discovered variants easier.

Following variant filtration based on allele frequency in the 1000 Genomes Project data, 

3,001 variants remained. Table 4.4 details the subset of these variants that are expected 

to alter protein structure at more than one amino acid. Filtering of variants based on 

this annotation reduced the set of candidate variants effectively from 3,001 to 82; however 

this list is not small enough to permit a straightforward follow-up in a larger population. 

Furthermore, this strategy rejects the potential pathogenicity of nonsynonymous SNVs,
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for which there is little cause. In light of this, a further analysis was conducted that 

assessed the occurrence of multiple rare variants within individual genes, comparing the 

ALS dataset with the 1000 Genomes dataset. This revealed just 13 genes that showed 

greater than 10 x the number of variants per base, per person, in ALS than in the 1000 

Genomes dataset.

However, many of these genes showing an excess of rare variants are likely to be 

false positives. For example, just one rare variant was discovered in GABPBl, yet, by 

virtue of the difference in project size between the current study and the 1000 Genomes 

Project, this gene was flagged as having 10.3x the number of rare variants in the ALS 

dataset, per base of sequence per individual sequenced. This was the case for most of 

the variants in table 4.5. However, one gene, HYDIN, demonstrated a large number of 

rare variants in ALS compared to 1000 Genomes data (49 rare variants were discovered 

in 106 individuals sequenced in the ALS project versus 20 variants discovered in 1,092 

individuals sequenced in the 1000 Genomes Project). Table 4.6 details the complete set of 

variants discovered in HYDIN. While it is expected that many of the variants described 

in table 4.6 are non-pathogenic polymorphisms, the excess of variants discovered in this 

gene compared to the expectation derived from 1000 Genomes data suggests that this 

gene could indeed be involved in ALS aetiology. In mice, Hydin mutations cause lethal 

communicating hydrocephalus with early onset [215], which is triggered by denudation of 

ependyma and neuroepithelium early in development [216], also leading to downstream 

neurological effects. Furthermore, structural variation in an ancestrally recent HYDIN 

paralogue [217] causes microcephaly, macrocephaly and behavioural abnormalities in hu

mans [218]. Together, these studies implicate HYDIN in neurological function, contribut

ing to the disease-related interpretation of the findings of multiple rare variants in this 

gene in ALS.

A separate analysis was conducted on discovered variants that made no assumptions
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about frequency of alternate alleles. This analysis searched for recessive variants in ge

nomic regions where they would be expected in certain individuals, as determined by the 

ROH mapping results described in section 3.3.4. This identifed 8 genes that were not 

present homozygously in the 1,092 individuals of the 1000 Genomes project and therefore 

may be involved in recessively-inherited ALS (table 4.7). One of these genes, PDEllA, was 

originally implicated in twelve individuals representing three different homozygous hap- 

lotype groups, and the recessive variant was discovered in all five of the individuals that 

were sequenced from these groups. However, the number of individuals that were shown 

to be homozygous for this variant in the ALS dataset (65 out of 106) raises suspicion; it is 

unlikely that a gene that accounts for over half of the cases of ALS has been undetected by 

previous GWAS and linkage studies. It is therefore more likely that the variants in table 

4.7 with very low alternate allele frequencies are indicative of recessive disease-causing mu

tations. However, assessment of their prevalence in ALS will require further sequencing, 

as the occurrence of a homozygous genotype for an allele with a frequency q will only be 

q'^ if it is simply a population-based variant.

Assessment of rare variants in genes previously known or suspected in ALS was per

formed; table 4.8 shows the results. No variants were discovered in SODl, FUS or 

TARDBP, which is surprising given that these genes carry the strongest evidence impli

cating them in ALS aetiology. However, the majority of samples sequenced in the current 

study were from individuals with sporadic ALS, whereas SODl, FUS and TARDBP are 

mainly implicated in familial ALS. One variant that had previously been implicated in 

ALS aetiology, the G59S mutation in DCTNl [47], was identified in the current study at 

a frequency of 0.48% in the ALS cohort.

Many of the remainder of the variants listed in table 4.8 are interesting, in that they 

may suggest causative alleles for disease genes that had only previously been implicated in 

ALS by GWAS, for example UNCI3A and ITPR2. In particular, the frameshift deletion in
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UNCISA is interesting given its relatively high frequency of 3.24% in the sequenced cohort, 

which could represent a previously-undiscovered ALS variant that is high frequency in ALS 

patients in Ireland. However, this could also be a rare Irish population polymorphism, the 

identification of which would require further sequencing in unaffected Irish individuals. 

This is true also for the many other interesting findings reported in table 4.8.

4.4.2 Limitations

This study has attempted to identify disease-causing rare variants in sequencing data 

derived from a panel of ALS cases. Many of the doubts raised in the previous section 

about pathogenicity of discovered variants could be addressed through the sequencing of 

a representative panel of healthy controls to describe the background genetic structure of 

the Irish population. This way, it could be determined whether interesting variants are 

in fact simply low-frequency population polymorphisms within Ireland. This is a strong 

limitation of the current study and accurate inferences about the pathogenicity of variants 

identified cannot be assessed until a representative comparison dataset is available.

A second limitation is the number of individuals that have been sequenced in this study. 

Many of the genes in the target gene set were derived from the ROH analysis, but of the 

329 individuals in which these ROHs were discovered, only 106 have been sequenced. The 

remaining 223 individuals may harbour recessive mutations that are rare enough that they 

would not be discovered unless representative individuals were sequenced. Indeed, several 

of the candidate gene regions mapped by ROH analysis did not have a representative 

individual in the sequenced panel.

A third limitation is that this study has only focussed on sequencing the protein 

coding portions of the candidate genes. It could be the case that many cases of ALS 

are explained by genetic factors that lie within either regulatory regions or non-coding 

portions of genes, such as the recently-discovered C9orf72 hexanucleotide repeat expansion
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[121,122]. Additionally, the sequencing strategy is only capable of detecting SNVs or small 

indels; a variant such as the expansion in C9orf72 would not be detected by the methods 

described in this chapter.

4.4.3 Future directions

Future work should attempt to address the limitations mentioned in the previous section. 

Sequencing of a representative panel of neurologically normal Irish controls will help to 

ascertain the background level of genetic variation in the Irish population so that disease- 

causing variants can be distinguished from population polymorphisms. In order to have 

a reasonable chance of estimating the allele frequency of a population polymorphism, it 

would be preferable that it is observed more than once in the control cohort. Therefore, to 

identify genetic variation that is at the upper limit of the difinition of rare, a cohort of 150 

control individuals would be required to detect the variant at least twice (figure 4.6(a)). 

The power to detect a range of MAFs with 150 individuals is shown in figure 4.6(b). 150 

represents the minimum number of controls that should be sequenced to address the issue 

of identifying population polymorphisms.

However, a large proportion of this project has been based on the assumption of 

recessive inheritance of ALS. Because rare variants are very unlikely to be present in an 

individual homozygously, the number of individuals required to refute the role of recessive 

inheritance of the variant in disease is much greater. Figure 4.6(c) shows the power to 

detect a rare variant homozygously for a range of alternative allele frequencies and a range 

of sample sizes. This demonstrates that for even for a relatively common variant whose 

MAF is 5%, a large follow-up validation would be required to rule out the possibility that 

the disease allele segregated homozygously in an ALS case by chance (80% power with 

approximately 625 individuals).

The relative lack of results for the recessive variant analysis has highlighted the need to
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(a) Variants at MAF = 1% in two individuals (b) Range of MAFs with 150 individuals

Numbar of individuals

(c) Recessive variants

Figure 4.6: Power considerations when sequencing controls to assess population-based 
variants, (a) Power to detect a variant at MAF < 1 % in at least two individuals for 
different study sizes. A population variant of MAF < 1% will be detected at least twice 
80% of the time when 150 individuals from that population are sequenced (dashed lines), 
(b) Power to detect a range of allele frequencies in at least one individual when 150 
individuals are sequenced, (c) Power to detect variants at a range of MAFs homozygously 
in a range of sample sizes. These plots were produced by simulation, detail of which can 
be found in appendix A.2.
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sequence the remainder of the representative portion of the case cohort in which the ROH 

regions were mapped. Nevertheless, it may be the case that fewer results are generated 

than expected, due to the limitation that only protein coding portions of the genome are 

being sequenced, and also that NGS methodologies are only capable of detecting certain 

types of variation. For example, although NGS is well-suited to detect indels, the recently- 

reported finding of polyglutamine repeats in ATXN2 [56] would be relatively undetectable 

using NGS methodology, due to difficulty in alignment of larger indels, especially those 

representing repeat sequence. Hexanucleotide repeats recently reported in C9orf72 [121, 

122] would also be difficult to detect for similar reasons, in addition to the problem that this 

project has only assessed genetic variation within coding regions and C9orf72 expansions 

are present in the non-coding portion of the gene.

For these reasons, it may be fruitful to re-visit the analyses of chapter 3 to identify 

genomic regions that may be interesting to follow-up in a study design that considers more 

than just coding regions. Furthermore, incorporation of techniques that are permissive to 

the detection of structural variation may represent an improved methodolgy above what 

is described in this chapter.

4.4.4 Conclusion

The work described in this chapter has made an attempt at addressing the contribution of 

rare genetic variation to ALS aetiology by NGS of the coding sequence of many candidate 

genes in a relatively small cohort of Irish ALS cases. The main conclusion from this 

study is that further sequencing is required, both to ensure that representative individuals 

are being sequenced for all the candidate genes, and to maximize the power to detect 

rare disease-causing variants. Furthermore, a representative panel of population-matched 

controls is necessary to identify polymorphisms that have no link to ALS pathogenicity. 

Nevertheless, the work described has hinted at potential ALS-causing disease genes, one of
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the most notable of which is HYDIN. Furthermore, rare variants in several genes previously 

implicated in ALS aetiology have been identified, which may help to contribute to the 

understanding of the disease. Further sequencing will help to disentangle the findings of 

this work.
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Chapter 5

Towards exome sequencing in 

ALS: an exploration of 

identity-by-descent in the Irish 

population

5.1 Introduction

Chapter 4 describes work that was carried out to identify rare putatively ALS-causing 

variants on the level of the population by sequencing the coding regions of a set of candidate 

genes in many individuals. Under the assumption that coding sequence alterations may be 

causing ALS, such an approach is excellent for maximizing the power to detect rare variants 

and for estimating allele frequencies of putative disease variants in cases and controls. 

However its success is heavily dependent on a well-chosen set of candidate genes that 

show good evidence for being involved in ALS. An alternative approach for rare variant 

discovery is to sequence the entire coding portion of the genome, which is known as the 

exome. Such an approach makes no assumptions about which genes may be causing the
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disease, although, like the techniques described in chapter 4 it also makes the assumption 

that a variant that alters protein structure is driving disease aetiology. Nevertheless, exome 

sequencing is an effective way of reducing the sequencing burden through focussing on the 

protein coding portion (1.5%) of the genome [219]. Exome sequencing strategies use similar 

approaches to the target enrichment methods described in chapter 4 to prepare a genomic 

DNA sample so that it has a high copy number of exonic intervals compared to the rest of 

the genome. Exome capture methods are available from several manufacturers [220-222], 

using either solution-based or array-based target enrichment strategies.

With exome sequencing, the workflow is similar to the processes described in chapter 4 

for generating sequencing reads from genomic DNA samples. However, depending on the 

scale of the project, the downstream data processing methods could differ substantially. 

With population-based rare variant discovery, it is possible to generate an estimate of the 

allele frequencies of discovered variants because a sufficient number of individuals have 

been genotyped. However, exome sequencing projects tend to be smaller, so approaches 

are often adopted that assess variant sets that are common to all individuals sequenced. 

In order for this approach to be successful, it would require a carefully chosen set of 

individuals in whom the same phenotype-causing variants are expected. This variant 

intersection strategy was successfully applied early in the development of exome sequencing 

by Ng et al. to identify rare variants that contribute to the aetiology of Miller syndrome 

[223] and since then it has been used extensively in multiple studies in a variety of diseases. 

Because of its strong genetic component [41], complex inheritance and large amount of 

unexplained heritability ALS is a good candidate disease for exome sequencing.

A successful exome sequencing study was recently performed on ALS by Johnson et 

al. [69], which identified a mutation in VCP as a cause of the disease in an Italian family. 

In this study, the authors used a number of filtration methods to reduce their set of 

discovered variants from over one hundred thousand to just four that were predicted to

no



be damaging. As well as ruling out any polymorphism that had previously been reported 

in dbSNP, they also only took variants that were common to three cases from the same 

family and excluded any that were present in the exomes of 200 controls. In addition, 

they had the privilege of prior evidence in the form of a linkage region which they could 

use to rule out 42% of the variants in one of the filtration steps. Several further filters 

were applied to reduce the variant set effectively.

In a population-based sample, the variant filtration methods employed would be some

what different, but given that the sample does not contain individuals from the same fam

ily, the number of variants shared between cases would probably be lower, and therefore 

filtering based on overlap may be easier. In this scenario, an optimal strategy could be 

to sequence a few cases to identify variants that are common to everyone, and also se

quence some controls to exclude putatively non-pathogenic variants. For example, if the 

exomes of two cases and one control were sequenced, the variant set of interest would be 

{(A n B)\ C}, where A and B are the variant sets independently discovered in the two 

cases a and b, and C is the variant set discovered in control c. Figure 5.1 shows the per

centage of variants that remain as a result of various filtration strategies, given different 

numbers of cases and controls.

Naturally, such an approach assumes high penetrance, although this could potentially 

be addressed by the selection of hypernormal controls as has been argued for the design 

of GWAS [224]. In the case of ALS these could be individuals with little or no family 

history of neurodegeneration who lie within the extreme upper tail of the population 

distribution of age while demonstrating a healthy central nervous system. By selecting 

such an individual, the odds of the control sharing the pathogenic variant would hopefully 

be diminished, given the assumption that a carrier could not live to such an old age without 

manifesting some of the symptoms of ALS.

A second important assumption of this exome sequencing strategy is that the cases
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Number of individuals sequenced

Figure 5.1: Strategies for exome sequencing of a small number of individuals, based on 
analysis of data generated in chapter 4. To generate this plot, groups of individuals 
(n = 2... 15) that had been sequenced in chapter 4 were selected and the variant sets 
discovered in each individual were used to count the percentage of variants that remained 
after filtering. The strategy for filtering was to intersect the complement of the union 
of all variants discovered in controls with the intersection of all variants discovered in 
cases. For example, for 5 individuals, two of which are controls, the variants that remain 
after filtering case variant sets A, B and C and control variant sets D and E would be
{(^n5nc)\(T>u£;)}.
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sequenced all have a common disease phenotype due to segregation of the same disease- 

causing variant. Exclusion of samples that carry variants in genes known to cause ALS 

would be an important first step in meeting this assumption. Subsequently, the sequenced 

cases would have to be very carefully selected in order to maximise the probability that the 

same disease-causing variant is present in every case. One approach is to use a very specific 

and unique endophenotype. However, on its own this may not be sufficient evidence that 

the same variant is causing the disease due to allelic or genetic heterogeneity for the 

endophenotype, and, conversely, non-pathogenic phenotypic modifiers may reduce the 

effectiveness of this method.

Another approach to enrich the probability of detecting the same disease-causing vari

ant is to select distantly-related individuals from the population, with the assumption 

that if they are descended from the same reasonably recent ancestor and they share the 

same disease phenotype, they probably share the same variant causing the disease. An 

obvious strategy in this case would be to select two individuals from the same extended 

pedigree (for example, third cousins). However, given that ALS is a late-onset disease, the 

collection of large families can be difficult because patients are often deceased before their 

relationships with other patients have been elucidated. Banking of DNA goes some way 

to address this, but the Irish DNA bank has historically focussed on the collection of rep

resentative population-based samples and there has been less emphasis on prioritizing the 

collection of multiple individuals from within families than in other countries. Although 

this is no longer the case, the identification of large pedigrees and subsequent collection 

of DNA samples from multiple affected individuals within pedigrees is a demanding pro

cess, and it would be considerably more difficult to perform retrospective investigations of 

pedigrees for individuals who are no longer alive.

One way to circumvent this problem is to infer the relationship between supposedly 

unrelated individuals using dense genotype data, for example the data generated and an-

113



alyzed in chapter 3. As discussed in section 3.2.2, one important quality-control step is 

the exclusion of cryptically-related individuals from the dataset to reduce the potential for 

spurious associations. However, methods used for identification of cryptically-related indi

viduals (for example, identity-by-state [IBS] clustering or the tt measure of proportion of 

SNPs that are IBD implemented in PLINK [95]) rely on relatively simple metrics based on 

cumulative statistics over many individual SNPs, and they do not take into account groups 

of genotypes (haplotypes). An alternative approach to using single-marker tests is to look 

for shared genomic segments that are identical-by-descent (IBD) between individuals in a 

population.

For such analyses to be effective, it is useful for the genotypes to be phased, meaning 

that the haplotypes on which the genotypes appear need to be ascertained. Although 

segmental IBD can be estimated in unphased genotypes [95,225-227], accuracy is greatly 

improved if phased genotypes are used [228]. Given phased haplotypes, the extent of 

sharing of genomic segments between individuals can be estimated, and thus the degree 

of relatedness can be inferred. For example, while siblings would be expected to share 

50% of their genomes, first cousins would share 12.5%, second cousins 3.13% and third 

cousins 0.78%. Several algorithms exist that can infer relatedness given phased haplo

types, including GERMLINE [226] and the fast IBD algorithm [228] implemented within 

BEAGLE [229].

Given its relatively small size of around 6.4 million individuals [230,231], the popu

lation of Ireland may be a well-suited group for this kind of analysis, especially when a 

dataset derived from a late-onset disease such as ALS is under consideration. In the same 

sense that Nalls et al. argued that younger generations demonstrate fewer ROHs due to 

increased mobility and panmixia, there are probably pockets of strong inter-relatedness 

within Ireland as a consequence of a small gene pool and a history of lower mobility within 

the country. Given these assumptions, the Irish ALS population-based dataset may con-
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tain hidden relatedness that can be used as a proxy for large pedigrees and exploited in 

the design of exome sequencing projects.

5.1.1 Research aims

The work detailed in this chapter describes an exploration of IBD in the Irish ALS popula

tion and in matched controls. For comparison, and to improve the accuracy of inferences, 

a second dataset is included in the analysis, representing British individuals from the 1958 

British Birth Cohort genotyped as part of a study conducted by the Wellcome Trust Case- 

Control Constorium (WTCCC). The aim of this chapter is to use IBD inference to gain 

a better understanding of the inter-relatedness of a population of individuals assumed to 

be unrelated, in the hope that this will help to identify optimal ALS cases for the design 

of an exome sequencing project following strategies such as those depicted in figure 5.1. 

Specifically, the aims are:

i to determine whether IBD levels differ between the Irish and British populations;

ii to determine whether IBD levels differ between Irish ALS cases and Irish controls;

iii to identify genomic regions of higher IBD in Irish ALS cases than in Irish controls;

iv to assess geographical patterns of IBD within Ireland;

V to investigate any clustering of inter-relatedness within Ireland by IBD.

Results obtained from these explorations are used to make inferences about the optimal 

design of future exome sequencing projects.

115



5.2 Methods

5.2.1 Genotype data

Genome-wide SNP data for a total of 692 Irish and 2,708 British individuals were used in 

the study. Irish data included 620,901 genotypes generated in chapter 3 using the Illumina 

610-Quad beadchip and 561,466 from the 2008 Irish ALS GWAS generated using the Illu

mina HumnHap550 beadchip [98]. Genotype data from the WTCCC’s 1958 Birth Cohort 

panel, which includes 1,116,106 SNPs for 2,930 individuals genotyped on the Illumina 

HumanlM-Duo platform, were retreived from the European Genome-Phenome Archive 

(EGA, http://www.ebi.ac.uk/ega) under accession EGAD00000000022, parsed using the 

script parse_WTCCC.pl (converting genotype likelihoods > 0.95 to genotypes, setting the 

rest to missing) and merged into a single PLINK-format .bed file. WTCCC-recommended 

exclusions for SNPs (based on similar criteria to those described in section 3.2.2) and indi

viduals (based on heterozygous/missing proportion, PCA-based ancestry outliers, gender 

mismatches, A/B allele channel bias and identity of replicate SNP genotypes) were then 

removed from the dataset, leaving 900,374 genotypes for 2,718 individuals. For both the 

Irish and British datasets, individuals flagged as related based on the SNP genotypes were 

deliberately left in the dataset to improve phasing accuracy and for evaluation of the per

formance of the IBD method. Replicate datasets in the British cohort were identified by 

IBS clustering within PLINK (see section 3.2.2) and removed, leaving a dataset of 2,708 

individuals.

To avoid allele encoding and strand issues when combining the Irish and British 

datasets, Irish genotypes were corrected to the Illumina ‘top’ allele encoding using a 

lookup table generated by Illumina GenomeStudio and the script correct_strand.pl. 

Irish and British data were merged together using the PLINK —bmerge option, and 

filtered to include only SNPs common to both datasets (using per-SNP missingness as a
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proxy, determined using the PLINK —geno option). This resulted in a single large dataset 

containing genotypes for 477,356 SNPs in 3,400 individuals.

5.2.2 Haplotype phasing and IBD estimation

According to a benchmark test performed by Browning and Browning (2011) [232], for 

sample sizes of greater than 3,000 individuals, BEAGLE [229] achieves close to 98% accu

racy with haplotype phase calls at a fraction of the computational cost when compared with 

two other algorithms, MACH [233] and IMPUTE2 [234]. In addition, for IBD estimation, 

BEAGLE version 3.3.2 incorporates the algorithm fastIBD [228], which is demonstrably 

more powerful than an alternative, GERMLINE [226], or the hidden Markov model method 

implemented within PLINK’s —read-genome option, with far fewer false positives [228]. 

For these reasons, genotypes were phased using BEAGLE and IBD was estimated using 

the fastIBD algorithm.

First, the single large merged WTCCC/Irish genotypes file was converted to BEAGLE 

input format using ped_to_bgl, a convenient utility that ships with GERMLINE. The 

resulting file was used as input to BEAGLE, which was run using default parameters with 

the fastibd switch set to true. Total computation time was 121 hours and 3 seconds, 

after which a single .fibd.gz file was generated, containing the locations of every IBD 

segment identified by the fast IBD algorithm.

5.2.3 Assessment of IBD

Data were processed, interpreted and visualized using a combination of custom scripts 

and the R statistics package [94]. Firstly, following recommendations in the documen

tation for fastIBD [228], high quality IBD calls (fastIBD score < 10“^°) were extracted 

and only these were used in subsequent analyses. Data were then split into separate 

files for within-Ireland comparisons, within-Britain comparisons and between-population
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comparisons. Irish data were also split by case-control status into separate files for case- 

case comparisons, case-control comparisons and control-control comparisons. These steps 

resulted in individual datasets representing individual IBD segments between pairs of in

dividuals. Further similar datasets were generated representing total genomic IBD length 

between individual pairs and total number of IBD segments between pairs.

For comparison of genomic regions between cases and controls, a file was generated 

using parse_for_cc_comparison.pl representing, per SNP, the numbers of case and con

trol pairs that were identified as IBD by fast IBD. Genome-wide IBD values for the two 

cohorts were plotted using R, as well as genome-wide values for the difference between 

control-control pairs and case-case pairs. For each plot, the total number of pairs of indi

viduals IBD was divided by the total number of possible pairs for that dataset. For self-

2
comparisons within a population of size n, there are ^ possible combinations, whereas 

between populations of size n and m, there are nm possible combinations of individuals.

For the Irish case cohort, coordinates of the postal addresses of patients were available, 

representing the geographical location of individuals at time of diagnosis of ALS. To assess 

geographical clustering of IBD within Ireland, a map of Ireland was rasterized into blocks 

of approximately 125 km^ and mean IBD values were calculated for all pairs of individuals 

that fell within a sliding window representing approximately 17,000 km^ surrounding each 

block. These values were then visualized using R’s image function.

Finally, lists of pairwise total IBD values for the Irish dataset were parsed into a large 

692 x692 matrix of pairwise total IBD length, which was then used to assess evidence of 

clustering of high IBD values. This was initially assessed using the heirarchical clustering 

methods available within R’s hclust function; however, these methods were found to be 

insufficient for reordering the sparse matrix that the IBD values represented. To attempt to 

address this, a brute force method for reordering the matrix was written (cluster_IBD. pi) 

and applied to the dataset. The resulting reordered matrix was visualized as a heatmap
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using the R image function.

5.3 Results

5.3.1 Comparison within find between populations

IBD extent was higher within the Irish population than within the British population in 

terms of overall length IBD (figure 5.2(a)), length of IBD segments (figure 5.2(b)) and 

number of IBD segments (figure 5.2(c), p < 2.2 x 10“^® for all metrics).

5.3.2 Geographical phenomena within Ireland

Using data derived from ALS patients, IBD showed some degree of geographical clustering 

within The Republic of Ireland, with some regions showing higher average IBD than the 

background average rate (figure 5.3). Unfortimately address data were not available for 

patients from Northern Ireland, so geographical phenomena could not be ascertained for 

these patients.

5.3.3 Case-control comparisons

Within the Irish dataset, IBD was not higher in case-case comparisons than in control- 

control comparisons for total IBD length {p = 0.095, figure 5.2(a)). However, control- 

control pairs showed a significantly higher number of IBD segments called compared to 

case-case pairs {p = 0.010, figure5.2(c)).

Genomic regional IBD estimates were calculated as the proportion of all possible case- 

case pairs or control-control pairs that were identified as IBD across the genome, and these 

values are plotted in figure 5.4 (a) and (b). Additionally, the difference between case-case 

pairs and control-control pairs was calculated per SNP and plotted in figure 5.4(c). There 

was no overall inflation of IBD in the case cohort, although some regions showed elevated 

IBD when compared to controls.
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/
(a) Total length IBD (b) IBD segment length

(c) Number of segments IBD

Figure 5.2: IBD within and between Irish and British populations, (a) Notched boxplots 
showing total IBD called between pairs of individuals within Irish and British datasets, 
and between datasets. Also shown is total pairwise IBD within cases and within controls 
in the Irish dataset, (b) As plot (a), but showing individual IBD segment lengths derived 
from pairwise comparisons within and between datasets. Average values in this boxplot 
are similar to (a) because the majority of pairs of individuals had very few IBD segments 
identified, (c) Violin plots of number of segments called between individual pairs within 
and between datasets. Plotted shapes correspond to kernel density estimates of the dis
tributions of the datasets, and they demonstrate that within Ireland, there were typically 
many more IBD segments called in individual pairs than within Britain.
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(a) IBD within regions in Ireland (b) Map of Ireland for comparison

Figure 5.3: IBD by region within Ireland. High IBD values (yellow = high IBD; blue = 
low IBD) seem to cluster geographically, with extensive IBD seen in a block from Wexford 
to Meath, as well as pockets of high IBD in North Tipperary, Waterford, South Cork, 
Clare, Mayo, Sligo and Donegal. To generate this map, a sliding window was scanned 
across a rasterized map of Ireland and average IBD was measured within all individual 
pairs that were found within the sliding window. The map was then plotted using R’s 
image function.
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Figure 5.5: Clustering of high IBD values within the Irish dataset. The figure shows the 
top results when the matrix of pairwise total IBD is reordered by cluster_IBD.pl. In 
general, no very large, obvious clusters stood out in the dataset, although four clusters 
of high mutual IBD were identified containing four individuals each; these clusters are 
indicated. Additionally, more subtle clusters were identified in the data which are less 
obvious in the figure as the IBD values represented are very low (less than 15 Mb).

5.3.4 Evidence of clustering of IBD

R’s heirarchical clustering methods performed poorly at identifying clusters of high IBD 

within the dataset. The brute force method cluster_IBD.pl also performed poorly, but 

did identify four clusters of high IBD containing four individuals each, and several clusters 

containing three individuals (figure 5.5). Nevertheless, high pairwise IBD values seemed 

to be relatively independent within the dataset.
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5.4 Discussion

This study set out to explore the occurrence of IBD within Ireland, using British data as 

a comparison. The intention was to assess whether IBD inferences could be used to make 

optimal sampling decisions for inclusion in an exome sequencing project, however several 

other findings also resulted from the study.

IBD was found to be higher between Irish individuals than between British individ

uals. This could be driven by a number of factors affecting the genetic structure of the 

Irish population, including a smaller population size (approximately 6.4 million for Ire

land [230,231] versus approximately 60 million for Great Britain [231,235]), historical 

emigrations and lower urbanization with less mobility within the country leading to less 

within-population panmixia. Within Ireland, within-case IBD was not higher than within- 

control IBD values, which is expected given that no single genetic factor of large effect 

size causes ALS. However, it was noted that the number of regions IBD were higher in 

control-control comparisons than in case-case comparisons, with no concomitant increase 

in overall IBD, suggesting that case-case pairs may be more related to one another than 

control-control pairs (an inter-related cohort should have fewer, longer IBD segments than 

a randomly-breeding cohort), but, on the level of the case cohort, the total length IBD is 

statistically indistinguishable from the background population level.

The similarity in total IBD between case-case comparisons and control-control com

parisons is further supported by figure 5.4(c), which demonstrates that genomic regions 

are similar between cases and controls in terms of the proportion of pairs of individuals 

that are IBD. This differs from a study which applied the same technique using WTCCC 

bipolar disorder case-control data, finding that IBD levels were typically higher across the 

genome in the case cohort [228]. Given that ALS is a genetically heterogenous disease, it 

would not necessarily be expected that cohort ascertainment bias would cause an overall 

inflation of genome-wide IBD levels. However, regional differences in IBD levels may be in-
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dicative of a common haplotype, or several common haplotypes, on which disease-causing 

mutations may have arisen in a subset of the case cohort.

Peaks in figure 5.4(c) may represent such disease allele-driven regional differences. The 

highest peak in this graph maps to chromosome 9q21, for which familial linkage with ALS 

has been demonstrated in the past [236]. Figure 5.6 shows the evidence from the current 

IBD study mapped to the location of the previous familial linkage region, suggesting that 

the genes identified by the linkage region mapped by Hosier et al. [236] could potentially 

be refined to just RORB, TRPM6, CHAK2, C9orf40, BC043649, C9orfl41, C9orf95 and 

OSTFl. The potential for an IBD mapping strategy such as this in identifying disease- 

causing genomic regions could be greater than, for example, haplotype association, as this 

method allows for the possibility that multiple disease variants have arisen on different 

haplotypes in the same region.

Albrechtsen et al. recently argued that genomic regions of high IBD could indicate 

the signatures of recent selection events [237] on standing genetic variation. To assess 

whether this is detectable in the differences between the Irish and British IBD values, the 

same plot as figure 5.4(c) was generated for the difference between the IBD proportion in 

the Irish population (cases and controls combined) and the IBD proportion in the British 

population (figure 5.7). This demonstrated, as expected, an overall excess of IBD in the 

Irish population compared to the British, as well as identifying several peaks representing 

speculative recent selection on the standing genetic variation within the Irish population.

Clustering of individuals in figure 5.5 demonstrated that it is difficult to assemble IBD 

estimates in multiple pairs of individuals into single large clusters of inter-relatedness. 

However, some clusters were identified representing up to four individuals with mutually 

high IBD levels. As well as these clusters, there were several more subtle groups distributed 

within this plot, where mutual IBD was low (in the region of 15 Mb, or 0.5 % of the 

genome), indicating that groups of related individuals do exist within Irish ALS dataset.
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representing individuals from very extended pedigrees, but detecting these groups is not 

trivial.

In spite of this, the best strategy for selecting individuals for exome sequencing could 

be to use evidence garnered from IBD studies, but also to incorporate further lines of 

evidence beyond these inferences. One potentially useful finding derived from this study 

was the finding that IBD tended to show some clustering geographically. Unfortunately 

addresses were not available for the control data, so it could not be determined whether 

this geographic clustering was a phenomenon of population genetics or one of case ascer

tainment. If it is actually driven by the latter, then this could reflect a within-population 

founder effect for a particular mutation which would be permissive to discovery by exome 

sequencing of related individuals derived from the geographic cluster.

A limitation of the geographical mapping approach, however, is that it has depended 

on the postal address of patients at the time of diagnosis. In many cases this would not 

be representative of the actual ancestral origin of the patient, so future patient sampling 

strategies should attempt to address this by collecting further information about the an

cestry of the patient. Future work should also investigate any geographical clustering of 

control-control IBD, to attempt to resolve the issue of whether the patterns described 

are driven by within-population genetic stratification or by case ascertainment reflecting 

detection of actual signatures of familial ALS in extended pedigrees. Additionally, to ex

clude the possibility of algorithmic artefacts, the concordance of results with other IBD 

inference methods should be assessed.

5.4.1 Conclusion

This chapter set out to discover whether IBD in the Irish population can be used to inform 

the optimal design of future exome sequencing studies. The finding that IBD is higher 

in the Irish population than in the British suggests that it could be exploited to enhance
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the probability of sharing a disease-causing variant in a case cohort. However, clustering 

of individuals based on high IBD revealed only small groups of inter-relatedness wuthin 

the dataset. Nevertheless, only a small number of individuals is required for efficient 

variant discovery/filtration in the identification of disease-causing mutations (figure 5.1). 

For example, a group of four inter-related cases sequenced along with two hypernormal 

controls, filtered using the methods described in figure 5.1, would yield roughly the same 

end proportion of variants as sequencing/variant filtration with three inter-related cases 

and three hypernormal controls, at the same cost.

It would therefore not be unreasonable to conclude that the inferences made in this 

chapter about IBD could potentially be used to good effect in the design of an exome 

sequencing study. However, the results should be interpreted with care, ensuring that the 

chances of identifying the same disease-causing variant are maximized. A prudent first step 

would be the exclusion of any known disease-causing variant. Subsequent deep endopheno- 

typing could add to IBD inferences, and assessment of potential geographical phenomena 

might help to validate the argument further. Apt use of these strategies, followed by 

exome sequencing, variant filtration, and follow-up validation of discovered variants in a 

population-based cohort, could potentially yield novel ALS genes and pathways that could 

subsequently lead to better intervention.
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Chapter 6

Discussion

This thesis details work that studied the complex genetics of ALS using a number of ap

proaches in datasets derived from Ireland and other European populations. The overall 

goal was to garner a more complete understanding of the contribution of genetic varia

tion to the condition, by embracing the developing principles and technologies that have 

characterized the modern genomics era. In doing so, an appreciation was gained of the 

immensity of the task that is elucidating the genetics of ALS, not least because ALS is 

likely to have many contributory genetic factors. This is reflected in the multiple studies 

that have been published in the last two decades on the subject, identifying many genes 

that are certain to be in some way involved in the aetiology of the condition, yet with the 

majority of ALS cases remaining unexplained by genetics. However, in small increments 

the scientific community is edging closer to the complete answer, and this thesis exempli

fies many of the efforts that axe currently underway worldwide. The work described herein 

has not arrived at any single conclusion, but instead has pointed towards several avenues 

of research that would constitute warranted future work.
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6.1 Summary of findings and their significance

The work in this thesis was conducted as four separate corpora: an elucidation of the 

contribution of genetic variation at the ANG locus to angiogenin levels in ALS (chapter 

2); an exploration of common variation through analysis of genome-wide SNP genotypes 

in ALS (chapter 3); an exploration of rare variation through analysis of NGS data in 

ALS (chapter 4) and an exploration of potential methods for designing future experiments 

through analysis of IBD in the Irish ALS population (chapter 5). Each chapter generated 

several findings on their own and indicated prudent future experimental design.

Chapter 2 described the contribution of genetic variation at the ANG locus to levels of 

angiogenin. The principal findings were that angiogenin levels are lower in ALS patients 

than in controls, that genotypes across the ANG locus determine the level of angiogenin 

in serum or plasma in an allele dose-dependent manner, and that this genetic regulation 

is somewhat disrupted in ALS. Furthermore, plasma angiogenin levels predict the level of 

angiogenin observed in CSF to some extent, but this is not observed in ALS cases.

While these findings are compatible with the previous discovery of ANG mutations in 

ALS [46], the majority of the patients that were assayed for this study would not have had 

mutations in ANG. Indeed, the work described in chapter 4 failed to identify any ANG 

mutations in any ALS patients, suggesting that this is a rare phenomenon. Therefore, the 

findings of dygsregulation of angiogenin in ALS suggest that, although ANG mutations 

are rare, it is possible that the biochemical signalling networks of which angiogenin is a 

member are perturbed in ALS. This is reinforced by the observation that even when the 

same genetic variation is present within the ANG locus, different patterns of angiogenin 

expression are observed when compared to controls, suggesting that an outside influence 

is modulating the effects of ANG genetic variation. Furthermore, there is indication that 

this is observed in a tissue-specific manner.

The interpretation of these observations could incorporate any one of several different
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explanations. Future work should aim to demarcate the regulatory mechanisms involved 

in angiogenin expression and subsequently assess any disruption, or indeed mutations, that 

may be observed therein. This way, a better understanding of some subtypes of ALS may 

be gained, including (but not restricted to) ALS caused by mutations in ANG. A more 

complete understanding of the biochemical signalling pathways and networks in which all 

known ALS genes are involved would be a useful theme for future research, and it would 

generate a resource that would be invaluable for all ALS research worldwide.

The research detailed in chapter 3 was aimed at investigating the contribution of 

common genetic variation to the aetiology of ALS through analysis of genome-wide SNP 

data. This implemented three main approaches: standard GWAS, analysis of putative 

copy number variation and mapping of recurrent, allelically-matching ALS-specific ROHs. 

This led to the identification of several speculative intervals involved in ALS aetiology 

that were carried forward to chapter 4 for the design of the NGS experiments. No sin

gle SNP was associated with ALS at genome-wide significance levels, although one SNP 

(rs6836317) came close. Therefore, instead of assessing stand-out peaks, the undergrowth 

of more modestly-associated SNPs was considered in a design which attempted to identify 

intervals associated with ALS by considering neighbouring less-associated SNPs in LD 

with moderately associated SNPs. Although these were weak associations, when carried 

forward to chapter 4, of the 395 genes that overlapped with associated intervals, 350 were 

common to the gene set that was identified by ROH mapping and two were common to all 

three gene sets. These two genes (CSMDl and ERBB4) represent attractive candidates 

for future study.

Mapping of putative CNVs yielded relatively few candidate intervals (37 ALS-specific 

copy number losses and 25 ALS-specific copy number gains). So that the number of 

candidate genes for sequencing did not become prohibitively high in chapter 4, only ALS- 

specific deletions were considered for further analysis. This decision was made under the
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assumption that the deletion of a gene could have similar effects to a stopgain or frameshift 

mutation, and therefore genes identified through mapping of copy number losses would 

be candidate genes for discovery of such mutations. Given the relative inaccuracy of the 

CNV mapping approach and the potential for false positives, the rejection of candidate 

genes identified through mapping of copy number gains was not considered detrimental to 

the design of the NGS experiments.

The parameters used to map ROHs were very stringent, allowing a ROH to be called 

only if it was above 104 SNPs in length. More relaxed parameters would yield more 

results, although this would potientially increase the false positive rate. For example, it 

was observed that decreasing the minimum ROH length by 20 SNPs resulted in many of the 

same ROH intervals being identified (still ALS-specific), but with many more individuals 

contributing to each interval. However, even with the stringent parameters applied in the 

ROH mapping approach, several genomic intervals were identified that showed evidence of 

potentially containing recessive disease-causing genetic variants. In many cases, loci were 

identified by more than one group of allelically-matching ROHs (for example, the case of 

PCDH17 and PDEllA). These intervals represent very attractive candidates for further 

study, because they show evidence that different recessive variants within the same genes 

may be causing ALS.

Candidate intervals identified by all three mapping approaches used in chapter 3 were 

carried forward to chapter 4 for resequencing of exons of candidate genes within identified 

intervals. This ongoing project has identified several coding changes that could represent 

ALS-causing mutations. However, the strategy employed in this study was limited to the 

sequencing of only coding regions of the candidate genes. Following this restricted hypoth

esis may have resulted in several potentially ALS-associated mutations being overlooked. 

A number of examples are cited in chapter 3 in which candidate intervals overlap with 

either putative regulatory regions of the genome or with non-coding regions. For further
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exploration of these interesting regions, the underlying hypotheses need to be extended to 

incorporate assumptions that ALS-causing mutations may not necessarily lie within cod

ing regions, and, as has been shown recently for ATXN2 and C9orf72, could potentially 

be genetic variation that is not detectable by naive NGS approaches.

Despite its limitations, the investigation of genetic variation in coding regions of candi

date genes in chapter 4 indicated many interesting findings that should be further pursued 

in future study. Overall, the findings of this chapter revealed that there are several rare 

variants that are observed in ALS patients that are not present in the comparison dataset 

of the 1000 Genomes Project. A small portion of these genes show an improbable excess 

of rare variants in the ALS cohort and some identified variants segregate homozygously in 

the expected intervals and within expected individuals. Furthermore, several rare variants 

have been identified in genes that have previously been implicated in ALS (of which one 

variant, DCTN G59S has previously been shown to cause ALS [47]).

One of the main conclusions drawn in this chapter was that a comparative dataset de

rived from the same population as the ALS cases is required in order to identify population 

polymorphisms so that incorrect inferences are not made about the pathogenicity of dis

covered variants. A cohort of at least 150 controls would be required to obtain 80% power 

to detect a polymorphism at 1% frequency at least twice, so that a reasonable estimate 

of the population allele frequency can be made. This would permit the reduction of the 

overall discovered variant set to a more manageable number. However, for the recessive 

hypothesis, a further, considerably larger, replication cohort would be required, whose size 

is dependent on the MAF of the variant in question.

It will require further sequencing of both cases and controls to demarcate properly the 

roles of discovered rare variants in ALS aetiology. However, speculative findings have been 

made, for example the role of multiple rare variants within HYDIN in the aetiology of 

ALS. Assessment of multiple rare variants within many loci has been difficult to carry out
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in the past due to technological restrictions, however the advent of NGS has eliminated 

this limitation. As a demonstration of this, chapter 4 has harnessed the power of NGS to 

assay many rare variants in many loci en masse within a reasonably-sized population. The 

identification of multiple rare variants in HYDIN and its consequent potential as an ALS 

gene represents an exciting finding due to its previous implications in other neurological 

conditions [215,216,218].

Finally, an exploratory analysis was carried out in chapter 5 that aimed to describe the 

prevalence of IBD in the Irish population, in the hope that this could assist in the optimal 

design of future genetic studies, such as exome sequencing. A higher rate of IBD was ob

served within the Irish population when compared to within-Britain IBD, and this showed 

geographical clustering within particular regions. Furthermore, in a panel of individuals 

expected to be unrelated, it was observed that using pairwise inferences of IBD extent 

could identify small groups of individuals that were inter-related, representing members 

of single extended pedigrees that typically showed relatedness within the bounds of third 

cousins. Projection of expected outcome of exome sequencing studies based on analysis of 

data generated in chapter 4 suggested that as few as four ALS patients sequenced along 

with two hypernormal controls would be sufficient to optimize the capacity to refine discov

ered variants down to a subset of candidate variants involved in ALS aetiology. Therefore, 

the identification of these small clusters could be enough for selection of individuals for 

exome sequencing.

This study investigating IBD in the Irish population has implications for the design of 

future experiments. Exploiting inferences about relatedness between individuals that have 

been sequenced for the purposes of variant discovery is analagous to sequencing multiple 

distantly-related individuals fi:om a familial pedigree. Such approaches have successfully 

revealed variants associated with disease in the past, including the identification of muta

tions in VCP in familial ALS [69]. Using the IBD mapping approaches described in this
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chapter, an alternative method to selection from familial pedigrees has been proposed, 

which can be applied to population-based cohorts. This represents a valid future direction 

in the investigation of the contribution of genetic variation to the pathogenesis of ALS.

A final, unanticipated finding of the IBD profiling in chapter 5 was the identification 

of a within-cases IBD peak that maps to a previously-established familial linkage region 

on chromosome 9q21 [236]. This finding has speculatively refined the candidate genes 

within this linkage region to a subset of just eight genes. Furthermore, it demonstrated 

the potential for such IBD mapping approaches to identify regions of the genome linked 

to disease pathogenesis, which may represent a technique that is more powerful than 

haplotype association. Mapping regions of IBD allows for the potential that multiple (po

tentially oppositely-tagged) haplotyes could harbour different disease variants within the 

same locus. Taking individuals showing IBD within the 9q21 region, further exploration 

of the genes identified within the region could yield novel variants associated with ALS 

aetiology.

Taken together, the chapters 2-5 have yielded several interesting findings. The meth

ods described have been heavily dependent on the development of projects such as the 

International HapMap Project [5,6] and the Human Genome Project [1] and the associated 

technological innovations leading to the possibility of GWAS and NGS.

6.2 Evaluation of genome-wide SNP analysis and NGS as 

methods in ALS research

GWAS has produced mixed results for ALS and it seems that the condition is too ge

netically heterogenous to permit study designs that are not statistically highly robust. 

The most successful results for GWAS in ALS have been the chromosome 9p21 locus and 

UNC13A [66,67]; otherwise there has been difficulty in replicating other loci. Any future
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GWAS effort in ALS should not proceed without careful consideration regarding power to 

detect variants given whatever study design is applied. In this thesis, an attempt has been 

made to address the small sample size by considering only results that were indicative of 

ALS-specific phenomena; this, however, is probably only advisable in a setting where a 

very large number of loci are going to be considered in the downstream investigations (in 

the case of the work in chapter 4, 1,577 genes).

Caution is also warranted in the design and interpretation of any NGS experiment 

in ALS. Individuals for exome sequencing should be carefully chosen to maximize the 

probability of detecting commonly shared disease-causing variants, and in population- 

based sequencing experiments, sufficient sample sizes should be chosen to obtain sufficient 

power to detect rare variants. The interpretation of population-based and exome-based 

sequencing studies should take into account the potential for recessive inheritance as a 

separate analysis pipeline to approaches that exclude any variant discovered in comparison 

control datasets.

It has been shown that exome sequencing can be used to good effect in detecting 

disease-causing variants in ALS [69] and it is likely that there will be future studies using 

similar methodologies that will identify other causative ALS genes. However, a limitation 

of current exome sequencing approaches is that the target enrichment kits used to cap

ture the exome does not cover all consensus coding sequence annotated exons [221], which 

means that important information could be missed. Future revisions to target enrichment 

designs are likely to address these issues to some extent, but the presence of repeat se

quence in the genome will always be a problem for complementary bait-based enrichment 

strategies.

In summary, GWAS and NGS are tools that hold great promise for research in the 

genetics of ALS, but they need to be applied with care. Given the proportion of ALS still 

unexplained by known genetic loci, yet the probable genetic contribution to the condition
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[41], research using such methods should continue to be applied.

6.3 Future directions

From the findings of the work detailed within this thesis, a number of points of action 

have been identified that are worthy directions for future work. These relate both to ideas 

that have come about as a direct consequence of the work in this thesis, and ideas that 

are derived from developing trends and technologies in genomics research.

6.3.1 Future directions based on the findings of this thesis 

Further sequencing

A primary goal of future work is to delineate the implications of the discovery of many 

rare sequence variants in chapter 4. Furthermore, a trove of variants are probably still to 

be found through sequencing of representative individuals from candidate locus mapping 

studies detailed in chapter 3. A sequencing experiment that matches that of chapter 4 in 

size would be a good starting point, and sequencing of at least 150 population-matched 

controls is essential. This way, population-based rare polymorphisms can be distinguished 

from rare disease-associated variants. Subsequent follow-up, through genotyping or more 

sequencing, in large replication populations will be necessary after these sequencing stud

ies to validate arguments for recessive variants, as well as replicating any other variant 

discovererd.

Replication and functional follow-up with any genes implicated through se

quencing

As mentioned, replication of variants will be necessary. A well-matched replication popu

lation in which similar genetic structure would be expected is the Scottish, due to recent 

ancestral links. However, replication of any discovered variant in further European pop-

139



ulations will help to validate any discovery further. Although it would be expected that 

mutations seen in Ireland should be seen in other countries in Europe, it is not necessarily 

a certainty in that founder effects for disease variants could be restricted to the geograph

ical environs of the northwest of Europe. Nevertheless, assessment of discovered variants 

in other populations will be absolutely necessary to understand their contribution to ALS 

aetiology.

Further investigation of loci identified in chapter 3

The loci that were mapped in chapter 3 were only considered in chapter 4 under the 

hypothesis that protein coding changes are driving ALS pathogenesis. This may not 

necessarily be the situation in many cases of ALS, and most of the intervals identified 

in chapter 3 could just as well be interpreted from the viewpoint that noncoding and 

regulatory regions are perturbed in the disease. For this reason, it will be worthwhile to re

visit the analyses and assess whether some of the observed patterns might be explained by 

non-coding changes such as the structural variation seen in C9orf72 [121,122]. Assessment 

of putative changes could then possibly be as easy as a PCR-based check for expansions; 

however there may be several intervals identified in the analyses so a high-throughput 

solution may be more suited to the task.

Further investigation of the chromosome 9q21 locus

Identification of considerably higher IBD within cases than within controls for the locus 

overlapping chromosome 9q21 was an unexpected finding, but it represents a potentially 

very firutiful line of future work. Chapter 5 identifed just eight genes {RORB, TRPM6, 

CHAK2, C9orf40, BC043649, C9orfl41, C9orf95 and OSTFl) to which the original link

age region [236] could be refined; these genes should be the subject of further analysis. 

The relative absence of discussion around the chromosome 9q21 locus in the literature
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following its mapping in 2000 is indicative that a potential opportunity to identify a novel 

ALS gene has been missed, possibly due, in part, to it not being identified in GWAS. 

However, the IBD evidence in chapter 4 is compatible with the possibility that multiple 

rare variants are present within the locus in a manner that may not be detectable by 

GWAS. Future work should investigate the haplotypes that were driving the IBD signals, 

and identification of novel disease-causing variants within the locus.

Further genotyping

Although the field of genomics has moved on, to some extent, from GWAS to NGS-centred 

methodologies, there ma}'- be room for a little more genome-wide SNP analysis in ALS, at 

least in the Irish population. Every ALS GWAS effort to date in Ireland (including the 2008 

GWAS [98] and the work described in chapter 3) has been underpowered, yet population- 

specific ALS variants may be detectable, given more genotypes. ALS is a genetically 

heterogenous disease and particular variants may have drifted to higher frequencies within 

the Irish population (there is speculative suggestion in chapter 4 that the spectrum of ALS- 

causing variants in known genes within Ireland is quite different to that seen worldwide), 

the detection of which would require a well-powered Irish GWAS. Future work in this 

respect should carry out further genotyping in the ALS case cohort that has built up since 

the last batch of genotyping, as well as in controls (perhaps collaborating with research 

groups performing similar work where necessary), from which point GWAS and other 

SNP-related studies can be carried out. One such related study would be the inference 

of IBD described in chapter 5, where further relationships could be inferred and groups 

of individuals could be identifed (in combination with an endophenotyping approach) for 

studies assaying rare variation, such as exome sequencing.
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6.3.2 Future directions for ALS genetics research 

Whole-genome sequencing

The potential for exome sequencing in ALS has been discussed at length in this thesis. The 

principles of exome sequencing also apply to potential future work that will use whole- 

genome sequencing to identify risk variants in ALS. While this is still some way off in 

terms of affordability, technology is advancing at a rate such that it is worth considering 

the potential opportunities and pitfalls now. The issues surrounding variant filtration and 

interpretation in terms of pathogenicity will be present with whole-genome sequencing, 

but on a much greater scale (the human genome is over 1,000 times the length of the 

total sequence in the target enrichment kit described in chapter 4). For this reason, 

careful experimental design would be critical in whole-genome sequencing experiments, so 

that true disease-causing variants stand out from background genetic variation across the 

genome. However, whole-genome sequencing will afford the opportunity to assay genetic 

variation in regions not covered by exome capture strategies, which opens up a number 

of unexplored hypotheses. Nevertheless, the alignment, analysis and interpretation of 

whole-genome data will represent a huge challenge that will require, amongst other things, 

further development in the software tools currently used in order that this challenge can 

be effectively met.

Endophenotyping

To ensure success in sequencing projects geared towards the identification of pathogenic 

rare variants, a sensible first step would be the establishment of detailed endophenotypes 

within the case cohort. ALS is a phenotypically heterogenous disease, with a spectrum of 

associated cognitive and behavioural impairment [29,30] and variability in site of onset, 

age of onset and disease duration. This phenotypic variation is likely to be driven, to 

some extent, by the genetic heterogeneity underlying the disease, and the isolation of a
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particular endophenotype may help to enrich the probability that a common disease variant 

is shared amongst cases that share the endophenotype, thus facilitating its detection by 

techniques such as exome sequencing. For example, the recently-discovered hexanucleotide 

repeat expansion in C9orf72 segregates with a phenotype of behavioural change and family 

history of FTD [238]. This approach of endophenotyping is also applicable to GWAS 

design. For example, in the AMD GWAS [16], the authors managed to detect a SNP 

association with AMD with a cohort of only 96 cases and 50 controls by carefully choosing 

a very specific disease endophenotype, as well as choosing hypernormal controls. Large- 

scale GWAS in ALS, taking advantage of detailed endophenotypes, may yield novel loci 

associated with particular variants of the disease.

Endogenotyping

The endophenotyping approach is intended to maximize the likelihood that a particular 

disease genotype is seen commonly to all cases with a particular form of the disease. 

This, however, only holds if the endophenotype is specific enough that it permits complete 

distinction of a sub-cohort of individuals from all other forms of the disease. In many 

cases, however, this will not be the case and in these instances, the best approach to 

maximize the probability of detecting a signal at a disease locus is to enrich the cohort as 

much as possible for as few putative disease-causing variants as possible by exclusion of 

all possible alternatives. Here, profiling of cases for variants known to be involved in ALS 

aetiology is a useful step in the experimental design. This way, cases can be identified for 

which the genetic cause is already explained, and the cohort of individuals under study 

can be enriched for any novel variants yet to be discovered. However, results of screening 

of known genes should be interpreted with caution. This is argued well by Felbecker et 

al. [44]; for genes known to be involved in ALS, especially SODl, there has historically 

been a propensity to over-report findings without conclusive evidence for disease variant
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pathogenicity (this is an argument for a comperehensive ‘spring clean’ of all known or 

suspected ALS mutations; such a study would serve as a valuable resource to the ALS 

genetics community). As with endophenotyping, the enriched cohort could then be used 

for a variety of disease locus discovery methods, such as GWAS or NGS.

‘Isophenotyping’

The benefits of endophenotyping and endogenotyping apply to GWAS and NGS exper

iments within ALS. However, given the clinical overlap between ALS and FTD and the 

common broad theme of neurodegneration between ALS and a number of other diseases of 

the central nervous system, it may be beneficial to attempt studies such as GWAS where 

cases are combined between many related phenotypes under the hypothesis that genetic 

risk for general neurodegeneration may be conferred by common variation at a few loci, 

which is then modulated by other genetic or environmental factors. This way, power to 

detect associations could be dramatically increased (subject to apt selection of hypernor

mal controls), and if associations were discovered, the relationships between the similar 

phenotypes could be further explored to elucidate the common pathogenic mechanisms.

Expression studies

The work described within this thesis has focussed on the identification of genetic variation 

that confers susceptibility to ALS. This is dependent on either germline or de novo muta

tions being present in the individuals with ALS, and for these to be detectable using the 

methods of GWAS or NGS. An alternative approach to the problem of identifying genetic 

contribution to the disease could be to assay the expression of mRNA in patients affected 

with ALS, on a genome-wide scale, to assess whether there is perturbation of biomolecular 

signalling modules within the condition. This can be achieved through either microarray 

analysis or high-throughput RNA sequencing by NGS (RNA-seq) [177]. This top-down
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approach has the benefit of being able to assay genetic veiriation on the level of the path

way, which may be more conducive to easy interpretation. Furthermore, it reveals answers 

that are closer to the biological end point than simply identifying mutations that may or 

may not be involved in the functional aetiology of the disease.

However, while this methodology has clear benefits, it raises issues in experimental 

design that are not a problem with GWAS or NGS using genomic DNA. One of the major 

problems is tissue choice. In order for accurate inferences to be made about perturbation 

of expression profiles in ALS, the preferred tissue from which mRNA is derived would 

be motor neurones. Sampling of such tissues would require autopsy post-mortem, which 

would have to be carried out within a narrow window of time due to the short half-life 

of RNA. This presents a problem in the majority of cases. A suboptimal alternative is to 

use RNA derived from leukocytes. A third option could be to culture induced pluripotent 

stem cells [239] derived from fibroblasts of patients and bring about their subsequent 

differentiation to motor neurones [240], from which RNA could then be derived.

Although ambitious, such studies represent a real opportunity in ALS research. Fur

ther to the information derived on expression levels, it has been suggested that RNA-seq 

could be used as an alternative to exome sequencing for assessing genetic variants and 

polymorphisms [241]. Although this would be affected by RNA editing and any other 

alteration in genetic sequence between genomic DNA and mRNA, it would be an efficient 

use of resources as it leads to two separate result sets from a single experiment.

Structural variation

With recently-reported findings of hexanucleotide repeat expansions in C9orf72 [121,122] 

and polyglutamine repeats in ATXN2 [56], the role of structural variation is becoming 

increasingly evident in the pathogenesis of ALS. This argument is further supported by 

previously-reported findings of putative CNVs associated with ALS [109, 135] and the
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attempts described within this thesis to map CNVs specific to ALS. In light of these ideas, 

the discovery of structural variation associated with ALS pathogenesis is a justified future 

pursuit. Techniques such as aCGH would reveal the locations of large-scale structural 

variation with greater certainty than SNP array based methods, but with these techniques 

small scale variation could be missed. Very small structural changes can be discovered with 

NGS, as described in chapter 4, however indels above a certain size lead to problems with 

alignment and subsequent calling of the structural variant. Although its use has not yet 

been extensive, high-throughput sequencing of mate-pair libraries has been shown to be 

applicable to the detection of chromosomal rearrangements in disease genetics [242]. Such 

a technique could well be applied to ALS to perform a genome-wide screen of structural 

variation. However, it is likely to be through the combination of technologies that the best 

inferences are made.

Regulatory regions

The methods described in chapter 4 made the assumption that protein coding changes are 

responsible for some of the aetiology of ALS. This is likely to be true in many cases, but the 

possibility exists that sequence variants in non-coding regions of the genome contribute to 

ALS pathogenesis. Indeed, recurrent ROHs shown in figure 3.12(b) for PCDH17 seemed 

to map better to upstream non-coding regions of the genome than to the gene itself. This 

was then reflected by a lack of discovery of recessive variants in PCDHl 7 for the relevant 

individuals. The upstream region to which the PCDH17 ROHs mapped contained several 

peaks that have been identified by the ENCODE project [158], representing putative 

enhancer or promoter regions (as well as containing a non-RefSeq mRNA). Future NGS 

experiments could be designed to take non-coding and regulatory regions into account by 

making use of data such as that generated by the ENCODE project.

To date, there has been little emphasis placed on the possibility that epigenetic varia-
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tion may contribute to ALS aetiology. This is likely, in part, to be due to the difficulty in 

assaying this principle on a genome-wide scale. However, the Illumina Infinium assay has 

recently been modified to allow for genome-wide interrogation of DNA methylation [243] 

which allows for the design of epigenome-wide association studies (EWAS) [244], Such 

studies are likely to be vulnerable to the same statitstical issues in their design as GWAS, 

but through careful application, the principle could yield novel answers regarding the ae

tiology of ALS. ChIP-seq [178] is another method that holds promise for the future in 

determining the role of genetic regulation in disease.

Epistasis

A frequently-overlooked possibility in complex disease genetics is that genotypes for mul

tiple SNPs may statistically interact, meaning that in order for a patient to manifest a 

disease they must have risk alleles for two (or more) separate SNPs. The principal reasons 

for this hypothesis not being popular in complex disease genetics are that associations with 

the SNPs would be very difficult to detect independently, and when considered together, 

the multiple testing burden for all pairwise comparisons with genome-wide SNPs becomes 

too extreme for any reasonable study to have statistical power under traditional association 

study designs. However, the potential for epistatic interaction on a genome-wide scale was 

investigated by Sha et al. [168] by adopting a two-stage approach where only top GWAS 

results were considered in the subsequent two-locus analysis. This approach reduced the 

computational and statistical burden of performing genome-wide multilocus association 

testing. Methods exist that can ameliorate the computational burden of full genome-wide 

epistasis modelling through machine learning approaches such as random forests [245] 

or multifactor dimensionality reduction [246]. Employment of such approaches on large 

genome-wide SNP datasets for ALS may reveal previously undetermined associations by 

considering multiple loci simultaneously.

147



Collaboration

Possibly the most important future direction for ALS genetics research is international 

collaboration between research groups. As was shown with GWAS, the only way a strong 

signal of association will be detected is by assessment of large numbers of samples [66,67], 

which is usually only obtainable through international collaboration. It will be similar 

with studies assaying rare variation also: verification of pathogenicity will require repli

cation in further populations. This is especially true for population variants that cause 

recessive forms of ALS as the sample sizes required to discover rare population-based vari

ants homozygously are enormous. A further benefit of international collaboration is the 

sharing of knowledge between different research groups with different areas of expertise 

and experience.

6.4 Conclusion

ALS is an unrelenting, incurable, fatal disease that strikes patients in the prime of their 

lives, often without warning. The inevitable death that comes as a result is rapid enough 

that patients and their families have little time to come to terms with the condition, 

but slow enough that the final months or years of patients’ lives are spent in considerable 

discomfort with very low quality of life. In order that effective intervention can be designed, 

an understanding of the underlying disease mechanisms is an absolute requisite, and part 

of the work to this end is focussed on elucidation of the genetic causes for the condition. 

With a better understanding of the genetic mechanisms, a more complete picture of the 

molecular cell biology can be ascertained, and subsequent pharmacological intervention 

follows.

At the time of writing, it has been two decades since the first gene to be involved in the 

pathogenesis of ALS, SODl, was discovered [42], and since then, a constellation of genes
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have been proposed to be involved in the condition. Despite this, there is still no cure for 

the disease and its pathophysiology is only partially understood. Use of modern techniques 

derived from the revolution in genomics technologies holds promise to be useful in further 

elucidating the genetic cause of the condition, although a complete understanding of the 

mechanisms behind the pathogenesis of the disease will require extensive downstream 

molecular biology work. Nevertheless, through apt use of genome-wide SNP analysis and 

NGS, researchers are maximizing the prospect for completing the puzzle that the complex 

genetics of ALS presents.

In order for this to be realized, however, the experiments performed must be robust 

and replicable in order that the published findings serve to lead researchers in the correct 

directions. The many GWAS published in ALS have struggled to replicate one another, 

and the main successes have been derived from international collaboration permitting the 

necessary sample sizes to perform well-powered GWAS. Similar principles will be true for 

NGS studies involving exome sequencing, candidate gene sequencing and transcriptome 

sequencing: it will only be through careful experimental design and thorough analysis 

delivering replicable results that real progress will be made. Findings should draw on the 

contexts of other experiments, relating the observations of multiple studies in order that 

a more complete picture can be drawn.

Looking ahead from a viewpoint that is firmly rooted in the genomic era, surrounded 

by an arsenal of emerging tools, techniques, data and models, it is clear to see that there is 

a lot of work ahead for researchers in ALS genetics. It is hoped that ongoing work derived 

from the studies described in this thesis will contribute to the growing body of knowledge 

surrounding ALS genetics and that years to come will see such knowledge contribute to a 

cure for this devastating disease.
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Appendix A

Selected scripts

A.l recipoverlap.pl (section 3.2.5)

Section 3.2.5 mentions a formula that was used to assess the extent of overlap of a ROH 

segment with the ROH group to which it belonged:

^ ^ min(bi,bj) — max(ai,aj)
(A.l)

where a is the start of a segment, b is the end of a segment and i ^ j. The derivation of 

this equation is straightforward, but it may not seem obvious at first.

As an explanation of the origin of this formula, consider the example overlapping ROH 

group depicted in figure A.l. The objective is to ascertain how well each segment overlaps 

with the group as a whole, and this can be determined by assessing the overlap between 

each segment and every other segment individually, then averaging these for the group. 

As an example, the overlap of ROHl will be described.

First, consider the overlap between ROHi (i) and ROH2 {j). This is defined by the 

distance between the highest start position and the lowest end position, or:

min(6t, bj) — max(ai, Oj).
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a 1 b 1

ROHl

ROH2

a 2 
]

b 2

a 3

ROH3

b_3
I

a 4 b 4

ROHl

Figure A.l: An example ROH group.

To obtain the overlap between ROHl (i) and all the segments in the group (all j), every 

i/j overlap is summed:
n

mm{bi, bj) — max(ai, Cj), (A.3)
j=i

and divided by the total number of pairwise comparisons made, which is the size of the

group minus one:

min(6t, bj) — max(ai, aj)

j=i (n- 1)
(A.4)

This is standardized to the sizes of the segments j for which the comparisons were made 

by dividing each segment length by the total length of j’s segment, (bj — aj), such that

^ min(6i, bj) — max{ai,aj)
Ji = 2^

j=i (n - l){bj - aj)
(A.5)

In section 3.2.5, ROHs with overlap scores of 0.5 or greater were taken as high-quality. 

This method was written into the script recip_overlap.pl to automate the calculation 

of Si scores in overlapping ROH groups.
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A,2 Visualizing power (section 4.4)

Chapter 4 details the sequencing of 106 individuals geared towards detection of rare vari

ants in ALS. One conclusion drawn from this work was that the sequencing of controls 

would be useful to identify population-based variants that are rare in the world but com

mon in Ireland. An obvious question that arises from this notion is: how many controls 

would be necessary to detect Irish population-based variants?

In this instance, ‘rare’ is defined as a variant that is at a population MAF of 1% or 

less. So, to identify ‘common’ population-based variants we are interested in variants that 

are at a frequency of at least 1% in Ireland. Assuming a variant of MAF 1% is in Hardy- 

Weinberg equilibrium, the frequency of individuals carrying at least one copy of the minor 

allele is 0.01^ + 2 x 0.01 x 0.99 which evaluates to 0.0199, or 1.99%.

Detection of such variants can be modelled as sampling without replacement from a 

hypergeometric distribution. This is easily acheived using R’s rhyper function, which is 

called using the syntax rhyper(nn,n,m,k), where nn is the number of times sampling 

is repeated (the number of ‘experiments’ performed, n is the number of individuals not 

carrying the minor allele, m is the number of individuals carrying the minor allele and k 

is the number of individals sampled. This method returns a vector of values of length 

nn, such that the ‘power’ (the proportion of times the variant is detected) can simply 

be calculated using the R command lengthC-yector [■uector>0] )/length(i;ector), or 

in words, the number of observations greater than zero divided by the total number of 

observations.

This can be incorporated into a script such that the power to detect this variant given 

various different sample sizes can be plotted. To do this, a for loop is constructed and the 

rhyper function is called several times, for many sample sizes, and the results are stored 

in a vector.
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power<'0
for( i in 1:250 )
{

people<-rhyper(l000,1990,98010,1) 
power [i]<-length(people[people>0])/1000

}

This produces a vector of values that, when plotted, would show some variation, so

the data can be smoothed by taking a moving average.
xpos <-0 
8moother<-0
for( 1 in 10:length(power))
{

xpos[i]<-i
smootherCi] <- 8uiii(power[(i-5) :(i+4)3)/10

>
plot(xpos,smoother,type*"1",col*"blue",lwd*2,xlab*"Number of individuals",ylab*"Power")

This generates a plot similar to figure 4.6(a).
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Appendix B

Digital appendix contents

Some of the scripts written to facilitate data collection, parsing and interpretation within 

this thesis have been made available as a digital appendix, which can be downloaded at:

http: / / www.gen.tcd.ie / molpopgen/resources / rlmclda

This link will be maintained for at least five years after the submission date of the thesis. 

The majority of the scripts are written in Perl, with some scripts for use with the R 

statstical programming package, and some designed to be parsed by a web server such as 

Apache, for web browser-based visualisation of data. Most, if not all, of the scripts could 

easily be modified to meet the needs of other related projects, or could be run without 

any modification at all on datasets derived from such projects.

Table B.l lists the contents of the directory, which is provided as a .tar.gz archive and 

can easily be extracted using the Linux tar tool by typing:

tar -xvf rlmclda.tar.gz

in the command line of a terminal (Linux and Mac) or in the command line of a Unix-like 

environment such as Cygwin (Windows).
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Table B.l: Digital appendix contents

File Section Function
LvGPlot.R 2.2.4 Correction, visualization and analysis of levels vs genotypes for 

ANG data
replicate-Overlap.pi 3.2.4 Assessment of concordance of QuantiSNP and PennCNV output
overlap.pl 3.2.4 Intersection of output of QuantiSNP and PennCNV
append.pi 3.2.4 Collation of CNV results into a single file
count-Status-per-SNP. pi 3.2.4 Find case and control counts for CNV overlap per SNP
parsePLINKROH.pl 3.2.5 Parsing .bom.overlap file into case-specific overlapping ROHs 

only
removedups.pi 3.2.5 Removal of duplicate tables from parsePLINKROH.pl output
shouSNPs.pbp 3.2.5 Visualization of genotypes in case-specific ROH regions
sbowSNPs.css 3.2.5 CSS style sheet to accompany sbowSNPs.pbp for colouring of 

SNP alleles
recipOverlap.pl 3.2.5 Calculation of Si for within-group overlap of ROH
plotNatureStyle.R 3.3.2 Memhattan plot with various other data co-plotted, inspired by 

[152]
parse.exons.pl 4.2.1 Parsing of UCSC-format gene data into exonic intervals
interval-overlap.pi 4.2.1 Consolidation of overlapping intervals into single intervals
rescue-intervals.pi 4.2.1 Identification of poorly-baited regions due to repeat intervals
double.up-singletons. pi 4.2.1 Identification of singleton probes and generation of redundant 

probes
split-seq.data.pl 4.2.5 Splitting of FASTQ file based on barcodes in forward and reverse 

sequencing reads
filter-lkg.pl 4.2.6 Annotation of discovered variants if present above stated fre

quency in 1000 Genomes reference file
count-variants_per-gene.pl 4.2.6 Counting discovered variants per gene for burden analysis
find-bomles.pl 4.2.6 Location of homozygous genotypes in expected intervals in ex

pected individuals, conditional on absence of homozygosity for 
variant in comparison data

power.R 4.4.3 Power simulations for NGS experiments
parse-WTCCC.pl 5.2.1 Simple parsing script for WTCCG .gen—>.ped conversion
correct-Strand.pi 5.2.1 Correction of strand from Illumina FORWARD to TOP
parse_for_cc.comparison.pl 5.2.3 Counting extent of IBD in cases and controls per SNP for 

genome-wide plotting
cluater.IBD.pl 5.2.3 Brute-force IBD clustering method
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Abstract

Objective.'lo determine whether 5 single nucleotide polymorphisms (SNPs) associate with ALS in 3 different populations. 
We also assessed the contribution of genotype to angiogenin levels in plasma and CSF.

Methods: M\e\ic association statistics were calculated for polymorphisms in the ANG gene in 859 patients and 1047 controls 
from Sweden, Ireland and Poland. Plasma, serum and CSF angiogenin levels were quantified and stratified according to 
genotypes across the ANG gene. The contribution of SNP genotypes to variance in circulating angiogenin levels was 
estimated in patients and controls.

Results: AW SNPs showed association with ALS in the Irish group. The SNP rsl 7114699 replicated in the Swedish cohort. No 
SNP associated in the Polish cohort. Age- and sex-corrected circulating angiogenin levels were significantly lower in patients 
than in controls (p<0.001). An allele dose-dependent regulation of angiogenin levels was observed in controls. This 
regulation was attenuated in the ALS cohort. A significant positive correlation between CSF plasma angiogenin levels was 
present in controls and abolished in ALS.

Conclusions: ANG variants associate with ALS in the Irish and Swedish populations, but not in the Polish. There is evidence 
of dysregulation of angiogenin expression in plasma and CSF in sporadic ALS. Angiogenin expression is likely to be 
important in the pathogenesis of ALS.
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Introduction

Angiogenin is the 14.1-kDa product of the hypoxia responsive 
gene ANG on chromosome 14. We have shown previously that 
mutations in ANG are tissociated with amyotrophic lateral sclerosis 
(ALS), and that ANG mutations predict loss of RNAse and 
angiogenic function [1]. Moreover, recent studies have suggested 
that angiogenin is an important neurodevelopmental protein with 
neuroprotective properties, and that mutant ANG impairs neurite 
outgrowth. [2—4].

Angiogenin is functionally similar to vascular endothelial 
growth factor (VEGF), altered regulation of which has also been 
associated with ALS [5,6]. ‘At risk’ promoter haplotypes in 
VEGF, which predict reduced expression of bioavailable 
isoforms, have been described in some European ALS popula
tions [7] and combined with evidence from animal models, the

data suggest that VEGF isoforms have a neuromodulatory and 
neuroprotective role in the CNS. Despite the functional similarity 
between angiogenin and VEGF, there have been few studies to 
date that have investigated angiogenin expression and regulation 
in ALS.

We have recently shown that serum angiogenin levels in ALS 
differ from controls [8]. The patterns of plasma and cerebrospinal 
fluid (CSF) angiogenin expression have not previously been 
investigated, and there have been no studies to determine whether 
ANG haplotypes modulate protein expression, as is the case with 
VEGF. We have sought to determine (i) whether angiogenin is 
detectable in CSF, (ii) whether there is a consistent relationship 
between plasma and CSF angiogenin levels, (iii) whether genetic 
variations in the ANG locus control angiogenin expression, and (iv) 
whether, as has been reported for VEGF [9-11], there is a 
dysregulation of angiogenin in sporadic ALS.
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l/lethods

*articipants
DNA and serum samples were drawn from Irish and Polish ALS 

)atients; DNA, plasma and cerebrospinal fluid (CSF) samples were 
Irawn from Swedish ALS patients. Unrelated control subjects with 
lo family history of ALS were sampled from the same populations, 
fhe numbers of participants available in the three study 
)opulations and their demographics are detailed in figure 1. All 
)atients fulfilled the El Escorial criteria for clinically definite or 
>robable ALS [12]. Patients with atypical phenotypes and Swedish 
)atients with mutations in the SODl gene were excluded, 
nformed written consent was obtained from all participants and 
he study was approved by the ethics committees in Beaumont 
Lospital, Umei University and the Jagelonian Institute.

)NP genotyping
Using data from the CEPH panel of the International HapMap 

’roject [13], 5 informative haplotype-tagging single nucleotide 
)olymorphisms (htSNPs) were selected covering the ANG gene

with inter-marker r^ below 0.8 and minor allele frequency above 
5%. These htSNPs are detailed in table 1. Genotyping across these 
five htSNPs was performed commercially by KBiosciences (Herts, 
UK) using KASPar assays with standard quality-control criteria 
(genotypes formed three distinct clusters, water controls were 
negative and minor allele frequency was above 5%).

Quantification of angiogenin in CSF, plasma and serum
Serum and pltisma were isolated from peripheral blood 

according to standard protocols. Since angiogenin has not been 
shown to have any interaction partners in the blood, plasma and 
serum angiogenin concentrations were considered to be compa
rable. Samples were stored at — 80°C until assay. Angiogenin 
concentration was measured by enzyme-linked immunosorbent 
assay (ELISA) according to manufacturer’s guidelines (Quantikine 
Duoset, R&D Systems, Abingdon, UK). All samples were assayed 
in duplicate and calibrated against serially diluted standards of 
known mass. Pooled CSF and plasma quality control (QC) 
samples were both assayed in duplicate on each mitrotitre plate, 
setting the precision of the assay across all microtitre plates. An

IRELAND
ALS

Mean age at onset: 58112.8 years

SWEDEN
ALS

Mean age at onset: 59113.0 years

POLAND
ALS

Control

Mean age: 53 ± 13.6 years

Control

Mean age: 60 ± 12.4 years

Mean age at onset: 56 ± 12.9 years
191 males; 246 females: 4 unknown 

Mean age: 56 116.9 years

Mgure 1. Numbers of individuals and demographics of the three study populations. Error values for mean ages represent standard 
ieviation.
Ioi:10.1371/Journal.pone.0015402.g001
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Table I. Allele frequencies and SNP association statistics in the three populations.

SNP Alleles IRELAND SWEDEN POLAND

RA RA freq Allelic association RA RA freq Allelic association RA RA freq Allelic association

ALS.-ctrl P OR ALS;ctrl P OR ALS.-ctrl P OR

rs9322855 A>C c 0.50; 039 0.003* 1.57 A 0.56; 0.52 0.13 0.85 A 0.55; 035 0.92 0.99

rs8004382 G>A G 0.57; 0.47 0.007* 1.50 G 0.55; 0.52 0.46 0.92 G 0.55; 0.52 0.46 0.92

rs4470055 G>A A 0.29; 0.22 0.03* 1.47 A 0.25; 0.24 0.66 1.06 G 0.75; 0.72 0.36 0.88

rs17n 4699 G>T T 0.16; 0.11 0.03* 1.53 T 0.14; 0.08 0.001* 1.78 G 0.89; 0.87 0.68 0.93

rsll701 T>G G 0.18; 0.10 0.006* 1.88 G 0.13; 0.13 0.69 1.07 G 0.13; 0.10 0.14 1.3

RA, risk allele; OR, odds ratio.
•Significant p-value.
doi:l 0.1371 /joumal.pone.OOl S402.t001

inter-assay coefficient of variation (CV) of 6% and 8% was 
obtained for the high and low plasma QC respectively. An inter
assay CV of 9% was obtained for the CSF QC.

Statistical analysis
Unless otherwise stated, all statistical analyses were performed 

using the R statistical programming environment [14J. Assessment 
of allele frequencies were conducted using the computer 
programmes Haploview [15] and PLINK [16]. Allelic association 
statistics were calculated using the chi-squared test, with correction 
for multiple testing by replication in the three populations. 
Haplotype blocks were defined as a group of htSNPs whose upper 
95% confidence bound for D’ exceeded 98% with the lower 
bound above 70% [17] and a haplotype was examined if it 
occurred in more than 1 % of individuals. Haplotypes were tested 
for association with ALS risk using the chi-squared test.

The data for angiogenin levels were assessed for the reported 
influence of age and sex [18]. Using data pooled from cases and 
controls in all three populations, angiogenin levels were regressed 
against age and sex and an oudier was identified and removed if its 
studentized residual exceeded the critical / statistic for the group’s 
Bonferroni-corrected 5% significance threshold. The regression 
analysis was then re-iterated until no further oudiers could be 
identified. Four Swedish plasma values and four Swedish CSF 
values were removed this way. The resulting linear models were 
used to adjust the values in the respective groups based on age and 
sex. The influences of genotypes across the five htSNPs were then 
assessed by analysis of variance (ANOVA) for each htSNP and the 
differences between case and control angiogenin levels for each 
genotype were assessed for statistical significance using the Mann- 
Whimey-Wilcoxon test. Finally, using data from the Swedish 
population, corrected pltisma angiogenin levels were assessed for 
correlation with corrected CSF angiogenin levels in ALS patients 
and in controls independendy.

Results

ANG SNP and haplotype association
The mean genotyping call rate across all htSNPs in the three 

populations was 98.4%. No htSNP deviated significantly from 
Hardy-Weinberg equilibrium in any study population. ITie results 
for the allelic association tests for the five htSNPs are shown in 
table 1. Linkage disequilibrium (LD) between htSNPs is shown in 
Figure S1. All five htSNPs showed association with risk for ALS in 
the Irish study group, with one htSNP, rsl7114699, replicating in 
the Swedish population (p/^;,* =0.03; pswaUsh =0.001). No htSNP

showed association in the Polish population. A haplotype block 
was identified in all three populations, incorporating SNPs 
rs9322855, rs8004382 and rs4470055. 'Fhe AAG and CGA 
haplotypes at these three SNPs associated with ALS in the Irish 
data, while the AGG haplotype showed strong association with 
ALS in the Swedish data (table 2).

Plasma, serum and CSF angiogenin levels
Age and sex both had a significant effect on angiogenin levels in 

plasma/serum and in CSF (P(>|t|) <0.0001 for all covariates). 
Using data pooled from the three populations and after correcting 
for age and sex, angiogenin levels were significandy lower in ALS 
patients than in controls in plasma/serum (mean ± SD = 
438.2± 112.2 ng/ml for the ALS group and 467.6± 105.4 ng/ml 
for controls; p = 0.001, Mann-Whimey-Wilcoxon test) and in CSF 
(mean ± SD = 5.582± 1.754 ng/ml for the ALS group and 
6.197± 1.987 ng/ml for controls; p = 0.01, Mann-Whimey-Wil- 
coxon test). Angiogenin levels did not differ significandy depending 
on whether they were measured from serum or plasma (p = 0.93; 
Figure S2). There was a significant positive correlation (p<0.0001, 
Pearson product-moment correlation) between corrected CSF 
angiogenin levels and corrected plasma angiogenin levels in 
controls, whereas in ALS patients (p = 0.21) the observed 
correlation was attenuated (figure 3; T^ronnoi =0.13, m/s = 0.011).

Contribution of SNP genotypes to angiogenin levels
Levels varied considerably around the fitted models (multiple 

r'^smm/piasmc - 0.074; multiple r^csF - 0.16). ANOVA was used to 
assess the contribution of genotype at each htSNP to the overall 
variance in the data and the Mann-Whitney-Wilcoxon test was 
used to assess the differences between corrected plasma/serum 
levels in ALS patients and controls for each SNP, separated by 
genotype. Data were analysed both as independent populations 
and also as a pooled dataset. The results of these tests, along with 
the group means, are reported in figure 2.

In the large Swedish dataset, an allele dose-dependent 
regulation of plasma angiogenin was readily observable for all 
SNPs in controls and perturbation of this pattern was seen in ALS 
patients at SNPs rs8004382 and rs9322855. These findings are 
reflected in the pooled dataset. Only at SNP rs 11701 was a 
significant contribution of genotype to the variance in controls 
observable in all three populations; however, in the pooled dataset 
genotypes at every SNP except rs9322855 were shown to 
contribute significandy to variance in controls. No SNP contrib
uted significandy to variance in ALS patients in the pooled data, 
however this was observed at rsl 1701 in the Polish dataset.
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Table 2. Haplotype frequencies and association statistics in the three populations.

Haplotype IRELAND SWEDEN POLAND

Freq (ALS;ctrl) p Permuted p Freq (ALS;ctri) p Permuted p Freq (ALS;ctrl) P Permuted p

AAG 0.45; 0.53 0.024* 0.13 0.46; 0.47 0.64 0.99 0.453; 0.474 0.4498 0.95

CGA 0.29; 0.22 0.023* 0.12 0.25; 025 0.68 1.00 0.256; 0.279 0.3627 0.90

CGG 0.18; 0.16 0.43 0.94 0.18; 0.24 0.027 0.16 0.193; 0.172 03424 0.88

AGG 0.07; 0.08 0.55 0.98 0.097; 0.045 <0.0001* 0.0006* 0.099; 0.075 0.1311 0.51

•Significant p-value.
doi:10.1371 /joumal.pone.0015402.1002

A Ireland B Sweden

C Poland D Pooled data

figure 2. Mean corrected serum or plasma angiogenin concentrations as a function of j4A/(jhtSNP genotype. ALS patients are shown in 
ed and controls are shown in blue. Significant differences between ALS patients and controls are denoted by solid lines and significant F-statistics 
vithin groups are denoted by asterisks. Error bars are standard error of the mean. Numbers of observations for each genotype at each SNP are 
ndicated in the table below each plot.
Ioi:10.1371/journal.pone.OOl 5402.g002
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Figure 3. Correlation of CSF angiogenin levels with serum 
angiogenin levels in the Swedish population. ALS patients are 
shown in red and controls are shown in blue. Dashed lines indicate 95% 
confidence intervals of the regression lines, r^ values are: controls, 0.13; 
ALS, 0.011.
doi:10.1371/journal.pone.OOI 5402.g003

Discussion
This study confirms the previously observed association between 

ANG variants and ALS in the Irish population [IJ, with 5 htSNPs 
across the ANG gene showing association with ALS. One htSNP, 
rs 1711699, replicated in the Swedish cohort, showing strong 
association with ALS risk (p = 0.001). We have also demonstrated 
that two ANG haplotypes in the Irish and one in the Swedish 
associate with ALS, adding strength to the argument that ANG is 
implicated in the pathogenesis of sporadic ALS. Although 
replication in the Swedish population increases our confidence 
in the Irish findings, no htSNP or haplotype associated with ALS 
in the Polish population. Similarly, in a recent screen for 
replication of findings from the Irish genome-wide association 
study for ALS risk [19] using a Polish dataset, the results were 
surprisingly uninformative [20]. The failure to replicate in the 
Polish population may reflect true population based differences, as 
has been recendy demonstrated both in population genetics [21] 
and with respect to other risk genes in ALS [20]. Together, these 
findings suggest that the complex genetics of ALS differ between 
the Polish, Swedish and Irish populations.

Figure 2 (notably parts a and c) demonstrates the need for large 
datasets when analysing data that vary so substantially by chance. 
However, using pooled data we have shown that contribution of 
SNP genotypes to variance in angiogenin levels in serum is evident 
in neurologically normal individuals, and that this is abolished in 
ALS. In controls, this contribution of genotype to variance is allele 
dose-dependent. SNP genotypes at rsll701 were observed to 
contribute to variance in ALS patients in the Polish; this finding is 
consistent with the observation that no ANG SNP or haplotype 
associated with ALS in the Polish.

Using the current Irish dataset, we were unable to replicate our 
previous finding that serum angiogenin levels are higher in ALS 
patients compared to controls [8]. Using our current data pooled 
with Swedish and Polish populations, we have shown that 
angiogenin levels are in fact significantly lower in ALS patients

than in neurologically normal controls (p<0.001). Moreover, sub
categorisation of ALS patients and controls by SNP genotypes 
maintains the significance of the case-control differences in 
angiogenin levels (figure 2).

The differences between the current data and our previous 
findings most likely relate to differences in our statistical manage
ment of the dataset. In the original study we considered the effects of 
covariates (age, sex) in ALS patients and controls independently. In 
the current analysis, we more correctly assumed that angiogenin 
levels in ALS patients would follow the same patterns based on age 
and sex as those observed in controls. Thus serum angiogenin levels 
were initially regressed against age and sex using combined data 
from cases and controls. This methodology permits a more robust 
estimate of the influence of age and sex on angiogenin levels, as it 
uses approximately twice as many values (541 values) as would be 
used if considering cases and controls separately. Indeed, re-analysis 
of the current dataset using our previous methodology yielded a 
significantly higher mean corrected angiogenin level in cases than in 
controls (p<0.0001); we now consider this to be a less accurate 
interpretation of the available data.

In neurologically normal controls, plasma angiogenin concen
tration predicts CSF angiogenin concentration (p<0.0001, figure 3). 
We have shown that this correlation is lost in ALS patients (p = 0.21 
for patients), which may suggest a tissue-specific dysregulation of 
angiogenin expression in ALS. This could be due to a number of 
factors, including perturbation of angiogenin transport in ALS, 
however an interesting possibility could be micro RNA (miRNA) 
regulation of angiogenin expression. Altered miRNA regulation of 
progranulin has been reported recendy in frontotemporal dementia 
[22]. As progranulin is functionally similar to angiogenin, and 
frontotemporal dementia is biologically related to ALS [23], a 
similar form of altered regulation of angiogenin may apply in ALS. 
A search the EBI’s miRBase Sequence Database [24] using the 
online Microcosm web application reveals 19 potential miRNA 
binding sites in the ANG gene for 24 human miRNAs, some of 
which may be preferentially expressed in the central nervous system 
[25]. This suggests a possible mechanism for our observed tissue- 
specific differences indicating that further investigation of miRNA 
regulation of angiogenin is warranted.

In summary, we have confirmed that ANG variants associate with 
ALS in the Irish and also in the Swedish. We have also shown that 
angiogenin expression is modulated by genetic variation across the 
ANG gene in an allele-dose dependent manner, and that this 
regulation is disrupted in ALS patients. The finding that plasma 
angiogenin level does not predict CSF angiogenin level in ALS 
patients suggests a tissue-specific regulation of angiogenin levels that 
may be determined by genetic variation [18]. In light of these findings, 
further investigation of angiogenin regulation in ALS is justified.

Supporting Information
Figure SI Linkage disequilibrium between tbe five ANG 
SNPs in the three populations. (PDF)
Figure S2 Boxplot comparing angiogenin levels mea
sured in plasma fi-om Swedish individuals (n = 320) and 
serum fi-om Irish and Polish individuals (n = 220). The
difference between the two datasets is not statistically significant 
(p = 0.93). (PDF)
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