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Abstract

We present the first generative adversarial network (GAN) for natural image mat-
ting. Our novel generator network is trained to predict visually appealing alphas with
the addition of the adversarial loss from the discriminator that is trained to classify well-
composited images. Further, we improve existing encoder-decoder architectures to better
deal with the spatial localization issues inherited in convolutional neural networks (CNN)
by using dilated convolutions to capture global context information without downscaling
feature maps and losing spatial information. We present state-of-the-art results on the
alphamatting online benchmark for the gradient error and give comparable results in oth-
ers. Our method is particularly well suited for fine structures like hair, which is of great
importance in practical matting applications, e.g. in film/TV production.

1 Introduction

Natural image matting is defined as the problem of accurately estimating the opacity of a
foreground object in an image or video sequence. It is a field that has received signifi-
cant attention from the scientific community as it is used in many image-editing and film
post-production applications. With the recent advances in mobile technology, high-quality
matting algorithms are required for compositing tasks, both for professional and ordinary
users. Formally, image matting approaches require as input an image, which is expected
to contain a foreground object and the image background. Mathematically, every pixel i in
the image is assumed to be a linear combination of the foreground and background colors,
expressed as:

Ii = αiFi +(1−αi)Bi, αi ∈ [0,1] (1)

where αi is a scalar value that defines the foreground opacity at pixel i and is referred to as the
alpha value. Since neither the foreground, nor the background RGB values are known, this is
a severely ill-posed problem, consisting of 7 unknown and only 3 known values. Typically,
some additional information in the form of scribbles [31] or a trimap [8] is given as addi-
tional information to decrease the difficulty of the problem. Both additional input methods
already roughly segment the image in foreground, background and regions with unknown
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opacity. Generally they serve as initialization information and many methods propagate the
alpha values from known image regions to the unknown region.
Most current algorithms aim to solve the matting equation 1 in a closed-form manner and
treat it as a color-problem by either sampling or affinity-based methods. This over-dependency
solely on color information can lead to artifacts in images where the foreground and back-
ground color distributions overlap, which is often the case in natural images [33].
Most state-of-the-art algorithms in other computer vision tasks nowadays rely on deep con-
volutional neural networks, which are able to learn structural information and abstract rep-
resentations of images. Until recently, this was impossible for natural image matting since
a large amount of training data is needed to train CNNs, which wasn’t available back then.
However, Xu et al. [33] released a new matting dataset and have shown that it can be used
to train CNNs for natural image matting and reach state-of-the-art performance on the al-
phamatting.com [25] dataset. However, this dataset only consists of 431 unique foreground
objects with corresponding alpha ground-truth and the large dataset size is only reached by
compositing a large amount of new images using random backgrounds.
Our approach builds on the CNN by Xu et al. [33] and improves it in several ways to reach
state-of-the-art performance on the natural image matting benchmark [25].

Our Contribution. We propose a generative adversarial network (GAN) for natural image
matting. We improve on the network architecture of Xu et al. [33] to better deal with the
spatial localization issues inherent in CNNs by using dilated convolutions to capture global
context information without downscaling feature maps and losing spatial information. Fur-
thermore, we improve on the decoder structure of the network and use it as the generator in
our generative adversarial model. The discriminator is trained on images that have been com-
posited with the ground-truth alpha and the predicted alpha and therefore learns to recognize
images that have been composited well, which helps the generator learn alpha predictions
that lead to visually appealing compositions.

2 Previous Work

In this section, we briefly review traditional approaches for natural image matting, as well as
more recent approaches using deep learning.

2.1 Local sample-based natural image matting

A significant amount of literature has been introduced over the last years for solving the
ill-posed problem of natural image matting. The motivation behind these approaches is that
they use color (sometimes also position) of user-defined foreground and background samples
to infer the alpha values of the unknown regions in the image. Existing methods follow a
sampling or propagation approach. In sample-based approaches, the known foreground and
background samples that are in the near vicinity of the unknown pixel in question, should be
also very "close" to the true foreground and background colors of that pixel and thus should
be further processed to estimate the corresponding alpha value based on Eq. 1. However,
it should be stressed that the meaning of "near" in this context is something very vague and
existing methods deal with this problem in different ways. Bayesian matting [8], iterative
matting [31], shared sampling matting [10], [13] and more recent approaches such as sparse
coding [9] are some of the methods that follow this assumption.
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Propagation approaches work by propagating the known alpha value between known local
foreground and background samples to the unknown pixels. Approaches such as the Poisson
matting [30], random walk [12], geodesic matting [2], spectral matting [20], close-form
matting [21] and fuzzy connectedness matting [34] are some of the most known propagation
methods introduced in this direction. The manifold preserving edit propagation algorithm
[6] and information-flow matting [1] are more recent approaches. A detailed description on
the above methods can be found in the survey work of Want et al. [32] as this analysis goes
beyond the scope of our work.

2.2 Deep learning in natural image matting

Recently, a few deep learning methods were introduced for natural image matting. Specifi-
cally, Xu et al. [33] proposed a two-stage network, consisting of an encoder-decoder stage
and a refinement stage. The first stage takes an image and the corresponding trimap as an
input and predicts the alpha matte of the unknown trimap region. The output of the first stage
is then given as an input to a small convolutional neural network that refines the alpha values
and sharpens the edges. Shen et al. [28] proposed a fully automatic matting system for por-
trait photos based on an end-to-end convolutional neural network. A portrait image is given
as an input along with a pre-trained shape mask which is used for automatically generating
a trimap region. The alpha values of the trimap area are then computed from the proposed
CNN. Furthermore, Cho et al. [7] proposed an end-to-end CNN architecture that utilizes
the results deduced from local (closed-form matting [21]) and non-local (KNN matting [5])
matting algorithms along with RGB color images and learns the mapping between the input
images and the reconstructed alpha mattes. Hu et al., [16] proposed a granular deep learning
(GDL) architecture for the task of foreground-background separation. In their approach they
created a hierarchical structure of a layered neural network designed as a granular system.
To the best of our knowledge, this work is the first approach using generative adversarial neu-
ral networks for natural image matting. However, GANs have shown good performance in
other computer vision tasks, such as image-to-image translation [18] [37], image generation
[24] or image editing [36].

3 Our Approach

To tackle the problem of image matting, we use a generative adversarial network. The gen-
erator of this network is a convolutional encoder-decoder network that is trained both with
help of the ground-truth alphas as well as the adversarial loss from the discriminator. We
detail our network in more detail in the following sections.

3.1 Training dataset

Deep learning approaches need a lot of data to generalize well. Large datasets like Imagenet
[26] and MSCOCO [23] have helped tremendously in this regard for several computer vision
tasks. One of the problems of natural image matting, however, is that it is significantly more
difficult to collect ground-truth data than for most other tasks. The quality of the ground-
truth also needs to be very high, because the methods need to capture very fine differences
in the alpha to provide good results. Thankfully a new matting dataset [33] consisting of 431
unique foreground objects and their corresponding alpha has recently been published. This
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dataset has finally made it possible to train deep networks such as ours. Nevertheless, 431
images is not enough to train on their own, so we enhance the dataset in the following way,
similar to how Xu et al. [33] propose in their approach:
For every foreground object, a random background image from MSCOCO is taken, which
allows us to composite a new unique image out of the foreground, the provided ground-
truth alpha and the background image. For further data augmentation, we randomly rotate
the foreground and alpha by n degrees, sampled from a normal distribution with a mean
of 0 and standard deviation of 5. We then generate a trimap by dilating the ground-truth
alpha with random kernel sizes from 2 to 20. Next, we randomly crop a rectangular part
of the foreground, alpha, trimap and background images, centered on some pixel within
the unknown region of the trimap of a size chosen randomly from 320× 320 to 720× 720,
and resize it to 320× 320. This allows the network to be more scale invariant. Finally, we
randomly flip the cropped images to get the final foreground, alpha, trimap and background
images, which will be used to composite a new image as part of the training process.

3.2 Network architecture

Xu et al. [33] have recently shown that it is possible to train an encoder-decoder network
with their matting dataset to produce state-of-the-art results. We build on their approach and
trained a deep generative adversarial network on the same dataset. Our AlphaGAN architec-
ture consists of one generator G and one discriminator D. G takes an image composited from
the foreground, alpha and a random background appended with the trimap as 4th-channel as
input and attempts to predict the correct alpha. D tries to distinguish between real 4-channel
inputs and fake inputs where the first 3 channels are composited from the foreground, back-
ground and the predicted alpha. The full objective of this network can be seen in 3.3.

3.2.1 Generator

Our generator consists of a an encoder-decoder network similar to those that have achieved
good results in other computer vision tasks, such as semantic segmentation [4] [15]. For the
encoder, we take the Resnet50 [14] architecture, pretrained on Imagenet [26] and convert
the convolutions in the 3rd and 4th Resnet blocks to dilated convolutions with rate 2 and
4 respectively for a final output stride of 8, similar to Chen et al. [3]. Since the training
inputs are fixed to a size of 320×320, this leads to a feature map size of 40×40 in the final
feature map of Resnet block 4. Even though the feature maps are downsampled less often,
the dilated convolutions can still capture the same global context of the original Resnet50
classification network, while not losing as much spatial information. After the Resnet block
4, we add the atrous spatial pyramid pooling (ASPP) module from [3] to resample features
at several scales for accurately and efficiently predicting regions of an arbitrary scale. We
then feed the output of the ASPP to the decoder part of the network. We also change the first
layer of the network slightly to accommodate our 4-channel input by initializing the extra
channel in the convolution layer with zeros.
The decoder part of the network is kept simple and consists of several convolution layers
and skip connections from the encoder to improve the alpha prediction by reusing local
information to capture fine structures in the image [18]. First, the output of the encoder
is bilinearly upsampled 2 times so that the feature maps have the same spatial resolution
as those coming from Resnet block 1, which have an output stride of 4. The final feature
map from block 1 is fed into a 1× 1 convolution layer to reduce the number of dimensions
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Figure 1: The generator is an encoder-decoder network with skip connections.

and then concatenated with the upsampled feature maps from the encoder. This is followed
by three 3×3 convolutions that steadily reduce the number of dimensions to 64. The saved
pooling indices from the max-pooling layer in the encoder are used to upsample these feature
maps to an output stride of 2, where they are concatenated again with the feature maps of the
same resolution from the encoder, followed by some convolution layers. Finally, the feature
maps are upsampled again using fractionally-strided convolutions, concatenated with the
RGB input image and fed to a final set of convolution layers. All of these layers are followed
by ReLU activation functions and batch-normalization layers [17], except the last one, which
is followed by the sigmoid activation function to scale the output of the generator between
0 and 1, as needed for an alpha prediction (See Figure 1). A table detailing all layers in the
network can be seen in the supplementary material.

3.2.2 Discriminator

For the discriminator in our network, we use the PatchGAN introduced by Isola et al. [18].
This discriminator attempts to classify every N ×N patch of the input as real or fake. The
discriminator is run convolutionally over the input and all responses are averaged to calculate
the final prediction of the discriminator D.
PatchGAN was designed to capture high-frequency structures and assumes independence
between pixels that cannot be located in the same N ×N patch. This suits the problem of
alpha prediction, since the results of the generator trained only on the alpha-prediction loss
can be overly smooth, as noted in [33]. The discriminator helps to alleviate this problem
by forcing the generator to output sharper results. To help the discriminator focus on the
right areas of the input and to guide the generator to predict alphas that would result in
good compositions, the input of D consists of 4 channels. The first 3-channels consist of
the RGB values of a newly composited image, using the ground-truth foreground, a random
background and the predicted alpha. The 4th channel is the input trimap to help guide the
discriminator to focus on salient regions in the image. We found that for our network N = 70
is sufficient to balance good results and a low amount of parameters and running time of D.

3.3 Network objectives

The goal of our networks is to predict the true alpha of an image, given the trimap. In
their paper Xu et al. [33] introduce two loss functions specifically for the problem of alpha
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matting, the alpha-prediction loss Lal pha and the compositional loss Lcomp. Additionally to
these, we also use the adversarial loss [11] LGAN , which is defined as:

LGAN(G,D) = log D(x)+ log (1−D(C(G(x))) (2)

where x is a real input: an image composited from the ground-truth alpha and foreground
appended with the trimap. C(y) is a composition function that takes the predicted alpha from
G as an input and uses it to composite a fake image. G tries to generate alphas that are close
to the ground-truth alpha, while D tries to distinguish real from fake composited images. G

therefore tries to minimize LGAN against the discriminator D, which tries to maximize it.
The above losses are combined and lead to the full objective of our network:

LAl phaGAN(G,D) = Lal pha(G)+Lcomp(G)+LGAN(G,D) (3)

where we aim to solve argminG maxDLAl phaGAN .

4 Experimental Results

In this section, we evaluate our approach on two datasets. The first one is the well-known
alphamatting.com [25] evaluation benchmark, which consists of 28 training images and 8 test
images. For each set, three different sizes of trimaps are provided, namely, "small", "large"
and "user". The second one is the Composition-1k dataset [33], which includes 1000 test
images composed from 50 unique foreground objects. We evaluate the quality of our results
using the well known sum of absolute differences (SAD) and mean square error (MSE) but
also the gradient and connectivity errors, which measure the matting quality as perceived by
the human eye [25]. To avoid deviations from the original formulation of the metrics, as seen
in other works ([35], [28]), we make use of the publicly available evaluation code provided
by [33]. We use the default values for the gradient and connectivity error as proposed by the
original authors of the evaluation metrics [25] throughout all our experiments.

4.1 Evaluating the network architecture

The Composition-1k test dataset consists of 1000 images composited out of 50 unique ob-
jects. However, since random background images are chosen when compositing, the re-
sulting images do not look realistic, in the sense that they show scenes that do not exist in
nature, e.g. a glass in the foreground floating before a woodland scene as the background.
Further, the foreground and background images also have different characteristics, like light-
ing, noise, etc., that lead to images that cannot be considered natural.
Therefore, we mainly used the Composition-1k dataset to test our network architecture. We
started by using a similar encoder-decoder architecture as [33], but replaced VGG16 [29] as
encoder for Resnet50 [14]. We also tried other Resnet architectures, but found that Resnet50
performed best. By including the atrous pyramid pooling module (ASPP) [3] and using
dilated convolutions for an output stride of 8 for the encoder, we further improved our per-
formance. We also tried a multi-grid approach following [15], but found that this did not
lead to better results. Finally, we added skip connections from the 1st and 2nd Resnet blocks
and the RGB input to get to the final model we use for the generator. A comparison of some
of the different network architectures that we tried are shown in Table 1.
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ASPP OS=8 OS=16 MG Skip GAN loss MSE

0.049
0.033
0.038
0.039
0.031

0.041

Table 1: Comparison of different generator architectures. ASPP: Atrous spatial pyramid
pooling [3], OS: Output stride of the final feature map, MG: Multi-Grid for dilated convolu-
tions [15], Skip: Skip connections from the encoder, GAN loss: Additional adversarial loss
during training.

Method SAD MSE Gradient (×104) Connectivity (×104)

Shared Matting (SM) [10] 117.0 (68.7) 0.067 (0.032) 10.1 (5.1) 5.4 (5.2)
Comprehensive Sampling (CM) [27] 56.5 (53.7) 0.032 (0.030) 3.4 (4.0) 5.7 (5.4)
KNN Matting (KNN) [5] 99.0 (53.6) 0.070 (0.030) 6.2 (4.0) 8.5 (5.4)
DCNN Matting (DCNN) [7] 155.8 (68.8) 0.083 (0.032) 11.5 (5.1) 7.3 (6.0)
Three-layer Graph (TLGM) [22] 106.4 (52.4) 0.066 (0.030) 7.0 (3.9) 5.0 (4.3)
Information-flow Matting (IF) [1] 75.4 (52.4) 0.066 (0.030) 6.3 (3.8) 7.5 (5.3)

Table 2: Quantitative results on the Composition-1k dataset. Our results are shown in paren-
thesis. We achieve better results than all the tested methods, with the sole exception marked
in bold.

Additionally, we compare several top matting methods where there is public code avail-
able with our approach on the Composition-1k dataset [33]. For all methods, the original
code from the authors is used, without any modifications. It was found that there were mul-
tiple failed cases when directly applied to the entire dataset. We believe that this is due to the
inherently unrealistic nature of the dataset (see supplementary material for examples). To
overcome this issue, we only provide comparison for results in which the images success-
fully produced a valid matting prediction. In contrast, our method succeeded in all image in
the dataset. Quantitative results under all metrics are shown in Table 2. Our method delivers
noticeably better results than the other approaches. The gradient error from the comprehen-
sive sampling approach [27] is the only case where we do not achieve the best result as shown
in Table 2. Some comparisons of results for this dataset can be seen in Figure 2. Additional
results are provided in the supplementary material.

4.2 The alphamatting.com dataset

We submitted our results on the alphamatting.com benchmark [25] achieving state-of-the-art
results for the Troll and Doll images, both for the SAD and MSE evaluation metrics and first
place overall on the gradient evaluation metric. Even though we are not first in the SAD or
MSE, our results are numerically very close to the top-performing results for the remaining
images as shown in Table 3.
Overall, we achieve very visually appealing results, as seen in Figure 4 and by our results
in the gradient metric which was introduced in [25] as a perceptually-friendly measure that
had high correlation to good alpha mattes as perceived by humans. Similar to [19] we do not
report the connectivity measure since it is not robust [25].
Our best results are for the Troll and Doll images, which is due to the ability of our approach
to correctly predict the alpha values for very fine structures, like the hair. This is where the
adversarial loss from the discriminator helps, since the discriminator is able to capture high-
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Average Rank∗ Troll Doll Donkey Elephant Plant Pineapple Plastic Bag Net
Overall S L U S L U S L U S L U S L U S L U S L U S L U S L U

Sum of Absolute Differences

DI [33] 4.6 5.6 3.6 4.6 10.7 11.2 11.0 4.8 5.8 5.6 2.8 2.9 2.9 1.1 1.1 2.0 6.0 7.1 8.9 2.7 3.2 3.9 19.2 19.6 18.7 21.8 23.9 24.1
IF [1] 5.4 6.5 4.9 4.8 10.3 11.2 12.5 5.6 7.3 7.3 3.8 4.1 3.0 1.4 2.3 2.0 5.9 7.1 8.6 3.6 5.7 4.6 18.3 19.3 15.8 20.2 22.2 22.3
DCNN [7] 6.8 8.6 4.9 7.0 12.0 14.1 14.5 5.3 6.4 6.8 3.9 4.5 3.4 1.6 2.5 2.2 6.0 6.9 9.1 4.0 6.0 5.3 19.9 19.2 19.1 19.4 20.0 21.2
Ours 7.8 8.6 7.5 7.4 9.6 10.7 10.4 4.7 5.3 5.4 3.1 3.7 3.1 1.1 1.3 2.0 6.4 8.3 9.3 3.6 5.0 4.3 20.8 21.5 20.6 25.7 28.7 26.7
TLGM [22] 11.5 8.1 8.9 17.6 10.7 15.2 13.8 4.9 5.6 8.1 3.9 4.4 3.6 1.0 1.8 3.0 5.9 7.3 12.4 4.2 8.0 8.5 24.2 25.6 24.2 20.5 23.5 22.2

Gradient

Ours 9.3 8.0 6.8 13.3 0.2 0.2 0.2 0.2 0.2 0.3 0.2 0.3 0.3 0.2 0.2 0.4 1.8 2.4 2.7 1.1 1.4 1.5 0.9 1.1 1.0 0.5 0.5 0.6
DCNN [7] 10.9 13.6 10.4 8.8 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.4 0.3 0.3 0.4 0.4 1.5 1.5 2.1 1.1 1.3 1.5 1.5 1.4 1.0 0.6 0.6 0.5
DI [33] 11.4 8.1 8.4 17.6 0.4 0.4 0.5 0.2 0.2 0.2 0.1 0.1 0.2 0.2 0.2 0.6 1.3 1.5 2.4 0.8 0.9 1.3 0.7 0.8 1.1 0.4 0.5 0.5
IF [1] 12.5 15.1 10.1 12.1 0.2 0.2 0.2 0.2 0.2 0.4 0.4 0.4 0.4 0.3 0.4 0.4 1.7 1.8 2.2 0.9 1.3 1.3 1.5 1.4 0.8 0.5 0.6 0.5
TLGM [22] 14.6 11.6 11.8 20.5 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.4 0.3 0.1 0.3 0.5 1.6 1.7 2.7 1.1 1.9 2.4 1.6 1.6 1.0 0.5 0.6 0.4

Table 3: SAD and gradient results for the top five methods on the alphamatting.com dataset.
Best results are shown in bold.

Image Trimap SM [10] KNN [5] CM [27]

DCNN [7] TLGM [22] IF [1] Ours GT

Image Trimap SM [10] KNN [5] CM [27]

DCNN [7] TLGM [22] IF [1] Ours GT

Image Trimap SM [10] KNN [5] CM [27]

DCNN [7] TLGM [22] IF [1] Ours GT

Figure 2: Comparison of results on the Composition-1k testing dataset.

frequency structures and can distinguish between overly smooth predictions and ground-
truth compositions during training, which allows the generator to learn to predict sharper
structures. Our worst results come from the Net image. However, even though we appear
low in the rankings for this image, we believe that our results still look very close to the top-
performing approaches. Some examples of the alphamatting results are shown in Figure 4.
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Figure 3: Alpha matting predictions for the "Troll" and "Doll" images (our best results) and
the "Net" image (our worst result) taken from the alphamatting.com dataset. From left to
right: DCNN [7], IF [1], DI [33], Ours.

5 Conclusion

In this paper we proposed a novel generative adversarial network architecture for the prob-
lem of natural image matting. To the best of our knowledge, this is the first work that uses
GANs for this computer vision task. Our generator is trained to predict alpha mattes from
input images while the discriminator is trained to distinguish good images composited from
the ground-truth alpha from images composited with the predicted alpha. Additionally, we
introduce some network enhancements to the generator that have been shown to give an in-
crease in performance for the task of semantic segmentation. These changes allow us to train
the network to predict alphas that lead to visually appealing compositions, as our results in
the alphamatting benchmark show. Our method ranks first in this benchmark for the gradient
metric, which was designed as a perceptual measure. For all the other metrics we show com-
parable results to the state-of-the-art and are first in the SAD and MSE errors for the Troll and
Doll images. Our results in these images especially manage to capture the high-frequency
hair structures, which might be attributed to the addition of the adversarial loss during train-
ing. Additionally, we compare with publicly available methods on the Composition-1k test
dataset and achieve state-of-the-art results.
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6 Supplementary material

6.1 Architecture of the proposed generator

Encoder Decoder

layer name output size filter size layer name output filter size
conv1 160×160 7×7,64, stride 2 bilinear 80×80 bilinear upsampling

conv2_x 80×80

3×3 max pool, stride 2




1×1, 64
3×3, 64
1×1, 256



×3
deconv1_x 80×80

skip from conv2_x, 1×1,48




3×3, 256
3×3, 128
3×3, 64





conv3_x 40×40





1×1, 128
3×3, 128
1×1, 512



×4 unpooling 160×160 2×2 unpool, stride 2

conv4_x 40×40





1×1, 256
3×3, 256 r = 2
1×1, 1024



×6 deconv2_x 320×320

skip from conv1_x, 1×1,32




3×3, 64
3×3, 64, stride 1

2
3×3, 32





conv5_x 40×40





1×1, 512
3×3, 512 r = 4
1×1, 2048



×3 deconv3_x 320×320
skip from RGB image

[

3×3, 32
3×3, 32

]

aspp 40×40













1×1, 256
3×3,r = 6, 256

3×3,r = 12, 256
3×3,r = 18, 256

Image Pooling, 256













deconv4_x 320×320 3×3, 1

Table 4: Architecture of the proposed generator. The encoder consists of the standard
Resnet50 architecture with the last two layers removed and ASPP [3] module added to
output 256 40× 40 feature maps. The decoder is kept small and uses bilinear interpola-
tion, unpooling and fractionally-strided convolution to upsample the feature maps back to
320× 320. For the max-pooling operation in the encoder, the maximum indices are saved
and used in the unpooling layer. All convolutional layers except the last one are followed by
batch-normalization layers [17] and ReLU activation functions. The last convolutional layer
is followed by a sigmoid activation function to scale the output between 0 and 1. r is the
dilation rate of the convolution. The default stride or dilation rate is 1. Skip connections are
added to retain localized information.
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6.2 Examples from the Composition-1k dataset

Figure 4: Examples of non-realistic images introduced in the Composition-1k test dataset.

6.3 Additional comparison results on the Composition-1k test dataset

Image Trimap SM [10] KNN [5] CM [27]

DCNN [7] TLGM [22] IF [1] Ours GT

Image Trimap SM [10] KNN [5] CM [27]

DCNN [7] TLGM [22] IF [1] Ours GT

Figure 5: Comparison results on the Composition-1k test dataset.



LUTZ, AMPLIANITIS, SMOLIĆ: GAN FOR NATURAL IMAGE MATTING 17

Image Trimap SM [10] KNN [5] CM [27]

DCNN [7] TLGM [22] IF [1] Ours GT

Image Trimap SM [10] KNN [5] CM [27]

DCNN [7] TLGM [22] IF [1] Ours GT

Figure 6: Comparison results on the Composition-1k test dataset.


