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Abstract

Internal conical refraction (ICR) transforms a ray incident upon the optic axis of a 

biaxial crystal into a cone of light within the medium and a hollow cylinder of light upon 

exiting. If the incident ray is circularly polarised each of the electric field components is 

separated out forming a n rotation of linear polarisation around the ring. The phenomenon 

of ICR has recently been expanded to incorporate paraxial diffraction of the conical beam 

(ICD). The paraxial transformation of a Gaussian beam results in the radial electric field of 

the conical beam described as a superposition of Bessel functions of zero- and first-order. 

At the position of the Gaussian beam waist the sharpest image of the conical rings is 

formed, which diffracts into the far field forming an on axis intensity peak of intensity. A 

left-circularly polarised Gaussian light beam, which has spin angular momentum (SAM) J^p = 

oh = Ih per photon generates a superposition of orthogonally polarised zero and first-order 

Bessel like beams of equal amplitude. The zero-order beam is left-circularly polarised with 

zero orbital angular momentum (0AM) Jorb = Ch = 0, while the first-order beam is right- 

circularly polarised but carries 0AM of Jorb = Ih per photon in the form of an optical vortex 

with a net angular momentum of composite beam of 'Ah per photon. We demonstrate an 

all-optical process for the generation light beams with fractional 0AM up to ± Ih using 

elliptically polarised light with a fractional SAM per photon.

The process in which a conically diffracted beam is propagated through a 

successive biaxial media is termed cascade conical diffraction. Right-circularly polarised 

light generates a right-handed optical vortex of order -Ih. Upon propagation of the first- 

order beam through a second biaxial crystal, the generated beam is a superposition of 

orthogonally polarised fields of order 0, -1 and -2. This SAM to 0AM conversion provides a 

new method for the manipulation of optical vortices that is solely dependent on the 

incident polarisation and vortex handedness.

Conical diffraction of linearly polarised light in a biaxial crystal produces a beam 

with a crescent shaped intensity profile. Rotation of the plane of polarisation produces the 

unique effect of spatially moving the crescent shaped beam around a ring. We use this 

effect to trap microspheres to position them at any angular position on the ring. 

Continuous motion around the circle is also demonstrated. This crescent beam does not 

require an interferometeric arrangement to form it, nor does it carry orbital angular 

momentum.
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Chapter 1

Introduction



1.1 Abstract

This chapter provides the historical context for the discovery and 

experimental observation of internal conical refraction. Internal conical 

refraction proved to be a milestone in the history of the development of 

scientific method. Firstly it is the first recorded case of a theoretical 

investigation dictating the direction of experimental research. Secondly 

it provided the final verification of Fresnel's wave theory of light. 

Following the initial observation of conical refraction there has been 

sporadic investigations into the effect. The recent availability of high 

grade biaxial crystals has resulted in resurgence in the study of this 

optical effect. The number of publication based on conical retraction 

since work started on this thesis is now greater than all the proceeding 

years since the initial paper was submitted. This chapter provides a 

review of previous work in this area prior to submission of this thesis.



1.2 Introduction to conical refraction - 

Historical context

The phenomenon of conical refraction was first predicted by Sir W.R. 

Hamilton, Andrews Professor of Astronomy, Trinity College Dublin in 

1832. It was demonstrated experimentally by Professor Humphrey 

Lloyd at the same university a year later Conical refraction occurs 

when light travelling along the optic axis of a biaxial crystal is refracted 

into a hollow cone within the crystal and emerges as a hollow cylinder 

of light. The theory of conical refraction is one of the first examples in 

physics where a mathematical prediction pre-dated the experimental 

research to confirm its validity. It is perhaps a surprise that such a 

discovery that was enthusiastically received at the time has been 

consigned to at best a side-note in only the most detailed optical physics 

texts. The textbooks by Landau and Lifshitz Born and Wolfe^ and 

Ditchburn provide a detailed explanation of the propagation of 

electromagnetic waves in anisotropic media including conical refraction. 

A brief overview of the geometric theory published by Lunney and 

Weaire also provides an excellent and detailed explanation of the 

phenomenon The historical context leading up to and preceding the 

discovery of conical refraction has been dealt with in detail by O'Hara

Dutch physicist Huygens first proposed the idea of light 

propagating as a transverse wave ^. This was later expanded by Fresnel 

and is commonly referred to as the Fresnel-Huygens wave theory 

(chapter 12 of Ditchburn '*). The refraction of light through isotropic 

media generates a symmetrical spherical wave surface where the 

propagation of the refracted wave is described by a single refractive 

index. Fresnel-Huygens approach also explains the optical effect known 

as birefringence where a ray of light refracted at the surface of a crystal 

of Iceland spar is refracted into two separate rays of light. One ray obeys 

the normal laws of refraction whilst the other is subject to a new



extraordinary law. The two rays exit the crystal linearly polarised in 

orthogonal planes. The wave surface for such a material is composed of 

a sphere describing the refraction of the ordinary ray and ellipsoidal 

surface describing the refraction of the extraordinary ray. The 

construction of such a surface is achieved using the Fresnel equation 

which maps out the wave surface as a function of crystallographic 

direction. From this surface the direction, polarisation and phase of a 

generated ray can be extracted. The direction of the propagation of a 

ray of light, which is the direction of energy flow of a wave, is 

determined from the normal to the tangent plane of the wave surface 

for given directions see Figure 1-1. In birefringence, a double-sheeted 

surface generates two rays one from each surface.

Figure 1-1: Huygens construct for double refraction. Two rays are generated 

from the tangent plane of each surface, the ordinary surface (blue) and 

extraordinary surface (red).

Materials that exhibit birefringence are either uniaxial or biaxial. 

Uniaxial crystals such as Iceland spar are characterised by two refractive 

indices and biaxial crystals have three principal refractive indices (page 

98 of Landau and Lifshitz^). The Fresnel equation for uniaxial materials 

exhibits one direction within the crystal where the wave surfaces



intersect whilst a biaxial material has two (page 99 of Landau and 

Lifshitz ^). The points of intersection on the wave surface correspond to 

a direction known as the optic axes. Hamilton's insight was that light 

propagating along the optic axis of a biaxial crystal does not have two 

tangent planes but a single tangent plane touching the wave surface 

along a circle of contact that generates a corresponding infinite number 

of rays forming the cone of internal conical refraction. Light refracts into 

a cone of light within the medium and exits as a hollow cylinder of light. 

The cone of internal conical refraction (ICR) is a slant cone of light, with 

the direction of the incident ray of light corresponding to the position 

on the cone that is tangentially polarised with respect to the ring.

Lloyd performed his experiments with a single crystal of aragonite. He 

observed the cone of external conical refraction by projecting the cone 

onto a glass plate using direct sunlight. Early the next year he observed 

the cone of internal conical refraction. Lloyd used a 12mm thick piece of 

aragonite with a pinhole approximately 200 pm in diameter generating 

a cone with a radius of 0.2mm *. He reported the formation of a single 

ring of light with zero intensity on axis, not too dissimilar from Figure 

1-2 where the above parameters were used to simulate his experiment.

Figure 1-2: A simulation of the ring of ICR that Lloyd saw in 1833, with the 

zero on axis clearly seen.



Lloyd detailed the cone properties and discovered by observation with a 

tourmaline plate (linear polariser), that all rays of the cone were 

polarised in different planes. He observed a 7i/4 rotation of polarisation 

around a 7i/2 rotation around the cone axis. He also proved this to be a 

necessary consequence of Fresnel's theory.

The first major revision of ICR is attributed to Poggendorff (1839)®. 

Using a more refined technique, he observed a "dark" ring separating a 

double ring of light, Figure 1-3. Voigt explained this feature when he 

realised the infinity of rays refracted in the cone is actually a zero of 

intensity in the direction Hamilton's ideal axial ray, so Hamilton's cone 

should be dark, not bright^®. From this, he concluded that Hamilton’s 

ideal conical refraction does not exist. Instead, double refraction in the 

neighbourhood of the conical point gives rise to a pair of concentric 

cones, separated by a dark cone Figure 1-2.

Figure 1-3: Experimental image of the double ring structure showing the 

polarisation structure and the Poggendorff dark ring.

Voigt deduced that light propagating thought the crystal has a range of 

k-vectors that describe the direction of propagation of the rays, the 

range of directions is proportional to an area around the conical point of

6



intersection on the wave surface. The light originating from the point of 

conical intersection is zero, the spread of directions around this point 

gives real solutions to the direction of the conically refracted rays, and 

revealing the commonly observed double ring structure of the conically

refracted ring of light 10-11

The first technical investigation of the effect of diffraction of the conical 

field was by Raman et aP^ who noted that by imaging the conical beam 

the sharpest ring structure is observed at the focus. As the beam 

diffracts away from this point the rings diffract and form an on axis 

intensity spike in the centre of the rings, corresponding to the direction 

of the optic axis of the wave surface. This experimental work was 

preceded by numerous attempts to qualitatively describe the

propagation and subsequent diffraction of wavelets of light. Laylor 13

14initially described the angular spread of a plane wave. Portigal 

described qualitatively the direction of the Poynting vector for the rays 

propagating around the cone within the crystal. Belski and Khapalyuk 

provided the first derivation of conically diffracted light accompanied by 

an experimental observation of conical diffraction In this thesis, the 

formulation provided by Berry which is a reformulation of the work 

by Belski and Khapalyuk is used. Berry describes the biaxial crystal as a 

linear operator transforming the incident field using quite fittingly a 

Hamiltonian operator. This provides a full wave theory enabling the 

calculation of the electric field profile for any position in space as a 

function of incident polarisation and Fourier transformation of the 

incident electric field

The main outcome of Berry's theory is the description of the conically 

diffracted field as a superposition of waves, whose radial electric field 

profiles are described by Bessel functions of differing order. The work of 

King et al. provided the first demonstration of the up scaling of the 

order of the Bessel beam from internal conical diffraction (ICD), and the 

subsequent generation of an optical vortex in a spin to orbital angular



momentum conversion process. His work demonstrated that ICD could 

be used convert SAM into a corresponding 0AM state either adding or 

subtracting from the 0AM of the incident beam. The ability to 

manipulate both the SAM and 0AM of a photon is important in the field 

of quantum encryption and cryptography^"*'^^. Circularly polarised light 

may possess a maximum SAM value of ±lh per photon, depending upon 

the handedness of the light. 0AM however does not such have a 

restriction upon the maximum value of the 0AM per photon, increasing 

the density of information. Spin angular momentum is used in quantum 

cryptography to encode information in the form of polarisation (left- 

and right-hand circular polarisation are the quantum-mechanical spin 

eigen-states with respective spins of -h and +h per photon). 0AM is not 

restricted to be just either ±lh per photon, but may possess many 

distinct 0AM values. Information may then be encoded to carry a large 

amount of information in the form of a bit of quantum information 

called a qbit or qdit

Bessel beams are widely used in the fields of optical trapping were their 

special properties such as self-repair and divergence-less propagation 

increases the depth of field of the trap enabling the stacking of particles 

Recent work by Jeffrey and Berry investigated the properties of 

optical activity and chirality in conical diffraction. The polarisation/phase 

pattern in the full beam created by conical diffraction generated from a 

circularly polarised incident beam is an object with many given names: a 

"C-polarisation singularity" (Berry), a "half-vortex" or "Mermin-Ho 

vortex" (in Helium-3 and polariton condensates), or a "meron" (in 

generally field theory)

Since work began on this thesis four years ago, there has been a 

resurgence of interest in this optical effect. Groups from Spain, 

Scotland^^ and Estonia^" have begun their own experimental work into 

internal conical diffraction (ICD) fuelled by the access to high grade 

biaxial crystals specifically cut with their optic axis perpendicular to the

8



entrance face. One such example of progression within the field is the 

use of ICD in a laser cavity. It has been reported that a solid-state laser 

based on ICD generates a mode with excellent beam quality and slope 

efficiency close to the theoretical maximum^^'^^'^®. Successive passages 

of light through a biaxial crystal in a cavity also lead to the development 

of cascade conical diffraction. This prompted Berry to expand his 

diffraction theory for n-cascaded crystals Ciaran Phelan, Trinity 

College Dublin (personal communication), has also independently 

reformulated the process of cascade ICD. ICD generates an off-axis 

cylinder of light of radius Ro that directly depends upon the length of the 

crystal, the non-centred cone results in an angular dependence between 

the successive crystals on the final intensity profile.

Figure 1-4: Refraction of a ray of light down the binormal of a biaxial medium 

forming a cylinder of light of radius Ro- R is the cone centred radial distance, 

(&) angle around the beam axis and (A) is the cone angle.

The aim of the research presented in this thesis is to use the newly 

developed theory of conical diffraction in conjunction with the 

availability of high quality biaxial crystals to continue the investigation 

into the phenomenon of conical diffraction. Specifically the possibility of 

ICD as an optical vortex generator is investigated. ICD as it will be shown 

provides an interface by which the spin angular momentum of light can 

be coupled directly to the orbital component, providing a new means of



generating and controlling the total angular momentum of light. Finally, 

this research concludes by using ICD in an optical trap that 

demonstrates the angular momentum of the conical beam and the 

polarisation controlled intensity distribution around the ring to 

manipulate and control micron-sized particles.

1.3 Thesis overview
Chapter 2: This chapter provides a geometrical introduction into the 

phenomenon of internal conical refraction using Maxwell's 

electromagnetic theory. A ray of light incident on optic axis of the wave 

normal's of a biaxial crystal, the optic axis of the Fresnel wave surface, is 

transformed into a hollow, skewed slant cone of light within the 

medium and a hollow cylinder of light upon exiting the crystal. This 

phenomenon is known as internal conical refraction. Conical refraction 

is then expanded to incorporate the paraxial wave diffraction theory 

known as internal conical diffraction (ICD) as published by Berry. A 

Gaussian beam is transformed, by conical diffraction, into a diffracting 

double ring of light. In this case, the radius Ro is the distance from the 

centre of the double ring profile to the intensity minimum between the 

double ring. The width of the double ring is of the order of the waist, wq, 

of the incident Gaussian and the angular width of the rings is the same 

as that of the Gaussian Hence, a tightly focused Gaussian will be 

transformed into a narrow, highly divergent, double ring profile. The 

outer ring will diverge away from the propagation axis and the inner ring 

will converge towards it forming an intensity profile that is dominated 

by an axial peak in the far field. The ratio of the Ro to Wo determines the 

azimuthal intensity profile of the rings. The position of the ring profile, 

termed the focal image plane (FIP), occurs at the focal point of the 

focusing lens plus the increased optical path length due to the 

propagation of the light through a higher index medium. This enables

10



the direct imaging of the rings if the crystal is positioned before the 

focus or imaging of the ring with further lenses if the focus is positioned 

before the crystal as outlined in In both the near- and far-field the 

experimental profiles compare excellently with theory.

Chapter 3: Introduces the concept of the angular momentum of light. 

The total angular momentum of light is composed of both spin and 

orbital angular momentum (0AM) components. Spin angular 

momentum of a photon is more commonly referred to as polarisation 

and can be subsequently controlled with a quarter-wave plate. Initially 

we demonstrate that ICD transforms a circularly polarised Gaussian 

beam into a superposition of orthogonally polarised beams, one with a 

vortex and one without, giving the total 0AM to be Yih per photon. The 

optical vortex is of same handedness as the generating polarisation and 

is easily isolated albeit with a loss of half the incident intensity. This 

chapter provides the experimental procedure for the control over the 

0AM per photon up to € = ±lh from an incident circularly polarised 

state of o = ±lh. This requires the use of polarisation optics plus a single 

biaxial crystal.

Chapter 4: This expands on the previous chapter with the introduction 

of a second biaxial crystal in a process termed cascade conical 

diffraction. The generated output upon exiting the second crystal will 

depend upon the respective orientation of the optic axes with respect to 

each other. If the cones of ICD are aligned parallel the cascade system 

acts like a single. Aligning the cones anti-parallel cancels the conical 

effect and the initial Gaussian beam is reformed. At intermediate angles, 

a compound structure is formed composed of the a and a central 

Gaussian spot. Varying the angles between 0 and 180° varies the power 

between both features. The SAM to 0AM conversion properties of ICD 

are expanded further to include the possibilities of further addition and 

subtraction of optical vortices from the conical field, demonstrating the

11



flexibility ICD provides to the manipulation of 0AM using polarisation 

optics.

Chapter 5: The ability to control and manipulate the position of micro­

sized particles using the conically diffracted beam is presented in this 

chapter. Linear polarised light incident upon the biaxial crystal 

generates an intensity gradient around the ring. A particle confined in 

the position of maximum intensity on the ring can be positioned at any 

point on the ring by rotating the plane of polarisation incident upon the 

crystal. This method for the circulation mimics the circulation of a 

particle circulating due to the transfer of 0AM, without need for 

absorption or backscatter off the particle. As a result the angular 

position of the confined particle can be directly controlled by controlling 

the orientation of the electric field of the linearly polarised beam 

incident upon the biaxial crystal. A cascade ICD optical trap based on the 

work presented in Chapter 4 is demonstrated. A pair of biaxial crystals in 

series with their optic axes rotated at a small angle to each other forms 

a ring + Gaussian spot. This enables a particle trapped on the ring to be 

rotated or positioned on the ring around a centrally trapped particle.

Chapter 6: A summary of the previous chapters is presented outlining 

the future possible avenues of research that can be continued as a 

result of the work performed in this thesis.
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Chapter 2

Conical diffraction
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2.1 Abstract

Biaxial media are direction dependent materials where the laws of 

refraction for rays of light entering or leaving such a medium dependent 

on the direction of the refracted ray. The propagation of light through 

biaxial media is discussed in this chapter in terms Maxwell's 

electromagnetic wave theory. The initial prediction and observation of 

internal conical refraction by Hamilton and Lloyd considered the 

propagation of only a single ray or a bunch of rays in a single direction 

down the optic axis. Subsequent expansions of Hamilton's initial theory 

to incorporate the refraction of rays with a narrow range of directions 

revealed a fine double ring structure. This expansion of Hamilton's 

theory to incorporate the diffraction of the conically diffracted beam is 

treated according to the paraxial wave theory as developed by Belski, 

Berry and others. The recent access of laser grade biaxial media has 

revitalised experimental interest in this very old optical phenomenon. 

The work in this chapter resulted in the first publication on conical 

refraction, now termed conical diffraction and marked the beginning of 

a resurgence of interest in this optical effect

C. F. Phelan, D. P. O'Dwyer, Y. P. Rakovich, J. F. Donegan, and J. G. 

Lunney, "Conical diffraction and Bessel beam formation with a high 

optical quality biaxial crystal," Optics Express 17 (15), 12891-12899 

(2009).
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2.2 Propagation of light in biaxial media 

- Conical refraction

The propagation of light through anisotropic media will be presented 

using the terminology of Landau from ^ and Ditchburn An isotropic 

medium such as glass or air is characterised by a single refractive index, 

regardless of the direction in which the light propagates. The light is 

refracted and reflected according to Snell's law. The propagation of an 

electromagnetic wave through an isotropic medium the displacement 

vector D is related to the electric vector E by the relation D = eE, where e 

is the dielectric constant which is related to the refractive index n =yfe.

In an optically anisotropic medium, the permittivity is no longer a 

scalar quantity but described as a tensor, which changes the direction 

and magnitude of a vector. As a result, the electric field E is no longer 

restricted to be in the same direction as D. The dielectric tensor e {and 

consequently the refractive index) now depends upon direction as well 

as frequency in the discussion that follows this is kept constant. The 

relationship between E and D is now expressed as a function of 

propagation direction within the medium.

A ~ ^ik ^k ~

(D ^ r

D —
y

V

e E +f E +e Exr .r xy y xz z

£.-Ex+£zyEy+fz,E^j

(2.1)
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Figure 2-1: In anisotropic media, E and hence S are no longer parallel to D and

k.

The wave vector k can now be used to define a vector n, describing the 

magnitude of the refractive index as a function of direction. In an 

isotropic medium n is independent of direction, but for anisotropic 

media the magnitude of the vector depends upon direction. The 

direction and magnitude of a given wave vector is given by,

k=:
am

D = nx(Exn) =rj^E-(n*E)n.

(2.2)

(2.3)

Equating Eq. (2.3) to (2.1) the linear homogenous equations in terms of 

the three principal dielectric constants e,* gives.

='1 Ei-ninkEk- (2.4)

This equation is only valid when the determinant of the coefficients 

equal zero. The determinant is evaluated by defining the axes of the 

tensor e,/,, such that the principal values of the tensors are £y, The 

final form is the Fresnel equation, using the coordinate system n^, n^, 

gives the equation,
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n^(eX + ^yny+eA)-

[nl£,{ey + £,) + nl£^ {£,+£^)^ n]£, + fj]. (2.5)

+ f^fyf^=0

For a monochromatic wave, the magnitude of the wave-vector is solely 

a function of direction. Solving Eq. (2.5) gives as a quadratic. The 

general solution for n for all directions generates two different 

magnitudes for the wave vector for a given direction. This when mapped 

around all possible directions generates a double-sheeted surface 

known as the wave surface or wave vector surface describing the 

generated wave vectors as a function of direction. Using the wave 

surface one is able to define a reciprocal surface known as the ray 

surface, which defines the direction of propagation of the rays for the 

corresponding directions of the wave surface. The normal to the 

tangent plane of the wave surface generates the corresponding ray. The 

two separate solutions to the wave surface generate two separate rays 

one from each solution to the wave surface. This is the optical effect 

known as birefringence. The properties of the wave surface depend 

upon the symmetry of the tensor from Eq. (2.1). Uniaxial materials have 

two principal dielectric axes, and biaxial material has all three principal 

values of the tensor different. As a consequence of this, there exist 

directions known as the optic axes where, the solution of Eq. (2.5) is 

single valued. In a uniaxial material, there exists one such direction and 

in a biaxial direction, there are two.

Using the wave-vector surface the direction of the resulting refracted 

rays can be determined. The directions of the rays are given by the 

vector s and are related to the wave vectors n by.

n s = I (2.6)

The direction of the propagating rays defines the direction of energy flux 

or Poynting vector S. This relationship enables the transposing of the
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wave surface on to a ray surface via a simple conversion of variables 

creating a reciprocal surface. The conversion of the wave surface to the 

ray surface is achieved using the following change of variables.

E D, n s, Elk O E ^ik,

From each value of the wave vector, the direction of the corresponding 

ray is the normal of the tangent plane at that point. This enables the 

definition of the Fresnel ray surface, quadratic in s^ giving the general 

solution for two rays of different wave vectors.

+£■,) + «' )]+ 1 = 0 

(2.7)

Biaxial materials are characterised by three different principal values for 

the tensor Cik, with.

«x < «y < ^ < ■fy < £z (2.8)

To define the spatial structure of the wave surface in terms of the 

principal coordinate planes Eq. (2.5) has nz = 0 with the results giving the 

intersection with the coordinate planes.

(2.9)

The double sheeted surface in the x-y plane consists of a circle, whose 

normal generates the ordinary ray.

n = £^, (2.10)

and an ellipse defining a normal defines the direction of the 

extraordinary ray,.

—+ —= 1.
£*‘■y

(2.11)
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This surface has two sheets that touch at four points in the x-y plane. 

Thus, the nx intercepts are VEx and V e^ . Similarly, the ny intercepts are 

Vcy and Vez and the nz intercepts are VEx and VEy. Figure 2-2 shows the 

wave vector surfaces as 2-D slices in the (a) z-y and (b) x-y planes 

showing the wave vector surfaces forming an ellipse and a circle in the 

plane. Figure 2-3(a) shows the Ox-Oz plane, revealing the directions of 

the optic axes at an angle (3 to the x-axis. When (3 is parallel to either x- 

axis the material becomes uniaxial. The direction of the optic 

corresponds to a point of degeneracy, where the wave vector has only 

one magnitude. Figure 2-2(b) shows a 3D cut away of the wave surface 

revealing the point of degeneracy occurs in each quadrant of the plane.
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Figure 2-2: Wave vector surfaces (a) z-y plane,(b) x-y plane. For any wave 

propagation in any direction, there are two solutions to the ray surface.
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(b)
Hz

Figure 2-3: Wave vector surface in x-z plane showing the intersection of the 

wave surfaces and the directions of the optic axes, (b) Octant of the wave 

surface in the x-z plane Intersection between the sheets denoted the direction

of the optic axis.
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The direction in which the degeneracy will occur is obtained by 

differentiating Eq. (2.5) and setting ny to zero,

£j^) ^y)
=-----------------------------,n^ =------------------------------ (2.12)

The angle (A) these coordinates make with the z-axis is simply given by

= ±tany5 =
^xi^z-^y)

(2.13)

In this direction, the wave vector generates infinity of rays as a result of 

Eq.(2.14) being indeterminate, this is determined by manipulating 

Eq.(2.7) and (2.5), noting Eq.(2.6),

= 0
2£^£y£^ - n^£^ {^£y+£^'j-ny£y{£^+£^)-n^£^[£^+£y)

(2.14)

A single tangent plane normal to the direction of the wave vector 

touches the surface not at one or two points but in an infinity of points 

tracing out a circle of contact on the wave vector surface creating a 

corresponding infinity of rays.

To determine the cone of rays as light propagates in the material, it is 

useful to examine the relationship between the ray and wave surface in. 

The outer rings (solid) are the ray surface and the inner rings (dashed) 

define the wave surface. Light propagating along the optic axis of the 

wave surface, defined by the line (0-n) generates a corresponding 

infinity of rays on the tangent plane of the ray surface forming the cone 

of internal conical refraction (Oab). The direction Os is also known as 

the diabolical point of intersection between the wave and ray surfaces, 

and one exists in each quadrant of the z-x plane.
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Figure 2-4; Depiction of the wave surface cone -solid lines (Oab) and ray 

surface - dashed (Oa’b'). Line Ob is the binormal. Os is the biradial.

Figure 2-5 shows the transition from double refraction to conical 

refraction in our experimental arrangement. Figure 2-5(a) shows light 

propagating slightly off the direction of the optic axis, undergoes double 

refraction. As the light is directed closer to the optic axis light is 

refracted around either side of the cone and the ring of light begins to 

form. When the direction of the light corresponds to the optic axis the 

light is refracted symmetrically around the cone of ICR forming a ring of 

light Figure 2-4(c).

The polarisation profile around the ring contains a n rotation of 

polarisation around the beam axis. Each point on the ring is linearly 

polarised, rotating from the point of the ordinary ray in the x-z plane
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(line 0-a in Figure 2-4) around to the orthogonally polarised point 

corresponding to the surface defining the extraordinary ray (line 0-b in 

Figure 2-4). The polarisation distribution around the ring is shown Figure 

2-6.

Figure 2-5: Transition from double refraction to ICR. (a) Shows double 

refraction near away from the binormal, (b) Refraction of light around the 

binormal, light is being refracted around the cone, (c) Ring of internal conical 

refraction, light is refracted into a symmetrical ring of light

Figure 2-6: Polarisation distribution around the ring of ICR. Points a,b 

corresponds to the Figure 2-4 wave surface showing the ring of contact.

The angle of the cone Oab of ICR is given by Eq. (2.15). The 

resulting radius Ro of the ring of light is given by the cone angle (A) times 

the length (L) of the crystal Eq. (2.16),
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TanJA -n------
'1 /

(2.15)
"2 y

Giving the radius of the cone upon exiting the crystal

Ro=AL (2.16)

Conversely light propagating along the biradial line of Figure 2-4 

determines the direction of single ray velocity generating the cone of 

external conical refraction Oa'b'. When a hollow/ cone of rays is incident 

upon the crystal, each wave normal is in the direction of the single ray 

velocity. The emergent beam is refracted into a similar cone from which 

is derived. This phenomenon is not investigated in this study and will 

not be mentioned further.

2.3 Conical diffraction
The theory of internal conical refraction as derived by Hamilton only 

considered the propagation of parallel rays down the optic axis, and 

consequently the general relationship between n and s is indeterminate 

(Eq.(2.14)). Experimentally however, one always has a system of rays 

with a finite angular spread. Later observations by Poggendorff^ and 

Potter'' using a more refined technique with a smaller aperture, 

restricting the range of angles of the incident rays revealed a double ring 

of light on either side of a dark ring now termed the Poggendorff ring. 

Voigt ^ explained this effect as a result of rays propagating at a slight 

angle (cf)) to the optic axis. Rays that do not propagate along the optic 

axis are consequently not conically refracted but undergo double 

refraction.
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Poggendorff ring

Figure 2-7: Segment of the z-x plane of a wave surface near the diabolical 

point. Dashed line is the single tangent plane of ICR, with the black arrows 

the rays of ICR. Rays (green) propagating off axis to the optic axis by angle (f> 

are double refracted, generating two rays one from each sheet of the wave

surface.

Rays at an inclined angle tj) to the optic axis give rise to a pair of rays at 

an angle ('AtK + (j)) and (’/2A - c})) to the central axis Figure 2-7 (section 

16.26 of ®). This, when expanded to include all off axis rays forms two 

cones of doubly refracted light. It can be shown that all the energy in 

the angular range of ({) and (cj) + Ac})) will appear in two cones of semi­

aperture ('Ah ± <J)). The intensity of light from the cones is proportional 

to the angle cj), and is zero when c}) = 0. Consequently, an angular spread 

of rays will be doubly refracted into two solid cones inside and outside 

the cone of ICR, with a dark cone of ICR having zero intensity. The 

double refraction of each ray around the cone also preserves the 

polarisation change around the beam axis. Therefore each doubly 

refracted ray is separated into two orthogonally linearly polarised states 

on diametrically opposed sides of the ring. The dark cone of ICR 

generated is the Poggendorff dark ring with a radius of Rq, as seen in 

Figure

2-8. A direct consequence of including the refraction of the off axis rays 

is the change in intensity distribution as the conical beam propagates, as 

noted by Raman in 1941^.
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Figure 2-8: Magnified experimentai image of the double ring of ICR. A dark 

Poggendorff ring separates two bright rings.

In order for interference and phase effects to be taken into 

account as the beam diffracts, a full wave theory needed to be 

developed. Attempts to achieve this were made by Laylor * and Schnell ® 

and Portigal^“, but it was not until Belsky and Khapalyuk “ 

incorporated the simplification that paraxiality provides did a full wave 

theory become available. The paraxial approximation can be 

summarised as follows, the electric field written in standard complex 

notation given by a plane wave and a slowly varying envelope is.

A(r,t) = u(R,z)e i{kz-(Ot) (2.17)

where A(r,t) is a complex electric field, u(R,z) is the amplitude, R = (x,y) 

is the transverse 2D position vector , r = (R,z) is the position vector in 

three dimensions and u) = ck. The complex scalar function describing the
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distribution of the field amplitude satisfies the paraxial wave equation 

when the transverse profile of A varies slowly with z

—5- + 2//C—7 
dz^

u(R,z) = 0 (2.18)

The paraxial approach taken later by Berry is derived and explained in 

detail in references The following is a basic overview of the 

transformation and consequences of a paraxial approach to internal 

conical diffraction applying the methodology of Berry

A biaxial slab of length L has three principal dielectric constants Ei and 

refractive indices nj such that,

fj = Di < f2 “ ”2 .

The crystal wave number along the optic axis is given as,

k — ^2^0.

(2.19)

(2.20)

This enables the description of the cone centred radial position of R 

around the azimuthal angle of the cone (0) in terms of the transverse 

wave vectors askP = k(P^,P^) = kP(cos9p,s\r\dp), where P«1 as a

consequence of paraxiality. A Hamiltonian operator transforms the 

linear state of the transverse profile of a paraxial beam, where the wave 

vector is ko along the optic axis. After a lengthy calculation the electric 

field of a conically diffracted paraxial beam is described in terms of R the 

radial component and Z the propagation distance and the Fourier 

transform of the incident electric field profile a(P) as.
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E(R,/| = -||ek rr ik[pR-y^zp^)
X [cos(/fP/?o )l - /sin(kPRo )B(kPRQ )M( 6'p)] a(P)c/P

(2.21)

M(0p) =
cos dp sin^p ^ 

sin^p -cosGp j
(2.22)

I is the identity matrix and Rq is the radius of the cylinder after exiting 

the crystal. Z denotes the effective propagation distance in units of 02 

from the position of the beam waist.

Z = L + (z-L)n2, (2.23)

where L is the length of the medium and z is the distance from the 

entrance face. This can also be referred to as the longitudinal shift, as 

propagation through a higher refractive index medium changes the 

optical path travelled by the beam.

Using Eq. (2.21) one can determine the electric field profile of the 

conical beam at any point in space in terms of polarisation and the 

Fourier transform of the incident electric field. Assuming that the 

incident beam is Gaussian, uniformly polarised and circularly symmetric 

and of the form of Eq. (2.24) one can compare theory with experiment.

E(R,0) = e
re \

\^y J
(2.24)

(ex,ey) represents the polarisation Jones matrix such that

'tol "*’r.vo 1. These Jones matrices can be expressed in a reduced

form in terms of left (e^) and right (e‘) circular polarisations. The 

corresponding Fourier transform of Eq.(2.24) is of the form.

a(P) = kw e (2.25)
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Substituting Eq. (2.25) into Eq.(2.21) and performing the integration in 

momentum space to convert it into a real space electric field profile 

yields Eq. (2.26). The Bo integral Eq. (2.27) described by a zero-order 

Bessel function (Jo) and the Bj integral Eq. (2.28) described by a first- 

order Bessel function (Ji) are generated in superposition.

E{R,z)^Bo(R,Ro,Z)
To \

J
+ B-^{R,Rq,Z)M{9p

re ^
(2.26)

C — ikP^7

Bo{R,Ro,Z) = k jPcos{l<PRQ)a{P)Ja{kpR)e dP (2.27)

B^(R,RQ,Z) = k jps\r){kPRQ)a(P)J^{kpR)e (2.28)

These are the exact paraxial solutions for the E field of the conical beam 

enabling the numerical calculation of any plane normal to the 

propagation.

The experimental arrangement for the observation of ICD from a 

Gaussian incident beam is presented in Figure 2-9. A 10 mW 632 nm 

Gaussian laser beam linearly polarised in the horizontal plane is left 

circularly polarised using a quarter wave plate P2, with the fast axis 

making an angle of 45° to the horizontal. The light is focused using a xlO 

objective lens (U) to a 1/e^ width beam waist size (w) of 14 pm. This is 

then directed down the optic axis of a 3 cm slab of the biaxial crystal 

KGd(W04)2, oriented such that the plane containing the two optic axes 

also lies in the horizontal plane. At 632 nm the refractive indices are: ni 

= 2.01169, n2 = 2.042198 and ns = 2.09510 determined from the 

Semilion equations for this materiaP^. Using Eq. (2.15)and (2.16) gives a 

Ro = 5.9x10'' m resulting in = Rq/w = ALjw ~ 42.1. Setting Z = 0 in Eq. 

(2.23) results in a shift of focus of the position of the Gaussian beam 

waist by
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Z = L
\

1-^

n.
(2.29)

2 y

The position corresponding to Z = 0 is known as the Focal Image Plane or 

FIP. The position of the FIP lies 1.53 cm away from the position of the 

focus for the Gaussian beam. In this geometry, the position of the FIP 

lies inside the crystal and needs to be imaged onto a CCD. This is 

achieved using a 10cm lens (L2) placed 20cm away from the Z = 0 

position, which is 1.53 cm in front of the focal position of the lens Li. 

The resulting 1:1 image is captured on a standard CCD 20cm away from 

L2.

P1

1:1
image 
of FIP

^— -- P2 P3

2f 2f2* I 2 1

Figure 2-9: Experimental arrangement for the imaging of the FIP. Lens Li is an 

x20 objective with a focal length of 8.5mm. Imaging lens L2 is a 10cm 

converging lens placed 20cm away from FIP Imaging 1:1 on to CCD. Polarisers 

P2 and P3 are only inserted when Bo or Bi components need to be isolated.

Figure 2-10 shows the 1:1 image of the FIP. The high value of the po 

value of 42.1 generates a sharp double ring structure with the 

Poggendorff ring clearly defined. The radial intensity profile Figure 2-11 

compares excellently with theory.
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Figure 2-10: Focal image plane of a conical beam at Z = 0 with a o value of 

42.1. Ring diameter of 1.18mm.
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Figure 2-11: Radial intensity plots of Figure 2-10 FIP (Z = 0) of the conical 

beam (red-dashed) compared to theory (black-solid).

38



Close inspection of Eq. (2.26) shows that the Bo field retains the 

polarisation of the incident beam, while the matrix M(0p) transforms the 

polarisation of the Bi field to be orthogonal to the Bo beam. Using Eq. 

(2.26) the polarisation of the two generated beams are mapped out to 

show their distribution around Ro, Figure 2-12. The vector addition of 

the beams results in the rotation of the position of maximum intensity 

over a wavelength. If the light is circularly polarised the polarisation 

distribution of the fields Bo and Bi are mutually orthogonal at all points 

around Ro, as Figure 2-12(a) depicted. If the incident light is circularly 

polarised the M(0p) reduces along to e^**'® depending upon the 

handedness of the incident polarisation. This introduces a 27i variation 

of phase around the beam axis. This phase term is indicative of the 

presence of a helical wavefront in the form of an optical vortex and the 

presence of orbital angular momentum; this is the subject of Chapter 2. 

Only when the incident field is circularly polarised are the separate 

conical beam components Bq and Bi mutually orthogonal at all points 

around Rq. However if the incident light is linearly polarised there is a 

gradient of intensity around the ring. The point of maximum intensity 

corresponds to the position on the wave-surface for corresponding to 

that polarisation, with the point of zero intensity corresponding to the 

diametrically opposed point on the ring with orthogonal polarisation. 

Figure 2-12(b).

Figure 2-13 shows the electric field amplitudes Eq. (2.27) and 

Eq.(2.28) for a circularly polarised incident beam. Both Bo and Bi show a 

change of phase across the Poggendorff ring at R = Rq. The Bi 

component Figure 2-13(b) shows an extra phase change at R = 0, 

indicating a 2n phase change across the beam axis. The combined 

electric field as per Eq. (2.26) shows a half phase change around the 

beam axis. Figure 2-13(c).
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Figure 2-12: Distribution of polarisation vectors around the Boond Bi beams 

with combined superimposed beams, (a) Left circular incident light, (b) 

Horizontal linear polarisation. Note this is for one ring.
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Figure 2-13: Theoretical radial electric field plots for (a) Bo component, (b) 

component, (c) Bo+ B^ field combined, (c) Radial intensity plot of a conical

beam.
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Figure 2-14 shows the propagation of the electric field along the z in the 

x-y plane for a beam waist size of 14 pm. The Bo+Bi electric field show a 

n phase across the beam axis as the beam propagates the field. Figure 2- 

14(c) shows the diffraction of the electric field as the beam propagates. 

The left hand side of Bo is of opposite phase to the Bi field resulting in a 

cancellation of the electric fields with Bq when in superposition. The 

corresponding intensity profiles for Figure 2-14 are presented in Figure 

2-15. The Bo component Figure 2-15(a), which is a double ring of 

azimuthally uniform intensity and phase yields a zero-order Bessel beam 

in the far-field. Flowever, due to the azimuthal variation of phase in the 

Bi component, it yields a first-order Bessel beam, which has zero 

intensity on axis as shown in Figure 2-15(b). Taking both beams in 

superposition yields the beams diffracted into the far field around x-y 

plane forming what is known as the axial spike. Figure 2-15 (c).

Z (mm)

Figure 2-14: Simulated electric distributions in the x-y plane for the diffraction 

of the conical beams away from the FIP (Z = 0) position, (a) Bo,(b) flj and (c) Bo

+ Bi field.
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Figure 2-15: Corresponding simulated intensity distributions of Figure 

2-14 in the x-y plane for the diffraction of the conical beams away from the 

FIP (Z = 0) position, (a) Bo (b) Bi and (c) Bo + Bj field.

Figure 2-15Figure shows the simulated intensity profiles along the z-axis 

away from the FIP in the x-y plane. The Bo component Figure 2-15(a), 

which is a double ring of azimuthally uniform intensity and phase yields 

a zero-order Bessel beam in the far-field. Flowever, due to azimuthal 

variation of phase in the Bi component, it yields a first-order Bessel 

beam, which has zero intensity on axis, as shown in Figure 2-15(b).

The Bo and Bi field components can be isolated using a \/4 plate 

(P2) and linear polariser positioned combination after the crystal, to 

transform the orthogonal circular polarisation states into orthogonal 

linearly polarised states using P2 and selecting either linear state with 

P3. Setting the fast axis of PI parallel to P2 enables the linear polariser 

P3 to select the Bo by blocking the polarisation in the horizontal plane 

and vice versa to block the Bi component. The experimental intensity 

profile images from the Z = 22 cm plane for the conical beam are 

presented in Figure 2-16(a) for the Bq profile. Figure 2-16(b) for the Bi 

profile and Figure 2-16(c) for the Bo + BI profile. A comparison of the
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radial intensity profiles of Figure 2-16 with Eq. (2.26) are presented in 

Figure 2-17 and compare favourably with theory.

28.2mm

28.2mm

28.2mm

Figure 2-16: Experimental images of fa) Bofield, (b) Bj fieid, (c) Axial spike Bq

+Bi field.
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Intensity Normalised

Intensity Normalised

Figure 2-17: Radial intensity profiles of profiles in Figure 2-16 (red-dashed) 

compared with theory (black- solid) for (a) Bo,(b) Bi (c) Bo+Bicases
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Alternatively, the FIP can be directly imaged using a lens with a focal 

length that is greater than the length of the biaxial crystal used, 

negating the requirement for an imaging lens. As a result the beam 

waist (w) will be greater and the po will decrease. Figure 2-18 shows the 

simplified arrangement for the direct imaging of the FIP using a single 

lens. The U with a focal length of 22cm forms a 1/e^ beam waist of 

0.1mm, giving a po 5.9. The corresponding FIP and radial profile are 

presented in Figure 2-19, showing again excellent correlation. Finally if 

the lens LI is removed and the laser is directed thought the crystal with 

a 1/e^ beam waist of 0.8 mm giving a po 0.7. Examining the Bi intensity 

distribution as pre Figure 2-20, shows zero intensity on axis with a 

radially smooth intensity distribution. The position of the point of zero 

amplitude corresponds to the direction of the binormal to the wave 

surface. This intensity profile closely resembles that of a first-order 

Laguerre Gaussian mode.

Figure 2-18: Experimental setup for the direct imaging of the FIP.
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o
Intensity Nortnalisetl

(b)

Figure 2-19: Experimental image ofFIP iv = .1mm (b) Radial intensity profile

and theoretical fit

Figure 2-20: FIP Bt field for po<l showing the zero intensity at the centre of 

the beam axis corresponding to the direction of the binormal.
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2.4 Conclusions

To conclude, this chapter contains the geometric theory of Hamilton's 

prediction of internal conical refraction (ICR). Internal conical diffraction 

(ICD) expands the geometric theory in to a full paraxial wave theory 

using the methodology developed by Berry. This enables the calculation 

of the electric field and intensity profile of the conical beam at any point 

in space. Using this transformation, a paraxial Gaussian beam is 

converted into two orthogonally polarised electric fields, whose radial 

electric field profiles are described by Bessel functions of zero and first- 

order. The zero-order beam retains the incident polarisation structure, 

while the first-order beam is orthogonally polarised and contains a 2n 

phase variation around the beam axis. The experimental transformation 

of a circularly polarised Gaussian beam in the FIP and in the far field 

compared excellently with theory.
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Chapter 3

Spin to orbital angular

MOMENTUM CONVERSION USING

INTERNAL CONICAL DIFFRACTION
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3.1 Abstract

The transformation of spin angular momentum in the form of 

polarisation into an orbital angular momentum in the form of an optical 

vortex via ICD is discussed. Circularly polarised light with a maximum 

SAM of ±lh is converted into a superposition of orthogonally polarised 

Bessel like beams, Bq with 6 == 0 and Bi with 6 = ±1 also retaining the 

incident SAM helicity. This superposition results in a net pure 0AM state 

of 'Ah per photon. The conversion of SAM to 0AM using elliptically 

polarised light in the Bi field component is discussed and experimentally 

presented. ICD provides a means to actively tune and select any non­

integer 0AM state up to ±lh using just polarisation optics. The main 

results of this chapter resulted in the publication,

"Generation of continuously tunable fractional optical orbital angular 

momentum using internal conical diffraction," D. P. O'Dwyer, C. F. 

Phelan, Y. P. Rakovich, P. R. Eastham, J. G. Lunney, and J. F. Donegan, 

Optics Express 18 (16), 16480-16485 (2010).
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3.2 Introduction
When an object is in motion it possesses momentum, for motion in a 

straight line the velocity of the object multiplied by its mass gives the 

momentum. An object in circular motion around a fixed point possesses 

angular momentum, the linear momentum multiplied by the radius of 

the circle. Angular momentum may possess both spin and orbital 

components. The same applies for a photon. Maxwell's theory states 

that electromagnetic radiation carries both energy and momentum^. 

Radiation may have both linear and angular momentum^. In general, a 

light beam may have both spin angular (SAM) and orbital angular 

momentum (0AM) components. These two distinct (albeit only 

realistically separable in the paraxial regime'’) angular momentum 

components are required for the complete understanding of the 

classical and quantum mechanical nature of light.

The angular momentum properties of photons was first 

demonstrated by Beth ® by showing that circularly polarised light exerts 

a torque on a freely suspended halfwave-plate. Quantum mechanically 

a photon has a SAM of either left (+lh) or (-Ih) right per photon. The 

polarisation and hence SAM of a beam of light is easily modified via a 

quarter wave-plate.

The generation and control of the 0AM component of light is not 

as easily achieved and requires a new set of optical tools. The 

generation of 0AM requires the introduction of an azimuthal phase 

component into the electric field. Experimentally this is most commonly 

realised via the generation of higher order Gaussian modes known as 

Laguerre-Gaussian beams. These beams are characterised by the 

presence of a helical phase structure of complex phase denoted by e'®^ 

where the integer 6 denotes the number of 2n variations of phase 

around the beam axis over one wavelength, which under the right 

conditions carry 0AM of €h per photon®'®.
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direction of travel
A

2tt

Figure 3-1: Helical wavefront of a beam with OA M with accompanying phase 

profile. Phase rotates from 0 to 27rover a wavelength with a point of zero 

amplitude at the centre of the beam.

The 0AM of light is often associated with the presence of an 

optical vortex, shows the helical phase profile of an optical vortex, 

where the phase varises from 0 to 2n around the direction of 

propagation. The helical wavefront is a result of the Poynting vector (S), 

which is perpendicular to the wavefront is not parallel with the direction 

of propagation of the beam. These optical vortices are restricted to be 

integer valued as the phase rotation must be continuous around a fixed 

point of zero amplitude, known as optical singularities As for SAM, 

the 0AM for a single photon is quantized. It has been shown 

experimentally that at the single photon level spin angular momentum 

could be added to or subtracted from the orbital component, confirming 

that the optical angular momentum of a light beam is (€+o) h per
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photon, where £ is an integer and o = ±1 In general, any beam with 

inclined phase fronts carries 0AM about the beam axis which, when 

integrated over the whole beam can be an integer on non-integer 

multiples of b per photon The 0AM of a beam of light or an ensemble 

of photons can be of any integer or non-integer value, achieved via the 

superposition of integer valued 0AM states of differing optical power. 

The resulting net 0AM gives the expectation value per photon of the 

field. This increased dimensionality that 0AM of photons provides 

opens the possibility for use in quantum information processing where 

entangled photons with 0AM enable the transfer of much higher 

density of information per q-bit (bit of quantum information)^^. This 

increased density is exploited in the fields of quantum encryption, 

cryptography and quantum information transfer. Such schemes have an 

intrinsic security as any attempt to intercept or eavesdrop changes the 

orbital angular momentum and angular position uncertainty principle

Laboratory beams which possess this helical phase structure are 

generally generated via the illumination of numerous devices, such as 

computer generated holograms (CGH) spiral phase plates (SPP)^^ 

spatial light modulator (SLM) or "Q-plates" with a normal Gaussian laser 

beam^^. Spiral phase plates (SPP) are transparent dielectric heliocoidal 

shaped devices with a physical step edge. The step height introduces a 

dislocation to the wave front and a non-uniform delay in phase around 

the incident beam profile introducing a phase variation that is 

proportional to the step height. These devices are mechanically or 

thermally adjustable to introduce the required number of phase 

rotations^®. Due to their step edge along the dislocation, there is a point 

in the centre of the device which causes a disruption to the transmitted 

beam which adversely affects beam mode quality^^.

Computer generated holograms (CHG) have the required phase 

profile generally in the form of a forked hologram (Figure 3-2), which 

imprints the required number of 2ti phase steps around the beam axis^^.
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The insertion of an extra fringe at the centre of the hologram insures 

that each diametrically opposed point is n out of phase with each other. 

Increasing the number of extra fringes increases the number of phase 

steps. While these devices provide the most cost effective means of 

generating 0AM (phase patterns can be printed onto acetate sheets and 

placed directly into the optical setup), they do have diffraction related 

conversion problems. Spatial light modulators (SLM) are programmable 

LCD devices containing computer controlled refractive elements, light 

reflecting off its surface may have a phase delay programmed into it by 

a pixel with an appropriate phase delay^°. Each pixel can be considered 

as a variable wave-plate. However, the device resolution is restricted to 

the pixel resolution of the device. Increasing the pixel density increases 

the price, much like their CCD counterparts. The fork gratings generated 

via CHG or SLM's are amplitude gratings, diffraction gratings with extra 

fringes present. This disperses the incident light into a large number of 

diffraction orders, and as a result these methods provide an inefficient 

means for generating a single mode^^.

Figure 3-2: A fork hologram showing an extra phase dislocation generating a

beam E = 1.

The conversion of SAM into 0AM provides a means to generate 

and control the total angular momentum (AM) of light using all optical 

polarisation based devices. Such optical devices manipulate the 

polarisation of the light compared to the interaction of the AM with 

matter. In all the above methods, the phase profile is imprinted on the

56



generated wave front, whose orbital helicity is therefore fixed, although 

SLM's allow a slow dynamical control of the generated helicity, by 

changing the pixel information on the sensor. The ability to control the 

chirality and phase profile of the generated wavefront by just controlling 

the input polarisation handedness and ellipiticty provides the ability to 

control the generated 0AM per photon using standard optical 

components.

One such device is a Q-plate; these are birefringent uniaxial 

liquid crystals, which convert SAM into 0AM. Circularly polarised light 

with a SAM state of +lli upon propagation through such a plate is 

converted into an 0AM state of +2h with high efficiency up to 98% but 

with low beam fidelity Light passing through such a Q-plate, has

each photon converted from left-circular to right-circular changing its 

spin z-component angular momentum from -rh to -h. The orbital z- 

component angular momentum of each photon changes instead from 

zero to 2 h. Therefore, the total variation of the angular momentum of 

light is nil, and there is no net transfer of angular momentum to the 

plate: The plate in this case acts only as a "coupler” of the two forms of 

optical angular momentum, allowing their conversion into each other. In 

this chapter the demonstration of a non-interferometric method for the 

control of the 0AM per photon using polarisation optics and internal 

conical diffraction is described.

3.3 Angular momentum of light
In this section, the distinction between linear and angular momentum of 

light will be discussed, showing explicitly in the paraxial regime that the 

spin and orbital components can be separated into distinct local 

densities of the electric field as shown in Using the notation of 

chapter 2 from^'' the angular momentum of light can be described in 

terms of Maxwells equations. The linear momentum of a photon is given
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by the wave-vector k = (2n./X) times h. More formally, the cycle 

averaged linear momentum density is given by;

p = ^qE X B. (3.1)

The angular momentum density of a transverse electromagnetic field is 

given by,

j = foi-x(ExB), (3.2)

where E is the electric field and B is the magnetic field. The total angular 

momentum (AM) is given by the integral of Eq. (3.2) over the entire 

field.

J = ^Q |rx(ExB)c/r. 

J=jidr,

(3.3)

(3.4)

Equation (3.3) can be separated out further such that a body rotating 

around a centre of mass has a radius of rotation given by r = R+r', where 

R is the position of the centre of mass and r' is the position in the centre 

of mass system. When Eq. (3.4) is adjusted for this and integrated over 

position the total AM is now separable into two distinct components'^.

J = L + S, (3.5)

where L is the orbital component and S is the spin contribution. The S 

component is intrinsic in nature as the calculation point for the origin of 

the rotation is fixed. If we take L to be

L = RXP, 

P= jpdr,

(3.6)

(3.7)

the L component depends of the centre of mass position defining an 

anchor point for R describing the point of origin for the calculation. This
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position is not fixed so 0AM can be either extrinsic or intrinsic In this 

case, the distinction between spin and orbital angular momentum is not 

well defined for a general quantum radiation field. However in the

paraxial regime these AM components are distinct and separate 8,26-27

The paraxial approximation as explained in on page 29, enables 

the separation of the distinct angular momentum component into L and

S as shown in section 2.5 oV

L(R,z)=^u*.—u + c.c.,
ICO do

S(R,z) = -—/?^(u*xu). 
2co dR

(3.8)

(3.9)

One can see in Eq. (3.8) the L is determined by the phase gradient of the 

field u in the azimuthal direction (0) this is the z-component of the 

orbital AM per photon. The S component arises from the radial 

derivative of the transverse field amplitude.

3.3.1. Polarisation - Spin angular 

momentum
The SAM component (Jjp = oh) is associated with the polarisation 

of the light, where the sign of o denotes the chirality of the light. In the 

quantum description of light, the spin of a single photon is quantised to 

be in units of h per photon to be either pure left (+lh) or (-Ih) right- 

circularly polarised light. A single photon cannot have a non-integer 

SAM value. Elliptical polarised light results in a non-integer SAM state, 

such a beam is composed of an ensemble of photons of opposite SAM 

states of differing amplitudes. Linear polarised light has a Jjp = 0, 

composed of a superposition of two beam of equal amplitude with ±lh 

photons
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Classically one considers the polarisation of light as the variation 

of the orientation of the electric field as is propagates over a period of 

one oscillation. When the orientation remains constant and only the 

amplitude varies, the light is plane polarised, in effect E only oscillation 

in one plane. When the amplitude remains constant (over a cycle) the 

orientation of the vector must vary regularly such that the tip of the 

vector traces out a circle, and so the light is circularly polarised. The 

direction of rotation can be either counter/clockwise giving the 

respective rotation to be either left or right circularly polarised light. If 

both the amplitude and orientation vary such that the tip of the vector 

rotates around an ellipse the field is elliptically polarised.

Each of these representations can be resolved into two 

orthogonal electric field directions and Ey. Varying the phase delay 

between each of these components with use of a quarter-wave-plate 

changes the time averaged position of the electric field E. When the 

phase delay is zero the field is linearly polarised and the plane of 

oscillation is the vector sum of the separate fields. When the phase 

delay is set to it/2, the field is circularly polarised and the field 

components oscillate out of phase and the resulting E field rotates 

symmetrically. The intermediate case is when there is an unequal 

division of amplitudes between Ex and Ey, the resultant tip of the E field 

will vary in amplitude and propagates tracing out an ellipse, and is 

elliptically polarised.
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3.3.2. Jones matrix

The mathematical description of the electric field vectors of light that is 

most commonly used is the Jones vector. This terminology treats the 

electric field vector as a column vector describing the constituent Ex and 

Ey as the instantaneous scalar components of E. This enables any 

polarisation state to be described as a linear combination of the 

principal electric field vectors Ex and Ey,

E =
fx(f)

(3.10)

A linearly polarised state has all of the amplitude of the electric field 

residing in one direction. For example, Eq. (3.11) shows horizontal linear 

polarisation where the horizontal is the x-axis. A left circularly polarised 

representation is shown in Eq.(3.12), where both directions are of equal 

amplitude with / representing a n/2 phase delay.

E = (3.11)

(3.12)

Eq. (3.13) represents a linearly polarised state of arbitrary orientation, 

the angle (a) represents the angle the electric field vector makes with 

the reference principal axis. Multiplying Eq. (3.13) through the 

corresponding transformation matrices for a quarter wave-plate, half 

wave-plate or linear polariser enables the representation of and 

polarisation state in this form.

E =
'cos(«)^
sin(«r)^

(3.13)

These Jones matrices are used in Section 2.5 to describe the polarisation 

of the conically diffracted beam as it propagates through the optical
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system. There also exists Jones-like matrix operators for beams carrying 

OAM^* where polarisation wave-plates are replaced by cylindrical mode 

converters or cylindrical lens, however they are not utilised in this study.

3.3.3. Quantum mechanical SAM
The spin component of angular momentum Eq. (3.9)is given by 

the gradient in the radial direction. This complex vector field u(R,z), can 

be rearranged in terms of the complex normalised local polarisation 

vector (e) and the local field strength, u =|u| such that the energy 

density of the beam directly depends on the helicity (a) times the 

energy density (w) of the transverse position R such that.

(u xu)
-wa. (3.14)

The helicity o is;

e xe
(3.15)

The helicity is for circular rotation whose sign depends on the direction 

of the leading transverse vector R, denoted by the leading electric field 

vector in Eq.(3.16). This takes a maximum value of a = ±1 for circular 

polarisation.

e+ =
(«x±ey)

■ (3.16)

The spin angular momentum in terms of photon density is given 

by nfio for n photons or as ho per photon. The spin oh is restricted to a 

maximum of +lh per photon, where positive (clockwise) rotation 

corresponds to a negative SAM per photon. If the spin angular 

momentum of a single photon was measured with a detector it would 

only register integer values of the SAM. A non-integer (elliptical 

polarisation) o state consists of the superposition of differing integer
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states of differing amplitudes, generating a non-integer expectation 

value of the SAM per photon. Quantum mechanically this can still be 

valid if we measure the SAM of an ensemble of photons^''.

Experimentally a quarter-wave-plate is used to change the polarisation 

from linear through elliptical to circular, in effect changing the 

expectation value of the SAM. Combining Eqs.(3.13) and (3.16) the SAM 

expectation value can be determined as a function the angle (a) that 

linearly polarised light makes with the fast axis of a quarter wave-plate. 

When normalised it reduces to.

-;(f E.-E E' )
= cjti = ti---- 1 '‘,1* I /, = fi sini 2a \

(3.17)

One can see from Eq. (3.17) that the SAM (Jsp) varies as sin(2a). When a 

= 0° Jsp = Oh per photon. When a =+45° the linearly polarised light is 

converted into left/right circularly polarised light and Jjp = ±lh per 

photon.

3.3.4. Orbital angular momentum- 

optical vortices
The orbital component (L) Eq. (3.8) contains a derivative with 

respect to 0 (the angle around the beam axis) of the electric field, which 

can otherwise be termed a phase gradient around the azimuthal angle, 

and is independent of the polarisation. In order for this component to 

be non-zero a beam profile must contain a complex phase component 

of the form e'®^ 6 must be integer valued.

A{R,0,z)^AAR,z)eice (3.18)

An optical vortex of topological charge is one in which the phase 

winds by 2n€ on a closed path around the beam. Consequently, these
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vortices are the eigen-modes of the differential operator 6/60. The 

number is always an integer, and can be positive or negative, depending 

on the handedness of the twist It should be noted however that 

presence of an optical vortex of topological charge 6 is not indicative of 

a beam carrying an 0AM of €h per photon. This only holds true for a 

scalar beam with an azimuthally uniform intensity distribution in which 

the variation of the spin and orbital angular momentum is smooth and 

continuous, as Berry has shown''. Like SAM, the 0AM of a single photon 

can only be integer valued. A non-integer 0AM value, like a non-integer 

SAM is the probability of an ensemble of photons with €h per photon.

The ability to actively tune and select any integer or non-integer 

0AM state has been the subject of recent research. The formation of a 

beam with a non-integer or fractional 0AM state has been achieved 

using numerous combinations of the earlier mentioned devices. Spiral 

phase plates can have a step height tuned to be either integer or non­

integer valued, generating a beam with a fractional phase step^®. It has 

been shown by Berry and Leach that if the phase variation around the 

beam is not continuous, the beam is unstable upon propagation^®'^". 

High order optical vortices €>2, the vortices disassociate and separate 

upon propagation.

The vortex structure of a beam with a non-integer 0AM per 

photon is characterised by a string of integer strength vortices along the 

line of discontinuous phase. Similarly, with CHG or SLM's the formation 

of a beam with fractional 0AM using a fractional phase step generates 

an unstable beam unsuitable for propagation longer than the Rayleigh 

length. The superposition of integer strength vortices, generated by any 

of the above methods, in an interformetric arrangement has been 

shown to provide an adjustable means of generating non-integer 0AM. 

Simply varying the intensity between the different modes enables 

access to a non-integer expectation value of the 0AM per photon. These
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beams have been shown to have increased structural stability over SPP's

by matching the Guoy phases of the superimposed beams30-31

For a paraxial beam, only the component of angular momentum 

along the optic axis will be significant. The orbital angular momentum is 

given by the local expectation value of the operator Rx(-ihV), integrated 

over the transverse electric field of the beam. The spin angular 

momentum is given by the integral of the local expectation value of the 

operator oh. Using the paraxial approximation, as derived by Berry®'^^, 

the constituent Jorb& Jspcomponents can be expressed as.

ti\m jJc/RE’.a^E

h\m J|c//?E* xE*e^
(3.19)

where 0 is the azimuthal angle around the beam axis. The total angular 

momentum per photon of a light beam is given by.

Aot ■^orb Kp

h\m jjdR{E'-dgE + e^>E'xE)
(3.20)

The total angular momentum of a photon is summation of the 

expectation value of each of the spin and orbital components.
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3.3.5. Observation of a beam with an 

optical vortex
The intensity pattern of a beam carrying an optical vortex is 

generally azimuthally uniform in intensity with a point of zero amplitude 

at the centre of the beam. The azimuthal intensity pattern alone will not 

reveal the underlying phase profile or topological order of the vortex 

present.

The phase profile and vortex order can be extracted 

interferometrically via the interference with a reference wave with a 

known phase profile and field curvature. For this, there are two 

different interference arrangements; (a) collinear interference and (b) 

wedge interference. Collinear interference is the direct superposition of 

two different beams, where the beams are spatially superimposed along 

the same path. Generally, the reference arm is a Gaussian beam, with a 

surface of constant phase (modulo 2Tt). If two Gaussian beams with 

matching field curvatures are collinearly interfered the resulting 

intensity pattern will either be the sum of the intensities or the 

difference of the intensities. The resulting intensity pattern resembles a 

Newton's ring pattern, alternating rings of constructive and destructive 

interference. Replacing the sample arm with a beam with complex 

phase, the resulting intensity pattern will reveal a contour line of 

constant phase in the form of a spiral, the number of which reveals the 

number of 2ri phase rotations.

Alternatively, when a wedge is introduced between the beams, the 

overlap only occurs over a small region of space. The resulting mismatch 

in propagation angle results in a fringe intensity pattern of parallel lines. 

Each successive fringe indicates a 2n phase jump between the 

overlapped beams. When both beams are of planar phase the resulting 

fringe pattern in the region of overlap is a series of parallel lines. When 

one of the arms contains an optical vortex the fringe patterns contains
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an extra fringe, indicating an extra 2n phase step around the beam axis. 

The base of the extra fringe is a point of zero amplitude; this is the 

position of the optical singularity and the position of the centre of the 

vortex. The number of extra fringes present reveals the topological 

order of the vortex present. These wedge interference patterns are the 

inverse of the patterns a CHG or SLM imprints on to a incident beam, 

Figure 3-3 shows a 6 = 1 interference pattern/ CHG hologram. Increasing 

the number of extra fringes increases the topological order of the 

imprinted vortex^^'^^'^''.

//^
direction of 
travel

Figure 3-3: Wedged fringe profile showing the position of dislocation and 

position of the optical singularity of an optical vortex (blue spot).

3.4 Bessel beams

A key feature of the paraxial solution for ICD is the description of the 

radial amplitude in terms of Bessel functions Jn. This put ICD into the 

family of beams known as Bessel beams. These are a class of diffraction­

less solutions of the Helmholtz differential wave equation in cylindrical 

polar coordinates using Bessel functions^®'^®. Bessel beams a 

superposition of plane waves with the wave vectors lying on the surface 

of a cone.
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(3.21)

where, ad r, z are the radial longitudinal and azimuthal components and 

0 is the azimuthal angle, and kr and the azimuthal and radial wave 

vectors. Comparing Eq. (3.21) to (2.27) and (2.28) one can see that the 

ICO beam components are of the same kind and should share much of 

the same properties. The radial profile of such beams depends upon the 

order of the Bessel function from Eq.(3.21). A zero order Bessel profile 

as shown in

Figure 3-4, is characterised by a maximum peak of intensity on axis, with 

a transverse profile of concentric rings with a Bessel function periodicity 

and a n phase change between alternating rings. Each of the rings 

contains the same optical power as the central peak. Higher order 

Bessel beams n > 1, are characterised by a zero point of intensity on axis 

with a ring periodicity pertaining to the order of the Bessel function 

used. The higher order Bessel beams also contain an n2n phase change 

around the ring due to the presence of the phase term. These 

beams as already mentioned are associated with the orbital angular 

momentum of light and possess a helical wave front structure
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(b)

Figure 3-4: (a) Theoretical intensity profile of a zero order Bessel beam, 

(b) 3-D intensity profile.

3.4.1. Formation of Bessel beams

Bessel beams are of particular importance because of their low- 

divergence and self repair properties. Bessel beams are non-diffracting 

in the sense that the central core (or lack thereof for higher order mode) 

does not spread as it propagates. In reality Bessel beams may be non­

diverging over many times the Rayleigh length of an equivalent Gaussian 

beam. Bessel beams can be generated using a conical lens known as an 

axicon^°'^®‘''° or an annular slit and lens combination'’^ '*^.

The method used by Durnin involved a narrow annular (circular) 

slit with a converging lens placed at its focal length away from the slit. 

This forms near the focal length of the lens giving the beam a low 

divergence. A zero order Bessel beam can be considered a Fourier 

transform of a ring of constant phase and intensity. A conical lens
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known as an axicon may be used to form a Bessel beam^°. These are 

optical elements that focus light such that the transformed wave vectors 

lie on the surface of a cone given by the cone angle of the lens.

Bessel beams (BB) are widely utilised in optical trapping where the 

periodic ring structure and non-diverging region can be used to optically 

sort and stack micron-sized particles. The reconstruction properties of 

Bessel beams also provide an advantage over standard Gaussian traps. 

The increased depth of field enables the stacking of particles along the 

beam path but the Bessel beam also reconstructs around the particle 

Highly focussed Gaussian beams diverge very quickly and as a 

result the optical forces on a particle fall off quite rapidly, limiting 

trapped particles to be around the focus.

They are also used in non-linear optics and spectroscopy due to the 

strong peak intensity distribution ranging over long distances. Laser 

material processing, such as two photon polymerisation also exploit the 

high intensity non-diverging core to create micron sized optical trenches 

and pillars due the greater depth penetration of the core over an 

equivalent Gaussian beam'’'*.

3.4.2. Higher order Bessel beams

A higher order Bessel beam given by Eq. (3.21)with n>l, can have the 

azimuthal phase factor (R) decomposed into Cartesian coordinates such 

that X = cos(R) and y = sin(R). As Soares described in the use 

recurrence relation of Bessel functions when n = ±1 Eq. (3.22) can be 

expressed as.

8e«{z,R,^) = ±^e'‘''{[^{/r^/?) + A(M)]x±/[j„(M) + A{/f,/?)]y}.(3.22)

Noting that the Hermite polynomial identities Hio(x) and Ho2(y), which 

are solutions to the Helmholtz equation in Cartesian coordinates are of 

the form.
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HB,,=[j,{k^R) + J,{k^R)]H,{x)H,{y) 

HB,,=[j,{k^R) + J,{k^R)]H,{x)H,{y)

This enables Eq. (3.22)to be now written as

8e,=/c,e'‘''(HS,„+/He„J

(3.23)

(3.24)

This shows that a first-order Bessel beam can be expressed as a 

superposition of orthogonal Hermite-Bessel (HB) modes with a n/2 

phase delay. Switching the phase delay to be either + n/2 or - n/2 will 

switch the chirality of the phase rotation and consequently the 0AM of 

the Bessel beam. These beams are analogous to circular polarisation, 

which can be described as a superposition of orthogonal linear 

polarisations with a n/2 phase delay.

Figure 3-5; Hermite Bessel profiles (a) HBio and (b) HBo.

3.5 Conical diffraction SAM to 0AM 

conversion
In this section, the experimental conversion of SAM to 0AM under the 

conditions of internal conical diffraction is experimentally described and 

discussed. Chapter 2 described the polarisation dependence on the 

intensity distribution of the conically diffracted beam was explained in 

terms of the superposition of orthogonally polarised zero (Bo) and first- 

order (Bi) Bessel like beams. The zero-order profile retains the incident
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polarisation and phase structure, while the first-order beam is 

orthogonally polarised with a phase change around the beam axis. This 

complex phase structure is associated with the presence of 0AM and 

under the correct conditions an optical vortex.

The 0AM per photon of the entire conically diffracted beam was 

calculated by Berry to be a purely 0AM state of half the incident SAM 

per photon.

/orb
J-^h.

2
(3.25)

So when the incident field is circularly polarised with a Jsp = Ih per 

photon the resultant 0AM per photon is 'A h per photon. This fractional 

0AM state is composed of the integer vortex state in the Bi component 

and a non-OAM state from the Bq field component. The fractional 0AM 

of the composite conical beam is a result of a superposition of integer 

strength beams giving a non-integer 0AM expectation value. The 

generation of a fractional strength vortex is very unstable, and quickly 

decomposes into separate integer valued vortices. A radial dislocation 

line of zero amplitude indicates the presence a fraction phase step 

around the beam axis (i.e. between 0 and 2n:). As predicted by Berry the 

dislocation line contains a string of low amplitude vortices of alternating 

helicity to compensate for the fractional phase step. The 0AM per 

photon is still quantised; an optical vortex is born when the net 0AM 

per photon is above Vi h.

The conversion of circular polarisation into a superposition of 0AM 

states of differing order was also experimentally performed by King 

using circularly polarised Bessel beams of zero order
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3.5.1. Experimental observation of spin 

to orbital angular momentum in conical 

diffraction

In this section, the conversion of SAM for an arbitrarily polarised 

Gaussian beam into a corresponding pure 0AM state is presented. 

Chapter 2 outlined the generation separation of the orthogonally 

polarised conically diffracted beam modes, described by Bessel 

functions of zero- and first-order. The first-order beam component 

contains a phase change around the ring, giving rise to the 0AM. The 

following details the isolation of the first-order beam component that is 

mutually orthogonal to the incident polarisation using Jones matrices.

Linearly polarised light, polarised in an arbitrary plane is incident upon a 

quarter wave-plates, where (a) is the angle the polarised light makes 

with the wave-plate fast axis.

'l o' Yosar' Yosar'

^sinar^ /sinar^
(3.26)

Circularly polarised light now undergoes ICD transformation according 

to Eq. 2.21:

f cos a
E(R,z) = eo . .

l^/sinor

cos 6/ sin^ 'j Yosar'
+ 6^

sin0 -cos^ JJ ^/sinar^
(3.27)

A quarter wave-plate positioned after the crystal is set orthogonal to the 

quarter wave-plate before the crystal in Eq(3.26).

1 0 
0 -/

[Sc
cos a

y/sincr y
+ 8,

^cosd sin^ Ycosar^

sin^ -cos8 y/sinar y

= Sn
^COSff^

y sincr y
+ B^

cosdcosa sin^sinar 

-/cosarsing -i-/cos 6/sinar
(3.28)
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A linear polariser transmission axis is set such that p = a+90° to remove 

the polarisation component corresponding to the incident polarisation,

cos^ P sin/5cosy5
Si

cos^cosar sin^sinar 

-/cosarsin^ +/cos0sinar
(3.29)

This reduces to,

E(R, z) = Sj [cos ^ si n 2ar + / si n 6^]
sinar ^

\^-cosary
(3.30)

When a = 0° Eq. (3.30) reduces to Eq(3.31). This beam is described by a 

sinusoidal phase modulation, with a line of zero amplitude in the 

direction corresponding to the incident polarisation direction, which 

corresponds to a= 0°,

E(R,2) = 8j[-/sin0
sinar

-cosar
]. (3.31)

When a = 45° Eq. (3.30)reduces to Eq. (3.32) as an optical vortex of 

same handedness as the incident circular polarisation, and is of the 

same form as Eq. (3.18)containing an optical vortex with an 0AM of+lh 

per photon.

E(R,2) = 8i[e iO sinar
(3.32)

If the handedness of the polarisation is reversed by setting a = -45°then 

Eq. (3.30) flips becoming.

E(R,2) = 8i[e-iO sinar

-cosar
(3.33)

The linearly polarised case of Eq. (3.30)shows the SAM component to be 

zero. Applying Eq. (3.20) to (3.30) yields the dependence of the 0AM on 

wave-plate angle a (incident SAM Jsp):
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2sin(2a) 
sin^(2or) + l si 11^(20')+ 1

= hJ. (3.34)

The 0AM per photon of the Bi field generated via ICD can now be 

calculated and controlled as a function of wave-plate angle (a)\ The 

entire conical beam (Bo+Bi) the generated 0AM depends directly on the 

incident SAM where the net 0AM per photon \sJsp/2.

3.6 Experimental details and methods
The experimental arrangement was set up as in Figure 3-6. A 10 mW 

632 nm Gaussian laser beam linearly polarised in the horizontal plane 

was focused using a 5 cm lens (LI) to a beam waist size of 52 pm and 

directed along the optic axis of a 3 cm slab of the biaxial crystal 

KGd(W04)2. At 632 nm the refractive indices are: ni = 2.01169, n2 = 

2.042198 and ns = 2.09510 giving Ro = S.OxlO'' m and

PQ=^y^ = ^^=11.3. The A/2 plate rotates the plane of polarisation

relative to the fast axis of the A/4 plate (PI) which was also oriented in 

the horizontal plane. The biaxial crystal is oriented such that the plane 

containing the two optic axes also lies in the horizontal plane. The field 

orthogonal to the incident polarisation is selected via the orientation of 

the A/4 plate (P2) and linear polariser positioned after the crystal. The 

fast axis of wave-plate P2 is oriented so that it is orthogonal to the fast 

axis of PI and the output linear polariser (LP) was rotated so that it is 

always orthogonal to the linear polarisation incident on PI. If a is the 

angle of the input linear polarisation relative to the fast axis of PI, then 

the polarisation of the light incident on the crystal changes from linear 

for a = 0°, through elliptical, to left-circular for a = +45°, with a SAM of a 

= +lh. Eq. (3.17) shows that this changes the SAM incident on the 

crystal from 0 to Ih per photon. The optical setup also included a Mach- 

Zehnder interferometer to examine the phase distribution of the output
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beam as the polarisation into the crystal was changed. The polarisation 

of Gaussian reference arm is rotated 90° so that it has the same 

polarisation as the output beam.

The intensity distributions and fringe patterns were recorded using 

a CCD camera. The camera is in the far-field region of the conical 

diffracted beam, situated 35 cm away from the FIP position in the region 

where the FIP has diffracted to into the far field.

crystal

Figure 3-6: Experimental setup. BS: 50/50 beam splitters, M: broadband 

dielectric mirror, LI: 5 cm lens, LP: linear polariser, CCD: camera.

3.6.1.Results
The measured intensity distributions for the collinear and wedge 

interference patterns for a = 45°, together with their simulations of the 

same for both are shown in Figure 3-7 for Bq, and Figure 3-8 for the Bj 

beam components. Figure 3-7 (a) shows the experimental (a-i) and 

simulated (a-ii) intensity profiles of the zero order mode. The collinear 

interference images Figure 3-7 (b) show a constructive and destructive 

interference patters between each of the consecutive rings as a result of 

each ring being of alternate phase. The wedge interference pattern 

Figure 3-7 (c) shows a series of parallel interference fringes. 

Consequently, the zero order beam is of planar phase with zero 0AM 

per photon.
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Figure 3-7: Experimental and simulations using Mathematica. (i) zero order 

beam profile, (ii) Collinear interference with a Gaussian beam, (Hi) wedge 

interference with Gaussian mode, (iv-vi) Simulation of (i-iiij.

Figure 3-8 (a-c) shows the experimental (a-i) and simulated (a-ii) 

intensity profiles of the first-order mode. The first-order mode contains 

the characteristic point of zero intensity at the centre of the beam 

profile and an azimuthally smooth intensity profile around each of the 

rings. Figure 3-8(b) shows the collinear interference image for (i) 

experimental and (ii) simulated profiles. The counter clockwise 

interference pattern shows the spiralling path of constant phase around 

the beam axis indicative of the presence of a € = +1 vortex. Figure 3-8(c) 

shows the wedge interference patterns for (i) experimental and (ii) 

simulated profiles. Close inspection reveals the presence of an extra 

fringe at the centre of the beam profile to the top of the singularity. The 

extra fringe reveals the presence of a 2rt phase jump around the beam 

axis, indicating the presence of a continuous 2n winding of the phase 

and the presence of a non-zero 0AM per photon.
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Figure 3-8: Experimental (i) and Mathematica simulations (ii) of the first- 

order conical beam profiles for, (a) intensity profile, (b) collinear interference 

with a Gaussian of planar phase, (c) wedge interference with a Gaussian of

planar phase.

Figure 3-9 (a-c) shows the experimental (i) and Mathematica 

simulations (ii) intensity profiles for a = 0°. The intensity profiles are 

known as Hermite-Bessel beams with a sinusoidal modulation of 

intensity around the azimuth. The line of zero amplitude known as a 

dislocation line is a shear dislocation of phase along the plane of the 

incident polarisation. The interference images Figure 3-9 (b-c) show a tt 

phase shift across the dislocation line. This is most notably seen in 

Figure 3-9(b) where the two central lobes interfering with the Gaussian 

destructively or constructively interfere on the opposite lobes. These 

patterns show the sinusoidal electric field amplitude distribution along 

the direction perpendicular to the incident polarisation (in accordance 

with Eq.(3.31)), along with a shear dislocation of phase along the plane 

of the incident polarisation. The collinear interference patterns show 

that there is no spiralling phase. The wedge interference shows no 

phase step, indicating that there is no complex phase distribution or 

optical vortex present.
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Figure 3-9:1“ order beam mode for a= 0°. (a) intensity profiles (i) 

experimental (ii) simulation, (b) Collinear interference (i) experimentai. (c) 

Wedge interference (i) experimental (ii) simulation (ii) simuiation.

The intensity profiles for the isolated first-order profile, that is 

orthogonally polarised with respect to the input, as a is increased from 

zero to 45° is presented in Figure 3-10(a) for the experimental profiles 

and Figure 3-10(b) for Mathematica simulations. As a increases the 

intensity along the dislocation increases, from zero when a = 0° degrees 

Figure 3-10(a-i) to a maximum at a = 45° where each ring has an 

azimuthally smooth intensity profile Figure 3-10(a-vii), until each ring 

has an azimuthally smooth intensity profile Figure 3-10 (a-vii).
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Experiment Simulation

Figure 3-10: Experimental (a) and simulations (b) of the isolated order 

beam component as a function of (i) 0°(ii) 8° (Hi) 16° (iv) 24° (v) 32° (vi) 40°

(vii) 45°.

80



Experiment Simulation

a)

Figure 3-11: Experimental (a) and simulations (b) of the isolated V order 

beam component interfered with a Gaussian beam as a function of 

(i) 0°(ii) 8° (Hi) 16° (iv) 24° (v) 32° (ui) 40° (vii) 45°.
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The corresponding experimental wedge interference images are 

presented in Figure 3-ll(a) and Mathematica simulations in Figure 

3-ll(b). For a > 0° the interference patters reveal the presence of an 

extra fringe located at the position of the singularity indicating the 

presence of a 2n phase step around the beam axis. The alternating rt 

phase between the rings is also seen revealing the radial phase profile.

3.6.2. Stokes polarimetry and phase 

extraction

The phase profile of a beam with complex phase can be extracted using 

Stokes polarimetry using the method outlined here This method 

requires the interference between orthogonally polarised sample and 

reference beam with matching radius of curvatures. The superposition 

of two orthogonally polarised beams generates an elliptically polarised 

state. If the reference beam is of planar phase and the sample beam has 

a complex phase, measuring the ellipiticty as a function of angle around 

the beam will reveal the complex phase profile.

The S2 and S3 Stokes parameters as defined by Eq. (3.35), are 

used to determine the phase difference between two beams using 

Eq.(3.36).

52 = 2f j, cos K
53 =2£„fySin/r

(3.35)

/r = tan-1

\^2 j
(3.36)

The experimental arrangement for the determination of the Stokes 

parameters was setup as in Figure 3-12, the selection of the 1st order
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beam is the same as the previous section. The polarisation of the 

Gaussian arm is set to be orthogonal to the conical arm. A 5 cm positive 

lens is used in the Gaussian arm to match the curvature of the beam in 

the conical arm and is positioned such that the propagation length in 

each arm is the same. After recombination at BS2 a further quarter- 

wave plane P3 and linear polarised (LP) are used as the Stokes 

polarisers. The Stokes parameters are measured using Eq.(3.37), the 

subscript described the angle of the fast axis of P3 or the transmission 

plane of LP relative to one of the incident polarisation planes,

S2=/(P345,LP245)-/(P3i35,LP2i35),

S3 = /(P345,/.P2o)-/(P3i35,LP2o).
(3.37)

Processing the intensity profiles was preformed using Matlab.

V4 LP2

Figure 3-12: Experimental setup for stokes polarimetry.

3.6.3. Phase profiles

Figure 3-13 presents the phase profiles extracted via Stokes polarimetry 

for the values of a as used in Figure 3-13. For a = 0° there is a maximum 

phase modulation of n between the alternating rings and across the 

dislocation line, as Figure 3-13(i) shows. For a > 0° a complete revolution 

around the beam axis now incurs a In phase modulation. Elliptically 

polarised light generates a Bi field component with 2n winding of phase 

Figure 3-13(ii-vi) indicates the presence of an optical vortex. Figure 3-14 

compares the experimental and theoretical weighting of phase around
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the beam axis (0) for angles (a) for the isolated conical Bi field. For a 

45°, there is an even variation of phase around the beam axis.

V)

Figure 3-13: Phase plots as a function of a(i) 0°(ii) 8° (Hi) 16° (iv) 24° (v) 32°

(vi) 40° (vii) 45°.

Phase (radians)

Figure 3-14: Theoretical and experimental distribution of phase around the 

beam axis. Experimental phase extracted from Figure 3-13 (i)for 0° and (ii)

45°.
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3.7 Discussion

To assure continuity of a field with an optical vortex component there 

must be a 2n phase step at 0 = 2n. Isolating the Bi field component from 

the Bo field component transforms the conically diffracting beam from a 

vector field describing the rotation of the polarisation vector around the 

beam axis into a scalar field where the polarisation is uniform around 

the axis. As section 3.3.4 demonstrated, a scalar beam with an 

azimuthally uniform intensity profile carries an 0AM per photon 

corresponding to the topological charge of the vortex present. This is 

seen in Figure 3-8(a-b), where the first-order mode generated from 

circularly polarised light generated an azimuthally smooth intensity 

profile around each of the rings. The incident left circular polarisation 

with SAM of o = +lb generates an 0AM of € = -rlh, arising from the 

formation of a scalar beam described by an optical vortex of charge +1. 

When a = 0°, the presence of a dislocation line results in a discontinuity 

of the field along the direction of the dislocation. The extracted phase 

profiles Figure 3-13(i) show a n phase step, in conjunction with the 

interference measurement from Figure 3-ll(i) show that there is no 

optical vortex present and the field has zero 0AM per photon. As a is 

increased, the SAM incident upon the crystal is non-zero and 

consequently the optical vortex component of the field is non-zero. The 

phase profiles from Figure 3-13 (ii-vi) show the 2n winding of phase 

around the beam axis, indicating the optical Figure 3-13 vortex 

component is non-zero. The intensity along the direction of the shear 

dislocation in Figure 3-10 varies as sin(2a), the Jsp component of 

Eq.(3.34), as Figure 3-15 shows. The superimposed fields (Bq and Bi) are 

only mutually perpendicular when the incident light is circularly 

polarised, ensuring an even division of power between the fields upon 

separation. When the light is linearly polarised, the Bi component only 

accounts for 'A of the power in the Bo component, or a X of the total 

incident power. The intensity pattern in Figure 3-9(a) is that of a
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Hermite Bessel beam, one of the basis states of a first-order Bessel 

beam. The characteristic features of these beams is the line of zero 

amplitude separating the alternating lobes. A radial electric field profile 

of these beams along for HBoi in the horizontal direction would 

correspond to the electric field profile of a first-order Bessel beam. 

These constituent Bessel beam component are formed in the conical 

beam and have been referred to as "fermoinic brushes" in the literature 

The lobes are ri out of phase as the interference and phase 

measurement show, and represent one-half of the phase rotation of the 

first-order beam. Rotating the incident polarisation by setting a = 90°, 

generates the orthogonal Hermite Bessel beam with the direction of the 

dislocation lying in the perpendicular plane. These orthogonal Hermite 

Bessel beam states can be used to construct a first-order Bessel beam

with radial and azimuthal polarisation45

When the incident light is elliptically polarised, the Bq and Bi 

fields are not mutually perpendicular at all points around Rq, due the 

shared polarisation vectors between the elliptically polarised states. The 

variation of the ratio of optical power between the Bo and Bi fields 

varies as one over the non Jsp component of Eq.(3.38)

sin^(2«)

(3.38)

The variation of transmitted power as a function of a in Figure 

3-15, and agrees closely with theory. This variation of ratio of the optical 

power between the respective fields coupled with the phase 

dependence on the incident SAM, gives the variation of Jorb due to ICD in 

accordance with Eq.(3.34). For a = (0°, 8° 16°, 24°, 32°, 40°, 45°) the 

corresponding experimental 0AM expectation values Jorb = (0, 0.442, 

0.76, 0.928, 0.966, 0.984, 1) h per photon, which compares closely to 

theory as in Figure 3-17.
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Figure 3-15: Intertsity along the direction of the shear dislocation as a 

function of wave-plate angle (a).

Figure 3-16: Power distribution as a function of a between the separated Bg 

and Bi field fitted against the experimental data
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Figure 3-17: Combining Figure 3-15 and Figure 3-16 gives the 

experimental OAM per phaton as a function of wave-plate angle (a).

3.8 Conclusion
To conclude, the method for the transformation of elliptically polarised 

light and subsequent isolation of the conical beam component with 

continuously variable fractional OAM in the range 0 to Ih per photon 

has been presented. Investigations into the SAM to OAM of ICD in the 

literature have so far only covered the conversion of circularly polarised 

light This work provides the first expansion of the circularly

polarised case examining the generation of non-integer OAM from an 

elliptically polarised incident beam.

A circularly polarised beam with a known handedness is 

transformed into a superposition of orthogonally polarised beams, one 

with and the other without an optical vortex. These beams are mutually 

orthogonal at all points around Ro enabling the complete isolation of the 

vortex beam from the planar component. The resulting transformation 

enables 1:1 mapping of the incident SAM expectation value to the OAM 

expectation value albeit at half the incident intensity. Elliptically
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polarised light does not generate two mutually orthogonal beams at all 

points around Rq, and therefore the optical vortex component cannot be 

fully isolated. Upon isolation of the orthogonal polarisation component, 

the phase profile of the optical vortex is no longer smoothly varying 

giving it a fractional 0AM. The non-integer expectation value of the 

incident SAM is converted into a non-integer 0AM expectation value 

but has a term dependent on the incident polarisation describing the 

degree of isolation between the respective Bq and Bi components. 

Linear polarisation, which has zero SAM per photon, generates a Bi field 

with a Ti phase modulation, resulting in the optical vortex component 

being of zero amplitude and hence zero 0AM per photon. The ability to 

actively select and tune the expectation value of the 0AM per photon in 

a highly controllable manner using polarisation optics, which is generally 

only used to modify the SAM expectation value has been clearly shown, 

this method generates structurally stable beams with high fidelity and 

does not require an interferometric superposition of different modes
30

This work resulted in the publication D. P. O'Dwyer, C. F. Phelan, 

Y. P. Rakovich, P. R. Eastham, J. G. Lunney, and J. F. Donegan, 

"Generation of continuously tunable fractional optical orbital angular 

momentum using internal conical diffraction," Optics Express 18 (16), 

16480-16485 (2010).
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Chapter 4

Cascade conical

DIFFRACTION
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4.1 Abstract

Crystal of identical length when placed in series and with the cones of 

ICD anti-parallel enables the reformation of the initial Gaussian beam. 

At intermediate angles the optical power is shared between the 

Gaussian spot and the ring. The ability to tune the intensity between the 

cone of ICD and the incident Gaussian beam is theoretically derived and 

shown experimentally.

Right-circularly polarised light upon ICD is converted into a first- 

order beam has an optical vortex of charge -1. Upon propagation of the 

first-order beam through a second biaxial crystal, a process which is 

termed cascade conical refraction, the generated beam is a 

superposition of orthogonally polarised fields of charge 0 and -1 or 0 

and -2. This spin to orbital angular momentum conversion provides a 

new method for the generation and annihilation of optical vortices in an 

all-optical arrangement that is solely dependent on the incident 

polarisation and vortex handedness.

This work resulted in the publication: D. O'Dwyer, C. Phelan, Y. 

Rakovich, P. Eastham, J. Lunney, and J. Donegan, "The creation and 

annihilation of optical vortices using cascade conical diffraction," Opt. 

Express 19, 2580-2588 (2011).
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4.2 Introduction

Cascade ICD is the propagation of light through successive biaxial 

crystals. The intensity distribution of the generated conical beam after 

passage through successive crystals directly depends on these two 

factors. The quality factor po is directly dependent upon the combined 

crystal lengths. ICD forms a slant cone of light; the direction Vc defines 

the orientation of the rings moving from tangential to radial polarisation 

as shown in Fig. 4-1.

Figure 4-1: Crystal orientation showing the orientation of the optic axis 

and the slant cone of ICD of angle A.

In the cascade regime, the relative orientation between the 

successive crystals and their relative length directly affects the 

generated intensity profile. Of late Berry has expanded his initial work 

on conical diffraction, for the general case of propagation of light 

though n-cascaded crystals of arbitrary length and relative orientations 

\ The main consequence of cascade ICD for crystals with parallel axes 

(yd is the summation of the respective Rq values with the successive 

crystals acting as a single crystal. As the optic axes of the crystals are 

rotated with respect to each other, the generated intensity profile 

consists of two main features, the outer ring, which has the sum of the
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RO values, and the inner ring with the difference of the Ro values of the 

two crystals. In this chapter only biaxial crystals of similar lengths are 

considered, in which Roi=Ro2/ hence issues and details arising from the 

use of crystals with differing lengths are not dealt with here. The sister 

thesis to this project by Phelan provides a more general investigation of 

cascade ICD focusing on beam shaping and cascade ICD using biaxial 

crystals of differing length.

This chapter expands on the initial work of Berry as outlined in 

chapter 2, with two specific cases being treated as per the notation of 

Phelan. Firstly, the work of the previous chapter is expanded to 

investigate the transformation of an optical vortex upon an ICD process. 

Such beams may find applications in quantum information processing 

and in studies of the propagation of optical singularities .

Secondly, the transformation of a Gaussian beam upon a cascade 

ICD process using two biaxial media, with no intermediate wave plates, 

of similar length is investigated, as the relative orientation between the 

crystal axes is rotated through 180°. This concept has recently been 

used in a conically diffracting laser where a biaxial crystal is used in the 

laser cavity^’^^ and will be used in the next chapter in the conically 

diffracting optical trap.

4.3 Cascade conical diffraction

The explanation of ICD as put forth in Chapter 2 where one considers 

the double refraction of a ray propagating slightly off axis from the optic 

axis provides the simplest means to describe the cascade process. A ray 

incident upon the optic axis of BCl defines a cone of light within the 

crystal, around which off axis rays doubly refract. The emerging cylinder 

of light of radius Roi, when directed along the optic axis of a second 

crystal of same biaxality (BC2), defines a new range of cones of ICD 

within the crystal for each point on the incident ring. The emerging 

cascade beam profile consists of the sum of all the cones of ICD for each
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point on the generating ring, Figure 4-2. The resulting cascade conically 

refracted ray consists of a new geometric ring radius formed from the 

sum of Roi and R02 and a central feature that depends upon the 

difference of the radii.

Biaxial crystals of equal length Roi= Ro:

Rqi -

Figure 4-2: Cascade conical refraction for crystals of equal length. The 

incident ray defines the cone of ICD, which upon a successive ICD process 

defines a rage of cones inside the second crystal (BC2) each of which defines 

their own cones of ICD.

Next if the propagation of rays slightly off axis is considered, the 

intensity profile generated from BCl consists of a double ring of light 

with all points on the ring linearly polarised with a n rotation of 

polarisation around the circuit of the ring. When the crystals are aligned 

parallel to each other, the direction of propagation of the linear 

polarised light corresponds to that of the proceeding crystal and the 

orientation of the linear polarisations are directly transposed onto the 

new geometric ring radius. Figure 4-3. When the two crstalsa re set at 

180° with respect to one another, the coe formed by the first crystal is 

reversed by the second crystal refroming the intial Gaussian spot.
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2(Roi'''^02)

Figure 4-3: Cascade refraction schematic for crystals of same length i.e. Roi = 

Ro2- All points on the ring Rgi are doubly refracted.

4.3.1. Basic Theory of Cascade ICD

The general equation for the transformation of a paraxial beam of light 

upon ICD as a function of the Fourier transform of the field a(P) is given 

by:

E(R,z) = — j'fdPe“*'’''e'^[cos(/rP/?o)l-/sin(/rPRo)M(6'p)]a(P) (4.1)

1 =
"1 0 

vO ly
(4.2)

M{Op) =
COS^O sin^p ^

sin^p -cos^p y
(4.3)

Here R is the transverse cone-centred position, kP= k ( Px , Py ) = 

kP(cos0p ,sin 0p ) is the transverse wave vector, I is the identity matrix, 

and k = n2k0 is the crystal wave-number. RO is the radius of the 

cylindrical beam emerging from the crystal. When the input beam is 

focused on the entrance face of the crystal the variable Z in Eq. (1) 

which describes the propagation distance is defined as Z = L + (z-L)n2,
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where L is the length of the crystal and z is the distance from the 

entrance face. The components of a(P) are Fourier representations of 

the Cartesian components of the field incident on the entrance face. For 

the case of a Gaussian beam which is focused to form a beam waist at 

some other position, a(P) may be taken to be the field at the waist and z 

measured from its location. In the alternative basis of

circularly-polarised fields, with Jones vectors (1, ±i)/ 2 , the matrix M(0p) 

is replaced by

M((9p
^ 0

0 , (4.4)

From Eqs. (4.1) and (4.4) it can be see that a circularly-polarised beam 

becomes a superposition of a component of the same circular 

polarisation, and a component with the opposite polarisation and an 

azimuthal phase factor. This factor results in an optical vortex of the 

same charge as the incident helicity; +1 for left-circular and -1 for right- 

circular polarisation. More explicitly, conical diffraction of a uniform left- 

(right-) polarised beam generates a superposition of two Bessel-like 

beams of zero (Bo) and first order (Bi)

E(R,z) = eo(R,/?o,Z)e^‘->+fii(/?,Ro,Z)t (4.5)

e„(R,/?o,Z) = /c|Pcos(kP/?„)o(P)^(/cP/?)e'^‘'’'^dP (4.6)

Sj (R, Rq , Z) = k jPsi n (kPR^) a(P)J^ dP (4.7)

where e-(+) denotes right- (left-) circular polarisation, and we have 

assumed that the incident beam is circularly symmetric. The individual 

profiles BO and Bl satisfy the paraxial wave equation and have been 

shown experimentally to agree with theory [9]. In cascade conical 

diffraction, a beam propagates through a series of biaxial crystals.
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Additionally, by manipulating the polarization state between the crystals 

in the cascade, a wide variety of beams of varying vorticity can be 

generated. In our experiments, we consider a two-crystal cascade 

whose optical axes are aligned, in which only one of the circular 

components after the first crystal is transmitted into the second, which 

we assume to be of equal length for simplicity. Suppose first that only 

the circularly polarised Bi beam is incident on the second crystal. If the 

beam into the first crystal is right-circular then Bi is left-circularly 

polarised, and can be isolated with a left-circular polarizer. Its Fourier 

representation is

From the above equations we can infer that under conical diffraction 

the Fourier transform of the incident beam a(P) is transformed into.

-V.ikP^z
[cos(#tPRo)l-/sin(/cP/?o)M((9p)]a(P) (4.8)

If Eq.(4.8) is set as the incident beam the corresponding Fourier 

transform can be generated through successive biaxial crystals by matrix 

multiplication. Repeating this process for each successive ICD process 

provides the basic method for the derivations that are obtained in this 

chapter. The electric field generated in superpostion using multiple 

crystals is denoted by (Bd), generated from crystal number (c) in the 

cascade and described by a Bessel function of order (I). We consider 

biaxial crystals of similar length where the difference in crystal length 

results in a Apo «1.
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4.4 Addition and subtraction

of an optical vortex

The previous chapter demonstrated that internal conical diffraction 

(ICD) using a single biaxial crystal provides an efficient means for the 

conversion of a circularly polarised Gaussian mode (o = ±lh) into a 

superposition of high quality Bessel beams of zero order with 6 = Oh and 

first order with 6 = ±lh, with a net iVah 0AM per photon These 

0AM states have orthogonal polarisations and are easily separable 

enabling polarisation switching between either mode. Such is the 

control that the generated 0AM can be continuously tuned between 0 

and ±lh per photon using elliptically polarised light The ability to 

transform a zero order non-diverging Bessel beam into a first and higher 

order Bessel beams under the conditions of ICD was theoretically and 

experimentally address by King et al. This work required the use of an 

extra conical lens known as an axicon to generate the non-diverging 

Bessel beams. In this section the SAM to 0AM conversion process is 

examined using a cascaded pair of biaxial crystals.

4.4.1. Theory
In the following only a two crystal cascade is considered, with the 

crystals assumed to be of equal length. If we have right circularly 

polarised light incident on the first crystal then the left circularly 

polarised 8i field with a right-handed vortex can be isolated with a 

circular polariser, with a Fourier trasnform of the form,

a(P) = -/e ^ sin(/cPR(,)M(^p )o,^(P)e

= -/e ^ s\n(l<PR^)e~'^'’e^
(4.9)

where 0/n(P)is the Fourier representation of the radial profile of the 

beam that was incident on the first crystal. Substituting Eq. (4.9) into
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Eq.(4.l) and performing the Fourier transformation back to real space 

gives the final field

E(/?,6',Z) = 6i2^”'^ +602^”/ (4.10)

Bo2 =-lP{cos{2kPR,)-l)ajPV,{kPR,)f^ ‘̂'’’'^dP, (4.11)

Bu ^'^]p{s\n{2kPR,))ajPy, {kPR,)e^y^^''''^dP, (4.12)

Here Z2=2L+(z-2L)n2 where 2L is the total length of the crystals in the 

cascade. In labelling the output beam components the first subscript 

refers to the order of the Bessel function occurring in the description of 

that field component and the second subscript refers to the number of 

crystals used. It can be seen that the output from the second crystal is a 

superposition of a left-circular zero-order Bessel like beam and a right- 

circular first-order beam. Thus for the part of the output beam the 

vortex present in the input has been annihilated by the action of the 

second crystal. If, after isolating the B1 beam, we right-circularly 

polarize it, its Fourier transform is

a(P) = -/e sin(/(P/?(,)e '®'’o,„(P)e , (4.13)

and the field emerging from the second crystal is

= +B22e~^'^e* (4.14)

B,, jp(l-cos(2/cP/?„))ojP)7,(/cP/?Je c/P, (4.15)

In this case the vortex generated by the second crystal adds to that 

created by the first, resulting in a left-polarised component containing a 

vortex of charge two.
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The beam from a general cascade can be constructed from 

Eq.(4.1). After each crystal the field will be a superposition of beams 

with Fourier representations of the form

a{P) = o(P)e'"'''’ein0p„-{+) (4.16)

corresponding to the real-space beams

l{R,0,Z) = re''^^e*^~'l<jpj„{kPR)a{P)dP, (4.17)

A subsequent conical diffraction stage transforms such a beam into

e'^{cos(/cP/?Jo(P)e'"®'’e^‘“'-/sin(/cP/?o)o(P)e'"^'e-^'“’e'‘"^*'’''^'}, (4.18)

which is again a superposition of components of the form of Eq. (4.9), 

with new radial profile a(P)', vorticities n', and polarisations. The output 

beam from a cascade is obtained by iterating the transformation of Eq.

(4.13) for each stage in the cascade, and Fourier transforming the final 

Fourier components using Eq. (4.10). Finally, in Figure 4-4, a pictorial 

representation of the cascade process in which the various states in the 

cascade conical refraction process generated can be used to manipulate 

and actively select a beam with a specific total zero AM per photon.
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Figure 4-4: Schematic diagram of the cascade conicai refraction process.

4.4.2. Experimental procedure and 

results
The experimental setup for transformation of circularly polarised light 

into an optical vortex using a pair of cascaded biaxial crystals is 

presented in Figure 4-5. A 10 mW HeNe Gaussian laser mode at 

632.8mn is right-circularly polarised using a A/4 plate (PI), focused to a 

beam waist size w of 41 pm at the l/e2 point using a 5 cm lens (LI), and 

propagated along the optic axis of the biaxial crystal. The first crystal 

used had a length L = .0209 mm resulting in Ro= 4.13x10 '* m with an 

equivalent Bessel cone angle of .0196 rad. The SAM to 0AM conversion 

efficiency was calculated by Berry [15] and is directly correlated to the 

strength of the crystal; this is quantified as the conical quality term po = 

(AL/w), and for the 1^' crystal po = 9.8. The transformation of circularly 

polarised light upon ICD results in an equal division of the optical 

intensity between the Bo and Bi components as they are orthogonally 

polarised at all points around Ro When po»l the circularly polarised
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light with a = ±lh is converted into a superposition of 0AM states with fi 

= 0 and 6 = ±lh giving a net 0AM of £ = ± 'Ah per photon. For the 

cascade element in Figure 4-5 the isolated field from the previous 

crystal is re-circularly polarised using another quarter-wave plate and 

propagates along the optic axis of the 2"“* biaxial crystal. The second 

element is 21.1mm in length with a Ro value of 4.15xl0'''m giving a Rod 

value of 8.28x10 ^m and a net po = 15.92 for the two crystal cascade 

process.

X/2

Figure 4-5: Optical setup for cascade conicai diffraction, including Mach- 

Zehnder interferometer. Cascade eiement is removed to enable the imaging 

of the profiles from the 1st crystal. BS - beam splitters, M - Mirrors, Pl/2/3/4 

are \/4 piates, LP are linear poiarisers. A/2 piate is used to rotate the 

Gaussian reference arm polarisation to match the polarisation of the conicai

field.

A Mach-Zehnder interferometer is used to examine the phase 

distribution of the generated conical beams and reveal the presence and 

charge of any optical vortices present. A Gaussian reference arm has its 

polarisation rotated with a A/2 plate to match the polarisation of the 

conical beam component to be examined. A helical wave when 

collinearly interfered with a Gaussian beam with a different radius of 

curvature reveals a fringe interference pattern in the form of a 

continuous spiral, the number of which reveal the charge of the vortex 

present. Introducing a wedge between the Gaussian and conical beam
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reveals a fringe interference pattern consisting of a series of parallel 

lines. The presence of an extra fringe above the singularity reveals the 

presence of a 2ti phase step around the beam axis, the number of which 

indicates the charge of the optical vortex present The intensity 

patterns were recorded on a standard CCD camera in the far-field region 

of the conically diffracted beam 39 cm away from the focal image plane 

Upon exiting the 1^* crystal the orthogonal fields are separated with a 

\/4 plate (P2) and linear polariser (LP) combination. When the P2 fast 

axis is parallel to PI, the zero order So field is selected and when it is 

orthogonal to PI the order field 6i is selected.

Intensity
profiles

(a) (i)

Collinear
Interference

Wedge
Interference

(b) (i)

Figure 4-6: Far-field intensity patterns of separated conically diffracting beam 

described by a Bessel function after first biaxial crystal, (a) (i) zero order 

conically diffracting Bessel beam (ii) collinear interference pattern with a 

Gaussian beam (Hi) Wedge interference pattern, (b) 1st order diffracting 

Bessel beam (ii) collinear interference pattern with a Gaussian beam (Hi) 

wedge interference pattern showing 1st order edge dislocation. All images 

are 1.32 mm x 1.32 mm in size.
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The resultant intensity and interference profiles are presented in 

Figure 4-6 (a) for the zero order Bio component and Figure 4-6 (b) for 

the first order Bn component after the first biaxial crystal with the 

cascade element is removed. Figure 4-6 (a) shows from left to right a 

zero order Bessel beam intensity profile, Figure 4-6 (a-i) the interference 

fringe patterns and Figure 4-6 (a-ii, iii) indicates the absence of an 

optical vortex. Figure 4-6 (b) shows from left to right the first order 

Bessel beam intensity profile, Figure 4-6 (b-i), the interference fringe 

patterns and Figure 4-6 (b-ii) show a single spiralling fringe. Figure 4-6 

(b-ii) shows the presence of a single extra fringe positioned above the 

central singularity indicates the presence of an optical vortex of charge 

1.

The linearly polarised first order field from Figure 4-6 (b-i) is re-circularly 

polarised and re-conically diffracted by inserting the cascade element in 

the optical setup as per Figure 4-5. The right handed optical vortex 

component of Figure 4-6 is either right-circularly polarised by setting the 

wave-plate fast axis of P3 parallel to Pl(Path A) or left-circularly 

polarised by setting the fast axis orthogonal to Pl(Path B).
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Wedge
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2.82mm .71mm

Figure 4-7: € = -l component of Path A and Path Bfrom Figure 4-4. (a) 

Intensity profile (b) Collinear interference with Gaussian (Hi) Wedge 

interference with Gaussian.

Intensity
profiles

Collinear
Interference

Wedge
Interference

.71mm

Figure 4-8: 6 =-2 component of Path Bfrom Figure 4-4 (a) Intensity profile (b) 

Collinear interference with Gaussian (Hi).

Intensity
profiles

Collinear
Interference

Wedge
Interference

2.82mm .71 mm

Figure 4-9: 8 = 0 component of Path A from Figure 4-4. (a) Intensity profile (b) 

Collinear interference with Gaussian (Hi) Wedge interference with Gaussian.
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The field common to both paths in Figure 4-4 is the first order field (Bn) 

and is selected by setting the fast axes of P3 and P4 parallel to each 

other. The intensity and interference profiles generated from the 

cascade process are presented in Figure 4-7. This field component 

retains the vorticity of the incident beam as is evident in the 

interference images from Figure 4-7 (b,c). The second order field (Bn) is 

generated by following Path A from Figure 4-4. The incident light is right 

circularly polarised upon setting the fast axis of P3 parallel to PI and 

isolated by setting the fast axes of P3 and P4 orthogonal. The intensity 

profile generated from the cascade process is presented in Figure 4-8(a). 

The circular polarisation incident upon the crystal is converted into a 

further optical vortex, increasing the topological order of the vortex 

present. This is evident in the interference measurement in Figure 

4-8(b,c). The collinear interference measurement Figure 4-8(b) shows a 

double twist spiral of same handedness as the Bn field from (b). The 

wedge interference pattern Figure 4-8(c) reveals the presence of two 

extra fringes above the singularity indicating the presence of two 2n 

phase steps around the beam axis. The zero order field (Bio) generated 

from following Path B from Figure 4-4 is presented in Figure 4-9(a). The 

incident light is left circularly polarised upon setting the fast axis of P3 

perpendicular to PI and the resulting field is isolated by setting the fast 

axes of P3 perpendicular to P4. The left circular polarised light results in 

the absence of an optical vortex as the collinear Figure 4-9(b) and 

wedge Figure 4-9(c) interference patterns show.

The radial intensity profiles of Figure 4-7(a), Figure 4-8(a) and 

Figure 4-9(a) are compared with their theoretical intensity profiles in 

Figure 4-10, Figure 4-10 and Figure 4-10. Any slight misalignment of the 

beam incident on the optic axis of the second crystal will result in the 

formation of additional interference effects in the outer rings and thus 

we conclude that there is a high level of correlation between the 

theoretical and experimental intensity profiles. The cascade regime can
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be reduced down to a single element wherein an incident beam with £h 

can be transformed into either a superposition of 6h and (6+l)h or 6h 

and (€-l)1i per photon upon selection of the approptiate handedness of 

the polarisation to the handedness of the vortex. These polarisation 

controlled and separable beams could prove useful for the field of 

quantum information where different 0AM states must be generated, 

manipulated and actively selected using polarisation optics forming the 

basis of an 0AM optical circuit. Coupled with the previous work on the 

tunability of the 0AM using elliptically polarised light, ICD provides a 

flexible method for the generation and control of the 0AM per photon 

with high fidelity. Further investigation into this using ICD will require 

the generation of two photon entangled states using parametric down 

conversion
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Figure 4-10: Radial intensity profiles of the experimental Figure 4-9 conical 

beams (red) (a) zero order Bio (b) first order Bn (c) second order Bn 

compared to theory (black). Theorltical Intensity profile inset.
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4.5 Rotation of biaxial crystals

Cascade ICD requires the propagation of conically diffracted light 

through subsequent biaxial crystals, with each crystal performing 

successive ICD transformations upon the incident beam. The relative 

angle between the crystals is given by (Ay), however it is mathematically 

easier to keep the crystal optic axes aligned parallel to each other and 

rotate the incident beam through the angle a;

E(R, z) = E{R,(p,z)-^L(R,(p-a,z) (4.19)

The polarisation vectors on the ring are rotated via the matrix.

R(cr) =
'^cos« -sina^

sincr coscr
(4.20)

such that the new E field is described by the following set of rotations:

E{R,z) = E(R,(p,z)-^R{a)E{R,^-a,z) (4.21)

The beam incident on the first crystal is circularly symmetric and 

uniformly polarised. For the propagation of a beam through the 2nd 

biaxial crystal with geometric ring radius R02 the Fourier transform of the 

field after conical diffraction is.

e*'’'^[cos(kP/?o2)l-/sin(/cP/?o2)M((9)] 

x[cos(/cP/?oj )R(cir) - / sin (/cP/?oi
K^yj

(4.22)

Thus the Fourier transform of the conically diffracted field upon rotation 

through angle a is given by

-y^ikP^z [cos (/fPPj) R(«r) - /sin(kPR^)M(6')a(P)]
fz, ^

\^y J
(4.23)

In position space, this can be written and simplified to be;
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E(r,z) = (-in\ + 602I + ei2M((9)) + RiaK/nl + 602! + B^2^(e))}

where

®02 — ®oi(2/?o/2z),

612 = B^^(2Rq,2z),

00

1;, = \a{P)e‘'‘'''^JoP(kPR)dp.

v^y y
,(4.24)

(4.25)

(4.26)

(4.27)

The emergent-cascaded field is described by Eq.(4.24), defined by the 

relative rotation of the polarisation vectors by a. The resultant 

geometric ring radius Ro is simply twice the first crystals ring radii, with a 

doubling of the optical path extension (Z). The first terms in (4.24) 

describe the superposition of the fields generated from the first crystal ( 

)' twice the cone angle and ring radius as per 

equation (4.25) and (4.26). The second terms describe the electric field 

component due to the rotation of the crystal through (a) composed of 

the field generated from the first crystal, again with twice the cone 

angle and ring radius. Most notably both terms contain components of 

opposite signs that describe the initial generating field (l,n). When a = 0° 

the rotational component is zero and the incident beam term (-Im) is of 

zero amplitude. The resultant intensity profile at the beam waist is 

double the radius of the FIP from the first crystal. When a = 180° the 

rotational component is at its maximum amplitude, and consequently 

the {8^2^ + B-^jMid)) terms cancel between the two components leaving 

the original Gaussian beam. As (a) is varied from 0° to 180° degrees the 

distribution of intensity between the components varies as denoted by 

Eq.(4.28), where lo is the intensity of the incident beam.

(4.28)/,„(«) = sin(%
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If the incident beam is a circularly polarised Gaussian beam, the 

generated ring profiles are again composed of a superposition of 

orthogonally polarised zero- and first-order Bessel fields with a total 

0AM of £ = 'A h per photon. The (Im) component therefore describes the 

incident Gaussian beam with o =lh per photon. Varying the angle of the 

cascade process and therefore the intensity in each component 

consequently varies the total AM of the final field between both 

extremes.

4.5.1. Experimental procedure

The crystals used in the following cascade experiments are 20.98mm 

and 21.1mm in length. The resulting geometric ring radii at 532nm are 

4.28 xlO m and 4.31 xlO'* m respectively, giving a combined Rq = 8.59 

xlO m. The experimental setup is presented in Figure 4-11, where the 

second biaxial crystal BC2 is mounted so that it can be rotated about its 

optic axis without misalignment. The focusing lens Li is a 17cm lens 

forming a 1/e^ half width beam waist of 76 pm giving a po value of 11.1. 

Taking into account the increased optical path length of the crystal 

(1.54cm) the FIP lies 20cm away from the U lens. Initially the second 

biaxial crystal BC2 is removed and the FIP of the first crystal is imaged 

upon the CCD as the crystal is rotated through 360°. Using linear 

polarised light by removing the wave plate PI enables the tracking of 

the FIP as the crystal is rotated. The polarisation is orientated such that 

the position of zero intensity on the ring is the position of tangential 

polarisation signifying the 0 = 0° point. Secondly, BC2 is inserted and 

orientated such that the optic axes are parallel and Ay=0, the crystals 

are aligned when the classic double ringed structure of the FIP is formed 

with no features or intensity at the centre of the ring. Intensity profiles 

are recorded on the CCD as BCl is rotated through 180° degrees.
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532 nm

A/2 A/4

PI P2

BC1 BC2 CCD

Figure 4-11: Experimental setup for cascade ICD where Lj is a 17cm PCX lens 

and BCl and BC2 are biaxial media. BCl is mounted such that it can be 

rotated about its optic axis without misalignment.

4.5.2. Results and discussion
Figure 4-12 shows the intensity profiles of the FIP as BCl is rotated 

through 360°. The ring of radius Roi rotates through a radius of 2Roi. The 

intensity profile of the FIP of cascade ICD as BCl is rotated through 180° 

is presented in Figure 4-13. When the crystals are aligned in parallel, the 

FIP of the cascade forms the classic double ring structure of 1.75mm in 

diameter. As the BCl is rotated the Gaussian spot increases in intensity 

as the ring decreases in intensity. The Gaussian spot in the cascade ICP 

traces out the path of the Poggendorff ring from Figure 4-12 when a = 

0°. The Gaussian beam is of zero amplitude when Ay is zero. The 

corresponding position of the Gaussian is the position of zero amplitude 

of a = 0° from Figure 4-12.
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Figure 4-12: Intensity profiles ofFIP of single 2.1cm a biaxial crystal when 

rotated through 360°.Linearly polarised light is used to show the rotation of 

the polarisation as the crystal is rotated.

Figure 4-13: Experimental images ofFIP of cascade ICO as BCl is rotated 

through 180 degrees.

Figure 4-14: 3D intensity plots ofFIP of Figure 4-13.
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Figure 4-15; Line intensity plots for Figure 4-13 when 0°. Theoretical

(black) and experimental (red-dashed)
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Figure 4-16: Line intensity plots for Figure 4-13 when ^y= 180°. Theoretical 

(black) and experimental (red-dashed).
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The radial intensity profiles of Figure 4-13 are shown in Figure 4-15 for 

Ay = 0° and in Figure 4-16 for Ay = 180°. There is a close correlation 

between the experimental and theoretical results particularly in Figure 

4-15 were Ay = 0° and the Gaussian beam with the incident beam waist 

(w) 76 pm of is reformed Figure 4-16.

4.6 Conclusions

Using internal conical diffraction in a two biaxial crystal cascade 

together with some simple polarisation optics we have demonstrated 

the generation of optical vortices with topological charge of ±1 and ±2. 

We have also demonstrated raising and lowering of the order of an 

optical vortex, including the annihilation of an optical vortex of charge 

±1. In principle, our two crystal experiment can be extended to n biaxial 

crystals to generate optical vortices with a maximum charge n, though 

there is 50% power loss for each successive cascade element added. 

Earlier work by King involved the manipulation of the charge of vortices 

using an axicon to transform a Gaussian beam into a non-diverging zero 

order Bessel beam before an ICD process. Our work achieves the same 

goal but demonstrates the direct transformation of a simple Gaussian 

laser beam.

A recent approach to the creation of beams with tunable 0AM is 

to tune the SAM and then convert SAM to 0AM, taking advantage of the 

ability to tune the SAM of light using standard optical components, 

which manipulate polarisation. The device that draws the biggest 

comparison to ICD is a device named "Q-plates". Recent publications on 

the conversion of SAM into 0AM using Q-plates show the interest in 

such polarisation controlled devices in the fields of quantum optics and 

quantum communications Q-plates allow circularly polarised light 

with o = +lh to be converted into a beam with 6 = +2h with a very high 

efficiency (up to = 98%), but suffer from low beam mode quality It 

should be noted that the measure of efficiency in this sense refers to
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the conversion of the incident SAM into 0AM. It is also equally viable to 

attribute very high efficiency to a conically diffracted beam in the 

conversion of a circularly polarised Gaussian into Bessel beams of 

differing orders, with very high beam fidelity due in large part to the 

quality of the biaxial crystals available. The work performed in this thesis 

demonstrates a greater flexibility in the manipulation of the total 0AM 

per photon over that presently published on "Q-plates". Over the 

previous two chapters the ability to transform and manipulate in a 

controlled manner the 0AM to an integer or non-integer value of b per 

photon has been clearly demonstrated both theoretically and 

experimentally.

Cascade ICD using a pair of biaxial slabs of similar length with their 

crystallographic axes aligned parallel forms a beam with a new 

geometric ring radius of the combined Rq values. Rotating one crystal 

180° with respect to the other, reforms the initial Gaussian beam with 

its polarisation intact, effectively cancelling the ICD effect. The Gaussian 

beam reforms along the direction corresponding to the point 0 = 0° 

when the crystals are parallel. Rotating one crystals through 180° 

rotates the Gaussian spot from the point of zero amplitude around the 

path of the Poggendorff ring of the first crystal with the intensity 

distribution between the rings varying as defined by Eq. (4.28). This 

ability to select the power ratio between the central Gaussian spot and 

the larger outer ring is exploited in the next chapter to generate a 

conically diffracting optical trap. The variations of power also varies the 

total AM in the cascaded beam between a pure 0AM state of Yi h per 

photon and a pure SAM state of 1 h per photon, providing another 

means for the tuning of the total AM per photon.
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Chapter 5

Conically Diffracting optical
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5.1 Abstract

Conical diffraction of linearly polarised light in a biaxial crystal produces 

a beam with a crescent-shaped intensity profile. Rotation of the plane of 

polarisation produces the unique effect of spatially moving the crescent­

shaped beam around a ring. We use this effect to trap microspheres and 

white blood cells and to position them at any angular position on the 

ring. Continuous motion around the circle is also demonstrated. This 

crescent beam does not require an interferometeric arrangement to 

form it, nor does it carry optical angular momentum. The ability to 

spatially locate a beam and an associated trapped object simply by 

varying the polarisation of light suggests that this optical process should 

find application in the manipulation and actuation of micro- and nano­

scale physical and biological objects.

This work resulted in the publication: D. O'Dwyer, C. Phelan, K. 

Ballantine, Y. Rakovich, J. Lunney, and J. Donegan, "Conical diffraction of 

linearly polarised light controls the angular position of a microscopic 

object," Opt. Express 18, 27319-27326 (2010).
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5.2 Introduction
The seminal work by Arthur Ashkin, in which he demonstrated 

the first controlled manipulation of microscopic particles using a laser 

beam, has lead to revolution in the manipulation of micron and 

submicron particles some 20 years after its initial demonstration^. This 

new optical tool most often referred to as an optical tweezers has 

proved to be most invaluable in cellular biology and cold atom trapping. 

An experiment which exemplifies the sensitivity and accuracy obtainable 

using an optical trap is the direct observation of base pair stepping in 

RNA polymerase with a spatial resolution down to one Angstrom^. 

Optical tweezers have been used to trap dielectric spheres ^ viruses, 

bacteria, living cells \ small metal particles ^ and strands of DIMA

Optical trapping arises due to the interaction of the linear 

momentum of light with matter. Light scattering off the surface of an 

object transfers momentum from the photon to the object, a process 

that is termed radiation pressure. Ashkin demonstrated that if a latex 

bead of several micrometers in diameter comes into the path of a 

focused laser beam the radiation pressure accelerates the particle in the 

direction of beam propagation but more importantly, he observed that 

the beads are pulled towards the high intensity point at the focus of the 

beam. The focusing of light generates a radial gradient of intensity, due 

to the difference in refractive indices between the particle and the 

medium and the particle is either attracted or repelled from the region 

of high intensity^. Ashkin also theorised and demonstrated atom cooling 

where a neutral atom could have the trapping light tuned to a specific 

optical transition of the atom*'®. Direct absorption of the photons is 

followed by a spontaneous emission event cooling the atom and 

reducing the average thermal velocity of the atom.

Ashkin also reported the first single beam gradient trap, for trapping in 

three dimensions with a single beam This requires a very steep
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optical gradient and so requires the use of a high numerical aperture 

(NA) objective lens, which generates a near diffraction limited beam 

waist. This compensates for the radiation pressure pushing the particle 

in the beam direction. The 3D confinement of particles enables a 

particle to be suspended within the beam path regardless of the 

direction of the beam direction. The forces acting upon a trapped 

particle as a result of radiation pressure can be described in terms of 

either Mie or Rayleigh scattering. Particles smaller than the interacting 

wavelength, are in the Rayleigh regime and the particle acts like a 

dipole. The forces on the dipole are divided into a scattering component 

in the direction of the light and the gradient component pointing the 

direction of the intensity gradient of the light This type of trapping 

geometry is not examined in this thesis. The details of the different 

trapping theories will not be discussed here in detail but the reader is 

directed toward for Mie and for Rayleigh scattering.

The interaction of the angular momentum of light can under the 

correct conditions induce a rotation of a particle interacting with the 

trap. The controlled trapping and rotation of micron-sized particles is 

often referred to as an optical spanner Spin angular momentum 

(SAM) can be used to rotate transparent birefringent particles. The 

particles act like microscopic wave-plates changing the polarisation and 

imparting a torque to the particle. A beam with orbital angular 

momentum (0AM) possesses an azimuthal component to the Poynting 

vector. When such a beam is either absorbed by or scattered off a 

particle it imparts a lateral momentum component that causes the 

particle to rotate. Alternatively, particles may also be rotated or moved 

in a circle by using asymmetric intensity patterns shifting the equilibrium 

position of the trapped particle. This enables the controlled rotation of a 

particle as opposed to the continuous rotation that angular momentum 

transfer provided. Examples include rectangular apertures^®, Hermite- 

Gauss/Bessel modes or SLM^®. Another method for the generation of
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a spatially structured light beam is via interferometry In this case a 

Laguerre Gaussian (LG) beam, with 6 = 2 or 3, was interfered with a 

Gaussian beam to produce a beam with 2 or 3 lobes. Adjusting the 

relative optical phase between the LG and the Gaussian beams leads to 

azimuthal rotation of the lobed intensity profile. An object trapped in 

one of the lobes is dragged along and thus circulates around the beam 

axis. A clear advantage of this scheme over approaches requiring the 

transfer of orbital angular momentum is that absorption of the light is 

not required. The ability to control the rotation of microscopic particles 

adds a new degree of freedom to the trapping regime. This ability has 

been exploited to accurately position irregular shaped particles, 

generate flow chambers and provide insights into picoliter viscometry in 

cells^° or to optically drive micro machines such as micro pumps and

micro stirrers 21-22

In this chapter, various optical trapping geometries whose 

foundation is laid out in the previous chapters are explored. The basic 

arrangement is the formation of a simple ring shaped trap from a single 

biaxial crystal, whose mode of momentum (both linear and angular) 

transfer is determined by the careful selection of the incident 

polarisation and beam profile. In conical diffraction, circular incident 

polarisation generates a circularly symmetric intensity profile with 0, 1 

or 'A h 0AM per photon, which can be transferred to the particles 

setting the particles in continuous motion. Linear incident polarisation 

generates a crescent shaped intensity profile, with the position of the 

maximum intensity determined by the orientation of the linear 

polariser. A particle will then be opticaly confined in this region and can 

be simply and accurately positioned on a circle by controlling the plane 

of polarisation of the input beam. Setting the linear polarisation in 

continuous rotation, the particle will be set into circular motion, 

mimicking the rotation due to 0AM transfer except that no scattering or
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absorption off a particle is required. Using cascade conical diffraction 

more a compound optical trap is demonstrated.

5.3 Principles of optical trapping-ray optics
For dielectric spheres whose diameter is large compared to the 

wavelength of light a simple geometric ray optics approach can be used 

to describe the interaction of light refracting. A single beam gradient 

optical trap is formed by tightly focusing a laser beam with an objective 

lens of high numerical aperture (NA). A dielectric particle near the focus 

will experience a force due to the transfer of momentum from the 

scattering and reflection effects.

a) Free space 
propagation b) scattering c) refraction

Figure 5-1: (a) Momentum is invariant under free space propagation, (b) 

Momentum changes upon scattering off surface, (c) Momentum is also 

changed upon refraction.

The resulting optical force can be decomposed into two components: a 

scattering force (Fs) in the direction of light propagation and a gradient 

force (Fg), in the direction of the spatial light gradient. Incident light 

impinges on the particle from one direction, but can be scattered in a 

variety of directions, while some of the incident light may also be 

absorbed. As a result, there is a net momentum transfer from the 

incident photons to the particle. In most regimes, where the light is not 

tightly focused the scattering force dominates over the gradient force Fg 

as the electric field gradient across a particle is negligible.
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However, if there is a steep intensity gradient (i.e., near the 

focus of a laser), the second component of the optical force, the 

gradient force, must be considered. The gradient force is proportional to 

the optical intensity gradient at the focus. For stable trapping in all three 

dimensions, the axial gradient component of the force pulling the 

particle towards the focal region must exceed the scattering 

component, the force pushing it away from the focus. This condition 

necessitates a very steep gradient in the light, produced by sharply 

focusing the trapping laser beam to a diffraction-limited spot using an 

objective of high NA. As a result of this balance between the gradient 

force and the scattering force, the axial equilibrium position of a 

trapped particle has been shown to be located slightly beyond (i.e., 

down-beam from) the focal point^^ For small displacements, the 

gradient restoring force is simply proportional to the offset from the 

equilibrium position, i.e., the optical trap acts as a spring whose 

characteristic stiffness is proportional to the light intensity. The force 

on the sphere, given by the rate of momentum change, is proportional 

to the light intensity. When the index of refraction of the particle is 

greater than that of the surrounding medium, light is refracted towards 

the normal and resulting optical force is in the direction of higher 

intensity gradient. Conversely, for an index lower than that of the 

medium, light is refracted away from the normal imparting a force in the 

opposite direction to the intensity gradient

The system is orientated such that light is propagating in the +z 

direction and the focus lies in the x-y plane. The scattering force in this 

system always imparts a force in the +z direction to the particle. The 

lateral gradient force lies in the x-y plane. A particle interacts with a 

beam of light such that the there is a gradient of intensity across the 

surface of the sphere so that there will be a greater momentum transfer 

on the side of greater intensity. The rays Fgi and Fg2 from Figure 5-2(a) 

depict the differing magnitude of momentum transfer across the sphere
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resulting in a greater net momentum transfer for AFg2 in the direction of 

the gradient, pulling the particle towards the point of highest intensity.

J

z.

(b)

Figure 5-2: Gradient force acting on particle, (a) Lateral displacement of 

particle in x-y plane form the centre point of Gaussian peak intensity. The net 

force -&Fg2 pulls particle towards the point of peak intensity, (b) Along the 

direction of the optical gradient, more rays are refracted through the sphere 

pulling the sphere towards the point of highest intensity.
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The restoring force along the ±z direction is called the axial gradient 

force; this can impart a force either along or against the flow of 

photons. A schematic of the axial forces acting on a particle displaced 

below the focus is shown in Figure 5-3 and above the focus in Figure 5-4. 

These figures do not take into account the fact that part of the incoming 

light is partially reflected rather than refracted providing the scattering 

force. The vector sum of the net change of momentum given by AFgi 

and AFg2 gives a restoring force towards to beam focus.

Figure 5-3: Axial gradient force acting on a particle downstream from focus, 

high intensity point at focus pulls particle towards focus.

Figure 5-4: Axial gradient force acting on a particle upstream from focus. 

Particle is pulled down towards. Equilibrium point is just below focus
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The reflected (or backscattered) component of the on-axis rays gives 

rise to the scattering force and exerts a force on the particle in the 

direction of beam propagation. The scattering force cans also be termed 

radiation pressure, where the photon momentum is transferred to the 

particle and is always in the direction of the propagation of the beam. 

This results in the particle being pushed downwards, away from the 

beam focus. An object is stably trapped if the scattering force along the 

+z-direction is compensated by the gradient force along the -z- 

direction. The greater the angle the rays of light make with the surface 

of the sphere the greater the lateral trapping as the optical gradient is 

greatly increased. The higher the NA of the objective the greater the 

optical gradient and stronger the restoring force, requiring a lower 

optical power to overcome the scattering effect. For a Gaussian beam 

the point of highest intensity lies at the centre of the beam axis. This 

results in the extreme ray contributing to the gradient force being much 

less intense than the centre of the beam. The equilibrium position is 

reached when the scattering force and gravity (which both act to 

push/pull the sphere downwards) is balanced by the axial gradient force 

(which pushes the sphere upwards).

5.3.1. Trap efficiency
The maximum force that the optical trap can exert will typically be of 

the order of pico-Newtons. The trapping efficiency of any optical 

tweezers is described in terms of the dimensionless Q parameter. This is 

the fraction of momentum transferred to the object from the trapping 

laser beam and is related to the trapping force Ftrap via Eq. (5.1), where 

the trapping force F,rap is given by the power of the laser P, n is the ratio 

of the refractive index of the medium to the confined particle and c is 

the speed of light.
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^trap (5,1)

The force on a spherical particle of radius rp can be calculated using the 

viscous drag exerted by moving the particle at a constant velocity in a 

fluid of viscosity r| using the Stokes-Navier equation. The velocity at 

which the viscous drag exerted upon the particle overcomes the 

trapping force gives the escape velocity Ve:

^trap ^drag ^^e^p^e'p I (5.2)

The critical velocity of the trapped particle scales linearly with the laser 

power in the optical trap. Possible values of Q range between 0 and 2. A 

Q value of 1 corresponds to all of the momentum being transferred to 

the particle. Optical tweezers configurations can be assessed 

experimentally to determine the Q values for trap efficiency in the 

lateral and axial directions. For optical forces acting on small dielectric 

particles Q values tend to be in the range 0.03 to 0.1

5.3.2. Annular or ring shaped optical 

traps
The transformation of a Gaussian or higher order mode into an annular 

ring shaped profile can be achieved with the use of a lens and axicon 

combination. A beam focused through an axicon forms an annular ring 

of light of radius at the focus as in Figure 5-5^^.

(5.3)

where n is the refractive index of the axicon, 3 is the cone angle of the 

axicon and f is the focal length of the lens. Like the conical refraction 

beam, the transverse intensity profile of the annular ring depends upon 

the ratio of rg to the beam waist formed by the lens wq. Changing the 

incident intensity profile to be a high order LG mode still produces an 

annular ring at the focus but with a corresponding 0AM per photon.
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Modifying the 0AM of the ring requires the generation of the 0AM 

elsewhere in the optical setup. The shape of the intensity profile around 

the ring can be manipulated using an interferometer as in or with use 

of an aperture. We aim to propose the formation of a ring trap based 

upon ICD whose phase and intensity profile can be controlled using 

polarisation optics.

Lens + Axicon

Screen

Figure 5-5: Formation of an annular ring using an axicon-lens combination. A 

Gaussian beam focused through an axicon will form a ring of light on the 

screen at a distance equal to the focal length of the lens.

Hollow ring shaped optical traps interacting with a single particle with a 

diameter greater than the ring provide the maximum trapping efficiency 

in the x-y plane. All of the intensity is contained within the rings 

providing the greatest angle of incidence for the refracted rays with 

respect to the sphere. The lack of intensity on axis however reduces the 

gradient along the ±z direction providing a weaker trap in these 

directions. This is counteracted by using a ring beam with a central axial 

beam to increase the trap strength along this direction. This ring and 

axial beam is one of the hypothetical traps put forward by Ashkin that 

provides an 3D optimal trapping efficiency at lowest power Annular
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or ring beams have been used in optical trapping to measure the 

chemotaxis of sperm ” and other biological samples, and have been

proposed to be useful in cold atom trapping 25

5.3.3. Rotation of optically trapped 

particles
The 3D optical confinement of a trapped particle is important for the 

spatial positioning of a particle relative to the surroundings, enabling 

the user to position the particle at any required location. The rotation of 

a particle within the confines of an optical trap in a controlled way can 

play a major role in the understanding of biological motors, light driven 

motors and micro-viscometry^°. There are two distinct approaches for 

the rotation of particles, the manipulation of the geometry of the 

trapped particle to exploit an asymmetric force or the manipulation of 

the light interacting with the particle via either a modification of the 

intensity profile or with angular momentum.

5.3.4. Asymmetric trapping force
The rotation of a trapped particle can be achieved using the scattering 

force by either having an asymmetric intensity profile or having an 

anisotropic shaped particle. The controlled rotation of a particle was 

initially demonstrated by using an asymmetric trapping profile, thus 

exerting a torque on the particle A Hermite-Gauss beam, which is 

not azimuthally uniform in intensity, is used to rotate a trapped red 

blood cell. Alternatively, a micro fabricated cog or propeller will interact 

with a uniform intensity profile. The light is scattered of the irregular 

shape in different direction depending on the profile of the object. In 

this manner one can expect a windmill/propeller shaped object to
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rotate, with the photons replacing the wind Devices like this are the 

main building tools for micro motors and gears, which are produced by 

light via two photon polymerisation and then optically driven A 

biological application of the asymmetrical scattering off a trapped 

particle is the detection of the malaria parasite in red blood cells. 

Healthy haemoglobin is easily distorted and when placed in a gradient 

trap the transfer of linear momentum rotated the particle up to 

hundreds of rpm. Infected blood cells are rigid and are not as easily 

distorted and do not rotate enabling the distinction^^.

5.4 Angular momentum transfer
A much more common approach is the transfer of AM to an absorbing 

or birefringent particle. The total angular momentum of light is the sum 

of spin and orbital components in units of h per photon. The mode of 

momentum transfer between SAM and 0AM can under the right 

conditions differ in nature. The polarisation of an electric field is always 

intrinsic, such that the SAM oh remains the same irrespective of which 

part of the beam a particle interacts with. This is not always the case for 

the 0AM as the 0AM per photon depends upon the axis about which 

the beam rotates leading to different types of rotation. Berry showed 

that the orbital angular momentum can be considered both intrinsic and 

extrinsic.

5.4.1. Spin angular momentum
The microscopic equivalence of Beth's experiment for the 

observation of the SAM of light is the optical confinement of micron 

sized birefringent particles. A birefringent particle such as calcite 

confined in a circularly polarised beam will convert the polarisation from 

circular to linear and due to the conservation of momentum, a 

corresponding torque is exerted on the particle. Whereas in Beth's 

experiment the rotation was measured via the torque on a quartz string, 

in an optical trap, the particle spins on its axis. The rotational rate is
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proportional to the incident SAM and power and rotation frequencies of

a few hundred hertz have been observed 33 SAM can also be

transferred to a birefringent particle using linearly polarised light the 

particle can be rotated by rotating the direction of linear polarisation^'*.

5.4.2. Orbital Angular Momentum

The transfer of 0AM to a trapped particle requires the transverse linear 

momentum to rotate the particle. The 0AM of light is due to an 

azimuthal component of the Poynting vector, when light is absorbed the 

lateral component exerts a torque on the particle and rotates it. The 

transfer of 0AM to a particle may be either intrinsic or extrinsic. If the 

particle radius is larger than the trapping beam transverse profile the 

momentum transfer is said to be intrinsic and the particle rotates 

around its own axis, the momentum transfer is proportional to the total 

angular momentum ,(t + (T]h per photon^^, and the SAM and 0AM 

components are indistinguishable. If the particle is smaller than the 

transverse profile the momentum transfer mechanism changes. The 

0AM transfer results in the orbiting of the particle around the path of 

the beam. This extrinsic transfer of AM to the particle is solely 

proportional to the 0AM of the beam per photon^^'^®. Scattering of light 

off small particles induces momentum recoil. For a tightly focused 

annular beam with 0AM, the dominant component of the scattering 

force lies in the direction of beam propagation. The gradient force 

confines the particle within the region of high intensity, but since the 

beam has a radially symmetric intensity profile the particle is not 

azimuthally constrained. As a consequence the particle is confined off 

the beam axis. The inclined helical phase fronts and corresponding 

azimuthal component to the momentum result in a tangential force 

when scattering off or absorbed by a particle. This induces a rotation in 

the plane perpendicular to the direction of the beam propagation. The
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lack of azimuthal constraint results in the tangential force pushed the 

particle around the annulus of intensity. The necessity for a particle to 

be absorptive or to partially scatter the light to experience 0AM transfer 

inhibits the usefulness of this method for the rotation of particles. A 

balance must be achieved such that it is transparent enough for positive 

tweezing to occur (attracted to intensity maxima) and yet has the ability 

to undergo 0AM transfer.

5.4.3. Intensity shaped beam rotation
Displacing the position of the optical trap relative to the trapped 

particle removes the particle from its equilibrium position. If the 

displacement is small enough for the particle to still experience the light 

field and the gradient is strong enough to overcome the viscosity of the 

suspending, medium the particle will realign itself with the new position 

of the trap. This displacement of the position of the trap can be 

achieved mechanically by displacing the sample relative to the beam^^, 

or using apertures to shape the beam profile Digital spatial light 

modulators (SLM's) are used to create dynamic optical traps that can 

generate a spatial array of traps or have a spatial trajectory for the 

beam within the trapping cell An alternative method put forward 

by Paterson et al. is based on the controlled rotation of the spiral 

interference patters of a LG mode with a Gaussian plane wave. The 

interference pattern forms a lobed shaped pattern whose number of 

lobes depends upon the topological order of the LG mode used. The 

position of maximum intensity maxima is adjusted by changing the 

relative phase difference between the two arms rotating the lobes. The 

relative shift in phase between the arms of the interferometer that 

rotates the lobes leaves the trap susceptible to vibrations also changing 

the optical path length of the arms. This interferomtric instabity is
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something we aim to address by exploiting the polarisation dependent 

intensity profile of the conical beam.

5.5 Conically diffracting annular optical trap

The previous chapters have presented an array of various 

intensity and phase distributions present in a conically diffracted beam 

that depend upon the incident polarisation and relative crystal 

orientations. Each of these can be exploited to provide a versatile and 

simple optical trapping arrangement encompassing angular momentum 

transfer off a the surface of a low quality particle and the formation of 

an intensity shaped gradient mimicking the angular momentum transfer 

to transparent non-absorptive particles.

A conically diffracted beam generated from linearly polarised 

light produces a crescent shaped intensity profile around Ro with the 

point of maximum intensity diametrically opposed to a point of zero 

intensity with an intensity gradient that varies as cos^(0/2) around the 

beam axis.

Intensity
Normalised

6 (radians)

Figure 5-6: Normalised intensity around the beam axis {ffj showing a 

coS^ld/2) dependence.
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The position of peak intensity depends directly upon the 

orientation of the linearly polarised light incident upon the crystal. 

Rotating the orientation of the light with use of a half-wave-plate 

rotates the point of maximum intensity through x4 the angle of the 

wave-plate. Displacing the position of maximum intensity displaces the 

equilibrium position of a trap relative to a trapped particle. Expanding 

this into the cascade regime enables the rotation of the crescent beam 

around a central Gaussian spot with the same rotation mechanism.

5.5.1. Optical trapping setup
The general experimental setup is depicted in Figure 5-7, with 

the dashed box signifying the section that changes for each of the 

following trapping arrangements. The source is a frequency doubled 

Nd;YAG linearly polarised laser operating at a wavelength of 532 nm. 

The light is focused along the optic axis of the biaxial slab using a 

focusing lens U (which changes depending upon the experiment). The 

refractive indices of the biaxial slab of KGd(W04)2 at 532nm are 

ni=2.031, 02=2.063 and 03=2.118, giving cone angle of A = 1.16 degrees. 

A second lens L2, with a focal length (f2) of 22 cm, is positioned at its 

focal length away from the FIP, collimating the beam. The beam is then 

directed into Leitz microscope configured into a top down illumination 

scheme, with internal beam-splitter replaced with a dichroic mirror, 

giving 99.98% reflection at 532 nm. A white light source positioned 

under the sample provides illumination for the C-mounted CCD camera
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on top of the microscope. The objective used is a Leitz NeoPlan Flourtar 

xlOO 0.9NA infinity corrected objective \with a focal length (fa) of 1.81 

mm. The radius of the ring in the trapping plane (Rt) is the geometric 

ring radius (Rq) times the demagnification factor, \which for this system is 

.0082 as per Eq.(5.4),

h
(5.4)

Figure 5-7: Standard top down conical diffracting optical trap. Source is a 

532nm Nd:YAG linearly polarised laser. Li = 10cm focusing lens,

Z.2 = 22cm collimating lens, Lj xlOO infinity corrected objective imaging lens. 

Dashed line signifies the adjustable conical setup.

The two different types of latex spheres used in the following 

experiments are either Melamine Formaldehyde (MF) with a refractive 

index of 1.68 giving an n value relative to the refractive index of water of 

1.24 or Polystyrene with a refractive index of 1.55 giving a n value of 

1.15. The particles are suspended in a Millipore water solution and have 

diameters of 2.8 and 5.3 pm. A sample is prepared by sealing a drop 

(approx 80 pL) of solution between two microscope cover slips with a
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1mm spacer and Vaseline to prevent leakage. A microscope slide acts as 

a base plate to make changing of the sample easier and to provide 

rigidity to the sample.

Cover-slip
Spacer

. . r.~rrtaatummaaatmoBiiataiiamm1
\ Microscope slide

Figure 5-8: Sample holder. Approximately 80pL of particle solution is sealed 

between two 0.18mm glass cover sips.

5.6 Single crystal trap
The following set of experiments present a conically diffracting 

optical trap using a single biaxial crystal 3cm in length. The geometric 

ring radius Rq = 6.13 xlO”^ m forms an Rt of 5.25 pm in the focal plane of 

the objective. The U lens used is a 10cm OCX lens focussing the light to a 

1/e^ beam waist size of 80pm. This gives a po value of 7.7 and a FIP 

position 11.54 cm away from Li due to the increased optical path length 

of 1.54cm.

5.6.1. Circular polarisation
The optical arrangement for the formation of a circularly 

symmetric conical trap is shown in Figure 5-9. As in previous 

experiments a halfwave-plate PI is used to set the linear polarised light 

at 45 degrees to the quarter wave-plate fast axis. The conical diffraction
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of circularly polarised Gaussian beam generates a circularly symmetric 

intensity profile with two orthogonally polarised states of 0 and Ih 0AM 

per photon in superposition, with a net 0AM of y2h 0AM per photon. As 

before, the isolation of the zero- and first-order beam profiles requires a 

wave-plate and polariser combination (P2 & P3) and is only inserted into 

the beam path if required. The arrangement for the isolation of the 

respective fields is outlined in of Section 2.1.2.

Figure 5-9: Experimental setup for single crystal arrangement with circularly 

polarised incident light. The polarisers P2 and P3 are only required when the 

zero and first order beams need to be isolated.

Figure 5-10(a) shows the circularly symmetric intensity profile imaged 

on the optical bench. Figure 5-10(b) shows 5.3 pm PS particles trapped 

around the circumference of the ring, with a minimum trapping power 

of 7mW in the trapping plane required for trap the particles. Figure 

5-10(c) show 2.8 pm MF particles trapped around the circumference of 

the ring, with a minimum trapping power of 14mW in the trapping plane 

required for the.
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21 nm 21 urn

Figure 5-10: (a) Image of the conical beam on the optical bench, (b) 5.3 pm 

Polystyrene spheres trapped around the circumference of the ring (c) 2.8 pm 

Melamine Formalhyde trapped around the circumference of the ring.

The circulation of particles due to 0AM transfer requires the particle to 

be either weakly absorptive or provide strong enough scattering, and 

therefore the above transparent particles are not suitable. To this end, 

calcite fragments of approximately 5 pm long were prepared from a 

sample of finely ground calcite.

Figure 5-11 shows a sequence of images of a rough 5 pm calcite 

fragment of the orbiting around the beam axis of the conical ring trap 

having Yi h 0AM per photon. At 160 mW optical power the calcite 

fragment rotated at 0.32 Hz when illuminated by the conical beam 54 h 

0AM per photon. Isolating the first order beam with lb 0AM per 

photon at a loss of half the optical power to 80mW the particle rotated 

at a steady 0.34Hz, twice the rate for a given power of the full conical 

beam. No circulation is observed for the calcite particle when it is 

confined in the isolated zero order profile, as no 0AM is present. This 

circulation rate is exceptionally low; rotation rates of hundreds of hertz 

would have been expected for such a high incident power. Such a large 

discrepancy in rotational frequency between the expected and observed 

values leaves the demonstration of the 0AM transfer to the calcite
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particles as inconclusive. The average circulation speeds for the calcite 

did correspond to the magnitude of the 0AM in the incident beam 

indicating that some (albeit very inefficient) 0AM transfer did take 

place.

Time

Figure 5-11: Selection of frames of a calcite fragment circulating around a 

ring 10 ^im in diameter due to the transfer of 0AM from the conical first 

order beam. Particle circulates at about 0.2Hz 60m W.

5.6.2. Linearly polarised incident light
The conical diffraction of linear polarised light forms a sin^(0/2) gradient 

of intensity around the beam axis, Figure 5-12. The position of maximum 

intensity on the ring corresponds to the orientation of the plane of 

polarisation of the generating field, with the point of zero intensity on 

the diametrically opposite point on the ring corresponding to the point 

of orthogonal polarisation. Rotating the plane of the linear polarisation 

through ti/2 rotates the position of maximum intensity on the ring 

through Tt around the beam axis. The polarisation incident on the biaxial 

crystal is changed with use of a A/2 plate, the angle of the wave-plate 

fast axis (a) and thus the position of the intensity maxima/minima 

around Ro is changed by rotating the wave-plate via a mechanically 

driven rotating mount positioned before the crystal.
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Figure 5-12; (a) Linearly intensity profile in conical refraction (b) 3D plot of 

intensity of intensity showing gradient around the ring.

As the wave-plate is rotated through a, the maxima/minima rotate 

through 4a. Figure 5-13 demonstrates the angular positioning of a 5.3 

pm PS particle on the ring with the particle position corresponding to 

the angle of the fast axis of the half-wave-plate. Continuous rotation of 

the wave-plate sets the position of maximum intensity into continuous 

rotation dragging the particle around the path of the beam. The 

maximum circulation speed for the 5.3 pm for a given power enables 

the determination of the escape velocity (ve) and hence the 

determination of the maximum trapping force along the direction of the 

gradient. For a known trap diameter of 10.5 pm, the maximum trapping 

force is determined using Eq. (5.2). Stable rotation is defined as the 

particle smoothly rotating with the trap, if the trap rotates faster than 

the restoring force of the gradient acting upon the particle the particle 

will leave the trap and no longer circulate. A maximum circulation 

frequency of 1.2 FIz was achieved for llSmW in the trapping plane. The 

maximum trapping force radially out from the centre of the ring is 

determined by the linear translation of the trap at a constant velocity 

for a given power. A maximum value of the trapping force of 2pN is 

experienced in the radial direction with a corresponding trapping force 

of = IpN for circular motion. Figure 5-14 shows the linear relationship 

between the optical power in the trapping plane and the maximum 

trapping force exerted and maximum speed on the particle.
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Figure 5-13: Sequence of images for the angular positioning of a 5.3 pm 

Polystyrene particle on a ring.

Figure 5-14: Dependence of maximum trapping force and speed versus

optical power.
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Figure 5-15: Linear regression plot (solid black line) maximum circulation 

frequency of particles as a function of optical power in trapping plane.

Figure 5-16 (a) shows a sequence of frames from the continuous 

rotation of a cluster of 5.3 urn MF stuck together. The outer three 

particles rotate around the centre particle which is not interacting with 

the trap (i.e. it does not see any of the light). Figure 5-16 (b) shows the 

optical confinement and subsequent circulation of a Neutrophil (white 

blood cell). The buffer solution was just PBS phosphate buffered saline. 

Neutrophils are the most common type of white blood cell, comprising 

about 50-70% of all white blood cells. They are phagocytic, meaning that 

they can ingest other cells, though they do not survive the act. 

Neutrophils are the first immune cells to arrive at a site of infection, 

through a process known as chemotaxis and are approx 8 microns they 

are circular with a granulated nucleus.
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5.7.1. Linear polarisation

The experimental setup for a cascade ICR with linear polarised light is 

presented in Figure 5-17. The intensity profile presented in Figure 5-18 

showing the Gaussian plus ring with a sin^(0/2) intensity gradient when 

BC2 is rotated 80° degrees with respect to BCl. As in section 5.6.2 the 

position of maximum intensity rotates through four times the angle of 

rotation of the half wave-plate fast axis.

Figure 5-17: Cascade ICR with linear polarised light

Figure 5-18: FIP of cascade ICR for linear polarised light with /ly = 80° with a 

ring diameter of 8.5x10'“m.

Figure 5-19: Angular positioning of 5.3 pm Polystyrene particles on a ring 

around a Polystyrene particle optically confined with a central Gaussian trap.
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Figure 5-16: Sequence of images the continuous rotation of (a) cluster of 5 

nm MF particles, (b) a white blood cell 8 pm in diameter.

5.7 Cascade trapping arrangement
The crystals used in the following cascade experiments are 20.98mm 

and 21.1mm in length. The resulting geometric ring radii at 532nm are 

4.28 xlO '* m and 4.31 xlO'"* m respectively, giving a combined Ro= 8.59 

xlO'' m. The second biaxial crystal BC2 is mounted so that it can be 

rotated about its optic axis without misalignment. The focusing lens Li is 

replaced with a 17cm lens forming 1/e^ half width beam waist of 76 pm 

giving a po value of 11.1. Taking into account the increased optical path 

length of the crystal (1.54cm) the FIP lies 20cm away from the U lens. 

The resulting ring radius in the trapping plane is 6.2 pm, when Ay > 0° 

(the angle between successive optic axis of the crystals) a Gaussian 

beam waist size of 1.24 pm at the 1/e^ point is formed. As the BC2 is 

rotated the central position of the trap will be displaced on a circle of 

diameter 3.2 pm in the trapping plane (the radius of the Rq from the first 

crystal).
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Figure 5-19 shows the angular positioning of a 5.3 pm PS particle on the 

ring of light of radius 7 pm, relative to a particle trapped in the central 

Gaussian spot. Comparing to section 5.6.2, the particle rotates at four 

times the rate of the half wave-plate. Continuous rotation of the wave- 

plate sets the particle into circulation around the centrally trapped 

particle of equal size. For small Ay, less than 10° degrees, a maximum 

circulation frequency of .16Flz around a weakly centrally trapped 

particle was obtained.

For each angle the maximum trapping force is obtained for range 

of powers with Figure 5-20 showing the increase of the trapping Q value 

for the central Gaussian spot as BC2 is rotated from zero to 180° 

degrees. The intensity and Q value vary as sin^(y/2) as expected. The 

larger radius of the cascade trap results in a smaller percentage of light 

interacting with the particle confined upon the ring, resulting in a much 

smaller trapping efficiency.

0.09

0.06

- 0.03

0 15 30 45 60 75 90 105 120 135 150 165 180
Relative Angle of Crystals Ay ( degrees)

Figure 5-20: Trapping efficiency of Gaussian central spot in cascade setup as a 

function of relative angle between the crystals.
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5.8 Discussion and conclusion

The above basic optical trapping experiments clearly demonstrate the 

versatility that an optical trap based on conical diffraction can provide. 

The continuous circulation of a particle whose diameter is smaller than 

the trapping ring profile has been demonstrated using two clearly 

distinct mechanisms. The scattering of light with an azimuthal 

component to the Poynting vector causes a particle to continuously 

circulate around the ring of light in which it is optically confined. The 

circulation of a low-grade calcite fragment (= 5 pm in diameter) 

demonstrated the extrinsic nature of the 0AM of light. A comparison of 

the circulation speeds of the fragment showed that the particle in the 

first order field with Ih 0AM per photon circulated at twice the rate 

than when in the combined conical beam with Vzh per photon. A 

maximum circulation frequency of 0.34 Hz was observed with 180mW of 

optical power in the trapping plane. No circulation was observed for the 

zero order beam. Switching the handedness of the incident polarisation 

to be right handed changes the circulation direction. This mechanism for 

circulation is not suitable for the circulation of smooth transparent 

particles as the azimuthal component to the Poynting vector does not 

interact with the particle.

The conical diffraction of linear polarised light forms a cos^(0/2) 

intensity gradient around the ring in the FIP. The position of the 

intensity maximum directly depends upon the orientation of linear 

polarisation incident upon the crystal. Rotating the linear polarisation 

with use of a half wave-plate rotates the position of maximum intensity 

through four times the angle of the fast axis of the wave-plate. The 

position of a trapped Latex particle 5pm in diameter around the 

circumference of the ring trap was controlled by the angular positioning 

of a half wave-plate fast axis. The continuous and steady rotation of the 

wave-plate via a computer controlled mechanical stage, sets the particle 

into a continuous rotation. This is in contrast to rotation due to 0AM
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transfer, where the procession rate for a given 6h beam is controlled via 

the optical power. This mechanism enables a high optical power to form 

a stiffertrap giving a maximum achievable circulation speed, which can 

be easily selected from the circulation frequency of the wave-plate. For 

a conically diffracting beam with po of 7.7 and 5pm radius the trapping 

efficiency Q = 0.04. This may seem like a low efficiency, however when 

compared to other similar experiments the value of Q = 0.04 is of the 

same order of magnitude for trapping efficiencies as other papers with 

trapping forces of the order of IpN

A conically diffracting optical trap based on cascade ICR expands 

upon the previous experimental results providing the added feature of a 

central Gaussian spot with the same waist and polarisation as the initial 

generating Gaussian. As the second crystal is rotated with respect to the 

first the intensity in the Gaussian spot increases as sin^(Ay/2), and the 

intensity in the rings decreasing at the same rate. This ability to vary the 

ratio of intensity between the rings and Gaussian provides a new means 

to select the trap stiffness ratio between the separate components. 

Although this is not fully demonstrated at this time, the trap stiffness of 

the Gaussian varies as expected from no trapping for aligned crystals to 

a maximum efficiency of Q = 0.09 for anti parallel crystals.

Future experimental work on these conical traps will include the 

development of a size tuneable ring trap as seen here with an axicon 

and investigations into Bessel beam optical trapping exploiting the 

concentric ring pattern and non-diverging nature to sort and stack 

partides^'''^''''.
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Chapter 6

Conclusions and Future work
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6.1 Conclusions
The first detailed scientific investigation into iCD has now been 

carried out here in Trinity College Dublin since the initial work by 

Hamilton and Lloyd more than 180 years ago. During the intervening 

years there have been sporadic investigations, both experimental and 

theoretical into this most curious of optical effects. The purpose of this 

thesis was to investigate the newly reformulated phenomenon of 

internal conical diffraction as proposed by Berry^ in 2004. The 

preliminary work performed by Berry

et. al. provided the theoretical groundwork for this thesis. Chapter 2 

outlined the theory of ICD in terms of the geometric wave and ray 

surfaces. The paraxial wave theory describes the conical beam in terms 

of a superposition of orthogonally polarised Bessel beams of differing 

order. A circularly polarised Gaussian beam is transformed into a 

superposition of orthogonally polarised modes whose radial electric 

field profiles are described by Bessel functions of zero and first order.

Chapter 3 discussed the SAM to 0AM conversion in a conically 

diffracted field using a Gaussian beam. It has been shown previously 

that a circularly polarised incident beam with a SAM of +lh is 

transformed into a pure 0AM state of +/2h per photon. The final 0AM 

state consists of two orthogonally polarised fields one with a vortex of 

the same handedness as the incident polarisation and the other without 

a vortex. These two vortex states can be easily isolated because they are 

orthogonally polarised at all points around Rq. Isolating the vortex state 

yields a first-order Bessel beam with an 0AM of lb per photon. Linear 

incident polarised light with zero SAM is converted into a beam with 

zero 0AM per photon. This chapter described the conversion of 

elliptically polarised light with a non-integer SAM per photon into a non­

integer 0AM per photon. The 0AM per photon of the isolated vortex 

beam does not correspond to the incident SAM per photon, this was a 

result of the zero and first-order beams not being orthogonally polarised
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at all points around Rq. Isolating the vortex beam resulted in an unequal 

division of power between the zero and first-order beams enabling the 

measurement of the 0AM per photon. This work led to the publication 

of the paper, D. P. O'Dwyer, C. F. Phelan, Y. P. Rakovich, J. F. Donegan, 

and J. G. Lunney, "Generation of continuously tunable fractional optical 

orbital angular momentum using internal conical diffraction," Optics 

Express, Vol. 18, Issue 16, pp. 16480-16485 (2010).

Chapter 4 discussed the theoretical and experimental process of 

cascade ICD. Firstly, the SAM to 0AM conversion process of the previous 

chapter was extended to examine the conversion process of a circularly 

polarised optical vortex. The optical vortex component generated from 

a circularly polarised Gaussian beam was isolated and re-circularly 

polarised before being re-conically diffracted through a second biaxial 

crystal. If the vortex and polarisation are of same handedness such that 

the total AM incident is -r2h the final beam will have a pure 0AM state 

of V/ih per photon, composed of first (6 =1) and second order (6 = 2) 

optical vortices in superposition. Alternatively, if the vortex and 

polarisation are of opposite handedness such that the total AM incident 

is Oh, the generated beam will have a pure 0AM state of 'Ah per photon 

composed of first (6 =1) and zero-order (6 = 0) optical vortices in 

superposition. This demonstrates the ability of ICD to control both the 

SAM and 0AM of a light field using standard polarisation optics and a 

biaxial crystal. This section also provided the theoretical groundwork for 

the transformation of any circularly polarised optical vortex state. This 

work closely resembled the paper by King^, which described the 

transformation of a circularly polarised non-diffracting Bessel beam 

through a series of cascaded biaxial crystals. While the cascade work in 

this thesis uses the same process of cascaded biaxial crystals, our work 

describes the transformation and subsequent diffraction profile of a 

circularly polarised Gaussian beam through successive biaxial media. 

This work closely resembled the paper by King^ which described the
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transformation of a circularly polarised non-diffracting Bessel beam 

through a series of cascaded biaxial crystals. While the cascade work in 

this thesis uses the same process of cascaded biaxial crystals, our work 

describes the transformation and subsequent diffraction profile of a 

circularly polarised Gaussian beam through successive biaxial media. 

This lead to the publication entitled, D. O'Dwyer, C. Phelan, Y. Rakovich, 

P. Eastham, J. Lunney, and J. Donegan, "The creation and annihilation of 

optical vortices using cascade conical diffraction," Optics Express 19, 

2580-2588 (2011).

Chapter 5 discused the use of ICD in a range of different optical 

trapping geometries. A conical beam generated from circularly polarised 

light is circularly symmetric with fAh 0AM per photon. That is 

composed of easily separable 0AM states of 0 and ±lh per photon. 

Transparent dielectric spheres whose diameter is smaller than the ring 

in the trapping plane are confined around the circumference of the ring. 

If the light incident upon the crystal is linearly polarised a gradient of 

intensity is formed around Rq confining the particle at the point of 

highest intensity. Rotating the plane of polarisation incident upon the 

crystal rotates the point of maximum intensity on the ring, displacing 

the equilibrium position of the trapped particle. The orientation of the 

wave plate fast axis corresponds to the position of maximum intensity 

enabling the angular positioning of a particle on the circumference of 

the ring trap. Setting the wave plate into continuous motion sets the 

trapped particle into continuous motion, mimicking the circulation 

properties of the 0AM trap without the complication of absorption or 

scattering. This work was successfully published, D. O'Dwyer, C. Phelan, 

K. Ballantine, Y. Rakovich, J. Lunney, and J. Donegan, "Conical diffraction 

of linearly polarised light controls the angular position of a microscopic 

object," Optics Express 18, 27319-27326 (2010).

Other possible trapping geometries using cascade ICD 

were also presented in this chapter. The cascade arrangements using a

166



pair of biaxial crystals generated a conical ring and Gaussian spot. The 

ratio of optical power between the central Gaussian spot and ring can 

be easily determined upon selecting the appropriate angle between the 

crystals. If the incident light is circularly polarised the ring trap is 

circularly symmetric, with the central Gaussian spot being circularly 

polarised with the same handedness as the incident Gaussian beam. 

Linearly polarised incident light generates a linearly polarised Gaussian 

spot. This arrangement enables the circulation and angular positioning 

of a particle trapped in the ring around a centrally trapped particle. This 

work was observed experimentally and as of time of publication has not 

been published.

6.2 Future work
When I started my research into ICD it was regarded as an 

optical side note or curiosity and did not have a particular practical use 

apart from a nice demonstration of singular optics. Over the course of 

this research, mainly due in part to the availability of laser grade biaxial 

materials, there has been a resurgence of interest into ICD. Papers on 

topics such as a conically diffracting laser to laser beam shaping have 

been proposed. The contribution from this project in conjunction with 

its sister thesis by Phelan has resulted in publications that have revealed 

the finer details of ICD. These publications have covered the 0AM 

properties of the conical beam, cascaded conical diffraction and a 

conically diffracting optical trap.

The work performed in Chapter 3 on the 0AM properties of the 

conical beam bring conical diffraction into the regime of quantum 

mechanics, something quite fitting considering Hamilton's link with 

quantum mechanics. If we compare the biaxial crystal to its most similar 

counterpart the "q-plate", the route of future experimental work 

required is quite clear. The "q-plate" device is being marketed as a cost 

effective way to convert and manipulate 0AM using polarisation optics
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for the field of quantum information''. In order for ICD to become a real 

competitor (if it is at all feasible), single photon measurements must be 

performed.

The optical trapping work performed in this thesis provides an 

insight into the capabilities of a conically diffracting optical trap using a 

basic setup. It has been proposed that the rudimentary optical trap be 

transferred to a SNOM optical microscope equipped with high NA oil 

based objective could increase the trapping efficiency. Further possible 

enhancements include the integration of a zoom lens to dynamically 

change Ro, and hence change the magnification in the objective plane. 

This will provide a trapping geometry that can be adjusted for a range of 

particles.

The ring and Gaussian beam provided by the cascade trap could 

also allow for the generation of a highly efficient trapping geometry 

previously proposed by Ashkin. The combination of a ring plus axial 

beam incident upon the back of the objective maximises the effect of 

the NA meridian rays whilst the axial Gaussian beam compensates for 

the reduced lateral trapping efficiency provides the best theoretical 

trapping geometry for a single particle.

The other main area of interest that was not explored was trapping 

in the non-diffracting Bessel regime. Reviewing the literature on Bessel 

beam trapping yields a wide are of interest in these particular traps. In 

designing the trap for this thesis it was decided that making a ring trap 

would yield more unique results instead of repeating all ready published 

Bessel beam based optical traps. The typical uses of Bessel beam optical 

traps are tasks such as particle stacking along the beam core and sorting 

and separating particles according to size^‘®. The ability of the conical 

beam to flip between a zero and 1st order Bessel beam provides a 

greater flexibility over other methods of generating Bessel traps. 

Flipping the handedness of the incident polarisation upon the crystal is
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much simpler and quicker than changing the laser mode incident upon 

an axicon.

One avenue of research that was only briefly investigated and not 

discussed in this thesis is the conical diffraction of white light. The wave 

surface used in chapter 2 to describe conical refraction assumed that 

the light being refracted was of a single wavelength, and hence the 

direction of the optic axis was fixed. A white light source, like that 

provided by a Xenon lamp generates a wide spectral range of 

wavelengths over the visible range. The direction of the optic axis is 

wavelength dependent. Figure 6-1 shows the dispersion of the white 

light, as it is double refracted; notice the dispersion of the different 

wavelengths. As the light is directed towards the optic axis, the rays are 

refracted around the conical point of intersection leading to the 

formation of conically refracted white light. This leads to the possibility 

of forming white light Bessel beams.

Figure 6-1: Experimental profiles of the conical diffraction of white light
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