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Abstract

The present thesis deals with the development of theoretical and computational tools 
for the hrst i)rinciples study of ground state and electronic transport proi)erties of 
nanoscale devices and the ajjplication of these tools to systems of current interest. 
The grouml state proi)erties are studied within density functional theory (DFT) using 
the SIESTA code, whereas the transport i)roperties are investigated using the non- 
ecpiilibrium Green’s functions (NEGF) formalism implemented in the SMEAGOL 
code. This is itself is based on SIESTA. We present our implementation a new 
algorithm for the calculation of the self-energies for cpiasi one-dimensional systems. 
The main advantage of this method is that all the singularities in the computation 
are avoided wherever i)ossible, .so that it is very stable and accurate. We also present 
a formalism for the inclusion of bound states in the calculation of the non-ecinilibrium 
eharge density within the NEGF method, which we also use to treat systems with very 
weakly ('ouj)led states. Based on this formalism an adaptive energy-mesh scln'me for 
the integration over energy of the density of states and transmission is implemented.

We hrst use ground state DFT to study the magneto-structural phase transitions 
of MnAs. The magnetic interactions are calculated by mapping DFT total energies 
onto a Heisenberg model, and the Curie temperature is obtained within a mean held 
approximation. We exi)lain the anomalous features in the phase diagram and in the 
temperature dependence of the snscei)tibility of MnAs with the strong dei)endence of 
the magnetic exchange interactions on the structural parameters.

We then move on to the investigation of electronic transport through nano-devices. 
The I-V characteristics of a molecular junction, consisting of a Mni2 single molecule 
magnet weakly coupled to two gold surfaces, are calculated for two different si)in 
conhgurations of the Mni2 center. The I-V curves for the two states are found to be 
similar, although there are small cjuantitative differences which might be detectable 
in experiments.

Finally a detailed study of the electronic transport proi)erties of Fe/MgO/Fe(l()()) 
tunnel junctions is presented. It is shown that for such systems at finite voltage the 
correct occupation of the bound states forming at the Fe/MgO interfaces is crucial in
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order to obtain a i)hysically meaningful solution. Two features are found to determine 
the I-V characteristics: 1) interface states, and 2) Fe band-edges of the states with 
high transmission. For a junction with a barrier thickness of 4 MgO monolayers two 
bias regions are identified. The low bias region is characterized by a large contribu
tion to the current from sharp resonant interface states, resulting in a non-nionotonic 
behavior of the TMR as function of bias voltage, whereas the TMR decreases con
tinuously with bias in the high bias regime. If the contribution to the current from 
the sharp interface resonances is removed, the TMR decreases monotonically with 
bias lor all voltages. We then j)erforni a detailed study of the dependence of the 
zero bias transport i)roperties on the thickness of the MgO barrier. We further show 
that oxygen vacancies in the MgO barrier can drastically reduce the TMR, due to a 
dej)olarization of the density of states at the vacancy site. We also investigate double 
MgO barrier junctions, separated by a thin he layer, and find evidence in the I-V 
curves of (luantnm well states formed in the middle Fe layer. In these junctions the 
decay of the TMR with bias is slower than for a single barrier jnnction, which we 
explain by the relative shift in energy of the density of states in the Fe (hectrodes 
with bias.
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Chapter 1

General Introduction

The discovery of the giant niagnetoresistance (GMR) in 1988 by the groups of P. 
Griini)erg [1] and A. Pert [2] triggered large interest in devices combining electronic 
and magnetic degrees of freedom. Over the last two decades there has been a rapid 
increase of the activity in this area of research, in which spin-polarized electronic 
transi)ort i)henoniena in metals, semicondnctors and molecnles are studied. This is 
now commonly referred to as spin electronics, or also spintronics [3, 4, 5, 6, 7]. Due 
to its rather broad dehnition, the field of spintronics covers a large area of research 
[8].

The prototype spintronics devices are the spin-valves. A typical spin-valve consists 
of two electrodes that are ferromagnetic metals, sejiarated by a usually thin spacer, 
as schematically illnstrat ed in Fig. 1.1. The resistance of such a device is sensitive 
to the niutnal orientation of the magnetizations of the electrodes. It is nsually small 
when the magnetizations of the contacts are i)arallel (P) with respect to each other 
[Fig. 1.1 (a)], bnt it rises when the two magnetizations are antiparallel (AP) [Fig. 
1.1(b)]. The magnetization of one of the ferroniagnets is usually pinned, while that of 
the other is free to rotate, so that it aligns to an externally ap])lied field. A reversal 
of the magnetic held therefore results in a large change in the resistance of the device. 
The general dei)endence of the resistance of a device on the magnetic held is called 
niagnetoresistance (MR). The term giant magnetoresistance was chosen by Fert’s 
group in Ref. [2] since their measured MR was much larger then that of other known 
systems. A GMR siiin-valve is therefore an efficient detector of the orientation of a 
magnetic held. Read heads for magnetic data storage devices based on this idea are 
now used in most commercial ajiiilications.
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(a)

(b)

Figure 1.1: Selieiiiatic representation of a spin-valve device with parallel alignment of the 
magnetic moments of the electrodes (a), and with antiparallel alignment (b). 
The arrows indicate the diiec:tion of the magnetizations of the ferromagnetic 
electrodes.

A measure for the sensitivity of a spin-valve is the MR ratio. For a fixed applied 
bias voltage it is dehiu'd as

MR =
h-IAF

I :i.i)
AF

w'here /p is the current for P alignment, and /af current for the AP. This
definition is sometimes referrc'd to as the “optimistic MR”, since the values become 
very large if /a}> <C I\>-

The GMR is found in layered metallic structnres, and the mechanisms leading to 
the GMR effect are well studied. Extensive reviews ar(' given in Refs. [9, 10, 11, 12]. 
The basic models for the GMR are based on the assumptions that the spins are in a 
eollinear state, so that in each of the ferromagnets one can define the majority spins 
and the minority spins, and that there is no spin-hip scattering in the junction (“two 
spin-Huid approximation”). The transmission through a si)in-valve then depends on 
the degree of matching of the Fermi surfaces of the dih'erent layers. Sinc(‘ this is 
usually better for P alignment than for AP alignment, a large MR ratio is found.

Tunnel junctions

Although in the GMR spin-valves the spacer c'onsists of layered metallic materials, 
over the years many different types of spacers have been used, such as insulators 
[13, 14, 12, 15, 16], semiconductors [5, 6] or semi-metals. Currently the most relevant 
devices for applications are the magnetic tunnel junctions, where the spacer is insulat
ing. Whereas in GMR junctions the current measurements can be performed both in 
the plane of the junction and out of plane, in tunnel junctions the resistance is always 
measured across the barrier. In practical applications of tunnel junctions, such as 
sensors or hard-disk drives read heads, there are three important (piantities. The first 
is the zero-bias tunneling magnetoresistance ratio (TMR), the second is the resistance 
area product of the junction, and the third is the voltage, F1/2, at w'hich the TMR
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dexToases to half its value at zero l)ias. In order to niaxiinize the signal in a device it 
is ideal if the zero-bias TMR and V1/2 are as large as possible, and if the resistance 
area product is low. In the first generation of tunnel junctions usually amorphous 
AI2O3 was used as si)acer [13]. These junctions however never reached room temper
ature TMR in excess of 70% [17]. In the new generation of TMR devices crystalline 
spacers such as MgO are used [15, 16], which can reach TMR values as large as 604% 
at room temperature and 1144% at 5 K [18, 19]. Such crystalline junctions are not 
only interesting for device applications, but also from a fundamental point of view. 
Although the basic mechanism behind the high TMR is known [20, 21, 15, 16], there 
are still large discrepancies between the theoretical predicted TMR values for such 
junctions and the experimentally measured values. An understanding of the detailed 
bias dependence of the current and of the TMR is still lacking, especially with resi)ect 
to the ciuantitative influence of the interface structure, of the role of defects in the 
MgO, of disorder, of inelastic effects, and of the electrodes band structure. At present 
this is an active area of research and in this work we investigate some of these asj)ects.

Molecular spintronics

The advances in the field of organic and molecular electronics also opened the i)ossi- 
bility to use single molecules or layers of organic materials as spacers. MR ratios up 
to 40% at a temperature of 11 K have been measured for spacers composed of organic 
monolayers [22, 23]. Also (juasi one-dimensional systems snch as carbon nanotubes 
have been used as si)acers [24, 25].

A completely different type of spin-valve can be realized by using non-magnetic 
electrodes, separated by a magnetic spacer. Such devices could for example be used 
as memory cells, if the spacer can be stabilized in different magnetic states, and if 
these can be inferred by an electric readout such as a resistance measurement. In the 
field of molecular si)intronics the single molecule magnets are a potential candidate 
for such a device [26, 27]. These consist of a central magnetic core of transition metals 
and ligand ions, which is stabilized by attaching organic functional groups. Magnetic 
hysteresis has been measured in these molecules at temperatures of the order of a 
few K, which has been attributed to the intra-molecular magnetic anisotroi)y [27]. 
The most investigated of the single molecule magnets are the Mni2 based molecules, 
since they have a large ground state magnetic moment of 20 /pj and a high magnetic 
anisotro])y [27]. Current vs. voltage curves for individual Mni2 based molecules have 
been obtained using scanning tnnneling spectroscopy [28, 29, 30]. It is however still 
an open (jnestion whether the magnetic state of the molecule can be determined
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by a readout of the current. This recpiires the conductance to change significantly 
for different magnetic states. In this work we address this question with ab initio 
methods.

Spin-injection

The use of spin-valve devices is mainly restricted to si)in and magnetic; field detectors. 
The integration of spin and elcictron transi)ort phenomena can however also be used 
in different applications. One of the ideas is to develop si)in-controlled logic devices 
[31]. A prercxpiisite for siuT devices is the ability to inject spin-polarized currents 
into non-magnetic semiconductors from ferromagnetic carrier sources. For metal- 
semiconductor contacts however the spin-injection in the diffusive transport regime 
is rather low due to the resistance mismatch betwcnm the two materials [32]. One 
way to overcome this problem is to use dilutcxl magnetic semiconductors (DMS) like 
In]_2.Mn;j.As and Gai-a-Miia^As [33, 34] as spin injectors [35, 30]. The main drawback 
in the use of these materials in technological applications, however, is their rather 
low Curie temperature, whi('h to date does not exceed 200 K [37, 38]. The study of 
possible candidates for room temperatnre ferromagnetic DMS is currently an active' 
area of research [39, 40, 41, 42, 43]. Another way to overcome the resistance niismat(;h 
problem is to insert a thin insnlating layer between the metal and the semicondnetor. 
In this case high spin-injection rates have been measured using spin-filtering tmuK'ling 
barriers such as MgO [44, 45] or AI2O3 [40].

It is however also possible to inject spins directly from the metal to the semicon
ductor if the material and interface parameters are ojjtimizc'd. Recently a very high 
injection efficiency of 50% has been obtained using the half metallic Hensler alloy 
Co-iFeSi as spin injector [47]. Another candidate for si)in injection is the ferromag
netic metal AIiiAs, for which a spin injection efficiency of 0% was reported [48]. Bulk 
MnAs presents a first-order phase transition at 40°C, where it changes from ferroniag- 
netic/hexagonal to paramagnetic/ortliorliombic [49]. This magneto-structnral phase 
transition has important implications for technological applications. While it is a ma
jor drawback for the use of MnAs as spin injecting material at room tenii)erature, the 
magneto-elastic effects related to the phase transition are useful for transducers [50], 
and the magneto-caloric properties are interesting for developing refrigeration de
vices [51]. In this work we therefore investigate the origin of the phase transitions of 
MnAs using ab mitio methods, in order to verify existing phenomenological models, 
and to present suggestions for ])ossible improvements in the device; design based on 
specific strain engeneering [52, 53].
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Modeling of electron transport in nano-devices

Transport through nanoscale objects can not be described by ordinary “circuit anal
ysis” based on Ohni-Kirelihoff’s laws. This is because the mean free path of the elec
trons is usually eomparable with the size of the device, so that (luantum transport 
theory has to be applied. Reviews about models of classical- and (luantnm-transi)ort 
and their applications in calcnlations are given in Refs. [54, 55, 5G, 57]. The applica
bility of the different models depends on various system specific length scales [54, 55]. 
One of these is the elastic mean free path, which determines how far an electron can 
travel without change of momentnrn. If the device dimensions are smaller than the 
elastic mean free path, the momentum of the electrons is approximately conserved, 
and the transport is denoted as “ballistic”. Another important quantity is the phase 
relaxation length, which is the average distance over which an electron can travel 
before its initial i)hase is destroyed. For devices smaller than the phase relaxation 
length there is (piantnm interference between the different possible i)aths an electron 
can take across a device, and the transport is denoted as coherent. If the device 
dimensions are larger than the phase relaxation length, then there is no long-distance 
interference, and the transi)ort is diffusive. In crystalline magnetic tunnel j unctions 
for example t he barrier thickness is so small that the transport is largely i)hase coher
ent, whereas for amorphons AI2O3 j mictions the phase coherence is largely lost due to 
dynamic scattering [16]. The spin diffusion length is another important length scale, 
and corresponds to the distance over which an electron keeps its spin memory. This 
is usually mnch longer than the phase relaxation length. Also the screening length is 
an imjiortant factor in electronic transport, since it determines after which distance 
the iiotential of a localized charge is screened by the surrounding electrons. This dis
tance is short in metals, but becomes very long in semiconductors and insulators [55]. 
Effects of impurities are therefore felt at a long distance in semiconductors, but only 
a rather short distance in metals. Another important quantity for spintronics devices 
is the spin i)olarization of a device. We note however that different definitions of the 
[)olarization are relevant flepending whether the electron transport is in the diffusive 
or in the ballistic regime [58, 55]. In this work we always assume that the transj)ort 
is in the ballistic regime, which implies that we neglect all contributions from inelas
tic effects. We will however discuss the expected contributions from inelastic effects 
where necessary.

(Juantnm transport can be calenlated in its time dei)endent evolution [59] or in 
the steady state [54], which is the approach taken in this work. For the ease of non
interacting single-particle Hamiltonians most methods are leased on the Landauer-
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Biittiker scattering fonnalisni [60], which connects transport properties directly to the 
electronic strnctnre. One of these methods is the non-ecinilibrinin Green’s fnnctions 
(NEGF) formalism [54, 61, 62, 63], which allows also to calculate the charge density 
at an applied bias voltage. In principle also inelastic processes can be inclnded in the 
NEGF formalism [54], Alternative methods are based on matching wave-functions 
[64, 65],

A detailed description of the electronic structure of a devic^e is crucial for making 
(piantitative transport calculations. To date the most used method for computing 
electronic, magnetic and structural properties of materials from first i)rincii)les (i.e. 
without using parameters fitted to experiments) is density functional theory (DFT) 
[66, 67]. A number of numerical implementations exist to calculate the electron 
transport properties of materials based on DFT [61, 62, 63, 64, 65]. In this work we 
use the ab imtio electron transport code SMFAGOL [61, 68], wliidi was develoi)ed 
in a joint effort between S. Sanvit o and A. R. Rocha in Trinity Gollege Dublin, J. 
Ferrer and V. M. Garcia-Snarez in the Universidad de Oviedo, and C. J. Lambert 
and S. Bailey in the University of Lancaster. In SMFAGOL the DFT Hamiltonian 
is obtained through an interface with the DFT code SIESTA [69]. SIESTA uses a 
very efficient localiz('d atomic orbital basis set, wliidi makes possible to treat systems 
with a large iinmber of atoms in the unit cell. Moreover it generates a self-consistent 
tight-binding-like Hamiltonian, which can be readily used in the transport technique. 
In this work we present some of the extensions iiuhnded in the SMFAGOL code, 
which increase its stability and enable the calculation of the current vs. voltage 
characteristics for a new set of physical systems, such as tnnneling jinudions and 
systems with weakly couirh’d states.



General Introduetion

1.1 Dissertation Layout

The main foens of this work is the development of theoretieal and computational tools 
for the ab nntio study of ground state and electronic transport properties of materials, 
and the api)lication of these tools to systems of current interest. The ground state 
I)ro])erties are studied within density functional theory (DFT) using the SIESTA code, 
whereas the trans])ort properties are investigated using the non-ecjuilibrium Green’s 
fnnctions (NEGF) formalism implemented in SMEAGOL, which itself is based on 
SIESTA. We present our implementation in the SMEAGOL code of an improved al
gorithm for the calculation of the self-energies for quasi one-dimensional systems, and 
of a formalism for the inclusion of completely localized states in the NEGF method. 
These tools are used to determine current vs. voltage (l-V) curves for electronic 
transport through Mni2 based magnetic molecules and across Fe/Mg()(100) single 
and double barrier magnetic tnnnel junctions. A study of the magneto-structural 
])roperties of MnAs is i)resented, where the magnetic interactions are calculated by 
maijping DFT total energies onto a Heisenberg model.

In chapter 2 we introdnce the many-electron problem and give an overview of DFT 
and its implementation in the SIESTA code. We present the Hohenberg-Kohn and 
the Kohn-Sha.m theorems, and give and overview of the existing exchange-correlation 
functionals.

In chapter 3 we investigate the magneto-structnral j)hase transitions of MnAs 
between the ferromagnetic hexagonal B8i structure and the {)araniagnetic and anti- 
ferromagnetic orthorhombic B31 structure. We calculate the magnetic exchange con- 
pling j)arameters by mapping the DET total energies for different configurations of 
the Mn magnetic moments onto a Heisenberg Hamiltonian. This allows us to extract 
the Gurie tenij)erature within a mean field approximation. Based on onr ab initio 
calculations we give a model for description of the experimental magneto-strnctural 
phase diagram of MnAs, and conii)are the results to experiments and to the various 
phenomenological models based on the original idea of Bean and Rodbell [49].

Ghapter 4 presents the NEGF formalism used for the quantum transport calcnla- 
tions. This formalism allows to calculate the charge density of a nano-device attached 
to metallic electrodes with different chemical potentials. The current flowing through 
the device can be calculated once its charge density is obtained self-consistently. The 
particular implementation of the NEGF concepts in the ab initio transi)ort code 
SMEAGOL is discussed. A brief discussion of some of the limits of the use of the 
NEGE formalism in conjnnction with DFT is also given.

In chapter 5 a stable and accurate method for the calculation of the self-energies
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(SEs) of quasi one-dinieiisional systems and its implementation in SMEAGOL are 
outlined. The main advantage of the method is that all the singularities in the 
computation are avoided where possible, and that it involves no inversions of ill- 
conditioned matrices. The origin of localized surface states of semi-inhuite systems 
is discussed, and their effect on the accuracy analyzed.

In chapter 6 a formalism for the inclusion of both very weakly coupled and bonnd 
states (BSs) in the calculation of the non-equilibrium charge density is outlined. The 
non-efiuilibrium occui)ation of the BSs is set based on the assumption of an effective 
colliding of these states to the leads. We also present an algorithm to generate an 
adaptive energy-mesh for the integration over energy of the density of states. In the 
second part of the chapter the developed methods are applied for the calculation of the 
transport through weakly coupled molecules. One of these systems consists of a Mni2 

based magnetic molecule, wliicT is very weakly coiqiled to gold electrodes through 
benzene groups. The main question we answer is whether it is possible to distinguish 
between two magnetic states of the molecule by performing an I-V measnrement.

In chapter 7 we study the spin-dependent transport projierties of Ee/Mg()/Ee(l(K)) 
tunnel junctions. The 1-V curves for a junction of 4 MgO monolayers thickness are 
calculated and the resulting TMR-C curves presented. Tlu' n^sults are discussed 
using a simple model, basi'd on tlii’ relative positions in eiu'igy of interfaci' stati's and 
band ('dges of high-transmission states. We also discniss the importanci' of a corri'ct 
inclusion of the BSs forming at the Fe/MgO interfaces in the NEGF formalism at hnite 
bias. We then perform a detailed study of the dependence of the zero bias transport 
properties on the thickness of the MgO barrier, and also investigate the effects of 
oxygen vacancies (Vq) in the MgO barrier on the I-V and TAIR-l/ cairves. In the last 
part of this chapter we study the transport properties of Fe/MgO/Fe/MgO/Fe(l()()) 
junctions, which have a double MgO barrier, separated by a thin Fe layer.

Finally, towards the end of the dissertation we present the general conclusions, 
and point to some (piestions related to the presented work that ri'qnire further inves
tigations. We also present possible future developments of the SMEAGOL transport 
code.



Chapter 2

Density functional theory and the 
SIESTA code

In t his chapter an overview of the basic concepts of density functional theory (DFT) is 
given, follow('d l)y the descrii)tion of the i)ractical iinpleinentation of the DFT scheme 
for electronic structure calculations in the SIESTA code. A more detailed descript ion 
of DFT can be found in a number of books on the subject [70, 71, 72, 73].

First the full many-body descrii)tion of the ground state for a system of (dectrons 
and nuclei is given within the Born-()pi)enheinier apinoxiniation. Then the basic 
DFT theorems of Ilohenberg-Kohn and Kohn-Sham are presentc'd, where the conii)lex 
many-body ek'ctron systc'in is re])laced by an ecinivalent system of non-interacting 
particles moving in an effective potential. The various contributions to this effective 
Hamiltonian are discussed, and siieeial attention is given to the approximations for 
the exchange-correlation potential.

In the second part the ah initio DFT code SIESTA is introduced. This is the basic 
computational tool used in this work. In SIESTA a linear combination of atomic 
orbitals is used as basis set, and the nuclei and core shell electrons are rc'placed by 
I)seudoi)otentials. The mapping of the real si)ace coordinates representation to the 
matrix representation used in SIESTA is presented, where the fundamental (luantity 
is the density matrix.

2.1 Density functional theory

2.1.1 The many-electron system

The basi(' goal of electronic structure calcnlations is to describe the (luantnm-mechanical 
ground state properties of a system conii)osed of Ap elec'trons and A,, nuclei. If the 
kiiu'tic eiK'igy of the electrons is not too high, then the dynamics of such a system 
are gov('rn<'d by the time-dependent non-relativistic Schrbdinger equation. Since the
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mass ol the electrons nie is much smaller than those of the nuclei, the electrons dy
namics happens at a time-scale much faster than that of the nuclei. Therefore the 
the Born-Oppenheimer approximation is commonly used [74, 72], in which the nuclei 
are assumed to be classical particles generating a static time-independent potential 
in which the electrons move, and where only the electrons are described (luantnm- 
niechanically. Since the aim is to describe the time-indeix'iident ground state i)roper- 
ties, and the external potential generated by the nuck'i is assnnu'd to be constant in 
time, the system of ekx'trons can be described by the time-independent Sdirbdinger 
(xpiation

//'k = E4'. (2.1)

Here 'k = 'k(ri, r2,..., s'l, .s'2, ■ • •, •‘’Ve) i^^ flit’ many-electron wave fnnction (WF), 
//is the Hamiltonian oi)erator and E is the ('iiergy. The vc'etor represents the 
coordinates of electron with index i and Si is its spin. H deptnids on tlu' coordinates 
of the nuclei and electrons, so that in general

H — H(R], R-2, ..., Riv„; ip, r2,..., i'n^^ •'’'i- ■‘’2, • • • ^ (2.2)

where the vector R/ represents the coordinates of mKlc'us with index I. The explicit 
lorni ol fl is given by

H = f + F.,e + (2.3)

where

ld.e =

K. =

2 — ]
(2.4)

/Ve

(2.5)
i=l 
/Ve ,

i<j
(2.0)

T is the kinetic energy operator of the electrons, k'lie is tlu' electron-muleus potential, 
and 14e is the electron-electron interaction potential. Here 'c(r() = ~~ R-zl
and Tij = [i-j — Tj]. We note that the equations are given in atomic units throughout 
this work {h = rn,, = e = 1).

For a given solution of E(p (2.1) the total energy U' of the system of mulei and 
electrons is

ir = F; + v]„„ (2.7)
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where the nuelens-nueleus energy VI,;

K... = E
I<J

n,., (2.8)

has been added to the electron energy E. Here Z/ is the charge of nneleus / and 
/?/,/ = |R/ — R./|. VI,,, is a eonstant for a given position of the nuclei, its value 
is however inii)ortant for determining the ground state strneture. Furthermore its 
derivative with respect to the atomic positions is needed for the caleulation of the 
forces.

The ])hysieal interi)retation of the many-eleetron fermionic WF T is that the 
(luantity

|T(ri, r2,..., r,v^, ,si, .S2,..., (2.9)

is the probability to find the electrons at the i)ositions ri, r2,..., f/Ve Mid with sjiins 
,s'], .S2,.... .s’Af . It is therefore normali/.ed so that

Ne = ^ j |T(ri,r2,...,rA,^,,Si,.S2,...,.SArJ|^drp/r2...r/r,Ve- (2-19)
.Si,.S2,--..SNe '

The probability to find an electron at a position r with si)in ,s is given by

p(r,.s)= / |vl/(r, r2,...,r/v„,.s,,S2,...,5'/Ve)|''^J^r2---dryv,. (2-11)

S2........UNe '

This (luantity is called the electron density. It is normalized to

yVe = / d(v .s) dr. (2.12)

5

The ex])eetation value of an observable A eorresiionding to an operator A is then 
given liy

A[T] = (A) = ('!' |A| '!'), (2.13)

with

(vI/|A|'h) = X! / 'I'*(ri,r2,...,rVe,-A,S2,...,.SArJ

S] ,.S2, - o^Ne
A T(rj,r2,...,ryve,.si,-S2,...,A-Arjdr|dr2...dr,v,. (2-14)

The notation A[T] explicitly indicates that the e'xpeetation value is a functional of 
the wave funetion T.

The total energy E of the system corresponds to the expectation value of the 
Hamiltonian H

F[vh] = (T|^|T), (2.15)
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where we have again explicitly denoted that E is a functional of d'. The total energy 
can he si)ht np as

E[T] = r[T] + + \/ee[^], (2.1())

with the kinetic energy
T[T] = (T|t|T), (2.17)

the electron-nucleus potential energy

K.e[T] = (T|V(,e|'I'),

and the ek'ctron-electron potential energy

(2.18)

(2.19)

In principh' one can calculate T and then all the ground states prop('rti('s of the sys
tem. Th(' main problem of the api)roach presented in this section however is that it 
is almost imi)ossible to calculate' the many-body WF for a large' N^. “Large'” in this 
e'ase' means more than a few ele'e'tre)ns. Different me'the)els have' be'en ele've'le)i)e'el te) 
obtain a])pre)xiniate .solntie)ns. In the Hartre'e'-Feee'k methe)el the' WF is e'xpanele'el as a 
Slate'r determinant e)f singD-i)artie'le WFs (see Eep 2.35), se) that the many-ele'e'tron 
Haniiltemian can be re'written as a snni of single'-partie-le Hamilte)nians [70, 75]. The 
main i)re)ble'm eh' the ffartre'e'-FoeT approach is however that all the' e'e)rre'lat ie)ns be- 
twe'en elee'tre)ns are' negle'e’teel, wliiedi for e^xample e'ause's niaje)r e'rre)rs in e'ale-ulations 
for metallie' mate'iials. In the “Ce)nfignratie)n-Interactie)n” (Cl) formalism the Hartree;- 
Fe)ek sche'ine! is e'xteneleel by e'xpaneling the WF over a se't e)f eliffere'iit Slater eletermi- 
nants [7G]. By using me)re eleterniinants the ce)rrelatie)ns e-an be eleseuibe'el ae-euirately 

aiiel highly aefiirate results e'an be ejbtaineel. The elrawbaek he)weve'r is that the e'oni- 
putational ceest be'comes i)re)hibitive for large systems, sine'e' the scaling with syste'in 
size is ty])ie‘ally of the e)reler of eer even higher. In the fe)lle)wing se'edions the basie’ 
ce)ncepts of elensity functie)nal theory (DFT) are ontline'el, whieh is another approaeli 
to make' the many-electron i)roblem tractable. DFT alle)ws to work with a singk'- 
partie’le Hamiltonian like the Hartree-Fock methoel, aiiel e'an there'fbre' be nse'el fe)r 
large systems. The aelvantage ewer HartreevFock is that it alse) takes inte) ace'eeunt 
ekictron e'orrelatie)ns, although this is ek)ne e)nly in an appreexiniate way.

2.1.2 Hohenberg-Kohn theorems

In the folk)wing twee sex'tie)ns we assume that the jiartick's are' spinless, so that (> = 
p(r). The gene'ralizatiem to spin partickvs is briefly ontline'el in Se'ec 2.1.4. If E[) is the
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lowest eigenvalue of Ecj. (2.1) then for an arbitrary T the following ineciuality holds

Eo < EiT], (2.20)

Miniinization of EfT] with respect to all allowed Np-elecivon T therefore gives Eo

Eo = minE[T]. (2.21)

If w(' write the eleetron-nucleus potential Eie as a general external potential V(r), then 
the eciuations above show that the ground state wave function, and conseriuently all 
the ground state properties, are uniquely deterniined by E(r) and by the number of 
electrons N^. Therefore also p(r) of the ground state is unicpiely deterniined by V^(r) 
and A^e.

The first theorem of llohenberg and Kohn states that also the opiiosite is true, 
namely that “the external potential V{r) is deterniined, within a trivial additive 
constant, by the ground state electron density p(r)” [70, GGj. Since p(r) determines 
the potential E(r) it implicitly also determines all the electronic projicrties of the 
system in the ground state. All iinantities are therefore fnnctionals of pit), w) that 
we can write the kinetic energy as T[p], the electron-nucleus jiotential energy as V[io[p] 
and till' electron-electron iiotential energy as 14e[p]. The total energy of tlii' system 
Ey[p] for a given potential E(r) therefore is

EV[p] = T[p] + i/„eM + v;o[p]. (2.22)

The big difference to the dehnitions given in the previous section is that now these 
(liiantities depend only on p, which is a function of a single varialile r, instead ot being 
a functional of the full mauy-body WF which itself is a function of the variables Fj. 
Therefore the problem written in this way has been simplified by drastically reducing 
the degrees of freedom. However the exj)licit functional dependence of the obsc'rvables 
on p{r) is not known, and therefore rewriting them as fnnctionals of p inst('ad of T 
is of no practical advantage at this point.

The second Hohenberg-Kohn theorem is analogous to the variational principle for 
WFs [Ecg (2.21)], where instead of the WF the electron density is used. It states 
that “for a trial density p(r), such that p(r) > 0 and / p(r)dr = Ap,

Eo < EV[p], (2.23)

where E\'[p] is the energy functional of Eq. (2.22)” [70, GG]. This shows that in 
j)rinciple one can obtain the ground state charge density and all the ground state 
I)ro])erties of the system by hnding the p that minimizes Ei/[p]. In practice however
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tliis is difficult to solve, mainly due to the many constraints the trial charge density 
has to tnlhll [70], The Kolm-Sham scheme presented in the next chapt('r is a i)rac‘tical 
way to ov('rconie these problems and to obtain p(r).

2.1,3 Kohn-Sham equations

In order to be able to use above concei)ts in practical calculations Kohn and Sham hav(" 
derived a procc'dnre based on the solution of an ecinivalent non-interacting particle 
system, where the exact calculation of the kinetic energy and all the many-body 
effects are included in the so called exchange-correlation potential [G7]. First tlu' 
energy fnnctional of Ecp (2.22) is rewritten in an ecpiivaleiit form as

Ev[p] = T,[p] + + J[p] + EM

where

EM = T[P] - Ts[p] + VM - Ap]
is tlu' exchange-correlation (XC) energy,

1 [ p{r)p{r')AA-\j
r'l

-(Irdv'

(2.24)

(2.25)

(2.2b)

is the classical Coulomb re])ulsion energy for a charge density p(r),

Vne[p] = j p{r)V{v)dv, (2.27)

and 71.[p] is the kinetic energy of a reference system of non-interac‘ting particles, which 
will now be introduced. The idea is that Ts[p] is a good api)roxiniation for T[p], so 
that Ts[p] — T[p] is small. E^cip] eontains all the information about the many-body 
and non-classical contributions to the energy, and so it contains all the i)arts that are 
difficult to cakmlate exactly. The non-interacting reference system is defined by the 
following single-particle Schrbdinger-like equation [70]

^KS 'l'i(r) = C 'l^i(r),

where the Kolm-Sham (KS) Hamiltonian Hks is

^KS — + i4ff(l’)-

Here the single-partic'le kinetic energy operator T is

f = --V^.
2

(2.28)

(2.29)

(2.30)
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The effective KS potential Vf,ff(r) is defined by

S{Ey[p] - TM
V;fr(r) = Sp{r)

+ '^[P] T £'xc[d])

(fp(r)
(2.31)

where the definition of Ev[p] in Ecj. (2.24) has been used. By taking the functional 
derivative f4fT(r) writes

V;,T(r) = E(r) + \/„(r) + 14c(r),

where
Vuir) p{E)

r — r
dr'

is the electrostatic Hartree ])otential (also called Coulomb i)otential) and

SEM
\Ur) = Sp{r)

(2.32)

(2.33)

(2.34)

is the exchange-correlation potejitial.
The fermionic many-body ground state WF for such a non-interacting system can 

by constructed as Slater determinant of the matrix of the lowest energy single
particle states

T(ri,r2,.. • ,ryvj =

^i(ri) 'ki(r2)
^2(ri) 'I'2(r2)

'ki(r/Ve)

(2.35)

d^iVe(ri) 'i'Neir-i) ^k/v,(ryve)

Using the orthogonality relation for the single-particle WFs / T*(r)'I'j(r)dr = Sij the 
ground state electron density [Ecp (2.11)] for such a many-body WF is

d(r) = 5^'k*(r)T,(r), (2-30)
i=1

which is eciuivalent to i)opnlating the lowest lying single-particle levels. It is 
possible to generalize this to non-integer occui)ation [77, 70], so that the density 
becomes

d(r) = T*(r)T,(r), (2-37)

where the sum now goes over all WFs and rp G [0,1] is the occupation number of 
the eigenstate with index i and energy Cj. The correct set of {uj} is the one that 
minimized the total energy [70] with the constraint that

iVe = 5]n,. (2.38)
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In practice however usually only the lowest lying states are occu])ie(l.
The kinetic energy of this non-interacting system with density p(r) is

1,

Ts (2.39)

Although the functional dependence of on p{r) is unknown, this ('(piation shows 
that it is possible to calculate % indirectly as Ts[{'ki}] by first solving the KS eciuation 
[E(i. (2.28)] to obtain the set of ground state single-particle WFs {'kj. Tlu' possibility 
to calculate an approximate value for the kinetic energy is one of the main advantag('s 
of the KS scheme in practical applications. The other reason for the success of the 
KS scheme is that a number of approximations for the exchange-correlation potential 
have been develoir('d and that these work well for a variety of materials, ev(‘n if not 
in all.

We conclude this sc'ction with some notes about the physical na'aning of the KS 
eigenvalues. The sum of the eigenvalues Cj

Ne

= rjp] -h J V;,r(r)p(r)c/r (2.40)
i= 1

is not ('(jual to the total enc'rgy Ey from Ecj. (2.24). This instc'ad can be re-written as 

Ev = ^ -h E^,.[p] - I V^,.(r)pir)(lv. (2.41)
i=i 7 |r r I J

The physical meaning of the eigenvalues Cj is that eacli eigemvahu' corrc'sponds to the 
derivative of the total energy with respect to the occui)ation nnmbc'r Uj of the- state

dEy
e, =

drii
(2.42)

This fundamental relation is usually referred to as Janak theorern, and is valid for 
any Uj ranging betwe^en 0 and 1 [77, 70]. For molecules it is therefore possible to 
obtain the elc'ctron affinity A, dehnc'd as the total energy difference for a mok'cule in 
its neutral state (A^o electrons) and in the singly reduced statcxl (TVo -|- 1 electrons)

A = Ey{No)-Ey{No + l) = - UMo('/0 d‘>l, (2.43)

where LUMO denotes the lowest unoccupied molecular orbital. The- larger the affinity 
the more favorable it is for the molecule to bind an extra electron. In the same way 
the ionization potential /, which is the energy difterence upon removal of an ek'ctron, 
can be calculatc'd as

/ — Ey{N() — 1) — Ey{N()) — — I fiic)M()(n) dn,
Jo

(2.44)
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where HOMO denotes the highest occupied niolecular orbital. The larger the ioniza
tion potential the more energy is retpiired to remove an electron from the molecule. 
It can be shown that Chomo(^0 should be a constant for any value of n > 0, and that 
in general ruoMo(^0 > fiK)Mo(b) for any n > 0 [78, 79, 80]. This discontinuity of 
fiioMC)(?^0 for ail infinitesimal n is known as the “derivative discontinuity” (referring 
to the fact that chomo is a derivative of the total energy with occupation number). 
The ionization potential therefore becomes

I — “fUOMO! (2.45)

where by definition the occupation of the HOMO is assumed to be non-zero. We 
note however that this relation is only valid if one uses a XC functional that correctly 
describe the ilerivative discontinuity. For aiiiiroximate functionals that do not have 
this projicrty —chomo is only a rough approximation for /.

2.1.4 Spin-polarized DFT

The generalization of DFT to a collinear spin-polarized system is achieved by intro
ducing separately a majority electron density pi(r) and a minority electron density 
/•d(r) [81, 70]. The total electron density then is

p(r) = pi(r) + pi(r),

and the magnetization dcmsity is defined as the difference

m(r) = pi (r) — pi (r).

Majority and minority sjiins satisfy two indejiendent KS ecinations

As -I'] = *1

As -I'At I'l.

(2.46)

(2.47)

(2.48)

wliere //"s = a indicates the spin and is either | or ].. All the terms of 
the KS Hamiltonian operators and are identical and deiiend only on p(r) 
except for the XC potential, for which in general Vj(i,(r) ^ KU^)- The reason is that 
the XC energy is a functional of both pi(r) and pi(r) (Fxc = Ey^c[p\p^])i so that 
14[.(r) = 6111(1 Fx*(,(r) = aro different. The ground state electron
density is obtained by occupying the A^e lowest energy levels choosing from both
spins

P' (2.49)
i=\
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where Ne = + N^.
The general procedure for a non-eollinear spin-conhguration is similar, however in 

that case 4 electron densities are needed and the KS ecpiation becomes a matrix-vector 
e(ination where the 2x2 KS Hamiltonian acts on si)inor wave functions [82, 72],

2.1.5 Exchange-correlation functionals

In principle the Kohn-Sham formalism is exact. However this is based on the assump
tion that the exchange-correlation potential \4c[p](r) calculat('d exactly, which
in practice is not possible. There are however different ai)proxiniations for I/xcIpKi') 
that work well for a set of systems.

Since Kxc(r) is a functional of p(r), in general the value of I4c at a point r depends 
on the value of the function p(r') over the whole space spanned by rh The most basic 
approximation is the local density approximation (LDA), wlu're it is assumed that I/xc 
at point r is a function of the density at that point only, so that I4c;(r) = I4c.,li)a(^''(i’)) 
[G7, 70]. The function Vxc,i.da(/>(i’)) is chosen in such a way to be the exact solution 
for a uniform electron density, and is therefore a good approximation for electron 
densities that vary slowly over space [07]. Although this condition is rarely fulfilled 
in real systems, the LDA works well for many systems, mainly becaus(' it fulfills all 
relevant sum rules and has many correct formal features [71]. Tlui gruK'ralization of 
the LDA for spin-polarized systems is the local spin density approximation (LSDA), 
where V^^{r) = V;c,LSDA(f^Ui’).[81]-

The .so called generalized gradient approximation (GGA) is an expansion of the 
LDA, where Kc dei)ends also on the gradient of//(r), so that [71, 72]

r"(r) = K"o,ccA(p'(i-).p‘(r), Vp'(r), V,;'(r)). (2.5(1)

There are different flavors of GGAs that are built in such a way as to satisfy different 
criteria [83, 84, 85]. In this work the GGA as i)arametrized by Perdew, Burke and 
Ernzerhof (PBE) is u.sed [85].

Both the LDA and GGA are local approximations in the sense that Kxc(^) depends 
only on the properties of the electron density at that single point r. Therefore they 
usually both give similar results, so that for systems where LDA gives a fundamentally 
wrong result also GGA will not improve the results much. The failures of the LDA 
and GGA are mainly found for materials where the electrons tend to be loc‘alizetl 
and “strongly interacting”, which is for examj^le the case of many transition-metal 
oxides [72]. One way to .solve this problem is to use non-local, orbital-depemdent 
exchange-correlation functionals [71, 73, 72].
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A coinpntationally iiK'xpensive approach of this type to correct some of the LDA 
failures, typically used for transition-metal oxides, is the “LDAd-U” api)roximation 
[8G, 87]. In this case the LDA XC energy is replaced by a Hubbard-t/ tyj)e orbital- 
dependent energy for some orbitals, nsnally the d and / orbitals, with the effect that 
occupied orbitals are shifted to lower energies, whereas unoccupied are shifted to 
higher energies. The method is not fully ab initio since it relies on the parameters 
U and J, which are usually chosen in such a way as to rej^rodnce some reference 
properties the material.

One of the fnndamcntal problems of LDA and GGA is the so-called “self-interactioiD 
[88, 70, 72], which is cau.sed by the fact that in the Hartree potential [Eq. (2.33)] 
the integral is i)erfornied over the total p(r), which includes the spurious electrostatic 
interaction of each ])article with itself. A similar self energy contribution is also in
cluded in the LDA and GGA XG potential. For example, in the single electron case 
the Coulomb potential acting on a ])article should be zero. In the LDA and GGA 
however th(’ particle will feel the potential generated by itself. In the Hartree-Fock 
approach the self-interaction in V\\ is exactly canceled by the exchange term [72], 
so that the total ])otential is self-interaction free. The problem in LDA and GGA 
is that the exchange potential is only ai)proxiniated and therefore this cancellation 
is not complete, so that i)art of the unphysical s('lf-interaction remains. One way 
to overcome this prolrlem is the use of an exact functional for the exchange part in 
the XC i)otential, so that by constrnction the self-interaction is cancek'd [89, 71, 72]. 
The correlation {)art of the potc'iitial has to be added separately, and it is important 
that this does not reintroduce a spurious self-interaction. The i)robleni of such an 
approach is that it is dilficnlt to construct the corresponding correlation, which is 
especially important in transition metals, moreover the method is conii)utationally 
very exi)ensive. Another po.ssibility is to explicitly add a “self-interaction correction” 
(SIC) to the XC functional. Different functionals have been develoi)ed to this aim, 
most recent works are however based on the ideas of Perdew and Zimger [88]. The 
main drawl)ack of these methods however is that they ar(! still computationally much 
more expensive than LDA or GGA. In this work we n.se the “atoniic-SIC” (ASIC) 
aijproximation, described in Ref. [90] and based on the concepts in Refs. [91, 92].
It is a comi)ntationally inexi)ensive approximate method which has been shown to 
give good results for a variety of systems. For metal-oxides it improves the band gap 
nsnally bringing it close to the experimental value. Similarly the ionization potential 
of molecules is inii)roved compared to LDA [90]. Those improvements are inii)ortant 
in electronic transport calculations through molecules [93]. We note however that 
neither the LDA, nor the GGA or the ASIC correctly describe the “derivative dis-
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continuity”. We also note that for metallic systems the ASIC often gives unirhysical 
results. In the ASIC an occupation dependent correction is added to the LDA XC 
potential, with the effect that occupied states are shifted down to lower energies, 
whereas nnoccuiried levels are not affected. The i)hysical reason for this is that due 
to the self-interaction error the LDA XC energy is too high only for occupied states.

In our calculations we u.se either LDA, GCA or LDA+ASIC, dei)ending on which 
XC functional is better suited to the studied materials.

2.2 The SIESTA code
There exists a variety of ditferent ab initio computer codes that ini])l('nient the DFT 
method in order to calculate the electronic structure of materials [94, 95, 9G, 97, 
98, 99, 109, 101, 09]. The differences between the various code generally lie in the 
basis set over which the Kohn-Sham WFs are expanded, and in tlu' api)roxiniations 
used, where usually the tradeofl’ lies between accuracy and sp(‘('d. In this work the 
SIESTA code is u.sed [09]. SIESTA employs pseudopotentials to describe the nuclei 
and the c'ore electrons, and the WF is expanded as a linear c-ombination of non- 
orthogonal atomic orbitals. In this section a brief overvic'W of SIESTA is given, a 
more detailed description can be found in R('fs. [09, 102, 103, 104, 105]. Tlu' main 
advantages of SIESTA for the i)urposes of this work are that it is a very efficient code 
and tlu'refore mak(!s it possible to calculate systems with a ratlu'r larg(‘ number of 
atoms (of the order of a few thousands). Furthermore the Hamiltonian is written in 
a tight-binding like form, which makes it easy to integrate the (dectronic transport 
formalism developc'd in tight-binding schemes (see chapter 4). Another big advantage 
is that the source code is open, so that it can be modified depending on the user’s 
needs.

2.2.1 Pseudopotentials

In order to reduce the number of states in the calculation it is of advantage to sjrlit the 
electrons of an atom into core and valence electrons. The vah'iice electrons are tlu' ones 
occupying the outer shells that are responsible for the chemical bonding, so that the 
electronic properties of these states deirends strongly on their chemical environment. 
The c(H-e electrons on the other hand are the ones in the fully occui)i('d inner shells. 
The.se do not i)articipate to the chemical bonding, and their electronic properties are 
only slightly affected by the chemical environment, so that the potential generatc'd 
by the core electrons can be assumed to be independent from the environnumt. It is
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therefore possible to remove the core electrons from the calculation and only consider 
the valence electrons. The nncleus and the core electrons are then rei^laced by an 
eff('ctive potential. This effective i)otential however is singular at the position of the 
nnclens, and to describe it proi)erly a very fine mesh would be needed. However 
siiK'e the electronic i)roperties of molecules and solids are determined by the charge 
density in the bonding region, it is not necessary to describe the charge density close 
to the nnclens accurately. It is therefore possible to rei)lace the effective potential by 
the so-called psendopotential Vj^s, which avoids the singularity at the nucleus, but 
reproduces the right potential at larger distances. In the same way the corresponding 
l)sendo-wave functions differ from the atomic wave functions close to the nnclens, but 
they are identical in the bonding region. An atom where the nnclens and the core 
electrons are replaced by a pseudo-potential is called a pseudo-atom.

In SIESTA Trnllier-Martins norm-conserving j)sendopotentials are used [106, 107]. 
The effective single-i)article atomic potential I4n-,(.v acting on the valence electrons is 
('(pial to the sum of the effective i)otential generated by the nncleus and the core 
electrons I4fr,c and the one generated by the other valence electrons alone I4, so that 
I4fr.fv = Kff.c + Hv It if’ assnnu'd that Vcff,cv is spherical, so that Kff.cv = 
when’ r is the distance from the nnclens. The valence WF\s can therefore be expanded 
as a i)roduct of a radial part. /?„/(r) with the spherical harmonics that only
dei)end on the angles 0 and 0. The radial atoniic-WE are then constructed by
self-consistently solving the radial KS equation

1 (P l{l i) , s ir/\

where the corresi)onding equation for the j)seudo-atoni is
1 (f /(/ + 1)

^ 2r‘^ Vv^.i{r) + V,{r) rBv^.i{r) = e//?ps,;(r).

(2.51)

(2.52)

Here Vp^j{r) and Rps.i{r) are the /-dependent pseudo-i)otential and i)seudo-WF re- 
s])ectively. We note that there is no dependence on n, but, since for each (inantnm 
nnniber / a different ecpiation is solved, the psendopotential will be different for each 
I- is constructed from Ecj. (2.52) in a uniciue way by reciniring the following
four criteria to be satisfied [106]:

1. Eor a given i)rincipal (luantum number n the atomic wave functions have n — 1 
nodes. The corresponding i)sendo-wave-fnnctions however have no nodes, this 
means that all information about the n cinantnm number is lost.

2. The i)sendo-wa.ve-fnnction is identical to the atomic wave function beyond a 
critical radius r^.
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Figure 2.1; (a) Pseudo-WF and all-electrou-WF for the Fe-4« shell and (b) the correspond
ing pseudopotential.

3. The charge inside a sphere of radius is tlie same for both atomic- and pseudo
wave-function.

4. The eigenvalues calculatc'd for both the atomic;- and pseudo-wave-function are 
('({ual.

Ill Fig. 2.1(a.) the all-electroii radial WF is shown togetlu'r with the corrc'spoiidiiig 
ps(‘udo-WF for the Fe-4s shell. In Fig. 2.1(b) the corresponding p.sendopotential is 
shown. The p.sendojiotential converges to the nnscreenc'd potential —Z/r for /■ > ■i\., 
where Z is the nnmber of valence electrons.

For certain elements that have a core charge with a rather large extension it is 
necessary to add non-linear core corrections [108]. In this case the value of part of 
the core charge is stored together with the psendopotential and taken into account 
for the calculation of the exchange-correlation potential for the pseudo-atom.

Since f/ps is different for each /, it can be written as ld>s(?’) = Yli where
Pi is a projector onto the I component of the WF. The long tail —Z/r part of the 
jisendopotential is identical for all /, whereas the /-dependent part has only finite 
range ecpial to I'c- If is therefore possible to split the psendopotential into a long 
range /-independent VJocai and short range /-dependent part

^ps('^’) — F[ocai(^) + SV (r)Pi (2.53)
Im

where 6V{r) = SVpsj{r) — V]oca\{r) is short ranged [69, 106]. Furthermore the /- 
dependent part is approximated into the fully non-local form Vkb as propo.sed by 
Kleinman and Bylander (KB) [109, 106, 107, 69]. The result is that the i)sendopo- 
tential ojxn-ator is of hnite range and has the form Kps(''’) = Fiocai(/’) + Tkb-
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2,2.2 Basis set

One of the goals of the SIESTA program is to achieve linear scaling in the computa
tional effort with system size. This requires finite range interactions and the corre
sponding sparsity of all the relevant matrices. The si)arsity is achieved by expanding 
the WF as a linear combination of atomic orbitals (LCAO) of the type described in 
R('f. [110]. These basis orbitals have a finite radius, and they are strictly zero beyond 
that. For an atom I located at position R/ the basis functions are

ri
(2.54)

where r/ = r — R/, 77 = |r/1, / and m are the angular momentum ciuantnm numbers, 
and the index n indicates the fact that for each I, vi an arbitrary nnmber of nodeless 
radial functions can be used. These are called higher C-orbitals [69]. In principle the 
shai)e of the basis orbitals <Ib/n(^’) is arbitrary, however in SIESTA these are usually 
calculated in such a way that they correspond to the solution of the pseudo-atom 
within a si)herical box. In order to confine them inside a certain cutoff radius ry 
an infinite hard wall i)ot('ntial is imposed at ry. The smaller the more the basis 
functions differ from the atomic WF. In practice the hrst ((-orbital is constructed by 
solving the radial KS equation for the pseudo-atom [Ecp (2.52)] at a slightly higher 
energy

(F;(r) = (f/ -6(iQ)<F,(r), (2.55)

with 4>/(rv) = 0. The energy shift (if/ can be chosen in such a way that the first node 
of d)/(r) occurs at r = Tc. Higher (-orbitals are constructed starting from the first 
(-orbital using the split-norm scheme [111]. The basis can further be enriched by 
including so-called polarization orbitals, which are obtained by polarizing the basis 
orbitals with an electric field [69].

2.2.3 Electron Hamiltonian and density matrices

For a set of pseudo-atoms the non-spin-polarized KS Hamiltonian operator H (we 
omit the index “KS” to explicitly label the Kohn-Sham Hamiltonian) as defined in 
Eq. (2.29) is

H — T + V|ocai,/(r) -f Vkb./ + HH(r) + I/xc(r), (2.56)

where T is the kinetic energy oi)erator [Ecp (2.30)], Vii(r) is fhe Hartree electrostatic 
])otential [Eq. (2.33)] and I4c(r) is the exchange-correlation j)otential. Viocai7(r) is the
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local part of the pseiidopotential of atom / and Vkbj Ik the (•orresi)oiidiiig Kleiimiaii- 
Bylander projector [69]. Vi„(.ai,/(r) is a long range potential decaying as —Zilvi, where 
Zi is the valence charge of psendo-atoni /. It is however i)ossible to obtain a short 
range potential by screening VJocai,/(r) with the Coulomb potcmtial generated by the 
atomic electron valence density p/(r), since / p/(r)(ir = Z/ and therefore the total 
charge of snch a combined system is zero. p/(r) is obtained by populating the levels of 
the psendo-atom according to the free-standing atomic occupation with Z/ electrons. 
By Adding the Coulomb screening potential Viiid/Kr) generated by p/(r) to V[„(.ai,/(r) 
the neutral atom potential VNA,/(r) = Viocai,/(r) + CH[p/](r) is obtained. We note that 

iH if I'l > '/’c^inax, where r'c^max is the largest of the cutoff radii ry / for all 
/ of atom I. If we define (jp(r) = p(r) — that f 6p{r)(lr — 0, the total
Hamiltonian can be rewritten as

H = T + Vkb,/ + ^ Vna,/(i’) + 'i'bji(r) -|- I4c(r), (2.57)
I I

where dVH(r) = V|i[(jp](r) is the Coulomb potential generated by the charge t)p(r). 
All the potentials in the Hamiltonian are now short-range.

The KS ecpiation [Ecj. (2.28)] then is

H T(r) = E ^(r). (2.58)

The WF T(r) is expanded over the localized basis orbitals described in Sec. 2.2.2

'i'(r) = J]]'0^dV(r), (2.59)
U

where the set of indices {Ilriin} has been collected into the general index n. In Ecp 
(2.59) the sum runs over all orbitals in the simulation cell. The KS ecpiatioii 
becomes

= EY (2-bO)
1/ ly

Multiplying this e(iuation from the left by tl>*(r) and integrating over r we obtain a 
matrix ecpiation

Y ^1^ = eY (2.61)

Here we have introduced the overlap matrix

s„,. = (-Ivhlv) = j <I>;(r)<Iv(r),/r,

and the Hamiltonian matrix

= (Tj^hlA) = y ci>;(r)^(r)clv(r)dr.

(2.62)

(2.63)
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The diniension of the matrices S and H is ecjual to the number of basis orbitals in the 
simnlation cell For a collinear si)in-polarized calculation the Hamiltonian will be 
different for up and down si)in

H

Hi. =

(2.64)

(2.65)

where the difference between //’ and lies in the exchange-correlation potential 
(see Sec. 2.1.4). In the remaining part of this section we will describe an unpolarized 
system, the generalization to a spin-polarized system is straight-forward.

The normalization of the WFs in real space J |'I't(r)f'^dr = 1 leads to the nor
malization of the expansion coefficients = 1. By using Eq. (2.36) the charge
density in real space then is

Ne
p(r) = V|'h,;(r)!^ (2.G6)

2=1

where the sum goes over the Ne lowest lying states. The numerical stability and 
convergence can be improved by j^artially occupying also some of the higher lying 
levels, in which case the charge density becomes

d(r) = J]^n,|'h,(r)|^ (2.67)

where the sum now goes over all A^„ WFs and rq G [0, 1] is the occupation number of 
the eigenstate with index i and energy Ei. Within SIESTA rq is given by a Fermi- 
Dirac distribution rq = f{Ei)

1
.f{E^) = Ej - Ep 1

\ + e ''b't

(2.68)

where is the Boltzmann constant, T is the electronic temperature and Ey is the 
Fermi energy.

Then the charge density is expanded as function of the basis orbitals and becomes

d(r) = ^P;,^(h*(r)$,,(r), (2.69)

where we have introduced the density matrix

(2.70)

This is a Hermitian x matrix. Since within the EDA and GGA approximations 
for the exchange-correlation potential the real space Hamiltonian is a functional of
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p(x), in matrix representation it is a function of the density matrix H = H{p). Since 
the integral over the simulation cell of the charge density is equal to the number of 
valence electrons Ng it is possible to express Ng as function of the density matrix

Ng == j P(r)dr = = Tr[p5].

Using the normalization of the WF this simplifies to

(2.7i:

Ng (2.72)

For a given set of eigenvalues Ei this equation implicitly determines the Fermi energy 
used in Eq. (2.70) to obtain p.

Since H depends on p, and in turn p depends on //, tin' solution has to be self- 
consistent. Starting from a trial density matrix p‘" the corresponding Hamiltonian 
H{p'“) is constructed, and from this the density matrix p"”'" = p{H{p"')) is obtained. If 
p‘‘* is the self-consistent solution then p"^“ = p"\ In a practical calculation the criterion 
for self-consistency is ||p‘’“’' — p‘‘'|| < cscn where || •. -1| is a matrix norm, usually the 
maximum norm, and csc i^^ small number setting the degree of convergence. In 
SIESTA the self-consistent solution is found by nj)dating p"‘ using i)art of the output 
density matrix p”'*’" until the self-consistent criterion is fulfilled [112].

2.2.4 Brillouin zone sampling

An infinite periodic system is obtained by specifying a unit cell by its three lattice 
vectors together with the internal positions of the atoms inside the unit cell. The 
crystal is then constructed by stacking cells separated by the lattice vectors in all 
directions, and the charge density can be constructed by aiq)lying Bloch theorem. In 
this section we denote orbitals inside a reference unit cell by nnprimed indices (e.g. 
p, n, ...), and those in a general cell in the full crystal by primed indices (e.g. //',

...). Sums over uni)rinied orbital indices therefore run over the orbitals in 
the unit cell, whereas sums over primed indices run over all the orbitals in the whole 
inhnite crystal. The notation u' = u indicates that Ti.'(r) and T,y(r) are ecinivalent 
orbitals, related by a lattice vector translation, so that orbital v is the ecinivalent 
orbital inside the reference unit cell to the orbital u' in an arbitrary cell.

For a given k-vector k = {kx, ky, k^) in the Brillouin zone (BZ) the WF is expandc'd 
as

k/i p = p.. (2.73)
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Here R,,/ = R,,/ — R,, is the lattice vector translation l)etween the equivalent orbitals 
//, and ///. For each k-i)oint the matrix KS equation [Ecj. (2.61)] for the infinite system 
can be reduced to a matrix equation that involves only the orbitals of the unit cell

HktLu
u

(2.74)

X Nyi matrices Rk and ^k are given by

Rk/ii./ (2.75)

‘S'k/it/ = y]
u'su

(2.76)

Although in principle these sums run over all the unit cells of the infinite crystal, the 
number of non-zero terms in the sum is finite since the basis orbitals have strictly 
finite range. This is reflected in the structure of H and S. The WF with energy Ei 
in real sjiace is then given liy

Tk*(r) = 0ki;,'^V(r), 1.77)

and also here since only a finite number of orbitals (I>;/(r) is non-zero at a given point 
r, this sum effectively only goes over this finite nnniber of orbitals and not over the 
whole crystal. The corresponding charge density is

p(r) =
1
Bz ,/nz

(2.78)
/// V

The k-space integral goes over the BZ and Qbz = /bz is the volume of the BZ. 
The density matrix now is

Pfi'
^AlZ ./BZ

^^k, /// = //,, U =U

with the N^^ x Hermitian matrix pk/ii/ defined as

dk/iiv ^ ^ ^ki VAz/iV’kii/'

(2.79)

(2.80)

If Pk/i/y known for all k-i)oints it is possible to construct for all //' and E. With 
Ecj. (2.71) the total number of iiarticles in the unit cell becomes

= f drp{r) = [ Tr[pk-S'k] dk,
due ihlZ ./BZ

(2.81)
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where the real space integral over r sjraiis the unit cell (UC). 
of the WFs = 1, which leads to

'ipL^k'iPkz = 1,
this becomes

1

i; the normalization

(2.82)

riki dk. (2.83)
JBZ \

This equation again implicitly sets the Fermi energy. For periodic systems therefore 
an independent Kohn-Sham equation is solved for each k-point to obtain the set of 
eigenvalues and WFs. Using all the eigenvalues of all k-points the Fermi energy is 
determiiK'd by Ecp (2.83), which then allows one to obtain the density matrix via 
E(is. (2.79) and (2.80).

We conclude this .section by providing the expression for the density of states 
(DOS). Starting from the total number of states in the unit c('ll

iiBZ 9-00 JbZ^ 

the DOS Af{E) is dehned as

- Eki) dk

M{E) =
1 J2^iE-Ekz) dk,

(2.84)

(2.85)
^^BZ 7bZ

SO that Wi = j^ao^^E) dE. The total DOS can be sj)lit up in the contributions from 
the single orbitals, the so calkxl projected density of states (PDOS), in the following 
way

Nn
M(E} =

with the PDOS for orbital /r, A/)i, defined as

KiE) =
1 Nu

6{E - Eki) Y dk.

(2.86)

(2.87)
^^BZ JbZ

The PDOS is a measure for the contribution of the single orbitals to the total DOS.

2.2.5 Total energy

The Kohn-Sham total energy per unit cell is

•E'ks — Ti il'H] -\j
^ due

VH{r)p{r)dr + E,, :[p]-/ V^c{r)dr + Y Z,Zj 
R I.J

(2.88)

Once the self-consistent charge density is obtained forces and stresses can be calcu
lated by taking the derivative of the total energy with res[)ect to the atomic positions 
and lattice vectors [72, 69].



Density functional theory and the SIESTA code 29

2.3 Conclusions

In this chapter, starting from a discnssion of the many-body system, we have in- 
trodnced the DFT formalism and also the fundamental DFT ciuantities such as the 
electron density, the Kohn-Sham Hamiltonian and the corresponding equations. In 
the second i)art the i)ractical implementation of the DFT scheme contained in the 
SIESTA code has been outlined. It has been shown how functions and operators ex
pressed in a real space representation (i.e. described as functions of r) are converted 
into a tight-binding-like matrix representation by projecting them onto a localized 
basis set. In this matrix representation the fundamental quantities are now the den
sity matrix, the Kohn-Sham Hamiltonian matrix and the overlap matrix. Thus the 
Kohn-Sham ecpiations become matrix equations. This density matrix formalism is 
the framework in which the electronic transj)ort theory is presented in chapters 4, 5 
and G.
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Chapter 3

Magneto-structural properties of 
MnAs

Mil As is an extremely jiromising material for magneto-electronics, since it can grow 
eiiitaxially on GaAs [113, 114] and Si [115] forming clean aiifl atomically sharj) in
terfaces [115]. AIiiAs/GaAs lieterojunctions have been extensively studied exjieri- 
nientally [113, IIC, 117, 118], and spin injection from MnAs into GaAs has been 
demonstrated [48]. Bulk MnAs presents a first-order phase transition at ~ 4()°G, 
where it ehanges from ferroniagnetie/hexagonal to iiarainagiietie/orthorhombie [49]. 
This magneto-structural phase transition has important implications for te(4mologi- 
cal apiilications. While it is a ma jor drawback for its use as spin injecting material, 
the magneto-elastic effects are nsefnl for transducers [50], and their magneto-caloric 
properties are interesting for developing refrigeration devices [51]. The aim of this 
work is to use ah imtio density functional theory (DFT) to develop an understanding 
of the phase transitions of MnAs, which can be eompared with experiments and with 
existing phenomenological models.

This chapter is organized as follows. First a review of the experimental i)roperties 
of MnAs is i)resented, and a brief description of the existing phenomenological models 
is given. Then the results of onr ah initio calcnlations are i)resented and conii)ared to 
experiments and phenomenological models. The magnetie and strnetural properties of 
MnAs are studied by mapping total energies onto a Heisenberg model. The exeharige 
coui)ling constants are calculated for different distorted unit cells, and the Curie 
tenii)erature and its dependence on the lattice parameters are evaluated in the mean 
field ai)proximation. We also predict the ground state volume and lattice strnctnre 
for the paramagnetie state, this allows us to formulate a model for the second phase 
transition between two jjaramagnetic states at 400 K. Finally a simi)le model for the 
suscei)tibility as funetion of temperature is given, and a semi-ciuantitative description 
of the phase diagram of MnAs will emerge.

31
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Figure 3.1: Magnetization per Mn atom p aa a fnnction of temperature for ferromagnetic:
MiiAs below 318 K, and inverse susceptibility xjj' for paramagnetic MnAs above 
318 K (schematically after Ref. [125]).

While most of the ehapt(;r deals with bulk properties, in the last section we present 
a systeiiiatie c'xjrerimental and theoretical study of the hrst-order phase transition 
of MnAs thin films epitaxially grown on GaAs undc'r biaxial tensile stress. Thc' 
experiments were carried out by the group of Prof. F. likawa, while we ijerfornu'd 
the theoretical calculations. When MnAs is grown on GaAs the phase transition 
tempc’rature ckpends on the the growth direction [113, lib, 119, 120]. Hc're we show 
that this can be mainly attributed to the induced strain. Our results give dircict 
information on the dependence of the phase transition teniix'rature of MnAs films on 
the lattice j)arameters. We demonstrate that an increase of the lattice constant in 
the hexagonal plane raises the phase transition temperature (Tp), while an increase 
of the i)erpendicular lattice constant lowers Tp. Our results indicate that the phase 
transitions of MnAs can indeed be explained by ah initio calculations.

3.1 Experimental properties

MnAs is a ferromagnetic metal at low temperature but it becomes paramagnetic at 
Tp = 318 K, when the magnetic moment abruptly vanishes (Fig. 3.1), the resistivity 
increases discontinnously [121], the volume is reduced by 2.1%, and the lattice struc
ture changes from the hexagonal B8i (NiAs-type) to the orthorhombic B31 (MnP- 
type) [122, 49, 123, 124, 125]. A latent heat of 7490 J/kg is associated with this 
transition [49]. Hysteresis is present with a critical temperature of 307 K upon cool
ing and of 318 K upon heating [124]. All these properties clearly indicate a hrst-order 
phase transition.
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Above Tp the distortion reduces coiitiuuously, until it vanishes at ~ 398 K [122] 
where the (’rystal structure reverts back to the B8i. There is no latent heat, but only 
a diseoiitiuuity in the lu^at capacity of the material, i.e. this phase transition is of 
second order. For temperatures between Tp and Tt the jjaramagnetic susceptibility y 
has an anomalous behavior. It increases with increasing temperature until it reaches 
a maximum at T. Above Tt it decreases and has a Curie-Weiss behavior (Fig. 3.1). 
Moreover at T there is a lambda point in the specific heat [126]. Application of a 
magnetic held transforms the B31 structure back to the B8i above a critical held 
[127, 128, 50, 129, 121]. Tab. 3.1 gives a short summary of the described properties 
of MiiAs.

()< 7’ < Tp Tp < T < Tt Tt < T

Crystal structure Hexagonal B8i Orthorhombic B31 Hexagonal B8i
Magnetic order Ferromagnetie Paramagnetic Paramagnetic
Magnetic moment 3.4//,b — —
Susceptibility y — (9y/flT > 0 dx/dT < 0

d’ahle 3.1: Some proi)erties of MiiAs at zero pressure [124].

Fig. 3.2 shows the phase diagram. If pressure is api)lied Tp is lowered while Tt 
increases. Above the critical pressure of 4.6 kbar the ferromagnetic B8| structure 
becomes unstable, and the material remains in the B31 structure for all temperatures 
below Tt. At high pressures and low temperatures different tyi)es of ordered magnetic 
structures are found, with a reduced saturation magnetic moment comi)ared to the 
zero [)ressure ferromagnetic i)hase. Canted spin structures, similar to the heliniag- 
netie structures of MnP [130], are found at a pressure of 4.75 kbar below 210 K, with a 
local magnetic moment of about 3 //b- The different saturation magnetic moments for 
different i)ressures therefore correspond to different types of canted magnetic align
ments. A hysteresis region lies between the ferromagnetic and the canted regions, 
where both the B8i and the B31 structures can be stabilized.

When the magnetic ord('r breaks down and the system becomes paramagnetic, 
MnAs maintains the B31 structure for all pressures. As the tenii)erature is further 
incr(’as('d the structure of the cell continuously changes Iraek towards the B8], until 
at T, it has again the B8i structure, with dTi/dP > 0, where T is the pressure.

The inagnetocrystalline anisotroi)y is quite strong in MnAs, with the c-axis being 
the hard axis, so that the moments ])refer to he in the hexagonal ])lane [123]. Mea
surements on the magnetoelastie coupling [131] indicate that the coupling is stronger
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Figure 3.2: Teiiiperature (T) versus pressure (P) pluise diagram of MiiAs (adai)ted from 
Ref. [125]), indicating also 7’p and 7) as functions of pressure.

in tlie liexagonal plane than i)eri)endicular to it.
Fig. 3.3 shows the nnit cells of MnAs in the hexagonal B8i and in the orthorhoin- 

hic B31 crystal structures and it dehnes the nnit cell vectors a, b (bi, for the B8i 
structure) and c. The B8i structure consists of stacked hexagonal layers of Mn and 
As atoms, and the nnit cell contains two Mn and two As atoms. The B31 structure 
is obtaiiK'd by slightly distorting the B8i, it has twice the volume of the B8i due to 
symmetry lowering and contains four Mn and four As atoms. The lattice is nearly 
hexagonal and the atoms are moved out of the hexagonal symmetry points along the 
b and c directions (figure 3.3(b)).

The Ain atoms are mainly displaced in the hexagonal plane along the b direction 
forming chains (Fig. 3.4), while the As atoms are displaced along the c axis. In each 
unit cell one of the planar As atoms is moved ui)wards and the other downwards 
with respect to the original position in the B8i structure, so as to keep the Aln- 
As distance nearly constant. The displacement u of the Mn atoms in the hexagonal 
plane lies between 0 and 0.05 6 (5 = |b|), depending on the teni])eratnre and pressure, 
while the displacement v of the As atoms along the c-axis is between 0 and 0.05 c 
(c = jcj). The B8i structure is a special case of the B31 structure, where b = \/3 a 
and u = V = 0.

Therefore we choose the unit cell vectors in such a way that a and c have th(> 
same direction for both the B8i and the B31 structures. In contrast the directions of 
the vectors bf, (jbhj = |a| = a) for the hexagonal cell and b for the orthorhombic cell 
are different.
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• Mn >As »Mn As

Figure 3.3: (a) BS] unit cell containing two Mn and two As atoms, (b) B31 unit cell con
taining four Mn and four As atoms.

Mn

Figure 3.4: Two-dimensional representation of one layer of Mn atoms in the B31 structure.
djj represent the various Mn-Mn distances. The first index i=2 indicates that 
all the Mn are second nearest-neighbor to each other in the B8i structure. The 
second index j =1, 2, 3 labels the three distances arising from the B31 distortion.

The lattice parameters of MiiAs as function of temperature and maguetic field 
have been measured in several works [132, 122, 133, 50]. Fig. 3.5 shows the ehaiige of 
the lattice i)arauieters as a fuuctiou of temperature for zero pressure [122]. The lattice 
parameters increase with temperature due to iiormal thermal expaiisioii. However the 
ill plane lattice parameter a decreases when the temperatures get near Tp, where it 
jmiijis from 3.717 A to the lower value of 3.673 A. The perpendicular lattice jiarameter
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Figure 3.5: Lattice parameters a and c (see figure 3.3) as a function of temi)erature (adai)te(l 
from Ref. [122]).

c always increases continuously with temperature. At Tt there is an inflection in 
the slope of the lattice i)aranieter as a function of temperatnrcg and at about = 
450 K the sloj)e changes discontinuonsly. This discontinnons change of the sloi)e 
depends on various experimental details, and it is found at about 410 K in other 
nieasurenients[133].

The exact tenipc'rature at wliicti the distortion di.sapi)ears is somewhat uncc'rtain, 
and hiutuations may play a role for small distortions. The given temperature for the 
disappearing of the distortion corresi)onds to Tt = 308 K [122, 133], howcwer nieasnrc'- 
nients fcrr small distortions are difficult and such temperature can only be inferrc'd. 
As pointc'd out in Ref. [134] the distortion should appear at temperatures slightly 
above Tt. Throughont this work we assume that the disappearing of thc^ distortion 
occurs at Tg, which is the temperature where the thermal (expansion coefficient of 
MiiAs changes abruptly.

3.2 Review of existing models

In early theories it was believed that the first order phase transition at Tp was betwcxm 
a ferromagnetic and an antiferroniagnetic state. Kittel prcjposed a model where the 
distcrrtion from the B8i to the B31 structure produces the change in sign of one of the 
exchange coupling constants, giving rise to antiferromagnetic order [135]. However 
thc^re was no experimental evidence of this antiferromagnetic state and experiments 
demonstrated that the transition is instead to a paramagnetic state [133].

Therefore Bean and Rodbell (BR) proposcxl a modification of Kittel’s thc'ory, 
where the c'xchange interactions are ferromagnetic for both structures, but thc'y are
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much weaker in the B31 phase [136, 49]. The main idea is that the exchange inter
action decays strongly as the vohnne decreases. In order to sinii)hfy the model, the 
analysis was based on the extrapolated Curie temperature Tc only, and not on the 
details of the magnetic interaction at the atomic level. Furthermore the model ne
glected the anisotropic change of the crystal structure, and assnmed that it is possible 
to describe the change from the B8] to the B31 structnre by a change in volmne only. 
The dei)endence of Tc on the volume V was described by the following equation

(C - Co)Tc = To 1 + /I
Cn

(3.1)

where To is the Cnrie temperature at the volume Vo, which is the volume that the 
system would have in the hypothetical absence of exchange interaction. In this context 
this corresponds to the volume of the B31 structure above Tp. (i is a parameter and is 
determined by fitting the model to experiments. Within the BR model one can show 
that for certain values of p a first order phase transition between a ferromagnetic and 
paramagnetic state occurs with a simultaneous change of the volume. However the 
model does not exi)lain the second order phase transition at T,. Further improvements 
such as the introduction of a term proportional to {V — VoY change the main
results [137].

Later Goodenough made an attempt to exi)lain the anomalons behavior ol the 
snscei)tibility and the second order phase transition at by extending the BR model 
and assuming that the local magnetic moment on the Mn atoms depends strongly on 
the volume [125, 124]. Here the Mn atoms are assumed to be in a high spin state in 
the B8| structure and in a low spin state in the B31 structure [125, 124]. However 
measurements of the local magnetic moment show that the change in the magnetic 
moment at Tp is very small, therefore the Goodenough model is not applicable to this 
phase transition. This is probably due to the fact that the MiiAs unit cell volume in 
any crystalline structure is too big to justify a high-spin to low-spin transition. In fact 
in MnAsi_3;Px change from high-spin to low-spin state is observed [122, 138, 139], 
however the low spin state is found for unit cell volumes smaller than 120 A'^. In 
contrast the unit cell of MnAs has always a volume of around 130 A'^, and it always 
remains in the high-si)in state.

In 1982 Kato et ah extended the BR model by taking into account not only the 
change in volume, but also the change of the crystal structure [140]. Furthermore in
stead of just using To for describing the magnitude of the exchange interactions, they 
consider exchange coupling constants up to second nearest neighbors. The obtained 
results are similar to those of Bean and Rodbell. The second order phase transition 
at Tt is explained by assnming that locally the structure above T is still the B31,
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but that the distortions from the B8i are randomly distributed. This assumption 
is probably not valid, since neutron diffraction experiments clearly indicate that the 
structure is a regular B8i above Tt [133].

A Landau-tyi)e phenomenological model, where the free energy <i> is expanded as 
a function of order parameters, is given in Refs. [134, 141, 142] and references therein. 
In Ref. [134] just two order parameters are used, the relative magnetization a {a = I 
for a ferromagnetic state, a = 0 for a paramagnetic state) and the orthorhombic 
distortion d. The following ecpiation is used for the free energy:

<I)(d, a-,T, H) = (ho + Cl [T - To (1 - d'l (P)] + C2 a^ +

-\-C[iCT^ + C4 (T — To) — AIoct// (l — ,
(3.2)

where Ci,...,C5 and (^1,(^2 are expansion coefficients to be htted to exj)erinient, H is 
an external magnetic held, A/o is the saturation magnetization, To is the extrai)olated 
Curie tem])erate of the low temi)erature phase, and <I>o is a constant. The distortion 
d plays the same role as the relative change in volume (R — Vo)/Vo of the BR model 
(E(i. (3.1)). In Ecj. (3.1) Tc depends linearly on the change in volume, whereas now 
it depends (piadratically on the distortion d, Tq = lo{l — (^1 d^)- This is the correct 
expansion of Tc, since the linear term in d disappears due to synniK'try {+d and —d 
correspond to the same distortion). The terms in a'^, a'^ and a^’ appear also in the BR 
model and lead to the first order transition at Tp. The second order phase transition 
at Tt = Ti) is generated by the d^ and cT terms in the expansion.

Also the variation of the magnetic moment with the distortion is contained in 
the model, although the authors hud that the corresponding coefficient 62 is essen
tially zero. For Tq the Curie temperature extrapolated from the high temperature 
susceptibility above Tt was considered (Tq = 285 K), and for Tp the temperature at 
which the inverse susceptibility has a minimum (T^ = 394 K). By construction this 
model yields the correct thermodynamic behavior, and also predicts the increase of 
the susceptibility between Tp and Tt by means of the reduction of the distortion with 
increasing temperature.

Variations of this model [141, 142] give similar results. In Ref. [142] the full T-T- 
H phase diagram of MnAs is explained with a Landau-tyj)e expansion, where more 
order parameters are used. However also in this case a term ecpiivalent to {T — Ti))d^ 
of Ecj. (3.2) is used in order to obtain the phase transition at Tp. Despite the fact that 
Landau-tyi)e expansions give very good agreement between theory and experiments 
when the right parameters are used, they do not provide insights into the origin of 
the terms of the expansion, especially of the (T — Td)(T term. In Ref. [143] a basic 
justihcation of such term is given from hrst principles within a spin fluctuation theory



Magneto-structural ])roi)erties of Mu As 39

constructed from a Hublrard Hamiltonian. It is shown that for a given volume the 
minimnm of the free energy can lie at d = 0 for a ferromagnetic state or at d ^ 0 for 
a paramagnetic state.

In 1986-87 Motiznki and Katoh used si)in finctuation theory in order to exi)lain the 
anomalous behavior of the susceptibility between Tp and [144, 145]. A Hubbard 
Hamiltonian was used, with model density of states obtained from first princii)le 
calculations. They could qualitatively show that the suscei)tibility increases when 
going from the B31 structure to the B8i structure, again mainly due to the fact that 
Tq increases with increasing temperature.

More recently various tight binding [146, 147] as well as first i)rineiples [148, 149, 
150, 151, 152, 153, 154, 155, 156] calculations have been performed for MiiAs in the 
B8i structure. The results generally agree and compare well with the experiments. 
Only few studies on MiiAs in the B31 structure are known to the authors [157, 158, 
159]. In Ref. [157] a description of the paramagnetic state of the B31 structtire is 
given by assuming that it coincides with zero local magnetic moment of the Mn atoms. 
This in fact describes a low spin-state for Mn anrl not i)araniagnetisni, which rather 
corresponds to constant magnetic moments randomly oriented by spin fluctuations. 
Ref. [159] is a later publication and largely conhrms our hndings. In R('f. [160] it is 
argued that the actual ground state is only approximately ferromagnetic, and that 
there might be a slight canting of the magnetic moments.

In the present chapter we investigate the magnetic interaction across the vari
ous phase transitions of MnAs. An explanation of the magnetostructnral proi)erties 
in terms of hrst-principles calculations is given, thereby illustrating the origin and 
I)roviding a justihcation of the parameters used by the different models.

3.3 DFT calculations

The hrst i)rinciples calcnlations within DFT are performed using SIESTA [69]. The 
generalized gradient api)roximation (GGA) as parametrized in Ref. [85] is used for 
the exchange correlation potential, since it has been shown to give good structural 
properties for hexagonal MnAs [150, 151]. In the valence we consider 46',4p and 3d 
orbitals for Mn, and 4.6, 4p and Ad for As. For both Mn and As double C polarized 
local orbitals are used for the s and p angular momenta, whereas for the d, orbitals 
double C us('d. The number of h-points in the Brillouin zone is specihed by a grid 
cutoff of 20 A. This corresponds to a 11x11x8 mesh for the B8| unit cell, giving 
ai)j)roximately 1000 A:-points in the full Brillouin zone. For the B31 unit cell such 
cutoff yields a 8x11x7 mesh. The real space mesh cutoff, which determines the



40 Chaptc'r 3

(eV)

Figure 3.6: Density of states for ferrouiagiietic MiiAs in the B8] structure.

majority minority

density of the real space grid, is 300 Ry.
After full relaxation of the unit cell to a pressure below 0.1 kbar, and of the atomic 

positions to forces smaller than 0.01 eV/A, the B31 unit cell in the ferromagnetic 
configuration relaxes to a B8i structure with a = 3.72 A and c = 5.58 A. The 
experimental values at room temperature are a — 3.724 A and c = 5.706 A. Therefore 
the relative error is below 1% for a and —2% for c. The lattice parameters at 110 
K can be extracted from hgure 3.5 and are a = 3.733 A and c = 5.677 A. This 
demonstrates that GGA reproduces rather well the zero temperature ground state.

For a hxed c/a ratio of 1.54, which is close to the experimental value at the hrst 
order phase transition, the energy is minimized for a = 3.695 A, which conii)ares
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Figure 3.8: Projected density of states for ferroiiiagnetic MuAs in the B8i structure.

well with the results of other ab irnUo calculations [148, 150, 151]. The luaguetic 
uioiueut per Mu atom is 3.4 //,b, and couii)ares well with the measured value of 
3.4 //,j5 [124]. Also the density of states (DOS) and the baud structure are similar 
to previous calevilatious (Figs. 3.6 and 3.7), and in approximate agreement with 
experimental data [155, 161]. The projected density of states (PDOS, Ecj. 2.87) is 
shown in Fig. 3.8. It can be seen that MuAs is a strong ferromagiiet, i.e. one of the 
two Mu d spin sub-bands is eompletely hlled. There is a strong hybridization between 
the Mu-3d and As-d;; states. Around the Fermi level there is almost no contribution 
from the s and p states in the minority spin. We calculated the DOS also using the 
LDA instead of the GGA, and we note that also in that case the DOS is similar, the 
peaks of the d states are however shifted to higher energies by about 0.3 eV for the 
majority spin, and to lower energies by about 0.2 eV for the minority.

The unit cell of the B31 structure contains 4 Mn atoms, allowing for 3 possible 
indei)endent antiferromagnetic configurations of the local moments of the Mn atoms.
The different antiferromagnetic states are -|--|------ , -I------1— and -|--------- h- As a
matter of notation -|- H------means that the atoms 1 and 2 in the unit cell have
opposite magnetie moment than that of atoms 3 and 4. The indices of the Mn 
atoms in the unit cell are defined in Fig. 3.3(b). A cell relaxation is performed for 
those three antiferromagnetic configurations. Tables 3.2 and 3.3 list the calculated 
relaxed structures together with the total energies per Mn atom as compared to the 
ferromagnetic ground state energy {E — Ep^)- The structure remains of the B8i type 
if the local moments are ferromagnetically aligned in the hexagonal plane, whereas 
it changes to the B31 type if the moments are antiferromagnetically aligned in the
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a(A) 5(A) c(A) T(A^) u/b v/c f^2,l(A) <^4,3(A)

+ + ++ 3.72 6.47 5.58 134.27 0.00 0.00 3.73 3.73
+ + — 3.56 6.18 5.81 127.93 0.00 0.00 3.56 3.57
+ - +- 3.55 6.24 5.62 124.54 0.05 0.05 3.10 4.10
+ - -+ 3.62 6.29 5.70 129.83 0.04 0.04 3.12 4.17

Table 3.2: Rehixed lattice parameters for different spin configurations.

plane, with u (r;) of the order of 0.05 b (0.05 c). There is also a slight displac('ineiit of 
the Mil atoms along c of at most 0.01 c, and of the As atoms along b of at most 0.01 b. 
Generally it can be oliserved that the in-plane lattice parameters contract and the c- 
paranieter expands for the antiferroniagnetic states, resulting in a net reduction of the 
volume V. The calculated lattice parameters are similar to those given in Rid'. [157], 
although the absolute value of the magnetic moments is different. This is jirobably 
due to the fact that we use the Mulliken population analysis to determine the local 
magnetic moment, while in Ref. [157] it is obtaiiu'd by integrating the magnetization 
density over a sjihere centered on the Mn atoms.

The total energy for the ferromagnetic alignment is the lowest, although the -|— 
-I— conhguration is higher by only 17 meV/Mn. This indicates that the system 
should evolve to one of the antiferroniagnetic states when put under pressure, since 
those have a mnch smaller volume but only a slightly higher energy.

/iMn(/9l) /iAs(/03) E - £;KM(meV)

+ + ++ 3.43 -0.24 0
+ +---- 3.10 0.00 62
+ - +- 3.01 -0.08 17
+---- + 3.33 -0.03 35

Table 3.3: Local magnetic moment of the Mn and As atoms, and total energies per Mn 
atom for different spin configurations.

Tab. 3.2 gives also the distances between a given Mn atom and its first three 
nearest neighbor Mn atoms in the hexagonal plane (li:i aiid ^2,3 (see Fig. 3.4). 
Note that ^2,2 = « and it is not given explicitly. While these distances are all equal in 
the hexagonal case, they differ of as much as 1 A in the B31 structure. Large (dianges 
in the distance between the Mn atoms are possible since the nearest neighbor Aln-Mn 
separation in AlnAs is well above the inter-atomic distance 2.G1 A of bulk Mn [162], 
which can be regarded as the minimal possible distance between Mn atoms. The 
distance between nearest neighbor Mn and As atoms lies between 2.46 A and 2.62
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A for all the different configurations, and it therefore changes ninch less than the 
Mn-Mii distance.

The local niagnetic nioinent on the Ain (//-Mn) and As (/tAs) atoms, calculated using 
the atomic Mulliken population [163], is also given in Tab. 3.3. The local moment 
on the Mn atoms ranges between 3.43 //b for the ferromagnetic conhguration to 3.01
//■B for the H----- h— conhguration. This reduction in the local moment is mainly due
to the decrease of the cell volume, and the consequent increase of the hybridization 
between the Mn-d and As-p orbitals.

In summary these calculations show that the distortion to the B31 structure is 
caused by an antiferromagnetie alignment of the local niagnetic moments in the hexag
onal plane.

3.4 Fit to Heisenberg energy

In order to extract the various exchange parameters, calculations are jierformed for 
three different B31 supercelis using different local niagnetic conhgnrations. These 
supercells contain 8 Mn atoms and are obtained resiiectively by doubling the B31 
unit cell along the a lattice vector (supercell 1), along b (snpercell 2) and along c 
(supercell 3). The calculated total energies are then htted to a model Heisenberg 
energy

= Vs.s, Jj,, (3.3)^Sl,S2,

where Sj is the niagnetic moment of the f-th Mn ion, and the Js are coupling pa
rameters. Here we neglect 4-monient coupling constants Jijki and the small induced 
magnetic moment over the As atoms. Eq is a constant that can be associated to 
the energy of the ])araniagnetic phase. In fact if all the local magnetic moments are 
randomly aligned the contribution coming from ^ ■ j SjSj Jij vanishes. In Aiipendix 
A the approximations involved in deriving Eq. (3.3) are presented.

In mean held theory the Curie temperature Tq for classical Heisenberg |sj| = 1 
exchanged magnetic inoments is

AbTc =
j

d()j/3 — Jo/3, (3.4)

where kn is the Boltzinaim constant [164, 165], The quantity Jq = Jqj is the sum 
of the exchange coupling constants of a given magnetic moment with all the other 
moments. In the following sections Eq. (3.4) is always used to extract Curie teniiier- 
atures, although it is well-known that the mean held approximation overestimates To 
[166, 165].
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Figure 3.9: Variation of the various excliange quantities as fuiK:tioii of the iiuuiber of cou- 
jhiiig coefficients V,„ax included in the fit. (a) Standard deviation A of the 
energies resulting from Eq. (3.3) as compared to the c:alcnlated DFT energi(^s 
per Mil atom, (b) Eq per Mn atom (Eq. (3.3)), where the zero of energy is c;ho- 
sen as the energy of the ferromagnetic state, (c) Mean field Curie temperature 
'Re

calculations are performed for all the independent spin configurations of the sn- 
percell 1, and for a randomly chosen subset of those of snpercelLs 2 and 3. 35 different 
configurations of the magnetic moments are used in total. Tin' energies are then fittixl 
by a least-mean-scpiare fit to the coupling jmrameters of Eij. (3.3). Since the system 
is metallic with the d-orbitals having finite density of states at the Fermi level, the 
magnetic interaction is expected to have a long range character. For the chosen su- 
jtercells it is possible to extract coniiling constants up to the ninth nearest neighbor. 
The lattice parameters used are approximately those for ferromagnetic MiiAs in the 
B8i structure at the phase transition temperature Tp = 318 K (u=3.71 A, c/a=1.54).

We carefully tested the convergence of our results with the range of the Heisenberg 
exchange interaction. Fig. 3.9 shows the standard deviation A of the energies resulting 
from Ftp (3.3) as compared to the calculated DFT energies per Mu atom, the value 
of E{) per Mn atom, and the mean field Curie temperature Tq as a function of the 
number of coupling coefficients A„iax iucluded in the fit. The standard deviation A 
decays monotonically, remains roughly constant for A„iax > 3, and then reachers a 
minimum value of around 5 meV for A,nax = 9. This can be considercnl as the error 
resulting from neglecting high moment coupling constants. The value of Eq changes 
less over the whole range, being something like an average of the energies of the 
different magnetic configurations.
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Figure 3.10: Exchange coupling parameters for A^max = 3 and A^max = 9 as a function of 
the distance between the magnetic moments.

To reaches a eoiistant value of approximately 633 K for N^ax ^ 3. This indieates 
that the main contribution arises from the first three nearest neighbor coupling con
stants. The experimental vahie of To for the low temperature phase lies somewhere 
between T,, = 318 K and T, = 400 K. This means that onr mean field To overestimates 
the experimental one by a factor between 1.6 and 2.

Fig. 3.10 shows the ealcnlatc'd exchange coupling constants as a function of the 
distaiK'e for two different fits counting respectively 3rd and 9th nearest neighbor 
coupling. The hrst three exchange eonstants J], J2 and J3 (see Fig. 3.11(a)) remain 
nearly unchanged when going from 3rd to 9th nearest neighbor coupling. Interestingly 
the coupling parameters are positive and therefore ferromagnetic up to d ~ 6.5 A (fifth 
neighbor interaction). In what follows we consider only coupling parameters up to 
third nearest neighbors, as they give the main contribution to the magnetic properties 
of the material.

3.4.1 B81 to B31 distortion at Tp

The B81 to B31 strneture phase transition at Tp is investigated by calculating the 
Heisenberg eonpling eonstants for different distorted cells. We start from the B8] with 
the exj)eriniental lattice i)aranieters near Tp (a = 3.71 A, b = y/S a, c = 1.54 a, u = 
V = {)) and distort the cell linearly to the B31 structure. The amount of distortion d is 
given in i)ereent, where d =0% stands for the lattice parameters of the ferromagnetic 
B81 cell just below Tp, and d = 100% for the j)araniagnetic B31 cell above Tp (a =
3.676 A, b = 1.01\/3 a, c = 1.556 a, u = 2.71 10“^ b, v = 2.45 c) [133]. 
Calcnlations are done for distortions between 0% and 220%. Note that the volume 
decreases with increasing distortion. For these calculations only the sni)ereells 1 and 2
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Figure 3.11: Sclieuiatic: representation of the atomic i)ositions of the Mu atoms together 
with the exchange constants for tlie B8i (a), and the B31 (b) structures.

are used with a total of 26 difi'ereiit si)iii configurations. Tlie standard deviation of tlie 
fit is api)roxiniately constant for all the distortions and is of tin; order of 5 ineV/Mn.

Fig. 3.11(a) shows the Mn atoms of the B8i structure coui)led by hrst (Ji), .second 
(J2) and third (J3) nearest neighl)or interaction. In the distorted B31 structure 
the three coupling constants Ji, J2 and J3 are split into six different constants due 
to symmetry loss. While there is still only one J\ cou])ling, the in-plane splits 
into three different coui)ling constants J2,i, J2,2 mid J2,3, corresponding to different 
distances between the Mn atoms in the hexagonal plane (see hgure 3.4). Morc'over also 
the third nearest neighbor coui)ling J3 splits into three different c’onstants, although 
two of them are between Mn atoms separated by approximately the same distance at 
Tp, and ,so they are assumed to be identical. Hence J3 effectively sj^lits only into J3 1 

and Ji 2-
Fig. 3.12 shows the calculated values for the exchange parameters as a function 

of the distortion. For 0% distortion the values of 72,1, >^2,2 mul -^2.3 are api)roxiniately 
e(inal reflecting the hexagonal symmetry. The values of J3 1 and ^ also should be 
identical although they differ by about 2 meV (note that in the fit we do not force 
the B81 symmetry when determining the Js for the undistorted structure, i.e. they 
are fitted without symmetry constraints). This can be assumed to be the error over 
the ht. Additional control hts were also performed for different subsets of the 26 spin 
configurations. The variation over the Js was of 20%, whereas the variation of ./o was 
always smaller than 6%.

The value of J\ remains approximately constant for all the distortions, reflecting 
the fact that the distance between the quasi-hexagonal layers remains roughly con
stant. In contrast the in-plane Js change and eventnally become antiferromagnetic. 
In particular the coupling becomes strongly antiferromagnetic for J2,i, i.e. for those
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Mu atoms that get closer in the hexagonal plane under distortion. Also J2,,3, which 
couples the Mn atoms increasing their separation, is reduced and becomes antiferro
magnetic for large distortions. Finally the coupling ])arameters ,73,1 and ,1-^ 2 have only 
minor changes, with J3.1 becoming weakly antiferromagnetic for large distortions.

The evolution of the coupling constants with the distortion indicates why for the
-I----- 1— and -I---------h si)in configurations (see tables 3.2 and 3.3), where the spins
are antiferromagnetically aligned in the hexagonal planes, the lowest energy is found 
for the B31 structure. The relaxed structure for both spin configurations is similar 
to a distortion of about 200%. At this distortion the in-plane coni)ling constants 
.72,1 arid ,72,3 become antiferromagnetic, resulting in a reduction of the total energy 
as compared to the B81 structure for those spin configurations. In contrast for the
-H -H and -|- H------ configurations, that have a ferromagnetic alignment of the
moments in the hexagonal plane, the B81 structure is stable, since for that structure 
.72,1 and .72,3 are iiositive.

Fig. 3.13(a) shows the relative change of the mean field Curie temperature Tc(d)/T(;(0) 
for the ferromagnetic state. Tq decreases monotonically with increasing distortion.
For 100% distortion (B31 structure at Tp) Td(100%)/Tc(0) = 0.67, demoirstrating 
that when the phase transition from the B81 to the B31 structure occurs, the system 
in the B31 cell is already paramagnetic with very little magnetic order. The experi
mental Curie temperature for the hexagonal cell at T = Tp is not known, since 
the structure changes.

Fig. 3.13(b) shows the total energy per B31 unit cell as a function of the distortion
in the ferromagnetic (FM) and in the H------- h antiferromagnetic configurations (AF).
This latter is the antiferromagnetic configuration giving the lowest total energy at its 
niinimnm among all the ones calculated along the considered distortion. The figure 
also shows the value of Eq, the energy of the paramagnetic state [see Eq. (3.3)]. The 
zero in the energy scale is the energy of the ferromagnetic state for d = 0%.

The ferromagnetic state has its energy niinimnm for d = 0%, and increases 
parabolically for increasing distortion. This means that the B81 structure is the 
one with lowest energy in the ferromagnetic state. In contrast the competing aritifer- 
romagnetic configuration has a minimum for about 180% distortion, where the energy 
is lower than the ferromagnetic phase. The crossing between the two energy curves 
occurs at about d ~142%. The ground state of the system is therefore expectixl to be 
ferromagnetic for small distortions, and to become antiferromagnetic for very large 
distortions. In the intermediate region the ground state can be expectexl to be some 
canti'd spin structure.

Ei) has a very flat minimum for distorted cells, reflecting the fact that the total
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Figure 3.12: Evolution of the exchange coupling constant.s when distorting the unit cell 
linearly from the B8i structure to the B31 structure, d = 0% represents 
the B8i structure at TJ, = 318 K, d = 100% represents the B31 struc:ture at 
7p. A {)ositive (imgative) value of J means ferromagnetic (antiferromagnetic) 
coupling.

energy increases for the ferromagnetic state, but decreases on average for the antiferro
magnetic states. The minimum is found to be at about d ^ 100%, which corresitonds 
indeed to the lattice parameters of tlie paramagnetic state above the phase transition. 
This therefore indicates that a structural change from the B8i to the B31 structure 
occurs when there is a transition from the ferromagnetic to the paramagnetic state. 
Our calculations therefore correctly j)redict the structural transition at T,,.

3.4.2 B31 to B8i distortion at Tt

For a temperature in between Tp and Tt the MnAs crystal structure continuously 
changes from B31 back to B8i. As mentioned in Sec. 3.1 the phase transition tem
perature Tt is usually identihed as the temperature where the susceptibility and the 
specific heat have a maximum. This is at about 398 K. However the distortion should 
disappear at slightly higher temperatures as pointed out in Ref. [134]. Therefore, 
since the exact temperature for this second order structural i)hase transition is not 
known exactly, we introduce an oi)erative dehnition and assume that the distortion 
disappears at a temperature T^, at which the slope of the in-plane lattice constant 
as function of temperature a(T) changes discontinnonsly (see Fig. 3.5). According to
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Figure 3.13: (a) Relative change of the mean field Curie temperature [Tc,{d) — ib(9)]/ifb(9) 
for the ferromagnetic state, (h) Total energy for one B31 unit cell for the 
ferromagnetic configuration (FM), for the H-------- h antiferromagnetic configu
ration (AF), together with Eq (eciuation (3.3)), as a function of the distortion 
d. d = 0% and d = 100% rej)resent respectively the B8i and the B31 phase at 

«318 K.

Fig. 3.5 the lattice coiistaut at 7), is a{Tf.) = d ^ 3.699 A, and {da/dT)T^ ~ 0. At 
Tt the same lattice parameter is a(Ti) Ri3.697 A, so that the difference in a is very 
small.

We argue that the main reason for the second order phase transition at high 
temperatures is related to the lattice thermal expansion. The idea is that upon 
volume expansion, the ground state of the paramagnetic phase moves towards the 
hexagonal structure. We verify this hyi)othesis by calculating the minimum of Eo 
(A,"’"’) along a distortion of the cell transforming B8i to B31. In the calculation the 
volume of the cell is kept constant and we rei)eat the calculation for different volumes. 
This allows us to evaluate both Aq""’ and the corresponding distortion as a function 
of the volume. Since for T > Tp MnAs is always paramagnetic, the minimnm of 
corresponds to the stable distortion do at a given volume. In i)ractice the change 
in volume can be described simply by the change in the planar lattice constant n, 
since both b/a and c/a do not deviate much from their value at Tp. Thus we always 
c-onsider h = \/3 a. and c = 1.556 a and the phase transition is investigated as a 
function of a. only.

The eciuilibrium di.stortion do as a function of a is i)resented in figure 3.14 (filled 
circles). Indcf'd the distortion decreases with volume and it disapj)ears for a between 
a = 3.695 A and a — 3.71 A. Moreover we hnd 100% distortion for a, ~ 3.66 A. These
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Figure 3.14: Distortion do for the iiiiiiiniuin of the parainagiietic ground state as a func:tion 
of the lattice constant a. The dots are calculated values, the (hislied line is a 
fit with equation (3.5).

values agree rather well with the experimental ones, where the distortion disappears 
at about a(Ts) = 3.699 A, and 100% distortion is found at a{T^^) — 3.673 A.

In order to interpret these results consider that the distortion is synnnetrie for 
[£’()((/) = Eo{—d)], and therefore Eo can be expanded in even powers of the distortion 
Eo{d) = ry + T'l (P + r2 d'^. Here r-j are i)aranieters to ht to the DFT calculations. In 
j^artieular note that ry corresi)onds to the energy of the paramagnetic phase when the 
crystal is undistorted, i.e. it has the hexagonal structure. In this way tin* minimnm 
of the Eo{d) curve is obtained for dy = ^ if /■] < 0, and for dy = 0 for / j > 0.
We now define d as the lattice constant where /q = 0. For small distortions the 
I)arameters /q and can then be further expanded around d as /q = '/qq(u — d) 
and l^2 = r2,() + r2,i {a — d) + 72,2 (« ~ d)^. In order to obtain the leading terms in 
this expansion, we calculate the value of ry, rq and for different lattice constants 
(a=3.656, 3.676, 3.695, 3.71, 3.74 and 3.78 A). We then first calculate d and rq 1 by 
mapiriug rq onto the expansion ri(a) = rqq(a — n), and with the obtained value of d 
we can then in the same way also calculate the expansion coefficients of r'2. The so 
calculated values for the leading terms are d = 3.706 A, rq ^ = 62.4 10“^ meV/A and 
r2,() = 1.29 10“^ meV (d is given in percent). The ecpiilibrium distortion dy up to first 
order in a is then

dy(a) = 7 0(d — o). 7 =
'1.1

2 r-,
(3.5)

2,0

where B(x) is the Heaviside function. With the values of d, rqj and r'2,y given above 
7 = 947 is obtained. The resulting distortion is jrresented in Fig. 3.14 (dashed line).

Importantly, if we use Eci. (3.5) to fit the experimentally determined distortions 
at a{Ts) = 3.699A (dy = 100%) and a(Tp) = 3.673A (dy = 0), we obtain 7 = 1184 and 
d — 3.699, both in good agreement with our calculated values. This suggests that the
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Figure 3.15: Solid line: Distortion dn for the niiniinnin of the paramagnetic ground state 
as a fnnction of temperature calculated with equation (3.5) (with 7 = 1184 
and d = 3.699 A) using a{T) taken from Fig. 3.5. Dashed line: experimental 
distortion extracted from v{T) of Fig. 3 in Ref. [122].

main effects of the distortion to the B31 structure arise from the atomic displacement 
from the symmetry positions, and that small changes of the ratio of the lattice vectors, 
neglected in our calculations, play only a secondary role. Using the values 7 = 1184 
and a = 3.699 A of the two j)arameters the evolution of the distortion as a function 
of temperature T can he obtained by inserting the data, for a{T) from Fig. 3.5 in 
Ecp (3.5). The result is shown in Fig. 3.15 (full line). The figure also shows the 
experimental distortion dexp obtained from v{T) extracted from Fig. 3 of Ref. [122] 
(dashed line). The main difference between the two curves is that the distortion d^xp 
becomes zero at 398 K, whereas in our results this happens only at 450 K. This is 
du(' to our choice of Tg = 450 K, which by definition sets the temperature where the 
distortion disappears. Close to the phase transition tenij)eratnre fluctuations play an 
inij)ortaiit role, so that for very small distortions close to the phase transition the 
descrii)tion may not be valid.

By using the computed values of Tq, Ti and r2 the minimnm of Eo [£'Q""=A'o(d = 
do)] is calculated as a function of the volume of the unit cell, and it is shown in Fig. 3.16 
together with ro. Recalling that Cq is the energy of the paramagnetie hexagonal phase, 
it also can be expanded as function of the lattice constant ro = Co + f^i (^* — ^0)^) where 
«() is the equilibrium lattice constant of the hexagonal phase. This, combim’d with 
Eep (3.5), gives an expression for the energy minimum as a function of the lattice 
constant a

= d) + (« ~ ~ f2 (« ~ (i-Y ~

f2 =
"1 1 meV

' = 7546 —
(3.6)

4^2.0 A^
where fo,fi and uo art' to be htted from the calculations of ro (Fig. 3.16). The fitted
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Figure 3.16: Energy expansion eoeflieient tq and Eo^nin as fnnetioii of the lattice c:onstant.
The dashed line shows eo + f j (a — ao)^, the solid line shows fo + f i (« — (lo)^ — 
f2 [a - a)'^ (see Eq. (3.6)).

values are cq = 264 ineV, ci = 15935 ineV/A^ and Uq = 3.65 A. From ('(luatioii (3.6) 
the energy minimum is easily found

finiiii (h) I f f2 a,)
f.\ — f 2 (k)

(3.7)

and by using the calcnlat('d parameters we estimate n,,,!,, = 3.60 A. Since a,„i„ < ao, 
we derive the important result that the distortion allows the volume to he further 
rediu'od as compared to tlie hexagonal i)}iase. Furthermore the curvature of the eiu'rgy 
as a lunction of a is

£;*;'"’(«)
= 2ei — 2f2 C) {a — a) (3.8)

which is also reduced by a factor 2^2 when the structure is distorted.
The eftect of the thermal expansion on the lattice parameter can now be modek'd 

as a temperature dependent position of ao, uq = ao{T). The change of the lattice 
constant with temperature for the distorted phase can therefore be written as

da„ Cl dao
OT (3.9)

Cl - 62 AT

Since 62 is smaller than cj the lattice expands with temperature faster for the distorted 
phase than for the undistorted j)hase. If the calculated values for ci and 62 used 
the ratio f]/(ei — 62) is found to be 1.90, which agrees well with the value of 2.25 
extracted from Fig. 3.5. Near the phase transition, i.e. where d ~ 0, phononic effects 
due to the different curvatures of the energy and huctnations should be considered. It 
is esi)ecially interesting that the change of the lattice constant with the temperature 
goes to z('ro near the phase transition temperature.
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III the sauie way as Eo also Tq, can be expanded as a function of the lattice constant 
and of the distortion

Tc.{a,d)=Tc{a) 1 + A,
a — a

- Kh if (3.10)

where and A'^ are iiaranieters, and Tc(n) is the Curie teiniieratnre for the cell with 
lattice parameter h and where the atoms are in the hexagonal positions. Note that 
this ecpiation is a generalization of the Bean-Rodbell model equation [Ecj. (3.1)] and of 
the Landau exiiansion in Eq. (3.2), since the change in volume and the distortion are 
now included as indeiiendent cinantities. The parameters are htted by a least mean 
sijnares ht to the calcnlated values of Tq obtained for six lattice constants ranging 
between 3.65G A and 3.78 A and for different distortions. We obtain Tc{d)=573 K, 
h\, = 6.80 and Ab = 2.62 10“^. At d = 100% the relative change of the Curie 
temperature is Tc{d,d = 100%)/Tc(d) = 0.74 and corresponds roughly to the value 
of Fig. 3.13(a). In this case it is slightly larger due to the fact that the volume is 
kept constant, whereas for the calculations of Fdg. 3.13 it shrinks with increasing the 
distortion.

Next we calcnlate the dependence of the magnetic moment on the distortion and 
on the unit cell volume. The dei)endence is again exi)anded to lowest order in « and 
d

//.(a) = //(d) 1 + n;.
a — a

+ (^H,d d^ (3.11)

We now have different ways of extracting the magnetic moment of the Mn atoms from 
onr DFT calculations. One possibility is to take the total moment of the cell lor the 
ferromagnetic spin conhgnration and divide it by the number of Mn atoms. In this way 
however the small induced moments of the As atoms are subtracted from the moment 
on the Mn. A second possibility is to take the average Mulliken sj)in population for the 
Mn atoms. The advantage of this method is that also antiferromagnetic conhgnrations 
can be used to determine the average moment, and the induced moments of the As 
atoms are accounted for. The drawback however is that Mulliken populations are 
somewhat arbitrary as they depend on the basis set.

By setting d to 3.699 A, the values obtained using the cell moment are //(d) = 
3.28 //}?, ('v^,=3.28 and 1.15 10“*’. Similarly from the average Mulliken pop
ulation over all the magnetic conhgnrations we obtain //(d)=3.42 //-b, a',j=3.48, and 

~ 6. These results are rather similar to each other. With a'^,=3.28 and ^ = 
— 1.15 10”*’ a reduction of the lattice constant of 1%, as aj/proximately found at 
Tp, results in a rc'dnction of the magnetic moment of about 3%, and a distortion of



54 Cliaj)ter 3

Figure 3.17: Diagram of the positions of Mii and As atoms iii orthorhombic MiiAs.

d = 100% results in a reduction of /x of about 1%. Both effects therefore rx'duce the 
magnetic moment and are of the same order of magnitude.

3.5 Small distortions of the B8i structure

In this section the dependence of Tc on the individual lattice parameters and on the 
distanees between the atoms is investigated for the B8i struetiire. Our approach is 
to distort the cell orthorhombically but to leave the atoms in their high symmetry 
positions. Apart from a general understanding of the phase diagram of MnAs this 
analysis is useful for predicting the behavior of MnAs when grown on a substrate. 
For instance when grown on GaAs(OOl) the substrate induces strain in MnAs, and 
the unit cell is slightly orthorhombically distorted [113]. This distortion does not 
correspond to the orthorhombic B31 structure, since the atoms do not move out of 
the high symmetry positions. Moreover different growth orientations are possible, 
and the Curie temperature varies aecordiiigly [119]. In the second jrart of this section 
we ixresent experimental results, obtained by our collaborators, showing that the 
phase transition temi)erature Tp changes when strain is ajxplied to the MnAs him, 
and compare the data with our model.

When the cell is orthorhombically distorted the hist three nearest neighbor cou
pling constants split into hve dih’erent constants, corresponding to tin' ones of the 
B31 cell (Fig. 3.11), and with the only exception that now = ^2,3- number 
of total energy calculations used for the ht of the coupling parameters is 16. The 
change of Tq for each different distortion can be expressed as a function of the change
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of each single Mu-Mu aiici Mii-As distance in tlie unit cell. This gives

STo SJo A Sd„
Tc 2^

/j=i
(3.12)

where the sum goes over all five iudepeudent distances in the orthorhouiluc unit cell 
as defined in Fig. 3.17. The dependence on the angles between the atoms is neglected. 
Nf, are the multiplicities of each distance within one unit cell, and have the values 
A^Mn.i = 4, A^Mn,2 = 4, A^Mn,:5 = 8, A^as,i = 4, 77a.s,2 = 8. For the evaluation of the 
h'l, coefficients, 21 different distortions are considered, including changes of volume, 
changes of the ratio of the different axes and different displacements of the As atoms. 
For all the distortions the orthorhombic symmetry however was preserved. The best 
fit gives

Amh.] — b.G, AMn,2 — 6-2, Am„,3 — 5.9, 

A'as.i = -7.5, A'as,2 = -7.5.
(3.13)

The values of A'm„ | and A'm„,2 are almost identical, as one should expect from the 
symmetry and similarly for A’as.i and A’as,2-

E([. (3.12) describes the fact that the change of Tq is the result of an interplay 
between the cfiang(' of the Mn-Mn and Mn-As distances. The calculated show 
that, while an increase in the distance between Mn atoms increases Tc, an increase 
of the Mn-As distance decreases it. However note that the two distances can not 
be changed independently, thus the net change in Tq depends on the details of the 
distortion.

Jo can also be expanded over the orthorhombic lattice parameters

SJa
Jo

^ A-will, A. = K,.N.. “■

i=i * /i=l
" " <i„ Oo.,

(3.14)

where o,] = a, = b and n,? = c. The change of the distances between Mn and As 
atoms is not exactly known for the ortliorhombic cell. However it is easy to show that 
to first order the position of the As atom in the cell does not influence Jo, since up to 
first order fiJAs,2 = 2fiJAs,i when moving the As atom inside the cell. Therefore the 
As atoms can be assumed to remain in the high symmetry position. Assuming now 
/\2 = A'3 and A',} = A5 (as imposed by symmetry), the general form of the h'i is

A„ — hb — 6A2 +
OGAd

Ac = 4A'i

lG + 3 72’ 
3GA'4 

lG + 3 72’

(3.16)
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where c = c/a. Using the average between K2 and Ad and c = 1.533 this gives

Ka = Kb = 4.9, K'c = -1.0 . (3.16)

Onr results clearly show that stretching the unit cell along the basal i)lane raises 
Tp (since A'a > 0), while stretching along the c-axis lowers Tp (Ad < 0). An increase 
of the volume without distorting the cell results in an increase of the ferromagnetic 
exchange interactions and therefore of Ac, since Ad is jjositive and larger in magnitude 
than Ad. If the cell changes only its volume the expansion corresponds to the one of 
E(i. (3.10) with a factor Ad = 2Ad + Ad = 8.8. We note that this value is somewhat 
different from the value of Ad = 6.8 given in Sec. 3.4.2. This is due to the different 
type of analysis performed in this section, which starts from the dependence of Tq. on 
the distances between the single atoms. The difference is however small and can be 
considered a measure for the error in our results.

3.5.1 Comparison with experiment

Here w(! present a direct comparison of onr tluioretical ])redictions with experimental 
results for the magneto-structural i)hase transition of MnAs films grown on GaAs. 
Those films present a non-abrupt phase transition with the coexistence [167] of the 
two phases in the form of periodically alternating stripes [168, 169] for a large tem
perature range (~2() °C) [167, 168, 169, 170]. As a result of this phase coexistence, 
a considerable fraction of the volume of the MuAs epitaxial films is usually in the 
paramagnetic i)hase at ~30 "^C, which is a strong limitation for ai)plications on room 
tenii)erature spintronic devices. The growth of MnAs ffhns on different crystal orien
tations has been suggested as an alternative that can provide higher phase-transition 
temperatures [170]. The detailed mechanism that associates the crystal distortion 
(lattice parameter variation) with the phase transition temperature is, however, still 
unclear.

In order to get more insight into the MnAs i)hase transition, the exi)eriniental 
group of Prof. F. likawa has designed an x-ray diffraction experiment to investigate 
in detail the dependence of the phase transition temperature on the crystal distor
tions. Their ex])eriniental results, part of which are presented in this section, show a 
clear variation of the phase transition temperatnre of MnAs ffhns due to the lattice 
distortions imjjosed by the substrate and by the api)hcation of an external biaxial 
stress. They observed that an increase of the unit cell volume does not necessarily 
result in an increase of the transition temperature, contrary to the prc'dictions of the 
Bean-Rodbell model [49].
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X-ray

(b)

Figure 3.18: (a) Scheiuatic diagraui of a unit cell of the A-orientation MnAs/GaAs(()()l).
The lattice parameters a, b and c are defined in the orthorhombic structure 
notation (see Fig. 3.3(1))). (b) Diagram of a biaxial stress ring cell. The X-ray 
beam was focused at the center of the ring.

The MiiAs films were epitaxially grown on GaAs(OOl) by molecular beam epitaxy 
under growth conditions that yield A-oriented films [171], as shown in the Fig. 3.18(a). 
The orthorhombic unit cell vectors as dehned in Fig. 3.3(b) are used. This is more 
appropriate for MiiAs him on GaAs, since the hhns are deformed by the substrate 
and lose the hexagonal symmetry to an orthorhombic one even in the ferromagnetic 
j)hase. In the following the ferromagnetic i)hase for both the hexagonal as well as 
for the slightly distorted structure is denoted as o'-phase, whereas the B31 i)hase 
is denot('d as /Tphase. The results presented here were obtained for a 130 nni thick 
MnAs him. External biaxial strain was applied using a stress ring cell [172] assembled 
in a temperature controlled continuous N2 gas how cryostat. The sami)le is mounted 
between a ring and a sphere [Fig. 3.18(b)] and biaxial strain is achieved by moving 
the sphere towards the ring [172]. The him (much thinner than the substrate), which 
is located on the upper side of the sample, undergoes a symmetric biaxial tensile 
strain at the center of the ring. The strain is ai)proxiniately nniform within ~ 1 mm 
of diameter from the center, which is of the order of the X-ray beam si)ot.

At intermediate temperatures around the i)hase transition tenij)erature X-ray 
si)ectra indicate the coexistence of the two phases. Measurements for cooling cy
cles gave similar results to the ones for the heating cycle, with a small shift of the 
phase transition to lower temi)eratnres, resulting in a thermal hysteresis. This was 
also observed in i)revious works [170]. Fig. 3.19(a) shows the experimentally mea
sured volume fraction vs. temperature of the D-MnAs phase for a 130 nni thick 
MnAs film, with and without an external strain. The fraction F„ was obtained from 
the ratio of the integrated intensity of the o- phase X-ray diffraction peak relative to 
the sum of the total intensity of the peaks for both cv- and /Fj)hases. i)resents
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Figure 3.19: Temperature (iepeudence of the volume fraction of «-phase of the 130 mii 
MiiAs film (a) and the 160 nm MnAs film (b), with and without induced strain.

a lion-abrupt profile with a thermal hystcrc.sis, as diseiissed before. Note that the 
phase transition of the hhns starts at temperatures smaller than that of the transi
tion temperature of the bulk (4()"C). When an external tensile strain is applied, the 
curves show a clear shift to higher temperatures. Similar results were observi'd for a 
IGOiiiii MiiAs/GaAs him [Fig. 3.19(b)]. Due to the phase coexistence across a large 
range of temperatures the phase transition temperature is not well dehiu'd for the 
him. Therefore we choose to dehiie a characteristic transition temperature, 7],, as the 
temperature where is 0.5.

MnAs Bulk him
e|l=0

him
ey=0.25%

a (A) 3.724 3.710 (-0.37%) 3.719 (-0.13%)
6(A) (i.450 6.440 (-0.15%) 6.434 (-0.25%)
c (A) 5.706 5.764 ( + 1.0%) 5.778 (+1.27%)

V (A") 137.06 137.72 (+0.48%) 138.26 (+0.88%)
^ (%) 0.0 -3.2 -1.6
T (%) 0.0 -3.0 -2.4

Table 3.4: Lattice parameters, unit cell volume {V) and relative tempcratnre variation
of the o-MiiAs phase at T = 20 °C for bulk [132] and for the MnAs him with
a strain in the him plane of ey = 0 and for ey = 0.25% [120] (6 = \/3 a at
the perfect hexagonal structure). In parenthesis the lattice parameter variation
relative to bulk is shown. ^ are our theoretical data.Jo

In Tab. 3.4 the experimentally measured room-temperature lattice parameters 
of the MnAs film, as-grown and under external strain, are i)resent(*d together with 
those of bulk MnAs taken from Ref. [132]. The lattice parameters of the as-grown him 
were obtained from specular and grazing incident dih'raetion (GID) measurc'inents.
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Comparing the lattice parameters between bulk and as-grown film, we observe that 
the MnAs film is stretched along the c direction and is shrnnk in the hexagonal basal 
jrlane. Similar results were observed in a previous work [170]. The resulting nnit cell 
vohnne in the film is 0.48% larger than that in the bnlk aiul i)resents a smaller Tp. 
When the film is under external tensile strain, the unit cell vohnne shows a further 
increase (becoming 0.88% larger than the bulk). In this case, however, the increase 
of the cell vohnne is accompanied by an increase of Tp. Bean and Rodbell [49] have 
predicted an enhancement of Tp upon increasing the MnAs unit cell volume. Our 
residts show, however, that Tp is not a simple function of the cell vohnne and it does 
depend on the lattice parameters in a more complex way.

The j)aranieter Jq = Joj^ which in the mean field approximation is pro})ortional 
to the Curie temperature, is a measure of the stability of the ferromagnetic phase [49, 
140, 173]. The larger the gain in magnetic energy, the higher should be Tp. As a first 
approximation, we assume that the change of Tp is ])roportional to the ecpiivalent 
change of Jq: ^ Taf). 3.4 gives the calculated values of ^ for the film,
with and without an external stain, and its relative change with respect to the bulk. 
We observe' that the calculated values of ^ are in very good agreement with the 
corresj)onding experimental values of for the as-grown sample. The agreement 
is not eepially good for the film under external biaxial strain. In this case' the' in- 
plane parameters were calculated from the e)ut-e)f-plane e)ne using the elastic tensor, 
which carries a significant experimental uncertainty. We remark in i)articular that 
t he' the'e)ry e'orrectly pre'dicts the elirection of the transition temi)erature changes elue 
te) the film distortions: a elecrease of Tp fre)m Irnlk te) the as-grown film anel a partial 
recovery e)f Tp when a biaxial tensile strain is ai)phe'el te) the film.

We may now interpret the experimental results. The strain obtaineel by growing 
a k'liiAs thin film with the A-e)rie'ntation on GaAs results in the stretching of the c 
axis anel the contraction of both the a and b axes. All these distortions contribute to 
reduce Tp. When an external biaxial stress is ap])lied along the film plane, the lattice 
j)aranieters a and c increase while b decreases. The net result is a slight enhancement 
of Tp, reflecting the balance of the K i)arameters and the relative large value of A„. 
Our calculations also exi)lain why a hydrostatic pressure lowers the phase transition 
temperature of bulk MnAs, as observed in previous works [49]. Under hydrostatic 
I)ressure, the a and b })ara,meters suffer a stronger contraction than c due to the 
anisotroi)y of the MnAs elastic constant tensor [174]. This effect, combined with the 
fact that [A'ol and [AT| are bigger than [A'c[, results in a decrease of Tp.

Bas('d on our results we j)ropose that higher Tp can be achieved by growing MnAs 
in such a way as to maximize the lattice parameters of the basal plane and minimize
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the lattice parameter in the j)erpeii(licular direction. The i>ossibility of moving across 

the i)hase transition temperature by applying an external biaxial pressure opens a 

new avenue to mechanically driven magneto-devices. One can envision conii)osite 

materials comprising MnAs and piezoelectric compomids, where the ferromagnetism 

can be mechanically switchcxl on and off by an external stress.

3.6 Curie temperature and susceptibility

It is now possible to analyze two peculiar properties of MnAs. The hrst is the anoma

lous behavior of the susceptibility x as a fimction of temperature between Tp and 

Tt. The second is the fact that although the Curie temperature for ferromagnetic 

MnAs has to be larger than Tp, the Tc extrapolatcxl from the susceptibility above T, 
is only 285 K [124]. In this section both these features are exi)lained using the de

pendence of the susceptibility on the Curie temperature [x = v(^c)], and the strong 

dependence of the Curie temperature on the lattice parani(!ters found in the i)revions 

sections [Tp = Tc{a,b,c,d)]. Tc{T) and x(^) are therefore determined using the ex- 

])erimentally measured tem])erature dei)endence of the lattice wctors a{T),b{T) and 
c(T) and of the distortion d(T). This analysis also provides a tool for extracting the 

parameters Ky and I\d from exi)erimental data.

By generalizing Ecjs. (3.10) and (3.14) the Curie temperature Tc(a, 6, c, d) can be 
written as

Tcia,b,c,d) =

Tr0,0
, ,, , a — d b — b
1 + A J ^

a b
+ Ac - K, (f (3.17)

where we use the fact that A'^ = Kf, and take the values for Ky and A'c from Etj. 
(3.16), while A^ = 2.62 10“® and Tc,o = Ac(d) = 573 K are those calculated in 

Sec. 3.4.2. The reference lattice parameters are chosen to be the lattice vectors at T^ 

(d = 3.699 A, 6 = \/3 d,c = 1.56 d).

Similarly to t he Curie teni])eratnre also the susceptibility is calculated in the mean 

field approximation. This is justified for T Tc, a condition which is satisfied for 

iraramagnetic MnAs. The molar susceptibility Xm is given by

CoAm

3A,'

{T-Tc),

s{s + l).
(3.18)

Aa is the Avogadro’s nnniber, g 2 is the Lande’s factor for the free electron si)in, 

is the Boltzmann constant and s is the atomic total si)in. Not(> that the susceptibility
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has ail adclitioual teiiiperature deiieiideiice since Tq and s depend on the teniperatiire 
through the lattice distortion. However in what follows we neglecd, the dependence of 
s on the lattice parameters so that Cq is constant over all teniiierature. An analysis 
Iierforiiied by relaxing this apiiroximation gives similar results.

Similarly to See. 3.4.2 the model is further simplihed by assuming that 6/a and c/a 
are constant above Tp. As indicated in Eq. (3.5) d is a function of the lattice constant, 
d(n) = jy/(d — a)/d 0(n — a). Moreover we have shown that the exiierimental 
distortion as function of the lattice constant is well reproduced when 7 = 1184. 
Therefore it is now possible to exjiress Tc and function of the lattice constant
a only

Xm' («) = 
1
a

T — Tc,n [ ^ + [is-v + hd {d — «))
a — a

a
(3.19)

where A„ = 2Ka + Kc = 8.8. This eiiuation shows that if the lattice expands strongly 
with temperature Xm' decreases.

For temiieratures between Tp and about 390 K, as well as above Tg, a increases 
aijproximately linearly with temperature (see Fig. 3.5) and can therefore be written 
as

aiT) = a(T„) 1 -I- O'
T-Tn

To
(3.20)

where the experimental values for the coefficients are To,+ = Tg = 452 K, a{Ts) = 
a = 3.699 A and = 0.0126 for temperatures above Tg (the index “-H” denotes 
the high temperature region abov(! Tg), and To,_ = Tp = 318 K, tt(Tp) = 3.673 and 
rv . = 0.0284 for temi)eratures between Tp and about 390 K (the index ” denotes 
the intermediate temi)eratnre region). By inserting equation (3.20) into Eq. (3.19) 
we obtain for the high temperature region above Tg

1
XMAr) = 77-(r-Tc,eff),c.

(3.21)
eff

with

aefr

TC.efT

1 - Ky «+ ^ 

1 -l-
1-A>+^

Cq,
(3.22)

TC,()-

Tc.efr and Cgfi are the experimentally accessible quantities for the high temperature 
su.sceptibility, and due to the expansion of the lattice they are different from Tc,o and 
Co. The experimentally measured values are Tc,efr= 285 K and Cgfr = 3.12 10~'’ 111'^
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K [125], wliich corresponds to an effective magnetic moment of 3.57 /in- From Cetf 
and Tc eff tlie values of Tq^ = Tc(d) and Co can now be obtained

Co
1 - A'rr I

I - A'.a+ (l -

1

c.eff,

(3.23)
c,o

1 - 1 T. )
TcC,etr-

All the variables on the right hand side of Ecp (3.23) can be obtained from experi
ment excei)t Ky. For small Ky the difference between Tc u and Tc,eff is proportional 
to Ky. Since Ts is larger than the exi)eriniental value of Tc;,etf flit' effect of the ther
mal expansion of the hexagonal strnctnre is a rednction of the slope of the inverse 
snscej^tibility as a fnnction of temperatnre, as well as a rc'dnction of the extraj)olated 
Curie temperature as compared to the real Curie temperature.

In th(^ region where linear expansion holds the sloi)e of the iimnse susceptibility 
above is

^Xm,+ _ 1 r- Tcfi

OT ~ Co V ~ T,
whereas lor in the int('rniediate temperature region above T., it is

i (^ (jr , ‘2\ (k)Tc\{)

(3.24)

(3.25)

In both regions there is a rednction of the slope due to the ('xi)ansion of the lattice. 
However the reduction is much larger for Xm,_ than for yM,+, since there is the 
additional term i)roportional to due to the distortion, and also (r_ > rv^. As a 
rough approximation it can be assumed that (uq Tc,o)/(7i 7)),-) ~ 1, so that 
becomes negative for

[Ky -t- Kd 7^) «_ > 1 . (3.26)

The values of and 7 are determined experimentally and describe how the structure 
changes with temperatnre, whereas Ky and Kd describe how Tq varies for distorted 
cells. By using onr calculated values for Ky and Kd we obtain {Ky -f- Kd cv- = 1.29. 
This is ind('ed larger than one. Therefore we do predict a negative sloi)e for tlu; inverse 
susceptibility in the intermediate temperature region. With tin* value for 7 = 947 
estimated in Sec. 3.4.2 we obtain {Ky -h Kd 7^)«_ = 0.92, which is still smaller than 
1. This is due to the underestimation of the distortion as compared to experiments 
by using 7 = 947. With 7 = 1186 the reduction of the distortion with increasing 
lattice constant is large enough to obtain a negative sloi)e of the inverse susceptibility.



Magneto-structural properties of MiiAs 63

whereas 7 = 947 underestimates the reduction of the distortion, and so the slope of 
the inverse susceptibility is reduced but not to the point to make it negative.

Finally we extract the values for A'„ and Ka from the experiment al behavior of the 
Curie temperature. Since the ratio between A'^ and A'c can not be obtained from the 
thermal properties of MnAs, it is therefore assumed that Kc/Ka = —1/4.9 ~ —0.2 
is fixed and corresponds to our calculated value. For the hexagonal cell {d — 0) Ecp 
(3.17) reads

' a — d
Tc{a, c) = Tcfi 1 + kr'ca c

(3.27)

where ka = 2/(2 4- Kc/I^a) = 1-11 and kc = (A'c/A'a)/(2 + Kc/Ka) = —0.11. This 
has to be valid for all temperatures where the cell is hexagonal, therefore it can not 
be assumed that the ratio between c and a is constant since it changes abru])tly from 
1.533 to 1.556 at T),. By using the expression for Tq^ from Eq. (3.23) we obtain A„

(3.28)A fj
Tc{a,c)
Tc.fft

f'K{a,c) Tc{a,c)\ , a-n , c-c

As reference Curie teniiierature the extrapolated value to room temperature is used, 
which can be estimated to be about Tc(a = 3.724 A, c = 1.533a)=360 K. By inserting 
the experimental values for the paranieters on the right hand side of Eq. (3.28) we 
obtain A'„ = 18.1. This is about twice as big as our predicted value. The disagreement 
may jiartly be due to the fact that the ratio between A^ and A'„ has been fixed for our 
calculated value. By inserting this value for Ky in Eq. (3.23) we obtain Tc,o = 311 
K, the Curie temiierature for the lattice iiaranieters at T = T^.

In order to extract K^ from experiments we use the relative change in the slope of 
the inverse susceptibility around T/. This is, according to the Eqs. (3.24) and (3.25),

M, f
dT ar

= 1
1 - (Ky + Arf 7'^) Tc.o

To
M,f

ar
1 A' ^ K,o1 Of-}-

(3.29)

and increases with increasing A'„ and K^. All the variables in this ecpiation can be 
derived from the experimental measurements, except Ky and A'^. Experimentally 
different values are found for the relative change of the slope [left-hand side of Ecj. 
(3.29)] [134, 175, 176, 177]. These are all of the order of 1.44. By using this value for 
the relative change of the slope and the previously calculated value Ky = 18.1, A^ is 
found to be 1.78 1()~''’. This value agrees approximately with our prc'dicted value of
2.62 1()-T

In conclusion Tab. 3.5 summarizes the paranieters calculated in this work, by 
('omparing our ab initio results obtained from the DFT calculations and the Heisen
berg model, with the results obtained by fitting to the exiierimental data. In general
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the value obtained from the ab 1711110 calculations roughly agree with the best fit to 
experiments, although the DFT results underestimate A'„ and overestimate K,i.

1
Tc,o
(K)

Kd

( 10-^
I\.y

)
I<a A'c 7 a

(A)

DFT 579 2.G2 8.8 4.9 -1.0 947 3.70G
FIT 311 1.78 18.1 10.1 -2.1 1184 3.G99

fable 3.5: Main parameters used in the description of the phase diagram of MiiAs. We 
compared results obtaineal from ab initio calculations and Heisenberg model 
(DF'r), with those of the best fit of the experimental properties (FIT).

3.7 Phase diagram

It is now i)ossible to draw a (jualitative description of the phase diagram of MiiAs 
(see Fig. 3.2). Since the magnetic interactions are strongly dependent on the volume, 
the effects of the thermal exjransion of the lattice are inii)ortant. First the state of 
MiiAs at z('ro pressure is consid('r('d. For P = 0 and tcunperatures below 155 K 
both ferromagnetic and canted spin structures can be stabilized. The ground state 
is th(‘ fc'rromagnetic B81 structure, however also the B31 structure is stable, because 
at these low tenii)eratures the thermal energy is not large enough to induce a i)hase 
transition from a canted si)in structure to a ferromagnetic one. As the temperature 
nicreas('s above 155 K the thermal fluctuation may induce the phase transition, and 
therefoi-e only the ferromagnetic state survives.

As the temperature is further increased and the system becomes paramagnetic, 
the B3] structure becomes the stable one, as described in Sec. 3.4.1 [Fig. 3.13(b)]. 
MnAs t hen remains i)aramagnetic for all temperatures, but because of the thermal 
expansion t he orthogonal distortion decreases, until it vanishes when a critical volume 
is reached (see Fig. 3.14). Then the volume becomes large enough to stabilize the 
B81 structure even for a paramagnetic state, leading to the second structural i)hase 
transiticm at T^.

As pressure is applied the volume is rexhiced and thus the ferromagnetic exchange 
interaction decreases. Therefore Tp decreases with pressure, while Tt increases. At a 
temperature of a])i)roxiniately 230 K the ferromagnetic state is stable np to a pressure 
of 2 kbar. For high pressures above 2.5-4 kbar the volume is small enough that a 
cant('d si)in structure becomes the ground state. The temperature at which this state
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becouies i)arauiaguetic is approximately 230 K. It increases slightly with pressure, 
reflecting the fact that the autiferromagnetic interaction increases as the volume is 
reduced.

3.8 Conclusions

We have investigated, by means of ah imtio electronic structure calculations, the 
magneto-structural properties of MiiAs. The stable structure for the ferromagnetic 
state is found to be the B8i structure. However if antiferromagnetic alignment in the 
hexagonal i)lane is imi)osed the B31 structure becomes more stable. By htting the 
DFT total energies of different magnetic conhgurations to a Heisenberg t3'pe energy 
it is shown that the main contributions to the j)hysical properties originate Iroin the 
exchange couj)hng parameters up to 3rd nearest neighbor. The Curie temperature 
was calculated in the mean held approximation, with values api)roximately twice as 
large as the experimental ones.

The main assumption of the phenomenological model of Bean and Rodbell [49] 
that the ferromagnetic exchange coupling parameters increase when the volume is 
increased has been conhrmed [Ecj. (3.16)] using this analysis. However it has been 
shown that the exchange interactions depend not only on the volume, but that the or- 
t hogonal distortion to the B31 structure plays an important role. For the experimen
tally observed distortions some of the in-i)lane exchange couiiling coefficients become 
antiferromagnetic. This is the reason for the stability of the B31 structure’ for those 
conhgurations of the magnetic moments that have an antiferromagnetic comjionent 
in the hexagonal plane. Different canted spin structures are expected to minimize the 
energy for different distortions, since there are both positive and negative exchange 
coefficients depending on the amount of distortion of the B31 structure.

Furthermore it has been shown that for paramagnetic states the B31 structure 
is stable at small volumes, while the B8i structure is stable above a critical lattice 
constant of about 3.7 A. This explains the second order phase transition at T,, since 
at that temperature the lattice constant crosses this critical value.

The Curie temperature has been expanded as a function of the lattice vectors and 
of the amount of distortion. An increase in the volume leads to an enliancenient of 
the Curie temperature, while an increase of the distortion leads to a reduction. With 
these results in hand the increase of the susce])tibihty between Tp and T, has been 
exi)lained as the result of the increase of the Curie tenij)erature due to the r.hange 
of the structure from the B31 to the B8i and to the increase of the volume. By 
using the experimental variation of the lattice i)arameters with rising temperature
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the suscei)tibihty is indeed found to increase between Tp and T^.
A fit of the dependence of the Curie temperature on the lattice i)aranieters to best 

reproduce the experimental behavior is also given. The calculatc'd values agree within 
a factor two with the values obtained from ah tnitio calculations. Our results are in 
agreement with the various phenomenological models based on the Bean Rodbell idea. 
In our work the various parameters used in those models for the magneto-structural 
properties of MnAs have been derived from first principles and therefore validated.
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Non equilibrium Green’s functions

In this chapter the main concepts of electronic transport calculations within the non 
e(jnihbrinni Green’s functions (NEGF) formalism are presented. These are used in this 
work to obtain the steady state electronic transi)ort properties of nano-devices. The 
NEGF formalism allows one to describe the ont of ecinilibrinm state of a (inantnm 
system, which consists of a scattering region, also denoted as extended molecnle 
(EM), attached to semi-infinite electron reservoirs, also called leads or electrodes. 
Each of these reservoirs is assumed to be in local ecpiilibrinm, so that the states in 
the leads are occupied np to the local Fermi energy. The state of the scattering 
region is then determined by the rate of in- and outflow of electrons from the leads. 
The NEGF formalism allows the calcnlation of three central properties of cpiaiitnin 
mechanical systems ont of cxpiilibriimi: first it allows one to obtain the spectrnm of 
states in the scattering region for a given Hamiltonian; secondly it makes possible 
to calcnlate the ocenpation of these states in the scattering region when the leads 
are ont of ecinilibrinm; thirdly one can calcnlate the enrrent throngh the device for 
given chemical potentials of the leads and charge density of the scattering region. 
The NEGF formalism is nowadays widely nsed for the calcnlation of the electronic 
transport jiroperties of nanoscale devices, overviews of its application can be fonnd 
in Refs. [55, 178]).

There exist a mnnber of publications where the NEGF equations are i)resented 
and their physical meaning is explained [54, 179, 180, 181, 55, 182], these give a 
good imderstanding of the dependence of the properties on the different device pa
rameters. A formal derivation of the fmidamental equations, based on perturbation 
theory within second {inantization and a time-dependent approach, can be lonnd in 
the literature [183, 184, 185, 186, 187, 188, 189, 190]. As an alternative, in Refs. 
[190, 191, 192, 193] the formalism is derived once again for the steady state without 
using a time dependent fornmlation. This derivation is valid in the case of elastic 
coherent transport and a single particle Hamiltonian, which is always the case for

67



G8 Chapter 4

the systems considered here. In this chapter a derivation of the NEGF formalism is 
presented based on this apjnoach, following the concepts of Refs. [54, 194, 190, 193].

First some general features of Green’s functions in electronic strnctnre calcnlations 
are i)resented. Then the Green’s function for the particular system consisting of a 
scattering region attached to senii-inhnite leads is introduced. The spectral function 
and the density of states for such a system are i)resent('d in a Green’s function for- 
ninlation, followed by the ecpiations for the occupation of the states in the scattering 
region when the leads are out of equilibrium. The way to obtain the cairrent through 
the scattering region is outlined, and the transmission coefficient is introduced. Then 
the equations are expanded to the case where the leads are two-dimensional (2D) 
surfaces. Finally some notes on the implementation of the NFGF formalism in the 
ab initio electronic transport code SMFAGOL are given [Gl, 68]. SMFAGOL is the 
code used in this work.

4.1 Green’s functions: basic properties

A description of the irse of Green’s functions in solid state physics can be found in 
a number of books [194, 54, 183, 182], here we just present the general properties of 
Green’s functions relevant to the NFGF formalism. W(' assume that tin? system is 
described l)y the single-particle Hamiltonian H of Fcp (2.61)

H Vy, = En S 'ipn, (4.1)

where the A^„-dimensional vectors are the single-particle wave functions with eigen
value and S is the overlap matrix. Since both H and S are Herniitian the are 
real. The '0,( are norniahzc'd in such a way that the orthogonality relation becomes 
•iplSi/jm = The corresponding completeness relation is then '^n‘4’niJ-’nS = Ia^u) 
where is the A^„ x identity matrix. The retarded Green’s function G is then 
defined as [194, 54]

G{E) = [{E + iS)S- H]-\ (4.2)

with S 0+. The advanced Green’s function G^ is dehned in the same way with 
6 0“, so that for real energies E we have G^ = Gb The Hamiltonian can be
written in its spectral representation as

Nu

H = J2En SMlS,
n=l

so that the corresponding retarded GF is
Nu

G{E) = 5] 1

ri=l
E + iS — E.,

-'Mi-

(4.3)

(4.4)
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We note that if H and S are both real, then also the ■071, made real, so that
G{E) is symmetric and G^{E) = G*{E). The spectral function is defined as

A{E) = i[G{E)-G\E)], (4.5)

and it can be seen as a generalized density of states [54], In fact, by using the specdaal 
representation of G{E) it can be rewritten as

Nu
A(E) =

n=\
Nu

= 2E

1
E + i6 - E, 

6

-i’ni’i -
1

E-iS- E,

^^^{E-E„y + 6^

aiul in the limit S ()+ this becomes
Nu

(4.6)

(4.7)

AiE) = 2TTY,HE-Er,,)iJ^n^i. (4.8)
77.= 1

With this result, and by using the normalization of the the density of states
N = ^{E — E„) can be written afas

N(E) = ±Tr|.4(B)Sl. (4.9)

As shown in Sec. 2.2.4 the total DOS can be split np in the contributions from the 
single orbitals, the so called projected density of states (PDOS), in the following way

Nu
N{E) = Y,N,{E), (4.10)

with the PDOS for orbital //,, defined as

, Nu

K(E) = (4.11)

Ecls. (4.8) and (4.9) show that the spectral function, and therefore also the GF, 
contains all the information about the states of the system. We also note that A{E) 
is a positive semidehnite matrix, since all its eigenvalues are greater than or equal to 
zero [see Eq. (4.8)]. The density matrix [Eq. (2.70)]

Nu

p (4.12)
71=1

can be eciually expressed as function of A{E). If it is assumed that the system is 
in thermal eciuilibrium with th(' environment, for a system of Fermions one obtains
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''hi = f{En), where f{En) is the Fenni-Dirae distribution caleulated at the energy 
En, given in Eq. (2.68). At hnite temperature the Fermi energy in the Fermi-Dirae 
distribution is replaeed by the chemical potential [70], however we assume that T ^ 0, 
so that the two (piantities are identical. The use of a finite temperature in our 
calculations has only the role of smearing out the region of occupied states in order 
to improve convergence for metals. Moreover in the calculation of the current (Sec. 
4.4) it makes the results less sensitive to noise.

Using E(i. (4.8) the density matrix can then be written as

P = ^ / dE f{E) A(E). (4.13)

where the energy integral is over the entire real energy axis (from — oo to cx)). The 
Fermi energy is defined implicitly by the nnmber of particles in the system A^e via 
E(i. (2.72). At ecinilibrinm the knowledge of the spectral function therefore nnicinely 
determines p and c-onseqnently all the ground state i)roperties of th(> system. We 
note that due to the assnmption of a thermal ecinilibrinm with a reference system 
p is imi)licitly a time averaged (inantity. For a system out of ('(inilibrinm the same 
argnment can be applied, the only difference being that the wav(' functions are 
split up into sej)arate sets, in local (>(jnilibrinm with only one of the reservoirs, with 
diflerent local Fermi energy. We note that out of ecinilibrimn the fnnctional relation 
between a given p and its Hamiltonian is not known, sinc(' the KS Hamiltonian is 
constructed assuming that the system is in the groimd state. However we assume 
that the DFT Hamiltonian [Ecj. (2.56)] is valid also out of equilibrium.

4.2 Green’s function for the scattering region

The first step towards a non eciuilibrium transi)ort theory is to split up the system 
into separate subsystems. The scattering region, also calk'd the “extended molecule” 
(EM), is the central i)art and interacts with all the other subsystems, each one corre
sponding to a separate lead. It is assumed that the leads do not interact directly with 
each other, but they are connected through the EM. The idea then is that each lead 
is in local thermal equilibrinm and has a corresi)onding chemical j)otential. The leads 
are further s{)lit up into a set of left and right leads, wlu're the difference is that the 
matrix elements representing orbitals of the left leads have indices that are all smaller 
than the ones of the EM (i.e. they are on the “left” side of the matrix), whereas for 
the right leads they are all larger (i.e. they are on the “right” side of the matrix). 
This subdivision is not necessary, but it .somewhat helps in s])litting up a real physical 
system. To keep the notation simple, in the following we restrict our attention to a
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Figure 4.1: Schematic representation of the two-terminal device comprising the left lead, 
the extended molecule, and the right lead.

system with just one left and one right lead. The fundamental eciuations are however 
also introduced for an arbitrary number of leads. A schematic representation of such 
a two-terminal system is shown in Fig. 4.1. This is also the system used in most of 
the ealcnlations in this work.

The Hamiltonian H of the two-terminal device has the structure

(4.14)
H\, H\m b 

= I Hmr

b Hnu Hu

where //j, and //h are the Hamiltonians of the isolated left and right leads respect!
//m is the Hamiltonian of the isolated EM. //lm is the hopiring Hamiltonian between 
the left lead and the EM, and Hmr is the same for the right lead (see Eig. 4.1). Since 
H is Herniitian we have ^rm = The zero matrices rej)resent
the fact that there is no direct interaction between the left and the right lead. The 
overlap matrix S has the same structure as H

Sh -Sum b 
S = I S'ml -Sm -Smb. 

b ^RM ‘Sr

In order to sim])hfy the notation we define the K matrix as K 
which in block form reads

Ar Arm b 

A = I A MR Am Amr 
b A RM A R

(4.15) 

H - {E + ?A)‘S,

(4.16)

We note that K ^ lO for all 8 ^ 0, however as we take the limit S O'*" the matrix 
becomes Herniitian, so that I\ — A’i for (i = 0.
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By using the general result for the inverse of such a block matrix given in Appendix 
B [Eqs. (B.2) and (B.3)] the retarded Green’s fnnction, G = [{E + id)S — H]~'^ = 
— A'“\ for the whole system can be written as

G =
Gl + TimGmTml 

GmTml 
TruGuTml

TlmGm
Gm

TrmGm

TimGmTmr

GmTmr
Cr + TrmG mTmr

(4.17)

Here

G, = - A'-l ^'^1. >
Gh = -K -1

(4.18)

(4.19)

are the GFs of the isolated left and right lead respectively, and

Trm = Gr a rm , (4.20)

Tmi. = A MR Gr, (4.21)

Trm = Gr Arm, (4.22)

Tmr = A MR Gr. (4.23)

These 7^-Matrices are generally called transfer matrices (see also Sec. 5.1.2). The GF 
of the extended molecule Gm is given by

Gm — ( — Am — Fr — Fj (4.24)

Here the left self-energy Fj^ and the right self-energy Fr have been introduced [54]. 
These are defined as

Fr — A ml Gl Arm, 

Fr = A MR Gr Arm.

(4.25)

(4.2G)

They are non-Herniitian matrices and determine how the states in the FM are modi
fied by the interaction with the leads. The Herniitian j^art causes a shift of the FM’s 
eigenvalue spectrum, and the antihermitian part leads to a broadening of the energy 
levels in the FM [54]. This will be discussed in more detail below and in chapter 
6. The algorithm for constructing the self-energies for semi-inhnite, periodic leads is 
presented in chapter 5. For an arbitrary number of leads, Meads, Fcp (4.24) for Gm 
becomes

Gm = -Km - ’ (4.27)
n= I
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where S„ is the self-energy for the n-th lead. If we define the effective Hamiltonian 
of the EM as

^leads

— Hu + E„,
n=l

(4.28)

then the Gm fan be written as

Gu = [{E + t6)SM-HuM -1 (4.29)

The GF for the EM can therefore be viewed like the one for an isolated system, with 
the only difference tliat 7/m fo be replaced by the effective Hamiltonian //M.efr- 
This takes into account t he effects of tlie leads onto the EM.

For a two-terminal device the full GF G, and with it the properties of the wliole 
system, can therefore be determined by calculating G^, Gr and Gm- Once G is 
known the density matrix of the whole system can be calculated via the si)ectral 
function [Eq. (4.13)]. Therefore the GF formalism is a way of solving the Kohn- 
Sliani problem without calculating the eigenvalues of H. Just as in a standard DFT 
calcnlation however the density matrix and tlie Hamiltonian H have to be calculated 
self-consistently. We now assume that all the i)arts of H, excej)t Hm, are indei)endent 
of the charge density in the scattering region pm- This assumption is valid if the 
EM is chosen large enough, so that changes to the charge density in the center of 
it do not affect tlie Hamiltonian at its tionndaries. Ecinivalently the requirement is 
that all charge flnctnations in the center of the EM are screened once its boundaries 
are readied. For metallic systems witli a short screening-lengtli this recinirement 
is fnlhlled in a few atomic layers, for seniicondncting systems however the screening- 
lengtli is very large, so that also the size of the EM must be increased accordingly [55]. 
In all onr calculations we tlierefore use metals at the boundary of the EM in order to 
keep the system size small. Tlie main advantage resulting from this assumption is that 
the self-energies neeil to be calculated only once at tlie beginning of the calcnlation. 
The matrices pm and //m need to be calculated self-consistently for the given set 
of self-energies. The GF scheme therefore allows ns to calculate the properties of a 
system for a given set of boundary conditions, set by the self-energies.

In order to obtain pm for the ground state [see Ecp (4.13)], we first need to evaluate 
the sjiectral function for the EM

Hm — '/’(Gm — GIJ. (4.30)
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Am can also be rewritten in terms of self-energies as

= i Gm(Gm ^ ~

— i Givif—— S[ — E|^ -p Am -f- E|^ + ShJgI^

= i G„(El - s|, + Er - E[,)Gt + 2i GmSmGIj, («1)

where we have used Ecp (4.24) and the fact that for real energies A, and Hermitian 
matrices //m and Su, we have A'm — /\,^ = — zzoom 
right F-inatrices [54]

A'^ = —2i8S\!\. We now introduce the left and

hr = 

Tr = Er - E

(4.32)

(4.33)

which are proportional to the antihermitian part of the self-energies. Fr and Fr are 
Hermitian, jjositive seniidehnite matrices. With these dehnitions in hands Hm can be 
written as

Am = G'M(ri, + rR)G[^ + 26 Gm<S'mG[,. (4-34)

Following an analogous procedure it can be shown that the positions of Gm and G[j 
in F(i. (4.34) can also be interchang(Hl

— ^'M(ri- + I^OGm + 2(5 G^jS'mGm.

For an arbitrary nnniber of leads Fcj. (4.34) c-an be generaliz(!d to

Am = Gm G[,[ -h 26 GmAmG^,,.

(4.35)

(4.3G)

Am is therefore proportional to the sum of the F-matrices of all the leads. In Secs. 4.3 
and 4.4 it will be shown that these describe the rate of in- and ont-llow of electrons 
from/to the leads, and can therefore be regarded as ’’coupling” matrices to the leads.

The next assnmption is that the leads are very large, so that they can be ap- 
I)roxiniated as senii-inhnite objects, i.e. each lead has one end joining the scattering 
region, whereas the other end rims to inhnity. In this way the density of states of 
the leads forms a continiunn. As a consequence of the coiqiling to the leads, for most 
systems also the spectrum of the FM becomes continnons, which imjilies that there 
are no poles in Gm- This means that the limit 6 = (1 can be taken in the matrices A'm, 

A'lm and A'rm. Moreover, the second term in Fip (4.34) vanishes, since this only 
contrilmtes when there are poles in Gm (see chapter 6). Only if there are localized 
states (also denoted as bound states) in the FM that are not coupled to the contin
uous spectrnm of the leads, then there will be poles in Gm- hi that case the limit



Non eciuilibrium Green’s fnnctions 75

(5 = 0 can not l)e taken in A'm, and the second term in £(]. (4.34) will not vanish. 
This will be discussed in detail in chapter 6. In the remaining part of this chapter we 
assnme that there are no bound states in the EM.

Another consecinence of the inhnite size of the leads is that the Fermi energy is 
now set by the leads, which also act as electron reservoirs. Whereas in a normal DFT 
calculation the nnniber of electrons in the system is fixed and determines the Fermi 
energy via Eq. (2.72) [Eq. (2.83) for periodic systems], now the opi)osite is trne: the 
Fermi energy of the leads determines the mnnber of electrons in the EM.

4.3 Out of equilibrium occupation

The GF formalism described np to this point is jnst an alternative way of solving 
the ground state KS problem for a given set of bonndary conditions, set by the 
leads self-energies and by their common Fermi energy. If the EM joining the leads 
is removed, then each lead is independent and has its own Fermi energy. If the EM 
is then added back again the system is out of eciiiilibrimn, and this will cause a flow 
of electrons trying to equilibrate the system to one common Fermi energy. However 
due to the infinite size of the leads it will take an infinite time to reach equilibrium. 
The system will rather reach a non equilibrium steady state with a constant flow of 
electrons through the EM. In this section we derive the NEGF etpiations for the charge 
distribution in the EM at steady state. The basic idea is that the states in the leads 
are occTipied up to a local Fermi level, and the occupation of the states in the EM is 
then obtained by the difference between the inflowing and the outflowing electrons. 
First the spectral function is rewritten in a form that maps each of the states of the 
system as originating from one particular lead. The occui)ation the states is then 
determined by the chemical potential of the lead they originate from. We note that, 
in contrast to to ground state DFT, in this approach there is no energy minimization 
princii)le that gives us the correct occupation, i.e. the variational i)rinciple does not 
hold.

4.3.1 Wave functions

The spectral function contains information about all the wave functions in the system 
at a given energy E. Here we split uj) these wave functions into those originating from 
each of the leads. Since the leads are semi-infinite, they have a continuons spectrum, 
so that for each energy E there is a flnite mnnber N\XE) of states (pL,„, in the left
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lead with

•Al 'T’L.n = A5l ^h,n n G {!,. ...V,,(£)}. (4.37)

In the same way the right ]lead has 1Vr(A) states that satisfy

= ESk T’R.n n G {1,. ..,iVR(i7)}. (4.38)

We note that (^l „ and n are functions of E. When the isolated leads join the; EM, 
the wave functions will however be different due to their interaction with the EM and 
the other leads (indirectly). The wave function for the entire system 0 satisfies the 
KS Schrodinger-like ecination

[H - ES)'il} = 0. (4.39)

As a matter of notation we subdivide 0 into a three comi)onents vectoi-

(4.40)

where •</;*" (v^*^) is the part of the WE extending over the left (right) lead, and is 
the part extending over the EM. The wave fmictions are now split up into the ones 
originating from the left lead -01,, and the one originating from the right lead Vdr- We 
write '01^ as [194, 193]

(4.4i;

where 0,^ has the dimension of the full infinite system (EM plus leads), and it corre
sponds to the change in WE due to the jjresence of the EM. In an analogous way '0h 
is written as

0 j +<. (4.42)

This is just a way to rewrite the solutions, however the use of the retarded GF will 
allow us to associate the WFs as originating from a given lead.

The '0^^^ then satisfy the equation

0
:w-BsX„ = — A ML 

0
(4.43)

where we have used Ecp (4.37) and the definition of K. There are two sets of solutions 
to this equation [194]. The hrst set is obtaiimd by mnltiplying Eq. (4.43) with the
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retarded GF from the left

= G
0

^■^ML <dL,n 
0

(4.44)

and the second set is obtained by multi{)lying it with the advanced GF

0
Kn = I KmL VUn 

0
(4.45)

The physical difference between the two solutions is that the first describes waves that 
flow from the left lead into the EM, and the second describes waves that flow from 
the EM into the left lead [194]. This will be proved in Sec. 4.4, where we will show 
that the probability current associated to the is positive (i.e. electrons flow
from the left lead into the EM), while the one associated to the {'0Ln } negative. If 
there is no right lead attached to the scattering region these solutions are identical. 
Since the goal is to distinguish the solutions originating from a given lead, we use the 
first set of solutions, so that we set [194]. By using the solution for G of
E(i. (4.17), we then obtain for the WE of the entire system

1l + Gm
= I Gm I

F'rm Gm

(4.46)

where li, is a unity matrix with the dimensions of the left lead (it is therefore infinite 
dimensional). In the same way we obtain the wave functions originating in the right 
lead

(
TimGm F.MR \

Gm F.MR I (4-47)

Hr + Fjim Gm a MR /
with 1r being the unity matrix with the dimension of the right lead.

4.3.2 Spectral function

Since the spectrnm of the leads is continuous their si)ectral function [Eq. (4.8)] can 
be written as

Nl(G
K = > (Gr - G[) = 27r 5] AfuniE) ipL.nA.rV

n= 1 
Vr(/?)

"4h = i- ^Gr — G|^^ = 27r A/’r,„(E') ‘dR,ri.<dR,n

(4.48)

(4.49)
n= 1
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Here and A/pi,ri(£') are the density of states for the individual states </5{L/R},,i
of the isolated left and right leads respectively. We now verify that the combined 
sets and contain all tlie possible solutions for a given energy E by
using them to explicitly calcnlate the spectral function. If the two sets contain all the 
possible solutions, the SF can be written as

where

-4 — + /1r,

Nl{E)

= 2n ^ AfL,n{E) '0L.rt0L.n-

n= 1 
Vr(E)

An = 27r ^ MuniE) '0R.n'0H,„.

n=l

Using Eq. (4.46) Ai reads

1l + TI.mGm Aml Nl{E)

2nAi ~ I GmAml
TilmCmAmr y Y r!=l

( ll. + ■^'^ml^M^LM ’ -^'^ML^ll - )
/ 1], + F'lmG'mAmi^ \

= i I GmAml 1 (G'l. — G^) X
\ ^rmG'mAml y

In the same way we get for TIr 

tin = t
TlmGmEml

GmEmi. I {Gr — Gr)^ X
1r + TrmGm/^ML

( •^'■ML^M^LM - EIji^GIj , 1r + ) ■

(4.50)

(4.51)

(4.52)

(4.53)

(4.54)

It is now straight forward to verify that Ar + ^Ir = i{G — G^), with G given in Ecp 
(4.17). This confirms that {VT.n} and {0R,n} contain, for a given energy E, all the 
states of the entire system. We note again that this result is only valid if there are no 
localized states in the EM, so that the second term i)roportional to S in Ecp (4.34) is 
zero.

With Eq. (4.53) and Ecj. (4.54) the SF of the EM can be sjdit up as

zIm — ^ML + ^MRi (4.55)
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where

TIml = (4.5G)

is the part of the SF generated by states originating from the left lead. These states 
describe a flow of particles from the left lead into the EM and further into the right 
lead. In the same way

^MR = G'mFrG'J^ (4-57)

is the part of the SF generated by states originating from the right lead.

4.3.3 Density matrix

In the same way as the SF also the density matrix of the EM can be split up into the 
components originating from the single leads

The individual parts are

Pm — Pml + Pmr-

NlAE)

(4.58)

PML = f dE ^

•' n= 1
.. NniK)

PMR = dE P^-niE) Afn.niE)

(4.59)

(4.60)
n=\

with being the part of the WF extending over the EM as defined in E(i.
(4.40). The occupation number P{L/R},n(E’) lies between 0 and 1 and determines the 
occupation of each state. We now assume that the left and the right leads are in local 
thermal equilibrium, and therefore have a local Fermi energy £'f,{l/r}- Then each of 
the states i/ipyR}(E') has a probability of being occupied given by the Fermi distribu
tion /{i./r}(E') of the lead it originates from. Here /l(E') [/r(^)] Fermi-Dirac
distribution with the Fermi energy equal to Ep i^ {Ep^n). Since the {'tpL,n} describe 
states originating from the left lead, we have ,,(£’) = fh{E), and analogously we 
have p^ r,{E) = fn{E). This is one of the central apinoximations in the NEGF for
malism [54]. It also allows the introduction of a bias voltage VJ)) which is defined as 
the difference of the Fermi energies of the two leads divided by the electron charge 
c, so that eVJ, = E\? i^ — E'f.r- Since the energy eigenvalue spectrum of the entire 
system is only defined uj) to a constant, we can set the energy scale of the system 
by using the Fermi level of the system at ecpulibrinm, Ey, as reference and setting 
F'f.l = Ey + cW/2 and Er.r = Ey - eVy/2. This is the convention used throughout
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this work. We can therefore write

hML — dE ME) I
n=l

1
— ^ / <IE jiXE) Aml,

and in the same way

hMR dE ME) A MR-

(4.61)

(4.62)

We now introduce the lesser GF for the EM, [54, 183, 194], which for such a 
system is defined by

g'm — Gm [/L(£')ri^ + /H(£')rR] g[,j. (4.63)

By using this definition, and Ecjs. (4.58), (4.61) and (4.62), the density matrix of the 
EM becomes

= j (4.64)

This is the central ecjuation of the NEGF formalism [54], and allows one to obtain the 
charge density of the EM attadied to leads also out of eciuilibrium. If all the leads 
have the same Fermi energy, then we recover the eciuilibrium r('sult of Ecj. (4.13).

The same procedure can be rej)eated for an arbitrary number of leads, in which 
case tlie total lesser GF becomes

^^leads

G5 = » Cm ( ^ /„(fi)r„ I GV (4.65)

4.3.4 Equilibrium and non-equilibrium charge density

E(i. (4.65) for the lesser GF can be rewritten in a form that is more suited for 
numerical computation, as described in Refs. [61, 62, 63]. We first choose one of the 
leads to be the reference lead, in this case lead with index 1, and add and remove the 
same term to Eq. (4.65)

'^^leads ■^leads ^leads

G5 = ! Gm Y. - y Gi,. (4.66)
n=l n=‘2 n=2

We can rearrange the sums to

(-^leads \ -^leads

Z r., Gl, nUE)-f,{E)] G„r„Gt,.

ri=l / n=2

(4.67)
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Tlie first term is proportional to the spectral function [Eq. (4.36)] times the Fermi- 
Dirac distribution, and corresponds to the lesser GF for a system at equilibrium with 
the Fermi energy ecpial to the one of the first lead Ep^i. This is therefore called the 
(’(inilibrium })art Gb, , of the lesser GF

G'M.eq.l - ~/l(^) (G'm - Gm) ■ (4.68)

The index 1 reflects the fact that lead 1 is the reference lead. The remaining part 
describes the change to the lesser GF caused by the system being out of cciuilibrium, 
and is therefore called the non-equilibrium part of the lesser GF ,

^lead.s

^M.iioq, 1 ^[/„(G)-/,(E)]GM^„Gl,. (4.69)
n=‘2

The total G^j is ecpial the sum of the two parts

(4.70)

Assuming that lead 1 is the one with the lowest chemical potential, then the set of 
E(|s. (4.68) through (4.70) show tfiat all the states in the system are occupic'd up 
to the chemic'al potential of lead 1. No state is occupied above the highest chemical 
potential, and for energies in between the occniiation is given by the non-equilibrium 
charge density and depends on the strength of the coupling to each of the leads and 
its Fermi energy.

We could equally have used any of the other leads as reference lead. In order to 
avoid having to chose a reference lead, we can define the ecpiilibrium lesser GF as the 
average

1 ^leads
—

iV:leads

£ fn(E) (g„ - G*,) ,

r(=l /

(4.71)

and the corresi)()nding non-eqviilibriuin lesser GF G<
M.neq as

^leads
^M,neq /V,leads

^ ^ / [fn{E) - UE)] Gm (r„ - r,„) G[,. (4.72)
n=] m<n

so that G^., - G^, -f G^^
The main advantage of siilitting up G^j into G^, tjhu id mfnand G^, is that G< can be 

analytically extended to complex energies E, and that it has no poles for lm(£') > 0 
[195, 61, 62]. In evaluating the energy integral of Ecp (4.64) to obtain p it is therefore 
possible to replace the integral over the real energy axis by one over the positive 
complex i)lane, where the G^^ is mudi smoother and less integration i)oints are
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needed as a consequence (see also cliai)ter 6). The integral over the non-eciuilihriinn 
part has to be calculated on the real energy axis, however the integration range
only extends over the bias window, where the Fernii-Dirac distributions of the leads 
are ditferent.

4.4 Transmission and Current

4.4.1 Current of a wave function

In the same way as the density matrix also the current can be constructed as a sum 
over the contributions from the single WFs. In this section the current of a single WF 
is calculated, and in the next section the total current is then evaluated summing up 
the contributions from all WFs. Since the WFs 'ip are normahzc'd in suc-h a way that 

the electron charge in the EM, qu, is

(4.73)

where the ^re dehiu'd in Ecj. (4.40). If the ov('rlap terms proportional to
S'lAi and S'hm are neglectcKl this becomes

M (4.74)

In order to obtain the current we need to dehne the time-d('iKmdent WF. We now 
assume that the time dependence of a KS single particle eigenstate with energy E

H 'ip = E S ip (4.75)

is determined by a time-dependent Schrbdinger-like eciuation

H iPt = thS^,
Ot

(4.70)

where the index t in i/jt indicates that this is the explicit time-dependent WF. The 
solution for the time-dependent WF therefore is ‘ipt = The time derivative
of the occupation of the EM for such an eigenstate vanishes:

dqM d'tp^Su'ipf^
Ot Ot

= 0. (4.77)

This can be interpreted as a sort of continuity e(piation [55]: the change in charge is 
zero, because the inflowing current from one lead is ecpial to the outflowing current
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through the other lead. These two currents can be obtained by explicitly taking the 
time-derivative of ^m- The time derivative of is

Of h
i— (^^ML 0^) )

(4.78)

(4.79)

where we have used Ecj. (4.75) together with the definition of H and S [Ecjs. (4.14) 
and (4.15)]. The time derivative of the occupation of the EM then is

dt dt

-

M

dt
A'i.m 0"^ - 0^)

^ (^0’^^ A'rM 0"^ - 0“^ 0‘^) ■ (4.80)

If we interpret this as a continnity ecpiation, as done in Ref. [55], then we can identify 
the change in charge as being equal to the snm of the total current flowing in from 
the left lead and the total current flowing in from the right lead I^:

Oqm
dt

= /•' + /« = 0, (4.81)

so that /'" = —The two currents of the single WFs are [55]

^ (0''' A,m 0"^ - 0“' A-

= ^(0''^Ahm

0'^) ,

,0M _

(4.82)

(4.83)

These equations can also be derived more formally starting from the current density 
operator [192]. For an arbitrary number of leads with integer index n this equation 
(’an l)e generalized to

r = ^ (r^KnM 0“ - 0"'VU;„, 0") , (4.84)

where 7" is the probability current from lead n into the EM, 0" is the part of the WE 
extending over lead n, and 7v{„m/m„} are the corresponding hoi)ping matrices. The 
continuity eciuation then becomes

E (4.85)
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4.4.2 Transmission and Current within the NEGF

The total eurreiit from the left lead into the EM /*" is ecjual to the sum of all the 
contributions from the single WFs

ri=l

^ Nr{E)

+ j<lEY. ME) U„JE) 1,1,. (4.86)

where, by using Eq. (4.82) the current //;„ due to a single WF originating in the left 
lead is

^L.n = (V'’L,n > (4.87)

and the current /j^ „ dne to a WF originating in the right lead 0H,n F

^R,/1 ~ (^dr,n '0R,ri '^\ln • (4.88)

By inserting the exi)licit expressions for ^L.n Rud '0r,„ [see Ecjs. (4.46) and (4.47)], 
and after some algebraic manipulations, we obtain

^L,n — CmAml

MR ^H.n-

(4.89)

(4.90)

Here we have used the definitions of Gm [Eq. (4.24)], Fl [Ecj. (4.32)], Fr [Ecp (4.33)], 
and also the fact that A'm = K'li and A'm{i7r} = -^^{],/r}m- Since Fr is positive 
semidefinite, and using the fact that for any semidehnite matrix M also the matrix 
UMW is semidehnite for a arbitrary matrix U [196], it can be seen that > 0. 
Therefore it is further proved that the states {'0L,ri} describe electrons howing from the 
left lead into the EM (and then into the right lead). This was one of the assumptions 
ns('d in Sec-. 4.3.1 to motivate why the retarded GF was chosen when calculating 
[Eq. (4.44)], and has now been proved. Had we chosen [Eq. (4.45)], obtained 
by using the advanced GF, then the electron how would be from the EM into the left 
lead, so that such states would not originate in the left lead. In the same way it can 
be shown that 7^,^ < 0 [due to the negative sign in Ecp (4.90)], so that the {'0R,n} 
describe electrons howing from the EM into the left lead, which is again consistent 
with cansality.

The total currents dne to the states originating in the left (//;) and right (7/^) lead
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are
I- A'l(K)

E ■
n=l

ME) UtME) i\m

fk =
JVr(E)

dE Y, ME) MAE) dk,n,

(4.91)

(4.92)
n=l

so that /*" = Ik + /r. By nsing the result of Ec]. (4.89) we obtain for //'

= - / dEME) Y MAE) (AL.nELMGlFn GmEmL <PL,n) ■

n=l

Sinee the current for each WF is larger than or at least ecgial to zero, also > 0. 
The (inantity in brackets is jnst a mnnber, so that it can be rewritten as a trace. This 
allows ns to rearrange the matrices to

/t = ) /'IE ME) Tr
/ /Vl(E)

IFuh j Y, MME)‘PUnAh,n j E\M G’^jTr G
\ n = l

M

By nsing Eqs. (4.48) and (4.32) this becomes

Il: = l I dE fAE) Tr (tMMrGu) ■

Here h = 2nh is Planck’s constant. In an analogons way the total cnrrent from the 
left lead into the EM, carried by the states originating from the right lead, is obtained

1 ------ \Ik = -jl dE U{E) Tr {rMlAnGu) ■

and also here we note that /r < 0. We can now dehne the transmission coefficient T 
[54, GO, 197] as

(4.94)T = Tr (r,AiAnGu) , 

with T > 0. The total i)robabihty cnrrent then is

/'- = 1 / dE T(E) IME) - Jr{E)] . (4.95)

This is the well-known Landaner-Biittiker result for the cnrrent through a two- 
terminal device [54]. We note that /'' depends only on the difference between the 
Fermi energies of the leads, which by dehnition is ecinal to the bias voltage eV},- The 
('(jnation shows that only the states in the l)ias window, i.e. those lying in the energy 
range between Ep i^ and Ep n, contribute to the current with an amplitude propor
tional to T{E). We note that if the density of states in any of the leads is zero at a
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given ene^rgy, the corresponding F-inatrix will be zero, and therefore also the current 
will vanish. Since for a two-terniinal device we can define the two-terniinal
current through the EM I as being (‘(jual to so that

= lj 'IE T{E) [fUE) - /„(£)]. (4.96)

We note that this is the probability current, to obtain the electron current, /g, it has 
to be iniiltiplied with the charge of the electron e:

= jJdET{E) !/,.(£)-/„(£)!. (4.97)

If T{E) is constant then Ig = ^TVb. The factor e^/h is known as the “(inantnin 
of coiKlnctance” (nsnally a factor 2 is added for spin), and coi'responds to the con- 
dnctance of a system in the case where T{E) — 1. It also shows that E has always 
the same sign as Cb- In flm si)in-polarized ease the transmission for maiority si)ins 
[T^(i?)] and the one for minority spins [T^{E)] are independent, and have to be evalu
ated separately for each spin. The total transmission then is T{E) — T^E) + T^{E). 
The total enrrent is E = ij ij, where 7^ is the cnrrent carried by the majority 
spins, and 7^ is the one carried by minority sj^ins. These ar(' given by

n = IIdETEE) [/b(7;) -/h(7< )], (4.98)

where a =|, | is the spin index. We note that in chapters 6 and 7, where we present 
transport results for different systems, we omit the index “b” for the bias voltage, so 
that the bias voltage is simply referred to as V, and also for the electron cnrrent we 
omit the label “e”. Moreover cnrrent and voltage are always given in SI tmits, and 
not in atomic units.

For an arbitrary nnmber of leads the inflowing current throngh lead n is

7” = ^ / dEY,Tnm{E) [fn{E)-f„,{E)], (4.99)

where
= Tr (\T„„, = Tv{rnGlr,„GM)- (4.100)

In this case it is not i)ossible to define a single cnrrent throngh the EM, only the 
current through each of the leads has a i)hysical meaning. This means that the 
c‘oiKhictivity is a tensor of order A^ieacis-
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4.5 Brillouin zone sampling

The descrii)tion presented so far is valid for general leads of arbitrary width. For 
two-dimensional (2D) surfaces the system is infinite in the plane perpendicular to the 
transi)ort (PPT). If the system is periodic in the PPT we can apply Bloch’s theorem 
in the 2D-plane. In the following we choose the coordinate system in such a way that 
the X- and ?y-axes he in the PPT, so that the transport direction is along the z-axis 
(this is also the convention used in the SMEAGOL transport code [198]). The general 
scheme for the Bloch state expansion is analogous to the one for three-dimensional 
(3D) crystals described in Sec. 2.2.4, with the only difference that along 2: the system 
is not periodic. Therefore, whereas in Sec. 2.2.4 we denoted the lattice vectors as some 
generic 3D-vector R [Eci. (2.73)], for clarity in this section we explicitly define two 
crystal vectors R] and R2 that sj)an the x-y i)laiie. The full three-dimensional system 
then is obtaiiu'd by stacking these two-dimensional layers along the 2 direction, with 
no periodicity assumed along the stacking direction.

We label the WE coefficients in such a way that Vbrn?7i2a corresponds to the WE 
coefficient for the localized orbital rv (at an arbitrary i)osition along z), in the unit 
cell at position miR] -t-r/;2R2 iu the 2D plane {niy and m2 are integers). The matrix 
KS ecpiation for this system then reads

We can now ai)ply Bloch’s theorem to the wave function in the i)lane

(4.101;

_ „ik(miRi+m2R2) p, 
V^k.mim2a — V^k,o:^ (4.102)

where k is a 2D wave-vector with k.z = 0 (z is the unit vector along the 2-axis), 
whieh lies in the 2D BZ defined by Ri and R2. For a given k-point the KS ecpiation 
then becomes

^ ^ '0k,o' j *^k,oo' 0k,o'i (4.103)
o' o'

where the effective matrices are rlefined as

_ \ ^ TT ?,k(m.iRi+m2R2)
/ ^ -*-*00a,7T? 177720:' ^ (4.104)

77? 1 ,7772

_ \ ^ q 7k(7RiRi+777-2 R2)
/ *~^()0o,777.1 77720 ^ (4.105)

777 1 .777 2

P’or each k-point the effective ffamiltonian and overlap matrices are different, so that 
the system can be viewed as a collection of k-dependent (juasi-lD systems.
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It is now again possible to set up a two-terniinal device, where H\^ and have the 
same shape as the corresponding matrices for a ID system [Ecjs. (4.14) and (4.15)]. 
The only difference is that due to the geometry in this c'ase it is not possible to have 
more than two leads. Therefore all the results obtained in the previous sections of this 
chaj^ter are valid also in this case for each k-point independently. For each k-point 
there is a corresponding lesser Green’s fnnction ^^{E) and a density matrix pk tkat 
satisfy

Pk = ^ / dE G5 k(B). (4.106)

Analogously to Ecj. (2.79) the total density matrix then is

n , , — ^ I Pk- n, p'l<[(mi-m')Ri + (m2-)nDR2]

ihsz Jbz
(4.107)

when; the integral rnns over the 2D BZ.
Following the same procedure as for the ID case lor each k-point we obtain the 

corresi)onding k-dei)endent transmission coefficient Tk(£'). The total transmission 
coefficient T{E) is obtained by integrating Tu,{E) over the 2D BZ

T(E) == —/' 

Jbz
dk n{E). (4.108)

The current is then calculated by using Ecj. (4.97). In the spin-polarized case the 
transmission for majority spins [T^(£')] and the one for minority spins [T^(£')] are 
independent, and have to be evaluated separately for each spin

r(E) = -^ I dkT^{E) 
iffiz Jbz

(4.109)

where a =|, [ is the spin index, and T^{E) is the k-deiK'iident transmission for spin 
a. The total transmission then is T{E) = T^E) + T^{E).

4.6 The SMEAGOL code

The concepts introduced in this chapter apply to any system that can be described by 
a set of localized orbitals of finite range, and the formalism is structurally ecpiivalent 
to a a tight-binding scheme. The only input lu'eded for the NEGF formalism is the 
Hamiltonian of the system in a matrix form. In a tight-bimling ai)proac‘h the elements 
ol the Hamiltonian are parameters, whereas here the Hamiltonian is constructed 
using the KS scheme. The NEGF scheme described in this chapter can be interfaced 
with any DFT code that generates a Hamiltonian in tight-binding-hke form. In the 
SMEAGOL [61, 68] transport code the NEGF formalism has been interfaced wuth
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H(p''
transport

//„ff = //(p"') f f El + Er

p""' = PNr:GF(G-ff)

DP’T ground state

p""' - PKsun

p'"" - p"

Figure 4.2: Schematic diagram of the interface between SIESTA and SMEAGOL. The left- 
hand side describes the path follcjwed by a SMEAGOL calculation, while the 
right-hand side corresponds to the path followed by a SIESTA calculation.

the ab-mitio DFT code SIESTA [G9], which is described in Sec. 2.2. SMEAGOL is 
a joint jtroject between groups in Trinity College Dublin, Lancaster University and 
Universidad de Oviedo. The code is distributed free of charge for academic purposes 
under the “SMEAGOL academic license”. A detailed description of the SMEAGOL 
code is given in Refs. [61, 178], and a i)ractical guide to the use of SMEAGOL is 
described in detail in the “User Guide” that is distributed together with the code (also 
found in the appendix of Ref. [178]). One of the advantages of using the SIESTA code 
for the DET part is that it constructs the Hamiltonian very efficiently even for large 
systems. In fact in SIESTA this operation scales linearly with system size. Moreover 
the Hamiltonian and overlap matrices are constructed in the required tight-lrinding 
like form. Other transport codes, that are based on the same concepts, are described 
in Refs. [62, 63, 199].

Eig. 4.2 shows schematically how the NEGF transport formalism of SMEAGOL is 
interfaced to SIESTA. The calculation starts by setting up a trial initial density ma
trix p"\ With this density matrix the Kohn-Sham Hamiltonian is constructed
in SIESTA. In a normal SIESTA caknilation the output charge density is equal 
to the ground state KS charge density p°'^^ = Pk^{H), which is obtained by diagonal
izing H[p'") and occupying the levels up to the Fermi energy (see Sec. 2.2.3). In a 
SMEAGOL transport calculation however is obtained with the NEGF formalism 
via Eq. (4.64), so that it is equal to the NEGF charge density Pnegf(-^)- In fins 
case two terms are added to H, the first is the bias-dependent part H{Vh), and the 
second part are the self-energies. The way these are calculated in SMEAGOL is de
scribed in ('ha.])ter 5. The Hamiltonian and overlaj) matrices needed to construct the
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Figure 4.3: (a) Model charge density p for a ID system, and (b) corresi)onding Hartree 
potential Vh for different boundary conditions.

self-energies are obtained from a previous run for an infinite bulk system correspond
ing to the leads. Just like in a normal DFT calcidation this procedure is iterat('d 
until self-consistency is achieved, so that Ap = — p‘'‘ is smaller than some chosen
tolerance.

The additional potential //(fob) fo chosen in such a way that it gives the correct 
boundary conditions for the electrostatic i^otential for a finite bias calculation at 
convergence. The basic principle is illustrated in Fig. 4.3 for a model ID system. 
Out of ecjuilibrium the {potential drop in a device is generated by a dipole along the 
transport direction (the 2-axis), generated by the difference in the chemical potentials 
and the resistance of the junction. This dipole charge is schematically shown in Fig. 
4.3(a). In order to obtain the electrostatic jrotential V\\{z) the Poisson ecpiation is 
solved for this charge density p{z). In SIESTA this is done by using a fast Fourier 
transform (FFT) algorithm. This however implies that periodic boundary conditions 
are assumed in all directions, so that the potential is identical to the left and to 
the right end of the unit cell. For the ID charge distribution of Fig. 4.3(a) the 
resulting Hartree potential foH^^(2;) is the black curve in 4.3(b). It can be seen that 
indeed fo|j*'^(2i) = fo|P^(2r), where z\ is the position of the left end of the unit 
cell, and 2,. corresponds to the right end. For a transport calculation however the 
necessary boundary condition is foH(2|) = V\\{zy.) 4- efob [green curve in Fig. 4.3(b)]. 
Since the Hartree potential is only defined up to a constant and a term linear in 2, 
this boundary condition can be unicpiely obtained by adding the term =
efob (2 — / (2,. — z\) [red curve in Fig. 4.3(b)] to the potential calculated with
the FFT. By adding fo'‘^'"f^(2) to the SIESTA Hartree potential the correct boundary 
conditions for the electrostatic potential are obtained in SMEAGOL.

We conclude this section with a note on how the integral of Ecj. (4.64) is calculated.
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Figure 4.4: Path of the contour integral used in SMEAGOL.

In order to reduce the conipntational effort the lesser GF, is split up into its 
ecpiilibrinni part ^ [Eq. (4.71)] and its out of txiuilibrium part [E(|. (4.72)].
The integral over G^j is non-zero only in the bias window, which is the energy range 
where f\iE) ^ fniE). We note that even if this energy range is rather small, the 
number of integration points can be very large, especially if G^j has sharj) peaks 
(see chapter 6). The np])er bound of the integral of G^, ^ can also be bound by 
the Fermi-Dirac distribution with the largest Fermi energy, however the lower bound 
has to be lower than the energy of the state witli the lowest energy in the EM. The 
integration range is therefore rather large, typically of the order of a few tens of eV. 
Moreover also G^, can have sharj) i)eaks for real energies, esi)ecially if there are 
localized states, so that a very fine integration mesh would be needed. However since 

eci analytically continned for i)ositive complex energies (see Sec. 4.3.4), it
is i)ossil)le to j)erform the integral as a contour integral along the j)ath indicated in 
Fig. 4.4. The integral along G], which is the one to evaluate, is equal to the sum 
of the ones on C2 and on G3, i)his the contribution coming from the i)oles enclosed 
in the i)ath of the com[)lex integral. The ui)i)er bound of G3 (corresi)onding to the 
lower bound of G2) is chosen in such a way that all the Fermi-Dirac distributions are 
ai)i)roxiniately zero above that energy. The integral over G2 can therefore be assumed 
to be zero. Since for energies with i)ositive imaginary i)art G^ has no i)oles, the 
only i)oles inside the contour are the ones of the Fermi-Dirac distributions (Matsubara 
frequencies [200]). These are found where 1 + = 0, with x = {E — Ep {/p/^})/T,
which is the case for x = i{2n + l)n {n E N). The j)oles are therefore found for 
Re(F') = F'pq/p/q and 1111(7?) = (2n -|- l)7rT. The distance in energy between two 
I)oles is 2nT, so that the number of jioles inside the contour is jirojiortional to T. For 
T = OK it is not jiossible to iierform this contour integral, since an infinite iiumber of
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poles would have to be added. In SMEAGOL the integral over C\ is replaced with the 
one over Cs, adding also the contributions from the poles. By doing this the number 
of integration i)oints is drastically reduced, usually less than about 100 points are 
needed for this nnmerical integration. If we use room temperature for T, then the 
number of poles used is usually of the order of a few tens.

4.7 Limits of the NEGF formalism

We conclnde this chapter by listing some of the limits of the NEGF formalism used 
in conjunction with DFT, as described in this section. Although this scheme works 
well for many systems, there are many cases where it leads to erroneous ])r(‘dictious. 
We note that in this C‘hai)ter we have only outlined the NEGF concepts for elastic 
transport. Inelastic effects, caused for example by electron-phonon or electron-i)hoton 
scattering, can however in principle be included in the NEGF formalism in a mean- 
held type approach [54].

First we note that it is assumed that the single'-partic'le KS-eigenvalues corresi)ond 
to the energy levels for the real interacting-electron system (an assumption which is 
usually made also in gronnd state DFT calculations). Furthermore it is assunu'd that 
the KS Hamiltonian is also valid out of eepiilibrium, although this Hamiltonian is 
derived only for the ground state. An extensive discussion of this toi)ic can be found 
in R('f. [201]. There it is shown that as a first approximation the KS Hamiltonian 
can be used for transj)ort calculations, but that by doing this a few contributions to 
the electron transport are neglected.

If one still insists in using DFT as a single particle theory, the problem of the 
correct i)osition of the KS-eigenvalues must be faced. Just as in ground state DFT, 
for many systems the LDA or GGA exchange correlation (XG) potentials do not give 
the correct results. The transport and charging projjerties critically depend on the 
position of the energy eigenvalues. However if local XG-potentials are used these are 
often at a wrong energy, and this for example causes major errors in calculations 
of transport across molecules [93]. Moreover, since LDA and GGA do not correctly 
reproduce the derivative discontinuity (see Secs. 2.1.3 and 2.1.5), weakly coui)led 
states can be fractionally charged, whereas the charge should always be integer for 
such systems (or at least very close to integer) [202]. The use of more advanc('d XG- 
functionals however should solve these problems, and the possibility of the use of these 
for transport i)roblenis is a currently active area of research. The ASIG XG potential 
(Sec. 2.1.5) does usually imj)rove the alignment of the energy levels, however it still 
fails to describe the derivative discontinnity [93].
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Another limit is the fact that the NEGF uses a single particle i)ictnre to describe 
the electrons. For this reason it can not correctly describe transport through very 
weakly eon[)led states, like (inantnm dots in the Gonlonib blockade regime, even if 
an approi)riate XG potential was used. In this eases many-body effects, that are not 
inelnded in the NFGF formalism described here, may i)lay an important role. The 
trans])ort properties of these systems are nsnally ealenlated using a niaster-e(ination 
approach [2t)3, 204, 205, 20G, 207].

In many systems localized states are fonnd in the FM, that are not coupled to 
the leads. The oeeni)ation of such states in the FM is not defined within the NFGF 
formalism. In ehai)tcr G we set their ocenpation “by hand” by using a i)hysically 
meaningful ocenpation. However this is not possible for all systems. Time-dependent 
ealenlations show that in this ease it is indeed not always possible to obtain a steady 
state current [187, 208]. In Ref. [209] it is shown that for some systems the NFGF 
prc'diets nmltiple solutions at a given bias voltage, but within a time dei)endent 
api)roach only one of these is found to be stable.

From a [)raetical point of view another source of uneertainty, independent of the 
NFGF, is the fact that the experimental atomic j)ositions of ty{)ieal nano-seale devices 
are usually not exactly known. Since the transport i)roi)erties critically de])end on 
these, tlu' theoretical predictions can deviate drastically from exi)erinient if the atomic 
positions are not the same.

4.8 Conclusions

In this ehai)ter the main concepts of the NFGF formalism for elastic transport have 
been outlined. The NFGF formalism can be used to describe the (piantnin-meehanieal 
transi)ort i)roperties of nano-deviees at finite applied bias potential. The main advan
tage of this formalism is that it allows to determine the bias-dei)endent oecupation 
of the states in the FM, which is not i)ossible using standard ground-state DFT. The 
current can then be calculated by integrating the transmission coefficient over the 
bias window. We have described the j)artieular implementation of the NFGF formal
ism in the ah initio transport code SMFAGOL, which is used for the calculations in 
ehaiAers 5, G and 7. Finally we have listed some of the problems and limitations of 
the NFGF formalism used iu eoujuuetioii with DFT.
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Chapter 5

Self-energies for semi-infinite 
periodic quasi-lD systems

III chapter 4 the leads self-energies (SEs) are introdueed [Eqs. (4.25) and (4.26)]. 
These play a central role within the NEGF forinalisni, since they deterinine the effect 
of the senii-infinite leads on the scattering region. In order to calculate the SEs, 
the GFs for the semi-infinite system, defined in Ecjs. (4.18) and (4.19), are needed. 
It is now assnmed that the coupling Hamiltonian matrices //lm/rm (aEo generally 
denoted as hopping matrices) have a strictly finite range, so that only a finite nninber 
of atomic layers in the leads are coupled directly to the EM. In this case only a limited 
number of matrix elements of the leads GF are needed in order to obtain the SE via 
Eijs. (4.25) and (4.26). This part of the GF is ealled the surface Green’s function 
(SGF), since the needed matrix elements are those of the terminal surface layer of 
the isolated lead (detached from the EM). In this chapter a conii)lete prescription 
for the mnnerieal calenlation of the SGF and SE of semi-infinite, j)eriodic, cpiasi-one- 
dimensional (qnasi-lD) systems is presented. Moreover a detailed error analysis on 
the SE, as obtained with the presented algorithm, is performed. This work extends 
previous results, generating a robust algorithm to be used in eonjunetion with ah 
initio eleetronie struetnre methods.

Generally the SGFs can be obtained either with recursive methods [210, 211, 212, 
213] or by using a semi-analytic formula [214, 63, 215, 216, 197, 65]. Recursive meth
ods are affeeted by poor convergence for some critieal systems, typically when the 
Hamiltonian for the leads is rather sparse. Semi-analytieal methods instead bypass 
those problems by constrnetion, however major difficidties arise if the hopping ma
trices are singidar or, more generally, ill conditioned. Unfortunately the condition of 
the Hamiltonian is set by the eleetronie struetnre of the leads and by the unit cell 
used, and thus it is largely not controllable. In the original version of SMEAGOL 
the algorithm deseribed in Ref. [214] was used to eonstriiet the SGF. This method

95
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is liowever undefined for singular hopping matrices. By using a generalizc'd singu
lar value decomposition (GSVD) the singularities in the leads Hamiltonian c(nild be 
partially eliminated [68], however due to the inherent instability of the used algo
rithm the number of failures in the calculation of the SGF is still very large. Here 
we present an improved semi-analytical method that overcomes thes(! limitations and 
thus represents a robnst algorithm for (luantum transport based on ab rnit'io DFT 
Hamiltonians. This extended scheme is now implemented in the SMEAGOL code.

In the first part of this chapter the extemh'd algorithm for the calculation of 
the SE is presented. First the construction of the Green’s function of an infinite 
ID system as derived in R('f. [214] is recast into a more general form based on the 
notion of a complex group velocity. Then we present an extension of snch method 
to the calculation of the SGF and SE that is dehned also for the case of singular 
hopping matrices. This largely improves the numerical accuracy. However we find 
that even such an improved scheme sometimes fails if the hopping matrices are close 
to being singular. We overcome this limitation by performing a transforniation of 
the hopping matrix that reduces its condition number k, defined as the ratio between 
its largest to its smallest singular value [217, 218]. This transformation limits the 
maximnm absolute value of the imaginary part of the Bloch wave vectors, increasing 
both accuracy and stability. Two api)roaches are presentc'd: the' first is basc'd on 
a singnlar value ck^conij)osition (SVD), and the second consists in adding a random 
noise matrix of small amplitude to the Hamiltonian. A SVD transformation has 
been previously employed for example to calculate the conipk^x band-structnre of 
long molecules [219]. By using the SVD the size of the Hamiltonian matrix can be 
reduced, so that the computation becomes considerably faster for large systcuns.

In the second part of this chapter we present three examples of calculations per
formed with the new implementation. A detailed error analysis of the scheme is 
performed. The highest accuracy is obtained if no inversion of the nsually ill con
ditioned hopping matrix is involvcxl. We compare the results to the ones obtained 
by using the original method of Ref. [214], finding a considerable improvement. Al
though the algorithm api)ears very robust, our detaikxl error analysis reveals that for 
a given system the accuracy is lost at some specihe energies. This is caused by the 
divergence of one of the SE eigenvalues. The physical origin of this behavior lies in 
the presence of surface states that are very weakly coupled to the semi-infinite leads. 
These surface states appear whenever at a given energy the set of Bloch functions 
(with both real and imaginary wave vectors) for the inhnite (jnasi-lD system is lin
early dependent. In the simplest case this corresi)onds to two Bloch functions being 
ecjual inside the unit cell. A small imaginary part is added to the energy in a small
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//, H, Hn //ok

Figure 5.1: Sdiematie representation of the system with onsite Hamiltonian Hq and hopping 
H\. The overlap matrix has the same structure.

energy range around the surface state. It is shown that this has little effect on the 
transport properties in the high transmission regime, whereas for low transmission it 
has a substantial influenee on the results. Crucially only a very small imaginary part 
is used, and moreover this is added only around the energy of the surface state, so 
that the error can be carefully controlled.

5.1 Retarded Green’s function for an infinite sys
tem

Following the selieme introduced in Ref. [214] the constrnetion of the retarded Green’s 
function for an inhnite (juasi-lD system is now recalled. This is the starting point 
for the calculation of the SGF. It is assumed that the interaction is of finite range, 
so that the Hamiltonian elements between two distant orbitals is strictly zero. This 
assumption is always fulhlled if the localized basis set of SIESTA is used (see Sec. 
2.2.2). The size of the unit cell can then be chosen to guarantee interaction only to 
the first nearest neighboring unit cells. The total Hamiltonian of the system H^z' 
(the integers z and z' label the unit cells along the ID stacking direction) can then 
be written as

i^zz' = ^0 ^zz' + ii\ ^z,z'-\ + ^z,z'+\^ (5-1)
where and //_i are N x N matrices, with N being the nnniber of orbitals
comprised in the unit cell (see Fig. 5.1). If time-reversal symmetry holds then 
H() = T/q, and //_| = //|. We further assume that the overlap matrix Szz' has 
the same structure and range of the Hamiltonian

Szz' — ‘S'o ^zz' + ‘S'l ^z,z'-\ + •S'-l ^z,z'+\, (5.2)

where So,S\ and S-\ are again N x N matrices with the same meaning of their 
Hamiltonian counterparts. In SMEAGOL the matrices Ha, H\, So, Si and S-i 
are obtained from the converged solution of a SIESTA ground state calculation.

5.1.1 Bloch states expansion

The solutions of the Hamiltonian ecpiation for the associated inhnite periodic ID 
system H^z' '^’z' = E Yhz' Szz' VA' Bloch functions '0^ = where Va and
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(j) are iV-diineiisioiial vectors and k is tlie wave vector, which in general is a complex 
number. For a given real or complex energy E there are 2N solutions with wave 
vectors fc,, and corresponding wave functions Each of them satishes

(5.3)

We now define A'^ = ES^, (cv = -1, 0,1). In contrast to the definition of Sec.
4.2 here we do not add a positive infinitesimal imaginary part i) to the energy, so that 
for real energies A'^ = K^. The above equation can then be rewritten as

(Ao + Aic*^" + A_ie — 0, (5.4)

where the additional index R denotes explicitly that the solution is a right eigenvector. 
The corresponding left eigenvector 0]^ „ satisfies the associatc'd eciuation

0[„ (Ao + A'lC^*-" + ATie"**-'") = 0. (5.5)

For real energies we have = (f)\Xkn) = 0R(^n)’
(proi)agating states) left and right eigenvectors are eciual. For complex A, left and 
right eigenvectors are different, describing left- and right-(hx'aying states.

The sets {k,,}, {0H.n} {0n,n} tli^t satisfy Ecjs. (5.4) and (5.5) at a given
energy can be found by solving a (piadratic eigenvahie probk'in [220, 221] of the form

-A„ -A_i \ ^ Jkn f
Iat On J \ Ov Iv

for the right eigenvectors, and

LN On 7 ' V

for the left eigenvectors. Here Hat is the N x N unit matrix, Oa^ N x N zero
matrix (a general i x j zero matrix is denoted as Ojj), and

(l>n,n

L,« 1 1

(5.6)

(5.7)

To,R,n
}• thi.

e 2

_}■ hiL
e 2

cl)| = L,n ( e* 2 —g-iT- A'_i )■

(5.8)

(5.9)

The normalization constant is the scjuare root of the comj)lex group velocity Vn = 
'dkn {h — 1) equal to

i
A* = r 1 ~ ^ ‘) ’

hi = 4>\,^n (*50 + ^le**"* + S_ic 0iq,i

(5.10)

(5.11)
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In the following we assnme that the eigenvectors „ and are always normalized 
to give /„ = 1. For real energies 'e(A:*) = n*, so that the group velocity is real if the 
imaginary {)art of A:„ is zero. Note that, at variance with Ref. [214], Eqs. (5.6) and 
(5.7) avoid the inversion of Ad, so that they eliminate a possible source of singnlarities 
in the calcnlation of A:„, and

The full sets of left {dh.,n} a,nd right eigenvectors {4^R,n} form a complete and 
orthogonal basis. The orthogonality relation is

t f A'l 0N
V 0/v Iv

— ('n^Tirrn (5.12)

where c„ is a constant. This leads to

„ (A'le'^’" - e-^'^’-ATi) 0r,„, = c„ S„ (5.13)

For n = rn this eciuation is only satisfied if c„ = 1, in which case it corresponds to the 
(k'finition of With the chosen normalization the basis is therefore orthonormal. 
The corresponding completeness relation then reads

2N

n= \

. 1 O/v
0/v liv

1/v On
On Iv

(5.14)

and provides the three following nsefnl relations

2Af ^ jJ

n=l
2N

n=l
2N

T ■ • -ik nA_i> -?,e -------— = tN-
^ 7).

(5.15)

(5.16)

(5.17)
n=\

Note that in Eqs. (5.14-5.17) the sums rnn over all 2N solutions. If Ad = a1, and 
A'o = A',) Eqs. (5.16) and (5.17) are equivalent.

5.1.2 Green’s function

The retarded Green’s function of the ID system is dehned by means of Green’s 
eciuation [Eq. (4.2)]

Uzz' [{E + iS) Sz'z" — Hz'z"] — <^zz", (5.18)
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with S 0+ real. In what follows we present and ex[)and, by using left and right 
Bloch functions, the solution to Ecp (5.18) given in Ref. [214] only in terms of the 
right eigenvectors 0k. First we divide the 2N 0k,n vectors into N right-going states, 
with either Iin(A:„) > 0 (right decaying) or Ini(A„) = 0 and 'c„ > 0 (right propagating), 
and N left-going states, with either Iin(A',i) < 0 (left decaying) or Ini(A„) = 0 and 
Vn < 0 (left propagating). As a matter of notation in order to distinguish left- from 
right-going states, in what follows we indicate the right-going states with A, 0 and n, 
and the left-going states with a bar over these cpiantities, i.e. A, 0 and v.

As in Ref. [214] we introduce the duals 0k,n of the right-going states 0K,n he- 
hned by 0k „0K,m = ^nr,u tmh flio duals 0K,n of the left-going states 0k,„ dehiK'd by 

,m — <fnm- H WO define the matrices Q and Q as

(5.19)
Q = ( (/'ll,! (/’R,2 • • • 0R,W ) ,

0 = ( 0R,l 0R,2 • • • 0R.W ) ,

th(m the duals can be obtained by simple inversion;

( 0R,1 0R.2 ••• 0R,iV ) = (Q
( 0R.1 0R,2 • • • 0R,V ) = (0 ) ■

The inversions in Ecjs. (5.20) are usually well dehned, unless Q and Q do not have 
full rank. We will return on this asj)ect in Sec. 5.5, for the moment we assume that 
the duals can always be construct('d.

The retard('d GF calculated in Ref. [214] is then

(5.20)

fhz' =

with the matrix V = =

V = A'_i

E,T=i V ^ z> z'
EILi 0R,ne‘*'’'‘^^“^''0K„ ^ < z',

(5.21)

(5.22)

We now introduce the right transfer matriees Tk and Tk,

T,R
N

Z
Tl=l

N

0R,r ‘0R.ri-
n=l

(5.23)

(5.24)

These are eciuivalent to the bulk transfer matrices introdncf'd in Refs. [212, 222, 213] 
in the context of the recursive Green’s function approach. Note that both and Tk
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have eigenvalnes with comi)lex modnlns < 1. For an integer ^ the following relations 
hold

N

(T«y =
n=l
N

(5.25)

n=\

which allow ns to write the Green’s function of Ecp (5.21) as

.goo z> z'
/-Ft \ Z^ — Zfjzz' =

In the same way V is rewritten as

(Tr) .</()0 z < z'

V = nil = A'-I (r„-‘ - f,,)

(5,26)

(5.27)

Note that althongh the matrices Tr and Tr are in general well dehned, the inverse 
of these matrices is not. In fact, if A'l and A'_i are singular, there are some A:„ with 
lni(A:„) —/ oo, so that = 0 (see Sec. 5.3.1). In this case Tr does not have fnll rank 
and is therefore singnlar. The same argnment holds for Tr. Eq. (5.27) can therefore 
be used only if the matrices A'l and A'_i are not singnlar.

A possible way for overcoming such limitation is by using an ecpiivalent form for 
the Green’s function based on the left and right eigenvectors. The starting point is 
the relation (5.15) that will allow ns to find the connection between the duals and the 
left eigenvectors. Ecj. (5.15) contains a smn over both left- and right-going states. By 
moving the contribntion of the left-going states to the right side of the equation, we
obtain Ynn=i

<?^R.n0L,„ _ \7V
IVn n= 1 IVn

= D, where we have introduced the auxiliary 
matrix D. By mnlti])lying B from the left with either or we obtain respectively 
^Rn = n ^ ^~' ^he matrix D is determined by inserting
these relations into Ecp (5.22) and by using the identity (5.17). The result is S = goo- 
The relation between the dual basis and the left eigenvectors is therefore

^R.n — , ‘^L.riToo* > ^R,,n “ '^L,n9o0 ■ (5.28)

Tills result allows ns to rewrite the Green’s function of Eq. (5.21) in a shorter form

(5.29)fJzz En=i L.n

Z > z' 
z < z’.

This result reiiresents a generalization to complex energies and to systems break
ing time-reversal symmetry of the solution given in Refs. [223, 224] for Hermitian
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Haniiltonians, real energy and an orthogonal tight binding model. I’his derivation 
shows that the Green’s function can be equivalently expressed by nsing the right 
eigenvectors and their duals [Eq. (5.21)], or both the right and left eigenvectors [Ecj.
(5.29) ]. It is thus possible to move from one representation to the other through
Ecp (5.28) that relates the duals to the left eigenvectors. One can then dec'ide which 
representation to use, depending on the specific j)roblem investigated. We note that 
E(p (5.29) has the benefit that (/oc) can dc calculated also in the case where the two 
matrices A'] and A'_i are singular. For those A,'„ where lm(A;„) —> oo the group veloc
ity becomes 't;„ = i and is therefore well defined [h„ = —i ^jA'q^h .,! bn-
Ini(C,() ^ -oo].

As a matter of coni])leteness we show that a representation entirely based on the 
left Bloch functions and their duals 0L,ri and Ih also possible. By multiplying Ecj.
(5.29) respectively by „ and 0L,7t from the right we obtain the two relations

1
0L,n — . .(/oo 0R,nIVt)

1
0L,n — ----

IVf, (5.30)

The left transfer matrices Tr and 71 are now defined as
N

n=l
N

Tl = L.n’

(5.31)

(5.32)
ri=l

and the Green’s function of Ecj. (5.29) can be rewritten as

yzz' =
z ^ 
z ^ z^

(5.33)
.700 (Tl)"-^

.700 iTLY'~"

The structure of Eq. (5.33) is the same as that of Eep (5.20), with the diflerence that 
now (joo is multiplied to the left of the transfer matrix. Finally we extend Eep (5.27) 
and present four equivalent relations for the inverse of e/oo

.7oo = AT, (T,^'-fa) = Ad(f,^^-TH)

= (T,:^~Tl)K-: = (T,:^-Tl)K>. (5.34)

The second of these relations can be shown by niultii)lying E(p (5.16) by from the 
right and then by using Eq. (5.28). In the same way the third and fourth ecpiations 
can be obtained by multiplying eejuations (5.10) and (5.17) by from the left.

In the following we will use mostly the quantities expressed in terms of the right 
eigenvectors only, however the same conclusions can be derived using the left eigen
vectors.
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5.1.3 Density of states

As an example of the use of the Green’s function in the form of Ecj. (5.29) we 
determine the spectral function A and the DOS, J\f, of the infinite (jnasi-lD system. 
The spectral function [Ecp (4.5)] for such a system is

[g - = i gzz' - [gz'z]^ ■ (5-35)

Using E(i. (4.9) the DOS j)roiected on the unit cell z, Mz, then is

L 2'

By using Eq. (5.2) this becomes

A/'z — ~Tr + Az,z-\S\ +ZTT

(5.36)

(5.37)

In general the main contribution originates from the hrst term in the sum, which can 
be in(eri)reted as the onsite; DOS j\fz

= [AzzSo]Ztt
(5.38)

We now calculate A and J\f for real E, so that A'_] = A'| and A’o = A'q. In this case for 
Ini(/i’„) = 0 we have whereas if Ini(A:„) 0 then = d'L(^Vi) = 4>h{Ki)-
In the same way for Ini(A;„) = 0 we; have whe;reas if Im(A:„) 7^ 0 then
0L,ri = ^iXhi) = 0r(^V*)- Therefore for each right defraying state with Im(A:„) > 0 
there is a left decaying state with k„ = k* anel v{kn)* = v{k„)- By using these rela
tions when inserting the Green’s function of Eej. (5.29) in the elefinitlon of Azz', ihe 
ce)ntributie)n fre)m all the elecaying states cancels out. The only remaining contribu
tions come from the propagating states, also denoted as open channels. For these 
k* = kn, k'n = —kn and v{kn) = —'J^(A’n). Whtli these constraints, and by using Eq. 
(5.29), the si)ectral function becomes

N,= y ^ik„{z-z')
0R,r!,0R_„,

^-ikn[z-z')
'0R,n0R,r!) (5.39)

where A^open is fhe number of oi)en channels (number of Bloch functions at a given 
energy with real positive k vector). If there are no open channels Azz' = b and the 
Green’s function is Herniitian. Finally, by using Eqs. (5.37) and (5.39), and the fact 
that the eigenvectors are normalized to give = 1 [see Eq. (5.11)], the DOS at the 
site z = 0 is simply

- ^open -
= - V (5.40)

TT ^ V,, 
n

This is the well known result for the DOS of infinite periodic ID systems [GO].
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5.2 Surface Green’s function and self-energy

The retarded Green’s function gs for a (juasi-periociic system, where the left- and 
right-hand sides are separated at the position z = {) (the left-hand side part extends 
from z = —cx)to^ = —1, and the right-hand side part from 2: = 1 to ^ = cxo, with 
no coupling between the cells located at ^ = — 1 and z — \), can be constructed from 
the Green’s function g for the inhnite chain as demonstrated in Ref. [214];

9s,zz' — (]zz' Szi) %() 9oz' (5.41)

For z' < 0 therefore f/s.zz' corresponds to the GF for the isolated left lead G\^ [dehned 
in Eq. (4.18)], and for ^, z' > 0 it corresponds to the GF for the isolated right lead Gr 
[defined in Eq. (4.19)]. We then dehne the left SGF as g\^ = ^md the right
SGF as gn = gs.ii, so that these correspond to the GF for the semi-infinite system at 
the surface layer.

It is now assumed that the coupling matrix to the left lead [see Ecp (4.14)] 
has the form

/ : \
On 
On

V /
and analogously that the one to the right lead is

(5.42)

^RM —

/ //-I \
On 
On

v
(5.43)

/

The overlap matrices S'{l/r}m are assumed to have an analogous form. This imi)hes 
that there is always one leads unit cell at each end of the EM unit cell (in general left 
and right-hand side lead can however be different). When setting up a SMEAGOL 
calculation such a constraint needs to be fulhlled. This can always be achieved by 
adding a layer of leads on each side of the EM. With this structure of i/{L/R}M ffi(' 
SEs, dehned in Eqs. (4.25) and (4.26), become:

^1. —
^R = -hi g\ih-\.

(5.44)

(5.45)

In this form the SEs are an inherent i)roperty of the leads, since all the (inantities on 
the right-hand side of the ecpiation are themselves properties of the leads. These SEs 
are therefore independent of the EM they are joined to.
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Basic algorithm Extciiflod algorithm

jso
if
Ew
<1

w

Figure 5.2: Schematic diagram of the basic algorithm described in Sec. 5.2 and 
extended algorithm described in Sec. 5.3.

of the

The explicit form of the SGF can be obtained by using E([S. (5.41) and (5.2C)

fjL = {In — TnTi\)

fjH = {In — TiiTi^) goi). (5.4G)

This corresponds to the form derived in R.ef. [214]. Such a result can be simplified 
by using the relations in Etp (5.34) for goo to

(}L = Tr

ga = TnKzl (5-47)

These ecinations mifortmiately are only defined if A'l and A'_i are not singnlar. The 
same problem however does not affect the left and right SE, since they simply become

El — A_iTr, 

Er = A] Tr.

(5.48)

(5.49)

In comitlete analogy the same expressions obtained by using the left transfer matrices 
are Ej, = TlA'i and Er = TrATi. This result is equivalent to those obtained in Refs. 
[212, 213, 216, 215, 197, 65] and derived with different approaches, demonstrating 
the erpiivalence of those to onr semi-analytical formula. Since NEGF-based transi)ort 
codes sini])ly require Er and Sr, onr scheme allows the calcnlations of system with 
arbitrarily conii)licated electronic structure. A schematic tree diagram describing the 

iS involved in obtaining the SE is shown in Fig. 5.2 (“basic algorithm”).
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E(18. (5.48) and (5.49) deiiioiistrate that the SE can be calculated directly, without 
exi)licitly calculating and g\i. In situations where also the SGFs are needed, these 
can be obtained by using the relations

(]h — — [Eo + Si,

,hR = “ [Eq + Sr

-1

1-1

(5.50)

(5.51)

This can be derived by adding one layer to the left and one to the right surfaces 
respectively [210]. In Appendix C.l we show that the SEs calculated with Eqs. (5.48) 
and (5.49) indeed fulhll the above eciuations. Moreover with the use of Ecjs. (5.47) 
and (5.50) we can now regularize E(j. (5.27) also for the case where Th is singular by 
writing it as

g^)^| = -Ao - Si, - Sh- (5.52)

We have therefore a scheme where the SEs are identified as the j)rincii)al (piantities, 
whereas the SGF and tyoo are derived from these.

Wlien we compare the method of Ref. [214] with the ('(luations derived above, we 
notice that now' it is not necessary to calculate the matrix yyoo and its inverse using 
E(i. (5.27) in order to obtain the SE. Since this is not dehiu'd in the case of singular 
Ai and A_i, we expect the method presented here to be more stable and accurate. 
Also the j)roblenis cau.sed close to band edges by the Van Hove singularities in yyoo 
are avoided, since these singularities do not ai)pear in the SGF and SE. Moreover 
the method in Ref. [214] relies on the calculation of the SGF in order to obtain 
the SE, whereas here the SGF is not needed. As we will show in Sec. 5.5, close to 
surface states the error in the SGF is much larger than the one for the SE, so that 
we also expect a large improvement in the accuracy for energies where surface states 
are found.

5.3 Reducing the condition number of Ki and K-1

The accuracy with which the SEs are calculated depends on the accuracy involved 
in solving Ecj. (5.G), a (jiiadratic eigenvalue problem extensively studied in the past 
[220, 221]. However most solution methods have problems if Ad or A'_i are close to 
being singular, or more generally if their condition number k is large. In this case 
some of the complex eigenvalues tend to infinity and others to zero at the same time, 
and this results in a loss of accuracy in numerical computations. When calculating 
Tr (Tr) however the contributions from the staters with lm(A:„) ^ oo [lni(A'„) ^ —oo] 
are vanishingly small. It is therefore useful to limit the range of the eigenvalues
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in sneh a way that the important eigenstates with small |Ini(A:„)| and |Ini(Av,,)| (’an be 

ealenlated aecnrately, while losing precision for the less important eigenstates with 

large |Ini(A:„)| and |Ini(A:„)|. In this section we show how this can be achieved by 
decreasing k.(A'i) and k(A'_i). Here we assume that A'l = A'l,, which is the case for 

real E, so that k{Ki) = k(A'_i). Minor modifications are needed for the general case 

(see Appendix C.2).

In order to obtain k(A'i) hrst a SVD of the matrix is performed:

A'l = USVl (5.53)

Here, U and V are nnitary matrices, and S' is a fliagonal matrix, whose diagonal 
elements ,s„ are the singular values. These are real and positive, and ordered so that 

•‘>r!+i < 'Sn. If .S'niax 1^^ Hie lai'gest siiigular valne and s-,ni„ the smallest one, then the 

condition iinmber is defined as k(A'i) = •Smax/'^miin with A'l singnlar if is zero 

[k,(A',) ^ oo].

We now replace S by an approximate S'svd, whose diagonal elements ssvn.n lire

•‘>svn,n —
Sn

-‘^SVD

^ '^'max ^SV!) 

^ '^’inax ^SVD
(5.54)

and aeeordingly A'l with A'l ^vn = AS'svnHb The tolerance parameter (^svd ii’ ^ 
positive Iinmber that determines the condition nnniber of A'l.svn-

We now jiresent two jiossible choices for .Ssvo- The hrst is to set s’svo = h, resulting 

in A'l svn being singnlar. We can then perform a nnitary transformation in order to 

eliminate the degrees of freedom associated to .ssvn.n = h, and obtain an effective A i 

matrix (A'f'”^) with reduced size for which K(A'f^) < ^he second possibility is to

set ssvi) = •‘’max (^svD, I’d find ^y dehnition we have k.(A'i,svi)) < (i'svD- The aecnracy 
obtained with both strategies is similar, the advantage of using the hrst however is 

that the size of the matrices is redneed, so that for big systems the eompntation is 

mnch faster. In onr implementation we use both methods together, hrst we reduce 

the size of the system by setting ssvo = h, and then, if necessary, we further reduce 

the condition nnniber for the effective system by limiting the smallest singnlar value.

5.3.1 Reduction of system size

Here we set all the M singnlar values s,,, smaller than Smax^^svo fd zero, -so that there 

are Apff = N — M singular values .s„ with -s„ > •Smax'^svD- The transformations needed 
in order to obtain the right SE are now presented (the procedure for the left SE is 

analogons). We apjily the nnitary transformation A''^, = WKzz'U,
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and we detiiie K[ = UU^i svdU, K'_i = WK^i svdU, KqU. Since M singular
values of /vi,svd are zero the transfonned matrices have the structure

K =

K-i =

Alu
©A/Weff 0a/,A/ 

CiVeir,A/

K =
A D 
C D

4>R,n —
0c, n

-'ll,/!

(5.55)

where the dimensions of the new matrices are: A(.ff x A^gff for foi,c> fo-i.c and A, 
A^eff X M for Kl ^^ and B, M x N^fi for K-\ u and C, and M x M for D. Finally 0c,„ 
is a column vector of dimension A^effi and 0u,„ is of dimension M. The transformed 
form of E(i. (5.4) is

(A'' + + K'_,e-^^-) 01,= 0. (5.5G)

Due to the structure of ATi there are M solutions to this ecpiation with e'^'" = 0 and
0c,n = 0. We therefore split up the right-going states into those with finite e**'" 0
and those with ^ikn 0. For the first set, from Ecp (5.56), we obtain

011,ri

with
F„ = -D-i(A'_i,„c-‘^-‘+C).

(5.57)

(5.58)

(5.59)

:5.6())

The 0c,„ are then solutions of an effective system with reduced size

{Kf + A'f C*--" + A'l'le-*'-'') 0c,„ = 0,

where the effective matrices are
A'f = A'i,c - Ad,uF-iC,

A'fi = A'_,,c - FA>-'ATi,„

Kf = A- BD-^C - A'i,uD-iA'_i,„.

We can now solve the quadratic eigenvalue problem [Ecp (5.6)] for this effective system 
to get the set of A^gff eigenvectors C?c = ( 0c,i 0c,2 4>c,N^tf ) and eigenvalues 
{g2A.„} j-jjg right-going states. The M eigenvectors of the second set of solutions 
with = 0 are given by 0c,ri = 9 with a general 0i,,„. The set of eigenvectors of the 
full K' matrix therefore is

n = {
^ V Q- Qo

with Q,, = ( Fi0c,i F20c,2 ... ), and Qo is a general matrix of solution
vectors for the states with = 0. From this we obtain the set of duals

(5.61)

fr^ = Q,-1 0
-Qo'QuQc' a

Neff,A/
1-10)

(5.62)
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Figure 5.3: Absolute value -J of the diagonal elements of the transformed right SE for 
different values of ^svn-

(5.63)

Using these results we ean now calculate the transfer matrix Tg of the transformed 
system

^ f 0c,n0l,n O/Veff.A/

where we have also used the fact that = 0 for the second set of solutions. We 
note that setting the M smallest singular values ,s„ to zero causes the last M columns 
of to be zero too. Moreover the explicit calculation of Qn is not needc'd in order 
to obtain T^. From this and Ecp (5.49) we obtain the right SE

E' =
yefr

where

©ARVeff

yVeff

0 Neff, A/
0a/,a/

srf = AT” XI

(5.64)

(5.65)
n= 1

is the SE of the effective system.
The structure of shows that by apirlying this Tinitary transformation we have 

ordered the elements of the SE by absolute size, moving those columns (rows) with 
the smallest values to the right (bottom). By setting the smallest singular values of 
A'] to zero those columns and rows of the SE with small values have also been set to 
zero. This is illustrated in Fig. 5.3, where the absolute value of the diagonal elements 
of the transformed self-energy |E',:j is shown for a (8,0) zigzag carbon nanotube at 
the Fermi energy Ep (see Sec. 5.4 for a detailed description of the system). The jE^ 
are basically identical for different d'svn ^ip to i = and indeed by increasing the 
value of (^svi) more diagonal elements of Eyy are set to zero. We note that Apfr is of 
similar size as N in Fig. 5.3, since the system is rather short along 2 and a small 
basis set is used (i.e. N is small). For large systems and rich basis sets the ratio
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will decrease. The jhiysical iiiteri)retatioii of the zero coluiuns and rows in the 
SE is that the M states with —> oo decay infinitely fast, so that the interaction of 
those states is limited to the site they are localized at. Finally the SE of the original 
system can be obtained by applying the inverse nnitary transformation

Eh = UE'U\ (5.66)

and in contrast to E'j| the matrix Eh is a dense N x N matrix.
Note that in order to obtain the left SE we i)erforni the unitary transformation

and then follow an analogous procedure. In this case 
however instead of the right-going states the left-going ones are nsed.

5.3.2 Limiting the smallest singular value

We can limit the lower bound of the singular values .s,j by setting A'svd = Sn,ax<'>svD 
in E(i. (5.54). In this case the approximated K matrix is obtained by replacing 
Ai with Ad,svi)- The error introduced is now of the order of .s,„ax (fsvD- Ideally 
i’niax f>svD slioiild be of the order of the machine nnmerical i)recision, so that the error 
is minimal. However sometimes increasing s„,ax <^svd beyond that vahu' improves the 
results, therefore (fsvD i^ hdt as a parameter to adjnst depending on th(^ material 
system investigated. This will be discussed extensively in the next section.

A sim])ler but ecpially effective possibility for limiting the smallest singular value 
of a matrix is that of adding a small random perturbation [225, 217]. Tims an
other strategy for reducing the condition number of A'l is that of rej)lacing A'l with 
A],noise = Ai -|- W'(u;„oi.se), wliei’c W((nnoise) IK a matrix whose elements are random 
conii)lex numbers with an average absolute value \Wij\ ~ u’noi.se- In particular we 
choose the |l'Tjj| in such a way that both Re(lT’jj) and Im(fTjj) nre random numbers 
in the range [—Wnoisei ^nnoisej- We find that if u^noise = K',„ax <^svd Ilm addition of noise 
usually gives results as accurate as those obtained with the SVD i)rocedure, l)ut the 
calculation is faster since instead of performing a SVD we just perform a sum of the 
matrices.

In Fig. 5.2 we present onr final extended algorithm as it has been implemented 
in SMEAGOL. This now includes the following regularization procedure of A']. First 
the size of A'l, and hence of the whole problem, is reduced by using the scheme 
described in Sec. 5.3.1, with a toleranc:e parameter (fsvo = <^svd,i- This generates an 
effective matrix A'f^ whose condition nnniber K(A'f*) is reduced by adding a small 
noise matrix lT'( (n„oise)- Such a step is extremely fast and enhances considerably the 
numerical stability of the calculation. In most cases the SE for the effective system
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can then be ealenlated and no farther regularization steps are needed. However, in 
some eases the ealenlation of the SE still fails. This, for example, happens when 
the solution of Ecp (5.6) for the effective system fails, or else when the ealenlated 
iinmber of left-going states erroneously differs from the nninber of right-going states. 
In these critical sitnations we further decrease K{Kf^) by limiting the smallest singnlar 
value of as described in Sec. 5.3.2 with a tolerance parameter 5svd = ^svr),2- 
SMEAGOL a.ntoniatieally adjusts ^^svd.o <^svd,2 anfl ^'^noise within a given range until 
the SE is ealenlated. In our test calculations for a number of different systems we 
found no situation where such a scheme has failed. In contrast when the standard 
algorithm of Ref. [214] is employed the number of failures was considerable. Note that 
onr extended algorithm can also be used in coniunction with recursive methods for 
evaluating the SE [210, 211, 212, 213]. Also in this case it will decrease the comi)uting 
time for large .systems due to the reduced size of the effective K matrix.

5.4 Error analysis

Er = -A'-i [Ao + E’]’]"'A',

When recursive algorithms are used the accuracy of the SE is automatically known as 
it coincides with the convergence criterion. Poor convergence is found when the error 
can not be reduced below a given tolerance. Direct methods, as tlu' one presented 
here, are in i)rinciple error free in the sense that when the solution is found, this is 
in i)rinciple exact. Eor this reason the numerical errors arising from semi-analytical 
schemes usnally are not estimated. In this section we ])erforni this estimate and 
pr('sent a detailed error analysis for three different material systems.

In order to estimate the numerical accuracy we use the recursive relations of Efjs. 
(5.50) and (5.51), written as

h\
(5.67)

ui -““1 -''‘-I’

where are ealenlated with our extended algorithm, and arc obtained
by evalnating the right-hand side term of the above equations. When the solution is 
exact then E”’*'' = Ej" and Ej’"*' = Ej^'. Therefore we can define a measure of the error 
Ax; as

(5-«)

where ||.. .I],,,^^ stands for the maximum norm [218], the corresponding relative error 
is Ax.r = Ax/ I |E{x/h} I The accnracy criterion used in the extended algorithm 
is the following. We first set hsvn.i, R'noise anff eventually 4'svi),2 RirI compute Ax,r- 

This should be lower than a target accuracy If this is not the case then the SE

sr = -A'.
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Figure 5.4: Unit cells of the three systems investigated in this work: (a) (8,0) /ig/^ag carbon 
nanotnbe, (b) bcc Fe oriented along the (100) direction, and (c) fee An oriented 
along the (111) direction. The black arrow indicates the direction of the stacking 
z, i.e. the direction of the transport.

are recalculated with a different set of tolerance parameters, until reaches the 
desired accuracy. If this condition is never achieved the hnal SE is the one with the 
smallest A^,,. .

We now calculate the SE for different variations of the method, chosen in order 
to highlight the problems arising from ill conditioned A'l and A'_i and to show the 
difference between the basic method of R('f. [214] and the ('xtensions presentr'd here. 
There are two main difl'erences between the two methods. The hrst is that here we 
solve E(i. (5.G) without inverting A'l, whereas in Ref. [214] A',^^ is used to solve the 
inverse band-structure relation A: = k{E). Clearly this second choice is less accurate' 
if Ai is close to singular. However it is nincli faster computationally, so that it might 
be of advantage for big systems. The second difference is that here it is not necessary 
to calculate e/yo via Eq. (5.27), so that one does not need to invert and Tji.

In order to investigate the effect of these two asi)ects independently, we have 
calculated the SE using the following four methods. In method 1 we use the algorithm 
presented in this work. In particular we use Ecj. (5.6) to solve the (piadratic eigenvalue 
problem and Eejs. (5.48) and (5.49) to obtain the SE [for the right SE we actually 
use a different form of Eci. (5.6); see Appendix C.3]. Method 2 is essentially the 
same, with the only difference that instead of solving Ecj. (5.6) we use the eigenvalue 
method of Ref. [214]. In method 3 we solve Eq. (5.6), but we use Eq. (5.46) to 
calculate the SGF, from which the SEs are obtained via Eejs. (5.44) and (5.45), and 
f/oo is calculated from Eci. (5.27). Finally method 4 is the algorithm of Ref. [214].

In order to obtain a statistically significant average of the errors, we plot a his
togram of the calculated errors for both and Ek for a large energy range. Here 
we use the absolute error, since it can readily be conq)ared to the energy scale of the 
problem. Note that although the relative error might be small, the absolute error 
can be v('ry large if ||E{l/h}|| ^ 1 Ry. Furthermore, in order to keej) the analysis
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Figure 5.5: Histogram of the errors in the calculation of the self-energy Aj: for three ilifferent 
systems, (a) (8,0) zigzag carbon nanotube, (b) bcc Fe, and (c) fee An. N is the 
number of times a given error occurs (not normalized).

simple, in all the calculations of this section we do not reduce the system size nor do 
we add noise (;/;„oiso = h)- We regularize A'l and A'_i by using s.svn = 'S,„ax ^svu in 
E(i. (5.54). Since the error depends on the chosen (^svd, Imre we calculate Ae for a 
set of dsvn in the range [0,1()“‘'^'\ 1()~^^,..., 10“'*, lO^'^]. We then present the smallest 
Ae found for <^svi) taken in that range. This is the smallest possible error achievable 
with a given method and allows us to extract informations on the range of oi)tinial 
SVD values for a given method.

As first example a (8,0) zigzag carbon nanotube [226] is i)resented [the unit cell 
is shown in Fig. 5.4(a)]. The length of the periodic unit cell is 4.26 A along the 
nanotnbe, with 32 carbon atoms in the unit cell. The LDA approximation (no spin- 
polarization) is used for the exchange correlation potential. We consider 2,s and 2p 
orbitals for carbon with double C and a cutoff radius for the hrst C of = 5 bohr. 
Higher C are constructed with the split-norm scheme with a split-norm of 15% [69]. 

The real-space mesh cutoff is 200 Ry. The matrices Hq, Hi, So and S] are extracted 
from a ground- state SIESTA DFT calculation for an infinite j)eriodic nanotnbe (see 

Sec. 4.6). We calculate the SE for the semi-infinite nanotnbe at 1024 energy points 
in a range of ±5 eV around the Fermi energy.

Fig. 5.5(a) shows the histogram of the errors in the SE, where N is the number of 
times a given error Ae appears. In general the figure shows that for this system the 
average error increases when going from method 1 to method 2 and method 3, and 
finally to met hod 4. The error obtained with method 1 is on average about 6 orders 
of magnitude smaller than the one obtained with method 4. The main reason behind
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Figure 5.6: Histogram ot dsvD siviug the smallest error iii the self-energy, (a) (8,0) zigzag 
carbon nanotube, (b) bcc Fe, and (c) fee An. N is the number of times a given 
'^.SVD generates the smallest error (not normalized).

this (iraniatieally improved accuracy is that method 1 does not involve any st 
where a singular A'l leads to divergences. Method 4 on the other hand is strongly 
depeiuhnit on the eondition iinmber of Ad, since it lu'cessitates to invert A'l and Th

Til). Methods 2 and 3 are on average about one order of magnitude more precise 
than method 4. Since they l)oth still involve one of the two iimn'sions, the difference 
is however not large.

Fig. 5.G(a) shows the histogram of the optimum (^.svd used for the calculations of 
the SE. Here we plot the nninber of times N a particular (isvn Fas given the smallest 
error in the set of calculations. A larger optimal value for d'svo indicates a stronger 
dependeiiee of the computational scheme on «;(A'i). For method 1 the range of used 
d'svi) is smaller than 1(1“'^. If we foree hsvo to be zero we get almost the same accuracy 
as the one shown in Fig. 5.5(a), which conhrms that the accuracy of for method 1 
depends little on k{Ki) for this system. However also for this method there is a set 
of energies (a few percent of the total nninber) where the solution of Ecj. (5.6) fails 
if Fsvd is too small. The optimal hsvo for the other methods is orders of magnitude 
larger than that of method 1, and it is never smaller than 10“*^. The absolute error 
induced by replacing A'] by A'i,svd is of the order of d'svn Smax- Usually .s,„ax is of the 
order of 1 Ry, so that the error is of the order of hsvn F.y- Therefore since in methods 
2-4 a large value of dsvD is needed in order to improve k(A'i,svd)5 also the resulting 
error is large.

The second example is bcc Fe [Fig. 5.4(b)], oriented along the (100) direction. 
The lattice parameters are the same as in Ref. [20]. There are four Fe atoms in the
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miit cell. We apply periodic bonndary conditions in the direction perpendicular to 
the stacking, so that these correspond to four Fe planes. The length of the cell along 
the stacking direction is 5.732 A. A double C s (rc=5.6 bohr), single C P (^^=5.6 bohr) 
and single C d (rc=5.2 bohr) basis is used. The real-space mesh cutoff is GOO Ry, aiid 
the DFT calculation is converged for 7x7 A>points in the Brillouin zone orthogonal 
to the stacking. The SEs have been calculated for the converged DFT calculation at 
32 different energies in a range of ±1 eV around the Fermi energy, and for 10,000 
Appoints in the 2D Brillouin zone peri)endicular to the stacking direction. For each 
A:-i)oint there is a different set of matrices Kq, K] and A'_i, so that for each Appoint 
there is a different SE. The histogram for the error of the calculated self-energy 
is shown in Fig. 5.5(b), and the histogram for the optimal (^svn hi Fig. 5.G(b). The 
general behavior is similar to the one found for the carbon nanotnbe. We note that, 
although for the vast majority of the calculations the error in the SE is small, there is 
a long tail in the histograms of Fig. 5.5(b) indicating the presence of a small number 
of large errors. This is present for all the methods, with niaximnm errors of 10 Ry 
for method 1, and 100 Ry for method 4. Closer inspection shows that the reason for 
the increase of the error for certain energies and A:-points is caused by a divergence 
in ||S;i Hill • This will be illustrated in more detail in the next section.

Finally we consider fee An [Fig. 5.4(c)], with the stacking along the (LH) di
rection. The unit cell consists of three jilanes of nine gold atoms each. These are 
the typical leads used for the calculations of the transmission properties of molecules 
attached to gold [227, 228, 202, 93]. We use double ( s (rc=6.0 bohr) and single C d 

bohr) and four Aupoints in the Brillouin zone perpendicular to the stacking. 
The mesh cutoff is 400 Ry. The SEs have been calculated for 418 energy points, from 
about 15 eV below to about 10 eV above the Fermi energy. The general behavior 
[Figs. 5.5(c) and 5.6(c)] is again similar to that of the j)revious examples. Also here 
the error for method 1 is about 6 orders of magnitude smaller than that of method 
4, with methods 2 and 3 giving some marginal improvement.

Our results show that the scheme [)resented here in general allows the calculation 
of the SE with high accuracy. The main advantage of method 1 is rooted in the 
possibility of nsing a mnch smaller (^svn- For big systems sometimes one might prefer 
to use method 2, since it is considerably faster than method 1 and gives the second 
best accuracy. In this case we first calculate the SE with method 2 and chec'k the 
error. Only for those energy j)oints where the error is above some maximum value 
(of the order of 1 ()“•'’ Ry, for exanij)le) the calculation is repeated with method 1 
to improve the accuracy. Finally the results show that for all methods the SVD 
transformation of Aj is necessary, although for method 1 it is needed only a fraction
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of the times. For big systems, in {^articular if the unit cell is elongated along the 
stacking direction, or if a rich basis set is used, k(A'i) will generally increase as there 
will b(> some singular values of A'l going to zero. In these cases also method I will 
recpiire a SVD transformation for most energies. The range of (fsvn Hhonld however 
be similar to the one shown in Fig. 5.6, so that also the error in the SE should be of 
the same order of magnitude. We also note that in order to keej) the analysis simpler 
here we have not used the reduction of system size described in Sec. 5.3.1, for suc'h 
large systems it is however crucial in order to decrease the computational effort and 
regularize A'l at the same time.

5.5 Surface states

The center of the error distribution for method 1 (Fig. 5.5) is locat('d at small A>j, 
usually smaller than 10^^^ Ry. However the histogram has also a tail reac'hing up to 
very large errors. These are found only at some critical energies, as demonstrated in 
Fig. 5.7(a), where we show A^; for the carbon nanotube calculated over 1024 energy 
I)oints, in a range of 2 eV around the Fermi energy. The average error is of the order of 
10“^^ Ry, but at energies around -0.8 eV and -0.34 eV the error drastically increase's. 
Indeed a finer energy mesh at these points suggests a diverge'iic'e. The origin of the 
large errors at particular energies can be invc'stigate'd by looking at the eigenvalues 
(]L,i of the SGF eyi^. In Fig. 5.7(b) the largest and the smallest absolute values for 
the eigenvahu^s, resj)ectively yi.,,„ax and are plotted as a function of energy
(.^yL.miii < < .(/L.iiiax)- If oaii be seeii that .^L.max diverges close to the energies
where the error increases, i.e. we can associate large errors in g\^ with a divergence in 
its spcK'truni. Since Ei^ is calculated from Ecj. (5.48), the only possible origin for the 
divergeiu-e is in the norm of some of the 0r,„. As these are obtained by inverting the 
matrix j ... (I)y^n ) [E(p (5.19)], one deduces that the set of vectors
{0R,n} is not linearly independent. For these energies k{Q) oo. We therefore can 
simply check the magnitude of k{Q) to determine whether there is a divergence of 
the SE close to a particular energy.

Physically the divergence of the SE translates into the presence of a surface state 
[212, 210] at that particular energy. Consider the spectral representation of /yj.

N

mXE) = E 1

n=\
E + iS — E, -‘Mi, (5.69)

where E^ are the eigenvalues, -ipn nre the right eigenvectors of the effective surface 
Hamiltonian matrix Ho — Ej. with overlaj) Sq, and are the left eigenvectors of the
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Figure 5.7: The error analysis for the carbon nanotube of Fig. 5.4: (a) absolute error Ae 
of the self-energy as a function of the energy E, (b) maximum (.^L.max) 
minimum (.7L,min) eigenvalues of

same Hamiltonian. A localized surface state is found when there is a real eigenvalue 
En{E) at E„{E) = E [or more generally if lm(£'„(£’)) is very small].

From the recursive relation (5.50) one can deduce that for an infinite eigenvalue 
there is also a corresiK)nding vanishing eigenvalue. Therefore in Fig. 5.7(0) for 
energies where ,f/n,max —> oo we have also fjLjnin 0. Close to the singnlarity we can

1
E+ii-E„ fh.nun OC E + ii) - En- 

and the smallest
therefore expand the two eigenvalues as ,(/i,,,„ax 
For E = E„ the largest eigenvalue in Eq. (5.G9) is then ecinal to S 
is ('(lual to S. To avoid divergence therefore the magnitude of the yu eigenvalues can 
be bonnded to a hnite valne by introducing a small imaginary part to the energy 
for energies in the vicinity of a surface state.

Another possibility for limiting the size of ,9L,niax is to bound the singular values 
of Q from below in the same way as it is done for A'l (Sec. 5.3.2). This essentially 
imposes the fo be linearly independent from each other. However, with this 
scheme it is not possible to conserve the Green’s function causality, so that the SGF 
might have eigenvalues lying on the positive imaginary axis. Moreover we loose control 
ov(’r the accuracy of the computed SGF and SE. Both these problems are avoided 
when using a hnite S.

We now investigate the DOS and transport i)roperties of a system when the hnite 
imaginary part S (broadening) is added to the energy. We consider as an example the 
carbon nanotube of Fig. 5.4(a). In Fig. 5.8(a) the onsite surface DOS A^o, as dehned 
in E(i. (5.38), is shown for S = 0 Ry, d = 10“® Ry, S = 10“''’ Ry and S = 10“'^ Ry- 
For (1 = 0 the surface DOS vanishes for energies between -0.42 eV and 4-0.39 eV, 
indicating the presence of a gap around the Fermi energy. Note that there are no Van 
Hove singularities in A/f), since we never divide by the gronj) velocity when calculating
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Figure 5.8: Druisity of states and transmission coefficient for the carbon nanotnbe of Fig.
5.4. (a) Density of states of the surface layer A/() as a function of energy E, 
calcailated for different broadenings S. The inset is a zocjin at energies around 
-0.34 eV. (b) Transmission coefficient T for different values of 4.

the SGF. For finite S and energies away from the band gap, the DOS is essentially 
identical to that calculated for 6 = 0, however inside the gap Mq does not vanish but 
saturates to a small value proportional to Moreover whereas the surface states 
are not visible for S = 0, they appear in the DOS for hnite 4, and their full width at 
half maximnm (FWHM) equals 24.

We tlu'ii move to the transport by calculating the transmission coefficient T{E) 
[E(i. (4.94)] for a carbon nanotnbe attached to sruni-inhiiite leads made from an
identical carbon nanotnbe. Since this is a j)eriodic system T{E) must ecpial the 
number of o[)en channels, so that it can only have integer values. This is indeed 
the case for 4 = 0 [Fig. 5.8(b)]. For finite 4s tfie transmission coefficient is only 
apiHoximately an integer, especially inside the energy gap region, where the hnite 
surface DOS introduced by 4 feaxfs to a non-zero transmission. Tfie transmission 
in tfie gap is i)roportionai to 4^ (note that the scafe is logarithmic), since on both 
sides of the scattering region the artihcial surface DOS is proportional to 4. In this 
region of small transmission therefore the results might change by orders of magnitude 
depending on the value of 4. For all values of 4 however we find no contributions to 
tfie transmission coming from the surface state, indicating tfiat tfiese <io not carry 
current. Tfiese results show that adding a finite value 4 to the energy lias little effect 
on the actual transmission if this is large. However when the transmission is small, 
as in the case of tunnel junctions, the hnite 4 introduces an additional contribution 
to the conduction that might arbitrarily affect the results. It is thus iniiierative for 
those systems to identify surface states and use the imaginary 4 only in a narrow 
energy interval around them.

Finally we can give an estimate of the relative accuracy As ,.(4) = As/ at
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the energy corresponding to the surface state. As discussed before the origin of tlie 
error is the inversion of Q, needed in order to calculate the duals. The relative error 
introduced by the inversion of Q is proportional to k{Q) [229, 230, 225, 217, 218]. 
Close to a surface state the smallest singular value is of the order of S, so that 
k.{Q) (X As this is the dominant source of error in the calculation of the SE close 
to a surface state, we can ai)proximate the relative error as

AeV = D -1 (5.70)

where C\ is a constant that depends on the machine precision and on the details of 
the algorithm. The label “in” explicitly indicates that this is the error in the SE 
calculated with the extended algorithm [E'^] in Eq. (5.67)]. The absolute error A^’ 
is equal to the relative error times which is itself inoportional to so that
we get oc

When using Eq. (5.68) to estimate the error in the SE we introduce an additional 
error due to the inversion involved in imi)licitly obtaining g\,. The largest singular 
value of fyL is proportional to and the smallest one is i)roportional to (i, so that 
the relative error introduced by the inversion is proportional to K(ty[7') = k('7i.) oc 

Eor small 6 we can therefore write for the error in E)”*'

A-;) = -2 (5.71)

where C2 is again a constant. Since the two errors are random and nncorrelated, the 
total estimated error can be approximated by adding the contributions from the two 
inversions

« (AJV)' + (AS;)^ (5.72)

Aj:,,. is therefore a good estimate for the true error A^’^ if A'^") is small. Close to 
surface states however A^"] >> ^^at AE;,r largely overestimates the true error.

To verify these estimates numerically we present a scheme for calculating A^' ^
A'^"]: independently. For each SE we i)erforni a second calculation where we add a 
small amount of noise to the input matrices Aq, A'], and AT], so that we obtain the 
self-energy Ei,,„oise for a slightly perturbed system. The noise is added as a random 
relative j)erturbation of each element of the matrices. As we decrease the magnitude 
of the noise the difference between El and EL.noise is reduced until it becomes con
stant for noise smaller than a critical value. In this range of minimum noise even if 
the difference in the input matrices decreases, the difference in the output matrices is 
constant, it therefore corresponds to the error in the calculation. As one might exi)ect 
we hnd that this critical value of noise is of the same order of magnitude as the numer
ical accuracy used (ai)proxiniately 10"^^ in our calculations). We can therefore obtain
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Figure 5.9: (a) Relative error of the self-energy (A^j, represents the tine error), (h) 
condition ninnber k of Q and (/Li a function of the broadening 6 for the 
carbon nanotnbe of Fig. 5.4 calculated at the surface state energy.

■^out
.noise li,„„/iisriimax ’= 11 II /II Sj" 11 and = 11

M I ' II n I I [iiax II n i.,ii

with the magnitude of the noise ecpial to the critical value.
We have calculated the maxinunn error for a set of 128 energy points locati'd 

within 10“^' Ry around the energy of the surface state at -0.34 eV for different 
values of h. The result is shown in Fig. 5.9(a). Indei'd for small 4' A^',. follows 
Eq. (5.70) with Cl ft; Ry, follows Eq. (5.71) with C2 ft; K)-*'' Ry^ and
(^s,!-)'^ ~ Ill FiS- 5.9(b) the condition numbers k{Q) and K{gi)
are shown, confirming k(Q) oc and K(yiJ oc This demonstrates that close 
to surface states Aj^,. is mainly caused by the calculation of (j\^. Thus Ax;,r largely 
overestimates the real error A^',., which even for h = 10““^ Ry has an acce])table size 
of Ag ,. ft; 10“''’.

Since Ci and c^ are generally system dei)endent, in ])ractical calculations we use 
a value of 6 ranging between 1(C^ Ry and 10“*’ Ry for energies in the vicinity of 
surface states, mainly in order to limit the absolute error. Moreover is added in 
an energy range corresponding aj)proxiniately to the FWHM of the imaginary part 
of (E — which is ecpial to 26. Although this range is only of tlu; order of
10 ^ — 10“® Ry, in practical calculations wlit^re both energy and A:-point sampling are 
fine, the mnnber of times when this prescription is api)lied can be rather large (see 
Fig. 5.5).

The above analysis confirms that close to surface states also direct semi-analytical 
methods have the same accuracy j)roblenis of recursive methods. This fact is nsnally 
ignored in the literature [214, 63, 215, 197], where it is assumed that the accuracy is 
constant for a given algorithm. Here we show that the accuracy of a method is solely 
determined by the value of ci, which, as indicated in Sec. 5.4, can vary over many
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orders of magnitnde. Onr analysis also shows that methods reciniring the explieit 
calenlation of g]^ from its inverse are nincli less accurate close to surface states than 
those calculating directly.

5.6 Conclusions

By extending the scheme proi)osed in Ref. [214], we have presented a different but 
e(inivalent form for calculating the Green’s functions of an infinite quasi-ID system, 
as well as the SGF and SE for the semi-infinite system. We have then constructed an 
extended algorithm containing also the necessary steps to regularize the ill conditioned 
hopping matrices. This is found to be crucial in order to obtain a numerically stable 
algorithm. By applying a unitary transformation based on a SVD we remove the 
rai)idly decaying states and calculate the SE for an effective system with reduced 
size. We further decrease the condition number of the hopping matrices by adding a 
small random perturbation and by limiting the smallest singular value.

We have performed a detailed error analysis on the numerical calculation of the 
SE, showing that if the algorithm docs not involve an inversion of the hoi)ping matri
ces A'] (or A'_i) high accuracy is obtained. We also hnd that the error is not constant 
as a function of energy. It is shown that an increase in accuracy is needed especially 
close to energies where the SE and SGF diverge, which corresponds to the presence of 
surface states in the senii-inhnite system. At these energies we inii)rove the accuracy 
by adding a small iinaginary jjart to the energy. W(^ have shown that this procedure 
affects the transport jrroperties little in the high transmission limit. However, for low 
transmission this adds some spurious surface density of states contributing signifi
cantly to the total transmission. The transport can therefore be strongly affected, 
so that the imaginary part should be added only in a small energy range around the 
poles and it should be as small as possible.

The algorithm is highly nnmerically stable and extremely accurate. Most impor
tantly errors and accuracy can be closely monitored. We believe that this is an ideal 
algorithm to be used with ah initio transport schemes, where the condition of the 
Hamiltonian and its sparsity is controlled by the convergence of the electronic struc
ture and cannot be fixed a prion. In all the calculations presented in chapters 6, 7 
the extended algorithm is therefore used to obtain the SEs.
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Chapter 6

Weakly coupled and bound states 
in electronic transport

The spectral function of the EM [Eq. (4.34)] contains a term, which is proi)ortional 
to tile small imaginary part added to the energy, In chapter 4, where the NEGF 
formalism was introduced, we neglected that term in the calculation of the density 
matrix. This was justified by the assumption that all the states in the EM are coupled 
to the leads. However, if there are localized states in the EM, that are not coujiled 
to the propagating states in the leads, this term can not be neglected, and gives a 
hnite contrifmtion even in the limit S 0+. These states are called bound states 
(BSs). General properties of BSs localized at the interface between two mati'rials are 
discussed in Refs. [194, 231, 232, 233, 234, 235, 23G, 237, 238, 239, 240, 241, 242, 243]. 
It is shown that BSs apjiear if there are no ojieii channels in the leads at their energy, 
or along special points in the 2D BZ perpendicular to the stacking direction.

In the first i)art of this chapter the modifications to the NEGF equations, needed 
to account for the BSs at finite bias, are presented. The fundamental difficulty in 
dealing with BSs is that their non-eqnilibrinm occui)ation is undefined within the 
NEGF formalism. Although this i)roblem is well known, in standard NEGF based 
algorithms it is nsnally assnmed that there are no BSs in the system, at least not at 
energies inside the bias window [62, 63]. In Ref. [244] the BSs for carbon nanotnbe 
systems are calculated, and a way to occupy them at finite bias is i)ro])osed, based 
on a symmetry decomposition of the charge density, and on a shift of the (mergy- 
integration limits. This solution is however highly system specific, since the shift of 
the integration limits is probably not applicable when the inimber of BSs increases. 
The results in the reference show the importance of a correct occupation of the BSs 
at finite bias for the calcnlation of the capacitance. In [245] it is proposed to set the 
occupation of the BSs based on the geometric i)osition. This is achieved indirectly, 
the atomic {rosition is inferred by using an atomic weighting factor, which depends
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on the total c‘oupling of an atom to each of the leads. This choice is rather arbitrary, 
since the total coupling of an atom to the leads depends on its geometric position, 
but also on many other factors.

In this work we start from the assnmption that in real systems there are inter
actions outside the ones contained in our single-particle DFT Hamiltonian, and that 
these lead to an effective coupling to the leads [246, 247, 248, 249, 243]. By adding this 
eflective coupling to the formalism, we can set the occupation of the BSs. For many 
systems the physically meaningful effective coupling can be determined, although this 
is certainly not possible for all systems. We perform an eigenstate exi)ansion of the 
eflective Hamiltonian [Ecp (4.28)] and GF, which gives us a way to find and 
characterize the BSs. For a true BS the imaginary part of the corresponding eigen
value ol //pff has to be zero. We introduce the concept of geiuualized BS (CBS), for 
which w(' only recpiire that the c'omplex modulus of the imaginary part is smaller 
than some maximnm value. This leads to a common descrij)tion for both BSs and 
weakly coupled states. An effective coui)ling i)aranieter to the each of the leads for 
the eigenstates of is derived. This allows us to ai)i)roxiniate the contribiition of 
the GBSs to the density matrix and transmission with a simple model,

For systems with very weakly couijled states, an extremely hue energy mesh is 
needed to numerically evaluate the integrals over energy of the non-e(inilibrinni part 
ol the lesser GF [Ecj. (4.72)]. This is required in order to obtain the density matrix, 
and ol the transmission coefficient [Ecp (4.97)], and therefore the current. By using a 
hnite value for 6, and by calculating the GBSs, we introduce a BSs correction scheme, 
which allows ns to evaluate these integrals using a rather coarse energy mesh. In this 
way th(' computational cost for su(4i systems is drastically rc'dnced. As an alternative 
way, and based on the same concepts, a method to obtain an adaptive energy mesh 
lor the integration of the non-eciuilibrium part of the electron density is presented. 
This method is also used for the calculation of the energy-dependent transmission 
coefficient.

These concepts are then appli('d to a set of example systems. Eirst a simple tight- 
binding model is presented, that shows in which typical situations BSs are formed, 
and allows us to analyze their properties. Then we present two sets of calculations of 
systems with very weakly coupled states, where both the BSs correction scheme and 
the adaptive energy grid algorithm are applied. The first example is a calculation for a 
small test system consisting of a G3 molecule placed in a i)arallel-i)late gold capacitor. 
The second is for a rather large system, where a Mni2 molecule is attached to two 
gold leads. In chapter 7 the concepts will be applied to Fe/Mg()/Fe(l()0) single- and 
double-barrier tunnel junctions. We will also show that it is essential to correctly
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include the BSs in the calculation, in order to obtain a i)hysically meaningful result.

6.1 Bound states in the NEGF formalism

The spectral function Am for the EM has been derived in Ecp (4.34) and reads

AuiE) — Gm (Tl + Eh) + S (C-1)

If there are no i)oles in Gm, then the term proportional to vanishes in the limit 
of S —> 0+. This was assumed in all the derivations in chapter 4, and therefore the 
term was neglected. In the general case however Gm has poles at specihc energies. 
Each pole corresponds to a state that is localized in the EM, with no coupling to the 
propagating states of the leads. In these cases we can not neglect the second term, 
which describes exactly these localized states. We usually refer to these localized 
states afso as bound states (BSs). We can split up Am{E) into the part Acs{E), 
originating from states that are coupled to the i)ropagating states of the leads

^ch{E) — Gm (El. + Er) f^M’

and the part A\iii{E) originating from the bound states

An^{E) = 25Gm5mG[„

so that

(G.2)

(6.3)

Am{E) = Acs{E) + AnsiE). (6.4)

We can define the onsite DOS, AfuiE), of the EM, in which the overlap terms to the 
leads are neglected, as

AfuiE) = —Trf/lM^M]. 
Ztt

This can eciually be split up into
1

AfcsiE) = —Tv[AcsSm],Zn
Afn^{E) = —Tr[2lBS‘S'M], 

Ztt

(6.5)

(6.6)

(6.7)

so that
ArM{E)=Afcs{E)+AfHs{E). (6.8)

Whereas J\fcs{E) is a smooth function of energy, A/fis(E') corresi)onds to a set of S- 
functions, one for each of the jioles in Gm(E’). The maximum number of electrons in 
the states connected to the leads qcs is

qcH =
/OO

A7cs(G) dE,
•OO

(6.9)
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and the inaxiniuin number of electrons that can be associated to BSs qua is

(IBS -f dE, (6.10)

so that tlie total niaxiinnm number of electrons that can populate the EM is 
= (ics + </BS) H,nd it is approximately equal to the number of orbitals in the 

scattering region N.
Within the NEGF formalism the total electron density pm the EM for a two- 

terminal device, as derived in Ecp (4.64), is

1 /■“
= G<{E)dE,

with the lesser GF, G^^{E), [Eq. (4.63)] given by

G^i{E) = tGu{rUL + rMGl.

(6.11)

(6.12)

If all the states are assumed to be occnpic'd, which is obtained by setting f\XE) — 
f\i{E) = 1, then G^^{E) slunild be ecpial to iAM{E). As can be seen comparing Eq. 
(6.12) with Eq. (6.1) for /l(-E') = fniE) = 1, in G^^{E) the term proportional to S is 
missing. The reason is that in the derivation of Ecj. (4.64) we assumed that all the 
states in tlu' EM are connected to the propagating states in the leads, and that Gm 
has no i)oles.

Whereas it is straightforward to include the term describing the BSs to the SF via 
Eq. (6.1), this is not |)ossible for G^^{E), since the occupation of the BSs in the EM is 
not dehned within the NEGF formalism. The reason is that the oc'cupation of a state 
within NEGF is based on the difference between in-Hiix from the leads and ont-hux 
into the leads. For a BS however both in- and ont-hux are zero, and this causes 
the occu[)ation to be undehned. Within a time-dependent ai)proach the occupation 
depends on the system history [194, 187, 208, 250, 251]. For non-interacting particles 
the oc;(mi)ation is constant for all times, and remains ecpial to the initial occuiiation. 
However, due to interactions that are not included in the DFT Hamiltonian (e.g. 
electron-electron interactions beyond mean held theory, electron-phonon coupling, 
electron-photon coupling, electron magnon coiqiling), in many systems also the occu
pation of BSs will change over time, until a steady state occupation is reached. In the 
next sections we present a way to set the occupation of BSs, based on the assumption 
of the existence of these additional interactions. We note that in a practical calcula
tion it is not possible to distinguish between a true BS, with exactly zero coupling, 
and a very weakly coupled state. Therefore both have to be trimted similarly.
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6.2 Occupation of bound states

In a DFT ground state calculation all the states, and therefore also the B3s, are 
oecu[)ied np to the Fermi energy. When comparing to experiment it is implicitly 
assnmed that the ground state is reached after thermal equilibration with the envi
ronment. The processes leading to the ground state are however ontside the standard 
DFT theory. The thermal relaxation can be caused by electron-electron interactions, 
electron-phonon scattering, electron-magnon scattering [246, 243], electron-photon 
scattering, and other inelastic effects. Within the NEGF formalism, even at zero 
bias the occui)ation of the BSs is undehned. However by splitting the lesser (IF into 
its ecjuilibrinm and non-ecpiilibrinm contribution in form of Ecjs. (4.71) and (4.72), 
one inij)licitly assnmes that all the BSs are occupied up to the Eernii energy of the 
leads. The underlying assumption is the same as for ground state DFT, namely that 
althongh they are not coupled to the leads, due to thermal relaxation with the en
vironment their occupation is well dehned. The interactions are again ontside the 
DFT Hamiltonian. We can now introduce a generic relaxation time r for a BS, that 
is inversely i)roi)ortional to its coupling to the current/voltage electrodes [246]. The 
longer the relaxation time, the weaker are the interactions of the BS with the lead. 
In a system consisting of an EM coupled to leads, we can si)lit up the relaxation time 
as

1 _ 1
T

1 1
H------- 1----- ,

■rRM Th T-R
(6.13)

where (tr) is the relaxation time caused by the additional interactions with the left 
(right) lead, and trm relaxation time dne to the additional processes within the
EM itself. Tj, and tr can for examj^le have a finite value, if the structure of the leads 
deviates slightly from the perfect crystalline structure assumed when constructing 
the self-energies. For energies, where the DOS for the jrerfectly crystalline leads is 
exactly zero, it might be hnite for the real, imperfect structure. In this case, whereas 
the coupling to the leads is exactly zero for the perfectly crystalline leads, it might 
therefore be hnite for the real leads. In the same way a hnite value for tkm can also be 
caused by a slight difference from the atomic structure from the one assnmed in the 
calcnlations. In addition to the structural imperfections, there are always inelastic 
effects that further reduce the relaxation times.

All the scattering processes included in tem eventually lead to an electron propa
gating into either the left or the right electrode. We can therefore include tluse into 
effective leads relaxation times "TpyRi and set tem = oo at the same time. The total
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T then is
1 1 

+
1 
r ^eff ' _efr- (G-14)

L Ml
Tlie meaning of this e(]nation is tliat for a BS there is an effective colliding to each of 
the two leads, caused by interactions outside the DFT Hamiltonian. Since we are just 
interested in the steady state non-eiiuilibrium occupation, the absolute value of the 
relaxation time is not important, and the oc:cupation is given by the ratio between 

and The stronger a state is thermally coupled to one lead with respect to 
the other, the closer its occupation follows the Fermi energy of that lead. Since the 
effective relaxation times to the leads are outside the NEGF and DFT formalism, they 
have to be set by hand as boundary conditions, motivated by the physical properties 
of the system. An example system where this can be done is a parallel plates cairacitor 
at finite bias. If there is a bound state somewhere close to the left snrface, then the 
physically meaningful constraint for the relaxation time is that which
results in state being occui)ied up to the left Fermi energy. For a state on the right- 
hand side we have ^ meaning that it is occui)i('d up to the right lead’s Fermi 
energy.

These arguments, based on the relaxation time concept, are now included in the 
NEGF in a formal way. In this formalism we introduci' the effective coupling to the 
leads, that has the same role as the inverse relaxation time. The starting i)oint is the 
definition for the retarded GF Gm for the EM [Eip (4.2)]

Gm{E) = [{E + tS)Su - Hm - Er - Eh]"' . (G.15)

Instead of taking the limit S ()+, we now use a finite positive value for 6, although 
very small (<5 1). The use of a finite S corresponds to the physical assumption that
all the states have a hnite lifetime. We can therefore dehne an additional self-energy

j:^ = -iSSm, (g.16)

that takes into account all the effecls that lead to the finite lifetime, and that are not 
included in the effective Hamiltonian. As discussed above, the origin of E”^ can for 
example be inelastic effects, but also slight deviations from the assumed structure. 
The retarded GF can then be written as

Gm{E) = [F;AiM //m — Ei, — Eh — ER (G.17)

We note that the Herniitian part of E*' is zero, so that it does not lead to a shift of 
the eigenvalue spectrum, and its only effect is to broaden the levels. The coupling 
matrix F"^ associated to E'^ is

F"^ = i (E'^' - E'^’^) = 2d A,M- (6.18)



Weakly coupled and bound states in electronic trans])ort 129

so that E" = —IF". The SF for the BSs [Eq. (6.3)] can then be written as

AaniE) = Cm T" GL„ (0.19)

where we note that now ^bsI-E) depends on the used hnite value for h.
In order to determine the occupation of the BSs in the EM, we now split up the 

total additional colliding matrix F*^ into the eonpling to the left lead Ff (E'), and the 
eonpling to the right lead F^|(E')

r;,(£) + q(E). (6.20)

F*^ has to be split up in such a way as to reproduce the effective coupling to the leads 
expected from the physical constraints. In general, the matrices F|[^j^j(£') are both 
position and energy dependent. The relative value of Ff) and F^:, at an energy E will 
then set the ocenpation of the BS. Since are coupling matrices, they have to
!)(' Herniitian, positive semidehnite. We now present a ])ossible way to construct such 
matrices. First we note that since the overlap matrix S'm is a positive dehnite matrix, 
it can be decomposed as

\
wh('re is a uniiine, positive dehnite, Herniitian matrix [196]. It can be seen as the

1

s(|uare root of S'm, since the eigenvalues of are ('qua! to the siinare root of those 
of 5m, and the eigenvectors are identical. We can then write as

Ff^ = 26Sla{E)Sl,,
Ff, = 2d4[lv-«(i?)]5, (6.22)

where the newly introflnced, energy-dependent matrix a[E) is positive semidehnite 
and Herniitian, with eigenvalues banded between 0 and 1. It is straightforward to 
verify that with this dehnition both are indeed positive semidefinite and Her
niitian. If it is assniiK'd that Sm is close to the unity matrix (^m ~ Iat), then we can 
write in an alternative, approximate way as

ri = 2S{aiE),SM},

Tr = 2(5{l]v— «(£'), 5m}, (6.23)

where {A, B} = {AB -t- B^A^)/2 for two general square matriees A and B. We note 
that with this dehnition are still Herniitian, but only approximately positive
semidehnite. If S'm = Iv, fhen Eqs. (6.23) and (6.22) are equivalent.
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We now define to be the contribution originating from this additional
coupling to the lesser GF

G®<{E) = Gm [rf,/i.(B) + ri/i,(E)] gV

The total lesser GF can then be written as

(6.24)

G<{E) = iGm (Ff/l + rfh) Gl, (6.25)

where we have introduced the total effective coupling matrices F^^ and F‘,f, given by

Ff = F,. + Ff

Ff = Fk + FR- (6.26)

These contain both the NEGF part of the coupling and also the additional hnite- 
lifetinie coniding. With the lesser GF given by Ecp (6.25), the occn{)ation of the BSs 
is well defined, and determined by the choice of the matrix (\{E). As discussed above, 
a has to be chosen in such a way as to rejirodnce the exi)('ct('d effex'tive coupling due 
to the additional interactions not desc'ribed by the effective Hamiltonian. We can 
again take the parallel plate capacitor with a BS on the surfaces as example. The 
BS on the left surface has a small effective coui)ling to the left lead, wdiereas the 
coupling is zero to the right lead. The opposite is the cas(' for the BS located on the 
right-hand side surface. This physically meaningful effective coni)ling can l)e achievc'd 
by setting the matrix cv to be a diagonal matrix, with diagonal elements ecpial to 1 
for the matrix elements corresponding to an orbital on the left part of the EM, and 
0 for the ones corresponding to orbitals of the right part:

o; =
Over.Vel ^A^er

(6.27)

Here we have assumed that the indices of the orbitals in the ENf are ordered from 
left to right; Wrl (A^er) is the nmnber of orbitals in the left-hand (right-hand) i)art 
of the capacitor. Therefore for such a system we can set the occupation of the BSs 
depending on their position in space. This is also reflected by the fact that rv does not 
depend on E. Such a choice of a makes the BSs on the left (right) surface occupied up 
to Eyx {Efm)- We will use the same approach to set the occui)ation of BSs api)earing 
at the interfaces of Fe/MgO/Fe(10()) tunnel junctions (chapter 7).

Analogously to the i)rocedure highlighted in Sec. 4.3.4 we can sjdit the lesser GF 
into

G&(£) = G<(E) + (E) + G“-=(E), (0.28)



Weakly coui)led and bound states in electronic transport 131

with the eqnilibriinn part

= -

the non-equilibrium i)art

fh + /r

./l — /r

and the non-equilibrium part describing the BSs, given by

• flj ./r ^ /'r'<5 r'i
l “ i rJ^nG,“•=(£) = i M-

(6.29)

(6.30)

(6.31)neq \ — / - 2

Neglecting is equivalent to setting a = | so that = r^. This results
in the BSs with energies lying in the bias window being half filled. As described in 
S('c. 4.3.4, the division between the equilibrium and the non-equilibrium part is not 
nnicinely defined. If is neglected, different definitions lead to a different implicit 
occupation of the BSs. In a self-consistent calculation this generates completely 
different electrostatic potentials, and consecpiently different self-consistent solutions. 
If BSs are present in the bias window, and G^^*^ is not considered, the results are 
therefore largely random.

The density matrix can be split up in an analogous way as

with

Pm Peq + Ftieq T P„pq, (6.32)

Peq{E)
2TTi j

f dE G^(E). (6.33)

Fneq(G)
2Tvi jf <IE GJ^(B), (6.34)

PnU^) 2TTi I
f <lEGZ<(Ey (6.35)

We conclude this section by introducing a different, but ecpiivalent way to set the 
effective coupling, which is more appropriate for certain systems. Instead of defining 
an energy-dependent (y{E) we can define a set of energy-independent matrices 
each of which is positive semidehnite, and with eigenvalues ranging between 0 and 1. 
The set {cVn} has to satisfy

(6.36)= liv.
n=\

We can then introduce a corresponding set of N„ fictitious leads, each of them with 
its own Fermi energy E^j,, and effective coui)ling

prt _ X C2 _ 02 (6.37)
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The contribution of the BSs to the lesser GF then is

/Va
Gl,r(B) = GM ^r‘/n(£}Gi„ (G.38)

71= 1

with jn{E) being the Ferini-Dirae distribution with Fernii energy If is possible
to deterniine the matrix cy{E) giving the same by equating Eqs. (G.24) and
(G.38), which gives

Na
cy ^ fniE)-fn{E)

\E) / ^ (G.39)ME)-ME)-

This shows that both approaches are equivalent. We will use Ecp (G.39) to set the 
occupation ol the BSs in Sec. 7.7, where double-barrier Ee/Mg()/Ee/Mg()/Ee(100) 
tunnel junctions are investigated.

6.3 Generalized bound states

Eor a two-terminal device the effective Hamiltonian of the EM, df'hned in Ecj. (4.28), 
is

Een — Em — Si^ — Er, (G.4())

and Gm = [{E 16)8^ — bi fbe same way as descrilx'd in Sec. 4.1 we can now
write the effective Hamiltonian and the GE by using their spectral representation, the 
major difference howev(‘r is that, in contrast to the DFT Hamiltonian, the matrix //etf 
is not Hermitian. As a conscxinence the eigenvalues of //gfr are complex vahu'd, and 
the right and left eigenvectors differ from each other. Eor a given complex eigenvalue 

the right eigenvectors satisfy the equation

Eetf^n — ^nSM'^rii

whereas the left eigenvectors for the same eigenvalne fulhll

^nEeti — ^n^nSwi-

(G.41)

(G.42)

We note that the sets {e„}, {ipn}, and {0,,} are all energy dependent, since //eft 
itself is energy dependent. Moreover, due to the imposed causality the eigenvalues e,j 
have a negative imaginary part. The eigenvectors are normalized in such a way that 
0n‘S'M'0m = Gim = 1. //eft Call tlicii 1)6 Written ill sjufctral form as

N

^eff = 5m, (G.43)
?l=l
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and the retarded GF is
N

Gm -
1

n=l
E + iS — e,

-i’ni’n- (6.44)

A BS is found if there is a pole in Gu for S 0+ [194], which is the case at a real 
energy Ebs,„. if

Ro[c„(£;Bs,,J] = i?ns,., (fi-45)

and
Im[e„(£;Bs.;.)] = 0. (6-46)

The BS index //, runs from 1 to A^bSi where A^bs is fiio number of BSs, which cor
responds to the number of poles of Gu- We define = V'n(■E'bs,//) ^od = 
ft'niEnH.ti) as the wave functions evaluated at the BS energy.

This concept can be generalized to include also weakly conj)led states, by defin
ing a maximinn value r/'^ for the imaginary part of the eigenvalues. We define the 
generaliz('d bound states (GBSs) as those states, where at a real energy 'W

and

-w

.w

(6.47)

(6.48)“Iiii[fn(£',* )] < rj-

are fulfilled at the same time. As a matter of notation, we denote the variables relating 
to BSs and GBSs with Greek indices. The GBSs therefore include both true BSs and 
also those weakly conjiled states, for which the broadening in the energy is smaller 
than . The notion of GBSs is inii)ortant for numerical comi)ntations, where the 
imaginary part of e„ is never exactly zero, so that Eq. (6.46) is not applicable. By 
choosing the value of it is therefore possible to s(d a lower limit to the imaginary 
I)art of the eigenvalues that is still considered numerically accurate. We note that the 
in general rj'^ can also be chosen to be large, in which case the GBSs represent a set 
of weakly coupled states, where the coupling is lower than some tolerance, which is 
set by 7/'^. The total nunil)er of GBSs in the EM N'^ depends on the choice of , 
and it can have any value. We define

w = T,,(E,r) (6.49)

as the energy eigenvalne of the GBS with index //,, and analogously
and — 'ij)„{E'^) as the wave function evaluated at the energy of the GBS.

If we use a finite value for 8 in constructing Gm, then all those states have to be 
considenxl BSs, which contribute significantly only to Abs, not to Acs- This is
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the case for all states with —Iin(6„) S. On the other hand, we consider those states 
as coupled to the leads, whose contribution to ^bs is negligible. This is the case for 
those states with —Ini(f„) 5. Those states however, when-e —lin(f„) is of the order 
ol h, contribute to both Abs and y4cs, and have therefore to be considered partly as 
BSs, and partly as coupled states. If we choose about one order of niagnitnde 
larger than 6, then the resulting set of GBSs includes all the states that contribute 
significantly to ^bs- Those GBSs, with —Iin{e„) of the order of d or larger, contribute 
also to ylcs-

The GBSs can be found in a graphical way, as scheniatically shown in Fig. G.l. 
First the real part of all the eigenvalues {e„} is plotted as function of E. These are 
shown as continuous black curves in Fig. 6.1(a). The next step is to remove all those 
eigenvalues with large imaginary part, i.e. where Im[6„(£')] > //^. We assume that 
this is the case for two of the eigenvalue curves. Tin; remaining two eigenvalues with 
Im[e.„(£;)] < r/W are i)lott('d in G.l(b) as black curv(!S. For tlu'se the sec'ond criterion for 
the GBSs [Ecp (G.48)] is always automatically fnlhlk'd. The remaining criterion [Ecj. 
(G.47)] is then also fnlhlk'd at those energies, where the black curves cut the dashed 
red curve, which is simply a plot of E as function of E itself. In this parti('nlar cas(' 
we hnd two GBSs, marked with bine circles. The energy of the GBS E'^' is then 
simply the value of E at the intersection of tlu' two liiK's (niark('d by a circle). We 
use this scheme also in our numerical computations. The eigenvalues {f„} are hrst 
calculated on an energy mesh, and the GBSs are then found by interi)olating the 
eigenvalues curves between the nu;sh points. This sinii)le method works rather well, 
and allows one to reliably find the GBSs. This is shown in the examples presented at 
the end of this chapter. However, if the eigenvalues show highly non-linear behavior 
as functions of energy, the method might not find all the GBSs.

Using the dehnitions of Fb [Eq. (4.32)] and Fp^ [Eq. (4.33)], together with the 
definition of [Ecp (4.28)], we can write the following identity:

Up, + Fh = < — Ff^pf^ • (G.50)

If we multiply this equation from the left by ipn^ and from the right with '0„,, w(' 
obtain

■0^ (Fl + Er) = i{(n- fm)VU (G.5i:

We can now define left and right coupling coefficients and 7,f „ for a general state 
with index n as

7p„ = '0,1Fl'0.„, 
7R,n = '4’i^R'^n- (G.52)
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Figure 6.1: Schematic representation of the graphical method for the location of the GBSs;
the real part of the eigenvalues of is plotted as function of energy E
for all eigenvalues (a), and for the subset with lm[f„(E)] < E'^ (b). The circles 
indicate the energy of the GBSs.

Here the superscript “it” denotes that these coupling coefficients are energy depen
dent. Since are positive semidehnite Hermitian, the (piantities „ ^ire real
and positive. By setting n = m in Eq. (G.51), and by using the normalization of the 
Vy,, we then obtain the following relation for the iniaginary part of the eigenvalue

Ini(e„) = . (G.53)

This means that at each energy, the imaginary part of the eigenvalues can be split 
into the comi)onents due to the coui^ling with the individual leads. For the generic 
fi-ih GBS we hnally dehne

-yP r„(E™) V-,:,’’7

rUE7) V?,

as the conpling coefficients at the energy of the GBS E'^, so that

(G.54)

(G.55)

This relation shows that the iniaginary part of the energy, that corresponds to the 
broadening of a weakly coupled level, is a sum of the part associated to the coupling to 
the left lead —7L,/f/2, and the part associated to the coupling to the right lead —7R^^i/2. 
These couiiling coefficients have the same meaning as the ones used in tight-binding 
models [54, 202, 194]. It is important to note that 7{/7/?},,i are in general functions 
of the applied bias voltage. As we will show with the example of a weakly coiqiled 
magnetic molecule in Sec. G.IO, these couplings can change drastically as a function 
of bias, reflecting the fact that the nature of the states changes.
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6.4 Bound states contribution to the Density ma
trix

Using spectral representation of the GF, we obtain for the non-e(inilibrinin part 
of the lesser GF describing the GBSs [Ecp (G.31)]

N

GBS<
necj

■ fh — J\i f f
E + iS — f ,, E — iS — e*n.m=l "

(rf, - rf,)
The contribution to the charge density given in Ftp (G.35), then is

fh — f\i 1 1

(G.5G)

N

ft'® = E /
n,m=l

dTT E + E — i,S — e*

’I’n’f’!, (r{, - rf,) (0.57)

Sinc(' the matrices Fj^ are i)roi)ortional to d, when we choose' somewhat larger 
than d, the signihcant contributions to the integral come only from the GBSs that 
satisfy the criteria (G.47) and (G.48). The value of thus detenmine's how' many 
states are important for the inte'gral, in practical computations we typically choose 
r/'^ = 10 t). The snm over n and f/i in Eej. (G.57) can then be- r('i)lac('d by a snm ove'r 
the GBSs only

f neq /
<

■ oo?n,n e OBS '' °°

fGifl (r^ -

E + iS — e.„ E — i6

(G.58)

where “ng n G GBS” indicates that the sum rnns only ove'r the)se' states m anel n 
that have a GBS at some E. For eae-h GBS with inelex //, the main e‘e)ntribntie)n te) 
the integral e'onies fre)ni energies within a range e)f d' aronnel E^f. If we new further 
assume that the weakly ce)ni)leel states are not elegenerate, or more generally that the 
spacing betwe^en the states is nine'll larger than S, then the integral is only signihcantly 
elifferent from zero for m = n. With these assumptions we can also take the wave 
fimction ele]ienelent jiart, as well as the Fernii-Dirae' elistribiitions, ont of the integral, 
with the time'tions evaliiateel at E = can therefore be apiiroximateel as

AfW

=f iieci
^ fdE^) MEJ2 ^

/
•OO

-(

471

(IE
1 1

E + id — e.n E — Id - f*
(G.59)

11=f I
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where “n = //,” indicates that n is the index of the eigenvalue including the GBS with 
index //,, so that = en{E^) [see Eq. (6.49)]. Assuming that Re(e„) varies linearly 
in an energy range of the order of a few S around , and that Im(e„) is constant 
over the same range, the integral can be evaluated, so that is

f neci

-2 Im(fW)

Here the factor
/?« =

clRe(c„)
dE

(6.60)

(6.61)
n=^i.,E=E^

is the derivative of the real part of the eigenvalues with respect to the energy, evaluated 
at E = E'^. If Re(f„) varies significantly around E = E'^, then the factor l/j 1 — P^i\ 
takes into account the fact that the number of electrons, which can be put into a 
GBS, is different from 1. This will be illustrated with the tight-binding example in 
Sec. 6.8. Pn can be either calculated approximately, by interi)olating the slope of 
fn{E) between two energy j)oints, or else it can be determined semi-analytically from

Ofn
OE

 T/pffi/y,

7t !
=

- -l/ltVa, Im ^ Im

(6.62)

(6.63)

Here we have used the definition of [Eep (4.28)] and the normalization —
I. In Appendix C.4 it is shown how the derivative of the SE with respect to energy 
can be obtained. If we now also use the definitions in Eep (6.54), together with 
relation (6.55), becomes

/ neq

neq

/VW

E
/,,(£“) - /„(£») (rf, - rj,) pW 1

7l,/( + 7R./i + 2(5 \l — pf,

(6.64)

We now define as

77^ =
1/7' (rt - 7 ) tw

2^ ^=2!A**S'n(E,r)S|,t/7-l. (6.05)

where we have also n.sed the definitions of [Eep (6.22)]. p^ is a real number
ranging between —1 and 1, and it is a measure of the relative coni)hng of a GBS to
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the left and right leads. If all the GBSs have conpling only to the right lead, then 
a = 0/v, and = —1. On the other hand, if the GBSs have effective coupling only to 
the left lead, then a = 1^, and = 1. If the coupling of a GBS is iiiucli stronger to 
the left (right) lead, then p^ ~ 1 ~ —1). Finally for syinnietric coui)ling p^^ ~ 0.
Instead of choosing the matrix a, we can alternatively set the occupation of each 
individual BS by settings the value of p^^ can then be rewritten as

Bs ^ h{E^)-ME^)
dneq = 2^ ^^^

26 1
7L,ri + 7r,m + 26 \ l —

For true BSs we have to take the limit 6 0+, in which case, by following
an analogous j)r(jcednre as that used for the density matrix, we obtain for tlu' BSs 
contribution to the SF

Nbs
^BS — '^6{E — jY2̂n

^l=l
,0BS,^BSt^ (G.G7)

and for the BSs contribution to the non-ecinilibrium part of the lesser GF

/Vbs TT

^l=l
US„/,HSt
/i V fi (G.G8)

It is straightforward to verify that p„g(j obtained by integrating this ecpiation is iden
tical to E(i. (G.GG) for = 0, if we use the fact that for true BSs 7^^ = 7h^, = 0.

6.5 Self-consistent occupation for generalized bound 
states

For true BSs the relative coui)ling numbt’r p^^ has to be set in order to reproduce 
the physically meaningful occupation, as described in Sec. G.2. This can be done 
by choosing an appropriate a matrix. For the parallel j)late cai)acitor with the BS 
on the surface, the choice of a described in Sec. G.2 would simply result in p^ = 1 
for the BS located on the left surface, and p^^ = — 1 for the BS located on the right 
surface. In conjunction with Ecj. (G.GG), this shows again that the BSs on the left 
(right) surface follow the left (right) Eermi energy. If the GBS is weakly coupled, 
then its occupation at a given bias is in principle defined. We can therefore choo.se 
whether to set p^ using the matrix a as for the tine BSs, or whether to choose p^^ 
in such a way, that the resulting occupation of the state corresponds to the one for 
6 = 0. In this section we describe how to set p^ in the second case.
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For one weakly couj)led GBS with index //., the main contribution ,, to theneq,/t
total given in Eq. (6.66), is

/ nocj,/i = Ptr
2S 1

(G.69)
2 7L,/t + 11 — i3ii I

Since it is a weakly coupled state, its contribution p„eq,,j to the total pneq [Ecp (6.34)] 
can be calculated analogously to and the result is

Pneq,fi

neq, fj.i

7L,/t - 7h,/. 1
(6.70) 

0+. We

2 7L./i + iR.n + 2(511 — I

Due to the fact that the state is weakly coupled, = 0 in the limit (5
can therefore determine by reciuiring that the total contribution of the GBSs to 
the density matrix at a finite S is identical to the one for S = 0, which is the case if

With Eqs. (6.69) and (6.70) this condition becomes

71.. (j 7r.// 7i..// 7r./j .—'--------------- — ----------- ----------------—; + Pu
71.. /t + 7r./( 7l.// + 7Rq, + 2d

If we solve this e(iuation for 77,, we obtain

7i../j 7r../(
Pi> =

2(5
7l.// + 7R./i + 2(5

(6.71)

(6.72)

(6.73)
7i..// + 7r./(

We can tlu^reforc' obtain the correct NEGF (5 = 0 result even using a finite value 
for (5, if we add the BSs correction term and set 77^ to the value in Eq. 6.73.
We call this method the bound states correction scheme (BSGS). For very weakly 
coupled states, setting (5 = 0 would reciuire a very fine energy integration mesh for 
the numerical evaluation of Pneq,/j- However, by using a finite value of (5, the integration 
mesh needs only to resolve peaks with a full width at half maximum (FWHM) of the 
order of (5. If (5 is chosen much larger than the true width of the peak for S = 0, then 
the number of integration points can be drastically reduced, which results in a much 
faster computation. The drawback however is that the GBSs and their couplings have 
to be determined, however for (5 ^ 7l,,j + 7r,p the extra work is negligible compared 
to the gain in rc'dueing the number of integration points.

In an analogous way to the non equilibrium part of the charge density [Ecj. (6.70)], 
we can also calculate the contribution of a weakly coupled state Pf,q,ii to the eciuilibrium 
j)art [Ecp (6.33)], and the result is

.kiE^) + fH{E^) 7r„+7r„ 1
('<1.//.

7L.// + 7Fi,;4_________
7l,// 7h,// 7" 11 f3p

(6-74)



140 Chapter 0

By adding and p„eq,^ for 6 = 0, we obtain the occnpation of a nioleenlar state
as

W\

+ -/V

ME,W'l r'W'i
Hi ^ I Cl 1(1 + Pn) H-------^---- (1 - P,)- (6.75)

To conchide tliis section we note that the standard NEGF sclieine is not applicalile 
in cases with very small and symmetric coupling, like (jnantnm dots [20G, 207]. Usu
ally a different method, based on rate eciuations, is used to determine the occupation 
for these states [203, 204, 205, 206, 207]. Even in those cases however we can use 
the GBSs to separate out the weakly coupled states from the strongly conjiled ones 
in a NEGF calculation. By determining the coupling coefficients [Ecp (6.54)] their 
occnpation can then be determined using the rate equations formalism. Th(' strongly 
coupled states on the other hand can be occupied with the NEGF formalism.

6.6 Mesh refinement algorithm

Using the BSCS, described in the previous section, it is i)ossibl(' to integrati' the lesser 
GF using a rather coarse mesh, even when very weakly c'onpk'd states an' presi'iit. 
Another aiiproach is to use an adajitive energy grid instead of a grid with hxi'd 
mesh-point density. This grid should be fine at the energies of the weakly collided 
states, and coarse in the energy regions where the DOS is rather smooth. Diffen-nt 
approaches have been studied in Ref. [252] in order to generate such a mesh. Ben' 
we present an alternative method based on the concepts described in the previous 
sections. The main idea is to start the determination of the energy mesh by adding 
a rather large value of d' to the energy, so that all the possible peaks in the DOS due 
to weakly coupled states are broadened and they can be located with a rather coarse 
energy mesh. The mesh is then refined in an energy range around these broad peaks, 
and the size of 6 is reduced. This is repeated until S is smaller than the FWHM of 
the sharpest peak in the DOS.

Unfortnnately, the contribution from the weakly coupled states to the total DOS 
is nsnally overshadowed by the much larger contribution from the strongly coupled 
states. In typical calculations of molecules attached to metallic leads, the major 
contribution to the DOS conies from the bulk-like states in the metallic electrodes. 
The peaks in the DOS due to weakly coupled states are often barely visible, and 
therefore difficult to locate. The main idea now is that instead of using the total DOS 
A/m{E') to locate the peaks, we only use the contribution to the DOS generati'd by the
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GBSs evaluated at a finite value of S. For a very large S the main contribution
to the total DOS A/’m(-E’) = -^csiE) MnsiE) [Eq. (6.8)] conies from Afn^iE) [Eq. 
(6.7)], whereas for small S the largest part of the DOS is usually contained in the 
contribution coming from the coiqiled states Acs(E') [Eq. (6.6)]. As discussed in Sec. 
6.1, Wbs(E') contributes in the limit S —> O"'" only if true BSs are present, for finite S 
however it contributes also due to the presence of weakly coupled states.

A/bs(E) is now written in an aiiproximate form, that allows to determine the width 
and height of possible jicaks as function of (i. Using Ec^s. (6.7), (6.19), together with 
the spectral representation of Gm [Eci. (6.44)], AfjislE) can be written as

N

ATbsIE) = ^ V s
TT

1 1

n,77? = 1
E + — f„ E — iS — e*

(6.76)

As described in Sec. 6.3, for a given value of we can choose r/^ in such a way, 
t hat the main contribution to A/'ns(-£') is due to the resulting set of N'^ GBSs. This 
can be achievi'd by setting about one order of magnitude larger than S. As an 
approximation, we can then replace the sum over all states in Eq. (6.76) by the sum 
over the GBSs only. In this section we assume that the {f„} are constant over energy, 
at least in the vicinity of the energy of the GBSs. If we further neglect overlap terms, 
it is enough to consider the terms with n = ni. Ecp (6.76) can then be apin’oximated 
to

A7b,s(E)
1 V'' 1 1

E + 'iS-e'f^EII,= 1 iS rW*
II

(^-77)

The wave functions are normalized in such a way that = 1- The term
ill contrast can have any value. However here we assume that also 

1. This is usually a good aj)proximation for weakly coupled states, for which fts
The ap[)roxiniate relation for A/bs(E') then is

MusiE) = -T
TT * ■ [i;-Ro{£W)]"+ [^-lm(eW)] 2 • (6,78)

We note that since lni(f^']^) < 0, then 6 — Im(c^) > 0. Abs(E') tlmrefore is simply 
a sum of Lorentzian functions, one for each of the GBSs. The contribution from a 
single GBS is

A7bs,,(E) =
1

’'[E-Rc(£»)] +[^-Iin(f»)] 2 >
(6.79)
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so that Afiis{E) = J2n=\ Efns^iiE). The center of the Loreiitziaii function J\fiis,fi{E) is 
■dt E = Re(eW), and the FWHM is equal to 2 [d - Ini(fW)]. The nhninnnn FWHM, 
which is found for those GBSs with Ini(e^) = 0, is given by 2S. In order to resolve 
reliably all the j)eaks, the needed energy mesh spacing A|; for a given (i' has to be of 
the order of S. We now introduce the free parameter / a, which sets A^; for a given d
Ry

Al. = ta (G.80)

In our calculations we usually choose r’A somewhere in the range between 0.1 and 1, 
which guarantees that all the peaks in AfusiE) are resolved. This feature is the first 
important part of our adaptive mesh algorithm: no matter how sharp the p('aks in 
the DOS are, by using a hnite value of S they are broadened, so that they can always 
be resolvc'd with a regular mesh of spacing A^^..

In order to obtain an adaptive mesh algorithm we now need to identify in which 
energy regions the mesh has to be refined. This information can be obtained from 
the value of AAns./il-f')- By dehnition the energy spacing A|, is hue enough, in order 
to resolve peaks with a FWHM of 26. Therefore all the jjeaks generat('d by GBSs 
with |Im(f^)| > 6 can be resolved even if iS was not add('d to the energy. For such 
a GBS with |Im{e^'^)| > <5, and using Ecj. (G.79), we have

TT 6 AfuH.tiiE) < - for |lm(f^^ )| > 6. (G.81)

On the other hand, for those GBSs with |Ini(e^)| < 6, the mesh is not hue enough, 
and needs to be refined. For those GBSs with |Im(f^'^)| < 6 we have

TT 6 Wns./xlF") > TT- for |Ini(f';)| < (i. (G.82)

In the same way, from Ecp (G.78) we can see that if the total TvSAfusiE) < then there 
is no state with |Im(e^)| < in a region of around this energy. If Trd'A/'Bsl'E’) > 
then there might be a such a state within ±(i, so that the mesh has to be rehned in 
that region. This allows ns to dehne the following criterion for the mesh rehnement: 
the mesh has to be refined at all those energies where

TT 6 Mlis{E) > (6.83)

More generally we can therefore introduce a rehnement parameter and recpiire the 
mesh to be rehned if

TV 6 J\fBs{E) > rs. (G.84)

In practical calculations we usually use rs = 1/2, however the value can also be 
reduc('d.
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state 1 state 2 state 3

R,e(ei) = —8.0 eV R.e(e2) = 0.0 eV Re(e3) = 4.0 eV
Ini(ei) = —2.0 eV Ini(e2) = —0.1 eV Ini(e3) = —0.001 eV

Table 6.1: Paranieters used in the 3 state example system.

This allows ns to formnlate the adaptive mesh algorithm as follows: we start by 
choosing valnes for rs and an initial value for h. Next we ealcidate A/bs('£') 
on a mesh with spacing A|. = using Eq. (6.7). For all those energies where 
TT h A/bs(-E^) > we have to refine the mesh in an energy range of B — S to Ei + h. 
The rehned mesh s[)acing is given by the choice of a new, reduced value of = (i), so 
that now A|; = This procedure is repeated until for a certain value of there
are no energies with tt S A/bs(-^) > Once the energy mesh is determined, we can 
set h = 0 for all the calculations on that mesh. If BSs are present, then we can define 
a lowest value hns for h, below which the states are considered BSs (see Sec. 6.3). In 
the.se cases the mesh is rehned until (i < (ins- The occupation of the BSs has then to 
be set as described in Sec. 6.2. We note that this recursive algorithm can therefore 
also be used as an alternative way to locate the BSs.

Wh now illustrate the algorithm on an example system, in which there are only 3 
states, each one is located at a different energy and possessing a different broadening. 
The values of the used parameters are given in Tab. 6.1. State 1 is a broad state, 
state 2 has an intermediate energy width, and state 3 is a rather localized state. For 
such a system we can write AfcniE) as

^fcs{E) = zT, -Im(e„)
^^[E - Re(e„)] + [(^ - Im(e„)] 2 ’

(6.85)

■^bs{E) as

1MnsiE) = -W
TT /’’EAE- Rc((.,)| + [i - Im(f„)r

(6.86)

and the total DOS AfuiE) as

A/’m(£') — - S - Im(f„,)
7r;^[il-Re(e„)] + [h-Im(c„)]^

(6.87)

In Fig. 6.2 these three DOSs are shown for S = 0.1 eV. For the strongly coupled 
state 1 almost all the DOS is contained in J\fcs{E), whereas it is barely visible in
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£(eV)

Figure G.2; Contributions to the DOS for tlie 3 states example system with the parameters 
given in Tab. 6.1, for S = 0.1 eV.

J\fii^{E). For state 2 Im(e2) = so that its contributes with the same aiiii)htu{le to 
both Afcs{E) and AfuniE). State 3 finally has has Ini(f3) 6, and therefore almost 
all the DOS is contained in AfusiE), whereas it is barely visible in A/csiE)- This 
shows that as the absolute value of the imaginary part of the states decreases, the 
corresponding Afcs{E) decreases, while AfusiE) increases. The FWHM of state 1 is 
approximately ecpial to —2Ini(f3), whereas for state 3 it is apiH'oximatt'ly (xpial to 2S. 
This illustrates the broadening of the weakly coupled states induct'd by h.

In Fig. G.3 the adaptive mesh algorithm for this system is illustrated. On the 
left panel we plot irSAfusiE), which is used in order to detect where to refine the 
mesh via Ftp (G.84), for different values of S. The daslu'd horizontal line corre
sponds to the chosen value of the refinement parameter vs = 0.5. For those energies, 
where TrSAfuaiE) > vs (black part of the curve), the mesh needs to be refined. For 
ndAfusiE) < rs (green part of the curve), no rehnement of the mesh is needed. The 
shaded area corresponds to the energy region where for a given S the mesh has to be 
refined. For f) = 1 eV no refinement is needed for state 1, however for states 2 and 3 
the mesh needs to be refined in the two broad grey areas. For S — 0.1 eV the mesh 
is fine enough also for state 2, however for state 3 it still needs to be refined. The 
same is time for 6 = 0.01 eV. Only when S reaches 0.001 eV, the energy mesh is fine 
enough also for state 3. At this stage the mesh refinement would stop. If h is further 
reduced to 0.0001 eV, no peaks are visible on this scale in TrSAfusiE). We note that 
as long as d > —Ini(f„) the height of the jieaks is aiiproxiniately constant, but the 
width of the peaks shrinks progressively as we reduce S. Once S < —Im(e„), then the
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Figure 6.3: Left panel: (^TrWns, used in the criterion for the mesh refinement in Eq. (6.84), 
as function of energy E, for different values of the added imaginary part 5. 
Right panel: A/cs ‘i*'’ function of energy. The parameters of the 3 states example 
system are given in Tab. 6.1.

width stays aj)proxiniately constant, but the lieight is reduced. In the right panel of 
Fig. 6.3 J\fcs{E) is shown for the same values of S. It can be seen that reducing S 
leads to an increase in J\fcs{E), until it is approximately constant once S < O.OOl eV.

Instead of ealculating the full A/'bs(-E'), one can just calculate the dominant element 
in the sum of Ecj. (6.78). The largest contribution comes from that GBS, for which 
at a given energy E the term \E — is minimal, so that 1/\E — f'^\ is maximized 
We define , where //,,
of \E

I **********-*,..................... -/I— ■ fi

is the index of the GBS with the minimum value
,W|hi Ie;; \ for a given energy. We can therefore equally use the cpiantity

1J^usiE) = -
^ [E Ro(f,n.o.x)] T Illl(^mna:)] ^ \E ("max T

(6.88)

instead of Afn^iE) in the criterion for the mesh refinement [Eq. (6.84)]. If we define 
gm\n as the eigenvalue with the smallest complex modulus of the matrix ESm — 
then

f^usiE) = - ^ (6.89)
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The advantage now is that in order to obtain g„ii„ it is not necessary to caknilate all 
the eigenvalues of the matrix. There are numerical algorithms, such as the shifted 
Arnoldi scheme [253, 254], that allow the direct calculation of the eig('nvalne with the 
smallest complex modulus. For large systems the calculation of A/bs(-F’) is therefore 
much faster than the one of MasiE), so that this method should be more efficient. 
Moreover, in A/’bs(^) there is a background contribution coming from the strongly 
coupled states, with an amplitude proportional to S, which grows for large systems. 
This problem is avoided when using A/bsI-E'), since by construction it depends only on 
one eigenvalue, and is therefore size-independent. For onr test systems this method 
worked rather well, although we note that the recursive algorithms to calculate g,„i„ 
show convergence problems for certain energies.

6.7 Transmission through weakly coupled states

Using the GF in the form of Eq. (6.44), the transmission coefficient [Ecp (4.94)] can 
be written in its spectral representation as

n,m=\ "

For a system where the transmission is entirely through weakly c'oupk'd states, we 
(“an use the same ai)proximations introduced in Sec. 6.4 for the evaluation of 
We set the value of in such a way, that all the weakly coni)kxl states contributing 
to the trans])ort satisfy Ecp (6.48), and they are therefore contained in the set of 
GBSs determined by such rj'^. If we apply the same aj)proximations of S('c. 6.4, the 
resulting form for T{E) is

nE) =
1

E + iS E- iS - fW*
/j=i

iW
■ (6.91)

with d' —> ()■*■. The finite value for 4' leads to the same broadening of the peaks as in 
the DOS.

By using the definitions of [Ecj. (6.54) ], and assuming that for the weakly
coupled states 0w Vv ) ill fim limit 5' = 0 we can write the transmission as

T{E) = Y,
rr [E-Relt")] +||7i,„ + 7iiJ-

(6.92)

This form of the transmission coefficient corresponds to the Bright-Wigner formula, 
and is often used in tight-binding models for the transmission through molecular
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Figure G.4: Schematic representation of the ID tight-binding model.

states [54], For a set of weakly coupled states, the transmission written in the form 
of Eci- (6.92) generally gives a better understanding of the transport properties than 
the general NEGF of Eq. (4.94). In i)artieular, one can determine the nature of the 
moleeular states contributing to T{E), as well as the strength of the coupling of these 
states to the leads.

For one single state the maximum transmission is

r[Re{,")] =4
(7n« + 7r./J^’

(6.93)

which is equal to 1 if 7l,,, = 7r.,,, and becomes smaller as the difference between 
and 7h gets larger. The height of a peak in the transmission is therefore a 

measure of the asymmetry of the coupling to the leads. The FWHM is ecpial to 
7i„/( + 7ir,/ = —2 lm(e^,). The integral over energy of the transmission gives the 
saturation current of the state, which is

27r6 7r,//.7H,/.
* fi,mnx (6.94)

f> 7l.,,,+ 7r,r

In Se('s. 6.9 and 6.10 we verify the validity of the approximate model for the trans
mission, and hnd good agreement between the model and the exact solution.

For a BS the current is obtained by taking the limit 7L/R,/t —> 0 in Eq. 6.94, which 
gives Ifi^max ^ b. BSs therefore do not carry current. However if an effective coui)ling 
of the BSs to the leads is included, the current through these states is hnite. This 
approach is taken in Refs. [246, 247, 248, 249, 243], and it is shown that in eases 
where the current is very small, the contribution of the BSs to the total current is 
not negligible. For some of the systems it is shown that the main contribution to the 
total current comes from the BSs.

6.8 ID-chain tight-binding model

In this section we illustrate the basic i^roperties of the BSs, as presented in Secs. 6.1 
and 6.3, using a simple tight-binding model. Such a model is also used chapter 6 of 
Refs. [194, 65] to illustrate the zero-bias properties of BSs due to impurities. The 
model system consists of an inhnite ID chain of atoms (Fig. 6.4). We note that in
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this section all (piantities are given in arbitrary units. The leads are described by 
one orbital i)er unit cell, with an onsite Hamiltonian H[) = h and hopping matrix 
Hi = H_i = 7 (7 G R). The EM consists of a single atom with //m = hs and 

= ^MR = 7s- The orbitals are all assumed to be orthogonal, so that the overlap 
matrix 5m is the identity matrix. The dispersion relation E{k) for the leads then is

E = h + 27 cos A;, (G.95)

with A: G (—7r,7r]. The inverse of the dispersion relation k{E) is
E-h

cos k =
27

(G.96)

For each E there are two A-points, describing left- and right-going states respectively. 
If we define x = -Ij^, and using the results of chapter 5, the self-energies for this
system are

where

E,,(^) = Eh(E) = A-i-,

7sA =
|7|

X — sgn(T)\/x''^ — 1 A'dxl — 1)

is the real part, and

r = ,7£
I7I2^^/l x'^ d(l - \x\)

(G.97)

(G.98)

(6.99)

is the imaginary i)art of the self-energy. The function 0{x) is the Heaviside stej) 
function. Fig. 6.5 shows A and T as function of E, for the set of j)arameters 7 = 
1,// = (),7y = 1. The real part of the self-energy increases linearly for |j’| < 1, and 
decays i)roi)ortional to x~‘̂ for large x. The imaginary ])art is always smaller or ecpial 
to zero, and is non-zero only for |x'| < 1. The GF of the EM then is

Gm = ^ ^ (̂b.lOO)
h/ to —

with d' ^ 0+. The energy-de])endent eigenvalue e of the effective Hamiltonian = 
-|- El -I- Eji is

f = hs + + Sr- (6.101)

In the remaining part of this section we set h = 0, which corresponds to a shift of 
the zero of the energy scale to h, and 7 = 1, which sets the energy scale. We (walnate 
the GF and SF for different values of /;„ and 7*, hrst at zero-bias, and then at hnite 
bias. One of the main results at zero bias is that, except for 7^ = 7 and = h, there 
are always BSs in the system, as also shown in Ref. [194]. At finite bias the liSs 
appear and disai)pear, depending on the bias voltage.
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y= 1 
h = 0 
Y,= l

Figure 6.5: Real (A) and imaginary (F) components of the self-energy for the ID model 
system [Eq. (6.97)].

6.8.1 Zero bias

At zero bias we have Sj, = Ef^, and the GF of the EM becomes

Gm —
|B| <2 
|E| >2 (e.i()2)

(l-7|)£;-/is+sgn(E)72%/E2-4+i(5

The different behavior for E < 2 and E > 2 is eans('d by the Heaviside stej) function 
in the SEs. Using the definition in Eq. (4.30), the SF of the EM then results to

•2-y'^V4-E^ + 26
Am = [(1 -7U + (ii s/4^+S)'

2S
[(1 -72) E-h„+sgn{E)')!^ \//?2_4] +(i‘2

Special case = h and 7s = 7

|E| < 2

\E\>2
(6.103)

If /)s = h and 7s = 7 the system corresponds to an inhnit e i)eriodie chain of atoms. 
For this s])ecial ease the SF becomes

Am — s/A-FJ+62S
sgn(/i;)(ii2-4)-|-(52

|E|<2
|E|>2 (6.104)

Taking the limit 6 0+ we get

Am = e{A- E'^) . (6.105)
v/4-f;2

With Eqs. (6.2) and (6.102) we can calculate Acs = ^G(rL + FH)G^ the result for 
S 0^ is identical to the right-hand side of above equation. For Abs we obtain 
Abs = 0, so that there are no BSs in the system and as a result Am = Acs- This 
is the only ease where there are no BSs in the system. By changing the parameters 
from this s[)eeial case we can see how bound states api)ear in general.
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Y= 1 
// = 0 

Ys=l 
h =2

Figure 6.6: Iiiiagiiiary (a) and real (b) part of tlie eigenvalue of the effective Hainiltoiiiaii 
f, and (c) contributions to the SF, as function of energy E, at zero bias. The 
dashed red line in (b) is a plot of E as function of E it.self [f{E) = E], the bine 
circle intlicates the energy of the BS, and the green part of the cnrve corresponds 
to the range of eigenvalues where Iin(f) = 0.

Special case hg h and 7s = 7

For 7s = 7, but ^ h, the eigenvalue e of /feff if’

/is + E — /\/4 — E‘^
f = ,______ 1^1 <2

h, + E -i^gii{E)VE‘̂ -4 \E\>2 (G.lOO)

In Fig. 6.G(a) and G.G(b) the imaginary and real parts of e are shown as function 
of energy. The general behavior of e is largely determined by the behavior of the 
self-energies (see Fig. G.5). Ini(f) is zero except for E G (—2,2). A BS is fonnd at 
an energy F/bs where Re[e(£’Bs)] = A’bs a-nd Ini [e(itBs)] = b [see Eqs. (G.45) and 
(G.4G)]. In Fig. G.G(b) the BS is found graphically, in the way described in Sec. G.3, 
for /is = 2. First those regions of Re[e(£')], where Ini[e(£')] = 0, are marked with 
a green color. Then all the crossings between the function f{E) = E (dashed red 
line) and the green jiart of Ri' [e(£')] are determined. These correspond to the energy 
of the BSs. For the chosen set of parameters a BS is found at E^^ ~ 2.83. From 
this graiihical solution one can see that there is always a BS in the system, as long 
as /is ^ /i, because there is always a crossing between the two curves in the green 
part. If the curves cross in one of the black regions of Re[e(£')] the first condition 
[Ecp (G.45)] is fulfilled, but not the second one [Ecj. (G.4G)], so that these states are 
coupled to the leads.
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By using Eq. (G.103) the SF becomes

2\/4^+26

-4 m = h'^ + {V4^+S) 
26

and taking the limit S

A M

[-/!.s+ sgn(r7)v/E^] +<52

0+ we get

2VA~^
/i2+(4-E2)

- Ebs),

|£;|<2

\E\>2

\E\>2
\E\>2

(6.107)

(6.108)

Here Ebs == sgn(/?.s)y/4 + fi^ and f3o = dRc{e)/dE\E=f_Bs = 1 - y/d + hs/|hs| [with 
Re(e) taken from Ecj. (6.106)]. For any ^ 0 therefore there is a BS. Again both 
Acs aiid Afjs can be evaluated exj)hcitly to be

-4cs

Abs

2v^4 - E‘^
+ (4 - E^)

0 (4 - E'^)

2tv

11 ~ AI ^(£:-£:bs),

(6.109)

(6.110)

and it can indeed be verified that for this simple model Am = Abs + Acs- Moreover, 
the form of Abs corresponds to the general form given in Eq. (6.67), if applied to 
this model. In Fig. 6.6(c) Ac^s <iiid Abs fire shown. A small finite value of 3' is 
used in order to visualize the (^-function in Abs- Acs E smooth and flat over a wide 
energy-range, eciual to the band-width of the leads, whereas Abs is localized at one 
I)articular energy. This is the typical behavior of these two contributions to the total 
SF. In Fig. 6.7(a) F^bs is shown as function of /?«. For all values of E there is a BS, 
located at an energy outside the bandwidth of the leads. For E = 9 there is no BS, 
this is reflect(’d by the discontinuity in the curve at E = E)-

We can integrate the SF over energy to obtain the maximum number of electrons 
r/cs liiaf can be associated to Acs [E(i. (6.9)]

qcs = 1 I'l.i

and the maximum number of electrons q^s associated to Abs [Eq. (6.10)]

(6.111)

f/us =
\E\

y^+4'
(6.112)

The total number of electrons that can be placed in the EM is qm = Qcs Eqm = 1- In 
Fig. 6.7(b) qc.H ami r/Bs are shown as function of E- '7cs is 1 for E = 0 and decreases 
monotonically for increasing On the other hand, r/ns is 0 for E = 0, reflecting the
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Figure G.7: (a) Energy of the BS function of the onsite Hamiltonian of the EM /ty,
and (h) nicixiimnn number of electrons in the coupled states bound
states f/i5s, as function of energy E.

fact that in this case there is no BS. Then it increases inonotonieally for increasing li^. 
The distribution of charge between y^s and qcn if’ df'terinined by do. It is therefore 
essential to inc’lnde this factor in the computations, in order to obtain the corr('ct 
total charge. We note that in Ref. [194] the Van Hove singnlariti(>s for /?„ = 0 at 
E = ±2 are interpreted as BSs. Tlie reason why we do not include them among tin' 
BSs, is that = 0 for this si)ecial cas('.

Special case % = 0

By using Eq. (G.l()3), the SF for % — 0 becomes

=
{E - h,)'^ +

which in the limit 6 0+ is

Am = 2tt S{E — hf^).

(6.113)

(6.114)

This corresponds to a completely decoiqrled, localized state at (mergy /;«. This can 
always contain one electron regardless of the value of /;„.

6.8.2 Finite bias

A hnite bias potential V is api)hed non-self-consistently by simply shifting the onsite 
energies of the leads by +V/2 on the left-hand side and —V/2 on the right-hand sid('. 
The GF at hnite bias is then given by

1G{E,V) =
E + i6 - E - EiXE - V/2) - Eh(F + V/2)'

(6.115)
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h = 0
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Figure 6.8: Imaginary (a) and real (b) jiart of the eigenvalue e of the effective Hamiltonian, 
and (c) the two contributions to the SF, as function of energy E, for an applied 
bias potential V = 1. The dashed red line in (b) is a plot of E as function of E 
itself [f{E) — E], the blue circle indicates the energy of the BS, and the green 
part of the curve corresponds to the range of eigenvalues where Im(c) = 0.

Figure 6.9: Real (a) and imaginary (b) parts of the eigenvalue f\ of the BS [ei = f(£'Bs)], 
and (c) maximum number of electrons storable respectively in the coupled states 
(/cs and bound states f/uSi function of the ai)phed bias potential V.

We now analyze the special case where hs h and 7s = 7, in order to understand 
how the contribution of the bound states to the total DOS changes with bias. The 
GF and SGF are computed numerically. In Figs. 6.8(a) and 6.8(b) the imaginary 
and real part of c are shown for an applied bias of G = 1. The energy range where 
Ini(f) 0 is now increased by V. There is still a BS, but T’bs how moves closer to 
the band-edg(' of one of the leads. This causes the factor /io to increase, so that the 
number of electrons that can be plaeed in the BS is reduced. Also the SF [Fig. 6.8(c)]
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shows an increase of the range where Acs 7^ 0.
In Figs. G.9(a) and G.9(b) the imaginary and real part of ci = f(£'i5s) ^ire shown 

as fnnction of bias voltage. For small and large voltages Ini(fi) = 0, so that there is 
a BS. For intermediate bias voltages, between 2.4 and G.3, Im(fi) < 0, and therefore 
there is no BS. The energy of the bound state Re(ei) changes with the bias, especially 
for those bias voltages where Re(ei) is close to a band-edge of one of the leads. The 
nmnber of electrons that fits in the BS f^BS [Fig. G.9(c)] c’hanges contiimonsly with 
the bias, and it is zero when there is no BS. This result shows that for a finite bias 
calcnlation the contribution of the BSs to the density matrix has to be calculated 
independently at each bias. BSs can appear and disajjpear, with the ainonnt of 
charge stored in the BSs changing continnonsly with bias. We also i)oint ont the 
importance of the prefactor 1/|1 —/?o| in Eq. (G.llO), and of the corresponding factor 
]/|l — l3^\ in the general case (Sec. G.4), since it determines how nnich charge can 
be irlaced into the BS. If this in’cfactor is neglected, then r/BS either 0 if there is no 
BS, or 1 if there is a BS. This however often leads to a wrong total charge in the EM, 
which is the case for exami)le if the BS is close to the band-edge of one of the leads.

6.9 C3 molecule in an An capacitor

In this section we i)erform a finite bias calculation of a small test system, c’onsisting 
of a parallel plate gold cai)acitor with a weakly coupled C,i molecnk' plac('d in the 
middle (see Fig. G.IO). The goal is to test our inij)lenientation of the BSCS (Sec. 
G.5) and of the mesh refinement algorithm (Sec. G.G) in SMEAGOL. TIk; distance 
between molecule and An surfacx^ is chosen in such a way that the coupling is very 
weak. N4oreover, it is slightly shifted to the left side, so that although the cou])hng 
is weak to both surfaces, it is much stronger to the left than the right electrode. In 
this way the energy levels of the molecule should mainly follow the Fermi energy of 
the left lead. Although this is an artificial system, its general features apply to all 
systems presenting weakly coupled states.

In order to reduce the size of the calculation for the gold electrodes, w(^ include 
the An d orbitals in the core. In the context of electronic transi)ort this is a rather 
good api)roxiniation, as long as the bias is not too large [255]. The main reason is 
that close the the Fermi energy the contribution from the An d orbitals is negligible. 
We use a minimal single C s basis for the Au atoms, with a cutoff radius of Vc = 5.5 
bohr. This is a rather short cutoff, however this is only a proof of concept, and 
the aim is not to reproduce a real physical system. For the carbon we use double 
C A', and double C polarized p, with I'c = G.5 bohr for the first C for both a and p
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Figure 6.10: Unit cell of the parallel plate gold capacitor, with a C3 molecule between the 
two plates.

orbitals. An electronic teinirerature of 300 K and a 2 x 2 A:-i)oints mesh are used 
in the i)la.ne of the capacitor. We irerform a sj)in-i)olarized calculation, and use the 
LSDA approximation for the exchange correlation potential. The lattice i)arameters 
of the An(lll) surface correspond to those used in Sec. 5.4. The atomic spacings 
between the carbon atoms in the C3 molecule are ecpial to 1.30 A, which corresi)onds 
to our calculatefl value at equilibrium for the isolated molecule. This value is slightly 
larger than the experimental distance of 1.277, but agrees rather well with jjrevious 
calculations A [256]. The energy gaj) between the HOMO and the LUMO, obtained 
from a calculation with the isolated molecule, is eciual to 2.22 eV, and coni])ares well 
to i)revious GGA calculations [257]. The value obtained using GI howewer is much 
larger, eciual to 12.4 eV [257].

Ill Fdg. 6.11 the zero bias sjiin-dependent transmission coefficient is shown. The 
molecular states can clearly be identified as sharp peaks in the transmission. Due 
to the interaction with the An surface, whieh leads to a very small charging of the 
molecule, the molecular states are slightly spin-sjilit. The LUMO is spin-split and 
{)inned slightly above Ey, the HOMO is at about -2.2 eV below Ey. Since an electronic 
temperature of 300 K is used, the step in the Fermi function is smeared out by about 
25 meV, so that both the majority and minority LUMO levels are partially filled.

The GBSs formalism developed in this chapter is used to find and characterize the 
weakly coupled states. We solve the eigenvalue problem for the effective Hamiltonian 
[Eq. (6.41)], and find all the GBSs with —Im(e^) < 10“'^ Ry. In Fig. 6.12 the 
total transmission is shown on a logarithmic scale. The diamonds on the energy 
axis correspond to the values of the real i)art of the energy eigenvalue for all the 
found GBSs. It can be seen that for each peak in the transmission a GBS is found. 
This confirms that with the method described in Sec. 6.3 we can indeed find all the 
weakly coupled states at the right energies. The GBSs found slightly below 4 eV do 
not corresj)ond to molecular states, but to surface states of the gokl. Since these are
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Figure 6.11: Zero bias striii-Gepeiident transmission coefficient T as fnncdion of energy.

almost not conph'd to the lead on the opjtosite side, tlu' height of the transmission 
peaks is very small. In fact for the set of GBSs at about 3.8 eV above Ey there is no 
visible peak in the transmission. A closer analysis shows that these GBSs are oidy 
fonnd for one out of the 4 A-[)oints, namely for the F-point. The coupling of the.se 
states to the leads is however very weak, of the order of the machine precision, and also 
highly a.synnnetric, so that the peaks do not show np on the scale nsr'd for the figure. 
These peaks with very small amplitude can be fonnd in the transmission for the F 
point alone at the energies of the GBSs. For each weakly conph'd state with index /r 
the effective conpling to the h'ads and is extracted using Ecp (G.54). The 
model transmission cof'fficient is then calcnlated using Erp (G.92), and the result is 
shown as daslu'd blue curve in Fig. G.12. The agreement with the exact transmission 
is very good, all the peaks have the same j)Osition, height and FWHM. Away from the 
peaks the agreement is not so good, since in this region the approximations made in 
deriving Ecj. (G.92) are not valid. In order to emphasize the agreement between the 
exact .solution and the model, in the inset we show the transmission on a linear scale 
in an energy range close to the LUMO. The circles indicate the exact transmission, 
whereas the dashed line is the transmission calculated using the model. The fact that 
the two curves basically overlap confirms that for such a weakly conph'd .system the 
model for the transmission described in Sec. G.7 is indeed appropriate.

In order to test the validity of the BSGS, presented in Sec. G.3, we perform a hnite 
bias calcnlation, where we use S = 10“'* Ry and apply the BSGS to correctly ix>i)nlate 
the GBSs. Since for this system the agreement between the model transmission and 
the exact transmission at zero bias is very good, we expect the BSGS to work well. 
In order to integrate the non-('(iuilibriuni part of the lesser GF over energy we u.s(' an
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Figure 6.12; Zero bias total transiiiissioii coefficient T as function of energy. The black 
curve is the exact solution, whereas the dashed blue curve is obtained by using 
the model transmission of Eq. (6.92). The inset shows a zoom over a narrow 
energy range, where the black circles indicate the exact transmission. The 
diamonds i)lotted on the energy axis indicate the energies, at which a GBSs is 
fonnd.

energy ineHh-i)oint si)aeing of about 8 10“''^ By, so that we ean resolve with reasonable 
aecnracy the peaks with a minimal FWHM of = 2 lO""^ Ry. In Fig. 6.13(a) the 
obtained value for Re(f^'f), corresponding to the position of the molecnlar levels, is 
shown as function of bias (black curves) for the self-consistent solution. At zero bias 
the energy scale is chosen in such a way that Ey = 0. The dashed reel line indieates 
the ])osition of Ey \^ as fniK'tion of bias, the green one that of Ey \i. The states 
follow almost exactly the left Fermi level, with the LUMO pinned above it for all 
bias voltages, so that the energy of the levels increases linearly with the bias. The 
only states that do not follow this trend are the surface states of the gold, located at 
about 4 eV above Ey at zero bias. The surface states located on the left-hand side 
lead follow Eyj^, those located on the right-hand side one follow Ey ^, so that their 
energy decreases with increasing bias. At a voltage of about 2 V the HOMO levels 
enter the bias window. They ean easily enter the bias window, since their charge is 
apimoximately 1 even when they are inside the bias window. The reason for this is 
that, being coui)led mnch stronger to the left lead, the flow of charge from the C3 into 
the right lead is much slower than the inflow from the left lead, so that the occupation 
of the levels is always approximately one. Since charging is negligible, the relative 
position of the levels in the molecule is constant.

W(' now compare the results with the ones of a second calculation, where we do not 
use the BSCS, but W(’ set t) = 0. We then vise a very fine mesh of energy points on the
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Figure 6.13: Rt'al part of tlie GBSs eigenvalues (black lines), as function of the
voltage V. I'lie red (green) dashed line indicates the position of 
The black lines in (a) are calculated from a self-consist('nt solution, obtaiiu'd 
by using the BSCS, with 6 = KG'* Ry. In (b) the self-consistent solution is 
obtaiiKxl without including the BSCS, with S = 1()~‘’. The blue circles in (a) 
indicate Re(e^) for a self-consistent solution, obtained with d = 0.

real axis, willi a inesli-point spacing of about 5 Kl'*’ Ry. The h'WHM of the HOMO 
and LUMO peaks is about 2 10“^ Ry, so that such a hue mesh can resolve the sharp 
peaks, and therefore calculate the jjroper occui)ation exactly. Once self-consistency 
is achieved, we calculate the energies of the GBSs. These are shown as bhu? circles in 
Fig. G.13(a). They overlap very well with the positions of the GBSs obtained from 
the self-consistent calculation with a hnite S and the BSGS. This clearly demonstrates 
that the BSGS proposed in Sec. G.5 gives the correct solution at hnite bias when a 
hnite value for h is used. We note that for this system the comimtational time needed 
when using the BSGS scheme is much shorter than the one for the exact calculation 
with the high niesh-i)oint density.

As last test the self-consistent solution at hnite bias is calculated by using S = 
10^'^ Ry, but without correcting for the GBSs. This means that we neglect the term 

in E(p (6.32). Again we calculate the positions of the GBSs for the self-consistent 
solution, and the result is shown in Fig. 6.13(b) (black curves). It can be clearly seen 
that the position of the levels as function of bias is very dih’en'iit from the correct
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one of Fig. G.13(a). This is dne to the fact that the charging of the niolecnlar 
orbitals is not correctly taken into aeeonnt. As discnssed in Sec. 6.2, neglecting the 
BSs correction term is ecinivalent to assuming that the weakly coupled states are 
ecinally coupled to both leads. For sneh a system all the levels avoid entering the 
bias window, since that wonld imply change their ocenpation by about half of an 
electron. In fact the levels remain outside the bias window at all voltages between 
-2 V to +2 V. Outside this voltage range, some levels are forced to enter the bias 
window, since the bias is larger than the HOMO-LUMO gap. This then leads to a 
rearrangement of the levels at higher voltage, with the effect that the molecnle remains 
in a nearly nentral charging state. Whereas this represents the correct behavior for 
a symmetrically conpled system, in this case this result is clearly incorrect, since the 
coupling is constructed to be highly asymmetric. This shows that neglecting the BSs 
contribution to the density matrix can lead to very nni)hysical results, also for 
the I-V. We therefore conclude that for all transport calcnlations at hnite bias it is 
necessary to cheek whether there are very weakly coupled states in the system. If such 
states are present, one can either use a very hue energy mesh and 3 = 0, or else use 
a hnite value for 6, with a corresponding coarser mesh, and add the BSs correction 
term. We also j)erforni('d the ealcnlation with = 0, and using the adaptive mesh 
algorithm described in See. 6.6. The obtained results are basically identical to the 
ones obtained using a very hue regular mesh, conhrniing that the mesh rehnement 
algorithm works w'ell in these situations. The conij)utational time is much faster if 
the adai)tive mesh is used.

We conelnde this section by noting that the caleulation of the GBSs is not only 
nsehd to obtain the correct self-consistent solution. It can also provide us several 
additional informations about the nature of the moleenlar levels, about their coupling 
to the leads, and about their occnj)ation. In Fig. 6.14 the evolution with bias of 
Ini(e^Y)i Tr./j occupation [Eq. (6.75)] is shown for all GBSs within
the energy range shown in Fig. 6.13(a). As exi)eeted, 71,,is nincli larger than 
(note the different energy scale for 7j^,^ and 7r,,;). It can be seen that both 7^^^^ and 
7r,^,, and as a consecpience also Im(e]f), depend on the bias. The bias-dependence 
can be caused by a rearrangement of the charge distribution in the molecule for a 
given level, and also by the fact that for a given energy level the leads self-energy 
changes with bias. A closer insi)ection of the results shows that the larger values of 
7l,^j can be attributed to the moleeular levels, whereas the very small values of 
can be attributed to the An surfaces states. For the molecular levels 71,,^^ changes 
ai)proxiniately linearly with the bias. For almost all the states the ocenpation 77, is 
roughly either 1 or 0. Only the LUMO level has a fractional ocenpation considerably
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Figure 6.14: Imaginary part of tiie GBSs eigenvalues lm(e^'7), their eoupling coeffieients to 
the left (7L,;f) and right lead (7r,^), and their occupation as function of 
the applied voltage V.

different from an integer value. Its occuiration goes from about = 0 at -3 V, to 
about = 0.2 at +3 V. The increase of occupation with bias is ai)])roxiniately linear. 
It is this change of occuiration that is responsible for the shift of the energy levels as 
function of bias. The higher the charge on the molecule, the higher the energy levels.
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Figure 6.15: Structure of the Mni2-based magnetic molecule.

6.10 Transport through a Mni2-based magnetic 
molecule

In this section the application of the BSCS to a real i)hysical system of large dimen
sions is presented. Like the previous example this is a system where the molecular 
states are very weakly coupled to the leads. In order to avoid the use of a huge num
ber of energy points for the integration of at finite bias, w(' use again a finite 
6 to broaden the levels, and use the BSCS to correctly add the BSs charge. The 
general analysis is similar to the one of the j)revious section. In this section we use 
the adaptive energy mesh to calculate the transmission coefficient, in order to resolve 
the very sharp peaks. We have also verified that using the adaptive energy mesh with 
(5 = 0 gives the same self-consistent solution as the one obtained with the BSCS for 
finite S.

The Mni2-based magnetie molecule considered here is shown in Fig. 6.15. It 
consists of a core of 12 Mn and 48 O atoms, connected to 12 ligands, consisting of 
benzene gronj)s [258, 28]. The Mn atoms lie almost in a planar arrangement, with 8 
Mn atoms on an outer circle, and 4 Mn atoms on an inner one. The 8 Mn atoms in 
the outer circle are in a Mn'^+ state, whereas the inner ones are in a MrF+ state. In 
the ground state the magnetic moments of the 8 Mn'^'*' ions are all parallel to each 
other, and antiparallel to those of the 4 Mn"'"'" ions. The total magnetic moment 
Mg of the gronnd state is therefore Mg = 20 At very kw temperatures these 
mok’cules show magnetie hysteresis [28]. Experiments on the transport properties 
show Coulomb blockade regions in the 1-V curves, indicating weak conpling, and
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at certain bias voltages a negative differential conductance! is found [258]. Scanning 
tnnneling microscope measurements with the molecules on an An substrate show a 
condnctance gap of about 2 V [29, 30].

The main reason why this molecule is studied, is because it is a candidate for 
I)otential applications as single-molecule memory cell. The idea is that the molecule 
can be switclu'd between different magnetic configurations, and that the readout of 
the state can be performed by a single current measurement. A very important 
(luestion is therefore whether the spin state of the molecule can be deducc'd by an 
electric measurement. Here we address this (jnestion by calculating the current vs. 
voltage for two different magnetic configurations. The first configuration is the ground 
state, and the second one is one of the different possibk' magnetic excited states. 
These cakmlations were done in collaboration with C. D. rAmmarajn, who performed 
the DFT ground state calculations, and alscj some preliminary calculations on th(! 
transi)ort properties [259]. In Ref. [259] the experimental prop('rties of such molecules 
and previous tlu'oretical calculations are reviewed.

The structure of the molecule attaclu'd to the gold electrodes used in onr calcu
lations is shown in Fig. G.IG. The molecule is attached with two of the ligands to 
each of the gold surfaces, the distances between the S end-groujjs and the An surface 
are all chos('n to be approximately (Hpial to 2.0 A. This result s in an approximatc'ly 
symmetric coni)ling of the molecule to both sides. 12 of the benzene groups ar(' not 
attached to the gold, so that no current can flow through th(!se. In tlu' transport 
calculations therefore these 12 ligands have been replacc'd by H atoms, in order to 
reduce the size of the EM. This is exi)ected not to affect the transj^ort results, espe
cially since careful tests have shown that the energy levels close; to the Fermi energy 
do not change by removing some of the benzene gron[)s [259]. Fig. G.IG also shows 
the alignment of the moments on the magnetic ions in the = 20 fiB ground state. 
A green up (red down) arrow indicates that the ion is parallel to the majority (minor
ity). The exi)erinientally measured lowest excited state is a AA = 18 state, which 
is expected to be obtained by a collective excitations of all the ions [2G0, 258, 2G1]. 
This however can not be realized in our DFT calculations, so that we choose a tlif- 
ferent Mg = 18 fiu excited state, where we simply flip the spin of one of the Mn^"'' 
and of the neighboring Mid'*' ions. This is one of the possible low energy magnetic 
excitations. Fig. G.17 shows the molecule in this excited state, placed between the 
An electrodes, as used in the transport calculations.

As done in the previous section, we include the 5-d orbitals of An into the core, 
and use a double s basis with a cutoff radius of the hrst C /y = G.9 bohr for the 
valence. For the C we use double C .s (ry = 4.2 bohr) and donl)le C p (/y = G.7 bohr),
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Figure 6.16: Modified Mri]2-ba.sed niagnetic inolecule used in the transport calculations, 
attached to the Au(lll) electrodes. The arrows indicate the niagnetic align- 
ineiit of the Mu ions in the ground state configuration with A/, = 20 /ib (green 
arrows: majority, red arrows: minority).

Figure 6.17: Same as Fig. 6.16, where the Mni2-based magnetic molecule has the mag- 
iK'tic conhguration corresponding to the excited state with A/, = 18 //fi (green 
arrows: majority, red arrows: minority).

for S we use double C (r’c = 5.0 bolir), double C polarized p {Vf. = 6.2 bolir) and single 
C d [tc = 5.2 bolir), for 0 we use double C {fc = 4.2 bolir), double C iiolarized p 
{Vc = 4.9 bolir) and single (, d (r,, = 3.7 bolir), for H we use double C s {vc = 5.5 bohr), 
for Mil we use double C polarized s (ry = 5.9 bolir), single C fiolarized p (uc = 5.8 bohr) 
and double ( d [Tc = 5.9 bohr). All the Tc are given for the first C only, higher C 
are eonstrueted with the split-nonn scheme, with a split-norm of 15% [69]. Due to 
the large size of the unit cell, no A:-points are used in the direction perpendicular to 
the transjiort (only the F point), and the eciuivalent real space mesh cutoff is 400 Ry. 
For the exeliange and correlation jiotential the GGA, as parametrized in Ref. [85], is 
used.

A detailed analysis of the DFT ground state is given in Ref. [259], here we just 
briefly present the main results, that are relevant for the transport. Fig. 6.18 shows 
the PDOS, projected on the two different types of Mn atoms, for the molecule attached 
to the gold surface, in the A/, = 20 //,b ground state. We note that the states in Fig. 
6.18 have been broadened, in order to visualize them, but their real width is much 
smaller. We denote the four closely s])aced levels just below as the ffOMO levels, 
and the closely si)aced levels at about 0.3-0.4 eV as the LUMO levels. These HOMO
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Figure 6.18: Spin-polarized projected density of states onto the Mii ions for the molecule in 
the Mg = 2(1 /tB ground state shown in Fig. 6.16. Positive values are for the 
majority, negative values for the minority.

and LUMO levels are mainly made of Mu and O states. The fonr closely spac('d levels 
just below Ei^ can be mainly attributed to the ions. At low bias the transport
is expected to be dominated by these states. In this ground state conhgnration ther(‘ 
are no staters in the minority spin close to so that the current is exi)ected to be' 
fully polarize'ei at le)w bias. The GGA HOMO-LUMO gap e)f about 0.35 eV is rather 
small compare'el te) the experimental value of abe)nt 2 e:V [262, 29]. Using the LDA-I-U 
appre)ximation for the exchange ee)rrelatie)n potential, it is pe)ssible te) e)btain a value' 
edose to exjrerinient by tuning the value of the parameters [259, 263]. The character 
of the HOMO and LUMO levels is herwever unchangt'd when ceempareel to the GGA. 
Moreover, in experiments usually a gate voltage is applied in such a way, te) bring the 
conducting levels close to the E^ of An. The zero bias GGA result theredbre resembles 
the experimental situation at zere) bias, where such a gating ve)ltage is applie'el. We 
thereferre stuely the low bias behavie)r using the GGA api)re)xiniatie)n.

In Fig. 6.19 the zero bias transmission coefficient is sherwn. Fe)r each of the peaks 
in the PDOS there is also a corresponding peak in T. The peaks are all very sharj), 
with a FWHM in the range of 10““* to 10“^ eV, indicating that the molecular states 
are very weakly conj)led to the An surface. The reason for this is that at these energies 
there are no states in the benzene ligands that couple to the central Mni2()r2 part 
of the molecule, so that the wave function decays exponentially from the surface to 
the molecule. This results in a very small coupling. For all the peaks the niaximnm 
value of T is about 1, which means that the coupling is approximately ecpial to both 
sides [see Ecj. (6.93)]. This is expected, since the molecule is placed in the junction 
in a symmetric way.

Given the sharpness the peaks, we would need an energy jroint spacing of about
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Figure 6.19: Zero-bias traiisniissioii coefficient for the A/, = 20 //,b ground state.

Figure 6.20: Comparison between the exact solntion of the Mg = 20 //,b transmission coef
ficient (red line), and the one obtained tising the model BSs transmission [Ecp 
(6.92)], for two applied bias voltages: (a) zero bias, and (b) V = 200 mV. 
The circles indicate the mesh points used for the exact calculation, determined 
using the mesh-refinement scheme described in Sec. 6.6.

10“'’-]()“■'’ Ry in order to integrate properly at finite bias. We therefore use the 
BSCS with Ry, in order to limit the nnniber of energy points needed to
integrate In this way, we calculated the self-consistent solution in a bias range
of ±0.4 V. To verify that all GBSs are found at the correct energies, and also that 
no sjrnrions GBSs are fonnd, for each bias we carefully checked that for all the found 
GBSs there is a corresironding peak in the transmission. This is illustrated in Fig. 
G.20, where T is shown for the 4 i)eaks close to G/.- for a bias of 0 V (a) and 0.2 V 
(b). The red line shows T, calculated with the NEGF foruiafisni using Ecp (4.94). 
In order to resolve the sharp transmission peaks properly, we used the adai)tive mesh
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Figure (5.21: Planar average along x and y of the difference AVh betwetai the electrostatic 
potential at a finite biiis voltage and the one at zero bias, as function of {josition 
2, for different bias voltages.

scheme described in Sec. G.G. Each red circle in the hgnre corresponds to a mesh 
I)oiiit. It can be seen that the density of points increases close to the peaks. To 
illustrate the effect of the j)aranieter that sets the density of the grid for a given 
value of 8, we use /'a = 0.2 at zero bias, whereas at V = 0.2 V we use / a = 0.5. 
The energy mesh is therefore denser in the zero bias case. In both cases tlu' i)eaks 
are properly resolved, which shows that the smaller vahu' of i’a i-s large enough for 
this system. We conclude that also in this case the adaptive energy mesh algorithm 
is suit('d for the integration the transmission, and con.seciuently also to integrate the 
DOS and lesser GF. In order to check the correctness of the found GBSs, we plot 
T, calculated with the approximate model Ecp (G.92) (blue lines). The agreement 
close to the j)eaks is almost exact, conffrming that the GBSs are found at the correct 
energies, and also that the calculated coupling to the leads via Ecp (G.54) is correct. 
The transmission away from the peaks is different, however this is expected, since 
the model transmission is only valid in the vicinity of the peaks. Due to the very 
good agreement between the model transmission and the exact one, we conclude that 
also the BSGS should be suited to reproduce the correct density matrix at finite bias, 
and therefore work wefl for this materials system. As further test we calculated the 
self-consistent solution using the adaptive energy mesh algorithm. The results for the 
transmission are the same as for the self-consistent BSGS solution, which confirms 
that both methods work well for this system. We note that at V = 0.2 V some of 
the transmission peaks shrink dramatically (note the logarithmic scale in Fig. G.2()), 
which is caused by the fact that at this bias, contrary to the zero bias case, the 
coupling to the leads is highly asymmetric. This important effect will be discussed in 
more detail further down.



Weakly coupled and bound states in electronic transport 167

0.8

0.4

0.8

0.4

0.8

0.4

0.8 

0.41-

0.8

0.4

0.8

0.4
Jji

V<0
r

0 V

-0.05 V

-0.1 V

-f .2 V

-0..' V

-0.4 V

. I
-0.4 -0.2 0 0.2

E-Ep (eV)
0.4 -0.4 -0.2

E-E^ (eV)
0.2 0.4

Figure G.22: Bias dei)eii(lent transniissioii coefficient for the A/, = 20 //b ground state (rcxi;
majority, green; minority) on a linear scale; the blue vertical lines indicate the 
boundaries of the bias window.

We now move to analyzing the finite bias behavior of the system in detail. In Fig. 
6.21 we show i)lanar average AVji along x and y of the difference between the self- 
consistent electrostatic Hartree potential at a finite bias and that at O-bias along the 
junction stack. The junction stack corresponds to the direction of the transport, the 
z-axis in our case, and the planar average is taken along the plane perpendicular to 
the transport (the x-y j)lane). We refer to the drop in AVji between the left and right 
electrode as the “j)otential drop”. This is a very useful cpiantity for the understanding 
of the finite-bias transport properties. Fig. 6.21 shows AIT for four different voltages. 
AF„ is flat inside the An electrodes and decays monotonically across the molecule. 
For negative bias the potential drop is ai)i)roxiniately ecpial to the mirror image of the 
one for positive bias. This indicates again that the molecule is placed in a symmetric 
position, so that the charging of the molecule is similar for positive and negative bias.

In Fig. 6.22 the spin-resolved transmission coefficient is shown for different bias 
voltages. The blue vertical lines indicate the bias window. We note that since an 
electronic temperature of 300 K is used, the Fermi function is smoothed out, so that 
states outside, but close to the bias window, also contribute to the current. The same
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Figure G.23: Bias depeiicleut tiaiisiiiission coefficient for the Mg = 20 /cb grouiicl state (rcnl:
luajority, green: minority) on a logarithmic scale; the bine vcn tical lines indi
cate the bonndaricis of the bias window.

transniissioii is shown again in Fig. G.22 on a logarithinie scale, which makes all the 
peaks clearly visible. We first discuss the behavior with positive bias. The HOMO 
states just below remain outside the bias window up to a bias of 0.05 V, where 
there is only a small shift of the levels. At 0.1 V two of the levels enter the bias 
window. The; height of these two transmission peaks however is much smalk'r than 1, 
especially for the state that moves to the middle of the bias window, which is barely 
visible on the linear scale. As discussed in Sec. G.7, this can only be caused by the 
fact that the coupling of these states to the electrodes is now highly asymmetric. As 
the bias is further increased, this shrinking if found for all the peaks that enter the 
bias window. For negative bias we find the same general behavior, also here all the 
peaks entering the bias window shrink. The difference is that np to -0.1 V the states 
are all still outside of the bias window, and that at -0.2 V there is just one state inside 
the bias window, conii)ared to the two states at -(-0.2 V (see Fig. G.23). Th(\se small 
differences are caused by the; slight asymmetry of the mokx'iilar junction.

In order to understand the cause of the shrinking of the peaks, we calculate 71^ and 
7r for all the found GBSs [Eep (G.54)]. Indeed we hnd that at zero bias left and right
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eoni)liiig coefficients are similar, and that they become asymmetric with bias. For 
positive bias the states entering the bias window are coni)led more to the left lead, so 
t hat 7[^ ^ 7r . In this way, even if the states are inside the bias window, their charge 
is a])proximately conserved. Using Ecp (C.75) it can be seen that for positive bias the 
occnpation for states in the bias window is approximately equal to p = 7l/(7l + 7h), 

and this is api)roximately 1 for 7l ^ 7r. By changing the eoni)ling the states can 
therefore easily enter the bias window, whereas for symmetric coupling they would 
loose half the charge by doing this. In this ease they would always be pinned outside 
the bias window, just like in the example for the C3 molecule, where the BSs term 
was neglected [Fig. G.13(b)]. For negative bias, we find fhat the states entering the 
bias window have 7r 71^. For negative bias, the occupation of the states in the 
bias window is given by p = 7h/(7l + 7r), so that also here the change in charge is 
minimal when the HOMO levels enter the bias window.

The (inestion arises on how the states can change the coupling in such a dramatie 
way. In order to answer this question, in Fig. G.24 we i)lot the real i^art of the wave 
fnnetion for the 4 GBSs levels close to E/r, for a bias of -0.2 V, 0 V and 0.2 V. For 
each wave fmu'tioii we also give the value of the real part of the energy eigenvalne 
Eh with resi)ect to E^, of the imaginary part Ej, and also p = (7^ — 7r) /(7r -|- 7r ) 
[Ecp (G.73)]. As discussed in Sec. G.5, this term is approximately 1 if 7^ ;:§> 7r, 0 
if 7r ^ 7l, and -1 if 7^ <C 7r. It is therefore a measure of the asymmetry of the 
coupling. For zero bias all 4 wave functions extend evenly over the whole core of 
the molecnle, and in fact here p ~ 0 for all levels. The conpling of all the states is 
tlu'refore approximately the same to both leads. At V = 0.2 V the wave functions 
change drastically. Instead of spreading over the whole molecule, some of the WFs 
localize on the left or right side. The two peaks with the largest Eft are inside the bias 
window (see Fig. G.23) at this bias, for these two peaks 7; ~ 1, as already described 
for general voltages. The energies of the other two GBSs are outside the bias window. 
One of these states is locahz('d evenly between left and right side, and in fact here 
p ~ 0. The other one is located on the right side, and for this state 7; ~ 1. The 
same general relation between the localization of the WF and the conplings is also 
fonnd for V = —0.2 V. The conclusion therefore is, that the change in p is ol)tained 
by localizing the WF either on the left or right side of the large molecule. This 
change of the molecnlar levels is possible, since the four levels are closely spaced, so 
that a linear combination of these is formed to obtain new eigenstates at a slightly 
niodifi('d potential. At higher bias more levels get close to the bias window. New 
linear eombinations of states are formed, so that some of the levels can again enter 
the bias window without signihcantly changing the charging state. Since all the levels
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inside the bias window, which are the ones contributing to the current, have a strongly 
reduced transmission, the current is strongly suppressed compared to what would be 
expected from the zero bias transmission.

In Fig. G.25(a) the resulting I — V is shown. The current is vtiry small, of the 
order of a few tens of nA, reflecting the fact that the system conducts in the very 
weak coui)ling regime. Aloreover we note that the cnrrent almost conii)letely spin- 
j)olarized, since the cnrrent in the minority is negligible. For very small ])ositive bias 
below 50 mV, the cnrrent flows mainly through the HOMO states pinned at the Fermi 
energy. At higher bias however, once the states change coni)ling and enter the bias 
window, the cnrrent flows mainly through the states in the bias window. Dne to their 
highly asymmetric coupling however they carry only little cnrrent, so that the cnrrent 
decreases slightly with increasing bias. Once the bias gets close to 400 mV, the LUMO 
levels start to enter the bias window, which results in an increase of the cnrrent. We 
note however that the expectcnl experimental value for the H0M0-LUN40 gap is 
mnc4i larger than the GGA value of about 0.35 eV. Therefore in experiment the 
LUMO levels are expected to contribute to the cnrrent only at much higher bias 
voltages. For negative bias the geiK'ral behavior is similar, which again rehec’ts the 
fact that the molecule is j)laced in an approximately symmetric way betwe('n the 
two surfaces. The drop in current at -400 mV is caused by a r('arrang('ni(’nt of the 
molecular levels at that bias.

We now perform the same analysis also for the excited state with 4/.,. = f8 ///i 
(Fig. G.17), in order to verify if the s{)in-state affects the trans[)ort i)rop(Tties. In Fig. 
G.2G the PDOS of the isolated molecule in the excited state is slujwn. It is similar to 
the one for the GS, the differenc^e being that one of the four peaks below the Fermi 
energy is now a minority state. We can therefore exi)ect also the minority spin to 
contribute significantly to the cnrrent in the excited state. In Fig. G.27 the resulting 
bias dependent transmission coefficient is shown on a linear scale, and in Fig. G.28 it 
is shown on a logarithmic scale. The transmission is cinalitatively similar to the one 
of the ground state, with the difference being that one of the 4 HOMO peaks is now 
a minority j^eak. There is also a second minority peak at about 0.3 ('V. At finite bias 
the general behavior is again that the peaks are shifted out of the bias window up to 
some voltage, above which the states change the coui)ling to the An, so that some of 
them enter the bias window. However, sinc:e there is one less state in th(' majority 
si)in to re-hybridize the HOMO levels, these re-hybridize in a different way than in 
the ground state. We note esi)ecially that the minority state close to E\,- can not form 
linear combinations with any other states, so that it is always pushed out of the bias 
window, until the LUMO levels enter. The change of WFs, and of the corresponding
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Figure 6.24; Real sj^ace plots of the A/, = 20 //,p^ ground state WFs for the four states 
closest to the Fermi energy for three different bias voltages. All energies arc 
given in units of eV.
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Figure G.25: Spin-resolved eurreut I versus voltage V curves for tli(‘ Mg = 20 /pj ground 
state (a) and the Mg = 18 /in excited state (b).

Figure G.26: Spiii-polarized project('d density of states onto the Mu ions for the molecule in 
the Mg = 18 /tB ground state shown in Fig. 6.17. Positive values are for the 
majority, negative values for the minority.

coupling coefficients, with bias is illustrated in Fig. G.29. Indeed there is no visible 
difference in the WF for the minority states for the different bias voltages, which is 
reflect('d by the fact that the coupling coefficients are almost constant. The values 
show that the state is always coupled slightly more to the right lead than to the left 
one. This is a conseciuence of the choice of the position of the Mn ions, at which 
the spins are flipped in the excited state, since the minority WF is localized in that 
region. The majority states on the other hand change in an analogous way as for the 
GS.

In Fig. G.25(b) the resulting spin-polarized I — V curve for the excited state is 
shown. The general behavior is similar to the (Uie for the groniid state, and the to-
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Figure 6.27: Bias dependent transmission coefficient for tlie Mg = 18 //,b excited state (red:
majority, green: minority) on a linear scale; the bhie vertical lines indicate the 
boundaries of the bias window.

tal current is of a similar magnitude for both states. Contrary to the ground state 
however, there is now also a contribution to the current from the minority spin. Due 
to the similarity of the results between the two states, we conclude that it is diffi
cult to distinguish the two states from a readout of the current alone. Althongh the 
l)olarization of the current is very different, the total current is similar. Different ori
entations of the mokx’ule might lead to larger changes of the current than differences 
in the magnetic state. A change of the spin-state during an I — V measurement might 
however be detectable.
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Figure 6.28: Bias dependent transmission coefficient for the Mg = 18 /xb excited state (red:
majority, green: minority) on a logarithmic scale; the bine vertical lines indi
cate the boundaries of the bias window.
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Figure 6.29: Real space plots of the Mg = 18 pB excited state WFs for the four states closest 
to the Fermi energy for three different bias voltages. The arrows indicate the 
spin of the WFs. All energies are given in units of eV.
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6.11 Conclusions

A major challenge in NEGF calculations is the treatment of weakly coupled and 
bound states [62, 63, 243, 246, 242, 244, 245]. While in some cases the standard 
NEGF formalism might not be suited to treat such states [206, 207, 187, 208, 250, 
251], for many materials systems we can fornmlate a valid description. Apart from 
the conceptual difhcnlties, weakly coupled states canse technical problems in the 
calculation, due to the fact that they cause arbitrarily sharp peaks in the DOS. If 
a regularly si)aced energy mesh is used, the integrations of the lesser GF and of the 
transmission coefficient over energy become almost intractable. We have; presented 
two possible solutions: the first is the BSGS, bas('d on the concept of generalized 
bound states, and the second is the adaptive energy mesh. Both methods are found 
to work well for onr test systems, which consisted of a small G3 molecule, and a 
large magnetic Mni2-based molecule, attached to gold electrodes. We expect the 
adaptive energy mesh to be the more robust and flexible method for the integrations 
over energy. The main advantage of the calculation of the GBSs is, that it gives 
many additionally informations about the system, such as effective couplings to the 
leads, and the nature of the states in the EM. One can then use simplified formnhu' 
for transmission and DOS. It is also possible to s('parat(' out thos(' state's from the 
strongly coni)led ones in the cakadation of the density matrix. It might therefore l)e 
possible to set up a calculation, where the NEGF is used only for the strongly coujdc'd 
states, whereas for the occupation of the GBSs other formalisms are applie'd.

For true BSs, for which the coupling to the leads is exactly zero, the situation is 
more difKcnlt. We have shown how their occupation can be set, based on the assump
tion that there are interactions outside the ones described by the DFT Hamiltonian. 
These lead to an effective coupling to the leads, which we have included in the NEGF 
formalism by the effective coupling matrices. For systems such as capacitors, or tnn- 
nel junctions, it is usually possible to determine the effective colliding liased on the 
spatial location of the BSs. This will be illustrated in detail in chapter 7.

We have presented different examples, where weakly coupled and bound states 
appear. For a simple ID tight-binding model, we have determined the energy of 
the BS as function of bias voltage, and also the maximnm number of electrons that 
can be associated to BS. The important result is that it is necessary to calculate 
the contribution from the BSs independently for each bias voltage, since these can 
appear and disappear with bias. Most importantly, the charge that can be jilaced 
in a BS is a continuons function of bias, and can assume any value between zero 
and one electrons. In the calculations perforuK'd with onr implementation of the
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BSCS, and of the mesh refinement seheme in SMEAGOL for the small C3 moleeule, 
we have illustrated how the self-eonsistent. finite bias results eritit'ally depend on the 
eorrect inelnsion of weakly coupled states in the theory. For the magnetic molecule 
the ealeulation of the GBSs and of their properties allowed ns to understand the 
peculiar shifting of the energy levels with bias, and to determine the origin of the 
shrinking of the transmission peaks as they enter the bias window. We found the 
surprising result, that, as a consequence of the fact that the {)referred molecular state 
is charge neut ral, the nature of the moleeular states c'hanges drastically for different 
bias voltages. This leads to a negative differential conductance.
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Chapter 7

Electronic transport through 
Fe/MgO/Fe(100) tunnel junctions

Modern ina.gnetic sensors, such as read heads for hard disk drives, are based on the 
tunnel niagnetoresistanee (TMR) effect. This is the drop in resistance of a magnetic 
tunnel jnnetion (MTJ) fornu’d by two magnetic layers when the mntual alignment of 
their magnetization vectors changes from antii)arallel (AP) to parallel (P). The TMR 
magnitnde is given by

TMR = --7--^^-, (7.1)
Iap

with In{y) being the current at the voltage V for the n configuration (P or AP). 
ffnge TMR ratios have been aehiev('d in epitaxial, all crystalline Fe/Mg() [2G4] and 
CoFeB/MgO [265] MTJs, reaching up to 604% at room temi)erature and 1144% at 
5 K [18, 19]. These large values of TMR are largely attributed to the i)hase coherent 
and transverse momentum conserving transport. Extensive reviews on the transport 
properties of erystalline tunnel junctions are given in Refs. [16] and [15].

Tunneling junetions are usually grown in a layered form, either by sputtering [265] 
or by moleeular beam epitaxy (MBE) [264]. The advantage of the MBE growth is 
that high (piality junetions with well defined interfaces can be grown. The crystalline 
interfaces are atomically sharp over a long range [264]. Sputtering, in eonjnnction 
with an annealing step, leads to local crystallization at the interface. The long range 
order is worse t han that obtained with MBE, and also the junetion thickness is less 
well defined. The advantage of the sputtering teehniques however is that they are 
ninch cheaper. For both methods nsnally the bottom Fe electrode is grown on a 
substrate, often an anti-ferromagnetic layer. On top of this a few layers of MgO 
are depositc'd, over which the top metallie electrode is then grown. It is generally 
found that the interface between Fe(10()) and Mg()(l()()) is formed in sneh a way 
that the O atoms of the first MgO layer grow on top of the Fe interface atoms, with 
the in-plane unit cell of MgO rotated by 45° with res])eet to the Fe nnit cell [266,

179
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267, 268, 20, 269]. The details of the exi)erinientally deteniiiiied interface structure 
vary somewhat for different experiiueiits. In Refs. [270, 266, 267, 268, 271, 272] it 
is shown that in the hist few layers of Fe partial oxidation takes place. Theoretical 
calculations show that the transport jiroperties can change drastically if such an 
FeO layer is present [273, 274, 275]. Neutron diffraction exiieriments suggest that 
magnetically dead layers can be formed at the interface, especially if grown in O2 

atmosphere [276], which might also be attributable to an FeO layer at the interface. 
In Refs. [16, 277, 278, 279, 280, 281, 282, 283] however it is claimed that there is 
no oxidation in the Fe. Theoretical calculations suggest that the formation of a FeO 
layer can be controlled by varying the 0/Mg excess during growth [284]. The recent 
experimental results of Refs. [285, 286, 271] indicate that both an oxidized and a 
non-oxidiz('d junction can be grown, depending on the growth conditions. We note 
also that not all present experimental techniciues might be able to detect a single FeO 
layer at the Fe/MgO interface, as indicated in Ref. [287]. Ajiart from the partial 
oxidation of the interface, even in high (luality junctions different types of defects can 
be found, such as O and Mg vacancies [285, 288]. Due to the small lattice mismatch 
between Fe and MgO of about 3.9 %, lattice dislocations an' formed at the interface 
between MgO and Fe [264]. In order to maximize the TMR, often CoFe is usi'd for the 
ferromagnetic’ electrodes. For jnnctions made by simttering. Boron is usually addc'd, 
which allows the growth of non-crystalline electrodes. These arc* then annealc'd after 
the sputtc'ring process, so that crystalline interfac’es with the MgO are obtained. In 
this work we consider ideal jnnctions, without Fe oxidation. We do howevc'r study 
the influence of defects, in the form of O vacancies in the MgO.

Several thc'oretical calculations investigating the linear response limit prc'dict very 
large TMR for such jnnctions [20, 289, 290, 269, 274, 291]. In these works the current 
is calculated in the ballistic limit by using the two spin-Hnid approximation, where 
the spin-currents for majority (|) and minority (|) spins do not mix. Inelastic’ eflcx’ts 
and spin-hip events are not considered. Moreover periodic bonnciary c’onditions are 
assumed in the plane perpendicular to the transport, so that Bloch theorem can be 
applied in the plane. The total transmission is then calculatc'd with Ecj. (4.109), 
where the spin- and k-depenclent transmission is integratc'd over the 2D BZ to give 
the total spin-dependent transmission. The TMR is found to be governed not only 
by the spin-jiolarization of the electrode DOS, but also by the details of the wave 
functions matching ac’ross the barrier. This is analyzed in detail in Ref. [20, 21], 
where it is shown that the decay of a wave function across the barrier deiiends mainly 
on two factors; the hrst is the symmetry of the wave func’tion, and the second is 
its k-jioint in the 2D BZ perpendicular to the transport direc’tion, sinc’e it is fonncl
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that the decay varies strongly for different k-points in the 2D BZ. The slowest decay 
is found for states with Ai synnnetry at the F-point, which have no inonientuni 
component in the plane i)erj)endicnlar to the transport. States with Ag synnnetry 
are found to decay faster across the barrier. If the transport direction is along the 
^ axis, and the x and y axes are in the plane perpendicular to it, then the states 
with A] synnnetry are those that transform like a linear combination of functions 
with 1,2,22^ — x^ — y'^ symmetry [20]. The states with Ag synnnetry on the other 
hand transform like functions with zx and zy symmetry. Fe has a high transmission 
Ai band at the F-point, which is found at energies around the Fermi energy only 
for the majority (t) spins, whereas for the minority (J,) spins no wave fnnetion with 
such a synunetry is found close to the Fermi energy. Since these bands dominate 
the tunneling current, Fe electrodes separated by a MgO barrier effectively behave as 
half-metals, and the TMR is expected to be very large [20, 289].

An important, but much less investigated aspect, is the relation between the elec
tronic states and the I-V characteristics in these highly crystalline MTJs. Interface 
states and details of the Fe baiifl-struetnre, otherwise washed out by disorder, play an 
important rok- in the trans])ort and indeed can be identihed through the I-V curves 
and its derivatives [G'(B) = dZ/dV" and S'(F) = cF//d\^^]. For instance, high-quality 
MT.Is (2-3 nni MgO thickness) show a i)ronouneed broad peak on the ^(V") curve 
at about 1 V for the AP conhguration, and a number of small i)eaks at lower volt
ages in the P conhgnration [292, 293]. Combined with a quantitative theory these 
measurements can ])rovide a wealth of information, and help the device design.

This chai)ter is organiz('d as follows. After presenting some basic properties of 
bulk Fe and MgO, we study the electron transport in an ideal Fe/MgO/Fe(l()()) tunnel 
junction with 4 MgO Mbs (~1 nm thick). First the zero bias transport properties 
are analyzed and compared to the existing literature. We then move to the finite 
bias i)roperties. The importance of the correct occuj)ation of the BSs in the non- 
ecpiilibrium case is shown by analyzing the potential drop and charging, and the 
properties of the BS as function of bias are analyzed in detail. We then present 
the bias-dei)endent transmission and I-Vs. The resulting TMR decreases at high 
bias and eventually even becomes negative above about 1.7 V. We show how the 
transport proi)erties at finite bias are related to the layer- and symmetry-projected 
DOS of the Fe electrodes. We conclude the discussion of the 4 MgO MLs jnnetion 
by verifying the influence on the transport of small changes in the structure of the 
junction and by calculating the changes due to the use of a self-interaction corrected
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exchange-correlation fnnetional in the MgO.
In the following section we then study the dependence of the transmission on the 

MgO thickness. We show that the results for large barrier thickness are strongly 
dependent on the used basis set, and relate this to the complex band structure of 
MgO. We calculate the energy-dependent damping across the MgO for thick barriers, 
and find that at the Fermi energy the damping for I spins is only slightly smaller 
than for the [ spins, so that only a small increase of the TMR with bias is predicted 
at large thickness. This is in agreement with the results in Refs. [291, 294].

Generally the theoretically obtained values for the TMR for ideal junctions, which 
are of the order of several thousands of percent [20, 290, 209, 274, 291], are much 
larger than the ones obtained in experiments, which are nev(u- higher than around 
one thousand percent [204, 205, 18, 19]. This might be attributable to difl'erent 
effects, su(4i as disorder [295, 290, 297, 294], a partial oxidation of the interface Fe 
layer [273, 274, 275, 291], non-collinear spin-configurations at the Fe interface layer, 
or to defects in the MgO [298, 294, 299]. Inelastic effects ar(! also lik('ly to i)lay an 
important role in experiments [292, 240, 300, 15] and usually lead to an additional 
reduction of the TMR. Also many-body effects might i)lay a role, ('specially at small 
bias. A detaik'd description of the ine'lastic and many-body effects on the trans])ort 
is giv('n in Ref. [300]. Since we always work in the ballistic, energy conserving, limit, 
we do not inclnde these inelastic ('ffects. In this work we invc'stigate the transport 
properties of junctions with oxygen vacancic's in tin; MgO and hnd that iiuh'ed the 
TMR decreases drastically for oxygen deficient junctions, esi)ecially if tlu’ vacancies 
are close to the interface.

In the final part of this chai)ter we analyze the transport i)roperties of double 
barrier junctions. Experiments for such junctions show that these can reduce the 
decay of the TMR with bias [301]. Moreover evidence of (luantum well states in the 
middle Fe layer is found [302, 303, 304]. In our calculation we find both these effects 
and analyze their origin.

7.1 Basic properties and system setup

MgO is an insulator and crystallizes in the NaCl structure, with an experimental 
eciuilibrinm lattice constant of 4.21 A [305, 306, 307] and a band gap of 7.8 eV 
[305, 307]. For both the 0 and Mg atoms, in our calculations the nsc'd basis set is 
double C s and p, with cutoff radii for all the first Cs of 6 A. We have thoroughly 
tested convergence of the results with respect to the use of richer basis .sets. For 
the equilibrium lattice constant we obtain 4.19 A for LDA, which matches well the
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Figure 7.1: MgO band-structure.

experiinental value and also i)revious o,h initio calculations [308]. For GGA we obtain 
4.29 A, which is somewhat larger than the experimental value. In Fig. 7.1 the LDA 
band structure is shown for the eciuilibrium lattice constant. It matches well with 
I)revions calculations [309, 305, 308]. We note that the band gap at the F point is only 
4.64 eV, which is about 3.2 eV smaller than the ex]rerimental value. This discrejiancy 
is caused by the self-interaction in the LDA exchange correlation potential (Sec. 
2.1.5). In fact, if we add the ASIC (see Sec. 2.1.5) to the LDA exchange correlation 
potential, then the band gap increases to 6.95 eV, and agrees inncli better with the 
experimental value. We note that the ASIC contribution dei)ends on the choice of 
the so-called cv-parameter (see Ref. [90] for the definition). In our ASIC calculations 
we use an O'-irarameter of 0.5, which is the default value for semiconducting periodic 
systems. In Ref. [90] it is shown that the experimental gap for MgO can be obtained 
by increasing the a'-parameter to about 0.65 [90]. Since the LDA band gap, although 
smaller than the exj)erimental value, is still rather large, we i)erforni most of the 
calculations using the LDA. In Secs. 7.4.2 and 7.5 we do however compare the results 
to those obt aim'd using the ASIC. As we will show, the main features of the I-V and 
TMR-C do not change when the ASIC is introduced.

Fe is a ferromagnetic metal and crystallizes in the bcc structure, with a lattice 
constant of 2.8665 A [310, 311] at room temj)erature. The agreemeut of the LDA 
baud structure and DOS with the experimental ones is rather good [310, 312]. One 
of the major failures of the LDA however is that the ferromagnetic state does not 
correspond to the lowest energy state. Therefore, when the LDA is used, a fee non
magnetic ground state is predicted, in contrast to experiment [313]. Moreover, the 
LDA ('(luilibrinm lattice constant of about 2.76 A [313] for ferromagnetic bcc Fe is 
rather small when conii)ared to experiment. The GGA, as parametrized in Ref. [85], 
brings the lattice constant very close to the experimental value, and also correctly pre-
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Figure 7.2: Fe band-structure for majority (a) and minority spins (b).

diets a ferromagnetic ground state [314, 313]. We thoroughly tested the convergence 
of Fe band structure, DOS and transport properties for different basis sets, with the 
aim to find a minimal basis set, that still correctly describes these properties. The 
resulting basis set for Fe is double C (/c=5.G bohr), single p (ry^b.b bohr) and 
single C d (rc=5.2 bohr). We note that the first set of transport results, as published 
in Ref. [315], were calculated using a double (DZ) s (/v = 7 bohr), single C (SZ) 
p (?■(. = 7 bohr), and DZ d (/y = 5.6 bohr) basis. Since the results are very similar 
to the ones obtained with the smaller basis set, lu're we ])res('nt only the latter. For 
bulk Fe we obtain a relax('d lattice constant of 2.79 A for LDA, and 2.88 A for GGA, 
which agrees well with other calculations [313]. The LDA band structure is shown in 
Fig. 7.2. We can identify the {)arabolic s like bands starting at about -8.5 eV, and 
the spin-s])lit d bands, ranging from about -4.9 eV to 0.3 eV for the t spins, and from 
about -3.5 eV to -1-2.5 eV for the minority spins. The band structure matches well 
with other LDA calculations [316], and also to exi)erinients [312]. The calculations 
presented in the remaining part of this chapter are all performed using the LDA. 
We did however also repeat some of the calctdations using the GGA. We find that 
the general results are similar for both LDA and GGA, although some features at 
and around the Fermi energy are different. This is caused by the fact that the band 
structure for LDA and GGA differs close to the Fermi energy.

A general feature of tunneling junctions is that the lattice vectors of the top and 
bottom electrodes are slightly different. This is due to the strain induced by the 
lattice mismatch between the metals and the insnlating layer. The strain in the AlgO 
is reduced away from the interface, so that the in-j)lane lattice vectors of the toj) Fe 
electrode adapt to the MgO. In order to make the computations feasible, we need to 
apply i)eriodic boundary conditions perj)endicular to the stacking direction. For this
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Fe ®Mg ® O

Figure 7.3: Unit cell used for the Fe/Mg()/Fe(l()()) junction with 4 MgO MLs. Periodic 
boundary conditions are applied perpendicular to the stacking direction.

reason it is necessary to assume that the in-plane lattice vectors of both electrodes 
are iflentical. For the same reason we assume that the in-plane MgO lattice adapts 
perfectly to the Fe electrodes, which means that the used MgO in-plane lattice vectors 
are \/2 times the one of Fe [20]. For the Fe electrodes we use the bulk Fe lattice 
parameters, with a lattice vector of 2.866 A. The in-[)lane lattice vector of MgO then 
results to X 2.866 4.05 A. In Fig. 7.3 the unit cell for a 4 MgO monolayers
(MLs) Fe/MgO/Fe( 100) junction is shown, j)eriodic boundary conditions are applied 
in the plane peri)endicular to the stacking direction. In all our calculations we use 
8 Fe layers on each side of the MgO in order to converge to bulk. We note that the 
interface structure obtained experimentally when MgO is grown on Fe can be different 
from the one obtained when Fe is grown on MgO. In all our calculations however we 
use a completely symmetric interface on both sides.

For the atomic positions along the stacking direction slightly different values are 
used in the literature [20, 269, 274, 304]. In Ref. [20] it is assumed that there is no 
relaxation of the MgO lattice along the stacking, so that the lattice constant along 
the stacking is also eciual to 4.05 A. The Fe-0 distance at the interface used in the 
calculations is 2.16 A. We refer to this set of coordinates as the unrelaxed coordinates. 
In Ref. [269] a relaxation of the atomic positions and lattice vectors along the stacking 
is performed for 3 MLs of MgO. The result is that due to the in-j^lane compression, 
the MgO expands along the stacking direction, in order to keep the volume of the unit 
cell api)roximately constant. Another result of the relaxation is that the Mg atoms 
in the interface layer are slightly displaced towards the Fe substrate with respect 
to the O atoms. The calculated Fe-0 distance is 2.21 A, and the distance between 
the O atoms along the stacking is 2.196 A (compared to 2.025 A for the unrelaxed 
coordinates). Based on these results, we construct MgO barriers with an arbitrary 
number of MLs by using 2.196 A as the sj^acing between the MLs. Except for the 
first interface layer, it is assumed that the Mg and O atoms always have the same 
2 coordinates. We reh'r to this set of coordinates as the relaxed coordinates. In 
our calculations w(' use both the unrelaxed and the relaxed coordinates. We will
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Figure 7.4; MgO baiui gap fi'gap fis fuiK;tioii of the lattice constant a. The experimental 
lattice constant is 4.21 A.

show that although the general results are similar for both the s(!ts of coordinates, 
there are two main differences. The first is that the MgO band gap differs by about 
1 eV. This is because the Ijaml gap changes sensibly when the lattice constant is 
n'dneed, as shown in Fig. 7.4. It increases by about 1 eV when the lattice constant 
is reduced from the* experimental value of 4.21 A to 4.05 A, for both LDA and ASIC.

i/'A 4.1GThe effective lattice constant for the relaxed coordinates is (4.05“^ x 4.4)
A, and it is rather close to the ecpiilibrium value. The calculat('d LDA band ga]) for 
the unrelaxed coordinates is 5.8 eV, and that for the relaxcxl coordinates is 4.8 eV. 
This difference leads to a different barrier height, so that we expect .some (juantitative 
differences in the calculated currents. The second main difference in the results for 
the relaxed and nnrelaxed coordinates is that, due to the different interfaces with the 
Fe, the coupling of surface states into the MgO varies. At the end of the next section 
we will show that this leads to a stronger transmission through ISs for the unrelaxed 
coordinates.

A 7x7 k-points mesh is used during the self-consistent cycle to converge the charge 
density in all the transport calculations. We carefully checked the convergence of the 
transport properties with resi)ect to this value. Once self-consistency is achieved, 
a 100x100 k-point mesh is used over the full BZ for evaluating the transmission 
coefficient in a single post-processing step. This finer mesh is necessary in order to 
resolve sharp resonances. We use a real space nieisli cutofl' of GOO Ry and an electronic 
temperature equal to 300 K. Also here we have verified that the results are almost 
independent on the choice of the temperature, the main difference being that some 
features are more i)ronounced at low electronic temperature.
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7.2 Zero bias transport properties for a 4 ML junc
tion

In this section we ])reHent the zero bias transport pro])erties for a 4 ML jnnction with 
relaxed coordinates. At the end of the section we will then conii)are the results with 
those obtained for nnrelaxed coordinates. In Fig. 7.5 the SIESTA DOS for bnlk Fe 
is shown, together with the PDOS (defined in Sec. 4.1) for the 8th Fe layer (the 
furthest away from the MgO) and for the interface Fe layer. The agreement between 
the bnlk DOS and the one for the 8th layer is rather good, indicating that the effects 
of the MgO on the i)otential are largely screened at this distance. The PDOS for 
tlu' interface layer is rather different. One of the major differences is the appearance 
of a peak in the minority PDOS aromid the Fermi energy (the peak itseff is sightfy 
above the Fermi energy). This i)eak therefore corresponds to a IS, found also in 
previous calcnlations for the same jnnction [20, 290, 269], and also for Fe/vacnmn/Fe 
jnncti(ms [65, 295]. To visualize the surface state in real s[)ace we have also calculated 
the local density of states (LDOS) for all the states in an energy window of ±0.2 eV 
aromid (see Fig. 7.6). The LDOS is the real space charge density generated by 
all the eigenvalnes lying in a specified energy range. It can be seen that there is an 
enhancement of the charge at the interfaces between Fe and MgO in the minority 
spin, whereas for the majority sjiin no charge is visible on the chosen scale at the 
interface. We also calculate the band alignment for the jnnction, and find that the 
Fermi level of Fe is about 1.8 eV below the conduction band of MgO, and about 3.0 
eV above the valence band. In Fig. 7.1, where the MgO band structure is shown, the 
Fermi level is aiiproximately set according to this liand alignment.

We now move to analyzing the properties of the Fe leads relevant to the transport. 
The leads unit cell is made np of 4 Fe layers, stacked along the (100) direction. By 
calculating the inverse band strnctnre for the leads, as described in Sec. 5.1, and 
using Eq. (5.40), we calcnlate the leads DOS

N =
ttD r3Z

„ ^^k.ope

/ ''k Z (7.2)

where the integral goes over the 2D BZ per])endicnlar to the transport direction. Here 
Df3Z if’ flip arpfi Ilf fhc BZ, Afk,„pen ifi the iinmber of open channels at a given k-point, 
and Ck,„ is the group velocity for channel n. In Fig. 7.7(a) the DOS per Fe atom 
is shown. This is ecpial to J\f/A since there are 4 atoms in the nnit cell. We further
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Figure 7.5: Bulk DOS for one Fe atom (black curve), DOS for the Fe atom at a distance of 
8 layers from the MgO (green curve), and DOS for the Fe atom at the interface 
layer (red curve). Positive values represent the | spins, negative values the [ 
spins.

parallel majority parallel minority

® Fe 3Mg ® O

Figure 7.G: Isosurfactts for the charge density associated to the bauds in a range of 0.2 eV 
around the Fermi energy, for P f (left) and | (right).

calculate the DOS times tlie group velocity,

iVk ,open
1 /■ ^ If

Nv = —— / (Ik V ---- c’k,„ = - / (Ik
TtObz JbZ „ TT

TV,k,opeiJ -> (7.3)

which is proportional to the average number of oj)en channels [Fig. 7.7(1))]. And 
hnally we calculate the DOS times the scpiare of the group velocity

Mv'^ —
ttO HZ JbZ

Wk ,open

(Ik ^ Ck.r (7.4)

which is shown in Fig. 7.7(c). We note that the cpiantities J\fv and are in 
principle dependent on the choice of the 2 direction. However for typical 3d metals 
they are almost isotroi)ic. From Fig. 7.7 it can be seen that whereas the contributions 
from the d states dominate in the DOS, where they are visible as sharp ])eaks, in N''u 
the contribution from s and d like bands is of the same order of magnitude. Finally 
for the contribution from the s bands dominates, since they have a larger group 
velocity compared to the d bands. As described in [58], and also in Sec. 2.2 of Ref.
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E-E^ (eV)
r

Fhgure 7.7: Spin-i)olari7X'd DOS M for one Fe atom (a), average number of channels per unit 
cell Mv (b), DOS times the square of the group velocity A7u^ (c), transmission 
for a 4 MgO MLs junc:tion per unit cell T (d), for the P and AP configurations.

[55], Af'o determines the transport properties in the ballistic regime, and is the 
relevant (luaritity in the diffusive regime. Since we ealenlate the transport i)roperties in 
the ballistic regime, the transmission is directly de])endent to the nnmber of channels 
(see also chapter 4). From Fig.7.7(b) we can sec that around the Fermi energy both 
•s and d bands can contribute to the transport. In the diffusive regime one can expect 
the s bands to dominate.

In Fig. 7.7(d) the total transmission coefficient is shown for both P and AP con
figuration of the magnetic efeetroefes for the 4 MgO MLs junction. Tfie transmission 
vanishes on tfiis scale between af)ont -3.5 eV to 1.3 eV around the Fermi energy, due 
to the band gap in the MgO. In Fig. 7.8 the spin-dependent transmission is shown 
on a logarithmie scale, together with the average nnmber of ehannels in the Fe leads 
ric = J\fv. For the P configuration, and for energies in the range of about ±1 eV 
around Ep, the transmission for t spins is much larger fhan that for the J. spins. 
Very close to Ey however there is a sliarj) i)eak in the minority transmission, whicli 
is due to the surface state close to Ep. Below about -1 eV also the ] transmission 
droj)s, due to the fact that this is the energy of the band-edge of the majority Ai 
state, a], at the P point (see Fig. 7.27). At this energy we also find a IS in the t 
sj)ins, wliich causes the peak in tlie transmission. Tlie shari) increase in transmission 
in the J, si)ins at about 1 eV to 1.5 eV is due to tlie fact that at 1.5 eV there is tlie 
band-edge of the minority Ai states, A|, at the P iioint (see Fig. 7.27). For other
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Figure 7.8: Average iiuiiiber of cliaiiiielH per unit cell tic = Afv for | and | (a), and traus- 
iniHsioii for a 4 MgO MLs junction T (b), for the P t, P and and AP

energies inside the MgO band gap the transmission varies, following also the change 
in the nnniber of channels. An increase in tic usually is translated in an increased 
transmission. For energies outside of the MgO band gaj) the transmission is roughly 
l)roportional to the number of channels, with the scattering across the MgO bands 
leading to some variations. As a hist approximation, the transmission in the AP 
conhgnration can be seen as a convolution of the majority and minority transmission 
in the parallel one [55, G8]. Around it is much lower than the one for the P 
conhgnration. The resulting 0-bias TAIR at Ey^ is about 1780%. We will discuss the 
energy- and spin-dependent transmission coefficient in more detail in Sec. 7.4, where 
we will also discuss its deiiendence on the ajiiilied bias voltage.

The general results for the transmission close to E]? and therefore also for the 0- 
bias TMR agree with other calculations [20, 274, 290, 209, 317]. The main discrepancy 
is in the magnitude of the IS peaks. Whereas in Ref. [290] for a 4ML junction the P 
I transmission is larger at Ep than the P | transmission, in Refs. [20, 274, 209] the 
contribution from resonances is negligible in the P conhguration. This discrepancy 
can have dih'erent origins. Some of the differences are attributable to the slightly 
dih'erent lattice parameters used in the various calculations, as we will show at the 
end of this section. One of the problems is also that in many calculations only the 
value at Ep is given. This depends sensibly on the exact i)osition in energy of the J, 
surface state. In Sec. 7.5 we will also show that the choice of the basis set can change 
the amplitude of the resonances, although for a 4 ML junction this effect is not large. 
In collaboration with my c’olleague Nadjib Baadji a separate set of calculations was 
I)erfornied for the same system, using a tight-binding LMTO ASA code. Also in this
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case we hiui a large contribution of the ISs to the transniission for the 4 ML jnnction. 
One way to reduce the contribution of resonances in the transmission is to add a small 
imaginary i)art to the energy when evalnating the GF (see Sec. 7.4). In experiments 
the resonant transi)ort through such a surface state is probably highly suppressed by 
interface ronghness. We also note that for thicker jnnctions the contribution from 
sncli a surface state is negligible in both the P and AP configuration (Sec. 7.5).

In Fig. 7.9 the k-resolved transmission coefficient is i)lotted in the 2D BZ per- 
I)endicnlar to the transport direction, for different energies around Ey. Each of the 
colored scpiares extends over the full 2D BZ, and the transniission is shown on a log
arithmic scale with a color code. Bine corresponds to regions where the transniission 
is smaller than 10^^, whereas red corresponds to a transniission of 1. Green and yel
low denote intermediate values. The t transmission [Fig. 7.9(a)] is almost the same 
for all energies. It has a broad maximiim at the F-point = ky = 0), and oscil
lates towards the border of the BZ. These oscillations are caused by the k deiiendent 
complex band structure of MgO [20]. The | transmission on the contrary changes 
considerably across this energy range. It has an almost constant backgroimd iiattern 
with small transniission, but there are also high peaks, caused by the IS. Their height 
and position in the BZ change strongly as function of energy, reflecting the small 
energy width of the IS. The shape of the peak for energies below is similar to the 
one given in Ref. [20] at Ey. The height at E^ is larger in onr case. This is jirobably 
due to the fact that the IS position relative to Ey^ is slightly different. In fact for 
energies slightly below Ey, the height decreases rapidly. The transniission for the 
majority spin in the AP configuration is shown in Fig.7.9(c). The figure shows that 
at each k-point the transniission in the AP coiffignration aiiiiroximates a c'onvolntion 
between the P t and P [ transniission.

In Fig. 7.10 the k dependent number of channels of the Fe leads is shown for 
t and [. The color scale is linear, bine stands for 0, orange for 3, and red for 
5. Comjiaring Figs. 7.9 and 7.10, it can be seen that for those k-i)oints, where 
the mimlier of channels is zero, also the transmission vanishes. The fact that there 
are no open channels for some k iioints has major implications for the finite bias 
calcnlations, since at all those k-points bound states appear in the system. This will 
be discussed in detail in the next section. Although these carry no current in onr 
calcnlations, in practical experiments they are might contribute to the current, since 
in experiment the coupling to the Fe electrodes is never exacdly zero (see Sec. 6.7) 
[246]. In Refs. [247, 248, 249, 243] the contribution of such localized states to the 
current is calculated within the Bardeen perturbation treatment [318, 319], in which 
snch an efl'ective coupling is implicitly assumed. However as shown in Ref. [243], the
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Figure 7.9: k-dependeiit traiiHiiiissioii plotted over the 2D BZ for different energies, and for 
P t ill the first row (a), fr P J, in the second row (h), and for AP ] in the third 
row. The color code is on a logaritlnnic scale, red stainls for a transinission of 
1, and bine stands for a transinission below 10“^. The values are calculated for 
the relaxed coordinates using the LDA.

I
majority minority

Figure 7.10: k-dependent plot over the whole BZ of the nuinber of open channels in the Fe 
leads at the Fertni energy for | and |. The color code is on a linear scale, and 
ranges from zero (blue) to 5 (red).

additional contribution of localized interface states to the total current is rather small 
for the Fe/MgO junctions and therefore negligible.

We conclude this section by comparing the zero bias transmission with tlie one 
obtained by using the nnrelaxed coordinates of Ref. [20]. We perform botli LDA and 
GGA calcnlations for tliose coordinates, in order to see wlietlier the cliange of tlie 
excliange-correlation functional lias a signihcant effect on tlie transport properties. 
In Fig. 7.11 tile spin-dependent transmission coefficient is compared for tlie tliree 
different calcnlations. Fig. 7.11 (a) is calculated nsiiig the relaxed c-oordinates with 
the LDA, Fig.7.11 (b) is calculated using the nnrelaxed coordinates with the LDA, 
and Fig.7.11 (c) is calculated using the nnrelaxed coordinates with the GGA. The
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E-E^ (eV)r

Figure 7.11: Transmission coefficient T calculated for the relaxed coordinates and the LDA 
(a), for the unrelaxed coordinates and LDA (b), and for the unrelaxed coordi
nates and GGA (c). The red curves represent the P t transmission, the green 
curves the P j one, and the black curves the AP j one.

general results are similar for all the three cases. The major difference between the 
two LDA calculations is that the resonance f {)eak at Ey is higher for the unrelaxed 
structure. The same is true for the f peak at about -1 eV. The main difference 
Ix'tween LDA and GGA calculations is that some of the i)eaks shift slightly in energy. 
This is expected because of the differences in the LDA and GGA Fe band structure. 
In Figs. 7.12 (LDA) and 7.13 (GGA) the corresi)onding k-resolved transmission is 
shown for the nnrelaxed coordinates. Also here the general behavior is similar to the 
one of Fig. 7.9, with the difference that the peaks due to the J, IS shift slightly in 
energy and height. For the nnrelaxed structure the Fe Fermi energy is 1.8 eV below 
the MgO conduction band, and 4 eV above the MgO valence band.
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Figure 7.12: k-dependeiit trausniissiou, as shown in Fig. 7.9, but calculated for tin; nnrtv 
laxed coordinates using the LDA.
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Figure 7.13: k-dependeiit traiisinissioii, as shown in Fig. 7.9, but calculated for the niire- 
laxed coordinates using the GGA.
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7.3 Bound states in Fe/MgO/Fe(100) junctions

After having analyzed the main zero bias properties, we now move on to hnite bias. In 
order to obtain the transport j)ro])erties, we first have to calcnlate the self-consistent 
solution at finite bias. This is not straight forward, since bound states (BSs) may 
appear. In chapter b we have outlined in detail the general features of BSs, how 
to find them, and also how to occnj)y them for given physical constraints. The 
reason for the ai)pearance of BSs is that there are k-points, for which there are no 
oi)en channels in the Fe leads (see for example Fig. 7.10), as also described in Refs. 
[242, 65, 246]. For the ma jority si)in the fraction of the BZ with zero channels at Fp 
is restricted to a small area close; to the bonndaries of the BZ (Fig. 7.10). Therefore 
it is reasonable to assume that the contribution from the BSs to the total charge is 
only a small perturbation. For the minority si)in however the blue areas in Fig. 7.10 
extend over approximately half the BZ. For all those k-points BSs can aj)i)ear, and the 
contribution of the BSs to the total charge is therefore exi)ected to be large. In this 
section we will show that at finite bias it is crucial to correctly take into account the 
BSs locat('d in the bias window, in order to obtain a physically meaningful i)otentia] 
drop. For all the calcnlations in this section we use the unrelaxed coordinates of Ref. 
|2(l].

In Sec. 6.3 we have shown how BSs can be found by (;alcnlating the eigenvalues
of the effective Hamiltonian H^fj [Eq. (6.41)]. We note that for each k-point the 

(’ffective Hamiltonian is tlifferent. A BS is found at all real energies Fbs.^ where the 
conditions (6.45) and (6.46) are fulfilled, so that there is an n with c„ (Fbs,p) = T^bs.p- 
This inij)lies that Im[e„(FBs.p)] = 0. As already explained, in nnmerical computations 
the second condition is usnally not fulfilled exactly. We can therefore only calcnlate 
the set of generalized bound states (GBSs) with eigenvalues = en{E'^) at a real 
energy for which we only recpiire that Re[e„(F^']^)] = and Ini[f„(F^'f^)] < r/'^. 
The choice of r/^ determines the set of weakly coupled states. For a true BS we 
rcxiuire that r/'^ is of the order of the numerical i)recision. Here we choose the value 
of = 10“^'* Ry setting the boundary between weakly coupled and bound states, 
so that the set of GBSs for which rj'^ = 10“Ry corresi)onds to the set of true BSs. 
This value can also be increased in practical calculations, depending on the numerical 
accuracy.

We now calculate the BSs for a given k-jjoint, using the graphical method de
scribed in Fig. 6.1 of Sec. 6.3, with r]'^ = 10“^"^ Ry. The chosen k-point is given by 
^'x = ky = 0.58 7r/a. This is one of the k-points with vanishing number of channels 
in the [. Here, a is the Fe lattice constant. The i)osition of this k-])oint is illustrated
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Figure 7.14: Real part of the eigenvalues e„ of //eifi for t and j, as function of energy E, for 
^^x = = 9-58 7r/a, and at zero bias. The green parts of the curves represent
the set of eigenvalues with an imaginary jiart smaller than lO^'"^ Ry. The red 
line is a plot of the energy cis function of the energy itself, the blue circles 
indicate the energies of the BSs.

eV = 0 09 eV

f BS = 0.11 eV £bs = 0.11 eV

Figure 7.15: Charge density of the 4 | interface states close to for kx = ky = 0.58 ir/a, 
and at zero bias.

with a cross in the right part of Fig. 7.2()(a), where the k-resolved | number of chan
nels is shown. In Fig. 7.14 we plot the real jiart of the eigenvalues in a range of 1.5 
eV around Eir. The black parts of the curves indicate that there Ini( e„) > 10“^'* Ry, 
whereas the light green parts indicate that there Im(e„) < 10“*'* Ry. The red curve 
simply plots the energy as function of energy. A 13S is found whenever the red curve 
cuts the green part of the eigenvalues, these crossings are emphasized by the bine 
circles. Whereas for the majority spins BSs are only found at about 1 eV below 

for the minority we find four almost degenerate states close to 7?^- Therefore 
we demonstrate that the BSs in the minority can enter the bias window already at 
very small bias. At high bias, of the order of 1 V, it is possible that also BSs in the 
majority enter the bias window.

We now analyze the properties of the BSs in the f close to Ey. At zero bias we
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Figure 7.16: Schematic representation of the occupation of the BSs. Red lines represent 
occupied BSs, whereas green lines represent unoccupied BSs. At the left in
terface the BSs are occupied up to at the right interface they are
occupied up to Fp i?.

find two sets of BSs of different symmetry, and in each of the two sets there are two 
BSs. The reason for the aj)j)earance of two BSs with the same symmetry is that 
there is always one IS on the left-, and one on the right-hand side of the junction. 
At zero bias, and for such a symmetric junction, left and right ISs form a pair of 
bonding and anti-bonding states. This is also described in R,('f. [242], and is a general 
feature of ISs. For the bonding state the total WF consists of an erpially weighted 
linear combination of orbitals located on the left and on the right of the barrier with 
no phase shift, whereas in the anti-bonding state they have a 180° j)hase difference. 
Since the coupling across the MgO is very small, bonding and anti-bonding states are 
almost degenerate. For such a symmetric junction, and zero bias, the BSs therefore 
extend over both the left-hand and right-hand part of the junction. This is illustrated 
in Fig. 7.15, where we plot the probability density for all four BSs. At finite bias 
however we expect the states to localize either on the left, or on the right side, due to 
the breaking of the symmetry caused by the electrostatic j)olarization in the junction. 
In Sec. G.IO we found a localization with bias of this type for the weakly coupled 
states in the Mipa based magnetic molecule. Once the BSs localize on one side of 
the junction, we can expect that the BSs localized on the left-hand (right-hand) side 
to have a much stronger effective coupling to the left (right) lead [246]. The way 
to inii)ose such an effective coupling has been described in Sec. 6.2, and is done by 
choosing an api)roj)riate n matrix. For the tunneling junctions we simply adapt the 
solution given in Ecp (6.27) for a capacitor. The resulting O' matrix is

o = 1Nkl 0^EL.J^ER

®‘'Ver
(7.5)
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Figure 7.17: Planar average along x and y of the difference AVn between the electrostatic 
l)otential at a bias voltage of 0.5 V and the one at zero bias, as function of 
position 2, for different occupations of the BSs. The bine diamonds indicate 
the {josition of the Fe layers, and the magenta circles indic:ate the position of 
the MgO layers.

Here it is assumed that the indices of the orbitals in the EM are orderc'd from left to 
right; Ael (■'^er) fhe number of orbitals in the left (right) Fe electrode, i)his the 
orbitals of the left (right) half of the MgO barrier. We use the api)roximations given 
in Eq. (6.23) to calculate the effective coupling matrices. We then calculate the BSs 
contribution to the non-equilibrium charge density using Ecjs. (6.31) and (6.35). The 
resulting oecnpation of ISs from this choice of a matrix is schematically illustrated 
in Fig. 7.16. The left and right local Fermi energies are indicated as flat lines on the 
left and right side of the MgO barrier. The colored horizontal lines at the interfaces 
between the metal and the insulator denote ISs. Red lines indicate that the state is 
occupied, whereas green lines indicate that the state is empty. With this choice of a 
the result is that the BSs on the left side are occupied uj) to if/.;/,, and the ones on 
the right side up to if/.;//.

In our calculations we use a finite value of S equal to 10^'* Ry. We performed test 
calculations with a smaller value of 10“^ Ry, but the results were basically unchanged. 
The mesh spacing for the integrals on the real energy axis is always chosen somewhat 
smaller than 5. In order to verify the correctness of the obtained .self-consistent 
solution we plot the difference AVi] between the j^lanar average of the self-consistent 
Hartree potential at a finite bias and that at 0-bias along the junction stack (black 
curve in Fig. 7.17), for an applied bias of 0.5 V (the (inantity AVn and the notion of 
potential drop are introduced in Fig. 6.21 of Sec. 6.10). AVn if’ approximately flat in 
the Fe electrodes and droi)s nearly linearly in the MgO. This is indeed the expected 
behavior, analogous to the result we obtain for junctions without BSs, indicating 
that the solution is correct. In order to emphasize the importance of the correct
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Figure 7.18: Real part of the eigenvalues €„ of FFeff, for j and as fuiictioii of energy E, 
for fcp = ky = 0.58 IT/a, and at an applied voltage of 0.2 V. The green parts 
of the curves represent the set of eigenvahies with an imaginary part smaller 
than 10^Ry. The red line is a plot of the energy as function of the energy 
itself, the bine circles indicate the energies of the BSs.

occupation of the BSs, we calculated the self-consistent solution using different cy 
matrices. One possible choice is o = 0.51^, so that is zero [see Eqs. (C.31) 
and (6.35)]. This is ecpiivak'iit to the result one would obtain by neglecting the 
BSs contribution. The result for such an o- is shown as the red line in F’ig. 7.17. 
This result is clearly unphysical, since the potential drops to a large extent also in 
the metal. If we choose fv in such a way to obtain the opposite occui)ation to the 
physically meaningful one, so that the ISs on the left (right) side are occupied up to 
the right (left) cpiasi Fermi energy. In this cuvse the self-consistent j)otential drop is 
the one shown as blue curve in Fig. 7.17. This solution is now even less physical, 
since the i)otential droi)S almost entirely in the metal, while it is approximately flat 
in the MgO. The transi)ort i)roperties of tunneling junctions at hnite bias are to a 
large extent determined by the relative shift of the interface DOS on both sides of the 
junction. This shift is mainly determined by the i)otential drop. A wrong {iotential 
drop therefore leads to wrong predictions of the transi)ort proi)erties at finite bias. 
From the results of Fig. 7.17 it is clear that if the BSs are not correctly occupied, the 
resulting transj)ort proj)erties are largely unphysical, and can be very different from 
the correct ones.

We now investigate the proi)erties of the BSs at a finite bias. In Fig. 7.18 the 
eigenvalues of H^fj are plotted as a function of energy E for an api)lied bias of 0.2 V, 
and at the same k-j)oint of Fig. 7.14. The colors of the curves are chosen in the same 
way as for the zero bias case, shown in Fig. 7.14. No BS is found for majority sj)in, 
indicating that the BS found at 0 bias is now coui)led to one of the leads. The four BSs
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Figure 7.19; Charge density of the 4 J, interface states close to Ey, for kx = ky = 0.58 n/a, 
and at a bicus voltage of 0.2 V.
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Figure 7.20: —> oo)] for [ as function of ky for a fixed kx = 0.37 7r/a, at 0.2
V. The red and blue jrarts of the curves show Re[£''^(7/''^ = 10“'^ I^.y)]j 'inh 
are therefore the eigenvalues corresponding to wc'akly coupled states. The red 
(blue) color indicates the weakly coupled states associated with the right (left) 
lead. The right figure shows the inunber of J, open channels in the Fe leads. 
'File red cross indicates the k-point where kx = ky = 0.58 tt/u, the red line is 
the path in k-space along which the left part of the hgure is calculated.

in the minority bands are now split in two sets, sei)arate(l by 0.2 eV, corresponding 
to the applied bias potential. In Fig. 7.19 the charge density is plotted for the 4 J. 
BSs, for each of them its i)osition on the real energy axis is also given. It can clearly 
be seen, that the ones at higher energy are located on the left side of the junction, 
and the ones at lower energy are located on the right side. This conhrms our previous 
assumption, that the BSs localize at one of the two interfaces at hnite bias. From the 
change of the energy of the BSs at hnite bias (Fig. 7.19) compared to zero bias (Fig. 
7.15), one can see that the BSs on the left side follow closely Eyi^, so that in this 
case they are shifted up in energy by 0.1 eV, and the ones on the right side follow 
closely Ey i{, .so that in this ca.se they are shifted down in energy by 0.1 eV. This is 
the general behavior expected for highly asymmetrically coupled states.

Up to now the analysis of the BSs was restricted to one k-point, the next step is to 
determine the behavior of the BSs over the full 2D BZ. To this aim we first calculate
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Figure 7.21: Imaginary part of the GBS eigenvalue and the corresponding coupling 
coefficients 7{n/H},/i f'*'’ function of ky, for = 0.37 rr/n, at 0.2 V. In the left 
(right) column of the figure the chosen set of eigenvalues corresponds to 
the ones, who.se real part is shown as solid blue (red) line in Fig. 7.20.

all the GBSs for 7/^^ —>■ oo, so that also all crossings of the black curves in Fig.7.18 
are included in t he set of GBSs. In Fig. 7.20 all the found values for E'^'{rj'^ oo) 
are ])lotted as function of ky, for hx(’d = 0.37 n/a. The corresi)onding path in the 
2D BZ is indicated as red line in the right part of Fig. 7.20, where the k resolved 
number of channels is shown over the whole 2D BZ. The di.scontinuities in the curves 
are for states with very large imaginary part, which usually have also a very large 
dE'^/dE, so that they are difficult to hnd with the interpolation scheme. For smaller 
imaginary parts however the BSs are found reliably. The colored i)arts of the curves 
are the ones wdiere the imaginary i)art of < 10^'^ Ry, and therefore correspond to 
weakly coupk'd states. All these states are ISs, since their coui)hng to the leads is 
very small. The blue (red) .solid and dashed curves are the eigenvalues corresi)onding 
to weakly coupled states on the left (right) side of the junction. It can be seen that 
the bine curves are shifted from the red curves by about 0.2 eV. This again conhrms 
that at self-consistency left- and right-hand side ISs are split in energy by the bias 
voltage.

In Fig. 7.21 the imaginary part, and the coupling coefficients 7{i./h} [Ecp (6.54)] 
are shown for two sets of weakly coni)led states. In the first (.second) cohnnn of Fig. 
7.21 the results are shown for the set of the eigenvalues corresponding to the solid 
blue (red) curve in Fig. 7.20. In the left cohnnn therefore we follow the evolution 
of the coupling coefficients as function of ky for the IS on the left side, whereas in
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states of Fig. 7.21, extended over the whole 2D BZ (see text for details).

Figure 7.22: hn(f^), 7l and 7pi as function of kx and ky, for the weakly coupled

the second cohiinii the same is shown for the corresponding IS on the right side. For 
ky > 0.6 n/a the value of Iin(f^'f) goes to zero, showing that at these k-points these 
IS are BSs. A comparison with the right part of Fig. 7.20 shows that this is the 
range where the nnniber of (‘hannels in the leads is zero. For ky < 0.6 n/a there are 
channels in the leads, and in fact the Im(e^) is nsnally different from zero, except 
at a some special high symmetry points and lines. One of these special lines is at 
ky = 0, and an other one for example for ky — kx- For the part of the curve's where 
Ini(f^'J^) 7^ 0, and for the IS located on the left interface, the value of is mnch 
larger then the one of For the IS located on the right side the opi)osite is true. 
This further motivates onr choice of effective coujding for such a t imneling junct ion 
[Eq. (7.5)].

In order to obtain the evolution of the coupling of the IS to the leads over the 
full BZ, we calculate the data shown in Figs. 7.20 and 7.21 for the whole BZ. The 
results are shown in Fig. 7.22, where each small square hgure extends over the 2D 
BZ. The hgures on the top (bottom) row are for the IS on the right-hand (left-hand) 
side of the junction. The hrst column of hgiires on the left shows the evolution of 
the real part of the IS energy, on a linear color scale. The energy of the states is 
approximately flat over a large part of the BZ. In the region where the dispersion 
is large, the assignment of the states is not uniciue, since crossings with other levels 
occur. Here we follow the states in such a way, that they are the flattest possible, 
while preserving the symmetry of the states. One can see that the IS located at the 
left interface always has a higher energy then the one located on the right interface. 
In the other snb-hgures Im(e^), 7l, and 7r are shown. A comparison of the figures 
for Im(e^) with Fig. 7.10 for the minority shows that in all those areas of the BZ, 
where the number of channels is zero, the IS is a BS. Moreover Im(e'f) vanishes along
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Figure 7.23: (a) Planar average along x and y of the difference AFu between the electro
static potential at a finite bias voltage and the one at zero bias, as function of 
position for different bias voltages. The blue diamonds indicate the position 
of the Fe layers, and the magenta circles indicate the position of the MgO 
layers, (b) Comparison of the self-consistent solution for AFn (green curve) 
with the one obtained by applying the rigid shift approximation (black curve) 
for a bias of 1 V.

the high symmetry line where k^: = ky, and along pars of the lines where kx = 0 and 
ky = 0. A comparison with the k-dependent transmission (Fig. 7.9) for the f spin 
shows that for those regions, where Im(c^Y) vanishes, also the transmission through 
ISs is snjrirressed. This is for example the case along the previously described high 
symmetry lines. Whereas for the f s])ins the modnlation of the transmission over 
the BZ has been ascrib('d to the MgO complex band structure, the modulation of 
the transmission through ISs is attributable to both their dami)ing across the MgO 
barrier and to their coupling to the Fe leads. The figures for 7n and 7r again show 
t hat the IS on the left-hand side has a much stronger coupling to the left lead, whereas 
the one on the right-hand side is coupled stronger to the right lead. The coupling of 
a IS to the opposite site of the junction is not zero, but is very small due to the MgO 
barrier. At very high bias this can however change.

In the last part of this section we investigate the i)otential drop and charging as 
function of bias. Fig. 7.23(a) shows AOh for a set of bias voltages, ranging from 0.1 V 
to 2.0 V. For all voltages AVji is approximately flat in the Fe leads, and drops almost 
linearly in the MgO. The corresi)onding jrlanar average of the difference Ap between 
the real space charge at finite bias and the one at zero bias is shown in Fig. 7.24. 
It satisfies the relation Ap(z) oc —d'^AV\\[z)/dz^. Since the value of Ap depends on 
the bias voltage V, instead of plotting Ap itself, we [)lot Ap/eV (e being the electron 
charge). We use arbitrary units, although they are the same for all the graphs. For all 
different voltages the curve of Ap/eV as function of position z is basically identical. 
This clearly indicates that the charging in the junction, and especially at the interface 
layers, is linear in V. The reason for this linear behavior is that the magnitude of the
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Figure 7.24; Planar average along x and y of the finite bias charging Ap, scaled by the 
applied bias voltage jjotential V and the elec;tron charge e, as fnnction of 
position 2. Each sub-figure shows ApjeV for a different bias voltage, the (;olor 
code for the different voltages corresponds to the one in Fig. 7.23. The bine 
diamonds indicate the position of the Fe layers and the magenta c:ircles indicate 
the i)osition of the MgO layers.

planar average of the difference in charge is much smaller than tlu' oik' of the planar 
average of tlie cfiarge itself. The ratio of the two (inantities is of the order of 10 'h 
The hnite bias therefore leads only to a very small perturbation of the total charge. 
Even though the relative change in charge is very small, it is large enough to modify 
the potential by a few eVs. At all voltages we hnd Ap[z) increasing linearly with V, 
and charge accumnlating at the extremal layers of the electrodes just Ix'fore MgO. 
Inside the MgO Ap{z) oscillates tine to the electric fiedd indncc'd polarization. This 
is conhrnied by a DFT calculation for an isolated MgO slab of tlu; same thickness in 
an ecinivalent electric held, which shows analogous oscillations.

Onr calculated potential drop justihes the often used rigid shift approximation 
of the potential for calculating the current at hnite bias. In that approximation the 
hnite bias transmission coefficient is calculated using the Hamiltonian calculated self- 
consistent ly only at zero bias, plus a rigid shift in the electrodes chemical potential 
by the api:)h(xl bias. Across the barrier a linear potential drop is assumed [274], A 
comparison of the self-consistent A Eh with the one applied in the rigid shift ap
proximation is shown in Fig. 7.23(b) for a bias voltage of 1 V, where the black curve 
corresponds to the rigid shift approximation, and the grc^en curve is the self-consistent 
solution. The calculation of the self-consistent solution at hnite bias is iiiiich more 
difficult to achieve than that at zero bias, since the algorithm is much more involvcxl.
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Figure 7.25: (a) Planar average AVjj of the difference between the Hartree potential at 0.5 
V and tlie one at 0-hias (full line), the dashed line indicates AFu applied in 
the rigid shift approximation, (b) Planar average Ap of the difference between 
the charge density at 0.5 V and the one at O-bias. The diamonds and dots 
indicate the location of the Fe and MgO layers.

and also since the needed conij)utational resources are much larger. The rigid shift 
ai)proxiniation is therefore a way to obtain api)roximate hnite-bias I-V curves in a 
highly simplified way. The good agreement between the self-consistent potentials and 
the rigid-shift ])otential, together with the fact that the charging in the junction is 
small, indicates that the use of this approximation is well justified. We will further 
corroborate the validity of this approximation at the end of Sec. 7.4.

7.4 Bias-dependent transmission and I-V curves

In this section we investigate the I-V characteristics of the 4 MgO ML junction. We 
demonstrate that the features of the I-V originate from the sweeping of the Ai band- 
('dges and of ISs across the bias window. These generic features are eniphasiz('d here, 
as they resemble closely those studied in molecular devices [68] and magnetic point 
contacts [320]. We use the relaxed coordinates and the LDA.

First, we look at the electrostatic ffartree j)otential droj) across the junction for 
the relaxed structure. In Fig. 7.25(a) we show the difference AVh between the j)lanar 
average of the self-consistent Hartree potential at a finite bias and that at O-bias along 
the junction stack (2:-axis). In the same way as for the unrelaxed coordinates, AVh is 
flat in the electrodes and decays linearly in the MgO. The dashed line indicates the 
potential drop for the rigid shift approximation, described at the end of the previous 
section. In this section we will also directly compare the I-V obtained with the self- 
consistent solution with the one obtained using the rigid shift approximation. In 
Fig. 7.25(b) we also show the difference Ap between the ];)lanar average of the self- 
consistent charge density at a finite bias and at O-bias. Also Ap shows an analogous
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Figure 7.26: Spin dependent transiniKsion coefficient 2' for P (a) and AP (b) alignment as 
a function of energy E.

behavior to the one for the unrelaxed structure (Fig. 7.24).

We start our analysis of the transport properties at hnite bias by first analyzing 
in detail the zero-bias transmission in the energy rang(' relevant for a bias of up to 
2 V. To this aim in Fig. 7.2G the spin-polarized zero-bias transmission is shown 
in an energy range of ±2 eV around Tsp. As briefly discnssed in Sec. 7.2, thrc'e 
features api)ear in the V = 0 transnii.ssion coefficient: @ a sharp increase (note the 
logarithmic scale of the hgure) in transmission at around -1 eV for the | spins in the 
P conhguration, ® a similar, although smoother increase al)ov(' -|-1 ('V for the J, spins 
in the P configuration and for the AP conhguration, and ® a sharj) resonance at Ey 
for the [ spins in the P conhguration, which is afso present in the AP conhguration, 
although much smaller.

In order to map the features in the transmission to the corresponding electronic 
states, in Fig. 7.27 we plot the Fe band-strncture as function of A:^ for kj. = ky = 0 
[Fig. 7.27(a)], the P transmission [Fig. 7.27(b)], the average number of open channels 
for Fe [Fig. 7.27(c)], the Fe bulk DOS [Fig. 7.27(d)], and the Fe PDOS at the interface 
layer [Fig. 7.27(e)]. A comparison of the transmission with the DOS for the bulk and 
for the interface layer shows that the J, resonance in the transmission is caused by 
the J, IS. A comparison of the transmission with the band-structure suggests that the 
hrst two features are associated with the Ai band-edges, respectively for the t and 
I spins. However, from Fig.7.27 this assignment is not comi)letely clear. For the I 
spins the transmission starts to rise at the A| band-edge, and then it is approximately 
constant for increasing energy. There is also a sharp resonance in the t transmission 
just above the A] band-edge. In contrast for the [ spins the transmission starts to 
rise abruptly already at about 0.5 eV below the Aj band-edge. It then forms a broad 
peak that extends to about 0.5 eV above the A[ band-edge. The peaked structure of 
the transmission might indicate the presence of ISs.
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Figttre 7.27: (a) Bulk Fe haiid-stnictiire along the F —► H direction (the bands with Ai- 
syininetry are emphasized), (b) T in the P configuration, (c) average number 
of open channels per k-point for bulk Fe, n^, (d) bulk Fe DOS, (e) interface 
Fe-layer DOS. Note that the Ai band-edges coincide apimoximately with a 
rather sliai’i) increase in the transmission coefficient T.

In order to clarify the exact nattire of features ® and (D, in Fig. 7.28 we analyze the 
transniission aiifl layer-dependent A] PDOS at the F point only (A'j = ky = 0). All 
the PDOSs are given in arbitrary units, positive values are used for the majority, and 
negative values for the minority spins. The PDOS within the transport calculation 
is obtained by using the retarded GF and Eq. 4.11. In order to obtain the layer- 
dependent AI PDOS we sum iq) the PDOS for all the .s, and Fe orbitals 
in a given Fe layer. In Fig. 7.28(a) the Aj PDOS is shown for bulk Fe. The 
Van Hove type singularities at -0.93 eV for the t spins, and at -1-1.47 eV for the 
I spins clearly indicate the band-edges of the states with Ai symmetry in the two 
spins. Below these two band-edges the A] PDOS is exactly zero. A comparison with 
the transmission eoefficient [7.28(d)] shows that at all the Van Hove singularities 
it changes discont inuously. It does not go to zero below the Ai band-edges, since 
there are also eontributions to the transmission coming from states with different 
symmetry, and from different k-points. From the figure one can however see that 
this eontribution is much smaller than the contribution from the Aj states. The Ai 
PDOS for the 8th layer is similar to the bulk PDOS, the oscillations indicate the 
effeets of the surface on the DOS. The structure of the Ai PDOS for the interface Fe 
is however different. For the | s])ins the Van Hove type i)eak in the Ai PDOS at -1 
eV is still present . In the J, however there is no Van Hove type peak. The band-edge 
is rather s])lit into two localized peaks. We note that in order to caleulate the PDOS 
we added an imaginary part S = 10“'^ Ry to visualize the two jjeaks. The i)eak below 
the a} band-edge would otherwise not be visible, since it is a BS. The peaks indicate
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Figure 7.28: DOS A/ai projected on the states with Ai symmetry, in arbitrary units (i)o.s- 
itive values for j, negative values for j), and transmission at the F point, (a) 
Ai DOS for bvdk Fe, (b) Ai DOS of the Fe atom placed 8 ML away from the 
Fe/MgO interface, (c) A] DOS of the Fe atom at the Fe/MgO interfac:e. (d) 
transmission for | (red) and J, (green). The clashed vertical lines indicate the 
band-edges of the Ai states at the F point for | (cyan) and | (magenta). In 
order to visualize all the peaks in the DOS, a small imaginary {nut has been 
add('d to the energy.

a IS, the reason for the occurrence of two peaks is that the ISs on tlu' left and right 
side of tlie junction form a set of bonding- and anti-bonding states. We note that 
these ISs can still be regarded as a band-edge feature, since they ck'arly derive from 
the bulk Aj I)and-edge.

Whereas at the F-point the Ai band-edges lead to steps in the transmission, in 
the total P transmission these are smoothed out. This is due to the evolution of the 
A] layer PDOS for small and ky. In Fig. 7.29 the bulk Fe Ai PDOS is plotted 
for kx = ky = 0 (black curve) and for k^ = ky = 0.1 tt/u (red curve). The Van Hove 
singularities are found at almost the same energies, however kx = ky = 0.1 tt/u the Ai 
PDOS does not drop to zero below the band-edges. Instead it has a small finite value 
up to about 2 eV below the band-edges, where very sharj) Van Hove singularities 
aj)pear. This can indeed lead to high transmission even below the P-point Ai band- 
('dges. In order to verify this we plot the transmission and layer-dependent Ai PDOS 
at kx = ky = 0.1 7r/a (Fig. 7.30). The figure shows the same (piantities as Fig. 
7.28, but for a different k-point. The layer-dependent Ai PDOS is similar to the 
one for the F-i)oint. There are however three major differences: the Hrst is that the 
small hnite Ai contribution below the band-edges leads to a smooth decay of the 
transmission as one moves down in energy, compared to the step-likt' behavior for
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Figure 7.29; DOS A/aj projected on the states with A] symmetry for bulk Fe, at two 
different k-poiuts, in arbitrary units (positive values for j, negative values for 
1). I'he black curves are for the DOS at kx = ky = 0, the red curves are for 
the DOS at kx = ky ^ 0.1 rr/a.

the F-point. The second is that both | ISs at about 1 eV are coupled to the leads, 
and therefore both contribute to the transmission, whereas for the F-point only the 
part of the i)eak above the band-edge contributes to the transmission. We note that, 
in contrast to F’ig. 7.28(c), in order to plot the interface PT PDOS in Fig. 7.30(c) 
we did not add any imaginary part to the energy, so that the width of all the i)eaks 
reflects their coupling to the leads. Adding a finite imaginary i)art to the energy did 
not reveal new j)eaks, demonstrating that at this k-])oint there are no BSs. The third 
feature is that the position and sej)aration of the two peaks in the J, PDOS above one 
('V changes.

With these informations the origin of the structure of feature ® is explained in 
the following way. The bulk Fe A} band-edge at about 1.5 eV leads to a surface state, 
wdiich due to the coupling across the MgO barrier splits in a pair of bonding- and 
anti-bonding states. This explains the double-peaked structure of feature (D. While 
for the F-point only the part of the IS above the band-('dge has finite transmission, 
because the bulk Aj PDOS is exactly zero below the band-edge. For other k-i)oints 
however the A| PDOS has a hnite value also below the main Aj band-edge, the energy 
range over which this finite value extends increases wdth increasing \kx\ and \ky\. The 
})art of the two ISs PDOS contributing to the transmission therefore increases with 
increasing |A:^| and |A:y|. For this reason both J. IS PDOS peaks are visible in the 
transmission, but the one at lower energy is much smaller in amplitude than the one 
at higher energy. Also the rather smooth structure of feature ® is explainable in 
the same way with the k-dependent f layer-dependent Ai PDOS. Since the interface 
A{ PDOS is closer to the bulk PDOS, the transmission does not show a pronounced 
I)eaked structure, l)nt is rather constant over energy. Only a small and rather sharp 
resonance is formed.

For the AP configuration we only analyze the f transmission, since by symmetry
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Figure 7.30: DOS A/a, projected ou the states with A] symnietry, in arbitrary units (i)osi- 
tive values for negative values for j), and transmission at a k-point c:lose to 
the r point {kj. = ky ~ 0.1 txIci). (a) Ai DOS for bulk Fe, (b) A] DOS of the 
Fe atom placed 8 ML away from the Fe/MgO interface, (c:) Ai DOS of the Fe 
atom at the Fe/MgO interface, (d) transmission for \ (red) and | (green). The 
dashed vertical lines indicate the hand-edges of the Ai states at the F point 
for 1 (cyan) and j (magenta). Since all the peaks are eonpkal to the leads, no 
imaginary i)art has bc^en addc'd in order to broaden them.

the aiiti{)arallel is identical. In tlie t AP configuration the A] PDOS on the left side of 
the junction is the one for P f, and the one on the right side is the one for P [. Feature 
© at —1 eV is therefore barely visible, because the P [ PDOS is zero at that energy. 
Only a small resonance is notable at that energy. For increasing energy however the 
P i PDOS increases, so that close to the A} band-edge the transmission increases 
dramatically. The IS in the AJ therefore leads to a large peak in the transmission, 
which is almost of the same size as the corresponding one in the P configuration. Since 
the IS is only found on one side of the junction, it does not si)lit up into bonding- 
and anti-bonding states. The IS resonance at Ep (feature @) is also present in the 
AP configuration, although drastically reduced in size. The J, IS at Ep has also a Ai 
component, so that it can in principle couple to the A} states on the other side of 
the junction. However whereas the P t transmission is large close to the F-point, for 
the I ISs it is large at other positions in the BZ. Therefore in the AP configuration 
the transmission is strongly reduced.

We now move on to analyzing the bias-dependent transmission coefficient. Its 
behavior is mainly driven by the evolution of the describcxl three main features with 
bias. In Figs. 7.31 and 7.32 the bias-dependent sjjin-polarized transmission is shown 
for P and AP configuration of the electrodes. First we describe the evolution of
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Figure 7.31: Spin dependent transmission coefRcient T for the P configuration as a function 
of energy, E, and for different biases, V. The vertical lines are placed at 
E = E\.' ± cF/2 and enclose the bias window.

Figure 7.32: Spin dependent transmission coefficient T for the AP configuration as a func
tion of energy, E, and for different biases, V. The vertical lines are placed at 
E = Ey ± cF/2 and enclose the bias window.

the tree features for P aliginnent, and then for AP alignment. Since feature ® is 
mainly determined by the electronic structure of Fe alone, the associated sharp rise 
in transmission changes position as a function of bias following A{ band-edge at 

higher energy. For positive bias this is the case for the one of the left-hand side 
lead, whose energy as function of bias is equal to -|- eV 12. For instance the
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sharp increase of T^{E\ V) moves to -0.75 eV aiui -0.25 eV respectively for voltages 
of 0.5 V and 1.5 V, following -H eV/2. At a voltage of about 1 V the sharp rise 
in transmission enters the bias window. As the voltage increases even fnrther, the 
increase in current is reduced, since the high transmission region in the P t extends 
only over part of the bias window. The Irroad peaks associated to feature ® broaden 
with increasing bias, bnt also shrink considerably in size. At C = 1.5 V the peaks 
have almost disappeared. In the P configuration therefore the zero-bias peak in the 
I transmission does not contribute substantially to the total current, since once it 
enters the bias wintlow, its height is much smaller than the transmission amplitude 
for the I spins. The evolution of feature ®, the sharp peak in the | transmission at 
Ap', with bias shows a similar behavior. At hnite bias, th(' zero-bias peak splits into 
two sub-i)eaks with a strongly r('dnc('d transmission, sei)arat('d in energy by the bias 
voltage. The shrinking of the i)eak is complete at a bias voltage of about 20 nieV, for 
higher voltages the height of the peaks is approximately constant.

The dynamics of features ® and ® for changing bias are a g(>neral property of ISs, 
spatially localized at the interface between Fe and MgO. This is illustrated schemat
ically in Fig. 7.33. Consider the i)anels (a) and (b), where two identical ISs are 
localizt'd on either sides of the tunnel barrier. This is the situation encount(U('d here 
for the I spins. The transport is then resonating across the barri('r at tlu' IS energy 
E]i = Ei^. As shown in Sec. 7.3, in general a IS is coupled more strongly to one of the 
electrodes, and it will trace closely its (jnasi Fermi energy. For instance for positive* 
bias and a IS localized on the left-hand (right-hand) side of the junction [Fdg. 7.33(b)] 
we obtain E\XV) = A’i^(()) + eV/2 [A'h(F) = A'r(O) — rP/2]. This brings the states on 
either side of the junct ion out of resonance and generally suppresses the transmission. 
Thus the peak in T(£’;0), originating from a n;sonating IS across the barrier, will 
evolve into two smaller peaks separated by an energy eC. Indeed this is the behavior 
observed in Fig. 7.32. For instance the two peaks centen'd at E^- are se])arated by 
0.5 eV and 1.5 eV for voltages of 0.5 V and 1.5 V, respectively.

A second possible situation is when the ISs on the left-hand and right-hand side of 
the tunnel junction have a different origin and are placed at different energy. In this 
case we do not expect zero-bias resonance, however there will be a ci’itical voltage at 
which the resonant condition is met. In t his case we expect the rise of a large peak in 
the transmission coefficient at a bias eV = i?i.(0) — ifujO). This situation has never 
been encountered for the symmetric MTJ investigated here, lint it is likely to appear 
in real junctions.

We now analyze the bias-dei)endent transmission for AP alignment, shown in Fig
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Figure 7.33; Schematic rei)reseiitation of the bias dependence of the transmission through 
interface state for P alignment, (a) and (b) are for the left (L) and right (R) 
interface states having the same energy and therefore resonating at V=(); (e) 
and (d) are for the L and R interface states not resonating at zero-bias.

7.32. In this case only features ® and (D, leading to the peaks at Ey and at about 1.5 
eV resi)ectively, are important. With increasing bias both j)eaks do not shrink in size, 
t h('y jnst si)ht up by the applied bias eV. The inechanisin is illustrated schematically 
in Fig. 7.34 for the f, the situation for the f is analogous. The only difference between 
the t transmission and the J, transmission is that in the f the jreaks shift to lower 
('nergy, whereas in the J, they shift to higher energies. The spin | IS on the right side 
of the junction couples to the broad A{ band on the left side. Therefore at any bias 
the transmission at the i)eak is ap])roxiinately constant, bnt the i)eak shifts according 
to the energy of the IS. Only when the bias is large enough, that the energy of the IS 
is below the bottom of the Ai band, the transmission ireak will shrink. The result of 
snch a bias-dependence is that the transmission i)eaks related to the sharp IS at E-p 
are pinned at the bonndaries of the bias window for all voltages, and that the broad t 
j)eak in transmission shifts closer to the bias window with increasing bias. This leads 
to an increase of the AP current, especially once the voltage is large enough that the 
main part of the peak can enter the bias window. This is in contrast to the case of 
the P configuration, where this peak never significantly contributes to the current.

We now move to analyzing the I-V characteristics (Figs. 7.35 and 7.36) and the 
TMR (Fig. 7.37). In Fig. 7.35 the spin-polarized currents are shown for P and AP 
alignment, and in Fig. 7.36 the total current I{V), the conductance G'(F) = dl/dV 
and S{V) = d‘^I/dV'^ are plottcxl, both for P alignment (left column) and for AP 
alignment (right column). The results are plotted for different values of the imaginary
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Figure 7.34: Seheinatic representation of tlie bias dependence of the transinission tlirough 
interface states for AP aligninent.
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Figure 7.35: Spin-polarized current I as function of voltage V for P (a) and AP (h) align
ment of the Fe electrodes.

part S add('d to the energy for the evaluation of tlu; traiisiiiissioii c'oefiicient. \\7' hrst 
focus oil the case where h = 0 (lilack curves in Figs. 7.36 and 7.37), which means that 
no imaginary part is added. We start iiy analyzing tlie low bias region {V < 0.4 V). 
The most apparent feature in this bias range is a sliarj) reduction of tlie TMR from 
its zero-iiias value followed by a rajiid increase which peaks at V ~ 0.3 V. The sharj) 
reduction can be associated with a decrease in the P | spins current originating from 
the loss of the IS resonant condition at 1/ ~ 20 mV, a bias which roughly corresponds 
to the line-width of the IS. For V < 20 mV the P current is shared by the two spin- 
species, while for V > 20 mV the t component dominates. Such a ri'dnction in the P 
I component at the bias corresponding to the resonant condition loss can be clearly 
observed in the S{V) plot of Fig. 7.36. As the bias further increases the coiidnctaiice 
ill the P configuration is apiiroximately constant. In contrast the coiidnctaiice of 
the AP confignratioii is slightly reduced for V between 0.1 and 0.3 V. This behavior 
results in an increase of the TMR with the broad jieak at 0.3 V. The high bias region 
is characterized by a decrease of the coiidnctaiice in the P conhgnration at around 
1 V and a dramatic increase of the AP current for V > 1.5 V. This produces a strong 
reduction of the TMR with bias and an almost complete suppression for V > 1.5 V. 
Ill fact at about 1.75 V the TMR becomes negative. Such a voltage range should 
be jint in comparison with the band offset. In onr LDA calculations for Fe is
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Figure 7.36: Current I, coiiduetanee G, and S = (fl/dV‘̂ as function of voltage V for P 
(left figures) and AP (right figures) aligninent of the Fe electrodes. The curves 
are plotted for different values of the iiiiagniary part 6 added to the energy.

Figure 7.37: TMR as function of voltage V for different values of the imaginary part of the 
energy S. The blac;k curve is for S — 0, the red for S = 10“'* Ry, and the green 
for = 10“'* Ry. In the inset the TMR is shown in the low-bias region for 
6 = {].

])()Hitione(i ~1.8 eV below the MgO conduction band ininiinuin anrl ~3.() eV above 
the valence band inaxiinuni. This means that voltages of the order of 1.5 V are still 
rather far from those needed for tunneling across a reduced barrier.

The high-bias behavior is dominated by the relative energy shift with bias of the 
Fe A" states. The origin of the rcxluction of the conductance in the P configuration 
for 17 > 1 V is that once the A{ band-edge of the left lead enters the bias window, 
the high transmission region only extends over part of such window (Fig. 7.32), so 
that the increase of the current with bias is reduced by a factor of about 2. Note 
that, as discussed above, the current in the J, is negligible. In the AP configuration 
the increase of the conductance with increasing bias is due to the fact that the broad
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Figure 7.38: O-bifus transmission coefficient for different values of the imaginary part 5 added 
to the energy for tlie P (a) and the AP (b) configuration.

I peak in the transmission moves closer to the bias window. Once the A{ band-('dge 
moves into the bias window, which is the case at about 1.5 V, there is a drastic 
increase of the AP cnirrent.

It is also interesting to comment on the S{V) plots in Fig. 7.3b. For both the 
magnetic conhgurations one can observe a peaked strnctnre. This is observed also 
experimentally [292] and attributed to resonances in the transmission, which could be 
dne to botli elastic- and inelastic scattering. In the high-bias region onr I-V for the P 
conhgnration does not increa.se as rapidly as that fomid in typical expc'rinu'iits. One 
reason for such diffeixmce is that the MgO barrier calculated here is very thin, and 
the current consequently is already large at small bias. In fact onr 0-bias transmission 
coefficient is rather flat around the Fermi energy, for thicker junctions it is exi)ected 
to rise exponentially for increasing energy, since those energies are closer to the MgO 
conduction band. Therefore we exj^ect that for larger thicknesses the rc'duction of the 
conductance at 1 V is not found. Calculations [)erfornied for a 4 MgO ML and for 
a 8 MgO ML junction for the nnrelaxed coordinates conhrni this. The 1-V for this 
system is shown in Figs. 7.68 and 7.69, in the case without oxygen vacancy. Another 
reason for the deviation in the high bias regime can be inelastic effects, and also the 
presence of defects at the interfac:e and in the MgO. In Sec. 7.6 we investigate the 
effect of defects in the MgO by calculating the I-Vh for an MgO barrier with an 
oxygen vacancy (Vq). The most jn'orninent feature in the S{V) curves is the large 
broad peak at about 1.5 V, found only in the AP configuration, and caused by the 
broad interface states associated to the A{ band edge at the P-point. In experiments 
such a peak in the AP configuration is indeed found at about 1 V, and no such peak 
is found in the P coiffiguration [292, 293].

We now investigate the effect of generic disorder, motivated by observations [293].
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Disorder is modeled at a simple level by adding a small imaginary part h to the energy 
when calculating T{E; V), i.e. it corresponds to a nniform level broadening [290]. The 
effects of snch addition on the zero bias transmission are shown in Fig. 7.38, while 
those on the I-V, G{V), S{V) and TMR are shown in Figs. 7.36 and 7.37. Fig. 
7.38 clearly shows that increasing S results in a gradual snpi)ression of the T{E]0) 
resonance at E}.', and in general of all the sharp features in the transmission, the 
remaining features change little with increasing 6. For S = 10“'* Ry the pea.k is 
still clearly visible for P and AP alignment, and only for S = 10“'* Ry it completely 
disappears. As a result the TMR at low bias largely increases and the non-monotonic 
behavior for V < 0.4 V is suppressed. This is mainly determined by the reduction in 
transmission at Ey^ in the AP configuration. In contrast., the high bias region is barely 
affected by S, indicating that these results are not sensitive to snch a perturbation. 
The decay of the TMR with bias is similar to the one obtained in tyi)ical experiments 
for high-cpiality junctions [264], The main difference however is that the absolute value 
is inncli larger in onr calculations. Although onr results are indicative of the effects of 
disorder on the TMR, they should be taken with caution. The broadening S introduces 
unstructured disorder, and the transmission of all the spin-channels is efinally rc'dnced. 
In reality one may exj)ect the transmission to either increase or de('reas(' depc'iiding 
on the type of scattering center, which in general will act differently on the different 
spin-(4iannels. This will in general result in an enhancement of the current in the AP 
alignment, causing a reduction of the TMR (see also Sec. 7.6). In R('f. [294] this is 
achievc'd by adding a random perturbation to the ])otential. Although this leads to 
a reduction of the value of the TMR, the mechanisms for the reduction of the TMR 
with bias should however be the sanies as the ones discussed here.

Finally we compare the I-V obtained using the self-consistent solution, with the 
one ofitained using the rigid shift approximation, described at the end of Sec. 7.3. 
The comjiarison of the self-consistent potential droj) and the one applied in the rigid 
shift aiiproxirnation is shown in Fig. 7.25. Since the agreement is rather good, we 
exiiect also the I-V to be similar. The resulting I-V curves are shown in Fig. 7.39. 
Indeed the figure shows that the result of the rigid shift apjiroximation is in very 
good agreement with the exact self-consistent solution. For these kind of tunneling 
junctions, where the charging in the barrier is small, we have therefore shown that 
the rigid shift approximation gives good results.
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Figure 7.39: Coiiiparisoii of the P and AP I-Vs obtained with the self-coiisisteiit solution, 
with the one obtained applying the rigid shift potential.

7.4.1 I-V characteristics for unrelaxed coordinates

In order to verify how sensitive the results are to small changes in the atomic structure, 
we calculate the I-V characteristics for a junction with nnrelaxed coordinates, and 
compare the results to the one for the relaxed coordinates. The bias dependent 
transmission is shown in Fig. 7.40 for P alignment, and in Fig. 7.41 for AP alignment. 
The results are very similar to the ones obtained for the relax('d coordinates (Figs. 
7.31 and 7.32). There are only some (inantitative differenc’es, which we have discnss('d 
in Sec. 7.2 for zero bias. The resulting/-C and TMR are shown in Fig. 7.42. Also hen' 
the general behavior is similar to the one for the nnrt'laxc'd coordinates. There are two 
main (inantitative differences: the reduction in conductance in the P conlignration 
is less prononnc('d here, and the TMR still shows non-monotonic behavior even for 
S = 10 Ry. This scx'ond difference is due to the fact that the trans])ort through 
resonances is enhanced for the relaxed coordinates, so that a larger value of d would 
be iKX'essary to completely remove their contributions. Generally tlu' comparison 
shows tliat a small variation in the structure do not change the main features.
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E-E^ (eV)

Figure 7.40: Si)in dependent transmission coefficient T for the P configuration as a function 
of energy, E, and for different biases, V. The vertical lines are placed at 
E = Ey ± eV/2 and enclose the bias window. The transmission is calcidated 
for the nnrelaxed coordinates.

(eV)

Figure 7.41: Spin deirendent transmission coefficient T for the AP configuration as a func
tion of energy, E, and for different biases, V. The vertical lines are placed at 
E = Ef ± ey/2 and enclose the bias window. The transmission is calculated 
for the nnrelaxed coordinates.
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Figure 7.42: Current I for the P (a) and AP (b) eonhguration.s, and TMR (c) as fnnc;tion 
of voltage V, calculated for the nnrelaxed c;oordinates. I'he results are shown 
for different values of the iniaginary [)art <5 added to the energy.
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LDA ASIC

Figure 7.43: Schematic representation of the band-alignment for the relaxed coordinates, 
and for both LDA and ASIC.

7.4.2 I-V characteristics for the ASIC

As described in Sec. 7.2, when the LDA exchange correlation functional is used, the 
band gaj) of MgO is underestimated by about 3 eV. The ai)plication of the ASIC 
increases the band gap and brings it very close to the experimental value (Fig. 7.4). 
One of the major drawbacks of the ASIC however is, that it can usually not correctly 
describe metals [90], which are usually described well by the LDA. In the Fe/AIgO/Fe 
tunnel junction, we therefore apply the ASIC only on the Mg and O atoms, whereas 
we use the LDA without the ASIC for the Fe. This is achieved by setting the ASIC 
correction in the psendopotential of the Fe atoms to zero. While this is certainly a 
good approximation far away from the Fe/MgO interface, where both Fe and MgO 
have bulk-like properties, at the interface it might be less appropriate. However, 
since also the LDA alone describes MgO rather well, we expect this to be a good 
ai)i)roximation. For the calculations in this section we use the relaxed coordinates.

The calculated band aligmiK'nt between the Fe and MgO is schematically shown 
in Fig. 7.43. The relative alignment of the bands is similar in both LDA and ASIC. 
Due to the larger band gap in the ASIC however the absolute distance of both con
duction and valence band from Ey increases compared to LDA. We therefore expect 
a reduction of the transmission around Ey.

In Fig. 7.44 the O-bias transmission is j)lotted for both LDA (black dashed lines) 
and ASIC (red lines), for P majority (a), P minority (b), and AP majority (c). For 
all the cases the energy range with small transmission increases for ASIC, due to the 
increased band gap. Generally for all energies in the ga]) the transmission is also lower 
than the LDA one. Around Ey the ASIC transmission is lower by approximately a 
factor three when compared to the LDA one. We note however that the height of all 
the resonances is almost nnchanged when going from LDA to ASIC. As we will show 
in the next section, where we analyze the complex band structure of MgO, this is due 
to the fact that in onr calculations the transmission through these states is to a large
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E-E^ (eV)

Figure 7.44: Coiiiparisoii of the zero bifus traiisiuission for LDA and ASIC for P | (a), P j 
(b) and AP T (c).

extent indei)endeiit of the MgO band gaj).
The resulting I-V is shown in Figs. 7.45 (a) and (1)) for P and AP alignnient 

respectively, and is similar to the LDA one (Fig. 7.36) for both the P and AP 
eoiihgurations. The main difl'erence is that the ASIC current is about three times 
smaller than the LDA current at a given bias. Therefore also the TMR [Fig. 7.45 
(c)] is of the same magnitude as for the LDA (shown in Fig. 7.37), although slightly 
reduced. Also here we use a finite value of in the calculation of T to gradually reduce 
the contribution from the ISs. Th(' behavior is again similar to the LDA case. For 
6 = 10“^ Ry the contribution from ISs is remov('d, and we hnd the TMR decreasing 
monotonically as function of bias voltage [green curve in Fig. 7.45 (c)], with a value 
at zero bias of about 5000%.

We conclude that qualitatively LDA and ASIC give the same results. The main 
effecd of the ASIC is a reduction of the current, for both P and AP conhguration, due 
to the increased band gap. Since the recluction is of the same order of magnitude for 
both P and AP alignment, the TMR is almost unchanged.

7.4.3 Comparison with other calculations

We conclude this section by comparing onr results with those available in the liter
ature. To our knowledge, the I-V curves for 4 MgO MLs ideal junctions have been 
calculated non-self-consistently in Refs. [274, 291] within a rigid shift approximation, 
and .self-consistently in Refs. [321, 317] for a 5 MgO MLs junction. Recently the 
I-Vs for such a junction have also been calculatc'd within a single-band tight-binding 
model [322] and parameters htted to the results of Ref. [274]. When comparing the
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Figure 7.45: Current / for the P (a) and AP (b) configurations, and TMR (c) as function of 
voltage V, calculated for the relaxed coordinates, using the ASIC. The results 
are shown for different values of the imaginary part S added to the energy. The 
inset in part (b) shows a zoom-in at low bias.

n'snlts between this set of calculations, one has to f ake into account that different 
interface geometries are used.

Up to about 1 V the results of all the publications are similar, if one takes into 
account that the contribution of the [ IS close to E\.- to the current is very sensitive to 
th(' details of the calculation. For exanii)le, our low bias results match cpiite well with 
those of Ref. [317], for the case where we smear out the IS by adding an imaginary 
part S = 10“'^ Ry to the energy.

Unfortunately in Refs. [274, 291] no data is given for voltages above 1 V, so that we 
can not compare the results in the high bias region. For voltages above 1 V our results 
agree rather well with those of the tight-binding calculation in Ref. [322], but are in 
contrast with those of the self-consistent calculation of R,cf. [317]. The difference is 
mainly in the I-V for the P conhguration, which in Ref. [317] is dominated by the 
J. si)ins at high bias, whereas these give only a negligible contribution in our work 
(see Fig. 7.35). In our analysis of the /-Us we have discussed in detail why at high 
bias the J. ISs, associated to the A{ band-edge at 1.5 eV above the Fermi energy, can 
only contribute to the current in the AP conhguration, but not in the P conhguration 
(Figs. 7.33 and 7.34). This is a very important point, es])ecially when comparing the 
results with experiments, where a large peak in the S{V) curves is found at about 
1 V only for AP alignment [292, 293]. For the I-V curves calculated in Ref. [317] 
however a corresponding peak in S{V) should appear also in the P conhguration.

The authors of the tight-binding study of Ref. [322] kindly i)rovided us addi
tional, not yet published data, such as the spin-polarized currents for an improved 
set of j)aranieters, htted to the results of Ref. [291]. Their spin-polarized /-Us match
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LDA ASIC

Figure 7.46; Seheiuatie represeiitatioii of the band aligiiiiieiit for LDA and ASIC (nnrelaxed 
coordinates).

very well with our results and most iuiportaiitly they do not show siguihcaut cou- 
tributioii to the current from the | spins in the P coiihguratioii. This coiihrms our 
conclusions, that the only possible .solution is the one where' there is no siguihcaut 
contribution from the J. spins at high voltage in the P conhgnration. At this point we 
can only speculate on the reasons why in Ref. [317] a fmidaiiK'ntally different result 
is obtaiiu'd. The hrst reason for the difference in the results might be relate'd to the 
self-consistently obtained potential drop, which dej)end.s sensitiv('ly on tlie occui)ation 
of the BS (see Fig. 7.17). A second possible reason might be related to the different 
relax('d c'oordinates used in the two works, but in onr opinion this is less likely, since 
the zero bias transmission coefficient in Ref. [317] is rather similar to ours.

7.5 Thickness dependence of the transmission

In the previous sections the results for a junction with a barrier thickness of 4 MLs 
were presented. For MgO tunneling junctions, an exponential increase of tlu' resis
tance with the thickness of the MgO barrier is found exi)erimentally at large thick
nesses [264]. In Refs. [20, 290, 291] the thickness dependence is analyzc'd theoretically 
for the Fermi energy. In this section we analyze the dependence of the 0-bias trans
mission over a broad energy range, of the order of the whole MgO banef gap, on the 
thickness of the junction. We ])erforni calculations for both LDA and ASIC, and use 
the nnrelaxed coordinatcis. In Fig. 7.46 the band alignment is shown for the nnrelaxc'd 
coordinates. It is similar to the alignment for the relaxed coordinate's (Fig. 7.43), but 
with the AlgO band gap increascxl by about 1 eV due to the lattice compression (see 
Sec. 7.1).

If we assume an exponential dependence on the thickness, the spin dependent

I
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k-resolved transmission T^ik) can be modeled as

3

(7.6)

where rr =t, J. is the spin index and Uml is the number of MgO Mbs. The sum over j 
runs over all available states at a given energy, (k) is the transmission extrapolated 
for 0 ML for state j, and o-J(k) is its decay coefficient. The total T" is then obtained by 
integrating T'^(k) over the 2D BZ [Eq. (4.108)]. For thin junctions the transmission 
is mainly determined by the states with the largest coefficient fj, i.e. by those states 
that have a high DOS close to the Fe/MgO interface. For thick junctions however 
only the states with the smallest aj(k) contribute to the transport. In this case we 
can approximate the total transmission T" as

"MI.
1 — Iq e , (7.7)

where the total damping coefficient is the smallest of the decay coefficients of all 
the rvj(k) over the entire BZ and is the total transmission extrapolated for 0 ML 
from the high thickness regime. Above equation becomes exact in the limit of infinite 
thickness. By calculating for two different thicknesses Umi,,! and n^\h:2 (both of 
them have to be rather large) we obtain the danii)ing coefficient as

1
^■ML,2 — WmL.I

-In ( ^

(7.8)

where T" (T^) is the transmission for umlo (nML,2) MgO MLs.
We calculated the O-bias energy dependent transmission for 4 to 24 MgO MLs, 

in steps of 4 MLs. The result is shown in Fig. 7.47 (first row) for P majority 
and minority, and for AP majority. The transmission is similar for all thicknesses 
outside the MgO band gap (see also Fig. 7.46). Inside the gap it decreases with 
increasing thickness. We note that the noise in the curves is approximately constant 
for increasing thickness, which indicates that the accuracy in the results is constant 
for all the considered thicknesses. When going from 4 to 8 MLs, the relative height of 
the transmission features in the gaj) changes, whereas above 8 ML it is approximately 
constant for all thicknesses. This indicates that for 4 ML we are still in the thin 
junction regime, whereas for 8 ML we are already in the thick junction regime, where 
only the states with the smallest decay contribute significantly to the transport.

We note that whereas the transmission decreases raj)idly when moving from the 
band-edge energy towards the middle of the gap, it is almost constant in the middle 
of the gap, and even increases for the P majority si)ins. Moreover we note that
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P: majority P: minority AP: majority

Figure 7.47: Top row of figures: Energy-dependent transmission T for different MgO barrier 
ttiieknesses, calculated using the LDA, for P|, Pj, APf; second row of figures: 
the c:onesi)onding danij)ing coefficient a, calculated using riMnj = 16 and 
nK\L:i = 24.

the contribution from the ISs in the P minority at Ep is visible for all thicknesses. 
This is in contradiction to the results of Refs. [20, 291], where it is shown that 
the contribution from such a peak vanishes for large thicknesses. The reason for 
this difference is that in Refs. [20, 291] it is shown that only k-i)oints close to the 
r i)oiiit contribute to the transmission, whereas in onr case, by analyzing the k- 
dei)endent transmission, w(? hnd that even for thick junctions large contributions to 
the transmission also come from other points in the BZ. We now investigate this 
difference in the results by calculating the energy-dependent danii)ing coefhcient and 
the complex band structure for MgO.

We calculate a" with Ecj. (7.8), using rtMp,! = 16 and = 24. The n^snlting 
energy dejmndent damping is shown in the second row of Fig. 7.47 for P majority, 
P minority, and AP majority. By using dih'erent vahies for uml,] and nML,2, the 
results are analogous, confirming the ai^plicability of the model for the tunneling 
transmission, a is approximately zero in the energy range outside the MgO gap, and 
has a semi-circular shaite in the gaj). The boundaries of the tunneling regime agree 
rather well with the calculated band alignment (Fig. 7.46). We note that the value 
of a{E) is similar for P |, P J, and for AP t, especially around i^K. This leads to 
an approximately constant TMR as function of thickness, or at least to a rather slow 
increase. This agrees with the results of Refs. [291, 294]. If we additionally include a 
small amount of inelastic processes, and assume that there is always some disorder in 
the juiu'tion, we exi)ect the TMR to be reduced. We can then conclude that for large 
thicknesses the TMR becomes ai)i)roxiniately constant, as also shown in Ref. [294]. 
This is indeed the situation found in exi)erinient [264].
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Figure 7.48: Top row of figures: Energy-dependent transinission T for different MgO barrier 
thicknesses, calculated using the ASIC, for Pf, P|, APj; .second row of figures: 
the corresj)onding danii)ing coefficient a, calculated using uml,! = 16 and 
»'Mn,2 = 24.
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Figure 7.49: MgO complex band structure at the F point for LDA (a) and ASIC (b).

From Fig. 2(a) of Ref. [264] the experimental damping coefficient at large thick
ness and low bias can be extracted to be rVexp ~ 1-3, and is identical for both P and 
AP configuration, leading to an approximately constant TMR for large thicknesses. 
This is rather similar to onr LDA result, which is about 1.5 for all configurations. 
However, since in the LDA the MgO band gap is underestimated by about 3 eV, 
we also expect the LDA to underestimate the value for the damping. We therefore 
ealenlate the thickness dependent transmission and damping using the ASIC approxi
mation. The result is shown in Fig. 7.48. Apart from an increase of the energy range 
of the tnnneling region, there is no major difference between the LDA and ASIC 
transmission for all thicknesses. In fact, in the middle of the gai) the transmission is 
even (inantitatively similar for LDA and ASIC. The flat transmission region in the 
middle of the gap is even more prononneed than in LDA. This is clearly refleeted 
by the c'orresponding damping coefficient, which is semi-eirenlar close to the MgO 
band-edges, but becomes flat at energies of about 1 eV inside the gap. The damping 
in this flat region lies in the range of about 1.5 to 1.7, and is similar for P t and j, 
and AP j. This value is also elo.se to the LDA result.
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Ill order to find the origin of the flat region in the energy-dependent dainping 
we calculate the k-dei)endent complex band structure (CBS) of MgO. The CBS is 
generally used to analyze the tunneling process across insulating barriers [323, 20, 
324, 219]. This can be obtained solving Eq. (5.G) for an inhnite MgO system, stack'd 
along the transport direction 2: in the same way as in the tunneling junction. The 
chosen unit cell contains 4 MgO Mbs along 2. In Fig. 7.49 the so obtained imaginary 
jiart of the wave-vector k — is shown as function of energy for both LDA (a) and 
ASIC (b) at the T point {k^ = ky = 0). As a matter of notation we note that in this 
section the variable k indicates the component along the 2 direction, A:^, of a general 
3D wave-vector. The units of k are chosen in such a way, that Ini(A) corresjionds to 
the decay of the wave function per unit cell (corresponding to the dehiiition in Sec. 
5.1.1). For the chosen unit cell it therefore corresponds to the decay across 4 MgO 
Mbs, so that |'0»iml+4| = The transmission coefficient then is jiroportional
to e = e so that the damping coefficient resulting from k is ('qual to k/2.
The alignment with respect to ifp in Fig. 7.49 is set to match the band alignment in 
the tunneling junction (Fig. 7.4b). To each band in the bDA CBS the corresponding 
symmetry is added, as defined in Ref. [20]. TIk' CBS ])artially agrec's with the result 
of R('f. [20], the main difference however is that we hnd additional bands, which an' 
rather Hat as function of energy, and whic'h c'ross the semi-circular bands. There is 
one flat Irand with Ai symmetry and one with A5 syinmetry. The.se hybridize with 
the bands of the same symmetry from the semi-circnlar bands. Wher(^as tlu' semi
circular bands are different for bDA and ASIC, due to the different band gaj), the 
ffat bands are very similar. A plot of the CBS for different [k^, A:y)-points shows that 
conqrared to the T i)oint the band gap increa.ses, leading to larger imaginary parts of 
the semi-circular bands. However the rather flat bands change much less for different 
k-i)oints. In the last part of this section we will show that the.se flat bands are indeed 
the origin of the flat region that we hnd in the damping coefficient.

Before comparing the CBS to the dam])ing coefficient in detail, we hist investigate 
the origin of the hat bands. We calculate the CBS for the ID-cfiain single orbital tight- 
binding model of Sec. b.8. The inverse dispersion relation for such a .system is [Eq. 
(G.9G)]

cos k =
E~h

27
(7.9)

For
7.50

E-h
27 < 1 the value of A: is real, whereas for E-h

27 > 1 we have Im(A;) ^ 0. In Fig.
a) Im(A) is plotted as function of energy. The a.syniptotic behavior for \E\ 00

is ~ jF'j/27, .so that Ini(A’) increa.ses logarithmically with \E\. In this case there is
no energy range with a hat inverse dispersion k{E). However, if we include a hnite

V

i
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E-E, E-E. E-E.

Figure 7.50: Complex band structure for the ID model (in arbitrary units), for s = 0 (a), 
s = 0.1 (b), and ,s = 0.3 (c).

nearest neighbor overlap .s, the asymptotic behavior changes drastically. In case of a 
hnite overlap the inverse dispersion relation can be calculated to

E-h
cos A; = (7.10)

2(7 - Es) ■

This result corresponds to the one obtained in a SMEAGOL calcnlation, where a 
non-orthogonal basis set is used. The asymptotic limit for \E\ —> oo now is cos(A:) ~ 
— 1/2.S, so that k is constant for large jEl. If we assume s to be smaller than 0.5, then 
A > 1, ,so that in the limit \E\ ^ oo we have Ini(A:) ^ 0. Whereas for s = 0 Ini(A’) 
increases with increasing energy, for s 0 it therefore approaches a constant. This 
is illustrated in Fig. 7.50, where Ini(A:) is plotted for increasing values of ,s. We also 
note that at Eh = 7 there is a i)ole in k{E). This simple model shows that the origin 
of the flat complex bands lies in the finite overlap between the orbitals.

In order to determine the corresponding asymptotic behavior in a SMEAGOL 
calculation for MgO, we calculate Im(A’) in a large energy range, of about 100 Ry 
around Ey. The result is shown in Fig. 7.51(a), and, analogously to the ID tight- 
binding model, Im(A:) becomes constant for large \E\. We also find poles in Ini(A:) 
for certain energies, the value of lm(A:) at these poles is however limited by using the 
regularization scheme described in Sec. 5.3. The asymjrtotic behavior of Im(A;) for 
large energies can be obtained l)y taking the limit |E'| —> 00 in Eq. (5.3), which then 
becomes

(5o + <f)n = 0, (7.11)

where ri is the index of state with WF and wave-vector A:„ . The resulting and 
A’„ are energy indej)endent. The calculated energy independent values of A:„ for the 
MgO system are shown as red lines in Fig. 7.51(a). It can be seen that for large 
energies indeed all the Ini(A:) (black curves) converge to these asymptotic values (red 
curves). A zoom at around Ey shows that the lowest lying asymptotic values for 
Ini(A’) are at tlu' origin of the flat bands crossing through the semi-circle around Ey.
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E-E (Ry)
100

Figure 7.51: (a) MgO complex band structure calculated using the LDA, for a large energy 
range (black curves). The red curves correspond to the limit calculated using 
Eq. (7.11). (b) MgO complex band structure calculated setting S\ = S-\ = 0.

To confirm that the Hat hands are I'anscal by the finite overlap, we calculate the 
asymptotic solutions for = S'-! = 0, which for positive Ini(A;,i) or(' obtained by 
solving

= ESo<t>r, (7.12)

so that Iin(A;,i) oc hi(|T’|) increases with increasing lifl. We calculated Im(A:,j) for 
the MgO system, where we have set Si = S-i = 0, and obtaiiu'd the dispersion of 
Fig. 7.51(b). Instead of reaching constant values, now' all the Im(A:„) increase with 
increasing \E\. A plot of as function of E shows straight lines, indicating a
logarithmic dependency. We have therefore confirmed that the origin of the flat bands 
lies in t he hnite overlap.

By reducing the overlap between orbitals, we can therefore rc'duce the absolute 
value of the elements of and 5-1, so that we expect to shift the flat regions to 
higher Ini(A'). In order to verify this, we have calculated the CBS at the F point for 
3 different basis sets (in each case we use the same basis for Mg and C): the first is 
('(lual to the one used in all our calculations so far [double C (DZ), with a cutoff radius 
I'c = 6 bohr], the second basis set is DZ (tv = 4 bohr), and the third is a single C (SZ) 
(/’c = 4 bohr). The CBS for the different basis sets, and for both LDA and ASIC, 
is shown in Fig. 7.52. It can be seen that indeed by rt'ducing the length of r’c from 
G bohr to 4 bohr, the flat bands shift to higher Im(A’). When further moving to a SZ 
basis, the number of bands is reducc'd, so that the flat regions move to even higher 
Ini(A). For the DZ (ry = G bohr) basis the flat bands cut through the lowest lying 
semi-circular state around ifp for both LDA and ASIC, for the DZ (/<. = 4 bohr) this 
is the case only in the ASIC. For the SZ {tc = 4 bohr) the fiat bands never cross the 
low lying semi-circular state. We note that for other k-points in the 2D BZ, the flat
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Ihgure 7.52: MgO coinj)lex band structure at the F-point, for three ditferent basis sets, and 
for LDA (top row) and ASIC (bottom row). The figures in the first column 
are calcidated with the DZ {tc = 6 bohr) basis, the ones in the second column 
with the DZ {r^. = 4 bohr) basis, and the ones in the third column witli the 
SZ (rv = 4 bolir) basis.

bands reach to somewhat lower Ini(A’) also for the SZ (/v = 4 bohr) basis.
VVe now analyze how these changes in the CBS for different basis sets affect the 

transport j)roperties for thin and for thick jnnctions. Since the damping coefficient cv 
is exi)e(’t('d to follow the lowest lying Ini(A:) for each energy, it should vary drastically 
for th(' different basis sets. We calculated the thickness dei)end('nce of the spin de
pendent total transmission for the P configuration, and for three different basis sets. 
In Fig. 7.53 the LDA and are plotted for 4, 16 and 24 ML, together with the 
corresponding rv, obtained comparing the for the 16 ML and 24 ML junctions. The 
transmission for the DZ (ry = 4 bohr) and the SZ (ry = 4 bohr) bases are similar, and 
differ strongly from the DZ (ry = 6 bohr) basis for energies lying around the center of 
the MgO energy-gap. Close' to the band-edges all three basis sets give similar results. 
We note that whereas the P minority resonance i)eak is visible for all thicknesses for 
the DZ (ry = 6 bohr) basis, it is filtered out for thick junctions for the other two basis 
sets. The results for the 4 MgO MLs junction differ less over the basis sets, and the P 
minority peak is present for all of them. A calculation on a finer energy mesh reveals 
that its height changes by a factor of not more than about 3 over the different basis 
sets.

In the last row of Fig. 7.53 the damping a is plotted for both majority and 
minority, together with the CBS at the P point. The values of Im(A:) are converted 
to a corres])onding danii)ing coefficient, by scaling them by a factor of 2. In the same 
way as the transmission coefficient, the damping coefficients for the different bases
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basis: DZ (6 bohr) basis; SZ (4 bohr)
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Figure 7.53; Eiiergy-depeiideiit traiisiuission 2'^ tor P| and for P|, for different MgO 
barrier thicknesses, calculated using the LDA. The results in the first c;ohunn of 
figures are c;alculat(‘d using the DZ (/c = 6 bohr) basis, the ones in the sec;ond 
colnnni with the DZ (/(. = 4 bohr) basis, and the ones in the third coliunn with 
the SZ [vc = 4 bohr) basis. In the bottom row of figures the c:orrespondiug 
damping a is shown for P| (red) and P| (green), calcnlated using uml.i = 16 
and riML.'Z = 24. The blue lines in the plot of o show the imaginary part of 
the complex wave-vector, scaled in such a way, that their value c;orresponds to 
the predicted damping c:oefficient.

are all similar for energies close to the band-edges. For energies around the middle 
of the gap (V is similar for the DZ (rv = 4 bohr) and the SZ (/y = 4 bohr) bases, 
for which it is much larger than the value obtained for the DZ (/'c = G bohr) basis. 
The comparison of the transmission with the CBS shows very good agixHmient for all 
basis sets. As long as there are states in the Fe electrodes with a Ai symmetry for 
k-points around the F point, a follows the lowest Ai band. For energies, where such 
states are not present in the Fe leads, a rapidly changes to the next smallest complex 
band. For the P majority spins this transition occurs at about 1 eV below Tzp. The 
discontinuity to the next bands at this energy is visible for the DZ (ry = 4 bohr) 
basis. For the SZ (ry = 4 bohr) basis a similar discontinnity is found, but there is no 
band matching n. The reason is that the bands at those values of a do not ajrpear at 
the F point, but at different k-points. For the DZ (/y = G bohr) basis no such jump 
of a is visible, which is caused by the fact that the flat bands cut across the top of 
the semi-circle in the CBS.

The analogous results for the ASIC are shown in Fig. 7.54. The general trend 
across the different basis sets is the same as for LDA, and there is again a good 
agreement between CBS and damping. Since for the ASIC however also for the DZ 
(Tc = 4 bohr) basis the fiat bands are close to the maximum of the semi-circle, there

J
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Figure 7.54; The (luantitics represented are the same as in Fig. 7.53, but calculated with 
the ASIC.

is a notable difference in a in the middle of the gap compared to the SZ (r^ = 4 bohr) 
basis. The results show that the behavior of the danii)ing coefficient rv shown in Figs. 
7.47 and 7.48 can be understood in terms of the complex band structure. We find t hat 
the flat bands in the CBS contribute to the transmission, and therefore determine the 
damping at those energies where they have the smallest Ini(A;). In Fig. 7.55 we show 
the k-dependent transmission at F’k, obtained using the DZ (/> = G bohr) basis, for 
P t (first row), P J, (second row), and AP t, evaluated for 4, IG and 24 MgO Mbs. 
The color code is chosen in such a way, that for each graph the red color corresponds 
to the inaxinmm transmission. Therefore the red spots indicate in which parts of the 
BZ the transmi.ssion is larger. The blue color is chosen to be 10“^" times smaller than 
this maximnm value. In Fig. 7.5G the analogous k-dependent transmi.ssion is shown 
for the SZ (ry = 4 bohr) basis. The main difference is that for the DZ (r^ = G bohr) 
basis ('ven at large thickness the P J, and AP ] transmi.ssions have large cont ributions 
for k-points far away from the r-j)oint. In contrast for the SZ {r^ = 4 bohr) basis the 
main contributions to the transmission come only for k-points close to the P point. 
The results for the SZ (Cf. = 4 bohr) basis are in good agreement with those of Ref. 
|2<J1|.

As last comparison between the different basis sets we perform a calculation for a 
junction with a thickness of IG and 24 MgO Mbs, but where we replace the MgO by 
vacuum. We do however leave the Mg and O basis orbitals in the vacuum in order to 
have a finite transmission between the two Fe electrodes. The result for the energy 
dej)endent transmission and dani])ing is shown in Fig. 7.57. The transmission is very 
small for eiu’rgies below however for energies above about 4.4 eV the transmission
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Figure' 7.55: k-re!solvt'ti transmission ooe^fficient for Pj, P and AP for different MgO 
tliic:knt\ssees, using the LDA and the DZ (rv = 6 bohr) basis. In eeaeh figure a 
differc'iit logarithmic e:olor scale is list'd, where the ix'd t:olor corresponds to the 
maximum transmi.ssion of e'at:h figure 7jnax) fhe bine color corre'sponds to
10 10 I max •

4 ML 16 ML 24 ML

P majority

P minority

AP majority

Figure 7.56: The einantitieis rt'itresentexl are the same as in Fig. 7.55, but calculated using 
the SZ (ry. = 4 bohr) basis.

is of the order of 1. Using the total potential outjtiit from SMEAGOL we calculate 
the energy of the vacniim to be 4.2 eV (indicate'd in Fig. 7.57 by the vertical dashed 
line). For energies higher than the one of the vacuum there is no barrier between 
the electrodes, and the transmission is therefore high. For such a system we expect 
the transmission to become smaller as the energy is reduced, for energies below the 
vacuum level. However for both basis sets we find that the transmission reaches a 
constant value for very low energies. This is reflected in the damping coefficient, 
which also reaches a constant value as the energy is lowered. The difference between 
the two basis sets is that this constant value is already reached at about 3 eV for the 
DZ (rv = G bohr) basis, whereas it is only reached at about 0 eV for the SZ (/(. = 4
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Figure 7.57: Pj transinission coefficient T for a 16 ML (full lines) and a 24 ML junction 
(dashed lines), together with the resulting damping coefficient o, for a junction 
where the MgO has been replaced by vacuum, and where the basis orbitals on 
tlie MgO atoms are still included. Two different basis sets are compared, a 
DZ (re =6 bobr) basis (black color), and a SZ (rc =4 bohr) (red color). The 
vertical dotted line indicates the value of the vacuum potential energy.

bohr) basis. For very small energies therefore both basis sets produce an uni)hysical 
saturation for the damping coefficient. However the energy region, where the damping 
is correc'tly described, is larger for the SZ {r^. = 4 bohr) basis. The flat bands in the 
MgO band structure are th(' ones responsible for this unphysical saturation of the 
damping coefficient. We tlu'refore conclude that, in order to describe correctly the 
tunneling for thick junctions, the basis set has to be chosen in such a way, that no 
flat bands cross (or come too close) to the semi-circular complex j)art of the band 
.structure of the band gaj). For our calculations with the MgO tunneling junctions 
therefore we conclude that we can only obtain the correct thickne.ss dependence for 
both FDA and ASIC with the SZ (r,. = 4 bohr) basis. We note that this is in contrast 
to the usual view that the (luality of the results, obtained using a localized basis set, 
inij)roves as the basis set gets richer. This can become problematic, since in order to 
calculate an accurate band-structure for many types of insulators a rather rich basis 
set has to be used, however the use of such a rich basis set will probably lead to an 
incorrect description of the damping coefficient at large thicknesses.

In Figs. 7.58 and 7.59 the thickness dependent transmission and damping co
efficient are shown for LDA and ASIC respectively, calculated with the SZ (uc = 4 
bohr) basis. The results for the damping coefficient can be expected to be accurate as 
long as it follows the Ai semi-circular band. Importantly, this is the case for energies 
around Ey for all coiffigurations. The value in the regions of very high damping might 
be affected by the flat complex bands also with this basis set.

Around E\.' the P j damping coefficient is only slightly smaller than the one for 
AP j . The TMR will therefore increase with thickness, however rather slowly. The
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P: majority P: minority AP: majority

4 MI. 
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24 ML.

Figure 7.58: In the top row of figures the euergy-depeiuleiit traiisinission T for Pf, Pj, and 
for APt is plotted for different MgO t)arrier tliieknesses. All the results are 
calculated using the LDA aiul the SZ (rv = 4 bohr) basis. In the bottom 
row of figures the corre?si)onding damping a is shown (black lines), calculated 
using riMLj = 16 and 'nML,2 = 24. The blue lines in the plot of o show the 
imaginary part of the c:omplex wave-vector, scaled in such a way, that their 
value corresi)onds to the predicted damping coefficient.

main spiii-hlter effect is already achieved after a few layers, of about 4-12, and is 
det('rnhned by the ratio of the Aj DOS for I and j for k-points close to the P-point. 
This contrasts tlu' prediction of Ref. [20], but agrees well with the results of Ref. [291]. 
In Ref. [20] a different damping coefficient is found. This however is determined by 
the fact that the transmission in the antiparallel conhgnration is still dominated by 
the ISs, which have a different damping. At large thickiu'sses, only the states close 
to the r point contribute, and therefore the thickness dej)endence is similar for both 
majority and minority. The TMR, as function of thickness is therefore c'xpected to be 
constant at large thicknesses, espcx'ially if the surface state moves away from Ep.

In Fig. 7.60 hnally we show the k-dependent transmission along the diagonal of 
the BZ, so that = ky, for Pf and Pj,. It can be clearly seen that wherc'as for the 
4 MgO Mbs junction the main contributions to the P J. come from k-})oints over all 
the range, for the thicker junctions the main contributions are restricted to a small 
range close to the F-point.
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Figure 7.59; I'lie quantities represented are the same as in Fig. 7.58, but calculated with 
the ASIC.
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Figure 7.60: LDA spin-polarized transmission coefficient for Pj (red) and PJ, (green), and 
for different MgO barrier thicknesses, as function of kx, along the line in the 
BZ where kx = ky. The results are calculated using the SZ (vc = 4 bohr) basis.
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7.6 Oxygen vacancies in the MgO barrier

In the calculations j)resented so far the theoretically predicted TMR is higher than the 
one measured experimentally, which is never larger than a few hnndred i)ercent [264, 
265]. This is consistent with other calculations [20, 290, 274, 269]. It has been shown 
that oxidation of the interface Fe layers can lead to a drastic reduction of the TMR, 
which can even become negative for asymmetric oxidation of the electrodes [273, 274, 
291, 275]. In Ref. [264] it is noted that lattice dislocations are found at the Fe/MgO 
interface, which can lead to a redtiction of the TMR. Another possibility for a reduced 
value of the TMR is the inc‘hision of defects in the MgO, and at the Fe/MgO interface. 
Calculations for a Fe/vacnmn/Fe junctions indicate that disorder at the interface 
can drastically reduce the TMR [295], in agreement with the results of Ref. [275] 
for a disordered and randomly oxidized Fe/MgO/Fe junction. ExperiiiK'iital results 
indicate that the density of defects in the MgO depends on the growth conditions 
[285, 288, 325]. Such a large delect density is fonnd to lead to an efl'ectively r('dnc('d 
MgO band gap [288, 325]. In Ref. [288] it is shown that by annealing the sample 
the band gap opens to the bulk MgO value, indicating that the density of defects is 
r('duced. Measurements of isolated ch'fects indicate a defect level c lose' to the valence 
band, which is tc'iitatively attributc'd to Mg vacancic^s (VMg), and a sc't of Icwels 
betwec'ii the and the conduction band, attributc'd to oxygen vacanciccs (Vo). The 
authors note however that this cc)rrc^si)c)ncience is not completely established at this 
stage. In Ref. [325] a detailed study of the possible delects in MgO, grown on an 
Ag substrate arc; presented. They find different possible defects, with energies spread 
over large' part of the MgO band gap. One of the defects thc^y find is Vq, whose 
energy lic;s aj^proximately in the middle of the MgO band gap. This agrees well with 
other theorc'tical prcxlictions [326, 327, 328]. Ah miUo calcnlations with Fe/MgO/Fe 
junctions in Refs. [329, 299] show that for Vq LDA ])reclicts a defect band centerc'cl 
about 1 eV below the Fe Fermi energy. In Ref. [298] exj)erimental eviclenc'e is shown 
on the decrease of the TMR, with Vq, snpi)orted by a theoretical model.

In order to investigate the bias dependent inhnence of defects on the transport, 
we pcirform calcnlations with a Vo in the MgO. As we will show, such a defect lies 
very close to the Fe Fermi energy, in good agreement with the results of previous 
c'alculations [329, 299], and is therefore indicative of all defects that lead to a small 
additional DOS in the vic'inity of Ep. The exact characterization of clefec'ts in MgO is a 
complex task, wliic-h should inclnde a relaxation of the lattice for all delects. Morexwer, 
not all defects can be described accurately with DFT. Howev(!r, previous calculations 
show that DFT can accurately predict the properties of Vq’s [326, 327, 328].
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Figure 7.61: LDA MgO baud structure without (a) and witli Vq (b). Panels (c) and (d) 
show the corresponding band-structures for ASIC.

In order to keep the size of the calculations tractable, we use a rather high Vo 
density. We constrnct a 2 x 2 sui)ercell in the plane perpendienlar to the transport 
direction. The Vo is then obtained by removing one O atom in one of the MgO Mbs. 
The planar Vo clensity is therefore 1 /4, the total defect density for a 4 Mbs junction 
is 1/lG, for a 8 Mbs it is 1/32. In all the calcnlations of this section we do not relax 
the structure around the defect, and for the Fe/MgO junction we use the unrelaxed 
coordinates (Ref. [20]). We note that in our calculations the Vo is in a charge neutral 
state, whereas experimentally the vacancy can exist in different charging states. In 
Fig. 7.61 the bDA band structure for a defect-free MgO (a) is comi)ared to the one 
obtained for a MgO with single Vo in a 4 Mb unit cell (b). The Vo leads to a defect 
band lying approximately in the middle of the gap. Importantly, this defect level is 
not spin-split. The band shows a rather large disi)ersion, which is flue to the high in
plane defect density. This high density also leads to a change of the band-structure at 
t he bottom of the conduction band. Calcnlations performed for larger cells show that 
the shape of the bottom of the condnction band is restored, and that the dispersion 
of the defect band is reduced. In Figs, (c) and (d) the analogous band structures 
are shown for ASIC. The main difference is that the ASIC increases the band gap. 
The defect level is still approximately located in the middle of the gaj). These results 
are in good agreement with those of other calculations [327, 328, 299, 329], for both 
bDA and ASIC. The calcnlations in Ref. [326] on the other hand i)redict that the 
defect levels are inucb closer to the conduction band. In fact the assignment, of tlu' 
levels close to the eonduction Iraiid to Vo in Ref. [288] is based on those calcnlations. 
However this assignment is probably incorrect, since it is in contradiction to most of 
the theoretical i)redictions [327, 328, 299] and to the exi)erimental findings of Ref.
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Figure 7.62: Isosurface of the LDOS for the Vo defect baud (purple color); it'd spheres 
represent () atoms, and green spheres represent Mg atoms.

[285].
In Fig. 7.62 the charge density as.sociate(l to the defect level is shown (LDOS, see 

Sec. 7.2). It is located around the Vq site, and has an 6'-tyi)e symmetry. Consecpiently 
it is also of Ai symmetry, and can therefore coui)le well to the high transmission Ai 
states.

In Fig. 7.61 the bands are aligiK'd with resi)ect to the Fe Ep in correspondence to 
the calculated band alignment in the Fe/MgO junction (shown sclK'inatic'ally in Fig. 
7.46). In our calculations the levels associated to Vo’s are always below the Fermi 
energy, and therefore in a charge' neutral state. Although the energy difl'erence of 
the defect band to the conduction band increases in ASIC as compared to LDA, the 
alignment with resi)ect to Ep is rather similar. Also the dispersion of t he defect band 
is almost the same for LDA and ASIC. Therefore we exjrect the transport results 
for such a defect in a tunneling junction to be similar for both LDA and ASIC. We 
therefore perform all the calculations with the LDA. We p('rformed a test calculation 
to verify some of the key results, such as the zero-bias transmission coefficient. We 
always found very similar results for both LDA- and ASIC transmission coefficient in 
the energy range of a few eV around Ep. There are just minor (piantitative differences, 
of the same tyj)e as the ones discuss('d in Sec. 7.4.2.

We have calculated the transmission i)roperties of a 4ML junction, with a Vq 
in the 2'“^ MgO ML from the Fe interface. We also i)erformed calculations for two 
defective 8 ML junctions, one where the Vo is located in the 2'"^* ML, and one where 
it is locatc'd in the 4‘*‘ ML from the Fe/MgO interface. W(! note that for the transport 
calculations we use a the DZ (/c = 4 bohr) basis for the MgO, this gives a good LDA 
damping coefficient, and can also be expected to cai)ture the change in the charge 
density close to the vacancy. In fact the band-structurcxs shown in Fig. 7.61 are only 
very weakly dependent on the basis. In Fig. 7.63 the spin-i)olariz('d transmission 
coefficients for P and AP alignment of the Fe electrodes are shown for an idc'al 4 ML 
junction, and for the junction with the Vq in the 2“'* ML. In the energy range from 
about -2 eV to Ep the transmission is enhanced in the defective junction. This range

I



Electronic transport throngh Fe/Mg()/Fe(10()) tnnnel jnnctions 241

No () vacancy () vacancy in 2 layer

£-£, (eV)

Figure 7.63: Transmission coefficient T for P (top row of figures) and AP alignment (bottom 
row of figures) of the Fe electrodes, for | (red) and J, (green). The results are 
for a 4 MgO MLs junction, the left column of figures shows the results for an 
ideal junction, whereas the right cohunn is for a junction with a Vq in the 2'"^ 
layer from the interface.

agrees rattier well with the band-width of the defect band, eonhnning that in the 
Fe/MgO junction the top of the defect level is close to Ei'. In the vicinity of Ep the 
t ransinission for the P configuration is similar with and without vacancy. At positive 
energies the transinission with the vacancy is slightly reduced, which is due to the 
changes in the conduction band, caused by the high density of defects (see Fig. 7.G1). 
In the AP configuration however the transmi.ssion around Ep is strongly enhanci'd 
for the junction with the vacancy, when compared to the ideal junction. It is in fact 
of a similar size as the one for the P configuration, indicating a vanishing TMR for 
such a high defect density.

In Fig. 7.64 the siiin-iiolarized transmission is shown for the 8 ML junction, for the 
defect-free MgO, for the Vo in the 2"'^* ML, and for the Vq in the 4*''' ML. For the P 
configuration the transmission around Ep is almost nnehanged for the three different 
systems. For the AP configuration however the transmission increases in presence of 
defects. We note that as the defect moves closer to the interface, the increase in the 
AP transmission around Ep is enhanced. In fact, for the Vo in the 2'“* ML, below 
Ep the transmission is of a similar size as for the P configuration, analogously to 
the 4 ML case. In Fig. 7.65 the total transmission for the three 8 ML junctions 
is shown in a small energy range around Ep, in order to emphasize the change in 
the transmission for the different position of the vacancy. For junctions, that are 
highly defective close to the interface, we therefore jiredict a large reduction of the 
TMR. The experimentally found vanishing TMR for very thin junctions [264] might 
therefore lie attributable to a large density of defects for such very small thicknesses. 
Even at larger thicknesses the TMR is limited by the amount of defects close to the 
interface.
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Figure 7.64: Transmission coefficient T for P (top row of figures) and AP alignment (bottom 
row of figures) of the Fe electrodes, for | (red) and [ (green). The rt^sults are 
for a 8 MgO MLs junction with no Vo (leftmost panels), with a Vq in the 4*^*' 
layer from the interface (middle panels), and with a Vq in the 2‘“* layer from 
the interface (rightmost panels).
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Figure 7.65: Total transmission c:oefficient T for P (a) and Al^ alignment (b) of the Fe 
electrodes. The results are for a 8 MgO MLs junction with no Vo (black 
curves), with a Vo in the 4’'*' layer from the interface (red curves), and with a 
Vo in the 2‘“* layer from the interface (green curves).

We now analyze the origin of the enhanced transmission for the defective junctions 
in the AP configuration. First we note that the enhancement (rf the current is much 
stronger in the minority spin than in the majority s])in (Fig. 7.04). The origin of 
this can be understood from the analysis of the k-dependent transmission coefficient, 
which is plotted in Fig. 7.00 at an energy of-0.2 eV below Ep. This is lower than the 
lowest energy of the surface state, and lies in the region of high transmission for the 
AP configuration in the defective junctions. The k-dependent transmission is plotted 
for the ideal junction, and for the 8 ML junction with the Vo in the 2*“* ML, for both 
P and AP configuration. In all the graphs the transmission is dominated by a small 
area of k-points close to the F point. For the ideal junction the transmission is highest 
for the P I states, since in that case there is a large density of the high-transmission 
Ai like states on both sides of the junction. For the P J, the contribution of the A] 
like states on both sides of the junction is rather small, and therefore the transmission
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Figure 7.66: k-dependent transniis.sion for Pj (first column), Pj (second column), APj 
(third column), and APT (forrrth columu), at an energy E — Ep = —0.2 eV. 
The first row of figures is for an ideal 8 MgO MLs junction, the second row is 
for a jmiction with a Vo in the 2"'^* MgO layer from the interface.

is rr'duced when compared to the P T- In fhe AP configuration the transmission is 
identical for T and j, since the ideal junction is conii)letely symmetric. Since on one 
side there is a high density of A] states, whereas on the other side there is a low 
density, the transmission is much smaller than for P t, hnt somewhat larger than for
P i.

For the junction with the Vo in the 2"'* ML, the situation is very different. Since 
lh(' vacancy is not spin-i)olariz('d, the electrons flow through the vacancy states at 
this (uiergy has approximately the same density of Ai states for both T nnd [. On 
tlu' left side of the junction, to which the Vo is very close, therefore there is a large 
Ai DOS for both ] and [. On the right side, and for P conhguration, the f has a 
much larger contribution from the Aj states than the T, so that the P T transmission 
is similar to the one of the ideal junction, whereas the P f transmission is similar to 
the one of the ideal junction for AP alignment. For AP alignment of the defective 
junction the situation is reversed, and the larger transmission conies from the j, mid 
is similar in size to the P f transmission. The AP t transmission on the other hand 
is similar in size to the AP transmission for the ideal jmiction. We therefore conclude 
that the eiiliancement in transmission in the AP configuration in a defective junction 
is caiisi'd by the depolarization of the Ai states at the vacancy site. If this is very 
close to the Fe/MgO interface, it effectively leads to a depolarization at the interface. 
If the vacancy lies in the middle of the junction, the effect is less pronounced, since 
the states need to tunnel to the vacancy site from both interfaces, where the Ai DOS 
is small. However the TMR is ri'duced also in this case. Our oh initio result agrees 
(lualitatively with the conclusions of Ref. [298].

We now investigate the finite bias behavior of the defective junctions. In Fig. 7.67 
th(' self-consistent potential drop AVji and charging A^ are shown for different bias
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Figure 7.67: (a) Planar average AFlj of the difference between the Hartree potential at 
different bias voltages and the one at 0-bias, (b) Planar average Ap of the 
difference between the charge density at 0.5 V and the one at 0-bias for the 
same bias voltages. The diamonds and dots indicate the location of the Fe and 
MgO layers. The results are for a 8 MgO MLs junction with a Vo in the 4‘*“ 
layer from the interface (indicated by a dot with a ’x’).

voltages for the 8 ML juiietioii, with a Vo in the 4'*' ML, and in tlie P configuration. 
The potential drops almost linearly across the 8 MgO layers. At the vacancy site there 
is a slight deviation from the linearity, however the effect is only small. There is a small 
dijroh' forming at th(' vacancy layer, but the total charge at the vacancy site is constant 
with bias. The energy levels associat('d with it can therefore ('asily enter the bias 
window. In Sec. 7.4 we have shown that if the potential drops approximately linearly 
across the insulator, it is possible to apply the rigid shift i)otential approximation, 
instead of calculating the fully self-consistent solution at hnite bias. We therefore 
calculated the I-V characteristics using this approximation, in order to reduce the 
computational effort. For the t)ias steps shown in Fig. 7.G7 we compared the current 
obtaiiK'd from the self-consistent calculation with the one obtained applying the rigid 
shift potential, and the results were almost identical, conhrniing the applicability of 
the apin'oxiniation also for the defective junction.

In Fig. 7.68 the I-V curves and the resulting TMR are shown for the two 4 ML 
junctions, and in Fig. 7.69 they are shown for the three 8 ML junctions. As expected 
from the 0-bias results, the main effect of the vacancies is to enhance the AP current. 
The closer the vacancy is to the Fe/MgO interface, the stronger the enhancement. 
The Vo’s do not lead to a significant change of the P current, although there are 
some (piantitative differences. It can be seen that the TMR is drastically reduced in 
the junctions containing the Vo’s. It basically vanishes if the vacancy is in the 2'*'^ 
ML. For the defect-free junction we note that the reduction in conductance at about 
1 V is visible for the 4 ML junction, but not for the 8 ML junction. This conhrms 
our discussion in Sec-. 7.4, where for thicker junctions we prcxlicted a reduction of this 
change in conductance.
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Figure 7.68: Spin-polarized current for P (top row of figures) and for for AP alignment 
(middle row of figures) of the Fe electrodes, and TMR (bottom row of figures). 
In the i)lots for the current the red curves correspond to the | current, the 
green curves the | current, and the black curves to the total current. The 
results are for a 4 MgO MLs junction with no Vq (first column of figures), and 
with a V() in the 2"'^ MgO layer from the interface (second column of figures).

F'or lower defect densities the dispersion of the defect-band is smaller, and so the 
decrease of the TMR at zero bias might be less, but the TMR will drastically shrink 
with an applied voltage. The behavior shown here is valid for all the defects that lead 
to a dei)olarization of the A, states around the Fe Fermi energy. In our calculation the 
defect states are located below isp, but an analogous behavior is exi)ected for states 
lying between Ey and the MgO conduction band. Our results also show that the 
overestimation of the TMR for an ideal junction is caused by an underestimation of 
the AP current. The AP current can be expected to drastically increase for non-ideal 
junctions, whereas the change in the P current is expected rather small.

In this section we have only described the effects of Vo’s. The number of different 
])ossible defects in MgO is however very large. Each type of defect leads to a defect- 
band at a different energy in the band gap, as shown in Refs. [325, 326, 327, 328]. 
As an example, in Fig. 7.70 we show the band-structure for MgO with one VMg 
and one Vo pair close to each other, calculated using the ASIC. Sxich a defect is 
likely to change its charging state when the MgO is attached to Fe. The effects on 
the transport for such a defect pair are probably even larger than the ones for the 
isolated Vo, since the band gap lies between two defect bands and is now very small.



24G Chapter 7

No O vacancy 
1

O vacancy in 4' layer () vacancy in 2" layer
r

parallel

anti-parallel

Figure 7.69: Spin-polarized eurrent 1 for P (toj) row of figures) and for for AP aliguinent 
(middle row of figures) of the Fe electrodes, and TMR (bottom row of figures). 
In the plots for the current the n'd curves correspoiul to the | current, the 
green curvets tlie | current, ;md the black curvets to the total curremt. The 
retsults are for a 8 MgO MLs junction with no Vq (leftmost paneds), with a Vq 
in the 4*^*' layer from the interface (middle panels), and with a Vo in the 2'“* 
layeu' from the interfaete (rightmost panels).
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Figure 7.70: MgO band structure, calculated using the ASIC, with a single Vq (left j)anel), 
and with a VMg-Vo pair (right panel).
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Figure 7.71: Unit cell used for the double MgO barrier junctions, with a schematic rep
resentation of the parallel (P) and antiparallel (AP) configurations. The red 
arrows indicate to the magnetization direction of the electrodes.

7.7 Double barrier junctions

Instead of growing only a single MgO barrier between two ferromagnetic electrodes, 
it is also possible to grow mnltiple insnlator/metal layers [301, 302]. Here we inves
tigate the trans])ort jrroperties of double MgO barrier junctions. One of the possible 
advantages of such systems is that the decay of the TMR with bias can be slower in 
comparison to single barrier junctions [301]. Such a slower decay of the TMR with 
bias is expected, since the potential drop is shared across the two barriers, and since 
an additional spin-dei)endent scattering potential is introduced by the in-between 
magnetic slab. Moreover, oscillations of the condnctance as function of voltage have 
b('('n measured [302]. These are attributed to the presence of (luantum well states, 
confined in the middle Fe layer [302, 303, 304].

The system setup is illustrated in Fig. 7.71: two 4 MgO Mbs thick insnlating 
barriers are separated by 6 Mbs of Fe. For the Fe/MgO interfaees we use the relaxed 
coordinates (see Sec. 7.1). Whereas for single barrier junctions (SBJs) in the an
tiparallel configuration the magnetization of the two Fe electrodes points in opposite 
directions, for a double barrier junction (DBJ) the antiparallel orientation is obtained 
by flipping the magnetization of the middle Fe layer, leaving the magnetization of the 
two Fe electrodes nnchanged (see Fig. 7.71) [301, 302]. We note that in Ref. [302] 
it is shown that the thickness of the middle Fe layer is not constant over the samide, 
and that isolated Fe islands are formed, separated by regions with no Fe between the 
two MgO barriers.

The 0-bias spin-dei)endent transmission for the P and the AP configuration is 
shown in Figs. 7.72(a) and (b). In Figs. 7.72 (c) and (d) the same is shown for the 
SB.I (see Sec. 7.2). The order of magnitude of the transmission around Ey is similar 
for both the single and the DBJs. This also shows that the transmission through a 
DB.I with two 4 MgO Mbs is nineh higher than the one through a SBJ with 8 MgO 
Mbs. The main difference to the transmission of a SB.I is the ai)i)earance of a large 
number of ])eaks in the transmission, for both P and AP, f and f. Such an oscillatory
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Figure 7.72: Spin dependent transmission coefficient T for the DBJ, for P (a) and AP (b) 
alignment of the Fe electrodes, and for the SBJ with 4 MgO MLs for P (c) and 
AP alignment (d).

Figure 7.73: Total density of states M jjrojected onto the interface Fe atom of the middle Fe 
layer. Positive values are for majority, and negative values for minority spin.

traiisiiiissioii coefficient can indeed leari to tlie measured conductance oscillations. The 
oscillation density is larger in the AP conhgnration, since as a hrst apjrroximation 
tlie transmission in tlie AP confignration can ire seen as a convolution of P majority 
and minority transmission. It tlierefore can be expected to include tlie peaks of both 
P t and P [. We note however that the transinission in the AP conhgnration is 
highly resonant. This is also visible by the large anionnt of noise in the transmission 
coefficient. To obtain a smooth transmission coefficient, the nimiber of k-points used 
in the BZ would have to be increased. If a small imaginary part, of the order of 10“'* 
to 10“'* Ry, is added to the energy when calculating the transmission coefficient, the 
{leaks shrink drastically or disa{i{iear coni{)letely. For the P conhgnration this effect is 
less {irononnced, althongh also here the {leaks shrink considerably. Therefore effects 
related to the ({nantum well states are {irobably visible only in high-({nahty e{iitaxial 
jnnctions.
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Figure 7.74: DOS TVa, projected on the states with Ai syriimetry, in arbitrary units (pos
itive for I, negative values for |), and transmission at the F i)oint. (a) Ai 
DOS for bulk Fe, (b) Ai DOS of the Fe atom at the interface between the 
left electrode and the MgO, (c) Ai DOS of the left interface Fe atom of the 
middle Fe layer, (d) P | transmission for the DB.I (black curves) and SB.l (red 
curves), and (e) P | transmission for the DB.I (black c:urves) and SB.] (red 
curves)! (green). The dashed vertical lines indicate the band-edges of the A| 
states at the F point for ] (cyan) and | (magenta). In order to visualize all 
the peaks in the DOS, a small imaginary part has been added to the energy.

Some of the transmission peaks are also present in the single junction, such as the 
ones in the P J, located at Ey and at about ffp-bEb eV. As discussed in Sec. 7.4, these 
two peaks are caused by Fe [ ISs. Other peaks, such as the ones in the P ] around Ey 
are only found in the DB.T. In order to find their origin, we analyze the DOS of the 
middle Fe layer, calculated by using the ground state DFT density matrix. In Fig.
7.73 the DOS projected onto the interface Fe atom of the middle Fe layer is shown 
for P alignment. This PDOS is very similar to the one of the interface Fe atom of a 
single 4 ML junction (Fig. 7.27). There are no visible peaks that could explain the 
t peaks in the transmission coefficient. We therefore analyze the k-dependent PDOS 
for the states with a A] symmetry, as already done in Sec. 7.4 for the SB.L In Fig.
7.74 the DOS Aai «t the F point {kx = ky = 0), i)rojected onto the states with a Ai 
.symmetry, is shown together with the transmission coefficient for the F point only. 
Fig. 7.74(a) shows the DOS for bulk Fe, Fig. 7.74(b) is the DOS projected onto the 
interface Fe atom of the left electrode. These two DOSs are basically identical to
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the eorrespoiiding of the SBJ (Fig. 7.28), so that all the related resrdts discussed in 
Sec. 7.4 are also valid here. Fig. 7.74(c) is the DOS projected onto the left interface 
atom of the middle Fe layer. Here very distinct peaks appear in the | aronud Ey- 
The position of these peaks is in very good agreement to the position of the peaks 
in the transmission at the F point [black curve in Fig. 7.74(d)]. The peaks in the 
[ transmission [black curve in Fig. 7.74(e)] aronnd Ey are caused by J, states of a 
different symmetry, since, as discussed in Sec. 7.4, there is no Aj state in the J, aronnd 
Ey- These peaks are however very sharp, and their contribution to the current can 
be expected to be negligible. Since the transmission is dominated by the Ai states 
at the F point, the total transmission [Fig. 7.72](a) shows the peaks at the same 
energies as found in the transmission for the F point only. We therefore conclude 
that the cpiantum well states do indeed lead to oscillations in the transmission, and 
therefore in the conductance. These results are in good agreement with the resnlts of 
Ref. [303], where a detailed analysis of the Ai DOS is ])erforni('d for a large number 
of different thicknesses of the middle layer. Importantly, a transi)ort experiment 
measnres only tho.se (luantnm well states for kj. = ky ~ 0, and with A] symmetry. If 
all (inantnm well states wonld contribute ecpially to the conductance, no oscillations 
in the transmission would be exi)ect('d, since the total DOS of the middle Fe layer 
is rather smooth and fiat (Fig. 7.73). With increasing thickness of the middle layer 
the density of cpiantnin well states increases, so that also the innnber of oscillations 
in the transmission coefficient can be expected to increase, eventually leading to a 
smooth, monotonic curve for very large thickness.

We now move on to the analysis of the finite bias i)roperties. As shown in Sec. 
7.3 for the SBJ, it is important to occupy the BSs in a physically meaningful way 
at all voltages. The BSs at the Fe/MgO interface of the left (right) Fe electrode 
can be exi)ected to be coupled much more to the left (right) electrode, and therefore 
they can be occupied with the same approach used for the single jnnction. For 
the BSs ajjpearing in the middle Fe layer it is not possible to determine such an 
energy-independent effective coupling to the electrodes. Their occupation has to be 
set in such a way, that the physically expected potential drop is obtained at self- 
consistency. Our junction is completely symmetric, we therefore expect the absolute 
value of the charging at each of the interfaces to be the same. This leads to an 
ai)proximately linear potential drop in the MgO, with a flat AVji in the middle Fe 
layer, its vahie lying in the middle between AVji of the left- and AVu of the right 
electrode. We tried different ways to occni)y the BSs of the middle layer. The only 
way we could obtain this expected potential drop was by occupying the BSs np to a 
local, i)osition-dependent Fermi energy, where the BSs on the left (right) Fe electrode
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are occnpied nj) to Ef j^ (ii/-/?), and the ones of the middle Fe layer are ocenpied np 
to + Ei.' f{) /2. This approach is described for a general system at the end of
Sec. G.2. In this i)articnlar case we nse 3 energy-independent matrices a, dehiunl as 
follows:

®^EL.WeR
O'! I Cnml.Nel

OwRR,AfEL ®/Ver,/Vml ®A^er

(7.13)

with a corresponding local Fermi energy E^^i = E^'i. In an analogons way as for the 
SBJ [Ecp (G.27)], 77el is the nnniber of orbitals of the left electrode, inclnding those 
of the leftmost two Mbs of MgO. A^er is the nnniber of orbitals of the right electrode, 
inclnding those of the rightmost two MLs of MgC). N^h is the mnnber of orbitals of 
t he middle Fe layer, inclnding those of two MgC) MLs on each side. Here it is again 
assnmed, that the orbitals are orderi’d in such a way, that the orbitals on the left 
hav<' a lower index with respect to those on the right. The other two O' matriees are 
given by

/ Ovei, ^A^ee-Wmi, ®Vel,Ver \

0'2 = I ®Wml,Wei, ii^ML ®AfML,NER 1 ’
\ ^Wer./Vel ®A'er,Wml ^Ner /

with a corresi)onding local Fermi energy E[r2 = T'f.h) /2, and

®A'ei.

^2 = I 0/Vme,Vei.
O/Ver.Vei, Owbr.Wmi.

®/Vei.,/Ver

INrh

(7.15)

with a corresponding local Fermi energy Epj, = Ei^r. We can calculate the energy- 
(k'pendent effective conpling corresponding to this set of n'-matrices, as described 
at the end of Sec. G.2. Assuming that Epj^ > Err, we find that the BSs in 
t he middle layer are coupled mainly to the left electrode for energies smaller than 
[Erx -h Err) /2, whereas for energies larger than {Err -f Err) /2 the coupling is 
inncli stronger to the right electrode. Althongh we nsed this effective conpling in all 
onr finite bias calcnlations, farther investigations are needed in order to nnderstand 
why this effeetive coni)ling is the one that gives the pliysieally meaningfnl result.

The planar average of the potential drop obtained with this set of a matrices at 
a bias voltage of 0.5 V is shown in Fig. 7.75(a). As required, it is indeed flat in the 
Fe layers, and drops approximately linearly in the two MgO barriers. The potential 
drop is ('(pial on both barriers, so that the change of the j)otential in the middle Fe 
layers as function of bias is zero. The corresponding planar average of the charging 
[Fig. 7.75(b)] for each of the MgO barriers is similar to the one for the single jnnction 
[Fig. 7.25(b)].
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Figure 7.75: (a) Planar average AFu of the difference between the Hartree i)otential at 0.5 
V and the one at 0-bias, (b) Planar average Ap of the difference between the 
charge density at 0.5 V and the one at 0-bias. The diamonds and dots indicate 
the location of the Fe and MgO layers.
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Figure 7.76: Spin dependent transmission coefficient T for the P c:onfiguration as a func:tion 
of energy, E, and for different biases, V. The vertical lines are placed at 
E = E\.' ± eV/2 and enclose the bias window.

The bias dependent transinission coefficient is shown in Fig. 7.76 for the P config
uration, and in Fig. 7.77 for the antiparallel eonfignration. The transinission peaks 
for the P I around Ep do not move with energy, and also their height is apiiroximately 
constant. This is due to the fact that the energies of the (inantuni well states do not 
change as function of bias, since the iiotential in the middle layer is itself constant 
(Fig. 7.75). The transmission of these peaks is however reduced, once the bottom of 
the Fe t Ai band of the left electrode moves to higher energies. This is for example 
the case for the first peak below Ep at a voltage of 1.5 V. Such a behavior is analo
gous to the one found for the SBJ in Sec. 7.4, and it is entirely caused by the relative 
shift of the Ai band-edges of the electrodes. The jieaks that involve states on the 
left-hand or right-hand side electrodes, such as the | IS at Ep, move as function of
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Figure 7.77: Spin dependent transmission coefficient T for tlie AP configuration as a fnnc- 
tion of energy, E, and for different biases, V. The vertical lines are placed at 
E = Ep E eV 12 and enclose the bias window.

bias. We note that also for the DBJ the J, peak associated to the A] band-edge does 
not contribute to the current, since the ISs get out of resonance with applied bias, in 
thf' same way as for the SB.J. In the AP transmission the j)eaks move in an analogous 
way with applied bias: all those that are associated with (luantum well states are in 
a fixed position, whereas the ones associated with the electrodes move according to 
the api)lied potential. For the SB.J we found that the peak in transmission at about 
1.5 eV shifts with bias, without changing its height (Fig. 7.32), and therefore leads 
to a high current when it enters the bias window. For the DB.l the situation is very 
different, as schematically shown in Fig. 7.78. For AP t spins [Fig. 7.78(a) and (b)] 
the peak does not move with bias, since the Ai ISs are located in the middle layer. 
Therefore the peak will only enter the bias window at a bias that is twice as high as 
the one for the SBJ, where the peak moves towards the bias window for increasing 
voltage. For AP | [Fig. 7.78(c) and (d)] the ISs are located on the electrode Fe layers. 
These shift with bias accordingly, and therefore get out of resonance for high enough 
bias. The result is that the J, spins do not contribute to the current also for the 
AP configuration, which is dominated by the t spins at high bias. We can therefore 
expect the conductance in the AP configuration to rise with increasing bias, in the 
same way as for the SB.I, but the increase will be slower. This should therefore result 
ill a slower decay of the TMR with bias.

The resulting I-V and bias-dejiendent TMR are shown in Fig. 7.79. Since in the 
P configuration there is a dip in the transmission around Ep, the low bias current is 
rather small, but increases rapidly once the bias window reaches the first peak in the |
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Figure 7.78: Schematic representation of the transmission through ISs for the AP config
uration, (a) and (b) are for the | transmission, and (c) and (d) for the [ 
transmission.

transmission at about 0.2 eV, which is the case for appli('d voltages larger than 0.4 V. 
The next | jreak to enter the bias window is the one at about -0.4 eV, which is the case 
for a voltage of abont 0.8 V. Once both these peaks are inside' the bias window, the P 
current saturates. At higher bias there is even a slight rc’diiction of the current, which 
is due to the fact that the A} band-edge of the left lead is at a higher energy than the 
I)eak at -0.4 ('V, so that the conduction throngh this jH'ak is suppressed. The current 
in the AP conhgnration is always much smaller than the one in the P configuration, 
even at high bias. This is in contrast to the single barrier residt (Fig. 7.30), where the 
AP current rises drastically above about 1.25 V. As already mentioned, the reason for 
the smaller current in the DBJ with AP coiiHgnration is that the broad transmission 
I)eak at about f.5 eV does not contribut(! significantly to the current. The resulting 
TAIR is therefore large even at high voltages, whereas the TMR for the SBJ drops 
to zero already at about 1.5 V (Fig. 7.37). These calculations therefore confirm the 
exi)erinientally measured slower decay of TMR with bias for double junctions [301]. 
We note that in the experimental jmiction this is only the case for positive voltage, 
the authors in Ref. [30f] argue that this is due to asymmetric interfaces. The droj) 
of TMR just above zero bias voltage is due to the increase of the AP current with 
respect to the P one. The subseciuent rise of the TMR is mainly due to the increase 
of conductance in the P configuration, causi'd itself by the first ciuantum well state 
entering the bias window. For thicker middle layers we expect the low bias behavior 
to get more similar to the one for the single junction, due to the higher density in 
energy of (luantum well states. The low current region can be expected to be reduced 
for thicker middle layers. We note however that the high bias behavior is independent

I
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Figure 7.79: Spin-polarized current I for the P (a) and AP (b) configurations, and TMR 
(c) as function of voltage V for the DBJ.

of the thickness of the Fe middle layer, and is mainly determined by the relative shift 
of the I A| l)and-edges in the Fe electrodes, and of the connected ISs.

We conclude this section by discussing the bias-deirendent conductance. Fig. 7.80 
shows the conductance as function of bias voltage. Since we calculat('d the I-V only 
for a rather coarse voltage mesh, the conductance is not very accurate, however the 
main features are still recognizable. For the SB.I the conductance as function of bias 
is much smoother (Fig. 7.36), since the variations are mainly due to the shift of the 
Fe Ai band-edges in the electrodes. The P ] conductance is very small at zero bias, 
and at 0.4 and 0.8 V there are the two peaks caused by the transmission through 
(luantum well states. At high bias the conductance is ap])roxiniately zero, or even 
slightly negative. The P [ conductance is much smaller than the | conductance for 
all voltages. Also the conductance for the AP configuration is always much smaller 
than the P t conductance (note the different scales in Fig. 7.80). In the AP configu
ration the conductance oscillates visibly as function of voltage. Both the P and AP 
conductance therefore reflect the presence of (luantum well states in form of oscilla
tions. These oscillations have also been found experimentally [301], and attribut('d to 
(luantum well states. The different positions of the conductance peaks are probably 
due to the fact that their middle Fe layer is thicker.

Since for the P conhguration the transmission in an energy range of about 1 eV 
around Ey is appnKimately constant for different bias voltages, we can also calculate 
the current by simply integrating the 0-bias transmission coefficient for the P j. In 
Fig. 7.81 we shew the so obtained conductance, compared with the one calculated 
self-consist(’ntly for th(^ P configuration for an electronic temperature of 300 K. As 
expected, the two curves agr(X' very well. A reduction of the ekx'tronic temperature 
in the non-self-consistent calculation reduced the broadening of the ])eaks, so that 
tlu'y become much sharper. In Ref. [301] such a strong dependence of the width of
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Figure 7.80: Spin-polarized conduetaiice G for the P 
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a) and AP (h) configurations. Note

Figure 7.81: CondnctaiK:e G = dl/dV for the P conhgnration, for the self-consistent solu
tion at an electronic: temperature of 300 K (blac'k circles), and for the non-self- 
consistent solution at an (>lc:ctronic temperature of 300 K (red curve) and 100 
K (blac:k curve).

the ])eaks on tcmiperature is experiiiientally obsc'rved.
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7.8 Conclusions

We investigated the bias dei)endenc‘e of the current and TMR of epitaxial Fe/Mg()/Fe 
tunnel junctions from first principles. We identify two different bias regions, which 
are affected by two types of electronic resonances: (i) interface resonance states and 
(ii) band-edges of the states with Ai symmetry. For a 4 MgO Mbs junction, at 
voltages smaller than 20 mV the I-V characteristics and the TMR are dominated by 
resonant transimrt through narrow interface states (ISs) in the minority spin-band. 
In the parallel configuration this contribution is (luenched by a voltage comparable 
to the energy width of the IS, whereas it persists at all voltages in the antiparallel 
configuration. The low bias region is therefore characterized by a non-monotonic 
behavior of the TMR.

In the high bias region {V > 0.4 V) the TMR decreases monotonically, mainly 
due to band-edge related ISs. The transport is mainly determined by the relative 
l)ositions of the A{ and A{ band-edges in the two Fe electrodes. The increase of the 
current with bias is much larger in the AP configuration than in the P configuration. 
This is caused by the A| band-edge moving closer to, and finally entering the bias 
window. We have also shown how disorder can suj)press the transport through ISs, 
leading to a monotonic decay of the TMR with bias at all voltages, in good agreement 
to exj)eriment [264]. The value of the TMR however overestimates the experimental 
one, which is due to the fact that we consider an ideal junction.

We have also investigated the dependence of the transport properties on the thick
ness of the MgO barrier, and found that the results are sensitive to the used basis set. 
By analyzing the complex band structure of MgO we found that the reason for this 
is the finite overlaj) l)etween the basis orbitals. The basis set with minimal overlap 
was found to give the best results at large thicknesses.

The effect of defects in the MgO has been studied in the form of oxygen vacancies. 
In a junction with oxygen vacancies in the MgO the TMR can be drastically reduced 
compared to the one for an ideal junction. The closer the vacancies are to the interface, 
the larger is the reduction of the TMR . The origin for this is an increase of the current 
in the AP configuration, which is caused by a spin-depolarization of the states with 
Ai symmetry at the vacancy site.

We finally have studied the transport properties of double MgO barrier junctions. 
In the low bias region the conductance is found to oscillate due to the presence of 
(luantum well states in the middle Fe spacer. This causes a non-monotonic behavior 
of the TMR at low bias. At high bias the TMR decays monotonically with bias, but 
the decay is slower than that of the single barrier junction. We explained this by
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a simple motlel, based cm tlie relative positions of the Ai band edges and interface 
states. The results are in cpialitative agreement with experiments [30f, 302],



Chapter 8

Conclusions and future work

Ill Kiiiiiiiiary, we have developed theoretical and coinpiitational tools for the calcu
lation of electronic transport within the non-ecinilibrinin Green’s fnnctions (NEGF) 
forniahsni and applied them to some topics of current interest. An accurate and stable 
iiK'thod for the calculation of the self-energies of semi-inhnite (inasi-one-diinensional 
systems has been {iresented, and a formalism for the inclusion of bound states in 
the NEGF method at finite bias voltage has been derived. These concepts have 
been iinplemented in the electronic transport code SMEAGOL [68, 61]. We used the 
developed tools for finite bias transport calcnlations through Mni2 ba.sed magnetic 
molecnles and across Fe/Mg()(l()()) single and double barrier tnnnel junctions. We 
also performed ground state density functional theory (DFT) calculations using the 
SIESTA code, where we developed a model for the magneto-strnctnral phase transi
tions of MnAs by mapping the DFT total energies onto a Heisenberg model.

We began in chapter 2 by giving an overview of DFT and its implementation in 
the SIESTA code. We presented the Hohenberg-Kohn and the Kolm-Sham theorems 
for the many-electron system, which are at the core of DFT. An overview of existing 
exchange-correlation functionals was given, and the atomic self-interaction correction 
(ASIC) was introduced [90]. In the second part of the chapter we jmesented the ab 
mitio DFT code SIESTA.

In chapter 3 we investigated the magneto-structural phase transitions of MnAs 
between the ferromagnetic hexagonal B8i structure and the paramagnetic and anti- 
ferromagnetic orthorhombic B31 structure. We calculated the magnetic exchange 
coupling i)arameters by mapj)ing the DFT total energies for different conhgnrations 
of the Mil magnetic moments onto a Heisenberg Hamiltonian. This allowed ns to 
extract the Curie temperature within a mean field approximation. We found that the 
B8i structure favors a ferromagnetic ground state, whereas the B31 structure favors 
an anti-ferromagnetism ground state. The ferromagnetic Curie Temperature is found 
to decrease by reducing the volume and by distorting the cell from the B8i to the
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B31 structure. This ilepeiulence on the vohuue couhrius the iiiaiu assuiuptioii of the 
various pheuoiueuological models based on the original idea of Beau and Rodbell [49]. 
Furthe^rmore it has been shown that for paramagnetic states the B31 structure is stable 
at small volumes, while the B8i structure is stable above a critical lattice constant 
of about 3.7 A. By using these results we could provide an explanation of the i)hase 
diagram and of the anomalous behavior of the suscei)tibility, which is determined 
mainly by the changes of the lattice structure and volume as function of temperature. 
Whereas in our model we irredict a transition from the low temperature ferromagnetic 
state to a paramagnetic state, acconii)anied by a change in structure from the B8i 
to the B31, recent exi)eriments for thin MnAs hlrns indicate a transition to an anti- 
ferromagnetic phase for teniireratures close to the j)has(! transition temperature Tp 
[330, 331]. One of the possible explanations is that the paramagnetic phase above Tp is 
not completely random, and that there is some local anti-ferromagnetic order. Further 
investigations are needed to understand the origin of th(!se experimental hndings.

In chapter 4 the main concepts of the NEGF formalism for (plant uni transport cal
culations were presenti'd. This formalism allows us to calculat(' the charge density of 
nano-devices attaclu'd to senii-inhnite leads with ditfenuit chemical i)ot('ntials. Once 
the charge density is calculated self-consistently, the electric current flowing through 
the device can be obtaim'd by integrating the bias-dependent transmission co('fhcient 
over the bias window. The implementation of the NEGF concejits in the ab tmfto 
transport code SMEAGOL has been onthiu'd. Although the NEGF method works 
well for many systems, we also discussed some of its limitations, especially when iisi'd 
in conjunction with DFT.

An im])rov('d method for the calculation of the self-energies (SEs) of (iiiasi one
dimensional systems was presented in chapter 5. By using this method for the calcula
tion of the SEs in SMEAGOL both the accuracy and stability of the code are iniprov('d 
compared to the previous implementation, which is descrilx'd in Refs. [214, 68]. The 
main advantage of the improved method is that all the singularities in the computa
tion are avoided wherever possible, and that it involves no inversions of ill-conditiomxl 
matrices. Oirtionally a transformation based on a singular value decomposition (SVD) 
can be perfonm'd, in order to reduce the condition number of the hoirping matrices, 
and also to make the computations faster. We ixudbrined a detailed analysis of the 
accuracy, and fonnd that at some energies the accuracy is very low. Our analysis 
showed that the loss of accuracy is due to the ajrirearance of localizcxl surface states 
for the semi-infinite system. At the energy of the surface state one of the eigenvalues 
of the SE diverges, and this results in a reduction of the accuracy. Since surface states 
are an inherent physical property of the system, and an' iudei)endent of the calcula-



Conclusions 261

tion method, such singularities can not be avoided. We have restored the accuracy at 
these ])articnlar energies by adding a small imaginary part to the energy. We showed 
t hat this can cause significant errors in the low transmission regime, whereas for high 
transmission the errors are negligible.

In chapter 6 a formalism for the inclusion of bound states (BSs) in the calculation 
of the non-eciuilibrium charge density was outlined. Their occnpation was set based 
on the assumption of an effective coui)ling of these states to the leads. This can 
nsually be determined based on physical constraints, such as the geometrical location 
of a BS inside a junction. We have also introduced the concept of generalized bound 
states (GBSs), which allowed ns to describe both weakly conpled and bonnd states 
with a single formalism. The presence of very weakly coupled states is reflected by 
sharp narrow peaks in the density of states (DOS), which have to be integrated over 
energy in the out of eciuilibrium case. For such systems an extremely line energy mesh 
is needefl, making the calculations intractable if a regularly si)aced mesh is used. We 
have ])resented two i)ossible solutions: the first is the bonnd states correction scheme 
(BSCS), in which the j)eaks are broadened and the occnpation of the GBSs is set 
separately, and the second is the use of an adaptive energy mesh algorithm. We have 
ai)phed both methods to an example system with very weak coni)hng, consisting of 
a C.j molecule in the middle of a j)arallel plate gold capacitor, and found them to 
work well. We have also api)lied these methods to study the transport through a 
Mil 12 magnetic molecule, which is very weakly coupled to the gold electrodes through 
benzene groups. We found that at finite bias the set of closely spaced orbitals below 
the Fermi energy rehybridizes, localizing on either the left- of right-hand side of the 
molecule. This results in a highly asymmetric coupling of the states, which is reflected 
by a negative differential conductance at specific voltages. We calculated I-V curves 
for two different sjiiii states of the molecule. The /-Cs for the two states are found 
to be similar, althongh there are small differences, which might be detectable in 
exi)eriments. We note that one of the drawbacks of our proposed treatment of BSs is 
that their effective coni)ling has to be added “by hand”. It might however be possible 
to define a local Fermi energy inside the extended molecnle, which determines the 
occupation of the BSs. This local Fermi energy conld be determined by the difference 
of the i)otential at finite bias and the one at zero bias. The results obtained for the 
single and double barrier Fe/MgO tunnel junctions in chapter 7 suggest that this 
might be a viable oi)tion.

Finally, in chapter 7 we studied the spin-dependent transport properties of 
Fe/MgO/Fe(l()()) tunnel junctions. We showed that in order to obtain a physically 
meaningful self-consistently potential at finite bias it is crucial to occupy the BSs
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localized at the Fe/MgO interface correctly. For a junction with a barrier thickness 
of 4 MgO monolayers two features were found to determine the 1-V characteristics: 
1) interface states, and 2) band-('dges of the states with high transmission in the 
Fe electrodes, which are those of Ai symmetry [20]. The resulting TMR-\/ curve is 
non-nionotonic below about 0.4 V (low bias region), and decreascrs monotonically for 
larger voltages (high bias region), until it eventually becomes negative above 1.7 V. 
By adding a small imaginary part to the energy we could remove the contribution of 
the sharp interface states to the conductance, in which case we found the TMR-f/ 
curve to decrease monotonically with increasing bias even for small voltages. For 
thicker junctions, where the contribution from the sharp interface states is hltered 
out, we found a ninch higher TMR, which decays monotonically for all bias voltages, 
in good agreement to experimental data [264]. We also studic'd junctions with oxygen 
vacancies (Vo) in the MgO, and found that the presence of such defects drastically 
rc'duces the value of the TMR . Tlu? decrease of the TMR is caused by a reduction 
of the spin-i)olarization of the states with Ai symmetry at the vacancy site, which 
leads to an increase of the current in the anti-parallel coiihguration, especially if 
the Vo is close to the interface. In the last ])art of this chapt('r we stndi('d the 
transport propertic^s of double barrier junctions. W'e found that the features of the 
1-V curves are determined by the same two factors that characterize those of single 
barrier junctions, but also by the (luantum well states with Ai symmetry that are 
formed in the middle Fe layer. These cause oscillations in the conductance, which 
are also reflect('d in a non-linear behavior of the TMR-V curve at low bias. At high 
voltage the TMR decreases with bias, but the decrease is smaller than the one for 
the single barrier junction. We illustrated the origin of the slower decay using a 
simple model, based on the evolution of the Ai minority interface states of the two 
Fe electrodes with bias. Our results are in (pialitative agreement with experimental 
data [302].

Although by using SMEAGOL in its current form we can calculate the transport 
properties of a number of materials systems, there are many useful improvements 
that can be added in a future work. The hrst concerns the underlying DFT part, and 
consists in the use of improved exchange correlation functionals, which should ideally 
describe the derivative discontinuity in a proi)er way [202]. This is exi)ected to be the 
case for exact-exchange based functionals [332, 78, 333, 334, 335]. The integration 
of these in SMEAGOL for zero bias, and eventually also for finite bias calculations 
would improve the description of weakly conpk'd systems [202]. We note however

I
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that for such systems the single-particle NEGF approach might not be stiited, and a 
rate-ecpiation tyi)e approach is more appropriate [203, 204, 205, 206, 207]. A possible 
way to incorporate such systems with the NEGF formalism in SMEAGOL might be 
to use a hybrid approach, where the occupation of the states with strong conj)hng is 
determined by the standard NEGF efiuations, whereas the occupation of the weakly 
coupled states is set inde])endently, for example using rate equations. Such a scheme 
is similar in spirit to the bound states correction scheme, in wliich the occupation of 
the weakly coupled states is already set separately from the standard NEGF part.

Another possible improvement is the inclusion of inelastic effects, which play a 
major role in some systems [336, 337, 300, 246]. The electron-phonon interaction 
for exa.nii)le can be treated approximately using the self-consistent Born approxima
tion [338, 183]. In order to simulate unstructured disorder the coherent potential 
apj)roximation (CPA) can be included in SMEAGOL [273].

Another ini])ortant extension that would give access to a whole new class of phys- 
ic'al systems is the ability to treat large systems with tens to hundred thousands 
of atoms, such as long organic molecules in solution, or self-assembled organic lay- 
(’rs. In order to achieve this goal the scaling of the conii)ntational time and mem
ory usage must be linear with increasing system size. Different apj)roaches on how 
to achieve such a scaling in non-ccinilibrium calculations are given in the literature 
[339, 340, 341, 317]. In practical terms the use of a minimal basis set is another im- 
j)ortant aspect for large scale simulations, and can cut down the computational costs 
significantly. Possible ways to achieve this are the use of maximally localiz('d Wannier- 
fnnctions [342] or the use of an adaptive basis set [343]. Ideally the inii)lenientation 
of a code that can treat large systems and the inii)rovenient of the nnderlying DFT 
exchange correlation functionals should go hand in hand.
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Appendix A

Heisenberg model for a periodic 
system

Here we present the approximations involved in mapping DFT total energies to a 
model Hamiltonian of the form of Eq. (3.3). The most general form of model Hamil
tonian able to fit all possilde eiUTgies for a system of A, eollinear magnetie moments 
is

/V.,

E.Si,S2..
X/ X/ '“’b XI ’ X! '‘’’b J2...... j„ '

1^=1 ]\

(A.r
31

where .Sj is the moment at site j (normalized to one), and the .7s are eoni)hng pa
rameters. The Jjj i)aranieters are symmetrie imdc'r permntations of the indices, 
and each of the ... is zero if any of the indices i and j are ecinal. The mimber of 
inde])endent parameters is therefore Since time reversal symmetry makes the
system invariant under a global s])in rotation only Js with an even mnnber of indices 
are not zero, and erpiation (A.l) rednces to

£'.si,S2,... —E{) XI A] XI 'hjkl (A.2)

___^ .... j

i,j.k,l.m,n

Ei) is a constant that can be associated to the energy of a j)araniagnetie i)hase. In 
fact if all the local magnetie moments are randomly aligned the contribution coming 
from Jij vanishes. We now neglect 4-moment coupling constants Jijki and
higher, thus redneing the model to an Ising-type. This approximation neglects the 
dependence of the moment on each Mn atom as well as the small induced magnetie 
moiiK'iit over the As atoms on the orientation of the moments of the surrounding Mn 
atoms. Furthermore it is assunu'd that the coupling constants are independent from 
the angle between the magnetie moments, so that the fit can be extrapolated to a
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vector inagnetic inoiiient Sj to give a Heisenberg type energy

^Si,S2, £'() 2 SjSj Jij. (A.3)



Appendix B

Special block matrix inversions

We define the matrices A, D, C, D, E, F, G in such a way that the matrices in each 
of tlie sets {A,D}, {C,D,E}, and {F, G} have the same number of rows, and the 
nnmher of cohnnns is eqnal for the matrices in the sets {A, C}, {B, D, F} and {E, G). 
We can then bnild tlie l)lock matrix il/3:

ADO 
A/3= I G D E 

0 F G
(B.f)

wlu're tlie Os represent zero block matrices of apiirojiriate size. The inverse of such a 
matrix can be calcnlated explicitly as

A-^ E A-^DE.GA-^ -A-^BG A-^DGEG-^
M-^ = -L-,GA-^

G-'FGGA-^
L, -GEG -1

-G-'FL-i G-^ +G-^FGEG-^
,(B.2)

where

G= {D - GA-'B - EG-'F) \ (13.3)

Similarly for a 2 x 2 block matrix A/2 given by

A D
hU = G D (B.4)

the inverse is

A/T’ A-^ + A-^DL2^iGA-^ -A-^DL2m
L2,r

(13.5)

where

L2,r = {D - GA-'B) ' . 
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The inverse of A/2 can also be written in an eciuivalent way as

A/^-i L‘2,L 
1-1

-L^xBD
1-1 I n-i

-1

-L»-^CL2,l D-^ + D-^CL2xBD -1 (B.7)

where

= {A~ BD-^C) [B.8)



Appendix C

Additional relations for the 
calculation of the self-energies

C.l Verification of the recursive relation for the 
SGF

Here we (leiiionstrate that calculated using Eq. (5.48) indeed fulfills the recursive 
relation for of Ec}. (5.50). Insert Eqs. (5.47) and (5.48) into Ecj. (5.50) and take 
the inverse to obtain

A() + A _ 1 Th -)- A1 Tp ' — 0.

Using the dehnition of the matrix 7h [Eq. (5.24)] we write

N

E (a» K 1 e K
n = l

(C.l)

(C.2)

This ecination corresponds to the dehning ecpiation for the „ and is therefore fnl- 
hlled by definition. The same is therefore true for Eq. (5.50). E(i. (5.51) for (/r can 
be obtained similarly.

C.2 Regularization of Ki and K-.\ for k\ ^ K-1

In Sec. 5.3.1 we assnme that A'l = A'l, in order to write the transformed matrices 
A’[ and K'_^ in form of Eq. (5.55). If A'| ^ ATj the same can be done by performing 
a generalized SVD of the Hamiltonian and overlap matrices as described in Ref. [68]. 
Here we i)resent a different apj)roach, based on two standard SVD transformations, 
one for A’l and one for A'lj

Ad =

Al, = U-^s^y\y. 
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Here U\,U-\,V\ and VLi are unitary matrices, and and S\-, are diagonal matrices 
with the singular values on the diagonal. In general there are M\ singular values of 
A’l smaller than (i'svDSa,inaxi and A/_i singular values of A'_i smaller than fisvoA'b.max) 
with .s’a,inax aiid 6b,max being respectively the largest singular values of Ad and K_\. 
If M — niin(A/i, A/_i), we obtain Ad,svD by setting the smallest M singular values of 
Ad to zero. In the same way we obtain A'_i svo by setting the smallest M singidar 
values of A'_i to zero. A transformation

K[ = A/Ad,svDt/-i,
A'di = A|A'_i,svDt/-i

(C.4)

brings both Ad and A'di to the form of Eq. (5.55). All the results of Sec. 5.3.1 are 
then valid also for Ad^ ^ A'_i.

If the Hamiltonian and overlap matrices are real and Herniitian, but the energy is 
complex, then Ad = A'l*,. By using E(i. (C.3), and the fact that S.^ and S\y are real, 
we obtain Sa = Ab, so that M = M\ = A/_i. If the Hamiltonian and overlap matrices 
are Herniitian but not real, then in general S.^ ^ S^. However in all the calculations 
performed the difference between and Sb was very small, so that in practice we 
always had AA = AA.

In Sec. 5.3.2 we limit the singular values of Ad from below without reducing the 
siz(' of the system. If Ad^ 7^ A'_i we simply apply the transformations descrilx'd in 
Sec. 5.3.2 to both Ad and A'_i independently.

C.3 Quadratic eigenvalue problem for the right
going states

We find that in the solution of Ecj. (5.6) the numerical accuracy for those eigenvalues 
with > 1 [Ini(A;.„) < 0] is better than for those with |e'‘-| < 1 |Illl(*:.,) > ()|,
especially when |A:„| ^ 1. Eor Sb we only need the left-going states, for which Eij. 
(5.6) gives the Iietter accuracy. For Er the right-going states are needed. In this case, 
in order to increase the accuracy for the right decaying states [Ini(A:,j) > 0], instead 
of Ecp (5.6) we solve the ecpiivalent equation

-/vo
In

-Ad
Oiv

with
e 2

/v-i
OyV

0R,/i

On
In

4) R,n 1 (C.5)

(C.6)
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The eigenvahies of the states with Iin(A;„ ) > 0 now have an absolute value larger than 
one and therefore a higher aeenraey.

C.4 Derivative of the self-energies with respect to 
the energy

Here we j)resent a way to obtain the derivative of the SE with respect to energy, which 
is needed for example to evaluate Ecj. (6.63). We only i)resent the result for the right 
SE, the derivative of the left SE can be calenlated analogously. Using the result for 
the right SE in £(}. (5.49), the derivative with resi)ect to energy E is

dp dp
(C.7)

where we have also used the dehnition K\ = Hi +ESi. If we now insert the definition 
of Th [E(i. (5.23)], and by using the dehnition of the group velocity Vg [Eq. (5.10)], 
we obtain

dE ^ ■ ik■je "
dp~ — —S\Tii + l\i 4>km^—0R,„ +

r? = l

d(t>K,nd\l^n 
~dE ■ (C.8)

All (luantities in this ecination are known, exeei)t the derivative of the WFs with 
respect to energy

^0R.?i0in„ d(j)n,n 21 -
-dR,n + (C.9)

dE dE dE

The hrst step now is to exi)ress the derivative of the duals as function of the WFs. If 
we derive the completeness relation for the WF and duals

N

^ 0H,7r!,0R,m = (C.IO)
m = l

with respect to energy, and then mnltiply the result from the left with , we obtain

■lit Nddl'R.n
dE

Tf
m — 1

Iee ^R,m- (C.ll)

This shows that the derivative of one of the duals depends on the derivatives of all 
the WTs. With this result, Eq. (C.9) becomes

d(j)R.n4>\\,n d(i)Rji N

dE dE
^Rj, ~ 0R,ri0R,„ —7

d(f)R,m

dE
m = \

^Rju- (C.12)
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Tlie last iiiforiiiation missing is tlierefore tlie value of 
from tlie clefiiiing relation for the 0H,m [E(i. (5.4)]

This can be olitained

witli tlie newly introducecl matrix A/„ defined by

Mn = A'o + A'le'*-’'* + A'_ie“*^'“.

(C.13)

(C.14)

Taking the derivative of Ecj. (C.13) with respect to E, we obtain

M, 0(t>v OMn
OE OE (C.15)

with
DM,

" = - {So + + A'l— + AT
-ie

(C.IG)
OE ' ' Vn Vn

Eij. (C.13) implies that Mn has always an eigenvalue equal to zero, so that A/„ is 
singular. Therefore we can not solve Ecj. (C.15) by simple inversion of A/„ [344]. One 
[lossible solution is to rescale the (pn in such a way, that the element with the largest 
complex moduhis is set to 1 [344]. We denote the index of this element rimax- En 5as 
to be adjusted accordingly. The general form of the then is

/ 0«,i \

0n — 1 (C.17)

\ 0ri,lV /

Its derivative becomes
/ ^0n,l \

pE 
0<Pn,2

Ocpn

OE

OE

\ 94>n,

(C.18)

a/=; /
where the chosen normalization results in the element in the derivative to be 
exactly zero. The non-zero elements can be obtained by solving an (xiiiation ecpiivalent 
to Ecp (C.15) [344], in which A/„ is replaced by an invertible matrix A/„, and is 
replaced by a modified matrix

A f _ n ^
OE (C.19)
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A/„ is set equal to A/„, but the row and column are substituted by zeroes, excei)t 
for the diagonal element, which is substituted by 1. The resulting matrix A/„ has the 
form

^ Mn,\\ A/„,i2
A/ti,21 ^In:22

Mr, =

0
0

ATn,lN \
A/,n,2N

\ AT,Nl ATn,N2 Mr

(C.2())

n,NN

D„ is set equal to but the row is substituted by a line of zeroes. The
derivatives are then given by

dE
= -M-^D„ct>, (C.21)

By using Eqs. (C.12) and (C.21) in Eq. (C.8), the derivative of the SEs with respect 
to energy can be evaluated.



294



Appendix D

Publications stemming from this 
work
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• Resonant electronic states and I-V curves of Fe/MgO/Fe(l()()) tnnnel junctions, I. 
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• Use of the embedding method for non-equilibrium transport calculations, C. Toiler, 
M. Khadilkar, I. Rungger, and S. Sanvito, in preiiaration.


