
LEABHARLANN CHOLAISTE NA TRIONOIDE, BAILE ATHA CLIATH TRINITY COLLEGE LIBRARY DUBLIN
OUscoil Atha Cliath The University of Dublin

Terms and Conditions of Use of Digitised Theses from Trinity College Library Dublin 

Copyright statement

All material supplied by Trinity College Library is protected by copyright (under the Copyright and 
Related Rights Act, 2000 as amended) and other relevant Intellectual Property Rights. By accessing 
and using a Digitised Thesis from Trinity College Library you acknowledge that all Intellectual Property 
Rights in any Works supplied are the sole and exclusive property of the copyright and/or other I PR 
holder. Specific copyright holders may not be explicitly identified. Use of materials from other sources 
within a thesis should not be construed as a claim over them.

A non-exclusive, non-transferable licence is hereby granted to those using or reproducing, in whole or in 
part, the material for valid purposes, providing the copyright owners are acknowledged using the normal 
conventions. Where specific permission to use material is required, this is identified and such 
permission must be sought from the copyright holder or agency cited.

Liability statement

By using a Digitised Thesis, I accept that Trinity College Dublin bears no legal responsibility for the 
accuracy, legality or comprehensiveness of materials contained within the thesis, and that Trinity 
College Dublin accepts no liability for indirect, consequential, or incidental, damages or losses arising 
from use of the thesis for whatever reason. Information located in a thesis may be subject to specific 
use constraints, details of which may not be explicitly described. It is the responsibility of potential and 
actual users to be aware of such constraints and to abide by them. By making use of material from a 
digitised thesis, you accept these copyright and disclaimer provisions. Where it is brought to the 
attention of Trinity College Library that there may be a breach of copyright or other restraint, it is the 
policy to withdraw or take down access to a thesis while the issue is being resolved.

Access Agreement

By using a Digitised Thesis from Trinity College Library you are bound by the following Terms & 
Conditions. Please read them carefully.

I have read and I understand the following statement: All material supplied via a Digitised Thesis from 
Trinity College Library is protected by copyright and other intellectual property rights, and duplication or 
sale of all or part of any of a thesis is not permitted, except that material may be duplicated by you for 
your research use or for educational purposes in electronic or print form providing the copyright owners 
are acknowledged using the normal conventions. You must obtain permission for any other use. 
Electronic or print copies may not be offered, whether for sale or otherwise to anyone. This copy has 
been supplied on the understanding that it is copyright material and that no quotation from the thesis 
may be published without proper acknowledgement.



Vision-based Hand Washing Gesture Recognition

A Dissertation

Submitted to the office of Graduate Studies

of

The University of Dublin

Trinity College

in fulfillment of the requirements 

for the Degree of 

Doctor of Philosophy

by

JIANG ZHOU, M.Eng.

April 2013



TRINITY COLLEGE 

2 4 MAY 2013 

LIBRARY DUBLIN ^



Declaration

This thesis has not been submitted as an exercise for a degrex' at this or any other Uni­

versity. Furthermore this tliesis is entirely my own work and I agree tliat the Library 

may lend or co])y the thesis upon request. This permission covers only single copies 

made for study purposes, subject to normal conditions of acknowledgement.



Permission to Lend and/or Copy

I, tlie iiii(kTsigiK'(l, agree that Trinity College Library may lend or eopy this thesis 

upon request.

JIANG ZHOU 

29th April 2013



Vision-based Hand Washing Gesture Recognition

Al)stTact

ViKioii-hasod huiiiaii geHturc' r(xx)giiit ioii has boon studicxl for many years, liowever hand 

washing gesture recognition snrinisingly remains nntonched in tlie research. Strictly 

applying correct hand washing tcx'hnicpies is one of the most important ways to prevent 

the spread of infection and illness, especially in healthcare environment. In this thesis, 

we propose and evaluate a mnnber of vision-ba.sed measuring methods as alternatives 

of laborious hnman monitoring of hand hygiene. The main goal of onr research is to 

detecd and recognize certain hand washing gesture patterns robustly and effectively.

Re(X)gnizing hand washing gestures with (X)mputer vision techniques is not an 

easy task. Hand washing gestures are articulated, fast-moving, bi-mannal gestures. 

Uncertainties such as self-occlusion and lighting condition changes can also bring in 

large variance in gesture apj^earance. These factors wonld result in large intra-class 

variety and inter-class ambignity during the recognition. To address these challenges, 

four vision-based methods are proposed and evaluated in order to study the hand 

washing gestures from different aspects. To the bast of our knowledge, this is the first 

research of hand washing gestures using computer vision methods.

As one of our major contributions, the hand washing gestures are defined, anal­

ysed and recognized with four different types of coni]mter vision methods. Although
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tlicse methods are developed and evaluated in the eontext of recognizing hand washing 

gestures, many conclusions are also applicable to other types of human action recogni­

tion. As another onr major contribution, the newly developed method, Texton analysis 

with Graph-Cut Hidden Conditional Random Fields (TGC-HCRFs), provides a jrracti- 

cal study of Conditional Random Fields (CRFs) with hidden variables for grifl graphs 

in recognition.
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Chapter 1

Introduction

In our daily life, hand wa-sliing is a small but very iinportant liuinan aetivity. The very 
sinij:)k' activity of frequent hand Wrishiug luus the ]iot('utial to saw more lives than any 
single vacxine or medical intervention [55] [41]. Hand washing for hand hygiene is one 
of the most important ways to prevent the sinead of infection cind illness, especially 
in lu'altlicare environment. Overwhelming scientific evidence shows that Hospital Ac­
quired Infections (HAIs) are transmitted by the hands of healthcare workers [134] and 
approximate 50% of these infections arc preventable through better hand hygiene [170].

It has been known that parts of the hands are frequently missc'd during the 
hand washing [110] and a rct'cnt study reported that 3 - 6% of the hands of healthcare 
workers were contaminated with Methicillin-resistant Staphylococcus aureus (MRSA) 
after performing their hand-hygiene routine [40]. Therefore, correct hand washing 
technique is needed to avoid missing areas such as finger tips, thumbs, and between the 
fingers. In fact, the technique used in hand washing is more important than the amount 
of time spent [143]. A 2007 Swiss study identified that training in the World Health 
Organization (WHO) hand w'ashing technique doubled the anti-microbial effectiveness 
of hand hygiene with alcohol gel [169]. Improved hand-hygiene training can also lead 
to a reduction in HAIs rate of between 20% and 50% [170].

Developing and maintaining a high standard of hand washing training and as- 
.sessment is very difficult. Measuring the quality of the hand washing activity is one of 
the key stcj:)s. Several approaches have been jjroposed for the hand hygiene measurt'- 
nient [18]. Dircx't observation is one of the api)roaches, which is simple and easy to 
measure all types of hand hygiene including the hand washing activity. However, it is 
usually time consuming and costly. It can only provide information about a very low
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Chapter 1. Introduction

Figure 1.1: A hand washing recognition system

percentage of all hand waaliing opjKntnnities, and realistic eoin])arison of rates between 
facilities is also impossible due to lack of standardized ineasnreinent [18]. Measuring 
product consnmption and electronic hand hygiene eotiiplianee monitoring systems are 
some other approrU'hes that can be used for measuring hand washing activity. However, 
those apirroaches are mainly for the measurement of hand washing frc'queney rates and 
WHO “5 moments of hand hygiene” [145]. None of them can provide the assessment 
of the hand washing technique performed during the hand washing activity.

1.1 Vision-based Hand Washing Gesture Recognition

In this thesis, we propose to measure the hand washing ardivity by means of hand 
washing gesture recognition with state-of-the-art Computer Vision techniques. Such 
an approach can assess the hand washing tcc'hniqne applied during the hand hygiene 
routine and enforce the correct hand washing gestures are followed when feedback 
is jrrovided. It can facilitate the hand washing training and assessment with much 
less human resources but provide much more hand hygiene quality information. A 
prototype of hand washing recognition system is illustrated in figure 1.1. A top-down 
view camera is mounted above a sink with a certain angle. The cajrtnred hand washing 
activity videos are then processed locally.

Figure 1.2 outlines the main processing steps in the system. The image pre-
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Figure 1.2: Hand washing gesture, recognition workflow

processing step would apply some image processing techniques such as image colour 
adjusting or Region of Interest (ROI) detection to simplify the later classihcation job. 
The feature extraction step extracts local low-level information to characterize the 
hand wa.shiiig gestures presented in the images. The classification stej) requires some 
machine learning [177] [119] [24] to build hand washing gesture models and classifies a 
new coming frame to be one of the predefined hand washing goitures. The cla.ssification 
results are displayed on a screen as real-time feedback to the per.son performing the 
hand washing. With the feedback, the system user notices what haiul washing gestures 
are wrong and corrects them. This .self-learning circ le rc'quires that the systcan has the 
ability to intc'rprc't and discriminate the multi-class hand washing gcstnrc^s corrc'ctly 
and effectively in real-time, which is the a main goal of our study iu this thesis.

1.1.1 Hand washing gestures

In order to assess the hand washing ge.stures, a standard needs to be set up first. In 
the thc’sis, we apply the WHO ENISOO hand washing protocol [170] as the guideline for 
our hand washing gesture recognition. 10 different hand washing gestun^s are defined 
as shown in figure 1.3.

• Gesture 1 is rubbing hands palm to palm.

• Gesture 2 and 3 are one palm over the other’s dorsum with interlaced fingers 
moving back and forth.

• Gesture 4 is rubbing palm to palm with fingers interlaced.

• Gesture 5 and 6 are rotational nibbing of a thnnib clasped in the other palm.

• Gesture 7 and 8 are rotational nibbing backwards and forwards with clasped 
fingers of one hand in the other palm.

• Gesture 9 and 10 are hands moving back and forth with backs of fingers 
opposing palms and fingers interlocked.
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Figure 1.3: Hand washing gesture definitions

Among these gestures, some are quite (lyiiamic such as gi'sture 5, 6, 7 ami 8, 
and some are relatively static such as gesture 2, 3 and 9, 10. Thus, the vision-based 
methods need to take both dynamic and static sides of the hand washing gestures into 
account. It can also be seen that the difference between some gt^stures is minor such 
as gesture 2 and 3, and gesture 9 and 10. Gesture details may help distinguish these 
gesture's in recognition, howe'ver they may also re'duce the tolerance of gesture variety 
which is required in gesture 5, G, 7 and 8. Therefore, our study needs to examine what 
approar'h is more suitable for rejjresenting and discriminating these 10 hand washing 
gestures, single image or sequences, locally or globally, dynamically or statically, etc.

As the hand washing gestures are non-rigid, fast, bi-manual hand movements, 
there are also some other challenges for the hand washing gesture recognition.

• Intra-class variations. Although 10 gesture definitions have been given above, in 
practice it is hard to categorize some hand movements into a same class defini­
tively due to the large variance of a hand washing gesture. The same gesture 
may appear very differently when performed l)y different people or at different 
time from the same person. Gestures can also change the appearance due to the 
changes of lighting condition and viewpoint.

• Inter-class ambiguities. As mentioned above, some gesture definitions are close. 
The similar gesture definition can easily bring in class ambiguities during the
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recognition. Meanwliile, onr hand Wcishing gestures are continnons hand niove- 
nients. A lot of gesture transitions are captured in the videos. Hands in a single 
frame may thus apjrear belonging to many gestures if no contextual information 
is used.

• Unstable ROI defection. Localizing the hands in images may be required to 
reduce irrelevant information and simplify later classification. However, because 
hands are very flexible, it would be difficult to centralize hands in a ROI imiformly. 
Moreover, in uncontrolled environment cluttered baekgromid and illumination 
changes can also cause ])roblenis in hand trac'king.

Figure 1.4 shows some examples of these challenges ' . Image (a) and (b) demon­
strate that the hands do not localize in ROI miiformly. In image (a), hands locate 
in the centre of the ROI while in image (b) the stretching out hngers push the main 
body of hands to the upper half of the ROI. Image (e) and (d) demonstrate the inter­
class variety in gesture 8. Although the hand shapes look very difl'erent, they actually 
belong to the same hand washing gesture. Image (e) and (f) give an exam])le of the 
inter-ehiss ambiguity between gesture 1 and 4. Both gestures are palm to i)ahn, and 
the only difference is whether the fingers are interlaced during the hand washing, which 
sometimes are hard to tell due to the fast hand movement. Image (g) and (h) show 
another example of ambiguity in gesture 10. Image (h) is captured during the gesture 
traiLsition, which looks like image (g) but does not belong to gesture 10.

1.1.2 Methods

To deal with these challenges in hand washing gesture recognition, four vision-based 
methods, recognition with postures, recognition with sequence labelling, recognition 
with interest points and recognition with TGC-HCRFs, are evaluated and compared in 
this thesis. These four methods research into the hand washing gestures from different 
perspectives. The first method is adapted from methods for object recognition. The 
method ignores the dynamic nature of hand washing gestures and only considers the 
static information extracted from each frame independently. It describes the hand 
shape in each frame with Histogram of Oriented Gradient (HOG) features [121], and 
models every hand washing gesture as modelling an object class with Support Vector

^Sonie images sliown in this thesis were obscure. We increase the brightness and contrast of these 
images for the pur]5oses of illustration.
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(e) (f) (g) (li)

Figure 1.4: Challenges in hand washing gesture recognition

Miu-liinc (SVM) [24]. The method is similar to methods used in sign language gesture 
recognition [164][21][152]. However, in conventional sign language gesture recognition, 
a sign gesture is reciuirc'd to juit in front of a c'amera steadily for a few of seconds to 
facilitate the recognition. On the contrary, hand washing gestures are continuous bi­
manual hand movements involving a large number of gesture variance, transitions and 
self-occlusions. This makes the hand washing gesture recognition much harder than 
the sign gesture recognition.

The second and third evaluated methods take the dynamic characteristic of the 
hand washing gestures into account but analyse it from different points of view. The 
second method employs the HOGs from each frame as a primitive in a sequence and 
models the dynamic nature of gestures with sequence labelling tools [73][11]. The third 
method encapsulates the dynamic information into space-time “3D” HOGs descriptors 
[7] during feature extraction. These descriptors are clustered as visual words and “bag 
of words” tool is used [65] [52] for recognition.

Both the second and third methods arc adajrted from methods for linnian action 
recognition. Human action recognition in Computer Vision has been studied for many 
years, and some methods are adajrtable for human gesture recognition. However, we 
should also be aware of the difference between these two domains and be careful in 
our system design. Firstly, human body parts such as torso and limbs are relatively 
big while hand parts such as palm and fingers are relatively small, which means that 
details in images may be more important for gesture recognition than action recognition.

6
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Disiaf phalanx

Distal interphalangeal <OIP)

Mtddle phalanx

Proximal inierphalangeal (PIP) 

Proximal phalanx 

Metacapophalangeal (MCP)

Metacarpal

Figure 1.5: Hand skeleton strueture [172]

Secondly, hmiian hands are more flexible than Imnian bodies. Figure 1.5 shows the 
skeleton of a hand [172]. Considering global hand ])ose, Iniinan hand motion has 
roughly 27 Degrees of Freedom (DOF) which means hand motion is highly articulate. 
Thirdly, the movements in hand washing gestures arc small and much faster than 
human actions, which makes the recognition even more difficult.

Our fourth method Texton analysis with Graph-Cut Hidden Conditional Random 
Fields (TGC-HCRFs) further explores the computer vision techniques for hand washing 
gesture recognition. We unify texton analysis with Hidden Conditional Random Fields 
(HCRFs) in the same framework for human gesture recognition. The primal idea is that 
gesture textons c'an be modelled by the hidden states in HCRFs such that the method 
w'ould be beneficial from both HCRFs and texton analysis. General structure Markov 
Random Fields (MRFs) and CRFs have long history in image segmentation, texture 
analysis and object recognition [93] [78] [118]. Tree-structure HCRFs have also been 
used for human action recognition [139] [3], but the general structure HCRFs for action 
recognition or gesture recognition has not been studied before. This is probably because 
the expensive probability inference of general structure HCRFs prevents experiments 
with large data sets. Onr TGC-HCRFs method follows the energy-baswl learning
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framework [111] instead of eonventional probability based training [73][11]. It takes 
advantage of the newly developed Quadratic Pseudo-Boolean Optimization (QPBO) 
inference [95] and max-margin training approach [158] [83] such that the training time 
for general structure HCRFs is greatly reduced even if a large training data set is 
employed.

Compming to our first method, TGC-HCRFs can capture the dynamic gesture in­
formation with gesture textons. In the evaluation, space-time “3D” HOG features from 
small video jratches are extracted as primitives for building g(!sture textons. Compar­
ing to the second method, TGC-HCRFs method offers a more flexible way to include 
the contextual and neighbouring information for recognition, and would be less influ­
enced by the skin and ROI detection results. Comparing to our third method which 
loses all gesture spatial configuration information, TGC-HCRFs can reserve the spatial 
information with the grid graph.

1.1.3 Dataset

A hand washing data set is prejrared for evaluating aforementioiKxl four methods. The 
data set has three subsets: eeramic sink set, stainless steel sink set and white board 
set. The ceramic sink set records nurses and doctors’ hand washing activity in hospi­
tals in real scenarios. It is assumed that the inirses and doctors are accjnaintc'd with 
hand washing techniques and thus there was no any supervision from hand wiishing 
techniejne experts during the video collection. The videos show large variance in the 
gestures including changes in lighting, background and hand appearance. In stainless 
steel sink set, participants are asked to flnish all 10 hand washing gestures with a little 
supervision from hand washing technicpie experts. All participants are new to hand 
washing technicine and therefon' the hand washing gestures can be perfornuxl very dif­
ferently. The white board set videos are collected in laboratory environment. Lighting 
condition is good for hand localization. Partieijrants are all familiar with the hand 
washing technique and can finish the hand washing routine with gestures that are very 
close to our 10 hand washing gesture definitions.

All videos in the data set are size of 320 x 240 in Motion JPEG format. The 
ceramic sink set videos are recorded in around 12 frames per second (fps); stainless 
steel sink set videos are recorded at a rate of 25 frames per second and white board 
set videos are 30 frames per second. Different frame rates can be regarded as washing 
hands at different speed. 12 f])s means a relatively faster hand washing speed than
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Gesture 1 2 3 4 5 6 7 8 9 10
Group 1 301 277 346 424 283 289 275 356 299 259
Grouj) 2 413 296 220 365 312 279 433 378 411 473
Group 3 280 339 316 358 348 416 328 276 317 416
Group 4 252 271 269 372 316 292 329 361 364 395
Group 5 374 549 346 511 280 246 390 326 353 391

Total 1620 1732 1497 2030 1539 1522 1755 1697 1744 1934

Table 1.1: Hand washing data set summary. All numbers are. measured in frames. 
All videos are separatexi into 5 groups for eross validation.

the 25 fps and 30 fps. Table 1.1 suniinarizes the whole data set in terms of the frame 
nmnbers.

1.1.4 Evaluation criteria

The hand washing data set is se])arated into five groups in the evaluation. Methods 
are evaluated in a style of 5-fold cross validation; oik' group of virleos are jrieked up 
as the testing set once while the rcist of videos are uscxl for training. The ('xpf'riments 
are repeated until all groups are tested. The test results from five groups are then 
averaged as the final report result. In order to compare the results from different meth­
ods, three multi-class classification criteria, classification precision, macro-averaged 
F-measure, and micro-averaged F-measure, are conijmtetl. The classification precision 
is reportcfl as averaged group accuracy with standard deviation. It is a measurement 
of repeatability of the method under evaluation. For some resnlts, confusion matrices 
are also given as conii)lements to the classification precision reports. Macro-averaged 
F-measure and micro-averaged F-measure are adairtations of F-measure for multi-class 
classification [10]. F-measure is a common measure of tost performance in information 
retrieval. It considers both the precision and recall of a test. The measure scores are in 
the interval (0,1), in which F-measure reaches the best score at 1 and the worst score 
at 0. For multi-class classification problem, macro-averaged F-measure calculates the 
F-measure score as an unweighted average of the jirecision and recall over all classes, 
regardless of class frequencies. Thus, the measure could be influenced more by the 
classifier’s performance on rare categories. On the contrary, micro-averaged F-measure 
is an av('rage score over instances. Classes which have many instances are given more 
imi)ortance in the measurement. In onr evaluation, the macro-averaged F-measnre and
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niicro-avcraged F-nieaaure arc coinpiitod by formulas 1.1,

Macroaveragc F-measure:
^macro * ^-inai'ro

P̂ macro ' * ^inan'o

Micro-average F-ineasure; mi('ro ^nicroRm
PniuTO d" fi'inicro

M
P — __^ macro , , / ^

TP,
M ^ TP, + FP, ’

1Rnarro — ^ ^ PP
M ^ TP, + PA^,

p =* jTiu'rn Y^UtP, + PP,:)
TZ^TP, „

1 -^Ttiirro —
uUtp + fn,)

(1.1)

where M is the number of classes, P stands for the jrrecisiou and R stands for the 
recall. TPi is the true positive number which is the count of correctly classified frames 
in gesture i, and the false positive Pp is the count of frames that are niiscla.ssiHed to 
be gesture i. The true negative TN^ indicates the number of correctly clas,sided frames 
of all other gestures excejjt gesture i, and false negative FN, indic:ates the number of 
frames that belong to gesture i but misclassified to be other gestures.

In some evaluations statistics student’s t-test is performed. We randomly jrick 
20% videos without replacement from the whole data set as the testing set and ns(' 
the rest for training. This jnocedure is reju'ated 15 times, and all testing results are 
pooled togc'ther to form the t-test samjrles for hyirothesis testing.

1.2 Contributions

In this thesis, hand washing gesture recognition is studied as a new type of gesture 
rc'cognition task. Hand washing gestures are articulate, fast, bi-manual hand move­
ments which introduce a lot of intra-class variety and inter-class ambiguity. Aiming to 
tackle these challenges, several contrilmtions have been made in the research.

1.2.1 Major contributions

Three major contributions are dissertated in the thesis:
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• A new type of gesture recognition, hand washing gesture recognition which has 
hardly been tackled before, is studied in this thesis. 10 hand washing gesture 
pattens are defined, and various properties of hand washing gestures are analysed.

• Four different computer vision methods are developed and evaluated for hand 
washing gesture recognition, which research into the hand washing gestures from 
distinct perspectives.

• A new method TGC-HCRFs is proposed, which unifies the texton analysis and 
HCRFs within the same framework. The evaluation of the TGC-HCRFs method 
also provides a practical study of HCRFs with grid graph for gesture recognition, 
which has not been seen in literature.

1.2.2 Minor contributions

Along with the major contributions, some minor contributions are also made:

• The sequence labelling tool HCRFs is applied for gesture recognition. The key 
Ijarameters such as the context window size, number of hidden variables, etc. are 
evaluated.

• Different test sequence length is evaluated in the linear-chain HCRFs. It is found 
that the classiheation performance grows along with the increase of the test se­
quence length.

• The depth of trees in Extremely Randomized Clustering (ERC)-Forests [52] [147] 
is evaluated for controlling the discriminative power of visual vocabulary.

• A bootstraping [167] [120] strategy is applied in the max-margin training of TGC- 
HCRFs, which alleviates the local optimnm problem of TGC-HCRFs and reduees 
the overall training time.

• Several findings of applying HCRFs with grid graph for gesture recognition have 
been drawn. It has been found that gesture recognition favours fine-grid sampling 
and rich description of video patches. The vertical neighbours of video patches 
also carry more information than the horizontal neighliours in recognition.

• The TGC-HCRFs method has the ability of automatically determining the visual 
vocabulary size for gesture reeognition.
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1.3 Thesis Structure

In the first chapter, we have given a brief introduction of hand washing gestures and 
an overview of this thesis. In the following chajiters, we will elaborate the details of 
our research on the vision-based hand washing gesture rwognition;

• Chapter 2 A literature review of gesture recognition, object recognition and 
hunian action recognition is given. The theory background for developing our 
TGC-HCRFs method is also provided.

• Chapter 3 The hand washing gestures are recognized using static HOG features 
extracted within every frame. A number of parameter settings in HOG extraction 
are evaluated with linear SVM. The image processing for ROI detection, which 
is also used in chapter 3 and 5, is described in this chapter as well.

• Chapter 4 The linear-chain HCRFs is introduced for hand washing gesture 
recognition. A hand washing gesture is modelled as a sequence with a number 
of hidden states. Multiple i)arameters in HCRFs are evaluaU'd including the 
context window size, hidden variable number, and sequence tenij)oral resolution. 
Different time-shift window size for a frame-by-frame prediction is assessed.

• Chapter 5 Hand wash gestures arc described by a bag of vasual words. Each 
visual word represents a cluster of space-time interest points which are detected 
as spatial-temporal energy hot-spots. The Extremely Randomized Decision Trees 
[147] is used to generate the visual vocabulary, and the SVM with a kernel 
is applied for classification. No ROI detection is applied in this method, and no 
spatial information of hand washing gestures is conservtxl.

• Chapter 6 Our TGC-HCRFs model is elaborated including the training algo­
rithm for a large scale dataset. A number of parameters in TGC-HCRFs are 
evaluated and discussed for hand washing gesture recognition.

• Chapter 7 Our four hand w'ashing gesture recognition methods are revi(;wed 
and compared. The conclusion of our whole study is then drawn and possible 
future work is given at the end of the thesis.
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Chapter 2 

Background

Gesture reeogiiitioii has gained eoiisiderable interest in eoni]niter vision eonnnnnity in 
recent dcradcs. Tlie i)roi)lein of Immaii gesture recognition can l)e decoupled into two 
levels; the low level hand posture detection and the high level hand gesture recognition 
[129][142][172][21]. A static hand posture, usually called a "posture”, is a certain hand 
])ose or configuration without any representation of nioveinents, whereas dynaniic hand 
gesture or “gesture” is defined as dynaniic hand inovenient referring to a sequence 
of jiostures (;onnected by continuous motions over a short time span. In fact, the 
gesture recognition has close relationship to the object recognition and human action 
recognition. Many methods from both object recognition and human body action 
recognition can be applied for recognizing the posturi's and gestures.

In this chapter, a literature review of feature extraction and classification used in 
gesture recognition, object recognition and human action recognition is ju'esented first 
in section 2.1. In section 2.2 and 2.3, some background of Hidden Conditional Random 
Fields and texton analysis applied in this thesis is provided.

2.1 Feature Extraction and Classification

Many methods have been proposed for human gesture recognition in recent years. 
Moreover, a lot of methods in object recognition, face recognition and human action 
recognition can also be adapted for recognizing human gestures. Following Garg’s tax­
onomy [129], all these methods can be grouped into two categories: 3D model based 
approaches and apjrearance based approaches. Our following review will mainly focus 
on the appearance based approaches to which the thesis belongs.
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Chapter 2. Background

2.1.1 3D model based approaches

One approach to recognizing hand gestures is to build a model of the 3D kinematic 
hand structure. Kuch and Huang [98] represent the hands with 3D cubic B-splines and 
estimate the hand configurations via “analysis-by-synthesis”. The method does not 
restrict the gestures for the hand tracker and there is no luxxl for the user to wear a 
special glove or other physical items. However, the method requires interactive selection 
during model calibration to locate all the hand joints and remove Irackground. The 
automatic model htting in the calil)ration phase shares a common problem with many 
3D model-based approaches, which is searching for the optimal hand posture in a huge 
hand configuration space. Such a search process is computationally expensive and the 
optimization is prone to local maxima. Shiniada [14G] applied inequality constraints to 
reduce the search space. These constraints include: (a) shape parameters are constant 
over the sequence; (b) pose parameters change continuously; (c) each parameter is 
within a certain range and has relations with the other parameters. Lin [75] jrroposed 
a learning apj)roach without re]rrcsenting the constraints explicitly. The redundancy 
of the hand conhguration sj)ace is eliminated by finding a lower-dimensional subspace 
which is called C-Space. The approach focuses on the analysis of local finger motions 
and constraints, and eliminating unnatural hand configurations. A drawback of this 
method is that the motion data used to form the constraints implicitly are collected 
by special gloves.

Although 3D model based approaches potentially allows a wide class of hand 
gesture's, the optimization of models could be very comi)utationally complex due to 
the high DOF of the hand geometry. A large training database is also reciuired to 
cover all the hand shapes under different views. Moreover, properly modelling the 
optimization constraints cither implicitly or explicitly is not a c^asy task.

2.1.2 Appearance based approaches

Alternatives to 3D model based approaches are the appearance' based approaches. Ap­
pearance based approaches aim to extract abstract information from the static or dy­
namic visual appearance for recognition. These approaches have the culvantage of rc'al 
time i^erformancc due to the fact that appearance based features are easier to compute 
[129]. Depending on how the features are extracted and proc'cssed, we are going to 
review the ajrpearance based approaches from two perspectives [122]: dense represen-
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tation approaches and sparse representation approaches.

Dense representation approaches

Denso representation ap]rroaelu\s generally extract features densely over an entire image, 
video, or a detection window, and collect them into a high-dimensional vector that C'an 
he used for subsequent classification. Oren and Papageorgiou [117][27] extract an 
over-comi)lete set of Haar wavelet coefficients at different orientations and scales in 
a detection window. The wavelets encode visually significant patterns and jrrovide a 
reiisonahle degree of translation invariance for recognition. The relationship between 
the wavek'ts is then learned by SVM. The methods are evalnatcxl on face and ])edestrian 
detection problems. The results show that they can be used to robustly define rich 
and complex classes of objects, and they are invariant to changes in colour and texture. 
Viola and Jones [163] [133] also extract the Haar-like features and use the integral 
image to spml np feature extraction. These feat>ires are then fed into Adaboo.st [171] 
as attentional cascade to achieve* rc'al-time ])<'rformance.

Another well-known dense n'presentation features are HOG [121] [122] [123]. The 
HOG features are reminiscent of edge orientation histograms [165] but computed on 
a dense grid of uniformly spaced cells. It is believed that local object ai)pcarance 
and shape can oftcui be characterized rather well by the distribution of local intensity 
gradients or edge directions, even without prexuse knowh'dge for the corresponding 
gradient or edge positions. Evaluation of the technique by detecting various classes 
of objects demonstrates that the classifiers trained with HOG features are invariant 
to certain degrees of translation, rotation and deformation, and is robust to colour, 
texture, illnmination changes and cluttered backgrounds. However, object detection or 
recognition may require the HOG calculation in multiple regions, and the computation 
is expensive. Inspired by the integral images [163], integral histograms [53] [47] [136] 
are proposed to alleviate this problem. Chandrasekhar [160] also designed coinjiressed 
histograms of gradients (CHOG) as a type of low bit rate feature descriptor to speed 
np the matching process.

Extending the dense representation to spatial-temporal domain, hnman actions 
can be recognized analogue to language analysis [33] [34] [61] [25] by describing hnman 
movements as simpler movement primitives [60] with HOG descriptors. Mantlmer [155] 
comi)ntes the HOG features on both appearance and motion helds, and show that a 
combination of shape and motion information can imirrove the human action detec-
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tioii and classification performance significantly. Schindler [90] also uses dense shape 
and motion features for action recognition, and obtains the same conclusion. Instead 
computing HOG features on images, Junejo [71] calculates HOG on self-similarities ma­
trices computed from video segments, and then the extracted HOG features become 
view-independent. Davis and Bobick [5] compute 7 Hn moments [74] from Motion- 
Energy Image (MEI) and Motion-History Image (MHI) to build a temiroral template. 
Bradski [58] further generalized the MHI as timed Motion History Image (tMHI) which 
directly encodes the actual time in a floating-point format. However, these methods 
are view-dei)endent and require well segmented foreground figures which can be easily 
effected by the illumination changes and cluttered background. Efros [4] uses smoothed 
and aggregated optical flow computed at low resolutions for action recognition. The 
method is robust to jitters introduced by the tracking [3] but requires that the ac­
tions are observed from a distance. This is because the dense flow estimation becomes 
unreliable when the observed acting j)erson is large.

Weinland [43] extends Davis’ method as 3D Motion History Volumes (MHV). 
The volumes are built from multi-view silhouettes from multiiile cameras and form a 
frcx;-viewpoint representation of the human actions. Fourier based features arc used 
with cylindrical coordinates to express motion j^atterns. Achard [20] also builds the 
3D volumes but from a single camera binary silhouette sequence instead. The volumes 
are termcxl as “space-time micro-volumes” and art' used to extract the semi-global 
moment features. Gorelick [101] generalizes the Poisson equation list'd in tibject recog­
nition [102] for action recognition. Global moment features are extracted via applying 
tlifferent types of Poisson equations for the characteristic function in moments compu­
tation. The method is fast, robust to partial occlusions, non-rigitl tleformations and 
significant changes of both scale anti view’points but requires preprocessing to extract 
the foregrountl figures in ortler to form the space-time silhouette volumes.

Instead tif building training models, dense rcjiresentation approaches can also be 
correlation liasetl. The test samples correlate with exemplars using image intensities 
or tlense features for classification. Barrow [1C] uses “chamfer matching” for shape 
comparistin but can only tolerate slight misalignment or distortion of two collections of 
shape fragments. Shechtman [48] measures the texture correlation between test images 
and example images. The method accounts for local and global geometric distortions, 
and gives matching capabilities of complex visual dat a in real cluttered images. Sulli­
van [80] uses the key frames as exemplars for matching. The recognition is based on
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(juautitativc similarity that computes point to point correspondence between shapes, 
however, maimal marking of some interior points on human bodies for correspondence 
is required during the training. Shechtman and Irani [49] construct 3x3 Gram matrix 
taking pixel space-time gradients of 3D jjatches from both test and example volumes. 
Motion con.sistency is measured as the rank of the Gram matrix. No foreground sub­
traction and no ])rior learning of activities are required. However, the met hod is mainly 
designed for action detection. It may have difficulty in discriminating similar actions 
such as walking and running. Zelnik-Manor [107] builds a temporal pyramid of videos 
by taking different tem])oral re.sohition. Built on the temporal pyramid, empirical dis­
tributions for every action event is constructed using normalized sijace-time gradients. 
Actions are detected by comparing the cmipirical distributions between the sami)le 
clip and a test video segment. The dense features extracted from moving trajectories 
can also be u.s('d for test and exemplar video matching [29][137][144]. However, these 
methods may not be able to eai)tnre the large variety of actions.

Although dense representation based approaches have ac‘hieved very jjroniising 
recognition performance, most methods require ROIs which are bounding boxes of 
the targets. This usually involves tracking and segmentation. Many methods can be 
u.sed for the detection of ROI such as mixture of Gau.ssian [28] [149] [44], kernel density 
estimation [50][9], skin colour detection [150][161][1()3] and flocks of features [100][68]. 
However, these methods usually have one limitation or another, and are not universally 
apirlicable for most situations. For example, mixture of Gaussian net'ds to concern 
the adai)tation rate, especially in nncontrolled clutter background; skin detection is 
seii-sitive to the illnmination changes and skin-colonr distractors. More precisely, the 
detex-ted box can be inaxxnrate beeause of occlusion and may keep changing the size 
due to the non-rigid human movements. This will bring in difficulties when dealing 
with the intra-class variety and inter-class ambiguity. On the other hand, the cost of 
the exhaustive scan iu images or videos with a fixed-size box is very computationally 
expensive.

Sparse representation based approaches

Sparse representation based approaches are based on local rlescriptors of relevant local 
image regions or video jratches. It was motivated by the physiological studies that the 
visual information hninan received is rednndant [51] and that human gaze preferentially 
fixates on image regions with corners and multiple superimposed orientations [122]. In

17



Chapter 2. Background

object recognition, the approaches hrst search for salient regions in images tlirongh 
interest point detectors. Thc^se detex'tors include Harris detector [67], Harris-Laplace 
detector [88], Hessian-Laplace detector [9], Difference of Gaussians (DOG) detector 
[42], Harris-Affine detector and Hessian-Affine detector [89], The detected regions can 
be corners, blobs, rirlgc^s or entropy. The hypothesis is that these detected regions are 
informative to rejrresent the image contents.

Various descriptors are designed to describe the detected regions. Local Jet [30] as 
point deseriptor eharacterizes the local geometry in the neighbourhood of the detcx’ted 
point. Shape context descriptor [140] reflects the positional uncertainty of useful coarse 
shape cues. It expresses the configuration of the entire shape relative to a reference 
point with a set of vectors originating to all other .sample j)oints on the shape. Scale 
Invariant Feature Transform (SIFT) [42] delineates the points as voted orientation 
histograms rectihed by local scale and dominant orientation based on the sc:ale-sirace 
theory [113]. Considering its invariant to scale, orientation and affine distortion, and 
partially invariant to illumination changes, Wang [36] em])loys SIFT in hand posture 
recognition. PCA-SIFT [91] provides a more conii)act and more distinctive representa­
tion of SIFT by applying Principal Component Analysis (PGA) to the local gradient 
patches. Spcedcxl Uj) RoI)ust F'eatures (SURF) [63] inii)roves the SIFT using Hciar- 
like features in the descriptor and obtains faster processing time than SIFT. Bao [84] 
employs the SURF for dynamic hand gesture tracking and recognition.

Extending to the spacc'-time domain, the spatio-temporal interest points can be 
detected and described similarly to the 2D interest points. Scovanner [132] extends the 
2D SIFT to the 3D SIFT for action recognition. Laptev [108][31] generalizes the Harris 
detector with Local Jet description for the spatio-temporal interest ])oints. However, 
the method is criticized for rare detection in aperiodic movements like rodent behaviour 
or facial expressions [46] [72]. Attempting to overcome that problem, Dollar [46] de­
tects the intere.st points via the extrema of linear filter response and de.scribes them 
by Cuboids which are composed of gradients and flow vectors. The greater amount of 
information embedded in an image sequence over a 2D image also enables the interest 
points to be constructed differently. Klaser [7] rlescribes spatio-temporal interest points 
as 3D HOGs which is suitable for describing sport actions in Wang’s evaluation [65]. 
Yihnaz [13] constructs action volumes with silhouettes. Interest points are then de­
tected as curvature extrema and d(«cribed with various surface types such as peak, pit, 
valley and saddle valley. The detcx'ted points are examined for their view-invariance
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to hmiiaii actions.
Using sparse features for recognition is nsnally l)cuse(l on the Bags of Features 

(BOFs) nietliod [57][148]. All detected interest points in the training set are pooled 
together and clustercxl as “visual words”. A codebook or visual vocabulary is built 
thereof and each interest point can l)e assign to a word by some similarity measure­
ment. The word occurrence histogram of an image or an image sequence is then 
constructed for subsc'qnent statistics analysis and the results produced are nsnally 
“semantics-orient('d”.

Comiiaring to the dens(' representation based methods, sparse representation 
bas('d methods generally do not require any foreground subtraction and thus ('an han­
dle complex scenes with cluttered backgrounds. However, this merit can also turn 
to be a drawback as many detected points may be nnr('lial)le and uninformative. In 
order to obtain reliable and informative 2D and 3D interest points, a jrossible way 
is applying feature pruning in the regions of interest [76]. Moreover, interest i)oints 
l)ased methods generally do not preserve* the spatial configuration of the targets. To 
overcome this limitation, Boiman [126] localizes irregular action behaviour with local 
video patch ensembles at the price of heavy computation. Niebles [125] conilhnes the 
hierarchical model with the BOFs method to capture the spatial relations of human 
parts. However, the human part layer of the hierarchical model is built on the relat ive 
po.sitions of groups of interest ])oints, and may have difficulty in assigning human parts 
on cluttered background.

2.1.3 Classification methods

Most approaches, inclnding dense rejrresentation based ajrjrroaches and sparse repre­
sentation based approaches, reciuire to train classifiers for recognition. In this section, 
we review several popular classifiers for pattern recognition in literature.

Eigen analysis classifier

Eigen analysis provides a simirle but efficient way to summarize the data. It seeks 
an orthogonal basis that spans a low-ordered snbspace that accounts for most of the 
variance in a set of data [129]. Coogan [152] represents the hand shapes in a subspace 
created by PCA to handle the small rotations and translations. Belhumeur [130] builds 
"fisherfaces” to account for variation in lighting and facial expression in face recognition
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by explicitly modelling the difference between classes with Linem’ Discriminant Analysis 
(LDA) [168]. Li [116] proposes 2D LDA which ijcrforms eigen analysis directly on 2D 
image matrix. Park [64] considers the substructure' of ('ach class as hierarchical LDA 
which shows better performance than original LDA. Original LDA has an assumption 
of equal within-class covariance for all classes, Chen [138] proposes heteroscedastic^ 
LDA to relax such an assumption.

However, eigen analysis usually requires a well prepared data set. In face recog­
nition, the training images are all well cropped and scaled, and only contain people’s 
faces. Meanwhile, eigen analysis methods are sensitive to the outliers presented in the 
training set [106].

Support Vector Machine classifier

SVM [24] has been widely used for object recognition and linnian ar'tion recognition due 
to its good generalization capability. It hnds separating hyperplanes that nuiximises 
the margin between classes in either the input feature s])ace or a transformed high 
dimensional s])ace. Dalai [122] ai)plies the SVM classifier for object recognition with 
HOG features. Felzenszwalb [128] imjjroves the apjiroach by building a mnlti-scale, 
deformable part model with Latent SVM [26] such that different parts of an object can 
!)(' loosely positioned. Recently using SVM kernel methods with sparse features has 
become popular in object recognition and action recognition [35]. The SVM kernel is 
substituted by a similarity measurement which obeys the Mercer’s condition [24] and 
accepts unequal numbers of interest points detected between images or videos. Wang 
[65] applies the kernel in the evaluation of local spatio-temporal features and shows 
promising results for action recognition. Grauman [86] designs pyramid match kernel 
suc'h that partial match (correspondences can be measured between two interest point 
sets.

Adaboost classifier

Adaboost is an algorithm for constructing a “strong” classiher by combination of 
weighted "weak” classifiers that are called repeatedly in a series of rounds during train­
ing. Many features can be combined with Adaboost to build efficient classihers. Viola 
[163] [133] uses Adaboost to train cascades of weak classihers for face and pedestrian

'simply put, “hetero.sceclrtstic” means all classes have different covariance matrices
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detection. A positive result from the current cla.ssifier in the chain triggers the evalua­
tion of the next classifier aiming to reject as many of the remaining negative ca.ses as 
possible while still retaining all the positives. In each training stage, Adaboost selects 
a small number of critical visual features from a larger set. Levi [87] uses local edge' 
orientation histograms in the Adaboost in order to train the classifier with a small num- 
b('r of examples. Laptev [70] also applies local edge orientation histograms to train the 
weak learner, Weighted Fischer Linear Discriminant which jirojects multi-dimcnsioiial 
features to 1-diniensional manifolds, to overcome the in'oblems of limited training sets. 
Sabzmeydani [131] run the Adaboost in local regions with low-level gradient features 
to construct a new mid-level shapelet feature which is the weighted sum of weak classi­
fiers. The experiment run on pcidestrian detection shows that the boosted feature can 
capture more information than fixed features sets. Torralba [12] focased on detecting 
a large number of different classes of objects in cluttered scenes and learned the shared 
features with a modified Adaboost algorithm in which the weak learners are exj^ressed 
as n'gression “stumjjs” [56]. Zheng [166] proposes Rc^alboost with a novel image strip 
features that are (calculated via the mean intensities of the single striji regions. How­
ever, the nu’thod is only suitable for the object detection like cars which have ('dge-like 
and ridge-like strip patterns.

Graphical model classifier

A graphical model is a probabilistic model using a graph-ba.sed representation for a 
probability distribution. A well-known graphical model is the Hidden Markov Model 
(HMM) [105] which has bc'en widely us('d for scxpience segmentation and labelling. Men­
doza [115] employs a continuous HMM with contour histograms to model the dynamic 
structure of human actions. An action class is assigned to a vidc'o sequence by the 
traiiKxl HMM which maximizes the likelihood of the observation sequence. Ahmad 
[114] also applies HMM to model different human actions. The method takes an action 
from multiple views into account so that a set of HMM models are trained for each hu­
man action. However, HMM is a generative model which assigns a joint probability to 
pairtxl observation and label se’quences [73]. Two conditional probability distributions 
are requirexl in the joint probability computation; a state transition probability from 
previous state s' to current state s, P(s]s') s,s' G S, and an observation probability, 
P(o]s) o £ 0,s € S, where 5 is a finite set of states and O is a s(4 of possible obser­
vations [8]. Usually the observations are multinomial distributions and in many case's
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tasks would l)enefit from a rich reirresentatioii of observations [8], but iu order to have 
a tractable inference, the computation of P(o|,s‘) in HMM needs to enumerate all possi­
ble observations. Therefore, strong independence assumptions among the observation 
v'^ariables are made in HMM [92]. Nevertheleas, it is not necessary to expend modelling 
effort on the observations that are fixed anyway at test time. Therefore, McCallum [8] 
proposes a discriminative model Maximum Entropy Markov Models (MEMMs) which 
compute a conditional probability P{s\s',o) instead of the HMM transition and ob­
servation probabilities. The MEMMs model relaxes the independence aasmnption in 
observations made in HMM and allows arbitrary features from observations which may 
overlap or interact with each other. However the MEMMs suffer a label bias problem 
[73] in practice. The local probabilities with fewer transitions have advantages over 
those with many transitions in MEMMs due to the ])er-state normalisation of transi­
tion scores. In other words, when a state has only one single ontgoing transition, the 
learning of MEMMs will effectively ignore the observations. To overcome this problem, 
Lafferty [73] proposes the CRFs which are also discriminative models. There is no ob­
servation independence assumed in CRTs and the model accounts for state seqnen(;es 
globally rather than locally to overcome the label bias problem. With these advantages, 
Sininchisescu [32] employs CRTs for hnman action recognition. Silhouette extracted 
from frame surround current frame are used as contextual information in the classi- 
hcation. Shimosaka [2] considers the situation where multiple symbols or labels are 
present in a single frame and come up with Multi-Task CRTs solution. The method 
incorporates the interaction b(!tween ardion lab('ls as well as the Markov property of 
actions to improve the accuracy of all label assignments at a specihe time.

However, CRFs lack of the ability of representing the internal structure of actions. 
Wang [139] therefore employs HCRFs for gesture recognition. The HCRFs model learns 
distributions of hidden states for different gestures in a discriminative manner and out­
puts a single class label to a sequence in prediction. Liu [54] apj)hes Neighborhood 
Preserving Embedding (NPE) for observation dimension reduction before employing 
HCRFs and the local neighbourhood structure of data is preserved by NPE. In order 
to capture both extrinsic dynamics and internal structure of actions, Morency [104] 
proposes the Latent Dynamic Conditional Random Fields (LDCRFs) for continnons 
gesture recognition. By preparing an exclusive hidden variable set for (^ach class label, 
the model is able to give prediction to videos frame by frame. Build on LDCRFs, Ning 
[66] develops Latent Pose CRTs (LPCRFs) which substitutes explicitly calculated ob-
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servations with latent pose estimators such that feature extrar'tioii is jointly optimized 
with the random fields.

2.2 Hidden Conditional Random Fields

In the rest of this ehapter, some theory haekground that our evaluated methods build 
on in the thesis will be given. In this section, we first dissertate the HCRFs model 
which is used in chajrter 4 and chapter C.

2.2.1 Undirected graphical model

HCRFs are nndirect<'d graphieal models. An undirected grajjhical model is a family 
of irrobability distributions that faetorize aeeording to an undirected gra])h [151]. An 
undirect cHl graph has a set of nodes each of which corresponds to a variable or group 
of variables, as well as a set of uudireetal links each of which connects a pair of nodes 
[17]. An very important proi)erty of undirected graphical models is the c-onditional 
independence wdiich can be used to factorize a compk'x probability distribution into a 
product of functions defined over sets of variables that are local to a graph. The factor­
ization of the inobability distribution should be performed in a way that conditionally 
independent nodes do not appear within the same fax'tor, that means the nodes belong 
to different cliriues [92].

In an undirected graidiical model, a clique is a subset of the nodes in a graph, 
wdiieh is fully connected. Figure 2.1 shows some examples of graph clicpie. Exanij)le
(a) in figure 2.1 is a clique of two nodes and example (b) is a clique of three nodes, 
but example (c) is not a eliejue as there is a missing link from node Ci to node e4. If a 
clique can not be extended to include any other nodes from the graph w'ithout ceasing 
full connection betwc'en all pairs of nodes, this clique is a maximal clique as example
(b) in figure 2.1. An arbitrary function can be defined over a maximal clique such that 
the conij)lex distribution defined over a graph could be represented by a product of 
local functions.

L('t ns denote' a cliciuc by C and the vertex set of a graph by V. Aeeording to 
the Hammersley-Clifford theorem [112], the probability distribution over an miflireeted
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Figure 2.1: Graph clique examples: (a) pair-site clique; (i)) triple-site clique; (c) not 
a clique

graph P(V) can be approximated as form 2,1,

p(v) oc n (2.1)

where Vc is the set of variables in a maximal cli(jue C and 'I'c(Vc) is a potential function 
defined on the nuxxinial clique. In general, it is required that the potential functions 
are strictly positive such that an nndirected graph can be factorized as formula 2.1 
and it is certain that P{V) > 0. As the potential functions are all positive, it is also 
convenient to express these functions as cxjronentials as formula 2.2,

^c(Vc) = exp(-£’(Vc)) (2.2)

where E{Vc) is called an energy function. The choice of the positive potential functions 
are arbitrary. It is not necessary to have specific ])robabilistic interpretations for the 
functions. However, one consequence of the generality of the potential functions is 
that their product can not guarantee satisfying the axioms of probability. Therefore 
a normalization constant Z calculated by formula 2.3, which is also called partition 
function, is introduced to ensure a proper probability output.

(2.3)

Computing the partition function requires to snni over all possible assignments 
to the variables in the V. This computation can be very expensive, even intractable in 
many cases. For example, given a model with M discrete nodes each having K states, 
the evaluation of the normalization term involves snnnning over states in the worst 
case, which is exponential in the size of the model [17].
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2.2.2 Conditional random fields model

Given an observed sequence X with length T and the coiTesponding class label se­
quence y = {Vi, y2i • • • 1 ^o • • • , a linear-chain undirected graph structure can be 
dejiicted as hgure 2.2. Modelling a joint probability P{X,Y) over this simple linear- 
chain structure could be intractable [162] as it is impossible to sum over all possible 
assignments to the variable X with Y in most cases. To overcome this i)roblem, the 
CRTs model is proposed [73]. The CRFs model computes the conditional probability 
R(y]-Y) instead of the joint probability P{X,Y), and leaves the observation distribu­
tion P(X) unspecihed. In fact, P{X) is not needed for classification anyway and we 
are only interested in the output structure Y conditioned on the ini^ut X. To model 
the conditional distribution P(Y\X), CRTs only represc'ut Y as an undirected graph 
in which each vertc'x of the graph corresponds to a variable ij. The joint variable 

when conditioned on X, admits the Markov jiroperty in that the conditional dis­
tribution of Yt given its neighbours, defined by the graph, does not dei)end on other 
variables outside the neighbourhood [157]. The formal definition of CRFs is defined as 
Ix'low:

‘Pet Q = (V,T) he. a graph such that Y = (VjjtGV indexed by the 
vertices of Q. Then {X,Y) is a conditional random field in case, when 
conditioned on X, the random variables Vj obey the Markov property with 
respect to the graph: P{Yt\X,Yti,t' t) = P{Yt\X,Yti,t' € M{t)), where 
M(t) is the neighbourhood ofY, in Q” [73].

With the above CRFs definition, the conditional probability P{Y\X) defined over 
the linear-chain graph would be computed by formulae 2.4 and 2.5.

P{Y\X) = ^ll^c{yc,X) (2.4)

>■' c
(2.5)

where Yc denotes label variables Y involvc'd in clicjue C, and Y' denotes all possible laliel 
secjuences. Note that the normalization constant Z is computed by only summing over 
y', and can be efficiently calculated via dynamic programming [105] for a linear-chain 
graph structure.
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Yi—Y2 Yt ■ • ■ ■ Yt-1— Yt

Figure 2.2: Linear chain CRFs

Feature functions

Tile clique potential 'I'c specifies how local variables interact and how inucli the in­
teraction contributes to the global distribution [33]. Since a eliqne only contains two 
nodes for a first-order linear-chain graph, the clique potential can be written
as form 2.6,

'i’ciYcX) = exp ^ A,/,(y,_i,y;,X) (2.6)
,7 = 1

where /; is called feature function which encodes prior belief about dependency between 
the conditioning variable X and the loc‘al variables (>)_!,>)) , and A, is corresponding 
feature weight. Every clique potential can have its own weight vector to specify how 
the local features contribute to the global distribution. In other words, the feature 
weights are position dependent. However, it is more common to use' the' same weight 
vector across all clique potentials, which means the weights are position independent. 
This is also known as parameter tying.

2.2.3 Hidden conditional random fields model

The CRFs model has shown to be a powerfnl discriminative model for sequence labelling 
[2] [162]. It outputs a class label for every node in a sequence. However, the model lacks 
of the ability to represent the internal structure of a sequence. There are many cases 
that the categorization is based on the whole sequence and only one class label is output 
for the entire sequence. For example, a sequence of hand movements over a span of 
time may present only one class of gesture. To meet the challenge of intrinsic structure 
representation, the HCRFs model is proposed [11]. HCRFs model is an extension of 
CRFs model with hidden variables. It can describe the internal structure of a sequence
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hi— h2 ■ ■ ■ ■ ht ■ ■ hi-i— hi

Figure 2.3: Linear chmn HCRFu

by many iiitenncdiato iiiiol)sorv('d states. These hidden states will be inferr('d from the 
observation A' and jointly represent the sequence class y ^ .

With the HCRFs model, the linear-ehain structure of a secjuence would be de­
picted as hgure 2.3, where ('aeh node of tlu' sequence is assigned with a hidden state h, 
from a finite set of hidden variables 'H. The sequence of hidden states h = {hi, /)2, • • • , /q, 
• •• Jir} modelled as an midirectcxl graph and admits the Markov ])roi)erty. Thus, 
similarly to CRFs, for a linear-chain HCRFs model, we can compute its conditional 
probability P{y,li\X) l>y formulae' 2.7 and 2.8

P{y,h\X) = ^ll^c{!J,hc,X) (2.7)

(2.8)

h'

where he represents the hidden variables h involved in clique C, h' denotes all possible 
hidden state sequences, and y' denotes all possible cla.ss labels for the sequence. Fur­
ther, we are able to compute the conditional probability P{y\X) with formula 2.9 for 
classification,

P{y\X) = Y,P{y,h\X)
h

where P{y\X) is obtained by marginalizing over the hidden variables h.

(2.9)

^In order to differentiate the .sequence class lalx'l in HCRFs from the sequence labels in CRFs. we 
use the small letter y to represent the sequence class
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If the exponential form 2.10 is used for the potential function 'l>c{y,hc,^).

'^ciy, he, X) = exp I ^ KU{y, ht^uhi, X) (2.10)

for a first-order linear-chain sequence, it woidd be possible to push the product 
along the cliques into the potential function as a summation as formula 2.11.

T in

[]'kc(?/,/ic,A^)=exp^^ Xifi{y,h,^i,ht,X) (2.11)

J-l i=\ 
T rri T m

exp I ^ ^ Xi,ifi,i{y, ht, A') -f ^ ^ X2,^f2,i{y^ /q-i, /q, A")
, t=l i=l t=2 i=l

(2.12)

In erjnation 2.12, the feature function /, is further decomposed into two types of features: 
node feature fij and edge feature [2^1. The node feature function fii extracts local 
features based on information from a single node while the edge feature f2,i depends on 
a pair of nodes. For simplicity, we use term ^{yJi,X) to denote the expression inside 
the exponentiation.

T m T m

Hy,h,X) = XX ht,X) + (2.13)
<=1 i=l t=2

2.2.4 Parameter estimation

The jrarameter in equation 2.11 needs to be learned from training .samples. Many 
methods can be used for estimating the HCRFs parameters [62][3], but there are 
two general apjnoaches: Maximnm Likelihood (ML) based approach and Expectation- 
Maximization (EM) based approach.

ML based approach

The most popular approach for HCREs training is based on the maximum likelihood 
principle, which selects the parameters that maximise the conditional likelihood as 2.14
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and 2.15,

A = arg max £(A) (2.14)

£(A) = ^logP(//')|X<'),A)
(=1

(=1
= E1 (E (E ) 1 (2.15)

y'.h'

where £(A) is the data log-likelihood, and / indexes the training instance in a training 
set V = In general, a regnlarisation term is added to the log-likelihood
to prevent the values of parameters from going wild. If a L2 regularization is applied, 
the objective function 2.15 would become formula 2.1G,

£(A) = ^ log! J^exp(<I>(y',/.,X'))) -log( 5;exp(<l>(y'.//,X'))) -
(=1 \ ^ h ^ y'./i' ^ / 2^52

(2.16)

where S specifies how much the quadratic penalty is applied.
If gradient-based oi^timization is em])loyr'd in the training, the optimal parameters 

would be found when t he gradient of the penalised log-likelihood is zero. Let us consider 
the parameters of node features first. Taking the partial derivative of the objective 
function 2.16 with respect to the parameter Ai,^, we obtain ecjuatiou 2.12.

dC{X)
P* (=1 l h f-1

- Y, Y fUv'^ K. I - ^
y'.h' t=\ J

=e(ee
i=l t (=1 ht

-T.Y. Pin’’ \ - ^

1=1 y'.h'

(2.17)

For a linear-chain structure, the probability P(/?(|yP', X^') and P(y', can be
efficiently calculated using forward-backward algorithm [105]. Similarly, the partial
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derivative of tlie objective function with respect to the jraraineter A2,j of the edge 
feature would be calculated as equation 2.18.

dCjX)
d\2.i E

i=\ t=2 ht-\,ht

Y Y \ - ^ (2.18)
«=2

Note that setting the gradients 2.17 and 2.18 to zeros does not result in any closed form 
solution. Thus, the parameter estimation typically resort to iterative methods such as 
the conjugate gradients method and the limited memory quasi-Newton method [62].

EM based approach

The j)aranietcrs of HCRFs can also be estimated in a Expectation-Miiximization style. 
The (X)nventional EM algorithm attempts to nuiximise the data log-likelihood £(A) by 
iteratively ajjjjlying two steps: the Expectation step (Ehstep) ami the Maximization 
step (M-step). The E-stcj) calculates the expectx'd value of the log-likelihood function 
using current estimate of the parameters, with respect to the conditional distril)ution of 
hidden variables h given observed data. The M-stej) computes parameters maximizing 
the expected log-lik('lihood found on the Ehstep. These parameters are then used to 
determine the distril)ution of the hidden variables h in the next Ehstep. It has been 
proved that the iterative procedure would increase log-likelihood £(A) until the training 
converges to a local maximum [157].

The EM approach for HCRFs parameter estimation can be used as Kumar’s and 
Korc’s work [141] [97], where a drastic approximation of the partition function Z needs 
to be computed with a single Maximum A Posteriori (MAP) labelling configuration. 
However, it is more convenient to aj^ply the EM approach within a Max-Margin training 
framework [118] [3] where the conquitation of Z is not required.

Recently, there has been an explosion of interest in structured output learning 
wdth maximum margin training [15][118][3]. The idea of the max-margin training is 
that maximizing the margin of the SVM scores can magnify the difference between the 
true label and the best runner-up, increasing the “confidence” of the classification [15]. 
For our classification, we aims to find the MAP labelling y = arg maxy P(y]Ai, A) of 
a test input X where y is the estimated class label. This implies the constraint 2.19
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(luring tlio training. If this wcr(( sncccssfnl, tlu' cstiniatc'd labc'l y during the training 
inforeneo would bc" ('qnal to the true training label y^'^K

(2.19)

According to ('qnations 2.7 and 2.8, ealenlating the posteriori P(iy|A", A) wonld require 
the computation of the normalization constant Z which can be a bottleiu'ck during the 
inference. Howevc'r, as both sides of the constraint 2.19 have the normalisation term, 
it is possible to cancel the normalisation constant and rewrite the constraint 2.19 as 
2.20, where /;, A'”) = \f{y,li,X) as shown in expression 2.13.

<!>(/>, /),, > <l>(y, /)', y f V/ (2.20)

With constraint 2.20, the model paranu'ters wonld be able to be (!stiniat('d within a 
max-margin framework as 2.21,

max q 
l|A|| = l

sA. a)(y<'), K W''>) - d)(y, //, A"('>) y y<'l, V/ (2.21)

where 7 denotes the margin betwex'n the true label y*^' and the bc'st rnnner-np. In 
formnla 2.21, ||A|| is sc't to 1 to prevent weights from growing without bounds. Using 
the transformation ||A|| t— i, formnla 2.21 can b(' written as a standard cjnadratie form 
as 2.22,

1
mm - 

2 -I-
C

i=i

si. <h(y<'), h, X<'>) - ^>(y, //, A:(')) > 1 - 

y + ^/>0, V/ (2.22)

where C is the trade-off paianieter for soft-margin SVM, and is the slack variable 
measuring the misclassification of sample /.

It can be seen that ojrtimization 2.22 contains unsolved hidekm variables h in the 
constraints. In order to perform the optimization, an EM style training can be ns('d 
[3]. As listed below, the training algorithm is composed of two steps. The hrst step is 
analogue to an exireetation stej) where hidden variables h are estimated with current 
parametc'r value. The sc'cond st('p is similar to the maximization step, in which model 
paramet(’rs A are computed with hxed hidden structures.
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1. Holding A,^ fixed, optimize the hidden variables h for sample

2. Holding h fixed, optimize A,^ by optimizing form 2.22.

Summary

Both ML based and EM based approaches can be used for HCRFs parameter estimation. 
However, due to the computation cost, ML based approach is usually applied with 
simple graph structures such as liuear-chain or tre(' graph. On the contrary, the EM 
bas('d ajrproach can be used for arbitrary graph structures as the heavy computation 
of normalisation constants is omitted. As the HCRFs model involves hidden variables, 
the objective of HCRFs 2.16 has multiple local maxima. In other words, both ML 
training and EAI training approaches can not guarantee to reach a globally optimal 
])oint [11].

2.3 Textons

Visual texture has been extensively studied in Computer Science [159][37][1]. Recently 
texture analysis based on textons has also used for image retrieval and object recogni­
tion.

2.3.1 Texton theory

Textons are used for explanation of texture discrimination. They are introduced by 
Julesz [85] as the putative units of preattentive human texture percejition, but what is 
the ‘‘preattentive”?

“Preattentive processing of visual information is performed auto­
matically on the entire visual field detecting basic features of objects in the 
display. Such basic features include colours, closure, line ends, contrast, 
tilt, currmture and size. These simple features are extracted from the visual 
display in the preattentive system and later joined in the focused attention 
system into coherent objects. Preattentive processing is done quickly, effori- 
lessly and in parallel without any attention being focused on the display” 
[156].
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Typically, tasks that (‘an 1)(^ pc^rfornu'd on large niulti-eleinent displays in less than 200 
to 250 milliseconds are considered pr(iattentive [23]. Juk^sz iim^stigates order statics 
of texture patterns and believes that only a difference in textons or in their density 
can be detected preattc'iitively. Those textons are groups of features detected l)y tlie 
(wly visual system, such as elongatcxl l)lobs, terminators (ends of line s('gnients), and 
crossings. Figure 2.4 [85] givcis an example of prc^attentive discrimination of textures 
via textons. The upper and lower regions in the left image can not be told apart
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Figure 2.4: (a) two objects are actually the same texton; (1)) two textons am different 
in the number of terminators; (c) the. first-order statistic is different globally in the two 
text.ures

altliougli two components appear different in isolation. Tlie two objects are actually 
the same texton as they have the same size, nninber of terminators and join i)oints. 
Two regions in the middle image are discriminalrle due to the difference in terminator 
numbers. The texton in the upper half has three terminators while the one in the 
lower half has four. Two textures are also distinguishable in the right image by the 
global difference in their first-order statistics. The first-order statistic (or probability 
distribution) is simply the probability that randomly thrown dots will land on a certain 
colour (for example, black) of the texture [85].

2.3.2 Computation model

The texton theory developed by Julesz is typically constrncted on black-and-white dot 
or line patterns, and is not directly applicable to gray-seale images. Malik [153] [78] 
presents an alternative model that favours the texton analysis on gray-level images.
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The model relies on filter banks on arbitrary images and identifies textons as clusters 
of vectors of filter outputs. By mapping pixels to textons, an image can be analysed 
into texton channels, each of which is a point set. Figure 2.5 presents the computation 
diagram of the model.

The model can be summarized into three stagers.

• The first stage approximates the output of primary visual cortex VI cells. Au 
image l{x, y) is convolved with a bank of filters tuned to various orientation and 
spatial frequencies. The filters can be linear filters like Gaussian derivatives. Dif­
ference of Gamssian (DOG), or Gabor filters. The output characterizes an image 
patch centred at (xo, ijq) by a set of values. This is similar to characterizing an 
analytic function by its derivatives at a i)oint like Taylor series approximation. 
The choice of the filters had bt^en studied in Malik’s early work [77], where he 
pointed out the need for e.ssential nonlinearities in texture perception. Linear 
filters may produce identical hrst-order global statistics but the texture is preat- 
tentively discriminable. Malik chose half-wave rectification as the nonlinearity for 
biological evidence and its conservation of filter signs. Moreover, Malik api)lied 
nonlinear inhibition as a second nonlinearity to suppress sj^urious respoirses in 
nonoptimally tuned filters.

/' S / N
gray-scale images filter banks K-means clustering texton channels further analysis

V J

Figure 2.5: Texton computational model for grayscale images

After applying filter banks, each pixel is transformed to a vector of filter respomses. 
In the second stage, vectors from all the images in the entire training set are 
aggregated and clustered using K-means. The criterion is to find K centres such 
that after assigning each data vector to the nearest centre, the sum of the squared 
distance is minimized [78]. The set of estimated cluster centres then form the 
textons and a visual vocabulary. If the distance in K-means is measured by 
Mahalanobis distance, associated covariances of clusters can also b(! used for the 
vocabulary definition [81]. The size of the vocabulary usually has an effect on 
the texton performance and model discrimination. Small size vocabulary may 
suffer from discrimination while a large vocabulary may result in overfitting. A 
common way to determine the number of clusters is to set a large number of
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clusters initially, then the vocabulary is pruiu'd down by iiiergiug cluster centres 
[153][81].

• In the third stage, each pixel in the testing image is mapped excU'tly to one texton 
by measuring the euclidean distance. A colk'ction of all i)ixels with same textons 
(constitutes a texton channel. With texton channels, a t('xton histograms can be 
build for recognition [78] [81]. It is also possilde to extract contextual informa­
tion by building more complex feature's using t('xton channels, for (example, t he 
t(extnr('-layout features in TextouBoost [79].

Same as interest points based methods, simply building te'xton histograms will 
lose the spatial configuration information. Graphical models HCRFs have the ability 
of modelling spatial or temporal structure's of actions. In this tlmsis, we propose an 
('xtension of HCRFs to retain the sjratial information in imagees.
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Chapter 3

Recognition using Static Postures

3.1 Introduction

Hand waahiiig gestures an' very artic'ulate bi-inanual hand nioveinents. Aeeording to 
our hand washing gesture definition in section 1.1.1, which follows the WHO hand wash­
ing reeonunendation, some gestures are quite dynaniic and some gc'stures are relatively 
static. In this chapter, we ignore the dynamic nature of the hand washing gestures, 
and analyse the gestures with only static information. In other words, all gratnres 
are treated as postures. The analysis follows the dense representation approach f(U’ 
object recognition. Hand shape is the only cue u.sed in the recognition and the shape 
configuration is ('iicoded in a dense grid style. The classifiers subsequently learn pos­
ture models for every hand washing gesture class and run a one-versns-one multi-class 
classification [69] for recognition.

3.2 Methodology

Recognition using static postures considers each frame in the video independently. Fig­
ure 3.1 illustrates the workflow of the method. It first localizes the hands into a square 
box in the image preprocessing stejj. Subsecpiently, HOG features are extracted from 
each frame to capture the shape information of gestures. HOG are well-known feature 
descriptors for object detection. Here we apply them for gesture recognition task. In 
the classification, linear SVM [24] is used to build gesture models. As there are 10 
gestures rather than 2, a one-versus-one multi-class classification is proposed for the 
recognition.
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Figure 3.1: Recognition usiruj static postures workflow

3.2.1 ROI detection

After capturing a frame from the camera, tlie first stej) is to localize the hands in the 
image, which is also called ROI detection. BfU'kgronnd subtraction [149][50][38] and 
skin detection [150][161] can be used to find the hand area, however both techniques 
may have severe false detections dne to tlie sj^lashing water, skin-tone disturbers or 
lighting condition changes. In order to reduce the false detections, a more robust ROI 
detection method is developed in our evaluation, which combines the skin information 
and hand motion information together for the detection.

Our ROI detection calculates both skin probability and motion probability. ROI 
is detected as strong skin-motion area. Figiire 3.2 illustrates the detection workflow. 
Given an input colour image, alaptive lighting comi)ensation is employed first to adjust 
the image colour in order to remove the adverse effect of various lighting conditions. 
Then a skin mask is obtained by thresholding the mnltiplication result of skin jjroba- 
bility and motion prolrability. After simple morphology operations which remove spurs 
and noise on the mask, a square box framing hands inside is allocated.

Figure 3.2: A diagram, of ROI detection

Adaptive light compensation

The appearance of the skin-tone colour strongly depends on the lighting conditions, 
therefore a lighting compensation is indispensable to obtain robust skin detection residt. 
The grey-world algorithm presented in [103] is applied for adaptive light compensation. 
The algorithm is baserl on the assumirtion that the spatial average of surface reflectance 
in a scene is achromatic. Since the light reflected from an achromatic surface is changed
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('C|iially at all wavelength, it follows that the spatial average of the light leaving the 
scene will be of the colour of the incident ilhnnination.

The grey-world algorithm ealeulates a scale factor ,s; (? G R,G, B) for each colour 
eoniponent of every pixel. Then adjusted pixel colour could be calculated by formula 
3.1:

(r\ (sA /r\

3 = <8) 3
\f>)

Jlf'W G‘^bJ W

(3.1)

old

where (8> means clement wise multiplication. The scale factor calculation of standard 
grey-world algorithm does not fit well for images with dark background. To solve this 
irroblem, our scale factors are calculated with equations 3.2:
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Here ru stands for the number of pixels in the image and n stands for the number of non­
black juxels in the image to avoid over comjr('nsation in images with dark background. 
Figure 3.3 shows an example of employing the adaptive light compensation on hand 
washing vidtxjs.

Skin probability computation

With lighting compensated images, the skin probabilities are then computed using 
a histogram-based non-paranietric skin model with Bayes classifier [161]. The skin 
probability of each pixel is estimated by formula 3.3. P{skin) and P{non,skin) are 
the prior probabilities which can be estimated from the overall number of skin and 
non-skin pixels in a training set. Probabilities P{rgb\skin) and P(r(//;|nor?,sA’in) can 
be directly computed from skin and non-skin colour histograms. The histograms arc 
built by quantizing the colour space RGB into a nunilrer of bins rgb G RGB for both
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(a) (b)

Figure 3.3: Adaptive light com,pensat.ion. (a) before light compensation.; (b) after light 
compensation

skill and non-skin classes. After noniialization, two histograins for skin and non-skin 
classes are obtained.

P{skin\rgb) =
P{rgb\s ki n)P (skin)

(3.3)P{rgb\skin) P{skin) + P{rgb\noj) skin) P{non skm)

Figure 3.4(a) shows an exani])le of the skin detection result. It can be seen that a 
portion of background is detected with a considerable high skin jirobability. In practice, 
it is hard to set a universal threshold to separate the real skin area and background 
due to the uncontrollable illiiinination.

(a) (b) (c) (ci)

Figure 3.4: Skin motion mask processing, (a) skin probability; (b) motion probability; 
(c) skin motion probability; (d) skin m.otion mask

Motion probability computation

To overcome the skin detection difficulty iiieiition above, motion probability is com­
puted to suppress the false skin detection. The motion probability is calculated by 
averaging and normalizing optical flow from five continuous frames as illustrated in fig­
ure 3.5. The optical flow is calculated between the current frame and one, two, three.
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four frames ijofore respectively. Honi-Scliimck method [82] is used for the optical flow 
computation. Comparing to oi)tical How which is computed by Lucas-Kaiiade method 
[82], Horii-Schmick method can provide a smoother high density of flow vectors which 
is preferred in our hand motion probability estimation. This is because Horn-Sclmnck 
method is a global method which has a constraint of smoothness for solving the aper­
ture problem of optical flow computation. The maybe inadequate flow information 
from the inner hand can thus be filled in from the motion boundtiries estimated near 
the hand contours.

Figure 3.5; Motion probability computation

Skin-motion mask

A skin-motion probability of current frame is obtained by multiplying the skin prob­
ability with the motion probability as shown in figure 3.4(c). Then the hands during 
hand washing activity would possess a high skin-motion probability. As shown in figure 
3.4(d), the hand can easily be segmented out by setting a universal threshold, and the 
false detected hand area from both skin measurement and motion measurement is clear 
out. With skin-motion probalhlity, it is also possible to discard those frames in which 
hands are not moving.
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Morphology operations

The aforementioned skin-motion mask may still possc^ss some noises as small holes and 
spots. A sequence of morphology operations is then performed to remove those noises. 
These operations consist of dilation, connected component analysis and erosion. Dila­
tion operation removes small holes with the skin-motion mask. Conneeted eomponent 
analysis then gets rid of small regions which are mistakenly detected as hand arc'a. 
Erosion finally removes small anomalies at the boundaries of the mask.

Square bounding box

Once a refined skin-motion mask is obtained, a bounding box is created as the region 
of interest to facilitate subsequent HOG feature extraction. The i)roc('dnre of drawing 
a bounding box is described in diagram 3.6. As shown in figure 3.7, the vertical 
symmetry axis is detected first. Then a horizontal line searches down along the axis 
from the top until dense hand area is reached such that the n])i)er boundary of the box 
is found. Similarly, the low boundary can be found by searching from the bottom. Once 
obtaining the upper and lower boundaries, the right and left boundaries are found by 
searching along the horizontal line from right and left until dense hand area. Generally 
the procedure will find a rectangle. We then take the long sides as references and 
extend the short sides such that a square bounding box is fixed.

skin motion mask

Figure 3.6: A bounding box of ROI

3.2.2 HOGs extraction

In order to describe the hand shape in every ROI, single frame HOG features are 
extracted. HOG features have given promising performance in many applications 
[122] [160] [128]. The aim of this method is to describe an image by a set of local 
histograms. These histograms count occurrences of gradient orientation in a local part 
of the image.

To compute the HOG features, the square image patch framed in the ROI is first 
extracted and resized into a 128 x 128 ROI image. This eolour ROI image is then
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Y^¥
Figure 3.7: ROI extraction

coiivcrtcxl to grey k'vcl and gradients are ealeulated. Next, the ROI image is split into 
sciuare cells with a predefined size. In each each, a histogram of gradients is computed 
by acTunmlating votes into bins of orientation. Each vote is weighted by the magnitude 
of the gradient vector so that the histogram takes into account the importance of the 
gradient at a given [roint.
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Figure 3.8: HOGs computation

Every 2x2 cells are group into a block as illustrated in figure 3.8. Within each 
block, cell histograms are locally normalised according to values of the neighbouring 
cell histograms. The normalization is necessary such that HOG features are insensitive 
to contrast variations in images. In our experiments, L2-noi'm scheme 3.4 is used,

viHiF+e (3.4)
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where v is the cell histograms within a block and e is a small regularization constant 
to avoid zero in denominator. Note that the blocks can be overlajrped with each other 
and a histogram from a given cell wonld be involved in several block normalisations. 
Tims, the features are going to have some redundant information which, according to 
the work of Dalai et al. [122], can improve the performance.

When histograms from all cells have been conii^nted and normalized, a HOG 
descriptor of the ROI image is bnilt by concatenating all hist(jgranis into a single 
vector. The vector dimension can be calculated with equation 3.5.

HOGsDimension = Dlocksno^, x Dlockscoi x Cellsl7}Dlock[i,„„

X CellsInDlockcoi x DinsInC(dl (3.5)

For example, if cell of size 16 x 16 is used for HOG c'ompntation, there wonld be 8 cells 
and 7 blocks in every row and cohnnn of a 128 x 128 ROI imago. The dimension of 
the HOG feature vector with 16 orientation bins in each cell would be 3136 according 
to the above equation.

3.2.3 SVM

SVM is a wiklly used classification method in Computer Vision. It minimises a bound 
on the generalisation error based on the structural risk minimisation principle [24] and 
would have good performance on novel data. In our evaluation, linear SVkl is ajrplied 
to train the classifiers, which searches the oi)timal hyperplanes in the original feature 
space.

Our classification is a multi-class classification problem, thus a oiie-against-one 
approach [69][45] is applied in our evaluation. The approardi constructs k{k — l)/2 
biliary classifiers for different pairwise combination of 10 gestures, where k = 10 is the 
number of gestures. During the testing, a voting strategy is used: a given sample x is 
assigned to either class i or class j by one of the binary classifiers, and the vote for class 
i or j is incremented by one correspondingly. After being tested by all binary classifiers, 
the sample x is jiredicted to be the class with the largest vote. This approach is also 
referred as the max-wins strategy.
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3.3 Evaluation

Our evaluation of recognition using static postures method runs a 5-fold cross validation 
as described in section 1.1.4. The HOG features with different parameter settings are 
extract«l from each detected ROI in every frame. The libsvm library [22] is then used 
to train the SVIM classifiers.

HOGs settings

Various HOG parameters as listcxl in table 3.1 are evaluated. These parameters result 
in coarse to fine descrijitions of hand postures. Take the first row of table 3.1 as an 
example. The ‘"Sign” column indicates if the gradient orientation is measured in a range 
of 0" ~ 180" (unsigned) or 0" ~ 360" (signed). If “unsigned” is lused, an orientation 
in the range of 180" ~ 360" would be converted into a range of 0" ~ 180", which gives 
less orientation discrimination than using the full range. The “Bins” indicates the 
(luantization levels for the orientation. More bins give finer measurement in orientation. 
An unsigned 8 bins setting means that the orientation interval in each bin would be 
22.5". “Cells” and “Blocks” are measured iu i)ixels as described in section 3.2.2. As 
each our block is fixed to contain 2x2 cells, for 32 x 32 cells, the size of the block would 
be 64 X 64. Given a HOG parameter setting as the first row in table 3.1, according to 
the (equation 3.5 the dimension of the HOG features would be 288.

Dimension Bins Cells Blocks Sign
288 8 32 64 unsigned
576 16 32 64 signed
1568 8 16 32 unsigned
3136 16 16 32 signed

Table 3.1: HOGs settings for recognition using static postures

Recognition performance

The linear SVM classifiers are trained and tested with different HOG features. The 
soft-margin controlling ijarameter C in SVM is set to 1 by libsvm default. Table 
3.2 lists their testing results. These results ai)pear to confirm that the hand washing 
gestures can b(' recognized in a way of recognizing static hand postures while ignoring 
the dynamic characteristic of the hand washing gestures. From the table 3.2, it can be
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seen that 3136 dimension HOG give the l)est recognition performance. This implies that 
the finer details of the hand postures are important for the recognition in this method. 
Meanwhile, the very high dimension of HOG also makes the hyperplane searching of 
SVM ninch easier in the original feature space. On the other hand, the very high 
dimension does cause a very heavy computation load, which could be an issue for 
real-time performance. Relatively, 1568 dimension HOG give very similar recognition 
performance to 3136 dimension HOG but only have a half of the dimension. This 
implies that when fine grid is applied to the HOG calculation, the “signed” option is 
not very important for hand washing posture recognition.

Dimension Accuracy Macro F Micro F
288 69.56 ± 5.34% 0.7082 0.6956
576 72.64 ± 6.71% 0.7383 0.7264
1568 77.57 ± 6.39%, 0.7859 0.7757
3136 78.04 ± 5.94% 0.7891 0.7804

Table 3.2: Linear SVM (:lasfiip.(:ati(m results

Figure 3.9 gives the confusion matrices of classification using 3136 dimension and 
1568 dimension HOG. It can be seen that both suffer the mi.schussification between 
gesture 1 and gesture 4 which have very similar hand washing gesture apjrearance 
in nature, especially when a frame is judged independently. The gesture 4 also has 
difficulties with gestures 7 and 8. This may be because the clasped fingers are not 
much vertical to the other palm. By definition, gestures 2 and 3 look similar to each 
other, and so do gestures 9 and 10. However, the confusion matrices show that they 
can be well separated using high dimension HOG features with linear SVM classifiers.

3.4 Summary

In this chapter we elaborate and evaluate the method of recognizing hand washing 
gestures using static postures. The method considers each frame independently and 
the dynamic features from the gestures are disregarded for classification. A skin-motion 
ROI detection method is introduced, which can drastically decrease the false positives 
in hand area detection with cither skin detection or motion detection alone. The 
static HOG features extracted from ROIs are used to train linear SVM classifiers. The 
classification results show that the hue-grid HOG features have better performance
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Confusion matra of dmenson 1S66 HOGs Contusnn matrix of Omension 3136 HOGs

(a) (1')

Figure 3.9: Confusion matrices of (a) dimension 1568 HOGs, (1)) dimension 3136 
HOGs

than the coarse-grid HOG features. This is luainly becaust' the fine-grid features can 
I)rovide detailed hand shape information for classification. As no kernel tricks is used 
in the SVM training, the testing phase of the method is fast. However, the fine-grid 
HOG c:ould give very high dimension feature vectors and result in a heavy computation 
load during the feature extraction.
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Chapter 4

Recognition using Sequence Labeiiing

4.1 Introduction

Hand washing gest ures are essentially eontinnons hand inoveinents, whieh implies that 
the dynainie nature of the gestures is a very important eharaeteristie for reeognition. 
In this chapter we analyse hand washing gc^stnre^s with not only the static information 
('xtraetcxl from every frame but also the dynamic information from the hand motion 
seejuenees. Hand w'ashing gcist ure wit hin a short period of time is modelkxl as a frame 
secpience with HCRFs model [11]. In contrast to ehaptcu 3 wlmre every gesture frame 
is jcrc'dicted independently, recognition using sequence labelling method considers the 
whole sequenc'c for reeognition and the state of every frame in the sequence is c^stimatcHl 
within a context from j^revious and following frames.

4.2 Methodology

In general, people make a judgement of the correctne^ss of a gesture upon a short 
time period of hand washing. To enable the hand w'ashing gcisturc recognition system 
operates similarly, in this chaptc'r we model the hand movements within a short time 
period to be a hand washing gcisture seciuencc. A unicjuc gesture class is assigned to 
the whole secpience, and all frames within the scxpience would have' the same gesture 
class as the sequence. It is assumed that the hand washing gesture would not change 
abruptly from one to the other within the short time period.

To build this sequence, single frame HOG features are extracted first as described 
in chapter 3. These HOG features or their combinations (concatenatc'd HOG of multiple
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Figure 4.1: Recognition using sequence labelling workflow

frames) would be modelled as building blocks [60] of hand movements. Linear-chain 
HCRFs is applied to model the internal structure of gesture scKpiences. Linear-chain 
HCRFs is a popular sequence labelling tool in speech modelling [6] and Computer 
Vision [54] [139]. It takes a whole sequence as an input and only outputs a single 
class lal)el. With the linear-chain HCRFs model, a hand washing gesture is assumed 
to have a linear-chain structure, and each building block of hand movements is a 
node of the chain, which a hidden state will Ije assigned to. Figure 4.1 illustrates the 
whole jrrocedure of recognition using sequence labelling method. It can be semi that 
the recognition using sequence labelling method also requires ROI detection for HOC 
feature extraction but will use the HCRFs model for classification instead of SVM. 
Note that the HCRFs classification stage actually contains two steps: the training step 
and the testing step of HCRFs.

In the training step, all gesture sequences in the training set are iiooled together 
and fed into HCRFs for generating a mnlti-class HCRFs model. During the testing 
step, in order to report gesture class for (!ach frame of a hand washing video, a time- 
shift window having current frame in the middle is applied. A short video segment 
from a long sequence is extracted by the time-shift window, and is classified by the 
trained HCRFs model. The label output from the HCRFs model is then assigned to 
the current frame as the classification result.

As the hand localization and HOG extraction in figure 4.1 have been describcxl 
in chapter 3, in the rest of this section we will mainly focus on the stage of HCRFs 
classification.

4.2.1 Linear-chain HCRFs model

Linear-chain HCRFs is an extension of linear-chain CRFs with hidden variables. Given 
a sequence observation A' = {a"i, • • • ,xt}, a sequence of hidden states h are
inferred from A'^, and are used to explain the sequence class label y, as showm in figure 
4.2. In our hand washing gesture recognition, X would represent the static HOG 
features extracted from all frames in a sequence. Eac'h frame in the sequence can be
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h2 ■ ■ • • ht ■ • • • hi-i— hi

© ® ® © ©
Figure 4.2: Linear-chain HCRFs for sequence labelling

regarded as a node in a chain, and is assigned with a hidden state h, by the HCRFs 
model. The gratnre class y of the sequence would then he estimated based on the 
inferred hidden state sequence h.

Hidden variables

There is a large number of variance in hand washing gestures. Learning different gesture 
categories directly with observc'd hand washing dat a may not well capture this v'arianee. 
In contrast to the CRTs model, HCRFs motlel use hidden variables to reprraent some 
“shared” variance among observations. With HCRFs, observed hand washing data can 
Ix' re]rresented by a nninber of unobserved intermediate states which greatly decrease 
the degree of variance. In our linear-chain HCRFs, a hidden state /q represents an 
unobservable hand shape configuration within the continuous hand movement. This 
state c‘an be inferred with or without information from neighbonring frames. All these 
states are linked by a first-order Markov chain where the current frame state /)., is only 
based on the jrrevious frame .state according to the Markov property [112].

Context window

HCRFs model docs not require independence assumption on the olxservcd data X, 
which is a prerequisite assumption in HMM model. This relaxation of observation 
independence can greatly help the recognition as the contextual information consisted 
of rich overlapping features can be used. In onr HCRFs gesture modelling, a temporal 
context window is constructed as shown in figure 4.3. Given a context window size 
parameter iv, current frame HOG features are concatenated with HOG features from w
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W = 2

t-2 t-1 t t+1 t+2

Figure 4.3: An example of context window used in recognition xria sequence labelling. 
The green image indicates current frame and the context window size param,eter is set 
as w = 2.

frames before current frame and w fraim^s after current frame. In otiier words, features 
from 2w + 1 frames are used as the observation of current frame. As sliown in figure 
4.3, if w = 2, a context window with 5 frames is constructed. The static HOG features 
extracted from these 5 frames may not be independent with each other, but with the 
help of HCRF^s model it is j)ossible to eoneateiiate them together as a long deseri])tion 
vector of current frame. Therefore, each frames in HCRFs is no longer considered 
independently but within a context from neighbouring frames. In our HCRFs model, 
if there is not enough frames can fill in a context window, which usually happens at 
the beginning or the end of a sequence, the zero-padding technique is applicxl to form 
the long coneatenatcxl vector.

The model

\N'ith the hidden states and context window described alrove, we are able to introduce 
a specific form of the potential function u-sed in our liuear-chain HCRFs model. The 
potential function 4'(y,/i. A"; A, w) is defined as formulae 4.1 and 4.2,

'F(y,/i., A; A, U!) = exp (<F(y,/?, A; A, te)) = ^’xp (A •/(y,/;., A; u>)) (4.1)
T T T

A • f{y, h, X\w) = ^ Ai • fi{ht,xt\w) -I- ^ A2 • l(y, /;,) + ^>^3- Hv, ht-iJk)
t=i t=i t=2

(4.2)

where “1” denotes the indicator function. An indicator function gives value 1 if desired 
elements in the brackets i:)resent, otherwise it would give 0. For example.

HyJk) 1 if y = 1 and /q = 3 
0 otherwise
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Both and l(/y,/;,,) are node features. The first type of feature
has a jraranieter w to indicate how ninth contextual information is used for current 
frame state inferenee. It is weighted by Ai. The inner-prodnct Xi-fi{ht,Xf-,w) measures 
the compatibility between a hidden state h, and the local observations Xt at frame f. 
The second type node feature is extracted with an indicator fnnction l(y, hi). Its weight 
vector A2 can be interpreted as a measure of the compatibility between a gesture class y 
and the hidden state hf. Indicator function l(y, /p) represents the third type edge 
features. Analogously, its weight A3 can be regarded as a measure of the compatibility 
between the gesture label y and an edge connecting two ncighbonring hidden states 
(/?/_!,/p). The parameter tying technique is used for all feature weights in HCRFs 
model, which means that all the weights A are position independent.

4.2.2 Model training

The linear-chain HCRFs model can be trained with ML basi'd methods as described 
in section 2.2.4. However, the training needs to compute the normalisation constant Z 
and would be very slow for our large-scale high dimension hand washing data. There­
fore, we adapt Wang’s max-margin HCRFs method [3] when' the computation of Z is 
not required. Wang’s method is a EM based max-margin training approach. It was 
projiosed combining large-scale global template features and part-based local features 
in a princijded way for action recognition. On the contrary, our HCRFs model does not 
have any global features about the sequence, which directly model the relationship 
b('tween the observation A’ and the gesture class y.

Following the dcscrijjtion in section 2.2.4, the max-margin training aims to find 
the parameter A by optimizing a quadratic form 4.3,

1
mm - A.? 2 +

C E
/=1

s.t. - 4>(y',//, A, w) >1-6

6>0, V/ (4.3)

where lj is the pre-dehned window size; / denotes each training sample and 6 corre­
sponding slack variable; <l>(y, h. A'; A, (c) represents the inner-product A • f{yJi,X\w). 
The training recursively runs following two steps until a maximum iteration number is 
reached:
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1. Holding current A,^ values fixed, for each training sample the hidden structure 
h for every gesture elass y, including the true class y‘'‘\ is inferred as

h = arg max <l>(y, h', A, lj) 
h'

2. With the inferred h, we search the optimal A,^ in optimization 4.3 with any 
quadratic programming (QP) solver. The output values of A and ^ w'ould then 
be used in the next iteration.

In our training, we aetually optimize the dual form of the above optimization 
such that there is no slac:k variable ^ involvcxl in training and the whole optimization 
can 1)0 decomposed into a series of smaller QPs, which is preferred when a large data 
set is us<xl for training.

For the dual optimization, the quadratic form 4.3 can be firstly rewritten as 
optimization 4.4

mmA.« 2
1=1

s.t. A • yp{y, A<'>) + - S{y, />) > 0 V;(/, V/ (4.4)

where y:>{y,X^^'>) denotes the vectors of feature difference, which are calculated with 
equation 4.5 for each jrossiblc gesture label y,

y^iy, = /(/), A('); A, u) - f{y, h, A('); A, u) (4.5)

The vector S{y^^\ y) represents the binary model loss used in our model, which is formed 
as 4.6.

1 if y
0 otherwise

(4.6)

Next, Lagrange multipliers a are allocated to obtain the prime objective of the 
optimization Cp 4.7,

Cp = ^||A||^ + [A • y^{y,x‘) + 6 - %‘^?y)] (4.7)
/=! l,y
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where all dual variables have non-negative values > 0. Setting the derivatives of 
Cp with respect to A and to zeros, we can <lerive equations 4.8 and 4.9.

;=1 y

E = c:
(4.8)

(4.9)

Substituting 4.8 and 4.9 barb to £/>, we obtain the dual form of the optimization as 
4.10,

n ^ n

max ^ y) - ^ II E E ^
1=1 y l=\ y

s.t. ^o,,y = C, Oi,y > 0, Vy

(')M|2

(4.10)

In the dual optimization 4.10, The size of dual variables a would be 7t x |y|. When 
a large training set is used, the optimization can become infeasible for any generic QP 
solver. To overcome this ]rroblem, the (piadratic decomi^osition technique [135][127] is 
ai)jrhed such that the optimization is decomposed into a series of smaller QPs. In our 
ease, a QP solver would only involve dual variabksi from a particular training
sample while all the other variables ; VA: : k ^ 1} are fixed. Thus, in each QP
solver, only |y| dual variables need to be solved.

With the quadratic (kx’omposition, we get the dual objective of the oirtimization 
Cd aa 4.11,

Cd = ~ I E "'■!/<7’(y, Av(0U|2

y \k:k:/:l y /

+ other terms not involving {n;,y} (4.11)

where the summation ^pkjLi^y('^k,y^{y, can be calcidated through equation
4.12.

E E ^ “ E A‘'>)
k-.k^l y y

(4.12)
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The dual variables 0-/,^ therefore can be computed by optimizing 4.13 for each training 
sample,

max Cd s.f. (yiy — C, aiu > 0
rn .. ‘

(4.13)

Consequently, the parameter A can finally be obtained with (Kpiation 4.8.
The iterative learning proc'ednre desc'ribed above eontinnonsly updates the pa­

rameter A at each training sample, and the iteration terminates when a predefined 
maximum iteration number is reached. Note that in each iteration, the hidden struc­
ture of current training sample needs to be inferred. In our training algorithm, the 
Viterbi algorithm [105] is applied for the hidden structure inference.

4.2.3 Model testing

HCRFs is a sequence based classification method. It outi^uts a single label as the 
classification result for the whole testing sequence. In this chapter, most evaluation is 
measured in terms of sequence. However, the sequence measurement may be not prac­
tical for continuous video stream in real situation. Moreover, o\ir evaluation also needs 
frame-based classification output for cros.s-comparison between different recognition 
methods. Therefore, a time-shift window is applied in order to give frame-based classi­
fication results. A time-shift window around current frame segments a short sequence 
from tlu' long s(^quenc(' for testing. The HCRFs testing result of this sequence segment 
is regarded as the gesture label of current frame. The time-shift window oj)('rates very 
similarly to the context window. Differently, the information extracted in time-shift 
window is used to model a short sequence while in context window, the information is 
only used to model a node in a chain.

4.3 Evaluation

In the evaluation of recognition using sequence labelling method, we implement the 
algorithm described above in Matlab. We apply the 1568 dimension HOG as the 
hand shape descriptor for every ROI. Based on our evaluation in recognition using 
static posture method, it can be seen that the recognition with 1568 dimension HOG 
is comparable to the recognition with 3136 dimension HOG in accuracy. However, 
although it is still a high dimension descriptor, 1568 dimension HOG have only half
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(liiiieiisioii of the 3136 HOG, which make it iimcli easier to be ojjerated in HCRFs when 
context window is applied.

4.3.1 Context window size

In the evaluation, the context window in HCRFs is experimented first. We fixed 
the number of hidden variables at 10, and report the classification results in terms of 
sequences. The context window is smoothly enlarged in the evaluation. The parameter 
w is tested from 0 to 5, which gives the context window size 1,3,5, 7,9 and 11. A 
context window with size 1 means that only features from current frame is used for 
state? inference. A c'ontext window with size' 3 means that feateires freem one frame' 
be'fe)re anel one frame after is also use'el for curre'iit frame state infe'rence. The meaning 
of ehlier e'onte'xt winelew size?s can be de'elue'e'el by anale)gy. For the frame?s near the 
start anel enel of the viele?os, zero paeleling is applic'el to Hll in the conte?xt winelow when 
IK) viek'e) frame's are available. Training sample!s from all classe's are i)olle'el te)ge'ther 
te) train a single multi-class HCRFs nie)ele'l. Table 4.1 lists the sc'eiuemce re'ceegnition 
results with eliffereut context winelow size;s.

Size Accuracy Macro F Micro F
1 62.78 ± 11.45% 0.6662 0.6278
3 63.23 ±8.81% 0.6505 0.6323
5 63.52 ±9.19% 0.6696 0.6325
7 64.10 ±4.71% 0.6723 0.6410
9 59.65 ± 15.05% 0.6288 0.5965
11 56.24 ± 10.61% 0.5920 0.5624

Table 4.1: Classification results with different context window size in HCRFs

From the above table, it e'an be seen that the rece)gnition performance is graehially 
inipre)ve’el when the context winelow size is increase?el until size 7. Figure 4.4(a) shows 
the confusion matrix of the classification when 7 frames are used in a context winelow. 
31ie table result tallies with Wang’s finding [139] that applying c'ontextual infe)rmation 
in the nioelel e?an inipre)ve' the re^cognition performance. On the other hanel, in the 
re'sults emr impre)vement with lenig context winelow is slight. This is prerbably because 
that the information for eliscriminating gestures has been mostly incluele'd in the well- 
elefiueei single frame static HOG featiires. The context winelow eloes not introeluce 
much more information for classification. In other words, the information extracteel
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Figure 4.4: Concision matrices of HCRFs with 10 and 25 hidden variables: (a) 7 
frames in a context window, 10 hidden variables; (b) 7 frames in a context tvindov), 25 
hidden variables

from current frame has coiitributcxl the most for determining the decision ])onndaries in 
the model. The additional information introduced by the context window may mostly 
1k' tolerated during the learning and does not adjust the decision l)oundaries much.

The performance starts decreasing after 9 frames are used in a c-ontext window. 
This is probably because the overfitting of the model since very high dimension (142220 
dimensioiLs for the context window of size 9) feature vectors arc employed. Therefore, 
as a complement to Wang’s finding, we claim that the recognition improvement from 
contextual information dcirends on the features of primitives. Better features descrij)- 
tion would rcxpiire smaller context window size to imirrove the recognition performance 
without a risk of model overfitting.

4.3.2 Number of hidden variables

Next, we evaluate the recognition using seciuence labelling method with different num­
ber of hidden variables. We fix the context window size at 7 as it shows the best 
accuracy in our previous experiments. HCRFs with 5,10,15,20, 25 and 30 hidden vari­
ables are evaluated. Table 4.2 lists the classification results, and figure 4.4(b) shows 
the confusion matrix when 25 hidden variables are used in HCRFs.

It can be seen that excejrt the model with 5 hidden variables, the other models 
have close recognition performance. In order to verify this, we perform a Student’s 
t-test on these models with following null hypothesis:
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No. of states Accuracy Macro F Micro F
5 51.64 ± 12.01% 0.5189 0.5164
10 64.10 ±4.71% 0.6723 0.6410
15 58.87 ± 15.26% 0.6076 0.5887
20 58.78 ± 9.52% 0.6149 0.5878
25 65.28 ± 10.43% 0.6630 0.6528
30 64.30 ±9.71% 0.6532 0.6430

Table 4.2: Classification results with different number of hidden variables in HCRFs

there is no statistical signifirant diff'erence between the performance with 
25 hidden vari,ahles and performance with other settings.

T-test 5 against 25 10 against 25 15 against 25 20 against 25 30 against 25
P-value 0.0004 0.5947 0.3125 0.3756 0.2255

Table 4.3: T-test results about the number' of hidden variables in HCRFs.
5,10,15,20,25 and 30 represent the t-test .samples with designated number of hidden 
variables

Ill this t-test the model with 25 hidden variables, which gives the highest accuracy 
in the result table, is used as a performance reference. Each t-test sample is built with 
a group cla.ssihcation results of a model. As described in section 1.1.4, we run a model 
classification by randomly picking 20% videos as the testing set and applying the rest 
for training. This procedure repeats 15 times such that 15 classification results would 
be generated for a model. These 15 results then form a sanijile in our Student’s t-test. 
We api)ly the two samples two-tailed t-test for the hypothesis testing. One sample is 
from the model with 25 hidden variables, and another is from one of the other models. 
The p-values from all t-tests are listed in table 4.3 and plotted in figure 4.5. “5 against 
25” means that a paired t-test is performed with a sample from a model using 5 hidden 
variables and a sample from a model using 25 hidden variables. Setting the alpha 
level at 0.1, it can be seen that except the “5 against 25” t-test, all the others fail to 
reject our null hyj^otliesis. This means that as long as enough hidden variables are 
supplied in the HCRFs model, the size of the hidden variable pool does not play a 
critical role in the classification. The model may be dominated by .some of the hidden 
variables even though more hidden varial)les arc available. In fact, although all gesture 
classes share the same pot of hidden variable, each gesture has a unique distribution
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T-test with different number of hidden variables

5 against 25 10 against 25 15 against 25 20 against 25 30 against 25

Figure 4.5: T-test on HCRFs pexfonnance with different number of hidden variables

of hidden states as sliown in figure 4.6. It can be counted that in hgure 4.6 only 15 
hidden varialrles are used while the other 10 hidden variabl(« do not contribute to the 
classification.

4.3.3 Temporal resolution

Since the temporal characteristic of hand washing gestures is modelled by the linear- 
chain sequence, it would be interesting to study the effect of different sequence temporal 
resolution on the recognition performance. To ac'complish this study, we choose the 
test videos only from the white board subset. The white board hand washing video set 
is recorded at a rate of 30 frames per second. For each test video, we downsample it 
to be videos with three different frame rates: 25 fps, 15 fps and 10 fps. These videos 
are tested by previously trained HCRFs models with 25 hidden variables and 7 frames 
in a context window. The test results are listed in table 4.4. It can be sc^cn that in 
general there is no much performance difference among .sequences with different frame 
rates. This conveys us that the frame rate is not a critical factor for the HCRFs model 
in hand washing recognition. However, a poor frame rate such as 10 fps does decrease 
the performance slightly.
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,25

Figure 4.6: Distribution of 25 hidden variables for each gesture. The numbers in each 
pie represent the hidden state, and the area enclosed repre.sents the proportion

Frame rate Accuracy Macro F Micro F
30 62.77 ±20.32% 0.5654 0.6277
25 62.77 ± 20.32% 0.5673 0.6277
15 62.77 ± 20.32% 0.5654 0.6277
10 59.99 ± 20.97% 0.5406 0.5999

Table 4.4: HCRFs classification results of sequences with differmt frame rates

4.3.4 Frame classification

The above cvahiations are all iiieasurod sequence by sequence. In order to give a 
franie-by-fraine prediction, a time-shift window is applied in the HCRFs model. The 
time-shift window segments a short seqnenc;e around current frame and the testing 
result of this short sc^quence is regarded as the gest ure label of current frame. Taking 
the HCRFs model with 25 hidden variables and 7 frames in a context window, various 
sizes of the time-shift window are evaluated as listed in table 4.5. These results are 
also plotted in figure 4.7. From figure 4.7 it can be seen that the over all recognition 
]3erformancc measured in frames is better than the performance measured in sequences. 
This is probably because: (a) the prediction error is diluted by a large number of true 
positive frames in the frame-based classification; (b) long test sequences may encounter 
error propagation problem while the time-shift window techniciue sets up a new testing 
secpience for every segment.
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Time-shift window size Accuracy Max’ro F Micro F
5 70.56 ± 9.82% 0.7259 0.7056
9 76.98 ± 9.84% 0.7813 0.7698
13 80.22 ± 9.73% 0.8130 0.8022
17 82.33 ± 9.52% 0.8346 0.8233
21 83.89 ± 9.76% 0.8495 0.8389
25 84.45 ± 10.06% 0.8544 0.8445

Table 4.5: Classification results with dijferent length of test sequence in HCRFs

It can also l)e seen that the cla.ssification accuracy improves signihcantly along 
with the size increase of the time-shift window. This is probably because that the 
longer the test sequence is, the more sequence history is encoded in the model for 
prediction. This phenomena coincides with how human beings observe a gesture. The 
longer gesture we watch, the higher conhdence we have about the class of that gcssture. 
The confusion matrices in hgure 4.8(a) and 4.8(b) further demonstrate this phenomena. 
However, large time-shift window does suffer high latency in frame prediction, which 
is a drawback for real-time applications.

HCRFs performance with different size of time-shift wirxlow

7 9 11 13 15 17 19 21 23 25
time-shift window size (frames)

Figure 4.7: HCRFs frame pre.diction accuracy with different length of test sequences
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Figure 4.8: Frame classification confusum matnces xismj 7 frames in a conteai win- 
doxv, 25 hidden vaciahles and (a) 5 frames in a time-shift window; (I)) 25 frames in a 
time-shift xirindovi

4.4 Summary

111 this chapter, we model the hand washing gestures as linear chains with sequence 
labelling tool HCRFs. The static information of the gestures are captured liy the “2D’' 
dense HOG features while the dynamic information are modelled with the first-order 
Markov i)rocess. Since the parameter estimation via maximising the log-likelihood 
function is very time consuming for our large training set, we perform the model 
training by aclajhing Wang’s max-margin training method. Several key parameters, 
such as the context window size, hidden variable number and the test sequence length 
for frame-based output, are evaluated in terms of the classification results.

We first evaluate the effect of the context window size on the recognition perfor­
mance. Same as Wang’s finding [139], adding conte'xtual information to each frame 
can improve the recognition performance. However, we also notice that the overall 
imjnovenient by using long context window is not substantial. We believe that this is 
because the information for discriminating gestures has been mostly ineluded in the 
single frame static HOG features. Simply increasing the context window size in HCRFs 
would not improve performance significantly if primitive features from each node in a 
sequence are adequately discriminative.

We then evaluate different number of hidden variables in the HCRFs model. Our 
experiments show that once the numljer of the hidden variables inerds the minimum
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icquirenient, the extra hidden variables do not increase the performance significantly. 
We suspect that this is because the HCRFs model is dominated by some of the hidden 
variabk!s even though more hidden variables are available.

Our HCRFs model is also tested with videos in different frame rates. Experiment 
results show that the HCRFs model plays equally well on our tost videos which have 
different temporal resolution.

The HCRFs model naturally reports the classification results in terms of se­
quences. In order to give the frame by frame classification, we apply a time-shift 
window during the testing. Our experiment results show that the re?cognition perfor­
mance improves signihcantly along with the increase of the shift-window size. This 
]rhenomena coincides with humans’ behaviour when we observe the gestures. The con- 
hdence about the gesture class is built up when we continuously watch the gestures.

It can be seen that the recognition using sequence labelling tool has better per­
formance than the recognition using static postures when the accuracy is measured 
in terms of frames. This is reasonable since both the dynamic information and static 
information are used for classification in recognition using sequence labelling method.
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Recognition using Space-Time Interest 

Points

5.1 Introduction

Bot h rliaptcr 3 and chai^ter 4 recognize haiici washing gestures based on the glolral 
description of hand shai)es. The hand shape configuration in each frame is well encoded 
in the dense grid HOG features. However, this dense grid encoding has limited capacity 
of handling the big sj)atial variety in hand washing gestures, and strongly depends 
on the ROI detection results. Thus, it would be interesting to evaluate the sparse 
reirresentation approaches for the hand washing gesture recognition. In this chairter, we 
therefore attempt to recognize the hand washing gestures via space-time interest points. 
The motivation of the method is that the hand washing gestures can be discerned with 
a rich set of local features, regardless of global appearance and motion.

Recognition using space-time interest points docs not require ROI detection in the 
image preproce.ssing, thus the lighting condition would have little effect on the recogni­
tion performance. Different with the recognition using sequence labelling method which 
encodes the dynamic information of gestures as a sequence of intermediate states, recog­
nition using s])ace-tinie interest points method encapsulates the dynamic information 
into loc’al interest point descriptors.
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Figure 5.1: Workflow of recognition using space-time interest points

5.2 Methodology

Figure 5.1 illustrates the workflow of recognition using space-time interest points 
method. The first step is the space-time interest point detection. In onr evaluation, 
the interest points are detcK'ted by Dollar’s cuboid detector [46], and are described by 
the spatial-temporal “3D” HOG features [7]. In the .second step, an extension of tiie 
BOFs approach [57] [176], ERC Forests [52], is employed to build the dcscrijrtors of hand 
washing gestures. The ERC-Forests method provides a rapid and highly discriminative 
alternative of k-means for building the visual vocabulary and occurrence histograms of 
visual words. For classification, the non-linear SVM with a kernel is applied, which 
has been widely used in object recognition and action rec:ognition [109][65][178].

5.2.1 Interest point detection

Hand washing gestures are continuous hand movements, which ]uesent I)oth static 
and dynamic characteristics. We therefore perform onr interest point detection in the 
spatial-temporal domain to accentuate the hand washing gestures in the videos. Every 
detected point is a short, local video patch, and is described by spatial-temporal “3D” 
HOG which wrap the local shape and motion information into a vector.

Cuboid detector

A large number of sparse representation recognition apjrroaclies has been proposed to 
detect and leverage the use of spare, informative feature points. However, in some 
domains, some methods such as Harris3D [109] may give very sjjarse detection or non- 
inforniative detected points [46]. On the contrary, our interest point detection is based 
on Dollar’s cuboid detector [46] which is designed to detect too many points rather than 
too few, and stippress irrelevant or misleading points generated from scene clutter.

Cuboid detector operates on a stack of frames. These frames are convoluted with 
spatial filters and temporal filters. Space-time interest points are detected by searching
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the local maxima of filter response. The response function R is defined as equation 5.1,

^ *g{x, y;a) * + {I{x,y,t) * y{x, y;a) * hod{t-,T,uj)f (5.1)

where I{x,y,t) represents the input image stack, g{x,y\a) denotes the spatial 2D 
Gaussian smoothing kernel, and hey and /i„,/ are a quadrature i)air of ID Gabor filters 
which are dc'fined as formulae 5.2.

hey{t\T,Uj) — —COH{2TTtw)e li<,d{UT,Lj) = —sin{2T:tuj)e-t^/r (5.2)

The parameter u is set at 4/r as sviggested by Dollar [4G]. This effectively gives the 
response function R two parameters a and r which correspond roughly to the spatial 
and tem])oral scale of the detector. The Gabor hlters only operate tenii)orally, thus 
the outj^ut of the Gabor filters would represent the motion energy of hand washing 
gesture's. Regions with spatially distinguishing characteristics undergoing a complex 
motion would induce high energy out]mt, but areas without spatially distinguishing 
features cannot induce a resironse. Moreover, jmre translation motion will in gcmeral 
not induce a resj^onse from R as well [46]. Figure 5.2 shows an examjde of the detection 
result from cuboid detector.

(a) (h)

Figure 5.2: Spatio-tem.poral interest points

Spatial-temporal HOGs

All dete'cted space-time interest points are described by the spatial-tenqroral “3D” 
HOG. “3D” HOG descriptor is a generalization of Dalai’s 2D HOG. It encodes the 
shape and motion information at the same time. Given a detected interest j^oint 
s — (j:.,, y,, ts, a,, Ts) where rr., is the spatial .scale and r* is the temporal scale, a small
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cube with the detected point in the centre is sampled. The width height and 
length /., of the cube are given as formula 5.3,

(5.3)

where jjarameters (Tq and To give additional control of the samided region size around 
point s. Next, the sampled cube is divided into a set of M x M x N cells which are 
aligned next to each other. Each cell is subsequently divided into 5x5x5 subblocks 
as illustrated in figure 5.3 (b) [7]. In every subblock, each gradient orientation is 
quantized with regular polyhedrons. The regular polyhedrons can b(' tetraln'dron (4- 
sided), cube (6-sided), octahedron (8-sided), dodecahedron (12-sided), and icosahedron 
(2()-sided). The quantization of a 3D gradient vector is operated by projecting it to the 
axes running through the gravity centre of the polyhedron and the centre positions of 
all farces. The quantized gradient vector is then normalized to obtain a quantized mean 
gradient qi,.. A cell histogram is (‘alculatcxl by summing the ciuantized mean gradients 
% of all subblocks hi as formula 5.4,

S3

he = qb, (5.4)
2=1

All cell histograms are then concatenated and L2 normalized to form the final ‘•3D” 
HOG feature vectors. Figure 5.3 [7] illustrates the entire encoding procedure described 
above. Note that the gradients in subblocks are computed based on intcigral videos 
which enables the memory-efficient feature computation at arbitrary spatial and tem­
poral scales [7].

5.2.2 Histograms of visual words

All “3D” HOG descriptors of detected interest points are pooled together and clus­
tered to build a visual vocabulary. The vistial vocabulary is conventionally built by 
the K-means clustering [65][79]. However, the K-means clustering methods are gener­
ally very computationally expensive for large training sets. Thus, in our method, the 
ERC-Forests method is employed. The ERC-Forests method is ensembles of randomly 
created clustering trees. Each tree is trained as classifiers but used as descriptor-space 
quantization rules [52]. The ERC-Forests method provides a rapid and highly discrimi­
native approach for building a visual vocabulary, and has good resistance to background 
clutter.
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Figure 5.3: Overxnew of the descnptor computation: (a) Sampled cube is divided into 
a grid of cells; (b) each cell is computed over a grid of siihblocks; (c) each gradient 
orientation is quantized using regular polyhedrons; (d) each mean gradient is computed 
using integral vi.deos [7]

During a ([ucry, for each “3D” HOG (iescriptor, every tree in the forests is tra­
versed from the root down to a leaf through a buiicli of nodes as shown in figure 5.4. At 
('aeh node, the deserijitor is tested by a random function T to decide the descendant. 
The random function is learned during the training with a small random subset /' C / 
of the training .set /. An elementary feature fi indexed by i is randomly picked from 
the feature vector. The subset I' will be sidit into left and right subsets /; and Ir by 
comparing the selected elementary feature fi with a random threshold t samjiled from 
a uniform distribution.

Ii = {i £ r \ f{i) < t}, 

Ir = r\ h (5.5)

The random splitting procedure descTibed in formula 5.5 is repeated many times until 
a fixed maximum number T„,ax is reached or the expected gain in information is higher 
than a fixed threshold Smin- The expected gain is calculated by ecpiation 5.G,

AE = -j^E(/i)-|^E(T) (5.6)

where E{I) is the Shannon entropy [59] of the classes in the set of examples I. The 
random function with the highest expected gain is retained. All trees in the forests 
is recursively built by learning the random function for each node as described above 
until a jnedefine maximum deittli D of the tree is reached.
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liili
Figure 5.4; Traversing a tree in ERC-Forests

By traversing a tree, a miique leaf index is returned as a distinct laljel. Therefore, 
as shown in Hgnre 5.5 [52], the leaves can be nsed as visual words, and ensenibk^i of 
trees present the visual vocabulary. An occurrence histograni of visual words is thus 
built l)y transforming each HOG descriptor into a set of leaf node indices from all 
trees. Votes for each index are accumulated into a global histogram for a set of “3D” 
HOG descriptors. In our evaluation, this set of HOG are extracted from a group of 
spatial-temporal interest points as described in section 5.2.1.

The dimension of the histogram is controlled by the number of trees ('mj:)loyed 
in the forests, which also determines the discriminative power of the visual vo(;abulary. 
Some work has shown that the discrimination of the visual words would be saturated 
when 5 trees are used in ERG [52] [147]. Therefore, we explore the categorization 
ability of the visual vocabulary by controlling the inaximum dejith D of each tree in 
our evaluation. We believe that the discriminative jjower of the visual words can be 
further enhanced by using trees with deep depth.

c :■ <
/

?? 77?i
SVM

• Gesture 3

> Gesture 2

► Gesture 1

Figure 5.5: Building visual vocabulanj uiith ERC-Forests
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5.2.3 Non-linear SVM classification

Although binary trees are trained in the previous section, they are only used for cluster­
ing rather than classification. In recognition using space-time interest i)oints method, 
the classihcation is a seiiarated stage. A nmlti-class SVM model is built for classifica­
tion with occurrence histograms of visual words generated from ERC-Forests. In our 
evaluation, we apply the non-linear SVM with a kernel for classification. The ker­
nel is best suited for histogram style feature' vectors and has shown good performance 
in object recognition and action recognition [109][65][178]. In onr evaluation, the 
kernel is dehned as formula 5.7 [7],

A (//„ Hj) = exp -
(h», — hjn)

A ^ bin + /)jn 
n=l

(5.7)

where //, = {/p,,} and Hj = {bjn} tire the histograms of visual words and V’ is the 
histogram dimension. A is a scaling jrarameter and we set it as A = V empirically.

5.3 Evaluation

Rc'cognition using space-time interest points method is based on the sparse represen­
tation of hand washing gestures. Thus, it is not necessary to have a ROI detection in 
the process. In onr evaluation, the interest i)oint detection is operated over the whole 
image area. However, if the interest point detc^ction is performed for every video frame, 
there would be a huge number of interest points that the computer can not handle 
during the training. Therefore, in our evaluation the space-time interest point are de­
tected in every 3 frames during the training in order to obtain a manageable training 
set, but during the testing phase, the interest i)oints are detected frame by frame.

5.3.1 Interest points detection

We implement Dollar’s cuboid detector to detect the space-time interest points in the 
vid(x)s. The detector has two major parameters: the spatial scale a and the temjroral 
scale r. The parameter a is used in the spatial Gaussian filters. According to the 
scale-space theory [154], it controls the spatial details captured in a video patch. In 
our evaluation, a is set at 4, which removes the salt and pepper noise but keeps most of 
the shape information, r is the temporal .scale of the ID Gabor filters. It controls the

71



Chapter 5. Recognition using Space-Time Interest Points

temporal resolution to be eonsiclered. Our experimenting on r shows that the value of 
r is not exclusive to have good detection function resironse. The value of r can Ire a 
good choice as long as the Gabor filter responses contain positive and negative signs 
and the response directions are symmetrical. However, larger r would result in smaller 
u value, and need more video frames to give good detection function responses. In 
onr evaluation, we set r = 16 which requires 5 video frames to compute the detection 
fnnetion response. Figure 5.2 shows an example of the detection result with the given 
jrarameter settings. It can be seen that many interest points are detected in the regions 
around the motion bonndaries which usually have strong dc’tc'ction function response.

5.3.2 Video patch descriptor

All detected spacotime interest jjoints are describc'd by the “3D” HOG descriptors. 
Klaser’s 3D descriptor computing tool [7] is applied to c'xtract the “3D” HOG feature's. 
As described above, each interest point has scales a — 4 and r = 16. By setting the 
I^atch size controlling parametcTs cto = 8 and Tq = 0.3125, we obtain a videx) patch 
with size 32 x 32 x 5 according to the equation 5.3. This video patch is furthc'r dividc'd 
into 2x2x2 cells, and each cell has 4x4x4 subblocks by default. Each subblock 
is described by an icosahedron with half sphere quantization. This parameter settings 
finally give us a {(20 -^2)x2x2x2 = 80} dimension “3D” HOG descriptor.

5.3.3 Building visual vocabulary with ERC-Forests

We developed our ERG-Forc'sts based on Yu’s random forest library [175]. All the 
video patch descriptors from the training set are fed into the ERG-Forcsts to bnild 
a visual vocabulary. The vocabulary size usually has an impact on the classification 
performance. There has been methods attempt to search an ojrtimal vocabulary size by 
adding decision trees to the forests [52] [147]. In these methods, the discriminative power 
of the vocabulary is almost saturated when 5 trees are employed. In our evaluation, 
we believe that the depth of trees has more control on the discriminative power of the 
vocabulary. We employ 5 trees in the forests and evaluate different tree depths for 
recognition. Table 5.1 lists the size of vocabularies generated by ERG-Forests using 
different tree depths.
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Tree depth 5 6 7 8 9 10
Dimension 160 320 640 1280 2560 5113

Table 5.1: Vocabulartj sizes using different tree depths

Trcx' depth Accuracy Macro F Micro F
5 .52.17 ±6.50% 0.5198 0.5217
6 57.39 ±7.16% 0.5763 0.5739
—r1 61.09 ±7.75% 0.6172 0.6109
8 62.61 ± 8.27% 0.6317 0.6261
9 64.53 ±8.11% 0.6535 0.6453
10 65.83 ± 7.33% 0.6689 0.6583

Table 5.2: Classification results with different tree depths

5.3.4 Classification results

The classification is perfonut'd by the non-linear SVM with a kernel as described in 
ecpiation 5.7. Our iinplenientation adapted the libsvni [22] by adding a kernel inside 
the laograni. Table 5.2 li,sts the classification re.snlts with different visual vocabularies 
generated by ERC-Forests using different tree dejiths. The results are also plotted in 
figure 5.6

It can b(‘ seen that the classification accni'cicy improves slowly along the growth 
of the tree depth in ERC-Forests. This verifies our assumption that the tree depths 
in ERC-Forests can be used to control the discriminative power of a visual vocabu­
lary. The trees with deeper depth may generate finer visual wwds which can capture 
the details in gestures for discrimination. Figure 5.7(a) and figure 5.7(b) also show 
the classification confusion matrices when the trees in ERC-Forests have depth 5 and 
10 resjrectively. We c:an see that gesture 1 and 4, and gesture 9 and 10 are mostly 
misclassified to each other. Moreover, there is also certain amount of misclassification 
between gesture 4 and 8. This is probably because that recognition via space-time in­
terest points method does not preserve any global spatial configuration of the gestures. 
Any partial correlation between two .sets of interest points can fire a misclassification 
regardless of these interest point positions. For example, the left spread out hand in 
gesture 8 may be confused with the left hand in the gesture 4.

73



Chapter 5. Recognition using Space-Time Interest Points

BoF performance with spatio-temporal interest points

Figure 5.6: Classification curve uiith different vocabulary size

Confusion matru of BoF, S Irow. dopthS Confusion matrix of BoF, 5 traas, daptfi 10

(a) (b)

Figure 5.7: Confusion matrix of classification.fa.) tree depth is 5; (b) tree depth is 10

5.4 Summary

Ill tills chapter, we evaluate the method of recognizing hand washing gestures using 
space-time interest points. The interest points are detected as maxima of spatial- 
temporal energy map. The detection method is designed to detect too many rather than 
too few interest points. Our experiments show that many interest points are detecti'd in 
the regions around the motion boundaries which usually have strong detection function
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r('si)ons('.
The (ietectecl space-time interest points are descril)e(l by the “3D” HOG features, 

and are used to i)uild the visual vocal)ulary. Our visual vocabulary is built by the ERC- 
Forests. a fast efficient alternative of K-means clustering. The discriminative power of 
the visual vocabulary is generally controlled by the number of trees cmjiloycd in the 
forests, and usually saturates when 5 trees are used. In our evaluation, we believe that 
the depth of trees can have better control on the discriminative power of the vocabulary. 
Our experiments show that the classification accuracy can improve slowly along the 
growth of the tree depth in ERC-Forest even 5 trees have been used.

Our overall evaluation shows that the hand washing gestures can be recognized 
with a rich set of local features regardless of the global appearance and motion. Ac­
cordingly, ROI detection is not necessary in the recognition. However, because the 
method does not preserve any global spatial configuration of the gesturc!s, any partial 
correlation betwt'en two sets of interest points can confuse the classifiers regardless of 
their relative geometry positions in frames.
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Chapter 6

Recognition using TGC-HCRFs

6.1 Introduction

Ill this cha])tor, we propose TGC-HCRFs method for hand washing gesture reeogni- 
tion. The TGC-HCRFs method unifies texton analysis and HCRFs method in a same 
framework such that the recognition can he beneficial from both HCRFs and texton 
analysis. The ba.sie idea of the method is that the gesture textons can be modelled 
by the hidden states in HCRFs. Oiir expi'rinients show that the HCRFs model can 
antomatically determine the visual vocabulary size for recognition.

In TGC-HCRFs, the local spatial-temporal gesture information is captured by 
gesture textons via the “3D” HOG descrijitors as described in chapter 5. In chapter 
5, the “3D” HOG descriptors are simply clustered to visual words. No global .spatial 
configuration of the gestures is conserved. Instead, in TGC-HCRFs the global .spatial 
structure is modelled by the HCRFs with a grid grajih. Comparing to the linear-chain 
HCRFs which has been studied in chapter 4, the grid graph structure used in TGC- 
HCRFs method offers a more flexible way to include the contextual and neighbouring 
information for recognition. Moreover, the local features used in TGC-HCRFs can be 
extractcxl simultaneously sueh that the TGC-HCRFs method can easily be parallelised, 
which makes the method a good candidate for real-time applications.

6.2 Methodology

Figure 6.1 illustrates the workflow of the TGC-HCRF's method. Given captured images, 
hand regions are detected first as described in chapter 3 to eliminate noisy background.
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Figure 6.1: Recognition using TGC-HCRFs workflow

howevor drawing bounding boxes of hands is an option in TGC-HCRFs method as 
general graph structures are acceptable in TGC-HCRFs. Next, the detected hand 
regions are split in grid, and we call a small spatial-temporal cube a video jratcli as 
illustrated in figure 6.2. These patches are regarded as nodes on the grid graph and 
are modelled tus textons by the hidden states in HCRFs.

P5i
i ^
LIijlII

Figure 6.2: An example of video patch in TGC-HCRFs method,

Although HCRFs arc airplied in both TGC-HCRFs method and the sequence 
labelling method in chapter 4, they are used in very different ways. In recognition 
using sequence labelling method, the HCRFs is modelled as a linear-chain, and each 
node in the chain is a video frame. The output of the linear-chain HCRFs model is 
a class label for the whole video sequence. In TGC-HCRFs, a grid graph structure is 
ii.sed to model the spatial configuration of hands as illustrated in figure 6.3. Each node 
of the graph, which is a small video patch extracted in the spatial-temporal space, is 
assigned with a hidden state. The ensemble of all node states then represent the graph 
class. Since the grid graph is constructed for every video frame, the TGC-HCRFs
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method can rei)ort the classification result frame by frame naturally. In the rest of this 
section, we are going to elaborate the details of the TGC-HCRFs model.

Figure 6.3: The stnLcture of the TGC-HCRFs viodel

6.2.1 Video patch sampling

In TGC-HCRFs, a video patch is a small spatial-temporal cube extracted from a stack 
of frames as shown in figure 6.4, and each vidcx) patc-h is drecribed by a spatial-temporal 
“3D” HOG dcscriirtor. However, in TGC-HCRFs the video patches are not detected 
by searching local maxima of a spatial-temporal filter response as chapter 5. Instead, 
they are extracted regtilarly in grid w'ithin a hand region or a ROI.

As shown in figure 6.5(a), given a predefined grid size, the video patches are 
sampled over the ROI in grid. The green points in figure 6.5(a) indicate the centres of 
samjjled video patches, and the spacing between adjacent points defines the grid size. 
If the hand region is used in the video patch sampling as shown in figure 6.5(b), the 
video patches fall outsize the hand region will be dropped. Consequently, the graph 
structure used in TGC-HCRFs would then be a general grid graph.

The extracted video patches have a predefined size HpxHpXLp where Wf denotes 
the width of the patch and Hp denotes the height. Lp is the length of the patch, which 
indicates how many vick'o franire are used for the feature extraction. Each patch cube

79



Chapter 6. Recognition using TGC-HCRFs

is described by tlie “3D” HOG features. Moreover, different patch sizes can also be 
used ill the feature extrar3.ioii. This would result in a multiple scale descrijitioii of a 
patch.

The grid video patch sampling ojicrates similarly to the cells used in HOGs calcu­
lation, however in TGC-HCRFs, there is no block normalization and the local features 
extracted from video patches are directly applied in the TGC-HCRFs model.

6.2.2 TGC-HCRFs model

Our TGC-HCRFs model is defined similarly to Kumar’s Discriminative Random Fields 
model [99]. Let X = {t,},! G S be the extracted video patches at current frame and 

€ Mi be the neighbours of video patch Xi, where <S denotes the patch set and 
Mt denotes the neighbour set. We define the potential function used in TGC-HCRFs
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(a) (1))

Figure 6.5: Video patch sampling in TGC-HCRFs. (a) sampling in a ROl; (b) sam­
pling in hand region

model as formulae 6.1 and 6.2.

d'liy, h, X; A, w) = exp (<I)(y, h, X- A, (/')) = /b A'; «.')) (6.1)

A • f{yJi,X; w) = ^ Ai • w) + ^ A2 • l{g,h,) + X! X!
ies ies ies jeA'i

(6.2)

As shown ill equation 6.2, there are three types of features used in TGC-HCRFs. 
The unary node feature /i(/q,?e) with its weight Ai models the eoiiipatibility be­
tween a video pateh x, and a hidden state /),. In our evaluation, the “3D” HOG features 
arc used for this type of feature. Analogously, another unary feature l(y,/;,) with its 
weight A2 measures the compatibility between a class label y and a hidden state /),. The 
inner-produet A2 • l{y,hi) tells how likely current frame with a class label y contains 
a video patch with a hidden state h,. The pairwise edge feature ]l(y,/ij) with its 
weight A3 models the compatibility bi'tween a class label y and a pair of hidden states 
{hi,hj). This tells that how likely a pair of hidden states {hijij) would present when 
current frame belongs to class y.

Fioni the potential function definition, it can be seen that the context window 
w and neighbours A/) are utilized in the TGC-HCRFs model. Since a grid graph is 
used, in TGC-HCRFs the contextual information and neighbours would be included 
differently to the sequence labelling method in chapter 4. In the following sections we 
would roll out the details.
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(>>) (d)

Figure 6.6: Spatial neighbowing system in TGC-HCRFs: (a) 2-way neighbow's on 
the vertical; (b) 2-way neighbours on the horizontal; (c) 4-way neighbours on the. cross; 
(d) 4-way neighbours on the diagonal

6.2.3 Neighbours

The linear-chain HCRFs only consider the forward and backward rcdationship bc'twcx'ii 
two adjacent nodes in a chain. On the contrary, The grid graph strnctnre in TGC- 
HCRFs enables a more flexible way to model the relationship between neighbouring 
nodes. For a video pateh, the neighbonring system A/j can have 2 nodes, 4 nodes or 
even 8 nodes as its neighbourhoods, which correspondingly forms a 2-way, 4-way or 
8-way neighbouring system. A 2-way neighbouring system takes 2 adjacent nodes as 
neighbourhoods: the top node and the bottom node, as illustrated in figure 6.6(a), or 
the left node and the right node as illustrated in figure 6.6(b). The 4-way neighbouring 
system includc^s all 4 nodes as neighbourhoods: the toj), bottom, left and right nodes as 
shown in figure 6.6(c), or the top-left, top-right, bottom-left and bottom-right nodes 
as shown in figure 6.6(d). For a 8-way neighbouring system, all 8 neighbourhoods 
mentioned in the 4-way neighbouring system are uscxl. The neighbouring system can 
even have a lO-way neighbours as shown in figure 6.7(a), two nodes along the time 
axis are added, which are the one node in the previous frame and one node in the after 
frame. Moreover, it is also possible to have a skip-neighbonring system as shown in 
figures 6.7(b) and 6.7(e), whc;re an irrelevant node lies between a neighbonrhood and 
the centre node. Since we mainly concern the spatial configuration of hands and the 
temporal dynamic information has been encapsulated in the “3D” HOG descrijitors, in 
our cvaluatioii we only focus on the spatial neighbouring systems for recognition. No 
temjioral neighbours are considered.
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Figure 6.7: Other possible neighbouring systems in TGC-HCRFs: (a) spatial-temporal 
neighbours; (1)) skip neighbours on the crvss; (c) skip neighbours on the
diagonal

6.2.4 Context window

From chapter 4, it ha.s been known that contextual information extract('(l from a context 
window can help the state inference. In TGC-HCRFs the context window w is defined 
very similar to the neighbouring system. What is different is that all the features 
extractcxl from surrounding nodes are concatenated with current node feature to form 
a long feature vector as the descriptor of current node. It has to be aware that the 
dimension of the descriptor can increa.sed drastically when many nodes from different 
direc'tions are inclnded in a cx)ntext window.

6.2.5 Hidden states

In TGC-HCRFs each video patch is modelled by a hidden variable, and each hidden 
variable is regarded as a gesture texton. The hidden variable set then becomes the 
visual vocabulary. Generally, choosing a projrer vocabulary size is not a easy job. 
Small size voc:abulary may lack of discrimination while a large vocabulary may result 
in overfitting. Our experiments show that by combining the graph cut and HCRFs 
method, the TGC-HCRFs model has the ability of automatically determining the size 
of a visual vocabulary for recognition during the training.
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6.2.6 Model training

The training of the TGC-HCRFs is very similar to the training algorithm described in 
chapter 4. However, the learning procedure of the sequence lalx'lling method in chapter 
4 can be regarded as an online training algorithm where recent training samjiles have 
more effect on the model performance. In sparse representation based approaches, the 
local descriptors per se generally are not as discriminative as dense global descriptors 
for recognition. Tims, the online training may not be a good choice for onr TGC- 
HCRFs model. Wc develop our training algorithm of TGC-HCRFs model based on 
the cntting-plane training algorithm of structural SVM [83] which conserves all the 
training constraints during the learning procedure.

The training algorithm of TGC-HCRFs is also an EM-based training method 
within the nicix-margin training framework. There are two iterative stej)s in the training. 
In the first step, the hidden structure is inferred with fixed model parameters. In 
the second ste]i, the hidden structure is fixed. The model parameters are optimized 
by a max-margin ba.s('d training algorithm. In chapter 4, for a linear-chain HCRFs 
model, the hidden structure of a sample can be inferred by the viterbi algorithm [105]. 
However, for a general graph structure, exact infenmee would become computationally 
intractable and an approximate inference has to be applic'd. In our training algorithm, 
we use the graph cuts method for this a]rproximation since empirically graph cut usually 
runs faster than the message passing methods.

.loachims’ cutting-plane training method was proi)osed as a fast and tractable 
learning method of structural SVM on large datasets. It contains two training algo­
rithms; margin-rescaling training and slack-rescaling training. Neither of them has 
hidden variables involved. In TGC-HCRFs training, we adapt the margin-rescaling 
training algorithm for the jrarameter learning with hidden variables.

Same as chapter 4, the training of TGC-HCRFs is performed in the dual form 
of the optimization, which tries to find optimal dual variables that maximize the dual 
objective Co 6.3:

s.t.

n ^ n

max EE oiiJ{y‘'‘Ky) - 2II EE Qi.yyp{y, X
1=1 y

^ — 6,
1=1 y

Vy, V/ (6.3)

where G a are the dual variables and vector S represent the binary loss of the 
model. The feature difference map ip{y,X^‘^) is calculated with the following equation
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6.4 for all possible lab('ls y:

y^iy, = /(/), h^'K A,u;) - f{y, /r, A, lo) (6.4)

Since the same dual objective function needs to be optimized, TGC-HCRFs shares 
most training ste])s described in chapter 4. Figure 6.8 outlines the learning procedure 
of TGC-HCRFs.

I. Input:

a) give training samirkis {y^'\ context window size w, and hidden variable
number |/;|

b) initialize: A t— 0, 7^ t— 0, where TZ is the working set of constraints 

H. Rejreat until a imiximnm iteration number is reached

t 0, t 0
b) Loo]) over all training samples

1. holding the jrarameter A fixed, estimate the hidden structure h for the 
current training sainjile using graph cuts

2. calculate for all possible labels y
3. y t-- argmaXy{A(y('\ ,(/) -I- A ■ v?(y,
4. y^sum ~ y^su7ti T ^), Xffurtt — "F ^{y^ \ y)

^ /u 1 A,s7/77i/u }

d) a = argniax„ Co .s F ^ a = C
c) A = where denotes all the included in the working set 7Z

Figure 6.8: Outline of TGC-HCRFs traininy algorithm

The training of TGC-HCRFs starts with setting the parameter A at 0 and set­
ting the working set of constraints TZ empty. It is optional to initialize each training 
sample with random hidden states. Our experiments show that this does not make 
much difference in performance. In ear:h training iteration, all the training samples are 
processed through an EM training procedure, and a cutting plane constraint is com­
puted and added into the working set of constraints TZ. This cutting plane constraint 
is calculated with the 1-slack niargin-rc^scaling cutting plane algorithm which assumes 
that all training samples share only one single slar'k v'ariable.
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The l-slack iiiargiii-rescaliiig cutting plane algorithm firstly holds the model pa­
rameter A fixed and infers the hidden structure of each training sample for every possi­
ble class label. This will generate a feature difference map for every training
sample. With the most violating constraint for each training sample can
then be found. During the training, a margin is enforced between the true label and 
any other labels. However, due to the unoptimized parameters, this margin require­
ment is usually violated by incorrect expc^cted labels. Thus, the one breaks the margin 
requirement most would be identified as the most violating constraint as illustrated 
in above algorithm II.b.3. If this violating constraint is indeed not the true label, a 
binary loss with value 1 will be inducted. In other words, if it turns out the margin 
requirement of current training sample is satisfied, the loss would be zero.

Since a violating constraint is identified for each training sample, the cutting 
plane algorithm would end with n constraints after one iteration, and the working set 
TZ would easily grow to be very heavy for a large training set after several iterations, 
.loar'hims shows that it is possible to combine the r? constraints to be one constraint 
for training [83]. This single one constraint can ecpially form a cutting ])lane that cuts 
off the current solution from the feasible set.

After adding that new constraint into the working set of constraints TZ, the cor­
responding dual variables are compiited by optimizing the quadratic dual objective 
function Cp 6.3. In our program, this is done by an efficient QP solver CPLEX ^ . 
Cons('quently, the model parameter A can be updatcxi via the step Il.e in the outliiu'd 
training algorithm, and one training iteration finishes. The whole training algorithm it­
eratively processes the training set as described above until a i)refixed iteration number 
is reached.

Graph cuts inference

During the TGC-HCRFs training described above, it is required to infer the hidden 
structure h for each training sample. Since the TGC-HCRFs model has general graph 
structure involved, exact inference such as the viterbi algorithm would become compu­
tationally intractable. Therefore, we apply the graph cuts method for the approximate 
inference. Specifically, we use the QPBO method [95] to infer the hidden structures.

Graph cuts has been widely used in computer vision for image segmentation, 
image restoration, stereo matching, etc. It formulates the problems in terms of energy

'The IBM ILOG CPLEX Optiniizt'r
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iiiiiiiinizatiou, and under most formulations, the miiiiumm energy solution eorresi)onds 
to the MAP estimate of a solution [ill]. Recall our potential function description in 
section 2.2.1. If the exponentials are used, the potential functions can be rewritten as

^'c(Vc) = exp(-F(Vc))

where E{Vc) is the energy function. In TGC-HCRFs model, this energy function 
would be E{y, li, X] \). A MAP estimate of the hidden structure for a given class 
label y is found as h = arg max/, A', A), and the posteriori is computed as
P{h\y, X, X) = ^ c.xp{—E{y, li, X] X}) where Z is a normalization constant. There­
fore, the hidden structure can also be fotmd by solving an energy minimization prob­
lem as h = argmiii/, £'(y, h, A; A). In TGC-HCRFs, we ealeulate the modc'l energy 
as E{y, li; X] X) = —d>(y, h, A^; A) which simply takes a negative result from the inner 
expression of the potential funetion, then apply graph cuts on this energy to obtain 
the hidden state estimates.

The graph cuts method is applied {is an intermediate steji during our model 
liarameter estinifit ion jiroeedure. There has been a number of methods iilso ajijilying 
graph cuts for p{ir{inieter estimations [19][118][97]. How'cver, these methods have to 
work with submodular energy functions such that the fimetions can be minimized by 
graph cuts in polynomial time [93]. The Submodular functions are diserc'te analogue's 
of convex functions [14], and have to hold the condition G.5 for all labels [96][95],

P,,,(0,0) + P,„(l, 1) < 1) + Pp,(l,0) (6.5)

where Ej^{-, ■) is the pairwise energy term in the potential functions.
In some situations the functions can not be submodular, for example, the energy 

function with iiaramcters learnc'd from training data. In these situations, the trun­
cation teehnicpic can be applicM, which ignores the non-submodular terms during the 
jiarametc'r learning. However, this teehnicpic may not be appropriate when the number 
of non-submodular terms is very high [95]. From our c'xperience, when the parameter 
dimension is high, the updates of the parameters are small in each learning iteration, 
while the truncation tc'chnique can easily miss these updates and make the training 
hard to converge.

In TGC-HCRFs training we apjily the QPBO graph cuts method whic h explicitly 
takes into account the non-submodular terms. The QPBO method can cope with the 
non-submodular terms by constructing a graph with double the number of vc'rtices, and
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“flip” a subset of vertices such that all terms become submodular [95]. Since no terms 
are truncated, the QPBO method would give better parameter estimation resnlts.

Bootstrapping

Since hidden variables arc nswl in TGC-HCRFs model, TGC-HCRFs can not guarantee 
the training converges to a global maxima. In fact, the EM training method usually 
gets stuck in a local maxima which may be still far away from the global maxima. 
In order to alleviate this problem, we apply a bootstrapping strategy during TGC- 
HCRFs training. Bootstrapping is a resampling method with replacement, which is 
usnally used for astimating the sampling distrilnition of an estimator. It assumes that 
the distribution of the samj)les is a close approximation to the popnlation distribution. 
The technique is usually employc'd with the EM training to hclj) avoid getting trapped 
in local minima.

In TGC-HCRFs training, we randondy downsani])le the training set with replaccv 
ment to build a sulxset for generating a cutting plane in (;ac’h iteration. In our evalu­
ation, the subset size is choscm to be one twentieth of the original training set. Since 
a very large training scd. is cmiploycxl in our cwahiation, the hidden structure inferenc:e 
was a bottleneck of the total training time. However, as a side-effect of the bootstrap­
ping strategy, the training is drastically sped up since in eacfli training iteration only a 
portion of the original data set necxls the hidden structure inference.

Shrinking

After a number of iterations, the working set of the constraints would grow big and 
slow down the optimization. However, since the feasible training region is iteratively 
cut, a lot of dual variables would become zeros after a number of optimization, and 
the working set TZ becomes very sparse. In order to save the training time, it is better 
to remove these constraints with o value 0. On the other hand, we do not want to 
erase recent constraints as these constraints may temporarily have a 0 but may become 
noil-zeros after the parameters Iieing updated. Therefore, we set a buffer to the dual 
variables. In our evaluation, this buffer size is 10, which means we only remove the 
constraints with a 0 which have bc'en optimizc’d at feast 10 times.

To sum up the tcxTnicjues described above, we update the step H in TGC-HCRFs 
training algorithm in figure 6.9:
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II. Repeat until a inaxiiiimii iteration iinniber is reached 

^sum ^ d? ^sum ^ d
b) build a subset from 1/20 of the original training set by randomly picking
e) Loop over the snbset

1. infer li for all possible labels y

h — arg min E{y, /;, A)
h

2. calculate <^{y,X^'^) = /(/>,/d'), - f{y,h,X^'^)
3. y ■(- arg maXy{A(y<'), y) + A • y){y,
d. y^sum y^sujn “1“ ^ ^-f- ^{y^ \ y)

d) push {y>sur„/ii; A,,u„,/r(} in a buffer B
e) 7^ 7^ U A.s„„,/n}
f) a = iiTguuix„ Cof (j : four„,ctho(ls s.t. ^cx = C

g) A = aV.s„»,
h) remove {i^.sum/^b A,,u„i/n} from TZ for any n < O.OOOl and 

{y^sum/Xfiyfii/7}^ ^ B

Figure 6.9: Updated traininy .^teps m TGC-HCRFs

6.3 Evaluation

We implement our TGC-HCRFs algorithm in Matlab. The raw features for training 
the TGC-HCRFs model arc extracted with the help of Klaser’s “3D” HOG eomputing 
tool [7]. In our evaluation, all the video patches share the same “3D” HOG parameter 
setting except for the video patch size. For Ctich video patch, it is divided into 2x2x2 
cells, and each cell has 4x4x4 subblocks by default. Every subbloek is measured by 
the dodecahedron with half sphere orientation. These settings together give the final 
“3D” HOG descriptor a dimension of 48 (2 x 2 x 2 x G). This dimension is fixed for the 
raw “3D” HOG features through all the evaluation of TGC-HCRFs, and is irrelevant 
to different video patch sizes ai)plied in the experiments.

Extracting video patches from all video frames in the training set would result 
in a very big data set which is hard to be handled by the computer. In order to get 
a manageable data set for training, we extract the video patches in every 2 frames
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(a) (h) (c)

Figure 6.10: Patch sampling on hand region urith grids of size: (a) 16; (b) 24; (c) 32

(luring the training, hnt during the testing the video patches are still extracted frame 
by frame.

6.3.1 Sampling patterns

We hst evaluate our TGC-HCRFs method with different sampling patterns. In this 
evaluation, the number of hidden variables is set at 30. The video patch size is fixed 
at 32 X 32 X 5. 4-way cross neighbouring system is aijplied in the model, and 4-way 
cross context window is used.

The evaluation runs for both ROI sampling and hand rc'gion sampling with three 
different grid sizes: 16 pixels, 24 pixels and 32 pixels. We finally obtain five sampling 
patterns in the evaluation as listed in the first column of table 6.1 ^ . Figure 6.10 
illustrates the patterns of hand region sampling with three different grid sizes. Fiom 
(a) to (c), they are in turn sampling with grids of size 16, 24 and 32 pixels. We can see 
that grid 16 sampling is much denser than the grid 32 samj)ling.

Table 6.1 lists the recognition performance of TGC-HCRFs with different sam­
pling patterns, where “ROI 16” means that the sampling is pc'rfornied on the ROI 
with grid size 16 pixels, and “Hand 32” means that the samiiling is irerformed on the 
hand region with grid size 32. As we can see, the hand region sampling wdtli grid size 
16 gives the best recognition performance. Moreover, we can notice that the recog­
nition performance with hand region saniirling is l)ettcr than the performance with 
ROI sampling. This is probably because that the hand region sampling can remove 
non-informative video patches from the background such that the gesture information 
carried by the gesture textons will not be covered by noise from the background. Wc

^the performance of ROI samirling with 16 pixel grid is not available due to too long training time
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also can sec that when hand region sampling is used, the denser the sampling is, the 
better performance the model has. This implies that the recognition prefers detailed 
information for distinguishing gestures.

Sampling pattern Accuracy Macro F Micro F
ROI 24 27.02 ± 3.84% 0.2471 0.2702
ROI 32 27.70 ± 3.02% 0.2724 0.2770

Hand 16 40.54 ± 4.98% 0.3898 0.4054
Hand 24 38.28 ± 2.53% 0.3728 0.3928
Hand 32 37.40 ± 4.22% 0.3599 0.3740

Table 6.1: TGC-HCRFs performance with different sampling patterns

6.3.2 Video patch size

The hands in each video frame may present in different scale. Tims, it would b(' 
necessary to consider the scale issue in the recognition. In this section, we evaluate’ 
three different video patch sizes in the TGC-HCRFs model: size 16 x 16, 32 x 32 and 
48 X 48. The sampling j)attern is set as hand region sampling with grid size 16 which 
shows the best imrformance in the last section. The other model parameters are kept 
as before. Table 6.2 lists the evaluation results, where the “combined” means features 
from patches with three different sizes are concatenated to form a long multi-scale 
descriptor for recognition. It can be seen that this multi-scale descrijrtor has the best 
performance. This makes us think that buihling a more complex description of the 
video patch, such as rotating the patch with different angles, may further improve the 
recognition performance.

Patch size Accuracy Macro F Micro F
16 33.44 ± 5.03% 0.3080 0.3344
32 40.54 ± 4.98% 0.3898 0.4054
48 43.52 ± 4.75% 0.4246 0.4352

Combined 48.02 ±6.14% 0.4657 0.4802

Table 6.2: TGC-HCRFs pe.rfot'manee with differemt patch size
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No. of hidden variables Accuracy Macro F Micro F
30 48.02 ±6.14% 0.4657 0.4802
50 48.98 ± 4.53% 0.4817 0.4898
100 47.97 ± 7.77% 0.4599 0.4797

Table 6.3: TGC-HCRFs performance with different number of hiddeji variables

6.3.3 Hidden variables

With multi-scale patch descriptioii, we evaluate different uuuiber of hidden variables for 
the TGC-HCRFs model. As shown in table 6.3, the TGC-HCRFs models with 30, 50, 
and R30 hidden variables have very close recognition performance. Figure 6.11 counts 
the overall hidden variables used during the training of the TGC-HCRFs models.

It can be seen that although different numbers of total hidden variables are set in 
the models, all TGC-HCRFs models tend to mainly use around 10 hidden states for the 
recognition. Although it is not clearly shown in the figures, the TGC-HCRFs models 
did explore other i)ossible hidden variables during the training, but the accumulated 
counts of those hidden variables from all iterations are very small. It seems like the 
models trial the training with some hidden variables but find out that the first 10 
hidden variables have the best explanation to the gestures, thus in the rest of the 
training the hidden variables that fail to interpret the gestures are ignored. This res>dt 
implies that the TGC-HCRFs model can automatically determine the proper number 
of hidden variables for recognition, as long as the initial nninber of hidden variables is 
big enough. In other words, TGC-HCRFs has the ability of automatically determine 
the size of the visual vocabnlarv-

6.3.4 Neighbouring system

Different neighbouring systems are also evaluated in our evaluation. We experiment 
the neighbouring system up to 4-way neighbours are listed in table 6.4, where ■‘2-way 
RL” means a 2-way neighbouring system with right and left nodes as neighbourhoods. 
Analogously, the “2-way UD” means a 2-way neighbouring system with up and down 
nodes as neighbourhoods. The “4-way cross” neighbouring system is depicted in figure 
6.6(c), and the “4-way diagonal” neighbouring system is illustrated in figure 6.6(d). 
The other parameters in the experiment are set as 16 pixel grid sampling, multi-scale 
video patch description, 30 hidden variables and 4-way cross context window.
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ovwaM htdcton stale distnbubon
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Figure 6.11: The overall hidden variables used in TGC-HCRFs models urith (a) 30, 
(b) 50, (c) 100 hidden variables
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Neighbours Accuracy Macro F Micro F
None 18.30 ±9.21% 0.1270 0.1830

2-way RL 39.74 ± 11.08% 0.3763 0.3974
2-way UD 46.09 ±4.74% 0.4602 0.4609

4-way cross 48.02 ±6.14% 0.4657 0.4802
4-way diagonal 49.98 ± 8.22% 0.4905 0.4998

Table 6.4: TGC-HCRFs performance with different neighbouring system

From the result table 6.4, it can be seen that a model with 4-way diagonal iieigh- 
bonring system gives the best performance. However, a more interesting finding is 
that the “2-way UD” neighbouring system irerforms much better tlian the “2-way RL” 
neighbouring system. This means that the vertical neighbourhoods bring in more useful 
information for discerning gestures.

6.3.5 Context window

Lastly, we evaluate the context window size of TGC-HCRFs model. As the neighbour­
ing system, the c'ontext window size is also evaluated up to the 4-way context window 
as listed in the first column of table 6.5. The evaluation results listed in table 6.5 
confirm that increasing the context window can improve the recognition i^erformance.

Ncighl)ours Accuracy Macro F Micro F
None 34.73 ± 3.42% 0.3328 0.3473

2-way RL 45.31 ± 3.39% 0.4473 0.4531
2-way UD 44.98 ± 6.58% 0.4359 0.4498

4-way cross 48.02 ±6.14% 0.4657 0.4802
4-way diagonal 48.69 ±4.81% 0.4774 0.4869

Table 6.5: TGC-HCRFs performance with different context window

6.3.6 Hidden state initialization

In all previous experiments, the bootstrapping strategy' is used to alleviate the local 
maxima problem. The local maxima problem may also be alleviated by initializing 
the hidden structure of each training example with random states. Therefore, in this 
experiment, we substitute the bootstrapping strategy with random state initialization 
in the training algorithm. At the start of the training algorithm, the states of the
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Group 1 2 3 4 5 Mean
Random .states 
Bootstrapping

35.78%
43.17%

30.64%
55.94%

47.79%
52.47%

51.85%
47.11%

42.71%
41.40%

41.79 ±8.60% 
48.02 ±6.14%

Table 6.6: TGC-HCRFs with random state initialization and bootstrapping

Performance with random states and bootstrapping

Gfoupl Group2 GroupS Group4 GroupS Average
Test group

Figure 6.12: A plot of group accuracies of models with bootstrapping and random 
state initialization

hidden structure for each training sample arc initialized with random integers between 
1 and the number of hidden variables.

Table 6.6 lists the group acenraeies of both models with bootstrapping and ran­
dom state initialization. As shown in figure 6.12, the bootstrapping strategy gives a 
slightly better performance than random state initialization. Another benefit from ajv 
plying bootstrapping strategy in the training is that the training time can be greatly 
reduced, since only a portion of training set is selected by the bootstrapping in each 
training iteration.
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6.4 Summary
Ill this chapter, wo develop a TGC-HCRFs model for hand washing gesture recognition. 
The model unifies texton analysis and HCRFs within the same framework such that 
the gesture textons can be modelled as the hidden variables in HCRFs. Onr TGC- 
HCRFs method models the gesture spatial layout as grid graph, and each node of the 
graph is a small spatial-temporal video patch which is described by “3D” HOG features. 
The grid graph structure provides a more flexible way than the linear chain HCRFs 
to include contextual and neighbouring information. It also provides an efficient way 
to preserve the spatial configuration of gestures which can not be conserved by the 
traditional BOFs methods.

Our TGC-HCRFs model is trained following Joachims’ cutting-plane algorithm, 
however, as a semi-convex model, the training suffers from the local maxima problem, 
therefore; we propose a bootstrapping strategy in the training to alleviate the local 
maxima i)roblcni. Our evaluation of the TGC-HCRFs model also provides a practical 
study of ajrplying HCRFs with grid graph structure for gesture recognition. Several 
key parameters of the model are evaluated, such as the sampling patterns, hidden 
variable number, neighbourhoods definition, etc. The evaluation result shows that the 
fine-grid sampling of the gestures can generally give better recognition performance. 
The evaluation also shows that the multi-scale description of the video jratches can 
significantly improve the recognition accuracies. This make us think of supirlying more 
complex patch descriptors to TGC-HCRFs in the future work. A distinct finding 
from the evaluation is that the TGC-HCRFs method has the ability of automatically 
determining the size of a visual vocabulary for a given recognition task. Since the 
local features required in TGC-HCRFs model can be computed simultaneously and 
efficiently, TGC-HCRFs model is also a good candidate for the real-time applications.
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Discussion and Conclusions

Ill this thesis, we researeh into tlie liaiicl washing gesture recognition as a new' siiliject in 
gesture recognition (loniain. Ten hand wasliing gestures are defined and analysed from 
different perspectives using computer vision methods. Our research .shows that hand 
w'ashing gestures can he as.sessed by vision-based methods effectively and efficiently.

7.1 Methods Review

Four computer vision methods are developed and evaluated for hand washing gesture 
recognition in this thesis.

7.1.1 Recognition using static postures

The recognition using static postures method builds a multi-cdass hand w'ashiiig ges­
ture model based on densely computed 2D HOG features from image ROIs. It classifies 
the hand w'ashing gestures frame by frame with only static information. The method 
requires localizing the hand area in a preprocessing step. It encodes the hand silhou­
ettes of each gesture in grid for recognition, and can cope wdtli small amount of shape 
deformation, rotation and position shift. The evaluation result shows that the recogni­
tion with fine-grid HOG has better performance than the recognition w'ith coarse-grid 
HOG.
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7.1.2 Recognition using sequence labelling

Recognition using sequence labelling method treats the hand washing ge^stnres as se­
quences and learns the internal structure of each sequence with the linear-ehain HCRFs. 
The method captures the static gesture information with the 2D HOG features while 
the dynamic gesture movement is modelled by the first-order Markov process. A dis­
tinct property of the method is that the model can incorporate neighbouring frames 
as contextual information for the recognition. However, since the high dimension 2D 
HOG features used in our evaluation is very descriptive, adding contextual information 
from neighbouring frames does not significantly improve the recognition performance. 
This implies that the enhancement from contextual information depends on the primal 
features used in the model. From the evaluation, we also notice that a very large hid­
den variable i)ool does not increase recognition performance significantly as well. This 
is suspected that the model is dominated by .some hidden variables even though more 
hidden variables are available.

The recognition using sc'qnence labelling method is trained within a nuix-margin 
training framework whicT can handle large training set, and naturally re])orts the 
classification results in terms of .secinences. In order to give franie-l)y-frame predication, 
a time-shift window is applied. A short sequence segment is extracted l)y the time-shift 
window and is classified by the HCRFs model. The output class label is then assigned 
to the middle frame within the time-shift window. In our evaluation, we notice that 
the classification performance increases along with the time-shift window grows, in 
which the confidence of the predication is built up. It can be seen that the recognition 
using sequence labelling method has better ])erformance than recognition using static 
postures method for frame-by-frame classification. This is probably mainly because the 
sequence labelling method utilizes information from both spatial and tenqroral domains 
for recognition.

7.1.3 Recognition using space-time interest points

Both previous methods rexjuire the ROI detection in the preprocessing step, and 
strongly depend on the 2D grid HOG representation. The ROI detection may meet dif­
ficulties when the background is cluttered and the lighting condition is uncontrollable. 
The dense grid HOG features also have limited capacity of handling big spatial vari­
ety in hand washing gestures. Thus, the recognition using space-time interest points
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inothod is explored. The recognition using space-time interest points method does not 
rerpiire ROl detection. It searchers interest points over the whole image area by Dollar’s 
cuboid detector. From the evaluation, we notice that most space-time inter^t points 
are detectc'd near the motion boundaries of t he gestures.

Dc'tected interest points are described by the “3D” HOG descriptor, and arc 
pooled together to build a visual vocabulary. The visual vocabulary is generated with 
ERC-Forests, an efficient alternative to K-means clustering. An important step in 
BOFs methods is to choose the vocabulary size. In ERC-Forest, the vocabulary size is 
usually controlled through the number of trees used in the forests. In our evaluation, 
instead we experimentally control the vocabulary size through the depth of trees in the 
forests. Our evaluation shows that the recognition performance grows gradually when 
we increase the dejjth of the trees, which means that the dejitli of trees can also be 
used to control the discriminative power of the visual vocabulary.

Recognition using space-time interest i)oints method performs the classiheation 
with a rich set of local features regardl&ss of the global ap])earance and motion of 
gestures. However, due to no any s])atial coiffignration of the gestures is con.served, 
any partial correlation between tw(j sets of interest points can confuse the classihers 
regardle.ss of their relative positions in the video frames.

7.1.4 Recognition using TGC-HCRFs

The last evaluated method is our newly developed method TGC-HCRFs. The method 
unifies the texton analysis and HCRFs method in a same framework such that the ges­
ture textons can be modelled by the hidden states in HCRFs. Comparing to recognition 
using space-time interest points method, TGC-HCRFs is also a sparse representation 
based method, but the spatial configuration of gestures can be preserved through the 
grid graphs in HCRFs. Comparing to recognition using sequence labelling method, the 
grid graph used in TGC-HCRFs provides a flexible way to include the contextual and 
neighbouring information for recognition. Onr evaluation of TGC-HCRFs shows that 
multi-scale description of video patches outperforms single-scale description, and the 
fine-grid sampling of the gestures is ])referred in TGC-HCRFs. Moreover, the TGC- 
HCRFs method can automatically determine the visual vocabulary size for recognition. 
Given a big initial hidden variable set, TGC-HCRFs can choose a proper subset of 
hidden variables to represent the gestures, while the rest of the hidden varial)les is ig­
nored. Since the local features used in TGC-HCRFs can be extracted simnltaneonsly.
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Figure 7.1: Best, performance of four evaluated methods: (a) recognition using static 
postures; (b) recognition using segxLcnce lahellmg; (c) recognition using space-time in­
terest points; (d) recognition using TGC-HCRFs

TGC-HCRFs model is also a good candidate for real-time api)licatioiis.

7.2 Discussion

In this section, onr four evaluated methods are compared and analysed in terms of hand 
washing gesture recognition. Several interesting findings are drawn and discussed as 
below.

7.2.1 Dense and sparse representation

Figure 7.1 plots the best results from our fotir evaluated methods. It can be seen 
that the dense representation based methods are more suitable for hand washing ges­
ture recognition than the sparse representation based methods. In figure 7.1, the first 
method and the second method are the dense representation based apjrroaches, while 
the third and fourth methods are sparse representation based approaches. This means 
that the global gesture shape configuration has the critical information for the recog­
nition. In the first and second methods, the global gesture spatial layout is hardcoded 
into the grid and strongly represented by the 2D dense HOG features. This grid encod-
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iiig may have some difficulty to represent the variety of a gesture, but the evaluation 
shows that it is well suited to the hand washing gesture recognition. In the fourth 
method, although grid structure is applied as well, the model does not ea])ture the 
global spatial information.

7.2.2 Fine-scale description preference

Fiom the first method and the fourth method, it can f)e seen that hand washing gesture 
recognition i)refers detailed gesture description. In the first method, the finer-grid HOG 
featnres give the better recognition performance. The highest one is the 3136 HOG 
which has the finest quantization in both space and direction. The fourth method has 
similar ])henomena. When the sampling grid is 16 and multi-scale patches are used, 
the recognition gets the best performance.

The reason of preferring details in hand washing gesture recognition may be 
becau.se the parts of hands are relatively small and move fast. The difference between 
gestures are relatively small as well. The recognition algorithms need to obtain the tine 
scale information in order to distinguish different gestures. Although much concerning 
the details may overtrain the model, our evaluation in this thesis shows that, in hand 
washing gesture recognition, supplying more gesture details gives better recognition 
irerformance.

7.2.3 Vocabulary size

In the third method and the fourth method, a visual vocabulary needs to be built up. 
However, choosing a proper size of the vocal)ulary is not easy, small size vocabulary 
may lack of discrimination while a large vocabulary may result in overfitting. In the 
third method, we control the size of the vocabulary by the depth of trees in forests. 
However, if an ojrtimal vocabulary size is required, the depth number hms to be searched 
through the art of experiment.

On the contrary, the fourth method can automatically choosc' a vocabulary size for 
recognition. All we need to do is to supply a relatively large number of hidden variables. 
The method can automatically determine how many hidden varial)les it needs during 
the training. However, we also notice that the method may have? a trend to give a 
vocabulary as small as possible. The model may lose some discriminative power in the 
recognition. Thus, in the future work, it would be interesting to encourage the method
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Confusion matnxddMTiension 3136 HOGs
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Figure 7.2: Confusion matrices of four evaluated methods: (a) recognition using 
static postures; (b) recognition using seqiience labelling; (c) recognition using space­
time interest points; (d) j'ecognition using TGC-HCRFs

to have a bit bigger size vocabulary.

7.2.4 Gesture analysis

Figure 7.2 shows the confusion matrices when the four evaluated methods give their 
best performance. It can be seen that gesture 1 and gesture 4 are usually misclassified 
to each other. This is not surprising as gesture 1 and gesture 4 are very similar. 
The major difference is only around the region near the finger tips. A possible way 
to alleviate this problem is to incorporate adaboost in the model training to enforce

1 and 4.
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Gestures 9 and 10 are classified relatively well in recognition via static postures 
and rccogiiitiou in sequence labelling. This is due to that the hand movcinent in 
gestures 9 and 10 is small. The spatial hand configuration plays an important role 
in the classification. Contrarily, recognition via space-time interest points does not 
preserve any spatial conhguration of the hands, thus its classification performance of 
gestures 9 and 10 is poor.

It is surprising that gesture 2 and gesture 3 can be distinguished very well by 
all methods except for the TGC-HCRFs method. Intuitively gesture 2 and gesture 3 
are very similar as it is hard to tell which hand is on the top and which hand is on 
the bottom without any 3D depth information. It is suspect that features from parts 
around the root of thumbs play important rokss for telling these two gesture apart.

Comparatively speaking, gestures 7 and 8 are classified poorly for all four aj)- 
proaches. The possible reason is that the variance in gestures 7 and 8 is large. The 
gestures could appear dynamic or static depending on the am])litnde of the palm ro­
tation. The changing of hand positions and angles to the camera can also cause large 
appc^arance difference in gestures 7 and 8.

7.2.5 Real-time processing

Our research strives to interpret and discriminate hand washing gestures effectively and 
efficiently with computer vision methods. Thus, a real-time processing of hand washing 
videos is desired in our algorithm design. In our four evaluated methods, the sequence 
labelling method gives the best frame by frame recognition performance, however, it 
is not the hrst choice for real-time applications. This is primarily because that the 
classification of sequence labelling method needs to view the whole sequence before 
making a predication.

On the contrary, the fourth TGC-HCRFs method has the worst recognition per­
formance among all evaluated methods, but it could be a good candidate for real-time 
apirlications. The TGC-HCRFs method can extract local features simultaneously and 
make classification by simple linear operations. No global normalization is required 
during the processing such that the algorithm can be easily parallelized and imple­
mented on the Graphics Processing Unit (GPU) or Field-Programmable Gate Arrays 
(FPGAs).

Based on current performance, the recognition with static jiostures would be the 
best choice for real-time applications, since the algorithm gives very good recognition
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l^erformance, and can l)e processed frame by frame very efficiently.

7.2.6 Improvement of TGC-HCRFs

Currently, the recognition performance of TGC-HCRFs method is inferior to the other 
three methods. However, the performance might be enhanced in recent future by 
the improvement of the TGC-HCRFs training algorithm. Firstly, we notice that the 
graph cuts inference dose not provide any posterior measurement of the inferred hid­
den structure. In other words, the algorithm does not possess the ])robability of any 
hidden variable assignment which might help the training. This drawback of the train­
ing algorithm could be overcome if an uncertainty measure of the graph cuts solution 
is provided [94], or the graph cuts approximation can give M most probable hidden 
structure outputs [173]. Secondly, in order to handle multi-class ]rroblems, the training 
of TGC-HCRFs is formulated similarly to Crammer and Singer’s nmlti-class SVM [39], 
which needs to compute the feature difference 6.4 during the training. This means that 
the training is only guided by the negative constraints in the algorithm formulation 
since the feature difference from positive constraints are all zeros. Therefore, the per­
formance of TGC-HCRFs method might be further improvcxl if any effective positive 
constraints can be added to the training of TGC-HCRFs.

7.3 Conclusions

The goal of our research is to assess hand washing technicpies applied in the hand 
washing activities robustly and effectively with vision-based methods. Aiming to this 
goal, 10 hand washing patterns are defined following the WHO hand washing gesture 
recommendation, and four computer vision methods are developed in this thesis. These 
four methods arc evaluated with a large set of hand washing videos and a large number 
of experiments.

Our evaluation shows that recognizing hand washing gestures frame by frame 
using sequence labelling method could give the best performance among all four evalu­
ated methods. Recognition using sequence labelling method models the gestures with 
first order Markov process, and applies a time-shift window during the test to give a 
frame by frame predication. The method can give very good accuracy when a large 
time-shift window is applied, which can be explained as that the large window includes

104



Chapter 7. Discussion and Conclusions

much gesture history and accumulates tlie confidence for classification. However, the 
large time-shift window comes with a priee of long processing latency in the predica­
tion. Therefore, from an efficiency point of view, recognizing hand washing gestures 
using static jjostures woidd be the best ehoice for real applications. The method of 
recognition using static jrostures gives the second best performanee among four evalu­
ated methods. The method extracts 2D dense global HOG feattires to represent the 
hands in each frame, and the evaluation shows that the recognition with fine-grid HOG 
which provides detaik'd hand posture information gives better performance than the 
recognition with coarse-grid HOG.

B(jth above methods use dense rei)re,sentation of gestures for classification, which 
can be affected by the ROI detection results. Therefore, we explore the sparse represen­
tation in the recognition using space-time interest points method. It is believed that 
the gestures can be well re])resented by a rich set of loc:al features, regardless of global 
appearance and motion. Recognition using space-time interest points method gives 
slightly inferior performance to the methods with dense representation. This implies 
that hand washing gesture recognition benefits from the global structure information 
of gestures in the dense representation methods. However, as a sparse reirresentation 
method, recognition using space-time interest points method can handle the cluttered 
background and nncontrollable lighting condition.

Our TGC-HCRFs method innovatively unifies the texton analysis and HCRFs 
within the same framework. The method attempts to represent the gestures with sparse 
representation and preserve the spatial configuration of the gestures. The evaluation 
of the method also provides a practical study of applying HCRFs with grid graph 
structure for gesture recognition. Although the performance of TGC-HCRFs method 
is not as good as the other three methods, the features used in TGC-HCRFs can 
bc' extracted simultaneously, which makes the method a good candidate for real-time 
applications if parallel processing is applied.

Some our other findings from the evaluation of the four methods are also inter­
esting, and they may be apirlicablc to other types of human action recognition. For 
example, the discriminative power of visual vocabulary built by ERC-Forests can be 
controllerl by the depth of trees, and TGC-HCRFs method can automatically determine 
the vi.sual vocabulary size for recognition.

Hand washing activity is one of the most important ways to prevent the spread 
of infection and illness, however assessing the quality of the hand washing activity is
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not easy. In this thesis, our resc^arch demonstrates that vision-based methods can l)e 
used to measure the hand washing techniques applied in hand washing activity roljustly 
and effectively, which provides an economic and efficient way for hand washing activity 
assessment.

7.3.1 Contributions

In this thesis, we have made following contributions:

• Hand washing gesture recognition is studied as a new type of gesture recognition 
task. 10 hand washing gesture patterns are defined and analysed from multiple 
perspectives.

• Four different computer vision methods are develojred and evaluated for hand 
washing gesture recognition.

• A new method TGC-HCRFs is proposed, which nnihes the texton analysis and 
HCRFs within the same framework. The evalnation of the TGC-HCRFs method 
also provides a practical study of HCRFs with grid grajdi for gesture recognition, 
which has not been seen in literature.

• The sr^quence labelling tool HCRFs is apjrlied for gesture recognition. The key 
parameters such as the context window size, number of hidden variables, etc. are 
evaluat('d.

• Different test .sequence length is evaluated for the linear-chain HCRFs. It is 
found that the longer test sequence is used, the better classification results can 
be obtained.

• The depth of trees in ERC-Forests is evaluated for controlling the discriminative 
power of visual vocabulary.

• A bootstraping strategy is applied in the max-margin training of HCRFs with 
grid graph, which alleviates the local optimum jrroblem and reduces the overall 
training time.

• The proposed TGC-HCRFs method can automatically determine the visual vo­
cabulary size for recognition.
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• It is fouiul that gesture recognition favours fine-grid sampling and prefers rich 
description of video patches. Moreover, the vertical neighbours of a video i)atch 
are found to be more informative than the horizontal neighbours.

7.4 Future Work

Based on the work presented in this thesis, several issues have also been identified and 
can be improved in the future work.

Firstly, it can be seen that all onr evaluation is based on the HOG description. It 
would be interc^sting to examine some other types of low-level features as the descrip­
tors, such as the moments [74], the niotons [174] or even simple image pixel difference 
[147][175].

Secondly, as mentioned previously, the training algorithm of TGC-HCRFs can be 
further improved. The model may give better i)erforniance if positive constraints can 
be tulded in the training and the inference can have uncertainty outj)ut of the solution. 
Moreover, some other strategies can also l)e examiiu'd for the local oiitimum problem, 
for example, simnlated annealing [17] or Quantum ariiabatic machine learning [124].

Finally, it would be interesting to ajiply all the evaluated methods to other tyjies 
of human actions, and see if the same finding can b(^ drawn.
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