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Vision-based Hand Washing Gesture Recognition

Abstract

Vision-based human gesture recognition has been studied for many years, however hand
washing gesture recognition surprisingly remains untouched in the research. Strictly
applying correct hand washing techniques is one of the most important ways to prevent
the spread of infection and illness, especially in healthcare environment. In this thesis,
we propose and evaluate a number of vision-based measuring methods as alternatives
of laborious human monitoring of hand hygiene. The main goal of our research is to
detect and recognize certain hand washing gesture patterns robustly and effectively.

Recognizing hand washing gestures with computer vision techniques is not an
casy task. Hand washing gestures are articulated, fast-moving, bi-manual gestures.
Uncertainties such as self-occlusion and lighting condition changes can also bring in
large variance in gesture appearance. These factors would result in large intra-class
variety and inter-class ambiguity during the recognition. To address these challenges,
four vision-based methods are proposed and evaluated in order to study the hand
washing gestures from different aspects. To the best of our knowledge, this is the first
research of hand washing gestures using computer vision methods.

As one of our major contributions, the hand washing gestures are defined, anal-

ysed and recognized with four different types of computer vision methods. Although

vil



these methods are developed and evaluated in the context of recognizing hand washing
gestures, many conclusions are also applicable to other types of human action recogni-
tion. As another our major contribution, the newly developed method, Texton analysis
with Graph-Cut Hidden Conditional Random Fields (TGC-HCRFs), provides a practi-
cal study of Conditional Random Fields (CRFs) with hidden variables for grid graphs

in recognition.
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Chapter 1

Introduction

In our daily life, hand washing is a small but very important human activity. The very
simple activity of frequent hand washing has the potential to save more lives than any
single vaccine or medical intervention [55][41]. Hand washing for hand hygiene is one
of the most important ways to prevent the spread of infection and illness, especially
in healthcare environment. Overwhelming scientific evidence shows that Hospital Ac-
quired Infections (HAIs) are transmitted by the hands of healthcare workers [134] and
approximate 50% of these infections are preventable through better hand hygiene [170].

It has been known that parts of the hands are frequently missed during the
hand washing [110] and a recent study reported that 3 - 6% of the hands of healthcare
workers were contaminated with Methicillin-resistant Staphylococcus aureus (MRSA)
after performing their hand-hygiene routine [40]. Therefore, correct hand washing
technique is needed to avoid missing areas such as finger tips, thumbs, and between the
fingers. In fact, the technique used in hand washing is more important than the amount
of time spent [143]. A 2007 Swiss study identified that training in the World Health
Organization (WHO) hand washing technique doubled the anti-microbial effectiveness
of hand hygiene with alcohol gel [169]. Improved hand-hygiene training can also lead
to a reduction in HAIs rate of between 20% and 50% [170].

Developing and maintaining a high standard of hand washing training and as-
sessment is very difficult. Measuring the quality of the hand washing activity is one of
the key steps. Several approaches have been proposed for the hand hygiene measure-
ment [18]. Direct observation is one of the approaches, which is simple and easy to
measure all types of hand hygiene including the hand washing activity. However, it is

usually time consuming and costly. It can only provide information about a very low
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Figure 1.1: A hand washing recognition system

percentage of all hand washing opportunities, and realistic comparison of rates between
facilities is also impossible due to lack of standardized measurement [18]. Measuring
product consumption and electronic hand hygiene compliance monitoring systems are
some other approaches that can be used for measuring hand washing activity. However,
those approaches are mainly for the measurement of hand washing frequency rates and
WHO “5 moments of hand hygiene” [145]. None of them can provide the assessment

of the hand washing technique performed during the hand washing activity.

1.1 Vision-based Hand Washing Gesture Recognition

In this thesis, we propose to measure the hand washing activity by means of hand
washing gesture recognition with state-of-the-art Computer Vision techniques. Such
an approach can assess the hand washing technique applied during the hand hygiene
routine and enforce the correct hand washing gestures are followed when feedback
is provided. It can facilitate the hand washing training and assessment with much
less human resources but provide much more hand hygiene quality information. A
prototype of hand washing recognition system is illustrated in figure 1.1. A top-down
view camera is mounted above a sink with a certain angle. The captured hand washing
activity videos are then processed locally.

Figure 1.2 outlines the main processing steps in the system. The image pre-
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image feature . ; .
preprocessing extraction classification PENIRT Sy

Figure 1.2: Hand washing gesture recognition workflow

processing step would apply some image processing techniques such as image colour
adjusting or Region of Interest (ROI) detection to simplify the later classification job.
The feature extraction step extracts local low-level information to characterize the
hand washing gestures presented in the images. The classification step requires some
machine learning [177][119][24] to build hand washing gesture models and classifies a
new coming frame to be one of the predefined hand washing gestures. The classification
results are displayed on a screen as real-time feedback to the person performing the
hand washing. With the feedback, the system user notices what hand washing gestures
are wrong and corrects them. This self-learning circle requires that the system has the
ability to interpret and discriminate the multi-class hand washing gestures correctly

and effectively in real-time, which is the a main goal of our study in this thesis.

1.1.1  Hand washing gestures

In order to assess the hand washing gestures, a standard needs to be set up first. In
the thesis, we apply the WHO EN1500 hand washing protocol [170] as the guideline for
our hand washing gesture recognition. 10 different hand washing gestures are defined

as shown in figure 1.3.
e Gesture 1 is rubbing hands palm to palm.

e Gesture 2 and 3 are one palm over the other’s dorsum with interlaced fingers

moving back and forth.
e Gesture 4 is rubbing palm to palm with fingers interlaced.
e Gesture 5 and 6 are rotational rubbing of a thumb clasped in the other palm.

e Gesture 7 and 8 are rotational rubbing backwards and forwards with clasped

fingers of one hand in the other palm.

e Gesture 9 and 10 are hands moving back and forth with backs of fingers

opposing palms and fingers interlocked.

3
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Figure 1.3: Hand washing gesture definitions

Among these gestures, some are quite dynamic such as gesture 5, 6, 7 and 8,
and some are relatively static such as gesture 2, 3 and 9, 10. Thus, the vision-based
methods need to take both dynamic and static sides of the hand washing gestures into
account. It can also be seen that the difference between some gestures is minor such
as gesture 2 and 3, and gesture 9 and 10. Gesture details may help distinguish these
gestures in recognition, however they may also reduce the tolerance of gesture variety
which is required in gesture 5, 6, 7 and 8. Therefore, our study needs to examine what
approach is more suitable for representing and discriminating these 10 hand washing
gestures, single image or sequences, locally or globally, dynamically or statically, etc.

As the hand washing gestures are non-rigid, fast, bi-manual hand movements,

there are also some other challenges for the hand washing gesture recognition.

e Intra-class variations. Although 10 gesture definitions have been given above, in
practice it is hard to categorize some hand movements into a same class defini-
tively due to the large variance of a hand washing gesture. The same gesture
may appear very differently when performed by different people or at different
time from the same person. Gestures can also change the appearance due to the

changes of lighting condition and viewpoint.

e Inter-class ambiguities. As mentioned above, some gesture definitions are close.

The similar gesture definition can easily bring in class ambiguities during the

4
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recognition. Meanwhile, our hand washing gestures are continuous hand move-
ments. A lot of gesture transitions are captured in the videos. Hands in a single
frame may thus appear belonging to many gestures if no contextual information

is used.

e Unstable ROI detection. Localizing the hands in images may be required to
reduce irrelevant information and simplify later classification. However, because
hands are very flexible, it would be difficult to centralize hands in a ROI uniformly.
Moreover, in uncontrolled environment cluttered background and illumination

changes can also cause problems in hand tracking.

Figure 1.4 shows some examples of these challenges ! . Image (a) and (b) demon-
strate that the hands do not localize in ROI uniformly. In image (a), hands locate
in the centre of the ROI while in image (b) the stretching out fingers push the main
body of hands to the upper half of the ROI. Image (¢) and (d) demonstrate the inter-
class variety in gesture 8. Although the hand shapes look very different, they actually
belong to the same hand washing gesture. Image (e) and (f) give an example of the
inter-class ambiguity between gesture 1 and 4. Both gestures are palm to palm, and
the only difference is whether the fingers are interlaced during the hand washing, which
sometimes are hard to tell due to the fast hand movement. Image (g) and (h) show
another example of ambiguity in gesture 10. Image (h) is captured during the gesture

transition, which looks like image (g) but does not belong to gesture 10.

1.1.2 Methods

To deal with these challenges in hand washing gesture recognition, four vision-based
methods, recognition with postures, recognition with sequence labelling, recognition
with interest points and recognition with TGC-HCRFs, are evaluated and compared in
this thesis. These four methods research into the hand washing gestures from different
perspectives. The first method is adapted from methods for object recognition. The
method ignores the dynamic nature of hand washing gestures and only considers the
static information extracted from each frame independently. It describes the hand
shape in each frame with Histogram of Oriented Gradient (HOG) features [121], and

models every hand washing gesture as modelling an object class with Support Vector

!Some images shown in this thesis were obscure. We increase the brightness and contrast of these
images for the purposes of illustration.
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(f) (h)

Figure 1.4: Challenges in hand washing gesture recognition

Machine (SVM) [24]. The method is similar to methods used in sign language gesture
recognition [164][21][152]. However, in conventional sign language gesture recognition,
a sign gesture is required to put in front of a camera steadily for a few of seconds to
facilitate the recognition. On the contrary, hand washing gestures are continuous bi-
manual hand movements involving a large number of gesture variance, transitions and
self-occlusions. This makes the hand washing gesture recognition much harder than
the sign gesture recognition.

The second and third evaluated methods take the dynamic characteristic of the
hand washing gestures into account but analyse it from different points of view. The
second method employs the HOGs from each frame as a primitive in a sequence and
models the dynamic nature of gestures with sequence labelling tools [73][11]. The third
method encapsulates the dynamic information into space-time “3D” HOGs descriptors
[7] during feature extraction. These descriptors are clustered as visual words and “bag
of words” tool is used [65][52] for recognition.

Both the second and third methods are adapted from methods for human action
recognition. Human action recognition in Computer Vision has been studied for many
years, and some methods are adaptable for human gesture recognition. However, we
should also be aware of the difference between these two domains and be careful in
our system design. Firstly, human body parts such as torso and limbs are relatively
big while hand parts such as palm and fingers are relatively small, which means that

details in images may be more important for gesture recognition than action recognition.

6
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Figure 1.5: Hand skeleton structure [172]

Secondly, human hands are more flexible than human bodies. Figure 1.5 shows the
skeleton of a hand [172]. Considering global hand pose, human hand motion has
roughly 27 Degrees of Freedom (DOF) which means hand motion is highly articulate.
Thirdly, the movements in hand washing gestures are small and much faster than
human actions, which makes the recognition even more difficult.

Our fourth method Texton analysis with Graph-Cut Hidden Conditional Random
Fields (TGC-HCRFs) further explores the computer vision techniques for hand washing
gesture recognition. We unify texton analysis with Hidden Conditional Random Fields
(HCRFSs) in the same framework for human gesture recognition. The primal idea is that
gesture textons can be modelled by the hidden states in HCRFs such that the method
would be beneficial from both HCRFs and texton analysis. General structure Markov
Random Fields (MRFs) and CRFs have long history in image segmentation, texture
analysis and object recognition [93][78][118]. Tree-structure HCRFs have also been
used for human action recognition [139][3], but the general structure HCRFs for action
recognition or gesture recognition has not been studied before. This is probably because
the expensive probability inference of general structure HCRFs prevents experiments

with large data sets. Our TGC-HCRFs method follows the energy-based learning
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framework [111] instead of conventional probability based training [73][11]. It takes
advantage of the newly developed Quadratic Pseudo-Boolean Optimization (QPBO)
inference [95] and max-margin training approach [158][83] such that the training time
for general structure HCRFs is greatly reduced even if a large training data set is
employed.

Comparing to our first method, TGC-HCRFs can capture the dynamic gesture in-
formation with gesture textons. In the evaluation, space-time “3D” HOG features from
small video patches are extracted as primitives for building gesture textons. Compar-
ing to the second method, TGC-HCRFs method offers a more flexible way to include
the contextual and neighbouring information for recognition, and would be less influ-
enced by the skin and ROI detection results. Comparing to our third method which
loses all gesture spatial configuration information, TGC-HCRFSs can reserve the spatial

information with the grid graph.

1.1.3 Data set

A hand washing data set is prepared for evaluating aforementioned four methods. The
data set has three subsets: ceramic sink set, stainless steel sink set and white board
set. The ceramic sink set records nurses and doctors’ hand washing activity in hospi-
tals in real scenarios. It is assumed that the nurses and doctors are acquainted with
hand washing techniques and thus there was no any supervision from hand washing
technique experts during the video collection. The videos show large variance in the
gestures including changes in lighting, background and hand appearance. In stainless
steel sink set, participants are asked to finish all 10 hand washing gestures with a little
supervision from hand washing technique experts. All participants are new to hand
washing technique and therefore the hand washing gestures can be performed very dif-
ferently. The white board set videos are collected in laboratory environment. Lighting
condition is good for hand localization. Participants are all familiar with the hand
washing technique and can finish the hand washing routine with gestures that are very
close to our 10 hand washing gesture definitions.

All videos in the data set are size of 320 x 240 in Motion JPEG format. The
ceramic sink set videos are recorded in around 12 frames per second (fps); stainless
steel sink set videos are recorded at a rate of 25 frames per second and white board
set videos are 30 frames per second. Different frame rates can be regarded as washing

hands at different speed. 12 fps means a relatively faster hand washing speed than
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[ Gesture | 1 ] 2 [ 3 | 4 | 5 | 6 | T | 8 | 9 | 10 |
Group 1| 301 | 277 | 346 | 424 | 283 | 289 | 275 | 356 | 299 | 259
Group 2 | 413 | 296 | 220 | 365 | 312 | 279 | 433 | 378 | 411 | 473
Group 3| 280 | 339 | 316 | 358 | 348 | 416 | 328 | 276 | 317 | 416
Group 4| 252 | 271 | 269 | 372 | 316 | 292 | 329 | 361 | 364 | 395
Group 5| 374 | 549 | 346 | 511 | 280 | 246 | 390 | 326 | 353 | 391

Total 1620 | 1732 | 1497 | 2030 | 1539 | 1522 | 1755 | 1697 | 1744 | 1934

Table 1.1: Hand washing data set summary. All numbers are measured in frames.
All videos are separated into 5 groups for cross validation.

the 25 fps and 30 fps. Table 1.1 summarizes the whole data set in terms of the frame

numbers.

1.1.4 Evaluation criteria

The hand washing data set is separated into five groups in the evaluation. Methods
are evaluated in a style of 5-fold cross validation: one group of videos are picked up
as the testing set once while the rest of videos are used for training. The experiments
are repeated until all groups are tested. The test results from five groups are then
averaged as the final report result. In order to compare the results from different meth-
ods, three multi-class classification criteria, classification precision, macro-averaged
F-measure, and micro-averaged F-measure, are computed. The classification precision
is reported as averaged group accuracy with standard deviation. It is a measurement
of repeatability of the method under evaluation. For some results, confusion matrices
are also given as complements to the classification precision reports. Macro-averaged
F-measure and micro-averaged F-measure are adaptations of F-measure for multi-class
classification [10]. F-measure is a common measure of test performance in information
retrieval. It considers both the precision and recall of a test. The measure scores are in
the interval (0, 1), in which F-measure reaches the best score at 1 and the worst score
at 0. For multi-class classification problem, macro-averaged F-measure calculates the
F-measure score as an unweighted average of the precision and recall over all classes,
regardless of class frequencies. Thus, the measure could be influenced more by the
classifier’s performance on rare categories. On the contrary, micro-averaged F-measure
is an average score over instances. Classes which have many instances are given more

importance in the measurement. In our evaluation, the macro-averaged F-measure and
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micro-averaged F-measure are computed by formulas 1.1,
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where M is the number of classes, P stands for the precision and R stands for the
recall. T'P; is the true positive number which is the count of correctly classified frames
in gesture ¢, and the false positive F'P,; is the count of frames that are misclassified to
be gesture . The true negative T'N; indicates the number of correctly classified frames
of all other gestures except gesture i, and false negative F'N; indicates the number of
frames that belong to gesture 7 but misclassified to be other gestures.

In some evaluations statistics student’s t-test is performed. We randomly pick
20% videos without replacement from the whole data set as the testing set and use
the rest for training. This procedure is repeated 15 times, and all testing results are

pooled together to form the t-test samples for hypothesis testing.

1.2 Contributions

In this thesis, hand washing gesture recognition is studied as a new type of gesture
recognition task. Hand washing gestures are articulate, fast, bi-manual hand move-
ments which introduce a lot of intra-class variety and inter-class ambiguity. Aiming to

tackle these challenges, several contributions have been made in the research.

1.2.1  Major contributions

Three major contributions are dissertated in the thesis:

10
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A new type of gesture recognition, hand washing gesture recognition which has
hardly been tackled before, is studied in this thesis. 10 hand washing gesture

pattens are defined, and various properties of hand washing gestures are analysed.

Four different computer vision methods are developed and evaluated for hand
washing gesture recognition, which research into the hand washing gestures from

distinct perspectives.

A new method TGC-HCRFs is proposed, which unifies the texton analysis and
HCRF's within the same framework. The evaluation of the TGC-HCRFs method
also provides a practical study of HCRFs with grid graph for gesture recognition,

which has not been seen in literature.

1.2.2 Minor contributions

Along with the major contributions, some minor contributions are also made:

The sequence labelling tool HCRF's is applied for gesture recognition. The key
parameters such as the context window size, number of hidden variables, etc. are

evaluated.

Different test sequence length is evaluated in the linear-chain HCRFs. It is found
that the classification performance grows along with the increase of the test se-

quence length.

The depth of trees in Extremely Randomized Clustering (ERC)-Forests [52][147]

is evaluated for controlling the discriminative power of visual vocabulary.

A bootstraping [167][120] strategy is applied in the max-margin training of TGC-
HCRFs, which alleviates the local optimum problem of TGC-HCRF's and reduces

the overall training time.

Several findings of applying HCRF's with grid graph for gesture recognition have
been drawn. It has been found that gesture recognition favours fine-grid sampling
and rich description of video patches. The vertical neighbours of video patches

also carry more information than the horizontal neighbours in recognition.

The TGC-HCRFs method has the ability of automatically determining the visual

vocabulary size for gesture recognition.
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1.3 Thesis Structure

In the first chapter, we have given a brief introduction of hand washing gestures and
an overview of this thesis. In the following chapters, we will elaborate the details of

our research on the vision-based hand washing gesture recognition:

e Chapter 2 A literature review of gesture recognition, object recognition and
human action recognition is given. The theory background for developing our

TGC-HCRFs method is also provided.

e Chapter 3 The hand washing gestures are recognized using static HOG features
extracted within every frame. A number of parameter settings in HOG extraction
are evaluated with linear SVM. The image processing for ROI detection, which

is also used in chapter 3 and 5, is described in this chapter as well.

e Chapter 4 The linear-chain HCRFs is introduced for hand washing gesture
recognition. A hand washing gesture is modelled as a sequence with a number
of hidden states. Multiple parameters in HCRFs are evaluated including the
context window size, hidden variable number, and sequence temporal resolution.

Different time-shift window size for a frame-by-frame prediction is assessed.

e Chapter 5 Hand wash gestures are described by a bag of visual words. Each
visual word represents a cluster of space-time interest points which are detected
as spatial-temporal energy hot-spots. The Extremely Randomized Decision Trees
[147] is used to generate the visual vocabulary, and the SVM with a x? kernel
is applied for classification. No ROI detection is applied in this method, and no

spatial information of hand washing gestures is conserved.

e Chapter 6 Our TGC-HCRFs model is elaborated including the training algo-
rithm for a large scale dataset. A number of parameters in TGC-HCRFs are

evaluated and discussed for hand washing gesture recognition.

e Chapter 7 Our four hand washing gesture recognition methods are reviewed
and compared. The conclusion of our whole study is then drawn and possible

future work is given at the end of the thesis.
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Chapter 2
Background

Gesture recognition has gained considerable interest in computer vision community in
recent decades. The problem of human gesture recognition can be decoupled into two
levels: the low level hand posture detection and the high level hand gesture recognition
[129][142][172][21]. A static hand posture, usually called a “posture”, is a certain hand
pose or configuration without any representation of movements, whereas dynamic hand
gesture or “gesture” is defined as dynamic hand movement referring to a sequence
of postures connected by continuous motions over a short time span. In fact, the
gesture recognition has close relationship to the object recognition and human action
recognition. Many methods from both object recognition and human body action
recognition can be applied for recognizing the postures and gestures.

In this chapter, a literature review of feature extraction and classification used in
gesture recognition, object recognition and human action recognition is presented first
in section 2.1. In section 2.2 and 2.3, some background of Hidden Conditional Random

Fields and texton analysis applied in this thesis is provided.

2.1 Feature Extraction and Classification

Many methods have been proposed for human gesture recognition in recent years.
Moreover, a lot of methods in object recognition, face recognition and human action
recognition can also be adapted for recognizing human gestures. Following Garg’s tax-
onomy [129], all these methods can be grouped into two categories: 3D model based
approaches and appearance based approaches. Our following review will mainly focus

on the appearance based approaches to which the thesis belongs.
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2.1.1 3D model based approaches

One approach to recognizing hand gestures is to build a model of the 3D kinematic
hand structure. Kuch and Huang [98] represent the hands with 3D cubic B-splines and
estimate the hand configurations via “analysis-by-synthesis”. The method does not
restrict the gestures for the hand tracker and there is no need for the user to wear a
special glove or other physical items. However, the method requires interactive selection
during model calibration to locate all the hand joints and remove background. The
automatic model fitting in the calibration phase shares a common problem with many
3D model-based approaches, which is searching for the optimal hand posture in a huge
hand configuration space. Such a search process is computationally expensive and the
optimization is prone to local maxima. Shimada [146] applied inequality constraints to
reduce the search space. These constraints include: (a) shape parameters are constant
over the sequence; (b) pose parameters change continuously; (¢) each parameter is
within a certain range and has relations with the other parameters. Lin [75] proposed
a learning approach without representing the constraints explicitly. The redundancy
of the hand configuration space is eliminated by finding a lower-dimensional subspace
which is called C-Space. The approach focuses on the analysis of local finger motions
and constraints, and eliminating unnatural hand configurations. A drawback of this
method is that the motion data used to form the constraints implicitly are collected
by special gloves.

Although 3D model based approaches potentially allows a wide class of hand
gestures, the optimization of models could be very computationally complex due to
the high DOF of the hand geometry. A large training database is also required to
cover all the hand shapes under different views. Moreover, properly modelling the

optimization constraints either implicitly or explicitly is not a easy task.

2.1.2 Appearance based approaches

Alternatives to 3D model based approaches are the appearance based approaches. Ap-
pearance based approaches aim to extract abstract information from the static or dy-
namic visual appearance for recognition. These approaches have the advantage of real
time performance due to the fact that appearance based features are easier to compute
[129]. Depending on how the features are extracted and processed, we are going to

review the appearance based approaches from two perspectives [122]: dense represen-
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tation approaches and sparse representation approaches.

Dense representation approaches

Dense representation approaches generally extract features densely over an entire image,
video, or a detection window, and collect them into a high-dimensional vector that can
be used for subsequent classification. Oren and Papageorgiou [117][27] extract an
over-complete set of Haar wavelet coefficients at different orientations and scales in
a detection window. The wavelets encode visually significant patterns and provide a
reasonable degree of translation invariance for recognition. The relationship between
the wavelets is then learned by SVM. The methods are evaluated on face and pedestrian
detection problems. The results show that they can be used to robustly define rich
and complex classes of objects, and they are invariant to changes in colour and texture.
Viola and Jones [163][133] also extract the Haar-like features and use the integral
image to speed up feature extraction. These features are then fed into Adaboost [171]
as attentional cascade to achieve real-time performance.

Another well-known dense representation features are HOG [121] [122] [123]. The
HOG features are reminiscent of edge orientation histograms [165] but computed on
a dense grid of uniformly spaced cells. It is believed that local object appearance
and shape can often be characterized rather well by the distribution of local intensity
gradients or edge directions, even without precise knowledge for the corresponding
gradient or edge positions. Evaluation of the technique by detecting various classes
of objects demonstrates that the classifiers trained with HOG features are invariant
to certain degrees of translation, rotation and deformation, and is robust to colour,
texture, illumination changes and cluttered backgrounds. However, object detection or
recognition may require the HOG calculation in multiple regions, and the computation
is expensive. Inspired by the integral images [163], integral histograms [53][47][136]
are proposed to alleviate this problem. Chandrasekhar [160] also designed compressed
histograms of gradients (CHOG) as a type of low bit rate feature descriptor to speed
up the matching process.

Extending the dense representation to spatial-temporal domain, human actions
can be recognized analogue to language analysis [33][34][61][25] by describing human
movements as simpler movement primitives [60] with HOG descriptors. Mauthner [155]
computes the HOG features on both appearance and motion fields, and show that a

combination of shape and motion information can improve the human action detec-
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tion and classification performance significantly. Schindler [90] also uses dense shape
and motion features for action recognition, and obtains the same conclusion. Instead
computing HOG features on images, Junejo [71] calculates HOG on self-similarities ma-
trices computed from video segments, and then the extracted HOG features become
view-independent. Davis and Bobick [5] compute 7 Hu moments [74] from Motion-
Energy Image (MEI) and Motion-History Image (MHI) to build a temporal template.
Bradski [58] further generalized the MHI as timed Motion History Image (tMHI) which
directly encodes the actual time in a floating-point format. However, these methods
are view-dependent and require well segmented foreground figures which can be easily
effected by the illumination changes and cluttered background. Efros [4] uses smoothed
and aggregated optical flow computed at low resolutions for action recognition. The
method is robust to jitters introduced by the tracking [3] but requires that the ac-
tions are observed from a distance. This is because the dense flow estimation becomes

unreliable when the observed acting person is large.

Weinland [43] extends Davis’ method as 3D Motion History Volumes (MHV).
The volumes are built from multi-view silhouettes from multiple cameras and form a
free-viewpoint representation of the human actions. Fourier based features are used
with cylindrical coordinates to express motion patterns. Achard [20] also builds the
3D volumes but from a single camera binary silhouette sequence instead. The volumes
are termed as “space-time micro-volumes” and are used to extract the semi-global
moment features. Gorelick [101] generalizes the Poisson equation used in object recog-
nition [102] for action recognition. Global moment features are extracted via applying
different types of Poisson equations for the characteristic function in moments compu-
tation. The method is fast, robust to partial occlusions; non-rigid deformations and
significant changes of both scale and viewpoints but requires preprocessing to extract

the foreground figures in order to form the space-time silhouette volumes.

Instead of building training models, dense representation approaches can also be
correlation based. The test samples correlate with exemplars using image intensities
or dense features for classification. Barrow [16] uses “chamfer matching” for shape
comparison but can only tolerate slight misalignment or distortion of two collections of
shape fragments. Shechtman [48] measures the texture correlation between test images
and example images. The method accounts for local and global geometric distortions,
and gives matching capabilities of complex visual data in real cluttered images. Sulli-

van [80] uses the key frames as exemplars for matching. The recognition is based on

16



Chapter 2. Background

quantitative similarity that computes point to point correspondence between shapes,
however, manual marking of some interior points on human bodies for correspondence
is required during the training. Shechtman and Irani [49] construct 3 x 3 Gram matrix
taking pixel space-time gradients of 3D patches from both test and example volumes.
Motion consistency is measured as the rank of the Gram matrix. No foreground sub-
traction and no prior learning of activities are required. However, the method is mainly
designed for action detection. It may have difficulty in discriminating similar actions
such as walking and running. Zelnik-Manor [107] builds a temporal pyramid of videos
by taking different temporal resolution. Built on the temporal pyramid, empirical dis-
tributions for every action event is constructed using normalized space-time gradients.
Actions are detected by comparing the empirical distributions between the sample
clip and a test video segment. The dense features extracted from moving trajectories
can also be used for test and exemplar video matching [29][137][144]. However, these
methods may not be able to capture the large variety of actions.

Although dense representation based approaches have achieved very promising
recognition performance, most methods require ROIs which are bounding boxes of
the targets. This usually involves tracking and segmentation. Many methods can be
used for the detection of ROI such as mixture of Gaussian [28][149](44], kernel density
estimation [50][9], skin colour detection [150][161][103] and flocks of features [100][68].
However, these methods usually have one limitation or another, and are not universally
applicable for most situations. For example, mixture of Gaussian needs to concern
the adaptation rate, especially in uncontrolled clutter background; skin detection is
sensitive to the illumination changes and skin-colour distractors. More precisely, the
detected box can be inaccurate because of occlusion and may keep changing the size
due to the non-rigid human movements. This will bring in difficulties when dealing
with the intra-class variety and inter-class ambiguity. On the other hand, the cost of
the exhaustive scan in images or videos with a fixed-size box is very computationally

expensive.

Sparse representation based approaches

Sparse representation based approaches are based on local descriptors of relevant local
image regions or video patches. It was motivated by the physiological studies that the
visual information human received is redundant [51] and that human gaze preferentially

fixates on image regions with corners and multiple superimposed orientations [122]. In
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object recognition, the approaches first search for salient regions in images through
interest point detectors. These detectors include Harris detector [67], Harris-Laplace
detector [88], Hessian-Laplace detector [9], Difference of Gaussians (DOG) detector
[42], Harris-Affine detector and Hessian-Affine detector [89]. The detected regions can
be corners, blobs, ridges or entropy. The hypothesis is that these detected regions are

informative to represent the image contents.

Various descriptors are designed to describe the detected regions. Local Jet [30] as
point descriptor characterizes the local geometry in the neighbourhood of the detected
point. Shape context descriptor [140] reflects the positional uncertainty of useful coarse
shape cues. It expresses the configuration of the entire shape relative to a reference
point with a set of vectors originating to all other sample points on the shape. Scale
Invariant Feature Transform (SIFT) [42] delineates the points as voted orientation
histograms rectified by local scale and dominant orientation based on the scale-space
theory [113]. Considering its invariant to scale, orientation and affine distortion, and
partially invariant to illumination changes, Wang [36] employs SIFT in hand posture
recognition. PCA-SIFT [91] provides a more compact and more distinctive representa-
tion of SIFT by applying Principal Component Analysis (PCA) to the local gradient
patches. Speeded Up Robust Features (SURF) [63] improves the SIFT using Haar-
like features in the descriptor and obtains faster processing time than SIFT. Bao [84]

employs the SURF for dynamic hand gesture tracking and recognition.

Extending to the space-time domain, the spatio-temporal interest points can be
detected and described similarly to the 2D interest points. Scovanner [132] extends the
2D SIFT to the 3D SIFT for action recognition. Laptev [108][31] generalizes the Harris
detector with Local Jet description for the spatio-temporal interest points. However,
the method is criticized for rare detection in aperiodic movements like rodent behaviour
or facial expressions [46][72]. Attempting to overcome that problem, Dollar [46] de-
tects the interest points via the extrema of linear filter response and describes them
by Cuboids which are composed of gradients and flow vectors. The greater amount of
information embedded in an image sequence over a 2D image also enables the interest
points to be constructed differently. Klaser [7] describes spatio-temporal interest points
as 3D HOGs which is suitable for describing sport actions in Wang’s evaluation [65].
Yilmaz [13] constructs action volumes with silhouettes. Interest points are then de-
tected as curvature extrema and described with various surface types such as peak, pit,

valley and saddle valley. The detected points are examined for their view-invariance
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to human actions.

Using sparse features for recognition is usually based on the Bags of Features
(BOFs) method [57][148]. All detected interest points in the training set are pooled
together and clustered as “visual words”. A codebook or visual vocabulary is built
thereof and each interest point can be assign to a word by some similarity measure-
ment. The word occurrence histogram of an image or an image sequence is then
constructed for subsequent statistics analysis and the results produced are usually
“semantics-oriented” .

Comparing to the dense representation based methods, sparse representation
based methods generally do not require any foreground subtraction and thus can han-
dle complex scenes with cluttered backgrounds. However, this merit can also turn
to be a drawback as many detected points may be unreliable and uninformative. In
order to obtain reliable and informative 2D and 3D interest points, a possible way
is applying feature pruning in the regions of interest [76]. Moreover, interest points
based methods generally do not preserve the spatial configuration of the targets. To
overcome this limitation, Boiman [126] localizes irregular action behaviour with local
video patch ensembles at the price of heavy computation. Niebles [125] combines the
hierarchical model with the BOFs method to capture the spatial relations of human
parts. However, the human part layer of the hierarchical model is built on the relative
positions of groups of interest points, and may have difficulty in assigning human parts

on cluttered background.

2.1.3 Classification methods

Most approaches, including dense representation based approaches and sparse repre-
sentation based approaches, require to train classifiers for recognition. In this section,
we review several popular classifiers for pattern recognition in literature.

Eigen analysis classifier

Eigen analysis provides a simple but efficient way to summarize the data. It seeks
an orthogonal basis that spans a low-ordered subspace that accounts for most of the
variance in a set of data [129]. Coogan [152] represents the hand shapes in a subspace
created by PCA to handle the small rotations and translations. Belhumeur [130] builds

“fisherfaces” to account for variation in lighting and facial expression in face recognition
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by explicitly modelling the difference between classes with Linear Discriminant Analysis
(LDA) [168]. Li [116] proposes 2D LDA which performs eigen analysis directly on 2D
image matrix. Park [64] considers the substructure of each class as hierarchical LDA
which shows better performance than original LDA. Original LDA has an assumption
of equal within-class covariance for all classes, Chen [138] proposes heteroscedastic
LDA to relax such an assumption.

However, eigen analysis usually requires a well prepared data set. In face recog-
nition, the training images are all well cropped and scaled, and only contain people’s
faces. Meanwhile, eigen analysis methods are sensitive to the outliers presented in the

training set [106].

Support Vector Machine classifier

SVM (24] has been widely used for object recognition and human action recognition due
to its good generalization capability. It finds separating hyperplanes that maximises
the margin between classes in either the input feature space or a transformed high
dimensional space. Dalal [122] applies the SVM classifier for object recognition with
HOG features. Felzenszwalb [128] improves the approach by building a multi-scale,
deformable part model with Latent SVM [26] such that different parts of an object can
be loosely positioned. Recently using SVM kernel methods with sparse features has
become popular in object recognition and action recognition [35]. The SVM kernel is
substituted by a similarity measurement which obeys the Mercer’s condition [24] and
accepts unequal numbers of interest points detected between images or videos. Wang
[65] applies the x? kernel in the evaluation of local spatio-temporal features and shows
promising results for action recognition. Grauman [86] designs pyramid match kernel
such that partial match correspondences can be measured between two interest point

sets.

Adaboost classifier

Adaboost is an algorithm for constructing a “strong” classifier by combination of
weighted “weak” classifiers that are called repeatedly in a series of rounds during train-
ing. Many features can be combined with Adaboost to build efficient classifiers. Viola

[163][133] uses Adaboost to train cascades of weak classifiers for face and pedestrian

lsimply put, “heteroscedastic” means all classes have different covariance matrices
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detection. A positive result from the current classifier in the chain triggers the evalua-
tion of the next classifier aiming to reject as many of the remaining negative cases as
possible while still retaining all the positives. In each training stage, Adaboost selects
a small number of critical visual features from a larger set. Levi [87] uses local edge
orientation histograms in the Adaboost in order to train the classifier with a small num-
ber of examples. Laptev [70] also applies local edge orientation histograms to train the
weak learner, Weighted Fischer Linear Discriminant which projects multi-dimensional
features to 1-dimensional manifolds, to overcome the problems of limited training sets.
Sabzmeydani [131] run the Adaboost in local regions with low-level gradient features
to construct a new mid-level shapelet feature which is the weighted sum of weak classi-
fiers. The experiment run on pedestrian detection shows that the boosted feature can
capture more information than fixed features sets. Torralba [12] focused on detecting
a large number of different classes of objects in cluttered scenes and learned the shared
features with a modified Adaboost algorithm in which the weak learners are expressed
as regression “stumps” [56]. Zheng [166] proposes Realboost with a novel image strip
features that are calculated via the mean intensities of the single strip regions. How-
ever, the method is only suitable for the object detection like cars which have edge-like

and ridge-like strip patterns.

Graphical model classifier

A graphical model is a probabilistic model using a graph-based representation for a
probability distribution. A well-known graphical model is the Hidden Markov Model
(HMM) [105] which has been widely used for sequence segmentation and labelling. Men-
doza [115] employs a continuous HMM with contour histograms to model the dynamic
structure of human actions. An action class is assigned to a video sequence by the
trained HMM which maximizes the likelihood of the observation sequence. Ahmad
[114] also applies HMM to model different human actions. The method takes an action
from multiple views into account so that a set of HMM models are trained for each hu-
man action. However, HMM is a generative model which assigns a joint probability to
paired observation and label sequences [73]. Two conditional probability distributions
are required in the joint probability computation: a state transition probability from
previous state s’ to current state s, P(s|s’) s,s’ € S, and an observation probability,
P(ols) o € O,s € S, where S is a finite set of states and O is a set of possible obser-

vations [8]. Usually the observations are multinomial distributions and in many cases
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tasks would benefit from a rich representation of observations (8], but in order to have
a tractable inference, the computation of P(o|s) in HMM needs to enumerate all possi-
ble observations. Therefore, strong independence assumptions among the observation
variables are made in HMM [92]. Nevertheless, it is not necessary to expend modelling
effort on the observations that are fixed anyway at test time. Therefore, McCallum [8]
proposes a discriminative model Maximum Entropy Markov Models (MEMMs) which
compute a conditional probability P(s|s’,0) instead of the HMM transition and ob-
servation probabilities. The MEMMs model relaxes the independence assumption in
observations made in HMM and allows arbitrary features from observations which may
overlap or interact with each other. However the MEMMs suffer a label bias problem
[73] in practice. The local probabilities with fewer transitions have advantages over
those with many transitions in MEMMSs due to the per-state normalisation of transi-
tion scores. In other words, when a state has only one single outgoing transition, the
learning of MEMMs will effectively ignore the observations. To overcome this problem,
Lafferty (73] proposes the CRFs which are also discriminative models. There is no ob-
servation independence assumed in CRFs and the model accounts for state sequences
globally rather than locally to overcome the label bias problem. With these advantages,
Sminchisescu [32] employs CRFs for human action recognition. Silhouettes extracted
from frames surround current frame are used as contextual information in the classi-
fication. Shimosaka [2] considers the situation where multiple symbols or labels are
present in a single frame and comes up with Multi-Task CRFs solution. The method
incorporates the interaction between action labels as well as the Markov property of

actions to improve the accuracy of all label assignments at a specific time.

However, CRFs lack of the ability of representing the internal structure of actions.
Wang [139] therefore employs HCRFs for gesture recognition. The HCRFs model learns
distributions of hidden states for different gestures in a discriminative manner and out-
puts a single class label to a sequence in prediction. Liu [54] applies Neighborhood
Preserving Embedding (NPE) for observation dimension reduction before employing
HCRFs and the local neighbourhood structure of data is preserved by NPE. In order
to capture both extrinsic dynamics and internal structure of actions, Morency [104]
proposes the Latent Dynamic Conditional Random Fields (LDCRFs) for continuous
gesture recognition. By preparing an exclusive hidden variable set for each class label,
the model is able to give prediction to videos frame by frame. Build on LDCRFs, Ning
[66] develops Latent Pose CRFs (LPCRFs) which substitutes explicitly calculated ob-
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servations with latent pose estimators such that feature extraction is jointly optimized

with the random fields.

2.2 Hidden Conditional Random Fields

In the rest of this chapter, some theory background that our evaluated methods build
on in the thesis will be given. In this section, we first dissertate the HCRFs model

which is used in chapter 4 and chapter 6.

2.2.1 Undirected graphical model

HCRFs are undirected graphical models. An undirected graphical model is a family
of probability distributions that factorize according to an undirected graph [151]. An
undirected graph has a set of nodes each of which corresponds to a variable or group
of variables, as well as a set of undirected links each of which connects a pair of nodes
[17]. An very important property of undirected graphical models is the conditional
independence which can be used to factorize a complex probability distribution into a
product of functions defined over sets of variables that are local to a graph. The factor-
ization of the probability distribution should be performed in a way that conditionally
independent nodes do not appear within the same factor, that means the nodes belong

to different cliques [92].

In an undirected graphical model, a clique is a subset of the nodes in a graph,
which is fully connected. Figure 2.1 shows some examples of graph clique. Example
(a) in figure 2.1 is a clique of two nodes and example (b) is a clique of three nodes,
but example (¢) is not a clique as there is a missing link from node v; to node v,. If a
clique can not be extended to include any other nodes from the graph without ceasing
full connection between all pairs of nodes, this clique is a maximal clique as example
(b) in figure 2.1. An arbitrary function can be defined over a maximal clique such that
the complex distribution defined over a graph could be represented by a product of

local functions.

Let us denote a clique by C and the vertex set of a graph by V. According to

the Hammersley-Clifford theorem [112], the probability distribution over an undirected
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Figure 2.1: Graph clique examples: (a) pair-site clique; (b) triple-site clique; (c) not
a clique

graph P(V) can be approximated as form 2.1,
PV) o []%cVe) (2.1)
c

where Ve is the set of variables in a maximal clique C and W¢(V¢) is a potential function
defined on the maximal clique. In general, it is required that the potential functions
are strictly positive such that an undirected graph can be factorized as formula 2.1
and it is certain that P(V) > 0. As the potential functions are all positive, it is also

convenient to express these functions as exponentials as formula 2.2,
We(Ve) = exp(—E(Ve)) (2.2)

where E(Ve) is called an energy function. The choice of the positive potential functions
are arbitrary. It is not necessary to have specific probabilistic interpretations for the
functions. However, one consequence of the generality of the potential functions is
that their product can not guarantee satisfying the axioms of probability. Therefore
a normalization constant Z calculated by formula 2.3, which is also called partition

function, is introduced to ensure a proper probability output.
z=>Y Ty (2.3)
vV ¢

Computing the partition function requires to sum over all possible assignments
to the variables in the V. This computation can be very expensive, even intractable in
many cases. For example, given a model with M discrete nodes each having K states,
the evaluation of the normalization term involves summing over K states in the worst

case, which is exponential in the size of the model [17].
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2.2.2 Conditional random fields model

Given an observed sequence X with length 7" and the corresponding class label se-
quence Y = {Y},Y5,--- | Y;,--- . Y7}, a linear-chain undirected graph structure can be
depicted as figure 2.2. Modelling a joint probability P(X,Y) over this simple linear-
chain structure could be intractable [162] as it is impossible to sum over all possible
assignments to the variable X with Y in most cases. To overcome this problem, the
CRFs model is proposed [73]. The CRFs model computes the conditional probability
P(Y

tion P(X) unspecified. In fact, P(X) is not needed for classification anyway and we

X) instead of the joint probability P(X,Y ), and leaves the observation distribu-

are only interested in the output structure Y conditioned on the input X. To model
the conditional distribution P(Y'|X), CRFs only represent Y as an undirected graph
in which each vertex of the graph corresponds to a variable Y;. The joint variable
Y, when conditioned on X, admits the Markov property in that the conditional dis-
tribution of Y; given its neighbours, defined by the graph, does not depend on other
variables outside the neighbourhood [157]. The formal definition of CRFs is defined as

below:

“Let G = (V,&) be a graph such that Y = (Y;)iev 1s indexed by the
vertices of G. Then (X,Y) is a conditional random field in case, when
conditioned on X, the random variables Y; obey the Markov property with
respect to the graph: P(Y| X, Yy, t' # t) = P(Y3|X, Yy, t' € N(t)), where
N (t) is the neighbourhood of Y; in G” [73].

With the above CRFs definition, the conditional probability P(Y|X') defined over

the linear-chain graph would be computed by formulae 2.4 and 2.5.

P(Y|X) = H‘I’c (Ye, X (2.4)

z2=> [[wcv¢.x (2.5)
Yr C

where Y; denotes label variables Y involved in clique C, and Y denotes all possible label
sequences. Note that the normalization constant Z is computed by only summing over
Y’, and can be efficiently calculated via dynamic programming [105] for a linear-chain

graph structure.
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Figure 2.2: Linear chain CRFs

Feature functions

The clique potential We specifies how local variables interact and how much the in-
teraction contributes to the global distribution [33]. Since a clique only contains two
nodes (Y;_,,Y;) for a first-order linear-chain graph, the clique potential can be written

as form 2.6,

m

We(Ye, X) =exp [ Y Nifi(Yeer, Vi, X) (2.6)

=1

where f; is called feature function which encodes prior belief about dependency between
the conditioning variable X and the local variables (Y;_1,Y;) , and JA; is corresponding
feature weight. Every clique potential can have its own weight vector to specify how
the local features contribute to the global distribution. In other words, the feature
weights are position dependent. However, it is more common to use the same weight
vector across all clique potentials, which means the weights are position independent.

This is also known as parameter tying.

2.2.3 Hidden conditional random fields model

The CRFs model has shown to be a powerful discriminative model for sequence labelling
[2][162]. Tt outputs a class label for every node in a sequence. However, the model lacks
of the ability to represent the internal structure of a sequence. There are many cases
that the categorization is based on the whole sequence and only one class label is output
for the entire sequence. For example, a sequence of hand movements over a span of
time may present only one class of gesture. To meet the challenge of intrinsic structure
representation, the HCRFs model is proposed [11]. HCRFs model is an extension of

CRFs model with hidden variables. It can describe the internal structure of a sequence
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g - @ G5

X
Figure 2.3: Linear chain HCRF's

by many intermediate unobserved states. These hidden states will be inferred from the
observation X and jointly represent the sequence class y 2

With the HCRFs model, the linear-chain structure of a sequence would be de-
picted as figure 2.3, where each node of the sequence is assigned with a hidden state h,
from a finite set of hidden variables H. The sequence of hidden states b = {hy, ho, - - , hy,
-+, hy} is modelled as an undirected graph and admits the Markov property. Thus,
similarly to CRFs, for a linear-chain HCRFs model, we can compute its conditional

probability P(y, h|X) by formulae 2.7 and 2.8

Py, hX) = 5 [T Wely, he, X) (27)
(64

2= T he. X) (2.8)
C

Yy R

where he represents the hidden variables h involved in clique C, h' denotes all possible
hidden state sequences, and y" denotes all possible class labels for the sequence. Fur-
ther, we are able to compute the conditional probability P(y|X) with formula 2.9 for

classification,
P(y|X) =Y P(y,hlX) (2.9)
h

where P(y|X) is obtained by marginalizing over the hidden variables h.

2In order to differentiate the sequence class label in HCRFs from the sequence labels in CRFs, we
use the small letter y to represent the sequence class
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If the exponential form 2.10 is used for the potential function W¢(y, he, X),
i=1

Ue(y, he, X) = exp (Z Mulys hiis h,.X)) (2.10)

for a first-order linear-chain sequence, it would be possible to push the product [,

along the cliques into the potential function as a summation as formula 2.11.

IT we(y.he.X) =exp (Ziu Y, he_y, by, )) (2.11)
C

i=1ri=l
T m T m
-oxp(ZZA,,h, Yohe X) + )Y Moy, heey x>>
t=1 =1 t=21=1
(2.12)

In equation 2.12, the feature function f; is further decomposed into two types of features:
node feature f,; and edge feature f,,. The node feature function f,; extracts local
features based on information from a single node while the edge feature f,; depends on
a pair of nodes. For simplicity, we use term ®(y, h, X) to denote the expression inside

the exponentiation.
T m T m

Oy, h, X) =D Y Mifrily. b, X +ZZA2,f2, (Y, hu—1, he, X) (2.13)

t=1 i=1 t=2 i=1

2.2.4 Parameter estimation

The parameter \; in equation 2.11 needs to be learned from training samples. Many
methods can be used for estimating the HCRFs parameters [62][3], but there are
two general approaches: Maximum Likelihood (ML) based approach and Expectation-

Maximization (EM) based approach.

ML based approach

The most popular approach for HCRFs training is based on the maximum likelihood

principle, which selects the parameters that maximise the conditional likelihood as 2.14
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and 2.15,
A= arg max L(N) (2.14)

L) = log P(y" X", ))
=1

= i <log <Zoxp (®(y', h, X’))) —log (Zcxp (<I>(y'.h'.Xl))>) (2.15)
i=1

h y' h'

where L£(\) is the data log-likelihood, and [ indexes the training instance in a training
set D = {y, XU} In general, a regularisation term is added to the log-likelihood
to prevent the values of parameters from going wild. If a Ly regularization is applied,

the objective function 2.15 would become formula 2.16,

2
L) = Z (log <'Zcxp (®(y', h..X'))) — log <Z(‘XP (@(y'.1, XI)))) - HQ/\(g“z

n
=1 y' b

(2.16)

< . All2 . o
where 0 specifies how much the quadratic penalty % is applied.

If gradient-based optimization is employed in the training, the optimal parameters
would be found when the gradient of the penalised log-likelihood is zero. Let us consider
the parameters of node features first. Taking the partial derivative of the objective

function 2.16 with respect to the parameter A;;, we obtain equation 2.12.

L) o -
- P(hly® . X® ) ; O p ,X(l)
A S5 P, X0 3 0 X

=1 h
ET A
I 1.i
_ ZP(y,h,"X(l)) fl,z‘(’y,,h/;,Xl)} o %
v =
n ]‘
] Z {Z : P(hely®, XD) fri(y®, he, X©)
=1 t=1 hy
3 A
", b I hl X 1,i
— Zzp(y"h‘1|X(”)f1.i(y.ht.,)\(”) - 2.17)

t=1 y' h}

For a linear-chain structure, the probability P(h,|y"), XV) and P(y', h}|X"V) can be

efficiently calculated using forward-backward algorithm [105]. Similarly, the partial
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derivative of the objective function with respect to the parameter \y; of the edge

feature would be calculated as equation 2.18.

‘)di :Z Z S Plhey, haly®, XO) foi(y®, ey, e, XO)
2.1

= t=2 he—1:he
0) ) Az
L Z > Py, kg, ki XD) foi(y®, heoy, he, X©O) -5 (@19)
=23 ’h 1,;

Note that setting the gradients 2.17 and 2.18 to zeros does not result in any closed form
solution. Thus, the parameter estimation typically resort to iterative methods such as

the conjugate gradients method and the limited memory quasi-Newton method [62].

EM based approach

The parameters of HCRFs can also be estimated in a Expectation-Maximization style.
The conventional EM algorithm attempts to maximise the data log-likelihood £(\) by
iteratively applying two steps: the Expectation step (E-step) and the Maximization
step (M-step). The E-step calculates the expected value of the log-likelihood function
using current estimate of the parameters, with respect to the conditional distribution of
hidden variables /i given observed data. The M-step computes parameters maximizing
the expected log-likelihood found on the E-step. These parameters are then used to
determine the distribution of the hidden variables A in the next E-step. It has been
proved that the iterative procedure would increase log-likelihood £(\) until the training
converges to a local maximum [157].

The EM approach for HCRFs parameter estimation can be used as Kumar’s and
Korc’s work [141][97], where a drastic approximation of the partition function Z needs
to be computed with a single Maximum A Posteriori (MAP) labelling configuration.
However, it is more convenient to apply the EM approach within a Max-Margin training
framework [118][3] where the computation of Z is not required.

Recently, there has been an explosion of interest in structured output learning
with maximum margin training [15][118][3]. The idea of the max-margin training is
that maximizing the margin of the SVM scores can magnify the difference between the
true label and the best runner-up, increasing the “confidence” of the classification [15].
For our classification, we aims to find the MAP labelling § = argmax, P(y|X, ) of

a test input X where 7 is the estimated class label. This implies the constraint 2.19
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during the training. If this were successful, the estimated label y during the training

inference would be equal to the true training label y'.
PO1XO ) > P(y|xY,)) y#yO.W (2.19)

According to equations 2.7 and 2.8, calculating the posteriori P(y|X, \) would require
the computation of the normalization constant Z which can be a bottleneck during the
inference. However, as both sides of the constraint 2.19 have the normalisation term,
it is possible to cancel the normalisation constant and rewrite the constraint 2.19 as

2.20, where ®(y, h, X) = Af(y,h, X) as shown in expression 2.13.
O(yV h, XD) > oy, b, X)) y#£yP W (2.20)

With constraint 2.20, the model parameters would be able to be estimated within a
max-margin framework as 2.21,
max -y
[[All=1
st. ®yY, h XD — oy, K, XD) y#£yO W (2.21)

where 7 denotes the margin between the true label y) and the best runner-up. In
formula 2.21, ||A]| is set to 1 to prevent weights from growing without bounds. Using
the transformation ||A|| « % formula 2.21 can be written as a standard quadratic form
as 2.22,

1 O
in —||A||> + — :
min S [[A[* + — ;&:

st. ®@yY hXD)— &y, XY)>1-¢
y#yP, &>0, W (2.22)

where C'is the trade-off parameter for soft-margin SVM., and & is the slack variable
measuring the misclassification of sample /.

It can be seen that optimization 2.22 contains unsolved hidden variables h in the
constraints. In order to perform the optimization, an EM style training can be used
[3]. As listed below, the training algorithm is composed of two steps. The first step is
analogue to an expectation step where hidden variables h are estimated with current
parameter value. The second step is similar to the maximization step, in which model

parameters A are computed with fixed hidden structures.
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1. Holding A, ¢ fixed, optimize the hidden variables A for sample {y), X(V},

2. Holding h fixed, optimize A, ¢ by optimizing form 2.22.

Summary

Both ML based and EM based approaches can be used for HCRFs parameter estimation.
However, due to the computation cost, ML based approach is usually applied with
simple graph structures such as linear-chain or tree graph. On the contrary, the EM
based approach can be used for arbitrary graph structures as the heavy computation
of normalisation constants is omitted. As the HCRFs model involves hidden variables,
the objective of HCRFs 2.16 has multiple local maxima. In other words, both ML
training and EM training approaches can not guarantee to reach a globally optimal

point [11].

2.3 Textons

Visual texture has been extensively studied in Computer Science [159](37][1]. Recently
texture analysis based on textons has also used for image retrieval and object recogni-

tion.

2.3.1 Texton theory

Textons are used for explanation of texture discrimination. They are introduced by
Julesz [85] as the putative units of preattentive human texture perception, but what is

the “preattentive”?

“Preattentive processing of visual information is performed auto-
matically on the entire visual field detecting basic features of objects in the
display. Such basic features include colours, closure, line ends, contrast,
tilt, curvature and size. These simple features are extracted from the visual
display in the preattentive system and later joined in the focused attention
system into coherent objects. Preattentive processing is done quickly, effort-
lessly and in parallel without any attention being focused on the display”
[156].
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Typically, tasks that can be performed on large multi-element displays in less than 200
to 250 milliseconds are considered preattentive [23]. Julesz investigates order statics
of texture patterns and believes that only a difference in textons or in their density
can be detected preattentively. These textons are groups of features detected by the
early visual system, such as elongated blobs, terminators (ends of line segments), and
crossings. Figure 2.4 [85] gives an example of preattentive discrimination of textures

via textons.  The upper and lower regions in the left image can not be told apart

NSENSSSNUINBESSH qtatqatanidired G AP DG D
NUESVSNNUESSSWY pLératdbvrasan SR AR e i€ D
SSESUNSSNSEBNNS voedadadprbiear & 2829
BUNUBLUBIESS LS gwbécavavagonat &3 A
NUSSSUSNSNSsuw Agoaft vyt e dd o ARECEANIUIRDY A
NEBUEESNUNEINES CALOPL YLE P4 LA AEIICULARTNG S
nansspnnssasaR S ELCNEAYNEA AL > SV EIDRNBADNE
RanEsRINESSINE Angagfieebe3IVsiob

BOBIOBODESI® DN dar)aArtyu e arat FECCRT YR DA
msSspoeEenNcsSH0IINES sebiftuduveavrd [T T EES F'E XN
LAIN R R 2 R N-E N BN R B a & e LCASAHDI G

pEmmEESpiN0Ean p:c5a>€v¢rc3oa sl 5 e e
nmspens0eNeRese JryrAboanondob CuDPANY DS EE AN
psSoUNpENONS0NS Aaspurbtoadacivad T EEEREEREEENERS

== £ e LA
(a) (b) (c)

Figure 2.4: (a) two objects are actually the same texton; (b) two textons are different
in the number of terminators; (c) the first-order statistic is different globally in the two
textures

although two components appear different in isolation. The two objects are actually
the same texton as they have the same size, number of terminators and join points.
Two regions in the middle image are discriminable due to the difference in terminator
numbers. The texton in the upper half has three terminators while the one in the
lower half has four. Two textures are also distinguishable in the right image by the
global difference in their first-order statistics. The first-order statistic (or probability
distribution) is simply the probability that randomly thrown dots will land on a certain

colour (for example, black) of the texture [85].

2.3.2 Computation model

The texton theory developed by Julesz is typically constructed on black-and-white dot
or line patterns, and is not directly applicable to gray-scale images. Malik [153][78]

presents an alternative model that favours the texton analysis on gray-level images.
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The model relies on filter banks on arbitrary images and identifies textons as clusters
of vectors of filter outputs. By mapping pixels to textons, an image can be analysed
into texton channels, each of which is a point set. Figure 2.5 presents the computation
diagram of the model.

The model can be summarized into three stages.

e The first stage approximates the output of primary visual cortex V1 cells. An
image I(z,y) is convolved with a bank of filters tuned to various orientation and
spatial frequencies. The filters can be linear filters like Gaussian derivatives, Dif-
ference of Gaussian (DOG), or Gabor filters. The output characterizes an image
patch centred at (xq,yo) by a set of values. This is similar to characterizing an
analytic function by its derivatives at a point like Taylor series approximation.
The choice of the filters had been studied in Malik’s early work [77], where he
pointed out the need for essential nonlinearities in texture perception. Linear
filters may produce identical first-order global statistics but the texture is preat-
tentively discriminable. Malik chose half-wave rectification as the nonlinearity for
biological evidence and its conservation of filter signs. Moreover, Malik applied
nonlinear inhibition as a second nonlinearity to suppress spurious responses in

nonoptimally tuned filters.

[gray-scale images)— filter banks I—J K-means clustering pe===pt texton channels —[ further analysis j

Figure 2.5: Texton computational model for gray-scale images

e After applying filter banks, each pixel is transformed to a vector of filter responses.
In the second stage, vectors from all the images in the entire training set are
aggregated and clustered using K-means. The criterion is to find K centres such
that after assigning each data vector to the nearest centre, the sum of the squared
distance is minimized [78]. The set of estimated cluster centres then form the
textons and a visual vocabulary. If the distance in K-means is measured by
Mahalanobis distance, associated covariances of clusters can also be used for the
vocabulary definition [81]. The size of the vocabulary usually has an effect on
the texton performance and model discrimination. Small size vocabulary may
suffer from discrimination while a large vocabulary may result in overfitting. A

common way to determine the number of clusters is to set a large number of
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clusters initially, then the vocabulary is pruned down by merging cluster centres
[153][81].

e In the third stage, each pixel in the testing image is mapped exactly to one texton
by measuring the euclidean distance. A collection of all pixels with same textons
constitutes a texton channel. With texton channels, a texton histograms can be
build for recognition (78] [81]. It is also possible to extract contextual informa-
tion by building more complex features using texton channels, for example, the

texture-layout features in TextonBoost [79].

Same as interest points based methods, simply building texton histograms will
lose the spatial configuration information. Graphical models HCRFs have the ability
of modelling spatial or temporal structures of actions. In this thesis, we propose an

extension of HCRFs to retain the spatial information in images.
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Chapter 3

Recognition using Static Postures

3.1 Introduction

Hand washing gestures are very articulate bi-manual hand movements. According to
our hand washing gesture definition in section 1.1.1, which follows the WHO hand wash-
ing recommendation, some gestures are quite dynamic and some gestures are relatively
static. In this chapter, we ignore the dynamic nature of the hand washing gestures,
and analyse the gestures with only static information. In other words, all gestures
are treated as postures. The analysis follows the dense representation approach for
object recognition. Hand shape is the only cue used in the recognition and the shape
configuration is encoded in a dense grid style. The classifiers subsequently learn pos-
ture models for every hand washing gesture class and run a one-versus-one multi-class

classification [69] for recognition.

3.2 Methodology

Recognition using static postures considers each frame in the video independently. Fig-
ure 3.1 illustrates the workflow of the method. It first localizes the hands into a square
box in the image preprocessing step. Subsequently, HOG features are extracted from
each frame to capture the shape information of gestures. HOG are well-known feature
descriptors for object detection. Here we apply them for gesture recognition task. In
the classification, linear SVM [24] is used to build gesture models. As there are 10
gestures rather than 2, a one-versus-one multi-class classification is proposed for the

recognition.
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Captured ha.nds. HOG? S.VM . Results output
frames localization extraction classification

Figure 3.1: Recognition using static postures workflow

3.2.1 ROI detection

After capturing a frame from the camera, the first step is to localize the hands in the
image, which is also called ROI detection. Background subtraction [149][50][38] and
skin detection [150][161] can be used to find the hand area, however both techniques
may have severe false detections due to the splashing water, skin-tone disturbers or
lighting condition changes. In order to reduce the false detections, a more robust ROI
detection method is developed in our evaluation, which combines the skin information
and hand motion information together for the detection.

Our ROI detection calculates both skin probability and motion probability. ROI
is detected as strong skin-motion area. Figure 3.2 illustrates the detection workflow.
Given an input colour image, adaptive lighting compensation is employed first to adjust
the image colour in order to remove the adverse effect of various lighting conditions.
Then a skin mask is obtained by thresholding the multiplication result of skin proba-
bility and motion probability. After simple morphology operations which remove spurs

and noise on the mask, a square box framing hands inside is allocated.

Skin
probability
. Adaptive lighting Skin Motion Morphology "
@put colour ma@—# compensation Mack operations Region of Interest
Motion
probability

Figure 3.2: A diagram of ROI detection

Adaptive light compensation

The appearance of the skin-tone colour strongly depends on the lighting conditions,
therefore a lighting compensation is indispensable to obtain robust skin detection result.
The grey-world algorithm presented in [103] is applied for adaptive light compensation.
The algorithm is based on the assumption that the spatial average of surface reflectance

in a scene is achromatic. Since the light reflected from an achromatic surface is changed
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equally at all wavelength, it follows that the spatial average of the light leaving the
scene will be of the colour of the incident illumination.

The grey-world algorithm calculates a scale factor s; (i € R, G, B) for each colour
component of every pixel. Then adjusted pixel colour could be calculated by formula
3.1

7 SR 7
q = S &® qg ( Sl )
b new 5B old

where ® means element wise multiplication. The scale factor calculation of standard
grey-world algorithm does not fit well for images with dark background. To solve this

problem, our scale factors are calculated with equations 3.2:

Cs-t(l o Cstd Csld

SR = 3 8 == y Sp =
Rtwg vay B(u'y

m m m
D Ti > i i by
avg — ? ) avg — : avg ;
= Gaoa = [ =

n n n

> M (max(ry, gi, bi) + min(ry, g;, b;))

Cota =
std n

(3.2)

Here m stands for the number of pixels in the image and n stands for the number of non-
black pixels in the image to avoid over compensation in images with dark background.
Figure 3.3 shows an example of employing the adaptive light compensation on hand

washing videos.

Skin probability computation

With lighting compensated images, the skin probabilities are then computed using
a histogram-based non-parametric skin model with Bayes classifier [161]. The skin
probability of each pixel is estimated by formula 3.3. P(skin) and P(nonskin) are
the prior probabilities which can be estimated from the overall number of skin and
non-skin pixels in a training set. Probabilities P(rgb|skin) and P(rgblnonskin) can
be directly computed from skin and non-skin colour histograms. The histograms are

built by quantizing the colour space RG B into a number of bins rgb € RG B for both
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(a)

Figure 3.3: Adaptive light compensation. (a) before light compensation; (b) after light
compensation

skin and non-skin classes. After normalization, two histograms for skin and non-skin

classes are obtained.

P(rgb|skin)P(skin)

P(skin|rgb) =
\ebinirgs) P(rgb|skin) P(skin) + P(rgblnonskin)P(nonskin)

(3.3)

Figure 3.4(a) shows an example of the skin detection result. It can be seen that a
portion of background is detected with a considerable high skin probability. In practice,
it is hard to set a universal threshold to separate the real skin area and background

due to the uncontrollable illumination.

(d)

(a)

Figure 3.4: Skin motion mask processing. (a) skin probability; (b) motion probability;
(¢) skin motion probability; (d) skin motion mask

Motion probability computation

To overcome the skin detection difficulty mention above, motion probability is com-
puted to suppress the false skin detection. The motion probability is calculated by
averaging and normalizing optical flow from five continuous frames as illustrated in fig-

ure 3.5. The optical flow is calculated between the current frame and one, two, three,
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four frames before respectively. Horn-Schunck method [82] is used for the optical flow
computation. Comparing to optical flow which is computed by Lucas-Kanade method
[82], Horn-Schunck method can provide a smoother high density of flow vectors which
is preferred in our hand motion probability estimation. This is because Horn-Schunck
method is a global method which has a constraint of smoothness for solving the aper-
ture problem of optical flow computation. The maybe inadequate flow information
from the inner hand can thus be filled in from the motion boundaries estimated near

the hand contours.

Horn Schunck method

Figure 3.5: Motion probability computation

Skin-motion mask

A skin-motion probability of current frame is obtained by multiplying the skin prob-
ability with the motion probability as shown in figure 3.4(c). Then the hands during
hand washing activity would possess a high skin-motion probability. As shown in figure
3.4(d), the hand can easily be segmented out by setting a universal threshold, and the
false detected hand area from both skin measurement and motion measurement is clear
out. With skin-motion probability, it is also possible to discard those frames in which

hands are not moving.
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Morphology operations

The aforementioned skin-motion mask may still possess some noises as small holes and
spots. A sequence of morphology operations is then performed to remove those noises.
These operations consist of dilation, connected component analysis and erosion. Dila-
tion operation removes small holes with the skin-motion mask. Connected component
analysis then gets rid of small regions which are mistakenly detected as hand area.

Erosion finally removes small anomalies at the boundaries of the mask.

Square bounding box

Once a refined skin-motion mask is obtained, a bounding box is created as the region
of interest to facilitate subsequent HOG feature extraction. The procedure of drawing
a bounding box is described in diagram 3.6. As shown in figure 3.7, the vertical
symmetry axis is detected first. Then a horizontal line searches down along the axis
from the top until dense hand area is reached such that the upper boundary of the box
is found. Similarly, the low boundary can be found by searching from the bottom. Once
obtaining the upper and lower boundaries, the right and left boundaries are found by
searching along the horizontal line from right and left until dense hand area. Generally
the procedure will find a rectangle. We then take the long sides as references and

extend the short sides such that a square bounding box is fixed.

skin motion mask

find vertical
symmetry axis

search along
vertical axis

find upper, lower|

boundaries

search along

horizontal line

find right, left
boundaries

resize rectangle
to square

region of interest

Figure 3.6: A bounding box of ROI

3.2.2 HOGs extraction

In order to describe the hand shape in every ROI, single frame HOG features are
extracted. HOG features have given promising performance in many applications
[122][160][128]. The aim of this method is to describe an image by a set of local
histograms. These histograms count occurrences of gradient orientation in a local part
of the image.

To compute the HOG features, the square image patch framed in the ROI is first

extracted and resized into a 128 x 128 ROI image. This colour ROI image is then
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Figure 3.7: ROI extraction

converted to grey level and gradients are calculated. Next, the ROI image is split into
square cells with a predefined size. In each each, a histogram of gradients is computed
by accumulating votes into bins of orientation. Each vote is weighted by the magnitude
of the gradient vector so that the histogram takes into account the importance of the

gradient at a given point.
_Cell )

Onertation |
N vatirg |
\ s it = T 37 1

Block .

e F

Nerrmalization

+ ¥ e “ {1 T
X
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Blocks

Figure 3.8: HOGSs computation

Every 2 x 2 cells are group into a block as illustrated in figure 3.8. Within each
block, cell histograms are locally normalised according to values of the neighbouring
cell histograms. The normalization is necessary such that HOG features are insensitive

to contrast variations in images. In our experiments, L2-norm scheme 3.4 is used,

TP s E (3.4)

Vvl +¢
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where v is the cell histograms within a block and ¢ is a small regularization constant
to avoid zero in denominator. Note that the blocks can be overlapped with each other
and a histogram from a given cell would be involved in several block normalisations.
Thus, the features are going to have some redundant information which, according to

the work of Dalal et al. [122], can improve the performance.

When histograms from all cells have been computed and normalized, a HOG
descriptor of the ROI image is built by concatenating all histograms into a single

vector. The vector dimension can be calculated with equation 3.5.

HOGsDimension = Blockspyw X Blockscy X CellsInBlock g,
x CellsInBlockcy x BinsInCell (3.5)

For example, if cell of size 16 x 16 is used for HOG computation, there would be 8 cells
and 7 blocks in every row and column of a 128 x 128 ROI image. The dimension of
the HOG feature vector with 16 orientation bins in each cell would be 3136 according

to the above equation.

323 SVM

SVM is a wildly used classification method in Computer Vision. It minimises a bound
on the generalisation error based on the structural risk minimisation principle [24] and
would have good performance on novel data. In our evaluation, linear SVM is applied
to train the classifiers, which searches the optimal hyperplanes in the original feature

space.

Our classification is a multi-class classification problem, thus a one-against-one
approach [69][45] is applied in our evaluation. The approach constructs k(k — 1)/2
binary classifiers for different pairwise combination of 10 gestures, where &k = 10 is the
number of gestures. During the testing, a voting strategy is used: a given sample = is
assigned to either class i or class j by one of the binary classifiers, and the vote for class
i or j is incremented by one correspondingly. After being tested by all binary classifiers,
the sample z is predicted to be the class with the largest vote. This approach is also

referred as the maz-wins strategy.
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3.3 Evaluation

Our evaluation of recognition using static postures method runs a 5-fold cross validation
as described in section 1.1.4. The HOG features with different parameter settings are
extracted from each detected ROI in every frame. The libsvmn library [22] is then used
to train the SVM classifiers.

HOGs settings

Various HOG parameters as listed in table 3.1 are evaluated. These parameters result
in coarse to fine descriptions of hand postures. Take the first row of table 3.1 as an
example. The “Sign” column indicates if the gradient orientation is measured in a range
of 02 ~ 180° (unsigned) or 0° ~ 360° (signed). If “unsigned” is used, an orientation
in the range of 180° ~ 360 would be converted into a range of 0° ~ 180°, which gives
less orientation discrimination than using the full range. The “Bins” indicates the
quantization levels for the orientation. More bins give finer measurement in orientation.
An unsigned 8 bins setting means that the orientation interval in each bin would be
22.5%. “Cells” and “Blocks” are measured in pixels as described in section 3.2.2. As
each our block is fixed to contain 2 x 2 cells, for 32 x 32 cells, the size of the block would
be 64 x 64. Given a HOG parameter setting as the first row in table 3.1, according to

the equation 3.5 the dimension of the HOG features would be 288.

| Dimension | Bins | Cells | Blocks Sign
288 8 32 64 unsigned
576 16 32 64 signed
1568 8 16 52 unsigned
3136 16 16 32 signed

Table 3.1: HOGSs settings for recognition using static postures

Recognition performance

The linear SVM classifiers are trained and tested with different HOG features. The
soft-margin controlling parameter C' in SVM is set to 1 by libsvin default. Table
3.2 lists their testing results. These results appear to confirm that the hand washing
gestures can be recognized in a way of recognizing static hand postures while ignoring

the dynamic characteristic of the hand washing gestures. From the table 3.2, it can be
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seen that 3136 dimension HOG give the best recognition performance. This implies that
the finer details of the hand postures are important for the recognition in this method.
Meanwhile, the very high dimension of HOG also makes the hyperplane searching of
SVM much easier in the original feature space. On the other hand, the very high
dimension does cause a very heavy computation load, which could be an issue for
real-time performance. Relatively, 1568 dimension HOG give very similar recognition
performance to 3136 dimension HOG but only have a half of the dimension. This
implies that when fine grid is applied to the HOG calculation, the “signed” option is

not very important for hand washing posture recognition.

LDim(\,nsion Accuracy | Macro F | Micro F |
288 69.56 + 5.34% | 0.7082 0.6956
576 72.64+6.71% | 0.7383 0.7264
1568 77.57+£6.39% | 0.7859 0.7757
3136 78.04 +5.94% | 0.7891 0.7804

Table 3.2: Linear SVM classification results

Figure 3.9 gives the confusion matrices of classification using 3136 dimension and
1568 dimension HOG. It can be seen that both suffer the misclassification between
gesture 1 and gesture 4 which have very similar hand washing gesture appearance
in nature, especially when a frame is judged independently. The gesture 4 also has
difficulties with gestures 7 and 8. This may be because the clasped fingers are not
much vertical to the other palm. By definition, gestures 2 and 3 look similar to each
other, and so do gestures 9 and 10. However, the confusion matrices show that they

can be well separated using high dimension HOG features with linear SVM classifiers.

3.4 Summary

In this chapter we elaborate and evaluate the method of recognizing hand washing
gestures using static postures. The method considers each frame independently and
the dynamic features from the gestures are disregarded for classification. A skin-motion
ROI detection method is introduced, which can drastically decrease the false positives
in hand area detection with either skin detection or motion detection alone. The
static HOG features extracted from ROIs are used to train linear SVM classifiers. The
classification results show that the fine-grid HOG features have better performance
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Confusion matrix of dimension 1568 HOGs Confusion matrix of dimension 3136 HOGs

TIRE&l) 062 330 1443 05 081 174 100 000 019 1 112 1746 025 174 155 299 000 000

2r23 okl 017 064 121 150 277 035 000 0.17 2 064 231 087 347 029 000 0.00

3-420 121 EEXEX) 154 590 094 007 134 007 000 31530 691 047 020 201 007 007
§ 4}-10.13 302 069 IR 069 475 687 633 010 257 g 4r1468 124 020 692 929 000 104
§ 5/013 007 046 241 JEEEW) 215 593 046 410 150 § 5-013 013 013 756 085 463 241
5 6046 013 007 099 178 JERREN 481 362 191 474 5 6072 020 000 369 231 283 3.03
g 7F212 343 000 1208 990 223 JEEEE) 000 034 052 g 7-166 401 000

8-348 100 195 927 106 845 035 EElE) 006 3.07 G)»lw 0985 201

9104 000 052 023 736 504 284 133 9-046 000 128

10010 021 000 010 442 701 005 0.10

1 2 3 4 5 6 7 8
Classified Gestures Classified Gestures.

(a) (b)

Figure 3.9: Confusion matrices of (a) dimension 1568 HOGS, (b) dimension 3136
HOG'

than the coarse-grid HOG features. This is mainly because the fine-grid features can
provide detailed hand shape information for classification. As no kernel tricks is used
in the SVM training, the testing phase of the method is fast. However, the fine-grid
HOG could give very high dimension feature vectors and result in a heavy computation

load during the feature extraction.
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Chapter 4

Recognition using Sequence Labelling

4.1 Introduction

Hand washing gestures are essentially continuous hand movements, which implies that
the dynamic nature of the gestures is a very important characteristic for recognition.
In this chapter we analyse hand washing gestures with not only the static information
extracted from every frame but also the dynamic information from the hand motion
sequences. Hand washing gesture within a short period of time is modelled as a frame
sequence with HCRFs model [11]. In contrast to chapter 3 where every gesture frame
is predicted independently, recognition using sequence labelling method considers the
whole sequence for recognition and the state of every frame in the sequence is estimated

within a context from previous and following frames.

4.2 Methodology

In general, people make a judgement of the correctness of a gesture upon a short
time period of hand washing. To enable the hand washing gesture recognition system
operates similarly, in this chapter we model the hand movements within a short time
period to be a hand washing gesture sequence. A unique gesture class is assigned to
the whole sequence, and all frames within the sequence would have the same gesture
class as the sequence. It is assumed that the hand washing gesture would not change
abruptly from one to the other within the short time period.

To build this sequence, single frame HOG features are extracted first as described

in chapter 3. These HOG features or their combinations (concatenated HOG of multiple
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Captured ha.nds' HOG?‘ H,CRFS, Results output
frames localization extraction classification

Figure 4.1: Recognition using sequence labelling workflow

frames) would be modelled as building blocks [60] of hand movements. Linear-chain
HCRFs is applied to model the internal structure of gesture sequences. Linear-chain
HCRFs is a popular sequence labelling tool in speech modelling [6] and Computer
Vision [54][139]. It takes a whole sequence as an input and only outputs a single
class label. With the linear-chain HCRFs model, a hand washing gesture is assumed
to have a linear-chain structure, and each building block of hand movements is a
node of the chain, which a hidden state will be assigned to. Figure 4.1 illustrates the
whole procedure of recognition using sequence labelling method. It can be seen that
the recognition using sequence labelling method also requires ROI detection for HOG
feature extraction but will use the HCRFs model for classification instead of SVM.
Note that the HCRFs classification stage actually contains two steps: the training step
and the testing step of HCRFs.

In the training step, all gesture sequences in the training set are pooled together
and fed into HCRFs for generating a multi-class HCRFs model. During the testing
step, in order to report gesture class for each frame of a hand washing video, a time-
shift window having current frame in the middle is applied. A short video segment
from a long sequence is extracted by the time-shift window, and is classified by the
trained HCRFs model. The label output from the HCRFs model is then assigned to
the current frame as the classification result.

As the hand localization and HOG extraction in figure 4.1 have been described
in chapter 3, in the rest of this section we will mainly focus on the stage of HCRFs

classification.

4.2.1 Linear-chain HCRFs model

Linear-chain HCRFs is an extension of linear-chain CRFs with hidden variables. Given
a sequence observation X = {x,--- x4, , 27}, a sequence of hidden states h are
inferred from X, and are used to explain the sequence class label y, as shown in figure
4.2. In our hand washing gesture recognition, X would represent the static HOG

features extracted from all frames in a sequence. Each frame in the sequence can be
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hi—hz2 ---- ht - hr1— hr

bé & o6

Figure 4.2: Linear-chain HCRFs for sequence labelling

regarded as a node in a chain, and is assigned with a hidden state h; by the HCRFs
model. The gesture class y of the sequence would then be estimated based on the

inferred hidden state sequence h.

Hidden variables

There is a large number of variance in hand washing gestures. Learning different gesture
categories directly with observed hand washing data may not well capture this variance.
In contrast to the CRFs model, HCRFs model use hidden variables to represent some
“shared” variance among observations. With HCRF's, observed hand washing data can
be represented by a number of unobserved intermediate states which greatly decrease
the degree of variance. In our linear-chain HCRFs, a hidden state h; represents an
unobservable hand shape configuration within the continuous hand movement. This
state can be inferred with or without information from neighbouring frames. All these
states are linked by a first-order Markov chain where the current frame state h; is only

based on the previous frame state h;_; according to the Markov property [112].

Context window

HCRFs model does not require independence assumption on the observed data X,
which is a prerequisite assumption in HMM model. This relaxation of observation
independence can greatly help the recognition as the contextual information consisted
of rich overlapping features can be used. In our HCRFs gesture modelling, a temporal
context window is constructed as shown in figure 4.3. Given a context window size

parameter w, current frame HOG features are concatenated with HOG features from w
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t-2 t-1 t t+1 t+2

Figure 4.3: An example of context window used in recognition via sequence labelling.
The green image indicates current frame and the contexrt window size parameter is set
as w—2.

frames before current frame and w frames after current frame. In other words, features
from 2w + 1 frames are used as the observation of current frame. As shown in figure
4.3, if w = 2, a context window with 5 frames is constructed. The static HOG features
extracted from these 5 frames may not be independent with each other, but with the
help of HCRFs model it is possible to concatenate them together as a long description
vector of current frame. Therefore, each frame in HCRFs is no longer considered
independently but within a context from neighbouring frames. In our HCRFs model,
if there is not enough frames can fill in a context window, which usually happens at
the beginning or the end of a sequence, the zero-padding technique is applied to form

the long concatenated vector.

The model

With the hidden states and context window described above, we are able to introduce
a specific form of the potential function used in our linear-chain HCRFs model. The

potential function W(y, h, X; A\, w) is defined as formulae 4.1 and 4.2,

W(y, h, X; A\, w) =exp (P(y, h, X;\,w)) =exp (A f(y,h, X;w)) (4.1)
s T 7
A fly, h, X;w) = Z A1 filhg, xpw) + Z Ao - 1y, hy) + Z Az 1y, hy_v, hy)
t=1 t=1 t=2
(4.2)

where “1” denotes the indicator function. An indicator function gives value 1 if desired

elements in the brackets present, otherwise it would give 0. For example,

1 ify=1and hy =3

1(y, hy) =
() 0 otherwise
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Both fi(hy, x4;w) and 1(y, hy) are node features. The first type of feature f,(hy, z;; w)
has a parameter w to indicate how much contextual information is used for current
frame state inference. It is weighted by A;. The inner-product A; - fi(he, 24; w) measures
the compatibility between a hidden state h; and the local observations x; at frame ¢.
The second type node feature is extracted with an indicator function 1(y, h;). Its weight
vector Ao can be interpreted as a measure of the compatibility between a gesture class y
and the hidden state h;. Indicator function 1(y, h;_1, h¢) represents the third type edge
features. Analogously, its weight A3 can be regarded as a measure of the compatibility
between the gesture label y and an edge connecting two neighbouring hidden states
(hi—1,hy). The parameter tying technique is used for all feature weights in HCRFs

model, which means that all the weights A are position independent.

4.2.2 Model training

The linear-chain HCRFs model can be trained with ML based methods as described
in section 2.2.4. However, the training needs to compute the normalization constant Z
and would be very slow for our large-scale high dimension hand washing data. There-
fore, we adapt Wang’s max-margin HCRFs method [3| where the computation of 2 is
not required. Wang’s method is a EM based max-margin training approach. It was
proposed combining large-scale global template features and part-based local features
in a principled way for action recognition. On the contrary, our HCRFs model does not
have any global features about the sequences, which directly model the relationship
between the observation X and the gesture class y.

Following the description in section 2.2.4, the max-margin training aims to find

the parameter A by optimizing a quadratic form 4.3,

‘ 1 , C n
B g+ 5 26

st. O, O XU\ w) - o, A, XD A w)>1-¢§
y#yY, &>0, VI (4.3)

where w is the pre-defined window size; [ denotes each training sample and & is corre-
sponding slack variable; ®(y, h, X; X\, w) represents the inner-product A - f(y, h, X;w).
The training recursively runs following two steps until a maximum iteration number is

reached:
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1. Holding current A, ¢ values fixed, for each training sample the hidden structure

h for every gesture class y, including the true class y, is inferred as

h = arg max ®(y, b, X\ w)

2. With the inferred h, we search the optimal A, ¢ in optimization 4.3 with any
quadratic programming (QP) solver. The output values of A and & would then

be used in the next iteration.

In our training, we actually optimize the dual form of the above optimization
such that there is no slack variable ¢ involved in training and the whole optimization
can be decomposed into a series of smaller QPs, which is preferred when a large data
set is used for training.

For the dual optimization, the quadratic form 4.3 can be firstly rewritten as

optimization 4.4
min l||)\||2 + — Zf;
AE 2 n '
st. Aoy, XD)+ U — 6@y, y®) >0 vy, W (4.4)

where p(y, XV) denotes the vectors of feature difference, which are calculated with

equation 4.5 for each possible gesture label y,
oy, XV) = FyO, O, XO; X w) — f(y, h, XO; A, w) (4.5)

The vector §(y'"), y) represents the binary model loss used in our model, which is formed
as 4.6.

s(yW.y) = { B (4.6)

0 otherwise

Next, Lagrange multipliers a are allocated to obtain the prime objective of the

optimization Lp 4.7,

Lp= %H/\II2 +CY &= oy Aoy, X))+ & -6, y)] (47)
=1 Ly
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where all dual variables have non-negative values «,, > 0. Setting the derivatives of

Lp with respect to A and & to zeros, we can derive equations 4.8 and 4.9.

A=) onye(y. XY) (48)
=1 v
Y =G (4.9)
Yy

Substituting 4.8 and 4.9 back to Lp, we obtain the dual form of the optimization as
4.10,

n 1 n ’
max y > onyd(yy) = 5I DD anely, XO)|?
=1 1 =

Yy Y

st. > oy =C, 01,20, Wy (4.10)

y

In the dual optimization 4.10, The size of dual variables e would be n x |y|. When
a large training set is used, the optimization can become infeasible for any generic QP
solver. To overcome this problem, the quadratic decomposition technique [135][127] is
applied such that the optimization is decomposed into a series of smaller QPs. In our
case, a QP solver would only involve dual variables {a;,} from a particular training
sample while all the other variables {ay, : Vk : k # [} are fixed. Thus, in each QP
solver, only |y| dual variables need to be solved.

With the quadratic decomposition, we get the dual objective of the optimization
Lp as 4.11,

1
Lp= Zal.y(s(?}(’)s Y) -3 [” > ey, XO)|?
Yy Yy

+2) " arye(y, XO) (Z > anyp(y, X "“’))]

k:k#l y

+ other terms not involving {a,} (4.11)

where the summation ), , Al Zy akyp(y, X ()} can be calculated through equation
4.12.

3% ey, XB) = A= 3 ayely, XO) (4.12)

k:k#l y y
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The dual variables oy, therefore can be computed by optimizing 4.13 for each training

sample,

(l[‘y

max Lp s.t. Z(r,‘y =C, apy=>0 (4.13)
Yy

Consequently, the parameter A\ can finally be obtained with equation 4.8.

The iterative learning procedure described above continuously updates the pa-
rameter A at each training sample, and the iteration terminates when a predefined
maximum iteration number is reached. Note that in each iteration, the hidden struc-
ture of current training sample needs to be inferred. In our training algorithm, the

Viterbi algorithm [105] is applied for the hidden structure inference.

4.2.3 Model testing

HCRFs is a sequence based classification method. It outputs a single label as the
classification result for the whole testing sequence. In this chapter, most evaluation is
measured in terms of sequence. However, the sequence measurement may be not prac-
tical for continuous video stream in real situation. Moreover, our evaluation also needs
frame-based classification output for cross-comparison between different recognition
methods. Therefore, a time-shift window is applied in order to give frame-based classi-
fication results. A time-shift window around current frame segments a short sequence
from the long sequence for testing. The HCRFs testing result of this sequence segment
is regarded as the gesture label of current frame. The time-shift window operates very
similarly to the context window. Differently, the information extracted in time-shift
window is used to model a short sequence while in context window, the information is

only used to model a node in a chain.

4.3 Evaluation

In the evaluation of recognition using sequence labelling method, we implement the
algorithm described above in Matlab. We apply the 1568 dimension HOG as the
hand shape descriptor for every ROI. Based on our evaluation in recognition using
static posture method, it can be seen that the recognition with 1568 dimension HOG
is comparable to the recognition with 3136 dimension HOG in accuracy. However,

although it is still a high dimension descriptor, 1568 dimension HOG have only half
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dimension of the 3136 HOG, which make it much easier to be operated in HCRF's when

context window is applied.

4.3.1 Context window size

In the evaluation, the context window in HCRFs is experimented first. We fixed
the number of hidden variables at 10, and report the classification results in terms of
sequences. The context window is smoothly enlarged in the evaluation. The parameter
w is tested from 0 to 5, which gives the context window size 1,3,5,7,9 and 11. A
context window with size 1 means that only features from current frame is used for
state inference. A context window with size 3 means that features from one frame
before and one frame after is also used for current frame state inference. The meaning
of other context window sizes can be deduced by analogy. For the frames near the
start and end of the videos, zero padding is applied to fill in the context window when
no video frames are available. Training samples from all classes are polled together
to train a single multi-class HCRFs model. Table 4.1 lists the sequence recognition

results with different context window sizes.

| Size Accuracy Macro F | Micro F
1 |62.78+11.45% | 0.6662 | 0.6278
3 | 63.23+8.81% | 0.6505 | 0.6323
5 | 63.52+9.19% | 0.6696 | 0.6325
7 | 64.10+4.71% | 0.6723 | 0.6410
9 |59.65+15.05% | 0.6288 | 0.5965
11 | 56.24+10.61% | 0.5920 | 0.5624

Table 4.1: Classification results with different context window size in HCRF's

From the above table, it can be seen that the recognition performance is gradually
improved when the context window size is increased until size 7. Figure 4.4(a) shows
the confusion matrix of the classification when 7 frames are used in a context window.
The table result tallies with Wang’s finding [139] that applying contextual information
in the model can improve the recognition performance. On the other hand, in the
results our improvement with long context window is slight. This is probably because
that the information for discriminating gestures has been mostly included in the well-
defined single frame static HOG features. The context window does not introduce

much more information for classification. In other words, the information extracted
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HCRF's sequence classification result (win 7 h 10) HCRF's sequence cissification result (win 7 h 25)
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Figure 4.4: Confusion matrices of HCRFs with 10 and 25 hidden variables: (a)7
frames in a context window, 10 hidden variables; (b) 7 frames in a context window, 25
hidden variables

from current frame has contributed the most for determining the decision boundaries in
the model. The additional information introduced by the context window may mostly
be tolerated during the learning and does not adjust the decision boundaries much.
The performance starts decreasing after 9 frames are used in a context window.
This is probably because the overfitting of the model since very high dimension (142220
dimensions for the context window of size 9) feature vectors are employed. Therefore,
as a complement to Wang’s finding, we claim that the recognition improvement from
contextual information depends on the features of primitives. Better features descrip-
tion would require smaller context window size to improve the recognition performance

without a risk of model overfitting.

4.3.2 Number of hidden variables

Next, we evaluate the recognition using sequence labelling method with different num-
ber of hidden variables. We fix the context window size at 7 as it shows the best
accuracy in our previous experiments. HCRFs with 5, 10, 15, 20, 25 and 30 hidden vari-
ables are evaluated. Table 4.2 lists the classification results, and figure 4.4(b) shows
the confusion matrix when 25 hidden variables are used in HCRFs.

It can be seen that except the model with 5 hidden variables, the other models
have close recognition performance. In order to verify this, we perform a Student’s

t-test on these models with following null hypothesis:
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| No. of states | Accuracy | Macro F | Micro F1

5 51.64 £ 12.01% | 0.5189 0.5164
10 64.10 £4.71% | 0.6723 0.6410
15 58.87 £ 15.26% | 0.6076 0.5887
20 58.78 £ 9.52% | 0.6149 0.5878
25 65.28 £ 10.43% | 0.6630 0.6528
30 64.30 £9.71% | 0.6532 0.6430

Table 4.2: Classification results with different number of hidden variables in HCRF's

there is no statistical significant difference between the performance with

25 hidden wvariables and performance with other settings.

L T-test | 5 against 25 | 10 against 25 | 15 against 25 | 20 against 25 | 30 against 25 |
| P-value | 0.0004 0.5947 0.3125 0.3756 0.2255 |

Table 4.3:  T-test results about the number of hidden wvariables in HCRFs.
5,10, 15,20,25 and 30 represent the t-test samples with designated number of hidden
variables

In this t-test the model with 25 hidden variables, which gives the highest accuracy
in the result table, is used as a performance reference. Each t-test sample is built with
a group classification results of a model. As described in section 1.1.4, we run a model
classification by randomly picking 20% videos as the testing set and applying the rest
for training. This procedure repeats 15 times such that 15 classification results would
be generated for a model. These 15 results then form a sample in our Student’s t-test.
We apply the two samples two-tailed t-test for the hypothesis testing. One sample is
from the model with 25 hidden variables, and another is from one of the other models.
The p-values from all t-tests are listed in table 4.3 and plotted in figure 4.5. “5 against
25”7 means that a paired t-test is performed with a sample from a model using 5 hidden
variables and a sample from a model using 25 hidden variables. Setting the alpha
level at 0.1, it can be seen that except the “5 against 257 t-test, all the others fail to
reject our null hypothesis. This means that as long as enough hidden variables are
supplied in the HCRFs model, the size of the hidden variable pool does not play a
critical role in the classification. The model may be dominated by some of the hidden
variables even though more hidden variables are available. In fact, although all gesture

classes share the same pot of hidden variables, each gesture has a unique distribution

-
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T-test with different number of hidden variables
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Figure 4.5: T-test on HCRF's performance with different number of hidden variables

of hidden states as shown in figure 4.6. It can be counted that in figure 4.6 only 15
hidden variables are used while the other 10 hidden variables do not contribute to the

classification.

4.3.3 Temporal resolution

Since the temporal characteristic of hand washing gestures is modelled by the linear-
chain sequence, it would be interesting to study the effect of different sequence temporal
resolution on the recognition performance. To accomplish this study, we choose the
test videos only from the white board subset. The white board hand washing video set
is recorded at a rate of 30 frames per second. For each test video, we downsample it
to be videos with three different frame rates: 25 fps, 15 fps and 10 fps. These videos
are tested by previously trained HCRFs models with 25 hidden variables and 7 frames
in a context window. The test results are listed in table 4.4. It can be seen that in
general there is no much performance difference among sequences with different frame
rates. This conveys us that the frame rate is not a critical factor for the HCRFs model
in hand washing recognition. However, a poor frame rate such as 10 fps does decrease

the performance slightly.
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(f) 6 (g) 7 (h) 8 (i) 9 (j) 10

Figure 4.6: Distribution of 25 hidden variables for each gesture. The numbers in each
pie represent the hidden state, and the area enclosed represents the proportion

Frame rate Accuracy Macro F | Micro F
30 62.77 £ 20.32% | 0.5654 0.6277
25 62.77 + 20.32% | 0.5673 0.6277
15 62.77 + 20.32% | 0.5654 0.6277
10 59.99 + 20.97% | 0.5406 0.5999

Table 4.4: HCRFs classification results of sequences with different frame rates

4.3.4 Frame classification

The above evaluations are all measured sequence by sequence. In order to give a
frame-by-frame prediction, a time-shift window is applied in the HCRFs model. The
time-shift window segments a short sequence around current frame and the testing
result of this short sequence is regarded as the gesture label of current frame. Taking
the HCRFs model with 25 hidden variables and 7 frames in a context window, various
sizes of the time-shift window are evaluated as listed in table 4.5. These results are
also plotted in figure 4.7. From figure 4.7 it can be seen that the over all recognition
performance measured in frames is better than the performance measured in sequences.
This is probably because: (a) the prediction error is diluted by a large number of true
positive frames in the frame-based classification; (b) long test sequences may encounter
error propagation problem while the time-shift window technique sets up a new testing

sequence for every S(‘glll(‘llt.
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| Time-shift window size | Accuracy [ Macro F—[ Micro F |
5 70.56 £ 9.82% | 0.7259 | 0.7056
9 76.98 +£9.84% | 0.7813 | 0.7698
13 80.22 £9.73% | 0.8130 | 0.8022
17 82.33 +£9.52% | 0.8346 | 0.8233
21 83.89 +9.76% | 0.8495 0.8389
25 84.45 £ 10.06% | 0.8544 0.8445

Table 4.5: Classification results with different length of test sequence in HCRFs

It can also be seen that the classification accuracy improves significantly along
with the size increase of the time-shift window. This is probably because that the
longer the test sequence is, the more sequence history is encoded in the model for
prediction. This phenomena coincides with how human beings observe a gesture. The
longer gesture we watch, the higher confidence we have about the class of that gesture.
The confusion matrices in figure 4.8(a) and 4.8(b) further demonstrate this phenomena.
However, large time-shift window does suffer high latency in frame prediction, which

is a drawback for real-time applications.

HCRFs performance with different size of time-shift window
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Figure 4.7: HCRFs frame prediction accuracy with different length of test sequences
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HCRFs frame classification using 5 frames in a time-shift window HCRFs frame dlassification using 25 frames in a time-shift window
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Figure 4.8: Frame classification confusion matrices using 7 frames in a context win-
dow, 25 hidden variables and (a) 5 frames in a time-shift window; (b) 25 frames in a
time-shift window

4.4 Summary

In this chapter, we model the hand washing gestures as linear chains with sequence
labelling tool HCRFs. The static information of the gestures are captured by the “2D”
dense HOG features while the dynamic information are modelled with the first-order
Markov process. Since the parameter estimation via maximising the log-likelihood
function is very time consuming for our large training set, we perform the model
training by adapting Wang’s max-margin training method. Several key parameters,
such as the context window size, hidden variable number and the test sequence length
for frame-based output, are evaluated in terms of the classification results.

We first evaluate the effect of the context window size on the recognition perfor-
mance. Same as Wang’s finding [139], adding contextual information to each frame
can improve the recognition performance. However, we also notice that the overall
improvement by using long context window is not substantial. We believe that this is
because the information for discriminating gestures has been mostly included in the
single frame static HOG features. Simply increasing the context window size in HCRFs
would not improve performance significantly if primitive features from each node in a
sequence are adequately discriminative.

We then evaluate different number of hidden variables in the HCRFs model. Our

experiments show that once the number of the hidden variables meets the minimum
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requirement, the extra hidden variables do not increase the performance significantly.
We suspect that this is because the HCRFs model is dominated by some of the hidden
variables even though more hidden variables are available.

Our HCRFs model is also tested with videos in different frame rates. Experiment
results show that the HCRFs model plays equally well on our test videos which have
different temporal resolution.

The HCRFs model naturally reports the classification results in terms of se-
quences. In order to give the frame by frame classification, we apply a time-shift
window during the testing. Our experiment results show that the recognition perfor-
mance improves significantly along with the increase of the shift-window size. This
phenomena coincides with humans’ behaviour when we observe the gestures. The con-
fidence about the gesture class is built up when we continuously watch the gestures.

It can be seen that the recognition using sequence labelling tool has better per-
formance than the recognition using static postures when the accuracy is measured
in terms of frames. This is reasonable since both the dynamic information and static

information are used for classification in recognition using sequence labelling method.
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Recognition using Space-Time Interest
Points

5.1 Introduction

Both chapter 3 and chapter 4 recognize hand washing gestures based on the global
description of hand shapes. The hand shape configuration in each frame is well encoded
in the dense grid HOG features. However, this dense grid encoding has limited capacity
of handling the big spatial variety in hand washing gestures, and strongly depends
on the ROI detection results. Thus, it would be interesting to evaluate the sparse
representation approaches for the hand washing gesture recognition. In this chapter, we
therefore attempt to recognize the hand washing gestures via space-time interest points.
The motivation of the method is that the hand washing gestures can be discerned with

a rich set of local features, regardless of global appearance and motion.

Recognition using space-time interest points does not require ROI detection in the
image preprocessing, thus the lighting condition would have little effect on the recogni-
tion performance. Different with the recognition using sequence labelling method which
encodes the dynamic information of gestures as a sequence of intermediate states, recog-
nition using space-time interest points method encapsulates the dynamic information

into local interest point descriptors.
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Captured Interest point H|§tograms of Non-lnr)ear §VM Results output
frames detection visual words classification

Figure 5.1: Workflow of recognition using space-time interest points

5.2 Methodology

Figure 5.1 illustrates the workflow of recognition using space-time interest points
method. The first step is the space-time interest point detection. In our evaluation,
the interest points are detected by Dollar’s cuboid detector [46], and are described by
the spatial-temporal “3D” HOG features [7]. In the second step, an extension of the
BOFs approach [57][176], ERC Forests [52], is employed to build the descriptors of hand
washing gestures. The ERC-Forests method provides a rapid and highly discriminative
alternative of k-means for building the visual vocabulary and occurrence histograms of
visual words. For classification, the non-linear SVM with a x? kernel is applied, which

has been widely used in object recognition and action recognition [109][(65][178].

5.2.1 Interest point detection

Hand washing gestures are continuous hand movements, which present both static
and dynamic characteristics. We therefore perform our interest point detection in the
spatial-temporal domain to accentuate the hand washing gestures in the videos. Every
detected point is a short, local video patch, and is described by spatial-temporal “3D”

HOG which wrap the local shape and motion information into a vector.

Cuboid detector

A large number of sparse representation recognition approaches has been proposed to
detect and leverage the use of spare, informative feature points. However, in some
domains, some methods such as Harris3D [109] may give very sparse detection or non-
informative detected points [46]. On the contrary, our interest point detection is based
on Dollar’s cuboid detector [46] which is designed to detect too many points rather than
too few, and suppress irrelevant or misleading points generated from scene clutter.
Cuboid detector operates on a stack of frames. These frames are convoluted with

spatial filters and temporal filters. Space-time interest points are detected by searching
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the local maxima of filter response. The response function R is defined as equation 5.1,
R = (I(z,y,t) x g(x,y;0) * heo(t; T,w))? + (I(x,y,t) * g(,y; 0) * hog(t; T,w))? (5.1)

where I(z,y,t) represents the input image stack, g(x,y;o) denotes the spatial 2D
Gaussian smoothing kernel, and h,, and h,y are a quadrature pair of 1D Gabor filters

which are defined as formulae 5.2.

2

heo(t; T, w) = —cos(2mtw)e™ /™" hoa(t; T,w) = —sin(2mtw)e /™ (5.2)

The parameter w is set at 4/7 as suggested by Dollar [46]. This effectively gives the
response function R two parameters o and 7 which correspond roughly to the spatial
and temporal scale of the detector. The Gabor filters only operate temporally, thus
the output of the Gabor filters would represent the motion energy of hand washing
gestures. Regions with spatially distinguishing characteristics undergoing a complex
motion would induce high energy output, but areas without spatially distinguishing
features cannot induce a response. Moreover, pure translation motion will in general
not induce a response from R as well [46]. Figure 5.2 shows an example of the detection

result from cuboid detector.

(b)

Figure 5.2: Spatio-temporal interest points

Spatial-temporal HOGs

All detected space-time interest points are described by the spatial-temporal “3D”
HOG. “3D” HOG descriptor is a generalization of Dalal’'s 2D HOG. It encodes the
shape and motion information at the same time. Given a detected interest point

s = (s, Ys, ts, s, Ts) Where oy is the spatial scale and 7, is the temporal scale, a small
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cube with the detected point in the centre is sampled. The width wy, height h, and

length I, of the cube are given as formula 5.3,
W= hs = 0005, [s = ToTs (53)

where parameters o and 7y give additional control of the sampled region size around
point s. Next, the sampled cube is divided into a set of M x M x N cells which are
aligned next to each other. Each cell is subsequently divided into S x S x S subblocks
as illustrated in figure 5.3 (b) [7]. In every subblock, each gradient orientation is
quantized with regular polyhedrons. The regular polyhedrons can be tetrahedron (4-
sided), cube (6-sided), octahedron (8-sided), dodecahedron (12-sided), and icosahedron
(20-sided). The quantization of a 3D gradient vector is operated by projecting it to the
axes running through the gravity centre of the polyhedron and the centre positions of
all faces. The quantized gradient vector is then normalized to obtain a quantized mean
gradient ;.. A cell histogram is calculated by summing the quantized mean gradients

qv, of all subblocks b; as formula 5.4,

S8
h’(' o qu)i (54)
=1

All cell histograms are then concatenated and L2 normalized to form the final “3D”
HOG feature vectors. Figure 5.3 [7] illustrates the entire encoding procedure described
above. Note that the gradients in subblocks are computed based on integral videos
which enables the memory-efficient feature computation at arbitrary spatial and tem-

poral scales [7].

5.2.2 Histograms of visual words

All “3D” HOG descriptors of detected interest points are pooled together and clus-
tered to build a visual vocabulary. The visual vocabulary is conventionally built by
the K-means clustering [65][79]. However, the K-means clustering methods are gener-
ally very computationally expensive for large training sets. Thus, in our method, the
ERC-Forests method is employed. The ERC-Forests method is ensembles of randomly
created clustering trees. Each tree is trained as classifiers but used as descriptor-space
quantization rules [52]. The ERC-Forests method provides a rapid and highly discrimi-
native approach for building a visual vocabulary, and has good resistance to background

clutter.
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Figure 5.3: Querview of the descriptor computation: (a) Sampled cube is divided into
a grid of cells; (b) each cell is computed over a grid of subblocks; (c) each gradient
orientation is quantized using regular polyhedrons; (d) each mean gradient is computed
using integral videos [7]

During a query, for each “3D” HOG descriptor, every tree in the forests is tra-
versed from the root down to a leaf through a bunch of nodes as shown in figure 5.4. At
each node, the descriptor is tested by a random function 7 to decide the descendant.
The random function is learned during the training with a small random subset I’ C I
of the training set /. An elementary feature f; indexed by i is randomly picked from
the feature vector. The subset I’ will be split into left and right subsets I, and I, by
comparing the selected elementary feature f; with a random threshold ¢ sampled from

a uniform distribution.

L={iel| f() <t},
L=F\1 (5.5)
The random splitting procedure described in formula 5.5 is repeated many times until

a fixed maximum number 7,,,,. is reached or the expected gain in information is higher

than a fixed threshold S,,;,. The expected gain is calculated by equation 5.6,

_H £+
1’| 17|

where E(I) is the Shannon entropy [59] of the classes in the set of examples I. The

AE = BTG = (5.6)

random function with the highest expected gain is retained. All trees in the forests
is recursively built by learning the random function for each node as described above

until a predefine maximum depth D of the tree is reached.
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Tree 1

Figure 5.4: Traversing a tree in ERC-Forests

By traversing a tree, a unique leaf index is returned as a distinct label. Therefore,
as shown in figure 5.5 [52], the leaves can be used as visual words, and ensembles of
trees present the visual vocabulary. An occurrence histogram of visual words is thus
built by transforming each HOG descriptor into a set of leaf node indices from all
trees. Votes for each index are accumulated into a global histogram for a set of “3D”
HOG descriptors. In our evaluation, this set of HOG are extracted from a group of
spatial-temporal interest points as described in section 5.2.1.

The dimension of the histogram is controlled by the number of trees employed
in the forests, which also determines the discriminative power of the visual vocabulary.
Some work has shown that the discrimination of the visual words would be saturated
when 5 trees are used in ERC [52][147]. Therefore, we explore the categorization
ability of the visual vocabulary by controlling the maximum depth D of each tree in
our evaluation. We believe that the discriminative power of the visual words can be

further enhanced by using trees with deep depth.

-f Gesture 3
SVM <- » Gesture 2

o Gesture 1

Figure 5.5: Building visual vocabulary with ERC-Forests
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5.2.3 Non-linear SVM classification

Although binary trees are trained in the previous section, they are only used for cluster-
ing rather than classification. In recognition using space-time interest points method,
the classification is a separated stage. A multi-class SVM model is built for classifica-
tion with occurrence histograms of visual words generated from ERC-Forests. In our
evaluation, we apply the non-linear SVM with a x? kernel for classification. The y? ker-
nel is best suited for histogram style feature vectors and has shown good performance
in object recognition and action recognition [109][65][178]. In our evaluation, the x?

kernel is defined as formula 5.7 [7],

hm ’)JH)

5.7
R (3:7)

K(H;,H;) =exp | — 1 Z
where H; = {h;,} and H; = {hj,} are the histograms of visual words and V" is the

histogram dimension. A is a scaling parameter and we set it as A = V empirically.

5.3 Evaluation

Recognition using space-time interest points method is based on the sparse represen-
tation of hand washing gestures. Thus, it is not necessary to have a ROI detection in
the process. In our evaluation, the interest point detection is operated over the whole
image area. However, if the interest point detection is performed for every video frame,
there would be a huge number of interest points that the computer can not handle
during the training. Therefore, in our evaluation the space-time interest point are de-
tected in every 3 frames during the training in order to obtain a manageable training

set, but during the testing phase, the interest points are detected frame by frame.

5.3.1 Interest points detection

We implement Dollar’s cuboid detector to detect the space-time interest points in the
videos. The detector has two major parameters: the spatial scale o and the temporal
scale 7. The parameter ¢ is used in the spatial Gaussian filters. According to the
scale-space theory [154], it controls the spatial details captured in a video patch. In
our evaluation, ¢ is set at 4, which removes the salt and pepper noise but keeps most of

the shape information. 7 is the temporal scale of the 1D Gabor filters. It controls the
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temporal resolution to be considered. Our experimenting on 7 shows that the value of
7 is not exclusive to have good detection function response. The value of 7 can be a
good choice as long as the Gabor filter responses contain positive and negative signs
and the response directions are symmetrical. However, larger 7 would result in smaller
w value, and need more video frames to give good detection function responses. In
our evaluation, we set 7 = 16 which requires 5 video frames to compute the detection
function response. Figure 5.2 shows an example of the detection result with the given
parameter settings. It can be seen that many interest points are detected in the regions

around the motion boundaries which usually have strong detection function response.

5.3.2 Video patch descriptor

All detected space-time interest points are described by the “3D” HOG descriptors.
Klaser’s 3D descriptor computing tool [7] is applied to extract the “3D” HOG features.
As described above, each interest point has scales 0 = 4 and 7 = 16. By setting the
patch size controlling parameters o, = 8 and 795 = 0.3125, we obtain a video patch
with size 32 x 32 x 5 according to the equation 5.3. This video patch is further divided
into 2 x 2 x 2 cells, and each cell has 4 x 4 x 4 subblocks by default. Each subblock
is described by an icosahedron with half sphere quantization. This parameter settings
finally give us a {(20 +2) x 2 x 2 x 2 = 80} dimension “3D” HOG descriptor.

5.3.3 Building visual vocabulary with ERC-Forests

We developed our ERC-Forests based on Yu's random forest library [175]. All the
video patch descriptors from the training set are fed into the ERC-Forests to build
a visual vocabulary. The vocabulary size usually has an impact on the classification
performance. There has been methods attempt to search an optimal vocabulary size by
adding decision trees to the forests [52][147]. In these methods, the discriminative power
of the vocabulary is almost saturated when 5 trees are employed. In our evaluation,
we believe that the depth of trees has more control on the discriminative power of the
vocabulary. We employ 5 trees in the forests and evaluate different tree depths for
recognition. Table 5.1 lists the size of vocabularies generated by ERC-Forests using

different tree depths.

72



Chapter 5. Recognition using Space-Time Interest Points

|Treed(3pt,h| 5 l 6 l 7J 8 | 9 | IOJ
| Dimension | 160 | 320 [ 640 [ 1280 | 2560 | 5113 |

Table 5.1: Vocabulary sizes using different tree depths

Tree depth Accuracy Macro F | Micro F
5 52.17 +£6.50% | 0.5198 0.5217
6 57.39 +£7.16% | 0.5763 0.5739
7 61.09 +7.75% | 0.6172 0.6109
8 62.61 =8.27% | 0.6317 0.6261
9 64.53 £ 8.11% | 0.6535 0.6453
10 65.83 +7.33% | 0.6689 0.6583

Table 5.2: Classification results with different tree depths

5.3.4 Classification results

The classification is performed by the non-linear SVM with a x? kernel as described in
equation 5.7. Our implementation adapted the libsvin [22] by adding a x? kernel inside
the program. Table 5.2 lists the classification results with different visual vocabularies
generated by ERC-Forests using different tree depths. The results are also plotted in
figure 5.6

It can be seen that the classification accuracy improves slowly along the growth
of the tree depth in ERC-Forests. This verifies our assumption that the tree depths
in ERC-Forests can be used to control the discriminative power of a visual vocabu-
lary. The trees with deeper depth may generate finer visual words which can capture
the details in gestures for discrimination. Figure 5.7(a) and figure 5.7(b) also show
the classification confusion matrices when the trees in ERC-Forests have depth 5 and
10 respectively. We can see that gesture 1 and 4, and gesture 9 and 10 are mostly
misclassified to each other. Moreover, there is also certain amount of misclassification
between gesture 4 and 8. This is probably because that recognition via space-time in-
terest points method does not preserve any global spatial configuration of the gestures.
Any partial correlation between two sets of interest points can fire a misclassification
regardless of these interest point positions. For example, the left spread out hand in

gesture 8 may be confused with the left hand in the gesture 4.
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BoF performance with spatio-temporal interest points
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Figure 5.6: Classification curve with different vocabulary size
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Figure 5.7:

5.4 Summary

In this chapter, we evaluate the method of recognizing hand washing gestures using

space-time interest points.

temporal energy map. The detection method is designed to detect too many rather than
too few interest points. Our experiments show that many interest points are detected in

the regions around the motion boundaries which usually have strong detection function

Confusion matriz of classification:(a) tree

The interest points are detected as maxima of spatial-
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Chapter 5. Recognition using Space-Time Interest Points

response.

The detected space-time interest points are described by the “3D” HOG features,
and are used to build the visual vocabulary. Our visual vocabulary is built by the ERC-
Forests, a fast efficient alternative of K-means clustering. The discriminative power of
the visual vocabulary is generally controlled by the number of trees employed in the
forests, and usually saturates when 5 trees are used. In our evaluation, we believe that
the depth of trees can have better control on the discriminative power of the vocabulary.
Our experiments show that the classification accuracy can improve slowly along the
growth of the tree depth in ERC-Forest even 5 trees have been used.

Our overall evaluation shows that the hand washing gestures can be recognized
with a rich set of local features regardless of the global appearance and motion. Ac-
cordingly, ROI detection is not necessary in the recognition. However, because the
method does not preserve any global spatial configuration of the gestures, any partial
correlation between two sets of interest points can confuse the classifiers regardless of

their relative geometry positions in frames.
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Chapter 6

Recognition using TGC-HCRFs

6.1 Introduction

In this chapter, we propose TGC-HCRFs method for hand washing gesture recogni-
tion. The TGC-HCRFs method unifies texton analysis and HCRFs method in a same
framework such that the recognition can be beneficial from both HCRFs and texton
analysis. The basic idea of the method is that the gesture textons can be modelled
by the hidden states in HCRFs. Our experiments show that the HCRFs model can
automatically determine the visual vocabulary size for recognition.

In TGC-HCRFSs, the local spatial-temporal gesture information is captured by
gesture textons via the “3D” HOG descriptors as described in chapter 5. In chapter
5, the “3D” HOG descriptors are simply clustered to visual words. No global spatial
configuration of the gestures is conserved. Instead, in TGC-HCRFs the global spatial
structure is modelled by the HCRFs with a grid graph. Comparing to the linear-chain
HCRFs which has been studied in chapter 4, the grid graph structure used in TGC-
HCRFs method offers a more flexible way to include the contextual and neighbouring
information for recognition. Moreover, the local features used in TGC-HCRFs can be
extracted simultaneously such that the TGC-HCRFs method can easily be parallelised,

which makes the method a good candidate for real-time applications.

6.2 Methodology

Figure 6.1 illustrates the workflow of the TGC-HCRFs method. Given captured images,

hand regions are detected first as described in chapter 3 to eliminate noisy background,
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Captured hands video pa.tch TGC-HCRFs Results output
frames localization extraction modelling

Figure 6.1: Recognition using TGC-HCRFs workflow

however drawing bounding boxes of hands is an option in TGC-HCRFs method as
general graph structures are acceptable in TGC-HCRFs. Next, the detected hand
regions are split in grid, and we call a small spatial-temporal cube a video patch as
illustrated in figure 6.2. These patches are regarded as nodes on the grid graph and

are modelled as textons by the hidden states in HCRFs.

Figure 6.2: An example of video patch in TGC-HCRFs method

Although HCRFs are applied in both TGC-HCRFs method and the sequence
labelling method in chapter 4, they are used in very different ways. In recognition
using sequence labelling method, the HCRFs is modelled as a linear-chain, and each
node in the chain is a video frame. The output of the linear-chain HCRFs model is
a class label for the whole video sequence. In TGC-HCRFs, a grid graph structure is
used to model the spatial configuration of hands as illustrated in figure 6.3. Each node
of the graph, which is a small video patch extracted in the spatial-temporal space, is
assigned with a hidden state. The ensemble of all node states then represent the graph

class. Since the grid graph is constructed for every video frame, the TGC-HCRFs
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method can report the classification result frame by frame naturally. In the rest of this

section, we are going to elaborate the details of the TGC-HCRFs model.

- ' P P an® X|
' ]
[
' o x 2 -« >
[
a X1 o w

Figure 6.3: The structure of the TGC-HCRFs model

6.2.1 Video patch sampling

In TGC-HCRFs, a video patch is a small spatial-temporal cube extracted from a stack
of frames as shown in figure 6.4, and each video patch is described by a spatial-temporal
“3D” HOG descriptor. However, in TGC-HCRFs the video patches are not detected
by searching local maxima of a spatial-temporal filter response as chapter 5. Instead,
they are extracted regularly in grid within a hand region or a ROL.

As shown in figure 6.5(a), given a predefined grid size, the video patches are
sampled over the ROI in grid. The green points in figure 6.5(a) indicate the centres of
sampled video patches, and the spacing between adjacent points defines the grid size.
If the hand region is used in the video patch sampling as shown in figure 6.5(b), the
video patches fall outsize the hand region will be dropped. Consequently, the graph
structure used in TGC-HCRFs would then be a general grid graph.

The extracted video patches have a predefined size W), x H, x L,, where W, denotes
the width of the patch and H, denotes the height. L, is the length of the patch, which

indicates how many video frames are used for the feature extraction. Each patch cube
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Figure 6.4: A video patch generation in TGC-HCRF's

is described by the “3D” HOG features. Moreover, different patch sizes can also be
used in the feature extraction. This would result in a multiple scale description of a

patch.

The grid video patch sampling operates similarly to the cells used in HOGs calcu-
lation, however in TGC-HCRFs, there is no block normalization and the local features
extracted from video patches are directly applied in the TGC-HCRFs model.

6.2.2 TGC-HCRFs model

Our TGC-HCRFs model is defined similarly to Kumar’s Discriminative Random Fields
model [99]. Let X = {x;},7 € S be the extracted video patches at current frame and
{x;},7 € N; be the neighbours of video patch x;, where S denotes the patch set and
N; denotes the neighbour set. We define the potential function used in TGC-HCRFs
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(a) (b)

Figure 6.5: Video patch sampling in TGC-HCRFs. (a) sampling in a ROI; (b) sam-
pling in hand region

model as formulae 6.1 and 6.2.

U(y, h, X5\, w) = exp (P(y, h, X; N\, w)) =exp(A- f(y, h, X;w)) (6.1)

At (X)) = Z/\l - fi(hi, xi;w) + Z/\g -1(y, hi) + Z Z A3 - 1(y, hi, h;)

i€S €S i€S jeN;

(6.2)

As shown in equation 6.2, there are three types of features used in TGC-HCRFs.

The unary node feature fy(h;,z;; w) with its weight A\; models the compatibility be-

tween a video patch z; and a hidden state h;. In our evaluation, the “3D” HOG features

are used for this type of feature. Analogously, another unary feature 1(y, h;) with its

weight Ay measures the compatibility between a class label y and a hidden state h;. The

inner-product Ay - 1(y, h;) tells how likely current frame with a class label y contains

a video patch with a hidden state h;,. The pairwise edge feature 1(y, h;, h;) with its

weight A3 models the compatibility between a class label y and a pair of hidden states

(hi, hj). This tells that how likely a pair of hidden states (h;, h;) would present when
current frame belongs to class y.

From the potential function definition, it can be seen that the context window

w and neighbours N; are utilized in the TGC-HCRFs model. Since a grid graph is

used, in TGC-HCRFs the contextual information and neighbours would be included

differently to the sequence labelling method in chapter 4. In the following sections we

would roll out the details.
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(a) (b) (c) (d)

Figure 6.6: Spatial neighbouring system in TGC-HCRFs: (a) 2-way neighbours on
the vertical; (b) 2-way neighbours on the horizontal; (¢) 4-way neighbours on the cross;
(d) 4-way neighbours on the diagonal

6.2.3 Neighbours

The linear-chain HCRFs only consider the forward and backward relationship between
two adjacent nodes in a chain. On the contrary, The grid graph structure in TGC-
HCRFs enables a more flexible way to model the relationship between neighbouring
nodes. For a video patch, the neighbouring system A; can have 2 nodes, 4 nodes or
even 8 nodes as its neighbourhoods, which correspondingly forms a 2-way, 4-way or
8-way neighbouring system. A 2-way neighbouring system takes 2 adjacent nodes as
neighbourhoods: the top node and the bottom node, as illustrated in figure 6.6(a), or
the left node and the right node as illustrated in figure 6.6(b). The 4-way neighbouring
system includes all 4 nodes as neighbourhoods: the top, bottom, left and right nodes as
shown in figure 6.6(c), or the top-left, top-right, bottom-left and bottom-right nodes
as shown in figure 6.6(d). For a 8-way neighbouring system, all 8 neighbourhoods
mentioned in the 4-way neighbouring system are used. The neighbouring system can
even have a 10-way neighbours as shown in figure 6.7(a), two nodes along the time
axis are added, which are the one node in the previous frame and one node in the after
frame. Moreover, it is also possible to have a skip-neighbouring system as shown in
figures 6.7(b) and 6.7(c), where an irrelevant node lies between a neighbourhood and
the centre node. Since we mainly concern the spatial configuration of hands and the
temporal dynamic information has been encapsulated in the “3D” HOG descriptors, in
our evaluation we only focus on the spatial neighbouring systems for recognition. No

temporal neighbours are considered.
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(a) (b) (c)

Figure 6.7: Other possible neighbouring systems in TGC-HCRFs: (a) spatial-temporal
neighbours; (b) 4-way skip neighbours on the cross; (¢) 4-way skip neighbours on the
diagonal

6.24 Context window

From chapter 4, it has been known that contextual information extracted from a context
window can help the state inference. In TGC-HCRFs the context window w is defined
very similar to the neighbouring system. What is different is that all the features
extracted from surrounding nodes are concatenated with current node feature to form
a long feature vector as the descriptor of current node. It has to be aware that the
dimension of the descriptor can increased drastically when many nodes from different
directions are included in a context window.

6.2.5 Hidden states

In TGC-HCRFs each video patch is modelled by a hidden variable, and each hidden
variable is regarded as a gesture texton. The hidden variable set then becomes the
visual vocabulary. Generally, choosing a proper vocabulary size is not a easy job.
Small size vocabulary may lack of discrimination while a large vocabulary may result
in overfitting. Our experiments show that by combining the graph cut and HCRFs
method, the TGC-HCRFs model has the ability of automatically determining the size

of a visual vocabulary for recognition during the training.
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6.2.6 Model training

The training of the TGC-HCRF's is very similar to the training algorithm described in
chapter 4. However, the learning procedure of the sequence labelling method in chapter
4 can be regarded as an online training algorithm where recent training samples have
more effect on the model performance. In sparse representation based approaches, the
local descriptors per se generally are not as discriminative as dense global descriptors
for recognition. Thus, the online training may not be a good choice for our TGC-
HCRFs model. We develop our training algorithm of TGC-HCRFs model based on
the cutting-plane training algorithm of structural SVM [83] which conserves all the
training constraints during the learning procedure.

The training algorithm of TGC-HCRFs is also an EM-based training method
within the max-margin training framework. There are two iterative steps in the training.
In the first step, the hidden structure is inferred with fixed model parameters. In
the second step, the hidden structure is fixed. The model parameters are optimized
by a max-margin based training algorithm. In chapter 4, for a linear-chain HCRF's
model, the hidden structure of a sample can be inferred by the viterbi algorithm [105].
However, for a general graph structure, exact inference would become computationally
intractable and an approximate inference has to be applied. In our training algorithm,
we use the graph cuts method for this approximation since empirically graph cut usually
runs faster than the message passing methods.

Joachims’ cutting-plane training method was proposed as a fast and tractable
learning method of structural SVM on large datasets. It contains two training algo-
rithms: margin-rescaling training and slack-rescaling training. Neither of them has
hidden variables involved. In TGC-HCRFs training, we adapt the margin-rescaling
training algorithm for the parameter learning with hidden variables.

Same as chapter 4, the training of TGC-HCRFs is performed in the dual form
of the optimization, which tries to find optimal dual variables that maximize the dual
objective Lp 6.3:

n 1 n
max Y D gy y) — 5l YD onyely, X))
=1 'y =1 y

st. Y a,=C, ay=20, Vy, VI (6.3)
Yy

where ;, € a are the dual variables and vector J represent the binary loss of the

model. The feature difference map o(y, XV) is calculated with the following equation
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6.4 for all possible labels y:
oy, X)) = f(yW,n0, XO: X w) — fly, h, XD; \, w) (6.4)

Since the same dual objective function needs to be optimized, TGC-HCRFs shares
most training steps described in chapter 4. Figure 6.8 outlines the learning procedure

of TGC-HCRFs.

[. Input:
a) give training samples {y¥, XU} context window size w, and hidden variable
number |A|
b) initialize: A «- 0, R < ), where R is the working set of constraints
II. Repeat until a maximum iteration number is reached
'(1) s o U Whsgm— 1

b) Loop over all training samples

1. holding the parameter A fixed, estimate the hidden structure h for the
current training sample using graph cuts

B

calculate ¢(y, X ) for all possible labels y

g+ argmax, {A(y",y) + X - o(y, X©)}

. Poum = Poum + P(H XY),  Asum = Boum + 3", §)
c) R+ R U {@sum/n; Dsum/n}

d) a=argmax,Lp st. Y a=C

= e

e) A =aTp,,.. where ¢, .. denotes all the g, included in the working set R

Figure 6.8: Outline of TGC-HCRFs training algorithm

The training of TGC-HCRFs starts with setting the parameter A at 0 and set-
ting the working set of constraints R empty. It is optional to initialize each training
sample with random hidden states. Our experiments show that this does not make
much difference in performance. In each training iteration, all the training samples are
processed through an EM training procedure, and a cutting plane constraint is com-
puted and added into the working set of constraints R. This cutting plane constraint
is calculated with the 1-slack margin-rescaling cutting plane algorithm which assumes

that all training samples share only one single slack variable.
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The 1-slack margin-rescaling cutting plane algorithm firstly holds the model pa-
rameter A fixed and infers the hidden structure of each training sample for every possi-
ble class label. This will generate a feature difference map p(y, XV) for every training
sample. With o(y, X)), the most violating constraint for each training sample can
then be found. During the training, a margin is enforced between the true label and
any other labels. However, due to the unoptimized parameters, this margin require-
ment is usually violated by incorrect expected labels. Thus, the one breaks the margin
requirement most would be identified as the most violating constraint as illustrated
in above algorithm II.b.3. If this violating constraint is indeed not the true label, a
binary loss with value 1 will be inducted. In other words, if it turns out the margin
requirement of current training sample is satisfied, the loss would be zero.

Since a violating constraint is identified for each training sample, the cutting
plane algorithm would end with n constraints after one iteration, and the working set
R would easily grow to be very heavy for a large training set after several iterations.
Joachims shows that it is possible to combine the n constraints to be one constraint
for training [83]. This single one constraint can equally form a cutting plane that cuts
off the current solution from the feasible set.

After adding that new constraint into the working set of constraints R, the cor-
responding dual variables are computed by optimizing the quadratic dual objective
function £p 6.3. In our program, this is done by an efficient QP solver CPLEX !
Consequently, the model parameter A can be updated via the step Il.e in the outlined
training algorithm, and one training iteration finishes. The whole training algorithm it-
eratively processes the training set as described above until a prefixed iteration number

is reached.

Graph cuts inference

During the TGC-HCRFs training described above, it is required to infer the hidden
structure h for each training sample. Since the TGC-HCRF's model has general graph
structure involved, exact inference such as the viterbi algorithm would become compu-
tationally intractable. Therefore, we apply the graph cuts method for the approximate
inference. Specifically, we use the QPBO method [95] to infer the hidden structures.
Graph cuts has been widely used in computer vision for image segmentation,

image restoration, stereo matching, etc. It formulates the problems in terms of energy

!The IBM ILOG CPLEX Optimizer
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minimization, and under most formulations, the minimum energy solution corresponds
to the MAP estimate of a solution [111]. Recall our potential function description in

section 2.2.1. If the exponentials are used, the potential functions can be rewritten as
We(Ve) = exp(—=E(Ve))

where E(V) is the energy function. In TGC-HCRFs model, this energy function
would be E(y,h, X:\). A MAP estimate of the hidden structure for a given class
label y is found as h = argmaxy, P(h|y, X, A), and the posteriori is computed as
P(hly, X, ) = %oxp(—E(y. h,X;)\)) where Z is a normalization constant. There-
fore, the hidden structure can also be found by solving an energy minimization prob-
lem as h = argming, E(y, h, X;A). In TGC-HCRFs, we calculate the model energy
as E(y,h, X;\) = —®(y, h, X; ) which simply takes a negative result from the inner
expression of the potential function, then apply graph cuts on this energy to obtain
the hidden state estimates.

The graph cuts method is applied as an intermediate step during our model
parameter estimation procedure. There has been a number of methods also applying
graph cuts for parameter estimations [19][118][97]. However, these methods have to
work with submodular energy functions such that the functions can be minimized by
graph cuts in polynomial time [93]. The Submodular functions are discrete analogues

of convex functions [14], and have to hold the condition 6.5 for all labels [96][95],
Epq(0,0) + Epg(1,1) < Epg(0,1) + Epg(1,0) (6.5)

where E,,(-,-) is the pairwise energy term in the potential functions.

In some situations the functions can not be submodular, for example, the energy
function with parameters learned from training data. In these situations, the trun-
cation technique can be applied, which ignores the non-submodular terms during the
parameter learning. However, this technique may not be appropriate when the number
of non-submodular terms is very high [95]. From our experience, when the parameter
dimension is high, the updates of the parameters are small in each learning iteration,
while the truncation technique can easily miss these updates and make the training
hard to converge.

In TGC-HCRFs training we apply the QPBO graph cuts method which explicitly
takes into account the non-submodular terms. The QPBO method can cope with the

non-submodular terms by constructing a graph with double the number of vertices, and
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“flip” a subset of vertices such that all terms become submodular [95]. Since no terms

are truncated, the QPBO method would give better parameter estimation results.

Bootstrapping

Since hidden variables are used in TGC-HCRFs model, TGC-HCRFs can not guarantee
the training converges to a global maxima. In fact, the EM training method usually
gets stuck in a local maxima which may be still far away from the global maxima.
In order to alleviate this problem, we apply a bootstrapping strategy during TGC-
HCRFs training. Bootstrapping is a resampling method with replacement, which is
usually used for estimating the sampling distribution of an estimator. It assumes that
the distribution of the samples is a close approximation to the population distribution.
The technique is usually employed with the EM training to help avoid getting trapped
in local minima.

In TGC-HCRFsSs training, we randomly downsample the training set with replace-
ment to build a subset for generating a cutting plane in each iteration. In our evalu-
ation, the subset size is chosen to be one twentieth of the original training set. Since
a very large training set is employed in our evaluation, the hidden structure inference
was a bottleneck of the total training time. However, as a side-effect of the bootstrap-
ping strategy, the training is drastically sped up since in each training iteration only a

portion of the original data set needs the hidden structure inference.

Shrinking

After a number of iterations, the working set of the constraints would grow big and
slow down the optimization. However, since the feasible training region is iteratively
cut, a lot of dual variables would become zeros after a number of optimization, and
the working set R becomes very sparse. In order to save the training time, it is better
to remove these constraints with o value 0. On the other hand, we do not want to
erase recent constraints as these constraints may temporarily have o 0 but may become
non-zeros after the parameters being updated. Therefore, we set a buffer to the dual
variables. In our evaluation, this buffer size is 10, which means we only remove the
constraints with a 0 which have been optimized at least 10 times.

To sum up the techniques described above, we update the step IT in TGC-HCRFs

training algorithm in figure 6.9:
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II. Repeat until a maximum iteration number is reached

‘d) Lr;‘sum = 0* Asum = 0
b) build a subset from 1/20 of the original training set by randomly picking
¢) Loop over the subset

1. infer A for all possible labels y

h= arg mhiu E(y.h, XV )

2. calculate o(y, X®) = f(y©,hO, XD = f(y, h, XD)
3. § + argmax, {A(y",y) + - o(y, XY)}
4. Poum = Poum + 0(H, XV)  Agum = Bsurm + 6, §)
d) push {@sum/n, Asum/n} in a buffer B
e) R+ R ) {wam/n, Doum/n}
f) a = argmax, Lpfg: fouryethods st. > a=C
g) A=aTp,,
)

h) remove {@gum/n, Agum/n} from R for any o < 0.0001 and

{995_“,"/77,. Asum/”} ¢ B

Figure 6.9: Updated training steps in TGC-HCRFs

6.3 Evaluation

We implement our TGC-HCRFs algorithm in Matlab. The raw features for training
the TGC-HCRFs model are extracted with the help of Klaser’s “3D” HOG computing
tool [7]. In our evaluation, all the video patches share the same “3D” HOG parameter
setting except for the video patch size. For each video patch, it is divided into 2 x 2 x 2
cells, and each cell has 4 x 4 x 4 subblocks by default. Every subblock is measured by
the dodecahedron with half sphere orientation. These settings together give the final
“3D” HOG descriptor a dimension of 48 (2 x 2 x 2 x 6). This dimension is fixed for the
raw “3D” HOG features through all the evaluation of TGC-HCRFs, and is irrelevant

to different video patch sizes applied in the experiments.

Extracting video patches from all video frames in the training set would result
in a very big data set which is hard to be handled by the computer. In order to get

a manageable data set for training, we extract the video patches in every 2 frames
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(a) (b) (c)

Figure 6.10: Patch sampling on hand region with grids of size: (a) 16; (b) 24; (¢) 32

during the training, but during the testing the video patches are still extracted frame

by frame.

6.3.1 Sampling patterns

We fist evaluate our TGC-HCRFs method with different sampling patterns. In this
evaluation, the number of hidden variables is set at 30. The video patch size is fixed
at 32 x 32 x 5. 4-way cross neighbouring system is applied in the model, and 4-way
cross context window is used.

The evaluation runs for both ROI sampling and hand region sampling with three
different grid sizes: 16 pixels, 24 pixels and 32 pixels. We finally obtain five sampling
patterns in the evaluation as listed in the first column of table 6.1 2 . Figure 6.10
illustrates the patterns of hand region sampling with three different grid sizes. From
(a) to (c), they are in turn sampling with grids of size 16, 24 and 32 pixels. We can see
that grid 16 sampling is much denser than the grid 32 sampling.

Table 6.1 lists the recognition performance of TGC-HCRFs with different sam-
pling patterns, where “ROI 16" means that the sampling is performed on the ROI
with grid size 16 pixels, and “Hand 32” means that the sampling is performed on the
hand region with grid size 32. As we can see, the hand region sampling with grid size
16 gives the best recognition performance. Moreover, we can notice that the recog-
nition performance with hand region sampling is better than the performance with
ROI sampling. This is probably because that the hand region sampling can remove
non-informative video patches from the background such that the gesture information

carried by the gesture textons will not be covered by noise from the background. We

2the performance of ROI sampling with 16 pixel grid is not available due to too long training time
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also can see that when hand region sampling is used, the denser the sampling is, the
better performance the model has. This implies that the recognition prefers detailed

information for distinguishing gestures.

Sampling pattern Accuracy Macro F | Micro F
ROI 24 27.02 +3.84% | 0.2471 0.2702
ROI 32 27.70 + 3.02% | 0.2724 0.2770
Hand 16 40.54 +4.98% | 0.3898 0.4054
Hand 24 38.28 +2.53% | 0.3728 0.3928
Hand 32 37.40 +£4.22% | 0.3599 0.3740

Table 6.1: TGC-HCRFs performance with different sampling patterns

6.3.2 Video patch size

The hands in each video frame may present in different scale. Thus, it would be
necessary to consider the scale issue in the recognition. In this section, we evaluate
three different video patch sizes in the TGC-HCRFs model: size 16 x 16, 32 x 32 and
48 x 48. The sampling pattern is set as hand region sampling with grid size 16 which
shows the best performance in the last section. The other model parameters are kept
as before. Table 6.2 lists the evaluation results, where the “combined” means features
from patches with three different sizes are concatenated to form a long multi-scale
descriptor for recognition. It can be seen that this multi-scale descriptor has the best
performance. This makes us think that building a more complex description of the
video patch, such as rotating the patch with different angles, may further improve the

recognition performance.

| Patch size | Accuracy | Macro F | Micro F |
16 33.44 +5.03% | 0.3080 | 0.3344
32 40.54 +4.98% | 0.3898 | 0.4054
48 43.52 £ 4.75% | 0.4246 | 0.4352
Combined | 48.02 +6.14% | 0.4657 | 0.4802

Table 6.2: T'GC-HCRFs performance with different patch size
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| No. of hidden variables | Accuracy | Macro F [ Mi(‘roﬂ

30 48.02 £ 6.14% | 0.4657 0.4802
50 48.98 +4.53% | 0.4817 | 0.4898
100 4797+ 7.77% | 0.4599 0.4797

Table 6.3: TGC-HCRFs performance with different number of hidden variables

6.3.3 Hidden variables

With multi-scale patch description, we evaluate different number of hidden variables for
the TGC-HCRFs model. As shown in table 6.3, the TGC-HCRFs models with 30, 50,
and 100 hidden variables have very close recognition performance. Figure 6.11 counts
the overall hidden variables used during the training of the TGC-HCRFs models.

It can be seen that although different numbers of total hidden variables are set in
the models, all TGC-HCRFs models tend to mainly use around 10 hidden states for the
recognition. Although it is not clearly shown in the figures, the TGC-HCRFs models
did explore other possible hidden variables during the training, but the accumulated
counts of those hidden variables from all iterations are very small. It seems like the
models trial the training with some hidden variables but find out that the first 10
hidden variables have the best explanation to the gestures, thus in the rest of the
training the hidden variables that fail to interpret the gestures are ignored. This result
implies that the TGC-HCRFs model can automatically determine the proper number
of hidden variables for recognition, as long as the initial number of hidden variables is
big enough. In other words, TGC-HCRFSs has the ability of automatically determine

the size of the visual vocabulary.

6.3.4 Neighbouring system

Different neighbouring systems are also evaluated in our evaluation. We experiment
the neighbouring system up to 4-way neighbours are listed in table 6.4, where “2-way
RL” means a 2-way neighbouring system with right and left nodes as neighbourhoods.
Analogously, the “2-way UD” means a 2-way neighbouring system with up and down
nodes as neighbourhoods. The “4-way cross” neighbouring system is depicted in figure
6.6(c), and the “4-way diagonal” neighbouring system is illustrated in figure 6.6(d).
The other parameters in the experiment are set as 16 pixel grid sampling, multi-scale

video patch description, 30 hidden variables and 4-way cross context window.
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Figure 6.11: The overall hidden variables used in TGC-HCRFs models with (a) 30,
(b) 50, (¢) 100 hidden variables
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| Neighbours I Accuracy | Macro F ] Micro FJ
None 18.30 £9.21% | 0.1270 | 0.1830
2-way RL 39.74+11.08% | 0.3763 | 0.3974
2-way UD 46.09 +4.74% | 0.4602 | 0.4609
4-way cross 48.02 + 6.14% 0.4657 0.4802
4-way diagonal | 49.98 +8.22% | 0.4905 | 0.4998

Table 6.4: TGC-HCRFs performance with different neighbouring system

From the result table 6.4, it can be seen that a model with 4-way diagonal neigh-
bouring system gives the best performance. However, a more interesting finding is
that the “2-way UD” neighbouring system performs much better than the “2-way RL”
neighbouring system. This means that the vertical neighbourhoods bring in more useful

information for discerning gestures.

6.3.5 Context window

Lastly, we evaluate the context window size of TGC-HCRFs model. As the neighbour-
ing system, the context window size is also evaluated up to the 4-way context window
as listed in the first column of table 6.5. The evaluation results listed in table 6.5

confirm that increasing the context window can improve the recognition performance.

Neighbours [ Accuracy [ Macro F | Micro U
None 34.73 +£3.42% | 0.3328 | 0.3473
2-way RL 45.31 +3.39% | 0.4473 0.4531
2-way UD 44.98 £ 6.58% | 0.4359 0.4498
4-way cross | 48.02 +6.14% | 0.4657 | 0.4802
4-way diagonal | 48.69 +4.81% | 0.4774 0.4869

Table 6.5: TGC-HCRFs performance with different context window

6.3.6 Hidden state initialization

In all previous experiments, the bootstrapping strategy is used to alleviate the local
maxima problem. The local maxima problem may also be alleviated by initializing
the hidden structure of each training example with random states. Therefore, in this
experiment, we substitute the bootstrapping strategy with random state initialization

in the training algorithm. At the start of the training algorithm, the states of the
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[ Group | 1 ] 2 | 3 | 4 j 5 I Mean |
Random states | 35.78% | 30.64% | 47.79% | 51.85% | 42.71% | 41.79 £ 8.60%
Bootstrapping | 43.17% | 55.94% | 52.47% | 47.11% | 41.40% | 48.02 £ 6.14%

Table 6.6: TGC-HCRFs with random state initialization and bootstrapping

Performance with random states and bootstrapping
60| e

-random states |
-boos(rappmg |

40

30

Accuracy

Group1 Group2 Group3 Group4 Average
Test group

Figure 6.12: A plot of group accuracies of models with bootstrapping and random
state initialization

hidden structure for each training sample are initialized with random integers between

1 and the number of hidden variables.

Table 6.6 lists the group accuracies of both models with bootstrapping and ran-
dom state initialization. As shown in figure 6.12, the bootstrapping strategy gives a
slightly better performance than random state initialization. Another benefit from ap-
plying bootstrapping strategy in the training is that the training time can be greatly
reduced, since only a portion of training set is selected by the bootstrapping in each

training iteration.
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6.4 Summary

In this chapter, we develop a TGC-HCRFs model for hand washing gesture recognition.
The model unifies texton analysis and HCRFs within the same framework such that
the gesture textons can be modelled as the hidden variables in HCRFs. Our TGC-
HCRFs method models the gesture spatial layout as grid graph, and each node of the
graph is a small spatial-temporal video patch which is described by “3D” HOG features.
The grid graph structure provides a more flexible way than the linear chain HCRF's
to include contextual and neighbouring information. It also provides an efficient way
to preserve the spatial configuration of gestures which can not be conserved by the
traditional BOFs methods.

Our TGC-HCRFs model is trained following Joachims’ cutting-plane algorithm,
however, as a semi-convex model, the training suffers from the local maxima problem,
therefore we propose a bootstrapping strategy in the training to alleviate the local
maxima problem. Our evaluation of the TGC-HCRFs model also provides a practical
study of applying HCRFs with grid graph structure for gesture recognition. Several
key parameters of the model are evaluated, such as the sampling patterns, hidden
variable number, neighbourhoods definition, etc. The evaluation result shows that the
fine-grid sampling of the gestures can generally give better recognition performance.
The evaluation also shows that the multi-scale description of the video patches can
significantly improve the recognition accuracies. This make us think of supplying more
complex patch descriptors to TGC-HCRFs in the future work. A distinct finding
from the evaluation is that the TGC-HCRFs method has the ability of automatically
determining the size of a visual vocabulary for a given recognition task. Since the
local features required in TGC-HCRFs model can be computed simultaneously and

efficiently, TGC-HCRFs model is also a good candidate for the real-time applications.
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Chapter 7
Discussion and Conclusions

In this thesis, we research into the hand washing gesture recognition as a new subject in
gesture recognition domain. Ten hand washing gestures are defined and analysed from
different perspectives using computer vision methods. Our research shows that hand

washing gestures can be assessed by vision-based methods effectively and efficiently.

7.1 Methods Review

Four computer vision methods are developed and evaluated for hand washing gesture

recognition in this thesis.

7.1.1 Recognition using static postures

The recognition using static postures method builds a multi-class hand washing ges-
ture model based on densely computed 2D HOG features from image ROIs. It classifies
the hand washing gestures frame by frame with only static information. The method
requires localizing the hand area in a preprocessing step. It encodes the hand silhou-
ettes of each gesture in grid for recognition, and can cope with small amount of shape
deformation, rotation and position shift. The evaluation result shows that the recogni-
tion with fine-grid HOG has better performance than the recognition with coarse-grid
HOG.
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7.1.2 Recognition using sequence labelling

Recognition using sequence labelling method treats the hand washing gestures as se-
quences and learns the internal structure of each sequence with the linear-chain HCRFs.
The method captures the static gesture information with the 2D HOG features while
the dynamic gesture movement is modelled by the first-order Markov process. A dis-
tinct property of the method is that the model can incorporate neighbouring frames
as contextual information for the recognition. However, since the high dimension 2D
HOG features used in our evaluation is very descriptive, adding contextual information
from neighbouring frames does not significantly improve the recognition performance.
This implies that the enhancement from contextual information depends on the primal
features used in the model. From the evaluation, we also notice that a very large hid-
den variable pool does not increase recognition performance significantly as well. This
is suspected that the model is dominated by some hidden variables even though more
hidden variables are available.

The recognition using sequence labelling method is trained within a max-margin
training framework which can handle large training set, and naturally reports the
classification results in terms of sequences. In order to give frame-by-frame predication,
a time-shift window is applied. A short sequence segment is extracted by the time-shift
window and is classified by the HCRFs model. The output class label is then assigned
to the middle frame within the time-shift window. In our evaluation, we notice that
the classification performance increases along with the time-shift window grows, in
which the confidence of the predication is built up. It can be seen that the recognition
using sequence labelling method has better performance than recognition using static
postures method for frame-by-frame classification. This is probably mainly because the
sequence labelling method utilizes information from both spatial and temporal domains

for recognition.

7.1.3 Recognition using space-time interest points

Both previous methods require the ROI detection in the preprocessing step, and
strongly depend on the 2D grid HOG representation. The ROI detection may meet dif-
ficulties when the background is cluttered and the lighting condition is uncontrollable.
The dense grid HOG features also have limited capacity of handling big spatial vari-

ety in hand washing gestures. Thus, the recognition using space-time interest points
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method is explored. The recognition using space-time interest points method does not
require ROI detection. It searches interest points over the whole image area by Dollar’s
cuboid detector. From the evaluation, we notice that most space-time interest points
are detected near the motion boundaries of the gestures.

Detected interest points are described by the “3D” HOG descriptor, and are
pooled together to build a visual vocabulary. The visual vocabulary is generated with
ERC-Forests, an efficient alternative to K-means clustering. An important step in
BOFs methods is to choose the vocabulary size. In ERC-Forest, the vocabulary size is
usually controlled through the number of trees used in the forests. In our evaluation,
instead we experimentally control the vocabulary size through the depth of trees in the
forests. Our evaluation shows that the recognition performance grows gradually when
we increase the depth of the trees, which means that the depth of trees can also be
used to control the discriminative power of the visual vocabulary.

Recognition using space-time interest points method performs the classification
with a rich set of local features regardless of the global appearance and motion of
gestures. However, due to no any spatial configuration of the gestures is conserved,
any partial correlation between two sets of interest points can confuse the classifiers

regardless of their relative positions in the video frames.

7.1.4 Recognition using TGC-HCRFs

The last evaluated method is our newly developed method TGC-HCRFs. The method
unifies the texton analysis and HCRFs method in a same framework such that the ges-
ture textons can be modelled by the hidden states in HCRFs. Comparing to recognition
using space-time interest points method, TGC-HCRFs is also a sparse representation
based method, but the spatial configuration of gestures can be preserved through the
grid graphs in HCRF's. Comparing to recognition using sequence labelling method, the
grid graph used in TGC-HCRFs provides a flexible way to include the contextual and
neighbouring information for recognition. Our evaluation of TGC-HCRFs shows that
multi-scale description of video patches outperforms single-scale description, and the
fine-grid sampling of the gestures is preferred in TGC-HCRFs. Moreover, the TGC-
HCRFs method can automatically determine the visual vocabulary size for recognition.
Given a big initial hidden variable set, TGC-HCRFs can choose a proper subset of
hidden variables to represent the gestures, while the rest of the hidden variables is ig-

nored. Since the local features used in TGC-HCRFs can be extracted simultaneously,
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Figure 7.1: Best performance of four evaluated methods: (a) recognition using static
postures; (b) recognition using sequence labelling; (¢) recognition using space-time in-
terest points; (d) recognition using TGC-HCRFs

TGC-HCRFs model is also a good candidate for real-time applications.

7.2 Discussion

In this section, our four evaluated methods are compared and analysed in terms of hand
washing gesture recognition. Several interesting findings are drawn and discussed as

below.

7.2.1 Dense and sparse representation

Figure 7.1 plots the best results from our four evaluated methods. It can be seen
that the dense representation based methods are more suitable for hand washing ges-
ture recognition than the sparse representation based methods. In figure 7.1, the first
method and the second method are the dense representation based approaches, while
the third and fourth methods are sparse representation based approaches. This means
that the global gesture shape configuration has the critical information for the recog-
nition. In the first and second methods, the global gesture spatial layout is hardcoded
into the grid and strongly represented by the 2D dense HOG features. This grid encod-
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ing may have some difficulty to represent the variety of a gesture, but the evaluation
shows that it is well suited to the hand washing gesture recognition. In the fourth
method, although grid structure is applied as well, the model does not capture the

global spatial information.

7.2.2 Fine-scale description preference

From the first method and the fourth method, it can be seen that hand washing gesture
recognition prefers detailed gesture description. In the first method, the finer-grid HOG
features give the better recognition performance. The highest one is the 3136 HOG
which has the finest quantization in both space and direction. The fourth method has
similar phenomena. When the sampling grid is 16 and multi-scale patches are used,
the recognition gets the best performance.

The reason of preferring details in hand washing gesture recognition may be
because the parts of hands are relatively small and move fast. The difference between
gestures are relatively small as well. The recognition algorithms need to obtain the fine
scale information in order to distinguish different gestures. Although much concerning
the details may overtrain the model, our evaluation in this thesis shows that, in hand
washing gesture recognition, supplying more gesture details gives better recognition

performance.

7.2.3 Vocabulary size

In the third method and the fourth method, a visual vocabulary needs to be built up.
However, choosing a proper size of the vocabulary is not easy. small size vocabulary
may lack of discrimination while a large vocabulary may result in overfitting. In the
third method, we control the size of the vocabulary by the depth of trees in forests.
However, if an optimal vocabulary size is required, the depth number has to be searched
through the art of experiment.

On the contrary, the fourth method can automatically choose a vocabulary size for
recognition. All we need to do is to supply a relatively large number of hidden variables.
The method can automatically determine how many hidden variables it needs during
the training. However, we also notice that the method may have a trend to give a
vocabulary as small as possible. The model may lose some discriminative power in the

recognition. Thus, in the future work, it would be interesting to encourage the method
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Confusion matrix of dimension 3136 HOGs HCRFs frame classification using 25 frames in a time-shift window
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Figure 7.2: Confusion matrices of four evaluated methods: (a) recognition using
static postures; (b) recognition using sequence labelling; (c) recognition using space-
time interest points; (d) recognition using TGC-HCRFs

to have a bit bigger size vocabulary.

7.2.4 Gesture analysis

Figure 7.2 shows the confusion matrices when the four evaluated methods give their
best performance. It can be seen that gesture 1 and gesture 4 are usually misclassified
to each other. This is not surprising as gesture 1 and gesture 4 are very similar.
The major difference is only around the region near the finger tips. A possible way
to alleviate this problem is to incorporate adaboost in the model training to enforce

paying much attention to the small difference between gesture 1 and 4.
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Gestures 9 and 10 are classified relatively well in recognition via static postures
and recognition in sequence labelling. This is due to that the hand movement in
gestures 9 and 10 is small. The spatial hand configuration plays an important role
in the classification. Contrarily, recognition via space-time interest points does not
preserve any spatial configuration of the hands, thus its classification performance of
gestures 9 and 10 is poor.

It is surprising that gesture 2 and gesture 3 can be distinguished very well by
all methods except for the TGC-HCRFs method. Intuitively gesture 2 and gesture 3
are very similar as it is hard to tell which hand is on the top and which hand is on
the bottom without any 3D depth information. It is suspect that features from parts
around the root of thumbs play important roles for telling these two gesture apart.

Comparatively speaking, gestures 7 and 8 are classified poorly for all four ap-
proaches. The possible reason is that the variance in gestures 7 and 8 is large. The
gestures could appear dynamic or static depending on the amplitude of the palm ro-
tation. The changing of hand positions and angles to the camera can also cause large

appearance difference in gestures 7 and 8.

7.25 Real-time processing

Our research strives to interpret and discriminate hand washing gestures effectively and
efficiently with computer vision methods. Thus, a real-time processing of hand washing
videos is desired in our algorithm design. In our four evaluated methods, the sequence
labelling method gives the best frame by frame recognition performance, however, it
is not the first choice for real-time applications. This is primarily because that the
classification of sequence labelling method needs to view the whole sequence before
making a predication.

On the contrary, the fourth TGC-HCRFs method has the worst recognition per-
formance among all evaluated methods, but it could be a good candidate for real-time
applications. The TGC-HCRFs method can extract local features simultaneously and
make classification by simple linear operations. No global normalization is required
during the processing such that the algorithm can be easily parallelized and imple-
mented on the Graphics Processing Unit (GPU) or Field-Programmable Gate Arrays
(FPGAs).

Based on current performance, the recognition with static postures would be the

best choice for real-time applications, since the algorithm gives very good recognition
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performance, and can be processed frame by frame very efficiently.

7.2.6 Improvement of TGC-HCRFs

Currently, the recognition performance of TGC-HCRFs method is inferior to the other
three methods. However, the performance might be enhanced in recent future by
the improvement of the TGC-HCRFs training algorithm. Firstly, we notice that the
graph cuts inference dose not provide any posterior measurement of the inferred hid-
den structure. In other words, the algorithm does not possess the probability of any
hidden variable assignment which might help the training. This drawback of the train-
ing algorithm could be overcome if an uncertainty measure of the graph cuts solution
is provided [94], or the graph cuts approximation can give M most probable hidden
structure outputs [173]. Secondly, in order to handle multi-class problems, the training
of TGC-HCRFs is formulated similarly to Crammer and Singer’s multi-class SVM [39],
which needs to compute the feature difference 6.4 during the training. This means that
the training is only guided by the negative constraints in the algorithm formulation
since the feature difference from positive constraints are all zeros. Therefore, the per-
formance of TGC-HCRFs method might be further improved if any effective positive
constraints can be added to the training of TGC-HCRFs.

7.3 Conclusions

The goal of our research is to assess hand washing techniques applied in the hand
washing activities robustly and effectively with vision-based methods. Aiming to this
goal, 10 hand washing patterns are defined following the WHO hand washing gesture
recommendation, and four computer vision methods are developed in this thesis. These
four methods are evaluated with a large set of hand washing videos and a large number
of experiments.

Our evaluation shows that recognizing hand washing gestures frame by frame
using sequence labelling method could give the best performance among all four evalu-
ated methods. Recognition using sequence labelling method models the gestures with
first order Markov process, and applies a time-shift window during the test to give a
frame by frame predication. The method can give very good accuracy when a large

time-shift window is applied, which can be explained as that the large window includes
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much gesture history and accumulates the confidence for classification. However, the
large time-shift window comes with a price of long processing latency in the predica-
tion. Therefore, from an efficiency point of view, recognizing hand washing gestures
using static postures would be the best choice for real applications. The method of
recognition using static postures gives the second best performance among four evalu-
ated methods. The method extracts 2D dense global HOG features to represent the
hands in each frame, and the evaluation shows that the recognition with fine-grid HOG
which provides detailed hand posture information gives better performance than the

recognition with coarse-grid HOG.

Both above methods use dense representation of gestures for classification, which
can be affected by the ROI detection results. Therefore, we explore the sparse represen-
tation in the recognition using space-time interest points method. It is believed that
the gestures can be well represented by a rich set of local features, regardless of global
appearance and motion. Recognition using space-time interest points method gives
slightly inferior performance to the methods with dense representation. This implies
that hand washing gesture recognition benefits from the global structure information
of gestures in the dense representation methods. However, as a sparse representation
method, recognition using space-time interest points method can handle the cluttered
background and uncontrollable lighting condition.

Our TGC-HCRFs method innovatively unifies the texton analysis and HCRFs
within the same framework. The method attempts to represent the gestures with sparse
representation and preserve the spatial configuration of the gestures. The evaluation
of the method also provides a practical study of applying HCRFs with grid graph
structure for gesture recognition. Although the performance of TGC-HCRFs method
is not as good as the other three methods, the features used in TGC-HCRFs can
be extracted simultaneously, which makes the method a good candidate for real-time
applications if parallel processing is applied.

Some our other findings from the evaluation of the four methods are also inter-
esting, and they may be applicable to other types of human action recognition. For
example, the discriminative power of visual vocabulary built by ERC-Forests can be
controlled by the depth of trees, and TGC-HCRFs method can automatically determine

the visual vocabulary size for recognition.

Hand washing activity is one of the most important ways to prevent the spread

of infection and illness, however assessing the quality of the hand washing activity is
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not easy. In this thesis, our research demonstrates that vision-based methods can be

used to measure the hand washing techniques applied in hand washing activity robustly

and effectively, which provides an economic and efficient way for hand washing activity

assessment.
7.3.1 Contributions

In this thesis, we have made following contributions:

Hand washing gesture recognition is studied as a new type of gesture recognition
task. 10 hand washing gesture patterns are defined and analysed from multiple

perspectives.

Four different computer vision methods are developed and evaluated for hand

washing gesture recognition.

A new method TGC-HCRFs is proposed, which unifies the texton analysis and
HCRF's within the same framework. The evaluation of the TGC-HCRFs method
also provides a practical study of HCRF's with grid graph for gesture recognition,

which has not been seen in literature.

The sequence labelling tool HCRF's is applied for gesture recognition. The key
parameters such as the context window size, number of hidden variables, etc. are

evaluated.

Different test sequence length is evaluated for the linear-chain HCRFs. It is
found that the longer test sequence is used, the better classification results can
be obtained.

The depth of trees in ERC-Forests is evaluated for controlling the discriminative

power of visual vocabulary.

A bootstraping strategy is applied in the max-margin training of HCRFs with
grid graph, which alleviates the local optimum problem and reduces the overall

training time.

The proposed TGC-HCRFs method can automatically determine the visual vo-

cabulary size for recognition.
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e [t is found that gesture recognition favours fine-grid sampling and prefers rich
description of video patches. Moreover, the vertical neighbours of a video patch

are found to be more informative than the horizontal neighbours.

7.4 Future Work

Based on the work presented in this thesis, several issues have also been identified and
can be improved in the future work.

Firstly, it can be seen that all our evaluation is based on the HOG description. It
would be interesting to examine some other types of low-level features as the descrip-
tors, such as the moments [74], the motons [174] or even simple image pixel difference
(147][175].

Secondly, as mentioned previously, the training algorithm of TGC-HCRF's can be
further improved. The model may give better performance if positive constraints can
be added in the training and the inference can have uncertainty output of the solution.
Moreover, some other strategies can also be examined for the local optimum problem,
for example, simulated annealing [17] or Quantum adiabatic machine learning [124].

Finally, it would be interesting to apply all the evaluated methods to other types

of human actions, and see if the same finding can be drawn.
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