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ABSTRACT
Recently a novel type of epithelial cell has been discovered and dubbed the “scutoid”.
It is induced by curvature of the bounding surfaces. We show by simulations and
experiments that such cells are to be found in a dry foam subjected to this boundary
condition.
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1. Introduction

Recently a previously unreported form of epithelial cells has been described which
appears when the epithelial tissue is curved, e.g. with local cylindrical curvature [1, 2].
The distinguishing feature of such a cell, called a scutoid by Gómez-Gálvez et al. [2],
is a triangular face attached to one of the bounding surfaces of the tissue layer. Here
we offer a simple illustration of this phenomenon, which is derived from the physics of
foams [3], consisting of a computer simulation together with preliminary experimental
observations.

In an ideal dry foam, bubbles enclose gas (which is treated as incompressible) and
the energy is proportional to their total surface area. Alternatively, the soap films
may be considered to be in equilibrium under a constant surface tension and the gas
pressure of the neighbouring cells. Plateau’s rules [4], more than a century old, place
restrictions on the topology of a dry foam (one of negligible liquid content), which is
the only case considered here.

From the earliest intrusion of physics into biology, this elementary soap froth model
has attracted attention to account for the shape and development of cells [5, 6]. More
sophisticated attempts to adapt it to that purpose persist today [7, 8, 9]. In the present
context we show that the model largely accounts for the appearance of scutoids, in
very simple and semi-quantitative terms, broadly consistent with the description in
the original papers [1, 2].
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Figure 1. A quasi-2D foam showing a single layer of bubbles confined between two flat parallel glass plates

(plate separation 8mm, average bubble diameter 2-3cm). Internal films meet the plates at right angles. The
polygonal cells on both glass plates are identical.

2. Topology of dry foams

The relevance of foams to biology is apparent from the pioneering work of the botanist
Edwin Matzke [10]. Inspired by the resemblance in shape between bubbles in foam and
cells in tissues, Matzke sought to understand the forces that may be common to both.
His approach was to painstakingly and exhaustively catalogue bubble shapes observed
in a dry monodisperse foam, confined within a cylindrical jar. Matzke distinguished
between peripheral bubbles (i.e. bubbles in contact with the walls of the cylindrical
jar) and central bubbles (i.e. bubbles inside the bulk foam). Amongst the peripheral
bubbles are listed two scutoids: the (1, 3, 3, 1) (see Figure 9-8 of [10]) and (1, 4, 2, 1, 1)
polyhedra (using Matzke’s notation). No triangular faces were found amongst the
central (i.e. bulk) bubbles.

3. Quasi-2D foam sandwich

Cyril Stanley Smith [11] first introduced the experimental quasi-2D foam that is formed
between two glass plates. The plates are close enough together that all bubbles touch
both boundaries, so that there are no internal bubbles and the internal soap films meet
the glass plates at right angles (see Figure 1). The quasi-2D foam between flat parallel
plates is often taken as the experimental counterpart of the ideal 2D foam, which
consists of polygonal 2D cells with (in general curved) edges meeting three at a time
at 120o. Such a finite foam sandwich presents two such patterns on its two boundaries,
and indeed on any plane taken parallel to them. However, if the plate separation is
increased, this structure is overtaken by an instability, described and analysed by Cox
et al. [12], in which individual cells cease to span the gap between two plates. This
instability is not directly relevant to scutoid formation but places limitations on both
experiment and theory.
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Figure 2. A schematic of a T1 transition in an ideal 2D foam or on the surface bounding a 3D/quasi-2D

foam [15]. The edge shared between bubbles A and B gradually shrinks and vanishes, the resulting fourfold
vertex is in violation of Plateau’s laws and the system transitions to a new arrangement. As a result, bubbles

A and B are no longer neighbours, while C and D (which were previously unconnected) now share a boundary.

The novel element that is brought into consideration by the work of Rupprecht et
al. [1] and Gómez-Gálvez et al. [2] is the introduction of curved boundaries which
may be represented by two concentric cylinders or a portion thereof. While there has
been some work on the effects of curvature of one or both plates [13, 14], it has not
addressed the case considered by Gómez-Gálvez et al., which consists of two concentric
boundaries.

When the separation between the two cylinders is infinitesimal there will be iden-
tical patterns on the two surfaces. However, if the separation is increased, the 2D
patterns on the inner and outer surfaces become strained to accommodate the change
in circumference. Eventually, this should lead to the vanishing of a 2D cell edge, and
hence to a topological change, as in Figure 2 and also in Figure 1(c) of [2]. This is
the so-called T1 process [15]. It necessarily entails the creation of a scutoid feature
within the bulk of the foam (as illustrated in sections 4 and 5) which is responsible
for the “apico-to-basal neighbour exchange” [1] that is observed. However, its appear-
ance may be only transitory, as it may provoke a similar effect at the other surface,
in a double-T1 process that restores the original columnar structure. The geometry
required by Plateau’s rules makes it obvious that this must be the case if the gap
between the cylinders is very small. Increasing the gap is expected to allow stable scu-
toids to persist, provided we do not encounter the other type of instability mentioned
above.

These arguments leave room for doubt as to whether such scutoid features can really
be found in the foam sandwich. Both simulations and experiments, described in the
following section, have yielded positive results.

4. Simulations

As in the simulations of [2], we start from a Voronoi partition of the gap between two
concentric cylinders, to give a collection of hexagonal prismatic cells. This structure
is imported into the Surface Evolver software [16], which permits the minimization of
surface energy (here equivalent to surface area, as in the ideal foam model) subject
to fixed cell volumes. We employ a periodic boundary condition in the direction of
the axis of the cylinders to reduce the effect of the finite size of the simulation. Cell
volumes are assigned fixed values within a restricted range so that the initial structure
is polydisperse but still hexagonal. In the example shown in Fig 3a, the cylinder has
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Figure 3. Cells in a Surface Evolver simulation of a polydisperse foam confined between two concentric

cylinders. (a) In the initial state the 2D pattern on both boundaries is purely hexagonal (only the pattern on

the substrate is shown). Red and blue bubbles are not in contact while the green bubble is in contact with
a fourth neighbouring bubble (not shown for clarity). (b) The foam after a T1 transition on the substrate,

resulting in four stable scutoid cells. The pattern on the substrate contains two five-sided and two seven-sided
regions, while the pattern on the superstrate remains purely hexagonal. The cells are shown slightly separated

for clarity. (c) The two types of scutoids cells (pentagonal and heptagonal) are shown separately. (d) A combined

view showing the scutoids and the surrounding foam cells.

axis length 5.2 units, the cylinder radii are 2.8 and 4.3 units and there are 144 cells. To
allow the cell walls between the cylinders to develop realistic curvature, we tessellate
each face with about 40 triangles (average triangle area 0.01 units2) and perform a
standard Surface Evolver minimization of the surface area.

In this preliminary exploration, topological changes were triggered using the Surface
Evolver software. A number of stable scutoids were identified of which one example
is shown in Figure 3. The cell arrangement featuring the scutoids, Figure 3(b), is
equilibrated, but its energy is about 0.3% higher than that of the original configuration
of Figure 3(a), since it was provoked, rather than occurring spontaneously as is the
case when the length of a cell edge shrinks to zero. In the continuation of this work
we will examine this further by mapping out the parameter space in which such stable
scutoids are to be found.

In our simulations we model cell edges as having infinitesimal thickness; however,
our results are also of relevance to experimental findings, presented below, for foams
with values of liquid volume fraction less than one percent. In this case the Decoration
Theorem applies [17, 18], that is, the foams can be considered as essentially dry foams.
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Figure 4. Photograph of scutoids in a quasi-2d foam sandwich. The bubble on the left features a hexagon
in contact with the outer cylinder and a pentagon in contact with the inner cylinder while the bubble on the

right shows a heptagon on the outer and a hexagon on the inner cylinder. Also visible is the small triangular

face separating these two bubbles. (diameter of inner cylinder 21mm, internal diameter of hollow outer cylinder
39mm, spacing about 7mm, approximate equivalent sphere diameter of the bubbles 8 mm.)

Further simulations (and experiments) are required to study the stability of scutoids
in foams of greater wetness.

5. Experiments with soap bubbles

We performed preliminary experiments with soap bubbles between curved surfaces,
using a glass cylinder of diameter 21mm as a substrate and a hollow half cylinder (made
from perspex) with inner diameter 39mm as a superstrate. The bubbles (approximate
equivalent sphere diameter 8 mm) were produced using a simple aquarium pump with
flow control and commercial dish-washing solution.

Both cylinders were placed horizontally into the vessel containing the solution; the
outer half-cylinder was rested on an 8.5 mm support, resulting in a (minimum) gap
between the two cylinders of approximately 7mm. This gap was initially about half
filled with liquid. We then used a syringe needle attached to the pump to blow air into
this gap, leading to the formation of a quasi-2D foam sandwich. By reducing the water
level we created bubbles which were in contact with both cylinder surfaces, some of
them forming scutoids, see Figure 4. The present process involves a measure of trial
and error: repeated raising and lowering the water level allows for repeated bubble
rearrangements which increases the chance of finding scutoids.

6. Conclusion

Both simulation and experiment have confirmed that stable scutoid configurations are
to be found in a dry foam sandwich between cylindrically curved faces. It remains for
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future work, which we will undertake, to identify the conditions for this in terms of
geometrical parameters.

In our simulations of an ordered foam, the scutoids (1,3,3,1,0) and (1,4,2,1,1), which
were amongst the cell types listed by Matzke [10], appear in (two) pairs. In disordered
foams, other scutoids should be found. If we define a scutoid to be a shape that has
an N -sided face on one surface, an N − 1-sided face on the opposite surface, and a
triangular face attached to the surface with the N -sided face, then in addition there
must be (N − 3) four-sided faces and two five-sided faces. The two scutoids above
correspond to N = 6 and 7. For N = 4 and 5 this results in the additional scutoids
(2,2,2,0,0) and (1,3,3,0,0), neither of which were amongst the cell types compiled by
Matzke but which should be sought in disordered quasi-2D foams. For larger N scutoids
all take the form (1,N − 3,2, . . . , 1,1), and no other topologies are possible.

The foam model is well established in the description of biological cells and the
processes by which they change their arrangements, but is at best a rough first ap-
proximation. In the present case we have noted that epithelial cells may be relatively
elongated. If greater realism is called for, further energy terms may be added, stiffening
the cell walls.
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