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ABSTRACT: Analysis of Offshore Wind Turbine (OWT) fatigue damage is an intense, resource demanding
task. While the current methodologies to design OWT to fatigue are quite limited in the way and amount of
uncertainty they can account for, they still represent a relevant share of the total effort needed in the OWT
design process. The robustness achieved in the design process is usually limited. To enable OWT to be more
robust, an innovative methodology that tackles current limitations using a balanced amount of designing effort
was developed. It consists of generating a short-term fatigue damage (Dgsy) using a Kriging surrogate model
that accurately accounts for uncertainty using an adaptive approach.

The current paper discusses the application of a reinterpolation convergence to build a Kriging surrogate model
that replicates Dgy in OWT tower components. Different variables involved in the convergence are discussed.
The discussion extends then to how the design could be improved by using different convergence scenarios for
the Kriging surface. Cross-validation is used to train and validate the surrogate surface. The main goal is to
give the designer a rationale on the trade-off between computational time and accuracy using the mentioned
approach to design robust OWT towers.

Results show that on a design basis two levels of approach may be efficient. In the first, if a very high compu-
tational cost is expected, a trade-off between accuracy and computational time must be considered and then, if
the intention is to check how robust the current design is, a full convergence of the surface should be pursued.

1 INTRODUCTION

The current trends in the design of complex structures
indicate that structural reliability is a topic of growing
interest. A shift in the direction of how the current de-
sign practices are implemented can be identified with
increasing requirements of structural reliability in the
design process.

When it comes to fatigue design of OWT the cur-
rent design practices are limited by the amount of
statistical characterization they can account for. Cur-
rents practices to design OWT to fatigue are regu-
lated by (IEC 2005, IEC 2009) or (DNV 2014). Cal-
culation of the fatigue life during the design phase
involves running multiple simulations, establishing a
long-term characterization of loads and then, estimate
the expected fatigue life for the component. In the
limit case, the full life of the component could be es-
timated. Nevertheless, frequently fully evaluating the
lifetime loads is not feasible, and fatigue life due to
loading may be limited in uncertainty quantification.

OWT towers structural fatigue is neither dominated
by high load ranges or small load ranges. This fact de-
mands, when developing a probabilistic analysis for
an OWT tower, the definition of both, the common
occurrence as well as the tail statistical regions. As a
result, the probabilistic characterization of an OWT
tower requires a significant amount of designing ef-
fort which makes a complete comprehensive descrip-
tion practically not feasible.

The presented work builds on the methodology
presented in Teixeira, O’Connor, Nogal, Nichols, &
Spring (2017) to calculate probabilistically fatigue
life of OWT towers. Improvements to the methodol-
ogy previously introduced are presented in the current
work. In particular, the non-deterministic character of
the points in the Design of Experiments (DoE) is in-
cluded and an infill convergence criteria is used and
discussed to define the Kriging DoE iterations.

To achieve the presented goal of using a surrogate
model that replicates OWT tower damage, Section
2 presents some of the works in the reliability with



Kriging, 3 discusses the methodology, 4 presents the
results of the research undertaken and 5 presents the
main conclusion of the work underpinned.

2 RELIABILITY ANALYSIS OF OWT TOWERS

There are limited works on reliability design of OWT
towers. Moriarty et al. (2004) analysed the extrapo-
lation of loads for extreme occurrences and fatigue
loads, concluding that the current design practices for
calculation of structural fatigue of the OWT tower
component are not adequate due to the fact that, as
a steel component, fatigue is not mainly dominated
by high load ranges.

Veldkamp (2006) presents one of the most influen-
tial works in the design of OWT turbines to structural
fatigue. In this work the author develops a compre-
hensive analysis of the different uncertainties that af-
fect wind turbines. It is interesting to note that, for the
tower component, the author refers that 98% of the
structural fatigue life in the fore-aft direction occurs
during operation of the turbine (at operational wind
speeds). Nevertheless, this conclusion was not gener-
alised to OWTs that are affected for additional envi-
ronmental loads (sea).

Recently, Kriging surrogate models gained partic-
ular interest for reliability analysis due to their ca-
pability of interpolating functions accounting for the
uncertainty in the interpolation process. The usage of
Kriging surrogate models for reliability purposes ap-
pears in the field of OWT reliability analysis in the
works presented by Yang et al. (2015), Morat6 et al.
(2016).

In order to implement these surfaces as models for
reliability, a Gaussian behaviour is demanded for the
variable to be approximated with the Kriging surro-
gate model. In this regard, an important considera-
tion for the application of Kriging surrogate models
as valid approaches for fatigue design of OWT towers
is the one given in Wirsching and Chen (1988) which
states that the fatigue damage of OWT towers usually
follows a normal or log-normal distribution.

3 NOISY KRIGING SURROGATE MODELS

Kriging surrogate models are interpolation models
that consider Gaussian uncertainty in the predictions
of the model. The main idea behind the Kriging surro-
gate model is to approximate a true state function g(x)
in a d dimension and with z € IRY with an approx-
imate mathematical model G(x) that predicts G(x)
with Gaussian uncertainty in the points where no a
priori information about z exists.

Assuming that g(x) can be defined for Vz the pro-
cess of establishing G(z) demands a sample of &
support points to be defined. This sample is usually
designated as Design of Experiments (DoE); DoE =
[X,Y == g(X)] being X = [z1,22,...2%| a vector

of realisations of x and y the respective true evalua-
tions of g(x) at X,

Using a Kriging surrogate model the true response
function g(x) can then be approximated as a condi-
tional function of the observations X:

Gzl =g(X)) =G(z) = f(B;2) + Z(z) (1)
with,

f(Bix) = Bifi(x) + ... + Bpfo(®) ()

where f(f;z) is a deterministic function determined
by a regression model defined by p (p € IN — 0) basis
trend functions f(z) = [f1,..., f,] and p regression
coefficients [3; this term will define the order of the
deterministic approximation and as such can have a
vectorial or non-vectorial form. Z(x) is a Gaussian
stochastic process with zero mean and covariance be-
tween two points in the space given by:

C(Ii,l’j) = O'QR(I'i,xj;Q), (3)
withi, j=1,2,3, ...k

here, C is the covariance matrix that defines the corre-
lations between generic points in z; o2 is the constant
process variance and R(z;, z;;6) is a correlation func-
tion. Different R(x;,z;;6) can be applied in the con-
text of reliability analysis. Some of the main are pre-
sented in Roustant et al. (2012). For reliability appli-
cations it is common to find R(x;,z;;0) in its separa-
ble form. In the separable form R(x;,xz;;0) depends
on h, the distance between the two generic x points
being computed with R(z;,x;;0), Equation 4. Alter-
native correlation forms can be also implemented as
described in Rasmussen (2004).

d
R(xi,25;0) = HR(hi;Qi), 0 € R 4)

i=1

As stated this correlation function depends on h =
[h1,..., hgl, an incremental difference between x —
x;, and depends on theta § parameter. ¢ is to be fitted
in the implementation using an optimization process.
To note that ¢ has a vectorial form if d > 1.

The Maximum Likelihood (ML) method is com-
monly applied for finding 6. The idea behind the ML
is to search for a set of parameters that maximize the
likelihood of the Y observations.

For a given Y, a new prediction can be ob-
tained through a generalised least squares formula-
tion, where two estimators, 3 and o> depend on the
third one, the 6 hyperparameters.

With the knowledge of all the estimators of a Krig-
ing model conditional on the y sample, a prediction
g(u) in a generic point u in the space is given by the
built model expected value yi and variance o2

pe(u) = fu)" B+e(w) CH(Y —Fp) (5)



o (u) = o[l + DT (u)(F'C™'F) ' D(u)

—c'(w)Ce(u)] (6)

with,
D(u) =F'C "e(u) — f(u); (7)
where c(u) = c(u,x;), i = 1,2,...,k is the correla-

tion vector that relates the realisation to be evaluated
with the known points and f(u) is the vector of trend
functions evaluated at w.

3.1 Noisy Design of Experiments

In the particular case where the true realisations Y are
not deterministic, some measure of uncertainty needs
to be considered when building the DoE.

To account for uncertainty in Y the Kriging model
needs can be modified to consider some measure of
statistical characterization of Y. this is achieved by
introducing an additional variable in C.
Y=Yg+( (8)
with Y being the expected value of y and ( is a
Gaussian process with mean 0 and variance equal to
a%,, the variance of each true realisation of Y. C be-
comes then

C(z;,xj) = 02R(:cl-,:cj; 0) + Ioy 9)

where I refers to the identity matrix.

3.2 Methodology

The methodology used to design OWT to fatigue
was first implemented in Teixeira, O’Connor, Nogal,
Nichols, & Spring (2017). In this work a Kriging sur-
rogate without noise in the DoE was implemented
to replace the expensive computational model of the
OWT. A damage indicator, Dgy was defined in or-
der to characterize the output of the computationally
expensive code.

In the present work a similar methodology is used,
including the same damage indicator Dgy defined as
the short-term damage calculated using

Ly
nr
Dsp =Y  + (10)
Li=1 NLi

where the ny, is the number of load cycles recorded
for a load L; in a predefined ¢ period of operation of
the OWT, and Ny, is the allowed number of cycles
accordingly to the specified material used in the com-
ponent being analysed. The allowed number of cycles
is given by a specified S-N curve. Dgy is highly de-
pendent on the environmental conditions and needs to
be calculated for multiple operational conditions. For

the current implementation a ¢ = 600s is applied to
define Dgp. The value of 600s is used as staple in
the OWT industry. It induces limited low frequency
loading damage loss (Veldkamp 2006).

A simplified diagram of the proposed methodology
is presented in Figure 1.
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Figure 1: Diagram of the methodology based on Kriging surro-
gate models applied to assess OWT tower fatigue reliability.

Jonkman et al. (2009) is used in the analysis due to
its baseline character. 600s simulations of OWT oper-
ation cost approximately 1200s to be completed when
using the highest 4" generation i7 processor rated
CPU. Parallel processing may be used to run mul-
tiple simulations. Nevertheless, it can be perceived
the amount of computational time demanded to de-
sign OWTs to fatigue, where thousands of simulations
are demanded to produce accurate results. As material
the, S235 steel is used to compute the damage rates.

A Kriging surrogate model, when approaching well
the simulation model of the OWT and predicting ac-
curately the amount of short-term fatigue that is gen-
erated in the tower, contributes significantly to reduce
computational time.

3.3 Infill criteria

When the DoE is of expensive evaluation as in the
present case, new iterations of the DoE need to be
carefully chosen. It is not feasible to expand the vec-
tor X without criteria if efficiency is pursued.

Picheny et al. (2013) analysed different design cri-
teria used to establish G(z) in the case where Y is not
deterministic. Different state-of-the-art functions in
computational analysis were studied to produce com-
parative results.

In the present work, and according to the specificity
presented by the problem being tackled, an infill de-
sign criteria is used to select new points in the DoE.
When using the Kriging to approximate a probabilis-
tic field, areas of high uncertainty are to be avoided.



It is known that areas of high uncertainty are more
likely to occur when the density of the DoE is smaller.
It is important to highlight that the characteristics of
the probabilistic problem of Dgy, are expected to be
continuous and have small gradients !, thus such be-
haviour is assumed in the current analysis.

Teixeira, O’Connor, Nogal, Krishnan, & Nichols
(2017) investigated the sensitivity of five variables in
the DoE (wind velocity, significant wave height, peak
period, turbulence intensity and wind direction) of an
OWT tower in operation conditions, concluding that
both wind speed (U) and turbulence intensity (/) are
expected to show the most significant influence in the
fatigue life design. The sea state was set to have con-
stant conditions for all the combinations of U and .
Figure 2 presents some simulations that consider the
mean wind speed U and the turbulence intensity / in
the DoE. It is possible to infer that there are no sig-
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Figure 2: Map of the first two statistical moments of the Dgpy
space calculated based on 50 samples. Built based on 29 points
(black dots).

nificant changes in the surface, and the gradient of
change within the DoE is “coherent” (because fatigue
is a cumulative process no significant local changes
in the surface or discontinuities are expected). There
is a peak in the ppg, near the turbine rated power
(11.4m/s). Cheng et al. (2003) identified that for a
pitch control turbine the most significant loading oc-
curred slightly above the rated power. Consequently
this increase in the local fatigue damage rate may

'By continuous and of small gradients, it is meant that in the
DoE space adjacent points are expected to have similar statistical
characteristics.

be connected to this fact. Despite small load ampli-
tudes being important contributors of damage for steel
structures, high load amplitudes are still the highest
contributors to the reduction of the fatigue life. In Fig-
ure 3.3 it can be seen that a significant contribution of
fatigue damage occurs in between 11-13m/s U, even
for low values of I. In regard of changes in turbu-
lence, as [ increases, Dgy increases in almost all the
U above rated power.

A reinterpolation, introduced in Forrester et al.
(2006), is applied as infill criteria to select new points
in the DoE. This infill criteria was designed to specif-
ically deal with noisy Kriging optimization. The rein-
terpolation methodology consists in using two Krig-
ing models in parallel, one main model and one aux-
iliary model. The main model is the model to be im-
proved, or the target model, and the auxiliary model
is used to select new points in the DoE. While the tar-
get model is a noisy Kriging surrogate, the auxiliary
Kriging model should be non-noisy.

The support Kriging model is designed from the
target noisy Kriging model. By using a non-noisy
Kriging it is possible to use the Expected Improve-
ment (EI) criteria to select the n + 1 point to be added
to the noisy Kriging model.

The EI algorithm is one of the most widely used
methodologies for improving the accuracy of Kriging
interpolation models and was first introduced in Jones
et al. (1998). The selection of the n 4 1 point with the
EI algorithm is based on solving the following func-
tion.

El(z) = Emin(Y,) - G@)|G(X)=Y,] (11

which can be re-written as,

ElL,(x)=(min(Yy) — pc(z))® (min(izc)&)/ia(x) )

+ad@¢<mm&m_“dw) (12)

Ug(x)

The EI is the expected (E) difference between the
minimum currently best known prediction Y, at iter-
ation n and the conditional G(x) built on the assump-
tion that G(X) = Y,,. n denotes the iteration index.
® and ¢ are the Normal cumulative and probability
density functions (CDF and PDF respectively).

The stopping criteria for the reinterpolation loop is
the EI. Convergence is considered to be attained when
the EI is very close to zero. A common alternative is
to define a stopping criteria in terms of the computa-
tional budget available.

4 RELIABILITY OF OWT TOWERS USING
ADAPTIVE NOISY KRIGING

A correlated Latin Hypercube Space (LHS) sample
with 15 points was used to start building the surrogate



model. The 4 extreme combinations possible in the
DoE are added before any infill criteria was imple-
mented. Only combinations of operational environ-
mental states were considered in the analysis. Figure
3 presents the position of the initial points in the DoE
along with four alternate combinations of maxima.
The addition of the maxima was motivated by the
need to improve the accuracy in approximating the
true behaviour ¢g(z) of the OWT tower fatigue Dgp.
The EI algorithm definition using the function min-
ima was unlikely to define the maxima points as n + 1
iteration for the maxima U of operation (25m/s).
Furthermore, when fitting the noisy Kriging surface
these “corner” points showed very inaccurate stan-
dard deviation prediction and thus their definition be-
fore any further iteration in the infill space was re-
quired. To validate the obtained results for G(z) a
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Figure 3: Reinterpolation evolution of the DoE. (a) Initial DoE
sample. (b) DoE after reinterpolation

cross-validation was used for both, the mean and the
standard deviation. The validation points were picked
using Monte Carlo sampling from a set of possible
combinations covering the space U and I (with 100
partitions for each variable). Figure 4 and Table 1
present and discuss the results of applying a cross-
validation.

A challenge of using Kriging as surrogate mod-
els in the context described is related to the conver-
gence of the model parameters used, constant process
variance, # hyperparameters and polynomial function.
These parameters have a major role in the accuracy of
the operational fatigue surface, and consequently in
the estimated level of lifetime fatigue design. Com-
monly these parameters are selected using an opti-
mization methodology for 6. Figure 4 presents re-
sults for the error depending on parametric changes
of constant process variance and hyper-parameters.
Five representative examples were used for reference.
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Figure 4: Influence of the constant process variance and its
length scale § parameters. A 4*" polynomial was used to com-
pute the results. (a) - Changes in accuracy using constant process
variance. (b) - changes in accuracy using constant values for the
0 parameters.

To highlight that the space to be covered during opti-
mization is incomparably higher. The convergence of
the predicted standard deviation is more difficult that
the mean for all the cases. For sake of computational
feasibility, a deviation in the standard deviation is as-
sumed with the consideration that it, being a 2"d order
moment, will have less impact in the computation of
results than deviation of the mean.

In figure 4 a region where the error decreases can be
identified for both cases. This local analysis can be of
interest to help defining the region of interest for the
search function. Additionally, the model parameters
can be used to tune G(x) in case the validation of the
initial optimization is not satisfactory.

Different search functions are available to calcu-
late the optimization parameters. To define the Dgy
surface the optimization algorithm implemented in
Roustant et al. (2012) is used.

Additionally to the surrogate convergence, a rele-
vant step in a probabilistic analysis of DgH is related
to the convergence of the statistical distribution mo-



ments before converging the surrogate model. This
problem of converging the statistical distribution is an
unavoidable problem that may significantly increase
the cost of a probabilistic analysis. Some degree of
uncertainty should be assumed in order for the analy-
sis to have an efficient (computational) cost-accuracy.
As example, if a reliability based design optimiza-
tion (RBDO) is pursued, less points should be used
to converge the statistical distribution; whereas if the
goal is to have the most accurate results possible, rel-
evant efforts should be allocated to the convergence
of the probability density function (PDF). Greenwood
& Sandomire (1950) analysed the number of samples
required to characterize a statistical distribution. Us-
ing 50 samples, while the mean converged very fast,
the same did not happen with the standard deviation.
With a sample size of 50 points, 85% of the cases the
estimation of the standard deviation is within 15% of
its real value.

For the reinterpolation a 4"* polynomial function
was used to create the Kriging surface in each step of
iterations. The convergence domain for § was left rel-
atively wide, varying for both hyper-parameters be-
tween 0.01 and 100. When setting the surrogate for
prediction a smaller search domain presented more
accurate results. A Gaussian correlation function was
applied to define the correlation between points.

Table 1: List of points generated for cross-validation and respec-
tive results for the last solution of 6 used to predict Dgp. A 4™
degree polynomial function was applied to generate the Kriging
surface.

[hg(z)—HG@)  10g(z)—0G(x)]

Ulm/s) I(%) Fg(a) Tg(x)
7.42 10.73 0.9 16.4
9.43 8.09 0.9 16.1
9.91 7.20 2.0 13.2
10.74  9.19 0.5 23.7
13.24  5.16 2.0 27.9
16.11 6.38 2.7 13
17.12  4.51 1.0 5.8
18.31 5.98 0.8 1.3
1982  6.84 0.4 11.9
22.41 4.80 0.1 8.5

As mentioned, the cross-set of data can be used to
train or tune the surrogate model in order to obtain
the most accurate results. This may be achieved by
training the model’s 6 hyper-parameters in order to
minimize the error in cross-validation. In the current
implementation the training process involved search
for a local minimum of the error in 0. The cross-
validation error in u was below 5% V6.

In the presented study no maximum acceptable er-
ror in the standard deviation was considered. I is noted
that 23.7% and 27.9% can be considered significant
in multiple applications, which could demand refin-
ing the domain where there is a significant relative

error. It is interesting to notice that for the second
case this error occurs for values of x = [U, I| space
where a there is a very close point in the X used to
create the Kriging model. The noisy Kriging predic-
tion is more accurate when more information about
the physical space is available, meaning that errors in
predictions of points that are close to any X may be
related to inaccuracy in the definition of the statistical
distribution in that respective point. Future implemen-
tations should address the maximum acceptable error
in a case-specific scenario, which means that the max-
imum acceptable error should depend on the end use
Or User.

Applications of a similar methodology may also
consider some measure of statistical distance to eval-
uate the fitting. A statistical distance would allow a
more sensitive measure on the accuracy of the Kriging
prediction relative to a known distribution, and there-
fore, the probability of sampling the known distribu-
tion using the Kriging surrogate.

One of the particularities found in the reinterpo-
lation process is that, even considering that using
a reinterpolation model avoids the definition of a
n + 1 point that already exists in X, in some circum-
stances the n + 1 calculated point will be very close
to other point in X. This may be particularly concern-
ing if computational time has significant importance.
Therefore, in such cases, efforts should be maximized
to cover well the domain of z.

In order to verify the results 1000 operation points
where taken from a sample of real data taken from
Teixeira et al. (2018). The simulation results are com-
pared with the prediction in Figure 5. The predictions
approximate well the true g(x) function and repro-
duce the cumulative character of the Dgp.

Figure 5(a) presents the simulated points and Fig-
ure 5(c) presents the relative error for two samples
taken from G(z). This relative error would never be
expected to be 0, but instead it would be expected to
converge as the cumulative damage increases. Figure
5(b) compares the cumulated damage and its statis-
tical variation. The real simulations are very close to
the mean value. To calculate the statistical intervals as
new points are added to the cumulative damage a ran-
dom sample needs to be generated, one fromi Y Dgy
and another from the 7 4 1 point to be added.

The computational gains from using a Kriging sur-
rogate model are substantial. There is computational
cost in setting the Kriging surrogate model. In this ex-
ample 1850 simulations were used to set the Kriging
model before the reinterpolation was stopped. After
setting the Kriging surrogate model, multiple simula-
tions can be run at virtual no cost.

Simulating 20 years of operation demands more
than 1 million samples of 10 minutes operation which
are almost impossible to obtain if the OWT simula-
tion model is to be ran every single time to extract
the loads or a value of Dgpy. Furthermore, to define
the long term statistical behaviour multiple 20 years
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Figure 5: Convergence of the cumulative tower Dgyr for 1000 points of operation between the Kriging prediction and a real sample
extracted from NREL’s SMW turbine. (a) Simulated sample (b) Cumulated sample mean and statitical deviation. (c) Deviation of two
extracted random samples at the (a) points and the simulated sample of 1000 points.

of operation need to be assessed. The number of sim-
ulations undertaken to achieve the Kriging surrogate
can then be seen as a very low relative computational
cost considering the gains it unlocks in terms of prob-
abilistic analysis.

In order to access the reliability of the system a
specified failure mode needs to be defined. As exam-
ple (DNV 2014) defines 0.5 as the limit for fatigue
cumulated damage. A lower limit can be considered
with the level of reliability depending on the limit de-
fined. Fatigue design using a linear damage sum tends
to be conservative or non-conservative, and because
of that the limit state should defined to accommodate
this behaviour.

Nevertheless, it was identified that the mean of
the cumulated damage increases significantly faster
than the standard deviation and as a result the sta-
tistical behaviour of the cumulated damage remains
relevant while the cumulated sample is relatively low,
e.g. 1000 points. This implies that fatigue of the OWT
can be faced as a problem of uncertainty in this con-
vergence. As a result, from the loading variability, fa-
tigue reliability is a problem of mean and how accu-
rate is the assessed mean. This fact is also of interest
when predicting fatigue design damage with Kriging
models and can contribute to significant effort reduc-
tion when using these models as surrogate of Dgy. It
would be of interest in the future to apply this method-
ology using probabilistic S-N curves.

5 CONCLUSIONS

An approach to assess fatigue reliability was dis-
cussed in the current paper. It involves using a oper-

ation fatigue surface to estimate the long-term proba-
bility of failure of an OWT tower to fatigue damage
in the design phase. This fatigue surface is defined us-
ing a Kriging surrogate model, to be improved with
a reinterpolation methodology. The main goal is to
replicate the very expensive computational model us-
ing this operation fatigue probabilistic surface, taking
advantage of the fatigue repetitive physical behaviour.

It is highlighted that the motivation of such a design
scheme emerged from the difficulty in assessing the
long-term fatigue life statistical behaviour. As a long-
term cumulative process, with very significant com-
putational burden, the current design methods do not
require for fatigue to be translated into a target level
of reliability, or probability of failure.

The results showed that accurate prediction of fa-
tigue damage rates during operation can be achieved
with relatively low computational cost. The true 20
years of operation of an OWT would represent more
than 1 million 600-seconds simulations, which have
an unbearable cost and therefore are not feasible. If
the true reliability for 20 years is to be calculated,
the number of simulations increase even further. In
the current example the probabilistic behaviour of
NREL’s monopile OWT tower to structural fatigue
was characterized using 1850 simulations. These are
then used to predict any further number of opera-
tion contribution to to decrease the design fatigue life.
Hence, the benefit of using the surrogate model is very
relevant.

Nevertheless, some improvements are still required
to achieve robust surrogate modelling. It may be of
interest to introduce some criteria for the reinterpola-
tion in order to avoid spending computational effort in



points that do not contribute significantly to improve
the accuracy of the probabilistic field. Additionally, as
for the current example the computational effort was
relatively low and it may be interesting to add more
points to the surrogate model as well to validate it.
It was seen that some of the areas of the surrogate
model after reinterpolation remained with a high rela-
tive error, which may contribute for an under or over-
estimation of the operational fatigue damage rates.

To conclude, the interest of the presented method-
ology fits not only optimization procedures, but also
the assessment of fatigue life in the design phase. The
main change that the designer should be aware in both
procedures is the level of uncertainty that should be
accepted in the fitting. For the first, some error should
be accepted in the PDF convergence, while for the
second, assuming it as a final design iteration, more
computational effort should be allocated to generate
the Kriging surface.
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