
Towards a model-checker for Circus

Artur Oliveira Gomes[0000−0002−5248−9587]1 and Andrew
Butterfield[0000−0002−2337−2101]2

1 Universidade Federal de Mato Grosso do Sul, Brazil
artur.gomes@ufms.br

2 School of Computer Science and Statistics
Trinity College Dublin, Ireland

butrfeld@tcd.ie

Abstract. Among several approaches aiming at the correctness of sys-
tems, model-checking is one technique to formally assess system mod-
els regarding their desired/undesired behavioural properties. We aim at
model-checking the Circus notation that combines Z, CSP, and Morgan’s
refinement calculus, based on the Unifying Theories of Programming.
In this paper, we experiment with approaches for capturing Circus pro-
cesses in CSP, and for each approach, we evaluate the impact of our
decisions on the state-space explored as well as the time spent for such
a checking using FDR. We also experimented with the consequences of
model-checking CSP models that capture both state invariants and pre-
conditions of Circus models.

1 Introduction

The use of formal methods provides a way to rigorously specify, develop, and
verify complex systems. Among several approaches aiming at the correctness
of systems, model-checking formally assesses given systems regarding their de-
sired/undesired behavioural properties, through exhaustive checking of a finite
model of that system.

Woodcock and Cavalcanti defined Circus [38], which is a formal language
that combines structural aspects of a system using the Z language [40] and the
behavioural aspects using CSP [36], along with the refinement calculus [23] and
Dijkstra’s guarded commands [10]. Its semantics is based on the Unifying The-
ories of Programming (UTP) [18]. In addition, a refinement calculus for Circus
was developed by Oliveira [27], currently considered the de-facto reference for
Circus, using tool support with ProofPower-Z [28]. More recently, Foster et al.
introduced Isabelle/UTP, supporting Circus [11]. Moreover, Circus has a refine-
ment calculator, CRefine [8], and an animator for Circus, Joker [26]. However, for
model-checking, Circus is usually translated by hand to machine-readable CSP
(CSPM) [35] and then FDR [14] is used. We applied that method in our response
to the Haemodialysis case study for ABZ’16 [16]. Model checking through FDR
allows the user to perform a wide range of analysis, such as checks for refinement,
deadlock, livelock, determinism, and termination.

Some related work on techniques for model-checking Circus was presented by
Freitas [12] where a refinement model checker based on automata theory [19]
and the operational semantics of Circus [39] was formalised in Z/Eves [34]. He
also prototyped a model checker in Java. Moreover, Nogueira et al. [24] also
presented a prototype of a model checker based on the operational semantics of
Circus within the Microsoft FORMULA [21] framework. However, they could not
provide a formal proof of the soundness of their approach, since FORMULA does
not have an available formal semantics. Yet another approach for model-checking
Circus was defined by Ye and Woodcock [41], who defined a link from Circus to
CSP‖B with model-checking using ProB [31]. Finally Beg [4] prototyped and
investigated an automatic translation that supports a subset of Circus constructs.

Since CSPM does not have a notion of variables for state as in Z, Circus or
even the B-Method, we have to somehow capture them in order to obtain a CSPM

model as similar as possible to the original Circus one. Therefore, one could either
use a memory model [30,25] in order to manage the values of the state variables,
or else, to adopt the idea of state-variable parametrised processes [4].

Following the results presented in ABZ’16 [16], which involved manual trans-
lation, we decided to develop Circus2CSP3, an automatic translator from Circus
into CSPM , aiming at model-checking with FDR. Our tool was then built based
on the strategy presented in Section 5.3 of Deliverable 24.1 [29], from the COM-
PASS project [37], that defines a rigorous but manual translation strategy aiming
at obtaining CSPM specifications from Circus.

This paper reports design decisions regarding different approaches for model
checking and experimental results obtained for Circus specifications. Such exper-
iments were enough to identify an effective general form for any CSPM model
derived from Circus, where FDR could perform refinement checks with reduced
time and memory consumption compared to existing approaches from the liter-
ature.

2 Circus Background

A Circus specification is in some sense an extension of Z [40] in that it takes the
paragraphs of Z and adds new paragraph forms that can define Circus channels,
processes and actions. Channels correspond to CSP events:

channel c : T

Circus actions can be considered as CSP processes extended with the ability to
read and write shared variables, usually defined using a Z schema:

LocVars =̂ [v1 : T1, . . . , vn : Tn]

3 See https://bitbucket.org/circusmodelcheck/circus2csp

https://bitbucket.org/circusmodelcheck/circus2csp

A Circus process is an encapsulation of process-local shared variables and Circus
actions that access those local variables, along with a ‘main’ action.

processProcName =̂ begin
statePState == LocVars
PBody =̂ 〈action defn.〉
PInit =̂ 〈action defn.〉
PMain =̂ PInit ; PBody

• PMain
end

Circus processes can only communicate with the external environment via chan-
nels, while Circus actions can also communicate via the local variables of their
containing process. Processes can be modified and combined with each other, us-
ing the following CSP operators: sequential composition (;), non-deterministic
choice (u), external choice (@), alphabetised parallel (J . . . K), interleaving (9),
iterated versions of the above (e.g., ue∈E • . . .), and hiding (\).

Circus actions can be built with the CSP operators detailed above, as well as
the following CSP constructs: termination (Skip), deadlock (Stop), abort(Chaos),
event prefix (→), guarded action (N), and recursion (µ). In addition a Circus ac-
tion can be defined by a Z schema, or Dijkstra-style guarded commands, includ-
ing variable assignment (:=). Note that actions cannot be defined as standalone
entities at the top level of a Circus specification.

Parallel composition of Circus actions differs from that in CSP, in that we
need to also specify which variables each side is allowed to modify. Parallel action
composition, written as A1 J ns1 | cs | ns2 K A2 states that action Ai may only
modify variables listed in nsi , where ns1 and ns2 are disjoint, and both actions
must synchronise on events listed in cs. The semantics is that each side runs on
its own copy of the shared variables, and the final state is obtained by merging
the (disjoint) changes when both sides have terminated.

Circus also allows the use of local declarations in a variety of both process and
action contexts. For actions, we can declare local variables, using var x : T • A
which introduces variable v of type T which is only in scope within A. Variations
of these can be used to define parameterised actions, of which the most relevant
here is one that supports read-write parameters.

Finally, there is a refinement calculus for Circus, which is a fusion of those
for both Z and CSP (failures-divergences)[27].

3 Translating Circus to CSPM using Circus2CSP

Our first attempt to model check the Circus haemodialysis (HD) specification [16],
was to manually translate it into CSPM , and adjust its state-space until the de-
sired checks could be successfully completed. This manual translation was error-
prone, and this motivated the development of a mechanised translator. Our plan
was to provide a high degree of automation to minimise error-prone human in-
terventions, in such a way that we have a basis for arguing for its correctness.

We started the development based on the Circus-to-CSPM translation strat-
egy developed for the EU COMPASS project and described in deliverable D24.1 [29,
Section 5]. It specifies the translation in two parts: a function Ω that maps a
Circus specification to an equivalent Circus specification using only the CSP sub-
set of the Circus language; and a function Υ that translates CSP-as-Circus into
machine-readable CSPM (Figure 1).

Fig. 1. Mapping Circus into CSPM (derived from [29, Fig.7, p77])

Function Ω has two phases: ΩP and ΩA. Function ΩP extracts mutable
state from the input state-rich (CircusSR) process PSR and gathers it in a new
Memory action, while replacing direct references to state in PSR with appropri-
ate “get” and “set” messages that communicate with that Memory , to obtain
a state-poor (CircusSP) process P ′SP . Function ΩA then translates P ′SP into
its CSP equivalent P ′′SP , by replacing Circus-specific actions by CSP-as-Circus
(CircusCSP) equivalents. All of the transformations done by ΩP and ΩA are
valid Circus refinement steps, each of which are in fact equivalences, defined in
D24.1[29, §5.3 and App. A].

3.1 The Memory Model

The need for a memory model arises from the fact that CSP does not natu-
rally capture the notion of mutable state. One solution for that is to produce
a state-poor process that communicates with a Memory model [25] that stores
the values of state components and local variables from the original state-rich
processes. Initially, our memory model was very similar to that in D24.1, with
some differences in naming conventions. In our approach, we defined a notation
for renaming the variables allowing the user to easily identify which are (global)
state components, or local variables. Variables are renamed by adding a prefix
sv or lv indicating respectively a state or local variable.

As part of the translation strategy, the CSPM environment is redefined in
terms of the type system. Based on the work of Mota et al. [25], D24.1 defined a
union type UNIVERSE containing any type defined in the specification. When
translated into CSPM , use is made of the subtype facility of that language to
manage the universe construction. Moreover, the names of every state component
and local variable are defined as elements of a type NAME .

NAME ::= sv v1 | sv v2 | . . . | sv vn | lv l1 | . . . | lv lk

The approach makes use of a set of bindings, BINDING , which maps all the
names, NAME , into the UNIVERSE type. In [29], a function δ is defined as a
mapping between each variable in NAME and its type, where each type (Ti is
a subtype of UNIVERSE), and is used to define Memory .

BINDING == NAME →UNIVERSE
δ == {sv v1 7→ T1, sv v2 7→ T2, . . . , sv vn 7→ T3, . . . , lv lk 7→ Tm}

As a result of applying the Ω functions, the state of a Circus process is replaced by
a Memory action parameterised by a read/write binding (vres b), which manages
the mutable state, offering mget and mset channels carrying name/value pairs
(n.v).

Memory =̂ vres b : BINDING •
(@n : dom b • mget .n!b(n)→ Memory(b))

@ (@n : dom b • mset .n?nv : (nv ∈ δ(n))→ Memory(b ⊕ {n 7→ nv}))
@ terminate → Skip

Note, that while syntactically a Circus action, Memory uses only the CSP subset
of Circus Such a Memory process runs in parallel with the main action of the
translated Circus process, communicating through the channels mget and mset .
Moreover, the process execution ends when the terminate signal is triggered. The
above three channels compose the MEMI channel set: channelsetMEMI ==
{|mget ,mset , terminate |}

The final specification puts the original process after Ω-translation in parallel
with the memory model, synchronising on the MEMI channels, which are them-
selves hidden at the top-level, with the binding as a top-level parameter. Note
that the semantics of this at the top-level involves a non-deterministic choice4

of the values in the initial binding b. This results in the following CSP form:

u b : BINDING •
(

(ΩA(P); terminate → Skip)
‖MEMI Memory(b)

)
\MEMI

Deliverable D24.1 contains manual proofs of the correctness of the transla-
tion [29, Appendix K]

4 Upgrading the Memory Model

With the initial version of the tool, we took examples from D24.1 (e.g. the ring-
buffer example [29, Appendix D.2, p163]) and automatically translated them and
then succesfully performed FDR checks. However, when we turned our attention
to the somewhat larger HD model, we immediately uncovered some limitations
of the basic translation, which were overcome by changing the memory model.

4 A non-deterministic choice of values means that the bindings are picked randomly
among the possible combinations of bindings.

4.1 Limitation 1: Z types vs. CSPM types

The use of the UNIVERSE type, the CSPM subtype feature, and a function
written in CSPM to map a name to its specific type, worked fine if all the
types in UNIVERSE were a sub-type of one supertype. In the D24.1 examples,
all types were sub-types of the natural numbers. However, in the HD model
we were developing, we had a mixture of natural sub-types, and enumerations.
The type system in CSPM does not consider enumeration types to be isomor-
phic to subtypes of any sufficiently large number type. We could have gener-
ated those isomorphisms, but these would have complicated the back-annotation
problem, whenever a counter-example was found using FDR. Instead, we parti-
tioned UNIVERSE and BINDING into the distinct supertypes present in the
Circus model.

Memory =̂ vres bT1
: BINDINGT1

, . . . , bTk
: BINDINGTk

•



(@n1 : dom b1 • mget .n1!b1(n1)→ Memory(b1, . . . , bk))

@
(

@n1 : dom b1 • mset .n1?nv : (nv ∈ δ(n1))
→ Memory(b1 ⊕ {n1 7→ nv}, . . . , bk)

)
@ . . . @ (@nk : dom bk • mget .nk !bk (nk)→ Memory(b1, . . . , bk))

@
(

@nk : dom bk • mset .nk?nv : (nv ∈ δ(nk))
→ Memory(b1, . . . , bk ⊕ {nk 7→ nv})

)
@ terminate → Skip


We then changed the top-level view to have a non-deterministic choice over all
the distinct bindings.

u bT1
: BINDINGT1

, . . . , bTk
: BINDINGTk

•
(

(ΩA(P); terminate → Skip)
‖MEMI Memory(bT1 , . . . , bTk

)

)
\MEMI

4.2 Limitation 2: FDR time/space explosion

We quickly discovered that using this translation, we could only check Circus
models with a small number of state variables, usually less than ten, with even
the hand-translation of the HD model done for the original case-study being
more effective. We proceeded to experiment with transformations to the memory
model, justified by the Circus refinement laws.

Variables have non-deterministic start values. We first changed the top-
level non-deterministic choice over the various bindings by replacing it with
parameters.

var bT1 : BINDINGT1 , . . . , bTk
: BINDINGTk

•(
(ΩA(P); terminate → Skip)
‖MEMI

Memory(bT1
, . . . , bTk

)

)
\MEMI

This is an equivalence, as (var x : T • A(x)) = (u x : T • A(x)). However,
FDR treats the latter as being parameterised by x and requires it to be given an
initial value. This means that we can only check a very strong proper refinement,
rather than the full equivalence. However, we argue that in the safety-critical
domain in general, it is always mandatory to initialise all variables. If Init is an
action that initialises each variable precisely once with a constant value, with no
intervening participation in events, then, regardless of the assignment ordering
or any arbitrary initial value of any variable, the outcome is always the same:
s ′ = S0, where S0 is the assignment of those constants to the coprresponding
variables. If we insist on proper initialisation, then equivalence is restored. Given
that the main usage of model-checking takes place in safety critical domains, we
consider this a reasonable trade-off, particularly because it resulted in FDR
performance improvements. However, our experiments revealed that a process
translated this way, with more than ten state variables, still could not be checked
with FDR in a reasonable time.

Distributed Memory Model The final step, was to do more partitioning,
moving to a situation were every variable gets its own memory process. The
supertype bindings were retained at the top-level, but each variable’s memory
process was parameterised by the relevant binding with its domain restricted to
just the name of that variable. So, for example, if variable ni has a type whose
supertype is T , then we first define a binding bT for that supertype, and use
it to parameterise a memory action for all variables of that supertype, which is
itself the parallel composition of a memory process for each such variable, all
synchronising on terminate, but interleaving all the mget and mset events:

MemoryT (bT) =̂

J{| terminate |} K n : dom bT • MemoryTVar(n, {n}C bT)

Here N C µ restricts the domain of map µ to set N . We then define a parame-
terised process that represents a single variable:

MemoryTVar(n, b) =̂
mget .n.b(n)→ MemoryTVar(n, b)

@mset .n?nv : δ(n)→ MemoryTVar(n, b ⊕ n 7→ nv)
@ terminate → Skip

The entire memory is constructed by putting the memories for each supertype
in parallel, in the same way as for the individual variable processes.

Memory(bT1
, . . . , bTk

) =̂
MemoryT1(bT1

) J {| terminate |} K . . . J {| terminate |} K MemoryTk (bTk
)

This last transformation produced a marked improvement in the time and mem-
ory consumption of FDR when checking models.

In the next section we describe and discuss our experiments on the HD ma-
chine mode comparing some of approaches above. Moreover, we also compare
the results obtained using other tools as a way of assessing our results.

5 Experimental Results

In this section we present the tests we performed using our tool, Circus2CSP,
exploring ways of overcoming any limitations from FDR, as well as comparing
our approach with others from the literature. Firstly, we explore the interference
of invariants and preconditions in CSPM . Then, we compare Circus2CSP with
the model from [16]. We also the effects of using some compression techniques
available in FDR. Finally, we compare different approaches for modeling the
Ring Buffer case study.

One of the requirements when model-checking a system is to produce a model
whose range of values is enough for covering any condition imposed by an op-
eration. However, when including the state invariant, we are also restricting the
range of values permitted to be used within the system. From the example of
the chronometer [27], we know that both min and sec was declared as natural
numbers. However, while thinking of a chronometer in the real world, we know
that neither a second, nor a minute goes beyond 59 units, without flipping the
next unit counter. Therefore, it is safe to restrict the range of min and sec to
0 . . 60, where 60 is an unexpected value in the system.

We experimented with the impact of explicitly including invariant and pre-
condition checks using the example of the Chronometer [27], with a new process
Chrono. When using the translation rules presented in [29], we noticed that it
is hard for FDR to check the model: it was translated using the conversion from
normalised schemas to specification statements and from there, to the appropri-
ate rules that introduce a condition that checks if pre is satisfied. If satisfied,
it behaves as a non-deterministic choice of values from the state variables that
satisfies both invariant and precondition, followed by updating these values in
the memory model. Otherwise, if pre is not satisfied, it behaves like Chaos.

Our example of the chronometer has only two state variables and the results
obtained using FDR are enough to show how the invariant checks throughout
the specification increase the time spent during the assertion check in FDR. We
deliberately modified the original model with the inclusion of the state invariant
restricting both min and sec to values below 60, in order to experiment with the
translated model in FDR.

processChrono =̂ begin
state AState =̂ [sec,min : N | min < 60 ∧ sec < 60]
AInit =̂ [AState ′ | sec′ = 0; min ′ = 0]
IncSec =̂ [∆AState | sec′ = (sec + 1) mod 60]
IncMin =̂ [∆AState | min ′ = (min + 1) mod 60]

Run =̂

(
tick → (IncSec) ;

(
(sec = 0)N (IncMin) @ (sec 6= 0)N Skip

)
@ time → out !(min, sec)→ Skip

)
• AInit ; (µX • Run ; X)

end

We illustrate our experiment in Table 1 while exploring the inclusion of state
invariants and precondition verification in the chronometer model, and used the
following derived models5:

D241 Model manually translated using the approach from [29] without invariants
and preconditions, using a non-deterministic choice of any set of bindings.

D241Inv Model manually translated using the approach from [29] including the in-
variants as a restriction to the bindings set.

D241Pre Model manually translated using the approach from [29] which includes pre-
condition checks before the operations, but no invariants in the main action.

D241InvPre Combination of D241Inv and D241Pre.
CTOC Model translated using our improved translation rules, the result from our

tool Circus2CSP, as discussed in Section 4 (no invariant checks).
CTOCPre Extension of CTOC model where pre-condition checks, as done for D241Pre,

are entered manually.

From the models above, our tool is able to automatically generate CTOC ,
CTOCPre was obtained by manually modifying CTOC , while the others were
generated by hand. We performed checks for deadlock freedom6 using the trans-
lated models in the six variants above, combined with a different range of values
for natural numbers, ranging from . . . 3 to 0 . . . 60. For example, in a specifica-
tion where the values for natural numbers are restricted to the range 0 . . 10, the
process state was defined as [min, sec : 0 . . 10 | min < 10 ∧ sec < 10].

Table 1. Interference of invariants and preconditions in CSPM—Deadlock freedom
checks (in seconds unless indicated otherwise)

CTOC CTOCPre D241 D241Inv D241InvPre D241Pre

Values Exec States Exec States Exec States Exec States Exec States Exec States
Range Time Visited Time Visited Time Visited Time Visited Time Visited Time Visited

0..3 0.116 68 0.134 21 0.206 1085 0.177 610 0.173 190 0.187 337
0..6 0.242 260 0.373 42 0.416 12734 0.35 9355 0.393 1513 0.428 2059
0..9 0.559 578 1.4 63 1.158 57791 1.138 46810 1.826 5104 1.955 6301
0..12 1.246 1022 4.197 84 2.714 172706 2.57 147157 5.22 12097 5.45 14197
0..15 2.533 1592 9.867 105 5.846 407537 5.452 358186 11.988 23626 12.6 26881
0..60 3m27s 25262 22m29s 1024 2h48 99M 1h40 91M 52m28s 3.7M 1h05 3.8M

We noticed a first difference between models D241 and D241Inv , on one
hand, and CTOC and CTOCPre on the other. The number of states visited
for checks with the models D241 and D241Inv was over 10-fold larger than for
CTOC and CTOCPre, . However, the influence of a precondition check within
an operation makes a significant reduction in the state exploration, but with
the price of spending more time computing preconditions, as seen in Table. 1,
between CTOC and CTOCPre. Moreover, we also observed that the checks for

5 The files used in this experiment can be found in the tool repository at https:

//bit.ly/2ONnk2T
6 The tests were performed using Intel Core i7 2.8GHz CPU with 16GB of RAM.

https://bit.ly/2ONnk2T
https://bit.ly/2ONnk2T

invariants has a weaker effect on states visited, when comparing the results be-
tween D241InvPre and D241Pre. We also noticed that all variants of D241 were
executed in a much larger time frame than the approaches using the translation
from our tool, Circus2CSP. However, the models generated by our tool do not
include either invariants or preconditions.

Finally, as a way of experimenting with the real world example of the
chronometer, we examined the models with numbers ranging from 0 up to 60,
as presented in the last row of Table 1. We see a significant difference among
the results from the approaches evaluated, where the model using CTOC was
evaluated (3 minutes) by FDR, which is 97% less time than the time spent to
check the model using D241Inv (over 1h40) and 94% less than D241Pre (1h05).
In general, the CSPM models (CTOC) translated using our tool were evaluated
by FDR using a much smaller state space and were checked in less time than all
the other models we tried. Such a result shows how different models of the same
system can be affected by the checks of invariants and preconditions, as well as
how optimising the memory model can result in much smaller state exploration
when using FDR. Finally, we observed no correlation between time and state
visited, in spite of the use (or not) of compression by default in FDR.

5.1 Haemodialysis (HD) Machine Experiments

The manual translation (herein byHand) of the Circus [16] HD model resulted in
a CSPM specification with twice as many lines as the Circus model. Using the
CTOC translation results in CSPM with approximately 75% fewer lines than the
corresponding Circus file.

Our reference Circus model was that of the HD machine running in parallel
with a model of one of the case study requirements (R-1 [2, Section 4.2, p11]).
The requirement model is effectively a monitor that observes the machine model,
checking that it is satisfied, and deadlocking if it observes a violation. We then
check the proposition that the HD model is correct w.r.t R-1 by showing that
the combination is deadlock free. In addition to comparing various translation
schemes, we also explored the effect of changing the size of our “natural number”
type: NatValue == 0 . . N , in order to estimate the number of states visited in
FDR.

We explored the byHand and CTOC translation schemes with four ranges of
NatValue size, with N up to a maximum of 90, as shown in in Table 2. The
only case where we could compare the two approaches was our first case, with
N = 2: it resulted in 9,409 states visited using byHand, in contrast with 811
states visited using CTOC, demonstrating a reduction of 91% in terms of states
explored. Moreover, the execution time with the model generated using CTOC was
equally reduced by 91% compared to the the model using byHand. The “Plys”
column indicates how deep the breadth-first search algorithm used by FDR went
while checking. This is larger for the byHand model, and is independent of the
value of N . Interestingly, after waiting more than 2 hours, we were unable to
obtain results from the model generated with byHand when we increased the N
to 3. However, the model generated with CTOC, when tested using n = 90, was

executed in in 35 seconds, which is still quicker than byHand with N = 2. We
also note that amount of memory used was constant, at 240MB approx.

Table 2. Time for asserting deadlock freedom of the HD Machine in FDR4

NatValue States Transitions Plys Exec.
Approach range Result Visited Visited Visited Time

0..1 Passed 811 1,800 39 0.375s
0..2 Passed 1,761 3,786 39 0.407s
0..10 Passed 21,169 44,586 39 0.937sCTOC
0..90 Passed 1,369,809 1,369,809 39 35.097s

0..1 Passed 9,409 301,617 47 40.826s
byHand 0..2 incomplete ? ? ? > 2 hours

We could not get results here for the D241 scheme as its translation of the
HD model resulted in type errors being reported by FDR.

In addition to experiments that varied N above, we also explored how the
number of variables, rather than the size of their datatypes, influenced the check-
ing time. Using a hypothetical example having 12 state variables, checks using
D241 were performed in 35 minutes, compared to 76 ms using CTOC. We observed
segmentation faults using D241 with a more than 12 variables. However, checks
using CTOC in an example with 42 state variables and NatValue = 0 . . 30, were
performed in 870 ms. What is clear is that with the CTOC translation scheme,
namely one memory-process per state-variable, we can now handle Circus models
of considerable complexity.

5.2 Ring-Buffer Experiments

Another interesting example was to take the Circus specification of the bounded
reactive ring buffer, RB , from D24.1 [29, Appendix D.2, p. 163], based on the
model presented in [7]. We compared the CTOC translation of this using Cir-
cus2CSP (RBCTOC), with the by-hand translation in D24.1 [29, Appendix D.4,
p166] (RBCTOC). We firstly perform the usual tests like deadlock freedom and
termination checks for theRBCTOC and for the RBCTOC specifications, as illus-
trated in Table 3.

We can see a clear difference between the states visited between the three
approaches, notably those between RBbyH and RBCTOC where the number of
states and transitions visited was reduced considerably, as well as the amount
of time spent by FDR4 to check the assertions.

We also experimented to check the failures-divergences refinement (P vFD

Q) between the three approaches, each pair in both directions. Since we know
that the specification RBCTOC is a translation from the same Circus model of
the handmade translation of RBbyH , we expect that RBbyH and RBCTOC are
equivalent to each other, RBbyH vFD RBCTOC and RBCTOC vFD RBbyH ,
which is true, as seen below in row 1 and 3.

Table 3. RingBuffer checks: deadlock and livelock freedom, and determinism.

Test Model Result States Visited Transitions Plys Exec.Time

RBbyH Passed 8,297,025 16,805,249 44 26.657s
deadlock free

RBCTOC Passed 1,628 3,109 38 0.145s

RBbyH Passed 8,297,025 16,805,249 44 25.476s
livelock free

RBCTOC Passed 1,628 3,109 38 0.151s

RBbyH Passed 9,869,889 19,852,673 69 54.863s
deterministic

RBCTOC Passed 2,012 3,853 63 0.159s

Table 4. Refinement checks between models of the Ring Buffer example

Refinement States Transitions Plys Exec.
Check Result Visited Visited Visited time

1 RBbyH vFD RBCTOC Passed 1,628 3,109 38 58.019s

2 RBCTOC vFD RBbyH Passed 8,297,025 16,805,249 44 42.543s

Interestingly, if we compare the states and transitions visited, as well as
the execution time from Table 3 with Table 4, given a refinement A vFD B ,
the states and transitions visited are almost the same as when checking B for
deadlock freedom.

During our experiments, we also compared our Circus2CSP model with the
Ring Buffer model RBKW , based on [40, Chapter 22], produced using the ap-
proach of Kangfeng and Woodcock [41] for translating Circus into CSP||B, for
model checking using ProB [22]. Such an approach is similar [29, p. 116] but
makes use of Z schemas as Circus actions that are currently not available in our
translation scheme. In our experiments, we observed that the model RBKW is
refined by both RBCTOC and RBbyH , but the refinement in the reverse direction
does not hold, i.e., RBKW is not a refinement of neither RBCTOC nor RBbyH ,
as it is a more abstract model since its data aspects of specification are defined
in B.

Unfortunately, the structure defined for our translation strategy is not fully
supported by ProB, which was used to test RBKW [42]. ProB is another model-
checker, which like FDR, also allows the user to animate specifications. It was
originally developed for the B language, but it has been extended and now it
supports other formal languages such as CSP, Z, Event-B [1], as well as combined
languages such as CSP||B. We observed that the use of subtype, in our models,
is not fully supported by the ProB tool, causing some commands like ”model-
check” to result in errors. However, we were able to animate our translated
specification using ProB, and to execute the same assertion check, as in FDR:
we obtained similar results to those when running FDR.

On the other side, the tests performed with the CSPM specification of RBKW

using FDR failed the checks for deadlock freedom and determinism. The results
obtained from ProB can be related to what we obtained in FDR in terms of
the behavior of the system: the counterexample given can be used to animate
the CSP||B model in ProB, causing the same effect: deadlock. However, we have

no way to fully compare both approaches since CSP||B takes into account the
system state in ProB, whereas we only have the CSPM side of the model, which
captures the behavior of the system, but does not captures the system state. The
most obvious explanation for the deadlock in RBKW is that the state (modeled
in B) influences control-flow that results in deadlock situations being avoided.

5.3 Compression Experiments

An important aspect when using FDR is the availability of compression tech-
niques [33] in order to reduce the number of states, reducing the time spent
for refinement checking. A compression transforms a labelled-transition system
(LTS) into a corresponding one, which is expected to be smaller and more ef-
ficient whilst using it for checks in FDR. Currently, FDR applies compressions
in parallel compositions by default, which is the main structure we use in our
memory model. We explored a few other compression tecniques, such as sbisim,
which determines the maximal strong bisimulation [5], and wbisim, which com-
putes the maximal weak bisimulation. Depending on the compression used, the
number of states visited, were indeed reduced, as illustrated in Table 5.

Table 5. Experimenting CSPM compression techniques with the HD Machine

sbisim+diamond no compression sbisim wbisim

Values States Exec States Exec States Exec States Exec
Range Visited Time Visited Time Visited Time Visited Time

(seconds) (seconds) (seconds) (seconds)

0..10 77 0.499 21,169 0.458 302 0.479 87 0.56
0..120 77 25.096 2,416,749 18.805 302 21.793 87 35.839
0..240 77 114.845 9,556,509 84.803 302 100.112 87 175.846
0..360 77 327.815 21,419,469 235.236 302 269.414 killed 286.079
0..480 77 668.437 38,005,629 467.602 302 523.825 killed 525.889

Although the states/transitions/plys visited were considerably reduced using
the compression techniques mentioned above, there was little impact on overall
execution time, and the number of states visited are independent of the size of
NatValue, while the number of transitions grows slowly. However, the results
obtained here are related to the model of the HD machine, and it is difficult to
identify which compression technique will be most effective in a general case,
and indeed, further experiments are required.

6 Future Work

Our plans for future work include exploring other industrial-scale case stud-
ies [3,17,15], as a way of identifying the kind of Circus constructs that would be
suitable to have available in our translation tool. We have a particular interest

in specifying a translation strategy for Z schemas used as Circus actions within a
process. The best approach would be to use Z Refinement Calculus [6]. For now,
our tool deals only with those schemas that in fact can be translated into as-
signments. We intend to explore the operators for Z schemas and the refinement
laws that can be applied accordingly.

In addition, we also plan to establish a link between Circus2CSP and Is-
abelle/UTP [11], so that we can use their mechanised UTP semantics for Circus
to verify the correctness of our Haskell implementation. Moreover, our tool also
has a Circus refinement “calculator” embedded in it, which implements the laws
listed in Appendix A of the Deliverable 24.1 [29, p.147], which can easily be
extended to the other refinement laws proved by Oliveira [27] in the near future.

We can eliminate the use of CSPM subtyping in CTOC (the process-per-
variable model), and simplify “get” and “set” prefixes of the forms mget .n.v
and mset .n.v to get n.v and set n.v respectively, where we now have dedicated
channels per variable. However, the relationship of this new form to CTOC is no
longer a simple equivalence as there are now different events in the two models.

Finally, in terms of improvement of our tool, compared to other approaches [9],
it would also be interesting to review the parser of Z and Circus from Circus2CSP
in order to rewrite it to be in conformance with the International Standards
Organization (ISO) standards, ISO/IEC 13568:2002 [20], which describes the
syntax, type system and semantics of Z formal notation. Moreover, we would
like to include the libcspm library7 into Circus2CSP in order to be able to parse
the relevant code included in our definition of the assertion LATEX environment.
Such an attempt would help a Circus2CSP user wishing to review any fault in
the CSPM specification translated from Circus.

Finally, we can envisage work in the future that might extend the benefits
gained here to the wider model-checking community. One possibility is extending
the translator to target model-checkers other than FDR. This would require us to
have either a rigourosly defined embedding, of the subset of CSP that we produce,
into the modelling language of the proposed checker, or have a way of linking
the semantics of the target modelling language to Circus and/or CSP to verify
the correctness of direct output in that language. The second aspect concerns
the possibility that our approach can be adapted to work within another model-
checking eco-system entirely. ne key advantage in having a state-rich form is the
ability to easily describe state changes that only modify small parts of the state
(compare P = w := y − x ; Q with P(u, v ,w , x , y , z) = Q(u, v , y − x , x , y , z)).
We note that the CADP system, which is based on LOTOS (state-poor), has
already moved in this direction, with tools now working with LTN (LOTOS
New Technology, state-rich), using a LTN to LOTOS translator [13]. Do other
modelling notations have state-rich forms that are hard to check, but have good
checkers for state-poor forms?

7 https://github.com/tomgr/libcspm

https://github.com/tomgr/libcspm

7 Conclusions

In this paper we evaluated possible approaches for translating Circus into CSPM ,
for model checking using FDR. Our main concern was how the state of a Circus
process could be captured in CSPM in such a way that FDR could handle a large
amount of state variables and an even larger range of values. We then produced
several models of CSPM specifications translated from Circus and also explored
the consequences of including both state invariants and preconditions of Circus
actions in the CSPM models. Such a research resulted in the development of
Circus2CSP, a tool for model checking Circus, through the automatic translation
from Circus to CSPM , and therefore, being able to use FDR for refinement checks.
Circus2CSP development was developed in 24 months, and has a total of over 26
thousand lines of Haskell code.

We observed that a distributed memory model, rather than a centralised
one, as proposed by Mota et al. [24] is beneficial for larger states. Moreover,
the time spent as well as the state exploration from FDR’s refinement checks is
larger when capturing preconditions and state invariants. Another observation
from our experiments is that we were able to reduce the state exploration even
more by refining our model to one where the bindings were explicitly defined
by Circus2CSP, rather than considering a non-deterministic choice over such
bindings, as per the original manual translation. This is justified by assuming
that every state variable should be initialised prior to its use in the process. The
outcome is that we now have a mechanised translator from Circus to CSPM that
produces tractable models, and allows the use of FDR on larger case studies
than has been possible up to now.

We should clarify that our approach to produce parametrised processes is
not an attempt to use the bindings data-independently [32, p. 453]. That is
solving a different problem, namely finding a finite size of a type that is suitable
to demonstrate the correctness for any finite or even infinite size of such type.
Moreover, to date, our approach is unable to generate counterexamples or any
kind of back annotation to the Circus models, and thus is in our plans for future
work.

We used the HD machine and the ring buffer case studies as examples in
order to test the capabilities of our tool whilst model checking the automati-
cally translated models in FDR. Our aim was to contribute to reducing FDR’s
workload in order to model check larger systems. We learned that a practical
implementation/mechanisation of a theory may reveal difficulties that could not
otherwise be discovered without extensive use of a tool prototype, especially
when applying it to larger case studies.

Acknowledgments

This work was funded by CNPq (Brazilian National Council for Scientific and
Technological Development) within the Science without Borders programme,
Grant No. 201857/2014-6, and partially funded by Science Foundation Ireland
grant 13/RC/2094.

References

1. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, New York, NY, USA, 1st edn. (2010)

2. Atif, M.: The hemodialysis machine case study. In: Butler, M.J., Schewe, K.D.,
Mashkoor, A., Biró, M. (eds.) Lecture Notes in Computer Science (including sub-
series Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformat-
ics). Lecture Notes in Computer Science, vol. 9675, pp. 329–343. Springer (2016),
https://doi.org/10.1007/978-3-319-33600-8_29

3. Beg, A., Butterfield, A.: Linking a state-rich process algebra to a state-free algebra
to verify software/hardware implementation. Proceedings of the 8th International
Conference on Frontiers of Information Technology - FIT ’10 pp. 1–5 (2010), http:
//portal.acm.org/citation.cfm?doid=1943628.1943675

4. Beg, A., Butterfield, A.: Development of a prototype translator from Circus to
CSPm. In: ICOSST 2015 - 2015 International Conference on Open Source Systems
and Technologies, Proceedings. pp. 16–23 (dec 2016)

5. Boulgakov, A., Gibson-Robinson, T., Roscoe, A.W.: Computing maximal weak
and other bisimulations. Formal Aspects of Computing 28(3), 381–407 (2016),
https://doi.org/10.1007/s00165-016-0366-2

6. Cavalcanti, A., Woodcock, J.C.P.: ZRC - A Refinement Calculus for Z. Formal
Aspects of Computing 10(3), 267–289 (mar 1998), http://link.springer.com/
10.1007/s001650050016https://doi.org/10.1007/s001650050016

7. Cavalcanti, A.L.C., Sampaio, A.C.A., Woodcock, J.C.P.: A Refinement Strategy
for Circus. In: Formal Aspects of Computing. vol. 15, pp. 146–181 (nov 2003),
https://doi.org/10.1007/s00165-003-0006-5

8. Conserva Filho, M., Oliveira, M.V.M.: Implementing tactics of refinement in CRe-
fine. In: Eleftherakis, G., Hinchey, M., Holcombe, M. (eds.) Lecture Notes in Com-
puter Science (including subseries Lecture Notes in Artificial Intelligence and Lec-
ture Notes in Bioinformatics). Lecture Notes in Computer Science, vol. 7504 LNCS,
pp. 342–351. Springer (2012), https://doi.org/10.1007/978-3-642-33826-7_24

9. CZT Partners: Community {Z} tools. (oct 2006), czt.sourceforge.net/

10. Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of pro-
grams. Communications of the ACM 18(8), 453–457 (1975), http://portal.acm.
org/citation.cfm?doid=360933.360975{%}5Cn

11. Fowler, S., Zeyda, F., Woodcock, J.C.P.: Isabelle/UTP: {A} Mechanised Theory
Engineering Framework. In: Unifying Theories of Programming - 5th International
Symposium, {UTP} 2014, Singapore, May 13, 2014, Revised Selected Papers. pp.
21–41 (2014), http://dx.doi.org/10.1007/978-3-319-14806-9_2

12. Freitas, L.: Model checking Circus. Ph.D. thesis, Department of Computer Science,
The University of York, UK (2005)

13. Garavel, H., Lang, F., Serwe, W.: From LOTOS to LNT. In: Katoen, J.,
Langerak, R., Rensink, A. (eds.) ModelEd, TestEd, TrustEd - Essays Dedicated
to Ed Brinksma on the Occasion of His 60th Birthday. Lecture Notes in Com-
puter Science, vol. 10500, pp. 3–26. Springer (2017), https://doi.org/10.1007/
978-3-319-68270-9_1

14. Gibson-Robinson, T., Armstrong, P., Boulgakov, A., Roscoe, A.W.: FDR3 — A
Modern Model Checker for CSP. Tools and Algorithms for the Construction and
Analysis of Systems 8413, 187–201 (2014), http://www.cs.ox.ac.uk/projects/
fdr/manual/

https://doi.org/10.1007/978-3-319-33600-8_29
http://portal.acm.org/citation.cfm?doid=1943628.1943675
http://portal.acm.org/citation.cfm?doid=1943628.1943675
https://doi.org/10.1007/s00165-016-0366-2
http://link.springer.com/10.1007/s001650050016 https://doi.org/10.1007/s001650050016
http://link.springer.com/10.1007/s001650050016 https://doi.org/10.1007/s001650050016
https://doi.org/10.1007/s00165-003-0006-5
https://doi.org/10.1007/978-3-642-33826-7_24
czt.sourceforge.net/
http://portal.acm.org/citation.cfm?doid=360933.360975{%}5Cn
http://portal.acm.org/citation.cfm?doid=360933.360975{%}5Cn
http://dx.doi.org/10.1007/978-3-319-14806-9_2
https://doi.org/10.1007/978-3-319-68270-9_1
https://doi.org/10.1007/978-3-319-68270-9_1
http://www.cs.ox.ac.uk/projects/fdr/manual/
http://www.cs.ox.ac.uk/projects/fdr/manual/

15. Gomes, A.O.: Formal Specification of the ARINC 653 Architecture Using Circus
(2012), http://etheses.whiterose.ac.uk/id/eprint/2683

16. Gomes, A.O., Butterfield, A.: Modelling the haemodialysis machine with Circus.
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics) 9675(201857), 409–424 (2016),
https://doi.org/10.1007/978-3-319-33600-8_34

17. Gomes, A.O., Oliveira, M.V.M.: Formal Specification of a Cardiac Pacing System.
In: Cavalcanti, A., Dams, D. (eds.) FM 2009: Formal Methods, Lecture Notes in
Computer Science, vol. 5850, pp. 692–707. Springer (2009), https://doi.org/10.
1007/978-3-642-05089-3_44

18. Hoare, C., He, J.: Unifying Theories of Programming. Prentice-Hall (1998)
19. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to automata theory, lan-

guages, and computation - international edition (2. ed). Addison-Wesley (2003)
20. ISO/IEC: ISO/IEC 13568:2002 Information Technology Z formal speci-

fication notation Syntax, type system and semantics. Tech. rep. (2002),
http://standards.iso.org/ittf/PubliclyAvailableStandards/c021573_ISO_

IEC_13568_2002(E).zip
21. Jackson, E.K., Levendovszky, T.T., Balasubramanian, D.: Reasoning about meta-

modeling with formal specifications and automatic proofs. In: Whittle, J., Clark,
T., Kühne, T. (eds.) Lecture Notes in Computer Science (including subseries Lec-
ture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Lecture
Notes in Computer Science, vol. 6981 LNCS, pp. 653–667. Springer (oct 2011),
https://doi.org/10.1007/978-3-642-24485-8_48

22. Leuschel, M., Butler, M.: ProB: A Model Checker for B. FME 2003 Formal Methods
2805, 855–874 (2003), https://doi.org/10.1007/978-3-540-45236-2_46

23. Morgan, C., Carroll: Programming from specifications (2nd. Ed.), Prentice Hall
International series in computer science, vol. 16. Prentice Hall (1994), https://
dl.acm.org/citation.cfm?id=184737

24. Mota, A., Farias, A.C., Didier, A., Woodcock, J.C.P.: Rapid prototyping of a se-
mantically well founded Circus model checker. In: Giannakopoulou, D., Salaün,
G. (eds.) Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics). Lecture Notes
in Computer Science, vol. 8702 LNCS, pp. 235–249. Springer (2014), https:

//doi.org/10.1007/978-3-319-10431-7_17
25. Nogueira, S., Sampaio, A., Mota, A.: Test generation from state based use case

models. Formal Aspects of Computing 26(3), 441–490 (2014)
26. Oliveira, D., Oliveira, M.V.M.: Joker: An Animation Framework for Formal Speci-

cations. In: SBMF’11 - Short Papers. pp. 43–48. ICMC/USP (sep 2011)
27. Oliveira, M.V.M.: Formal Derivation of State-Rich Reactive Programs using

Circus. Ph.D. thesis, University of York, UK (2005), http://ethos.bl.uk/

OrderDetails.do?uin=uk.bl.ethos.428459
28. Oliveira, M.V.M., Cavalcanti, A., Woodcock, J.C.P.: Unifying theories in

ProofPower-Z. In: Formal Aspects of Computing. vol. 25, pp. 133–158 (jan 2013),
https://doi.org/10.1007/s00165-007-0044-5

29. Oliveira, M.V.M., Sampaio, A., Antonino, P., Ramos, R., Cavalcanti, A.,
Woodcock, J.C.P.: Compositional Analysis and Design of CML Models. Tech.
Rep. D24.1, COMPASS Deliverable (2013), http://www.compass-research.eu/

Project/Deliverables/D241.pdf
30. Oliveira, M.V.M., Sampaio, A., Conserva Filho, M.: Model-Checking Circus State-

Rich Specifications. Integrated Formal Methods 2014 8739 LNCS, 39–54 (2014),
https://doi.org/10.1007/978-3-319-10181-1_3

http://etheses.whiterose.ac.uk/id/eprint/2683
https://doi.org/10.1007/978-3-319-33600-8_34
https://doi.org/10.1007/978-3-642-05089-3_44
https://doi.org/10.1007/978-3-642-05089-3_44
http://standards.iso.org/ittf/PubliclyAvailableStandards/c021573_ISO_IEC_13568_2002(E).zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/c021573_ISO_IEC_13568_2002(E).zip
https://doi.org/10.1007/978-3-642-24485-8_48
https://doi.org/10.1007/978-3-540-45236-2_46
https://dl.acm.org/citation.cfm?id=184737
https://dl.acm.org/citation.cfm?id=184737
https://doi.org/10.1007/978-3-319-10431-7_17
https://doi.org/10.1007/978-3-319-10431-7_17
http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.428459
http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.428459
https://doi.org/10.1007/s00165-007-0044-5
http://www.compass-research.eu/Project/Deliverables/D241.pdf
http://www.compass-research.eu/Project/Deliverables/D241.pdf
https://doi.org/10.1007/978-3-319-10181-1_3

31. Plagge, D., Leuschel, M.: Validating Z Specifications Using the ProB Animator
and Model Checker. In: Davies, J., Gibbons, J. (eds.) Integrated Formal Methods,
Lecture Notes in Computer Science, vol. 4591, pp. 480–500. Springer (2007), https:
//doi.org/10.1007/978-3-540-73210-5_25

32. Roscoe, A.W.: The Theory and Practice of Concurrency. Prentice Hall PTR, Upper
Saddle River, NJ, USA (1973)

33. Roscoe, A.W., Gardiner, P., Goldsmith, M., Hulance, J., Jackson, D., Scattergood,
J.: Hierarchical compression for model-checking CSP or how to check 1020 dining
philosophers for deadlock. In: Brinksma, E., Cleaveland, R., Larsen, K.G., Mar-
garia, T., Steffen, B. (eds.) Tools and Algorithms for the Construction and Analysis
of Systems. Lecture Notes in Computer Science, vol. 1019, pp. 133–152. Springer
(1995), http://dx.doi.org/10.1007/3-540-60630-0_7

34. Saaltink, M., Meisels, I., Saaltink, M.: The Z/EVES Reference Manual (for ver-
sion 1.5). Reference manual, ORA Canada pp. 72–85 (1997), http://dl.acm.org/
citation.cfm?id=647282.722913

35. Scattergood, B.: The semantics and implementation of machine-readable CSP pp.
1–179 (1998), http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.299037

36. Schneider, S.: Concurrent and Real-time systems. Wiley Chichester, UK (2000)
37. Woodcock, J.C.P., Bryans, J., Canham, S., Foster, S.: The COMPASS Modelling

Language : Timed Semantics in UTP pp. 1–32 (2014)
38. Woodcock, J.C.P., Cavalcanti, A.: The Semantics of Circus. In: Zb 2002: Formal

Specification and Development in Z and B: 2nd International Conference of B and
Z Users Grenoble (2002)

39. Woodcock, J.C.P., Cavalcanti, A.L.C., Freitas, L.: Operational Semantics for model
checking Circus. Lecture Notes in Computer Science 3582, 237–252 (2005)

40. Woodcock, J.C.P., Davies, J.: Using Z, Specification, Refinement, and Proof. Pren-
tice Hall International Series in Computer Science, Prentice-Hall, Inc., Upper Sad-
dle River, NJ, USA (1996)

41. Ye, K.: Model Checking of State-Rich Formalisms. Ph.D. thesis, University of York
(2016)

42. Ye, K., Woodcock, J.C.P.: Model checking of state-rich formalism Circus by linking
to CSP——B. International Journal on Software Tools for Technology Transfer
19(1), 73–96 (2017), https://doi.org/10.1007/s10009-015-0402-1

https://doi.org/10.1007/978-3-540-73210-5_25
https://doi.org/10.1007/978-3-540-73210-5_25
http://dx.doi.org/10.1007/3-540-60630-0_7
http://dl.acm.org/citation.cfm?id=647282.722913
http://dl.acm.org/citation.cfm?id=647282.722913
http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.299037
https://doi.org/10.1007/s10009-015-0402-1

	Towards a model-checker for Circus

