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Abstract: A new active TLCD is developed for seismic vibration control of structures by 

employing the configuration of the compliant liquid column damper (CLCD). This control 

system is referred to as the active CLCD or ACLCD. The theoretical model of the proposed 

ACLCD is presented, in which the controller is designed first by the Linear Quadratic Regulator 

(LQR) algorithm. The design procedure developed for the ACLCD is illustrated both for an 

example flexible structure as well as for an example stiff structure, subjected to a recorded 

accelerogram input. The optimal design of the passive CLCDs is also presented, to provide the 

basis for the choice of the damper parameters of the ACLCD. The optimum control parameters 

of the ACLCD are evaluated with the objective of minimizing the displacement response of the 

structure while maintaining the stability of response reduction and satisfying the constraints on 

peak liquid and whole damper displacements. A multiresolution based wavelet controller 

(WLQR) is also designed for the ACLCD, achieving structural displacement response reductions 

comparable to that obtained from the conventional LQR controller, but with the application of 

comparatively lower control forces. The enhanced effectiveness of the ACLCD over that of the 

passive CLCD is demonstrated through a time domain study. The performances of the LQR and 

WLQR based control strategies are compared, in terms of both structural response reduction and 

requirement of peak control force magnitudes, for the design input as well as under excitation 

variability. 
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Introduction 

The Tuned Liquid Column Damper (TLCD) was first proposed by Saoka et al.[1] and Sakai et 

al.[2] as a passive control device for structures. Since then, considerable research has been carried 

out on the device for the mitigation of wind-induced vibration[3-7] as well as for seismic vibration 

control of flexible structures[8-13]. The TLCD offers several advantages as compared to the tuned 

sloshing damper such as high volumetric efficiency with respect to a given amount of liquid, 

consistent behaviour across a wide range of excitation levels and a damping mechanism that can 

be quantified in a definite manner. Some prominent TLCD implementations are in the Higashi-

Kobe cable-stayed bridge in Japan[14], the 106.2 m high Hotel Cosima in Tokyo[15] and the 194.4 

m high Shin Yokohama Prince Hotel in Japan[16]. In the TLCD, the frequency of oscillation of 

the liquid is dependent only on the total length of the liquid column, thereby rendering the TLCD 

a long period system. This generally restricts its direct application to the vibration control of 

structures with fundamental frequencies above 0.5 Hz[17].  To extend the applicability of the 

passive TLCD to the short period range, several modifications to the original TLCD 

configuration have been proposed. In a sealed TLCD approach, Reiterer and Ziegler[18] utilized 

the air spring effects in a sealed U-tube to extend the applicability of the TLCD to 4.0 to 5.0 Hz. 

In another approach, Ghosh and Basu[19] proposed a compliant model of the TLCD, termed the 

CLCD in subsequent works, in which the U-tube containing the damper liquid is flexibly 

connected to the structure, providing an additional degree of freedom by which the direct tuning 

of the oscillating liquid column to the structure is avoided. Ghosh and Basu[20] studied the 

robustness of single and multiple CLCDs and carried out a preliminary experimental 

investigation on the CLCD, results of which indicated the potential of the proposed damper. 

Ghosh and Basu[13] further proposed a design methodology for the spring-connected LCD as a 

seismic vibration control device for structures considering nonlinear behaviour. Gur et al.[21] 

replaced the linear spring of the CLCD by a spring made of shape memory alloy for improved 

performance and robustness. Recently, a detailed experimental verification of the theoretical 

model of the CLCD was carried out by Bhattacharyya et al.[22]. It may be noted that the CLCD, 

though originally developed for short period structures, is equally applicable to flexible 

structures.  



To further improve the efficiency and robustness of the passive TLCD, considerable 

development in active, semi-active and hybrid control applied to various configurations of the 

TLCD has taken place. In the active TLCD configurations, researchers have considered various 

means to apply the control force to the damper and have calculated the control parameters 

through the use of different control algorithms. In the active TLCD studied by Balendra et al.[23], 

the TLCD is supported on a movable platform to which the control force, evaluated by the H∞ 

algorithm, is applied for suppression of wind induced vibrations of a tower. Chen and Ko[24] 

proposed installing two propellers inside the TLCD and used feedback optimal control theory to 

calculate the control force for seismic control. Hochrainer and Ziegler[25] actively controlled the 

air spring effect of a sealed TLCD by applying a bang-bang controller on the pressure valve. 

 Haroun et al.[26] studied a hybrid TLCD, for vibration mitigation of tall buildings under 

earthquake and wind loading, in which the orifice opening ratio is actively controlled by an 

optimal control algorithm. A hybrid TLCD system for control of structural response under 

seismic excitation was studied by Kim and Adeli[27] who optimally adjusted the head loss 

coefficient by changing the orifice opening ratio using a wavelet-hybrid feedback least mean 

square (LMS) control algorithm. 

Yalla et al.[28] developed clipped-optimal and fuzzy control strategy based semi-active 

algorithms for controlling the orifice opening and investigated the effectiveness of these 

algorithms for a 5-storied building subjected to wind excitation. Yalla and Kareem[29] conducted 

an experimental study on a semi-active TLCD equipped with an electropneumatic valve utilizing 

the control strategy based on gain scheduling and further illustrated the performance of the 

damper for controlling the wind induced vibration of tall buildings through numerical 

simulations. Li and Huo[30] and Li et al.[31] used semi-active neural networks on the TLCD for 

vibration control of irregular buildings. An energy based semi-active control strategy was 

investigated by Bigdeli and Kim[32] for control of irregular structures under seismic excitation. 

Sonmez et al.[33] proposed an adaptive spring connection between the TLCD and the structure to 

cater to off-tuning conditions and a short time Fourier transformation (STFT) based controller 

was designed to control the stiffness of the spring in real time. Several semi-active TLCDs with 

magnetorheological (MR) fluid as the damper liquid have also been proposed by Ni et al.[34], 

Wang et al.[35] and Colwell and Basu[36]. For recent studies of structural control see discussions 

in Basu et al.[37].         



In this paper an active configuration of the CLCD (ACLCD) is proposed for control of seismic 

vibrations of structures. The controller design is first carried out by using the Linear Quadratic 

Regulator (LQR) algorithm and then subsequently by developing a multiresolution based 

Wavelet Linear Quadratic Regulator (WLQR) algorithm following Basu and Nagarajaiah[38]. The 

design procedure developed for the ACLCD is illustrated both for an example flexible structure 

as well as for an example stiff structure, subjected to a recorded accelerogram input. As the basic 

parameters of the ACLCD are based on the optimal design of the corresponding passive CLCD, 

the results of the latter are first obtained. The optimum control parameters of the ACLCD are 

then evaluated with the objective of minimizing the displacement response of the structure and 

satisfying the constraints on peak liquid and whole damper displacements. Further, the structural 

response reductions achieved by the ACLCD are studied while varying the values of the 

controller parameters and the stability of response reduction is considered to be maintained till 

the point where the gradient of the response reduction curve becomes discontinuous. The 

performances of the LQR and WLQR based control strategies are compared, in terms of both 

structural response reduction and requirement of peak control force magnitudes, through a 

detailed time domain study. The tolerance of the control strategies against variability in 

excitation is also studied.  

Modelling and equations of motion for structure-ACLCD system 

The mathematical model of the proposed ACLCD, incorporated into a SDOF structural system, 

subjected to the horizontal ground acceleration, 𝑧̈(𝑡), is shown in Fig. 1. 𝑚 represents the mass 

of the structure having a stiffness of 𝑘𝑠 and a damping of 𝑐𝑠. 𝑘2 is the stiffness of the spring 

connected to the damper. 𝐵 and 𝐿 represent the horizontal and total length of liquid column. 

𝑥(𝑡), 𝑦(𝑡) and 𝑢(𝑡) represent the displacements of structure, whole damper system and damper 

liquid respectively. These responses are measured by sensors located appropriately as shown in 

Fig. 1. Based on the feedback from the sensors, the controller generates the force signal and the 

required control force is applied by the actuator to the damper container.  

The equation of motion for the liquid in the CLCD is given by 

𝜌𝐴𝐿𝑢̈(𝑡) +
1

2
𝜌𝐴𝜉|𝑢̇(𝑡)|𝑢̇(𝑡) + 2𝜌𝐴𝑢(𝑡)𝑔 = −𝜌𝐴𝐵(𝑦̈(𝑡) + 𝑥̈(𝑡) + 𝑧̈(𝑡))               (1) 



where, 𝜉 is the orifice head loss coefficient and 𝜌 is the density of the damper liquid. 

Normalizing Eq. (1) with respect to the liquid mass, 𝜌𝐴𝐿, leads to 

𝑢̈(𝑡) +
𝜉

2𝐿
|𝑢̇(𝑡)|𝑢̇(𝑡) + 𝜔1

2𝑢(𝑡) = −𝛼(𝑦̈(𝑡) + 𝑥̈(𝑡) + 𝑧̈(𝑡))                    (2) 

where, 𝜔1  [= √(2𝑔 ⁄ 𝐿)]  is the natural frequency of the oscillating liquid column (commonly 

termed as the LCD frequency) and 𝛼 = 𝐵/𝐿. 

Figure 1 

The dynamic equilibrium of the whole damper system leads to the following equation (Eq. (3)), 

in which the actuator force is denoted by 𝑓(𝑡).  

(𝜌𝐴𝐿 + 𝑀𝑐)(𝑦̈(𝑡) + 𝑥̈(𝑡) + 𝑧̈(𝑡)) + 𝜌𝐴𝐵𝑢̈(𝑡) + 𝑘2𝑦(𝑡) = 𝑓(𝑡)                  (3) 

 Normalization of Eq. (3) with respect to (𝜌𝐴𝐿 + 𝑀𝑐) yields 

(𝑦̈(𝑡) + 𝑥̈(𝑡) + 𝑧̈(𝑡)) +
𝛼

1 + 𝜏
𝑢̈(𝑡) + 𝜔2

2𝑦(𝑡) =
𝑓(𝑡)

(𝜌𝐴𝐿 + 𝑀𝑐)
                              (4) 

where, 𝜔2  [= √(𝑘2 ⁄ (𝜌𝐴𝐿 + 𝑀𝑐))], is the natural frequency of the whole damper system and 

𝜏  [= 𝑀𝑐 𝜌𝐴𝐿⁄ ], is the ratio of the container mass to the liquid mass. 

The equation of motion for the SDOF structural system, normalized w.r.t the mass, 𝑚, is given 

by 

(𝑥̈(𝑡) + 𝑧̈(𝑡)) + 2𝜁𝑠𝜔𝑠𝑥̇(𝑡) + 𝜔𝑠
2𝑥(𝑡) = 𝜇𝜔2

2𝑦(𝑡) −
𝑓(𝑡)

𝑚
                                (5) 

where, 𝜔𝑠 is the natural frequency of structure, 𝜁𝑠 is the damping ratio of the structure and 𝜇 is 

the ratio of the CLCD mass to the structural mass. 

Now, by adopting an equivalent linearization procedure, Eq. (1) may be written as  

𝜌𝐴𝐿𝑢̈(𝑡) + 2𝜌𝐴𝐶𝑝𝑢̇(𝑡) + 2𝜌𝐴𝑢(𝑡)𝑔 = −𝜌𝐴𝐵(𝑥̈(𝑡) + 𝑦̈(𝑡) + 𝑧̈(𝑡))                             (6) 

where, 𝐶𝑝 represents the equivalent linearized damping coefficient. The relation between the 

head loss coefficient, 𝜉, and equivalent damping coefficient, 𝐶𝑝, can be obtained by minimizing 

the mean square value of the error between Eqs. (1) and (6). In the present study, as the 



controllers are designed for random input, the following expression between 𝐶𝑝 and 𝜉 [3] is 

considered, 

𝐶𝑝 =
𝜉𝜎𝑢̇

√2𝜋
                                                                          (7) 

where, 𝜎𝑢̇ is the standard deviation of the liquid velocity 𝑢̇(𝑡). 

Description of example structural systems and input data 

Two example SDOF structural systems, one relatively flexible and the other stiff, termed as 𝑆1 

and 𝑆2, are considered. The former is the fundamental mode representation of a 81 m tall tower 

of mass 106 kg, with a time period of 2.04 s and 1 % damping ratio[23] while a SDOF system of 

the same mass and damping but of 0.5 s time period is taken as the stiff structure[19]. The design 

of the ACLCD is carried out for these structures considering them to be subjected to the recorded 

accelerogram of the S00E component of the 1940 Imperial Valley earthquake at El Centro site 

with peak ground acceleration (PGA) of 0.348 g. The ACLCD performances are further 

examined under five more base motions, namely the N85E component of the 1966 Parkfield, 

California earthquake (station 1014 Cholame #5, Shandon) with PGA of 0.442 g, the SE 

component of the 1952 Kern County earthquake (station Taft, CA - Lincoln School-810N Sixth) 

with PGA of 0.179 g, the N05W component of 1991 Uttarkashi earthquake (station Bhatwari) 

with PGA of 0.247 g, the N10W component of 1999 Chamoli - NW Himalaya earthquake 

(station Joshimath) with PGA of 0.064 g scaled up by a factor of three and the 1980 Mammoth 

Lakes, California earthquake (station 54099, SMA-1 S/N 2593) with PGA of 0.180 g. It may be 

noted that all six earthquake ground motions have similar energy content and not widely varying 

PGA values. Further, the natural frequencies of S1 and S2 lie in the dominant frequency range of 

all the input ground motions. 

Design and performance of passive CLCD 

In designing the ACLCDs for the example SDOF systems, first the corresponding passive 

configurations are designed for optimal performance under the given excitation of El Centro 

earthquake and constraints on liquid and whole damper displacements. The damper liquid is 

water. To prevent loss of mass coupling in the horizontal portion of the damper U-tube, the 

maximum liquid displacement is restricted to 𝑢𝑙𝑖𝑚 = (𝐿 − 𝐵)/2. Further, keeping in mind 



practical constraints on peak whole damper displacements, here an arbitrarily selected value of 1 

m (𝑦𝑙𝑖𝑚) is taken as the limiting value of the peak whole damper displacement.  

The optimum tuning ratios (𝜈𝑜𝑝𝑡) and optimum head loss coefficients (𝜉𝑜𝑝𝑡) of the passive 

CLCDs are obtained by solving the constrained optimization problem with the objective of 

minimizing the peak structural displacement. The other damper parameters such as 𝜇, 𝜏, 𝛼 are 

assumed constant and realistic and feasible values are selected for the same. In the present study, 

a mass ratio (𝜇) of 2 %, container mass to liquid mass ratio (𝜏) equal to 0.5, and length ratios (𝛼) 

of 0.4 and 0.7 are considered. In all, four CLCDs are designed for 𝑆1 and 𝑆2, which are 

designated as 𝑆𝑖 − 𝑘 (𝑖 = 1, 2; 𝑘 = 1, 2) considering 𝛼 equal to 0.4 and 0.7 respectively.  

In case of the stiff structure (𝑆2), it is assumed that the length of the liquid column (𝐿) is constant 

and equal to 2 m while the frequency of the whole damper system is tuned to the structural 

frequency. Thus, the tuning ratio is defined by the ratio 𝜔2 𝜔𝑠⁄ . However, in case of the flexible 

structure (𝑆1), a new approach for tuning is required as so far the CLCD has been studied for 

stiff structures, the frequencies of which cannot be directly tuned to the oscillating liquid column 

frequency. Here, the following approach is proposed in which it is assumed that the uncoupled 

frequencies of the oscillating liquid column (𝜔1) and whole damper motion (𝜔2) are equal (= 𝜔𝑐 

say) and that the first coupled frequency of the CLCD (𝜔1
′′), from Ghosh and Basu[13], is tuned 

to the natural frequency of the structure (𝜔𝑠) at the considered tuning ratio (𝜈 = 𝜔1
′′ 𝜔𝑠⁄ ). By 

this, the value of 𝜔𝑐 is obtained. Thereby, the length of liquid column (𝐿) is obtained from 𝜔𝑐 =

𝜔1 = √2𝑔 𝐿⁄ . It is thus to be noted that in the design of the CLCD for a flexible structure, 𝐿 is 

not chosen arbitrarily as in case of the stiff structure, but is dependent on the value of tuning 

ratio, similar to the conventional TLCD. In the present case, the values of 𝐿 for 𝑆1 − 1 and 𝑆1 −

2 are obtained as 2.44 m and 2.69 m respectively. The optimal values of the passive damper 

parameters along with the peak reductions in structural displacement and corresponding peak 

liquid and whole damper displacements are presented in Table 1.  

Further, the sensitivity of the response reduction achieved by the passive CLCDs to 𝜉 and the 

effect of the constraints on the selection of 𝜉𝑜𝑝𝑡 are examined to later compare with that of the 

ACLCD. The displacement response reductions of 𝑆1 and 𝑆2 for varying 𝜉, at the values of  𝜈𝑜𝑝𝑡 

as indicated in Table 1, are shown in Fig. 2. The corresponding peak liquid and whole damper 



displacement plots are in Figs. 3 and 4 respectively, in which the maximum allowable values are 

indicated.  

Figure 2 

Figure 3 

 Figure 4 

It is observed from Fig. 2 that the passive CLCD performance in case 𝑆1 − 1 is sharply sensitive 

to the variation of 𝜉, whereas for case 𝑆1 − 2, the performance remains consistent beyond the 

optimum value. Fig. 2 also indicates that both in cases 𝑆2 − 1 and 𝑆2 − 2, the passive damper 

performances are insensitive to the variation of 𝜉. An inspection of Figs. 3 and 4 reveal that for 

cases 𝑆1 − 1 and 𝑆2 − 2 the values of 𝜉𝑜𝑝𝑡 are constrained optimum whereas for cases 𝑆1 − 2 

and 𝑆2 − 1 the constraints are not active. 

The uncontrolled and passive CLCD controlled time histories of the structural displacement for 

𝑆1 and 𝑆2 are shown in Figs. 5a and 5b respectively. 

Figure 5 

Design of ACLCD by LQR algorithm 

First, the design of the controller is carried out by the LQR algorithm. As the CLCD is an 

inherently nonlinear system due to the nature of the orifice damping, an equivalent linearized 

structure-ACLCD system is obtained through stochastic linearization in order to evaluate the 

gain matrix, which is then multiplied by the response of the nonlinear structure-ACLCD system 

to obtain the actuator control force. It is to be noted that as the LQR is a classical control 

technique, the geometrical constraints are explicitly checked and not handled in the derivation of 

the controller. 

LQR control formulation 

The dynamical system shown in Fig. 1 can be represented in state-space matrix form as  

{𝑋̇} = [𝐴]{𝑋} + [𝐵]{𝑈} + {𝐹}                                                           (8) 

Here, [𝐴] is the state matrix, the linearized form of which is given by  



 [𝐴] =

[
 
 
 
 
 
 

0 1 0 0 0 0
−𝜔𝑠

2 −2𝜁𝑠𝜔𝑠 𝜇𝜔2
2 0 0 0

0 0 0 1 0 0

𝜔𝑠
2 2𝜁𝑠𝜔𝑠 −𝜔2

2 1+𝜏+𝛿𝜇

𝛿
0

𝛼𝜔1
2

𝛿

𝛼

𝛿

2𝐶𝑝

𝐿

0 0 0 0 0 1

0 0 𝛼𝜔2
2 1+𝜏

𝛿
0 −𝜔1

2 1+𝜏

𝛿
−

1+𝜏

𝛿

2𝐶𝑝

𝐿 ]
 
 
 
 
 
 

                     (9) 

where, 𝛿 = 1 + 𝜏 − 𝛼2. 

The control influence matrix is given by 

 [𝐵] = [0
1

𝑚
0

1+𝜏+𝛿𝜇

𝜇𝛿𝑚
0 −

𝛼(1+𝜏)

𝜇𝛿𝑚
]
𝑇

                                              (10)  

The state vector is as follows. 

  {𝑋} = {𝑥 𝑥̇ 𝑦 𝑦̇ 𝑢 𝑢̇}𝑇                                                        (11) 

In Eq. (8), the input vector is {𝑈} and {𝐹} is the external excitation vector. 

As the LQR is an optimal state-feedback controller, the main objective is to maintain the state 

close to equilibrium while keeping the control effort optimal in terms of the minimal value of the 

cost function, 𝐽. The state-feedback law is as follows. 

{𝑈} = −[𝐺]{𝑋}                                                                            (12)  

The optimal gain matrix ([𝐺]) is evaluated such that the state-feedback law minimizes the 

quadratic cost function defined as follows. 

𝐽 = ∫({𝑋}𝑇[𝑄]{𝑋} + {𝑈}𝑇[𝑅]{𝑈})

∞

0

𝑑𝑡                                                     (13) 

Here, [𝑄]6×6 is a symmetric positive semi-definite weighting matrix associated with the state 

vector and [𝑅]1×1 is a strictly positive-definite symmetric weighting matrix associated with the 

control force.  

For a given excitation, the value of 𝐶𝑝 is first evaluated from Eq. (7) and by using the linearized 

system matrix [𝐴] as given by Eq. (9), the corresponding optimal [𝐺] is obtained. Then, by using 

this [𝐺] and the state-feedback of the nonlinear system represented by Eq. (2), the control force 

is evaluated from Eq. (12).  



Design of LQR controller and ACLCD performance  

Considering the El Centro earthquake excitation as the design input, the controller of the 

ACLCD is designed for the damper parameters as specified for the passive CLCD. The control 

parameters are evaluated for 𝑆1 and 𝑆2, from the LQR algorithm, and the results of the structural 

response reductions along with the corresponding control forces are presented. Utilizing the LQR 

algorithm for the controller design, the optimum weighting matrix, [𝑄], associated with the state 

{𝑋}, is determined for a given weighting matrix associated with the applied control force, [𝑅], 

considering the constraints of liquid and damper displacements.  

The minimum value possible to provide for 𝑅 from the consideration of the stability of response 

reduction is denoted as 𝑅𝑙𝑖𝑚. The investigation with higher values of 𝑅 is carried out to estimate 

the control force required to obtain lower response reductions and to provide design options 

depending upon the possible cost involvement. The 𝑅 value which provides maximum response 

reduction in the range investigated is denoted as 𝑅𝑜𝑝𝑡. In [𝑄], higher weights are assigned to the 

terms associated with the structural responses as greater emphasis is placed on response 

reduction of the structure. The optimum [𝑄] is determined for each considered value of 𝑅. The 

peak reduction in structural displacement and the corresponding maximum value of control force 

are noted for each case and the optimum combination of 𝑅 and [𝑄] is chosen based on the 

highest value of structural response reduction.  

The weighting matrix [𝑄] may be expressed as follows. 

[𝑄] =

[
 
 
 
 
 
 
 
 𝑞11

(𝑆𝑖)
0 0 0 0 0

0 𝑞22
(𝑆𝑖)

0 0 0 0

0 0 𝑞33
(𝑆𝑖)

0 0 0

0 0 0 𝑞44
(𝑆𝑖)

0 0

0 0 0 0 𝑞55
(𝑆𝑖)

0

0 0 0 0 0 𝑞66
(𝑆𝑖)

]
 
 
 
 
 
 
 
 

    ;  𝑖 = 1, 2                       (14) 

Here, 𝑞11
(𝑆𝑖)

 and 𝑞22
(𝑆𝑖)

 (𝑖 = 1, 2) denote the weights for the structural displacement and velocity 

responses respectively. Here, equal weights for these responses are assumed, i.e. 𝑞11
(𝑆𝑖)

= 𝑞22
(𝑆𝑖)

=

𝑞(𝑆𝑖) (𝑖 = 1, 2). Further in Eq. (14), the elements 𝑞33
(𝑆𝑖)

, 𝑞44
(𝑆𝑖)

, 𝑞55
(𝑆𝑖)

 and 𝑞66
(𝑆𝑖)

 (𝑖 = 1, 2) denote the 

weights associated with the displacement and velocity responses of whole damper and liquid. 



The values of these weights are adjusted according to the values of the constraints on whole 

damper and liquid displacements. For the two example structures, 𝑆1 and 𝑆2, these are fixed as 

𝑞33
(𝑆𝑖)

= 𝑞44
(𝑆𝑖)

= 109 and 𝑞55
(𝑆𝑖)

= 𝑞66
(𝑆𝑖)

= 10−10 (𝑖 = 1, 2). Hence, [𝑄] for 𝑆1 and 𝑆2 are 

expressed as follows.  

[𝑄]𝑆𝑖 =

[
 
 
 
 
 
𝑞(𝑆𝑖) 0 0 0 0 0

0 𝑞(𝑆𝑖) 0 0 0 0

0 0 109 0 0 0
0 0 0 109 0 0
0 0 0 0 10−10 0
0 0 0 0 0 10−10]

 
 
 
 
 

   ;  𝑖 = 1, 2                   (15) 

For each considered value of 𝑅, the weightage on the structural response that provides maximum 

displacement reduction under the given constraints, denoted by 𝑞𝑜𝑝𝑡
(𝑆𝑖)

  (𝑖 = 1, 2), is evaluated.  

The procedure is now illustrated through the design of the controllers for 𝑆1 − 2 and 𝑆2 − 2. In 

each case 𝑅𝑙𝑖𝑚 = 0.0006. The variations in the peak liquid and whole damper displacements for a 

range of values of 𝑞(𝑆1) and 𝑞(𝑆2)for 𝑆1 − 2 and 𝑆2 − 2, keeping 𝑅 = 𝑅𝑙𝑖𝑚, are shown in Figs. 6 

and 7 respectively.  

Figure 6 

Figure 7 

From Figs. 6 and 7 it is observed that the active constraint in each case of 𝑆1 − 2 and 𝑆2 − 2 is 

that on the peak liquid displacement, which limits the maximum value that may be assigned to 

𝑞𝑜𝑝𝑡
(𝑆1)

 and to 𝑞𝑜𝑝𝑡
(𝑆2)

 as 4 × 1010 and 5 × 1010 respectively. Hence, the optimum [𝑄] for the 

controller is expressed by 

 [𝑄]𝑆1 =

[
 
 
 
 
 
4 × 1010 0 0 0 0 0

0 4 × 1010 0 0 0 0
0 0 109 0 0 0
0 0 0 109 0 0
0 0 0 0 10−10 0
0 0 0 0 0 10−10]

 
 
 
 
 

                   (16) 



[𝑄]𝑆2 =

[
 
 
 
 
 
5 × 1010 0 0 0 0 0

0 5 × 1010 0 0 0 0
0 0 109 0 0 0
0 0 0 109 0 0
0 0 0 0 10−10 0
0 0 0 0 0 10−10]

 
 
 
 
 

                   (17) 

Figs. 6 and 7 also indicate that, as expected, the peak values of the damper displacements are 

significantly lower for the stiffer structure, i.e. 𝑆2, as compared to the flexible structure 𝑆1. 

The resulting time histories of structural displacement and control force (expressed as a 

percentage of the structural weight) generated by the designed LQR controller, as well as the 

liquid displacement and whole damper displacement time histories, are presented in Figs. 8 and 9 

respectively.  

Figure 8 

Figure 9 

This procedure is repeated for a range of 𝑅 values, 𝑅𝑙𝑖𝑚 to 100, for the cases 𝑆1 − 1, 𝑆1 − 2, 

𝑆2 − 1 and 𝑆2 − 2, and the results are presented in Table 2. From this table, on the basis of 

maximum peak reduction in structural displacement by the ACLCD, the values of 𝑅𝑜𝑝𝑡 are 

obtained as 0.0004, 0.0006, 0.0005 and 0.01 for cases 𝑆1 − 1, 𝑆1 − 2, 𝑆2 − 1 and 𝑆2 − 2 

respectively.  

The comparative results of response reductions by the ACLCD and the passive CLCD are 

presented in Table 3. Here it is clear that considerably higher response reductions are possible by 

the ACLCD as maximum peak reductions of 27.7 % and 47.09 % are achieved by the ACLCD as 

against 19.57 % and 15.77 % by the passive CLCD, for the example structures 𝑆1 and 𝑆2 

respectively. 

Further, the trend in the variation of peak response reduction with the corresponding peak control 

force of each ACLCD design is examined in Fig. 10a – 10d. Here it is observed that though there 

exist optimum values of peak response reduction, the ACLCD performance is not very sensitive 

to the value of the peak control force, thereby allowing the designer flexibility in the selection of 

the values of the control parameters and required control forces without compromising 

significantly on the vibration control achieved by the damper.  



Figure 10 

Next, the sensitivity of the controller performance with the head loss coefficient, 𝜉, is 

investigated. The response reductions achieved by the ACLCD are obtained for a range of 𝜉 for 

the cases corresponding to 𝑅𝑙𝑖𝑚 in Table 2 and compared with that of the passive CLCD cases in 

Fig. 11. The value of 𝑞𝑜𝑝𝑡
(𝑆𝑖)

 (𝑖 = 1, 2) is evaluated for each value of 𝜉. It is observed that in 

comparison to the passive CLCD, the ACLCD performs better over a wide range of 𝜉 and that 

the ACLCD performance is insensitive to 𝜉 beyond the optimum value in all the cases. In the 

design of the passive CLCD for case 𝑆1 − 1, it is clear that 𝜉 greater than 30 cannot be provided 

whereas the ACLCD provides a consistently good performance over the entire range of 𝜉 

studied. Hence, the effective performance of the ACLCD is ensured even in the case of 

unavailability of optimum 𝜉, as may be due to practical constraints. Thus, in comparison to the 

passive CLCD, the ACLCD provides flexibility in the choice of 𝜉.  

Figure 11 

Another point to be noted is that, in case of the flexible structure 𝑆1, the response reduction is 

not increased beyond 28 % over the considered variation of 𝜉. However, in case of the stiff 

structure 𝑆2, more than 50 % response reduction could be achieved, which indicates higher 

effectiveness of the damper for comparatively stiffer structures. From Figs. 11b and 11d, it is 

also observed that for both types of structures, higher value of 𝛼, i.e. cases 𝑆1 − 2 and 𝑆2 − 2, 

result in greater sensitivity of the performance of the ACLCD to 𝜉. Further, it is to be noted from 

Fig. 11d that, unlike in the passive case, in the ACLCD design, response reduction increases with 

the increase in 𝜉, which reveals that the optimal parameters for passive CLCD, as presented in 

Table 1, may not always be optimal for the ACLCD. 

Performance of designed LQR controller against excitation variability  

LQR being an optimal control strategy, provides the optimal control solution for a given 

structural system subjected to a design input. It is thus important to examine the performance of 

the designed LQR controller when the system is subjected to base excitation other than the 

earthquake data used for design. For this, the designed structure-ACLCD systems are subjected 

to the Parkfield and Taft earthquake input mentioned previously. In this study, as two 

representative cases, the controller designs corresponding to 𝑅 equal to 0.01 and 0.0006 as given 



in Table 2 for test cases 𝑆1 − 2 and 𝑆2 − 2 respectively are chosen. The gain, [𝐺], is obtained 

for the El Centro excitation and then the structure is subjected to the other excitations and the 

control force, {𝑈}, is evaluated by multiplying the structural response with gain [𝐺] (Eq. (12)). 

The response reductions achieved without violating the constraints and the corresponding 

required peak control forces are presented in Table 4. From Table 4 it is observed that the LQR 

controller designed for the structure-ACLCD system subjected to the El Centro earthquake input 

is also providing a satisfactory performance for the other base excitations. The representative 

time history results for structural displacement and control force for the flexible (𝑆1 − 2) and 

stiff (𝑆2 − 2) structures are shown in Figs. 12 and 13 respectively. 

Figure 12 

Figure 13 

Design and performance of ACLCD by WLQR algorithm 

Here, a multiresolution based wavelet controller (WLQR), originally proposed by Basu and 

Nagarajaiah[38], is designed for the ACLCD, with the objective of achieving structural 

displacement response reductions comparable to that obtained from the conventional LQR 

controller, but by the application of comparatively lower control forces. This is illustrated for 

some selected combinations of 𝑅 and corresponding 𝑞𝑜𝑝𝑡
(𝑆𝑖)

 (𝑖 = 1, 2) for the designed ACLCDs 

by the LQR algorithm presented previously. Finally the effect of excitation variability is also 

examined and the performance is compared with that of the LQR controller. 

WLQR control technique 

Wavelet analysis is a time-frequency technique which has the advantage of utilizing information 

regarding the local time varying frequency content of the vibration signal[39-43]. Two types of 

wavelet controller have been proposed by Basu and Nagarajaiah. Out of the two, one is 

applicable at the signal level[44] and the other is at the system level[38]. The latter is more 

appropriate for the present application and hence has been developed for the same. The 

multiscale WLQR controller is a modified form of LQR where the control gain is derived by the 

use of wavelet analysis of the states. In this, the weights of a conventional LQR controller can be 

adjusted depending upon the frequency bands which are required to be suppressed. The gains for 

each frequency band are time invariant, however, the resulting control gain is time varying. In 



this algorithm, first the response signal to be controlled is decomposed into a set of signals, each 

containing a frequency band, through a number of stages or levels. At each stage, multiresolution 

analysis (MRA) splits the input signal into two bands in time by applying the high and low pass 

filters generated using the basis and scaling function of the appropriate wavelet basis function. 

The higher band becomes one of the outputs and the lower band (known as approximation 

signal) is further split into two bands at the next level. This procedure is continued until the 

approximation signal reaches the desired resolution. Then the control action is synthesized from 

the filtered signals for different frequency bands in time domain by using discrete wavelet 

transform (DWT) over a finite interval [𝑡0, 𝑡𝑐] and then the signals are reconstructed. The control 

action in wavelet domain is expressed as follows[38].  

{𝑊𝜓𝑎
𝑈} = −[𝐺]𝑎 {𝑊𝜓𝑎

𝑋}                                                  (18) 

where, 𝑊𝜓𝑎
(∙) is the wavelet transform of (∙) with respect to the basis 𝜓 for a particular value of 

the dilation parameter 𝑎 and [𝐺]𝑎 is the control gain matrix, dependent on 𝑎 which controls the 

frequency content of {𝑊𝜓𝑎
𝑈}. 

The quadratic cost function valid for the wavelet transformed state at a frequency band with 

dilation parameter 𝑎 can be represented as follows. 

𝐽𝑎 = ∫ ({𝑊𝜓𝑎
𝑋}

𝑇
[𝑄]𝑎 {𝑊𝜓𝑎

𝑋} + {𝑊𝜓𝑎
𝑈}

𝑇
[𝑅]𝑎 {𝑊𝜓𝑎

𝑈})

𝑡𝑐

𝑡0

𝑑𝑡                   (19) 

where, [𝑄]𝑎 and [𝑅]𝑎 are weighting matrices dependent on 𝑎 corresponding to a frequency band.  

The control in time domain is synthesized by using the frequency dependent gains for the 

different frequency bands and the expression is represented as follows. 

{𝑈} = −[𝐺]𝑎𝑙
{𝑋}𝑙 − ∑[𝐺]𝑎𝑗

{𝑋}𝑗

𝑝−1

𝑗=𝑙

                                                    (20) 

Here, the subscript 𝑙 denotes the limit below which the signal can be represented by a low 

frequency approximation and subscript 𝑝 denotes the limit above which the frequency bands can 

be ignored. The equivalent time varying gain is expressed as follows. 



[𝐺𝑒(𝑡)] = −[𝐺]𝑎𝑙
{𝑋}𝑙{𝑋}𝑇({𝑋}{𝑋}𝑇)−1 − ∑[𝐺]𝑎𝑗

{𝑋}𝑗{𝑋}𝑇({𝑋}{𝑋}𝑇)−1

𝑝−1

𝑗=𝑙

          (21) 

Hence, the control force vector is obtained by the following equation. 

{𝑈} = [𝐺𝑒(𝑡)]{𝑋}                                                        (22) 

Design of WLQR controller and ACLCD performance  

The design of the ACLCD is now carried out by the MRA based WLQR algorithm[38]. The 

Daubechies orthogonal wavelet basis (db4 with two vanishing moments) is used for the 

decomposition of the time signals for the different states in the different approximation spaces to 

represent the signals containing frequencies of the specified bands. As mentioned earlier, the 

design of the WLQR controller is carried out with the objective of achieving response reduction 

comparable to that obtained by the LQR controller, but by the application of comparatively 

lower control force. For this, the FFT of the structural displacements are evaluated for the given 

excitation and the frequency bands with higher response magnitudes are identified. In the present 

study, the response signals are decomposed into seven levels with dyadic scales generating seven 

detail signals corresponding to frequency bands with central frequencies ranging from 1.753 

rad/s (for band 7) to 112.2 rad/s (for band 1) and an approximation signal at Level 7 which 

contains frequencies from bands with central frequencies less than 1.753 rad/s.  

The weighting matrix [𝑄]𝑎 in Eq. (19) for all the frequency bands is kept equal to [𝑄] used in the 

LQR algorithm in Eq. (13). The weighting matrix associated with the control force, 𝑅𝑎, for the 

frequency bands with significantly high response magnitudes, is considered equal to 𝑅 used in 

the LQR algorithm (refer Eq. (13)). For the other frequency bands in which the response 

magnitudes are lower, the values of 𝑅𝑎 are varied in order to reduce the value of the maximum 

required control force. Through several trials, the optimum combination of 𝑅𝑎 values for the 

different frequency bands are obtained based on the consideration of the previously mentioned 

constraints on the peak liquid and whole damper displacements and the stability of response 

reduction. The central frequencies of the frequency bands are given in Table 5. Next, the 

frequency dependent gains for the lower frequency approximation signal, [𝐺]𝑎𝑙
, and for the 

higher frequency bands, [𝐺]𝑎𝑗
, are calculated using the corresponding values of 𝑅𝑎. With these 



frequency dependent gains, the equivalent time varying gain, [𝐺𝑒(𝑡)], is evaluated from Eq. (21)  

and subsequently the control force from Eq. (22) is computed. 

The FFTs of the uncontrolled structural displacement response for 𝑆1 and 𝑆2 are shown in Fig. 

14. From Fig. 14a it is observed that for 𝑆1, the central frequencies of the frequency bands 

having higher response magnitude are 1.753 rad/s and 3.506 rad/. Hence here, 𝑅𝑎 for frequency 

bands 7 and 6 is taken equal to 𝑅, i.e.  𝑅𝑎7
= 𝑅𝑎6

= 𝑅. Similarly, Fig. 14b and Table 5 show that 

for 𝑆2, 𝑅𝑎5
= 𝑅𝑎4

= 𝑅 should be considered as the central frequencies of the frequency bands 

having higher response magnitude are 7.013 rad/s and 14.025 rad/s.  

Figure 14 

The WLQR controller is designed for some illustrative cases taken from Table 2, namely those 

corresponding to 𝑅 equal to 0.0005, 0.01, 0.0005 and 0.0006 for cases 𝑆1 − 1, 𝑆1 − 2, 𝑆2 − 1 

and 𝑆2 − 2 respectively. By several trials the 𝑅𝑎 values corresponding to the frequency bands 

with lower energy are chosen to obtain an overall lower value of peak control force and 

comparable response reduction as by the LQR controller. The 𝑅𝑎 values corresponding to these 

frequency bands are evaluated as 0.014, 0.06, 0.003 and 0.005 for the cases 𝑆1 − 1, 𝑆1 − 2, 

𝑆2 − 1 and 𝑆2 − 2 respectively. The reduction in structural displacement response obtained by 

the WLQR algorithm and corresponding maximum required control force for the different cases 

are presented in Table 6 and compared with the results obtained by the LQR algorithm. It is 

observed that a reduction of as high as 21.31 % in the peak control force could be achieved by 

the WLQR controller, without compromising the response reduction achieved by the ACLCD. It 

is also observed that for lower values of length ratio, 𝛼, (cases 𝑆1 − 1 and 𝑆2 − 1) the reduction 

in force is higher in case of both example structures.  

Representative time history results for structural displacement, control force, liquid displacement 

and whole damper displacement for the example flexible (𝑆1 − 2) and stiff (𝑆2 − 2) structures 

are shown in Figs. 15 and 16 respectively. 

Figure 15 

Figure 16 

It is seen from Table 6 that for case 𝑆2 − 2 the reduction in control force is less than in the other 

cases.  



Now, it has been seen from Fig. 11d that for the LQR controller, the response reduction increases 

for case 𝑆2 − 2 for higher values of 𝜉. It is thus interesting to examine the performance of the 

WLQR controller under the same conditions. For this, the control parameters for 𝜉 equal to 51 

are chosen, which are 𝑞𝑜𝑝𝑡
(𝑆2)

𝑎
= 4 × 1011, 𝑅𝑎5

= 𝑅𝑎4
= 0.0006 as obtained from the LQR 

algorithm. Now by several trials the WLQR controller is designed with the optimum 𝑅𝑎 value 

for the low energy frequency bands obtained as 0.008. The peak response reduction and 

corresponding maximum required control force as obtained by the WLQR controller are 43.51 % 

and 8.824 % of structural weight respectively. In comparision, the response reduction obtained 

by the LQR controller is 44.33 % with maximum control force requirement of 10.31 % of 

structural weight. Thus, a reduction in peak control force of 14.42 % is achieved by the WLQR 

controller over the LQR controller, which is higher than that obtained with a lower 𝜉 value (see 

Tables 1 and 2 for case 𝑆2 − 2). 

Performance of designed WLQR controller against excitation variability 

As in case of the LQR controller, the performance of the designed WLQR controller is examined 

for base excitations other than the earthquake data used for the design. Previously mentioned 

Parkfield and Taft earthquake data are used for this study. The test cases mentioned in Table 4 

are also considered here. The frequency dependent gains [𝐺]𝑎𝑙
 and [𝐺]𝑎𝑗

 are calculated for the El 

Centro earthquake data using the corresponding values of 𝑅𝑎. With these frequency dependent 

gains, the equivalent time varying gain, [𝐺𝑒(𝑡)], and the control force are evaluated for Parkfield 

and Taft input data. The response reductions achieved without violating the constraints and the 

corresponding required peak control forces are presented in Table 7. The performances of the 

WLQR and LQR controllers are also compared from Table 4. It is observed that the WLQR 

controller performs well under excitation variability and here too the WLQR controller can 

achieve a comparable response reduction as obtained by LQR controller with lower requirement 

of peak control force.  

Figs. 17 and 18 present the representative time history results for structural displacement and 

control force generated by the WLQR controller for flexible (𝑆1 − 2) and stiff (𝑆2 − 2) 

structures respectively. 

Figure 17 



Figure 18 

A maximum of 21.23 % reduction in peak control force is achieved by the WLQR algorithm 

over the LQR algorithm, which again demonstrates the efficiency of the WLQR algorithm. 

Conclusions 

An active TLCD control system based on the configuration of the CLCD is developed which 

achieves significantly higher response reductions as compared to the passive counterpart, while 

maintaining the stability of response reduction and satisfying constraints on liquid and damper 

displacements. It is applicable for both short period and long period structures. The design 

procedures are developed for the controller by LQR and by MRA based multiscale WLQR 

algorithms. It is observed that, for a given base excitation and set of damper parameters and 

constraints, there exists an optimum controller design for the design objective of minimization of 

structural response, with a corresponding required magnitude of peak control force. However, 

depending upon the available investment, significantly lower control forces may be adopted with 

only minor compromise in the structural response reduction. The WLQR controller, by the use of 

time varying control gain, leads to the requirement of lower control forces and hence provides a 

more economical design of the ACLCD as compared to the LQR. As compared to the passive 

CLCD, the ACLCD provides greater flexibility in the selection of the orifice opening ratio as it 

provides a consistent performance over a wide range of head loss coefficient. It is also observed 

that the optimum parametric configuration for the passive CLCD is not always the optimum 

damper configuration for the ACLCD. Finally, the control strategies investigated exhibit good 

tolerance against variability in excitation, which is very important for the applicability of the 

proposed ACLCD as an effective seismic vibration control device. It is important to note that 

time delay is an important issue that needs to be considered prior to implementation of the 

proposed control strategies in the field as the phase lag between the control force and measured 

structural response may cause a degradation of the control performance and may also cause 

instability in the system. For this, a control algorithm incorporating a delay compensation 

method would have to be applied. This is a subject of study in its own right and has not been 

considered in this paper. Further, controller performance would in general be adversely affected 

by the presence of measurement/model noise, however, the wavelet based algorithm is inherently 



founded on some filtering mechanisms (due to the filtering property of the wavelet transform) 

and hence the high frequency noises are automatically eliminated. 
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Table 1. Optimal damper parameters of passive CLCD and corresponding response reductions, liquid 

and whole damper displacements  

Case designation 𝑆1 − 1 𝑆1 − 2 𝑆2 − 1 𝑆2 − 2 

𝛼 0.4 0.7 0.4 0.7 

𝜈𝑜𝑝𝑡  0.7 0.7 0.8 0.7 

𝜉𝑜𝑝𝑡 3 43 1 2 

Peak reduction in structural 

displacement (%) 
19.60 19.57 15.77 11.44 

Peak liquid displacement 

(m) 
0.71 0.28 0.18 0.27 

Peak whole damper 

displacement (m) 
0.96 0.78 0.37 0.34 

 

Table 2. 𝑞𝑜𝑝𝑡
(𝑆𝑖)

 for different values of 𝑅, and corresponding peak reductions in structural displacement 

and peak control force, for designed ACLCD by LQR algorithm for cases 𝑆𝑖 − 𝑘 (𝑖 = 1, 2; 𝑘 = 1, 2)   

Cases Serial No. 𝑅 𝑞𝑜𝑝𝑡
(𝑆𝑖)

 

Peak reduction in 

structural 

displacement (%) 

Peak control 

force (% of 

structural weight) 

𝑆1 − 1 

1 0.0004 4 × 1010 27.56 0.994 

2 0.0005 4 × 1010 27.56 0.957 

3 0.001 4 × 1010 27.55 0.883 

4 0.01 4 × 1010 27.43 0.717 

5 0.1 4 × 1010 26.49 0.616 

6 1 5 × 1010 24.85 0.475 

7 10 1 × 1011 23.36 0.315 

8 100 6 × 1011 23.64 0.273 

𝑆1 − 2 

1 0.0006 4 × 1010 27.70 0.7525 

2 0.001 4 × 1010 27.69 0.7490 

3 0.01 4 × 1010 27.58 0.7269 

4 0.1 4 × 1010 26.50 0.6339 

5 1 4 × 1010 22.91 0.9370 

6 10 9 × 1010 22.17 0.2904 

7 100 4 × 1011 21.71 0.2027 

𝑆2 − 1 

1 0.0005 6 × 1011 47.09 13.610 

2 0.001 6 × 1011 46.40 12.780 

3 0.01 8 × 1011 44.02 10.510 

4 0.1 2 × 1012 41.26 8.771 

5 1 1 × 1013 38.87 7.848 



6 10 1 × 1014 39.12 7.940 

𝑆2 − 2 

1 0.0006 5 × 1010 20.41 3.254 

2 0.001 5 × 1010 20.27 3.229 

3 0.01 7 × 1010 22.11 2.944 

4 0.1 8 × 1010 18.92 2.313 

5 1 1.3 × 1011 14.98 1.342 

6 10 5 × 1011 14.25 0.834 

7 100 4 × 1012 14.44 0.751 

 

Table 3. Response reductions obtained by ACLCD and corresponding maximum required force 

compared with that obtained by passive CLCD for 𝑆1 and 𝑆2 

Case designation 𝑆1 − 1 𝑆1 − 2 𝑆2 − 1 𝑆2 − 2 

Maximum peak reduction in 

structural displacement obtained 

by ACLCD (%) 

27.56 27.70 47.09 22.11 

Maximum peak reduction in 

structural displacement obtained 

by passive CLCD (%) 

19.60 19.57 15.77 11.44 

 

Table 4. Peak reductions in structural displacement and corresponding maximum control force 

obtained for designed ACLCD by LQR algorithm against excitation variability 

Earthquake data Case 

LQR algorithm 

Peak reduction in 

structural 

displacement (%) 

Peak control force 

(% of structural 

weight) 

El Centro 
𝑆1 − 2 27.70 0.753 

𝑆2 − 2 20.41 3.254 

Parkfield 
𝑆1 − 2 33.74 0.607 

𝑆2 − 2 28.84 2.369 

Taft 
𝑆1 − 2 30.35 0.479 

𝑆2 − 2 28.37 1.424 

Uttarkashi 
𝑆1 − 2 12.42 1.132 

𝑆2 − 2 26.38 2.064 

Chamoli 
𝑆1 − 2 44.10 0.639 

𝑆2 − 2 13.02 2.339 

Mammoth Lakes 
𝑆1 − 2 34.40 0.327 

𝑆2 − 2 31.72 1.000 

 

 



Table 5. Central frequencies of the frequency bands of decomposed response signal at each level 

Frequency band 

number 
7 6 5 4 3 2 1 

Central frequency 

(rad/s) 
1.753 3.506 7.013 14.025 28.050 56.100 112.200 

 

Table 6. Response reductions obtained by WLQR algorithm and corresponding maximum 

required force compared with that obtained by LQR algorithm for 𝑆1 and 𝑆2 

Cases 

Reduction 

by LQR 

(%) 

Peak force 

by LQR 

(% of 

structural 

weight) 

Reduction 

by WLQR 

(%) 

Peak force by 

WLQR (% of 

structural 

weight) 

Reduction in 

peak force 

(%) 

S1-1 27.56 0.957 27.5094 0.7531 21.31 

S1-2 27.58 0.7269 27.3090 0.6834 5.98 

S2-1 47.09 13.61 45.8236 12.5844 7.54 

S2-2 20.41 3.254 20.0789 3.1517 3.14 

 

Table 7. Peak reductions in structural displacement and corresponding maximum control force 

obtained for designed ACLCD by WLQR algorithm against excitation variability  

Earthquake 

data 
Case 

WLQR algorithm 

Reduction 

in peak 

force (%) 

Peak 

reduction 

(%) 

Peak 

control 

force (% of 

structural 

weight) 

El Centro 
𝑆1 − 2 27.3 0.683 9.18 

𝑆2 − 2 20.1 3.152 3.13 

Parkfield 
𝑆1 − 2 33.4 0.478 21.23 

𝑆2 − 2 28.6 2.192 7.46 

Taft 
𝑆1 − 2 30.0 0.407 14.98 

𝑆2 − 2 28.0 1.406 1.31 

Uttarkashi 
𝑆1 − 2 11.99 1.000 11.63 

𝑆2 − 2 26.10 1.973 4.38 

Chamoli 
𝑆1 − 2 43.68 0.619 3.18 

𝑆2 − 2 12.66 1.865 20.25 



Mammoth 

Lakes 

𝑆1 − 2 33.90 0.281 13.87 

𝑆2 − 2 31.40 0.985 1.52 

 

 


