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Abstract 

 

Development of the various components of a normal skeleton requires highly regulated 

signalling systems that co-ordinate spatial and temporal patterns of cell division, cell 

differentiation and morphogenesis. Much work in recent decades has revealed cascades of 

molecular signalling, acting through key transcription factors to regulate, for example, 

organised chondrogenic and osteogenic differentiation. It is now clear that mechanical stimuli 

are also required for aspects of skeletogenesis but very little is known about how the 

mechanical signals are integrated with classic biochemical signalling. Spatially organised 

differentiation is vital to the production of functionally appropriate tissues contributing to 

precise, region specific morphologies, for example transient chondrogenesis of long bone 

skeletal rudiments, which prefigures osteogenic replacement of the cartilage template, 

compared to the production of permanent cartilage at the sites of articulation. Currently a lack 

of understanding of how these tissues are differentially regulated hampers efforts to 

specifically regenerate stable bone and cartilage. Here we review current research revealing 

the influence of mechanical stimuli on specific aspects of skeletal development and refer to 

other developing systems to set the scene for current and future work to uncover the 

molecular mechanisms involved. We integrate this with a brief overview of the effects of 

mechanical stimulation on stem cells in culture bringing together developmental and tissue 

engineering aspects of mechanoregulation of cell behaviour. A better understand of the 

molecular mechanisms that link mechanical stimuli to transcriptional control guiding cell 

differentiation will lead to new ideas about how to effectively prime stem cells for tissue 

engineering and regenerative therapies.  
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 To better understand the basis of degenerative skeletal diseases such as osteoporosis 

and osteoarthritis we not only need to uncover mechanisms of bone and cartilage 

maintenance, but also the molecules and cues that drive skeletal formation in the embryo. A 

deep understanding of developmental processes is also required to harness the potential of 

stem cells to regenerate bone and cartilage; we need to know which stimuli are required to 

prime site specific, functionally appropriate, differentiation pathways. Such therapies hold 

great promise however it is clear that we are still some distance away from knowing how to 

guide the formation of functionally appropriate bone and cartilage to replace injured and 

degenerating tissue.  

 The central role of mechanical stimuli on bone maintenance and adaptation has been a 

fundamental part of bone biology since Wolff’s Law was formulated in the 19th century, and 

was incorporated by Harold Frost into his Mechanostat theory where local mechanical effects 

are integrated with and adjusted by the biochemical system[1, 2]. Although the effect of 

mechanical stimulation on the formation of the skeletal system in the embryo has been less 

widely considered in the past (reviewed in[3]), evidence has existed for some time that 

mechanical forces generated by embryonic muscle contractions are required for normal 

skeletogenesis. Such evidence comes from two sources; congenital muscle disorders where 

foetal muscle contractions are reduced in utero and from the results of experimental 

immobilisation of model animals. Recent work is beginning to show how mechanical stimuli 

impact specific developmental processes. As suggested by Frost in the Mechanostat theory, 

these mechanical influences must be integrated with molecular processes at a cellular level. 

Although more work is required to reveal the points of integration between biophysical and 

biochemical signals guiding skeletal development, discoveries revealing the impact of 

biophysical stimuli on other developing systems are providing valuable clues. The stage is 

now set for synergistic advances on the question of mechanoregulation of skeletal 

development. Here we review current research revealing the influence of mechanical stimuli 

on skeletal development, specifically outlining the developmental processes that are 

impacted, the influence on progenitor cells in culture as well as principles emerging from 

other developing systems. This work will prime future research to address key challenges in 

maintaining healthy skeletal tissue and improving regenerative capacities.  

 

Mechanical influences on developmental processes  

 Our understanding of how tissue differentiation is controlled in the developing embryo 

and how shape and structure is established has progressed enormously in recent years. A 
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picture has emerged of proliferating progenitor cells responding to layers of positional 

information that guide cellular differentiation and tissue morphogenesis with an emphasis on 

the role played by locally produced molecular signals and the response of cells through 

activation of specific sets of transcription factors. In more recent years it has also become 

apparent that we must expand these ideas to incorporate evidence that the molecular 

pathways are tightly integrated with physical cues and mechanical signals experienced by the 

developing cell[4, 5]. For example, elegant work on mesenchymal condensations during tooth 

development has shown that cell compression is a necessary step for the modulation of gene 

expression and cell differentiation in response to classic signaling from epithelium to 

mesenchyme [6•]. Several recent studies on Drosophila development have shown the 

importance of mechanical signals in cell polarization, in particular impacting the Planar Cell 

Polarity (PCP) pathway, which shares components of the Wnt signaling pathway[7, 8] 

 

 

Bone and joint development and the influence of biophysical stimuli from muscle 

contractions  

Limb skeletogenesis begins with the condensation of prechondrogenic mesenchymal 

cells at the core of the limb bud in a y shaped pattern, prefiguring the future rudiments; e.g. 

humerus, radius and ulna in the case of the forelimb, with more distal elements added 

progressively[9]. Chondrogenic differentiation begins to define the individual rudiments, and 

the future elbow/knee joint region becomes visibly distinct, composed of flatter more dense 

cells; the interzone[10-12]. The cartilage that prefigures each future bone is transient and 

begins a process of maturation at the mid diaphysis in a well defined sequence of events 

involving hypertrophy and eventual replacement by bone (coordinated periosteal and 

endochondral ossification). This sequence of events progresses proximally and distally in 

each rudiment with growth plates persisting at the epiphyses to allow continued elongation. 

The site of the future synovial joint at the interface of the rudiments, is made up of three 

layers of cells that are histologically and molecularly distinct; the chondrogenous layers 

contouring the ends of the rudiments and the intervening intermediate layer where cavitation 

will later take place. Cell lineage marking of interzone cells in the mouse (expressing Gdf5) 

shows that they will give rise to all joint tissues including the articular cartilage and 

synovium with very little contribution to underlying epiphyseal bone[13], while marking of 

cells that express Matrilin 1 (within the rudiments) shows that they do not contribute to 
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articular cartilage[14]. Therefore the cells that will give rise to transient cartilage in the 

rudiments and articular cartilage of the joint derive largely from distinct territories early in 

development (although there may be an intervening population of cells that can still 

contribute to both tissues). In contrast to transient cartilage, articular cartilage has a stable 

phenotype for the healthy lifetime of the joint with a unique striated ‘zonal’ architecture[15]. 

This tissue is vulnerable to breakdown with age and in disease states such as osteoarthritis 

(OA).  

The musculoskeletal system develops in a co-ordinated fashion and this is seen clearly 

in the developing limb where muscle forms from cells that migrate into the limb bud, 

adjacent to the condensing mesenchyme cells that will form the cartilage template of the 

future skeleton[16]. This is also co-ordinated with the appearance of tendon specific markers 

in cells at the sites of muscle attachment to the rudiments and the gradual morphogenesis of 

functional tendons[16, 12]. The forming muscle masses begin to contract precisely as the 

cartilage template is taking shape[12]. These closely associated developing tissues can 

therefore influence each other in a number of ways; through paracrine signalling between cell 

populations and through mechanical influences. While developing muscle is known to secrete 

paracrine signals[17] and signalling between developing tendon precursors and skeletal cells 

at the point of tendon attachment has been shown to be important in bone ridge initiation[18], 

direct evidence has also implicated mechanical forces generated by muscle contractions as 

necessary stimuli for the normal development of skeletal rudiments. Indications of this came 

from the described effects of congenital neuromuscular diseases, such as spinal muscular 

atrophy, which can cause partial or full intrauterine immobilization[19] leading to abnormal 

formation of long bones and susceptibility to fracture in the infant. Direct evidence came 

from animal models where the mechanical environment can be altered in a number of ways 

including in vivo immobilisation of the musculature or the use of mouse mutants where the 

skeletal rudiments develop with reduced, absent or non-contractile muscle (reviewed in[3]).  

Similar findings in different animal models (chick, mouse, zebrafish), using either 

immobilization or absence/reduction of muscle, definitively separate paracrine and 

mechanical influences. Integrating these findings allows us to draw general conclusions about 

the specific aspects of skeletogenesis that require appropriate mechanical stimulation from 

adjacent twitching muscles for normal progression, including joint formation, ossification and 

rudiment shape (morphogenesis) (Figure 1). This underlines the importance of early 

movement for coordinated development of the whole musculoskeletal system.   
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Joint Formation: 

The accessibility of the chick embryo, where drug induced immobilization can be carried out 

with relative ease, allowed early demonstration of the particular sensitivity of joint formation 

to paralysis[20-24]. Immobilisation led to joint fusions in extreme cases with loss of 

cavitation, but also loss of associated structures such as articular surfaces, menisci and 

patella. This led to the general conclusion that positioning of the joints is not dependent on 

mechanical input from the muscle, but the relatively late event of cavitation is sensitive 

(reviewed in [11]). More recently, the use of several different mouse mutants where embryos 

develop in the absence of muscle (Myf5nlacZ/nlacZ/MyoD-/-[25••, 26••], Splotch[25••, 26••]) 

or reduced (Myf5nlacZ/+/MyoD-/-[27, 25••]) or immobile muscle (Mdg-/-[26••] or Dock1-/-[28] 

(our unpublished results)), have shown similar joint fusions with particular sensitivity of the 

shoulder and elbow joints[25●●]. We recently carried out examination of the effect of 

immobilization on development of the knee joint in the chick including 3D imaging of the 

developing region and the expression of genes that are either markers of emerging joint 

tissues or are known regulators of joint development [29••]. We also used 3D imaging to 

inform a computational model of muscle contractions in the developing knee region and 

showed correspondence between the predicted patterns of biophysical stimuli and the 

observed effects[30•, 29●●]. We found that cellular organization (3 distinct layers) and the 

definition of tissue territories within the developing joint were lost, together with the 

expression of locally restricted regulatory molecules (e.g.BMP2, FGF2) as well as genes 

involved in hyaluronan function (HAS2 and CD44), implicated in the cavitation process. This 

shows that the cavitation process cannot be isolated as THE sensitive event and reflects more 

an impact on a continuous process of local patterning, defining multiple component tissues of 

the mature joint including articular cartilage (Figure 1B). We propose that the process of 

tissue definition requires appropriate mechanical stimuli which act as a form of positional 

information guiding position-specific differentiation. This is supported by muscleless mouse 

studies where cellular organization is also lost within the forming elbow and shoulder joints 

[25••] and where canonical Wnt signaling, necessary for the progressive development of the 

joint once defined[31, 32], is lost [26••]. We therefore need to consider mechanical stimuli as 

contributing to the spatial organization of location specific differentiation programmes rather 

than the cavitation process in isolation.  

 A notable difference between the effects seen in immobilized chick and mouse 

embryos is that forelimbs show greater sensitivity in the mouse whereas similar effects are 
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seen in knee and elbow joints in the chick. Simulations of the biophysical stimuli produced 

by muscle contractions in both species and by passive movement (displacement of the limb), 

only relevant in the mouse where embryos develop in utero, offer a possible explanation for 

this[33••]. Due to the position, size and shape of the hindlimb, simulation of passive 

displacement predicted much higher stimuli impacting the rudiment tissues; this could 

compensate to some extent for the lack of self generated movement. However, this does not 

preclude other possible species specific differences in local regulatory mechanisms in fore 

and hindlimbs.  

 In addition to the loss of tissue territories, immobilization leads to changes in joint 

shape, in particular the shape of the emerging condyles in both the chick[29••] and mouse 

(see Morphogenesis below).  

 

Ossification:  

As described above, endochondral ossification begins with hypertrophy of chondrocytes at 

the mid- diaphysis of each long bone and the coordinated formation of an adjacent periosteal 

bone collar, progressing proximally and distally. Initial descriptions of Myf5/MyoD double 

mutant, muscleless mouse embryos did not examine the ossification pattern at early stages of 

skeletogenesis but later stage rudiments(E18.5) showed alteration of size[34, 35], lack of 

fusion of palatal shelves[34] and effects on secondary ossification sites[36]. Sites of 

secondary cartilage in the avian jaw also depend on mechanical stimulation[37]. In the chick 

embryo we used computer simulations of embryonic muscle contractions to predict that peak 

biophysical stimuli (e.g. stress, strain, hydrostatic pressure) are experienced by cells at the 

mid-diaphysis prior to the initiation of ossification, spreading proximally and distally ahead 

of the wave of hypertrophy[38]. This led us to suggest a functional link between peak stimuli 

and maturation of chondrocytes toward hypertrophy/ ossification, corroborated by 

demonstrating reduced ossification at early stages of the process in immobilized 

embryos[39]. Therefore we felt it important to examine early stages of ossification in 

muscleless mouse embryos and showed that compared to stage-matched controls, ossification 

was reduced and abnormal in the scapula, humerus and femur[25••]. So although ossification 

proceeds, the altered pattern of initiation and progression shows that the process is not normal 

(Figure 1A). Gomez et al revealed increased cortical thickness of the femur at later stages[35] 

and more recently, Sharir et al (2011) used microCT of late stage long bones from non-

contractile muscle mutants (Cacnasmdg/Cacnasmdg) to show that the normal asymmetric 
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pattern of mineral deposition specific to each bone is lost in the absence of contractions, 

compromising the mechanical performance of the bone[40••]. This is associated with a 

difference in osteoblast distribution. So muscle generated mechanical stimuli are required for 

normal initiation of ossification and normal local bone growth which reflects the 

hypomineralised and fragile bones seen in human infants with reduced uterine 

movement[19]. 

 

Morphogenesis (rudiment shape):  

Each skeletal rudiment and joint of the limb can be identified by its unique, species specific, 

size and shape, appropriate to its contribution to a coordinated, refined system. Shape 

emerges through the local modulation of cellular processes, such as cell proliferation, 

differentiation, extracellular matrix synthesis, cell shape and size, but little is known about 

mechanisms that coordinate such processes to sculpt shape in the embryo. In the mature 

system, muscle loads affect precise bone shape, suggestive of co-ordinated evolution between 

muscle loads and the ability of the skeleton to bear the loads, and now evidence is 

accumulating from a number of different animal models and experimental immobilisations, 

that muscle loads also contribute to aspects of rudiment shape during development.  3D 

imaging of constituent tissues across developmental stages showed that the intricate shape of 

the chick knee joint emerges following the initiation of muscle contractions (HH28-34), with 

dramatic changes to typical protrusions (e.g. condyles) on the rudiment termini following the 

appearance of tendon markers at the points of muscle attachment (HH32-34), so that the knee 

joint at HH34 includes all the typical shape characteristics of the adult knee[12]. Elevated cell 

proliferation rates, corresponded to regions of higher dynamic stimuli predicted by Finite 

Element analysis and to the regions under relative expansion during development[30●]. We 

further showed that these typical characteristics are lost in immobilised embryos, 

corresponding with specific changes in spatial patterns of cell proliferation and altered gene 

expression patterns of specific tissue markers and regulatory genes including Pthrp which is 

known to control chondrocyte proliferation[29••]. Reduced chondrocyte proliferation was 

also recorded in growth plates of immobilised chick embryos[41].  

In addition to affecting local patterns of cell proliferation, mechanical stimuli have 

also recently been implicated in the process of chondrocyte intercalation and column stacking 

important for rudiment elongation. In immobilized and muscleless zebrafish, pharyngeal 

cartilage morphology is abnormal with shorter elements and smaller and rounder 
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chondrocytes lacking typical columnar organization[42••]. In mouse mutants with immobile 

muscle (Spd), reduced rudiment length was not accompanied by lower cell numbers in 

growth plates, but a difference in cell shape was noted. Unlike in immobile zebrafish, cell 

columns did form but the columns were significantly shorter and it was suggested that the 

normal process, which combines short columns into elongated columns, does not take 

place[42••]. Although the molecular mechanisms driving chondrocyte intercalation are not 

fully known, the Wnt/PCP pathway[43, 44], and Wnt5a in particular[43], has been implicated 

in chondrocyte polarity and limb elongation.  

 

Integration of mechanical stimuli and molecular mechanisms: the mechanistic basis of a 

mechanoresponse  

The molecular mechanisms that control cartilage hypertrophy and ossification are 

relatively well defined[45-47], involving complex interactions between major signaling 

pathways; in particular a well described feedback loop between Ihh and Pthrp controls 

maturation to hypertrophy and the balance between ossification and elongation. Although 

control of joint development is comparatively less well understood, many of the same 

signaling pathways and role players have been implicated but with very distinct interactions 

and outcomes (reviewed in[15]). It is therefore interesting that both ossification and joint 

definition are altered when muscle contractions are absent or reduced[25]. It is clear that a 

balance of antichondrogenic and chondrogenic factors is needed in the joint and is likely 

required to maintain the stable phenotype of the articular cartilage, preventing maturation and 

hypertrophy; multiple alterations that tip the balance toward hypertrophy are associated with 

OA (reviewed in[15, 48]. Early specification of the cells of the future joint is clearly 

important and many regulatory genes show restricted expression in these cells, however 

working out specific functions has been challenging. BMP signaling and its modulation 

through the antagonist Noggin is clearly important since Noggin inactivation leads to loss of 

joints[49]. Wnt signaling has also emerged as pivotal with very elegant gain of function and 

loss of function experiments showing it is required in particular to maintain the joint once 

specified[31, 32]; several assays show chondrogenic effects of BMP and antichondrogenic 

effects of Wnt activity.  

The similarity of the effects seen when muscle is either absent or immobile and in 

both chick and mouse systems shows that common aspects of the phenotypes, on both 

ossification and joint development, are caused by altered mechanical stimuli. However we 
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know nothing about how mechanical signals are integrated with other sources of positional 

cues and the cellular and molecular mechanisms that are implicated in differentiation and 

tissue patterning: This represents a major gap in our knowledge that is a challenge to address. 

Stretch Activated Ion Channels (SACs) have been implicated as one possible mechanism of 

mechanotransduction in chondrocytes[50] however, analysis of secondary cartilage induction 

in avian embryos shows that different mechanisms are at play in different sites and that SACs 

are not involved in secondary cartilage formation at the enthesis[37]. The characterisation of 

effects in muscleless mouse embryos in particular, establishes an experimental system that 

allows us to hone in on embryonic muscle contractions as the source of mechanical 

stimulation, and its impact on cellular differentiation and morphogenesis in developing 

skeletal rudiments and informs the collection of tissue samples (stimulated and unstimulated) 

for further analysis. We have carried out transcriptome analysis of rudiments under normal 

stimulation (control) and in the absence of limb muscle (Pax3Spd/Spd) using both microarray 

and whole transcriptome sequencing (Rolfe et al., in preparation). Having defined that the 

earliest phenotypic impact was detected at Theiler stage (TS)23 (usually at embryonic day 

14.5) at the outset of ossification and early patterning of tissue territories within the joint[25], 

and that the humerus and associated shoulder and elbow joints are the most severely affected, 

we chose this developmental time and tissue for analysis. Analysis of the differentially 

expressed (DE) gene sets using Gene Ontology terms showed strong specific enrichment of 

genes associated with development and differentiation, cytoskeletal organisation, 

ExtraCellular Matrix (ECM) and cell adhesion, providing important clues to the molecular 

mechanisms impacted by the altered stimuli.  The DE gene sets also showed enormous 

enrichment for components of multiple cell signalling pathways with known roles in skeletal 

development (e.g. BMP, FGF, Notch, Hedgehog) and in particular Wnt signalling (Rolfe et 

al., in preparation). The molecular mechanisms impacted by mechanical stimuli in other 

developing systems (reviewed in[4, 5]) might provide some clues to common mediators. 

Although much remains to be elucidated, it is clear that mechanical signals impact classic 

developmental signaling pathways including Wnt[51, 7, 8], can be sensed through 

cytoskeletal tension, possibly through integrins and deformation of other ECM 

components[52-55], and are often mediated by the Rho-Rock/ MyoII pathway[5].  

In addition to providing insight into the mechanisms disturbed, this work also 

provides target genes and pathways for further analysis, to test hypotheses addressing 

molecular mechanisms involved in the mechanoresponse. Rot and Kablar (2013) have 

recently reported a microarray analysis of maxilla/palate complex tissues in control versus 
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muscleless (Myf5:MyoD double nulls) E18.5 embryos[56] arising from their previous 

observation of cleft palate[34]. While this screen revealed genes associated with human 

congenital cleft palate, and also included genes encoding developmental regulators 

(signalling pathway components and transcription factors), there was very little overlap in the 

precise individual genes disregulated in these different developing systems.    

 

 

Response of progenitor cells in culture to mechanical stimuli: application to 

regenerative therapies 

A major challenge for the effective development of stem cell therapies for skeletal 

disorders is defining conditions required for priming of stable differentiation to produce 

appropriate tissues for repair and regeneration. As outlined above, cells that will form 

transient cartilage in the limb skeletal rudiment (will progress through hypertrophy and be 

replaced by bone) and cells at the rudiment termini that will form permanent articular 

cartilage, are already distinct early in development and experience different signalling 

environments, both biophysical and biochemical. Current attempts to differentiate adult 

derived stem cells in culture invariably induce transient chondrogenesis with progression to 

hypertrophy (e.g[57, 58]), a situation that is wholly unsatisfactory for articular repair and 

regeneration.  A major outstanding developmental question is how articular cartilage 

progenitor cells are distinguished and then maintained in the embryo? It appears that even 

mature articular cartilage cells can be induced to undergo chondrogenic maturation and 

hypertrophy by treatment with 5-azacytidine[59].  Instability is also naturally seen with age 

and in OA. The specific mechanical environment of the developing and mature joint 

contribute to the maintenance of the stable phenotype as altering mechanical stimulation 

leads to loss of articular territories[29••]. Understanding the basis of this maintenance and 

the contribution of mechanical stimuli would be a major step forward in development of new 

approaches to promote stable chondrogenesis of mesenchymal stem cells (MSCs), resistant to 

hypertrophy. Conversely, this knowledge could also be critical in enabling improved 

endochondral bone regeneration[60]. The concept of applying knowledge gained from the 

developing embryo to in vitro priming of stem cells for regenerative therapies is fundamental 

and is gaining attention in the field of tissue engineering (reviewed in[61, 62])  

A wealth of evidence shows that various mechanical stimuli influence the 

differentiation of progenitor cells isolated from adult sources (reviewed in[63, 64]). These 

studies demonstrate the importance of mechanical stimuli but have varied results depending 
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on cell context[63]– for example compression can enhance chondrogenesis in MSCs but it 

depends on when the load is applied and in what cellular environment[65-67]. From a 

developmental perspective this is not surprising:- context dependent responses are a common 

feature of development. Part of the variability is likely to be due to the issue of heterogeneity 

among MSC populations from different sources[68] and under different purification 

protocols; optimal cell sources and purification strategies need to be defined for specific 

tissue regeneration approaches, requiring extensive analysis to investigate cell responses[62]. 

Again knowledge gained from the developing embryo would be important in defining 

appropriate markers to assess cellular response. This will be required before any therapy can 

enter the clinic. 

Despite variability in response, some generalities can be drawn from the work on 

biophysical stimulation of stem cells to date. The computational model generated by 

Prendergast et al (1997) proposed that a balance of fluid flow and shear strain determines the 

spatial and temporal pattern of MSC cell fate and this prediction has been corroborated by 

various experimental results including work in bone chambers or 3D scaffolds[69, 70]. 

Hydrostatic Pressure (HP) has been largely associated with chondrogenic differentiation 

whereas tensile strain and fluid induced shear stress are generally shown to induce 

osteogenesis[71]. HP, which occurs during loading of the joint, is predicted by finite element 

modeling to promote cartilage formation and suppress endochondral ossification[73-74]. 

Experimentally cyclic HP applied to MSCs in defined medium was found to enhance 

chondrogenesis, increasing expression of chondrogenic markers[75-77]. Several parameters, 

including magnitude, frequency, onset and duration of HP stimuli are important in the 

response[78-80]. Application of HP has recently been shown to increase the functional 

properties of cartilageous tissues[81] and to synergise with TGFβ signalling in generating a 

more stable chondrogenic phenotype with reduced levels of hypertrophic markers[82].  

Cyclic tensile strain is prominent in the superficial region of cartilage tissue and at the 

cartilage-bone interface and is predicted (with octahedral shear stress) to stimulate maturation 

and ossification[72] and is experimentally associated with enhanced osteogenic 

differentiation of stem cells. Tensile strain applied in a two-dimensional culture caused a 

switch in cell fate from adipogenic to osteogenic differentiation via up-regulation of 

canonical Wnt responsive genes[83]. Wnt signalling (through β-catenin) was also implicated 

in the osteogenic differentiation of bone marrow derived cells embedded in alginate-gels 

exposed to dynamic tension[84]. Similarily short-term cyclic tensile strain reduced the rate of 
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MSC proliferation and induced osteogenic differentiation[85]. Conversely, Connolly et al. 

(2010) found that cyclic tensile loading of bone marrow stromal cells promoted 

fibrocartilage-like differentiation[86]. Fluid-induced shear stress has also been shown to 

promote osteogenic differentiation[87-89] through RhoA/ROCK2 and enhanced tension in 

the actin cytoskeleton[88]. In a similar study oscillatory fluid-flow induced β-catenin nuclear 

translocation and up-regulation of  Wnt associated proteins, Wnt5a and Ror2, which are both 

involved in RhoA activation[87] and ultimately Runx2 expression[88]. A significant decrease 

in β-catenin/N-cadherin association following fluid-flow was also shown, resulting in an 

increase in cytoplasmic β-catenin[87], suggesting a role for adherens junctions as 

mechanosensors. In three-dimensional cultures a continuous level of flow-induced shear 

stress showed an increase in collagen synthesis, and an increase in the tensile mechanical 

properties of the tissue[90]. Application of fluid-flow perfusion increased ECM deposition 

compared to static control, demonstrating a potential beneficial effect also on chondrogenic 

differentiation[91]. 

Our work modeling biophysical stimuli generated by muscle contractions in developing 

skeletal rudiments predicted a number of interesting patterns corresponding to differentiation 

events, corroborated by phenotypic effects in abnormal mechanical environments: 1) a 

sustained period of cyclic stress at the perichondrium promotes chondrocyte hypertrophy at 

the core, stimulating subsequent bone collar formation[38]; 2) Modelling of stimuli in the 

joint region indicated that the articular cartilages and patella develop under the influence of 

very specific patterns of biophysical stimuli; the chondrogenous layers emerge from locations 

that experience distinct patterns of elevated fluid flow while the patella develops under much 

higher magnitudes of stress, fluid velocity and pore pressure[30●].  

 

Conclusion 

In order to effectively apply biophysical stimuli to cellular differentiation regimes for 

regenerative therapies, we need to know more about how cells in the developing embryo 

respond, in different contexts, across space and time as the tissues emerge. The accumulating 

evidence reviewed here shows that several aspects of normal skeletogenesis require 

appropriate mechanical stimulation generated by embryonic movement; tissue patterning 

during joint formation, ossification and rudiment morphogenesis (Figure 1). We now need to 

discover the precise molecular events guided by mechanical stimuli and how mechanical and 

biochemical signals are integrated in order to apply this knowledge in therapeutic approaches. 

Clearly the effects of biophysical stimuli will depend on the cell context and other aspects of 
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the signalling –mileau. Therefore more testing is needed on defined populations of progenitor 

cells to reproduce the integrated biochemical and mechanical signalling environment[82]. 

Bioreactor systems could be developed to reproduce multiple aspects of in vivo 

developmental conditions aimed at creating tissues with improved and more stable functional 

properties. It would be unrealistic to expect to reproduce all conditions that guide normal 

development of, for example, articular cartilage, however improved knowledge of the 

integrated mechanisms and their outcome, combined with tailor made bioreactor systems 

would allow definition of essential differentiation regimes toward establishing regenerative 

therapies for diseased or aged joints. 
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reduction in outgrowth of typical condylar spurs (arrow heads), particularly at the interface 

with the fibula (tf troclea fibularis groove). Images in b and c adapted from Roddy et al., 

2011[29].
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