Submitted 12 December 2019
Accepted 29 January 2020
Published 2 March 2020

Corresponding author
Carla J. Harper, harper@snsb.de,
charper@ku.edu

Academic editor
Craig Moyer

Additional Information and
Declarations can be found on
page 14

DOI 10.7717/peer;j.8660

© Copyright
2020 Harper et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Filamentous cyanobacteria preserved
in masses of fungal hyphae from the
Triassic of Antarctica

Carla J. Harper'>*", Edith L. Taylor* and Michael Krings'>*"

! SNSB-Bayerische Staatssammlung fiir Paliontologie und Geologie, Munich, Germany

? Department of Ecology and Evolutionary Biology, and Biodiversity Institute and Natural History Museum,
University of Kansas, Lawrence, KS, United States of America

? Botany Department, Trinity College Dublin, Dublin, Ireland

* Department fiir Geo- und Umweltwissenschaften, Paldontologie und Geobiologie,
Ludwig-Maximilians-Universitdt, Munich, Germany

" These authors contributed equally to this work.

ABSTRACT

Permineralized peat from the central Transantarctic Mountains of Antarctica has
provided a wealth of information on plant and fungal diversity in Middle Triassic
high-latitude forest paleoecosystems; however, there are no reports as yet of algae
or cyanobacteria. The first record of a fossil filamentous cyanobacterium in this peat
consists of wide, uniseriate trichomes composed of discoid cells up to 25 pm wide,
and enveloped in a distinct sheath. Filament morphology, structurally preserved by
permineralization and mineral replacement, corresponds to the fossil genus Palaeo-
lyngbya, a predominantly Precambrian equivalent of the extant Lyngbya sensu lato
(Oscillatoriaceae, Oscillatoriales). Specimens occur exclusively in masses of interwoven
hyphae produced by the fungus Endochaetophora antarctica, suggesting that a special
micro-environmental setting was required to preserve the filaments. Whether some
form of symbiotic relationship existed between the fungus and cyanobacterium remains
unknown.

Subjects Microbiology, Mycology, Paleontology

Keywords Endochaetophora antarctica, Fungal reproduction, Lichen, Mesozoic, Mucoromycota,
Oscillatoriaceae, Palaeolyngbya, Peat, Symbiosis

INTRODUCTION

Cyanobacteria, one of the most successful groups of prokaryotic microorganisms on
Earth, were instrumental in the oxygenation of the atmosphere and, as primary producers
and nitrogen-fixers, were and are prominent contributors to Earth’s nutrient cycles
(Knoll, 2008). The fossil record of these life forms is extensive and varied, with a peak of
documented morphologies and formally described taxa in the Proterozoic (~2.54-0.54
Ga) (Tomitani et al., 2006; Knoll, 2008; Schopf, 2012).

Fossil cyanobacterial filaments that correspond in morphology to the modern
genus Lyngbya (Komudrek et al., 2014; Guiry ¢ Guiry, 2019) are ordinarily assigned to
Palaeolyngbya, a fossil taxon for wide, unbranched filaments composed of cylindrical
trichomes with discoid cells several times wider than long, and colorless sheaths
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(e.g., Schopf, 1968). Palaeolyngbya is primarily Proterozoic and Cambrian in age (see
references in Butterfield, Knoll & Swett, 1994; Sergeev, Sharma ¢ Shukla, 2012). However,
exquisitely preserved specimens have been reported recently from the Lower Devonian
Rhynie chert (Krings, 2019), and there is also one record from the Permian of China (Liu
¢ Li, 1986: pl. 1, fig 5). The genus has not yet been documented from the Mesozoic,
whereas Cenozoic fossils and subfossil specimens are commonly assigned to Lyngbya
(e.g., Waggoner, 1994; Stankevica et al., 2015).

Permineralized peat from Fremouw Peak in the central Transantarctic Mountains,
Antarctica, represents a unique source of new information on Middle Triassic (240
Ma) high-latitude swamp-forest ecosystems. The peat contains an exceptionally diverse
structurally preserved flora (reviewed by Escapa et al., 20115 Bomfleur et al., 2013; Bomfleur
et al., 2014; Decombeix et al., 2014), together with numerous examples of fungi and fungus-
like organisms (reviewed by Harper et al., 2016). However, no evidence of the occurrence
of photoautotrophic microorganisms, such as cyanobacteria and eukaryotic algae, in the
Fremouw Peak permineralized peat has been discovered to date.

This paper presents the first record of a filamentous cyanobacterium from the Fremouw
Peak permineralized peat. Specimens are similar morphologically to Palaeolyngbya kerpii
from the Lower Devonian Rhynie chert (Krings, 2019), and to several Proterozoic species of
that genus (Schopf, 1968; Butterfield, Knoll & Swett, 1994; Sergeev, Sharma & Shukla, 2012).
The Antarctic filaments all occur within masses of interwoven hyphae produced by a fungus.
This discovery is important because it provides insights into the taphonomic circumstances
that appear to be imperative to the preservation of cyanobacteria in permineralized peat.

MATERIAL & METHODS

Data were collected from the same locality previously described by Harper et al. (2015),
specifically the fossils occur in permineralized (silicified) peat from the Fremouw Formation
in the central Transantarctic Mountains of Antarctica (Taylor, Taylor ¢ Collinson, 1986;
Ctineo et al., 2003). The Fremouw Formation is a 620-750-m-thick siliclastic succession
deposited by low - sinuosity braided streams (Faure ¢ Mensing, 2010). The fossils occur
within several allochthonous clasts that are at approximately the same stratigraphic level
within a trough cross-bedded, medium-grained, greenish-gray volcaniclastic sandstone.
Permineralized peat is found at a single level at the Fremouw Peak locality, approximately
30 m below the top of the formation (Fig. 1). Chunks of the peat were likely rafted into
their current position during a flooding event that caused them to be stranded on sand bars
prior to permineralization (Taylor, Taylor ¢ Collinson, 1989) and isolated into individual
lenses within the outcrop. The peat became silicified after burial; the age of the plant
remains contained in the peat is equivalent to that of the surrounding clastic sediments,
i.e., fluvial sandstone, which also contain trunks of wood of equivalent age to the peat
(Decombeix et al., 2014). The silica for the permineralization is interpreted to have come
from the dissolution of abundant siliceous, volcanic detritus from the upper Fremouw
Formation (Taylor, Taylor ¢ Collinson, 1989).

The exact age of the Fremouw Peak peat deposit remains uncertain. The peat and
surrounding material have been dated as Anisian (early Middle Triassic) based on

Harper et al. (2020), PeerdJ, DOI 10.7717/peerj.8660 2/21


https://peerj.com
http://dx.doi.org/10.7717/peerj.8660

Peer

¢ Fremouw Peak
(c. 84°17’S; 164°32’'W)
£
L
e
(s
*
O‘.
o)
c 2l
s 5
T E
£
o
(g
2
-}
o
IS :
; O —
> L
P pu
250 km . “ﬁgjgﬁ 8
—_— b €
- - Q|
& <[
COLBERT <, ' 5 100 m
Hites Fremouw - = El
: ~aPeak - Mount - !
® sandstone
: QUEEN
ALEXANDRA mudstone
—

Figure 1 Geographic occurrence and stratigraphic position of the Fremouw Peak permineralized peat;
modified from Fig. 1 in “Habit and ecology of the petriellales, an unusual group of seed plants from
the Triassic of Gondwana” by Bomfleur et al. (2014)(©2014 by The University of Chicago. All rights re-
served. (A) Overview of collection area in the Central Transantarctic Mountains, South Victoria Land,
Antarctica. (B) Boxed area and arrow in (A). Detail of Fremouw Peak locality with arrow indicating col-
lecting site. (C) Stratigraphic column of Fremouw Peak locality with arrow indicating position of permin-
eralized peat.

Full-size &4 DOI: 10.7717/peer;j.8660/fig-1

palynomorphs and nearby vertebrate fossils (Farabee, Taylor & Taylor, 1990; Hammer,
19905 Sidor, Damiani & Hammer, 2008; Faure & Mensing, 2010). Recent detrital-zircon
dating indicates that the base of member B of the Fremouw Formation is ~242.3 & 2.3
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Ma (=early Ladinian; see Elliof et al., 2017: fig. 4), but the silicified peat is located in the
younger member C of the Fremouw Formation. A late Ladinian or possibly Carnian age
is, therefore, more likely to be accurate for the Fremouw Peak peat deposits (Bomfleur et
al., 2014; Elliot et al., 2017).

The material used in this study was collected during the 2010-2011 austral summer
Antarctic field season. Peat blocks were cut into slabs and then immersed in 48% HF
to dissolve the silica. Acetate peels were produced from the etched surfaces by using the
technique outlined by Joy, Willis ¢ Lacey (1956) modified for hydrofluoric acid (Galtier ¢
Phillips, 1999). Consecutive peels of promising specimens were mounted on microscope
slides in Eukitt®). Other slabs were cut into wafers and used for the preparation of thin
sections (Hass ¢ Rowe, 1999), with a thickness of 40—-60 wm. Wafers of the peat were
cemented to a glass slide and then ground thin enough to be viewed in transmitted light.
Mounted peels and thin sections were analyzed with a Leica DM LB2 transmitted light
microscope at the highest possible total magnification (400x or 1,000x ); digital images
were captured with a Leica DFC-480 camera and processed in Adobe Photoshop CS5.
When suitable specimens were identified, they were processed minimally (i.e., contrast,
brightness, and focal stacking) and measurements were taken using Adobe Photoshop CS6
Version 13.0 x 64 (Adobe Systems, San Jose, CA, USA). When necessary, multiple images
of the same specimen were recorded at different focal planes and compiled to produce
composite images, (Kerp ¢ Bomfleur, 2011). The images were stacked in Adobe Photoshop
CS6, and specific areas were modified to reveal the complete three-dimensional image as
seen in the thin section. Composite images in this study are Figs. 2A-2C. Specimen and
slides are deposited in the Paleobotanical Collections, Biodiversity Institute, University of
Kansas (KUPB) under specimen accession numbers KUPB 17054, 17729 E Bot, 17729 F
Top, and 18084, and slide numbers KUPB 35,009-35,018.

RESULTS

Context and preservation

Systematic screening of permineralized peat from the Fremouw Peak locality has yielded
several hundred blocks of leaf mats that contain predominantly degraded Dicroidium leaves
(Pigg, 1990) (“L” in Figs. 2A and 2B), rare pieces of fragmented Heidiphyllum (Axsmith,
Taylor & Taylor, 1998), degraded plant axes, and intermixed detritus. Some of the leaves
are surrounded by conspicuous whitish areas, which are elongate oval or irregular in
section view, 120-590 pm high, and up to 4 cm wide. The whitish areas comprise densely
interwoven, thin-walled, irregularly septate fungal hyphae 2—6 pm wide (arrows in Fig. 2C)
embedded in what appears to be a gelatinous matrix. More than 95% of these formations,
henceforth called “hyphal masses”, contain one or several specimens of the enigmatic
fungal reproductive unit Endochaetophora antarctica (Figs. 2A and 2B), formally described
some 30 years ago based on dispersed specimens from the same locality (White ¢ Taylor,
1988; White & Taylor, 1989). For a parallel study focusing on E. antarctica, we analyzed
more than 50 blocks of leaf mats based on thin sections, each containing between 1 and
15 hyphal masses. In these blocks, approximately 25% of the larger masses containing
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Figure2 Overview of Endochaetophora antarctica hyphal masses and Palaeolyngbya sp. in
permineralized peat. (A) Three hyphal masses (arrows) in leaf mats (L); slide KUPB 35,009; scale
bar = 1 cm. (B) Higher magnification of Fig. 2A, showing hyphal mass (between arrowheads) and E.
antarctica reproductive units (F); slide KUPB 35,009; scale bar = 500 pum. (C) High magnification
of densely spaced hyphae comprising hyphal mass; arrows indicate septa; slide KUPB 35,017; scale
bar = 10 wm. (D) Comparison of appendages (black arrows) of E. antarctica fungal reproductive
unit (F) to adjacent Palaeolyngbya filament (white arrow); slide KUPB 35,017; scale bar = 50 jum.
(E) High magnification of E. antarctica appendage; portion of appendage extending into hyphal
mass and base of appendage in wall of E. antarctica (arrow); slide KUPB 35,018; scale bar = 10
pm. (F) Hyphal mass containing E. antarctica (F) and fragmented cyanobacterial filaments; note
different mineral replacement, reddish-orange filaments (black arrows) and gray mineral (white
arrow); slide KUPB 35,009; scale bar = 250 pm. (G) Hyphal mass with E. antarctica (F) and long
cyanobacterial filaments (arrows); slide KUPB 35,010; scale bar = 250 pwm. (H) Assemblage of
cyanobacterial filaments in hyphal mass; filaments in cross (black arrow) and longitudinal section
views (white arrow); slide KUPB 35,010; scale bar = 250 pum. (I) Assemblage of cyanobacterial
filaments preserved as reddish-orange mineral replacements; note detail of discoid cells (arrow); slide
KUPB 35,011; scale bar = 500 pm. (J) Well preserved filament in hyphal mass (arrow); slide KUPB
35,009; scale bar = 500 pLm.

Full-size Gl DOI: 10.7717/peer;j.8660/fig-2

fungal reproductive units also contain large cyanobacterial filaments, which are described
below. Endochaetophora antarctica is characterized by a three-layered investment from
which extend numerous prominent hollow, tube-like appendages (~4.5-10 pm wide and
up to 130 wm long) that branch regularly (Figs. 2D and 2E). Because the appendages
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Figure 3 Range of preservation states of cyanobacterial filaments. All scale bars = 50 pum. (A) Clear
mineral replacement with barely visible discoid cells. Note rounded (possible) filament tip; slide KUPB
35,009. (B) Clear mineral replacement with discoid cells well recognizable; slide KUPB 35,009. (C)
Reddish-orange mineral replacement; slide KUPB 35,011. (D) Cell lumina filled with opaque matter; slide
KUPB 35,010. (E) Filaments with fine granular opaque matter; slide KUPB 35,010.

Full-size Gl DOI: 10.7717/peer;j.8660/fig-3

are markedly different structurally from the cyanobacterial filaments, the two structures
cannot be confused. The cyanobacterial filaments are not body fossils as the hyphal masses
containing the fungal reproductive units, but rather represent (partial to full) mineral
infillings or coatings, which are orange to reddish or have grayish outlines (Figs. 2F-2];
3A-3E). Cyanobacterial filaments have not been found in the peat matrix surrounding the
hyphal masses, or elsewhere in the peat.

Cyanobacterial filaments

In the description of the fossil cyanobacterium, we use the terminology for filamentous
cyanobacteria outlined by Komidrek, Kling & Komdrkovd (2003); trichomes with sheaths
are traditionally termed filaments. Preserved filament portions (arrows in Figs. 2G-2])
are up to 740 pm long and 17-31 pm wide, and consist of straight or somewhat curved,
cylindrical, uniseriate, and probably isopolar (i.e., no evidence indicative of heteropolarity
has been found) trichomes of relatively uniform, short discoid cells, enveloped in a distinct
sheath (Figs. 4A—4C). Most of the specimens demonstrate a regular pattern of discoid
cells (or cell units), which are either empty or contain homogenous opaque matter (cell
contents), 22.8-25 pm wide and 3.8-5 pm high (which equals a width-to-height ratio of
5:1) (Fig. 4A). Other specimens, however, are preserved as empty sheaths (Fig. 4F), whereas
in still others the cells are recognizable only through the arrangement of crystals (red to
orange, or gray in appearance) (Figs. 2G, 2A-2E, 4E). Different modes of cell and trichome
preservation may also occur within the same filament (Fig. 2F).

Sheaths are colorless, unornamented, and well-recognizable in all specimens. They range
in thickness from 1 to 4 wm; however, sheath thickness within one filament varies only by
1-1.5 pm. Stratification of the sheath is not recognizable in any of the specimens; external
constrictions or folds at cross walls are also not discernible. Most specimens represent
intercalary trichome portions that end bluntly and appear to have broken off. Compelling
evidence of trichome tips has not been found. There is a single poorly preserved specimen
that appears to have a tapering tip with a round end; however, it is difficult to be sure
that this represents an actual trichome end (Fig. 3A, black arrow in 2G). Unfortunately,
the preservation of the filaments by mineral replacement does not enable recognition of
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Figure 4 Details of Palaeolyngbya sp. filaments. (A) Overview of trichome with prominent sheath (ar-
rowheads) and discoid cells (arrow); slide KUPB 35,009; scale bar = 50 jum. (B) Filament portion with
possible necridium (arrow); slide KUPB 35,009; scale bar = 50 wm. (C) High magnification of Fig. 4A,
showing filament with discoid cells (black arrow) and prominent sheath (arrowheads); slide KUPB 35,009;
scale bar = 10 pwm. (D) Filament with constriction (arrow); slide KUPB 35,012; scale bar = 50 pm. (E)
High magnification of constriction in Fig. 4D; slide KUPB 35,012; scale bar = 5 pum. (F) Filament showing
portion of trichome in which cells are not preserved (arrow); slide KUPB 35,012; scale bar = 50 jum.
Full-size Gl DOI: 10.7717/peer;j.8660/fig-4
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cell division patterns. One specimen shows possible hormogonium formation (Figs. 4D
and 4F). This filament is the only example displaying a pronounced constriction, and the
cell at the constriction is umbilicated. One intercalary filament portion approximately 87
pm long might contain a necridium based on the presence of a pair of differently shaped
and colored cells (Fig. 4B). No evidence has been found of (false) branching and the
formation of heterocysts or akinetes. For a graphical overview of the spatial distribution of
cyanobacterial filaments and E. antarctica within one of the hyphal masses, refer to Fig. 5.

DISCUSSION

The Triassic permineralized peat from Fremouw Peak has been studied intensively for
more than 45 years (e.g., Schopf, 1973; Taylor, Taylor ¢ Collinson, 1989). Plant and
fungal paleodiversity have been documented in great detail based on large numbers
of structurally preserved fossils (e.g., Escapa et al., 2011; Harper et al., 2016), and the
paleoecosystem has been reconstructed as a diverse peat-forming swamp forest dominated
by corystospermalean seed ferns and voltzialean conifers, with understory elements
including the enigmatic Petriellales, ferns, and sphenophytes (Taylor, Taylor ¢ Collinson,
1989; Escapa et al., 2011; Bomfleur et al., 2014; Decombeix et al., 2014). However, there is
not a single report of cyanobacteria from Fremouw Peak despite these organisms being
regular constituents of comparable modern peat-forming ecosystems (Jackson, Liew ¢
Yule, 2009; Yule ¢ Gomez, 2009; Marsid et al., 2015). Fossils of cyanobacteria have been
described from Antarctica (Priestley ¢ David, 19125 David & Priestley, 1914; Chapman,
1916; Gordon, 1921; Hill, 1964; Breed, 1971; Rees, Pratt ¢ Rowell, 1989; Rowell ¢» Rees,
1989; Riding, 1991; Wrona & Zhuravlev, 1996; Wrona, 2004); however, none come from
the Mesozoic.

Comparison and affinities

The Fremouw Peak cyanobacterial filaments correspond in morphology to the fossil
genus Palaeolyngbya, a form taxon and repository for wide, unbranched, uniseriate fossil
trichomes that are composed of discoidal to cylindrical cells without any constrictions at
the cross walls, and enveloped in a prominent, uni- or multilayered, smooth sheath, and
hence comparable in basic organization to extant Lyngbya sensu lato (Oscillatoriaceae,
Oscillatoriales see Butterfield, Knoll & Swett, 1994: p. 60/61; Sergeev, Sharma ¢ Shukla,
2012: p. 300). The main criterion used to discriminate species of Palaeolyngbya, according
to Butterfield, Knoll ¢ Swett (1994: p. 61), is the width of the uncollapsed sheath (i.e.,
filament width); for example, (sheath width in parentheses) P. catenata (10-30 pm) and P.
hebeiensis (30-60 wm) (Butterfield, Knoll ¢ Swett, 1994), P. giganteus (42—85 wm), P. helva
(11-14 pm), and P. barghoorniana (<15 wm) (Sergeev, Sharma ¢ Shukla, 2012), and P.
kerpii (22—>30 pm) (Krings, 2019). The sheaths of the Fremouw Peak filaments are 17-31
pm wide and, thus, correspond best to the recently described P. kerpii from the Lower
Devonian Rhynie chert. Assignment of the Triassic filaments to P. kerpii is conceivable.
However, P. kerpii is exquisitely preserved as a petrification providing detailed insights into
filament morphology, together with specific developmental details, whereas the Fremouw
Peak fossils represent mineral replacements that provide a fair image of the filament
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Figure 5 Association of Endochaetophora antarctica with Palaeolyngbya sp. in permineralized peat.
(A) Photograph of Endochaetophora antarctica and Palaeolyngbya sp. in permineralized peat. (B) Graphi-
cal representation of Fig. 5A, showing distribution of cyanobacterial filaments in Endochaetophora antarc-
tica hyphal mass. Scale bars = 500 pLm.

Full-size G4l DOI: 10.7717/peerj.8660/fig-5
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morphology, but do not reveal any structural or developmental details. As a result, it is
difficult, if not impossible, to determine whether the latter correspond to P. kerpii or belong
to a different fossil species. Therefore, we include the Fremouw Peak filaments in open
nomenclature as Palaeolyngbya sp.

Cyanobacteria in Triassic permineralized peat

One reason for the lack hitherto of documented evidence of cyanobacteria in the Triassic
permineralized peat from Fremouw Peak may be that these minute life forms simply
have been overlooked in cursory screenings of peels or thin sections at low magnification.
Moreover, the quality of plant fossils preserved in the peat matrix depends largely on
their condition (i.e., alive and fully intact, moribund but still attached, or abscised and
in the process of degradation) at the time of permineralization. Evidence of microbial
life appears to be generally rare in regions of the peat that contain well-preserved plant
remains, but rather occurs in peat comprising (partially) degraded and tattered plant
material not worthwhile for investigators interested in the plants and, thus, are often not
seen (Taylor & Krings, 2010). On the other hand, the Fremouw Peak permineralized peat
is interpreted to have developed in a three-step process (Schopf, 1971; Taylor, Taylor &
Collinson, 1989), through which fragile structures may have been altered secondarily

or destroyed (Harper et al., 2018). Finally, the lack of evidence for these organisms
from permineralized peat elsewhere, (e.g., DiMichele & Phillips, 1994; Galtier, 2008;
McLoughlin & Strullu-Derrien, 2015; Slater, McLoughlin ¢ Hilton, 2015), could mean that
peat-forming paleoenvironments were perhaps generally not conducive to the preservation
of cyanobacteria. The scarcity of cyanobacterial fossils in peat deposits stands in stark
contrast to silicified geothermal hot spring (sinter) deposits, which often yield diverse
assemblages of structurally preserved cyanobacteria (e.g., Guido et al., 2010; Garcia Massini
et al., 2012; Hamilton et al., 2019; Krings, 2019; Krings & Harper, 2019; Krings ¢ Sergeev,
2019). Nothing is known to date about the possible influence of a hydrothermal system on
the silicification process at Fremouw Peak (Taylor, Taylor ¢» Collinson, 1989).

Cyanobacterial filaments have only been detected in the whitish hyphal masses produced
by Endochaetophora antarctica around individual Dicroidium leaves on the forest floor
(Harper, 2015). Because the filaments are salient structures, we rule out the possibility that
they have been overlooked in the peat matrix surrounding the hyphal masses and in other
types of fossils, such as hollow plant axes or decayed leaves. This peculiar pattern of spatial
distribution raises the question as to why filaments are so abundant in the E. antarctica
hyphal masses, but are absent (or cannot be traced) outside these occurrences?

One possible explanation is that a special micro-environmental setting was imperative
for the filaments to become preserved intact. Research on fragile microorganisms, including
cyanobacteria, exquisitely preserved elsewhere has provided evidence to suggest that certain
micro-environmental settings (e.g., amber, walls of leech cocoons, interiors of hollow plant
axes, small voids in the substrate, or microbial mat frameworks) had a cushioning effect
on destructive mechanical forces, and hence were effective as microscopic conservation
traps for delicate microbial life (Ddérfelt, Schmidt ¢ Wunderlich, 2000; Bomfleur et al., 2012;
Bomfleur et al., 2015; McLoughlin et al., 2016; Krings et al., 2018; Krings & Harper, 2019;
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Krings & Kerp, 2019). Tt is highly probable that special circumstances also were in play
during the fossilization of the cyanobacteria from Fremouw Peak. The hyphal masses,
which are embedded in what appears to be a gelatinous matrix, may have served as a
conservation trap by shielding the filaments from destructive mechanical forces, such as
water movement and the taphonomic processes during peat formation, compaction, and
permineralization. Moreover, certain substances excreted by the fungal hyphae into the
surrounding matrix may have been biocidal and slowed down biological decomposition,
or somehow facilitated the process of mineral replacement. If all this is accurate, then it
raises another, equally difficult and probably even more complex question, namely as to
why cyanobacterial filaments occur in large numbers within hyphal masses produced by a
fungus.

Cyanobacteria in general (Dickinson, 1983; Zadorina et al., 2009; Andersen, Chapman ¢
Artz, 2013), and certain members of Lyngbya in particular (Karosiene ¢ Kasperoviciene,
2009; Koreiviene, Kasperoviciene ¢ Karosiene, 2009), are constituents of modern peatland
environments, and it would not be surprising to find these organisms also in ancient
peat-forming ecosystems based on their geologic range. However, the opposite is the case.
Palaeolyngbya filaments (and other cyanobacteria) were perhaps common and widespread
on the wet forest floor covered in leaf litter interspersed with E. antarctica hyphal masses,
in small pools of water, and maybe even on tree surfaces, but were destroyed during peat
formation and the fossilization process, with the exception of those located within the
protective confines of the hyphal masses (“cyanobacteria everywhere hypothesis”; see
Fig. 6). On the other hand, metagenomic analyses indicate that cyanobacteria represent
a relatively small percentage of total microbial biomass in modern peat ecosystems,
namely 0—4% in peat bogs and ~0.85% in tropical peat swamps (Gilbert ¢» Mitchell,
20065 Kanokratana et al., 2011). Thus, it is also possible that Palaeolyngbya and other
cyanobacteria have not been recorded more extensively because they were rare elements
in this type of paleoenvironment or occurred exclusively in certain areas of the ecosystem
that are not reflected by the silicified peat samples studied to date (see Krings ¢ Sergeev,
2019).

Although the systematic affinity of Endochaetophora antarctica remains unresolved,
several authors have suggested it may belong to the Mucoromycota (see discussion by
Krings, Taylor ¢ Dotzler, 2013). Specimens of another fossil fungus from Fremouw Peak,
Jimwhitea circumtecta, provide the most persuasive fossil example of spores forming within
a sporocarp and embedded in what is commonly termed a gleba (Krings et al., 2012: figs.
2B-2C). The hyphal masses of E. antarctica are certainly not glebae in the strict sense of
the definition (i.e., the central, internal portion of a fruiting body see Ulloa ¢ Hanlin,
2012: p. 252), but may be analogous structures within which the reproductive units
formed. The chemical composition of glebae in Mucoromycota is virtually unknown;
however, glebae of certain present-day Basidiomycota are composed primarily of amino
acids and proteins (Oliveira ¢ Morato, 2000). It is, therefore, a possible, although highly
speculative alternative premise at this time, that the cyanobacteria were attracted to
the components of the E. antarctica hyphal masses and, therefore, migrated into these
structures (“cyanobacteria migration hypothesis”; see Fig. 7). Bearing in mind that the
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Figure 6 Graphical representation of “cyanobacteria everywhere” hypothesis. (A) Filaments occur ev-
erywhere in matrix and hyphal mass. (B) Filaments not preserved in peat but in hyphal mass. (C) Fila-
ments found exclusively in hyphal mass. Scale bars = 500 pwm.

Full-size & DOLI: 10.7717/peerj.8660/fig-6

Figure 7 Graphical representation of the “cyanobacteria migration” hypothesis. (A) Filaments occur
exclusively in matrix. (B) Filaments migrate into hyphal mass. (C) Filaments found exclusively in hyphal
mass. Refer to key in Fig. 6. Scale bars = 500 pLm.

Full-size & DOLI: 10.7717/peerj.8660/fig-7

water in peat-forming environments today is generally nutrient-poor and of low pH,

it is possible to envision that the cyanobacteria would gravitate towards nutritionally
dense resources. Moreover, it has been shown that, under certain stimuli or in high stress
environments, some present-day filamentous cyanobacteria actively migrate towards and
assimilate specific amino acids (Gallucci ¢ Paerl, 1983; Michelou, Cottrell ¢ Kirchman,
2007).

A symbiosis?

No direct evidence has been found to date that is suggestive of an interaction between
the Palaeolyngbya filaments and Endochaetophora antarctica, nor has the nutritional mode
of E. antarctica been deciphered. Nevertheless, the consistent co-occurrence of these two
organisms begs the question as to whether this peculiar alliance may also have included
some form of mutualism or parasitism. Mutualistic relationships between filamentous
cyanobacteria and fungi today occur in the form of lichens (Hawksworth, 1988). The
Fremouw Peak fossils concur with some of the criteria outlined by Liicking ¢ Nelsen (2018:
p. 552) for the identification of fossil lichens; the most important criterion, however, namely
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a physiological interdependence between the partners, cannot be evidenced. Another type
of fungal symbiosis with filamentous cyanobacteria occurs in Geosiphon pyriformis, a
fungus in the Glomeromycota that produces specialized bladders to harbor nitrogen-
fixing cyanobacteria (Nostoc spp.) (Schiifiler, 2002; Schiifsler, 2012). Palaeolyngbya is non-
heterocystous; however, certain non-heterocystous filamentous cyanobacteria, including
Lyngbyaunder extremely stressful conditions, can also fix nitrogen (Bergiman et al., 1997).In
addition, some authors include Geosiphon within Mucoromycota (Glomeromycotina and
Mucoromycotina) (Spatafora et al., 2016), to which also E. antarctica probably belongs. We
speculate that perhaps there were extinct members of the Mucoromycota that formed non-
lichen symbioses with cyanobacteria, and that the Geosiphon Nostoc symbiosis represents
a relic of this type of fungus-cyanobacterial symbiosis (Schiifiler, 2002), which not only
involved fungi interacting with endocytobiotic cyanobacteria, but perhaps also forms that
housed their cyanobacterial symbionts in hyphal masses. On the other hand, there is also
the remote possibility that the fungus parasitized the cyanobacteria, which were somehow
attracted into the hyphal masses (e.g., Arora, Filonow & Lockwood, 1983).

CONCLUSIONS

Palaeolyngbya in the Triassic permineralized peat from Fremouw Peak provides the first
evidence of filamentous cyanobacteria from the Mesozoic of Antarctica. Moreover, the
restricted occurrence of the cyanobacterial filaments within hyphal masses produced
by a fungus suggests that special micro-environmental conditions have preserved
these organisms in recognizable form, and that the fungal hyphal masses have served

as microscopic conservation traps for microbial life (sensu Bomfleur et al., 2012). The
recognition of cyanobacteria in microscopic conservation traps provides a search image
that now can be used to trace this and other types of microorganisms in the vast amounts
of permineralized peat that have been collected from Fremouw Peak. We anticipate that
other cyanobacteria will be discovered as further special micro-environmental settings
conducive to the preservation of microbial life are identified. The information obtained
from studying the microbial component of Antarctic Mesozoic paleoecosystems may help
to address questions pertaining specifically to the ecology of high-latitude plants and
paleoecosystems, including such aspects of whether the only fossil cycad that has been
documented to date from Antarctica, Antarcticycas schopfii (Hermsen, Taylor ¢ Taylor,
2009), entered into a symbiotic relationship with cyanobacteria in a similar way as its
relatives today (e.g., Lindblad ¢ Bergman, 1990; Costa ¢ Lindblad, 2002; Tajhuddin et al.,
2010).
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