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Abstract

Gaussian Processes are a popular, nonparametric modelling framework for solving

a wide range of regression problems. However, they are suffering from 2 major

shortcomings. On the one hand, they require efficient, approximate inference for

non-Gaussian observation likelihoods (the Generalized Gaussian Process Regres-

sion problem) and, on they other hand, their cubic run time in the number of obser-

vations is a major obstacle to large-scale inference tasks.

In recent years, the development of efficient and scalable inference methods

for the Generalized Gaussian Process Regression problem has progressed steadily.

However, the more robust generalization of the Gaussian Process, the Student-t

Process, while suffering under the same shortcomings, has not been given the same

amount of attention with respect to more general likelihoods.

In this thesis, we utilize the mathematical framework of q-algebra to extend

some of the efficient and scalable methods for Generalized Gaussian Process Re-

gression to the case of Generalized Student-t Process Regression.

We demonstrate in experiments that some of our Student-t based methods can

compete with their Gaussian counterparts and that they can be be more robust to

mislabelled data. However, we also see that the new methods are suffering under

severe convergence problems and need considerable effort to tune them properly.
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Chapter 1

Introduction

Learning a latent function from training data is a common task in Machine Learn-

ing and Statistics. A nonparametric Bayesian solution to this problem is Gaussian

Processes (GPs) (Rasmussen & Williams (2005)). By using GPs as a prior over the

space of real-valued functions, they can be used to solve a variety of different types

of problems like regression, classification, or even reinforcement learning (e.g. Ras-

mussen & Williams (2005) and Rasmussen et al. (2003)). Due to their flexibility,

ease of conducting inference, and principled way of quantifying uncertainty, they

enjoy ever increasing popularity.

A natural generalization of GPs is the Student-t Process (TP) (see Fang et al.

(1990) or Shah et al. (2014)). While a GP neglects the uncertainty associated with

choosing a covariance function, a parametric function that often solely defines the

GP, a TP takes this uncertainty into account. This allows for a more genuine rep-

resentation of the underlying uncertainty. A consequence of this is that the TP has

heavier-tails than the GP, which makes the TP more robust against outliers in the

data (e.g. Shah et al. (2014), Solin & Särkkä (2015)).

However, these beneficial properties come at a high price, TPs are generally not

as mathematically tractable as GPs. This might explain why there has been limited

work on extending some of the advancements for GP models of the last decade to

TP models. In particular, important developments to improve the scalability of GPs

(e.g. Titsias (2009)) and to solve more general regression problems efficiently (e.g.

Shang & Chan (2013)) lack their corresponding TP couterpart.

In this thesis, we aim to close the gap between GPs and TPs when it comes
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to efficient and scalable inference. Our hope is that the methods presented in this

thesis allow to utilize the TP and benefit from its properties in a broader range of

applications.

1.1 Thesis Contributions

In this thesis, the following contributions have been made:

1. In Section 4.1, we introduce t-relexation, a simple, but general framework for

obtaining tractable approximations for TP models based on q-algebra.

2. In Chapter 4, we develop the t-Laplace approximation, whose defining prop-

erty is that, in contrast to the standard Laplace approximation, a multivariate

Student-t distribution is used as approximate posterior distribution.

3. We introduce two variants of variational Student-t approximation in Chapter

5. These methods allow for efficient inference in latent Student-t models and

are a conceptual generalization of variational Gaussian approximation (Opper

& Archambeau (2009)).

4. Finally, in Chapter 6, we present the first scalable Generalized Student-t Pro-

cess Regression (GTPR) models based on sparse inducing point methods.

1.2 Thesis Outline

• Chapter 2 gives an overview of the important concepts used in this thesis.

• Chapter 3 motivates the development of new methods based on an application

of Laplace approximation.

• Chapter 4 presents the t-relaxation and develops the t-Laplace approximation.

• Chapter 5 shows the derivation of the variational Student-t approximations.

• Chapter 6 extends the concept of sparse inducing point methods to GTPR

models.

2



• Chapter 7 compares the performace of the developed methods to their Gaus-

sian counterparts.

• Chapter 8 provides an outlook on future research opportunities.

• Chapter 9 summarizes the thesis and gives some concluding remarks.

3



4



Chapter 2

Background

2.1 Gaussian Processes

2.1.1 Basics

A Gaussian Process (GP) is a stochastic process that has as defining property that

any of its finite samples are distributed according to a multivariate Gaussian distri-

bution (Rasmussen & Williams (2005)). That is, any finite sample has the following

density:

p(f) =
1

(2π)
n
2 det |K|

1
2

exp

(
−1

2
(f − µ)TK

−1
(f − µ)

)
, (2.1)

where µ is the mean of the distribution, n is the number of dimensions, and K

is the covariance matrix. We abbreviate this expression with eitherN (f ;µ,K) for

multivariate Gaussian distributions or GP(f ;µ,K) for Gaussian Processes. A GP

forms a distribution over the functions f : X → R.

The GP is specified by a mean function µ : X → R and a covariance function

K : X ×X → S+ for some input space X , whereas S+ is the space of symmetric,

positive semi-definite matrices (potentially infinite dimensional). It is a common

assumption to set the mean function to zero (Rasmussen & Williams (2005)). As a

result, the GP is solely defined by the covariance function.

A covariance function that is often used (Rasmussen & Williams (2005)) and

that we will use for our experiments as well, is the squared exponential covariance

5



function:

Kij = s2 exp

(
−
dTijdij

2l2

)
, (2.2)

with

dij = xi − xj, (2.3)

whereas s2 is the (signal) variance parameter that controls the dispersion of samples

from the Gaussian Process. The lengthscale l works as smoothing parameter, the

higher l the smoother the functions that are sampled from the Gaussian Process.

The different x represent our inputs. That is, given a finite collection of inputs

X = {xi : i = 1, . . . , n} and X̃ = {x̃j : j = 1, . . . ,m}, K(X, X̃) returns

an n × m dimensional covariance matrix, this is commonly abbreviate by Knm

(e.g. Titsias (2009), Hensman, Matthews & Ghahramani (2015)). Consequently,

K(X,X) is denoted byKnn. Frequently, we will drop the subscripts for the sym-

metric matrices, when their dimensionality is clear from the context. Importantly,

while the bold subscripts refer to the dimensionality of the matrix, the non-bold

subscript used in 2.3 denote individual elements of the matrix.

2.1.2 Classical Regression

The popularity of GPs stems, partly, from their simplicity in the classical regression

case, i.e. real-valued observation with additive, Gaussian noise. That is, for the

following model:

f ∼ GP(0,K(X,X)) (2.4)

y ∼ N (f , σ2I), (2.5)

we can obtain the prediction mean and prediction covariance for function values

f∗ at some new inputs x∗ in closed form by:

E[f∗|X,y, x∗] = Kn∗n(σ2I +Knn)−1y (2.6)

V[f∗|X,y, x∗] = Kn∗n∗ −Kn∗nK
−1
nnKnn∗ . (2.7)

This is possible, because the observations and the function values are jointly

multivariate Gaussian. As a result, by computing the expectation and variance of

6



the conditional distribution, we have specified all the uncertainty associated with

f∗.

2.1.3 Model Selection

The fact that a GP can be fully specified by its covariance function reduces the

problem of model selection to finding appropriate hyperparameters for the covari-

ance function, e.g. finding an appropriate signal variance and lengthscale for the

squared exponential kernel, and for (potentially) the observation model. This is

usually done by optimizing the (log) marginal likelihood with respect to the hyper-

parameters. Where the log marginal likelihood is given by:

log p(y|X) = log

∫
p(y|f)p(f |X)df . (2.8)

For the classical regression case, the marginal likelihood is available in closed

form as a multivariate Gaussian distribution (Rasmussen & Williams (2005)):

log p(y|X) ∼MVN (0, σ2I +Knn). (2.9)

Taking the logarithm gives:

log p(y|X) = − 1

2
yT (σ2I +Knn)−1y − 1

2
log det

∣∣σ2I +Knn

∣∣
− n

2
log 2π,

(2.10)

which needs to be optimized with respect to θ, the hyperparameters of the co-

variance function (e.g. lengthscale l and signal noise s2 in 2.2), and the noise vari-

ance σ2. In the literature, this approach is referred to as type-2 maximum likelihood

estimation (Rasmussen & Williams (2005))1.

2.1.4 Generalized Regression

Generalized Gaussian Process Regression (GGPR) generalizes the ordinary Gaus-

sian Process Regression (GPR) by taking into account observation models that are
1In contrast to the type-1 maximum likelihood estimation, we marginalize over the other latent

variables, i.e. f , instead of using the full, unmarginalized likelihood for optimization.
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not Gaussian (Shang & Chan (2013)). That is, a GGPR model has the following

form:

f ∼ GP(0,K) (2.11)

yi ∼ g(fi), (2.12)

where g(·) is the observation model that is used to model, e.g., binary or count

data. It is common to assume that the observations are independent given the unob-

served function values (Shang & Chan (2013)).

For a concrete example, we can look at the GP binary classification problem,

where the observation vector is a vector of {0, 1}nand the observation model is a

Bernoulli distribution in combination with a sigmoid function (see below) in order

to map the random function f onto the range (0, 1):

f ∼ N (0,K(X,X)) (2.13)

yi ∼ Ber(sigm(fi)), (2.14)

with

sigm(x) =
1

1 + exp−x
. (2.15)

The main problem of GGPR models is that the conjugacy property of the Gaus-

sian observation model is lost. That is, there are no closed form solutions for the

conditional predictive distribution and the log marginal likelihood anymore. In the

last two decades the literature on approximation methods for particular cases of

GGPR models has grown steadily, e.g.:

• Early approaches in the geostatistics community used MCMC, see Diggle

et al. (1998) for more details.

• An overview of approximation methods for the GP binary classification prob-

lem can be found in Nickisch & Rasmussen (2008).

• Lloyd et al. (2015) provides a variational algorithm for GP modulated Poisson

Processes.

• Student-t distributions are used as observation model in Jylänki et al. (2011)

and Vanhatalo et al. (2009).
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• Khan et al. (2012) and Shang & Chan (2013) deal with efficient inference for

general observation models.

The advantage of developing an algorithm for the abstract class of GGPR mod-

els, instead of a concrete example, is that the algorithm is applicable to many dif-

ferent models. In Section 2.3, we will present some methods that allow for efficient

inference in the non-conjugate, generalized regression case in more detail. Never-

theless, this generality comes at the expense that a tailor-made approach is likely to

be faster and more accurate.

However, the big bottleneck, in both generalized and ordinary regression, that

prevents the application of GPs for large dataset is that they require the inversion of

an n × n covariance matrix, Knn, during model selection/learning and prediction

(Rasmussen & Williams (2005)). That is, the complexity of computing the posterior

or marginal likelihood is cubic in the number of observations. While this is still a

manageable computing load for a small number of observations (e.g. a thousand

observations), it gets quickly prohibitive with increasing number of observations

(e.g. ten or even a hundred thousand observations). In Section 2.3.4, we will give

an overview over the most prominent methods to overcome this bottleneck, the

sparse inducing point methods.

2.2 The Student-t Process

2.2.1 Basics

In contrast to the GP, the Student-t Process (TP) is a stochastic process that has as

defining property that any finite collection of samples from the process is distributed

according to a multivariate Student-t distribution. That is, any finite sample has the

following density (Kotz & Nadarajah (2004)):

p(f) =
Γ
(
ν+n

2

)
Γ
(
ν
2

)
(νπ)

n
2 det |K|

1
2

(
1 +

1

ν
(f − µ)TK

−1
(f − µ)

)− ν+n
2

, (2.16)

whereas ν is the degrees of freedom, µ is the mean of the distribution, n is the

number of dimensions, and K is a scaling or dispersion matrix. We abbreviate this

expression with eitherMVT (f ; ν,µ,K) for multivariate Student-t distributions or

T P(f ; ν,µ,K) for Student-t Processes.
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The TP is obtained by placing an Inverse Wishart Process prior on the covariance

function to model the uncertainty that is associated with choosing a particular kernel

function (Shah et al. (2014)).

Compared to the GP, the TP has two interesting properties. On the one hand, due

to the Student-t nature of any finite sample of the TP, the TP puts more probability

mass into the tails of its finite sample distributions. Therefore, the mean function

needs to shift less to explain outliers in the observed function values. From this

perspective, the TP is more robust against outliers than the GP (Shah et al. (2014)).

On the other hand, the conditional predictive distribution of a multivariate Student-

t distribution is multivariate Student-t and the covariances of the conditional distri-

bution depends directly on the variables conditioned on, that is, ifx and y are jointly

multivariate Student-t (Shah et al. (2014) or Ding (2016)), then

y|x ∼MVT (ν + nx,µy +KyxKxx(x− µx), β(Kyy −KyxK
−1
xxKxy))

(2.17)

β =
ν + (x− µx)TK−1

xx (x− µx)
ν + nx

, (2.18)

where the subscript indicates from which random variable the magnitude has

to be taken. An important feature of the TP is that, in contrast to the GP, the con-

ditional predictive covariance depends on the observed data x. Shah et al. (2014)

connect this feature to improved predictive covariances that they observe in their

comparative experiments between GP and TP.

2.2.2 Classical and Generalized Regression

While the GP allows for a closed form solution of the classical regression problem

(for conditional distribution and marginal likelihood), the TP does not share this

property for its adjusted version, i.e. with Student-t errors. The problem is that

Student-t distributions are not closed under addition (Kotz & Nadarajah (2004)).

Zhang & Yeung (2010) and Shah et al. (2014) overcome this problem by incor-

porating the additive noise term directly into the kernel function. Predictions are

conducted by using the conditional distribution presented in the previous section.
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The method has the shortcoming that the error term and the contribution of the ker-

nel function are not independent, due to the degrees of freedom parameter ν (Shah

et al. (2014)).

For the task of deriving methods for Generalized Student-t Process Regression

(GTPR) of the form,

f ∼ T P(ν,0,K) (2.19)

yi ∼ g(fi), (2.20)

the lack of conjugacy in the classical regression model is not that critical. It is just

another potential test case for the methods.

2.2.3 Robustness

The term robustness is associated with many different definitions. E.g. Huber

(2011) defines robustness as insensitivity to small deviations from the assumptions.

For this thesis, the focus lies on one specific form of deviations: Outliers.

The usage of Student-t distributions as a means of mitigating the impact of out-

liers has a long history in the GP community. Neal introduced the Student-t dis-

tribution as an observation model for the GP regression problem (Neal (1997)).

This approach was relying on MCMC. To improve on the high computational cost

of MCMC, approximate methods like factorized variational inference (Tipping &

Lawrence (2005)), expectation propagation (Jylänki et al. (2011)), or Laplace ap-

proximation (Vanhatalo et al. (2009), Mair & Brefeld (2018)) were introduced. Re-

cent GP-based models that utilize a GP prior with a Student-t observation model

are, e.g., Mattos et al. (2017) and Ranjan et al. (2016).

Generally, the application of Student-t distributions for data sets with outliers is

often (e.g. Jylänki et al. (2011), Vanhatalo et al. (2009)) justified with the theoreti-

cal work of O’Hagan (1979). O’Hagan established that the Student-t distribution is

outlier-prone, that is, an inference method applied onto a Student-t sample can ig-

nore extreme outliers. In contrast, O’Hagan (1979) demonstrated that the Gaussian

is outlier-resistant, which means that an inference method applied onto a Gaussian

sample never rejects outliers.
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Nevertheless, while the Student-t likelihood has been used extensively with GP

priors in the ordinary regression case, robust methods for the generalized regression

case are less prominent. For the classification case, robust methods were introduced

by Kim & Ghahramani (2008) for the binary problem and by Hernández-Lobato

et al. (2011) for the multi-class problem. Both methods rely on additional latent

variables that represent the labelling error to obtain robustness. Another approach

by L. Wauthier & Jordan (2010) for the regression and classification case used cop-

ulas to obtain a heavy-tailed process from the GP.

However, there has not been much effort in the literature in utilizing TPs for

robust generalized regression. A notable exception to this is the work of Futami

et al. (2017), where they developed an expectation propagation algorithm for the

TP classification problem. They showed that the Student-t approach is more robust

to outliers than its Gaussian counterpart in this case.

2.2.4 Student-t Process Based Models

The applications of TPs in the literature are dominated by 2 fields, multi-task learn-

ing and Bayesian optimization.

Multi-task learning (MTL) assumes that different tasks share some common

structure and modelling them jointly improves the performance on the individual

tasks (Zhang & Yang (2017)). That is, in MTL we have multiple sets2 of observa-

tions and inputs and the TP approach to it is:

f j ∼ T (ν,0,K(Xj,Xj)), (2.21)

yj ∼ g(f j) (2.22)

where j indicates the set of observations and inputs and g represents the obser-

vation likelihood. In Yu et al. (2007), g was chosen to be a Gaussian distribution,

i.e.:

yj ∼ N (f j, σ), (2.23)

2There can be an overlap between the different sets, e.g. a concrete input can be in multiple input
sets
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while Zhang & Yeung (2010) used a Student-t observation likelihood implicitly

by incorporating the Student-t errors into the TP, i.e.:

yj ∼ T (ν,0,K(Xj,Xj) + σI), (2.24)

where I refers to the identity matrix. In contrast to Yu et al. (2007), this ap-

proach has the advantage that it does not require approximate inference. Shah et al.

(2014) use a similar approach as Zhang & Yeung (2010) , with the difference that

there is only one set of inputs and observations, i.e. an ordinary regression prob-

lem. However, Shah et al. (2014) note that this approach leads to errors that are not

independent.

The second field where TPs had a larger impact is Bayesian optimization (BO).

BO is a derivative-free optimization method for computationally expensive black-

box functions (Shahriari et al. (2015), Snoek et al. (2012)). The general idea is to

fit a surrogate model to previous evaluations of the black-box function and use this

model to choose promising next inputs for the function based on some evaluation

method called acquisition function. This procedure of fitting and finding new in-

puts is repeated until convergence or some budget of, e.g., function evaluations, is

exhausted. Originally, GPs were used as surrogate model Močkus (1975), whereas

Shah et al. (2014) and Shah et al. (2013) showed that TPs can be a viable alternative.

Their work has been extended to multi-objective optimization (van der Herten et al.

(2016)), inventory control and optimization (Xie & Chen (2017)), and aerospace

optimization (Tracey & Wolpert (2018)).

Besides of multi-task learning and Bayesian optimization, TPs have been used

for, e.g. financial time series models (Ruxanda et al. (2019)), stochastic block

models (Xu et al. (2011)), Bayesian quadrature (Prüher et al. (2017)), functional

ANOVA (Zhang, Chen, Wang & Wu (2018)), and anomaly detection in data streams

(Xu et al. (2017)). Moreover, Shah et al. (2014) found that their ordinary TP regres-

sion outperforms a GP with Student-t likelihood for a specific dataset with change-

points. However, to our best knowledge, this superiority of the TP under change-

points has not been further explored in the literature.

Finally, examples of TP regression models beyond Gaussian or Student-t ob-

servation likelihoods are rare. As mentioned in the previous section, Futami et al.
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(2017) worked on efficient inference for TP based binary classification. Addition-

ally, Archambeau & Bach (2011) arrived at a TP binary classification model via

their work on multiple kernel learning.

2.3 Approximate Inference

2.3.1 Laplace Approximation

The Laplace approximation is a deterministic inference method that fits a Gaussian

distribution to the posterior. This is done by using a second order Taylor expansion

centered at the posterior mode to approximate the posterior and the log marginal

likelihood (Rasmussen & Williams (2005)).

The Laplace approximation requires 2 steps:

1. Find the posterior mode (MAP) of the logarithm of the unnormalized poste-

rior distribution p(θ|y)3. That is, from Bayes’ theorem we obtain:

p(θ|y) =
p(y|θ)p(θ)
p(y)

(2.25)

∝ p(y|θ)p(θ). (2.26)

Taking the log of this expression gives:

log p(θ|y) ∝ log p(y|θ) + log p(θ)︸ ︷︷ ︸
:=ϕ(θ)

. (2.27)

We denote the arguments of the maximum of this expression with respect to

θ as θ̂

2. Substitute into the marginal loglikelihood integral and use a truncated Taylor

expansion at the MAP to simplify the integral.

3In this section, θ refers to some arbitrary values of interest. That is, θ represents more general
parameters and is not limited to the kernel parameters.
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p(y) =

∫
p(y|θ)p(θ)dθ (2.28)

=

∫
exp {log φ(θ)} dθ (2.29)

=

∫
exp

{
log φ(θ̂) +

1

2
(θ − θ̂)2 ∂

2

∂θ2
φ(θ̂)

}
dθ, (2.30)

= exp
{

log φ(θ̂)
}∫

exp

{
1

2
(θ − θ̂)2 ∂

2

∂θ2
φ(θ̂)

}
dθ, (2.31)

where ∂2

∂θ2
is the second derivative with respect to θ. This last expression is a

Gaussian integral and can be solved readily (see Abramowitz & Stegun (1964)).

In the case of a GGPR model, this approximation of the log marginal likelihood

can be used to optimize the kernel parameters. However, this optimization alters

the GP prior, which might cause the approximation to deteriorate. Consequently,

we have to repeat steps 1. and 2. until convergence of the kernel parameters is

reached.

Our motivation for considering the Laplace approximation in a TP setting stems

from three points. Firstly, Shang & Chan (2013) show that the Laplace approxi-

mation performs as well as more sophisticated variational approximation methods

for GGPR models. Additionally, in contrast to the second family of algorithms,

which we will cover in the next section, Laplace approximation based solutions for

the GGPR and GTPR problem do not require numerical integration methods like

Monte Carlo or numerical quadrature Burden & Faires (1997). Thirdly, there have

been many extensions and improvements to the classical algorithm, e.g. Cseke &

Heskes (2011), Fog (2008), Rue et al. (2009), over the years. A successful adaption

of the Laplace approximation would allow for future research in these directions as

well.

From an historical point of view, the method was first introduced in a statistical

inference setting by Tierney & Kadane (1986). However, its origin as an approach

to approximate integrals dates back to Laplace himself (Laplace (1986)). In the

context of GPs, Williams & Barber (1998) were the first to use the Laplace approx-

imation for the binary and multi-classification problem.
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2.3.2 Variational Inference In General

Our treatment of variational inference based methods is split into three parts. In this

section, we cover the general concept of variational inference. Thereafter, we will

show how these general concepts apply to the variational Gaussian approximation

(Barber & Bishop (1998)) and its generalization, the variational sparse inducing

point methods (Titsias (2009), Hensman, Matthews & Ghahramani (2015)).

The basic idea of variational inference is to find a tractable distribution (vari-

ational distribution) qφ(θ) that minimizes the discrepancy between the variational

distribution and an intractable target distribution (Jordan et al. (1999), Wainwright

& Jordan (2008)). That is, the inference problem is turned into an optimization

problem. There are 2 important components for understanding variational infer-

ence, the discrepancy measure and the variational distribution.

1. Discrepancy measure: The discrepancy measure is used to quantify the dif-

ference between the variational distribution and the one we are interested in.

In this sense, the discrepancy measure plays the role of the objective func-

tion for the optimization problem. Commonly, the reverse KL divergence is

used to measure the discrepancy between the 2 distributions, the reverse KL

divergence is given by:

KL(qφ(θ) ‖ p(θ)) =

∫
qφ(θ) log

qφ(θ)

p(θ|y)
dθ, (2.32)

where the posterior distribution p(θ|y) is the intractable target distribution of

interest.

The reverse KL divergence is minimized when the variational distribution

equals the distribution we want to approximate.

Although the reverse KL divergence is arguably the most used divergence

measure for variational inference, other measures, e.g. alpha divergence (Hernandez-

Lobato et al. (2016)), Stein discrepancy (Liu & Wang (2016), Ranganath et al.

(2016)), and, chi divergence (Dieng et al. (2017)), can be used as objective

function for the optimization as well.
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2. Variational distribution: When it comes to choosing a tractable family of

distributions, a trade-off between flexibility/expressiveness of the family and

ease of optimization with respect to the discrepancy measure needs to be bal-

anced. While there might be a family of distributions with individual distribu-

tions (represented by the variational parameters φ) that are a good approxima-

tion to a problem at hand, there might not be an efficient optimization scheme

to find these members and vice versa.

For example, mean-field variational inference (Opper & Saad (2001)) makes

the assumption that the joint variational distribution over the individual pa-

rameters factors. This has the advantage that for certain problems we can find

the optimal family of distributions for the individual parameters. Addition-

ally, for these cases, mean-field variational inference results in an iterative

update scheme that provably minimizes the KL divergence between target

and variational distribution (Bishop (2006)).

In the mean-field case, the trade-off is in favor of an efficient optimization

scheme with a convergence guarantee. The factorization assumption can lead

to poor approximations for the target distribution, especially if the random

variables are not independent. Because the mean-field approximation as-

sumes independence of the variables, it cannot approximate any dependencies

of the target distribution.

In the next section, we will introduce variational Gaussian approximation,

which does not impose a factorization assumption on the joint variational

distribution, but requires numerical integration.

There is an alternative view on variational inference, one that does not directly

rely on the KL divergence, but on a lower bound on the log marginal likelihood of

the data, which needs to be maximized. As this approach to variational inference

will be directly used for deriving the variational methods in this thesis, we give a

short overview based on Zhang, Butepage, Kjellstrom & Mandt (2018).

Starting with the log marginal likelihood, we can introduce the variational dis-

tribution, as follows4

4The dependence of the variational distribution on the variational parameters φ has been
suppressed.
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log p(y) = log

∫
p(y|θ)p(θ)dθ (2.33)

= log

∫
q(θ)p(y|θ)p(θ)

q(θ)
dθ, (2.34)

whereas q(θ) is the variational approximation to the intractable posterior p(θ|y).

Using Jensen’s inequality (Gradshteyn & Ryzhik (2014)), we can lower bound the

log marginal likelihood:

log p(y) ≥
∫
q(θ) log

p(y|θ)p(θ)
q(θ)

dθ (2.35)

=

∫
q(θ) log p(y|θ)dθ +

∫
q(θ) log

p(θ)

q(θ)
dθ︸ ︷︷ ︸

−KL(q(θ) ‖ p(θ))

.
(2.36)

As the log marginal likelihood of the data is also known as the evidence, this

lower bound is commonly denoted as the Evidence Lower Bound (ELBO). Interest-

ingly, while the first integral favors a variational distribution that fits the observed

data well, the second integral, the negative, reverse KL divergence, penalizes varia-

tional distributions that deviate from the prior distribution.

It can be shown (e.g. Zhang, Butepage, Kjellstrom & Mandt (2018)) that max-

imizing the ELBO minimizes the KL between the variational distribution and the

intractable posterior:

log p(y)− ELBO = log p(y)−
∫
q(θ) log p(y|θ)dθ −

∫
q(θ) log

p(θ)

q(θ)
dθ

(2.37)

=

∫
q(θ) log p(y)dθ −

∫
q(θ) log

p(y|θ)p(θ)
q(θ)

dθ (2.38)

=

∫
q(θ) log

p(y)q(θ)

p(y|θ)p(θ)
dθ (2.39)

=

∫
q(θ) log

q(θ)

p(θ|y)
dθ (2.40)

=KL(q(θ) ‖ p(θ|y)), (2.41)

whereas the following identities have been used:
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log p(y) =

∫
q(θ) log p(y)dθ, (2.42)

this is justified by log p(y) being constant with respect to θ, and

p(y)

p(y|θ)p(θ)
=

p(y)

p(y, θ)
=

1

p(θ|y)
, (2.43)

which is based on the reciprocal of Bayes’ Theorem.

Equation 2.41 shows that the difference between the log marginal likelihood

and the ELBO is the KL divergence between the variational distribution and the

posterior. Consequently, minimizing this difference by maximizing the ELBO re-

duces the KL divergence between the variational distribution and the distribution of

interest.

A more detailed treatment of general variational inference, which covers its dif-

ferent facets, is provided by Wainwright & Jordan (2008). More information on

recent advances in variational inference can be found in Zhang, Butepage, Kjell-

strom & Mandt (2018).

2.3.3 Variational Gaussian Approximation

The variational Gaussian approximation is a variational method that minimizes the

reverse KL divergence between the target distribution and a multivariate Gaussian

distribution (e.g. Barber & Bishop (1998), Nickisch & Rasmussen (2008), and

Opper & Archambeau (2009)). It is especially suited for latent Gaussian models.

The reasons for focusing on the variational Gaussian approximation as the foun-

dation for variational methods for GTPR models are manifold. On the one hand,

the variational Gaussian approximation has been extensively used and reinvented

for different instances of GGPR models (e.g. Barber & Bishop (1998), Nickisch &

Rasmussen (2008), and Opper & Archambeau (2009)). It provides a dense covari-

ance matrix for the Gaussian approximation of the posterior, while many other vari-

ational approximation methods make an independence assumption and work with

diagonal covariance matrices (see Wainwright & Jordan (2008)). Due to a reparam-

eterization of parameters (Opper & Archambeau (2009)), the variational Gaussian
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approximation requires the optimization of only 2n variational parameters, which is

identical to methods that utilize an indepence assumption for the variational distri-

bution. Moreover, the method has recently been adapted for variational sparse GP

models (Sheth et al. (2015)), an indicator that it could also power scalable GTPR

models.

Due to the importance of the method for this thesis, we briefly demonstrate the

derivation of the basic bound for the variational Gaussian approximation.

Starting with the evidence lower bound, which we have derived in the previous

section:

log p(y) ≥
∫
q(θ) log p(y|θ)dθ −KL(q(θ) ‖ p(θ)), (2.44)

where q(θ) ∼ N (m,V ) is the variational approximation to the intractable pos-

terior p(θ|y). The variables are in bold to emphasize the multivariate setting. Im-

portantly, both integrals can be efficiently solved under two conditions. Firstly, in

case of a latent Gaussian model, that is p(θ) ∼ N (a,K), the closed form solu-

tion for the KL divergence between two multivariate Gaussian distributions can be

utilized (Kullback (1997)):

KL(q(θ) ‖ p(θ)) =0.5

(
log

det |K|
det |V |

+

Tr
{
V K−1

}
+ (a−m)TK−1(a−m)− n

)
,

(2.45)

where n refers to the number of dimensions of the multivariate Gaussian dis-

tribution. Secondly, the first integral does not usually have a closed-form solution.

However, under the assumption that the model likelihood p(y|θ) factorizes and each

observation depends on only one component of θ, i.e. p(y|θ) =
∏

i p(yi|θi), we

can express the n-dimensional integral as n 1-dimensional integrals:

∫
q(θ) log p(y|θ)dθ =

∫
q(θ) log

∏
i

p(yi|θi)dθ (2.46)

=
∑
i

∫
q(θ) log p(yi|θi)dθ. (2.47)
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For each of the individual integrals, we can marginalize over the components of

θ that yi is not depending on. Additionally, it is common (e.g. Opper & Archam-

beau (2009), Challis & Barber (2013)) to use the relationship between the univari-

ate, standard Gaussian distribution and any other univariate Gaussian distribution to

simplify the expression even further:

∫
q(θ) log p(y|θ)dθ =

∑
i

∫
q(θi) log p(yi|θi)dθi (2.48)

=
∑
i

∫
N (θi; 0, 1) log p(yi|mi +

√
Viiθi)dθi.

(2.49)

Putting it all together, we obtain for the ELBO:

log p(y) ≥
∑
i

∫
N (θi; 0, 1) log p(yi|mi +

√
Viiθi)dθi − 0.5

(
log

det |K|
det |V |

+

Tr
{
V K−1

}
+ (a−m)TK−1(a−m)− n

)
.

(2.50)

This bound can be efficiently computed and optimized via numerical quadrature

and gradient-based optimization methods.

2.3.4 Variational Sparse Inducing Point Methods

As mentioned in the section about the GP, the primary bottleneck of GP models is

their cubic run time in terms of number of observations.

One way to overcome this problem was the development of sparse approxima-

tion methods, also known as pseudo-inputs or inducing point methods (Quiñonero-

Candela & Rasmussen (2005)). The basic idea of these methods is to find m induc-

ing points, where m << n, at which the GP is evaluated. This augmentation of the

ordinary GP model allows for a low-rank approximation of the covariance matrix

of the Gaussian posterior distribution (Quiñonero-Candela & Rasmussen (2005),

Bauer et al. (2016)). This usually leads to a reduction of the complexity fromO(n3)

to O(nm2), where m is the number of inducing points. What distinguishes the dif-

ferent sparse methods is how they select the inducing points.
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Early methods focused on selecting a subset from the observed inputs values

as inducing points (e.g. Williams & Seeger (2001), Herbrich et al. (2003)). For

example, in practice,Knn is not directly inverted, but σI +Knn, where σ is some

small jitter to make the inversion more numerically stable. This can be used to form

an approximation that can be efficiently inverted:

(σI +Knn)−1 ≈ (σI +KnmK
−1
mmKmn)−1, (2.51)

the approximate form can be inverted inO(nm2) via Sherman–Morrison–Woodbury

matrix identiy (e.g. Golub & Van Loan (2012)), that is:

(σI +KnmK
−1
mmKmn)−1 =σ−1I − σ−2Knm(Kmm + σ−1KmnKnm)−1Kmn,

(2.52)

Williams & Seeger (2001) used random sampling to choose the observations

for Kmm, while later approaches of that era utilized forms of greedy search (e.g.

Herbrich et al. (2003)).

In contrast to the early approaches, Snelson & Ghahramani (2005) generalized

the idea of sparse approximation by relaxing the requirement of chosing the induc-

ing points among the observed input values. They developed a principled way to

learn the inducing points. Later on this method was renamed ”Fully Independent

Training Conditional” (FITC) (Quiñonero-Candela & Rasmussen (2005)) and was

arguably the most prominent sparse inducing point method of the last decade (Bauer

et al. (2016)). However, there is evidence that the FITC method tends to overfit to

the data (e.g. Naish-Guzman & Holden (2008), Matthews (2017)).

The next breakthrough in the field of sparse inducing point methods was Tit-

sias’ variational sparse inducing point method. This approach embeds the idea of

inducing points in a variational framework, that is, the inducing points are chosen

to minimize a KL divergence. The general idea of the variational sparse inducing

point method has been used in the development of efficient algorithms for different

problems, such as GP latent variable models (Titsias & Lawrence (2010)), deep GP

models (Damianou & Lawrence (2012)), or streaming approximations (Bui et al.
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(2017)). Additionally, the variational sparse inducing point method forms the ba-

sis of the methods that have inspired our development of the sparse inducing point

methods for GTPR models, the scalable variational GP classification approach from

Hensman, Matthews & Ghahramani (2015) and the sparse variational inference ap-

proach for GGPR models from Sheth et al. (2015).

Originally, our approach was based on the work of Hensman, Matthews &

Ghahramani (2015), which focuses only on the binary classification problem. In

this sense, our sparse variational inducing point method generalizes their approach

to TPs and beyond classification problems. However, the latter has already been

achieved by Sheth et al. (2015). As this approach is essential for this thesis, we

briefly cover the derivation of the variational bound based on Hensman, Matthews

& Ghahramani (2015).

Starting with the logarithm of the conditional likelihood of the observations with

respect to the function values u at the inducing points and using Jensen’s inequality

(suppressing the dependence on the data and inducing points):

log p(y|u) = log

∫
p(y|f)p(f |u)df (2.53)

≥
∫
p(f |u) log p(y|f)df (2.54)

=Ep(f |u) [log p(y|f)] . (2.55)

In the next step, an intractable variational bound for the log marginal likelihood

is formed:

log p(y) = log

∫
p(y|u)p(u)du (2.56)

= log

∫
q(u)

p(y|u)p(u)

q(u)
du (2.57)

≥
∫
q(u) log

p(y|u)p(u)

q(u)
du (2.58)

=

∫
q(u) log p(y|u)du+

∫
q(u) log

p(u)

q(u)
du (2.59)

=Eq(u) [log p(y|u)]−KL(q(u) ‖ p(u)). (2.60)

The expectation in the above equation is intractable. However, we can use (2.55)
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to lower bound it and obtain a variational lower bound for the log marginal likeli-

hood.

log p(y) ≥Eq(u)

[
Ep(f |u) [log p(y|f)]

]
−KL(q(u) ‖ p(u)) (2.61)

=Eq(f) [log p(y|f)]−KL(q(u) ‖ p(u)), (2.62)

where q(f) =
∫
p(f |u)q(u)du. Assuming that p(f |u) and the variational

distribution q(u) are Gaussian, q(f) is Gaussian as well. Similarly to the variational

Gaussian approximation in the previous section, this bound can be written as:

log p(y) ≥
∑
i

∫
N (fi; 0, 1) log p(yi|bi +

√
Biifi)dfi − 0.5

(
log

det |Kmm|
det |B|

+

Tr
{
BK−1

mm

}
+ (a− b)TK−1

mm(a− b)−m
)
,

(2.63)

where,

b =KnmK
−1
mmm (2.64)

B =Knn +KnmK
−1
mm(V −Kmm)K−1

mmKnm. (2.65)

By amending this method to work with TP models, we hope to be able to use

the TP in more versatile settings with larger datasets as well.

2.3.5 Markov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC) allows the generation of samples from ar-

bitrary posterior distributions (Gelman et al. (2013)). This is in contrast to the

methods presented so far, which can only provide approximations to the posterior

distribution 5. MCMC is used in this work to provide the gold standard to assess the

quality of the posterior approximations provided by approximation methods.

The basic idea is to generate a Markov chain that has the target posterior distri-

bution as its stationary distribution. E.g. in the Metropolis algorithm (Metropolis

5MCMC is also an approximation, but one that is getting arbitrarily good with more iterations
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et al. (1953)), an MCMC variant, this is done by sampling from a proposal distribu-

tion and then adjust the sample to fit the target posterior distribution. In particular,

a sample, θP , is generated from the proposal distribution p(θP |θt−1)6, where θt−1

is the previous state of the Markov chain. Afterwards, the new sample is either

rejected or accepted, based on the ratio of the posterior densities 7. That is,

a =
p(θP |y)

p(θt−1|y)
, (2.66)

and

θt =


θP if a > 1

θP with probability a, if a ≤ 1

θt−1 otherwise.

(2.67)

This procedure guarantees that the resulting Markov chain has the posterior dis-

tribution as its stationary distribution. That is, we can start the algorithm at arbitrary

parameter values and eventually, the method will converge to the posterior distribu-

tion 8.

The main disadvantage of the Metropolis algorithm is its random walk be-

haviour Gelman et al. (2013), which makes it hard to efficiently traverse high-

dimensional and/or highly correlated parameter spaces. Non-conjugate GGPR prob-

lems require the exploration of a large parameter space, as inference needs to be

done over each function value and these values can also be highly correlated. Con-

sequently, MCMC methods are difficult to use for these kind of problems, which led

to the development of approximate inference schemes in the first place. However,

there are MCMC methods that can manage high-dimensional, correlated parame-

ter spaces more efficiently. One example of these methods is Hamiltonian Monte

Carlo (HMC) (Duane et al. (1987)). HMC uses a variable-augmentation scheme and

6For the Metropolis algorithm, the proposal distribution needs to be symmetric, i.e.
p(θP |θt−1) = p(θt−1|θP ). An extension for non-symmetric proposal distributions is given by the
Metropolis-Hastings algorithm (Hastings (1970))

7Only the unnormalized posterior densities via Bayes Theorem are necessary as the normalizing
constants are cancelling each other out

8Discarding warm up, that is, an initial phase where the chain has not yet converged to its sta-
tionary distribution (see Gelman et al. (2013) for details)
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deterministic proposals based on Hamiltonian dynamics to circumvent the random

walk behaviour and to allow for efficient inference.

The first one to use HMC in a non-conjugate GGPR setting was Radford Neal

Neal (1997). In Radfords work, HMC was used to conduct inference over the hyper-

parameters of the kernel function, while the latent function values, f , were updated

via Gibbs sampling (see Geman & Geman (1984) for details about Gibbs sampling).

This was done, because Gibbs sampling requires the conditional distributions of the

hyperparameters given all the other parameters and latent function values, which is

not readily available in the GP case.

Part of the reason for the rise in popularity of HMC is the development of soft-

ware packages in the last 10 years, which make it straightforward to use HMC for

different problems. For this work, we will use the STAN implementation of HMC

Carpenter et al. (2016).

2.3.6 Expectation Propagation

Another popular approximation method is expectation propagation (EP) Minka (2001).

Similarly to the variational methods presented in section 2.3.2, EP minimizes a di-

vergence measure (usually KL) between an intractable target posterior distribution

and a tractable approximation. However, while the variational methods optimize

KL(q(θ) ‖ p(θ)), EP minimizes KL(p(θ) ‖ q(θ)). As the KL divergence is not

symmetric, these two expressions differ.

EP is based on an online posterior approximation method called assumed den-

sity filtering (ADF) (see Maybeck (1982)). ADF is online in the sense that it updates

its posterior approximation with each new observation. To be more precise, ADF

starts with the unnormalized posterior based in Bayes’ Theorem:

p(θ|y) ∝p(θ)
n∏
i

p(yi|θ). (2.68)

For each data point, yi, the posterior approximation, qi−1(θ), is updated to form

the new approximation qi(θ). This is done by solving:
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qi(θ) = argmin
q(θ)

KL(q(θ) ‖ qi−1(θ)p(yi|θ)). (2.69)

For members of the exponential family, the minimization of this KL divergence

is equal to moment matching. That is, we need to set the moments of the approxi-

mating distribution to the moments of the true posterior.

The main drawback of ADF is that the approximation depends on the order of

the observations, that is, different permutations of the observations, in general, give

different approximations for the posterior distribution after n steps. EP overcomes

this shortcoming by repeatedly iterating and updating the so called site approxima-

tions gi until convergence Minka (2001). Where the site approximations are the ap-

proximations for the individual observation likelihood p(yi|θ), which form together

the overall approximation of the posterior, q(θ). That is, EP assumes that:

q(θ) ∝p(θ)
n∏
i

gi(θ). (2.70)

In the EP algorithm, the site approximations are updated by first removing the

current site approximation from the overall approximation, that is:

q−i(θ) ∝
q(θ)

gi(θ)
, (2.71)

where the −i indicates that the ith site approximation has been removed. The

distribution q−i(θ) is known as the cavity distribution. Afterwards, the overall ap-

proximation can be updated by minimizing KL(q−i(θ)p(yi|θ) ‖ q(θ)). Similarly to

the ADF case, this minimization simplifies to moment matching for the exponential

family. Finally, the update of the site approximation is completed by setting

gi(θ) ∝
q(θ)

q−i(θ)
. (2.72)

EP was generalized to work with Student-t distributions as site approximations

by Futami et al. (2017).
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2.4 Mathematical Tool Set

2.4.1 t-Exponential and t-Logarithm Function

The t-exponential and the t-logarithm are generalizations of the standard exponen-

tial and logarithm function. They play their most significant role in non-extensive

statistical mechanics, where the t-logarithm is used in the Tsallis entropy and the

t-exponential gives rise to the t-exponential family of distributions, a generalization

of the exponential family of distributions (Tsallis (1988)). More recently, the two

functions have been used to derive a more robust form of logistic regression (Ding &

Vishwanathan (2010)) as well as variational inference methods for the t-exponential

family of distributions (Ding et al. (2011) and Futami et al. (2017)).

They are defined as follows:

Definition 2.4.1. t-exponential:

expt(x) = [1 + (1− t)x]
1

1−t
+ , (2.73)

for t > 0 and [x]+ = max(0, x).

Moreover, it can be shown that:

lim
t→1

expt(x) = exp(x). (2.74)

Definition 2.4.2. t-logarithm:

logt(x) =
x1−t − 1

1− t
, (2.75)

for t > 0 and

lim
t→1

logt(x) = log(x). (2.76)

The disadvantage of the t-exponential and t-logarithm compared to their stan-

dard counterparts is that they do not possess the property of transforming between

products and additions, that is:

logt(xy) 6= logt(x) + logt(y), (2.77)

and

expt(x) expt(y) 6= expt(x+ y). (2.78)
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However, this shortcoming led to the development of alternative algebras. Specif-

ically relevant for this work is the q-algebra of Borges (2004), which will be briefly

covered in the next section.

2.4.2 q-Algebra

The q-algebra is a deformed algebra that was introduced by Borges (2004) and is

based on the t-exponential and t-logartihm. Borges’ algebra contains different stan-

dard operators, e.g. q-addition and q-subtraction, and extensions of calculus, which

have special properties with respect to the t-exponential and t-logarithm function.

However, for the derivations in this thesis, only the q-product is relevant9.

Definition 2.4.3. t-product:

x⊗t y =
[
x1−t + y1−t − 1

] 1
1−t , (2.79)

for t > 0 and

lim
t→1

x⊗t y = x ∗ y. (2.80)

For the t-product, we have that:

logt(x⊗t y) = logt(x) + logt(y), (2.81)

9To have a uniform notation, we refer to the q-product as t-product.
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Chapter 3

Ordinary Laplace Approximation

In this chapter, we will take a look at the application of the Laplace approximation

method presented in the previous chapter on the problem of GTPR. This demon-

stration gives the motivation for developing new methods based on q-algebra. The

structure of the derivations in this chapter are based on Rasmussen & Williams

(2005).

3.1 Derivations

Laplace approximation uses a second order Taylor expansion to approximate the

posterior and the log marginal likelihood (Rasmussen & Williams (2005)). The

expansion is centered at the maximum of the posterior with respect to the function

values, that is, by Bayes’ Theorem:

p(f |y) =
p(y|f)p(f |X)

p(y)
(3.1)

∝ p(y|f)p(f |X). (3.2)

Taking the log of this expression gives:

log p(f |y,X) ∝ log p(y|f) + log p(f |X)︸ ︷︷ ︸
:=ϕt(f)

, (3.3)

where

f ∼ T P(f ; ν,0,Knn), (3.4)
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and p(y|f) can be any distribution whose second derivative of its log-density

exists and is non-zero (Laplace (1986)).

In order to obtain the Hessian matrix for the Taylor expansion, the unnormalized

posterior is differentiated twice with respect to f , :

ϕ(f) = log p(y|f) + log p(f |X) (3.5)

∂

∂f
ϕ(f) =

∂

∂f
log p(y|f)− ν + n

ν + fTK
−1
f
K

−1
f (3.6)

∂

∂f∂fT
ϕ(f) =

∂

∂f∂fT
log p(y|f)︸ ︷︷ ︸

:=−W

+
2(ν + n)

(ν + fTK
−1
f)2

[
K

−1
ffTK

−1− ν + fTK
−1
f

2
K

−1

]
︸ ︷︷ ︸

:=−D

(3.7)

= − (W +D). (3.8)

3.2 Marginal Likelihood and Approximate Posterior

Taking the results from the previous section, the log marginal likelihood can be

expressed as:

log p(y|X) = log

∫
p(y|f)p(f |X)df (3.9)

= log

∫
exp(ϕ(f))df (3.10)

≈ ϕ(f̂)

+ log

∫
exp

(
−1

2
(f − f̂)T (W +D)(f − f̂)

)
df ,

(3.11)

by second order Taylor expansion. Solving this Gaussian integral gives for the
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log marginal likelihood:

log p(y|X) ≈ log p(y|f̂)− 1

2
log det |Knn|

− ν + n

2
log

(
1 +

1

ν
f̂TK−1

nnf̂

)
− 1

2
log det |D +W | − n

2
log
(ν

2

)
+ log Γ

(
ν + n

2

)
− log Γ

(ν
2

)
.

(3.12)

Based on the maximum of the posterior, the approximate posterior distribution

can be specified as follows:

q(f) = N (f̂ , (W +D)
−1

). (3.13)

3.3 Shortcomings

In contrast to the Laplace approximation for GGPR (Shang & Chan (2013)), there

are several drawbacks. Firstly, the equations of the approximation are more com-

plex. Secondly, while the expressions for the GGPR can be made numerically

stable (Rasmussen & Williams (2005)), the GTPR approximation does not seem

to have a straighforward way to obtain this property. To be precise, the numeri-

cal stability refers to situations where we have to invert/factorize matrices that are

ill-conditioned, that is, there is a substantial difference between the greatest and

smallest eigenvalue (Burden & Faires (1997)). In particular, the kernel matrix K

can have arbitrarily small eigenvalues (Rasmussen & Williams (2005)). In the GP

case, some of the expressions involving inversion/factorization of K can be trans-

formed into inversions/factorizations of matrices with better numerical properties

(i.e. lower condition number). These transformations are not applicable for the TP

case. Finally, as in the GGPR case, the posterior is approximated by a Gaussian, this

is disappointing, as it feels that a Student-t distribution is more appropriate to ap-

proximate a TP-based model. In the next chapter, t-relaxation is used to generalize

the Laplace approximation to tackle all of these problems.
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Chapter 4

t-Laplace Approximation

In this chapter, the first method based on q-algebra for GTPR models is developed.

We will first introduce the concept of t-relaxation and then we will use the relaxation

to obtain the t-Laplace approximation, a method that is built on q-algebra.

4.1 t-Relaxation

The t-relaxation is our main tool to make derivations of algorithms for GTPR mod-

els. It is used to to simplify problems and obtain tractable results. The t-relaxation

is defined as follows:

Definition 4.1.1. t-Relaxation A reformulation of a problem or parts of a problem in

such a way that the original problem is recovered by taking the limit as t approaches

1.

The t-relaxation is important for this work, because it allows to simplify ex-

pressions involving the logarithm and the (multivariate) Student-t distribution. In

the Gaussian case, the logarithm transforms Gaussian distributions into expressions

that can be easily utilized for further derivations. E.g. within variational inference,

we need to deal with expectation of the form of:

Eq[log p(x)] =

∫
q(x)

[
−1

2
log(2π)− log σ − 1

2

x2

σ2

]
dx (4.1)

= − 1

2
log(2π)− log σ − 1

2

Eq[x2]

σ2
, (4.2)
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with,

p(x) ∼ N (0, σ2). (4.3)

If q(x) is also a Gaussian distribution, then the expectation in 4.2 can readily be

solved via the definition of the variance:

Vq[x] = Eq[x2]− Eq[x]2.

In contrast, if p(x) was Student-t distributed, we would have to solve an expec-

tation of the form:

Eq
[
log

(
1 +

1

ν

x2

σ2

)]
.

Which does not have a closed-form solution for the case of q(x) being Student-t

distributed. However, if we rewrite the Student-t distribution (Ding & Vishwanathan

(2010)), as:

Γ
(
ν+1

2

)
Γ
(
ν
2

)√
νπσ2

(
1 +

x2

νσ2

)− ν+1
2

=

(
ψ + ψ

x2

νσ2

) 1
1−t

, (4.4)

where

p(x) ∼ T (ν, 0, σ2) (4.5)

ψ =

(
Γ
(
ν+1

2

)
Γ
(
ν
2

)√
νπσ2

(
1 +

x2

νσ2

)− ν+1
2

)1−t

, (4.6)

and t was chosen, such that:

1

1− t
= − ν + 1

2
. (4.7)

It is straightforward to see, that the t-logarithm can simplify this expression to:

logt p(x) =
ψ

1− t
+

ψ

1− t
x2

νσ2
. (4.8)

Consequently, the t-logarithm allows to reduce expectations of the form Eq[logt p(x)],

with p(x) being Student-t1, to the problem of computing Eq[x2].
1Assuming that t is chosen appropriately
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4.1.1 t-Divergence

An example for t-relaxation is the t-divergence developed by Ding & Vishwanathan

(2010). While in their work, t-divergence is justified via Bregman divergence, it

is also possible to derive the divergence as a t-relaxation of the Kullback-Leibler

divergence:

KL(q(x) ‖ p(x)) =

∫
q(x) log

q(x)

p(x)
(4.9)

=

∫
q(x)(log q(x)− log p(x)) (4.10)

≈t
∫
q(x)t(logt q(x)− logt p(x)), (4.11)

divide both sides by
∫
q(w)tdw2

1∫
q(w)tdw

KL(q(x) ‖ p(x)) ≈t
∫

q(x)t∫
q(w)tdw

(logt q(x)− logt p(x))

(4.12)

=

∫
q̃(x)(logt q(x)− logt p(x)) (4.13)

= Dt(q(x) ‖ p(x)). (4.14)

where q̃(x) = q(x)t∫
q(w)tdw

3.

Taking the limit (t → 1) on both sides and using the Dominated Convergence

Theorem and the Monotone Convergence Theorem (Schilling (2017)) to move the

limits under the integral sign, the Kullback-Leibler divergence is recovered.

4.1.2 t-Expectation Propagation

Also the t-expectation propagation (t-EP) algorithm developed by Futami et al.

(2017) can be understood as an example of t-relaxation for expectation propaga-

tion. This can be seen by contrasting important parts of EP, as introduced in Section

2.3.6, with their t-EP counterparts.

2This assumes that
∫
q(x)tdx is finite for any finite t greater than 0. In case of the Student-t

distribution this condition holds (Ding & Vishwanathan (2010)).
3This is a special distribution called escort distribution, more information regarding this distribu-

tion can be found in Section 5.2
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First and foremost, the site approximations are Student-t distributions for the

t-EP approach, while for the standard EP method, they are Gaussian distributions.

The Student-t distribution is the t-relaxation of the Gaussian distribution.

Secondly, for the t-EP, the approximation of the posterior is not a product of the

different site approximations, but a t-product.

Thirdly, while the cavity distribution is computed via a normal division (see

equation 2.71) for the EP case, the t-EP uses the q-algebra equivalent of the division,

the t-division Borges (2004). In a similar manner as the t-product, the t-division

operator converges to the normal division operator as t approaches 1.

Finally, while EP minimizesKL(p(θ) ‖ q(θ)), t-EP minimizesDt(q(x) ‖ p(x)),

the t-divergence. As we have seen in the previous section, the t-divergence con-

verges to the KL-divergence as t goes to 1.

4.2 Derivations

Compared to the classic Laplace approximation, the defining difference is that the

resulting posterior approximation is a multivariate Student-t and not a Gaussian

distribution.

The first step to obtain the t-Laplace approximation is to apply the t-relaxation

on the unnormalized posterior, i.e. it is assumed that the posterior factorizes as

follows:

p(f |y,X) ∝t p(y|f)⊗t p(f |X), (4.15)

where ∝t is defined as first taking a proportional operation, i.e. left hand side is

proportional to right hand side, and then t-relaxing the right hand side. Taking the

logt of this expression gives:

logt p(f |y,X) ∝t logt p(y|f) + logt p(f |X)︸ ︷︷ ︸
:=ϕt(f)

. (4.16)

As in the case of the ordinary Laplace approximation, the gradient and Hessian

of the (t-relaxed) unnormalized posterior is required:
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ϕt(f) = logt p(y|f) +
Ψp

1− t
+

Ψp

1− t
fT (νKnn)−1f − 1

1− t
(4.17)

∂ϕt(f)

∂f
=
∂ logt p(y|f)

∂f
+

2Ψp

1− t
(νKnn)−1f (4.18)

∂ϕt(f)

∂f∂fT
=
∂ logt p(y|f)

∂f∂fT
+

2Ψp

1− t
(νKnn)−1 (4.19)

=
∂ logt p(y|f)

∂f∂fT
− 2Ψp

t− 1
(νKnn)−1 (4.20)

= −W −D−1, (4.21)

where,

W = − ∂ logt p(y|f)

∂f∂fT
(4.22)

D =
t− 1

2Ψp

(νKnn) (4.23)

Ψp =

(
Γ
(
ν+n

2

)
(πν)

n
2 Γ
(
ν
2

)
det |Knn|

1
2

)1−t

. (4.24)

Noteworthily, the form of the gradient and the Hessian are comparable to the

ones that are obtained in the GP case (Rasmussen & Williams (2005)).
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4.3 Marginal Likelihood and Posterior Approxima-

tion

For the approximation of the marginal likelihood, the t-relaxation is applied to the

marginal likelihood integral, that is 4:

p(y|X) ≈t
∫
p(y|f)⊗t p(f |X)df . (4.31)

In contrast to the Laplace Approximation, the representation of the integrand

is not changed by using a combination of the ordinary logarithm and exponential

function, but by their t-counterparts:

=

∫
expt (ϕt(f)) df , (4.32)

Taylor expand ϕt(f) at the posterior mode f̂ :

p(y|X) ≈
∫

expt

(
ϕt(f̂) +

1

2

(
f − f̂

)T
H
(
f − f̂

))
df , (4.33)

where

H = −W −D−1. (4.34)

4For t close to 1, we can invoke the Dominated Convergence Theorem (DCT, Schilling (2017))
to derive the t-relaxation for the integral by changing the order of integral and limit, that is:

p(y|X) =

∫
p(y|f)p(f |X)df (4.25)

=

∫
lim
t→1

p(y|f)⊗t p(f |X)df (4.26)

= lim
t→1

∫
p(y|f)⊗t p(f |X)df (4.27)

≈t
∫
p(y|f)⊗t p(f |X)df . (4.28)

DCT is applicable here, because, as t goes to 1, p(y|f) ⊗t p(f |X) approaches p(y|f)p(f |X),
that is, for t close to 1, p(y|f)⊗t p(f |X) can be bounded for all f by ε ∗ p(y|f)p(f |X) for some
finite ε greater than 1. Assuming that

∫
p(y|f)p(f |X)df <∞, the DCT condition is fulfilled by:

∫
p(y|f)⊗t p(f |X)df < ε

∫
p(y|f)p(f |X)df (4.29)

<∞ (4.30)
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Utilizing the definition of expt (equation 2.73), the following is obtained:

p(y|X) ≈
∫ [

1 + (1− t)ϕt(f̂) +
1− t

2

(
f − f̂

)T
H
(
f − f̂

)] 1
1−t

df

(4.35)

=
[
1 + (1− t)ϕt(f̂)

] 1
1−t︸ ︷︷ ︸

:=C

×
∫
1 +

1− t

2
[
1 + (1− t)ϕt(f̂)

]
︸ ︷︷ ︸

:=−τ−1

(
f − f̂

)T
H︸︷︷︸

:=−A−1

(
f − f̂

)


1
1−t

df

(4.36)

= C
1

1−t

∫ [
1 +

(
f − f̂

)T (
ν
τ

ν
A
)−1 (

f − f̂
)] 1

1−t

df . (4.37)

The expression under the integral sign is equal to the unnormalized density of

a multivariate Student-t distribution. From this it follows that the solution to the

integral is the reciprocal of the normalizing constant of the corresponding Student-t

distribution.

p(y|X) ≈ C
1

1−t

[
(πτ)

n
2 Γ(ν

2
) det |A|

1
2

Γ
(
ν+n

2

) ] 1
1−t

= q(y). (4.38)

Based on the posterior mode f̂ and the normalizing constant, the posterior ap-

proximation can be specified as a Student-t distribution5

q(f) ∼MVT
(
ν, f̂ ,

τ

ν
(D−1 +W )−1

)
.

It is important to note, that there is a close relationship between this posterior

approximation and the one obtained in 3.13 for the ordinary Laplace approxima-

tion. As the degrees of freedom ν go to infinity the distribution in 3.13 is almost
5This result is obtained by using Bayes’ Law in conjunction with Laplace approximation, i.e.

p(f |y) = p(y|f)p(f |X)
p(y|X) ≈

[
1+(f−f̂)

T
(ν τνA)

−1
(f−f̂)

] 1
1−t

q(y) , which is equivalent to the given Student-
t distribution (note thatA = (D−1 +W )−1)
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recovered, except for the differences in theD−1 variable. Interestingly, in the limit,

the t-Laplace approximation converges to a Gaussian with similar parameters6 to

the result of the Laplace approximation for the Gaussian process binary classifica-

tion task (Rasmussen & Williams (2005)). To obtain these convergence results, it is

helpful to see that:

t =
2

ν + n
+ 1, (4.39)

which allows to express τ in terms of the degrees of freedom:

τ =
2
[
1− 2

ν+n
ϕt(f̂)

]
2

ν+n

(4.40)

= ν + n− 2ϕt(f̂). (4.41)

Consequently, the posterior approximation can be rewritten as:

q(f) ∼MVT

(
ν, f̂ ,

(
1 +

n

ν
− 2ϕt(f̂)

ν

)(
D−1 +W

)−1

)
.

As ν goes to infinity, this converges to a multivariate normal distribution:

lim
ν→∞

q(f) ∼MVN
(
f̂ ,
(
D−1 +W

)−1
)
.

4.4 Predictions

The expectation E [y∗|X,y, x∗] for newly observed x∗ is generally intractable for

the TP case 7. That is, solving the integral requires Monte Carlo or numerical

quadrature approaches. However, if the approximate posterior mean for f∗ suffices,

then there is a closed form for this expectation under the t-Laplace approximation.

6Again, the difference is in the variable D−1 which is the inverse kernel matrix Knn in the GP
case and the scaled version ofK−1nn for the t-Laplace approximation.

7And for most GP cases.
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Eq [f∗|X,y, x∗] =

∫
E [f∗|f ,X, x∗] q(f)df (4.42)

= Kn∗nK
−1
nn Eq [f |X,y] (4.43)

= Kn∗nK
−1
nnf̂ (4.44)

=
(t− 1)ν

2Ψp

Kn∗n
∂ logt p(y|f)

∂f
. (4.45)

Where the last equality follows from the fact that the gradient of ϕ(f) with

respect to f is equal to 0 at the posterior mode f̂ . That is,

f̂ =
t− 1

2Ψp

(νKnn)
∂ logt p(y|f)

∂f
. (4.46)

Moreover, the approximate variance of the posterior predictive can also be com-

puted. Using the law of total variance (Wasserman (2010)), we obtain:

Vq [f∗|X,y, x∗] = Eq(f |y,X) [V [f∗|f , x∗]] + Vq(f |y,X) [E [f∗|f , x∗]] (4.47)

= Eq(f |y,X)

[
ν + n

ν + n− 2

ν + fTK−1
nnf

ν + n
Kf∗|f

]
+

Vq(f |y,X)

[
Kn∗nK

−1
nnf

] (4.48)

=
ν + Tr

{
K−1
nn Eq

[
ffT

]}
ν + n− 2

Kf∗|f+

Kn∗nK
−1
nnVq(f |y,X) [f ]K−1

nnKnn∗

(4.49)

=
ν + Tr

{
K−1
nn

[
ν
ν−2

τ
ν
(D−1 +W )−1 + f̂ f̂T

]}
ν + n− 2

Kf∗|f+

Kn∗nK
−1
nn

(
ν

ν − 2

τ

ν
(D−1 +W )−1

)
K−1
nnKnn∗

(4.50)

=
ν + τ

ν−2
Tr {K−1

nn(D−1 +W )−1}+ f̂TK−1
nnf̂

ν + n− 2︸ ︷︷ ︸
:=φ

Kf∗|f+

τ

ν − 2
Kn∗nK

−1
nn(D−1 +W )−1K−1

nnKnn∗ ,

(4.51)

expandingKf∗|f as

Kf∗|f = Kn∗n∗ −Kn∗nK
−1
nnKnn∗ ,
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gives

Vq [f∗|X,y, x∗] = φ
(
Kn∗n∗ −Kn∗nK

−1
nnKnn∗

)
+

τ

ν − 2
Kn∗nK

−1
nn(D−1 +W )−1K−1

nnKnn∗

(4.52)

= φKn∗n∗−

Kn∗nK
−1
nn

(
φKnn −

τ

ν − 2
(D−1 +W )−1

)
K−1
nnKnn∗ .

(4.53)

Interestingly, while the predictive posterior mean for the t-Laplace approxima-

tion is identical to the normal Laplace approximation, the posterior predictive vari-

ance differs substantially.

As a major drawback to the GP case, it is not possible to derive a closed-form

solution for the posterior predictive distribution, that is, the integral:

q(f∗|X,y, x∗) =

∫
p(f∗|f ,X, x∗)q(f)df ,

is intractable.

4.5 Newton Method for Posterior Mode

As the variable f can be high-dimensional, finding the posterior mode for the t-

Laplace approximation can be challenging. Fortunately, the equations presented so

far can be translated into an efficient Newton optimization routine in a similar way

as done in the GP case (Rasmussen & Williams (2005)).

The Newton update step is given by:

fn+1 = fn −
(
∂ϕt(f

n)

∂f∂fT

)−1
∂ϕt(f

n)

∂f
(4.54)

= fn +
(
W +D−1

)−1
(
∂ logt p(y|f)

∂f
−D−1fn

)
(4.55)

=
(
W +D−1

)−1
(
∂ logt p(y|f)

∂f
+Wfn

)
. (4.56)

Analogously to the GP case, numerically stable variants of this update equation

can also be derived for the TP-based models (Rasmussen & Williams (2005)).
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4.6 Optimization of Kernel Parameters

In addition to optimizing the function values for the t-Laplace approximation, we

also need to tune the hyperparameters of the kernel Knn. For this, we need the

derivatives of the approximate log marginal likelihood with respect to the hyperpa-

rameters. We start by stating some important identities from Petersen & Pedersen

(2012):

∂

∂θi
det |Knn| = det |Knn|Tr

{
K−1
nn

∂

∂θi
Knn

}
(4.57)

∂

∂θi
log det |Knn| = Tr

{
K−1
nn

∂

∂θi
Knn

}
(4.58)

∂

∂θi
K−1
nn = −K−1

nn

(
∂

∂θi
Knn

)
K−1
nn. (4.59)

Additionally, the following identities will also be used:

∂

∂θi
D−1

i =
∂

∂θi

2Ψp

t− 1
(νKnn)−1 (4.60)

=
2

t− 1
(νKnn)−1 ∂

∂θi
Ψp +

2Ψp

(t− 1)ν

∂

∂θi
K−1
nn (4.61)

∂

∂θi
τ =

2 ∂
∂θi
C

t− 1
(4.62)

∂

∂θi
C =

∂

∂θi

[
1 + (1− t)ϕt(f̂)

]
(4.63)

=
1

1− t
∂

∂θi
Ψp +

f̂T (νKnn)−1f̂

1− t
∂

∂θi
Ψp +

Ψp

ν
f̂T
(
∂

∂θi
K−1
nn

)
f̂ ,

(4.64)
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∂

∂θi
Ψp =

∂

∂θi

(
Γ
(
ν+n

2

)
(πν)

n
2 Γ
(
ν
2

)
det |Knn|

1
2

)1−t

(4.65)

= (1− t)

(
Γ
(
ν+n

2

)
(πν)

n
2 Γ
(
ν
2

)
det |Knn|

1
2

)−t
Γ
(
ν+n

2

)
(πν)

n
2 Γ
(
ν
2

) ∂

∂θi
det |Knn|−

1
2

(4.66)

=
1− t

2

(
Γ
(
ν+n

2

)
(πν)

n
2 Γ
(
ν
2

)
det |Knn|

1
2

)−t
Γ
(
ν+n

2

)
(πν)

n
2 Γ
(
ν
2

)×
det |Knn|−

3
2
∂

∂θi
det |Knn|.

(4.67)

The gradient of the approximate log marginal likelihood with respect to the

hyperparameters of the kernel is given by:

∂

∂θi
log q(y) =

∂

∂θi

1

1− t

[
logC +

n

2
log π +

n

2
log τ+

log Γ
(ν

2

)
+

1

2
log det |A| − log Γ

(
ν + n

2

) ] (4.68)

=
1

1− t

[
1

C

∂

∂θi
C +

n

2τ

∂

∂θi
τ−

1

2

∂

∂θi
log det

∣∣(W +D−1)
∣∣ ] (4.69)

=
1

1− t

[
1

C

∂

∂θi
C +

n

2τ

∂

∂θi
τ−

1

2
Tr

{
(W +D−1)−1

(
∂

∂θi
D−1

)} ]
.

(4.70)

While this gradient is complex, it does not capture the full relationship between

the approximate log marginal likelihood and the kernel parameters. To complete

the picture, we need to take into consideration the changes in the optimal function

values f̂ with respect to the hyperparameters, i.e. we are interested in

∂ log q(y)

∂f

∂f

∂θi
,

for f = f̂ .

Firstly, it is important to notice that:

∂

∂f
C =

∂

∂f
τ = 0. (4.71)
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This is due to the fact that we are at the posterior maximum, therefore ∂ϕt(f)
∂f

= 0

at f̂ .

Secondly, ∂f
∂θi

can be obtained from equation 4.46:

∂f

∂θi
=

∂

∂θi

t− 1

2Ψp

(νKnn)
∂ logt p(y|f)

∂f
(4.72)

= − t− 1

2Ψ2
p

(
∂

∂θi
Ψp

)
(νKnn)

∂ logt p(y|f)

∂f
+

t− 1

2Ψp

(ν
∂

∂θi
Knn)

∂ logt p(y|f)

∂f
+

t− 1

2Ψp

(νKnn)
∂ logt p(y|f)

∂ffT︸ ︷︷ ︸
:=−W

∂f

∂θi
.

(4.73)

This can be further simplified by solving for ∂f
∂θi

:

∂f

∂θi
=

(
I +

t− 1

2Ψp

(νKnn)W

)−1

×[
−t− 1

2Ψ2
p

(
∂

∂θi
Ψp

)
(νKnn)

∂ logt p(y|f)

∂f
+
t− 1

2Ψp

(ν
∂

∂θi
Knn)

∂ logt p(y|f)

∂f

]
.

(4.74)

(4.75)

Lastly, we need to find the derivative of the approximate log marginal likelihood

with respect to the function values evaluated at the posterior mode:

∂

∂fi
log q(y) =

∂

∂fi

1

1− t

[
logC +

n

2
log π +

n

2
log τ+

log Γ
(ν

2

)
+

1

2
log det |A| − log Γ

(
ν + n

2

) ] (4.76)

=
1

1− t

[
1

C

∂

∂fi
C +

n

2τ

∂

∂fi
τ−

1

2

∂

∂fi
log det

∣∣(W +D−1)
∣∣ ] (4.77)

= − 1

2(1− t)
Tr

{
(W +D−1)−1

(
∂

∂fi
W

)}
, (4.78)

where

∂

∂fi
W = − ∂3

∂3f
logt p(y|f). (4.79)
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Putting all the individual parts together, we obtain the total derivative with re-

spect to the kernel hyperparameters:

d

dθi
log q(y) =

∂

∂θi
log q(y) +

(
∂q(y)

∂fi

∣∣∣∣
fi=f̂1..n

)T
∂f

∂θi
, (4.80)

where we use

∂q(y)

∂fi

∣∣∣∣
fi=f̂1..n

,

to indicate that ∂q(y)
∂fi

needs to be evaluated for each component of the f̂ vector to

form the gradient vector ∂q(y)
∂f

.
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Chapter 5

Variational Student-t

Approximations

In this chapter, two Student-t versions of the variational Gaussian approximation

(e.g.Opper & Archambeau (2009)) are developed.

5.1 Variational Bound on Marginal Likelihood

As a first step, the integral for the log marginal likelhood needs to be t-relaxed and

the variational distribution q(f) is introduced, that is:

log p(y|X) = log

∫
p(y|f)p(f |X)df (5.1)

≈t logt

∫
p(y|f)⊗t p(f |X)df (5.2)

= logt

∫
q(f)

1
t
p(y|f)⊗t p(f |X)

q(f)
1
t

df . (5.3)

The q(f)
1
t has been used for mathematical convenience and additionally be-

cause it leads to a less complex lower bound to the t-log marginal likelihood.

As a second step, the concavity of the t-log for densities (see Appendix B.1) can

be used to derive a variational lower bound for the t-log marginal likelihood:

logt p(y) ≥
∫
q(f)

1
t logt

p(y|f)⊗t p(f |X)

q(f)
1
t

df . (5.4)
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From Borges (2004), we know that:

logt

(
x

y

)
= yt−1 [logt(x)− logt(y)] ,

which gives for the bound on the t-log marginal likelihood:

logt p(y|X) ≥
∫
q(f)

1
t q(f)

1
t
(t−1)

×
[
logt p(y|f) + logt p(f |X)− logt q(f)

1
t

]
df

(5.5)

=

∫
q(f) logt p(y|f)df︸ ︷︷ ︸

:=A

+

∫
q(f) logt p(f |X)df︸ ︷︷ ︸

:=B

−
∫
q(f) logt q(f)

1
t df︸ ︷︷ ︸

:=C

.

(5.6)

In general, A requires numerical integration, whereas B and C have closed form

solutions for the TP, as long as the degrees of freedom are the same for the varia-

tional Student-t distribution and the prior distribution p(f |X), that is:

p(f |X) ∼MVT (ν,0,K) (5.7)

q(f) ∼MVT (ν,m,V ). (5.8)

Utilizing the definition of the t-logarithm and using the properties of the trace

(Petersen & Pedersen (2012)), we can simplify B to obtain a closed-form solution

as follows:

B =
1

1− t

∫
q(f)

[
Ψp + Ψpf

T (νK)−1f
]
df − 1

1− t
(5.9)

=
Ψp

1− t
+

Ψp

1− t
T r
{

(νK)−1 Eq
[
ffT

]}
− 1

1− t
(5.10)

=
Ψp

1− t
+

Ψpν

(1− t)(ν − 2)
Tr
{

(νK)−1V
}

+

Ψp

1− t
mT (νK)−1m− 1

1− t

(5.11)

=
Ψp

(1− t)

(
1 +

1

ν − 2
Tr
{
K−1V

}
+

1

ν
mTK−1m

)
− 1

1− t
. (5.12)

C can be simplified in a similar manner, that is:

50



C =
1

1− t

∫
q(f)

[
q(f)

1−t
t − 1

]
df (5.13)

=
1

1− t

∫
q(f)

[(
Ψq + Ψq(f −m)T (νV )−1(f −m)

) 1
t − 1

]
df

(5.14)

=
Ψ

1
t(1−t)
q

1− t

∫ [
1 + (f −m)T (νV )−1(f −m)

] 1
t(1−t) df − 1

1− t
, (5.15)

with

1

t(1− t)
= −ρ+ n

2
⇒ ρ =

2

t(t− 1)
− n, (5.16)

we can simplify this expression further:

C =
Ψ

1
t(1−t)
q

1− t

∫ [
1 + (f −m)T

(
ρ
ν

ρ
V

)−1

(f −m)

]− ρ+n
2

df − 1

1− t
.

(5.17)

The integrand is the unnormalized density of a multivariate Student-t distribu-

tion, with ρ degrees of freedom:

MVT (ρ,m,
ν

ρ
V ).

Consequently, the result of the integral is the reciprocal of the normalizing constant:

=
Ψ

1
t(1−t)
q

1− t

Γ(ρ
2
)ρ

n
2 π

n
2 det

∣∣∣νρV ∣∣∣ 12
Γ(ρ+n

2
)

− 1

1− t
(5.18)

= logt

(
D

1
1−t det |V |−

1
2t

)
, (5.19)

where

D =
Γ
(
ν+n

2

) 1
t Γ
(
ρ
2

)
(νπ)

n(t−1)
2t

Γ
(
ν
2

) 1
t Γ
(
ρ+n

2

) .

Concerning the integration of A, due to the high-dimensional1 nature of the

problem, it is not practically feasible to solve it in its current form. In the GP case,
1For numerical integration, more than 5 dimensions are already critical (e.g. Burden & Faires

(1997)).
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the properties of the logarithm are used to simplify the n-dimensional integration

problem into n 1-dimensional problems. For the TP case, this cannot be used, as the

t-logarithm does not decompose a product into a simple sum over the t-logarithms of

the product’s elements. For this reason, the t-relaxation is applied to the observation

model in order to transform the ordinary product into a t-product:

p(y|f) =
∏
i

⊗tp(yi|fi). (5.20)

Consequently, the rules of the t-logarithm can be used to obtain:

A =

∫
q(f) logt

∏
i

⊗tp(yi|fi)df (5.21)

=

∫
q(f)

∑
i

logt p(yi|fi)df (5.22)

=
∑
i

∫
T (fi; ν, 0, 1) logt p(yi|mi +

√
Viifi)dfi. (5.23)

Where the last step follows from the marginalization properties of the multi-

variate Student-t distribution and the relationship of the standard Student-t distribu-

tion to Student-t distributions with another mean and dispersion parameter (Kotz &

Nadarajah (2004)). The n 1-dimensional problems are readily solved numerically

via Monte Carlo or quadrature based methods (Burden & Faires (1997)).

Putting all these steps together, we obtain as an approximate variational lower

bound for the evidence:

logt p(y|X) &t

∑
i

∫
T (fi; ν, 0, 1) logt p(yi|mi +

√
Viifi)dfi+

Ψp

(1− t)(ν − 2)
Tr
{
K−1V

}
+ logtMVT (m; ν,0,K)

− logt

(
D

1
1−t det |V |−

1
2t

)
,

(5.24)

where &t means that the left hand side is lower bounded by the right hand side

under a t-relaxation, that is, it signals that the right hand side has been obtained

by utilizing a t-relaxation. This bound is the evidence lower bound (ELBO) for
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generalized Student-t Process regression problems. We will refer to this method as

VTP1.

Interestingly, in the limit as t goes to 1 or, equivalently, as ν approaches infin-

ity, the variational bound for the GP case Nickisch & Rasmussen (2008) is almost

recovered. This can be seen by looking at the different terms of 5.24 separately.

While the convergence of the multiple integrals and of logtMVT (m; ν,0,K) to

their Gaussian counterparts is straightforward, the other two terms are more in-

volved. For the term Ψp
(1−t)(ν−2)

Tr {K−1V }, we need Ψp
(1−t)(ν−2)

to approach −1
2
.

This can be done as follows:

lim
t→1

Ψp

(1− t)(ν − 2)
= lim

t→1

(
Γ
(
ν+n

2

)
(πν)

n
2 Γ
(
ν
2

)
det |Knn|

1
2

)1−t
1

(1− t)(ν − 2)

(5.25)

= lim
t→1

(
Γ
(
ν+n

2

)
(πν)

n
2 Γ
(
ν
2

)
det |Knn|

1
2

)1−t

× lim
t→1

1

(1− t)(ν − 2)

(5.26)

= 1× lim
t→1

1

(1− t)(n− 2
1−t − 2)

(5.27)

≈ 1× lim
t→1

1

(1− t)(− 2
1−t)

(5.28)

=− 1

2
, (5.29)

where the third line follows from ν = − 2
1−t − n and the forth line follows from

the fact that, as t goes to 1, n − 2 is negligible compared to − 2
1−t . The last term,

logt

(
D

1
1−t det |V |−

1
2t

)
, is the troublesome one. While it is close to what we would

expect, we were neither able to show that the term converges to log
(

det |V |
1
2

)
nor

that the subterm D
1

1−t converges to 1, as t tends to 1.

5.2 Alternative, Variational Bound on Marginal Like-

lihood

It is also possible to derive a variational lower bound on the marginal likelihood

without exponentiating the variational density by 1
t
. Using a proper variational
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distribution, we obtain for the first step:

logt p(y|X) = logt

∫
p(y|f)p(f |X)df (5.30)

≈t logt

∫
p(y|f)⊗t p(f |X)df (5.31)

= logt

∫
q(f)

p(y|f)⊗t p(f |X)

q(f)
df (5.32)

≥
∫
q(f) logt

p(y|f)⊗t p(f |X)

q(f)
df (5.33)

=

∫
q(f) logt

p(y|f)⊗t p(f |X)

q(f)
df (5.34)

=

∫
q(f)t [logt p(y|f) + logt p(f |X)− logt q(f)] df . (5.35)

In the statistical physics community, the q(f)t is known as the unnormalized es-

cort distribution (Naudts (2004))2 . When a Student-t distribution is used as a vari-

ational distribution, q(f), the corresponding escort distribution, q̃(f), is Student-t

(Ding et al. (2011)) with:

q̃(f) ∼MVT
(
f ; ν + 2,m,

ν

ν + 2
V

)
.

From this it follows that the expression can be rewritten as:

log p(y|X) &t

(∫
q(f)tdf

)
×∫

q̃(f) [logt p(y|f) + logt p(f |X)− logt q(f)] df

(5.36)

=

(∫
q(f)tdf

)
×[∫

q̃(f) logt p(y|f)df −Dt(q(f) ‖ p(f |X))

]
.

(5.37)

There are two ways to further simplify this expression. Firstly, we can utilize the

closed-form solution for the t-divergence for two multivariate Student-t distributions

2Escort distributions are of the form p̃(x) = p(x)t∫
p(x)tdx

They are a one-parameter deformation of
the original distribution p(x) Naudts (2004)). Their most prominent appearance is in non-extensive
statistical mechanics (Tsallis (1988), Tsallis & Brigatti (2004)). Escort distributions are used to
compute expectations with respect to heavy-tailed distributions that are not defined otherwise (Amari
(2016), Barbaresco & Nielsen (2017)). Instead of computing the expectation with respect to the
heavy-tailed distribution, the escort version of the heavy-tailed distribution is used to compute the
so called escort expectation.
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(Ding et al. (2011)). Secondly, the n-dimensional integral with respect to the escort

distribution can be expressed as n 1-dimensional integrals as shown for the previous

variational bound.

log p(y|X) &t

Γ
(
ν+2

2

)
((ν + 2)π)

n
2

(
ν
ν+2

)n
2 det |V |

1
2

Γ
(
ν+2+n

2

) ×[∑
i

∫
T (fi; ν + 2, 0, 1) logt p(yi|mi +

√
ν

ν + 2
Viifi)dfi−(

Ψq

1− t
(1 + ν−1)− Ψp

(1− t)ν
Tr
{
K−1
nnV

}
−

Ψp

(1− t)ν
mTK−1

nnm−
Ψp

1− t

) ]
.

(5.38)

We will refer to this method as VTP2.

5.3 Approximate Posterior

For the variational Gaussian approximation, the variational distribution is the ap-

proximate posterior. This can be seen from the fact that the Kullback-Leibler di-

vergence is minimized when posterior and variational distribution are identical (see

section 2.3.2).

However, for VTP1, we are not optimizing a Kullback-Leibler divergence dirctly,

but a t-relaxed version of it.

Moreover, the density of our variational distribution is exponentiated by 1
t
, that

is, we are optimizing our relaxed divergence with respect to an improper distribution

which is not equal to the variational distribution.

Nonetheless, in the limit of t → 1, a Kullback-Leibler divergence is implicitly

minimized when our derived ELBO is maximized. We are therefore assuming that

for all practical purposes, t is close enough to 1 to justify using the variational

distribution as approximate posterior, that is:

p(f |X,y) ≈ T (f ; ν;m,V ) = q(f). (5.39)

55



The same reasoning applies also to VTP2. In contrast to the Gaussian case, we

cannot directly show that maximizing the variational bound is minimizing the dis-

crepancy between variational distribution and posterior. Nevertheless, in the limit of

t→ 1, the standard ELBO is obtained from the intermediate equation 5.36. There-

fore, we argue that the variational distribution given in 5.39 is also an approximation

of the posterior for the alternative Student-t variational approximation.

5.4 Predictions

Predictions based on the variational distribution q(f) can be obtained in a similar

manner to the t-Laplace approximation3. That is, if only an approximate posterior

mean for f∗ suffices, then there is a closed form for this expectation:

Eq [f∗|X,y, x∗] =

∫
E [f∗|f ,X, x∗] q(f)df (5.40)

= Kn∗nK
−1
nn Eq [f ] (5.41)

= Kn∗nK
−1
nnm. (5.42)

Also the variance of the posterior predictive distribution can be derived in a

similar manner to the t-Laplace approximation:

Vq [f∗|X,y, x∗] = Eq(f |y,X) [V [f∗|f , x∗]] + Vq(f) [E [f∗|f , x∗]] (5.43)

=
ν + Tr

{
K−1
nn Eq(f)

[
ffT

]}
ν + n− 2

Kf∗|f+

Kn∗nK
−1
nnVq(f |y,X) [f ]K−1

nnKnn∗

(5.44)

=
ν + Tr

{
K−1
nn

[
ν
ν−2
V +mmT

]}
ν + n− 2︸ ︷︷ ︸

:=φ

Kf∗|f+

Kn∗nK
−1
nn

(
ν

ν − 2
V

)
K−1
nnKnn∗ .

(5.45)

expandingKf∗|f as

Kf∗|f = Kn∗n∗ −Kn∗nK
−1
nnKnn∗ ,

3The equations for the predictions apply to both variational bounds
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gives

Vq [f∗|X,y, x∗] = φKn∗n∗−

Kn∗nK
−1
nn

(
φKnn −

ν

ν − 2
V

)
K−1
nnKnn∗ .

(5.46)

If the expectation is required for the target variable y∗ itself, we can use a numer-

ical integration scheme with the the posterior predictive distribution for f∗. Analo-

gously to the t-Laplace approximation, the variational Student-t approximation does

not have a closed-form solution for the predictive posterior distribution.

5.5 Optimization of Variational Parameters

In this section, we demonstrate how the gradients for the variational parameters can

be derived.

The critical part in deriving the gradients is the intractable integral in the EL-

BOs. For our derivation, we will follow the route that Nickisch & Rasmussen (2008)

and Sheth et al. (2015) used to obtain gradients for the GP case. For the variational

Gaussian approximation, there is an alternative way via Fourier analysis to obtain

gradients for the integral (see Opper & Archambeau (2009)).

In order to compute the gradients, we need an additional identity from Petersen

& Pedersen (2012):

∂

∂V
det |V | = det |V |V −1. (5.47)

This identity in conjunction with the ones used for the t-Laplace approximation,

results in:

∂ELBOV TP1

∂m
=

∂A

∂m
+

2Ψp

1− t
(νKnn)−1m (5.48)

∂ELBOV TP1

∂V
=
∂A

∂V
+

Ψp

(1− t)(ν − 2)
K−1
nn −D

(
t− 1

2t

)
det |V |

t−1
2t V −1.

(5.49)

On the one hand, the gradient of the intractable integral with respect to the

location parameter of the variational Student-t distribution is given by:
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∂A

∂m
=

∂

∂m

∑
i

∫
T (fi; ν, 0, 1) logt p(yi|mi +

√
Viifi)dfi (5.50)

=
∑
i

∫
T (fi; ν, 0, 1)

∂ logt p(yi|li)
∂li

∂li
∂m

dfi (5.51)

= ET (fi;ν,0,1)

[
∂ logt p(yi|li)

∂li

] ∣∣∣∣
i=1..n

, (5.52)

where

li = mi +
√
Viifi (5.53)

∂lj
∂mi

=

1, if j = i

0, otherwise
(5.54)

Equation 5.52 states that n 1-dimensional integrals need to be solved numeri-

cally in order to compute the gradient of the intractable integral with respect to the

mean parameter of the variational distribution.

On the other hand, the gradient with respect to the dispersion parameter of the

variational Student-t distribution is given by:

∂A

∂V
=

∂

∂V

∑
i

∫
T (fi; ν, 0, 1) logt p(yi|mi +

√
Viifi)dfi (5.55)

=
∑
i

∫
T (fi; ν, 0, 1)

∂ logt p(yi|li)
∂li

∂li
∂V

dfi (5.56)

=
1

2
√
Vii

ET (fi;ν,0,1)

[
fi
∂ logt p(yi|li)

∂li

] ∣∣∣∣
i=1..n

, (5.57)

where

∂lj
∂Vij

=


fi

2
√
Vii
, if j = i

0, otherwise
(5.58)

From equation 5.57, we can see that also for the gradient of the dispersion pa-

rameter, only n 1-dimensional numerical integrals are necessary. In contrast to the
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mean parameter, the evaluated integrals are not represented as vector, but as diago-

nal of a n× n matrix.

Based on the derivations for VTP1, the gradients for VTP2 can be computed

readily:

∂ELBOV TP2

∂m
= G det |V |

1
2

[
∂A

∂m
+

2Ψp

(1− t)ν
mTK−1

nn

]
. (5.59)

∂ELBOV TP2

∂V
= G det |V |

1
2V −1

[
∂A

∂V
− 1

1− t
(1 + ν−1)

∂

∂V
Ψq +

Ψp

(1− t)ν
K−1
nn

]
,

(5.60)

with

∂

∂V
Ψq =

t− 1

2

(
Γ
(
ν+n

2

)
(πν)

n
2 Γ
(
ν
2

)
det |V |

1
2

)1−t

V −1 (5.61)

G =
Γ
(
ν+2

2

)
((ν + 2)π)

n
2

(
ν
ν+2

)n
2

Γ
(
ν+2+n

2

) . (5.62)

The gradients of the integrals for the second ELBO are given by:

∂A

∂m
= ET (fi;ν+2,0,1)

[
∂ logt p(yi|li)

∂li

] ∣∣∣∣
i=1..n

(5.63)

∂A

∂V
=

ν

2(ν − 2)
√

ν
ν+2
Vii

ET (fi;ν+2,0,1)

[
fi
∂ logt p(yi|li)

∂li

] ∣∣∣∣
i=1..n

(5.64)

li = mi +

√
ν

ν + 2
Viifi. (5.65)

These gradients can now be used with gradient-based optimization procedures

to optimize the different ELBOs.

5.6 Optimization of Kernel Parameters

In contrast to the t-Laplace approximation, we need to optimize the kernel parame-

ters with respect to the ELBOs of the two variational methods.
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For the derivation, we will require some of the results and identities established

in 4.6 for the t-Laplace approximation, namely equation 4.59 and 4.65. Equipped

with these results, the partial derivatives with respect to the hyperparameters are

derived straightforwardly:

∂ELBOV TP1

∂θi
=

∂

∂θi

[∑
i

∫
T (fi; ν, 0, 1) logt p(yi|mi +

√
Viifi)dfi+

Ψp

(1− t)(ν − 2)
Tr
{
K−1
nnV

}
+ logtMVT (m; ν,0,Knn)

− logt

(
D

1
1−t det |V |

t−1
2t

) ]

(5.66)

=
1

(1− t)(ν − 2)

(
∂

∂θi
Ψp

)
Tr
{
K−1
nnV

}
−

Ψp

(1− t)(ν − 2)
Tr

{
V K−1

nn

(
∂

∂θi
Knn

)
K−1
nn

}
+

1

(1− t)
∂

∂θi
Ψp +

1

(1− t)

(
∂

∂θi
Ψp

)
mT (νKnn)−1m

− Ψp

(1− t)ν
mTK−1

nn

(
∂

∂θi
Knn

)
K−1
nnm.

(5.67)

and for VTP2:
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∂ELBOV TP2

∂θi
=

Γ
(
ν+2

2

)
((ν + 2)π)

n
2

(
ν
ν+2

)n
2 det |V |

1
2

Γ
(
ν+2+n

2

) × ∂

∂θi[∑
i

∫
T (fi; ν + 2, 0, 1) logt p(yi|mi +

√
ν

ν + 2
Viifi)dfi−(

Ψq

1− t
(1 + ν−1)− Ψp

(1− t)ν
Tr
{
K−1
nnV

}
−

Ψp

(1− t)ν
mTK−1

nnm−
Ψp

1− t

) ]

(5.68)

=
Γ
(
ν+2

2

)
((ν + 2)π)

n
2

(
ν
ν+2

)n
2 det |V |

1
2

Γ
(
ν+2+n

2

) ×[
1

(1− t)ν

(
∂

∂θi
Ψp

)
Tr
{
K−1
nnV

}
−

Ψp

(1− t)ν
Tr

{
V K−1

nn

(
∂

∂θi
Knn

)
K−1
nn

}
+

1

(1− t)
∂

∂θi
Ψp +

1

(1− t)ν

(
∂

∂θi
Ψp

)
mTK−1

nnm

− Ψp

(1− t)ν
mTK−1

nn

(
∂

∂θi
Knn

)
K−1
nnm

]
.

(5.69)

Analogously to the t-Laplace case, the change of the variational parameters with

respect to the hyperparameters needs to be taken into consideration to obtain the to-

tal derivative. However, Nickisch & Rasmussen (2008) report good results without

taking these contributions from the variational parameters into consideration. As

the gradients are already complex, we follow their approach and do not consider

these implicit terms in the gradient calculation4.

5.6.1 Comparison of Bounds

In this section, we briefly compare the different evidence lower bounds for VGP

(from Nickisch & Rasmussen (2008)), VTP1, and VTP2. Equations 5.70, 5.71, and

5.72 show the evidence lower bounds for VGP, VTP1, and VTP2, respectively.

On first inspection, it is apparent that the bounds for VGP and VTP1 look rather

similar, we have also shown in section 5.1 that, as t goes to 1, many elements of

4That is, terms such as ∂
∂θV and ∂

∂θm are missing from the gradient computation
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the VGP bound are recovered from the VTP1. Nevertheless, we were not able to

completely recover the VGP bound, due to the last term, logt

(
D

1
1−t det |V |−

1
2t

)
.

In contrast, the ELBO for the VTP2 method does not have such a close resem-

blance to the other two bounds. There are some common features, that is, the sum

over the integrals, the trace operator over K−1V , or the term mTK−1m, which

is hidden in the logMVN and logtMVT terms of VGP and VTP1, respectively.

However, neither VGP nor VTP1 rely on the escort distribution of q(f)t to derive

their bounds, therefore none of them has a term resembling the leading factor (i.e.

the fraction before the ×-operator) of VTP2.

Furthermore, another interesting difference between the bounds is that the VGP

is an exact less-than-or-equal relationship, while the other methods rely on t-relaxation.

ELBOV GP ≥
∑
i

∫
N (fi; 0, 1) log p(yi|mi +

√
Viifi)dfi−

1

2
Tr
{
K−1V

}
+ logMVN (m; 0,K)

+ log
(

det |V |−
1
2

) (5.70)

ELBOV TP1 &t

∑
i

∫
T (fi; ν, 0, 1) logt p(yi|mi +

√
Viifi)dfi+

Ψp

(1− t)(ν − 2)
Tr
{
K−1V

}
+ logtMVT (m; ν,0,K)

− logt

(
D

1
1−t det |V |−

1
2t

)
(5.71)

ELBOV TP2 &t

Γ
(
ν+2

2

)
((ν + 2)π)

n
2

(
ν
ν+2

)n
2 det |V |

1
2

Γ
(
ν+2+n

2

) ×[∑
i

∫
T (fi; ν + 2, 0, 1) logt p(yi|mi +

√
ν

ν + 2
Viifi)dfi−(

Ψq

1− t
(1 + ν−1)− Ψp

(1− t)ν
Tr
{
K−1V

}
−

Ψp

(1− t)ν
mTK−1m− Ψp

1− t

) ]
(5.72)
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Chapter 6

Variational Sparse Inducing Point

Methods

The purpose of this chapter is to demonstrate how the idea of variational, sparse

inducing points is extended to TP-based models. Two different bounds will be cov-

ered. The first one will be derived from lower bouding the marginal likelihood di-

rectly, while the second one will be based on the t-relaxation of intermediate results

for the GP case.

6.1 Scalable, Variational Bound for Marginal Likeli-

hood

The variational lower bound derived in this section is a conceptual generalization of

the approach introduced by Hensman, Matthews & Ghahramani (2015).

In a first step, we establish a lower bound for the t-logarithm of the conditional

likelihood of the observations y with respect to the function values u, which are

evaluated at the inducing points z (suppressing the dependence on the data).

logt p(y|u) = logt

∫
p(y|f)p(f |u)df (6.1)

≥
∫
p(f |u) logt p(y|f)df (6.2)

= Ep(f |u) [logt p(y|f)] . (6.3)
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In the next step, we lower bound the t-relaxed log marginal likelihood in a sim-

ilar way as with the variational Student-t approximation. However, in contrast to

the variational Student-t approximation, the marginalization is done over the joint

distribution of the observations and the function values at the inducing points, that

is:

logt p(y) = logt

∫
p(y|u)⊗ p(u)du (6.4)

= logt

∫
q(u)

1
t
p(y|u)⊗ p(u)

q(u)
1
t

du (6.5)

≥
∫
q(u)

1
t logt

p(y|u)⊗ p(u)

q(u)
1
t

du (6.6)

=

∫
q(u) logt p(y|u)du+∫
q(u)(logt p(u)− logtq(u)

1
t )du

(6.7)

≥
∫
q(u) logt p(y|u)du︸ ︷︷ ︸

:=A

+

∫
q(u) logt p(u)du︸ ︷︷ ︸

:=B

−
∫
q(u) logt q(u)

1
t du︸ ︷︷ ︸

:=C

.

(6.8)

B and C have comparable terms in the variational Student-t approximation, with

the important difference that they are now with respect to the function values at

the inducing points. However, A is more difficult, as we do not know p(y|u).

Nonetheless, we can use the lower bound 6.3 to further simplify A:

logt p(y) ≥
∫
q(u)Ep(f |u) [logt p(y|f)] du+∫
q(u)(logt p(u)− logt q(u)

1
t )du

(6.9)

=

∫
U
q(u)

(∫
F
p(f |u) logt p(y|f)df

)
du+∫

q(u)(logt p(u)− logt q(u)
1
t )du.

(6.10)

Using the Fubini-Tonelli theorem (Schilling (2017)) to change the order of inte-

gration and the fact that q(f) =
∫
p(f |u)q(u)du, we obtain:
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logt p(y) ≥
∫
q(f) logt p(y|f)df+∫
q(u)(logt p(u)− logt q(u)

1
t )du

(6.11)

=

∫
q(f) logt p(y|f)df+∫
q(u) logt p(u)du−

∫
q(u) logt q(u)

1
t du.

(6.12)

The first integral with respect to f is different from the variational Student-t

approximation case. This is due to the variational distribution q(f) being the result

of marginalizing over the induced function values in the joint distribution q(f ,u).

Due to the marginalization being intractable, we are using the following variational

distribution as an approximation:

q(f) ∼MVT (f ; ν,α,B) , (6.13)

with

α = KnmK
−1
mmm (6.14)

B = Knn +KnmK
−1
mm (V −Kmm)K−1

mmKmn. (6.15)

In appendix B.2, more details regarding the derivations of this approximation

can be found. It is important to notice that this marginalization is reminiscent of

the problem of deriving the posterior predictive distribution (for one of the methods

so far). Comparing the results, we can see that the approximation is centered at the

correct mean, however, the variance of our approximate distribution is substantially

different to the ones obtained for the posterior predictive distributions.

Combining these results with the results from the previous section, a new, ap-

proximate ELBO is obtained:
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logt p(y|X) &t

∑
i

∫
T (fi; ν, 0, 1) logt p(yi|αi +

√
Biifi)dfi+

Ψpu

(1− t)(ν − 2)
Tr

{
K−1
mmV

}
+ logtMVT (α; ν,0,Kmm)

− logt

(
D

1
1−t det |V |−

1
2t

)
,

(6.16)

where

D =
Γ
(
ν+m

2

) 1
t Γ
(
ρ
2

)
(νπ)

m(t−1)
2t

Γ
(
ν
2

) 1
t Γ
(
ρ+m

2

) (6.17)

ρ =
2

(t(t− 1))
−m (6.18)

Ψpu =

(
Γ
(
ν+m

2

)
(πν)

m
2 Γ
(
ν
2

)
det |Kmm|

1
2

)1−t

. (6.19)

It is noteworthy, that this bound has a run time complexity of O(nm2), similar

to its Gaussian counterparts. We will refer to this method as sVTP1.

6.2 Alternative, Variational Bound on the Marginal

Likelihood

The variational bounds presented so far relied on t-relaxation of the log marginal

likelihood. However, starting the derivations from the original, marginal likelihood

is not a necessity. In this section, an alternative, scalable variational bound that is

derived by t-relaxing an intermediate result from Hensman, Matthews & Ghahra-

mani (2015) is presented1. In Hensman et. al. the following bound on the marginal

likelihood is established:

1The reader might wonder why the VTP2 method is not extended. The reason for this is given in
appendix B.3

66



log p(y|X) ≥Eq(f) [log p(y|f)]−KL(q(u)) ‖ p(u))), (6.20)

t-relaxing this bound gives:

logt p(y|X) &t Eq(f) [logt p(y|f)]−Dt(q(u)) ‖ p(u))), (6.21)

as q(u) and p(u) are both multivariate Student-t distributions, the closed-form

solution for the t-Divergence from Ding et al. (2011) can be used to produce an

alternative variational lower bound:

logt p(y|X) &t Eq(f) [logt p(y|f)]−
[

Ψq

1− t
(1 + ν−1)−

Ψp

(1− t)ν
Tr
{
K−1
mmV

}
− Ψp

(1− t)ν
mTK−1

mmm−
Ψp

1− t

]
,

(6.22)

For q(f), the variational distribution described in equation 6.13 is used.

Analogously to sVTP1, this bound has a run time complexity of O(nm2). We

will refer to this method as sVTP2.

6.3 Approximate Posterior

Following Hensman, Matthews & Ghahramani (2015) and our arguments made for

the approximate posterior of the variational Student-t approximation, the approxi-

mate posterior is given by:

p(f ,u|X,y) ≈ q(f ,u), (6.23)

where the approximate marginal distribution for f is given in equation 6.13 and

the one for u is distributed according to T (ν,m,V ).
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6.4 Predictions

Using the approximate posterior and the property of the induced function values as

sufficient statistics (following Titsias (2009) and Hensman, Matthews & Ghahra-

mani (2015)), we can obtain an approximate (intractable) posterior predictive dis-

tribution:

p(f∗|X, y, x∗) =

∫
U

∫
F
p(f∗|f ,u, X, x∗)p(f ,u)dfdu (6.24)

≈
∫
U

∫
F
p(f∗|f ,u, X, y)p(f |u)q(u)dfdu (6.25)

=

∫
U

∫
F
p(f∗|u, x∗)p(f |u)q(u)dfdu (6.26)

=

∫
U
p(f∗|u, x∗)q(u)du (6.27)

= q(f∗). (6.28)

Finally, the posterior predictive mean and variance for the variational sparse

inducing point methods is given by (derivation is similar to the variational Student-t

approximation):

Eq(f∗) [f∗|X,y, x∗] = Kn∗mK
−1
mmm (6.29)

Vq(f∗) [f∗|X,y, x∗] = φKn∗n∗−

Kn∗mK
−1
mm

(
φKmm −

ν

ν − 2
V

)
K−1
mmKnn∗ ,

(6.30)

where

φ =
ν + Tr

{
K−1
mm

[
ν
ν−2
V +mmT

]}
ν + n− 2

. (6.31)

6.5 Optimization of Variational Parameters

The derivation of the gradients for the variational parameters resembles our work

done in section 5.5. The main difference is that the parameters of the integrals, α
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andBii, are not directly optimized but via the variational parametersm and V , that

is:

∂ELBOsV TP1

∂m
=
∂A

∂α

∂α

∂m
+

2Ψpu

1− t
(νKmm)−1m (6.32)

∂ELBOsV TP1

∂V
=
∑
i

∂A

∂Bii

∂Bii

∂V
+

Ψp

(1− t)(ν − 2)
K−1
mm−

D

(
t− 1

2t

)
det |V |

t−1
2t V −1.

(6.33)

Moreover, the gradient of the intractable integral with respect to the location

parameter of the variational Student-t distribution is given by:

∂A

∂α

∂α

∂m
=

(
ET (fi;ν,0,1)

[
∂ logt p(yi|li)

∂li

] ∣∣∣∣
i=1..n

)T
KnmK

−1
mm, (6.34)

where

li = αi +
√
Biifi. (6.35)

Regarding the gradient with respect to the dispersion parameter of the varia-

tional Student-t distribution:

∂A

∂Bii

∂Bii

∂V
=

1

2
√
Bii

ET (fi;ν,0,1)

[
fi
∂ logt p(yi|li)

∂li

]
K−1
mmKmiKimK

−1
mm

∣∣∣∣
i=1..n

,

(6.36)

where the result for ∂Bii
∂V

is derived from the identity provided in Petersen &

Pedersen (2012):

∂

∂X
aTXb = baT . (6.37)

Also the gradients for sVTP2 are readily available:

∂ELBOsV TP2

∂m
=
∂A

∂α

∂α

∂m
+

Ψp

(1− t)ν
K−1
mmm (6.38)

∂ELBOsV TP2

∂V
=
∑
i

∂A

∂Bii

∂Bii

∂V
− 1

1− t
(1 + ν−1)

∂

∂V
Ψq+

Ψp

(1− t)(ν − 2)
K−1
mm,

(6.39)
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with ∂
∂V

Ψq defined in equation 5.61.

The gradients for the integrals of the second inducing point method are given

by equations 6.42 and 6.43. That is, there is no difference between the two sparse

inducing point methods in terms of gradients for the intractable integrals.

6.6 Optimization of Kernel Parameters and Inducing

Points

The gradients for the variational sparse inducing point methods follow mainly from

the results obtained for the variational Student-t approximations (see equation 5.67

and 5.69). However, in contrast to the variational Student-t approximation, the

sparse methods have an explicit dependence between the intractable integral and

the parameters of the kernel based on 6.14 and 6.15. That is:

∂ELBOsV TP1

∂θi
=
∑
j

(
∂A

∂αj

∂αj
∂θi

+
∂A

∂Bjj

∂Bjj

∂θi

)
+

1

(1− t)(ν − 2)

(
∂

∂θi
Ψpu

)
Tr
{
K−1
mmV

}
−

Ψpu

(1− t)(ν − 2)
Tr

{
V K−1

mm

(
∂

∂θi
Kmm

)
K−1
mm

}
+

1

(1− t)
∂

∂θi
Ψpu +

1

(1− t)

(
∂

∂θi
Ψpu

)
mT (νKmm)−1m

− Ψpu

(1− t)ν
mTK−1

mm

(
∂

∂θi
Kmm

)
K−1
mmm,

(6.40)

and for the alternative ELBO:
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∂ELBOsV TP2

∂θi
=
∑
j

(
∂A

∂αj

∂αj
∂θi

+
∂A

∂Bjj

∂Bjj

∂θi

)
+

1

(1− t)ν

(
∂

∂θi
Ψpu

)
Tr
{
K−1
mmV

}
−

Ψpu

(1− t)ν
Tr

{
V K−1

mm

(
∂

∂θi
Kmm

)
K−1
mm

}
+

1

(1− t)
∂

∂θi
Ψpu +

1

(1− t)ν

(
∂

∂θi
Ψpu

)
mTK−1

mmm

− Ψpu

(1− t)ν
mTK−1

mm

(
∂

∂θi
Kmm

)
K−1
mmm.

(6.41)

The integral terms are given by:

∂A

∂αj

∂αj
∂θi

= ET (fi;ν,0,1)

[
∂ logt p(yi|li)

∂li

]
×[(

∂

∂θi
Kjm

)
K−1
mmm−KjmK

−1
mm

(
∂

∂θi
Kmm

)
K−1
mmm

]
,

(6.42)

and

∂A

∂Bjj

∂Bjj

∂θi
=

1

2
√
Bii

ET (fi;ν,0,1)

[
fi
∂ logt p(yi|li)

∂li

]
×[

∂

∂θi
Kjj − 2KjmK

−1
mm(V −Kmm)K−1

mm

∂

∂θi
Kmj+

2KjmK
−1
mm(V −Kmm)K−1

mm

(
∂

∂θi
Kmm

)
K−1
mmKmj+

KjmK
−1
mm

(
∂

∂θi
Kmm

)
K−1
mmKmj

]
.

(6.43)

We have again suppressed the implicit dependence between variational parame-

ters and kernel parameters based on the results from Nickisch & Rasmussen (2008).

By replacing θi with Zij in equation 6.40 and 6.41, the gradients for the optimiza-

tion of the inducing points Z are obtained.
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Chapter 7

Experiments

In this section, we will firstly compare the t-Laplace approximation and the varia-

tional Student-t approximation on simulated data to get an idea of the behaviour of

these methods in contrast to their GP counterparts. Then, we will test the methods

on real world datasets. Finally, the TP sparse-inducing point methods are compared

to their GP counterparts on larger datasets.

7.1 General

7.1.1 Model

For our experiments, we will focus on regression and binary classification mod-

els. For the regression, we are interested in the performance and behaviour of the

methods for the following models:

f ∼ GP(0,K) (7.1)

yi ∼ N (fi, σ
2), (7.2)

and

f ∼ T P(ν,0,K) (7.3)

yi ∼ T (κ,fi, σ
2). (7.4)

We will use these first models to get an initial understanding of the impact of

outliers. For the second type of models, the binary classification models, we will

use the following two models:
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f ∼ GP(0,Kθ) (7.5)

yi ∼ Ber(sigm(fi)), (7.6)

and

f ∼ T P(ν,0,Kθ) (7.7)

yi ∼ Ber(sigm(fi)). (7.8)

The main foucs of our experiments will be on these two models. The reasons

for doing so are threefold: Firstly, both problems can be nicely visualized in terms

of regression curves and decision boundaries. Secondly, both problems are popu-

lar fields of research and there are implementations of algorithms for comparison

available. Thirdly, the work of Shah et al. (2013) demonstrates the advantages of

TPs for robust regression, while the recent work of Futami et al. (2017) suggests

that TP-based models can lead to more robust results for classification problems

compared to their GP counterparts. That is, there is already some evidence that TPs

can outperform their GP counterparts in these tasks, so it is of particular interest to

have efficient inference for these cases available.

7.1.2 Implementation

All the methods for the GTPR were implemented in Python/Tensorflow (Abadi

et al. (2015)) with functionality, e.g. kernel implementation, taken from GPflow

(Matthews et al. (2017)).

For the t-Laplace approximation, the posterior mode f̂ was found with the

Newton-method presented in 4.5, whereas the kernel parameters were optimized

with Scipy’s (Jones et al. (2014)) implementation of the limited-memory Broyden–

Fletcher–Goldfarb–Shanno (L-BFGS) optimization algorithm (Nocedal & Wright

(2006)). On the one hand, optimization of the posterior mode was stopped after

either 50 optimization iterations had been conducted or there had not been an im-

provement in the posterior mode for 10 consecutive iterations. On the other hand,

the L-BFGS optimization step was terminated after 500 iterations or earlier, if there

was no improvement in the approximate marginal likelihood (based on Scipy default

74



values for absolute or relative convergence). This procedure, i.e. finding posterior

mode and then optimizing kernel parameters, was repeated for 10 times and the

optimized parameters of the last iterations were used for predictions. The results

of the t-Lapalce approximation are compared to the results from GPy’s (GPy (since

2012)) implementation of Student-t regression and scikit-learns’ (Pedregosa et al.

(2011)) implementation of Gaussian process classification.

In contrast, the parameters of the variational Student-t approximations were op-

timized entirely with L-BFGS, whereas the optimization was stopped after 500 iter-

ations or after there had not been an improvement in evidence lower bound (Scipy

defaults). The results of the methods are compared with the variational methods

provided in GPflow (Matthews et al. (2017)).

The optimization approach for the sparse inducing point methods are based

on the work of Titsias (2009) and Hensman, Matthews, Filippone & Ghahramani

(2015). That is, the inducing points were initialized with k-means clustering and

there was an initial optimization sequence, where only the kernel and variational

distribution parameters were tuned (50 iterations). Subsequently, the procedure for

the variational Student-t approximations was followed with all the parameters being

optimized simultaneously, i.e. including the inducing points.

As a covariance function, the squared-exponential kernel was used for all ex-

periments. This decision was made due to the kernel’s high popularity within the

kernel methods community (Rasmussen & Williams (2005)).

Gradient computation was done via Tensorflow’s automatic differentiation Bay-

din et al. (2018) and the intractable integrals were approximated via Gauss-Hermite

quadrature based on the numpy (Oliphant (2006)) implementation.

The parameter t was chosen in order to use the simplification of the Student-t

density described in section 4.1. That is,

t =
2

ν + n
+ 1,

where ν are the degrees of freedom of the distribution and n are the number of ob-

servations in the dataset. The experiments were conducted for 3, 10, and 25 degrees

of freedom. In particular for the Student-t regression, the degrees of freedom for

the observation likelihood, κ, were set to the degrees of freedom of the Student-t

process prior during the optimization.
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7.1.3 MCMC

MCMC is used as ground truth to compare the different models and approxima-

tion methods 1. The regression and binary classification models were implemented

in Stan (Carpenter et al. (2016)) to conduct inference by Hamiltonian Monte Carlo.

For the hyperparameters of both models we have used truncated, heavy-tailed Cauchy

distributions. For all the models, we ran 4 chains with 7000 samples and the first

2000 samples were discarded as warm up/burn in phase. The remaining 5000 sam-

ples were thinned by taking only every 20th sample. Convergence was diagnosed

with split R̂ provided in the Stan output (see Carpenter et al. (2016) or Brooks et al.

(2011)).

It is important to notice, that MCMC requires prior distributions for the hy-

perparameters. These priors are not used for the approximation methods, that is,

the approximation approaches approximate a model that is different. However, the

priors used are rather uninformative and do not impact the result significantly 2.

7.2 Simulated Data - Regression

7.2.1 Datasets

For the regression model, we test the performance of the methods on two datasets.

On the one hand, data is simulated by sampling from a GP and then perturbated

by Gaussian noise. This is the classical GP regression case, for which closed-form

solutions are available (Rasmussen & Williams (2005)). To be precise, we are using:

f ∼ GP(0,K) (7.9)

yi ∼ N (fi, 1), (7.10)

where K is based on a squared-exponential kernel with a lengthscale of 0.25

and a variance of 5. The inputX was sampled uniformly from the interval between

1For the regression example with Gaussian errors, there would be no need for an MCMC ap-
proach, however, in order to have a comparable setup over all experiments, we have used MCMC
for this problem as well.

2We have tested the sensitivity of the result against uniform priors over large intervals containing
the true values.
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Fig. 7.1: A sample training dataset for the regression experiment with Gaussian

error. The line indicates the true function f .

0 and 1. Fifty datasets of seventy samples each were generated.

On the other hand, a second batch of datasets is obtained by introducing outliers

to the aforementioned datasets with Gaussian noise. These datasets are generated

by sampling the number of outliers, r, from the interval 4 to 7 uniformly, then r

observations are randomly chosen and multiplied by ten.

Figure 7.1 shows an example dataset with Gaussian noise and Figure 7.2 depicts

its perturbation with outliers.

7.2.2 MCMC

In Figure 7.3 we can see the results for the different models when MCMC is used

for the example dataset with Gaussian noise presented in the previous section. The

first thing to notice is that there is no visible difference in the prediction means for

the different GP and TP models. That is, under Gaussian errors, GP and TP give

basically the same results. Also the predictive variance is comparable for the GP

model and the TP models with five and twenty-five degrees of freedom. Only the

model with three degrees of freedom exhibits a wider prediction interval. More-

over, while there are some minor differences in the prediction intervals between the

different models, it appears that the prediction intervals are converging to the GP
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Fig. 7.2: A sample training dataset for the regression experiment with Gaussian

observation errors and heavy outliers. The line indicates the true function f .

one, as the degrees of freedom are increased.

The notion that the models are similar for the case of Gaussian noise is also

conveyed by Figure 7.12 and 7.13. In these plots we can see the distribution of

the kernel parameters that have been obtained from the simulation study. In the

left column, we can see the results for the Gaussian noise case. For MCMC, the

posterior means of the individual simulations are depicted. For both the variance

and the lengthscale parameter, the distributions are comparable. While MCMC

seems to be able to capture the lengthscale well, which is seen by the distribution

of the results centered around the true value, it appears to produce posterior means

for the variance parameter that are too high 3.

In contrast, the introduction of heavy ouliers to the data alters the picture con-

siderably (see Figure 7.4). The GP model disregards most of the curvature of the

true f and produces a smooth curve for the prediction means. Additionally, the

GP model drastically increases the width of the prediction interval and is now the

model with the widest interval. As in the case without outliers, we can see that the

TP models are converging to the GP results as the degrees of freedom are increas-

3We would like to point out that the log-scale is used for the x-axis of the plot. I.e. the differences
between true value and results to the right of it are quite considerable.
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ing. However, this time there are still considerable differences, even when the TP

model with twenty-five degrees of freedom is used.

For a clearer visualization, we can see in Figure 7.5 a zoomed in version of the

plot that focuses on the GP model and the TP model with three degrees of freedom.

The TP model captures the true value in its narrow4 prediction interval quite well.

The only exception is around 0.8, where the TP model fails to capture the true value

of f in its prediction interval.

The behaviour demonstrated by the models on the example dataset is also sup-

ported by our simulation study. Looking at Figure 7.13, we can see that, under out-

liers, the posterior means for the lengthscale are high compared to the true length-

scale. A consequence of a higher lengthscale is that the posterior mean prediction

is more smoothed out. A similar, but not as severe, situation holds for the variance

parameter (Figure 7.12), the result distributions for MCMC show stronger focus

on higher variance parameters. That is, we would infer a higher uncertainty in the

function values, f , due to the outliers.

It is noteworthy, that the result distributions for lengthscale and variance are

both shifting towards the true value as the degrees of freedom are decreased. A

clear indicator that the TP models are more robust to outliers compared to their

GP counterparts. However, it is important to state that this performance cannot

solely be attributed to the usage of a TP. We would like to emphasize that the GP

models are equipped with a Gaussian observation likelihood, while the TP models

use a Student-t likelihood. Past research has shown that GP models with Student-t

likelihoods can perform well under outliers (e.g. Neal (1997), Jylänki et al. (2011),

Vanhatalo et al. (2009)).

Finally, the difference in the observation likelihoods might also be the reason,

why we do not see a strong increase in the width of the prediction intervals for the

TP models (especially the one with three degrees of freedom). Based on Section 2.2,

we would have expected a higher prediction variance under outliers and therefore

a wider prediction interval. However, we argue that this effect is mitigated by the

Student-t observation likelihood, which can also compensate for outliers partially

O’Hagan (1979).

4compared to the GP model
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Fig. 7.3: Prediction mean and ± one standard deviation interval for f in the re-

gression problem with Gaussian noise based on MCMC. TP results for 3, 5, and 25

degrees of freedom are presented.

Fig. 7.4: Prediction mean and ± one standard deviation interval for f in the regres-

sion problem with Gaussian noise and outliers based on MCMC. TP results for 3,

5, and 25 degrees of freedom are presented.
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Fig. 7.5: Zoomed in on prediction mean and± one standard deviation interval for f

in the regression problem with Gaussian noise and outliers based on MCMC. Only

the results for 3 degrees of freedom are presented.

7.2.3 t-Laplace

Figure 7.6 shows the results for the different models applied to our example dataset

with Gaussian noise. Immediately we can see that the t-Laplace approximation has

not converged to a sensible result. Both the lengthscale and the variance parameter

of the squared-exponential kernel have collapsed to values close to 0, which leads

to a straight line centered at 0 as the prediction mean. We have tested whether this

result for the t-Laplace approximation is due to bad local minima. However, the

suboptimal behaviour is persistent, that is, the outcome for different initial values

were the same. Even initiating the t-Laplace approximation with the results of the

GP-Laplace approximation did not lead to a more promising result. Unsurprisingly,

the problem also occurs in the example with outliers, as well as in the simulation

study. Therefore we have removed the results for the t-Laplace approximation from

Figures 7.12 and Figure 7.13, in order to make the other results easier to read.

In contrast to the unpleasant outcome of the t-Laplace approximation, the nor-

mal Laplace approximation gives results that are comparable to MCMC for the

example dataset with Gaussian noise. This is not surprising, as the Laplace approx-

imation approximates the posterior distribution of f with a Gaussian distribution
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Fig. 7.6: Prediction mean and ± one standard deviation interval for f in the regres-

sion problem with Gaussian noise based on Laplace and t-Laplace approximation.

TP results for 3, 5, and 25 degrees of freedom are presented.

centered at the posterior mode. For the ordinary regression case with Gaussian

noise, the posterior distribution of f is Gaussian, therefore the Laplace approxima-

tion can approximate the posterior perfectly (Rasmussen & Williams (2005)). Inter-

estingly, for the case with outliers (Figure 7.7), the prediction means of the Laplace

approximation fit the true values better than the result obtained from MCMC. How-

ever, the general behaviour of a strong increase in the width of the prediction interval

for the GP model persists also for the Laplace approximation.

Fascinatingly, the Laplace approximation captures the true values for the vari-

ance and lengthscale in the simulation study better than MCMC (see Figure 7.13).

Especially the results for the lengthscale parameter are interesting. Even when out-

liers are present in the data, the result distribution for the Laplace approximation is

centered around the true value and does not exhibit a strong shift to the right like

the other methods.

7.2.4 Variational Student-t Approximation

First and foremost, we do not present the results for VTP1 and VTP2 separately,

as the outcomes of these methods are visually indistinguishable from each other.
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Fig. 7.7: Prediction mean and ± one standard deviation interval for f in the re-

gression problem with Gaussian noise and outliers based on Laplace and t-Laplace

approximation. TP results for 3, 5, and 25 degrees of freedom are presented.

Fig. 7.8: Zoomed in on prediction mean and ± one standard deviation interval for

f in the regression problem with Gaussian noise and outliers based on Laplace and

t-Laplace approximation. Only the results for 3 degrees of freedom are presented.
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E.g. the result distributions for the simulation study (Figure 7.12 and Figure 7.13)

are overlapping almost perfectly. Consequently, what can be said about one of

the methods, equally applies to the other. Therefore, we are analysing the visual

outcome of the two methods together.

In Figure 7.9 we can see the results obtained from VGP and VTP1/2 for the

example dataset with Gaussian noise. Similarly to the Laplace approximation, the

VGP method can approximate the posterior p(f |y) perfectly. In contrast to the

MCMC results, the outcomes of the variational methods are marginally more er-

ratic, e.g. the prediction intervals are less smooth. Moreover, while for the MCMC

methods, the prediction means were almost identical, there is slightly more varia-

tion between the different outcomes. Nevertheless, the pattern that the results of the

TP models converge to the results of their GP counterparts persists also under the

variational methods.

When it comes to outliers (Figure 7.10 and Figure 7.11), the results of the varia-

tional methods are similar to the outcomes obtained from MCMC. On the one hand,

the prediction means of the GP model are smoothed out, while the prediction inter-

val increases considerably in width. On the other hand, the TP based models have

a narrower prediction interval, which successfully captures the true function values

f .

For this particular example, VGP and VTP1/2 appear to give good approxima-

tions of hte MCMC results, at least based on the prediction means and intervals.

However, if we consider the results of the simulation study, we see a more substan-

tial disagreement between the variational methods and MCMC. For VTP1/2, the

result distribution for the lengthscale parameter benefits from a lower number of

degrees of freedom. Comparably to the MCMC case, the distribution shifts closer

to the true value, as the degrees of freedom decrease. However, this does not seem to

hold for the variance parameter. Here we cannot see any changes due to a different

number of degrees of freedom. Surprisingly, none of the variational methods match

the performance of the Laplace approximation in the simulation study, especially

for the lengthscale under outliers5.

5This raises the question whether the Laplace approximation is that good, or whether there are
some specifics in the GPy (GPy (since 2012)) implementation of the Laplace approximation that
makes it more resilient. However, due to the direct competitor of the Laplace approximation, the
t-Laplace approximation, not performing at all, we decided against a deeper investigation of the
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Fig. 7.9: Prediction mean and ± one standard deviation interval for f in the regres-

sion problem with Gaussian noise based on VGP and VTP1/2 approximation. TP

results for 3, 5, and 25 degrees of freedom are presented.

While the performance of the Student-t approaches on these examples are com-

petitive with their Gaussian counterparts, there is a significant drawback that is not

reflected in the figures. Where the variational Gaussian approximation was stable

with respect to initial values and optimization method used, the Student-t methods

had severe problems to converge to reasonable parameter settings. The results pre-

sented here are the best outcomes among several runs. It was not atypical for the two

Student-t based approaches to suffer under diverging kernel parameters. For several

runs, the variance parameter was blowing up to unreasonable large numbers, while

the lengthscale parameter was shrinking to a value close to 0.

7.3 Simulated Data - Classification

7.3.1 Datasets

In order to get an idea of the behaviour of the methods for classification, two setups

with simulated data have been investigated. On the one hand, we have a setup with

performance of the Laplace approximation.
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Fig. 7.10: Prediction mean and ± one standard deviation interval for f in the re-

gression problem with Gaussian noise and outliers based on VGP and VTP1/2 ap-

proximation approximation. TP results for 3, 5, and 25 degrees of freedom are

presented.

Fig. 7.11: Zoomed in on prediction mean and ± one standard deviation interval for

f in the regression problem with Gaussian noise and outliers based on VGP and

VTP1/2 approximation approximation. Only the results for 3 degrees of freedom

are presented.
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Fig. 7.12: Comparison of the results for the variance parameter for the different

models from the regression simulation study. The vertical black line indicates the

true value of the variance parameter which has been used to simulate data. None

of the methods clearly outperforms the other methods in terms of capturing the true

value of the variance. Values for the t-Laplace approximation are missing because

the method diverges consistently. Non-converging runs of one of the other methods

have also been removed.
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Fig. 7.13: Comparison of the results for the lengthscale parameter for the differ-

ent models from the regression simulation study. The vertical black line indicates

the true value of the variance parameter which has been used to simulate data.The

Laplace approximation captures the true value the best over the two scenarios. In-

terestingly, the TP models are more robust towards outliers, as the degrees of free-

dom are reduced. Values for the t-Laplace approximation are missing because the

method diverges consistently. Non-converging runs of one of the other methods

have also been removed.
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Fig. 7.14: A sample training dataset for the classification experiment without mis-

labelled data.

simulated data, where the two classes are created by the following procedure:

f ∼ GP(0,K) (7.11)

yi ∼ Ber(sigm(fi)), (7.12)

where K is based on a squared-exponential kernel with a lengthscale of 0.25

and a variance of 5. The inputX was sampled uniformly from the interval between

0 and 1. Fifty datasets of seventy samples each were generated.

On the other hand, we have the same datasets, but some of the observations are

mislabelled. Similar to the simulation study for the regression case, these datasets

are generated by sampling the number of outliers, r, from the interval 4 to 7 uni-

formly, then r observations are randomly chosen and their label is switched.

Figure 7.14 shows an example dataset without mislabelled observations and Fig-

ure 7.15 depicts the same dataset with five mislabelled observations.
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Fig. 7.15: A sample training dataset for the classification experiment with misla-

belled observations. The crosses indicated the observations that have been misla-

belled.

7.3.2 MCMC

Figure 7.16 presents the posterior predictive probabilities for the simulated data

sets. In the left column, we can see the probabilities for the clean case, that is, the

unaltered one, while in the right column we can see the impact of the mislabelled

observations.

For the case without outliers, we can see a clear difference in the shape of the

decision boundary, that is, the boundary that separates the two classes (indicated

by the white area between the red and blue areas) (Bishop (2006)). While the TP

models promote a smooth boundary, the GP model suggests a decision boundary

that extends far into the area that the TP models would assign to class A, the red

one. This is due to the GP model favoring a lower posterior mean for the length-

scale compared to the TP models. The lower the lengthscale, the more the high

probability areas for a certain class are concentrated around the observations from

that class.

When outliers are introduced, the resulting decision boundary and posterior pre-

dictive probabilities for the GP model look more like the ones from the TP models.
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In contrast, the outcomes of the TP models are rather stable towards the outliers.

While there is a shift from the posterior predictive probabilities towards 50%, due

to the outliers, the decision boundaries as such, did not move extensively. How-

ever, there does not seem to be a relationship between the robustness of the decision

boundary and the degrees of freedom. The model with twenty-five degrees of free-

dom seems to be the least affected, while the model with three degrees of freedom

appears to have changed the most.

As pointed out earlier in the Background Chapter (2.2), one of the interesting as-

pects of the TP is its posterior predictive variance. However, as Figure 7.17 shows,

in a binary classification problem, outliers or mislabelled observations do not neces-

sarily lead to an increase in the posterior predictive variance for the function values

f∗. While the TP has a higher variance than the GP for the case without misla-

belled data, the existence of mislabelled observations leads to a substantial drop in

posterior predictive variance. The behaviour can be explained with the long and

flat tails of the sigmoid function. In the scenario without outliers, the model wants

to assign very high or low posterior predictive probabilities. Due to the s-shape of

the sigmoid function with its relatively flat tails, the sigmoid maps function values

from a half-unbounded interval onto these high/low probability region. This leads

to a high variance in the function values. In contrast, for the perturbed scenario, the

model wants to assign posterior probabilities that are closer to 50%. In this regions,

the sigmoid function is relatively steep, therefore only a comparatively narrow in-

terval of function values are mapping to these probability regions. Consequently,

the variance of the function values f∗ is low.

While our example dataset gives some empirical evidence that using a TP can

be beneficial in terms of robustness, our simulation study does not show a signif-

icant advantage of the TP models when it comes to classification. In Figure 7.20

and Figure 7.21 the results of the simulation study for the variance and lengthscale

parameter are presented. None of the distributions seem to be affected strongly by

the introduction of outliers. There are some smaller shifts, but, besides of those, the

distributions are rather stable. This also supports our conclusion from the example

dataset, that the degrees of freedom seem to have no visible impact with respect to

robustness, at least within our experimental setup.
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All in all, these results are disappointing, however, it is important to consider

that the example from Futami et al. (2017) is based on their expectation propaga-

tion algorithm. That is, while there might not be a considerable gain from using a TP

for a binary classification problem which is solved via MCMC, using Student-t dis-

tributions as approximate posterior distributions could still hold substantial value.

This will be investigated in the coming sections.

7.3.3 t-Laplace

Figure 7.18 shows the posterior predictive probabilities for the simulated data. We

have trained the t-Laplace approximation with three, ten, and twenty-five degrees of

freedom. For comparison, the result for the Laplace approximation in the GP case

is depicted in the last row.

The most apparent feature of this figure is that the t-Laplace approximation

has basically learnt nothing about the two classes. While the ordinary GP-Laplace

approximation has resulted in a smooth decision boundary for the case without mis-

labelled data, the t-Laplace approximation has converged to solutions that predict

around 50% class membership for either class. The root cause for these poor results

is the same as in the regression case. Neither lengthscale, nor variance have con-

verged to a reasonable value for the t-Laplace approximation. As with the regression

case, we have tested different approaches to make the t-Laplace approximation con-

verge to sensible parameter values. However, our attempts were futile and we did

not manage to improve the convergence properties of the t-Laplace approximation.

While there is no question about the abysmal quality of the results produced

by the t-Laplace approximation, the outcome of the ordinary Laplace approxima-

tion is still of interest. For the case without mislabelled observations, the decision

boundary produced by the Laplace approximation differs considerably from the one

produced by MCMC. This can be seen as an indicator that a Gaussian centered

at the posterior mode is not capturing the true shape of the posterior distribution

p(f |X,y) adequately. Especially in higher dimensions, this is a well established

downside of the Laplace approximation (Nickisch & Rasmussen (2008))6.

6Nevertheless, we would like to stress again, that the models that are approximated by MCMC
and Laplace approximation are slightly different. That is, some of the differences could also be due
to this marginal difference in model definition.
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Fig. 7.16: Comparison of posterior predictive probabilities for MCMC for the clas-

sification problem. TP results for 3, 5, and 25 degrees of freedom are presented.
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Fig. 7.17: Comparison of posterior predictive standard deviation for MCMC for the

classification problem. TP results for 3, 5, and 25 degrees of freedom are presented.
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Moreover, we can see that the introduction of the mislabelled observations led

to a drastic deterioration of the decision boundary. Similar to the t-Laplace ap-

proximation, the Laplace approximation, in this specific case, did not converge to

reasonable parameter values. This shows that there is some potential for robust

methods to improve on the Laplace approximation.

Finally, taking into consideration the results of the simulation study (Figure 7.20

and Figure 7.21), we can see that the Laplace approximation usually converged to

variance parameters that are considerably below the the true value, while the length-

scale was often to be found higher than the actual one. That is, in our experiments,

the Laplace approximation had the tendency to underestimate the variance of f and

overestimate the impact of individual observations on classifying other observations

further away. Similarly to the MCMC case, the introduction of mislabelled obser-

vations does not seem to have a strong impact on the result distributions. However,

we would like to point out that the Laplace approximation diverged for some of the

examples and we have removed these examples from the image. Moreover, the right

tail of the result distribution for the lengthscale is more pronounced, indicating that

for a larger number of examples, the Laplace approximation led to a smaller length-

scale, which means that the influence of individual observations is more limited to

their close neighborhood in the presence of mislabelled data.

7.3.4 Variational Student-t Approximations

Similarly to the regression case, we do not present the results for VTP1 and VTP2

separately, as the outcomes of these methods are again visually indistinguishable

from each other (see Figure 7.20 and Figure 7.21). Therefore, we are analysing the

visual outcome of the two methods together.

In Figure 7.19 we can see the results for the VGP and the VTP1/2 methods. On

the one hand, for the clean data, there does not seem to be any visual difference

between the different methods. The decision boundaries appear to be the same. On

the other hand, the variational Gaussian approximation is comparatively strongly

affected by the mislabelled observations. However, with regards to the outcomes

of the experiments for the ordinary regression with outliers, the impact on the GP

model is not that severe. Interestingly, similary to the Laplace approximation, the
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Fig. 7.18: Comparison of posterior predictive probabilities for Laplace and t-

Laplace approximation for the classification problem. TP results for 3, 5, and 25

degrees of freedom are presented.
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Gaussian approximation cannot recover the decision boundary obtained by MCMC

for the clean case.

With respect to the simulation study, the variational methods capture the under-

lying true lengthscale better than MCMC or Laplace approximation. This holds for

the simulated data with and without mislabelled data. In contrast, VGP and VTP1/2

tend to underestimate the variance parameter considerably. Consequently, models

based on these parameter values would overestimate the impact individual obser-

vations have on distant observations, while providing a too small band in which

the function values f are to be expected. Comparing the result distributions, there

does not seem to be much of a difference between VGP and VTP1/2, regardless of

whether mislabelled data is present or not 7. That is, the simulation does not provide

strong evidence that TPs have substantial benefits over their GP counterparts when

it comes to binary classification problem, at least when the kernel parameters are

taken into consideration.

However, while the inferred kernel parameters do not seem to differ much be-

tween TP and GP models, there is an interesting characteristic of the posterior pre-

dictive probabilities (Figure 7.19) obtained from VTP1/2, which is not observed

for MCMC. The variational Student-t approximations are assigning less posterior

probability mass than their Gaussian counterpart on average. That is, the probabil-

ity parameter of the Bernoulli observation model is more regularized towards 50%

than in the GP case. This is especially pronounced for the perturbed data set, but the

effect also persists in the clean data. This can be explained with a reduced need for

the variational Student-t distribution to deviate from the prior (which is centered at

0) to accommodate observed data, especially outliers, in the observation space, due

to the heavy-tails of the Student-t distribution. That is, the Student-t distribution

that is used in VTP1/2 to approximate the posterior of f does not need to shift as

much as the Gaussian that is used for VGP.

7This behaviour is observed over all the different methods. The introduction of outliers does not
seem to affect the estimates for the kernel parameters considerably. This might not be a general
characteristic, but more of an artifact of our experimental setup. The setup that we have used to
generate the data does not create easily separable classification examples. That is, even for the clean
case, it is not uncommon to find individual observations that belong to a different class than other
classes in close proximity (e.g. our example dataset). Obviously, introducing to such datasets a small
number of mislabelled observations, cannot have an extreme impact, as even for the clean dataset,
the model parameters need to reflect that the data is not composed of monolithic, easily separable
clusters of different classes
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While the performance of the Student-t approaches on these examples are com-

petitive with their Gaussian counterparts, there is a significant drawback that is not

reflected in the figures. Where the variational Gaussian approximation was stable

with respect to initial values and optimization method used, the Student-t methods

had severe problems to converge to reasonable parameter settings. The results pre-

sented here are the best outcomes among several runs. It was not atypical for the two

Student-t based approaches to suffer under diverging kernel parameters. For several

runs, the variance parameter was blowing up to unreasonable large numbers, while

the lengthscale parameter was shrinking to a value close to 0. This constellation led

to posterior predictive probabilities that are close to 50% almost everywhere.

7.4 Real Data

7.4.1 Datasets

For testing the methods on real data, the Penn Machine Learning Benchmarks

(PMLB) were used (Olson et al. (2017)). The dataset contains 94 binary classifica-

tion problems with up to 49000 observations and up to 1000 features. The problems

were split into two groups, problems with less than 500 observations were used

to test the variational Student-t approximations and the t-Laplace approximation,

whereas the other problems were used to evaluate the variational sparse inducing

point methods.

In both cases, each problem dataset was split into a training set (60%) and a test

set (40%). The performance of the models were evaluated on the test set in terms

of accuracy and the average log-loss per observation, where log-loss is given by

Bishop (2006)

log-loss = −(yobserved log(p(ypredicted)) + (1− yobserved) log(1− p(ypredicted))).

Where p(ypredicted) indicates the probability of y having the label one assigned

by the model. The log-loss has been chosen due to its more fine-grained view on

the prediction performance of an algorithm. In contrast to accuracy, log loss takes

into account the confidence of the model with respect to its predictions. That is, if a

model assigns a high probability to a class, but this prediction is wrong, then a high
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Fig. 7.19: Comparison of posterior predictive probabilities for VGP and VTP1/2

approximation2 for the classification problem. TP results for 3, 5, and 25 degrees

of freedom are presented.
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Fig. 7.20: Comparison of the results for the variance parameter for the different

models from the classification simulation study. The variational methods result in

similar values for the variance parameter. The vertical line indicates the true value

that has been used to simulate the datasets. Only MCMC captures the true value

adequately. Values for the t-Laplace approximation are missing because the method

diverges consistently. Non-converging runs of one of the other methods have also

been removed.
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Fig. 7.21: Comparison of the results for the lengthscale parameter for the different

models from the classification simulation study. Comparably to the variance param-

eter case, the variational methods result in similar values. Moreover, the variational

methods capture the true value (indicated by the vertical line) the best. Values for

the t-Laplace approximation are missing because the method diverges consistently.

Non-converging runs of one of the other methods have also been removed.
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loss is incurred.

In addition of using the average log loss as a performance indicator, we have

also used it as a way to assess whether an algorithm has converged to a sensible

parameter setting or not. An average log loss of close to 0.69 is comparable to a

classifier that outputs class probability of 50% every time (log 0.5 ≈ −0.69), i.e. the

classifier flips a coin for assigning a class. Datasets, for which none of the methods

was able to achieve an average log loss of less than 0.69, are not presented in this

comparison.

7.4.2 Small Data

Table 7.1 depicts the summary statistics of the results for each method on the small

datasets in terms of average log loss and accuracy. The results for each individ-

ual data set can be found in Appendix C.1. The degrees of freedom used for the

Student-t based methods have been determined via cross-validation on the training

data set. In contrast to the simulated data sets, we have not tuned any of the meth-

ods with respect to the initial values to give a more clear idea about the out-of-box

performance of these methods. Importantly, this would put the variational Student-t

methods at a disadvantage, as they are suffering from poor convergence properties.

However, this is mitigated by the cross-validation which frequently tends to find

degrees of freedom for which the method converges to reasonable parameter set-

tings. Noteworthy, for 11 out of the 45 data sets with less than 500 observations

none of the methods converged reasonably with regards to our log loss convergence

criterion.

Overall, the GP-Laplace approximation is the method with the smallest mean

log loss per observation as well as the one with the highest accuracy on the data sets

with less than 500 observations. However, if we look at the number of times the

method was the best among all the different methods, we can see that in terms of

average log loss, the variational Gaussian and the Student-t approximation (VTP1)

are more successful, while the two methods are close to the GP-Laplace approx-

imation in terms of accuracy. The strong performance of the method is due to it

being less prone to converge to suboptimal solutions. The variational methods have

converged to parameter settings with an average log loss worse than 0.69 for several
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data sets. That is, on these data sets, the variational methods were inferior to a clas-

sifier that flips a coin. The higher standard deviation with respect to the performance

indicators of the variational methods can also be traced back to this brittleness when

it comes to convergence.

In contrast to the good performance of the GP-Laplace approximation, the t-

Laplace approximation performs poorly with respect to log loss and accuracy. Ag-

gravatingly, this performance cannot be explained with bad results for some of the

data sets. The t-Laplace approximation performs uniformly weakly over the training

sets (indicated by the relatively low standard deviation of the performance metrics).

However, based on the results for the simulated data, this poor performance is not

surprising.

Comparing the variational methods to each other, we see that the two variational

Student-t methods perform differently for the real world data sets. On the one hand,

the VTP1 algorithm is the best variational method in terms of log loss and a close

second to the GP-Laplace approximation for how many times the method was the

best method for the accuracy score. On the other hand, the VTP2 algorithm cannot

compete with the other methods. Especially with respect to accuracy, the results

are disappointing for VTP2, even the t-Laplace approximation scored higher. In

contrast, the variational Gaussian approximation performs relatively well and, in

particular, dominates the ”log loss - times best” category clearly. However, like the

other variational algorithms, it suffers from occasionally converging to suboptimal

parameters.

Table 7.1: Summary statistics of the results on the small data sets.

Avg. Log Loss Accuracy

Method Mean Std times best Mean Std times best

LAPL 0.473 0.181 7 0.777 0.146 18

TLAPL 0.657 0.236 2 0.700 0.182 6

VGP 0.543 0.386 15 0.733 0.223 16

VTP1 0.508 0.287 10 0.716 0.224 17

VTP2 0.579 0.279 3 0.639 0.236 10
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7.4.3 Large Data

Tables 7.2, 7.3, and 7.4 show the summary statistics for the sparse methods with 50,

100, and 200 inducing points respectively. In accordance with the training for the

smaller data sets, the degrees of freedom of the Student-t based methods have been

picked via cross-validation and besides of this, none of the methods has been tuned

to improve performance. The individual results for the data sets can be found in the

appendix C.1.

The most noteworthy characteristic of the results is the overall number of suc-

cessful trainings. While the Penn Machine Learning Benchmarks contain around

50 binary classification problems with more than 500 observations, the variational

sparse inducing point methods have converged for less than 50% of them to a result

that is, on average, better than flipping a coin. The literature contains references to

these convergence problems for inducing point methods Gal et al. (2014). However,

besides using kmeans-clustering to initiate the inducing points8, we have not found

any other initialization strategy to mitigate these convergence problems in the litera-

ture. Therefore, we argue that our experiments show that the effective initialization

of inducing points is still an open research question.

Regarding the performance of the methods, the sparse variational Gaussian ap-

proximation is the best method in every category except for the accuracy score when

200 inducing points are used. Nevertheless, it is difficult to generalize these results.

All the methods failed to converge on a majority of the data sets. Furthermore, in

cases where all the methods converged, the difference between them is frequently

not that substantial. Anyway, for all configurations, there are multiple data sets for

which the Student-t methods outperform their Gaussian counterpart, indicating that

the Student-t approaches can be a viable opportunity to improve on the variational

Gaussian approximation results.

Moreover, the results show two additional characteristics that need to be ad-

dressed. On the one hand, it might be surprising that the average log loss is not

steadily declining with the increasing number of inducing points. However, this can

be explained that the underlying data sets are not the same. The methods have con-

verged for more data sets with 200 inducing points than for 100 or 50. That is, the

8Which we have done.
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statistics of the different tables are only to a limited extend comparable. On the other

hand, one might wonder why the Student-t based methods seem to perform almost

on par with their Gaussian counterpart in terms of accuracy, even outperforming the

Gaussian method for 200 inducing points, while in terms of log loss, the variational

Gaussian method clearly wins for all inducing points. This behaviour can be linked

back to what we have observed for the simulated data. The variational Student-t ap-

proximations assign less probability to classes in general. Consequently, even when

one of the Student-t methods has a higher accuracy than the Gaussian method, it

might still fall short in terms of log loss, because it assigns lower class probabil-

ities to most of the observations, which can be worse than predicting individual

observations wrongly.

Table 7.2: Summary statistics for the sparse methods with 50 inducing points

Avg. Log Loss Accuracy

Method Mean Std times best Mean Std times best

VGP 0.193 0.174 10 0.854 0.234 13

VTP1 0.221 0.214 3 0.836 0.242 11

VTP2 0.211 0.193 5 0.842 0.237 11

Table 7.3: Summary statistics for the sparse methods with 100 inducing points

Avg. Log Loss Accuracy

Method Mean Std times best Mean Std times best

VGP 0.183 0.156 8 0.856 0.238 10

VTP1 0.213 0.194 6 0.841 0.243 8

VTP2 0.212 0.196 3 0.840 0.243 9

Table 7.4: Summary statistics for the sparse methods with 200 inducing points

Avg. Log Loss Accuracy

Method Mean Std times best Mean Std times best

VGP 0.214 0.231 13 0.858 0.204 13
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VTP1 0.265 0.261 3 0.861 0.183 10

VTP2 0.264 0.261 5 0.862 0.181 11
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Chapter 8

Outlook Future Work

In this chapter, we give an overview of potential future work. The first two sections

are dedicated to topics which we are actively pursuing, whereas the last one covers

less concrete research projects.

8.1 Reparameterization Trick

One disadvantage of the variational Student-t approaches derived in Chapter 5 is

that, in case of a dense covariance matrix V ,O(n2) need to be learnt for the normal

variational bound or O(m2) in the scalable version.

However, for the GP case, Seeger (1999) and Nickisch & Rasmussen (2008)

showed that a bound withO(n) free parameters can be obtained. This was achieved

by calculating the first derivatives with respect to the variational parameters,m and

V , and then solving for the parameters. Following the same approach for the ELBO

of VTP1:

∂ELBO

∂m
=

∂A

∂m
+

2Ψp

1− t
(νK)−1m = 0⇒ ∂A

∂m
=

2Ψp

t− 1
(νK)−1m (8.1)

∂ELBO

∂V
=
∂A

∂V
+

Ψp

(1− t)(ν − 2)
K−1 −D

(
t− 1

2t

)
det |V |

t−1
2t V −1 = 0.

(8.2)

In contrast to the GP case, ∂ELBO
∂V

cannot be used to obtain an alternative param-

eterization for the covariance matrix of the variational distribution. Nevertheless, if
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it is assumed that

det |V |
t−1
2t ≈ 1,

which can be justified by t−1
2t

being close to 0, equation 8.2 can be solved for V :

∂ELBO

∂V
= 0⇒ V = D

(
t− 1

2t

) ∂A
∂V︸︷︷︸
Λ

+
Ψp

(1− t)(ν − 2)
K−1


−1

. (8.3)

The interesting property of this reparameterization is that Λ is a diagonal matrix,

while the variational parameter V is a dense matrix. As a consequence, instead of

O(n2) parameters to optimize, the method requires only the optimization of 2n

parameters.

8.2 Variational Inference for Latent Student-t Pro-

cess Models

The latent Gaussian process model by Lawrence (2005) is a Bayesian non-linear

dimensionality reduction method that uses the GP regression model (with multiple

outputs):

p(Y |X) =

∫
p(Y |F )p(F |X)df , (8.4)

with unobserved X . In the original work, the latent inputs X were optimized,

as marginalizing out X requires the computation of integrals involving the kernel

function with respect toX , e.g. Ep(X) [Knn].

Titsias & Lawrence (2010) managed to approximately solve these integrals with

variational sparse inducing point methods for certain types of kernels. That is, Tit-

sias et. al. established variational lower bound on p(Y ) itself.

For the Student-t Process, it might not be possible to derive a lower bound in a

similar way. Following Titsias & Lawrence (2010), we can start by t-relaxing and

lower bounding p(Y ):
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logt p(Y ) = logt

∫
q(X)

p(Y |X)⊗t p(X)

q(X)
dX (8.5)

≥
∫
q(X)t [logt p(Y |X) + logt p(X)− logtq(X)] dX (8.6)

≥ 1∫
q(X)tdX

[∫
q̃(X) logt p(Y |X)−Dt(q(X) ‖ p(X))

]
.

(8.7)

From chapter 6, we have our two ELBOs to lower bound logt p(Y |X). How-

ever, both involve X in the numerical integral via the kernel functions. In Titsias

& Lawrence (2010) the integral is not an issue, because they were using a Gaus-

sian observation model, which allows for a bound that does not require q(f). The

dispersion parameter of this distribution is given by

Knn +KnmK
−1
mm (V −Kmm)K−1

mmKmn,

whereas Knn and Knm both depend on X . We have not found a reasonable ap-

proximation for the integral so far.

8.3 Miscellaneous

There are several research topics that immediately arise from this thesis, but for

which we have not devoted extensive effort so far:

1. The primary issue of the TP methods is their instability with respect to con-

vergence. There needs to be more work done on what factors are affecting the

convergence of the methods and how to control them to obtain robust results.

Potential starting points for this could be, for example, Sheth et al. (2015),

who address convergence properties for the numerical integral of the varia-

tional Gaussian approximation, or Challis & Barber (2013), who investigate

more general convergence questions of the variational Gaussian approxima-

tion.

2. Moreover, the current approach is to choose the degrees of freedom by cross-

validation. This is necessary, because with variable degrees of freedom, the

methods presented in this thesis get extremely unstable. However, being able
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to optimize the degrees directly would avoid the cost of training the models

multiple times. One approach could be to regularize the degrees of freedom

to avoid large jumps, e.g. with a prior. Alternatively, proximal optimization

methods (Parikh et al. (2014)) could also potentially allow for the optimiza-

tion of the degrees of freedom.

3. As a natural extension of putting a prior onto the degrees of freedom, we

could use priors on all the hyperparameters and test our methods in a fully

Bayesian setting. This approach is also interesting from a stability point of

view, the regularization imposed by the prios might force the parameters to

converge to sensible values.

4. Additionally, there are also some potential TP models that could be targeted

by the methods presented in this thesis. Our current work focuses on data

without special structure. In contrast, GP priors have been used with struc-

tured data, such as time series data (e.g. Roberts et al. (2013), Frigola-Alcalde

(2016), Wilson & Ghahramani (2010), Wu et al. (2014)) or graph/network

data (Lloyd et al. (2012), Yu & Chu (2008)). It would be interesting to see

how a TP prior performs and how to utilize our methods in such scenarios.

5. Another potential research direction is the deep Student-t Process. In case

that we manage to derive tractable equations for latent Student-t Process mod-

els, we would attempt to generalize deep Gaussian Process by Damianou &

Lawrence (2012).

6. Finally, there is also some opportunity in extending the algorithm toolbox

for (generalized) TP models. A straighforward contribution would be the

extension of the expectation propagation method from Futami et al. (2017) to

GTPR models. Moreover, there is also the possibility to extend our algorithms

to utilize distributed computing environments. For example, Gal et al. (2014)

provides a foundation for distributed sparse inducing point methods.
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Chapter 9

Conclusion

In this thesis, the problem of efficient and scalable inference for GTPR models

has been considered. Using t-relaxation, a tool build on top of q-algebra, we have

demonstrated how methods for GGPR models can be adapted to the GTPR case.

To be precise, we have used t-relaxation to derive the t-Laplace approximation,

two versions of variational Student-t approximation, and two sparse inducing point

methods. All these methods have in common that, in contrast to the methods that

have inspired them, they use a multivariate Student-t distribution to approximate the

posterior distribution.

The methods have also been tested on simulated and real data. From the exper-

iments with simulated data, there are four important takeaways:

1. The t-Laplace approximation does not work properly. We are not sure whether

the approximation is generally poor or there is an error in the implementa-

tion/derivation of the method, but in its current form, the t-Laplace approxi-

mation cannot be used reasonably.

2. While the regression experiments suggest that the degrees of freedom have

a strong impact on the results obtained by the Student-t based approxima-

tion methods, the classification experiments draw a different picture, there we

have seen only a negligible impact of the degrees of freedom on the results.

3. For individual datasets, the Student-t based methods seem to be less affected

by mislabelled observations in terms of distorted decision boundaries. How-

ever, based on our simulation study, this does not appear to hold in general.
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4. The variational Student-t methods are prone to converge to bad local minima

and tuning them properly can take a considerable amount of time.

In contrast, from the real world benchmarks, we have learnt two important

lessons:

1. For small data sets, there is no clear best-method-to-use. While the GP-

Laplace approximation was the best method in terms of mean average log

loss and accuracy, there were still many different data sets, where one of the

other methods was better.

2. All the sparse inducing point methods had severe convergence problems.

Conclusively, we argue that the variational Student-t methods have the potential

to be used in the future not as a replacement for the variational Gaussian methods,

but as a complementary method. While the out-of-the-box performance of the varia-

tional Gaussian method is better, the variational Student-t can shine when the effect

of outliers or mislabelled data needs to be mitigated and sufficient time is available

to tune them properly.

In addition, our experiments would also suggest that the sparse inducing point

methods for GTPR models can outperform their Gaussian counterparts occasion-

ally. However, the standard inducing point methods was still more successful in the

comparison. Moreover, the convergence problems of all the inducing point methods

makes a comparison difficult.

In contrast to the other methods, we do not believe that the t-Laplace approxi-

mation is currently a viable alternative for GP models with Laplace approximation.

112



Appendix A

Important Identities and Properties

A.1 Q-Algebra

logt(x) =
x1−t − 1

1− t
(A.1)

expt(x) = [1 + (1− t)x]
1

1−t . (A.2)

logt (xy) = logt(x) + logt(y) + (1− t)xy. (A.3)

logt

(
x

y

)
= y1−t [logt(x)− logt(y)] . (A.4)

x⊗t y =
[
x1−t + y1−t − 1

] 1
1−t . (A.5)

x	t y =
[
x1−t − y1−t + 1

] 1
1−t . (A.6)

logt(x⊗t y) = logt(x) + logt(y). (A.7)

logt(x	t y) = logt(x)− logt(y). (A.8)
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Appendix B

Supplementary Derivations

B.1 Concavity of t-logarithm

It can be shown that the t-logarithm is concave for positive values of x and t. Recall

that a function f(x) is concave, if its second derivative is negative for all x Wasser-

man (2010).

d2

dx2
logt(x) =

d2

dx2

x1−t − 1

1− t
(B.1)

=
d

dx

d

dx

x1−t − 1

1− t
(B.2)

=
d

dx

1

x−t
(B.3)

= (−t) 1

xt+1
. (B.4)

While the first term, −t, is negative for all t > 0, the second term is positive for

all x > 0. Consequently, the second derivative of the t-logarithm is negative for all

t > 0 and x > 0 and therefore the t-logarithm is concave within these bounds.

From this it readily follows that the Jensen’s inequality holds for the t-logarithm

for all t > 0 and x > 0.

B.2 Derivation of q(f)

First, we start with the joint multivariate Student-t distribution of p(f ,u) and use

the Gaussian scale-mixture representation on it:
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p (f) =

∫
F

∫
R
p (f ,u|r) p(r)drdf (B.5)

=

∫
F

∫
R
p (f , |u, r) p(u|r)p(r)drdf . (B.6)

Now we are introducing the variational distribution by substituting p(u|r) with

the Gaussian part of the scale-mixture representation of the variational distribution

q(u), that is:

q (u) =

∫
q(u|r)p(r)dr, (B.7)

where we assume that the Gamma density term p(r) is identical to the one used

for the joint multivariate Student-t distribution, that is:

q(f) =

∫
F

∫
R
p (f , |u, r) q(u|r)︸ ︷︷ ︸

:=A

p(r)drdf . (B.8)

It is important to notice, that the integral A is a marginalization over a multivari-

ate Gaussian distribution, that is:

A ∼ N
(
f ;α,

B

r

)
, (B.9)

with

α = KnmK
−1
mmm (B.10)

B = Knn +KnmK
−1
mm (V −Kmm)K−1

mmKmn. (B.11)

Substituting this result back into B.8 gives:

q (f) =

∫
R
N
(
f ;α,

B

r

)
Gamma

(
r;
ν

2
,
ν

2

)
dr. (B.12)

This is the Gaussian scale-mixture representation of a Student-t distribution:

q (f) ∼ T (ν,α,B) , (B.13)

whereas α andB are the same as in B.10 and B.11 respectively.
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B.3 Sparse VTP2 Problem

While the VTP2 method seems to be cleaner in terms of complexity deriving it,

compared to the VTP1 method, its major drawback is that the method cannot be

readily translated into sparse inducing point method.

From section 6.1, we know that:

logt p(y|u) = logt

∫
p(y|f)p(f |u)df (B.14)

≥
∫
p(f |u) logt p(y|f)df (B.15)

= Ep(f |u) [logt p(y|f)] . (B.16)

Then we can derive a lower bound on p(y) based on VTP2:

logt p(y) = logt

∫
p(y|u)⊗ p(u)du (B.17)

= logt

∫
q(u)

p(y|u)⊗ p(u)

q(u)
du (B.18)

=

(∫
q(u)tdu

)[ ∫
q̃(u) logt p(y|u)du+∫

q̃(u)(logt p(u)− logt q(u))du

] (B.19)

≥
(∫

q(u)tdu

)
×
[ ∫

q̃(u) logt Ep(f |u) [logt p(y|f)] du+∫
q̃(u)(logt p(u)− logt q(u))du

]
,

(B.20)

where q̃(u) = q(u)t∫
q(u)tdu

is the escort distribution of q(u) (see Section 5.2 for

more details).

We would now need to approximate the integral
∫
p(f |u)q̃(u). However, the

problem is that the distributions have different degrees of freedom, we can therefore

not argue that they are jointly, multivariate Student-t distributed or invoke our ap-

proximation from appendix B.2, which would also require the distributions to have

the same degrees of freedom to be justifiable. Therefore, we have not covered a

direct extension of the VTP2 algorithm in the sparse inducing point section.
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Appendix C

Experiments

C.1 Result Tables

C.2 Small Data

Table C.1: Comparison of average log loss results for the small data sets.

Avg. Log Loss

Dataset LAPL TLAPL VGP VTP VTP2

heart-h 0.4612 0.6922 0.6397 0.6785 0.6873

analcatdata asbestos 0.6347 0.661 0.6339 0.6431 0.6946

analcatdata boxing1 0.614 0.6144 0.5720 0.6421 0.6931

analcatdata boxing2 0.6097 0.6372 0.6131 0.6076 0.6931

analcatdata creditscore 0.1532 0.6842 0.0711 0.0589 0.0589

analcatdata fraud 0.6043 0.6064 0.5970 0.6494 0.6494

analcatdata japansolvent 0.6931 0.6741 0.6929 0.6931 0.6931

analcatdata lawsuit 0.5006 0.656 0.0642 0.0919 0.1131

appendicitis 0.3428 1.1515 0.3408 0.3437 0.4485

backache 0.3807 0.6931 0.3802 0.4221 0.6931

breast-cancer 0.5899 0.5784 0.5355 0.7358 0.748

bupa 0.5770 0.694 1.0395 0.6831 0.6831

table continues
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Avg. Log Loss

Dataset LAPL TLAPL VGP VTP VTP2

cleve 0.6931 0.6931 0.6287 0.6931 0.6931

colic 0.6516 0.6897 0.6637 0.67 0.67

corral 0.1975 0.258 0.0437 0.0301 0.0305

glass2 0.5417 0.5486 0.5801 0.5411 0.6011

haberman 0.5141 0.7131 1.2906 0.8244 0.7945

heart-c 0.6931 0.6931 0.6059 0.6931 0.6931

hepatitis 0.4944 0.6931 1.5821 0.6931 0.6931

horse-colic 0.6916 0.6945 0.7088 0.6763 0.6763

house-votes-84 0.1071 0.2487 0.0848 0.1919 0.542

hungarian 0.5350 0.6923 0.5936 0.6931 0.6931

ionosphere 0.2911 0.3799 0.2422 0.3927 0.7295

labor 0.3329 0.6924 0.2330 0.2859 0.2859

liver-disorder 0.6246 0.6937 1.1256 0.6835 0.6852

mux6 0.3958 0.5072 0.1383 0.0954 0.0975

postoperative-patient-data 0.5596 0.5478 1.3944 1.351 1.397

prnn crabs 0.1394 0.6615 0.0681 0.0266 0.1201

prnn synth 0.2694 1.691 0.2493 0.2443 0.6931

saheart 0.5636 0.6931 0.5633 0.6931 0.6931

sonar 0.4446 0.5501 0.4081 0.4292 0.6931

spect 0.4861 0.5836 0.4271 0.5397 0.7526

spectf 0.6037 0.6485 0.5763 0.5102 0.5102

vote 0.1086 0.4493 0.1003 0.0963 0.1021

Table C.2: Comparison of accuracy results for the small data sets.

Accuracy

Dataset LAPL TLAPL VGP VTP VTP2

heart-h 0.7881 0.661 0.6271 0.678 0.678

table continues
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Accuracy

Dataset LAPL TLAPL VGP VTP VTP2

analcatdata asbestos 0.5294 0.6765 0.5294 0.7059 0.7059

analcatdata boxing1 0.7083 0.6875 0.7500 0.7500 0.6875

analcatdata boxing2 0.7358 0.6415 0.717 0.7925 0.5472

analcatdata creditscore 1.0000 1.0000 0.975 1.0000 0.975

analcatdata fraud 0.6471 0.6471 0.6471 0.6471 0.6471

analcatdata japansolvent 0.5714 0.5238 0.4762 0.5238 0.5238

analcatdata lawsuit 0.9717 0.9623 0.9717 0.9717 0.9717

appendicitis 0.8605 0.7674 0.8605 0.8605 0.7907

backache 0.8750 0.8611 0.8750 0.8611 0.125

breast-cancer 0.7304 0.7304 0.7217 0.3043 0.3043

bupa 0.7101 0.3768 0.2609 0.4565 0.4565

cleve 0.5738 0.5984 0.6885 0.4508 0.4098

colic 0.6419 0.6622 0.6554 0.6486 0.6554

corral 1.0000 0.8594 1.0000 1.0000 1.0000

glass2 0.7424 0.7273 0.7273 0.7879 0.6818

haberman 0.7724 0.6748 0.6829 0.7236 0.7236

heart-c 0.5328 0.5574 0.6475 0.4672 0.4672

hepatitis 0.8065 0.1935 0.0968 0.1935 0.1935

horse-colic 0.6216 0.6284 0.5676 0.6486 0.6486

house-votes-84 0.977 0.9195 0.9885 0.9828 0.454

hungarian 0.7542 0.5339 0.6864 0.4237 0.4237

ionosphere 0.8794 0.8369 0.9007 0.6809 0.6241

labor 0.913 0.8696 0.9565 0.913 0.913

liver-disorder 0.6957 0.3551 0.2246 0.4348 0.4348

mux6 0.9231 0.7692 0.9615 0.9615 0.9615

postoperative-patient-data 0.7778 0.7778 0.7778 0.7778 0.7778

prnn crabs 1.0000 0.9375 0.9875 0.9875 0.9875

prnn synth 0.9000 0.51 0.9000 0.9000 0.49

table continues
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Accuracy

Dataset LAPL TLAPL VGP VTP VTP2

saheart 0.6865 0.6108 0.6811 0.3568 0.3568

sonar 0.8333 0.7143 0.8214 0.8452 0.5

spect 0.8131 0.7757 0.7757 0.8318 0.8318

spectf 0.5214 0.8429 0.8429 0.8429 0.8429

vote 0.954 0.9425 0.9598 0.9598 0.9598

C.3 Large Data

Table C.3: Comparison of average log loss results for the sparse inducing point

methods with 50 inducint points.

Avg. Log Loss

Dataset VGP VTP VTP2

agaricus-lepiota 0.0103 0.0171 0.0175

banana 0.2103 0.2087 0.2086

breast-w 0.0808 0.0778 0.0782

chess 0.0482 0.0622 0.064

flare 0.4245 0.4229 0.4228

irish 0.0918 0.0757 0.0819

mofn-3-7-10 0.0026 0.0026 0.0024

monk1 0.3720 0.4898 0.4894

monk2 0.4172 0.4272 0.4297

monk3 0.1122 0.1101 0.1091

mushroom 0.0085 0.0151 0.0148

phoneme 0.3126 0.3265 0.3277

spambase 0.3930 0.6931 0.5087

threeOf9 0.0886 0.0938 0.0961

tic-tac-toe 0.2937 0.3611 0.3533

table continues
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Avg. Log Loss

Dataset VGP VTP VTP2

titanic 0.5183 0.5124 0.5133

twonorm 0.0553 0.0553 0.0552

xd6 0.0341 0.041 0.0423

Table C.4: Comparison of accuracy results for the sparse inducing point methods

with 50 inducing points.

Accuracy

Dataset VGP VTP VTP2

agaricus-lepiota 1.0000 0.9988 0.9985

banana 0.3901 0.3920 0.3920

breast-w 0.9750 0.9750 0.9750

chess 0.9867 0.9805 0.9789

flare 0.8126 0.8150 0.8150

irish 0.985 0.9900 0.9900

mofn-3-7-10 1.0000 1.0000 1.0000

monk1 0.8072 0.704 0.704

monk2 0.7925 0.8091 0.805

monk3 0.9775 0.9775 0.9775

mushroom 1.0000 1.0000 1.0000

phoneme 0.8529 0.8511 0.8483

spambase 0.8256 0.6181 0.7355

threeOf9 0.9610 0.9610 0.9610

tic-tac-toe 0.9062 0.8776 0.8802

titanic 0.1260 0.1260 0.1260

twonorm 0.9801 0.9801 0.9824

xd6 1.0000 1.0000 1.0000

table continues
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Table C.5: Comparison of average log loss results for the sparse inducing point

methods with 100 inducint points.

Avg. Log Loss

Dataset VGP VTP VTP2

banana 0.2092 0.2088 0.2089

breast-w 0.0809 0.0806 0.0803

chess 0.0418 0.0577 0.0565

flare 0.4246 0.4229 0.423

irish 0.0856 0.0835 0.0654

kr-vs-kp 0.0530 0.0723 0.0721

mofn-3-7-10 0.0026 0.0016 0.0018

monk1 0.2678 0.286 0.296

monk2 0.3463 0.3290 0.3535

monk3 0.1114 0.1031 0.1063

phoneme 0.3022 0.3125 0.3123

spambase 0.3490 0.6931 0.6931

threeOf9 0.0771 0.0856 0.0854

tic-tac-toe 0.1755 0.2872 0.2545

titanic 0.5143 0.5127 0.514

twonorm 0.0555 0.0554 0.0553

xd6 0.0299 0.0323 0.0352

Table C.6: Comparison of accuracy results for the sparse inducing point methods

with 100 inducing points.

Accuracy

Dataset VGP VTP VTP2

banana 0.3915 0.3929 0.3934

breast-w 0.9750 0.9750 0.9750

table continues
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Accuracy

Dataset VGP VTP VTP2

chess 0.9891 0.9812 0.982

flare 0.8126 0.8150 0.8150

irish 0.985 0.985 0.9900

kr-vs-kp 0.9828 0.9789 0.9797

mofn-3-7-10 1.0000 1.0000 1.0000

monk1 0.8879 0.8744 0.852

monk2 0.8257 0.8382 0.8299

monk3 0.9775 0.9820 0.9820

phoneme 0.8566 0.8580 0.8575

spambase 0.8539 0.6312 0.6339

threeOf9 0.9707 0.961 0.961

tic-tac-toe 0.9505 0.9167 0.9245

titanic 0.1260 0.1260 0.1260

twonorm 0.9804 0.9818 0.9824

xd6 1.0000 1.0000 1.0000

Table C.7: Comparison of average log loss results for the sparse inducing point

methods with 200 inducint points.

Avg. Log Loss

Dataset VGP VTP VTP2

agaricus-lepiota 0.0060 0.0119 0.0121

banana 0.2089 0.2119 0.2122

breast-w 0.0810 0.0827 0.0824

chess 0.0387 0.0514 0.0498

flare 0.4246 0.4248 0.4256

GAMETES Epistasis 2-Way 20atts 0 0.6931 0.6887 0.6869

GAMETES Heterogeneity 20atts 1600 Het 0 0.6931 0.6421 0.6466

table continues
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Avg. Log Loss

Dataset VGP VTP VTP2

GAMETES Heterogeneity 20atts 1600 Het 0 0.6931 0.6847 0.6834

irish 0.0847 0.0662 0.0592

kr-vs-kp 0.0475 0.0619 0.0606

mofn-3-7-10 0.0028 0.0014 0.0014

monk1 0.2235 0.2110 0.2146

monk2 0.2793 0.2771 0.2838

monk3 0.1109 0.1173 0.1185

mushroom 0.0049 0.0088 0.0096

phoneme 0.2940 0.2989 0.2988

spambase 0.2969 0.6931 0.6931

threeOf9 0.0765 0.094 0.0882

tic-tac-toe 0.1525 0.2269 0.213

twonorm 0.0559 0.6931 0.6931

xd6 0.0299 0.0295 0.0294

Table C.8: Comparison of accuracy results for the sparse inducing point methods

with 200 inducing points.

Accuracy

Dataset VGP VTP VTP2

agaricus-lepiota 1.0000 1.0000 1.0000

banana 0.3915 0.3929 0.3934

breast-w 0.9750 0.9679 0.9679

chess 0.9898 0.9859 0.9867

flare 0.8126 0.8126 0.808

GAMETES Epistasis 2-Way 20atts 0 0.4859 0.5641 0.5859

GAMETES Heterogeneity 20atts 1600 Het 0 0.4859 0.6438 0.6406

GAMETES Heterogeneity 20atts 1600 Het 0 0.4859 0.5719 0.5813

table continues
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Accuracy

Dataset VGP VTP VTP2

irish 0.985 0.9900 0.9900

kr-vs-kp 0.9883 0.9812 0.9812

mofn-3-7-10 1.0000 1.0000 1.0000

monk1 0.9148 0.9327 0.9327

monk2 0.8714 0.8880 0.8880

monk3 0.9775 0.9775 0.973

mushroom 1.0000 1.0000 1.0000

phoneme 0.8659 0.8571 0.8589

spambase 0.8821 0.6442 0.6426

threeOf9 0.9707 0.9659 0.9659

tic-tac-toe 0.9583 0.9375 0.9375

twonorm 0.9791 0.9797 0.9821

xd6 1.0000 1.0000 1.0000
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