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ABSTRACT
This paper presents the implementation and validation of PI2

Active Queue Management (AQM) algorithm in ns-3. PI2

provides an alternate design and implementation to Propor-
tional Integral controller Enhanced (PIE) algorithm without
affecting the performance benefits it provides in tackling the
problem of bufferbloat. Bufferbloat is a situation arising due
to the presence of large unmanaged buffers in the network.
It results in increased latency and therefore, degrades the
performance of delay-sensitive traffic. PIE algorithm tries to
minimize the queuing delay by auto-tuning its control param-
eters. However, with PI2, this auto-tuning can be replaced by
just squaring the packet drop probability. In this paper, we
implement a model for PI2 in ns-3 and verify its correctness
by comparing the results obtained from it to those obtained
from the PIE model in ns-3. The results indicate that PI2

offers a simple design and achieves similar responsiveness and
stability, and in some cases, better than PIE.
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1 INTRODUCTION
The proliferation of delay-sensitive applications on the Inter-
net has given rise to new challenges for queue management.
On the other hand, reduced memory costs and the need to
accommodate large bursts have encouraged the vendors to
increase the router buffer sizes. Although this solves the
issue of packet loss and improves TCP throughput, it leads
to increased queuing latency. Management of large buffers
is indispensable because the unmanaged buffers result in a
number of problems such as bufferbloat [1], lock-out [2] and
global synchronization [3].

AQM algorithms are being re-investigated with a focus
on controlling the queuing latency. Algorithms such as Con-
trolled Delay (CoDel) [4] and Proportional Integral controller
Enhanced (PIE) [5] have been designed to minimize queue
delay and retain high link utilization. Recently, a new AQM
algorithm called PI2 [6] has been proposed which offers same
responsiveness and stability as PIE, but has a simpler design
and implementation.

Our contributions in this paper are twofold. Firstly, we
propose a new model for PI2 algorithm in ns-3 [7] and provide
details about its design and implementation. Our proposed
model is based on the Linux code of the authors of PI2.1

Secondly, we validate the implementation of our PI2 model
in ns-3 by comparing its results to those obtained from PIE
model in ns-3, because both are expected to deliver similar
performance.

The rest of the paper is organized as follows: Section 2
provides a brief background on PIE, PI2 and the differences
between both. Section 3 details the design and implementa-
tion of PI2 model. Section 4 presents the validation of our
PI2 model in ns-3. Section 5 summarizes and concludes the
paper.

2 BACKGROUND

2.1 PIE
PIE is a recommended AQM algorithm for DOCSIS cable
modems [8] and is also being documented as an IETF speci-
fication [9]. It uses the Proportional Integral (PI) [10] con-
troller to keep the queuing delay to a specified target value by
updating the drop probability at regular intervals. Unlike PI,
PIE controls the queuing latency instead of the queue length.
Moreover, it auto-tunes the internal parameters based on the

1https://github.com/olgabo/dualpi2/blob/master/sch pi2/sch pi2.c

https://github.com/olgabo/dualpi2/blob/master/sch_pi2/sch_pi2.c
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level of congestion. Following are the major components of
PIE.

Random Dropping: On packet arrival, PIE enqueues
or drops the packet based on the drop probability, p.
p is compared with a random value u obtained from
UniformRandomVariable class in ns-3. The packet is en-
queued if p < u, else it is dropped.

Drop Probability Calculation: Drop probability
provides a measure of the congestion level. PIE calculates
the drop probability at every tupdate interval and auto-tunes
the internal parameters based on level of congestion. The
drop probability is calculated as [11]:
∆p = α ∗ (qdelay − target) + β ∗ (qdelay − qdelay old)
p = p + ∆p

where:

• qdelay: queuing delay during the current sample.
• qdelay old: queuing delay during the previous sam-

ple.
• target: desired queuing delay.
• α and β: weights in the drop probability calculation.

Queuing delay estimate: PIE uses Little's law [12] for
calculating the current queuing latency.

Burst Tolerance: PIE allows the short term packet
bursts to pass through for a specified interval. This interval
duration is determined by user configurable parameter.

2.2 PI2

Like PIE, PI2 uses PI controller to keep the queuing de-
lay within a specified target value. However, unlike PIE, it
removes the scaling block and makes the drop decision by
applying the squared drop probability. Furthermore, it ex-
tends PIE to support both Classic (e.g., Reno) and Scalable
(e.g., Data Center TCP [13]) congestion controls. In this
paper we limit our discussion to implementing PI2 for Clas-
sic TCP traffic in ns-3 because the differentiation between
Classic TCP traffic and Scalable TCP traffic is achieved by
using Explicit Congestion Notification (ECN) [14] which is
not yet completely supported in the main line of ns-3. The
components discussed in Section 2.1 apply even to PI2 with
minor changes. These differences are listed in the following
subsection.

2.3 Differences between PI2 and PIE
Drop decision: PIE drops the packets by comparing the
drop probability, p with the uniform random variable, u. On
the other hand, PI2 drops the packets by comparing p2 with
u. Squaring the drop probability helps PI2 offer a simple
design and eliminate the corrective heuristics of PIE without
the risking responsiveness and stability [6].

Burst allowance: PIE allows the short term packet
bursts to pass through. However, PI2 disables the burst
allowance as to avoid an impact on the Data Center TCP
fairness [6].

Other heuristics: PI2 chooses to remove a few more
heuristics which are a part of Linux Implementation of PIE.

Details and justifications on removing these heuristics have
been provided in Section 5 of [6].

2.4 Related Work
The implementation and validation of PIE algorithm in ns-
3 has been presented in [15]. To verify the correctness of
implementation, results obtained from PIE model of ns-3
have been compared to those obtained from PIE model of
ns-2 [16]. This model of PIE has been merged in the main
development tree of ns-3 since ns-3.26 release.

Another work which is relevant to our paper is the imple-
mentation and evaluation of Controlled Delay (CoDel) [17]
queuing discipline in ns-3. This was completed as a part of
the Google Summer of Code in 2014. CoDel model in ns-3
has been validated by providing unit test cases that compare
its results to those obtained from Linux model of CoDel.

3 PI2 MODEL IN NS-3
This section provides insights into the implementation of PI2

algorithm in ns-3. PI2 algorithm has been implemented in a
new class called PiSquareQueueDisc which is inherited from
QueueDisc. QueueDisc is an abstract base class provided by
the traffic control layer and has been subclassed to implement
queuing disciplines such as Random Early Detection (RED)
[3], PIE and CoDel. The following virtual methods provided
in QueueDisc should be implemented in the respective classes
of every queuing discipline:

• bool DoEnqueue (Ptr<QueueDiscItem> item): en-
queues or drops the incoming packet.

• Ptr<QueueDiscItem> DoDequeue (void): dequeues
the packet.

• Ptr<const QueueDiscItem> DoPeek (void)

const: peeks into the first item of the queue.
• bool CheckConfig (void) const: this method is

implemented to check whether the configuration of
the queue disc is correct or not.

• void InitializeParams (void): initializes the pa-
rameters of the queue disc.

Figure 1 shows the relation between the parent class
QueueDisc and the derived class PiSquareQueueDisc. In ad-
dition to the methods mentioned above, PiSquareQueueDisc
implements the following two methods: CalculateP and
DropEarly. These are specific to the PI2 algorithm. Figure
2 depicts the interactions among the core components of PI2.

On packet arrival, DoEnqueue is invoked which thereafter
invokes DropEarly to check if the incoming packet should be
dropped or enqueued. CalculateP calculates the drop prob-
ability at regular intervals (tupdate). DoDequeue is invoked
on the packet departure.

3.1 Dropping Packets Randomly
This functionality is implemented in DoEnqueue method
in PiSquareQueueDisc. Like PIE, PI2 drops the pack-
ets randomly based on the drop probability, p obtained
from CalculateP. PI2 applies the squared drop probabil-
ity. The squaring is implemented by multiplying p by itself.
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Figure 1: Class Diagram for PI2 model in ns-3.

Figure 2: Interactions among components of PI2 in ns-3.

DropEarly therefore, makes the drop decision based on the
comparison between the squared drop probability and a ran-
dom value u obtained from UniformRandomVariable class
in ns-3. On packet arrival, DoEnqueue invokes DropEarly.

The packet is enqueued if DropEarly returns false, otherwise
dropped.

3.2 Drop Probability Calculation
This functionality is implemented in CalculateP method
in PiSquareQueueDisc class. PI2 periodically calcu-
lates the drop probability based on the average dequeue
rate (m avqDqRate) and updates the old queuing delay
(m qDelayOld). Table 1 provides a list of parameters used
in the calculation of drop probability. Variables used in
PI2 Linux implementation are mapped onto corresponding
variables used in ns-3 model.

Table 1: PI2 parameters to calculate p.

PI2 parameter ns-3 variable

tupdate m tUpdate

qdelay m qDelay

qdelay old m qDelayOld

target m qDelayRef

alpha m a

beta m b

avg dq rate m avqDqRate

3.3 Estimation of Average Departure Rate
This functionality is implemented in DoDequeue method
in PiSquareQueueDisc class. On the packet depar-
ture, DoDequeue calculates the average departure rate
(m avqDqRate) if the queue is in the measurement cycle.
Table 2 provides a list of parameters required to calculate
m avqDqRate. Variables used in PI2 Linux implementation
are mapped onto corresponding variables used in ns-3 model.

Table 2: PI2 parameters to estimate avg drate.

PI2 parameter ns-3 variable

qlen m packets / m bytesInQueue

QUEUE THRESHOLD m dqThreshold

dq count m dqCount

dq tstamp m dqStart

dtime tmp

ε fixed to 0.5

All the variables are set internally and updated by PI2.
The only configurable parameter provided by the user is
m qDelayRef.

4 MODEL VALIDATION
We have designed a test suite with unit tests for verifying the
implementation of PI2 model in ns-3, which is a mandatory
step in the process of merging new models into ns-3-dev.
Our implementation of PI2 model along with test suite is
currently under review.2

2https://codereview.appspot.com/314290043/

https://codereview.appspot.com/314290043/
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To further verify the correctness of our implementation, we
compare the results obtained from our model of PI2 to those
obtained from the PIE model in ns-3. The simulation scenar-
ios considered for comparison are: (i) varying the traffic and
(ii) comparing the CDF of queue delay. These scenarios are
in line with the ones used by the authors of PI2 [6]. However,
due to the unavailability of CUBIC [18] and ECN models in
ns-3, we have used TCP NewReno [19] without ECN for the
evaluation. Our aim is to ensure that our implementation
exhibits the key characteristics of the PI2 algorithm. The
performance parameters used for comparison are throughput
and queue delay. Table 3 presents the details of simu-
lation setup. Results are presented in the sections that follow.

Table 3: Simulation setup.

Parameter Value

Topology Dumbbell

Bottleneck RTT 100ms

Bottleneck buffer size 200KB

Bottleneck bandwidth 10Mbps

Bottleneck queue PI2

Non-bottleneck RTT 10ms

Non-bottleneck bandwidth 10Mbps

Non-bottleneck queue DropTail

Mean packet size 1000B

TCP NewReno

target 20ms

tupdate 30ms

alpha 0.125Hz

beta 1.25Hz

dq threshold 10KB

Application start time 0s

Application stop time 100s

Simulation stop time 100s

Scenario 1: Light TCP Traffic

In this scenario, a dumbbell topology is used to simulate
5 TCP flows that start at the same time and pass through
the same bottleneck link. Other simulation parameters are
set as shown in Table 3. Figure 3 shows the variations in
queuing delay over time. We can observe the initial peak in
the instantaneous queuing delay for both PI2 and PIE results.
This is attributed to the burst traffic generated due to all 5
TCP sources starting at the same time. Moreover, it can be
observed that PI2 to some extent provides better control on
the queuing delay. The initial peak in PIE goes to 160+ ms.
However, PI2 keeps it to a maximum of 160ms. Both PI2

and PIE bring down the queuing delay quickly and maintain
it around the reference delay for the rest of the simulation.
We can infer that both PI2 and PIE produce similar results
and control the queuing delay to a desired target value.

Figure 4 shows the instantaneous throughput. Initially
the throughput degrades for both the results due to packets

being dropped by PI2 and PIE in an effort to control the
queuing delay and maintain it around the desired target
delay. Moreover, in contrast to PIE, PI2 improves the
throughput rapidly. This is attributed to PI2 controlling the
queuing delay as mentioned before.

Scenario 2: Heavy TCP Traffic

This scenario is same as Scenario 1, but configures 50 TCP
flows instead of 5 TCP flows. Figure 5 shows the variations
in queuing delay over time. Similar to the previous scenario,
we can observe that PI2, like PIE, quickly brings down the
queuing delay and keeps it around the desired target value
despite heavy TCP traffic. The results obtained from PI2

and PIE models are similar. However, under heavy traffic,
PIE keeps the queuing delay to 160ms whereas the queuing
delay with PI2 goes little beyond 160ms.

Figure 6 shows the instantaneous throughput. Apart
from the initial drop in throughput due to the burst, we
can observe that PI2 controls the queuing delaying without
penalizing the link throughput, like PIE.

Scenario 3: Mix TCP and UDP Traffic

This simulation scenario is to determine whether PI2 can
function normally with unresponsive UDP traffic. We use
dumbbell topology and simulate 5 TCP and 2 UDP flows
passing through the same bottleneck link. All TCP and UDP
flows begin transmission at the same time. UDP sources
transmit at a rate of 10 Mbps. Other simulation parameters
are same as mentioned in Table 3.

Even in the presence of unresponsive UDP flows, we
observe that the results obtained for PI2 and PIE are similar.
Figure 7 shows that PI2 and PIE control the queuing delay
successfully. Moreover, in Figure 8 we can observe that the
bottleneck bandwidth is completely utilized with both the
algorithms.

Scenario 4: CDF of queue delay

In this scenario, we compare the CDF of queuing delay
obtained for PI2 and PIE. We conduct two experiments using
different traffic loads as done in [6]. First, we use 20 TCP
flows with target delay of 5ms and 20ms. Next, we use a
mix traffic consisting of 5 TCP and 2 UDP flows with target
delay of 5ms and 20ms. Rest of the simulation parameters
are same as listed in Table 3. Figure 9 and 10 show the
CDF plots comparing the queuing delay of PI2 and PIE. In
line with the observations made by the authors of PI2, we
observe that PI2 performs no worse and infact, offers slight
improvement over PIE in some cases (see Figure 9 (b)).

5 CONCLUSIONS AND FUTURE WORK
In this paper, we describe the implementation of PI2 algo-
rithm in ns-3 for Classic TCP flows. We present the design of
our model and the interactions among different components
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Figure 3: Queue delay with light TCP traffic.
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Figure 4: Link throughput with light TCP traffic.
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Figure 5: Queue delay with heavy TCP traffic.

of PI2. Furthermore, we evaluate the effectiveness of our
implementation by comparing the results obtained from it to
those obtained from the PIE model of ns-3. We note that PI2

with its simple design can deliver similar performance as PIE.
Our implementation of PI2 has been submitted for review.3

3https://codereview.appspot.com/314290043/

https://codereview.appspot.com/314290043/
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Figure 6: Link throughput with heavy TCP traffic.
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Figure 7: Queue delay with mix TCP and UDP traffic.

 0

 2

 4

 6

 8

 10

 12

 0  10  20  30  40  50  60  70  80  90  100

Th
ro

ug
hp

ut
 (i

n 
M

bp
s)

Time (in Seconds)

ns-3 PIE model

(a) ns-3 PIE

 0

 2

 4

 6

 8

 10

 12

 0  10  20  30  40  50  60  70  80  90  100

Th
ro

ug
hp

ut
 (i

n 
M

bp
s)

Time (in Seconds)

ns-3 PI2 model

(b) ns-3 PI2

Figure 8: Link throughput with mix TCP and UDP traffic.

and the GitHub repository4 provides details on reproducing
the simulation results. On the availability of ECN in main

4https://github.com/sneaker-rohit/PI2-ns-3

distribution of ns-3, we plan to extend PI2 to work alongside
ECN. Moreover, PI2 model in ns-3 can be further extended

https://github.com/sneaker-rohit/PI2-ns-3
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Figure 9: CDF of queuing delay with 5 TCP and 2 UDP flows.
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Figure 10: CDF of queuing delay with 5 TCP and 2 UDP flows.

to work for scalable congestion control algorithms like Data
Center TCP after they are available in the main distribution.
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