
Chapter 3

Predictions from Partial Least Squares 
Models
Nicholas P. Danks and Soumya Ray

1. Introduction
This chapter seeks to introduce partial least squares (PLS) practitioners to the 
generation and evaluation of predictions from their path models, both as a means 
of validating the practical usefulness of their models and for forecasting future 
outcomes.

Studies in tourism and hospitality currently offer strong research utility by 
explaining how personal, regional, or commercial factors generally relate to posi-
tive outcomes for the industry. However, the practical utility of our studies is lim-
ited to general policy-making suggestions based on the significance of antecedent 
factors. Could we use our models to predict, say, a new subject’s potential behav-
ior in the future, or forecast how a particular region or commercial interest will 
fare in the coming year given new data? In addition, before we even have access 
to data on new subjects, can we use our existing samples to validate that our 
current models have the potential to make accurate predictions using new data? 
Being able to address these types of prediction problems would greatly magnify 
the practical utility of our models and better serve the immediate and quantifiable 
needs of governments, organizations, businesses, services, and persons involved 
in the tourism industry. Current approaches and metrics in PLS path modeling 
(PM) largely cannot answer these prediction-oriented questions about specific 
cases or scenarios, and are largely relegated to making highly generalized prog-
nostications based on path significances.

We believe that predictive PLS is one of the emerging and promising directions 
in PLS-PM. Although predictive techniques for PLS are still at a nascent stage of 
development, we hope this chapter brings you up to speed on the latest develop-
ments, informs you of predictive practices you can employ today, and gives you 
a foundation for following future developments in this exciting new direction for 
PLS-PM.
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We start by examining some of the general terminologies and techniques per-
taining to predictive modeling, as illustrated in Fig. 1. Prediction, especially in the 
context of regression-based techniques, is the use of a dataset and an empirical 
model to predict unknown outcomes. We typically train a predictive model from 
existing predictor and outcome variables, such that it can use new predictor vari-
ables to predict new outcomes.

Training a predictive model involves estimating model parameters with the 
intention to use them to predict outcome variable data from predictor data. 
Training data refer to the data used in the parameter estimation needed for model 
training and is often called in-sample (IS) data. A trained model is a model, which 
has used the training data to estimate parameters and can be used for prediction. 
Holdout data are predictor data that were not used in model training and are 
intended for use in generating predictions on outcomes variables – these are often 
called out-of-sample (OOS) data. Predicting, in this chapter, is applying a trained 
model on holdout predictor variables to generate predicted values for outcome 
variables of interest. In contrast to prediction, fitting refers to using a trained 
model to regenerate outcomes for the training data itself.

Purely predictive models seek to extract all predictive information from train-
ing data regardless of theoretical validity of predictors or relationships. This 
purely predictive approach typically ignores a priori theory and often, but not 
always, seeks to make case-wise predictions rather than average-case predictions. 
Examples of such purely predictive models include random forests and neural 
networks. Such predictions can have practical implications when the model is 
being used to prepare for future actions.

We can also be interested in making predictions where actual outcomes are 
already known, when we have both the predictor and outcome variable holdout data.  

Fig. 1: An Overview of the Prediction Process. xij Are Predictor Items, yij 
Are Actual Outcome Items, ŷij Are Predicted Values of Outcome Items, and 

ŵ , ˆ , and ˆ
ij
t

ij
t

ij
tβ λ  Are the Measurement and Structural Estimates of the PLS-PM.
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These predictions can be used to validate the predictive qualities of  the model 
and demonstrate how well the model might predict the unseen data. If  predicted 
outcome values are similar to known outcome values for a given set of  predic-
tors, we can conclude that the model predicts the phenomenon well. This form 
of predictive validity has practical value because it lets us determine whether 
a model can offer specific prescriptions for various managerial and practical 
situations.

PLS prediction serves two essential purposes: generating theory-driven pre-
dictions and gauging the predictive validity of theoretical models. In generating 
predictions for unknown outcomes, PLS prediction differs greatly from the purely 
predictive methods discussed earlier. PLS prediction utilizes a theory-driven, 
expert-built model to predict outcomes. Thus, PLS prediction does not optimize 
for the best predictive power – the model is informed by theory and hypothesis 
and then prediction is performed after the fact. Furthermore, PLS path models 
model average-case behavior; thus, predictions from PLS path models generate 
average-case predictions for a given set of predictors.

Shmueli and Koppius (2011) describe various roles for predictive analytics 
in scientific research and argue for a joint explanatory and predictive approach. 
Although the approach of explanation first and prediction second limits the pre-
dictive power of the model, it permits us to determine the predictive validity of a 
theory. This approach conforms to the joint explanatory and predictive approach 
recommended by Shmueli and Koppius (2011).

The PLS-PM literature has called for increased emphasis on the evaluation of 
predictive performance in assessing PLS models (Dijkstra, 2010; Hair, Ringle, & 
Sarstedt, 2011) and we expect that journal editors and reviewers will increasingly 
expect the evaluation of predictive validity in PLS new submissions.

The literature on predictive PLS has also discussed what constitutes a good 
predictive metric and how to evaluate predictive validity (e.g., Chin, 2010; Ever-
mann & Tate, 2012, 2014, 2016). We will follow the very recent recommenda-
tions of Shmueli, Ray, Estrada, and Chatla (2016), who outline an algorithm for 
generating PLS predictions and suggest the use of OOS aggregate error metrics 
such as root mean square error (RMSE) and mean absolute error (MAE) for the 
endogenous composite indicators.

In this chapter, we aim to provide a theoretical foundation of the latest devel-
opments in PLS prediction, provide guidelines on the application and evaluation 
of predictions, and provide an applied empirical example employing the tech-
niques described in the chapter. It is our hope that this chapter can be of service 
to members of the PLS community wishing to apply prediction in their research.

2. How to Predict from PLS Models
Unlike covariance-based SEM, PLS-PM has interesting properties that allow us 
to generate predictions. PLS primarily estimates composite measurement models 
rather than common factors, unless we make special adjustments to do so (Hense-
ler et al., 2014; Rigdon, 2012; Sarstedt, Hair, Ringle, Thiele, & Gudergan, 2016). 
Composite constructs are weighted sums of their indicators, using weighting 



38   Nicholas P. Danks and Soumya Ray

modes such as mode A (correlation weights), mode B (regression weights), or 
weighted sum (unit weights). Note that both weights and loadings are always 
estimated for each indicator of a composite and incorporate the measurement 
mode specified. Thus, composites have a determinate score, which can be esti-
mated from the standardized indicator scores and indicator weights for any speci-
fied measurement mode.

Currently proposed schemes to generate predictions from PLS are largely lim-
ited to composites, because composite scores and the causal structure between 
composites allow us straightforward ways to predict outcome scores and indica-
tors regardless of the measurement mode. Although future prediction schemes 
might incorporate common factors, our discussion here will advocate the use of 
composites for ease of implementation and interpretation of predictions.

2.1. Generating Predictions from PLS-PM

We briefly summarize and describe the PLSpredict algorithm as proposed by 
Shmueli et al. (2016), which describes a straightforward method for prediction 
that others have likely also implemented (e.g., Evermann & Tate, 2016). We refer 
to Fig. 2 that demonstrates a simple PLS model for the discussion of the predic-
tive algorithm.

1. Randomly partition the data. If  only one dataset is available, randomly parti-
tion the data into a training subset and holdout subset. If  a training set and 

Fig. 2: A Simple PLS-PM Composite Model. xij: Observable Measures of 
Exogenous Composites, wij: Measurement Weights, Xi: Exogenous Compos-
ites, βi: Path Coefficients, Yi: Endogenous Composites, and yij: Observable 

Measures of Endogenous Composites.
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holdout set are already at hand - if  for instance, data was collected twice dur-
ing the empirical study - this step is not necessary.

 For each manifest variable, we will thus have xij
t and xij

h with the superscript t refer-
ring to training subset and h to holdout subset, and indices i to the composite 
index and j to the indicator index for that composite. xt11 is thus the first training 
data subset indicator of the composite X1; and xh

11 its holdout set counterpart.
2. Estimate the training model. Using data only from the training set, estimate the 

PLS model.
 Retain all training model weights wij

t( ), loadings ij
tλ( ), path coefficients i

tβ( ),  
and the standard deviation sdij

t( ) and mean mij
t( ) for each of the indicator 

scores in the training data, respectively.
3. Predict the antecedent composite scores from antecedent indicators. Using data 

only from the holdout set and the estimated parameters from the training 
model.

 Standardize the holdout antecedent indicator scores by deducting the mean 

mij
t( ) and dividing by the standard deviation sdij

t( ) for each corresponding indi-

cator score from the training set.

x x m sd/ij
h

ij
h

ij
t

ij
t* ( )= −

 Predict the antecedent composite score by multiplying standardized antecedent 
indicator scores by their respective training weights and summing across indicators.

X x iˆ , 1,2i
h

ij
h

ij
t

j

*

1

4∑ ω( )= × =
=

4. Predict the endogenous composite scores. Multiply the predicted antecedent 
composite scores with their respective path coefficients and summing for each 
observation.

Y Xˆ ˆ
i
h

i
h

i
t

i 1

2∑ β( )= ×
=

5. Predict the OOS indicator scores of the endogenous composites. Multiply the 
predicted antecedent composite score by each respective loading (training) to 
obtain each respective composite score.

y Yˆ ˆ
ij
h

i ij
t* λ= ×

 De-standardize the indicator scores by multiplying by the training SD and adding 
back the training mean for each corresponding indicator from the training set.

y y sd mˆ ˆij
h

ij
h

ij
t

ij
t*( )= × +

6. Predict the IS indicator scores of the endogenous composites. Repeat Steps 3 

and 4 using training indicator data xij
t( ) to generate predicted indicator scores 

of the outcome composite for training data ŷij
t( ).
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7. Calculate predictive metrics. Metrics are calculated using the predictive error, 
which is generated by deducting the predicted value from the known value for 

both the IS predicted indicator scores y ŷij
t

ij
t( )−  and OOS predicted indicator 

scores y ŷij
h

ij
h( )− .

2.2. Earliest Versus Direct Antecedents Approaches

Shmueli et al. (2016) acknowledge the shortcomings of the PLSpredict algorithm 
when applied to a model including one or more mediating constructs. Mediators 
pose a special challenge in the predictive context, in that their composite scores 
can be both predicted by antecedent composites or by the composite’s own indi-
cators and training weights; however, only one of these composite scores can be 
used in the predictive algorithm. Shmueli et al. (2016) propose either treating 
the mediator as a purely intervening variable and use the earlier antecedents to 
predict composite score of mediators; or treating mediators as purely exogenous 
constructs (thus, dropping earlier antecedent constructs) and using their indica-
tor scores and training weights to generate its composite score and then directly 
predict outcome constructs. Refer to Fig. 3.

We refer to the approach that treats the mediators as intervening variables, and 
predicts the composite score from only earliest exogenous antecedents, as the ear-
liest antecedents (EA) approach. In contrast, we refer to the approach that treats 
the mediator as exogenous variable only, and uses their indicators and weights to 
generate composite scores that are then used in predicting outcomes, as the direct 
antecedents (DA) approach. Both techniques have shortcomings in that they nec-
essarily ignore some part of the measurement model – the indicators and weights 
of the mediator in the case of the EA approach, or the indicators and weights of 
earlier antecedents in the case of the DA approach.

There are valid considerations and applications for both the EA and the DA 
approaches. The PLS estimation algorithm treats mediators as purely exogenous 
variables when estimating its paths to their outcome constructs. Thus, the DA 
approach is more true to the prediction of outcomes and should be more accurate 
than EA prediction largely.

However, if  the data are longitudinal rather than cross-sectional in nature, we 
might currently only have data on exogenous antecedents and not for mediators 
when doing prediction. In such cases, we would need to predict both mediating 
and endogenous composites and the EA approach would be more practical and 
suitable for such predictions and forecasts. We recommend that practitioners be 
given the choice of predictive scheme to be applied. To the best of our knowl-
edge, SmartPLS V3.2.7 (Ringle, Wende, & Becker, 2015) has implemented the EA 
approach.

3. Evaluating Predictions from PLS Models
For practical and useful evaluation of predictions, we limit our discussion to 
OOS, operative prediction, which best fits the conceptual vision of prediction of 
the large data analytics community (Shmueli et al., 2016).
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3.1. In-sample Versus Out-of-sample

Using the PLS prediction methods outlined earlier, domain experts can evalu-
ate the practical predictive utility of their models, backed by theoretical rigor. 
Evaluating the predictive qualities of models informs researchers of overfit to 
the sample data at hand. Models with good predictive qualities can be used to 
predict outcomes for new subjects or cases. Thus, gauging the extent of overfit 
can help practitioners, and their readers, judge the practical utility of their models 
for prediction.

Fig. 3: Information Disregarded in Direct Versus Earliest Antecedents  
Approaches. Grayed-Out Areas of the PLS path model Demonstrate Data 

and Parameter Estimates Not Used in the Prediction of Y1 or Y2.
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While evaluating the predictive overfit of PLS models, it is important to dis-
tinguish between the predictive power of IS (fitted) cases versus new, OOS (pre-
dicted) cases. When predictions are made on the dataset upon which the model 
was estimated, the resultant predictions are IS predictions and can be seen as an 
evaluation of the fit (in this case, the predictions are called the fitted values). This 
estimated training model will capture both the signal in the data and some of the 
noise; thus, “predictive” performance could be overstated or biased in that it is 
not seeing new signal or noise. When predictions are made on a new unseen (or 
holdout) dataset, the resultant predictions are OOS predictions and can be seen 
as an evaluation of the ability of the estimated model to predict the signal in the 
new dataset.

If  we have both IS and OOS predictive metrics, we can evaluate whether 
predictive performance increases or decreases comparing training out-
come predictions to the holdout outcome predictions. Refer to Table 1 for a 
comparison.

If  there is little decrease in predictive power (which we expect) – or little 
increase in predictive power (which we do not expect) – then the model is not 
overfit. If  there is a dramatic decrease in the predictive power of holdout out-
comes, the model is not suitably predicting the signal in the holdout dataset. This 
might be due to inherent differences in the signal in the data or the model being 
overly sensitive to the noise in the training dataset. If  there is a dramatic improve-
ment (underfit), the signal in both the training and holdout are captured but the 
training set might be noisier or contain a weaker signal.

3.2. Cross Validation

Cross validation is reusing the total dataset by partitioning the available sample 
into subsets of training and test. Common cross-validation techniques include 
k-fold and leave-one-out. Cross validation is good when samples are small and a 
simple partition would leave little data for both training the model and evaluating 
the predictions in the holdout set. Cross validation can also give a better idea of 
practical OOS performance when data cannot be spared for a test set.

k-Fold cross validation is easy to implement, allows for each observation to 
be included in the test set one time, and is not computationally intense. We there-
fore recommend the use of  the k-fold technique. However, there are many alter-
natives and we recommend Hastie, Tibshirani, and Friedman (2009) for further 
details.

3.3. Predictive Metrics

It is important to identify which predictive metrics are best suited to evaluate the 
predictive power of the model. We consider the most popular generic metrics 
being RMSE, MAE, mean bias, and R2.

RMSE is a widely used predictive metric (Hastie et al., 2009) and highly inter-
pretable. RMSE is in the original scale of the data and can be seen as the stand-
ard deviation of the predictive error. Thus, a smaller RMSE value will indicate a 
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tighter fit of the predictions to the true data. RMSE squares the prediction error 
and thus a larger penalty is paid for extreme errors.

MAE is a measure of the average absolute predictive error. MAE is in the 
original scale of the data and tells us on average how different our predictions 
are from the true known values. Unlike RMSE, there is no additional penalty for 
extreme errors.

Both RMSE and MAE treat over- and under-prediction identically and give 
no clear indication of bias. Therefore, we recommend that one visualizes the error 
in a residuals plot and calculates the mean error for indications of systematic bias 
in the predictions and predictive error.

R2 is a much-reported metric in the literature; however, it suffers from some 
drawbacks within the predictive context. R2 is the IS squared correlation between 
fitted and true composite scores. Thus, R2 is evaluating the IS predictive perfor-
mance, but does not provide information on how well the model performs on 
unseen holdout data. IS metrics are of value in evaluating predictive power, but 
should not be conflated with true OOS predictive metrics (Shmueli et al., 2016).

3.4. Benchmarks

In evaluating the performance of any model, predictive methodology suggests the 
use of a naive benchmark. In line with the concept of scientific parsimony, the 
model proposed should provide increased predictive power for added complexity. 
A naive benchmark is essentially a target for the minimum predictive power we 
wish to exceed. Often, pure prediction practitioners will use the training set mean 
value as a naive prediction or the predictions generated by a simple alternate 
algorithm to serve as the naive benchmark.

A naive predictive benchmark of  the training mean might be viewed as insuf-
ficiently rigorous. Therefore, we will discuss the use of  a linear model as a com-
parative predictive technique (Evermann & Tate, 2016; Shmueli et al., 2016) 
to serve as benchmark comparison. Evermann and Tate (2016) and McDon-
ald (1996) note that due to the constraints imposed by the measurement and 
structural models of  PM, a simple linear regression (LM) of  the endogenous 
indicator variables on the exogenous indicator variables should provide a bet-
ter prediction than PLS-PM. However, Evermann and Tate (2016) find in their 
simulation study that this is not supported – “all PLS-PM methods perform 
slightly better than linear multiple regression.” The LM thus serves as a good 

Table 1: Comparison of IS Versus OOS Predictive Metrics for the Evaluation of 
Predictive Validity.

Condition Test RMSE Low Test RMSE High

Train RMSE Low Good predictive validity Overfit

Train RMSE High Underfit Worrisome predictive 
validity
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benchmark with which to compare predictive power – the PLS path model’s pre-
dictive power should be at least equal to that of  the LM, with larger improve-
ments demonstrating increasing predictive power.

4. Evaluating Predictive Performance
The PLSpredict algorithm provides a technique for generating predictions from 
the estimated model and predictive metrics for the evaluation of these predic-
tions. This gives us a specific idea of how well we can predict the indicator. In 
the case of Likert-type survey data – often used in tourism research – it allows us 
to predict a specific case response for the Likert survey question. This is of great 
value when considering the practical applications of the research and for making 
managerial recommendations.

It is important to note that the context and domain play an important role in 
the evaluation of the results. The question of what an acceptable level of predic-
tive error for the theory/context is is heavily dependent on the application and 
domain. For example, lower predictive power might be more acceptable in social 
sciences than in medicine, where lives might be at stake. It is also important to 
note that there might be a difference in cost of over- and under-prediction. Over-
predicting staff  turnover might have a lower cost than under-predicting while the 
opposite might affect customer satisfaction.

The bias in the predictive error will provide evidence of whether the model is 
systematically over- or under-predicting. It is useful to visualize the predictive 
error in a residuals plot. This plot should follow a standard normal distribution 
– skewed error provides the evidence of systematic bias. If  the model is system-
atically biased on new data, it will tell us that the estimated model does not have 
sufficient predictive power for the prediction of these cases.

Predictive metrics are useful in identifying specific cases of interest. RMSE 
gives us the standard deviation of the predictive error. A distribution of predic-
tive errors can be plotted and errors outside a chosen prediction interval can be 
identified. These cases can be seen as not being predicted well by the model and 
with access to the actual values for these outlier cases, we can begin to investigate 
why they are suffering from poor prediction – this has the potential to inform 
modeling or sample design.

If  a mediator is of central importance to the empirical theory, we can leverage 
the use of EA and DA approaches to the predictive algorithm to lend an addi-
tional insight into the efficacy of the mediator. EA predictions can be compared 
to the DA predictions – this constitutes a comparison of how well the EA com-
posites predict the outcome compared to the mediating composite and provides 
additional insight as to the loss or gain in predictive power attributable to the 
mediator.

5. Using PLSpredict (An Empirical Example)
We now present a demonstration of the predictive techniques described in this chap-
ter using an empirical model from the hospitality and tourism literature – Effects of 
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Motivation, Knowledge and Perceived Power on Residents’ Perceptions: Application 
of Weber’s Theory in World Heritage Site Destinations (Rasoolimanesh, Jaafar, & 
Barghi, 2017).

The data comprise survey data collected from urban residents of the George Town 
World Heritage Site, Malaysia. The structural model consists of seven construct 
variables. These have four antecedent constructs: motivation of residents to become 
involved with and contribute to tourism development (Motivation), perceived power 
to make decisions and control the process of tourism development (Perceived Power), 
knowledge and awareness regarding tourism development and its impacts on their 
community (Knowledge), economic gain and benefits from tourism (Economic 
Gain). Two fully mediating constructs: positive perceptions (Positive Perceptions, PP) 
and negative perceptions (Negative Perceptions, NP) toward the impacts of tourism 
development. Last, one outcome construct: support for tourism development in their 
community (Support for Tourism Development). All constructs are estimated using 
measurement mode A and have between three and seven items each. The authors 
envision the constructs as reflective factors; however, for the purposes of prediction, 
we will treat them as composites with determinable scores.

The study was originally run in SmartPLS V3.2.3 but we used the latest ver-
sion available at the time of our writing, SmartPLS V3.2.7, to employ the analy-
sis. The model estimates are identical across software versions (Fig. 4).

5.1. Predictive Value of  Model

As discussed in Section 3.4, we will first consider the model from the standpoint 
of predictive parsimony. This will assess whether the additional complexity of the 
measurement and structural model result in an adequate increase in the predictive 

Fig. 4: The PLS Model Adapted from Rasoolimanesh et al. (2017).
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power. To achieve this, we perform, 10-fold cross validation in SmartPLS V3.2.7 
to generate OOS RMSE and MAE metrics for both the linear model, and the 
PLS path model for endogenous composite indicators (Table 2).

The indicators of the NP construct show very little or no improvement in pre-
dictive power of the PLS model over the LM benchmark. This is not surprising 
given the low R2 of the NP construct (R2 = 0.04) – if  IS average-case predictive 
power is low (R2), one would expect OOS predictive power to be similarly low. 
The remaining endogenous constructs PP (R2 = 0.254) and Support for Tourism 
Development (R2 = 0.389) demonstrate better improvement of predictive power 
over the LM benchmark, especially for MAE. This improvement in predictive 
power of the PLS model above the LM demonstrates that the PLS model has 
sufficient predictive power to support the use of the predictive PLS algorithm 
over more parsimonious techniques and supports the use of the predictive model.

It is also important to evaluate the indicator-level RMSE in the scale of  the 
indicator. That is, by construction the indicators of Support for Tourism Devel-
opment (SUP1–SUP7) are measured on a 5-point likert scale and have an RMSE 
of 0.706–0.779. We can thus say that on average 68% (1 SD) of prediction errors 
will fall within 1.5 points of the 5 points scale. If  the true value is 3, 68% of pre-
dictions fall between 2.27 and 3.73, and 95% of predictions fall between 1.54 and 
4.46. This range represents nearly the full range of the indicators’ measurement 
scale and one needs to consider if  this is acceptable given the context.

5.2. Predictive Value of  Proposed Versus Alternative Models

As discussed earlier, if  mediators are an important contribution of the article, one 
needs to also consider the gain or loss in predictive power of the EA approach 
(which considers the predictive power of earlier antecedents) versus the DA 
approach (which considers the predictive power of the mediators directly).

To achieve this in SmartPLS V3.2.7, which does not provide the choice of EA 
or DA as predictive technique, we simply performed PLS prediction first with 
the full model, including the EA (Motivation, Perceived Power, Knowledge, and 
Economic Gain); and second with the EA removed, such that only the media-
tors were predicting Support for Tourism Development. It needs to be noted that 
at this point, such a comparison does not preclude the need for formal tests of 
mediation, but serves only to gauge the gain or loss in predictive power due to the 
mediator. We expect that a similar technique will present itself  for ease-of-use in 
leading PLS software in the coming years.

In Table 3, we present the predictive power of EA versus DA approaches. We 
can see the improved predictive power of the outcome indicators using the media-
tor versus earlier antecedents by considering the percentage improvement in both 
RMSE and MAE for the DA approach. All values are positive indicating a lower 
RMSE and MAE for the predictions generated by the mediators and demonstrate 
a large improvement in predictive power of 7.14–17.95%. We thus conclude that 
the mediators are better predictors of the outcome indicators. This demonstrates 
that the mediators are of predictive value in the model – they predict the outcome 
better than the antecedents do.
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5.3. Evaluating the Prediction Residuals

We can examine the residuals for bias and study their distribution. First, we con-
sider the mean bias in the residuals for the seven indicators of Support for Tour-
ism Development. The mean bias of the indicators ranges from 0.0006 to 0.0008 
and thus shows very little mean bias. An inspection of the residuals charts will 
illustrate whether there is a skew in the residuals or whether they follow the stand-
ard normal distribution.

The predictive performance of the seven indicators of Support for Tourism 
Development are comparable and the residuals charts are highly similar. There-
fore, we will consider only one residuals chart for the sake of brevity – refer to 
Fig. 5 for the residuals chart output from SmartPLS V3.2.7. RMSE is the first 
standard deviation of the predictive error and we have drawn the mean (solid 
line), the first (dashed line), and second (dotted line) standard deviations on this 
chart.

It is clear that the residuals are not normally distributed and there is a long 
left tail and a thick right tail. Residuals are calculated by subtracting the pre-
dicted value from the actual value (yij – ŷij) and therefore negative residuals rep-
resent over-prediction and positive residuals represent under-prediction. It is 
interesting to note that there are a few extreme negative residuals, which warrant 
investigation.

5.4. Predictive Validity

Current software implementations of  prediction for PLS-PM do well to gen-
erate OOS predictive metrics, but do not offer IS predictive metrics for the 
comparison of  overfit. Therefore, generating IS metrics requires the use of 
additional spreadsheet software. To calculate IS metrics, we estimated the full 
dataset in SmartPLS V3.2.7 and exported the data descriptives (SD and mean) 

Fig. 5: Residuals Chart for SUP6. Solid Line is the Mean (0.0007),  
Dashed Line is the First SD (OOS RMSE: 0.706), and Dotted Line is  

Second SD (2 × OOS RMSE).
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for outcome indicators, the original indicator scores, estimated outer load-
ings, estimated path coefficients, and estimated outer weights to a spreadsheet 
program. We then reproduced the technique outlined in Section 1 – we use 
the full dataset for both estimation and prediction and therefore generate IS 
predictions. Because the full dataset is used and IS prediction is desired, there 
is no need for cross validation. We use the full dataset for model training and 
prediction just as the cross-validation technique implemented by SmartPLS 
V3.2.7 generates OOS predictive metrics for the full dataset; thus, we can 
directly compare the metrics. Refer to Table 4 for the results.

The results of the comparison of OOS RMSE and IS RMSE demonstrate that 
there is very little loss in predictive power – less than a percent increase. Therefore, 
overfit is not a problem for this study.

5.5. Discussion of  Empirical Example

The earlier analysis demonstrates that the PLS model analyzed generates predic-
tions that are suitably better than the LM benchmark for the PP and Support 
for Tourism Development composites. The NP composite does not have suitable 
predictive power compared to the benchmark, but this is not surprising given the 
IS predictive power. The use of the predictive PLS algorithm is thus justified in 
this study.

The OOS predictive power of the model can be seen as fairly low in that the 
RMSE of the outcome indicators relative to the scale of the indicators is quite 
high. This could indicate that the model is suitable for general average-case pre-
dictions, but that care should be taken when practically applying these results in 
a managerial or practical context.

The mediators demonstrate a substantial increase in predictive power of 
the outcome indicators. In addition, this provides additional support for the 

Table 4: Evaluation of Overfit for Support of Tourism Development.

Indicator IS RMSE OOS RMSE OOS-IS RMSE (OOS-IS)/ OOS (%)

SUP1 0.775 0.779 0.004 0.51

SUP2 0.747 0.751 0.004 0.53

SUP3 0.715 0.719 0.004 0.56

SUP4 0.708 0.711 0.003 0.42

SUP5 0.710 0.714 0.004 0.56

SUP6 0.702 0.706 0.004 0.57

SUP7 0.743 0.747 0.004 0.54

Notes. OOS-IS RMSE indicates the difference in predictive power of OOS and IS predictions for 
evaluation of overfit.
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usefulness of the mediators as effective predictors of the outcome. The mediators 
are thus supported by the predictive analysis.

While there is little mean bias in the predictive error, the residuals charts dem-
onstrate some issues. There are some cases, which suffer extreme negative predic-
tive error. This demonstrates that the theoretical model is not suitably predicting 
these observations. The distribution is non-normal with two large peaks and 
many cases of overprediction.

Finally, the model does not display signs of overfit and can be said to display 
enough predictive power to predict new cases of the endogenous composite Sup-
port of Tourism Development.

6. Looking Ahead
While considerable progress has been made in the field of predictive PLS, there is 
still much that can be done. At the core of PLS-PM is the estimation of composite 
scores for unmeasurable latent constructs from measurable indicators. Therefore, the 
construct is the primary variable of interest to PLS-PM and techniques need to be 
developed and implemented that can evaluate predictive validity at the construct level.

Central to the evaluation of predictive validity in PLS modeling is the concept 
of IS versus OOS predictive performance – or, more specifically, overfit. How-
ever, there are still no software implementations of PLSpredict that allow us to 
explicitly evaluate overfit in the predictive context; nor guidelines as to how this 
evaluation could be conducted. Evaluation of overfit will add to the methodologi-
cal rigor by providing an idea of generalizability of theory and allowing practical 
evaluations of the shortcomings of the model.

Further, if  observations, their predictions, and predictive error are specifically 
identifiable, predictions could be used practically to isolate and identify specific 
cases where predictions deviate strongly from known observations. Cases with 
very poor predictive performance can be investigated to identify why they con-
form poorly to the model, potentially allowing for a follow-up survey or ques-
tions to be conducted and improving the theory.

We hope that this chapter has clarified the use of  prediction in PLS-PM 
and provided you with specific actionable methods that can be applied to your 
research to complement evaluation of  explanatory power with evaluation of 
predictive power and thus applying a joint explanatory and predictive approach.
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