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Prediction-oriented model selection in  

partial least squares path modeling 

 

Abstract 

 

Partial least squares path modeling (PLS-PM) has become popular in various disciplines to model 

structural relationships among latent variables measured by manifest variables. To fully benefit 

from the predictive capabilities of PLS-PM, researchers must understand the efficacy of 

predictive metrics used. In this research, we compare the performance of standard PLS-PM 

criteria and model selection criteria derived from Information Theory, in terms of selecting the 

best predictive model among a cohort of competing models. We use Monte Carlo simulation to 

study this question under various sample sizes, effect sizes, item loadings, and model setups. 

Specifically, we explore whether, and when, the in-sample measures such as the model selection 

criteria can substitute for out-of-sample criteria that require a holdout sample. Such a substitution 

is advantageous when creating a holdout causes considerable loss of statistical and predictive 

power due to an overall small sample. We find that when the researcher does not have the luxury 

of a holdout sample, and the goal is selecting correctly specified models with low prediction 

error, the in-sample model selection criteria, in particular the Bayesian Information Criterion 

(BIC) and Geweke-Meese Criterion (GM), are useful substitutes for out-of-sample criteria. When 

a holdout sample is available, the best performing out-of-sample criteria include the root mean 

squared error (RMSE) and mean absolute deviation (MAD). Finally, we recommend against 

using standard the PLS-PM criteria (R2, Adjusted R2, and Q2), and specifically the out-of-sample 

mean absolute percentage error (MAPE) for prediction-oriented model selection purposes. 

Finally, we illustrate the model selection criteria’s practical utility using a well-known corporate 

reputation model. 

 

Keywords: Partial Least Squares Path Modeling (PLS-PM), Prediction, Model Selection, Model 

Selection Criteria, Monte Carlo Simulation.
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1. Introduction 

 

Structural equation modeling (SEM) has become the quasi-standard in the social sciences to 

analyze cause-effect relationships between latent variables. Its ability to model latent variables 

while simultaneously taking into account various forms of measurement error makes it useful for a 

plethora of research questions (e.g., Babin, Hair & Boles, 2008; Steenkamp & Baumgartner, 

2000). While factor-based SEM has been considered the standard approach to estimate structural 

equation models (Jöreskog, 1973), recently, partial least squares path modeling (PLS-PM), a 

composite-based approach to SEM, has gained vast dissemination in a variety of disciplines such 

as accounting (Nitzl, 2016), international management (Richter, Sinkovics, Ringle & Schlägel, 

2016), operations management (Peng & Lai, 2012), management information systems (Hair, 

Hollingsworth, Randolph, & Chong, 2017a), and marketing (Hair, Sarstedt, Ringle & Mena, 

2012a).   

One reason for PLS-PM’s attractiveness is that it allows researchers to estimate complex 

models with many constructs and indicator variables, even at low sample sizes (e.g., Rigdon, 2016; 

Henseler et al., 2014; Sarstedt, Ringle & Hair, 2017). In this light, it is not surprising that review 

studies of PLS-PM use show that path models estimated by this method are much more complex 

compared to those used in factor-based SEM studies, and that there is a general trend toward more 

complex PLS path models (e.g., Hair et al. 2012a; Hair, Sarstedt, Pieper & Ringle, 2012b; Ringle, 

Sarstedt & Straub, 2012). Using more complex model to map causal process is adequate when the 

primary goal of the analysis is to test or quantify the underlying causal relationship between cause 

and effect that can be generalized from the sample to the population of interest (i.e., explanatory 

modeling; Shmueli, 2010). However, when the goal of the analysis is to predict the output value of 

new cases by applying the model parameters estimated from one data sample (i.e., predictive 

modeling; Shmueli, 2010), complex models often perform poorly (e.g. Forster & Sober, 1994; 
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Hitchcock & Sober, 2004) as they tend to tap spurious patterns in the data (Myung, 2000). Because 

such patterns are sample-specific, an overly complex (i.e., overfitted) model will predict poorly 

and may not be generalizable or replicable by other researchers. In contrast, models with fewer 

parameters stand a better chance of having higher predictive power and being scientifically 

replicable (Bentler & Mooijaart, 1989). Thus, PLS-PM users should be aware of the trade-off 

between model complexity and the predictive accuracy.  

However, fully grasping this trade-off requires researchers to have a sound understanding of 

PLS-PM’s prediction capabilities, which research has only recently started to systematically 

explore. For example, Becker, Rai, & Rigdon (2013) examined the predictive accuracy of different 

PLS-PM estimation modes with models including formatively specified constructs, using a 

modified R2 criterion that involves a comparison of sample and population composite scores. 

These authors show that the reflex-like use of Mode B estimation for formatively specified 

constructs is not optimal from a predictive modeling perspective under all conditions. Evermann & 

Tate (2016) recently extended this work by showing that PLS-PM has better predictive accuracy 

than factor-based SEM across a broad range of conditions commonly encountered in applied 

research. While these studies make valuable contribution to the literature on PLS-PM, they rely 

solely on the out-of-sample prediction criteria for judging predictive accuracy, which require the 

construction of a holdout sample for model comparison and selection. However, limitations in data 

availability often prevent the creation of a holdout sample in many studies. Furthermore, collecting 

additional data from the same population to be used as holdout can be prohibitively expensive or 

even impossible.  

The regression literature offers a way of overcoming this dilemma by providing the means to 

evaluate a model’s predictive accuracy using criteria that do not require the use of a holdout 

sample. Specifically, Akaike (1973) has shown that taking into account a model’s fit to the data as 
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well its parsimony allows obtaining an unbiased estimate of its predictive accuracy. Based on this 

notion, research has brought forward a range of model selection criteria derived from Information 

Theory that optimize predictive accuracy by striking a balance between model fit and complexity 

(e.g., Akaike, 1973; Burnham & Anderson, 2002; Myung, 2000). While several studies have 

assessed the model selection criteria’s predictive accuracy for models estimated using maximum 

likelihood (Faraway & Chatfield, 1998; Kuha, 2004), in the non-maximum likelihood context of 

PLS-PM, their performance has only been studied in terms of model selection accuracy for 

choosing a specific model among a set of alternative models (Sharma & Kim, 2012; Sharma, 

Sarstedt, Shmueli, Kim & Thiele, 2018). Their efficacy for predictive modeling, however, has 

remained unaddressed.  

Addressing this gap in research, we systematically explore whether the model selection 

criteria can substitute for out-of-sample predictive criteria that require the use of a holdout sample 

when comparing and selecting models from a predictive modeling perspective and, if so, under 

which conditions. Such a substitution is especially advantageous because splitting datasets into 

training and holdout samples may cause substantial loss of statistical and predictive power, 

particularly when the overall dataset is not large. Utilizing the information contained in the entire 

dataset (rather than a subset) to derive the best predictive model could be particularly 

advantageous in PLS-PM as researchers routinely justify the use of this technique on the grounds 

of small sample sizes (e.g., Goodhue, Lewis & Thompson, 2012; Henseler et al., 2014; Rigdon, 

2016).  

The results from our Monte Carlo study indicate that when researchers do not have the 

luxury of a holdout sample and the goal is selecting correctly specified models with low prediction 

error, the model selection criteria, in particular BIC and GM, are useful substitutes for out-of-

sample criteria that require a holdout sample. When the holdout sample is available, we find that 
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the best performing criteria for prediction are the RMSE and MAD, followed by SMAPE. Our 

results also advise against the use of the standard PLS-PM criteria (i.e. R2, Adjusted R2, and Q2), 

and, in particular, the out-of-sample MAPE for prediction-oriented model selection purposes. 

Finally, using a well-known corporate reputation model, we illustrate the criteria’s practical 

application by means of empirical data.  

2. Model selection criteria 

Regression literature has brought forward a range of criteria that allow comparing the predictive 

performance of alternative models in the PLS-PM context. The simplest criterion that could be used 

is the R2. Given that R2 will increase as predictors are added to the model and hence will select a more 

complex model, regression researchers have widely used the Adjusted R2, which attempts to correct 

for model complexity by including a penalty proportional to the number of predictors in the model. 

However, the Adjusted R2 lacks formal justification and is not suitable for assessing a model’s 

predictive accuracy (Berk, 2008).  

As an alternative to the R2 metrics, researchers can revert to model selection criteria derived 

from Information Theory, which began to appear in the literature in the late 1960s and the early 1970s 

(McQuarrie & Tsai, 1998). These criteria strike a balance between model fit and complexity to avoid 

over-fitting so that the model generalizes beyond the particular sample (Myung, 2000). One of the 

first metrics to be proposed was Akaike’s Final Prediction Error (FPE; Akaike, 1969) from which 

two widely used model selection criteria emerged: Akaike’s Information Criterion (AIC; Akaike, 

1973) and the Bayesian Information Criterion (BIC; Schwarz, 1978).  

The AIC and BIC differ somewhat in their conceptual underpinnings and assumptions. 

Specifically, BIC provides an estimate of the posterior probability of a model being true, and chooses 

the model that maximizes this probability on a given dataset. That is, it strives to select a model that 

is most likely (in the Bayesian sense) to coincide with the underlying data generation model. In 
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contrast, AIC is designed to estimate the relative amount of information lost (using the Kullback-

Leibler divergence measure between distributions) when a given model estimated from data is 

compared to a “true” but unknown data generating process (Burnham & Anderson, 2002). 

AIC’s strength as a model selection criterion in terms of predictive accuracy has been shown 

empirically as well as theoretically (Burnham & Anderson, 1998). For example, Stone (1977) 

showed that the AIC and leave-one-out cross-validation are asymptotically equivalent. One 

disadvantage of AIC is that it is asymptotically inconsistent, in that if the set of models includes the 

“true” model (i.e., the data generation model in the case of a simulation set-up), then the probability 

of selecting the true model does not converge to one as the sample size approaches infinity (Shao, 

1993). In contrast, BIC is consistent and, at the same time, puts a heavier penalty than AIC on model 

complexity (Vrieze, 2012). BIC is also related to cross-validation and has been shown to be 

asymptotically equivalent to leave-ν-out cross-validation. Regardless of their differences, however, 

there is no general agreement whether AIC or BIC should be given preference in empirical 

applications (Shi & Tsai, 2002).  

Several variations of the original AIC and BIC criteria have also been proposed over the last 

decades including the Mallow’s Cp Criterion, the Unbiased AIC (AICu), the Corrected AIC (AICc), 

the Geweke-Meese Criterion (GM), the Hannan-Quinn Criterion (HQ), and the corrected Hannan-

Quinn Criterion (HQc) (Mcquarrie & Tsai, 1998). These criteria are typically written as a function 

of the maximum likelihood value. However, they can also be expressed as a function of the model 

residuals when the error distribution is normal with a constant variance (Burnham & Anderson, 

2002, p. 63). This characteristic makes them suitable for PLS-PM estimation, which relies on an 

iterative estimation of piecewise linear regression models (e.g., Hair, Hult, Ringle & Sarstedt, 

2017b).  

All the criteria discussed above are considered in-sample in that their computation draws on 
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the entire data. That is, their computation requires estimating the parameters of a PLS model and 

then using the model to predict values for cases from the same sample. However, researchers using 

PLS-PM can also draw on out-of-sample criteria that require the use of a holdout sample. 

Specifically, these metrics analyze a model’s predictive accuracy by using different types of 

summaries of prediction errors. Out-of-sample criteria that feature prominently in the regression 

literature include the mean absolute deviation (MAD), root mean square error (RMSE), mean 

absolute percentage error (MAPE), and symmetric mean absolute percentage error (SMAPE).  

Finally, many PLS-PM studies draw on the Q2 to assess a model’s predictive accuracy 

(Geisser, 1974; Stone, 1974). This metric builds on the blindfolding procedure, which omits single 

points in the data matrix, imputes the omitted elements, and estimates the model parameters. Using 

these estimates as input, the blindfolding procedure predicts the omitted data points. This process is 

repeated until every data point has been omitted and the model re-estimated. As its computation does 

not draw on holdout samples, but on single data points (as opposed to entire observations) being 

omitted and imputed, the Q2 can only be partly considered a measure of out-of-sample prediction 

(Nitzl & Chin, 2017). Therefore, in line with Shmueli, Ray, Estrada & Chatla (2016), we will treat 

the Q2 as an in-sample criterion.  

3. Monte Carlo Study  

3.1 Data and experimental conditions  

The Monte Carlo study analyzes the predictive performance of standard in-sample PLS-PM criteria 

(R2, Adjusted R2 and Q2), and the model selection criteria that Sharma & Kim (2012) and Sharma et 

al. (2018) evaluated in the PLS-PM context: FPE, Cp, GM, AIC, AICu, AICc, BIC, HQ, and HQc.1 

Table A1 (in Appendix A) presents more details about the model selection criteria and their specific 

                                                            
1 Note that we did not consider Tenenhaus et al.’s (2005) GoF index as prior research identified this metric as 

ineffective for model selection tasks (Henseler & Sarstedt, 2013). 
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formulations. We compare the performance of the above-mentioned criteria with the following out-

of-sample criteria: MAD, RMSE, MAPE, and SMAPE (Shmueli et al., 2016). Table A2 (in 

Appendix A) presents more details about the predictive metrics.  

Our choice of manipulated factors and their factor levels follows prior research (e.g., Hwang, 

Malhotra, Kim, Tomiuk & Hong, 2010; Sharma & Kim, 2012; Vilares & Coelho, 2013). These 

conditions compare well with those seen in the empirical applications using PLS as evidenced in 

prior reviews of the method’s use (e.g., Hair et al., 2012a, 2017a; Ringle et al., 2012). Specifically, 

we manipulate the following factors: 

● Six conditions of sample size (50, 100, 150, 200, 250, and 500). 

● Five conditions of varying effect size on a structural path (0.1, 0.2, 0.3, 0.4, and 0.5).2 

● Three factor loading patterns with different levels of average variance extracted (AVE): 

o High AVE with loadings: (0.9, 0.9, 0.9), 

o Moderate AVE with loadings: (0.8, 0.8, 0.8), and 

o Low AVE with loadings: (0.7, 0.7, 0.7). 

The simulation study only considers the case of normally distributed data as recent research 

has shown that PLS-PM provides consistent estimates across data distributions when the underlying 

population is composite model-based (Hair et al., 2017c).3 We generated composite model data 

using the procedure available in the SEGIRLS package for the R statistical software (Schlittgen, 

2015)—see Ringle, Sarstedt & Schlittgen (2014) for more details on the data generation approach. 

All simulations were run in the R computing environment (R Development Core Team, 2014) using 

                                                            
2 Note that a path coefficient of 0.1 is generally undesirable as it points to an insufficient degree of explanatory power. 

Considering such a condition in a simulation study, however, is important to understand the performance of the criteria 

under boundary conditions (e.g., Paxton, Curran, Bollen, Kirby, & Chen, 2001), particularly since many authors using 

PLS-PM report such small effect sizes in their analyses. In line with this argument, prior simulation research on PLS-

PM has routinely considered similar effect sizes (e.g., Reinartz, Haenlien, & Henseler, 2009; Sarstedt, Hair, Ringle, 

Thiele, & Gudergan, 2016; Hair, Hult, Ringle, Sarstedt, & Thiele, 2017c). 
3 Nevertheless, we conducted additional robustness checks in non-normal distribution settings by utilizing the log-

normal distribution that is characterized by extremely high levels of skewness and kurtosis (Hair et al., 2017c). These 

results (in Appendix C) show that our conclusions are robust across the normal and log-normal distributions.    
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the sempls package (Monecke, 2012). We ran 200 replications for each of the 90 simulation 

conditions, yielding a total of 18,000 runs.   

3.2 Model Estimation and Measurement 

Drawing on the recommendations by Paxton et al. (2001), we utilize models of similar structure and 

complexity as those commonly encountered in management information systems (MIS) research. 

We chose this discipline as PLS-PM was first adopted (Chin, 1998) and still features very 

prominently in MIS (e.g., Hair et al. 2017a; Ringle et al., 2012). As a result of this review, our 

simulation model has a similar structure and complexity as those commonly encountered in MIS 

research, such as the unified theory of acceptance and use of technology (UTAUT) model 

(Venkatesh, Morris, Davis & Davis, 2003; Venkatesh, Brown, Maruping & Bala, 2008) or other 

models of information systems success (e.g., Polites & Karahanna, 2012; Iyengar, Sweeney & 

Montealegre, 2015; Park, Sharman & Rao, 2015). Furthermore, the model is similar to those used in 

prior PLS-PM-based simulation studies (e.g., Reinartz, Haenlein & Henseler, 2009; Ringle et al., 

2014), most notably Dijkstra & Henseler’s (2015) study on consistent PLS. 

A set of eight potential models that differed from each other on certain paths formed the 

competing set (Figure 1). Each model had three reflectively measured exogenous variables (ξ1, ξ2, 

and ξ3) and two reflectively measured endogenous variables (η1 and η2). The focal endogenous 

variable of interest was η2. Model 5 served as the data generation model. Models 1, 3, 4, and 6 were 

incorrectly specified with respect to direct paths into η2; that is, they had incorrect paths that were 

not consistent with the data generation process. Model 2 was correctly specified with respect to the 

direct paths into η2, but was underspecified relative to the data generation process.4 Model 7 was a 

fully saturated model with all possible paths into η2, including one incorrect path into η2 relative to 

the data generating model. Finally, Model 8 was correctly specified with respect to direct paths into 

                                                            
4 In SEM terminology, Model 2 would be considered a nested (or restricted) version of the data generating Model 5.   
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η2, but was overspecified relative to the data generation process. We describe the choice of 

competing models under different scenarios in more detail in section 3.3.  

 
Figure 1: The eight competing models. 

 

Model 1: Incorrect model

Model 3: Incorrect model

Model 5: Data generation model

Model 7: Saturated model

Model 2: Parsimonious model

Model 4: Incorrect model

Model 6: Incorrect model

Note: The effect size on was one of the modified design factors with 

values .1, .2, .3, .4 and .5.

Model 8: Overspecified model 
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To evaluate the criteria’s predictive accuracy, we created a holdout set (n = 1,000) for each 

experimental condition to mimic the population that the training sample originated from. We chose 

a large holdout sample to obtain the most precise estimates for the out-of-sample criteria (e.g., 

RMSE). In other words, the size of the holdout set was set for evaluation purposes and for best 

calibration against “out of sample performance.” Table 1 presents the procedure used for assessing 

the predictive model selection performance of in-sample criteria vis-à-vis the out-of-sample criteria.  

 

Table 1: Procedure for assessing predictive model selection performance. 

Step # Details  

1 Generate training data according to the data generating model (e.g., Model 5 in Scenario 1) by 

manipulating the different experimental conditions (sample size, effect size, and loadings). Using the 

same population parameters as the training set, generate the holdout sample (n=1,000).  

2 Estimate all the eight competing models using the PLS-PM algorithm on the training data.  

3 Compute the in-sample criteria for all eight competing models using the training data, including the 

PLS-PM criteria and the model selection criteria.  

4 Compute out-of-sample criteria for all eight competing models using the training sample PLS-PM 

parameters and holdout sample items as outlined by Shmueli et al. (2016).   

5 Record which of the eight models is chosen as the best by each of the in-sample and out-of-sample 

criteria.  

6 Compare the best model selected by each in-sample criterion to the RMSE-selected model. 

 

Our analysis considers the following dependent variables: The value for each criterion for 

each of the eight models (PLS-PM, model selection, and out-of-sample criteria) along with a binary 

variable that assumed the value 1 if a criterion selected the model with the best predictive accuracy 

(measured in terms of the model with the lowest out-of-sample RMSE), 0 otherwise.  

3.3 Different model setups: Two scenarios 

Our simulation design considers two scenarios, one where the data generation model was included 

in the set of models to select from, and another where this model was excluded from the 

consideration set.  

Scenario 1: The first scenario assumes that the researcher possesses all the context-specific 
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variables that generated the data and that there were no hidden (or inaccessible) variables. In 

addition, this scenario also assumes that the researcher correctly theorizes and includes the data 

generation model in the cohort of competing models. While this scenario is unlikely to occur in 

practice, it allows us to benchmark the performance of the in-sample criteria, vis-à-vis the out-of-

sample criteria. In this case, Model 5 was the data generating model and was included in the set of 

the eight competing models (Figure 1). We selected these eight models because they allowed 

comparing incorrect, underspecified, overspecified, and saturated models. The underspecified 

models may outperform more complex models in their predictive accuracy (Shmueli, 2010). The 

inclusion of saturated model in this set allowed us to benchmark the in-sample explanatory power 

(R2) and assess the relative improvements in prediction achieved by other models.  

Scenario 2: The second, and more realistic, scenario expanded the first by explicitly accepting 

the existence of a hidden, or otherwise unavailable, latent variable that helped generate the data. 

Under most exploratory research scenarios, it is practical to assume that researchers may not possess 

all the variables that took part in the data generation process. Therefore, we incorporated an 

extraneous hidden variable (ξ4) that was unavailable to the researcher but that directly impacted the 

focal endogenous variable of interest (η2). As illustrated in Figure 2, we created a Model X that 

generated the data by relying on the hidden variable (ξ4). Note that in this case the data generation 

Model X is automatically excluded from the competing set of models because the hidden variable 

(ξ4) rendered it out of researcher’s reach.  
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Figure 2: Data generating Model X for Scenario 2 with hidden variable ξ4  

In each of the two scenarios above, prediction-oriented model comparison may be performed using 

one of the two possible lenses that reflect the nature of the underlying theory and the goal of the 

study: (1) Prediction only (P), and (2) Balanced explanation and prediction (EP). When the 

researcher is utilizing the prediction only lens (P), the model selected is expected to have the best 

predictive accuracy among the cohort but is not required to have well-developed causal 

explanations (Gregor, 2006). In this case the role of theory is limited, and the out-of-sample 

criteria (e.g. RMSE) are the “gold-standard” by which the models must be judged. A model with 

the best predictive accuracy is chosen regardless of whether it is correctly specified or not 

(Shmueli & Koppius, 2011). In the context of this study, we ask the question: which in-sample 

criteria can help select the best predictive model (e.g., per RMSE) regardless of whether the 

selected model is correctly specified or not?  

Alternatively, when the researcher is utilizing the EP lens, the goal of prediction-oriented 

model comparison is to select a model that “provides predictions and has both testable propositions 

and causal explanations” (Gregor, 2006, p. 620). This perspective corresponds to Jöreskog and 

Wold’s (1982, p. 270) understanding of PLS-PM who labeled the method as a “causal-predictive” 

technique, meaning that when structural theory is strong, path relationships can be interpreted as 

Model X: Data generation model 
(NOT INCLUDED IN CASE 3) 

𝜉1 

𝜉3 

𝜉2 

𝜂1 

𝜂2 

 

𝜉4 

𝛽1 = 0.4 

𝛽4 = 0.4 

𝛽5 = 0.4 
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causal. Correspondingly, many authors using PLS-PM emphasize the predictive nature of their 

analyses (e.g., Hair et al., 2012a, b; Ringle et al., 2012), while, at the same time, testing a path 

model derived from causal theory (e.g., Rönkkö & Evermann, 2013; Sarstedt et al., 2016, 2017). 

Our paper follows this common practice by assuming that the researcher’s primary constraint is 

that the model selected should be correctly specified first and foremost—that is, the model should 

be consistent with the data generation process. This is in contrast to many machine learning 

forecasting methods, such as artificial neural networks, where prediction is critical but theoretical 

consistency may be of secondary concern (e.g., Shmueli & Koppius, 2011). Thus, a more relevant 

question in the context of PLS-PM is, which criteria can be used to select a suitably predictive yet 

correctly specified model? This question assumes that the researcher is willing to accept some 

trade-off in predictive power to remain within the correctly specified set. In the following section, 

we analyze the relative strengths of in-sample criteria using the two lenses (i.e. P and EP), but 

with stronger focus on balanced explanation and prediction.      

4. Results 

4.1 Scenario 1: Data generation model included in the consideration set 

4.1.1 Overall results and benchmarking  

The first set of results is for the case where the generating model (Model 5) was part of the 

consideration set. We calculated each criterion for each of the eight models and chose the model 

that achieved the best score for each criterion. In the case of PLS-PM criteria, a model with the 

highest value was considered the best. In contrast, a model with the lowest value on all model 

selection and out-of-sample criteria was considered the best (McQuarrie & Tsai, 1998; Burnham & 

Anderson, 2002; Shmueli et al., 2016). Table 2 shows the average choice percentages for each 

model per criterion (PLS-PM, model selection, and out-of-sample criteria) across all conditions of 

sample sizes, item loadings, and effect sizes.  
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The results show that except for MAPE, all out-of-sample criteria show a very similar 

performance, choosing Models 2, 5, 7, or 8, with greater preference for Model 2. MAPE’s choice 

shares ranged across all possible models, with heavier preference towards the incorrect and 

underspecified Models 3 and 6. The model selection criteria show a similar performance as the out-

of-sample criteria, but with stronger preferences for Model 2 with choice shares ranging between 

63.8% (AIC and FPE) to 74.3% (GM). However, unlike most model selection criteria, GM and BIC 

rarely chose the saturated Model 7. In contrast, among the PLS-PM criteria, except for Q2 that 

behaved somewhat similar to the out-of-sample criteria, all other criteria chose either Models 2 or 7, 

with R2 heavily preferring Model 7. 

Table 2: Overall proportion of model choice by each criterion (Scenario 1) 
 

  Model # 1 2 3 4 5 6 7 8 

PLS-PM 

Criteria 

R2 0.000 0.273 0.000 0.003 0.019 0.000 0.695 0.009 

Adjusted R2 0.000 0.537 0.000 0.005 0.074 0.000 0.303 0.081 

Q2 0.003 0.305 0.000 0.004 0.224 0.002 0.179 0.281 

Model 

Selection 

Criteria 

FPE 0.000 0.638 0.000 0.006 0.091 0.000 0.163 0.101 

CP 0.000 0.686 0.000 0.006 0.100 0.001 0.096 0.111 

GM 0.000 0.743 0.000 0.006 0.109 0.007 0.011 0.123 

AIC 0.000 0.638 0.000 0.006 0.091 0.000 0.164 0.101 

AICu 0.000 0.688 0.000 0.006 0.099 0.002 0.093 0.112 

AICc 0.000 0.649 0.000 0.006 0.093 0.001 0.146 0.104 

BIC 0.000 0.731 0.000 0.006 0.107 0.005 0.032 0.120 

HQ 0.000 0.695 0.000 0.006 0.100 0.001 0.085 0.112 

HQc 0.000 0.705 0.000 0.006 0.102 0.002 0.070 0.114 

Out-of-

Sample 

Criteria 

MAD 0.000 0.351 0.000 0.000 0.183 0.000 0.236 0.229 

RMSE 0.000 0.365 0.000 0.000 0.186 0.000 0.218 0.230 

MAPE 0.094 0.044 0.247 0.076 0.044 0.347 0.090 0.058 

SMAPE 0.000 0.365 0.000 0.000 0.123 0.000 0.343 0.168 

 

 

To further compare the criteria’s patterns of model choices, we examined the distributions of 

each criterion’s values across the eight models (see Figure B1 in Appendix B). This analysis shows 

that the RMSE values have nearly identical distribution for Models 2, 5, and 8. The same was true 
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for out-of-sample MAD, SMAPE, the in-sample model selection criteria, and the Q2. We also find 

slightly worse values for Model 7 for all these criteria. In contrast, R2 achieved the highest value for 

Model 7, while the Adjusted R2 had identical value distributions for Models 2, 5, 7, and 8. 

As RMSE is generally preferred as the “default” in predictive modeling over other criteria 

(e.g., Chica and Rand, 2017; Nau, 2016), our subsequent analyses draw on this criterion as the 

predictive “gold standard” by which we judge the relative performances of in-sample criteria in 

selecting a predictive model. However, we note that all out-of-sample criteria—except MAPE—

behaved very similarly. 

4.1.2 Assessing performance of in-sample criteria using the prediction-only lens (P)  

Next, we compared the choices of the different criteria (PLS-PM and model selection criteria) to the 

choice made by RMSE. Table 3 shows the percentage of cases where each criterion agreed with 

RMSE’s choice (strict agreement); that is, the percentage of cases where both the RMSE and the in-

sample criteria chose the same model in the same run, regardless of whether the model chosen was 

correctly or incorrectly specified. This table also breaks down the results by loading value, sample 

size, and effect size. We see that the model selection criteria agreed with the “best model” chosen 

by RMSE between 16-40% of the time (more so with larger effect size and loading value). The 

PLS-PM criteria behaved differently, with much lower and more variable agreement rates with 

RMSE (between 9-44%), and were at their highest agreement with RMSE at higher sample sizes. 

Among the PLS-PM criteria, Q2 was the least variable.   
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Table 3: Percentage agreement between RMSE and each criterion on “best model” (Scenario 1). 

Experimental Condition PLS Criteria   Model Selection Criteria 

Loading 

Values 

Effect 

Size 

Sample 

Size 

R2 Adjusted 

R2 

Q2 FPE CP GM AIC AICu AICc BIC HQ HQc 

0.7 0.1 50 0.125 0.190 0.185 0.210 0.225 0.215 0.205 0.230 0.225 0.220 0.230 0.230 

0.7 0.1 100 0.170 0.225 0.230 0.265 0.280 0.300 0.265 0.280 0.275 0.295 0.280 0.285 

0.7 0.1 150 0.235 0.190 0.225 0.210 0.225 0.230 0.210 0.220 0.215 0.225 0.225 0.215 

0.7 0.1 200 0.225 0.165 0.155 0.165 0.170 0.190 0.165 0.180 0.160 0.180 0.185 0.185 

0.7 0.1 250 0.305 0.210 0.205 0.210 0.225 0.230 0.210 0.215 0.210 0.225 0.210 0.205 

0.7 0.1 500 0.415 0.255 0.185 0.220 0.210 0.185 0.220 0.200 0.225 0.180 0.195 0.195 

0.7 0.2 50 0.240 0.230 0.210 0.245 0.260 0.260 0.240 0.260 0.260 0.260 0.260 0.265 

0.7 0.2 100 0.205 0.225 0.185 0.255 0.290 0.320 0.255 0.295 0.275 0.315 0.295 0.305 

0.7 0.2 150 0.220 0.230 0.195 0.260 0.275 0.310 0.260 0.275 0.260 0.290 0.275 0.275 

0.7 0.2 200 0.250 0.185 0.190 0.200 0.210 0.265 0.200 0.215 0.200 0.240 0.220 0.225 

0.7 0.2 250 0.240 0.210 0.200 0.230 0.255 0.280 0.230 0.265 0.235 0.275 0.265 0.265 

0.7 0.2 500 0.375 0.255 0.265 0.235 0.230 0.255 0.235 0.235 0.230 0.260 0.235 0.245 

0.7 0.3 50 0.190 0.265 0.180 0.305 0.310 0.310 0.305 0.315 0.315 0.300 0.310 0.315 

0.7 0.3 100 0.180 0.220 0.235 0.270 0.270 0.330 0.270 0.285 0.270 0.325 0.285 0.290 

0.7 0.3 150 0.255 0.260 0.160 0.300 0.315 0.335 0.300 0.315 0.315 0.335 0.320 0.325 

0.7 0.3 200 0.245 0.245 0.220 0.260 0.255 0.290 0.260 0.260 0.260 0.285 0.275 0.275 

0.7 0.3 250 0.225 0.200 0.160 0.200 0.205 0.250 0.200 0.205 0.200 0.230 0.210 0.215 

0.7 0.3 500 0.385 0.335 0.260 0.345 0.370 0.340 0.345 0.355 0.345 0.340 0.350 0.345 

0.7 0.4 50 0.155 0.260 0.240 0.270 0.285 0.290 0.265 0.285 0.280 0.285 0.280 0.285 

0.7 0.4 100 0.185 0.220 0.170 0.260 0.285 0.310 0.260 0.290 0.270 0.305 0.290 0.305 

0.7 0.4 150 0.170 0.200 0.205 0.225 0.235 0.245 0.225 0.230 0.235 0.235 0.230 0.230 

0.7 0.4 200 0.260 0.290 0.210 0.330 0.325 0.350 0.330 0.330 0.325 0.340 0.340 0.340 

0.7 0.4 250 0.310 0.305 0.250 0.320 0.325 0.350 0.320 0.320 0.320 0.345 0.325 0.330 

0.7 0.4 500 0.275 0.265 0.220 0.265 0.280 0.325 0.265 0.280 0.265 0.320 0.285 0.285 

0.7 0.5 50 0.240 0.250 0.245 0.265 0.300 0.305 0.265 0.305 0.280 0.310 0.280 0.320 

0.7 0.5 100 0.170 0.255 0.235 0.290 0.305 0.345 0.285 0.320 0.300 0.340 0.320 0.335 

0.7 0.5 150 0.235 0.270 0.220 0.295 0.325 0.350 0.295 0.330 0.305 0.345 0.335 0.345 

0.7 0.5 200 0.260 0.270 0.210 0.270 0.280 0.330 0.270 0.295 0.270 0.325 0.300 0.300 

0.7 0.5 250 0.195 0.220 0.210 0.270 0.270 0.305 0.270 0.280 0.270 0.295 0.280 0.280 

0.7 0.5 500 0.320 0.265 0.195 0.255 0.245 0.275 0.255 0.240 0.255 0.280 0.245 0.255 

0.8 0.1 50 0.150 0.230 0.225 0.260 0.290 0.275 0.260 0.280 0.270 0.280 0.275 0.285 

0.8 0.1 100 0.215 0.215 0.200 0.250 0.275 0.310 0.250 0.270 0.260 0.300 0.270 0.285 

0.8 0.1 150 0.230 0.165 0.145 0.180 0.205 0.220 0.180 0.205 0.190 0.215 0.205 0.205 

0.8 0.1 200 0.200 0.135 0.170 0.165 0.170 0.200 0.165 0.170 0.160 0.200 0.180 0.180 

0.8 0.1 250 0.250 0.195 0.225 0.235 0.265 0.305 0.235 0.260 0.240 0.300 0.275 0.275 

0.8 0.1 500 0.390 0.325 0.245 0.260 0.255 0.250 0.260 0.260 0.260 0.250 0.265 0.265 

0.8 0.2 50 0.175 0.240 0.220 0.305 0.335 0.340 0.305 0.330 0.310 0.340 0.325 0.335 

0.8 0.2 100 0.110 0.265 0.250 0.295 0.310 0.330 0.295 0.310 0.300 0.330 0.310 0.315 

0.8 0.2 150 0.215 0.240 0.185 0.270 0.270 0.300 0.270 0.275 0.270 0.295 0.275 0.280 

0.8 0.2 200 0.225 0.225 0.175 0.230 0.240 0.275 0.230 0.240 0.230 0.270 0.245 0.245 

0.8 0.2 250 0.255 0.230 0.185 0.220 0.210 0.245 0.215 0.210 0.220 0.235 0.215 0.215 

0.8 0.2 500 0.320 0.235 0.190 0.200 0.210 0.210 0.200 0.215 0.200 0.215 0.215 0.215 

0.8 0.3 50 0.150 0.250 0.220 0.285 0.315 0.310 0.285 0.315 0.310 0.315 0.315 0.320 

0.8 0.3 100 0.200 0.240 0.195 0.300 0.335 0.360 0.300 0.330 0.305 0.355 0.330 0.345 

0.8 0.3 150 0.200 0.270 0.215 0.300 0.325 0.370 0.300 0.335 0.300 0.350 0.330 0.335 

0.8 0.3 200 0.240 0.235 0.160 0.250 0.265 0.305 0.250 0.265 0.255 0.295 0.270 0.270 

0.8 0.3 250 0.220 0.240 0.245 0.275 0.290 0.310 0.275 0.295 0.275 0.305 0.285 0.285 

0.8 0.3 500 0.315 0.250 0.200 0.240 0.255 0.265 0.240 0.255 0.250 0.265 0.265 0.260 

0.8 0.4 50 0.210 0.295 0.250 0.335 0.370 0.380 0.335 0.365 0.355 0.370 0.360 0.375 

0.8 0.4 100 0.170 0.255 0.210 0.305 0.325 0.370 0.305 0.330 0.315 0.370 0.330 0.360 
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0.8 0.4 150 0.200 0.240 0.160 0.290 0.300 0.325 0.290 0.305 0.290 0.325 0.305 0.310 

0.8 0.4 200 0.245 0.230 0.205 0.240 0.255 0.280 0.240 0.255 0.240 0.275 0.260 0.260 

0.8 0.4 250 0.225 0.220 0.155 0.235 0.260 0.290 0.235 0.260 0.240 0.280 0.260 0.270 

0.8 0.4 500 0.235 0.220 0.190 0.220 0.230 0.280 0.220 0.235 0.215 0.275 0.240 0.240 

0.8 0.5 50 0.190 0.290 0.235 0.350 0.365 0.375 0.350 0.370 0.360 0.370 0.365 0.370 

0.8 0.5 100 0.165 0.240 0.215 0.290 0.300 0.340 0.290 0.310 0.295 0.320 0.310 0.310 

0.8 0.5 150 0.170 0.245 0.310 0.270 0.310 0.335 0.270 0.310 0.280 0.325 0.315 0.315 

0.8 0.5 200 0.295 0.335 0.225 0.345 0.360 0.385 0.345 0.360 0.345 0.375 0.365 0.365 

0.8 0.5 250 0.275 0.290 0.240 0.310 0.330 0.345 0.310 0.335 0.310 0.345 0.345 0.345 

0.8 0.5 500 0.285 0.245 0.130 0.245 0.280 0.320 0.245 0.280 0.250 0.315 0.285 0.290 

0.9 0.1 50 0.145 0.205 0.220 0.240 0.245 0.250 0.240 0.230 0.240 0.240 0.235 0.235 

0.9 0.1 100 0.125 0.180 0.190 0.235 0.260 0.300 0.235 0.260 0.245 0.295 0.260 0.260 

0.9 0.1 150 0.220 0.170 0.240 0.235 0.260 0.270 0.235 0.260 0.255 0.270 0.260 0.260 

0.9 0.1 200 0.220 0.190 0.195 0.240 0.250 0.275 0.240 0.250 0.240 0.260 0.250 0.255 

0.9 0.1 250 0.195 0.165 0.220 0.225 0.275 0.305 0.225 0.255 0.230 0.300 0.285 0.285 

0.9 0.1 500 0.275 0.205 0.160 0.190 0.200 0.235 0.190 0.190 0.190 0.235 0.205 0.210 

0.9 0.2 50 0.120 0.240 0.260 0.310 0.355 0.340 0.310 0.360 0.345 0.355 0.350 0.360 

0.9 0.2 100 0.225 0.265 0.160 0.290 0.325 0.345 0.290 0.320 0.295 0.340 0.320 0.325 

0.9 0.2 150 0.185 0.240 0.230 0.290 0.330 0.350 0.290 0.335 0.295 0.345 0.335 0.340 

0.9 0.2 200 0.250 0.160 0.155 0.205 0.250 0.260 0.205 0.245 0.205 0.255 0.245 0.245 

0.9 0.2 250 0.240 0.200 0.170 0.235 0.270 0.295 0.235 0.270 0.250 0.280 0.275 0.275 

0.9 0.2 500 0.255 0.245 0.165 0.235 0.255 0.280 0.235 0.250 0.235 0.275 0.260 0.260 

0.9 0.3 50 0.150 0.295 0.255 0.335 0.370 0.395 0.335 0.360 0.350 0.395 0.350 0.380 

0.9 0.3 100 0.190 0.200 0.220 0.255 0.285 0.305 0.255 0.280 0.260 0.300 0.280 0.285 

0.9 0.3 150 0.215 0.260 0.190 0.315 0.340 0.375 0.310 0.340 0.325 0.375 0.345 0.350 

0.9 0.3 200 0.205 0.255 0.250 0.310 0.325 0.340 0.310 0.310 0.305 0.335 0.315 0.330 

0.9 0.3 250 0.255 0.285 0.215 0.295 0.335 0.360 0.295 0.335 0.310 0.350 0.330 0.330 

0.9 0.3 500 0.230 0.240 0.170 0.280 0.305 0.325 0.280 0.305 0.290 0.330 0.295 0.295 

0.9 0.4 50 0.145 0.250 0.200 0.355 0.380 0.405 0.350 0.370 0.370 0.405 0.370 0.380 

0.9 0.4 100 0.180 0.225 0.275 0.280 0.315 0.335 0.280 0.310 0.300 0.325 0.310 0.315 

0.9 0.4 150 0.210 0.310 0.220 0.375 0.395 0.405 0.375 0.390 0.375 0.405 0.395 0.400 

0.9 0.4 200 0.200 0.175 0.190 0.210 0.240 0.280 0.210 0.245 0.220 0.275 0.250 0.265 

0.9 0.4 250 0.225 0.270 0.170 0.295 0.320 0.335 0.295 0.315 0.305 0.340 0.325 0.330 

0.9 0.4 500 0.335 0.290 0.255 0.330 0.345 0.380 0.330 0.345 0.335 0.370 0.355 0.360 

0.9 0.5 50 0.130 0.205 0.195 0.295 0.335 0.335 0.295 0.335 0.325 0.340 0.330 0.345 

0.9 0.5 100 0.170 0.220 0.205 0.275 0.290 0.330 0.275 0.290 0.280 0.320 0.290 0.300 

0.9 0.5 150 0.185 0.250 0.205 0.300 0.320 0.320 0.300 0.315 0.300 0.320 0.315 0.320 

0.9 0.5 200 0.210 0.295 0.210 0.335 0.380 0.420 0.335 0.390 0.340 0.410 0.395 0.400 

0.9 0.5 250 0.235 0.270 0.200 0.295 0.330 0.350 0.295 0.325 0.305 0.345 0.330 0.330 

0.9 0.5 500 0.230 0.225 0.195 0.225 0.245 0.295 0.225 0.250 0.225 0.295 0.250 0.255 

OVERALL STRICT 

AGREEMENT 

0.224 0.238 0.207 0.266 0.285 0.308 0.266 0.285 0.272 0.303 0.287 0.292 

Notes: Darker shading represents higher percentages. 

 

 To assess which specific models the RMSE and in-sample criteria agreed on, we also analyzed 

the percentage of agreement broken down by each model (Table 4). This analysis allowed us to 

understand which models were being chosen by RMSE and in-sample criteria at the same time. The 

highest agreement percentages for all model selection criteria, as well as Adjusted R2 and Q2, were 

over Model 2. Recall that Model 2 was the correct but underspecified version of the data generation 
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model (Model 5). In contrast, these criteria agreed to a much a lesser extent on the data generation 

model (Model 5) and the correct but overspecified version (Model 8). In terms of R2, we found that 

the agreement with RMSE was on Model 7 because of their tendency to heavily prefer the saturated 

model. Among all the criteria, BIC and GM found agreement with RMSE more often than others. 

However, because the overall strict agreement rates with RMSE were fairly low for all criteria (last 

row of Table 3), none of the in-sample criteria are suitable replacements for out-of-sample criteria 

(RMSE) when the focus is on prediction-only (P). In such a case, the availability of a holdout set 

and the computation of out-of-sample criteria is necessary and cannot be avoided.    

Table 4: Percentage agreement with RMSE by model number (Scenario 1) 
 

Model #   1 2 3 4 5 6 7 8 Total  

PLS-PM 

Criteria 

R2 0.000 0.092 0.000 0.000 0.003 0.000 0.128 0.001 0.224 

Adjusted R2 0.000 0.183 0.000 0.000 0.011 0.000 0.031 0.014 0.238 

Q2 0.000 0.101 0.000 0.000 0.034 0.000 0.018 0.054 0.207 

Model 

Selection 

Criteria 

FPE 0.000 0.223 0.000 0.000 0.013 0.000 0.011 0.018 0.266 

CP 0.000 0.244 0.000 0.000 0.015 0.000 0.006 0.021 0.285 

GM 0.000 0.267 0.000 0.000 0.016 0.000 0.000 0.024 0.308 

AIC 0.000 0.223 0.000 0.000 0.013 0.000 0.011 0.018 0.266 

AICu 0.000 0.244 0.000 0.000 0.015 0.000 0.005 0.022 0.285 

AICc 0.000 0.229 0.000 0.000 0.014 0.000 0.011 0.019 0.272 

BIC 0.000 0.263 0.000 0.000 0.016 0.000 0.001 0.023 0.303 

HQ 0.000 0.247 0.000 0.000 0.015 0.000 0.003 0.022 0.287 

HQc 0.000 0.252 0.000 0.000 0.015 0.000 0.003 0.022 0.292 

 

 

4.1.3 Assessing performance of in-sample criteria using the explanation-prediction lens (EP) 

The analyses above assumed strict agreement with RMSE to choose a best model regardless of 

whether the selected model was correctly specified or not. However, because PLS-PM puts 

theoretical consistency at a premium, we asked whether the in-sample criteria can help select a 

suitably predictive model that is also consistent with the data generation process (correctly 

specified). This necessitates some trade-off in out-of-sample predictive power to ensure that the 

model selected lies in the set of correctly specified models. To shed light on this question, we 
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analyzed the agreement of in-sample criteria with RMSE over the three types of models (in terms of 

specification relative to η2) included in our experimental set-up: correctly specified (Models 2, 5, 

and 8), incorrectly specified (Model 1, 3, 4, and 6), and saturated (Model 7). Recall that Models 2 

and 8 were correct but under- and over-specified versions of the data generation model (Model 5) 

respectively, with respect to η2. Ideally, we would like to see whether RMSE and the in-sample 

criteria agreed more over the set of correctly specified models, and disagreed over the misspecified 

and saturated sets.5 Table 5 presents the agreement percentages broken down by model types.  

Table 5: Percentage agreement with RMSE by model type (Scenario 1) 
 

Model Type   

Correctly Specified 

(Model 2 or 5 or 8) 

Incorrectly Specified 

(Model 1 or 3 or 4 or 6) Saturated (Model 7) 

PLS-PM 

Criteria 

R2 0.211 0.000 0.128 

Adjusted R2 0.504 0.000 0.031 

Q2 0.611 0.000 0.018 

Model 

Selection 

Criteria 

FPE 0.623 0.000 0.011 

CP 0.684 0.000 0.006 

GM 0.757 0.000 0.000 

AIC 0.623 0.000 0.011 

AICu 0.685 0.000 0.005 

AICc 0.639 0.000 0.011 

BIC 0.740 0.000 0.001 

HQ 0.692 0.000 0.003 

HQc 0.705 0.000 0.003 

 

Among the PLS-PM criteria, we see that Q2 achieved the highest agreement with RMSE over 

the correctly specified set (61.1%), followed by Adjusted R2 (50.4%). In contrast, R2 had low levels 

of agreement (21.1%) and also agreed over the saturated model (12.8%). All the model selection 

criteria found strongest agreement with RMSE on the correctly specified set, with GM and BIC 

achieving over 74% agreement—higher by a significant margin compared to other criteria. In 

                                                            
5 In the following, we focus on agreement with RMSE over a set of models rather than a specific model as in Table 4. 

Thus, agreement over the correctly specified set captures the percentage of cases when both RMSE and model selection 

(or PLS-PM) criteria selected a model in the corresponding set at the same time.   
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particular, the agreement level of model selection criteria over Model 7 were low because of their 

tendency to penalize the saturated model more than other models. In addition, the agreement over 

the set of incorrectly specified models were zero for all the criteria. These results suggest that there 

are significant gains to be had by preferring the use of the model selection criteria (in particular BIC 

and GM) over PLS-PM criteria (including the Q2). If the primary goal of the researcher is to select a 

suitably predictive and correctly specified model in the absence of a holdout sample, BIC and GM 

are promising substitutes for RMSE.  

4.1.4 Impact of simulation design factors    

After establishing the suitability of model selection criteria as potential substitutes when utilizing 

the EP lens, we next analyzed the question: How do the individual experimental conditions affect 

the agreement levels between RMSE and in-sample criteria over the correctly specified set? Asking 

this question can help us understand the conditions under which the researcher may expect more 

agreement with RMSE than others. We created three marginal means tables that break down the 

results presented in Table 5 by individual experimental condition.     

Table 6 presents the percentage agreement with RMSE by model type broken by sample size6. 

An immediate pattern to note is that the model selection criteria showed significantly higher 

agreement levels with RMSE than any PLS-PM criteria, including Q2 which was the best 

performing PLS-PM criterion. For example, while GM showed 79.2% agreement over the correctly 

specified set at sample size 50, R2 was able to manage only 26.6%. With an increase in sample size, 

the “general” trend of agreement with RMSE over correctly specified models was of a gradual 

decrease for all in-sample criteria. In contrast, the agreement with the saturated model showed a 

pattern of gradual increase. However, there were certain exceptions. For example, BIC and GM (in 

                                                            
6 We note that the agreement values over the incorrectly specified set are close to zero for all criteria and are hence not 

presented in Table 6.  
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addition, HQ and HQc) “peaked” in agreement over correctly specified models at sample size 100 

(BIC: 79.9% and GM: 82.2%) but trailed off gradually after that, reaching around 65% agreement at 

sample size 500. The “sweet spot” for BIC and GM lies between sample sizes 50-200, precisely the 

conditions under which splitting the sample into training and holdout samples becomes impractical! 

At higher sample sizes (say 500 or more), the researcher has the luxury of splitting the sample into 

training and holdout and may not need to rely on in-sample criteria at all.   

Table 6: Percentage agreement with RMSE by model type by Sample Size (Scenario 1) 

 

  Criterion Model Type 50 100 150 200 250 500 Pattern 

PLS-PM 

Criteria 

R2 
Correctly Specified 0.266 0.212 0.226 0.199 0.201 0.162 

Saturated 0.047 0.083 0.108 0.142 0.153 0.235 

Adjusted R2 
Correctly Specified 0.589 0.544 0.528 0.479 0.477 0.409 

Saturated 0.003 0.011 0.018 0.034 0.035 0.085 

Q2 
Correctly Specified 0.685 0.663 0.636 0.599 0.583 0.497 

Saturated 0.001 0.008 0.011 0.014 0.021 0.052 

Model 

Selection 

Criteria 

FPE 
Correctly Specified 0.704 0.676 0.661 0.605 0.591 0.504 

Saturated 0.000 0.001 0.005 0.009 0.014 0.039 

Cp 
Correctly Specified 0.761 0.742 0.720 0.663 0.653 0.564 

Saturated 0.000 0.000 0.002 0.002 0.007 0.023 

GM 
Correctly Specified 0.792 0.822 0.788 0.750 0.736 0.655 

Saturated 0.000 0.000 0.000 0.000 0.000 0.000 

AIC 
Correctly Specified 0.702 0.675 0.659 0.605 0.591 0.504 

Saturated 0.000 0.001 0.005 0.009 0.014 0.039 

AICu 
Correctly Specified 0.755 0.743 0.721 0.669 0.656 0.566 

Saturated 0.000 0.000 0.002 0.002 0.005 0.020 

AICc 
Correctly Specified 0.737 0.697 0.675 0.612 0.603 0.509 

Saturated 0.000 0.001 0.004 0.007 0.013 0.039 

BIC 
Correctly Specified 0.773 0.799 0.771 0.731 0.720 0.645 

Saturated 0.000 0.000 0.000 0.000 0.000 0.003 

HQ 
Correctly Specified 0.742 0.743 0.726 0.682 0.674 0.589 

Saturated 0.000 0.000 0.002 0.002 0.003 0.013 

HQc 
Correctly Specified 0.765 0.765 0.737 0.689 0.679 0.593 

Saturated 0.000 0.000 0.001 0.002 0.002 0.013 

 

Table 7 presents the percentage agreement with RMSE by model type per effect size. With an 

increase in effect size, all criteria show stronger agreement on the correctly specified models, due to 

stronger signal strength. However, the base rates of agreement of model selection criteria are 
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significantly higher than those of the PLS-PM criteria. For example, BIC and GM show high 

agreement with RMSE over correctly specified models even at a low effect size of 0.1 (71.4% and 

73.3% respectively), while R2 had 14.8% agreement. Again, Q2 is the best performing PLS-PM 

criterion but still lags behind top performing model selection criteria. Conversely, as effect size 

increases, the agreement level over the saturated model decreases for all criteria. Here, BIC and GM 

again show very low (almost zero) base rates of agreement with the saturated model.  

Table 7: Percentage agreement with RMSE by model type by Effect Size (ξ2  η1) (Scenario 1) 

 

  Criterion Model Type 0.1 0.2 0.3 0.4 0.5 Pattern 

PLS-PM 

Criteria 

R2 
Correctly Specified 0.148 0.182 0.220 0.239 0.265 

Saturated 0.165 0.150 0.119 0.105 0.101 

Adjusted R2 
Correctly Specified 0.458 0.494 0.509 0.519 0.541 

Saturated 0.039 0.034 0.035 0.023 0.023 

Q2 
Correctly Specified 0.589 0.603 0.616 0.620 0.624 

Saturated 0.019 0.017 0.021 0.016 0.015 

Model 

Selection 

Criteria 

FPE 
Correctly Specified 0.587 0.611 0.630 0.637 0.652 

Saturated 0.016 0.010 0.014 0.009 0.007 

Cp 
Correctly Specified 0.653 0.677 0.689 0.697 0.703 

Saturated 0.009 0.005 0.008 0.003 0.004 

GM 
Correctly Specified 0.733 0.746 0.764 0.767 0.775 

Saturated 0.000 0.000 0.000 0.000 0.000 

AIC 
Correctly Specified 0.586 0.610 0.630 0.636 0.652 

Saturated 0.016 0.010 0.014 0.009 0.007 

AICu 
Correctly Specified 0.652 0.678 0.688 0.700 0.708 

Saturated 0.008 0.004 0.007 0.002 0.004 

AICc 
Correctly Specified 0.603 0.627 0.646 0.651 0.666 

Saturated 0.015 0.009 0.014 0.009 0.007 

BIC 
Correctly Specified 0.714 0.727 0.747 0.751 0.760 

Saturated 0.001 0.001 0.000 0.001 0.001 

HQ 
Correctly Specified 0.663 0.684 0.696 0.706 0.713 

Saturated 0.006 0.003 0.004 0.002 0.002 

HQc 
Correctly Specified 0.673 0.695 0.708 0.722 0.728 

Saturated 0.005 0.003 0.003 0.002 0.002 

 

Finally, Table 8 presents the percentage agreement with RMSE by model type broken down 

by loading value (AVE). Again, the base rates of agreement of model selection criteria are 

significantly higher than those of the PLS-PM criteria. As item loadings (AVE) increase, model 
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selection criteria yield higher levels of agreement with RMSE over the correctly specified model 

set, due to the reduction in noise. Q2’s performance is similar to the model selection criteria and 

improves with an increase in AVE; however, its base level agreement is much less than BIC and 

GM. The other PLS-PM criteria display drastically different behavior. With an increase in AVE, the 

R2 and the Adjusted R2 show a decrease in agreement over the correctly specified set. These 

findings suggest that as the measurement model quality improves, the model selection criteria 

become much more reliable in terms of agreeing with RMSE over the correctly specified set, while 

R2 and Adjusted R2 do not.     

Table 8: Percentage agreement with RMSE by model type by Loading Values (AVE) (Scenario 1) 

  Criterion Model Type 0.7 0.8 0.9 Pattern 

PLS-PM 

Criteria 

R2 
Correctly Specified 0.264 0.218 0.152 

Saturated 0.126 0.124 0.135 

Adjusted R2 
Correctly Specified 0.504 0.510 0.499 

Saturated 0.039 0.033 0.021 

Q2 
Correctly Specified 0.603 0.610 0.618 

Saturated 0.022 0.019 0.012 

Model 

Selection 

Criteria 

FPE 
Correctly Specified 0.606 0.626 0.639 

Saturated 0.018 0.011 0.006 

Cp 
Correctly Specified 0.648 0.688 0.716 

Saturated 0.012 0.004 0.002 

GM 
Correctly Specified 0.726 0.762 0.784 

Saturated 0.000 0.000 0.000 

AIC 
Correctly Specified 0.605 0.625 0.639 

Saturated 0.018 0.011 0.006 

AICu 
Correctly Specified 0.658 0.689 0.708 

Saturated 0.008 0.005 0.002 

AICc 
Correctly Specified 0.619 0.641 0.656 

Saturated 0.017 0.010 0.006 

BIC 
Correctly Specified 0.708 0.744 0.767 

Saturated 0.001 0.000 0.001 

HQ 
Correctly Specified 0.666 0.696 0.716 

Saturated 0.005 0.004 0.001 

HQc 
Correctly Specified 0.678 0.708 0.729 

Saturated 0.005 0.003 0.001 
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4.2 Scenario 2: Data generation model not included in the consideration set 

We repeated the prior analyses, but this time using a new generating model (Model X) that was 

excluded from the set of competing models (Figure 2). The results help us assess whether the 

conclusions drawn from the earlier analyses generalize to more practical situations where hidden 

(unobserved or unavailable) variables may exist. Table 9 shows the average choice shares for each 

model per criterion (PLS-PM, model selection, and out-of-sample criteria) across all conditions of 

sample sizes, item loading, and effect sizes. 

Table 9: Overall proportion of model choice by each criterion (Scenario 2) 
 

  Model # 1 2 3 4 5 6 7 8 

PLS-PM 

Criteria 

R2 0.000 0.274 0.000 0.004 0.019 0.000 0.688 0.015 

Adjusted R2 0.000 0.539 0.000 0.004 0.073 0.000 0.306 0.078 

Q2 0.004 0.310 0.000 0.002 0.216 0.002 0.181 0.284 

Model 

Selection 

Criteria 

FPE 0.000 0.642 0.000 0.005 0.093 0.000 0.165 0.095 

CP 0.000 0.690 0.000 0.005 0.099 0.000 0.098 0.107 

GM 0.000 0.755 0.000 0.005 0.109 0.006 0.007 0.117 

AIC 0.000 0.642 0.000 0.005 0.093 0.000 0.166 0.095 

AICu 0.000 0.693 0.000 0.005 0.101 0.001 0.092 0.108 

AICc 0.000 0.653 0.000 0.005 0.094 0.000 0.149 0.098 

BIC 0.000 0.740 0.000 0.005 0.107 0.003 0.030 0.114 

HQ 0.000 0.699 0.000 0.005 0.102 0.001 0.084 0.109 

HQc 0.000 0.707 0.000 0.005 0.103 0.002 0.072 0.111 

Out-of-

Sample 

Criteria 

MAD 0.001 0.347 0.000 0.001 0.193 0.000 0.234 0.224 

RMSE 0.000 0.352 0.000 0.000 0.206 0.000 0.214 0.227 

MAPE 0.086 0.047 0.258 0.075 0.039 0.347 0.087 0.061 

SMAPE 0.001 0.370 0.000 0.000 0.122 0.000 0.341 0.166 

 

The results closely match those derived in Scenario 1 (see also Figure B2 in Appendix B). 

Again, we find that, except for MAPE, all out-of-sample criteria choose Models 2, 5, 7, or 8, with a 

greater preference for Model 2. A similar preference holds for all model selection criteria, but 

showing more pronounced preferences for Model 2 (e.g., BIC: 74% and GM: 75.5%) with GM and 

BIC rarely choosing the saturated Model 7. Among the PLS-PM criteria, Q2 exhibits a similar 
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performance as the out-of-sample criteria, while R2 shows a strong preference for Model 7. Table 

B1 (Appendix B) presents the percentage of agreement broken down by model number. 

Analogous to Scenario 1, we again assessed the agreement of in-sample criteria with RMSE 

over the three types of models (in terms of specification relative to η2) included in our experimental 

set-up: correctly specified (Models 2, 5, and 8), incorrectly specified (Model 1, 3, 4, and 6), and 

saturated (Model 7). Table 10 presents the agreement percentages broken down by model types for 

Scenario 2.     

Table 10: Agreement with RMSE’s choice of best model by model type (Scenario 2) 
 

    

Correctly Specified 

(Model 2 or 5 or 8) 

Incorrectly Specified 

(Model 1 or 3 or 4 or 6) Saturated (Model 7) 

PLS-PM 

Criteria 

R2 0.219 0.000 0.126 

Adjusted R2 0.506 0.000 0.031 

Q2 0.612 0.001 0.016 

Model 

Selection 

Criteria 

FPE 0.625 0.000 0.011 

CP 0.686 0.000 0.005 

GM 0.766 0.000 0.000 

AIC 0.625 0.000 0.011 

AICu 0.692 0.000 0.005 

AICc 0.641 0.000 0.010 

BIC 0.747 0.000 0.000 

HQ 0.697 0.000 0.003 

HQc 0.708 0.000 0.003 

 

The results almost perfectly mimic those in Table 5 with percentage values differing in the 

third decimal place.7  These results suggest that the model selection criteria’s performance is 

immune to whether the data generating model is included or excluded from the set of competing 

models. In other words, the results show that the conclusions drawn from Scenario 1 generalize to 

cases where there may be hidden variables that may directly impact the focal endogenous construct 

                                                            
7 The results across the simulation conditions also parallel those from Scenario 1 and are available from the authors 

upon request. 
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under analysis.      

5. Empirical illustration 

To illustrate the use of the model selection criteria with empirical data, we draw on the corporate 

reputation model used by Hair et al. (2017b, 2018). The goal of this model is to explain the effects 

of competence (COMP) and likeability (LIKE), representing the two dimensions of corporate 

reputation (e.g., Raithel & Schwaiger, 2015; Sarstedt, Wilczynski, & Melewar, 2013), on customer 

satisfaction (CUSA) and customer loyalty (CUSL). Furthermore, the model includes the following 

four antecedent constructs of corporate reputation that Schwaiger (2004) identified: (1) the quality 

of a company’s products and services as well as its quality of customer orientation (QUAL), (2) its 

economic and managerial performance (PERF), (3) a company’s corporate social responsibility 

(CSOR), and (4) its attractiveness (ATTR).   

The measurement models of COMP, LIKE, and CUSL draw on three reflective items each, 

whereas CUSA is measured with a single item. In contrast, the four antecedent constructs (i.e., 

ATTR, CSOR, PERF, and QUAL) have formative measurement models with a total of 21 indicators 

(Schwaiger, 2004). The model estimation draws on data from two major German mobile 

communications network providers and two smaller competitors.8 A total of 344 respondents rated 

each item on a 7-point Likert scale. Observations with missing values were deleted, leaving a total 

sample size of 336. Our analysis considers five different model configurations (Figure 3). Model 1 

is the theoretically well-established original model that has been extensively used in prior 

illustrations of PLS-PM (e.g., Hair et al., 2017b; Hair, Sarstedt, Ringle, & Gudergan, 2018), and in 

showcasing the methodological extensions of the method (e.g., Sarstedt & Ringle, 2010; Matthews, 

Sarstedt, Hair, & Ringle, 2016). Model 2 is equivalent to Eberl’s (2010) conceptualization 

according to which only LIKE influences CUSL directly. Model 3 is a further simplified version of 

                                                            
8 The dataset and SmartPLS model files can be downloaded from https://www.pls-sem.net/downloads/. 
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Models 1 and 2 in which LIKE and COMP only influence CUSA directly. However, both these 

models disregard that corporate reputation—as conceptualized and operationalized by Schwaiger 

(2004)— is an attitude-related construct with one affective dimension (i.e., LIKE), and one 

cognitive dimension (COMP). As loyalty manifests itself in customers’ relative attitude towards a 

firm (i.e., the attitudinal strength and the degree of attitudinal differentiation; Dick and Basu, 1994), 

it is reasonable to assume that both dimensions impact customer loyalty, albeit to different degrees. 

Finally, Models 4 and 5 are more complex configurations of the original model in which the 

antecedent constructs also directly influence CUSA and CUSL. Both models are theoretically 

plausible in that they assume that LIKE and COMP may only partially mediate the relationship 

between the four antecedent constructs and CUSA as well as CUSL. Walsh et al.’s (2009) study on 

the outcomes of corporate reputation provides further support for Model 5. These authors 

operationalized corporate reputation similar to Schwaiger (2004) but focusing on the antecedent 

dimensions while disregarding the two attitude-related dimensions LIKE and COMP. Their study 

shows that the more concrete denotation of the corporate reputation concepts (e.g., corporate social 

responsibility) directly impact customer loyalty. As customer satisfaction is the primary direct 

antecedent of loyalty, and since satisfaction is grounded in cognitive and affective judgments 

(Oliver, 1993), assuming direct effects on these two constructs is theoretically plausible. That is, a 

good reputation acts as a signal of sound company behavior toward market transactions and reduces 

customers’ perceived risk (Bartikowski & Walsh, 2011). However, this signal should not be limited 

to impact customer satisfaction (Model 4) but also customer loyalty (Model 5).  

Our analysis considers all criteria evaluated in the Monte Carlo study, focusing on CUSA as 

the immediate consequence of reputation (Eberl, 2010). We first ensured that all the measurement 

models met the relevant evaluation criteria (for further details on the PLS-PM results, see Hair et 

al., 2017b). Table 11 shows the results of our analysis for the structural model comparisons. We 
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observed that most of the criteria show the strongest preference for Model 5 followed by Model 4, 

which are the most complex models in our set and the least theoretically defensible. This preference 

for the saturated models is shared by the PLS-PM in-sample criteria (i.e., R2), the purported 

prediction-oriented criteria (i.e., Q2), some of the model selection criteria (e.g., CP and AIC), and by 

the out-of-sample criteria (e.g., RMSE). Even the Adjusted R2, which is designed to adjust for 

parsimony, shows greater preference for Model 5 followed by Model 4. 

 

Figure 3: The five alternative models (Corporate Reputation). 

 

Model 1

Model 2 Model 3

Model 4 Model 5
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In sharp contrast, only two model selection criteria namely, GM and BIC, show the strongest 

preference for Model 1, which is the most theoretically established model in our set. These findings 

echo the results of our earlier simulations, where GM and BIC provide the most appropriate balance 

between predictive performance and correct specification. 

Table 11: Criteria values for Alternative Models 1-5 (Corporate Reputation Example) 
 

  
Model # 1 2 3 4 5 

Selected 

Model 

PLS-PM 

Criteria 

R2 0.2911 0.2906 0.2909 0.3217 0.3285 5 

Adjusted 

R2 
0.2870 0.2865 0.2867 0.3097 0.3166 

5 

Q2 0.2820 0.2816 0.2817 0.2914 0.2960 5 

Model 

Selection 

Criteria 

FPE 0.7192 0.7198 0.7195 0.7044 0.6973 5 

CP 24.1037 24.3810 24.2505 16.4748 13.0000 5 

GM 379.6257 379.9030 379.7725 387.3592 383.8845 1 

AIC -113.3742 -113.1109 -113.2348 -120.5517 -124.0191 5 

AICu -110.3610 -110.0977 -110.2216 -113.4795 -116.9469 5 

AICc 232.7438 233.0071 232.8832 225.8781 222.4108 5 

BIC -101.8523 -101.5889 -101.7128 -93.6672 -97.1346 1 

HQ -108.7851 -108.5218 -108.6457 -109.8440 -113.3113 5 

HQc -108.6290 -108.3656 -108.4895 -109.1802 -112.6475 5 

Out-of-

Sample 

Criteria 

MAD 0.6724 0.6726 0.6725 0.6637 0.6612 5 

RMSE 0.8408 0.8409 0.8408 0.8369 0.8338 5 

MAPE 207.9099 207.8683 207.8881 194.6732 193.8904 5 

SMAPE 61.0738 61.0772 61.0701 59.0624 58.8620 5 

 

6. Discussion  

Since its inception PLS-PM has avowedly been an exploratory technique for theory building where 

researchers might want to compare several models (Wold, 1974; 1980). Recent work in the PLS-

PM literature has also highlighted its abilities as a predictive technique (Becker et al., 2013; 

Evermann & Tate, 2016; Shmueli et al., 2016). Because PLS-PM straddles the divide between 

causal explanation and prediction, researchers using the method need to ensure that the estimated 

model adequately maps reality while offering sufficient predictive capabilities (Shmueli et al., 
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2016). While prior studies have evaluated model selection criteria’s efficacy for selecting a specific 

model among a set of competing models (Sharma & Kim, 2012; Sharma et al., 2018), none have 

examined their performance from the prediction perspective, where the goal is to select models with 

high predictive power.  

Using a Monte Carlo study, we analyzed the performance of the standard PLS-PM criteria 

(R2, Adjusted R2, and Q2), and various model selection criteria vis-à-vis the performance of out-of-

sample criteria, when selecting the best predictive model among a cohort of competing models. In 

particular, we explored whether the in-sample criteria can substitute for out-of-sample predictive 

criteria (most notably RMSE) that require a holdout sample, and under which conditions. Such a 

substitution is advantageous because splitting datasets into training and holdout samples may cause 

substantial loss of statistical and predictive power when the overall dataset is not large, as is usually 

the case with survey-based studies using PLS-PM (Rigdon, 2016). Our study revealed a range of 

findings, relevant to researchers using PLS-PM. 

First, our results show that the model selection criteria, in particular BIC and GM, have 

significantly higher agreement levels with RMSE over the set of correctly specified models than the 

PLS-PM criteria (i.e. R2, Adjusted R2, and Q2), thereby achieving a balance between theoretical 

consistency and high predictive power. This makes BIC and GM ideal candidates for prediction-

oriented model selection when the holdout sample is unavailable and the researcher is working 

under the EP lens, as is usually the case in PLS-PM studies (e.g., Sarstedt et al., 2017). Among the 

correctly specified set, model selection criteria showed a stronger preference for the underspecified 

model compared to RMSE. Another difference of note between the RMSE and model selection 

criteria is the RMSE’s preference for the (incorrectly specified) saturated model in about a quarter 

of cases, while the model selection criteria tended to avoid it. This difference resulted in the 

disagreement between model selection criteria and RMSE because the model selection criteria 
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heavily remain within the correctly specified sphere (i.e., Models 2, 5, and 8). The opposite is true 

for PLS-PM criteria, which agree over the incorrectly specified saturated model. The only exception 

is Q2, which showed a similar yet inferior performance compared to the model selection criteria, in 

particular to BIC and GM. Because Q2 has been the only predictive relevance criterion available in 

PLS-PM so far, researchers have called for its use on a regular basis (Hair et al., 2017b). However, 

with the introduction of the model selection criteria in the PLS-PM context researchers now have a 

wider set of criteria to rely on especially when comparing the predictive generalizability of their 

models. Our results show that BIC and GM are much better candidates for comparing the predictive 

abilities of models than existing PLS-PM criteria, including the Q2.9  

Second, our analysis of the impact of experimental conditions on the performance of the in-

sample criteria vis-à-vis the out-of-sample criteria also revealed interesting patterns. With an 

increase in sample size, all in-sample criteria tended to disagree more with RMSE over the correctly 

specified set. However, the “sweet spot” for BIC and GM emerges between sample sizes 50 and 

200, with a peak at 100, where these criteria heavily agreed with RMSE over correctly specified 

models. This result is encouraging for researchers using PLS-PM as it suggests that BIC and GM 

show their best performance precisely at those sample sizes where splitting the dataset into holdout 

and training samples becomes impractical. With an increase in effect size and item loadings, the 

model selection criteria show more agreement with RMSE over the correctly specified set, while the 

PLS-PM evaluation criteria do not. Overall, these results suggest that the best conditions to use BIC 

and GM appear at the intersection of sample sizes ranging between 50 and 200, and when the item 

loadings and effect sizes are high. That is, to efficiently utilize the criteria, researchers must work 

with instruments that exhibit sufficient levels of reliability and validity along with a reasonably 

                                                            
9 Note that we focus on the model comparison context, because a stand-alone BIC or GM value is not useful for 

interpretation (unlike the R2 which can be interpreted in isolation), but rather it is the relative values that make the 

comparison meaningful (Burnham & Anderson, 2002). 
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developed theory at the structural level to support higher effect sizes. Finally, we found that our 

results hold for the scenario where the data generation model has not been included in the 

competing set. This finding is encouraging because exploratory research, where PLS-PM is often 

used (e.g., Hair et al., 2017b), may often create conditions where the researcher may not be aware 

of, or in possession of, all relevant variables that impacted the focal endogenous variable.  

Third, it may also be useful in certain cases (e.g., when theory is ill-developed, nonexistent, 

not of primary concern, or when forecast accuracy is primary concern) to select the “ultimate” 

predictive model without any regard for theoretical consistency (i.e., utilizing the P lens). In such 

cases, a useful strategy is to create all possible models and compute out-of-sample criteria (RMSE) 

using a holdout sample—as RMSE is often considered a “gold standard” for judging predictive 

power. This approach shows researchers how much extractable predictive information is contained 

in the data and help set predictive benchmarks against which the best predictive models within the 

“theoretically correct sphere” can be judged. The knowledge regarding how much predictive 

accuracy the data at hand may allow, versus what the theory is able to achieve, can be a useful tool 

for further theoretical development. 

Finally, despite the fact that PLS-PM is a prediction-oriented technique, existing studies have 

not focused on the performance of out-of-sample criteria but rather on the prediction capabilities of 

PLS-PM method itself (Becker et al., 2013; Evermann & Tate, 2016). These studies rely on out-of-

sample criteria without necessarily comparing their strengths. This is surprising because there is 

ongoing debate in the forecasting literature regarding the appropriate predictive criteria, where no 

single measure provides an unambiguous indication of forecasting performance and there is 

disagreement among researchers (Goodwin & Lawton, 1999; Makridakis, 1993; Davydenko & 

Fildes, 2013; Tofallis, 2015). There is also no consensus yet regarding which predictive criteria 

should take precedence over others in the context of PLS-PM and when.  
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Our study takes an important step in this direction by benchmarking the predictive model 

selection performance of various out-of-sample criteria in PLS. In essence, we ask: which out-of-

sample criteria are more suitable in the context of prediction-oriented model comparisons? Our 

results suggest that among the out-of-sample criteria, RMSE and MAD behaved the best per 

expectation (i.e., keeping in mind PLS-PM’s theory building aspect), followed by SMAPE. It is 

worth noting that in about a quarter of the cases, the RMSE selected the saturated model by going 

outside the theoretically correct sphere. Another important finding in this study is the danger of 

using MAPE as a predictive model selection criterion. Although MAPE offers the ease of 

interpretation and is therefore highly popular in practice, its utility for comparing models is limited. 

In our simulation, the criterion consistently selected incorrect models (Models 3 and 6). This 

behavior is not unexpected as several studies in other contexts have indicated that MAPE is biased 

towards models that under-predict and advocate avoiding it as a predictive model selection criterion 

(Goodwin & Lawton, 1999; Tofallis, 2015). Our study confirms this recommendation in the context 

of PLS-PM. We therefore call for the use of RMSE or MAD in PLS-PM-based model selection 

when researchers can afford drawing a holdout set. 

While our study offers empirical insights, the actual choice of out-of-sample criteria may also 

depend on other factors out of the realm of pure statistics. For example, Flores (1986, p. 97) asks, 

“Can the decision of which statistic to use be tied with the managerial style?” He suggests that 

conservative managers whose goal is to minimize a “regret criterion” should rely on RMSE. On the 

other hand, MAPE and MAD should be preferred if the manager is “like the baseball manager who 

will play basing his decisions on the law of averages.” Because our goal in this study was to select 

the best predictive model, we based our analyses on RMSE to minimize the prediction errors (i.e., 

regret criterion). Future studies should explore alternative business-driven prediction metrics in 

more detail including several new forecasting measures that have been recently discussed in the 
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forecasting literature (e.g. Hyndman & Koehler, 2006; Tofallis, 2015). Furthermore, future studies 

should extend our simulation design by considering more complex model structures, such as 

hierarchical component models, interaction terms, mediating effects, and nonlinear effects (e.g., 

Hair et al., 2017b). While the use of these modeling elements has recently become more en vogue, 

nothing is known about the out-of-sample criteria’s performance when estimating corresponding 

model types. Furthermore, the predictions derived in our study focused on composite scores rather 

than on individual item scores. While this approach reflects the common use of models estimated 

with PLS-PM, generalizability to real-world settings would also benefit from predictions on an item 

level (e.g., Shmueli et al., 2016).  

Our research sheds light on the performance of model selection criteria in the context of PLS-

PM, which is by far the most prominent composite-based SEM method in business research and 

whose use has gained momentum in recent years (e.g., Hair et al., 2017, 2018). However, future 

research should benchmark PLS-PM’s predictive performance against other composite-based SEM 

methods such as consistent PLS (Dijstra & Henseleer, 2015), generalized structure component 

analysis (Hwang et al., 2010), and regularized canonical correlation analysis (Tenenhaus & 

Tenenhaus, 2011). A particularly promising candidate is Universal Structure Modeling (USM) that 

uses a Bayesian neural network approach to search for interactions, and quadratic and other higher-

order effects within path models (Buckler & Hennig-Thurau, 2008). Specifically, USM derives 

starting values for the model’s latent variables through principal component analysis, and then 

applies the Bayesian neural network approach to discover the optimal system of linear, nonlinear, 

and interactive pathways among the latent variables, with the aim of maximizing the variance 

explained (e.g., Rigdon, Ringle & Sarstedt, 2010; McIntosh, Edwards & Antonakis, 2014; Henseler, 

Hubona & Ray, 2016). As a result, the USM approach typically yields higher explanatory power 

than PLS-PM-based linear modeling (Albashrawi, Kartal, Oztekin & Motiwalla, 2017). Since USM 
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has recently received increasing attention in business research (e.g., Garbe & Richter, 2009; 

Oztekin, Kong & Delen, 2011; Turkyilmaz, Oztekin, Zaim & Demirel, 2013; Turkyilmaz, Temizer 

& Oztekin, 2018; Al-Ebbini, Oztekin & Chen, 2016), investigating the method’s predictive 

accuracy would be particularly promising. 
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Appendix A 

Model Selection Criteria  

The simplest criteria widely used in PLS-PM is the R2, which is calculated as: 

𝑅2 = 1 −  
𝑆𝑆𝑒𝑟𝑟𝑜𝑟𝑘

𝑆𝑆𝑡𝑜𝑡𝑎𝑙
  

where 𝑆𝑆𝑒𝑟𝑟𝑜𝑟𝑘
 is the sum of squared errors and 𝑆𝑆𝑡𝑜𝑡𝑎𝑙  is total sum of squares. The Adjusted R2 can 

be written in terms of 𝑝𝑘, which is the number of predictors plus 1:  

𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅2 = 1 − [(
𝑛 − 1

𝑛 − 𝑝𝑘
)  (

𝑆𝑆𝑒𝑟𝑟𝑜𝑟𝑘

𝑆𝑆𝑡𝑜𝑡𝑎𝑙
)] 

The efficient and consistent model selection criteria described in this paper can be written as a 

function of the maximized value of the likelihood function (𝐿̂). For example, 

𝐴𝐼𝐶 =  −2𝑙𝑛𝐿̂ + 2𝑝𝑘 

𝐵𝐼𝐶 =  −2𝑙𝑛𝐿̂ + 𝑝𝑘𝑙𝑛(𝑛) 

𝐻𝑄 =  −2𝑙𝑛𝐿̂ + 2𝑝𝑘𝑙𝑛(𝑙𝑛(𝑛)) 

Under a normal error distribution assumption, these likelihood-based formulas can be written in 

terms of SSerror as shown in Table A1 (Burnham & Anderson, 2002; p.63; McQuarrie & Tsai, 1998). 

An Excel spreadsheet that illustrates the computation of all model selection criteria considered in 

this study using the standard output from any PLS software can be downloaded from: 

https://www.pls-sem.net/downloads/  

  

https://www.pls-sem.net/downloads/
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Table A1: Formulas for model selection criteria based on SSerror 

              Criterion Formula Description 

Distance-based criteria 

Final Prediction Error 

(FPE) 
(

SSerrork

n −  pk
) × (1 +  

pk

n
) 

Selects the best model by minimizing 

the final prediction error.   

Mallow’s Cp 
(

SSerrork

MSerror
) − (n −  2pk) 

Based on mean square error (MSE); 

MSerror is MSE from the saturated 

(full) model. 

Akaike Information 

Criterion (AIC) n [log (
SSerrork

n
) +  

2pk

n
] 

Estimates the relative expected KL 

distance to the unknown true model.  

Unbiased AIC (AICu) 
n [log (

SSerrork

n −  pk
) +  

2pk

n
] 

Uses the unbiased estimate for 

population MSE, hence differs from 

AIC in small samples.   

Corrected AIC (AICc) 
n [log (

SSerrork

n
) +  

n + pk

n − pk − 2 
] 

Corrects AIC’s tendency to overfit 

(select a complicated model) under 

small samples. 

Consistent criteria 

Bayesian Information 

Criterion (BIC) n [log (
SSerrork

n
) +  

pklog (n)

n
] 

Derived using Bayesian argument; 

adjusts AIC for model complexity by 

using a stronger penalty for 

overfitting.  

Geweke-Meese 

Criterion (GM) 
(

SSerrork

MSerror
) +  pklog (n) 

Adjusts Mallow’s Cp for model 

complexity by using a stronger 

penalty for overfitting.  

Hannan-Quinn 

Criterion (HQ) n [log (
SSerrork

n
)

+  
2pklog (log(n))

n
] 

Corrects small sample performance 

of BIC by using a stronger penalty 

term.  

Corrected HQ 

Criterion (HQc) n [log (
SSerrork

n
)

+  
2pklog (log(n))

n −  pk − 2
] 

Corrects small sample performance 

of HQ and adjusts for model 

complexity.  

Note: SSerror(k) is the sum squares error for the kth model in a set of models; MSerror is the mean 

squared error from the saturated model; SStotal is the total sum of squares; pk is the number of 

predictors in the kth model plus 1.  
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Table A2: Formulas for predictive metrics 

              Criterion Formula Description 

RMSE 

√
∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑛

𝑖=1

𝑛
 

The RMSE represents the sample 

standard deviation of the differences 

between predicted values and 

observed values. 

 

MAPE 100

𝑛
∑ |

𝑦𝑖 − 𝑦̂𝑖

𝑦𝑖
|

𝑛

𝑖=1

 
A percentage metric reflecting the 

mean absolute percentage of 

predictive error over actual value. 

 

SMAPE 100

𝑛
∑

|𝑦𝑖 − 𝑦̂𝑖|

|𝑦𝑖| + |𝑦̂𝑖|

𝑛

𝑖=1

 
A symmetric percentage metric 

based upon MAPE.   

 

MAD 1

𝑛
∑|𝑦𝑖 − 𝑦̂𝑖|

𝑛

𝑖=1

 

Mean absolute deviation (MAD) of a 

data set is the mean of the absolute 

predictive error. 

 

Q2  
1 −  

𝑆𝑆𝐸𝑞

𝑆𝑆𝑂𝑞
 

Stone-Geisser’s Q² value is a 

criterion of predictive relevance 

obtained using the blindfolding 

procedure. Please refer to Stone 

(1974) and Geisser (1974) for 

complete details on the calculation 

of SSEq and SSOq.   

 

Note: 𝑦𝑖 represents the actual composite score of the target construct, while 𝑦̂𝑖 represents the 

predicted score.  
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Appendix B 

 

Figure B1: Comparison of criteria value distributions across the 8 models (Scenario 1) 
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Figure B2: Comparison of criteria value distributions across the 8 models (Scenario 2) 
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Table B1: Percentage agreement with RMSE by model number (Scenario 2) 
 

Model #   1 2 3 4 5 6 7 8 Total  

PLS-PM 

Criteria 

R2 0.000 0.085 0.000 0.000 0.002 0.000 0.126 0.002 0.214 

Adjusted 

R2 0.000 0.166 0.000 0.000 0.010 0.000 0.031 0.012 0.219 

Q2 0.000 0.103 0.000 0.000 0.038 0.000 0.016 0.057 0.213 

Model 

Selection 

Criteria 

FPE 0.000 0.206 0.000 0.000 0.013 0.000 0.011 0.015 0.245 

CP 0.000 0.225 0.000 0.000 0.015 0.000 0.005 0.019 0.264 

GM 0.000 0.256 0.000 0.000 0.017 0.000 0.000 0.020 0.294 

AIC 0.000 0.206 0.000 0.000 0.013 0.000 0.011 0.015 0.245 

AICu 0.000 0.228 0.000 0.000 0.015 0.000 0.005 0.018 0.266 

AICc 0.000 0.213 0.000 0.000 0.013 0.000 0.010 0.016 0.252 

BIC 0.000 0.248 0.000 0.000 0.017 0.000 0.000 0.020 0.285 

HQ 0.000 0.229 0.000 0.000 0.015 0.000 0.003 0.018 0.266 

HQc 0.000 0.233 0.000 0.000 0.016 0.000 0.003 0.019 0.270 
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Appendix C 

Robustness Checks for Non-Normal Distribution  

Table C1: Overall proportion of model choice by each criterion under log-normal distribution 

(Scenario 1) 

  Model # 1 2 3 4 5 6 7 8 

PLS-PM 

Criteria 

R2 0.002 0.340 0.001 0.012 0.016 0.000 0.619 0.010 

Adjusted R2 0.002 0.592 0.003 0.015 0.058 0.003 0.271 0.057 

Q2 0.005 0.293 0.005 0.004 0.234 0.014 0.162 0.283 

Model 

Selection 

Criteria 

FPE 0.002 0.682 0.004 0.016 0.071 0.008 0.147 0.071 

CP 0.002 0.681 0.004 0.016 0.071 0.008 0.147 0.071 

GM 0.003 0.748 0.006 0.013 0.078 0.036 0.035 0.082 

AIC 0.002 0.682 0.004 0.016 0.071 0.008 0.147 0.071 

AICu 0.002 0.724 0.005 0.014 0.075 0.021 0.082 0.077 

AICc 0.002 0.691 0.005 0.015 0.072 0.012 0.130 0.072 

BIC 0.002 0.746 0.006 0.013 0.078 0.040 0.034 0.081 

HQ 0.002 0.730 0.005 0.015 0.076 0.018 0.077 0.078 

HQc 0.002 0.735 0.006 0.014 0.076 0.024 0.065 0.079 

Out-of-

Sample 

Criteria 

MAD 0.002 0.373 0.001 0.001 0.211 0.002 0.162 0.250 

RMSE 0.005 0.361 0.001 0.001 0.214 0.005 0.162 0.252 

MAPE 0.071 0.010 0.255 0.042 0.012 0.570 0.019 0.020 

SMAPE 0.001 0.424 0.000 0.001 0.107 0.000 0.338 0.128 

 

Table C2: Percentage agreement with RMSE by model type under log-normal distribution 

(Scenario 1) 

Model Type   

Correctly Specified 

(Model 2 or 5 or 8) 

Incorrectly Specified 

(Model 1 or 3 or 4 or 6) Saturated (Model 7) 

PLS-PM 

Criteria 

R2 0.279 0.001 0.079 

Adjusted R2 0.552 0.001 0.014 

Q2 0.653 0.002 0.011 

Model 

Selection 

Criteria 

FPE 0.658 0.001 0.004 

CP 0.658 0.001 0.004 

GM 0.741 0.002 0.000 

AIC 0.658 0.001 0.004 

AICu 0.709 0.002 0.001 

AICc 0.670 0.001 0.003 

BIC 0.738 0.002 0.000 

HQ 0.716 0.002 0.001 

HQc 0.722 0.002 0.001 
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Table C3: Overall proportion of model choice by each criterion under log-normal distribution 

(Scenario 2) 

  Model # 1 2 3 4 5 6 7 8 

PLS-PM 

Criteria 

R2 0.001 0.339 0.001 0.014 0.014 0.000 0.623 0.009 

Adjusted R2 0.002 0.593 0.003 0.016 0.060 0.002 0.270 0.055 

Q2 0.006 0.300 0.005 0.006 0.233 0.015 0.153 0.282 

Model 

Selection 

Criteria 

FPE 0.002 0.680 0.004 0.016 0.073 0.007 0.152 0.066 

CP 0.002 0.680 0.004 0.016 0.073 0.007 0.152 0.066 

GM 0.002 0.749 0.007 0.014 0.081 0.037 0.034 0.077 

AIC 0.002 0.680 0.004 0.016 0.073 0.007 0.152 0.066 

AICu 0.002 0.724 0.006 0.016 0.078 0.019 0.083 0.072 

AICc 0.002 0.691 0.005 0.016 0.075 0.011 0.133 0.067 

BIC 0.002 0.748 0.007 0.014 0.080 0.040 0.033 0.077 

HQ 0.002 0.733 0.005 0.016 0.079 0.015 0.077 0.073 

HQc 0.002 0.737 0.006 0.015 0.079 0.023 0.064 0.074 

Out-of-

Sample 

Criteria 

MAD 0.002 0.381 0.000 0.000 0.207 0.002 0.160 0.248 

RMSE 0.005 0.362 0.001 0.001 0.208 0.004 0.169 0.251 

MAPE 0.075 0.014 0.249 0.040 0.013 0.567 0.021 0.022 

SMAPE 0.001 0.445 0.000 0.001 0.115 0.000 0.313 0.125 

 

Table C4: Percentage agreement with RMSE by model type under log-normal distribution 

(Scenario 2) 

Model Type   

Correctly Specified 

(Model 2 or 5 or 8) 

Incorrectly Specified 

(Model 1 or 3 or 4 or 6) Saturated (Model 7) 

PLS-PM 

Criteria 

R2 0.270 0.001 0.081 

Adjusted R2 0.547 0.001 0.013 

Q2 0.652 0.002 0.012 

Model 

Selection 

Criteria 

FPE 0.648 0.001 0.005 

CP 0.648 0.001 0.005 

GM 0.734 0.002 0.000 

AIC 0.648 0.001 0.005 

AICu 0.701 0.002 0.002 

AICc 0.662 0.001 0.004 

BIC 0.733 0.002 0.000 

HQ 0.711 0.002 0.001 

HQc 0.716 0.002 0.001 

 


