
Blockchain, what time is it?
Trustless Datetime Synchronization for IoT

Emanuel Regnath
emanuel.regnath@tum.de

Technical University of Munich, Germany

Nitin Shivaraman
nitin.shivaraman@tum-create.edu.sg

TUMCREATE, Singapore

Shanker Shreejith
shankers@tcd.ie

Trinity College Dublin, Ireland

Arvind Easwaran
arvinde@ntu.edu.sg

Nanyang Technological University, Singapore

Sebastian Steinhorst
sebastian.steinhorst@tum.de

Technical University of Munich, Germany

Abstract—Time synchronization among IoT devices is a fun-
damental requirement for efficient and reliable communication
on a global scale. Common synchronization schemes such as
NTP operate on a trust-based client-server model, which does
not scale well in a decentralized network because single server
failures can lead to a severe downtime before re-establishing
synchronization. Public blockchains such as Ethereum provide
a trustless network and tamper-proof time-stamped data that is
freely available.

In this paper, we leverage the availability of time information
in the block headers, which are very small (several hundreds of
bytes) compared to the full blocks and can be validated without
participation in the mining process. Our approach uses two
estimators that are fed with the timestamps from block headers
as well as the elapsed time between consecutive block receptions
to estimate the true time to an accuracy of one second.

We evaluate our approach by extensive validation on
blockchain data from different geographical locations across the
globe and show that global synchronization can be established
despite the non-deterministic behavior of blockchains such as
mining difficulty, network latencies and forks.

Index Terms—Time Synchronization, NTP, Hash, Blockchain

I. INTRODUCTION

Distributed IoT devices use time synchronization to a global
reference time, such as UTC, to agree on communication
periods, schedule actions and establish an order of registered
events. Many applications such as traffic signaling systems [1]
or logging events from sensor measurements, require accuracy
from a few hundred milliseconds to a second.

Existing time synchronization methods, such as the Network
Time Protocol (NTP) [2], rely on the questionable assumption
that certain servers can be trusted. In order to authenticate
these servers, digital certificates need to be verified, which
requires more computational power than many embedded
devices can afford. Furthermore, in case of malicious NTP
servers, the time to synchronize is severely affected [3]. This is
further aggravated if the gateway is malicious since fallacious
time is received independent of the chosen server. Since
communication over the Internet involves malicious and faulty
nodes, the NTP synchronization can not provide robust and
secure timing information for embedded devices.

Consequently, a mechanism is needed that 1. does not rely
on individual servers, 2. provides verifiable timing data, and 3.
uses only light-weight cryptography that can be computed by
resource-constrained devices. We thus aim to achieve secure
datetime synchronization for a decentralized network in the
presence of malicious nodes.

δ1 δ2

Δt1 Δt2

M-1

M-2

GW

Node

tTime

σTimestamps

Mining MinedSet σ Send Legend: Receive

Δσ ϵ

Figure 1: Synchronization scenario. A node receives blocks with
timestamps σi from two miners M-1 and M-2 via a gateway GW.
Upon reception, σi = ti − δi because each miner sets the timestamp
when it receives the previous block. The goal is to estimate t based
on σi and the observable ∆t between receptions.

Blockchain provides a trustless system for agreement on a
global scale. Each accepted block in the chain is immutable
and reinforced by every new block appended to the chain. In
case of Proof-of-Work (PoW) chains, even the content can
be verified for integrity due to inherent properties of its hash
value. This allows secure verification of any block with a
minimum amount of hash operations, which is feasible on
most embedded devices [4].

In this paper, we extract the timestamps (datetime infor-
mation) from block headers of the Ethereum blockchain to
estimate the current time. Note that we only need to read
the headers of already mined blocks and are not required to
participate in the mining process in any sense. This passive
listening approach enables any device with Internet connection
to access and verify the information from any public PoW
blockchain. As shown in Figure 1, upon reception of a valid
block in a typical blockchain system, each miner will create
a new unconfirmed block and starts mining. If the mining
is successful, the miner will distribute its new block, which
contains a timestamp corresponding to the creation time. The
objective is to enable each device to synchronize to UTC
clock independently using the timestamp information in the
block headers.

https://orcid.org/0000-0002-0006-7761
mailto:emanuel.regnath@tum.de
https://orcid.org/0000-0002-3208-8495
mailto:nitin.shivaraman@tum-create.edu.sg
https://orcid.org/0000-0002-9717-1804
mailto:shankers@tcd.ie
https://orcid.org/0000-0002-9628-3847
mailto:arvinde@ntu.edu.sg
https://orcid.org/0000-0002-4096-2584
mailto:sebastian.steinhorst@tum.de

δ1

Δt1

δ1,1 δ2

Δt1 Δtf

δ1,2

Δt2
δ1 δ2

Δt1 Δt2

a) Missed Block b) Fork c) Timestamp Reset

Figure 2: Special cases when syncing via Blockchain: a) A missed block occurs when a received block is further in the future than the next
block. b) A fork occurs when two valid blocks with the same index i are received. c) A timestamp reset occurs when miner M-2 updates the
block timestamp during mining which leads to the condition δi < ∆ti.

Our evaluation in Section III shows that the timestamps σ
and the elapsed time between block receptions ∆t are sufficient
to estimate the current UTC to an accuracy of one second.
However, this is non-trivial due to issues such as timestamp
resets, missing blocks, and forks in the blockchain that will
be discussed in this paper.

A. Contributions

We propose a secure, decentralized, and trustless synchro-
nization scheme for embedded IoT networks. Our novel
method involves an IoT node that passively listens to the
latest blocks of a public blockchain that uses Proof-of-Work
(PoW). In particular, we

• investigate the delay behavior of blockchain headers from
which we derive a formal model (Section III),

• propose a novel synchronization scheme using only
blockchain headers (Section IV),

• analyze convergence, accuracy, drift, and security (Sec-
tion VI) of our scheme.

By using only block headers, we drastically reduce the
communication overhead while enabling even highly resource-
constrained devices to receive, process, and securely validate
the timing information. Furthermore, we utilize the already
spent energy by the miners on the block mining instead of
creating new cryptographic proofs.

II. BACKGROUND

A. Blockchain

The blockchain is a distributed data structure that stores
a system state over time and is shared and replicated by all
nodes [5]. Formally, a blockchain is an ordered chain

C = {Bi‖i ∈ 1, . . . , n}, Bi ≺ Bi+1 (1)

of n blocks Bi where n is the height of C and i the height or
index of Bi. Each block confirms and reinforces the data of
its preceding block. By including the previous block hash hp
in each block, the integrity and order of the blocks is secured
because any change to the data of an existing block would
result in changing hashes of all blocks. A block header with
a timestamp σi is represented by the tuple Bi = 〈hp, σi, hd〉.
The actual data Di of a block can be of arbitrary structure
and is bound to a block only by its hash digest hd = H(Di),
where H(·) is the hash function.

B. Proof-of-Work (PoW)
Most blockchain implementations use Proof-of-Work (PoW)

for block creation and our approach requires PoW for block
verification. Proof-of-Work involves mining a special hash
value for new blocks with the data and the hash of the previous
block. The time required for mining is called Blocktime and
could vary significantly as it depends on the difficulty of
the hash-value limit set by the blockchain [6]. Propagation
delay is the time for transmitting the block to the rest of
the network, which varies in different parts of the network
with some nodes receiving the block faster than others [7].
Table I gives an overview of three prominent blockchains in
use with information on their blocktime, height, hash rates
and difficulty. Difficulty represents the minimum value of the
Proof-of-Work a blockchain must have, and is represented
as a bit mask to ensure the Proof-of-Work solution satisfies
this condition. Difficulty varies with blockchain and higher
difficulty translates to higher energy expenditure and higher
security against tampering attacks.

Bitcoin is the first and oldest implementation of blockchain.
It has the highest hash rate of 90 Exa hashes (SHA-256) per
second and the longest average blocktime of 10 minutes.

Ethereum has a hash rate of 180 Tera hashes (SHA-256)
per second and the fastest average blocktime of 15 seconds
among the three.

Litecoin is the newest blockchain of the group, has 2 minutes
blocktime, and uses a hash function called S-crypt.

For our approach, we use the Ethereum blockchain to
estimate datetime for a network of IoT nodes as it has the
lowest average blocktime.

III. BLOCKCHAIN TIMING MODEL

In this section, we will measure and evaluate the timestamp
information in the Ethereum blockchain. We derive assump-
tions from our observations, which has been used to create
our model of timestamp distribution.

A. Time Notation
It is important to understand that we distinguish several

types of time variables of a block Bi sent by any miner M
to our IoT node:

1) The true, absolute, and unknown time t ∈ R.
2) The elapsed time ∆t = ti − ti−1 in seconds between

the reception of blocks Bi−1 and Bi that is, in general,
observable by the internal clock of any node.

−180 −135 −90 −45 0 45 90 135 180
−90

−45

0

45

90

Longitude

L
at

itu
de

Figure 3: True locations (filled) of our geth clients and estimated
locations of connected peers based on their IP address (outline).

3) The estimated time t̂i of the true time ti in epoch seconds.
4) The observed timestamp σi in epoch seconds, which is

stored in block Bi.
5) The timestamp delay δi = σi−ti consisting of the mining

time of miner M and the transmission delay to our node.

B. Observation of Block Timestamps

First, we recorded a total of 5100 blocks from Ethereum
and analyzed the statistical distribution. We used the geth
client version 1.8.23 and executed the following capture script.

1 eth.filter(’latest’, function(error, hash){
2 t_localtime = Date.now() / 1000;
3 block = eth.getBlock(eth.blockNumber)
4 if(block.hash == hash) {
5 console.log([eth.blockNumber,
6 t_localtime, block.timestamp].join(", "));
7 }});

We have performed 8 capture rounds of blockchain data
from the Ethereum MainNet at four geographical locations:
Munich-Germany, Singapore-Singapore, Bangalore-India and
Dublin-Ireland. As the map in Figure 3 shows, the connected
peers are not locally clustered but distributed among the large
cities around the globe.

C. Challenges when reading Blockchain Timestamps

While the block headers allow global time to be extracted
and used, there are numerous challenges associated with the
timestamp delays that need to be addressed and resolved.

a) Gaps A gap occurs when a client misses one or
several blocks due to the timeout or disconnection of a peer.
As shown in Figure 2a, the IoT device does not receive the
block from Miner 1 but only the succeeding block from Miner
2. This results in a time difference between two consecutive
blocks (∆t1) greater than the block time (δ1) of the recent
block leading to a positive offset. Since ∆t1 does not reflect
the true delay, it should not be used for estimation. Instead,
the IoT device needs to extrapolate the current time estimate
from its previous estimation.

b) Forks A fork happens when two different blocks are
mined on top of the same previous block. In this case, there
exist two different versions of the blockchain. The network is
initially unsure of which block will be included in the final
blockchain and will, therefore, buffer a number of blocks to
ascertain which chain will be accepted and continued. An

Name Blocktime Height Hashrate (hash/s) Difficulty
Bitcoin 10 min 5.96 k 90 E 12.75 T
Ethereum 15 sec 8.63 M 180 T 2.75 P
Litecoin 2 min 1.71 M 324 T 11 M

Table I: Common blockchains and their parameters (End 2019).

example of a Fork is shown in Figure 2b, where both miners
1 and 2 create a valid block. However, the peers accept only
one of the blocks and include it in the blockchain. The other
block is discarded. Depending on which block is accepted,
the elapsed time between the forked blocks ∆tf needs to be
added either to ∆t1 or ∆t2.

c) Timestamp Reset The assumption that the timestamp
σi of a block Bi corresponds to the time when the miner
received the previous block Bi−1 might not hold. Each miner
may, during mining, reset the timestamp to the current time,
which is illustrated in Figure 2c. Miner 2 starts mining the
block after receiving the block from miner 1. However, the
timestamp is reset during the mining process by miner 2 and
this is received by the IoT device when the mined block is
propagated. This phenomenon results in timestamps being
faster than the block reception time similar to gaps, i.e., δ2 <
∆t2, yielding a positive offset.

D. Observation Results
Our results are given in Figure 4. We found that on average

∆t ≈ 14.757 s and ∆σ ≈ 14.743 s. These values are close to
the theoretical blocktime of 15 s. The small difference confirms
the fact that miners set the timestamp of a new unmined block
immediately after they receive the previous mined block. The
true block delay δ, which we measured on reception against
the NTP synced system time, is on average larger than ∆σ.
This indicates that miners (who set timestamps on reception)
receive the blocks faster than our geth client. This is reasonable
given the high-speed networks, as miners choose reliable and
low-latency peers in large mining pools to gain an advantage
over other miners in the mining race.

As expected, we found the timestamps of the blocks to
be monotonously increasing except when forks occur. A
key observation from the timestamp delays (δi) shown in
the Figure 4) is that they follow an exponential distribution,
aligning with prior observations in literature [7]. Among all
5100 measured blocks, we observed 93 forks, 327 gaps and
an estimated number of 225 timestamp resets. While forks
and gaps are directly measurable from the block index, the
timestamp resets are more difficult to identify because they
could occur any time and a positive offset could also be caused
by receiving the previous block before the miner. Since this
is unlikely for large offsets, we found 0.5 s to be a reasonable
decision threshold before we consider a positive offset to
indicate a reset.

E. Modelling Timestamp Distribution
Based on our observations, we assume that
• Miners will normally set the timestamp of a new block

to be mined at the moment they receive a valid block.
• Miners will reset the timestamp during mining in roughly

4 % of blocks.

mean [s] stdev
∆t 14.757 16.82
∆σ 14.743 16.82
δ 15.028 12.88

0 20 40 60
0

2

4

6

8
·10−2

τ β
timestamp delay δ [s]

pr
ob

ab
ili

ty

Samples
Distribution

Figure 4: Left: Results of the time stamp analysis given in seconds.
Right: Fitted probability density for the timestamp delay of the
Ethereum Blockchain with β = 15 s.

• Miners are better inter-connected and will receive most
new blocks earlier than light-clients. Thus ∆t < δ for
most blocks.

As observed from our initial experiments, the probability
density function (pdf) of the observed timestamp delays of
PoW blockchain follows an exponential distribution that is
expressed as

p(δ, β, τ) =

{
0 δ < τ,
1
β exp

(
− δ−τβ

)
δ ≥ τ

(2)

with the scale parameter β as the average block time in seconds
and the shift parameter τ as the minimum timestamp delay.
For example, for the Ethereum Blockchain we found β ≈ 15 s
and τ ≈ 1 s which is plotted in Figure 4.

The distribution of the delays is exponential because of
the PoW to create a block is a repeated Bernoulli trial. Each
attempt to find a nonce that results in a hash value with enough
leading zero bits is one Bernoulli trial.

The exponential distribution describes the probability dis-
tribution of the time between events in a Poisson point
process. The block creation events follow a Poisson distribution
because they are of sum of n independent Bernoulli distributed
variables, where n is the number of participants in the network.

For the remainder of this paper, we assume a shifted
exponential distribution for the overall timestamp delay δ.

IV. OUR APPROACH

In this section, we introduce two different estimation
methods that offer minimal drift in observation even in
the presence of block uncertainties. Each method has a
naive approach, which we will use to illustrate the idea
and an improved variant that can be used for the actual
synchronization resulting in a total of four estimators.

A. Maximum Likelihood Estimator (MLE)
The MLE is a general approach to estimate the timestamp

delay only based on timestamp observations. The likelihood
function of the timestamp delay distribution is

L(τ, β) =
1

βn
· exp

(
−
n
(
δ − τ

)
β

)
with δ =

1

n

n∑
i=1

δi

where δ is the mean of the timestamp observations δi and n
the total number of the observations. With respect to τ , the
function increases until the minimum observed offset δmin

and thus, we obtain τ̂MLE = δmin. We can use this result to

formulate a simple decision rule for estimating the current
time based on the received timestamps. Whenever we receive
a timestamp σi that is further in the future than our prediction
t̂i = t̂i−1 + ∆t, based on previous timestamps, we will switch
to this new time t̂i = σi. This estimation works because the
timestamps are always delayed but from time to time we
will receive a timestamp with a lower delay than all previous
timestamps.

This estimator will not overshoot the true time t and
therefore serves as a lower bound for our estimation t̂.
However, the MLE has two drawbacks. First, it converges
slowly towards the true time and it will not get closer than τ .

Second, since we accept the timestamp from the latest block,
an attacker could mine one fake block with a timestamp in the
future, which would result in a permanently wrong estimation.

B. Secure Lower Bound Estimator – LowerSec
We now introduce our first proper estimator LowerSec,

which is the improved variant of the MLE. To overcome the
second limitation of the MLE, we accept a timestamp from
a block Bi only if m additional blocks have been mined on
top, which reinforces Bi. This is the same technique used to
consider a transaction settled and provides increasing security
with the number of additional blocks m. For our secure lower
bound estimator LowerSec, we have chosen m = 10.

C. Time Difference Estimator – TimeDiff
While MLE-based approaches only provide for a lower

bound, we introduce TimeDiff estimator to improve upon the
accuracy of time estimation. Remember that the correct time
t could be obtained as ti = σi + δi.

However, we cannot observe δi directly and need to estimate
it based on the available information. Basically, δi = δm,i +
τi+εi where δm,i is the mining time, τi the propagation delay
to the next miner, and εi the additional propagation delay to
our node. Since mining is a race between miners, we assume
that miners use a fast hardware and low latency connection,
such that the time between receiving a block and setting the
timestamp of the next pending block is negligible. This means
that ∆σi = σi−σi−1 = δm,i+τi, which allows us to observe
the timestamp delay between miners.

Furthermore, we assume that miners receive blocks earlier
than our node, which means εi > 0. Again, εi cannot be
observed directly, but since ∆ti = εi−1 + δi and from our
observations we know that

∑
∆ti ≈

∑
δi, we can conclude

that εi is usually small.
Therefore, we can estimate the true time t with

t̂i = σi + ∆ti +Qe (3)

where Qe = 0.5 s is the quantization error for timestamps.
However, TimeDiff produces a lot of peaks due to the issues
explained in Section III-C and overshoots the true time.

D. Peak Median Kalman Filter – PMK
To overcome the peak problem of TimeDiff, we propose a

Kalman filter estimator with the previous highest peaks which
runs the median of them. The median of the peaks is fed to
the Kalman Filter for the estimation. This ensures that we get
a secure and accurate estimation near zero. Using the median

0 250 500 750 1000 1250 1500 1750 2000
ellapsed time t [s]

−15

−10

−5

0

5
de

vi
at

io
n

fr
om

 t
 [

s]

MLE
TimeDiff
Lower-Sec
PeakMedianKalman

0 250 500 750 1000 1250 1500 1750 2000
ellapsed time t [s]

−25

−20

−15

−10

−5

0

de
vi

at
io

n
fr

om
 t

 [
s]

MLE
TimeDiff
Lower-Sec
PeakMedianKalman

Figure 5: Comparison of all estimators for two capture rounds in Ireland (left) and Singapore (right). For simplicity, we plot the deviation
from the true time t such that t corresponds to the x-axis. δ are the true timestamp delays and only shown for reference. The MLE and its
variant LowerSec serve as a very secure lower bound. The TimeDiff estimator is closer to t but severely overshoots when a miner resets
a timestamp, which can be seen at t ≈ 1000 s on the left. Due to filtering, the PeakMedianKalman estimator converges fast and without
overshooting. As seen on the right plot, there can be an initial delay if the node cannot find enough peers from the beginning.

among the peaks ensures that a few overshooting peaks are
filtered out. Even if there was an accepted overshot peak,
the estimation shifts back to the correct value when peaks
stabilize. The PeakMedianKalman will converge to the mean
of the peaks of the TimeDiff estimations. It not only provides
a fast convergence similar to TimeDiff, but also ensures a
stable and secure drift.

1) Kalman Filter In order to smoothen spikes, we use a
Kalman Filter. The general system equations are given as

t̂n = t̂n−1 + ∆t+Wn−1 sn = t̂n + Vn (4)

with the time estimate t̂, the observed timestamp s, the elapsed
time ∆t = tn − tn−1, the Gaussian process noise Wn, the
Gaussian measurement noise Vn with the following probability
distribution:

p(wn) ∼ N (0, Qn) p(vn) ∼ N (0, Rn) (5)

We assume R ≈ 0.3 · 10−3 as the standard deviation of the
measurement noise V , since crystal clocks should be accurate
to at least 0.3 ms over the period between two blocks.

V. RELATED WORK

Time synchronization has been well established in the liter-
ature with various goals including energy efficiency, accuracy,
speed of convergence and reduction in re-synchronizations.

Most of the notable works in the Wireless Sensor Network
(WSN) domain [8], [9] used for embedded IoT devices provide
accurate and efficient local clock synchronization without any
global datetime information. However, these protocols assume
trustworthy data from the nodes which may not be necessarily
the case. To handle the presence of malicious devices, [10]
uses message authentication codes and secret keys between two
pairs of nodes for verification. The approach discussed in [11]
models the temporal variation of messages from neighbors
and classifies any deviation as an attack. While the issue of
authentication is addressed, the security definitions and the
codes have to be regularly updated.

Blockchain has gained traction as the decentralized scheme
to provide a trustless and secure means of communication.
Open Timestamps [12] use timestamp data from Bitcoin to only

timestamp and validate documents to prove the authenticity
of a document. Relying on its data structure, [13] used
their data to transmit and store the clock data into a ledger
verified by a consensus node. It necessitates the presence
of a computationally-capable consensus node for verification.
The authors in [14] extended the architecture to use Proof-
of-Stake (PoS) and a custom blockchain whose length can
be controlled. However, the consensus mechanism consumes
significant time due to computational complexity and the
device of the highest stake has to be re-elected in the event of
a failure. In contrast, our approach only requires to passively
use specific fields of block headers from freely available public
blockchain to achieve datetime synchronization on resource-
constrained nodes.

NTP [2] is the most prevalent datetime synchronization
protocol in use for network synchronization. NTP relies on a
multi-hop client-server synchronization mechanism, with each
level called stratum synchronizing to the level above it. GPS or
atomic clocks generate pulses at stratum 0 to which stratum 1
synchronizes to a few microseconds. As the stratums increase,
the synchronization error grows higher with a longer time
to achieve synchronization. Despite its popularity, NTP does
not provide a way to securely synchronize the clock. While
most time servers available for synchronization are at stratum
3, time servers could synchronize devices from even lower
stratums. Since response times vary across these servers, the
synchronization time could suffer from delays. Additionally,
failure of any such server leads to a routing change to a new
server, exacerbating the delay. With package/security updates
released once a few months, NTP servers are vulnerable to
attacks due to obsolete packages. NTP servers operate on a
limited bandwidth and resource, requiring them to limit the
sync requests to avoid overload issues [15], leading to longer
delays and/or failed sync at clients.

Our approach overcomes these drawbacks of security and
cryptographic complexity because the blockchain offers peer-
to-peer validation and efficient hash verification. As the
blockchain network is inherently decentralized, it can also
handle a higher number of requests without any overload
issues.

VI. EVALUATION

We discuss and evaluate our estimators according to
convergence time, accuracy, stability, drift, and security. We
experimentally tested and analyzed our estimators by feeding
them with the σ and ∆t of the previously captured data, which
we obtained with the geth client.

a) Convergence, Accuracy, and Stability Figure 5 visual-
izes these metrics for all estimators for two geographical
locations. Table II shows the results when running the
estimation over all 8 captured data sets at 4 locations with a
total of 5100 blocks.

MLE and LowerSec are slowly converging to the current
time but are very stable since the error can only decrease. The
estimation will never overshoot the true time, and over time
these estimators can achieve a fair accuracy of a few seconds.

The TimeDiff estimator provides a faster convergence but
is also unstable because each estimation is only based on the
last two blocks. The PeakMedianKalman (PMK) achieves the
best synchronization with an average error of −0.36 s and a
standard deviation of only 0.89 s.

b) Drift Since all estimators use ∆t to estimate the
time between timestamp inputs, they are equally affected by
clock drift. Most internal RC clocks are accurate to 3 %,
and therefore, the clock drift for measuring ∆t between two
Ethereum blocks would be around 0.03 ·15 s = 0.45 s which is
reasonable for achieving an overall estimation accuracy within
one second. In case of crystal oscillators with an accuracy of
≈ 20 · 10−6, the drift is completely negligible. However, if a
blockchain with a high blocktime is used, measuring ∆t with
RC oscillators will significantly reduce accuracy.

c) Security The security of each estimator depends on
the impact of forged blocks on the estimation. To forge even
one block, an attacker would require exorbitant computing
power and would still have a low success probability.

While MLE accepts a valid block immediately and could be
tricked persistently by one forged block, LowerSec is highly
secure since it uses only blocks that are confirmed by 10
additional blocks on top. Forging 10 consecutive blocks of
any of the blockchains listed in Table I faster than the rest of
the network is infeasible and therefore it is infeasible for an
attacker to convince LowerSec of a fake timestamp.

TimeDiff and PMK also accept each block immediately
and TimeDiff could be temporally tricked by a single forged
block. Due to the median filtering, PMK cannot be attacked
by individual forged blocks at a low rate. In case an attacker
could forge blocks at a constant high rate, PMK would slowly
converge to the fake timestamps. However, forging at a high
rate is infeasible.

d) Summary We evaluated our approach analytically and
experimentally to demonstrate the feasibility of using public
blockchains for time-synchronization. Overall, PMK provides
the best trade-off between accuracy, convergence, and security.
It could also be combined with the LowerSec for improved
security. For all the approaches presented, we observe that
there is no computation and power overhead (due to absence
of mining) and negligible memory overhead (storage of 10
timestamps is less than one kilobyte).

med avg stdev max tt1s tt2s
MLE -1.26 -1.72 1.54 -0.3 12830.0 3846.0
LowerSec -1.29 -136.65 2740.9 -0.3 13050.0 3966.0
TimeDiff -0.91 -0.93 1.05 5.3 98.0 35.0
PMK -0.28 -0.36 0.89 0.6 128.0 32.0

Table II: Estimation errors in seconds given as median, average,
standard deviation and maximum. The “Time to 1 s” (tt1s) is the
average synchronization time until the error is within ±1 s. For tt2s
accordingly.

VII. CONCLUSION

We have proposed a novel synchronization method
that leverages the public datetime information from the
timestamps in block headers. These timestamps are validated
and confirmed by a decentralized blockchain network which
removes issues such as a trusted relationship and single
point of failure found in centralized approaches such as NTP.
The timestamps of confirmed blocks alone serve as a very
secure lower bound for the estimation of the datetime with a
usual accuracy of several tens of seconds. Under the realistic
assumption that a node receives blocks not later than 1 s
after the other miners on average, our advanced estimator,
which uses the Kalman-filtered peaks of σ+ ∆t, can improve
the accuracy to about 1 second. Our approach only requires
a node to passively listen to the stream of block headers
to provide a secure and robust synchronization with fair
accuracy, which makes it suitable for embedded IoT devices.
Acknowledgement: This work was financially supported in part by the
Singapore National Research Foundation under its Campus for Research
Excellence And Technological Enterprise (CREATE) programme. With the
support of the Technische Universität München – Institute for Advanced
Study, funded by the German Excellence Initiative and the European Union
Seventh Framework Programme under grant agreement n◦ 291763.

REFERENCES

[1] U.S. Department of Transportation, “Traffic signal timing manual,” No.
FHWA-HOP-08-024, Jun. 2008.

[2] D. L. Mills, “Internet time synchronization: the network time protocol,”
IEEE Trans. on Communications, vol. 39, no. 10, Oct. 1991.

[3] J. Burbank, D. Mills, and W. Kasch, “Network time protocol version 4:
Protocol and algorithms specification,” RFC 5905, Jun. 2010.

[4] E. Regnath and S. Steinhorst, “LeapChain: Efficient Blockchain Veri-
fication for Embedded IoT,” in Proc. of the IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), Nov. 2018.

[5] K. Christidis and M. Devetsikiotis, “Blockchains and Smart Contracts
for the Internet of Things,” IEEE Access, vol. 4, pp. 2292–2303, 2016.

[6] Ethereum Foundation, Ethereum Block timing analysis, Jul. 2014.
[7] C. Decker and R. Wattenhofer, “Information propagation in the bitcoin

network,” in IEEE P2P 2013 Proceedings, pp. 1–10, Sep. 2013.
[8] J. Elson, L. Girod, and D. Estrin, “Fine-grained network time synchro-

nization using reference broadcasts,” SIGOPS Oper. Syst. Rev., 2002.
[9] M. Lévesque and D. Tipper, “A survey of clock synchronization over

packet-switched networks,” IEEE Communications Surveys Tutorials,
vol. 18, no. 4, pp. 2926–2947, Jul. 2016.

[10] S. Ganeriwal, S. Čapkun, C.-C. Han, and M. B. Srivastava, “Secure
time synchronization service for sensor networks,” in Proc. of the 4th
ACM Workshop on Wireless Security, pp. 97–106, Sep. 2005.

[11] X. Hu, T. Park, and K. G. Shin, “Attack-tolerant time-synchronization
in wireless sensor networks,” in IEEE INFOCOM 2008 - The 27th
Conference on Computer Communications, pp. 41–45, Apr. 2008.

[12] OpenTimestamps, Open Timestamps, https://opentimestamps.org.
[13] K. Fan, S. Wang, Y. Ren, K. Yang, Z. Yan, H. Li, and Y. Yang,

“Blockchain-based secure time protection scheme in iot,” IEEE Internet
of Things Journal, vol. 6, no. 3, pp. 4671–4679, Jun. 2019.

[14] K. Fan, S. Sun, Z. Yan, Q. Pan, H. Li, and Y. Yang, “A blockchain-based
clock synchronization Scheme in IoT,” Future Generation Computer
Systems, vol. 101, pp. 524 – 533, Dec. 2019.

[15] NTP Pool News, Excessive load on NTP servers, Dec. 2016.

https://ops.fhwa.dot.gov/publications/fhwahop08024/index.htm
https://tools.ietf.org/pdf/rfc5905.pdf
https://tools.ietf.org/pdf/rfc5905.pdf
https://doi.org/10.1145/3240765.3240820
https://doi.org/10.1145/3240765.3240820
https://doi.org/10.1109/ACCESS.2016.2566339
https://doi.org/10.1109/ACCESS.2016.2566339
https://doi.org/10.1109/P2P.2013.6688704
https://doi.org/10.1109/P2P.2013.6688704
https://doi.org/10.1145/844128.844143
https://doi.org/10.1145/844128.844143
https://doi.org/10.1109/COMST.2016.2590438
https://doi.org/10.1109/COMST.2016.2590438
https://doi.org/10.1145/1080793.1080809
https://doi.org/10.1145/1080793.1080809
https://doi.org/10.1109/INFOCOM.2008.17
https://doi.org/10.1109/INFOCOM.2008.17
https://opentimestamps.org
https://doi.org/10.1109/JIOT.2018.2874222
https://doi.org/10.1016/j.future.2019.06.007
https://doi.org/10.1016/j.future.2019.06.007

