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Abstract: In this cross-sectional study, the relationship between noninvasively measured neurocar-

diovascular signal entropy and physical frailty was explored in a sample of community-dwelling 

older adults from The Irish Longitudinal Study on Ageing (TILDA). The hypothesis under investi-

gation was that dysfunction in the neurovascular and cardiovascular systems, as quantified by 

short-length signal complexity during a lying-to-stand test (active stand), could provide a marker 

for frailty. Frailty status (i.e., “non-frail”, “pre-frail”, and “frail”) was based on Fried’s criteria (i.e., 

exhaustion, unexplained weight loss, weakness, slowness, and low physical activity). Approximate 

entropy (ApEn) and sample entropy (SampEn) were calculated during resting (lying down), active 

standing, and recovery phases. There was continuously measured blood pressure/heart rate data 

from 2645 individuals (53.0% female) and frontal lobe tissue oxygenation data from 2225 partici-

pants (52.3% female); both samples had a mean (SD) age of 64.3 (7.7) years. Results revealed statis-

tically significant associations between neurocardiovascular signal entropy and frailty status. En-

tropy differences between non-frail and pre-frail/frail were greater during resting state compared 

with standing and recovery phases. Compared with ApEn, SampEn seemed to have better discrim-

inating power between non-frail and pre-frail/frail individuals. The quantification of entropy in 

short length neurocardiovascular signals could provide a clinically useful marker of the multiple 

physiological dysregulations that underlie physical frailty. 

Keywords: approximate entropy; sample entropy; physical frailty; cardiovascular; neurovascular; 

blood pressure; heart rate; frontal lobe oxygenation; near infrared spectroscopy; NIRS; TILDA  

 

1. Introduction 

Frailty can be defined as a biologically driven decrease in reserve and resistance to 

stressors, resulting from collective declines across multiple physiological systems, which 

causes increased vulnerability to adverse outcomes such as mortality, institutionalization, 

falls, and hospitalization [1–4]. In this study, we used the frailty phenotype as proposed 

by Fried et al. [1] to define non-frail, pre-frail, and frail groups. This model has been ex-

tensively used in clinical practice and research [5]. The phenotype is based on five com-

ponents, namely, unintentional weight loss, self-reported exhaustion, weakness, slow 

walking speed, and low physical activity. By this operationalization, pre-frailty is defined 

(independently of age and sex) as the presence of one or two criteria, and frailty as having 
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three or more [1]. Despite its long conceptual and operational history, the intrinsic dy-

namic physiological mechanisms of frailty are not well understood [6]. 

Dysregulation of the neurovascular and cardiovascular systems under conditions of 

stress have been shown to be associated with risk of frailty [7–9]. A simple method to 

stress the neurocardiovascular system in clinical practice is by asking a person to remain 

lying supine for a few minutes, and then asking him/her to stand quickly. This is generally 

referred to as the orthostatic “active stand” test. The active stand challenges the body’s 

ability to compensate for the natural drop in blood pressure that occurs after standing due 

to gravity, and humans may perform this up to 50 times per day [10]. Continuously mon-

itoring cardiovascular and neurovascular activity (such as blood pressure, heart rate, and 

frontal lobe brain oxygenation levels) during this challenge can provide clinically useful 

information with regards a person’s ability to compensate and recuperate from the 

stressor of standing. Currently, there is no consensus as to the most appropriate way to 

analyze and interpret continuously-measured active stand data; however, the Irish Lon-

gitudinal Study on Ageing (TILDA) has pioneered research in this area, using both stand-

ard statistical methods [11,12], as well as advanced data-driven approaches [7,13]. 

Disorder in physiological signals can be assessed by means of entropy [14–17]. En-

tropy is essentially a measure of irregularity/unpredictability, assigning lower entropy 

values to periodic, predictable data, and higher entropy values to irregular, unpredictable 

data. Multiple different implementations of entropy have been proposed for the analysis 

of time-varying physiological signals, including approximate entropy (ApEn), sample en-

tropy (SampEn), multi-scale entropy, and cross entropy [17–20]. In the present work, we 

investigated two of the most widely used entropy measures for investigating physiologi-

cal time series data, namely, ApEn and SampEn. Having been initially developed for 

physiological applications, both ApEn and SampEn have been demonstrated to provide 

reliable estimates of signal complexity in cardiovascular data [14,17–19, 21–24]. ApEn was 

first proposed in 1991 by Pincus et al. [25]. Briefly, given a time-series of length N, ApEn 

approximates the negative average logarithm of the conditional probability that two tra-

jectories of length m remain similar in the next timestep, within a tolerance specified as ±r 

* standard deviation (SD) of the time-series. ApEn provides a unit-less number from 0 to 

2. Notably, ApEn counts each subset as matching itself, and therefore, the ApEn algorithm 

is inherently biased towards regularity. In 2000, Richman and Moorman [17] introduced 

SampEn. Similar to ApEn, SampEn is defined as the negative natural logarithm of the 

conditional probability that two trajectories of length m remain similar for m + 1; however, 

self-matches are not considered in the probability calculation in this instance. Addition-

ally, it has been demonstrated that SampEn is largely independent of the data length and 

can potentially provide more consistent results than ApEn [17]. In the present study, we 

utilized both ApEn and SampEn for the analysis of neurocardiovascular signal complex-

ity. 

To date, a handful of studies have used both ApEn and SampEn specifically for the 

analysis of cardiovascular signal complexity in the context of frailty [21–23, 26]. However, 

previously reported results have been contradictory, with some studies reporting higher 

complexity for frail individuals [23,26], while others reporting a reduction in complexity 

for frail individuals [21,22]. This may be due to differences in type of physiological signals 

analyzed, frailty operationalization methodologies employed, and/or small sample sizes.  

Because frailty is associated with adverse health outcomes in older people, it is im-

portant to detect it as soon as possible before it manifests as a visible disability. Indeed, 

medical research has shown that interventions can delay and even reverse frailty, espe-

cially when it presents in the early stages [27,28]. For that purpose, it is important to con-

sider a frailty measure that does not include disability in its definition, and in that regard, 

Fried’s physical frailty phenotype is not only suitable, but also one of the most widely 

used in clinical practice [5]. We hypothesized that a simple automated measure of neuro-

cardiovascular signal complexity (entropy) could provide a clinically useful marker of the 
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multiple physiological dysregulations that underlie physical frailty. Given the critical im-

portance of the performance of cardiovascular and neurovascular systems in helping us 

deal with stressors, our aim was to explore the relationship between entropy in these 

physiological signals and physical frailty. In other words, we undertook to classify frailty 

groups on the basis of entropy measures (ApEn, SampEn) and other demographic and 

health variables. 

2. Materials and Methods  

2.1. Study Population 

This cross-sectional study utilized data from TILDA, an ongoing nationally repre-

sentative prospective cohort study of community-dwelling adults (representing approxi-

mately 1 in 150 individuals in Ireland aged ≥50 years) established in 2009 (N = 8507). 

TILDA’s study design and sampling methods are detailed elsewhere [29–31]. Briefly, sam-

pling was based on geographic clustering. Ongoing health, social, and economic data col-

lection involves a computer-assisted personal interview (CAPI) and a self-completed 

questionnaire (SCQ) approximately every 2 years. Every second wave, participants take 

part in a comprehensive health assessment at a dedicated health center. The primary ex-

posure variables for this study were measured at Wave 3 of TILDA, which took place 

between March 2014 and December 2015. Ethical approval was granted from the Health 

Sciences Research Ethics Committee at Trinity College Dublin (granted 9 June 2014 for 

Wave 3; approval reference “Main Wave 3 Tilda Study”) and all participants provided 

written informed consent. All research was performed in accordance with the Declaration 

of Helsinki. 

2.2. Neurocardiovascular Measurements 

Participants began the assessment with the affixing of a digital photoplethysmograph 

to the middle finger of the left hand (Finometer MIDI device, Finapres Medical Systems 

BV, Amsterdam, the Netherlands). This arm was then placed in a sling (to discourage its 

use during transition from supine to stand), resulting in the measurement site on the fin-

ger being roughly at the level of the heart throughout (further height changes adjusted for 

using the built-in height sensor on the Finometer device). Beat-to-beat blood pressure and 

heart rate were measured at 200 Hz using the Finometer device. Cerebral oxygenation was 

also measured simultaneously at 50 Hz using a near-infrared spectroscopy (NIRS) device 

(Portalite; Artinis Medical Systems, Zetten, the Netherlands) that was fixed to the fore-

head in approximately the FP1 (left frontal) position of the 10 to 20 electrode system (3 cm 

lateral and 3.5 cm superior to the nasion) [32]. This NIRS device uses 3 transmitters and 1 

receiver, with each transmitter emitting 2 different wavelengths of light (760 nm and 850 

nm) that propagate through the skull to a depth of approximately 2–3 cm and are absorbed 

at different rates by oxygenated haemoglobin (O2Hb) and deoxygenated haemoglobin 

(HHb). Hence, serum concentration levels of these molecules can be measured on the basis 

of the principle of absorption of electromagnetic radiation as described by the modified 

Beer–Lambert law. Multiple transmitters enable absolute concentration values to be de-

termined via spatial resolved spectroscopy [33]. O2Hb and HHb concentrations were rec-

orded, and tissue saturation index (TSI) was calculated as the O2Hb value expressed as a 

percentage of the sum of O2Hb and HHb values. The influence of environmental light 

was minimized via a black headband covering the sensor. All measurements were carried 

out in a comfortably lit room at an ambient temperature between 21 and 23 °C. Partici-

pants laid supine for ≈10 min before transitioning to a standing position and remained 

standing still for 3 min while data were continuously recorded. 

2.3. Signal Processing 

Signals for systolic blood pressure (sBP), diastolic blood pressure (dBP), mean arterial 

pressure (MAP), heart rate (HR), O2Hb, HHb, and TSI were extracted using MATLAB 
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(R2019b, TheMathWorks, Inc., Natick, MA, USA). For the resting state, data from the last 

minute of supine rest were utilized in this study (prior to 60 s active stand “baseline” 

recording). For the active stand data, we analyzed a 1-min section, starting from when the 

participant began their stand (“challenge”), and another 1-min section taken from 120 to 

180 s post-stand was analyzed as “recovery” from the active stand challenge. Time-to-

stand was determined using the Finometer device’s built-in height sensor [34]. All data 

were down sampled to 5 Hz prior to analysis, providing N = 300 data points for analysis, 

and no filtering was applied. These values were chosen to provide a data collection 

timeframe that is easily transferable for clinical use (60 s), has an appropriate number of 

data points for analysis (time series with <200 data points are not recommended for either 

ApEn or SampEn due to inadequate vector matching [24,35]), while still capturing physi-

ologically relevant signal components. Stationarity of the data was assessed via aug-

mented Dicky–Fuller tests on both the original raw data and transformed data (data were 

transformed by subtracting the mean and dividing it by the standard deviation to increase 

the stationarity of the data series [36]). 

2.4. Entropy Analysis 

Entropy analysis was performed using MATLAB. Previously developed MATLAB 

scripts were used to calculate ApEn and SampEn [15,16]. A detailed description of the 

algorithms used to compute both ApEn and SampEn has been previously reported in de-

tail [17,25]; however, below we provide a brief overview. 

2.4.1. Approximate Entropy (ApEn) 

ApEn [25] was calculated as 

ApEn(�, �, �) ≔
1

(� − � + 1)
� log

��
�(�)

��
���(�)

�����

���

,  (1)

where ��
�(�) is the number of points found within the distance r for any point x(i) within 

the points ��
�: = [x(i),..., x(i + m − 1)], divided by N − m + 1. In this study, m (embedding 

dimension; the length of the data segment being compared) was set to 2 for both ApEn 

and SampEn, as this has been shown to show good statistical validity for ApEn and 

SampEn, especially for biological data [14,35]. The effects of increasing m were also inves-

tigated, with results from m = 2, 3, and 4 presented comparatively in Appendix B. An 

optimal r (similarity criterion) was computed to give the maximum ApEn using r from 0 

to 0.6 in increments of 0.02, as per the method proposed by Chon et al. [14]. 

2.4.2. Sample Entropy (SampEn) 

SampEn [17] was calculated as 

SampEn(�, �, �) ≔ log � � ��
�(�)

���

���

� − log � � ��
���(�)

�����

���

�,  (2)

however, in this instance, ��
�(�) does not count self-matches. For SampEn, an r of 0.15 

was selected, in line with previous recommendations for similar physiological data 

[37,38]. To assess the effects of data stationarity on entropy measures, we calculated ApEn 

and SampEn for both the original raw and transformed data. 

2.5. Frailty Phenotype 

The calculation of the frailty phenotype was conducted following the methodology 

proposed by Fried et al. [1]. Full details have been described previously [39–41]; briefly, 

the frailty phenotype was operationalized using population-specific cut-off points related 

to differences in the assessments of weakness (sex- and body mass index-adjusted grip 
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strength measured with dynamometer on the dominant hand), physical activity (sex-ad-

justed kilocalories from the International Physical Activity Questionnaire—Short Form 

[42]), and walking speed (sex- and height-adjusted cm per second using the GAITRite 

portable walkway (CIR Systems, Inc., Sparta, NJ, USA)). Weight loss was determined by 

the question “In the past year have you lost 10 pounds (4.5 kg) or more in weight when 

you were not trying to?” Exhaustion was captured using 2 items from the Centre for Epi-

demiological Studies Depression (CESD) scale [43]. Participants were asked how often 

they felt that “I could not get going” and “I felt that everything I did was an effort”. A 

response of “moderate amount/all of the time” to either question was considered as “ex-

haustion”. 

2.6. Other Measures 

As part of the TILDA assessment, the following self-reported measures were also 

recorded at Wave 3 of the study: educational attainment, cardiovascular conditions (an-

gina, high blood pressure, heart failure, heart murmur, abnormal heart rhythm, heart at-

tack (ever), stroke (ever), or transient ischemic attack (TIA, ever)), diabetes, alcohol con-

sumption habits (CAGE) [44], smoking history, and anti-hypertensive medication use 

(coded using the Anatomical Therapeutic Chemical Classification (ATC): antihyperten-

sive medications (ATC C02), diuretics (ATC C03), β-blockers (ATC C07), calcium channel 

blockers (ATC C08), and renin-angiotensin system agents (ATC C09)). Depressive symp-

toms were assessed using the CESD scale [45]. Time taken to stand was calculated using 

data from the Finometer device’s built-in height sensor, as previously described [34]. To 

describe the general level of disability, we recorded the number of difficulties in performing 

activities of daily living (ADL). The original ADL scale, developed by Katz et al., encom-

passes “activities which people perform habitually and universally”, such as dressing (in-

cluding putting on shoes and socks), walking across a room, bathing or showering, eating 

(such as cutting up food), getting in or out of bed, and using the toilet (including getting up 

and down) [46]. 

2.7. Statistical Analysis 

Statistical analysis was performed using STATA 14.1 (StataCorp, College Station, TX, 

USA). The data were visually assessed for normality via Q-Q plots and histograms. All 

multivariate analysis was completed using robust linear regression with residual analysis 

completed to assess model assumptions. Statistical significance was set at P < 0.05. Multi-

ple models were utilized to examine the relationships between the neurocardiovascular 

entropy measures and frailty phenotype status. Additional potential correlates controlled 

for in all models were age, sex, education, number of cardiovascular conditions (0, 1, 2+), 

diabetes, antihypertensive medication, alcohol consumption habits, smoking, and depres-

sion. The models for active stand data additionally controlled for stand time. Results from 

absolute coefficients were reported as point estimates in appropriate units, presented with 

95% confidence intervals (CI).  

2.8. Data Availability Statement 

The datasets generated during and/or analyzed during the current study are not pub-

licly available due to data protection regulations but are accessible at TILDA on reasona-

ble request. The procedures to gain access to TILDA data are specified at 

https://tilda.tcd.ie/data/accessing-data/. 

3. Results 

3.1. Participant Characteristics 

In total 2645 participants had complete blood pressure (BP) resting state and active 

stand data and 2225 had full NIRS data; full exclusions leading to these cohorts are pro-

vided in Figure 1. In total 2172 individuals had both BP and NIRS data. Participants’ mean 
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(SD) age was 64.3 (7.7) years in both samples. In the BP cohort, 53.0% were female and in 

the NIRS cohort 52.3% were female. Similar distributions of frailty phenotype status were 

seen across both cohorts (non-frail: 59.1% (BP), 59.5% (NIRS); pre-frail: 37.2% (BP), 36.7% 

(NIRS); frail 3.7% (BP), 3.8% (NIRS)). Full demographic characteristics for both cohorts are 

presented in Table 1. 

 

Figure 1. Flow chart describing sample selection and exclusions. 
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Table 1. Demographic characteristics of the study samples. 

 BP Cohort (n = 2645) NIRS Cohort (n = 2225) 

Age [years] 64.3 (SD: 7.7, range: [50–93]) 64.3 (SD: 7.7, range: [50–93])  

Sex [% (n)] Female: 53.0% (1401) Female: 52.3% (1163) 

Education [% (n)]   

Primary/none 16.5% (436) 16.5% (368) 

Secondary 39.9% (1055) 40.1% (891) 

Third/higher 43.6% (1154) 43.4% (966) 

Frailty Phenotype [% (n)]   

Non-frail 59.1% (1564) 59.5% (1325) 

Pre-frail 37.2% (984) 36.7% (816) 

Frail 3.7% (97) 3.8% (84) 

Disability [% (n)]   

Number of ADL disabilities   

Non-frail   

0 98.9% (1547) 98.9% (1310) 

1 1.0% (15) 1.0% (13) 

+2 0.1% (2) 0.1% (2) 

Pre-frail   

0 96.1% (946) 96.3% (786) 

1 2.3% (23) 2.1% (17) 

+2 1.6% (15) 1.6% (13) 

Frail   

0 79.4% (77) 78.6% (66) 

1 13.4% (13) 15.5% (13) 

+2 7.2% (7) 5.9% (5) 

No. of Cardiovascular Condi-

tions a [% (n)] 
  

0 40.4% (1069) 40.6% (904) 

1 35.6% (942) 35.9% (768) 

2+ 24.0% (634) 23.5% (523) 

Self-reported diabetic [%] 6.8% (179) 6.5% (144) 

Antihypertensive medica-

tions b [% (n)] 
37.7% (997) 37.2% (827) 

CAGE alcohol scale   

CAGE < 2 76.7% (2029) 77.2% (1718) 

CAGE ≥ 2 12.4% (328) 12.3% (274) 

No response 10.9% (288) 10.5% (233) 

Smoker [% (n)]   

Never 47.9% (1268) 48.0% (1067) 

Past 42.6% (1127) 42.5% (945) 

Current 9.5% (250) 9.5% (213) 

CESD [% (n)]   

Non-depressed (CESD < 9) 89.1% (2358) 89.3% (1986) 

Depressed (CESD ≥ 9) 10.9% (287) 10.7% (239) 

Time to stand [seconds] 7.2 (SD: 2.8, range: [2–27]) 7.2 (SD: 2.8, range: [2–26]) 
a Cardiovascular conditions: angina, high blood pressure, heart failure, heart murmur, abnormal 

heart rhythm, heart attack (ever), stroke (ever), or transient ischemic attack (TIA, ever). b Coded 

using the Anatomical Therapeutic Chemical Classification (ATC): antihypertensive medications 

(ATC C02), diuretics (ATC C03), β-blockers (ATC C07), calcium channel blockers (ATC C08), and 
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renin–angiotensin system agents (ATC C09). Abbreviations: ADL, activities of daily living; CESD, 

Center for Epidemiologic Studies Depression scale. 

3.2. Associations of Entropy with Frailty Phenotype 

Figure 2 visually illustrates data from three example participants with “low” (0.20), 

“medium” (0.45), and “high” (0.70) levels of ApEn in their resting state sBP data. As was 

generally the case, individuals with higher entropy in one measure (in the case of Figure 

2 sBP) generally had higher entropy in the other physiological measures investigated. Fig-

ure 2 illustrates this well, with the stratification of signal disorder still visually apparent 

in the frontal lobe NIRS measures (O2Hb, HHb, and TSI). 

Results from augmented Dicky–Fuller tests revealed low proportions of stationarity 

(0.2% to 23.1%) for the raw data; after transforming the data, 18.1% to 92.6% of cases were 

stationary. Despite the increase in stationarity, which in some instances was large (e.g., 

resting state O2Hb stationarity increased from 0.2% to 92.6%), no differences in ApEn and 

SampEn measures were found between the original and transformed data (see Appendix 

A, Table A1). Thus, the results from the original time series were used for statistical anal-

ysis. 

Tables 2 and 3 provide the mean, SD, and range for ApEn and SampEn calculated 

from resting state, active stand (stand 0–60s), and recovery (120–180s post-stand), strati-

fied by physical frailty status. Across all measures, absolute mean entropy was higher in 

pre-frail and frail groups compared with the non-frail group. Mean sBP, dBP, MAP, and 

HR entropy measures were highest during recovery and lowest during stand. For O2Hb, 

HHb, and TSI mean values increased from resting state to stand to recovery. Overall, ab-

solute BP and HR SampEn measures were 3% to 50% lower than ApEn measures. Simi-

larly, absolute SampEn was 6% to 36% lower than ApEn measures for NIRS resting state 

and active stand measures; however, absolute SampEn values in NIRS recovery were 

higher than ApEn measures. Of note, SD values reported in Tables 2 and 3 are absolute 

and are not statistically adjusted for any confidence level. 

Figure 3 reports multivariate-adjusted point estimates from the regression models, 

with error bars showing the 95% CIs corresponding to the 95% confidence level (i.e., P ≤ 

0.05 considered significant). Overall, models controlled only for age and sex provided 

similar results to the fully controlled models (controlling for age, sex, education, number 

of cardiovascular conditions (0, 1, 2+), diabetes, antihypertensive medication, alcohol con-

sumption habits, smoking, and depression). Models for active stand data also controlled 

for stand time). Beta coefficients were slightly lower for some of the measures in the fully 

controlled versus age and sex-controlled models, however, significance of the results was 

generally consistent, with the exception of the O2Hb and HHb resting state data, which 

were no longer significant in the fully controlled models. The magnitude of the beta coef-

ficients from the regression analysis were in line with the absolute differences reported in 

Tables 2 and 3. 

In fully controlled models of resting state data, all four Finometer measures were 

significantly higher in pre-frail (ApEn—sBP: β = 0.01, P = 0.004; dBP: β = 0.01, P ≤ 0.001; 

MAP: β = 0.01, P ≤ 0.001; HR: β = 0.01, P = 0.049. SampEn—sBP: β = 0.01, P = 0.050; dBP: β 

= 0.02, P = 0.001; MAP: β = 0.02, P = 0.001; HR: β = 0.01, P = 0.038) and frail groups (ApEn—

sBP: β = 0.02, P = 0.006; dBP: β = 0.04, P = 0.001; MAP: β = 0.04, P ≤ 0.001; HR: β = 0.03, P = 

0.007. SampEn—sBP: β = 0.05, P = 0.004; dBP: β = 0.05, P = 0.003; MAP: β = 0.06, P ≤ 0.001; 

HR: β = 0.04, P = 0.048).  
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Figure 2. Example plots of data from three different participants with “low” (0.20), “medium” (0.45), and “high” (0.70) 

levels of approximate entropy (ApEn) measured in the resting state systolic blood pressure (sBP) data. Individuals with 

higher entropy in one measure investigated (in this case, resting state sBP) also generally had higher entropy in the other 

physiological measures investigated, as visually illustrated above. 
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Table 2. Approximate entropy (ApEn) results by frailty phenotype grouping. 

ApEn 
Non-Frail 

(N = 1325–1564) 

Pre-Frail 

(N = 816–984) 

Frail 

(N = 84–97) 

Resting State Mean (SD, [Range]) Mean (SD, [Range]) Mean (SD, [Range]) 

sBP 0.52 (0.07, [0.26–0.98]) 0.54 (0.08, [0.22–0.77]) 0.56 (0.08, [0.31–0.75]) 

dBP 0.45 (0.08, [0.20–0.96]) 0.47 (0.09, [0.22–0.78]) 0.50 (0.11, [0.29–0.83]) 

MAP 0.46 (0.08, [0.17–1.01]) 0.48 (0.08, [0.22–0.79]) 0.52 (0.09, [0.30–0.80]) 

HR 0.49 (0.09, [0.02–0.81]) 0.49 (0.09, [0.05–0.77]) 0.51 (0.10, [0.29–0.77]) 

O2Hb 0.44 (0.07, [0.16–0.68]) 0.45 (0.07, [0.18–0.65]) 0.46 (0.07, [0.23–0.60]) 

HHb 0.43 (0.07, [0.09–0.65]) 0.43 (0.07, [0.16–0.64]) 0.45 (0.07, [0.27–0.60]) 

TSI 0.39 (0.06, [0.12–0.62]) 0.40 (0.07, [0.11–0.63]) 0.41 (0.06, [0.28–0.54]) 

Stand (0–60s)    

sBP 0.44 (0.07, [0.20–0.97]) 0.46 (0.08, [0.21–0.80]) 0.48 (0.08, [0.33–0.70]) 

dBP 0.40 (0.07, [0.17–0.90]) 0.42 (0.09, [0.19–0.83]) 0.45 (0.10, [0.25–0.76]) 

MAP 0.41 (0.08, [0.17–0.93]) 0.43 (0.08, [0.18–0.82]) 0.45 (0.09, [0.30–0.80]) 

HR 0.45 (0.08, [0.07–0.80]) 0.46 (0.09, [0.18–0.95]) 0.49 (0.11, [0.23–0.81]) 

O2Hb 0.79 (0.12, [0.36–1.37]) 0.80 (0.12, [0.32–1.34]) 0.79 (0.14 [0.38–1.08]) 

HHb 0.69 (0.14, [0.21–1.37]) 0.70 (0.15, [0.30–1.36]) 0.69 (0.14, [0.40–0.99]) 

TSI 0.77 (0.12, [0.40–1.39]) 0.79 (0.12, [0.41–1.33]) 0.79 (0.12, [0.53–1.08]) 

Stand (120–180s)    

sBP 0.55 (0.07, [0.29–1.04]) 0.56 (0.07, [0.33–0.84]) 0.58 (0.07, [0.39–0.78]) 

dBP 0.49 (0.08, [0.27–1.02]) 0.50 (0.09, [0.26–0.85]) 0.53 (0.10, [0.32–0.84]) 

MAP 0.51 (0.07, [0.22–1.01]) 0.52 (0.08, [0.26–0.81]) 0.54 (0.09, [0.28–0.84]) 

HR 0.49 (0.08, [0.02–0.88]) 0.50 (0.09, [0.23–0.85]) 0.52 (0.11, [0.20–0.79]) 

O2Hb 0.91 (0.12, [0.43–1.40]) 0.91 (0.12, [0.55–1.37]) 0.92 (0.13 [0.50–1.12]) 

HHb 0.87 (0.14, [0.40–1.42]) 0.88 (0.14, [0.42–1.36]) 0.90 (0.11, [0.62–1.18]) 

TSI 0.92 (0.11, [0.50–1.34]) 0.92 (0.11, [0.59–1.34]) 0.95 (0.11, [0.60–1.15]) 

Abbreviations: sBP: systolic blood pressure; dBP: diastolic blood pressure; MAP: mean arterial pressure; HR: heart rate; 

O2Hb oxygenated hemoglobin concentration; HHb deoxygenated hemoglobin concentration; TSI: tissue saturation index. 

Table 3. Sample entropy (SampEn) results by frailty phenotype grouping. 

SampEn 
Non-Frail 

(N = 1325–1564) 

Pre-Frail 

(N = 816–984) 

Frail 

(N = 84–97) 

Resting State Mean (SD, [Range]) Mean (SD, [Range]) Mean (SD, [Range]) 

sBP 0.49 (0.13, [0.07–1.41]) 0.51 (0.14, [0.08–0.93]) 0.55 (0.14, [0.15–0.87]) 

dBP 0.39 (0.13, [0.06–1.34]) 0.41 (0.13, [0.06–0.95]) 0.45 (0.16, [0.18–0.99]) 

MAP 0.40 (0.13, [0.05–1.27]) 0.43 (0.14, [0.08–0.84]) 0.48 (0.15, [0.15–0.89]) 

HR 0.44 (0.15, [0.01–1.00]) 0.44 (0.16, [0.02–1.03]) 0.46 (0.19, [0.08–0.99]) 

O2Hb 0.34 (0.14, [0.01–0.71]) 0.35 (0.14, [0.05–0.78]) 0.38 (0.14, [0.07–0.67]) 

HHb 0.31 (0.13, [0.03–0.80]) 0.32 (0.14, [0.04–0.72]) 0.36 (0.14, [0.12–0.62]) 

TSI 0.26 (0.10, [0.03–0.72]) 0.27 (0.11, [0.03–0.74]) 0.28 (0.11, [0.06–0.52]) 

Stand (0–60 s)    

sBP 0.30 (0.12, [0.04–1.26]) 0.32 (0.13, [0.04–0.98]) 0.35 (0.14, [0.12–0.82]) 

dBP 0.20 (0.11, [0.03–1.03]) 0.22 (0.14, [0.04–1.03]) 0.28 (0.16, [0.03–0.87]) 

MAP 0.24 (0.11, [0.04–1.11]) 0.26 (0.13, [0.04–0.92]) 0.30 (0.15, [0.05–0.99]) 

HR 0.31 (0.14, [0.02–1.08]) 0.33 (0.17, [0.03–1.21]) 0.40 (0.21, [0.03–1.05]) 

O2Hb 0.73 (0.37, [0.04–2.69]) 0.74 (0.39, [0.01–2.70]) 0.68 (0.38, [0.03–1.54]) 

HHb 0.44 (0.33, [0.02–2.88]) 0.47 (0.35, [0.01–2.80]) 0.44 (0.29, [0.03–1.30]) 

TSI 0.61 (0.36, [0.07–2.73]) 0.64 (0.36, [0.06–2.63]) 0.67 (0.36, [0.12–1.67]) 
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Stand (120–180 s)    

sBP 0.52 (0.13, [0.14–1.28]) 0.53 (0.13, [0.10–1.13]) 0.57 (0.14, [0.27–0.96]) 

dBP 0.43 (0.13, [0.10–1.57]) 0.44 (0.14, [0.10–1.10]) 0.50 (0.19, [0.13–1.17]) 

MAP 0.47 (0.13, [0.06–1.50]) 0.48 (0.14, [0.09–0.99]) 0.51 (0.16, [0.11–1.07]) 

HR 0.42 (0.14, [0.01–1.06]) 0.44 (0.16, [0.03–1.12]) 0.47 (0.19, [0.08–0.98]) 

O2Hb 1.16 (0.38, [0.06–2.77]) 1.16 (0.39, [0.09–2.57]) 1.15 (0.39, [0.09–1.91]) 

HHb 0.89 (0.42, [0.07–2.80]) 0.93 (0.45, [0.06–2.60]) 0.97 (0.42, [0.12–2.05]) 

TSI 1.08 (0.36, [0.15–2.58]) 1.08 (0.37, [0.15–2.78]) 1.18 (0.36, [0.28–2.18]) 

Abbreviations: sBP: systolic blood pressure; dBP: diastolic blood pressure; MAP: mean arterial pressure; HR: heart rate; 

O2Hb oxygenated hemoglobin concentration; HHb deoxygenated hemoglobin concentration; TSI: tissue saturation index. 

 

Figure 3. Results from robust multivariate linear regression showing beta coefficients (β) for both approximate entropy 

(ApEn) and sample entropy (SampEn). All models adjusted for age, sex, education, diabetes, number of cardiovascular 

conditions, antihypertensive medication use, alcohol consumption habits, smoking, and depression. Model for active 

stand data additionally controlled for stand time. Abbreviations: sBP: systolic blood pressure; dBP: diastolic blood pres-

sure; MAP: mean arterial pressure; HR: heart rate; O2Hb: oxygenated hemoglobin concentration; HHb: deoxygenated 

hemoglobin concentration; TSI: tissue saturation index; β: beta coefficient. 

For the fully controlled stand 0–60s models, all BP/HR entropy measures were sig-

nificantly associated with frailty status (pre-frail: ApEn—sBP: β = 0.01, P = 0.001; dBP: β = 

0.01, P = 0.001; MAP: β = 0.01, P = 0.001; HR: β = 0.01, P ≤ 0.001. SampEn—sBP: β = 0.02, P 
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= 0.004; dBP: β = 0.01, P = 0.020; MAP: β = 0.01, P = 0.018; HR: β = 0.02, P = 0.012. frail: 

ApEn—sBP: β = 0.03, P = 0.003; dBP: β = 0.03, P = 0.001; MAP: β = 0.03, P = 0.003; HR: β = 

0.04, P ≤ 0.001. SampEn—sBP: β = 0.04, P = 0.011; dBP: β = 0.06, P = 0.001; MAP: β = 0.04, P 

= 0.010; HR: β = 0.09, P ≤ 0.001). 

Likewise, for the fully controlled stand 120–180s models, again all BP/HR entropy 

measures were significantly associated with frailty status (pre-frail: ApEn—sBP: β = 0.01, 

P = 0.004; dBP: β = 0.01, P = 0.008; MAP: β = 0.01, P = 0.006; HR: β = 0.01, P ≤ 0.001. SampEn—

sBP: β = 0.01, P = 0.010; dBP: β = 0.01, P = 0.028; MAP: β = 0.02, P = 0.007; HR: β = 0.02, P = 

0.001. Frail: ApEn—sBP: β = 0.03, P = 0.001; dBP: β = 0.04, P ≤ 0.001; MAP: β = 0.03, P = 

0.001; HR: β = 0.04, P = 0.003. SampEn—sBP: β = 0.05, P = 0.003; dBP: β = 0.07, P ≤ 0.001; 

MAP: β = 0.06, P = 0.001; HR: β = 0.06, P = 0.004). 

For the fully controlled models, NIRS (O2Hb, HHb, and TSI) entropy measurements 

were not significantly associated with frailty status, with the exception of TSI at resting 

state, which was higher in the pre-frail group (ApEn: β = 0.01, P = 0.011; SampEn: β = 0.01, 

P = 0.007); and in the recovery data, TSI entropy was significantly higher for frail partici-

pants (ApEn: β = 0.03, P = 0.010; SampEn: β = 0.10, P = 0.022). For all models investigated, 

the magnitude of statistically significant differences between frailty groups were larger 

for SampEn compared with ApEn, with β coefficients up to 102% higher in BP and 198% 

higher in NIRS SampEn results compared with ApEn. 

The effect of increasing m was also investigated, with multivariate-adjusted point es-

timates from the regression models for m = 2, 3, and 4 presented in Appendix B, Figure 

A1. For BP and HR, all significant associations described above remained significant as m 

was increased. However, the associations of frail status with recovery TSI lost significance 

as m was increased. 

4. Discussion 

Results from this study demonstrate significant associations between peripherally 

measured neurocardiovascular signal entropy and physical frailty status. Even though the 

magnitude of these associations was shown to be similar for resting state, active stand, 

and recovery data, the differences between non-frail and pre-frail/frail BP and HR entropy 

measures did increase during the stand and recovery phases, most notably for HR. For 

frail individuals, TSI was significantly higher during the recovery from stand, compared 

with non-frail. Even though, overall, absolute SampEn values were 2 to 50% lower than 

ApEn values, while β coefficients from statistically significant models were up to 198% 

higher when using SampEn, which suggests potentially better discriminating power be-

tween non-frail and pre-frail/frail individuals for SampEn. These results support the hy-

pothesis that a simple automated measure of neurocardiovascular signal entropy could 

provide a clinically useful marker of the multiple physiological dysregulations that un-

derlie physical frailty.  

Only a handful of smaller scale studies have investigated the associations of cardio-

vascular signal entropy with frailty. Results reported to date are contradictory, with some 

reporting higher levels of entropy and disorder in cardiovascular data for pre-frail and 

frail individuals versus non-frail [23,26], while others contrariwise report lower entropy 

values in these groups [21,22]. However, there are several important methodological dif-

ferences between these studies, as well as between those and the present work, which 

most likely account for this. Most similar to the present work in terms of methodology, 

and reporting similar results, Takahashi et al. [23], in a study on 80 individuals, found 

higher ApEn and conditional entropy for both pre-frail and frail groups, compared with 

non-frail, with frail participants having the highest entropy overall; in addition, the au-

thors also reported lower absolute entropy in their stand data versus rest, which is also in 

line with our results, as well as other previous work [47]. Analogously, some studies have 

reported a reduction in entropy after a head-up tilt test [48,49], which is another type of 

orthostatic challenge, though less representative of daily living. Exploring the physiolog-

ical origins of these signal complexity differences between resting state and orthostatic 
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challenge would be of interest, particularly in relation to baroreflex control, which has 

been shown to be associated with frailty status [50]. Conversely, Chaves et al. indicated 

that lower values of ApEn were associated with a higher probability of an individual be-

ing frail [21]. Chaves et al. operationalized the original Fried’s criteria; however, direct 

comparison between that study and the present is not possible due to large difference in 

the methods used; for example, only females were investigated (N = 389), and a dichoto-

mous classification of frailty was adopted (frail or non-frail). Most notably, their study 

utilized a much longer dataset (2–3 h), recorded while participants underwent transitions 

through a number of diverse postural positions (e.g., lying, sitting, standing). As such, 

their study is likely to be reporting on the flexibility of the cardiovascular system, i.e., the 

ability of the system to adapt to multiple challenges over a longer time period, a measure 

that is known to be indicative of a more positive health status. Another recent study by 

Rangasamy et al. likewise reported lower entropy in frail versus non-frail (N = 364) [22]. 

However, again methodological differences do not allow for direct comparison with the 

present study, including in this case the vastly different process used to quantify the di-

chotomous frailty status used (which was based on demographics, anthropometrics, and 

blood biomarkers).  

Heart rate variability complexity is generally expected to decrease with pathology 

[51]; however, in the present work, higher entropy in both BP and HR were found to be 

associated with increased frailty. We postulate that entropy calculated in short length neu-

rocardiovascular data, as reported herein, is not measuring system flexibility, but rather 

systemic disorder, or “jitter”, resulting from dysregulation of the neurocardiovascular 

system. It would therefore be expected that this negative state of higher disorder on a 

short time frame would be associated with physical frailty or systemic dysregulation. One 

possible cause for this dysregulation could be an increase of sympathetic activity and/or 

modulation directed to the heart and/or blood vessels with increased frailty status, as pre-

viously described in abnormal ageing states [52]. Other potential influencing factors could 

be modified cardiac reserve, changes in arterial structure (e.g., increased stiffness, de-

creased compliance, and endothelial dysfunction), as well as changes of diastolic filling 

and increased collagen in the left ventricle [47]. Increasing the embedded dimension (m = 

2, 3, and 4) did not have a major effect on the main significant results of this study (see 

Appendix B, Figure A1). This suggests that the patterns of increased disorder associated 

with frailty status in BP and HR data occur within the scale of 0.4 to 0.8 s. 

The present study has several strengths. To date, ours is the largest study to investi-

gate the associations between entropy measures in neurocardiovascular signals and phys-

ical frailty status (N = 2225/2645). Additionally, to the best of our knowledge, this is the 

first study to examine frontal lobe oxygenation entropy (as measured using NIRS) with 

the physical frailty phenotype. The rich data available as part of TILDA meant that models 

could be comprehensively controlled for a number of covariates known to affect physical 

and neurocardiovascular function. Additionally, the richness of the continuously, simul-

taneously measured neurovascular and cardiovascular data allowed for the assessment of 

several physiological measurements, recorded within the same experimental paradigm.  

From a clinical relevance point of view, it is important to notice the generally low 

levels of disability in this sample, with almost 80% of frail participants not having any 

ADL impairments (Table 1). Indeed, Fried’s physical frailty phenotype intends to capture 

a pre-disability state [53]. That, coupled with the fact that less than 4% of the sample were 

classified as frail, highlights the remarkable sensitivity of entropy measures in automati-

cally identifying frailty status at resting state, when often it is very difficult for clinicians 

to identify frailty with the naked eye. 

The methodologies presented herein were specifically designed to be highly trans-

ferable for use in a clinical setting. All measures were non-invasive and non-ionizing. The 

short data length required (60 s) would be feasible and practical for use in a busy clinic. 

Entropy provides a single-number measure, which could theoretically be calculated at 
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and displayed on the measurement device itself, allowing for easy use by clinicians. Ad-

ditionally, since the associations of entropy levels in resting state, active stand, and recov-

ery data with frailty phenotype were all similar, this suggests that resting state entropy 

might be sufficient as a clinical marker for frailty, further increasing the ease by which this 

measure could be recorded in the clinic. Moreover, the similarity between BP and HR 

entropy measures, in relation to frailty status, suggests that these measures may provide 

complementary information, as has been previously reported [54], and as such a univari-

ant approach (i.e., the assessment of one of these measures) may be sufficient for clinical 

use. Input parameters and implementation of ApEn and SampEn calculations were based 

on recommendations for similar physiological data from previous studies (m = 2 (also re-

ported in Appendix m = 3, 4) [14,35]; r = 0.15 (SampEn) [37,38], optimum calculated [0 to 

0.6] (ApEn) [14]; N > 200 [24,35]); however, a consensus with regards the optimal method-

ologies to use, as well as normative age- and sex-adjusted reference values, would be re-

quired for widespread clinical adoption. Further work is necessary to establish the prog-

nostic implications of entropy measures vis-à-vis other clinical markers (e.g., for the pre-

diction of mortality and other adverse health events). Future longitudinal work investi-

gating how these measures vary over time would also be of interest, since this may pro-

vide an “early warning” measure for potential transitions from less to more adverse frailty 

statuses, for use in a clinical setting. 

There are several further limitations to this study that should be kept in mind when 

interpreting the results. Analyses were cross-sectional and, as such, causality or even tem-

porality of the observed relationships could not be inferred. There was a small number of 

frail individuals compared with the other groups; however, the proportion of frail indi-

viduals was in line with previously reported TILDA studies [55,56]. This slight discrep-

ancy in the proportion of frail persons may have been due to the rigor of the data quality 

exclusion criteria used to ensure high internal validity of the study. Since a convenience 

sample was used in the current work (i.e., participants without full neurovascular or car-

diovascular data and physical frailty data could not be included), we do not propose these 

results are population-representative, despite the large cohort sizes; it is reasonable to as-

sume that a higher proportion of participants unable to provide these data (particularly 

active stand data) may have been from the frail group.  

Data utilized in this study had relatively high proportions of non-stationarity, as is 

commonly the case with physiological data [57], which may have potentially biased the 

estimates of complexity since non-stationarities have been shown to diminish the absolute 

level of complexity as assessed by conditional entropy [58]. However, there was no differ-

ence between entropy measures from the original raw data and data transformed to in-

crease stationarity, even though stationarity increased by up to 92% in some instances, 

which is in line with previous work [35]. Further work exploring different methods to 

increase stationarity of these types of data, while still retaining the physiologically rele-

vant signal complexity information, would be of interest. Another important caveat to 

keep in mind when interpreting the results of this study is that the ApEn results presented 

may be biased towards regularity, since ApEn counts self matches. Methods have been 

proposed to correct this bias in ApEn measures [48]; however, this was not done in the 

present study as we also present SampEn results in parallel, which are not subject to the 

same potential self-matching bias. Additionally, due to the fact that SampEn displays rel-

ative consistency under conditions where ApEn does not (e.g., data length) [17], it would 

be recommended to use the SampEn results from this study for future cross-study com-

parisons. In the present study, ApEn and SampEn were used to investigate each neuro-

cardiovascular measure individually and at a single scale; future work using other en-

tropy methods, such as multi-scale and cross entropy, would be of interest. Finally, this 

study does support the need for future longitudinal work to determine the clinical signif-

icance of these findings, and as such, this study should be considered preliminary and 

exploratory. 
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5. Conclusions 

Results from this study demonstrated significant associations between peripherally 

measured neurovascular/cardiovascular signal entropy and physical frailty status. These 

results support the hypothesis that a simple automated measure of neurocardiovascular 

signal entropy at rest could provide a clinically useful marker of physical frailty. Our fu-

ture work will focus on the study of physiological signal entropy as an early marker of the 

physiological dysregulation seen in frailty, which may open the possibility to detect early 

physiological dysregulation before the onset of obvious physical disability, and the op-

portunity to translate this work into opportunities to improve physiological resilience in 

older adults.  
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Appendix A 

Table A1. Pre-processing results from augmented Dicky–Fuller test for stationarity, as well as differences between raw 

and standardized data for approximate entropy (ΔApEn) and sample entropy (ΔSampEn) measures. 

 X 
� − ��

��

 ΔApEn ΔSampEn 

Resting State 

N = 3273–3817 

N [%] 

Stationary 

N (%) 

Stationary 
Mean [Range] Mean [Range] 

sBP 59 (1.6%) 921 (24.1%) −0.1 [−2.3 to 2.6] × 10−14 <1 × 10−32 

dBP 57 (1.5%) 879 (23.0%) 0.1 [−1.5 to 2.0] × 10−14 <1 × 10−32 

MAP 103 (2.7%) 690 (18.1%) −0.1 [−2.4 to 2.8] × 10−14 <1 × 10−32 

HR 18 (0.5%) 1958 (51.3%) −0.1 [−2.4 to 2.3] × 10−14 <1 × 10−32 

O2Hb 8 (0.2%) 3032 (92.6%) 0.8 [−1.0 to 2.9] × 10−14 <1 × 10−32 

HHb 28 (0.9%) 1835 (56.1%) 1.1 [−0.9 to 3.2] × 10−14 <1 × 10−32 

TSI 15 (0.5%) 2280 (69.7%) 1.0 [−1.0 to 2.8] × 10−14 <1 × 10−32 

Stand (0–60s)     
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N = 2583–3538 

sBP 267 (7.6%) 1532 (43.3%) <1 × 10−32 <1 × 10−32 

dBP 478 (13.5%) 1283 (36.3%) <1 × 10−32 <1 × 10−32 

MAP 817 (23.1%) 1871 (52.9%) <1 × 10−32 <1 × 10−32 

HR 85 (2.5%) 2051 (58.0%) <1 × 10−32 <1 × 10−32 

O2Hb 94 (3.6%) 1913 (74.1%) <1 × 10−32 <1 × 10−32 

HHb 82 (3.2%) 1264 (48.9%) <1 × 10−32 <1 × 10−32 

TSI 79 (3.1%) 885 (34.3%) <1 × 10−32 <1 × 10−32 

Stand (120–180s) 

N = 2583–3365 
    

sBP 23 (0.7%) 927 (27.6%) <1 × 10−32 <1 × 10−32 

dBP 26 (0.8%) 850 (25.3%) <1 × 10−32 <1 × 10−32 

MAP 34 (1.0%) 694 (20.6%) <1 × 10−32 <1 × 10−32 

HR 14 (0.4%) 1585 (47.1%) <1 × 10−32 <1 × 10−32 

O2Hb 3 (0.1%) 2266 (87.7%) <1 × 10−32 <1 × 10−32 

HHb 22 (0.9%) 1493 (57.8%) <1 × 10−32 <1 × 10−32 

TSI 4 (0.2%) 1766 (68.4%) <1 × 10−32 <1 × 10−32 

Abbreviations: X: raw data; ��: mean of raw data; ��: standard deviation of raw data; ΔApEn: difference in approximate 

entropy (raw vs. standardized); ΔSampEn: difference in sample entropy (raw vs. standardized); sBP: systolic blood pres-

sure; dBP: diastolic blood pressure; MAP: mean arterial pressure; HR: heart rate; O2Hb oxygenated hemoglobin concen-

tration; HHb deoxygenated hemoglobin concentration; TSI: tissue saturation index. 

Appendix B 

 

Figure 1. Results from robust multivariate linear regression showing beta coefficients (β) and 95% 

confidence intervals (CI) for both approximate entropy (ApEn) and sample entropy (SampEn) 
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with the embedded dimension (m) set to 2 (as reported in the main manuscript), 3, and 4. All mod-

els adjusted for age, sex, education, diabetes, number of cardiovascular conditions, antihyperten-

sive medication use, alcohol consumption habits, smoking, and depression. Model for active stand 

data additionally controlled for stand time. Abbreviations: sBP: systolic blood pressure; dBP: dias-

tolic blood pressure; MAP: mean arterial pressure; HR: heart rate; O2Hb: oxygenated hemoglobin 

concentration; HHb: deoxygenated hemoglobin concentration; TSI: tissue saturation index. 
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