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ABSTRACT

Style transfer involves combining the style of one image with
the content of another to form a new image. Unlike traditional
two-dimensional images which only capture the spatial intensity
of light rays, four-dimensional light fields also capture the angu-
lar direction of the light rays. Thus, applying style transfer to a
light field requires to not only render convincing style transfer
for each view, but also to preserve its angular structure. In this
paper, we present a novel optimization-based method for light
field style transfer which iteratively propagates the style from the
centre view towards the outer views while enforcing local angu-
lar consistency. For this purpose, a new initialisation method and
angular loss function is proposed for the optimization process. In
addition, since style transfer for light field is an emerging topic,
no clear evaluation procedure is available. Thus, we investigate
the use of a recently proposed metric designed to evaluate light
field angular consistency, as well as a proposed variant.

Index Terms— Light field, style transfer

1. INTRODUCTION

Light fields emerged as a new imaging modality, enabling to cap-
ture all light rays passing through a given amount of the 3D
space [1]. Compared to traditional 2D imaging systems which
only capture the spatial intensity of light rays, the common two-
plane parameterisation of light fields also contains the angular
direction of the rays. A light field can be represented as a 4D
function: Ω × Π → R, (s, t, u, v) → L(s, t, u, v) in which the
plane Ω represents the spatial distribution of light rays, indexed
by (u, v), while Π corresponds to their angular distribution, in-
dexed by (s, t). A practical way to visualise a light field is to
consider it as a matrix of M ×N views, also called sub-aperture
images (SAI), where each image represents a 2D slice of the light
field over the spatial dimensions (u, v). Another common repre-
sentation of light fields is through Epipolar Plane Images (EPI),
which are 2D slices of the 4D light field obtained by fixing one
spatial and one angular dimension (us- or vt-planes, see Fig. 1).
Applications of light fields notably include rendering novel im-
ages, either corresponding to new viewpoints [1] and/or with new
focus distance and depth-of-field [2–4], or depth estimation [5].

Style transfer involves combining the content of one image
(e.g., a photograph) with the style of another (e.g., a painting) to
form a new image. Doing so requires us to be able to define, sep-
arate and extract the content and style of an image. Gatys et al.

This publication has emanated from research conducted with the finan-
cial support of Science Foundation Ireland (SFI) under the Grant Number
15/RP/2776.

…

…

…

… … …

𝑢

𝑣

𝑠

𝑡
𝑣 𝑣

𝑡

𝑢

𝑠

𝑢

Fig. 1: Examples of light field representations: matrix of views
(left); and Epipolar Plane Images (EPI) (right) shown below and on
the right of the centre view.

first introduced neural style transfer [6], which uses the outputs
from the hidden layers of a deep convolutional neural network
pre-trained for object recognition (VGG [7]) to construct con-
tent and style representations of an input image, which can be
used to define corresponding loss functions. Starting from white
noise, the stylized image is iteratively generated through an opti-
mization process so that a total loss function combining the style
and content loss functions is minimised. While this seminal ap-
proach relies on a pre-trained network, its advantage is that any
target content or style images can be combined without having to
actually train any deep neural network. The cost of this flexibil-
ity is that a slow optimization process has to be run to generate
each stylized image. Johnson et al. later addressed this issue by
fully training a feed-forward image transformation network [8],
using the same content and style loss functions. At inference
time, the stylization process is thus orders of magnitude faster.
However, this approach is not as flexible as the previous method
as it requires to train a deep neural network for each target style.
Following the feed-forward approach of Johnson et al., Liu et al.
later introduced an additional depth loss to train the image trans-
formation network [9], producing stylized results which better
retain the original content layout and depth relationship. The
depth loss is computed as the per pixel loss between the depth
estimated from the input content image and the stylized image,
using a pre-trained single-image depth perception network [10].

Following the success of style transfer for 2D images, ap-
plications to other imaging modalities have emerged, such as
video [11, 12], omnidirectional imaging [13], or stereo imag-
ing [14,15]. The video style transfer approach of Ruder et al. [11]
builds on the optimization approach of Gatys et al., enforcing
the temporal consistency by initialising a stylized frame from a
warped stylized previous frame and introducing a temporal con-



sistency loss penalizing deviations between consecutive stylized
frames. The approach was later extended in [13], notably includ-
ing an application to omnidirectional image stylization. Building
on feed-forward network approaches, stereoscopic style trans-
fer approaches were introduced in order to improve the stylized
consistency of stereo pairs. While Gong et al. proposed a dual
path network based on a feature aggregation strategy [14], Chen
et al. introduced a stereoscopic disparity loss [15]. The first
style transfer for light fields was proposed very recently by Hart
et al. [16], extending the pair-wise stereoscopic style transfer
method of Chen et al. [15] in order to preserve the angular con-
sistency of the light field stylized views. For this purpose, a
feed-forward network is trained to enforce pairwise consistency
between the centre view and others. The training and testing
datasets consist of light fields captured with a lenslet Lytro Illum
camera [17, 18]. Due to the design of the Lytro Illum camera,
such light fields are densely sampled, i.e. the disparity range be-
tween neighbouring views usually does not exceed 1. This in
turn means that the amount of disocclusions from any view with
respect to the centre view is limited, allowing the use of this pair-
wise strategy.

In this paper, we present a novel method to apply neural style
transfer to light fields, extending the original approach of Gatys
et al. [6] and its following extension to video [11]. While feed-
forward approaches are faster, we chose to use an optimization
approach for its flexibility. Note that more recent work improv-
ing the speed of optimization-based approaches could also be
used [19]. In our proposed method, the stylized light field angu-
lar consistency is preserved by propagating the stylization out-
wards from the centre view. As opposed to the method of Hart
et al., our approach enforces the local angular consistency, rather
than enforcing the consistency with respect to the centre view.
This notably makes our method more adapted to sparsely sam-
pled light fields. Given the subjective nature of style transfer, the
evaluation of the results is known to be challenging. The chal-
lenge is even greater for light fields, as few metrics have been
proposed which could be applied to this new research topic. Re-
cent work investigating no-reference quality evaluation for light
fields focuses on dense light fields [20, 21]. We thus propose
to study the angular consistency metric recently introduced by
David et al. [22] to evaluate sparse light field video interpola-
tion, and assess whether it is suitable for stylized light fields.
We also propose a variant of this metric which better takes into
account the local angular variations. Finally, while Hart et al.
were only comparing to a 2D baseline stylizing each view inde-
pendently, we also study the performance of a second baseline
applying video style transfer to pseudo-videos created from the
light field views.

This paper is organised as follows: In section 2, we introduce
in more detail the baselines and proposed approach. In section 3,
we first describe the metrics we propose to assess and evaluate
our approach. We conclude the paper and discuss future work in
section 4.

2. STYLE TRANSFER FOR LIGHT FIELDS
Given that style transfer for light fields is still in its infancy, we
first describe in this section two baseline methods, directly ap-
plying existing optimization-based 2D image style transfer tech-
niques [6] and video style transfer techniques [11]. We then de-

scribe our proposed approach.

2.1. Baselines

As a first baseline, the original approach of Gatys et al. [6] is
applied to each light field view Ls,t. More formally, after white
noise initialisation, each stylized view LS

s,t is independently gen-
erated by optimizing the following loss function:

LIm(Ls,t, IS , L
S
s,t) = αImLc(Ls,t, L

S
s,t) + βImLs(IS , L

S
s,t)

where Lc and Ls refer to the content loss and the style loss re-
spectively, computed from the feature maps of VGG19 [7]. As
defined in [6], we use the output from layer conv4 2 to construct
the content representation of an input image and the output from
layers conv1 1, conv2 1, conv3 1, conv4 1 and conv5 1 to con-
struct the style representation of an input image. In our experi-
ments we also used the weights recommended in [6], αIm = 1.0
and βIm = 1 × 103 or βIm = 1 × 104 depending on the input
content and style images.

As a second baseline, we adapt video style transfer [11] by
creating a pseudo-video from the light field views in which each
frame is denoted by Li where i is the frame index. In our experi-
ments pseudo-videos were created following a horizontal snake-
like scanning order. The first frame of the pseudo-video L0 is
then stylized using the single image approach described above.
The following frames are then initialised by warping the previ-
ously stylized frame using optical flow computed between the
original frames. Each stylized frame LS

i is then generated by
optimizing the following loss function:

LV id(Li, IS , L
S
i ) = αV idLc(Li, L

S
i ) + βV idLs(IS , L

S
i )+

+ γV idLt(LS
i )

where Lc and Ls refer to the content loss and the style loss in-
troduced above and Lt is a temporal loss function first described
in [11]:

Lt(LS
i ) =

∑
cii−1 ·

(
ωi
i−1(LS

i−1)− LS
i

)2
where cii−1 are per-pixel weights defined to be 0 for disoccluded
regions and motion boundaries between the original frames and
1 elsewhere and ωi

i−1 is the function that warps a given image
according to the optical flow between the original frames Li−1
and Li. In our experiments, we used αV id = 5.0, βV id = 1×104

and γV id = 2× 105.
As shown in section 3, while the video-based baseline greatly

improves results compared to the image-based baseline, both
baselines fail at preserving the full angular consistency of the
light field. In the next section, we describe our proposed ap-
proach for light field style transfer which explicitly takes into
account the angular consistency of the stylized light field.

2.2. Proposed optimization approach

The main idea of the proposed approach is to adapt the video
style transfer method described previously to light fields by prop-
agating the style outwards from the centre view while always
ensuring that angular consistency is preserved, as illustrated in
Fig. 2. We achieve this through the introduction of a new ini-
tialisation method for the image-optimization process and a new
angular loss function.
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Fig. 2: Proposed approach: starting with the centre view Lsc,tc ,
the style transfer is iteratively propagated outwards while always en-
suring that angular consistency with previously stylized view points
is preserved. Red and purple arrows illustrate the first and second
propagation iterations respectively.

2.2.1. Initialisation

The centre view Lsc,tc is stylized using the single image ap-
proach described in the previous section and is thus initialised
with white noise. For all other views, we warp each previously
stylized neighbouring view LS

s′,t′ according to the optical flow
between the original views Ls′,t′ and Ls,t. We then initialise
LS
s,t to be a weighted sum of these warped views:

LS
s,t =

1∑
(s′,t′)∈N ws,t

s′,t′

∑
(s′,t′)∈N

ws,t
s′,t′ω

s,t
s′,t′(L

S
s′,t′) (1)

where N is the set of neighbouring views that have already been
stylized. The weights are computed so as to give more impor-
tance to angularly close viewpoints:

ws,t
s′,t′ =

(
(s− s′)2 + (t− t′)2

)− 1
2

Finally, ωs,t
s′,t′ is the function that warps a given image according

to the disparity between the original views Ls′,t′ and Ls,t. As
used by Ruder et al. for their video style transfer [11,13], we use
DeepFlow [23] to estimate the disparity between the light field
views Ls′,t′ and Ls,t.

2.2.2. Angular loss function

We define the angular loss La for the view LS
s,t to be:

La(LS
s,t) =

∑
(s′,t′)∈N

(∑
u,v

cs,ts′,t′ ·
(
ωs,t
s′,t′(L

S
s′,t′)− L

S
s,t

)2)

where cs,ts′,t′ are per-pixel weights defined to be 0 for disoccluded

regions between views Ls′,t′ and Ls,t and 1 elsewhere and ωs,t
s′,t′

is defined as above. The weights cs,ts′,t′ are calculated using a
consistency check between the forward and backward disparity
warping. Similar to Ruder et al. [11], we use the consistency
check provided in [24]. The check is based on the fact that in
non-disoccluded regions the backward disparity should be the
opposite direction of the forward disparity.

Finally, to stylize a view Ls,t (different from the centre view
Lsc,tc ), we first initialise LS

s,t according to (1). We then use

gradient descent to iteratively update LS
s,t so as to minimise the

total loss function:
LLF (Ls,t, IS , L

S
s,t) = αLFLc(Ls,t, L

S
s,t) + βLFLs(IS , L

S
s,t)

+ γLFLa(LS
s,t)

where Lc and Ls refer to the content loss and the style loss as
defined in the previous section, and La is the proposed angular
loss function. In our experiments, we used αLF = 5.0 or 50,
βLF = 1 × 103 or 1 × 104, and γLF = 2 × 105 or 4 × 105

depending on the light field and style image used. Together, our
new initialisation method and angular loss function help to pre-
serve the angular structure of the light field during the stylization
process.

3. EXPERIMENTS AND RESULTS

In this section, we first describe the metrics we propose to assess
for light field style transfer quality evaluation. We then evaluate
our proposed approach against the baselines and the existing light
field approach using direct visual observation and compare the
scores given by the metrics.

3.1. Light Field Angular Consistency metric

Given the subjective nature of evaluating stylization itself, we in-
stead focus on evaluating the angular consistency of the stylized
light fields. In [16], Hart et al. chose to compare the disparity
map estimated from the stylized light field to the one estimated
from the original light field. In addition, we propose to use in
our evaluation the recently introduced Light Field Epipolar Con-
sistency metric (LFEC) [22], designed to evaluate the angular
consistency for light field video interpolation. The LFEC back-
warps the light field views to the centre view to compute a vari-
ance map which is then used in a PSNR-like computation to out-
put the metric score (higher is better). As back-warping to the
centre view cannot take into account disocclusions for views far
from the centre, we introduce in this paper a variant of this met-
ric by computing local angular variance maps, which we denote
Light Field Angular Consistency metric (LFAC). While the orig-
inal LFEC implementation relies on the ground truth disparity
map to perform the back-warping, we use in this paper the dis-
parity maps estimated from the original light field. To compute
the proposed LFAC, a variance map σ2 is first obtained as:

σ2(L) =
1

MN

M,N∑
s,t

1

|Cs,t|
∑

(s′,t′)∈Cs,t

cs,ts′,t′

(
ωs,t
s′,t′(Ls′,t′)− Ls,t

)2
where M,N is the number of horizontal and vertical views re-
spectively, Cs,t contains the closest neighbouring view indices
of view Ls,t, cs,ts′,t′ are per-pixel weights defined to be 0 for
disoccluded regions between views Ls′,t′ and Ls,t and 1 else-
where, ωs,t

s′,t′ is the function that warps a given image according
to the disparity between the neighbouring view Ls′,t′ and the
view Ls,t, Ls,t is the average of all the light field neighbouring
views warped to the view Ls,t:

Ls,t =
1

|Cs,t|
∑

(s′,t′)∈Cs,t

cs,ts′,t′ω
s,t
s′,t′(Ls′,t′)
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Fig. 3: Visual results on test material D. From top to bottom: centre
view, estimated disparity map, stacked vertical EPI, refocused centre
view.

The final metric is obtained as:

LFAC(L) = 10 log10

(
d2/σ2(L)

)
where d is the range of the pixel values and σ2(L) is the average
of σ2(L).

3.2. Evaluation
In our experiments we used 6 light fields from 4 different
datasets [17, 18, 25, 26], covering a range of various textures
and disparity ranges, summarised in Table 1. Note that the code
of Hart et al. [16] does not provide a pre-trained network for the
Starry night style and thus we could not use it for comparison for
test material C. We denote here the first image-based baseline as
Im., the video-based baseline as Vid., the method of Hart et al. as
LF, and our proposed approach as LF Ours.

Visual results for test material D are given in Fig. 3, show-
ing the centre view, the estimated disparity map, a stacked ver-
tical EPI, and a refocused centre view, for each of the evaluated
methods and the original light field (Org.). It is clear from the
EPIs of the image-based baseline that the angular consistency
is not preserved. This can also be seen in the refocused image
where the target style appears blurry even in the in-focus area.
The video baseline greatly improve the consistency compared to
the image baseline, but only along the horizontal snake-like path
used to create the pseudo-videos. Thus, many artifacts are still
present and clearly visible in the stacked vertical EPIs. Both light
field methods clearly outperform the image and video baselines
in terms of angular consistency. Note that these observations
hold for all the test light fields used in our experiments. How-
ever, as illustrated in Fig. 3, we observe more artifacts in Hart
et al.’s method than in ours for light fields with a wide disparity
range such as test material D, E, and F, but no noticeable differ-
ence otherwise, as for test material A and B. Note that all the
observations mentioned above are easier to visualize in videos
created from the stylized viewpoints or focal stacks, which are

Table 1: Test material for our experiments
Content Style Disparity range

A Swan [17] Candy [−1, 1]
B Bikes [18] Rain princess [−1, 1]
C Herbs [26] Starry night [−3, 1.8]
D Table [26] Candy [−2, 1.6]
E Lego knights [25] Rain princess [−3, 3]
F Crystal ball [25] Mosaic [−8, 4]

Table 2: Disparity MSE*100 (↓)
Im. [6] Vid. [11] LF [16] LF Ours

A 209.19 2.56 1.01 2.11
B 29.28 2.09 0.91 1.94
C 96.08 11.68 n/a 8.31
D 284.98 8.45 1.39 5.20
E 256.36 22.15 13.14 19.50
F 4182.80 247.60 58.00 287.50

Table 3: LFEC / LFAC (↑)
Im. [6] Vid. [11] LF [16] LF Ours

A 18.94 / 29.58 24.38 / 40.87 30.31 / 46.48 27.05 / 42.49
B 21.64 / 33.18 22.35 / 36.63 35.63 / 44.78 26.56 / 40.58
C 22.34 / 33.11 24.39 / 38.32 n/a 27.22 / 40.58
D 18.72 / 29.55 21.24 / 36.19 28.11 / 41.09 25.24 / 39.10
E 19.23 / 30.54 20.32 / 34.92 23.21 / 36.95 22.71 / 37.45
F 15.46 / 27.36 15.26 / 28.62 18.87 / 27.24 15.80 / 28.93

available as additional results on our webpage.1

Similar to Hart et al., we report the Mean Squared Error
(MSE) between the disparity map estimated from the stylized
light field and from the original one using [5] in Table 2. The
LFEC and LFAC metrics are reported in Table 3. All metrics
show that the video-based baseline outperform the image-based
baseline significantly, and that both light field methods outper-
form the video-based baseline. However, the disparity MSE and
the original LFEC metrics give better scores to the Hart et al. ap-
proach for all light fields, in contradiction with the observations
made on test material D, E, and F. The proposed LFAC variant
reports correctly on the test materials E and F which have the
highest disparity range and are better handled by our method.
Thus the metrics are able to discriminate when there is an obvi-
ous gap in the stylization angular consistency, but less so when
the results are comparable.

4. CONCLUSION AND FUTURE WORK
We introduced in this paper a novel optimization-based approach
for light field style transfer enforcing the local angular consis-
tency. Our qualitative assessment shows that the proposed ap-
proach outperforms existing methods in terms of angular con-
sistency, especially for sparser light fields. However, we found
through our experiments that existing light field metrics like the
disparity MSE and the LFEC are not suitable for quantitative
evaluation of light field style transfer. While the proposed LFAC
metric is better at discriminating for sparse light fields, it remains
ambiguous in some cases. These findings motivate future work
where novel metrics for light field style transfer need to be thor-
oughly investigated, and compared to subjective evaluations.

1v-sense.scss.tcd.ie/research/neural-style-transfer-for-light-fields/
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