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Abstract Inflammation is an important driver of atherosclerosis, and the favourable outcomes of the Canakinumab Anti-
inflammatory Thrombosis Outcome Study (CANTOS) trial revealed the large potential of anti-inflammatory drugs
for the treatment of cardiovascular disease, especially in patients with a pro-inflammatory constitution. However,
the complex immune reactions driving inflammation in the vascular wall in response to an atherosclerotic microen-
vironment are still being unravelled. Novel insights into the cellular processes driving immunity and inflammation
revealed that alterations in intracellular metabolic pathways are strong drivers of survival, growth, and function of
immune cells. Therefore, this position paper presents a brief overview of the recent developments in the immuno-
metabolism field, focusing on its role in atherosclerosis. We will also highlight the potential impact of immunometa-
bolic markers and targets in clinical cardiovascular medicine.
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This article is part of the Spotlight Issue on Immunometabolism.

1. Introduction

Cardiovascular disease (CVD), including myocardial infarction and
stroke, is a major cause of morbidity and mortality in the western world.
Despite the management of risk factors, including cessation of smoking,
treatment of hypertension, and lipid-lowering regimens using HMG-
CoA reductase inhibitors or the recently developed proprotein

convertase subtilisin/kexin type 9 (PCSK9) inhibitors, a substantial pro-
portion of the population still suffers from CVD.1 Over the past years, it
became clear that atherosclerosis, the underlying cause of the majority
of CVDs, is not only driven by lipids, but also by inflammation.2,3 The re-
search aimed at understanding the complex immune reactions driving in-
flammation in the vascular wall has shown that the infiltration, retention,
and accumulation of lipoproteins in the arterial intima elicit maladaptive
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immune responses that influence the development, progression, and sta-
bility of atherosclerotic lesions.4–6

Atherosclerotic plaques recruit many different immune cells, including
macrophages, T cells, B cells, dendritic cells, neutrophils, and mast cells
that change in composition during atherogenesis.7,8 Together, they de-
termine atherosclerotic plaque progression through the secretion of
cytokines, chemokines, proteases, pro-thrombotic factors, and other
bioactive substances. The balance between pro-inflammatory and anti-
inflammatory responses in the plaque will dictate the rate of disease
development as well as the size and complexity of lesions. Large athero-
sclerotic lesions presenting unresolved inflammation, extensive matrix
remodelling, large necrotic cores, and thin fibrous caps are at risk of rup-
ture leading to acute thrombosis and subsequent vascular occlusion.4

Compelling evidence that the immune system plays a pivotal role in
atherosclerotic CVD in humans was reported in 2017 when the results
from the Canakinumab Anti-inflammatory Thrombosis Outcome Study
(CANTOS) trial were released.9 Here, immunotherapy with an
interleukin-1 b (IL-1b) antibody effectively reduced CVD risk and mor-
tality, without affecting low-density lipoprotein (LDL) cholesterol con-
centrations.9 The initiation and favourable outcomes of the CANTOS
trial revealed the potential of anti-inflammatory drugs to combat CVD.
Although Canakinumab was not approved by the FDA for treatment of
atherosclerotic CVD, CANTOS is an important proof of principle study,
revealing the potential of anti-inflammatory therapies in atherosclerosis,
especially in CVD patients with residual inflammation.10 An important
lesson was learned from the CIRT trial where treatment of CVD patients
with methotrexate, a broad-spectrum anti-inflammatory agent, failed to
reduce CVD or mortality.11 Collectively, the data from CANTOS and
CIRT have taught us that we need to identify drug targets that block
atherosclerosis-specific inflammatory pathways.

Recently, it was found that alterations in intracellular metabolic path-
ways in immune cells occur during activation and that these pathways
are key regulators of the immune responses. These data led to a novel
research field in immunology, termed ‘immunometabolism’.12 Recent data
show a pivotal role for immunometabolism in disease progression, espe-
cially in cancer, but also in obesity and Type 2 diabetes, diseases driving
CVD atherosclerosis.13,14 Therefore, this position paper presents a brief
overview of the recent developments in the field and the impact of
‘immunometabolic’ changes on atherosclerosis.

2. Immune cell metabolic pathways—
brief overview

Immune cells are highly dynamic and face different metabolic demands in
an inflammatory environment. Upon activation, immune cells switch be-
tween different metabolic traits (metabolic reprogramming) and can
adapt to variations in environmental cues (e.g. oxygen, nutrients, growth
factors), as well as to energy and biosynthetic requirements.

At least seven major cellular metabolic pathways have been described
in immune cells. The interconnecting pathways of glycolysis, the pentose
phosphate pathway (PPP), the tricarboxylic acid (TCA) cycle, oxidative
phosphorylation (OXPHOS), mitochondrial fatty acid b-oxidation
(FAO), fatty acid synthesis, and the metabolism of amino acids regulate
the survival, growth, and activation of immune cells.12

The interconnectivity of these pathways was reviewed by O’Neill
et al.12 In brief, immune cells take-up glucose via the GLUT1 receptor,
which is then converted into glucose-6-phosphate and metabolized via
glycolysis, thereby converted into pyruvate and two molecules of

adenosine triphosphate (ATP). Pyruvate is converted to lactate by lac-
tate dehydrogenase or enters the TCA cycle.

The PPP runs parallel to the glycolytic pathway and is responsible for
nucleotide and NADPH production. NADPH is used by NADPH oxi-
dase to generate reactive oxygen species (ROS), which is counter-
balanced by the generation of glutathione and other antioxidants. The
latter are major mediators of antimicrobial immunity and prevent tissue
damage induced by activated macrophages and neutrophils. NADPH
generated by the PPP is also required for de novo fatty acid synthesis for
expansion of the endoplasmatic reticulum (ER) and the golgi to facilitate
enhanced cytokine secretion.12,14

After glycolysis, pyruvate enters the TCA cycle where it can be con-
verted, together with fatty acids, into acetyl-coA. The TCA cycle results
in the generation of NADH and flavin adenine dinucleotiode (FADH2),
that transfer electrons to the electron-transport chain, where OXPHOS
takes place to yield ATPs. FAO is the most effective way to produce large
amounts of ATP. Short-chain fatty acids diffuse into mitochondria where
they become oxidized, whereas long-chain fatty acids conjugate to palmi-
toyltransferase 1 for transport. FAO yields acetyl-coA, NADH, and
FADH2 that enter the TCA cycle/OXPHOS to generate ATP.12,14

Via fatty acid synthesis, metabolic intermediates are converted into tria-
cylglycerols and phospholipids, needed to (re)build cellular structures.
Amino acid metabolism yields important mediators that exert effector and
regulatory functions on immune cells. Examples include glutamine, argi-
nine, and tryptophan.12,14

3. Immunometabolic signalling and
regulation: macrophages and T cells

Atherosclerotic plaques are characterized by the presence of a plethora
of macrophage and T cell subtypes. The entire spectrum between classi-
cally activated M1, and alternatively activated M2 macrophages is pre-
sent.7,8,15 Likewise, the majority of T cell subsets including Th1, Th17,
and regulatory T cells have been detected within the atherosclerotic pla-
que.5 Activated macrophages and T cells display a stronger metabolic
bias towards aerobic glycolysis than towards mitochondrial metabolism,
while immune regulatory cells including M2 macrophages and Tregs ex-
hibit a mixed metabolism involving glycolysis, fatty acid oxidation, and
OXPHOS.16,17 Here, we provide a brief overview of the metabolic alter-
ations that go hand in hand with the different macrophage and T cell acti-
vation states (summarized in Figure 1).

3.1 Macrophages
Macrophages form an important plaque constituent. Plaque macro-
phages take-up modified LDL and most of them become lipid-laden
foam cells but can also be activated by lipoprotein-derived antigens, e.g.
phospholipids, cholesterol crystals, and apolipoprotein B peptides. In ad-
dition, part of the macrophage population in the plaque also has
anti-inflammatory properties.18,19 To fulfil this broad range of functions,
macrophages are highly plastic cells and able to acquire a wide array of
activation states. For instance, during inflammation, their high-plasticity
enables macrophages to initiate inflammatory responses and to switch
off inflammatory responses when no longer needed. Recent studies have
elucidated how some of the metabolic processes in macrophages are
wired and how metabolism shapes macrophage inflammatory
responses.14

The importance of metabolism in macrophage activation is illustrated
by the fact that metabolism of the amino acid arginine formed the basis
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..of the dichotomous M1/M2 classification. Whereas anti-inflammatory
M2 macrophages use arginase to convert arginine to urea and ornithine,
inflammatory M1 macrophages metabolize arginine using inducible NO
synthase to covert arginine into the pro-inflammatory NO and citrul-
line.20 Once M1 macrophages have formed, NO damages the mitochon-
drial electron-transport chain and M1 macrophages cannot repolarize
towards M2 macrophages, whereas M2 macrophages can easily switch
to an M1 phenotype.21 The arginine pathway is only one of many meta-
bolic pathways that drive macrophage activation states.

Inflammatory macrophages require a rapid supply of energy and bio-
synthetic products as they need to release their inflammatory contents
fast, whereas anti-inflammatory macrophages need a more sustained
source of energy for long-lasting repair responses.14 Therefore,

inflammatory macrophages have an increased glucose uptake via the glu-
cose transporter GLUT1 and exhibit enhanced aerobic glycolysis,
whereas OXPHOS via the TCA cycle is impaired.22 During this process,
pyruvate, produced by the glycolytic pathway, and generated through di-
merization of pyruvate kinase iso-enzyme 2 (PKM2),23 which catalyses
the final step of glycolysis, is converted to lactate, resulting in two ATP
molecules and induction of ROS.12 At the same time, the PPP is en-
hanced through increased flux of glucose intermediates, resulting in in-
creased NADPH synthesis, which is key for cholesterol and fatty acid
synthesis, needed for phagocytosis as well as expansion of the ER and
golgi, which results in enhanced production of inflammatory cytokines.24

Other metabolic intermediaries can regulate macrophage function, in-
cluding succinate, an intermediate of the TCA cycle, which accumulates

Figure 1 The role of immunometabolism in atherosclerosis. Pro-inflammatory and anti-inflammatory immune cells present distinct metabolic phenotypes.
In general, M1 type macrophages, Th1, and Th17 cells are characterized by more catabolic metabolism, while M2 type macrophages and Tregs present bias
towards more anabolic metabolism. Alterations in metabolism of immune cells carry the potential to influence plaque progression and stabilization. FA, fatty
acid; FAO, fatty acid oxidation; IFNc, interferon gamma; NLRP3, NACHT, LRR, and PYD domains-containing protein 3; OXPHOS, oxidative phosphoryla-
tion; PPP, pentose phosphate pathway; ROS, reactive oxygen species; TGFb, growth factor beta; TNF, tumour necrosis factor.
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in M1 macrophages and drives inflammation via succinylation of intracel-
lular proteins, including the hypoxia-inducible factor 1-alpha that aug-
ments IL-1b production.25 Succinate can also propagate inflammatory
responses extracellularly through direct binding to the succinate recep-
tor GPR91.26 The endogenous metabolite itaconate has been recently
shown to oppose the deleterious metabolic rewiring, allowing nuclear
factor (erythroid-derived)-like 2 (NRF2) to induce downstream anti-
inflammatory and anti-oxidant genes.27 Other TCA cycle intermediates,
including fumarate and citrate, can contribute to histone acetylation and
methylation, thereby affecting epigenetic marks that drive innate immune
memory.28 Increased fatty acid synthesis is also associated with macro-
phage activation, as fatty acid synthesis activates the NLRP3 inflamma-
some, thereby promoting the release of IL-1b.6,28

Anti-inflammatory macrophages have a less well-understood pheno-
type but are characterized by increased rates of OXPHOS and FAO. In
these macrophages, both pyruvate and fatty acids enter the intact TCA
cycle as acetyl-coA, resulting in sustained ATP production via OXPHOS,
which leads to up-regulation of genes associated with tissue repair.22

Interestingly, when OXPHOS prevails, the enzyme glyceraldehyde 3-
phosphate dehydrogenase (GAPDH), a crucial glycolytic enzyme, moon-
lights and represses tumour necrosis factor and IFNc through the bind-
ing to their mRNA.29 FAO generates more/a larger number of ATP
molecules than glycolysis and is an effective way for anti-inflammatory
macrophages to provide a long-lasting energy source. However, the im-
portance of FAO in anti-inflammatory macrophage function has recently
been questioned, as etomoxir mediated inhibition of FAO or deficiency
in CPT2, an enzyme required for fatty acid import does not alter the M2
phenotype.30,31

The availability and metabolism of various amino acids have also been
shown to regulate innate immune cell responses. In macrophages, gluta-
mine can regulate IL-1b secretion, the production of NO, as well as M2
polarization.22,32–34 Arginine metabolism, via the citrulline pathway and
iNOS induction, leading to nitric oxide formation is associated with the
M1 phenotype.35 Through a different mechanism, acetyl-CoA and S-
adenosylmethionine can regulate epigenetic enzymes to enable histone
acetylation and methylation, thereby translating metabolic rewiring into
regulation of gene expression and macrophage function.36

3.2 T cells
T cells migrate to tissues followed by tissue-specific adaptations and
carry the ability to respond to environmental and metabolic signals. In
this context, high-calorie consumption, obesity, or T2D have been char-
acterized by infiltration of T cells in metabolically relevant organs in both
mice and humans.

The adipose tissue, which stores and senses the availability of
nutrients, is an important site of immunometabolic crosstalk. While lean
visceral adipose tissue (VAT) is usually enriched in Th2 cells and Tregs,
VAT from obese individuals has been associated with reduced Treg and
increased effector T-cell numbers.37,38 Brown adipose tissue, which has
a high-energy expenditure, as well as browning/beiging of VAT have
been associated with increased Treg numbers.37,38 Interestingly, nutrient
metabolism, as well as adipokines such as leptin, have been linked with
different T-cell subset differentiation.39 Leptin has been implicated to di-
rectly induce glycolysis in T cells, promoting effector responses and in-
creasing inflammation.40 Leptin-deficiency results in an increase in Tregs
that are also more suppressive than Treg from wild type mice. Transfer
of leptin-deficient Tregs into an experimental model of atherosclerosis
caused a significant reduction of plaque size and a marked reduction of
IFNc production, compared to transfer of wild type Tregs.41

Similar to macrophages, glycolysis plays an important role in T-cell
responses. Inhibition of glycolysis with 2-deoxyglucose (2DG) shifts the
polarization of naı̈ve T cells from Th17 towards Tregs.42 Hence, in-
creased OXPHOS metabolism has been linked to the induction Tregs.43

Interestingly, the glycolytic enzyme enolase has been shown to promote
Foxp3 splicing and the generation of Treg cells through a non-
anticipated ‘moonlight’ function,43 and 3-phosphate dehydrogenase
(GAPDH) has been shown to modulate Th1 responses through repres-
sion of interferon-c (IFNc) mRNA in a low glycolic activity status.44

Hence, only upon increased glycolytic activity Th1 cells can mount full
pro-inflammatory response and secrete IFNc.45

The balance between effector and Treg is also influenced by FAO and
fatty acid synthesis. Effector T cells have been shown to have reduced
FAO upon activation,46 while Tregs have increased expression of FAO
enzymes, including carnitine palmitoyltransferase 1A (CPT1A).47

Inhibition of acetyl-CoA carboxylase 1 (ACC1), the rate-limiting enzyme
in fatty acid synthesis, restrains Th17 polarization and promotes the de-
velopment of Tregs.48,49

Recent studies reveal that specific amino acids and amino acid trans-
porters regulate homeostasis and activation of the adaptive immune sys-
tem.48,49 Down-regulation of large neutral amino acid transporter
(LAT1) can impair Th1 and Th17 differentiation in vivo.50 Moreover,
indoleamine 2,3-dioxygenase-1 (IDO1), the rate-limiting enzyme catalys-
ing tryptophan (Trp) degradation can modulate T cell effector
responses, the expansion of Tregs, and the degree of vascular inflamma-
tion and atherosclerosis.51–53 Upon activation, T and B cells increase glu-
tamine usage.54 Glutamine metabolism has been implicated in the
balance between effector T cells, Th1 and Th17, and Tregs.55 Moreover,
arginine, as well as glutamine and Trp availability are known regulators of
immune function via the mTOR pathway.56

Several studies demonstrate an essential role for cholesterol and fatty
acids in activation, differentiation, and function of T cells.49,57,58

Hypercholesterolaemia can influence T cell receptor (TCR) signalling
and Treg numbers, while Tregs can tightly regulate lipoprotein metabo-
lism and influence hepatic inflammation.59–61 Recent data suggest that
apolipoprotein A1 (ApoA1), the main protein component of HDL, mod-
ulates the conversion of Tregs into T follicular helper cells influencing
atherosclerosis.62 The crosstalk between the immune system and lipid
metabolism is an area of increasing interest due to increasing prevalence
of the metabolic syndrome, together with chronic inflammatory liver dis-
eases such as non-alcoholic fatty liver disease (NAFLD)/non-alcoholic
steatohepatitis (NASH)—all representing additive risk to CVD.

4. Immunometabolism in
atherosclerosis

4.1 Plaque metabolism
The metabolic blueprints for macrophages and T cells described above
are obtained from experimental model systems. Although they are of ut-
most importance to understanding metabolic rewiring of immune cell
types in activated and modulatory states, these data may not fully reflect
the changes that occur in tissues during pathogenesis. Immunometabolic
data in atherosclerotic CVD are still sparse, but recent reports have
revealed insights into some of the immune-metabolic patterns that medi-
ate atherosclerosis.

The first proof that alterations in immunometabolism are an impor-
tant feature of atherogenesis was provided by the nuclear imaging
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community. 18F-fluorodeoxyglucose (FdG) positron-emission tomogra-
phy imaging, which reflects glucose transport into cells, is widely used
clinically to detect diseased tissue conditions exhibiting increased glucose
metabolisms, such as tumours or infections. As a radionucleotide ana-
logue of glucose, FdG is taken-up by cells via glucose transporters
(GLUTs) and phosphorylated into FdG-6-phosphate that cannot be fur-
ther metabolized and accumulates inside of the cell. Increased glucose
metabolism has been also considered as the basis for imaging the burden
of atherosclerosis. High FdG uptake has been suggested to reflect the
degree of vascular inflammation and plaque vulnerability, but may also
reflect hypoxia.63,64

A recent study has revealed that besides an increase in glucose uptake,
atherosclerotic disease is characterized by changes in multiple intracellu-
lar metabolic pathways in the arterial wall. Metabolomics analysis of 159
plaques of symptomatic (TIA and stroke) and asymptomatic patients
obtained during carotid endarterectomy revealed a distinct metabolite
profile in inflammatory plaques of patients with symptomatic carotid ar-
tery disease. These symptomatic plaques revealed a cluster of metabo-
lites and enzymes that are associated with increased glycolysis, elevated
amino acid utilization, and decreased FAO. Moreover, this cluster was
highly associated with plaque inflammation.65

4.2 Systemic changes in metabolism
affecting atherosclerosis
Work in experimental atherosclerosis models has confirmed the func-
tional importance of immunometabolic pathways in CVD. For example,
it has been shown that atherosclerotic mice deficient in hematopoietic
GLUT1 have a decreased glycolytic flux in their bone marrow and ath-
erosclerotic plaques, resulting in a decrease in atherosclerosis.66

Likewise, deficiency of glucose-6-phosphate dehydrogenase, a key en-
zyme in the PPP reduced vascular superoxide levels and also decreased
atherosclerosis.67

Amino acid metabolism also proved of importance in atherosclerosis.
Ablation of IDO-dependent Trp metabolism leads to a substantial in-
crease in vascular inflammation and acceleration of atherosclerosis in
Apoe-/- mice.51,53 In line with this data, IDO induction has been linked to
atheroprotection and increased plaque stability.52,68,69 Nevertheless, the
role of IDO in health and disease seems to be sensitive to alterations in
the gut microbiome that may impair its anti-inflammatory and anti-
atherosclerotic effects.70–72

The microbiome also plays an important role in mediating immuno-
metabolism in atherosclerosis. Changes in composition of the micro-
biome also affect the release of immunopotent metabolites that have
been associated with CVD. One example is Trimethylamine N-oxide
(TMAO), a plasma metabolite that is formed through the conversion of
microbiome generated trimethylamine (TMA) into TMAO via the host’s
hepatic flavin monooxygenase.73 The generation of TMAO involves nu-
trient precursors that are highly abundant in a western diet, and TMAO
was shown to induce platelet activation and vascular inflammation in ex-
perimental models and patients.73–75 TMAO levels are associated with
atherosclerosis burden76 and predict both near- and long-term risk of
major adverse cardiovascular events.77

4.3 Monocytes–macrophages
Atherosclerosis is associated with several changes in monocytes and
macrophages. Analysis of monocytes isolated from healthy individuals or
individuals suffering from atherosclerotic CVD revealed that monocytes
obtained from patients had a higher oxygen consumption rate, a higher

glycolytic acidification rate, and glycolytic flux. These monocytes had an
enhanced glucose uptake, produced more mitochondrial ROS, and had
enhanced inflammatory signalling. It was found that monocytes from ath-
erosclerotic CVD patients switched to the glucose-ROS-PKM2-STAT3
pathway through which glucose utilization led to unbalanced ROS gener-
ation from the mitochondrial chain, that induced translocation of the en-
zyme PKM2 and induction of STAT3 signalling, resulting in
inflammation.23

The mechanism for altered monocyte–macrophage metabolic activity
may relate to alterations in LDL levels which are characteristic of athero-
sclerosis.78,79 In vitro studies have shown that oxLDL results in an in-
crease in glycolysis, inflammation, and oxidative damage in
macrophages.80–82 In vivo studies confirm these findings. High choles-
terol-diet-fed LDLr-/- mice indeed show epigenetic and metabolic
reprogramming of myeloid (progenitor) cells, with profound up-regula-
tion of the inflammasome.83 Exposure to high levels of modified LDL
triggers epigenetic and metabolic reprogramming of macrophages and
exacerbate inflammatory responses.83 Altered macrophage metabolism
can provoke prolonged responses, a phenomenon called ‘innate immune
memory’ or ‘trained immunity’.

84 Glycolysis, glutaminolysis, and cholesterol synthesis can influence
the activity of methyltransferases and demethylases, acetyltransferases,
and deacetylases, which by targeting DNA and histones promote in-
creased inflammatory gene transcription. Interestingly, detailed analysis
of distinct plaque macrophage subsets uncovered that non-foamy, rather
than lipid-loaded foamy macrophages are pro-inflammatory and are
likely the cells that drive lesion inflammation.85 Mechanistically, increased
activation of the liver-X-receptor, trying to mediate cholesterol efflux, in
parallel to suppressed activity of the PPP in foam cells, may explain the
reduced inflammatory responses in those lipid-loaded macrophages.86,87

Although much work needs to be done to understand the intertwined
and dynamic metabolic changes and pathways that occur in atheroscle-
rosis, it is clear that the atherosclerotic microenvironment causes immu-
nometabolic changes that can drive progression or regression and
stabilization of atherosclerotic disease (illustrated in Figure 1). Therefore,
targeting of immunometabolic pathways is a promising approach to com-
bat atherosclerotic CVD.

Unfortunately, a big gap still exists between the experimental work on
immunometabolism and implementation of these experimental results
in the clinic. Compelling evidence substantiates that targeting inflamma-
tion in CVD improves outcome,9 and it is increasingly known that exist-
ing therapies, including HMG-CoA reductase inhibitors88 and anti-
diabetic drugs, can also reduce arterial inflammation, most likely by af-
fecting immunometabolic pathways. Therefore, we are approaching an
exciting future for scientific advances in immunometabolism which may
lead to novel therapies to address residual cardiovascular risk in the
clinic.

5. Conclusions and perspectives

This position paper illustrates the potential of immunometabolism to
identify new targets for prevention and treatment of CVDs. Although
experimental data are promising, implementation of experimental thera-
pies in the clinic presents challenges. More early-stage investments
should help to develop this field further. Ultimately, large scale random-
ized clinical trials will be necessary to evaluate therapies that target
immunometabolism and ascertain their effectiveness and possible
unwanted actions.

Immunometabolism and atherosclerosis 1389
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6. Consensus statements

• Metabolites are not just ‘fuels’ in their pathways, they are also effec-
tors and signalling molecules that regulate the immune system.

• Cellular metabolic pathways are tightly regulated by several pro-
atherogenic factors including lipids, glucose, amino acids, and pro- and
anti-inflammatory cytokines.

• Systemic and microenvironment-induced changes in basic metabolic
pathways can skew the balance between pro- and anti-inflammatory
responses in atherosclerosis.

• The identification of the key immunometabolic reactions governing
plaque development and stability will give a new understanding of dis-
ease processes, and likely lead to novel therapeutic approaches to
prevent and treat atherosclerotic CVDs.

• We now recognize a new frontier, immunometabolism, which presents
further opportunities for the CVD field to expand fundamental under-
standing and furnish new therapeutic avenues for our patients.
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38. Kälin S, Becker M, Ott VB, Serr I, Hosp F, Mollah MMH, Keipert S, Lamp D, Rohner-
Jeanrenaud F, Flynn VK, Scherm MG, Nascimento LFR, Gerlach K, Popp V, Dietzen S,
Bopp T, Krishnamurthy P, Kaplan MH, Serrano M, Woods SC, Tripal P, Palmisano R,
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Vindis C, Weber C, Bäck M. Identifying the anti-inflammatory response to lipid low-
ering therapy: a position paper from the working group on atherosclerosis and vas-
cular biology of the European Society of Cardiology. Cardiovasc Res 2019;115:10–19.

1392 D.F.J. Ketelhuth et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/cardiovascres/article/115/9/1385/5522025 by guest on 01 M
arch 2021


	l
	l
	l
	l
	l

