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Abstract

Egocentric gestures are the most natural form of commu-

nication for humans to interact with wearable devices such

as VR/AR helmets and glasses. A major issue in such sce-

narios for real-world applications is that may easily become

necessary to add new gestures to the system e.g., a proper

VR system should allow users to customize gestures incre-

mentally. Traditional deep learning methods require storing

all previous class samples in the system and training the

model again from scratch by incorporating previous sam-

ples and new samples, which costs humongous memory and

significantly increases computation over time. In this work,

we demonstrate a lifelong 3D convolutional framework –

c(C)la(a)ss increment(t)al net(Net)works (CatNet), which

considers temporal information in videos and enables life-

long learning for egocentric gesture video recognition by

learning the feature representation of an exemplar set se-

lected from previous class samples. Importantly, we pro-

pose a two-stream CatNet, which deploys RGB and depth

modalities to train two separate networks. We evaluate Cat-

Nets on a publicly available dataset – EgoGesture dataset,

and show that CatNets can learn many classes incremen-

tally over a long period of time. Results also demonstrate

that the two-stream architecture achieves the best perfor-

mance on both joint training and class incremental training

compared to 3 other one-stream architectures. The codes

and pre-trained models used in this work are provided at

https://github.com/villawang/CatNet.

1. Introduction

With development and popularity of VR/AR devices re-

cently, there is an increasing demand to work with these

devices intuitively. Gestures are the most natural form for

humans to interact with such type of devices, in which
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hand gestures can be conveniently captured by cameras in-

tegrated in the devices in first person view. This motivates

accurate recognition of meaningful gestures from such ego-

centric gesture videos.

Video recognition systems for such VR/AR applications

in the real world should ideally be designed in a way to

support incremental update and customization of gestures.

Different communicative gestures should be customized

for different VR games [45]. Traditional machine learn-

ing/deep learning approaches require training data of all

classes accessed at the same time, which is hardly achiev-

able in such real-world situations. For instance, when a new

gesture should be added to a system, the model needs to be

retrained by incorporating the gesture video samples of pre-

vious and new classes, which requires significant memory

for storing all previous class videos and increasing compu-

tational cost over time. A system with capability of lifelong

learning would therefore be very beneficial for such scenar-

ios, in which incremental learning makes use of memory

efficiently, enables fast learning for new class samples and

does not forget the previous class samples. In this work,

we demonstrate a c(C)la(a)ss increment(t)al net(Net)works

(CatNet) for an open-set problem rather than a close-set

problem, which learns new classes i.e., the class variants

larger than instance variants.

Hand-crafted features are commonly adopted in tradi-

tional video gesture recognition [23, 26, 39]. With more

large-scale datasets being released and development of deep

neural networks (DNNs), DNNs are playing a more and

more important role in this field [21, 5]. Different from

image recognition, temporal information along each frame

needs to be considered for video understanding. The 3D

convolutional network (ConvNet) becomes a popular ar-

chitecture for learning spatiotemporal features from video

clips. Benefiting from large-scale video datasets being re-

leased [19, 4, 2], deep 3D ConvNets have achieved striking

results in video action recognition tasks [16, 6, 9]. Com-
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pared to current popular video action datasets e.g., UCF-

101 [36], Kinetics [19], egocentric gesture video is in first

person view, in which two modalities RGB and depth can

be captured at the same time. This indicates more infor-

mation can be used to train the models for the egocentric

gesture video recognition. Two-stream 3D ConvNets [35]

is proposed for video action recognition by using optical

flow [10] in addition to RGB frames but optical flow is dif-

ficult to compute and to use for large-scale datasets [9].

We evaluate our models on a recently released large-scale

egocentric gesture video dataset named EgoGesture [46], in

which RGB and depth modalities are provided. Benefiting

from RGB-D video, we propose a two-stream architecture

that deploys RGB and depth as two streams for egocentric

gesture video recognition in this work, which deals the in-

consistent quality of RGB and depth frames (see Figure 1)

across different scenes (6 different scenes are included in

the dataset) during the recording. Figure 1 shows two ges-

ture examples in two scenes respectively i.e., in a walk-

ing state with a dynamic background on the left and in a

stationary state facing a window with drastically changing

sunlight on the right. It can be noticed that the quality of

the RGB input and the depth input are not consistent i.e.,

walking and outdoor capture can result in poor depth data,

while illumination changes from changing sunlight can af-

fect distribution of RGB pixels. Fusing features produced

by a two-stream architecture can mitigate this issue, which

results in a better overall performance. Previous work has

shown that the frame-based approaches (e.g., VGG-16) are

ineffective for the EgoGesture video recognition [46] be-

cause such methods do not take account into temporal infor-

mation. Video-based approaches are required for accurate

recognition in this scenario.

Figure 1: Visualization of gestures in different scenes. Left: The

participant in a walking state with a dynamic background. Right:

The participant in a stationary state facing a window with drasti-

cally changing sunlight.

Significant advances have been made recently in com-

puter vision and deep learning tasks including object recog-

nition, detection, segmentation, etc. However, most of the

models can only be trained in a batch setting, in which

training data of all object classes is required for training

the model in a roll. Lifelong learning [27] is a strategy to

enable training the model continuously. To overcome the

issue addressed earlier in the context of egocentric video

recognition, in which the system should be able to learn

new gestures incrementally, we introduce a lifelong learn-

ing framework – c(C)la(a)ss increment(t)al net(Net)works

(CatNet), which is specifically designed for lifelong ego-

centric gesture video recognition based on 3D convolu-

tional networks (ConvNets). Importantly, we propose a

two-stream CatNet using RGB and depth input as separate

streams, which achieves the best performance in the class

incremental learning task.

To summarize, our contribution are three-fold:

• To the best of our knowledge, we are the first to address

the class incremental issues in the area of egocentric

gesture video recognition and introduce the lifelong

learning approaches to this area.

• We propose a two-stream CatNet for egocentric ges-

ture video recognition, which treats RGB and depth as

two separate streams and this type of CatNet is shown

to perform best in the class incremental task.

• Our results show that CatNets can learn many classes

incrementally over a long period of time i.e., the high-

est mean accuracy of presented CatNet has achieved

0.884.

2. Related Work

We introduce some recent literature with respect to video

action recognition, EgoGesture video recognition and life-

long learning in this section.

2.1. Video Action Recognition

The success of convolutional networks (ConvNets) in

object detection [30], object recognition [22], panoptic seg-

mentation [24] tasks etc. has attracted growing interest for

deploying them to other areas of computer vision. Video

understanding has became a very popular research area

recently, which is driven by several released large-scale

datasets such as Kinetics [19], YouTube-8M [2], Activi-

tyNet [4] and Sports-1M [18]. Unlike image tasks, video

tasks require not only spatial information for each frame but

also temporal information for neighboring frames, which

poses a challenge for traditional methods performing on

image tasks. Video understanding for untrimmed video

datasets e.g., ActivityNet is still very challenging today be-

cause it requires to consider the possibility of accomplish-

ing additional tasks such as untrimmed action classification

and detection. Work discussed in this paper only considers

the trimmed video scenario.

Many methods have been proposed for video action

recognition by introducing temporal information to the

model. 3D convolution has been firstly introduced in [17],

which enables 3D convolutional networks (3D ConvNets)

to extract features from both spatial and temporal dimen-

sions. With the success in learning spatiotemporal infor-

mation from consecutive frames by using 3D convolutional
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modules, several 3D types of architectures have been pro-

posed in this field e.g., I3D [6], P3D [28], T3D [9] and

R3D [16]. The work in [16] addresses that it is important to

use a pretrained model that is trained on a large-scale video

dataset for a specific video task, which is able to avoid is-

sues such as overfitting, difficult to converge and long time

for training. The authors also demonstrate the efficacy of

using R3D (use ResNet block as backbone for 3D convo-

lution) for video action recognition, providing good perfor-

mance and flexible architectures.

By using more than one modality for video action recog-

nition, multimodal representation has achieved remarkable

results [40, 35, 6, 11, 41]. A typical architecture is the two-

stream ConvNet [35, 6], which uses RGB frames and opti-

cal flow [10] for training two separate networks. However,

the computation of optical flow is very expensive, which

limits its deployment in practice [9]. There are lots of

depth cameras available on the market with acceptable price

e.g., RealSense Camera SR300, which makes RGB frames

and depth maps conveniently accessible for the egocentric-

like datasets e.g., EgoGesture. In this work, we apply a

two-stream 3D ConvNet by using RGB frames and depth

frames, where the R3D is used as the backbone for our 3D

ConvNet.

2.2. Egocentric Gesture Video Recognition

Datasets Like EgoGesture [5, 46], GreenScreen [7] pave

the wave for end-to-end learnable DNN architectures to ad-

dress large-scale egocentric gesture recognition problems.

Cao et al. [5] propose a neural network architecture by using

a 3D ConvNet in tandem with spatiotemporal transformer

modules and a LSTM for recognizing egocentric gestures

from trimmed egocentric videos. In their network design,

conceptually 3D ConvNets calculate the motion features

and STTMs compensate for the ego motion. Shi et al. [31]

improve on this approach by replacing spatiotemporal trans-

former modules with spatiotemporal deformable modules

to overcome the issue of non-availability of local geometric

transformations.

Chalasani and Smolic [8] propose a different network ar-

chitecture that extracts embeddings specific to ego hands

which are calculated as output from their encoder and de-

coder based architecture, which simultaneously computes

hand segmentation. The embeddings thus generated for

each trimmed video are then used in LSTMs to discern the

gesture present in the video.

In a different approach, Abavisani et al. [1] propose a

training strategy to use knowledge from multi-modal data

to get better performance on unimodal 3D ConvNets. Un-

like Cao et al. [5], they train a separate network for each

available modality and use a new spatiotemporal semantic

alignment loss function, which they propose to share the

knowledge among all the trained networks.

The scope for application of recognizing gestures from

trimmed videos is limited. To address this issue, Köpüklü

et al. [21] introduce a network architecture that could enable

offline working CNN based networks to work online using

a sliding window approach.

However, the idea of lifelong learning for egogesture

recognition has not been explored in any of the mentioned

papers. Given a new gesture, the entire network has to

be trained with all the gestures starting the training pro-

cess from the beginning, which becomes cumbersome as

the number of gestures increases incrementally.

2.3. Lifelong Learning

Current state-of-the-art DNNs have achieved impressive

performance on a variety of individual tasks. However,

it still remains a substantial challenge for deep learning,

which is learning multiple tasks continuously. When train-

ing DNNs on a new task, a standard DNN forgets most of

the information related to previously learned tasks. This

phenomenon is known as “catastrophic forgetting” [25].

There are three scenarios in the area of lifelong learn-

ing [38]: (1) Task incremental learning, where the task ID

is provided during testing; (2) Domain incremental learn-

ing, where the task ID is not provided during testing and

the model does not have to infer the task ID; and (3) Class

incremental learning, the task ID is not provided during test-

ing and the model has to infer the task ID. The first scenario

is the easiest one and the model is always informed about

which task is going to be performed. In this case, the model

can be trained with task-specific components. A typical net-

work for such a scenario can have a “multi-headed” output

layer for each task and the rest of the model can be shared

across tasks [38]. A typical example for the second scenario

is that the environment is changing e.g., image background

changes but the objects remain the same for an object recog-

nition task. The model has to solve the task but does not in-

fer how the environment changes [12]. The last scenario is

the most challenging one which requires the model to infer

each task. For example, the model has to learn new classes

of objects incrementally in an object recognition task. In

this work, we focus on the most challenging scenario – class

incremental learning, where we address the importance for

learning gesture classes incrementally regarding the ego-

centric gesture video recognition.

Catastrophic forgetting appears when the new instance

is significantly different from previous observed examples.

Current strategies such as replay of old samples [15, 29] and

regularization [3, 14] can be deployed to mitigate this prob-

lem. FearNet was proposed in [20], where a generative neu-

ral network [27, 44, 43, 42] is used to create pseudo-samples

that are intermixed with recently observed examples stored

in its hippocampal network. PathNet [13] was proposed as

an ensemble method, where a generic algorithm is used to
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find the optimal path through a neural network of fixed size

for replication and mutation. Ideally, the lifelong learning

should be triggered by the availability of short videos of

single objects and performed online on the hardware with

fine-grained updates, while the mainstream of methods we

study are limited with much lower temporal precision as

our previous sequential learning models [32, 33]. In [29],

iCaRL was proposed to cache the most representative sam-

ples from previous classes by using representation learning,

which demonstrates good performance on class incremen-

tal learning. It is also easy to be extended to any type of

network architectures. Benefiting from these advantages,

we incorporate iCaRL into our CatNet to realize a lifelong

learning system for egocentric gesture video recognition.

3. Methodology

In this section, we first elaborate on the type of 3D Con-

vNets investigated in this work, which is known as R3D.

Then we present a two-stream 3D ConvNet for egocentric

gesture video recognition (EgoGesture dataset is used in

this work). Finally we introduce a CatNet, which incorpo-

rates the class incremental learning strategy with 3D Con-

vNets. Two evaluation metrics are presented at the end of

this section.

3.1. Architectures

Two types of R3D architectures are investigated in this

work, which use ResNet and ResNeXt respectively as the

block unit. The difference between ResNet and ResNeXt

is refered in [16]. Three models are studied, which

are ResNet-50 using 16 frames as an input (ResNet-50-

16f), ResNeXt-101 using 16 frames as an input (ResNeXt-

101-16f), and ResNeXt-101 using 32 frames as an input

(ResNeXt-101-32f) [16, 21].

As mentioned earlier in the paper, temporal information

is important for video understanding. 3D convolution has

became a popular operation to preserve the temporal prop-

erties of a video. Figure 2(a) illustrates the difference be-

tween the 3D convolutional operation and the 2D convo-

lutional operation. 2D ConvNets lose track of temporal

information of the input after every convolutional opera-

tion while 3D ConvNets are able to output a video clip by

feeding a video clip, which preserves the temporal informa-

tion. Figure 2(b) illustrates previous popular architectures

for video action recognition. Previous two-stream architec-

tures learn the temporal information by using 3D convo-

lution and optical flow [35, 11, 6, 10]. Optical flow repre-

sents the motion over time can be calculated from every two

neighboring frames. Traditional two-stream architectures

all use RGB frames and optical flow as two streams. How-

ever, the computation of optical flow is very complex i.e.,

computing over each individual frame, which is difficult in

real-world applications [9]. We propose the use of depth

frames as another stream with RGB frames for the EgoGes-

ture dataset. It should be noticed that, differing from opti-

cal flow, the objective of the depth stream is not to extract

temporal information. It aims to provide the depth level,

in which different backgrounds e.g., brightness, indoor and

outdoor in EgoGesture may drive different effects on RGB

frames. The temporal information can be preserved by us-

ing 3D convolution. Figure 2(c) shows the two-stream ar-

chitecture deployed in this work. Two 3D ConvNets are

trained independently by using RGB and depth videos (see

the training flow in Figure 2(c)) and the second last layer

features of two networks are concatenated with each other

(see the testing flow in Figure 2(c)), which is used for clus-

tering during testing (we will explain this in the next sec-

tion).

3.2. CatNet

We incorporate iCaRL [29] with 3D ConvNets for class

incremental EgoGesture video recognition in this work and

we call this framework CatNet. The whole training process

for a CatNet is summarized in Algorithm 1 and Algorithm 2

and is visualized in Figure 3. The core part of CatNet is to

cache some previous class samples that are the most rep-

resentative of the old class i.e., see the green block in Fig-

ure 3. The memory caches the selected video samples and

their corresponding predictions for previous class samples,

which is achieved by learning the feature representation

(Algorithm 2). The feature representation is computed by

the mean value of features (i.e., the second last layer out-

put of the 3D ConvNet) corresponding to one class (see the

feature mean matrix in Figure 3). We then cache the first k

samples in which features of those samples are the closest

to the representation (feature mean). The cached samples

play two roles during the class incremental learning. First,

the cached samples are used to compute the representation

for each class, which is used for inference (see the near-

est mean classifier in Figure 3). Second, the prediction is

used to compute the distillation loss during the training in

Algorithm 1. The inference procedure is summarized in Al-

gorithm 3 and the yellow block Figure 3. The feature is ex-

tracted from a testing video, which is to be compared with

the cached feature mean matrix. The class minimizing the

L2 distance is assigned as the predicted class. All features

mentioned in this work are L2-normalized.

Two evaluation metrics are used to validate the per-

formance for each model during class incremental learn-

ing, which are mean accuracy and backward transfer

(BWT) [31]. Table 1 shows an accuracy matrix R, which is

able to observe the performance of a trained model chang-

ing over time. The row represents the model Mi trained

on task i. The column represents the testing data from task

i. The gray part is the BWT score, which measures the ac-

curacy over previously encountered tasks (average of gray
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(a) Comparison between 2D and 3D convolutional op-

erations. Left: 2D convolution on an image, in which

the output is an image. Middle: 2D convolution on a

video clip, in which the output is an image. Right: 3D

convolution on a video clip, in which the output is also

a video clip. Figure from [37].

(b) Previous two-stream video architectures in the liter-

ature. K stands for the total number of frames in a video

while N stands for a subset of neighboring frames of the

video. Figure from [6].

(c) Two-stream 3D ConvNet used in

this work.

Figure 2: Illustration of 3D ConvNets and the two-stream 3D ConvNet used in this work.

Algorithm 1 Training a CatNet for EgoGesture

Input:

• m ⊲ Number of added new classes

• X ∈ R
N×C×L×H×W , Y ∈ R

N×m ⊲ New-

class video clips and labels, N number of clips,

C number of channels, L clip length, H frame

height, W frame width

• K cached samples for each previous class ⊲

Xcached ∈ R
P×C×L×H×W where P = K × n,

n is number of learned classes

Require:

• Current modelM and weights Θ ⊲ We denote

the first layer weight until the last layer weight as

Θ1,Θ2, . . . ,Θt

Training starts:

q =M(Xcached,Θ1∼t) ⊲ Softmax prediction for

previous samples

Optimizing (e.g., BackProp) with loss function below:

L =
−
∑

xi∈X,yi∈Y

∑m

j=1
yi,j log(M(xi,Θ1∼t))−

∑
xi∈Xcached,qi∈q

∑P

j=1
qi,j log(M(xi,Θ1∼t)) ⊲

This contains the new-class cross entropy loss and the

old-class distillation loss.

Training finishes

elements in Table 1). BWT indicates the performance re-

lated to the memorization capability. The mean accuracy,

average of last row elements in Table 1, demonstrates the

overall performance on each task for the final model.

4. Experiments

In this section, we describe experimental evaluation in

this work. All models are tested on a public egocentric ges-

Algorithm 2 Learning the Feature Representation

Input:

• X ∈ R
N×C×L×H×W ⊲ New-class video clips

Repeat for m classes:

Xi ∈ X ⊲ Samples of one new class

F =M(Xi,Θ1∼t−1) ⊲ Extract the second last layer

feature for one new-class samples

µ← 1

|F|

∑
Fi∈F Fi

for k = 1 : K do

pk ← argminx∈Xi
‖µ − 1

k
(M(x,Θ1∼t−1) +

∑k−1

j=1
M(pj ,Θ1∼t−1)‖

end for

Xcached ← (p1, p2, . . . , pK)
Output:

Xcached

Algorithm 3 Inference

Input:

• x ∈ R
C×L×H×W ⊲ Testing video clips

Require:

Trained modelM and weights Θ1∼t−1

P = K × n cached image set for all n classes X =
{x1, . . . ,xn}, xn ∈ R

K×C×L×H×W ⊲ Cached

exemplar set

Compute exemplar feature means:

1: for k = 1 : n do

2: µk ←
1

K

∑
xi∈xk

M(xi,Θ1∼t−1)
3: end for

Output:

y ← argmink=1,...,n‖M(x,Θ1∼t−1)− µk‖

ture dataset – EgoGesture. Details of network settings are

provided in the Appendix.
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Figure 3: Schematic of a two-stream CatNet for EgoGesture video

recognition.

Table 1: Accuracy matrix R during lifelong training, where Mi

is the model trained using training data Tri in task Ti, Tei is the

testing data in task Ti, and Rij = classification accuracy of the

model Mi training on Tri and testing on Tej . The number of

tasks is N . Gray color represents the BWT score.

R Te1 Te2 · · · TeN
M1 R11 R12 · · · R1N

M2 R21 R22 · · · R2N

· · · · · · · · · · · · · · ·
MN RN1 RN2 · · · RNN

4.1. EgoGesture Dataset

EgoGesture is a recent multimodal large-scale video

dataset for egocentric hand gesture recognition [46]. There

are 83 classes of static and dynamic gestures collected from

6 diverse indoor and outdoor scenes. There are 24,161 video

gesture samples and 2,953,224 frames, which are collected

in RGB and depth modalities from 50 distinct participants.

We follow the previous work [46, 21] to process the data,

in which data was split by participants into training (60%),

validation (20%) and testing (20%). Participant IDs 2, 9,

11, 14, 18, 19, 28, 31, 41, 47 were used for testing and 1, 7,

12, 13, 24, 29, 33, 34, 35, 37 were used for validation. The

rest of data was used for training. Similar to [21], we also

included validation data during training.

4.2. Class Incremental Learning

We focus on one of the lifelong learning scenarios in this

study – class incremental learning. Every time we extended

the model, we added 5 new classes. In order to get good

generalization for our model on class incremental learning,

we firstly trained our model using the first 40 classes (we

will refer this initial task as task 0 in the later part of this

paper). We then trained our model using 5 new classes (41

– 45) as task 1. We repeated this procedure until task 9, in

which data of classes 81 – 85 was used. As a result, we

have 10 tasks (including the initial training on the first 40

classes) over the class incremental learning process.

4.3. Implementation Details

Three models were investigated in this work, which

are ResNeXt-101-32f, ResNeXt-101-16f, ResNet-50-16f.

Each model was tested by using 4 feature representations,

which are depth input, RGB input, RGB and depth input

(RGB-D) and two-stream. All models were first pretrained

on Kinetics [19, 16].

Following previous work [21], we used the follow-

ing methods to pre-process the data during training: (1)

Each frame was firstly spatially resized to 112 × 112

pixels; (2) Each frame was scaled randomly with one of

{1, 1

21/4
, 1

23/4
, 1

2
} scales and then randomly cropped to size

112× 112; (3) Spatial elastic displacement [34] with α = 1
and σ = 2 was applied to cropped and scaled frames; (4) A

fixed length clip (16-frame and 32-frame used in this work)

was generated around the selected temporal position. If the

video is shorter than the fixed length, we looped it as many

times as possible; (5) We performed mean subtraction for

each input channel, where mean values of ActivityNet [4]

were used. Finally we get the following types of inputs to

our model: (1) Depth input, which has the size of 1 chan-

nel × 16/32 frames × 112 pixels × 112 pixels; (2) RGB

input, which has the size of 3 channels × 16/32 frames ×
112 pixels × 112 pixels; (3) RGB-D input, which has the

size of 4 channels × 16/32 frames × 112 pixels × 112 pix-

els. Stochastic gradient descent was carried out to optimize

the model when using backpropagation, which has a weight

decay of 0.001 and 0.9 for momentum. For task 0 training

(first 40 classes), the learning rate was started from 0.001
and divided by 10 at the 25th epoch. Training was com-

pleted after 50 epochs. For class incremental learning, the

learning rate was started from 0.001 and divided by 10 at the

6th epoch. Training was completed after 12 epochs. Batch

size was set to 64 in the experiment.

During the testing session, testing frames were first

scaled to the size of 112 × 112 and then cropped around a

central position at scale 1. A testing video clip (with length

16 or 32) was generated at the central temporal position of

a whole video. If the testing video clip was shorter than the

required length, we looped it as many times as necessary.

All testing frames were mean centered the same way those

used for training.

5. Results

The presentation of results is divided into two parts.

The first part compares the performance of different fea-

ture representations i.e., depth, RGB, RGB-D and two-

stream. The second part compares the performance of dif-
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ferent 3D ConvNets i.e., ResNeXt-101-32f, ResNeXt-101-

16f and ResNet-50-16f. We use the joint training model as

an upper bound comparison, which is trained by using the

data of all classes. Mean accuracy and memorization capa-

bility are utilized to measure the performance.

5.1. Comparison of Feature Representations

5.1.1 Final Model Accuracy for All Tasks

Table 2 shows the mean accuracy across different tasks us-

ing different feature representations. It can be noticed that

the two-stream approach achieves the highest accuracy for

both joint training and class incremental training for all

three different architectures, which indicates that two inde-

pendent feature extractors for depth and RGB inputs should

be beneficial for both joint training and lifelong learning.

Previous work [1, 5, 46] has demonstrated that using RGB-

D can outperform those only using one modality input in

terms of joint training. However, it seems that the RGB-

D feature representation is not beneficial to lifelong learn-

ing as it can be noticed that the depth feature representa-

tion performs better than the RGB-D feature representation

for ResNext-101-16f and ResNet-50-16f during training the

CatNet.

Table 2: Mean accuracy for different feature representations. Bold

text indicates the highest accuracy

Method Joint training CatNet

ResNeXt-101-32f

Depth 0.909 0.845

RGB 0.905 0.859

RGB-D 0.922 0.861

Two-stream 0.932 0.884

ResNeXt-101-16f

Depth 0.883 0.840

RGB 0.850 0.826

RGB-D 0.891 0.834

Two-stream 0.907 0.865

ResNet-50-16f

Depth 0.870 0.843

RGB 0.865 0.792

RGB-D 0.867 0.830

Two-stream 0.900 0.854

5.1.2 Memorization Capability

BWT is carried out in this work for measuring the memo-

rization capability. Table 3 summarizes that BWT in Fig-

ure 4 (left). Compared to other feature representation ap-

proaches, the two-stream feature representation shows that

the model produces lighter color in the matrix over time,

which indicates a better memorization capability. Similar

to the mean accuracy, the RGB-D feature representation

performs worse than the depth feature representation for

ResNeXt-101-16f and ResNet-50-16f. These results indi-

cate that the one-stream CatNet is not able to fully make

use of RGB-D information when only concatenating RGB

and depth as an input to the model with respect to EgoGes-

ture video recognition. Thus we provide such a two-stream

strategy which shows good performance for both joint train-

ing and lifelong learning.

5.2. Comparison of Architectures

5.2.1 Final Model Accuracy for All Tasks

Table 4 shows the mean accuracy of joint training and class

incremental training across different architectures. It can

be noticed that ResNeXt-101-32f achieves the best perfor-

mance for both joint training and lifelong learning across

different feature representations. ResNeXt-101-32f has the

same depth as ResNeXt-101-16f, but a longer temporal

frame length is used for the input clip when using ResNeXt-

101-32f, which is able to preserve more temporal informa-

tion from videos.

Table 4: Comparison between architectures using mean accuracy.

Bold text indicates the best performance.

Method Joint training CatNet

Depth

ResNeXt-101-32f 0.909 0.845

ResNeXt-101-16f 0.883 0.840

ResNet-50-16f 0.870 0.843

RGB

ResNeXt-101-32f 0.905 0.859

ResNeXt-101-16f 0.850 0.826

ResNet-50-16f 0.865 0.792

RGB-D

ResNeXt-101-32f 0.922 0.861

ResNeXt-101-16f 0.891 0.834

ResNet-50-16f 0.867 0.830

Two-stream

ResNeXt-101-32f 0.932 0.884

ResNeXt-101-16f 0.907 0.865

ResNet-50-16f 0.900 0.854

5.2.2 Memorization Capability

Table 5 shows BWT across three different architectures for

each feature representation. The rank of BWT for each fea-

ture representation is the same, which is ResNeXt-101-32f,

ResNeXt-101-16f and ResNet-50-16f from high to low. Be-

cause BWT can also be affected by the initial performance

of the model i.e., initial classification performance for the

first 40 classes in our case, we also test the initial classifica-

tion accuracy for the first 40 classes for each model as seen

in Table 5. The initial accuracy has exactly the same or-

der as BWT in terms of ranking the three architectures for

each representation i.e., ResNeXt-101-32f, ResNeXt-101-

16f and ResNet-50-16f. This indicates that a deeper model

is able to improve the initial performance on the initial task
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(a) Depth (b) RGB (c) RGB-D (d) Two-stream

(e) Depth (f) RGB (g) RGB-D (h) Two-stream

Table 3: Memorization capability across differ-

ent feature representations. Bold text indicates

the highest accuracy.

Model BWT

ResNeXt-101-32f

Depth 0.873

RGB 0.880

RGB-D 0.882

Two-stream 0.900

ResNeXt-101-16f

Depth 0.865

RGB 0.849

RGB-D 0.856

Two-stream 0.887

ResNet-50-16f

Depth 0.863

RGB 0.823

RGB-D 0.853

Two-stream 0.880
(i) Depth (j) RGB (k) RGB-D (l) Two-stream

Figure 4: Left: Classification accuracy matrix R for three architectures i.e., ResNext-101-32f (top), ResNext-101-16f (middle) and ResNet-

50-16f (bottom). The vertical axis is the model Mi trained on the task Ti. The horizontal axis is the task Ti data. Lighter color indicates

better performance. Right: Table summary of the figure on the left.

(task 0) but can not benefit the memorization capability on

a lifelong learning task.

Table 5: Comparison between different architectures for memo-

rization capability. Bold text indicates the best performance.

Model BWT Initial accuracy

Depth

ResNeXt-101-32f 0.873 0.956

ResNeXt-101-16f 0.865 0.928

ResNet-50-16f 0.863 0.894

RGB

ResNeXt-101-32f 0.880 0.951

ResNeXt-101-16f 0.849 0.919

ResNet-50-16f 0.823 0.878

RGB-D

ResNeXt-101-32f 0.882 0.942

ResNeXt-101-16f 0.856 0.939

ResNet-50-16f 0.853 0.910

Two-stream

ResNeXt-101-32f 0.900 0.964

ResNeXt-101-16f 0.887 0.945

ResNet-50-16f 0.880 0.915

6. Discussion

Figure 5 shows the features produced by a feature mean

matrix according to the depth input and the RGB input re-

spectively for all 83 classes (horizontal represents different

classes). Given a feature mean matrix S ∈ R
m×c, where m

is the number of features and c is the number of classes, it

is not easy to visualize because of the large feature number.

We average S over the feature dimension, which is derived

as 1

m

∑m

i Si, for visualization. It can be seen that the depth

feature representation and the RGB feature representation

are quite different from each other. Because our model uses

the mean exemplar set as a reference for classification, the

two-stream approach, which fuses depth features and RGB

features from the second last layer, can be beneficial for this

case.

Figure 5: Visualization of features extracted by the two-stream

CatNet.

7. Conclusion

In this paper, we investigate class incremental learning

in the context of egocentric gesture video recognition, in

which we address the issue in such scenarios for real-wold

applications is that may easily become necessary to add new

gestures to the system. A 3D convolution based framework

named CatNet is introduced and we demonstrate the effi-

cacy of CatNets on the EgoGesture dataset, in which the

performance on the class incremental task does not drop

significantly compared to joint training. Importantly, we

propose the use of a two-stream architecture for the CatNet,

in which two 3D ConvNets are trained independently by

feeding RGB and depth inputs. Results demonstrate that the

two-stream CatNet performs better than 3 other one-stream

CatNets both on the mean accuracy and the memorization

capability. Results also demonstrate that CatNet exhibits

some forgetting of knowledge, which can be further inves-

tigated in the future.

8



References

[1] Mahdi Abavisani, Hamid Reza Vaezi Joze, and Vishal M Pa-

tel. Improving the performance of unimodal dynamic hand-

gesture recognition with multimodal training. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 1165–1174, 2019.

[2] Sami Abu-El-Haija, Nisarg Kothari, Joonseok Lee, Paul

Natsev, George Toderici, Balakrishnan Varadarajan, and

Sudheendra Vijayanarasimhan. YouTube-8M: A large-

scale video classification benchmark. arXiv preprint

arXiv:1609.08675, 2016.

[3] Marcus K Benna and Stefano Fusi. Computational principles

of synaptic memory consolidation. Nature neuroscience,

19(12):1697, 2016.

[4] Fabian Caba Heilbron, Victor Escorcia, Bernard Ghanem,

and Juan Carlos Niebles. Activitynet: A large-scale video

benchmark for human activity understanding. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 961–970, 2015.

[5] Congqi Cao, Yifan Zhang, Yi Wu, Hanqing Lu, and Jian

Cheng. Egocentric gesture recognition using recurrent 3D

convolutional neural networks with spatiotemporal trans-

former modules. In Proceedings of the IEEE International

Conference on Computer Vision, pages 3763–3771, 2017.

[6] Joao Carreira and Andrew Zisserman. Quo vadis, action

recognition? A new model and the kinetics dataset. In pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 6299–6308, 2017.

[7] Tejo Chalasani, Jan Ondrej, and Aljosa Smolic. Egocentric

gesture recognition for head mounted ar devices. Adjunct

Proceedings of the IEEE and ACM International Symposium

for Mixed and Augmented Reality, 2018.

[8] Tejo Chalasani and Aljosa Smolic. Simultaneous segmen-

tation and recognition: Towards more accurate ego gesture

recognition. 2019.

[9] Ali Diba, Mohsen Fayyaz, Vivek Sharma, Amir Hossein

Karami, Mohammad Mahdi Arzani, Rahman Yousefzadeh,

and Luc Van Gool. Temporal 3D convnets: New architecture

and transfer learning for video classification. arXiv preprint

arXiv:1711.08200, 2017.

[10] Alexey Dosovitskiy, Philipp Fischer, Eddy Ilg, Philip

Hausser, Caner Hazirbas, Vladimir Golkov, Patrick Van

Der Smagt, Daniel Cremers, and Thomas Brox. FlowNet:

Learning optical flow with convolutional networks. In Pro-

ceedings of the IEEE international conference on computer

vision, pages 2758–2766, 2015.

[11] Christoph Feichtenhofer, Axel Pinz, and Andrew Zisserman.

Convolutional two-stream network fusion for video action

recognition. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 1933–1941,

2016.

[12] Fan Feng, Rosa HM Chan, Xuesong Shi, Yimin Zhang, and

Qi She. Challenges in task incremental learning for assistive

robotics. IEEE Access, 2019.

[13] Chrisantha Fernando, Dylan Banarse, Charles Blundell, Yori

Zwols, David Ha, Andrei A Rusu, Alexander Pritzel, and

Daan Wierstra. Pathnet: Evolution channels gradient descent

in super neural networks. arXiv preprint arXiv:1701.08734,

2017.

[14] Stefano Fusi, Patrick J Drew, and Larry F Abbott. Cascade

models of synaptically stored memories. Neuron, 45(4):599–

611, 2005.

[15] Alexander Gepperth and Cem Karaoguz. A bio-inspired in-

cremental learning architecture for applied perceptual prob-

lems. Cognitive Computation, 8(5):924–934, 2016.

[16] Kensho Hara, Hirokatsu Kataoka, and Yutaka Satoh. Can

spatiotemporal 3D CNNs retrace the history of 2D CNNs

and ImageNet? In Proceedings of the IEEE conference

on Computer Vision and Pattern Recognition, pages 6546–

6555, 2018.

[17] Shuiwang Ji, Wei Xu, Ming Yang, and Kai Yu. 3D convolu-

tional neural networks for human action recognition. IEEE

transactions on pattern analysis and machine intelligence,

35(1):221–231, 2012.

[18] Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas

Leung, Rahul Sukthankar, and Li Fei-Fei. Large-scale video

classification with convolutional neural networks. In Pro-

ceedings of the IEEE conference on Computer Vision and

Pattern Recognition, pages 1725–1732, 2014.

[19] Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang,

Chloe Hillier, Sudheendra Vijayanarasimhan, Fabio Viola,

Tim Green, Trevor Back, Paul Natsev, et al. The kinetics hu-

man action video dataset. arXiv preprint arXiv:1705.06950,

2017.

[20] Ronald Kemker and Christopher Kanan. Fearnet: Brain-

inspired model for incremental learning. arXiv preprint

arXiv:1711.10563, 2017.
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