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Summary:  

This thesis focuses on the interface between disease genetics and population genetics 

through analysis of both individual level genotype data and summary statistics from 

genome wide association studies (GWAS) for amyotrophic lateral sclerosis (ALS). Work 

throughout aims to expand our understanding of the genetic architecture of ALS and 

improve the robustness of both GWAS and downstream analyses. 

Chapter 1 provides a general background and context for this thesis, outlining key 

information concerning modern techniques and advances in GWAS analysis; the genetics 

of ALS; and issues surrounding population structure from its impact on GWAS to its 

detection. This chapter concludes with a statement of the major aims of the thesis.  

Chapter 2 details two analyses to further understand the genetic architecture of ALS. 

These analyses explore i.) the genetic overlap of ALS with secondary psychiatric and 

cognitive traits, and ii.) the possibility of a sex-dependent genetic architecture in ALS. 

Work in this chapter makes several potentially important discoveries about the genetics of 

ALS showing evidence of a novel genetic correlation between ALS and bipolar disorder; 

that ALS fits well within the “p-factor” model for psychiatric traits; that ALS heritability is 

enriched in genes expressed in the frontal lobe and that ALS heritability differs across 

sexes, being both less heritable and less polygenic in males. We also identify several 

novel ALS loci through sex-specific and multi-trait genome wide scans, which have 

plausible roles in ALS. While these results give perspective on the role of genetics in the 

observed sex-differences and extra-motor symptoms in ALS patients, residual population 

structure appears to confound these analyses despite careful use of standard correction 

methods, motivating further study.   

Chapter 3 details work carried out to characterise local population structure and recent 

admixture events shaping the genomes of modern Irish individuals using Irish samples 

from an ALS GWAS (n=991) with associated geographic data, and external data from 

Britain and mainland Europe. This study identifies finescale population structure in Ireland 

at a higher resolution than prior work finding robust genetic clusters that segregate with 

geography by leveraging haplotype sharing methods. When considering external data 

from Britain and Europe we find that genes mirror geography across Britain and Ireland, 

and identify signatures of past admixtures in Ireland dating to the Viking and Norman 

invasions, and the Ulster Plantations. The subtle local population structure identified in 

this chapter is missed by standard methods using unlinked markers, which has 

implications for the design of GWAS. 

 

Chapter 4 details work characterising recent population structure, demographic change 
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and admixture in the Netherlands using Dutch samples from an ALS GWAS (n=1,626) 

and external data from neighbouring European countries. This study reveals subtle local 

population structure based on patterns of haplotype sharing, identifying splits both 

between and within provinces. A novel method developed within shows that north-south 

structure in the country is strong and persistent, while east-west structure is more 

transient. This structure correlates with opposing clines of Germanic and Belgian ancestry 

across the country and may be partially caused by a lowered rate of migration across the 

Rhine, Meuse and Waal rivers, which we infer from genetic and spatial data. Effective 

population size estimates from identity-by-descent (IBD) sharing indicate that the 

population in the Netherlands has been growing rapidly in the past 50 generations, with 

significant uptick in the 17th century corresponding to a period of economic growth. This 

pattern is conserved across northern and southern groups, however the effective 

population of the north is consistently lower across time. Finally signatures of a population 

crash corresponding to the Black Death are only evident when data was analysed by 

province, potentially highlighting the importance of population structure to demographic 

inference based on IBD sharing. 

Chapter 5 builds on work from Chapters 3 and 4, and investigates the application of 

haplotype sharing principal components (PCs) as covariates to the problem of correcting 

confounding from population structure in a reanalysis of the project MinE GWAS for ALS. 

This is made possible at GWAS dataset scale using a fast and scalable a fast scalable 

implementation of ChromoPainter exploiting the Positional Burrows Wheeler Transform 

(PBWT-paint; https://github.com/richarddurbin/pbwt/blob/master/pbwtPaint.c) to speed up 

haplotype matching. Inflation due to confounding from population structure (measured 

using the LD score intercept) is reduced both in a small Dutch subset of the data 

(n=4,753) and the full multi-country dataset (n=35,985) when using these haplotype 

sharing PCs, while power to detect ALS risk variants is unaffected. Additionally both 

polygenic risk scores (PRS) calculated from GWAS corrected with these haplotype-based 

PCs and heritability estimates corrected with haplotype-based PCs are less affected by 

residual stratification than those corrected using standard SNP-based PCs. Strikingly, 

evidence from this analysis shows that the concentration of heritability in low frequency 

variants suggested by original analysis of the data may be overestimated, with 

implications for the genetic architecture of ALS. This chapter also proposes and validates 

a novel pipeline for quickly identifying population clusters in large datasets. The methods 

explored throughout this chapter will likely aid in the analysis of large GWAS and 

population genetics datasets.  

 

Finally, Chapter 6 highlights and discusses future directions opened by this thesis  

https://github.com/richarddurbin/pbwt/blob/master/pbwtPaint.c
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Chapter 1 - General Introduction 

 

The study of human genetics has benefited greatly in recent years from large scale 

international collaboration and data-sharing leading to the availability of ever growing 

genotype array datasets (e.g. the UK Biobank (Bycroft et al. 2018)), and a vast number of 

publicly available resources to maximise the availability and interpretation of results 

emerging from these datasets (e.g. the GWAS catalog (Buniello et al. 2019) and LD hub 

(Zheng et al. 2017)). This emerging data has significantly advanced our understanding of 

the spectrum of genetic variation within human populations (population genetics), and how 

it contributes to a wide range of traits (disease genetics). Indeed, owing to these sharing 

practices, the paradigm in genome wide association studies (GWAS) has moved from the 

insular analysis of individual variants affecting individual traits to understanding genetic 

pleiotropy and the shared genetic architectures of traits by integrating data from many 

studies. This paradigm may be particularly effective for understanding the genetic roots of 

rare diseases such as the late onset neurodegenerative disease amyotrophic lateral 

sclerosis (ALS), which due to its relative sparsity in the population may struggle with scale 

compared to GWAS for other common traits, limiting the power to study its genetic 

variation in isolation.  

 

However, regardless of sample size, study design may have unintended impact on both 

single-trait and multi-trait analysis, with distributions of variables not necessarily related to 

the trait such as sample ancestry and sex potentially affecting results. Improving our 

understanding of these variables and how they impact both single-trait and multi-trait 

analysis is thus an important area of focus. The work laid out in this thesis focuses on 

applying the paradigm of multi-trait analysis to the study of ALS, and exploring and 

addressing how latent population structure and sex affect our interpretation of data from a 

large GWAS dataset for ALS (van Rheenen et al. 2016). In addition, we conduct in-depth 

regional population genetic analysis of two countries from this dataset (Ireland and the 

Netherlands) to improve our understanding of historical events shaping modern 

populations.   
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1.1 - The genetics of ALS 

The principal trait of interest in this thesis is amyotrophic lateral sclerosis (ALS). ALS is a 

late-onset and fatal neurodegenerative disease with a lifetime risk of 1:400 in the general 

population (Hardiman, van den Berg, and Kiernan 2011), qualifying it as a rare disease. 

While twin studies suggest that it is highly heritable: 0.61 (0.38 - 0.78) (Al-Chalabi et al. 

2010), ALS only presents within families in between 5-20% of cases (Hardiman, van den 

Berg, and Kiernan 2011; Ryan et al. 2018), with the remainder showing no family history, 

complicating genetic analysis of the disease. Strikingly SNP-based heritability estimates 

are substantially lower than twin studies (~8.5% vs ~60%), highlighting additional 

difficulties in characterising the genetic causes of the disease (van Rheenen et al. 2016). 

These complications are reflected in the rate of discovery of ALS-related genes; while the 

first pathogenic mutations in familial cases were discovered in SOD1 over 25 years ago 

via linkage analysis (Rosen et al. 1993), the next major ALS gene TARDBP took over 15 

years to discover (Sreedharan et al. 2008). Although improvements in sequencing and 

genotyping technology have led to an increased rate of discovery in subsequent years, 

the percentage of cases explained by genetics remains low. The most common ALS 

mutation, the C9orf72 repeat expansion, is only found in roughly 7% of sporadic, and 40% 

of familial cases (Majounie et al. 2012), hence explaining less than 15% of cases. A 

recent review estimated that only ~70% of familial and ~15% of sporadic cases have 

mutations in known ALS genes (Chia, Chiò, and Traynor 2018), meaning the majority of 

cases (~80%) are unexplained genetically. 

1.1.1 - Non-genetic risk and the multistep model 

One likely reason for the sparsity of genetically explained cases could be the involvement 

of non-genetic components, such as environmental or lifestyle risks. While it is generally 

agreed that non-genetic factors play a role in ALS, much of the evidence for specific 

lifestyle and environmental risks is inconclusive (reviewed by Ingre et al (Ingre et al. 

2015)). Intriguingly as noted by Al-Chalabi et al (Al-Chalabi et al. 2014), even in 

individuals with known mutations, onset typically occurs suddenly in late life, suggesting 

that non-genetic factors accumulated across a lifetime play a role. In further support of 

this, investigation of disease registers from 5 countries yielded a linear relationship 

between log incidence and log age (Al-Chalabi et al. 2014), consistent with a multistep 

model for the disease whereby six insults are needed to develop ALS. More recent work 

around this concept of a multistep process of ALS pathology has shown that large effect 

mutations such as the C9orf72 repeat expansion can lower the slope of the above 

regression, accounting for more than one step in this multistep process (Chiò et al. 2018). 
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The authors argue that focusing on cases where genetics account for the majority of the 

steps (for example SOD1 which accounts for 4 of 6 steps) may increase our chances of 

identifying clear environmental factors as fewer factors will be involved (Chiò et al. 2018). 

Together these and other observations demonstrate the complexity of ALS as a 

multifactorial disease. 

1.1.2 - The emerging genetic architecture of ALS 

Genetic work in ALS is not limited to gene discovery. A large GWAS of ALS performed in 

2016 explored its genetic architecture, finding that heritability is roughly proportional to 

chromosome length (van Rheenen et al. 2016). This means that variants contributing to 

the disease are uniformly spread throughout the genome, suggesting that ALS is 

polygenic, or driven by many variants. The existence of a polygenic component of ALS 

has prompted exploration of hypotheses of genetic overlap between ALS and other traits 

using methods such as bivariate LD score regression (Bulik-Sullivan, Finucane, et al. 

2015) (introduced in section 1.2.3). A prime example of this is work demonstrating the 

genetic correlation of the polygenic components of schizophrenia and ALS (R. L. 

McLaughlin et al. 2017), which bolstered previous evidence of increased rates of 

psychotic illness in first degree relatives of ALS patients (S. Byrne et al. 2013). Leveraging 

knowledge of this correlation, the authors used pleiotropy-informed conditional false 

discovery rate (cFDR) analysis to identify novel ALS loci including TNIP1, which has since 

been validated in a both a cross-ethnic meta-analysis of ALS and a meta-analysis with 

North American samples (Benyamin et al. 2017; Nicolas et al. 2018). More recently 

studies have leveraged “pleiotropic enrichment” methods, which evaluate if the proportion 

of SNPs associated with a given phenotype increases as a function of association with a 

second phenotype, indicating genetic overlap. One such study focused on the overlap 

between ALS and diseases of the frontotemporal dementia (FTD) spectrum (Karch et al. 

2018) and identified significant overlap with FTD, progressive supranuclear palsy (PSP) 

and corticobasal degeneration (CBD). A subsequent wider-reaching study which looked at 

pleiotropic enrichment with ALS across 65 GWAS traits confirmed the above genetic 

overlaps, and added several more traits to the growing list (coronary artery disease, 

memory, C-reactive protein, celiac disease, body mass index and verbal numeric 

reasoning), identifying 59 novel pleiotropic ALS loci (Broce et al. 2018). While these 

pleiotropic loci are unlikely to contribute a large amount to genetic risk for ALS, they may 

contribute incrementally to our overall understanding of its disease biology. These studies 

highlight the power of contextualising relatively small GWAS for a rare trait with a number 

of large scale GWAS. 
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A second key feature that GWAS has revealed about ALS is that heritability is enriched in 

lower frequency variants (van Rheenen et al. 2016), signposting a potentially important 

role for rare variants. In support of this observation, gene burden analysis for excess rare 

variants has since identified two new ALS-associated genes, NEK1 and KIF5A (Kenna et 

al. 2016; Nicolas et al. 2018). Several recent studies have also observed that a significant 

number of ALS patients have 2 or more rare mutations in known ALS genes, suggesting 

an oligogenic basis to the disease (Morgan et al. 2017; Pang et al. 2017). The growing 

importance of understanding the role of rare variants in ALS has served as a motivation 

for the establishment of the international whole-genome sequencing (WGS) consortium 

Project MinE (van Rheenen et al. 2018).  

1.1.3 - Whole genome sequencing efforts 

The Project MinE sequencing consortium was established to uncover genetic risk factors 

for ALS through whole genome sequencing 15,000 patients and 7500 controls (van 

Rheenen et al. 2018). At the time of writing this consortium has generated and analysed 

WGS data for 4366 ALS patients and 1832 matched controls (van der Spek et al. 2019), 

and made the results of initial analysis publicly available in a databrowser  

(http://databrowser.projectmine.com/) to disseminate results and allow use as a replication 

cohort for other sequencing studies. The major advantage of WGS over SNP arrays 

typically used in GWAS analysis comes in its ability to identify rarer variation which is 

expected to be crucial in ALS (van Rheenen et al. 2016, 2018). However use of this 

technology may come with complications of its own. The pilot phase has identified that 

rare variants show tight spatial clustering in a subsample from the Netherlands (van 

Rheenen et al. 2018). Given previous work showing that rare variants may be subject to 

differential confounding than common variants (Mathieson and McVean 2012), this 

structuring of rare variants may bias results. Hence, careful adjustment will be crucial for 

the success of the project. For example it is conceivable that false positive associations 

could result from subtle population stratification if a rare variant’s geographic range 

overlapped the geographic range of an environmental risk factor for ALS. As such proper 

control for local population structure may prove essential in future efforts to explore the 

association of rare variants to ALS. In the pilot study it appears that false discovery rates 

are not significantly increased in this small primary cohort (van Rheenen et al. 2018), 

possibly suggesting that burden tests which aggregate many rare variants are less 

susceptible to confounding from structure. However, with the addition of more samples 

this analysis may have to be revisited. Hence there is a need for careful research into the 

current methods for identifying and characterising population structure.  

http://databrowser.projectmine.com/
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1.2 - GWAS: A window into complex trait architecture and 

epidemiology 

In principle, genome wide association studies (GWAS) assay the association between 

genetic variants spread across the entire genome and a measured trait (e.g. height) in a 

large sample of individuals with the goal of identifying loci that contribute to the heritability 

of that trait. These studies typically use a regression framework, which usually takes the 

form of a simple linear model for continuous traits, a logistic model for binary traits or a 

linear mixed model in cohorts with significant family and population structure (Yang et al. 

2014). As millions of concurrent tests are performed in a given GWAS, stringent p-value 

thresholds based on the number of independent common loci are applied to correct for 

multiple testing and reduce false positives. For GWAS in Europeans a p-value threshold 

of 5x10-8 is typically used, however as lower frequency alleles (e.g. <1% minor allele 

frequency) are assayed this may need to be adjusted (Fadista et al. 2016). External 

replication of significant loci in an independent sample is a gold standard requirement for 

these studies to reduce artifactual findings. Given that GWAS in humans are not 

controlled experiments but instead observational studies, multiple confounding covariates 

(e.g. age, sex, ancestry etc) must be accounted for to produce robust results. In particular 

sample ancestry is commonly corrected by fitting genetic principal components (PCs) as 

covariates (Price et al. 2006; Patterson, Price, and Reich 2006) in the regression, which 

capture broad ancestral differences that could lead to allele frequency differences 

between cases and controls unrelated to the studied trait (we will cover population 

structure more thoroughly in section 1.3). Owing to these many precautions, GWAS 

findings are highly replicable across studies as highlighted by the large numbers of 

replicated hits recorded in the GWAS catalog (Marigorta et al. 2018; Buniello et al. 2019), 

providing reliable insights into the genetic roots of diseases and other traits.  

1.2.1 - Genetic architecture  

In addition to reliably identifying loci of interest in multiple diseases, GWAS results have 

enabled us to explore the genetic architecture of human traits in unprecedented detail. A 

trait’s genetic architecture is defined by several factors including the number of genetic 

variants that confer risk for the trait, the distribution of their effects, the frequencies of 

these variants and the manner in which they interact (Gratten et al. 2014; Timpson et al. 

2018). Trait architectures are typically classified as monogenic, oligogenic or polygenic 

based on whether one, a few or many variants drive them, respectively (Badano and 

Katsanis 2002). For example, Mendelian disorders are driven by high impact variants in a 

single gene, and are thus considered to be monogenic, while complex traits such as 



6 
 

height, which are driven by many lower impact variants spread throughout the genome, 

are considered polygenic (Yang et al. 2010).  Understanding the genetic architecture of a 

disease is crucial for properly designing studies of that disease, for example when 

considering a rare variant-driven oligogenic disease (driven by a few genes), whole 

genome sequencing (WGS) might be essential for identifying the causal mutation given 

that WGS can identify low frequency variants not covered by standard genotyping arrays. 

In contrast, WGS might not be cost effective for studying a common variant polygenic 

disease whose variants are likely to individually be low effect, requiring large sample sizes 

to detect, when this variation could instead be adequately described by a much cheaper 

technology such as a SNP array.  

1.2.2 - Estimating heritability from individual level GWAS data 

The past decade has seen the development of a wide range of methods for estimating 

trait heritability from both individual level data (e.g. GCTA GREML (Yang et al. 2011)) and 

more widely accessible GWAS summary statistics (LD score regression (LDSC) (Bulik-

Sullivan, Loh, et al. 2015), Heritability Estimation from Summary Statistics (HESS) (Shi, 

Kichaev, and Pasaniuc 2016) and LDAK (Speed et al. 2017)), which have collectively 

revealed that the vast majority of complex traits are highly polygenic. Strategies 

aggregating the effects of all SNPs across the genome when estimating the phenotypic 

variance explained by GWAS for complex traits (the earliest example is height (Yang et al. 

2010)) have reconciled much (but not all) of the famous “missing heritability” attributed to 

early GWAS (Maher 2008; Manolio et al. 2009). These approaches demonstrate that 

properly modelling a trait’s genetic architecture is crucial for estimating heritability. Before 

this, researchers noted that significant SNPs identified by GWAS could explain only a 

fraction of the phenotypic variance attributed to total genetic effects by twin studies 

(Maher 2008; Manolio et al. 2009). The phenotypic variance explained by only significant 

SNPs under an additive model is termed the GWAS heritability (h2
GWS), while the variance 

explained by all genotyped SNPs collectively is termed the SNP-based heritability 

(h2
SNP)(Yang et al. 2017), which yields a closer value to heritability estimates from family 

and twin studies.  

 

The first method developed for estimating SNP-based heritability for quantitative (Yang et 

al. 2010) and binary (S. H. Lee et al. 2011) traits from individual level genetic data is 

commonly referred to as GREML (Genomic-relatedness-based Restricted Maximum 

Likelihood) and uses a mixed linear model to investigate the relationship between 

phenotypic similarity and genetic similarity. In this approach genetic similarity is 

represented by a pairwise “genetic relationship matrix” (GRM) constructed from all SNPs 
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genotyped in the dataset. GREML is typically carried out in distantly related individuals 

which minimises bias originating from a shared environment between related samples 

which may otherwise lead to overestimation of heritability (Yang et al. 2011, 2017). 

Notably this method can only capture the phenotypic variance explained by causal 

variants adequately tagged by the SNP set used, meaning h2
SNP will be smaller than the 

true narrow-sense heritability (h2; proportion of phenotypic variance explained by additive 

effects) for most SNP arrays due to inability to tag rare causal variants (Yang et al. 2017).  

 

Application of the base GREML model can be biased if the set of causal variants have a 

different minor allele frequency (MAF) spectrum or different linkage disequilibrium (LD) 

levels to the SNP set used to construct the GRM (Yang et al. 2015), motivating the 

development of LD and MAF stratified GREML model (GREML-LDMS). Applying GREML-

LDMS to imputed GWAS data for height demonstrated a moderate increase in h2
SNP from 

45% (Yang et al. 2010) to 56% (Yang et al. 2015), indicating that rare variation not 

captured by SNP arrays harbour some of the missing heritability in height. Despite the 

power and flexibility of this method it is limited in its usage by restrictions on sharing 

sensitive individual level genetic data between research groups and computational cost 

when running on large sample sets, motivating development of quick approximate 

methods using summary statistics such as LD score regression (Bulik-Sullivan, Loh, et al. 

2015; Zheng et al. 2017), HESS (Shi, Kichaev, and Pasaniuc 2016) and LDAK (Speed et 

al. 2017). 

1.2.3 - Estimating heritability from GWAS summary statistics 

The LD score regression (LDSC) model was developed to distinguish inflation caused by 

polygenicity from confounding (Bulik-Sullivan, Loh, et al. 2015). This model draws from 

the idea that variants in LD with a causal variant will have an inflated GWAS test statistic 

(𝜒2) as a result of this linkage. Hence under an infinitesimal or polygenic architecture with 

causal variants spread across the entire genome, there is an expected linear relationship 

between how much variation a given SNP tags (LD score = the sum of r2 between the 

SNP and surrounding SNPs) and its GWAS test statistic (Figure 1.1). A linear regression 

of 𝜒2  vs LD score under this model has a slope proportional to the trait heritability, as 

described in the central equation from the paper (Bulik-Sullivan, Loh, et al. 2015): 

 

                                𝐸[𝜒2|𝑙𝑗] =
𝑁ℎ2𝑙𝑗

𝑀
+ 𝑁𝑎 + 1,                                        (1) 
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where N is the number of individuals in the GWAS; M is the number of SNPs; h2/M is the 

per-SNP heritability; lj is the LD score of variant j and a is a measure of confounding due 

to population structure. GWAS inflation caused by cryptic relatedness or population 

structure is not expected to correlate with LD, and should thus only affect the intercept of 

the model (Na +1). This model is particularly useful for investigating complex trait 

heritability as it does not rely on individual level data, enabling researchers to apply it to 

publicly-available summary statistics, provided a suitable population-matched LD 

reference panel is available. Moreover, LDSC also provides a direct estimate for bias due 

to confounding (Figure 1.1), making it a useful tool for assessing how well-controlled a 

GWAS is from summary statistics alone (a property we will exploit in Chapter 5).  

 

Figure 1.1: LD score regression explained. 

The LD score regression model is a linear model describing changes in GWAS statistics 

(chi-squared, y axis) as a function of the LD score (x axis) with slope proportional to SNP 

heritability and intercept equal to one plus a term proportional to confounding. Model plots 

of LD score regression demonstrate how the model distinguishes inflation resulting from 

polygenicity from confounding in practice.  

a.) Where inflation of summary statistics are completely due to polygenic signal, SNPs with 

stronger LD scores will be more likely to tag a causal SNP resulting in a positive slope. 

The intercept will equal one in this case, as the confounding term a equals zero.  

b.) Where inflation is entirely due to confounding there will be no relationship between chi-

squared and LD score, hence the slope will be zero. The confounding term describes all 

inflation here and hence the intercept will be raised above 1.   

c.) Where there is inflation of GWAS statistics due to a mixture of confounding and 

polygenicity we will see both a positive relationship between LD score and chi-squared 

statistic (polygenicity), and an intercept above 1 (confounding). This is typically the case 

for real datasets.  
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In addition to estimating genome wide heritability, an extension of LD score regression 

known as stratified LD score regression (s-LDSC) has been developed to test for 

enrichment of heritability within genomic annotations (Finucane et al. 2015) (e.g. coding 

regions, promoters etc.), yielding answers to questions about which specific regions of the 

genome are most involved in trait heritability, and which classes of variants contribute 

most to risk for a given disease. This method has revealed important features of the 

architecture of complex traits and disease biology that might otherwise have been missed 

by standard pathway analyses and other approaches solely focusing on loci achieving 

significance. Of note studies using this method have identified a shared heritability 

enrichment across complex traits in conserved and coding regions (Finucane et al. 2015), 

pointed towards the enrichment of heritability for complex diseases in regions under 

strong negative selection (Gazal et al. 2017; Zeng et al. 2018) and demonstrated the 

relative enrichment of heritability in older and conserved regulatory regions (enhancers 

and promoters) (Hujoel et al. 2019). In addition, this method has revealed heritability 

enrichments in genes specific to a tissue or cell type for a number of traits (Finucane et al. 

2018) (e.g. CNS for schizophrenia). Some authors have argued for using these functional 

annotations known to be enriched for polygenic burden to weight SNPs and increase 

power in future GWAS (Kichaev et al. 2019), which demonstrates how growing knowledge 

on the general architecture of complex traits can feed into future discovery.  

 

However, there are caveats for the use of the LD score regression model, for example if 

the causal SNPs for a trait have a relationship with LD score, then the heritability 

estimates will become biased (downwardly biased where causal SNPs have LD scores 

below the genome-wide median LD score, and upwardly biased where the causal SNPs 

have LD scores above the genome-wide median LD score) (J. J. Lee, McGue, et al. 

2018). Given the emerging evidence that SNPs with lower LD (LLD) tend to have higher 

per SNP heritability (Gazal et al. 2017), this could mean estimates of heritability from 

LDSC are regularly downward biased by LD-dependent architecture. On top of this, LDSC 

is based on an infinitesimal model, meaning it assumes all SNPs contribute to trait 

heritability, which may be violated for many traits.  

 

Unlike LDSC, which assumes all SNPs contribute to trait heritability, HESS makes no 

assumptions about the distribution of effect sizes, meaning it should be more robust to a 

wider range of genetic architectures (Shi, Kichaev, and Pasaniuc 2016). HESS can 

estimate local SNP heritability (h2
g,local) robustly from summary statistics, accounting for LD 

structure at each locus using eigenvectors of an LD matrix (Shi, Kichaev, and Pasaniuc 

2016). This LD matrix can be calculated either within sample or from a reference dataset, 
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making the method versatile. In this way HESS can dissect which regions of the genome 

contribute most to heritability. Applied to 30 traits across 1,703 approximately independent 

loci HESS showed that a large fraction of trait heritability is found in common variants 

(Shi, Kichaev, and Pasaniuc 2016). As HESS estimates the contribution heritability of 

each region of the genome, it can also be used to compare the degree of polygenicity of 

traits. This can be achieved visually by ordering loci by their relative heritability and 

plotting the cumulative fraction of total heritability they explain together vs the cumulative 

fraction of the genome they cover (Figure 1.2). Traits closer to the 1:1 line show higher 

polygenicity as a large fraction of their genome contributes to heritability, while curves 

deviating drastically from this line suggest fewer SNPs drive the architecture. In Figure 1.2 

we see that ~80% of heritability for the neurodegenerative disease amyotrophic lateral 

sclerosis (ALS)  is explained by ~20% of the genome, suggesting it is much less polygenic 

than the neuropsychiatric diseases bipolar disorder and schizophrenia, which require 40% 

and 60% of the genome to explain the same fraction of heritability. Extreme examples of 

highly polygenic vs weakly polygenic traits from the initial HESS study of this method are 

height, which had heritability spread quite evenly across the genome and rheumatoid 

arthritis which had a lot of its heritability concentrated in a small fraction of SNPs (Shi, 

Kichaev, and Pasaniuc 2016).  

 

HESS can additionally be applied to multiple traits to identify shared regions enriched 

across all these traits, making it suitable for identifying pleiotropic loci important in the 

architecture of human disease. Moreover the model has been expanded to allow 

investigation of local genetic correlations between traits even in the absence of genome-

wide genetic correlation (Shi et al. 2017), enabling a more nuanced look at shared genetic 

architecture than genome-wide methods such as bivariate LD score regression (Bulik-

Sullivan, Finucane, et al. 2015).  
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Figure 1.2: Comparing trait polygenicity using HESS. 

The cumulative fraction of SNP-based heritability versus the fraction of the genome 

covered as estimated in HESS provides a visualisation of relative polygenicity for traits. 

For illustrative purposes polygenicity curves for amyotrophic lateral sclerosis (ALS) (van 

Rheenen et al. 2016), bipolar disorder (BIP) (Ruderfer et al. 2018) and schizophrenia 

(SCZ) (Ruderfer et al. 2018) calculated following the methods in Chapter 2 are plotted. 

Traits with high polygenicity are expected to trend towards the 1:1 line (dashed) as 

heritability is spread throughout the genome, while traits with steep inclines are explained 

by fewer variants and hence less polygenic. Here schizophrenia appears to be the most 

polygenic of the traits measured, while ALS appears to be the least polygenic. This 

demonstrates the utility of developing reliable local estimates of heritability in assessing 

the genetic architecture of traits.   

 

1.2.4 - Genomic prediction: polygenic risk scores 

As well as identifying and describing the genetic factors that contribute to trait heritability, 

GWAS summary statistics can also theoretically be leveraged to predict the disease 

liability of individuals in an independent cohort for a given trait (Wray, Goddard, and 

Visscher 2007). The most common method of genomic prediction is known as a polygenic 

risk score (PRS), which is simply a score calculated from the weighted sum of effect 

alleles an individual has for a given trait, with weights derived from a GWAS of the same 

trait. Methods for calculation of these scores vary; while some methods select SNPs for 

inclusion based on a p-value threshold, and prune correlated SNPs (e.g. PRSice 
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(Euesden, Lewis, and O’Reilly 2015)), others directly model the correlation structure 

between SNPs and use all variants to achieve the best prediction (e.g. the Bayesian 

method LDpred (Vilhjálmsson et al. 2015)).  

 

While early PRS for disease had little use in a clinical setting due to small, non-actionable 

risk increases in individuals with extreme scores (Ripatti et al. 2010), more recent studies 

have shown potential clinical utility. For example, a recent study in the UK Biobank 

showed a three-fold increase in risk for coronary artery disease (CAD) in individuals with 

high PRS which is comparable to the risk conferred by rare monogenic mutations (Khera 

et al. 2018). Given the prevalence of individuals with these high PRS scores was 20 fold 

higher than those with rare mutations conferring the same risk increase, PRS for CAD 

may become a useful predictor in diagnostic models (Khera et al. 2018). However, there 

are still several obstacles to application of PRS in the clinical setting. Most notably PRS 

have been shown to transfer poorly across ancestries, with lower predictive power in 

populations with divergent ancestry from the reference GWAS cohort (A. R. Martin et al. 

2017). Given the huge bias towards exclusively European GWAS at present, and the 

resulting significantly attenuated predictive power of PRS from these GWAS in non-

European individuals (Duncan et al. 2019), use of PRS in a clinical setting is likely to 

result in significant health disparities across populations (A. R. Martin et al. 2019). In 

addition to reduced predictive power across ancestries, PRS also show evidence of 

potential bias from residual population structure, with PRS for a number of traits clustering 

geographically in both Finland (Kerminen et al. 2019) and the UK (Haworth et al. 2019; 

Abdellaoui et al. 2019). Some of this clustering of PRS in the UK Biobank may be partially 

explained by extremely recent socio-economic driven migration (Abdellaoui et al. 2019), 

which could theoretically result in further disparities in their clinical use. Hence, while the 

improvements in power of PRS heralded by the large training and testing sets emerging 

from biobanks suggest a possible clinical application, until GWAS become more diverse 

and potentially better controlled for population structure, PRS will be of limited clinical use 

for large numbers of individuals, and will likely exacerbate damaging health inequalities 

due to the above systematic biases.  

1.2.5 - Non-additive effects and the role of rare variation 

While additive models accounting for polygenicity (e.g. h2
SNP) have made huge strides in 

closing the gap between twin studies and early estimates of heritability from GWAS data 

for complex traits, there is still a notable disparity. Some researchers have posited that the 

remaining missing heritability is held by non-additive effects (e.g. dominance and 

epistasis). However, GWAS results from 79 quantitative complex traits have been used to 
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demonstrate that dominance genetic variation contributes very little to phenotypic variance 

(Z. Zhu et al. 2015), and precise estimates of the variance attributable to epistasis are 

expected to require huge samples (millions of individuals) (Yang et al. 2017). Alternatively, 

rare variants not captured by SNP panels or imputation may hold the remaining 

heritability. Recent application of heritability estimation methods coupled with whole 

genome sequencing (WGS) have further closed the gap between the SNP heritability and 

twin study heritability for height and BMI thanks to the inclusion of rarer variation 

(Wainschtein et al. 2019). This emerging work implies that many of the causal genetic 

variants contributing to variation in height and BMI are rare and in low LD, challenging the 

prior observation that polygenic diseases are mainly driven by mainly common variants 

(Shi, Kichaev, and Pasaniuc 2016) and motivating future adoption of WGS in GWAS 

design once adequate sample sizes become available. 

1.2.6 - Beyond polygenicity: The omnigenic model and pleiotropy 

While GWAS signals are enriched in functional regions of the genome, the ubiquity of 

weak effect variants spread broadly across the entire genome in complex traits has 

brought into question the idea that all associated variants should fall in biologically 

relevant genes and pathways. This motivated the development of a new theoretical 

framework for considering their genetic architecture termed the “omnigenic” model (Boyle, 

Li, and Pritchard 2017). This model builds on Fisher’s infinitesimal model (Fisher 1918), in 

which every variant is considered to have a non-zero effect on the phenotype. The 

framework of this model is that some genes will have direct effect on trait biology (i.e. 

produce a protein or transcript that directly affects a relevant cellular process leading to 

variation in the trait) which are termed “core” genes, while all other genes expressed in a 

relevant tissue will have some small but non zero effect through network interactions with 

the core genes (these genes are termed “peripheral”). Hence under this framework 

phenotypic variation caused by the expression of core genes can be partitioned into cis 

regulatory effects on core gene expression and trans regulatory effects on core genes 

mediated through peripheral genes (Xuanyao Liu, Li, and Pritchard 2019). As trans effects 

on expression are expected to cumulatively contribute a large fraction of the heritability of 

gene expression, the model suggests that they should too explain the majority of trait 

heritability (Xuanyao Liu, Li, and Pritchard 2019).  

 

One important advancement that the omnigenic model offers over standard polygenic 

models is a conceptual framework for interpreting pleiotropy, the phenomenon where 

genetic variants affect multiple traits. Where two traits have no shared or co-regulated 

core genes, but simply share peripheral genes with no direct effect on trait biology, we 



14 
 

expect these sporadically pleiotropic variants not to correlate in terms of direction of effect. 

In contrast where the core genes of both traits are shared or co-regulated, indicating some 

degree of biological overlap, then the pleiotropic variants can have correlated directions of 

effect on the two traits. This means methods such as bivariate LD score regression (Bulik-

Sullivan, Finucane, et al. 2015) which look at the signed correlation of SNP effects across 

multiple traits should preferentially identify sources of biologically informative pleiotropy, 

as opposed to sporadic pleiotropy. 

 

Polygenic risk has been shown to correlate for a large number of diseases both globally 

(Bulik-Sullivan, Finucane, et al. 2015; Zheng et al. 2017) and locally (Shi et al. 2017), 

suggesting shared genetic components influence multiple diseases, which may point to 

shared causal genetic mechanisms, or result from random pleiotropy with no biological 

overlap. On top of this shared polygenic architecture spread across many low effect 

SNPs, a large number of variants appear to have a statistically significant impact on more 

than one trait (Watanabe et al. 2019). These observations imply that to fully understand 

the genetic contribution of variants to disease, traits are best studied together rather than 

in isolation, a paradigm which is being adopted by multi trait meta analyses methods such 

as multi-trait analysis of GWAS (MTAG) (Turley et al. 2018), which leverage correlated 

summary statistics from multiple traits to enhance power to detect causal SNPs. Proper 

model specification is crucial to maximise yield from multi-trait analysis, for example 

MTAG assumes SNPs have a homogeneous effect on each correlated traits studied 

making it unsuitable in cases where some SNPs only affect some traits. More 

sophisticated multivariate methods such as Genomic Structural Equation Modelling 

(Genomic SEM) (Grotzinger et al. 2019) allow researchers to specify and compare a 

range of multivariate genetic architectures, and estimate which SNPs diverge from these 

models via estimates of heterogeneity, making these methods more flexible. Importantly 

this allows construction of composite polygenic risk scores for related traits with 

heterogeneous loci removed, which would be disproportionately predictive of some 

subtraits. Composite psychiatric polygenic risk scores constructed with Genomic SEM 

outperformed univariate scores in the UK Biobank (Grotzinger et al. 2019), supporting a 

general shared polygenic component for psychiatric diseases (see the p-factor model 

(Caspi et al. 2014)). These composite GWAS could also potentially improve pathway 

enrichment analyses and point towards shared mechanisms.  
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1.3 - Population structure 

Population structure refers to the existence of subpopulations in a dataset or population 

which (in a genetic context) are distinguishable based on differences in their observed 

genotypes (Hellwege et al. 2017). Population structure is caused by non-random mating, 

potentially due to geographic isolation or assortative mating arising from cultural 

differences. Once subpopulations are isolated, mechanisms such as genetic drift, 

mutation and selection act independently on resulting groups leading to their genetic 

differentiation over a number of generations (however it is important to note that 

populations are rarely entirely split, and migration slows the effects of these processes; 

see Figure 1.3 for the scale of differentiation in Europe). Differentiated populations 

harbour systematic differences in allele frequencies as a result of these processes, which 

are measurable using metrics such as the average fixation index (FST) across a set of 

unlinked markers (Holsinger and Weir 2009; Hellwege et al. 2017). Markers with large 

frequency differences between subpopulations can drive spurious associations in genetic 

association studies where sampling of cases and controls from subpopulations is uneven. 

This systematic difference in allele frequencies between cases and controls due to 

ancestry or population structure is referred to as population stratification (Price et al. 

2006). Correction for population stratification is essential for robust large scale genome 

wide association studies (Marchini et al. 2004; Campbell et al. 2005) which has prompted 

the development of a range of techniques to quantify it and adjust for it. Standard methods 

of identifying population structure include the use of ancestry informative markers (AIMS), 

dimensional reduction techniques such as principal component analysis (PCA) (Price et 

al. 2006; Patterson, Price, and Reich 2006) and model based clustering methods such as 

such as STRUCTURE and ADMIXTURE (Pritchard, Stephens, and Donnelly 2000; 

Alexander, Novembre, and Lange 2009). 
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Figure 1.3: Subtle allele frequency differences between European countries 

Correlation plots comparing allele frequencies for ~110,000 independent genotype 

markers between 10 European countries (Data from Sawcer et al. (Sawcer et al. 2011)) 

provide an intuition of how subtle the differences resulting from forces such as genetic drift 

are in Europe. While some variants show large frequency differences between countries, 

the majority of variants have broadly similar allele frequencies. This is visible in the strong 

linear relationships seen in the bottom panels and high pairwise correlation coefficients 

seen in the top panels. In spite of how subtle these differences are, however, these 

populations are distinguishable via PCA and other methods discussed for detecting 

population structure in this section. 

1.3.1 - Ancestry informative markers: 

AIMs are markers with extremely large frequency differences between populations. A 

major advantage of AIMs is they enable identification of broad ancestry differences using 

very few markers, allowing for correction for population structure in association studies 

that have not generated dense genotype data. Notably continental ancestry can be 

accurately estimated using as few as 128 AIMs (Kosoy et al. 2009), demonstrating their 

power. A set of 300 AIMs was shown to outperform self-reported ancestry in correcting for 

population stratification in a cohort of European Americans (Price, Butler, et al. 2008), 

confirming their potential for use in small association studies. However while AIMs can be 

identified that can efficiently separate many ancestry groups, for large association studies 

sampling from a range of countries, with potentially unknown ancestry groups (making 
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marker selection tricky), it is more prudent to use a much larger set of markers to detect 

and correct for population structure. 

1.3.2 - Principal component analysis: 

Principal Component Analysis (PCA) of genetic data is a model-free approach for 

detecting population structure, which works by decomposing high dimensional genetic 

variation from many markers into a smaller number of uncorrelated orthogonal dimensions 

explaining the largest portion of variance between samples. When data are properly 

prepared, the first few PCs generally describe the ancestral similarities and differences 

between samples with no prior assumptions. Use of PCA to describe ancestral clines of 

allele frequencies and their relationship to geography was first proposed by Cavalli-Sforza 

(Menozzi, Piazza, and Cavalli-Sforza 1978). The method has famously since been used 

on SNP genotype data to demonstrate that genes mirror geography in Europe (Novembre 

et al. 2008), and is regularly exploited as a continuous covariate to correct for population 

structure in GWAS analysis due to its relative simplicity and effectiveness (Price et al. 

2006). As it reduces the sources of variation to a few key components, PCA can be used 

for many thousands of markers without prior knowledge of informativeness, hence making 

discovery of AIMs redundant in large GWAS datasets. PCA, however, assumes 

independence of variables, and as such the method requires pruning of markers in linkage 

disequilibrium (LD) to obtain an approximately independent SNP set. This pruning process 

potentially leads to the loss of information about population structure that might be 

captured by patterns of correlation or linkage disequilibrium between markers. In addition 

to model-free approaches like PCA, several methods for characterising and correcting 

population structure use explicit models to characterise subgroups in a genetic dataset. 

1.3.3 - Model based clustering: STRUCTURE and ADMIXTURE: 

Model based clustering approaches assume that K genetic sub-populations exist in a 

heterogeneous population (or dataset), with each defined by its own set of distinct allele 

frequencies. Using this assumption they aim to assign individuals to one (no admixture 

model) or a combination (admixture model) of those sub-populations based on the 

probability of their observed genotypes in the sub-populations. For example in a no-

admixture model, the likelihood of an individual originating from sub-population K carrying 

a given allele is equal to the frequency of that allele in sub-population K. However to begin 

with neither the allele frequencies, nor the membership of the sub-populations is known, 

and estimation of each is conditional on the state of the other. Because of this, methods 

such as STRUCTURE (Pritchard, Stephens, and Donnelly 2000) initialise parameters of 
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interest such as sub-population origin of an individual (Z) and sub-population allele 

frequencies (P) using priors, then sample new solutions for each parameter sequentially 

using a Markov Chain Monte Carlo (MCMC) model over many iterations (i.e. when 

sampling P on the nth MCMC iteration, the values of Z from the (n-1)th iteration would be 

used to define the probability distribution P is drawn from). For a model allowing admixture 

a third parameter Q may also be considered, which is the proportion of an individual's 

genome originating from a population subgroup (Pritchard, Stephens, and Donnelly 2000; 

Alexander, Novembre, and Lange 2009). ADMIXTURE adopts a similar likelihood model 

to STRUCTURE, but uses a maximum likelihood approach rather than an MCMC 

approach, greatly improving speed (Alexander, Novembre, and Lange 2009). 

The subpopulations derived from model based clustering can in theory be used to control 

for population stratification in association testing in a process called Structured 

Association (SA) (Pritchard et al. 2000). SA tests the null hypothesis that allele 

frequencies are independent of phenotype within subpopulations against the alternative 

hypothesis that allele frequencies depend on phenotype in the given subpopulation. As 

subpopulations are expected to be ancestrally homogeneous, and hence harbour no 

population stratification, this test should not be biased by stratification. However SA relies 

on correct assignment of subpopulations, potentially opening it to bias where K is 

misspecified. Hence SA can be error prone in situations where estimating K is difficult, for 

example where one of the sub-populations is underrepresented. STRUCTURE and 

ADMIXTURE are also computationally intense, and often cannot converge in cases where 

K is greater than 10, limiting their usefulness in correcting population structure where 

many ancestral groups are present (Lawson et al. 2012). In addition many model-based 

clustering approaches (for example ADMIXTURE and STRUCTURE) assume 

independence of markers in the modelled populations (exceptions discussed below), 

potentially limiting their power to detect patterns of subtle population structure captured by 

patterns of linked markers.  
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1.3.4 - Haplotype sharing methods: 

Markers located on the same chromosome are physically connected and inherited 

together, unless separated by recombination, in what is known as a haplotype. In a 

population many haplotypes are shared in common among individuals with shared 

ancestry, leading to correlation between markers known as linkage disequilibrium (LD). 

The existence of LD violates the independence assumptions of PCA and many model-

based clustering algorithms, potentially rendering them unsuitable for capturing true 

patterns of population structure (Lawson et al. 2012). Recently a range of methods 

exploiting linkage information between markers to improve detection of population 

structure have been developed. One approach, ChromoPainter (illustrated in Figure 1.4), 

uses a Hidden Markov Model to reconstruct the chromosomes of each individual as a 

series of haplotypic “chunks” from their nearest neighbouring haplotype in the sample 

population (Lawson et al. 2012). In doing so ChromoPainter can summarise the ancestral 

relationships between samples based on the degree of haplotype sharing with other 

individuals in the sample in a “coancestry matrix”. The model is flexible in that the linked 

chunks reduce to single markers in cases where no LD is present, making it suitable for 

use in both densely and sparsely genotyped data. The coancestry matrix contains rich 

ancestral information that can be projected into PC space to demonstrate population 

structure or clustered using fineSTRUCTURE (a companion model-based clustering 

algorithm that uses an MCMC approach to partition the data into distinct homogeneous 

groups), making it a versatile summary of population structure. Unlike STRUCTURE and 

ADMIXTURE, fineSTRUCTURE does not rely on a user-specified K, and is capable of 

splitting data into over 100 groups (>10 groups rarely reaches convergence in 

STRUCTURE) (Lawson et al. 2012). As well as providing a finer resolution of clustering, 

fineSTRUCTURE also generates a hierarchical tree representing the relationships 

between clusters, allowing greater understanding of the history of relationships between 

these groups. This method has recently been employed to greatly improve our 

understanding of subtle population structure in a number of countries. 

ChromoPainter and fineSTRUCTURE have been used to great effect in detecting subtle 

regional population structure at a resolution not previously possible in a range of countries 

to date including Britain, Finland, Ireland (see Chapter 3), Japan, Spain, the Netherlands 

(see Chapter 4), Italy and France (Leslie et al. 2015; Kerminen et al. 2017; R. P. Byrne et 

al. 2018; Gilbert et al. 2017; Takeuchi et al. 2017; Bycroft et al. 2019; Raveane et al. 

2019; Pierre et al. 2020; R. P. Byrne et al. 2020). These studies all identify subtle 

differences at short geographic ranges based on haplotype sharing profiles, suggesting 
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that population structure exists on a finer scale than typically detected using unlinked 

markers. One important implication of these studies is that PCA and popular model-based 

clustering algorithms applied to unlinked markers fail to identify subtle genetic structure 

existing within populations, and might be expected to underperform when used to correct 

for confounding in association studies. Notably a study of residual stratification in 36 

published GWAS studies using LD score regression intercepts (Bulik-Sullivan, Loh, et al. 

2015) confirms the limitations of SNP based PCA, revealing residual stratification in 8 

studies despite correction using PCs (Bhatia et al. 2016). Additionally polygenic signals of 

adaptation for traits such as height have recently been shown to be significantly biased, 

likely due to uncorrected population stratification (Sohail et al. 2019; Berg et al. 2019), in 

spite of use of standard correction procedures. Recent simulations have also shown that 

common variant PCA is only suitable for correcting old longstanding population structure, 

and does not fully correct confounding from complex recent population structure in GWAS 

(Zaidi and Mathieson 2020). Moreover GWAS of birth location in the UK Biobank, which is 

essentially a proxy for population stratification, shows significant GWAS associations 

(Haworth et al. 2019) and genetic correlations with behavioural traits (Cook, Mahajan, and 

Morris 2020) despite correction with large numbers of SNP PCs. Leveraging the results of 

fine-scale population genetics based on haplotype sharing between individuals may prove 

more suitable than SNP-based PCA to address this residual confounding in association 

studies due to the capacity to capture both recent and deep structure. Moreover, as 

haplotype sharing approaches tend to identify more recent population structure, they may 

also be more suitable for capturing and correcting the subtle stratification of rare variants 

(Mathieson and McVean 2012). Given the rare variant architecture of ALS discussed 

above (van Rheenen et al. 2016), development of appropriate corrections for differential 

confounding of rare variants may be warranted to further our understanding of the 

disease. On top of this the extended role of environmental effects in ALS likely makes 

careful correction for population structure increasingly relevant for this trait. However, to 

date the use of haplotype sharing methods to correct population structure in genetic 

association studies has not been explored in detail, despite their substantially improved 

power to detect subtle structure. We will explore this untapped application in detail in 

Chapter 5. 
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Figure 1.4: Toy illustration of chromosome painting 

A toy illustration of the basic process of chromosome painting employed by methods such 

as ChromoPainter (Lawson et al. 2012). Here haplotypes (rectangles) made up of biallelic 

variants (dots) are shown. The recipient haplotype (h4) can be “painted” as a mosaic of 

copied “chunks” from the best matching donor haplotypes (h1 and h2), as indicated by the 

colour pallet and arrows. Each copied “chunk” can be intuitively thought of as an 

independent instance of recent shared ancestry between the donor and the recipient 

haplotypes at that locus. This “chunk” sharing provides more information about the 

relationship of h4 to the donor haplotypes than the independent markers do alone (each 

donors shares exactly 3 alleles with h4, which is uninformative). The copying process 

used here is governed by the Li and Stephen’s Hidden Markov Model (HMM) (Li and 

Stephens 2003) which sequentially moves along the chromosome finding the best 

matching donor and switching “chunks” based on a parameterised recombination rate. 

Mismatches are permitted based on a mutation parameter. Figure adapted from Li and 

Stephens (Li and Stephens 2003) for illustrative purposes  

The utility of haplotype sharing in population genetics is far from limited to the detection of 

population structure or potential sources of confounding in association studies. 

Companion methods have been developed which leverage the output of ChromoPainter 

to date recent admixture events based on the length distribution of haplotypes from 

admixing sources (Hellenthal et al. 2014), and to estimate the proportion of an individual’s 

genome most closely related to a reference population (Leslie et al. 2015; Chacón-Duque 

et al. 2018). Moreover following the recent surge of methods developed to accurately 

estimate regions of the genome at which unrelated individuals share a common ancestor 

from SNP data (identity by descent, IBD) (Gusev et al. 2009; B. L. Browning and Browning 

2011, 2013a, 2013b), methods have leveraged this haplotypic sharing to make inferences 

about demographic change in the past 100 generations. Seminal works by Palamara et al 

developed a framework for describing the relationship between the demographic history of 

populations and the distribution of IBD segment lengths, enabling inferences to be made 

about population size fluctuations across time and migrations between populations from 

observed IBD sharing in populations (Palamara et al. 2012; Palamara and Pe’er 2013). 

Non-parametric approaches to estimate population growth and decline based on the 
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distribution of time to most recent common ancestor given an observed segment have 

also emerged which achieve similar resolution with much shorter runtimes (S. R. 

Browning and Browning 2015). Aside from general interest, the emergence of such 

powerful techniques for dissecting recent events in human population history may prove 

important for contextualising the study of recently arising rare disease causing alleles, as 

seen in a recent study of haplotype sharing in Finland (A. R. Martin et al. 2018), where the 

authors showed increased haplotype sharing among individuals sharing rare disease-

causing variants. Thus the interface between population genetics and medical genetics is 

a rich emerging field. 

1.4 - Aims 

The research detailed in this thesis has four major foci which together culminate in the 

shared aims of improving our understanding of disease genetics (in particular ALS), and 

its interface with population genetics:  

i.) Understanding of the genetic overlap of ALS with comorbid secondary psychiatric and 

cognitive phenotypes 

 

ii.) Evaluating the role of sex in the genetic risk of ALS 

 

iii.) Characterising finescale population structure and demographic history from medical 

datasets 

 

iv.) Investigating novel haplotype sharing methods for addressing GWAS confounding 

from multiscale population structure.  

 

While this work is important for properly understanding the genetics of ALS and other 

diseases, it also holds a general interest for historians as haplotype-based methods allow 

us to date and characterise recent migrations, estimate changes in population size and 

reveal nuanced pictures of recent history. In this thesis I will outline the results of my work 

on characterising the shared genetic architecture of ALS and secondary complex traits 

using GWAS summary statistics and exploring its heterogeneity across sexes using 

individual data (Chapter 2) which contributes towards my first aim and second aims; I will 

discuss my work dissecting the local population structure and recent demographic change 

in Ireland and the Netherlands using haplotype sharing and other complementary 

methods (Chapters 3 and 4) which contribute towards my third aim; finally I will investigate 
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the application of haplotype sharing matrixes on large (n=36k) GWAS datasets to correct 

for both finescale and broadscale inflation from population stratification and other 

technical artifacts (Chapter 5) which will contribute towards my fourth aim. Notably large 

samples from homogeneous populations such as the UK Biobank demonstrate substantial 

population structure (Diaz-Papkovich et al. 2019), suggesting that there is a great 

importance to understand and correct this local structure if we are to robustly study 

disease associations in coming years where similar large cohorts are likely to emerge as 

central resources. 
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Chapter 2 - The Extended Genetic Architecture of ALS 

 

2.1 - Introduction 

2.1.1 - Background 

While ALS is primarily a motor system disease, extra motor symptoms are common, with 

cognitive and behavioural changes comorbid in between 30%-50% of patients (Rippon et 

al. 2006; van der Hulst, Bak, and Abrahams 2015; Beeldman et al. 2016; van Es et al. 

2017). Systematic meta-analysis has shown that all cognitive domains except 

visuoperceptive functions are significantly affected in ALS patients compared to controls 

(Beeldman et al. 2016), including significant effects on fluency, social cognition, verbal 

memory, executive function and language. Additionally comorbidity with frontotemporal 

dementia (FTD) is high in ALS, with ~15% of ALS patients fulfilling the Neary criteria for 

diagnosis with FTD (Phukan et al. 2012).  These extra motor symptoms form an important 

axis of the disease which can impact caregiver burden, and have a significant negative 

effect on the success of life-prolonging treatments such as enteral nutrition (EN) and non-

invasive ventilation (NIV) (Chiò et al. 2012). Interestingly recent emerging evidence 

suggests that lower cognitive performance may have a shared genetic component with 

ALS: higher polygenic risk scores for ALS were negatively associated with measures of 

verbal numeric reasoning in the UK Biobank (Hagenaars et al. 2018); and LD score 

regression of years of schooling as a proxy measure of cognition versus ALS showed a 

nominally significant negative correlation with ALS in a separate study (Bandres-Ciga et 

al. 2019) (though the latter was not significant after multiple testing). However it remains 

unclear whether this genetic overlap has a causal relationship with ALS, and what the 

extent of pleiotropy between these traits is. The widespread nature of extra motor 

cognitive symptoms and evidence for a possible involvement of genetic factors warrants 

further work characterising the genetic overlap between ALS and cognitive function.  

 

Similarly to cognitive and behavioural symptoms, neuropsychiatric diseases also appear 

to be widely concomitant with ALS. Neuropsychiatric disease is significantly enriched in 

ALS kindreds (S. Byrne et al. 2013), and a prior diagnosis of depression, bipolar disorder, 

schizophrenia, or anxiety has been strongly linked with a higher risk of diagnosis with ALS 

in subsequent years (Turner et al. 2016) . ALS has recently been shown to have a genetic 

overlap with schizophrenia (R. L. McLaughlin et al. 2017), raising the possibility that 

shared genetic risk factors drive these associations between ALS and other psychiatric 

traits (though no additional links with secondary psychiatric traits were identified in the 
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aforementioned study, likely due to power). Since these studies, larger GWAS have 

emerged for many of the studied secondary traits, alongside reasonably powered GWAS 

for untested traits such as anxiety (Otowa et al. 2016) and post-traumatic stress disorder 

(Duncan et al. 2018) and better measures of cognitive performance (Davies et al. 2018; J. 

J. Lee, Wedow, et al. 2018) motivating an updated investigation of the genetic overlap of 

ALS with psychiatric and cognitive traits. Moreover, methodological advances including 

powerful multi-trait methods to improve power and detect pleiotropic loci (Turley et al. 

2018; Grotzinger et al. 2019) and models for determining the causality of a genetic 

correlation (O’Connor and Price 2018) have been developed, meaning we are currently in 

a strong position to untangle the nature of these genetic overlaps. As a central aim of this 

chapter we will dissect the nature of the genetic overlap between ALS and cognitive and 

psychiatric traits. A firm understanding of the genetic basis of the relationship between 

ALS and these secondary traits will likely improve our understanding of disease aetiology 

and potentially inform treatment of extra motor symptoms.       

 

In addition to extramotor symptoms, the role of sex in ALS, and its interaction with 

genotype is well documented throughout the literature (Trojsi et al. 2020), but rarely 

accounted for in the design of genetic studies. The genetic risk of ALS appears to be 

partially sex-dependent, as evidenced by sex-specific heritability estimates, which show 

increased heritability in mother-daughter pairings (Figure 2.1) (Ryan et al. 2019). This sex 

by gene interaction can have substantial impact on disease outcome, as observed in the 

lower survival rates of males with spinal onset ALS harbouring the C9orf72 repeat 

expansion compared to females (Rooney, Fogh, et al. 2017). Additionally sex appears to 

affect the onset of the disease, with higher observed rates of ALS in males pre-

menopause age (Manjaly et al. 2010), suggesting a potential protective role of female sex 

hormones in ALS risk. Conversely, testosterone, the male sex hormone may contribute to 

ALS risk; It has been suggested that high levels of pre-natal testosterone, regardless of 

sex, increase ALS risk, likely by conferring motor neurone vulnerability (Vivekananda et al. 

2011) (measured using index-to-ring finger ratio as a proxy). As ALS is a multifactorial 

disease which appears to be governed by a multistep process (Al-Chalabi et al. 2014; 

Chiò et al. 2018), requiring more than one insult (~6) to develop across a patient’s 

lifespan, it is apparent that environmental and lifestyle exposures contribute to disease 

onset in addition to an individual’s baseline genetic or biological risk. It is possible thus 

that a combination of sex-differentiated hormonal exposures, lifestyle exposures and 

biology could all modify the risk for developing ALS conferred by genetic variants in men 

and women. In a GWAS context, this would lead to an apparent sex dependent 

heterogeneity in the effect sizes of risk loci in males and females that might decrease 
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power to detect these loci in combined analysis, particularly where cohorts are 

unbalanced for sex. Conceptually, this is analogous to studying a composite of two distinct 

diseases with shared phenotype but differing genetic risk factors, a scenario which has 

been shown by simulation to lead to lower power to detect risk loci and deflated estimates 

of SNP heritability (Wray and Maier 2014). This may potentially explain some of the 

discordance between pedigree-based heritability estimates (~52%(42%-62%) Figure 2.1 

(Ryan et al. 2019)) and SNP based estimates of heritability in ALS (~8% (van Rheenen et 

al. 2016)). Hence, given the potential gain in power, and importance to the proper design 

of future GWAS, the second central aim in this chapter is to assess the impact of sex on 

GWAS studies of ALS, and address this potential heterogeneity using a sex stratified 

GWAS design for ALS. In doing so we provide further evidence for a sex specific 

architecture and highlight the potential power increases for future large ALS GWAS by 

stratifying by sex.      

 

 

Figure 2.1: Stratified ALS heritability estimates for Irish population. 

Mean pedigree-based heritability estimates for ALS in A) the whole population studied and 

B) The population not harbouring the C9orf72 mutation. Estimates were calculated in the 

overall population, and independently for subpopulations with different parent-offspring 

pairings (Daughter-Mother, Mother-Son, Father-Daughter and Son-Father). Notably 

Mother-Daughter pairings show the highest average heritability, while heritability 

calculated in opposite sex parent-offspring pairings (Mother-Son and Father-Daughter) is 

lowest, suggesting a sex-specific component to heritability. 

Figure reproduced from Ryan et al. (Ryan et al. 2019) for illustration purposes. 

Figure source: https://jamanetwork.com/journals/jamaneurology/fullarticle/2737804 

 

https://jamanetwork.com/journals/jamaneurology/fullarticle/2737804
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In addition to showing a higher heritability in females than males, the results of Ryan et al. 

(Ryan et al. 2019) (Figure 2.1) show a difference in ALS heritability estimates in like-sexed 

(e.g. Mother-Daughter and Father-Son) and unlike-sexed (e.g. Mother-Son and Father-

Daughter) parent-offspring pairings, suggesting that ALS may not be perfectly genetically 

correlated between sexes. Following Falconer (Falconer 1967), we can estimate the 

pedigree-based genetic correlation between sexes with the formula: 

                                                            𝑟𝑔  =  
ℎ𝑚⋅ℎ𝑓(𝑈𝑛𝑙𝑖𝑘𝑒) 

ℎ𝑚⋅ℎ𝑓(𝐿𝑖𝑘𝑒)
 ,                                            (2) 

where rg is the genetic correlation between sexes, hm and hf are the square routes of the 

heritability estimates for males are females respectively in like-sexed and unlike-sexed 

pairs. This returns an estimate of 62.8% (95% c.i: 48%-73.2% ) for the pedigree-based 

genetic correlation between males and females for ALS providing empirical evidence that 

the trait is explained by different genetic factors in males and females and further 

motivating the study of potential sex-based heterogeneity in ALS genetics in a GWAS 

context.  

 

Further supporting the potential importance of exploring sex based heterogeneity in ALS 

genetics, there is mounting evidence of heterogeneity in the genetic architecture of ALS 

across recent GWAS. In the past four years (2016-2020) two moderately sized GWAS for 

ALS (van Rheenen et al. “2016 ALS GWAS”; n=36,052 (van Rheenen et al. 2016) and 

Nicolas et al. “2018 ALS GWAS”; n=80,610 (Nicolas et al. 2018)) have emerged, enabling 

more in depth study of the genetic architecture of ALS. The first of these GWAS 

(n=36,052) established firm evidence that ALS is a polygenic trait, showing that SNP-

based heritability is roughly 8.5% and is proportional to chromosome size (van Rheenen 

et al. 2016), suggesting that larger GWAS should return additional trait-associated loci. 

However, the subsequent 2018 ALS GWAS (n=80,610) identified very few additional loci 

(KIF5A,TNIP1, TBK1), and in fact lost association signal at an equal number of loci 

(MOBP, SARM1 and SCFD1), despite a doubling in sample size, meaning GWAS in ALS 

may have diminshing returns. The low yield of novel variants may be explained partially by 

the concentration of heritability in low frequency variants observed in the 2016 ALS 

GWAS (van Rheenen et al. 2016), suggesting a rare variant architecture for the disease 

that may require more sensitive methods such as whole genome sequencing to identify 

further causal variants. However the loss of association at MOBP, SARM1 and SCFD1, 

each tagged by common variants, suggests that additional factors are at play.  

 

One possible answer to this discrepancy is study design, as the initial study applied a 

powerful linear mixed model (LMM) approach to control for population structure, enabling 
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the joint analysis of all samples, while the subsequent study used a meta-analysis design, 

requiring splitting of cohorts and enforcing more stiff assumptions of homogeneity of effect 

across cohorts. The use of a meta-analysis may have resulted in lower power in the 2018 

ALS GWAS, potentially explaining the loss of association at these variants, however the 

doubling in sample size appears to more than compensate for this (Figure 2.2; the 2018 

ALS GWAS is better powered on average). Instead it is more probable that the sensitivity 

of meta analysis to heterogeneity of effect is responsible here, which would manifest if 

MOBP and SCFD1 have heterogeneous effects across patients. Investigating the 

sampling schemes of each reveals that there is a clear discrepancy between these GWAS 

in terms sex balance of case and control cohorts; While the 2016 ALS GWAS has ~50% 

female controls and ~40% female cases (van Rheenen et al. 2016), which is close to 

balanced, the 2018 ALS GWAS has ~60% female controls and only ~40% female cases 

(Nicolas et al. 2018) making it more heavily sex biased. In the case of sex-dependent 

heterogeneity in ALS, where a variant contributed to ALS risk in only males for example, 

we would expect the frequency of this risk allele to be equal in female cases and controls, 

and hence such a sex imbalance could substantially increase the risk allele frequency in 

controls, diluting the signal in the combined GWAS. This would be particularly impactful in 

the 2018 ALS GWAS where only 40% of the controls are male. Hence a sex-dependent 

architecture as discussed above could reconcile some of the differences between these 

GWAS.  
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Figure 2.2: Comparison of power and correlation between ALS GWAS. 

A-B.) Manhattan plots for overlapping SNPs in the A.) 2016 ALS GWAS and B.) 2018 ALS 

GWAS with significant hits unique to one (of the two) GWAS marked with stars. Notably 

three loci passing significance in the 2016 ALS GWAS do not replicate in the larger 2018 

ALS GWAS. C.) A scatterplot comparing -log10(p-values) from the 2016 (x-axis) and 2018 

(y-axis) GWAS shows that they are highly correlated. The 2018 ALS GWAS has greater 

inflation for the majority of shared hits as indicated by the deflection from the 1:1 line, 

suggesting this GWAS has greater power. Notably a handful of variants pass genome 

wide significance thresholds (dashed lines) in one GWAS but not the other (identifiable on 

the Manhattan plots above).  

Data: van Rheenen et al. 2016 (van Rheenen et al. 2016) and Nicolas et al. 2018 (Nicolas 

et al. 2018) 
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2.1.2 - Research aims 

This chapter presents work carried out on ALS GWAS summary statistics, and individual 

level data with the global aim of expanding our understanding of the genetic architecture 

of ALS and identifying further putative variants by leveraging known overlaps with other 

phenotypes and the existence of subgroups in the data. We approach this global aim 

through the lens of two minor aims:  

 

i.) To interrogate the nature and extent of the shared genetic architecture between ALS 

with cognitive and neuropsychiatric traits; 

  

                                                                  and 

 

ii.) To interrogate the possibility of a sex-differentiated genetic architecture of ALS and 

identify associated variants.  

 

Through this research we hope to identify putative ALS variants missed by standard single 

trait models and those ignoring potential sex-mediated heterogeneity, and better 

understand potential subgroups of the disease.   
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2.2 - Methods 

2.2.1 - Estimating genetic correlation between ALS and psychiatric traits 

GWAS summary statistics were downloaded for ALS (van Rheenen et al. 2016), 

schizophrenia (Ruderfer et al. 2018), bipolar disorder (Ruderfer et al. 2018), major 

depressive disorder (Wray et al. 2018) (minus 23&me samples), ADHD (Demontis et al. 

2019), anxiety (Otowa et al. 2016), PTSD (Duncan et al. 2018) and cognitive performance 

(Davies et al. 2018; J. J. Lee, Wedow, et al. 2018) to test for genetic correlations between 

ALS with extended neuropsychiatric and cognitive phenotypes. Summary statistics were 

formatted for use with the LD score regression software using the “munge_sumstats.py” 

script provided with the software, retaining only SNPs present in the HapMap phase 3 

dataset, which are typically well imputed. We ran bivariate LD score regression to 

estimate the genetic correlation between ALS and all secondary traits using precomputed 

LD scores for European individuals 

(https://data.broadinstitute.org/alkesgroup/LDSCORE/eur_w_ld_chr.tar.bz2), with both 

constrained (following McLaughlin et al. (R. L. McLaughlin et al. 2017)) and free 

intercepts.  

2.2.2 - Partitioned heritability analysis 

We ran stratified LD score regression to test for enrichment of ALS (and secondary trait) 

heritability in functional annotations (Finucane et al. 2015) and genes highly expressed in 

specific cell types (Finucane et al. 2018). For this analysis the annotations for the 

functional enrichment were downloaded from 

https://data.broadinstitute.org/alkesgroup/LDSCORE/ and annotations for the tissue 

specific gene expression analysis were downloaded from: 

https://data.broadinstitute.org/alkesgroup/LDSCORE/LDSC_SEG_ldscores/Multi_tissue_g

ene_expr_1000Gv3_ldscores.tgz. For the tissue specific analysis the functional 

annotation was conditioned upon as a baseline model. A follow up analysis was also 

performed to look at enrichment of heritability in an annotation of brain region specific 

gene expression due to a significant enrichment in the frontal lobe in the multi tissue 

analysis. For this we used the GTEx brain specific annotation 

(https://data.broadinstitute.org/alkesgroup/LDSCORE/LDSC_SEG_ldscores/GTEx_brain_

1000Gv3_ldscores.tgz). For all analyses including ALS the intercept was constrained to 1 

as in McLaughlin et al. (R. L. McLaughlin et al. 2017). 

https://data.broadinstitute.org/alkesgroup/LDSCORE/eur_w_ld_chr.tar.bz2
https://data.broadinstitute.org/alkesgroup/LDSCORE/
https://data.broadinstitute.org/alkesgroup/LDSCORE/LDSC_SEG_ldscores/Multi_tissue_gene_expr_1000Gv3_ldscores.tgz
https://data.broadinstitute.org/alkesgroup/LDSCORE/LDSC_SEG_ldscores/Multi_tissue_gene_expr_1000Gv3_ldscores.tgz
https://data.broadinstitute.org/alkesgroup/LDSCORE/LDSC_SEG_ldscores/GTEx_Brain_1000Gv3_ldscores.tgz
https://data.broadinstitute.org/alkesgroup/LDSCORE/LDSC_SEG_ldscores/GTEx_Brain_1000Gv3_ldscores.tgz
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2.2.3 - Genomic SEM – Multi-trait models of ALS and psychiatric disorders 

Genomic structural equation modelling (Grotzinger et al. 2019) (GenomicSEM; 

https://github.com/MichelNivard/GenomicSEM) was used to determine how well a single 

common factor model could be fit to the genetic covariance matrix of  ALS (van Rheenen 

et al. 2016), schizophrenia (Ruderfer et al. 2018), bipolar disorder (Ruderfer et al. 2018), 

major depressive disorder (Wray et al. 2018), ADHD (Demontis et al. 2019), anxiety 

(Otowa et al. 2016), PTSD (Duncan et al. 2018). Summary statistics were formatted using 

the internal “munge” function of GenomicSEM, keeping only variants from the HapMap3 

panel, and excluding the MHC locus. We ran multivariable LDSC to produce the genetic 

covariance (S) and sampling covariance (V) matrices for these summary statistics using 

the “ldsc” function in GenomicSEM. We ran exploratory factor analysis using factanal on 

the smoothed genetic covariance matrix to identify possible factor models, followed by 

fitting these models in confirmatory factor analysis in genomic SEM to determine the most 

likely number of latent factors explaining the trait covariance. We assessed relative model 

fit using Akaike’s information criteria (AIC; smaller is better) and the comparative fit index 

(CFI; larger is better). Based on the exploratory factor analysis we fit  both a common 

factor model and a correlated two factor model to these matrices using the diagonally 

weighted least squares (DWLS) estimation method. Due to a Heywood case (negative 

residual variance) for MDD in the two factor model we constrained its residual variance to 

be above zero. 

 

2.2.4 - Detecting pleiotropic loci with multi-trait analysis 

MTAG (Turley et al. 2018) was run using standard settings to identify pleiotropic loci 

between summary statistics for ALS (van Rheenen et al. 2016; Nicolas et al. 2018) and 

correlated traits schizophrenia (Ruderfer et al. 2018), bipolar disorder (Ruderfer et al. 

2018) and cognitive performance (J. J. Lee, Wedow, et al. 2018). Verbal numeric 

reasoning (Davies et al. 2018) was excluded from the analysis as the summary statistics 

did not contain an entry for the effect allele frequency which is required to run MTAG. As 

bipolar disorder and schizophrenia have a strong known genetic correlation (Bulik-

Sullivan, Finucane, et al. 2015) we ran a combined MTAG analysis for these traits with 

ALS to improve power, while ALS and cognition were run as a separate analysis. 

Summary statistics were formatted to the MTAG format, in R, and cleaned and 

standardised within the MTAG program, filtering for minor allele frequency (>1%), variants 

that were not SNPs, strand ambiguous variants and flipping SNPs with non-concordant 

effect alleles. To evaluate the reliability of our results we ran maximum false discovery 

https://github.com/MichelNivard/GenomicSEM
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rate (maxFDR; described in the MTAG paper (Turley et al. 2018)) for each MTAG run. 

Variants were filtered to those achieving genome-wide significance in MTAG runs for both 

ALS datasets for each set of the secondary traits to alleviate false positives potentially 

caused by the relatively low sample sizes in these datasets. We clumped variants 

achieving genome wide significance in the multi-trait analysis and recorded the closest 

genes to the index variants using plink v1.9 (--clump).    

 

We also applied the conditional false discovery rate (cFDR) method (Andreassen et al. 

2013) to consolidate and supplement the multi-trait associations found using MTAG. This 

method tests for association in a principal phenotype conditional on levels of association 

with a second conditional phenotype, leveraging the expectation of pleiotropy between the 

traits. The cFDR is defined here as the probability that a SNP is null for the principal 

phenotype given its p-value is below a set of thresholds in both the conditional and 

principal phenotypes. We used ALS (van Rheenen et al. 2016) as the principal phenotype 

here and the correlated traits from above as conditional phenotypes. To mirror the MTAG 

analysis, where ALS was analysed alongside bipolar and schizophrenia simultaneously 

we used the summary statistics for a joint GWAS of both bipolar and schizophrenia versus 

controls (Ruderfer et al. 2018). Variants passing a cFDR threshold (cFDR<0.01) were 

clumped using plink v1.9 (r2 =0.5) to identify independent loci, and annotated with the 

nearest gene.  

2.2.5 - Characterising heterogeneity in ALS genetics by sex 

To test the hypothesis of a gene by sex interaction in ALS we followed a methodology 

similar to Tropf et al. and Robinson et al. (Tropf et al. 2017; Robinson et al. 2017) and 

used GCTA GREML (Yang et al. 2011) to fit a genotype-covariate interaction (GCI-

GREML) model (NB: This is implemented in the --gxe switch in GCTA but is not strictly a 

gene by environment interaction). We ran this analysis on autosomal individual level data 

from the 2016 ALS GWAS (van Rheenen et al. 2016), partitioning by MAF given that a 

MAF-dependent architecture was seen in the original ALS GWAS paper, and fitting 10 

principal components (PCs) as covariates. For this analysis genetic relationship matrices 

(GRMs) were constructed from all SNPs passing QC in the original GWAS (van Rheenen 

et al. 2016) (note: only autosomal SNPs are present in this data). We used the likelihood 

ratio test in GREML to compare the model with gene by sex interaction to the baseline 

model with no interaction. 

 

To further characterise the role of sex in the genetic architecture of ALS we separated the 

data by sex and ran two independent mixed linear model GWAS for ALS (male-only and 
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female-only) using the --mlma switch in GCTA (Yang et al. 2011). We ran this analysis 

using the leave one chromosome out approach, whereby each SNP was run in a mixed 

linear model including a GRM from all chromosomes excluding the chromosome where 

the target SNP resided. Summary statistics from these GWAS were scanned for “sex-

specific” association with ALS, and difference in effect size and direction across sexes 

(“sex-difference”) using two scanning approaches proposed in a previous work on sex 

differences in anthropomorphic traits (e.g. height) (Randall et al. 2013):  

 

i.) In the “sex-specific” scan, association p-values from the sex-specific ALS GWAS were 

scanned for significant association in one sex, but not the other, correcting for multiple 

testing using the Benjamini-Hochberg procedure accepting SNPs at a 5% FDR (R function 

p.adjust). Here a variant was classified as suggestively sex-specific if it passes the 5% 

FDR p-value threshold in one but not the other sex and strongly sex-specific if it passes 

the 5% FDR threshold in one sex and doesn’t reach nominal significance (p<0.05) in the 

other sex. For our two datasets across 7.3 million SNPs the p-value threshold 

corresponding to a 5% FDR was p=9.03✕10-7.  

 

ii.) For our “sex-differentiation” scan we are interested in finding variants that have 

substantially different effects on ALS risk in males and females (perhaps even opposite 

direction of effect). The degree of difference in GWAS effects in males and females was 

assessed using a test statistic from Randall et al (Randall et al. 2013): 

 

                  𝑧𝑑𝑖𝑓𝑓−𝑏𝑒𝑡𝑎 =  
𝑏𝑓𝑒𝑚𝑎𝑙𝑒−𝑏𝑚𝑎𝑙𝑒

√(𝑠𝑒(𝑏𝑓𝑒𝑚𝑎𝑙𝑒)2+ 𝑠𝑒(𝑏𝑚𝑎𝑙𝑒)2 −2⋅𝑟⋅𝑠𝑒(𝑏𝑓𝑒𝑚𝑎𝑙𝑒)⋅𝑠𝑒(𝑏𝑚𝑎𝑙𝑒)
    ∼ 𝑁(0,1),          (3) 

 

where bfemale and bmale are the effect sizes of the SNP in the female-only ALS GWAS and 

male-only ALS GWAS and r is the Spearman correlation between the male and female 

effect sizes. Variants were tested at 5% FDR.  

 

SNPs passing either scan were then clumped using plinkv1.9 (--clump) to retain only the 

top associated SNP per LD block (250kb range, 0.5 r2). We then found the gene/genes 

closest to these lead SNPs using a hg19 gene list with plinkv1.9 (--clump-range), which 

we cross-checked with UCSC. 

 

To look at global differences in architecture we ran univariate LD score regression for the 

male and female only ALS GWAS to test the relative heritability of ALS in males and 

females, using precomputed LD scores as above 
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(https://data.broadinstitute.org/alkesgroup/LDSCORE/eur_w_ld_chr.tar.bz2), and HESS 

as described below. For conversion to the liability scale we used the average lifetime risk 

of developing ALS (1 in 400) (Johnston et al. 2006) as the prevalence, following previous 

publications using the dataset (van Rheenen et al. 2016; R. L. McLaughlin et al. 2017).     

 

Finally we constructed GRMs using HapMap3 SNPs for the male only, female only and 

full dataset using GCTA (Yang et al. 2011; S. H. Lee et al. 2011) to estimate the sex-

specific heritability in males and females based on the individual-level data (GREML), and 

the genetic correlation between males and females (bivariate GREML). We first ran 

GREML (S. H. Lee et al. 2011) on the sex specific GRMs, fitting 10 PCs as covariates. 

We also split the data by chromosome, and minor allele frequency and estimated 

heritability by sex per chromosome and allele frequency bin to compare enrichment in 

each sex, and further explore the sex specific architecture of ALS.   

 

To compare heritability estimates between sexes we calculated a z-score for the 

difference in estimates using the following equation : 

                            𝑧𝑑𝑖𝑓𝑓−ℎ𝑒𝑟𝑖𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =  
ℎ𝑓𝑒𝑚𝑎𝑙𝑒

2 − ℎ𝑚𝑎𝑙𝑒
2

√𝑠𝑒(ℎ𝑓𝑒𝑚𝑎𝑙𝑒
2 )2+ 𝑠𝑒(ℎ𝑚𝑎𝑙𝑒

2 )2 
    ∼ 𝑁(0,1)                       (4) 

 

2.2.6 - Local heritability estimation and contrast polygenicity 

HESS (0.5.4-beta; https://github.com/huwenboshi/hess) was run on summary statistics for 

ALS, schizophrenia and bipolar disorder to estimate local heritability (shared and 

unshared) and compare the degrees of polygenicity between these associated traits. 

Additionally we ran HESS on the female-specific and male-specific GWAS for ALS 

described above to see if they had differing degrees of polygenicity. Summary statistics 

were first formatted using the munge.py script supplied with the LD score regression 

software, and the necessary CHR and BP columns required by the software were added. 

For all HESS analyses an external reference panel composed of European samples from 

the 1000 Genomes Project was used to approximate the LD matrix between SNPs in the 

summary statistic datasets 

(https://ucla.box.com/shared/static/l8cjbl5jsnghhicn0gdej026x017aj9u.gz) and 

approximately independent loci previously defined in Berisa et al. (Berisa and Pickrell 

2016) were used (https://bitbucket.org/nygcresearch/ldetect-data/src/master/EUR/). 

Where a partition defined this way had no SNPs in one or more datasets we excluded it 

from analysis including those traits. When estimating local genetic covariance between 

https://data.broadinstitute.org/alkesgroup/LDSCORE/eur_w_ld_chr.tar.bz2
https://github.com/huwenboshi/hess
https://ucla.box.com/shared/static/l8cjbl5jsnghhicn0gdej026x017aj9u.gz
https://bitbucket.org/nygcresearch/ldetect-data/src/master/EUR/
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traits, we assumed no sample overlap between datasets, as we had insufficient data to 

estimate actual overlap.  

2.2.7 - Latent Causal Variable Analysis: Understanding the causal relationship 

between ALS and secondary traits 

We ran Latent Causal Variable Analysis (O’Connor and Price 2018) on summary statistics 

for ALS (van Rheenen et al. 2016; Nicolas et al. 2018) with genetically correlated traits 

cognitive performance (Davies et al. 2018; J. J. Lee, Wedow, et al. 2018), schizophrenia 

and bipolar disorder (Ruderfer et al. 2018) to identify whether there was a causal genetic 

relationship between the traits and, if so, determine the direction of causality. Summary 

statistics were formatted using the “munge_sumstats.py” script provided with the LDSC 

software prior to running the LCV software (https://github.com/lukejoconnor/LCV) with 

default settings. We report results for the analysis of the 2018 ALS GWAS with secondary 

traits as the 2016 ALS GWAS produced a heritability Z score below the recommended 

value (Z>7) for use with this software.   

2.2.8 - Functional annotation and analysis 

We used the SNP2GENE function from Functional Mapping and Annotation of Genome-

Wide association Statistics (FUMA) (Watanabe et al. 2017) to test for gene based 

associations, gene ontology enrichments and tissue enrichments for i.) the ALS sex 

differentiation scan and ii.) the multi-trait analyses (MTAG only). Both analyses were run 

using default settings, outputting p-values for gene analysis, gene-set analysis and tissue 

expression enrichment (GTEx v8, 54 tissues) run in MAGMA (de Leeuw et al. 2015).    

 

As the cFDR multi-trait analysis accepts variants passing an FDR threshold of 0.01, which 

is too high for FUMA SNP2GENE analysis (Maximum P<1e-05), we instead input genes 

closest to the independent SNP hits for these scans (Table 2.3). Similarly the method for 

our male- and female-specific scans complicated SNP2GENE analysis, given each sex-

specific analysis required exclusion of variants which are significant at two thresholds in 

the other sex, hence we also input genes closest to independent hits in these scans 

(Table 2.7) to FUMA’s GENE2FUNC function. We used default settings for this analysis 

and identified enrichment in tissue-specific expression and gene ontologies to 

characterise functional features of these genesets.  

 

 

 

  

https://github.com/lukejoconnor/LCV
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2.3 - Results 

2.3.1 - Characterising the genetic overlap between ALS and an extended set of 

neuropsychiatric and cognitive traits 

We revisited the genetic correlation analysis carried out by McLaughlin et al. (R. L. 

McLaughlin et al. 2017) to update the picture of genetic correlation between ALS and 

neuropsychiatric traits, by incorporating recent larger GWAS for secondary traits. We 

additionally included summary statistics from two robust studies of cognition to replicate 

and reinforce previous observations of negative genetic correlation with cognition. To this 

end we ran bivariate LD score regression on ALS and schizophrenia (Ruderfer et al. 

2018), bipolar disorder (Ruderfer et al. 2018), major depressive disorder (Wray et al. 

2018), ADHD (Demontis et al. 2019), anxiety (Otowa et al. 2016), PTSD (Duncan et al. 

2018) and two measures of cognitive performance (Davies et al. 2018; J. J. Lee, Wedow, 

et al. 2018). This analysis replicated the previously reported genetic correlation between 

ALS and schizophrenia (rg=0.13; p=0.0012) with an independent schizophrenia GWAS 

dataset and additionally identified a novel positive correlation with bipolar disorder 

(rg=0.15; p=0.0007) (Figure 2.3). Additionally we replicated previously borderline negative 

genetic correlation with cognition using two measures of cognitive performance (verbal 

numeric reasoning: rg=-0.1, p=0.0027; cognitive performance: rg=-0.1; p=0.0025) (Figure 

2.3). We noted that while the remaining psychiatric traits did not show significant 

correlation, they showed a consistent positive trend, motivating us to test the hypothesis 

of whether ALS and psychiatric traits might be driven by a shared latent factor.  

 

We ran GenomicSEM (Grotzinger et al. 2019) on the genetic covariance matrix between 

ALS and neuropsychiatric traits to test whether the traits were mediated by the same or 

distinct latent factors. We tested the appropriate number of latent factors using exploratory 

factor analysis on the genetic covariance matrix in R using “factanal” function, followed by 

fitting these models in confirmatory factor analysis in genomic SEM. Both a single 

common factor model (as used in recent work exploring genetic evidence for a shared 

psychiatric “p-factor”) and a two correlated genetic factors model fit the data well based on 

the Comparative factor index (CFI) and Aikaike’s information criteria (AIC) (Figure 2.4). 

The common factor model fit the data well ( AIC= 272.12; CFI=0.78; SRMR=0.17) 

suggesting that ALS may fit within the “p-factor” model for psychiatric traits, or that a 

shared genetic module influences both psychiatric traits and ALS, however the correlated 

two factor model had a slightly improved fit (AIC=48.6; CFI=0.99; SRMR=0.11) meaning 

this is likely the best model. The implication of this finding is that emerging larger GWAS 
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of psychiatric traits and ALS are likely to yield more genetic correlations between ALS and 

psychiatric traits as a single or two correlated latent factors best describe their covariance 

structure. Additionally these models hints that it might be useful to test for pleiotropic 

variants across these traits using a multi-trait GWAS method.  

 

 

 

 

 

 

 

Figure 2.3: Genetic correlations of ALS with psychiatric traits and cognition. 

Genetic correlations between ALS and secondary psychiatric (blue) and cognitive (red) 

traits as estimated using LDSC. Error bars represent the 95% confidence interval for the 

genetic correlation estimate. Bonferroni corrected significant traits are highlighted with an 

asterisk. BIP, Bipolar disorder; SCZ, Schizophrenia; MDD, Major depressive disorder; 

ADHD, Attention deficit hyperactivity disorder; PTSD, Post traumatic stress disorder; ANX, 

Anxiety disorder; Cog VNR, Verbal numeric reasoning; Cog Perf, General cognitive 

performance. 
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Figure 2.4: Common and two genetic factor model for ALS and psychiatric traits. 

Path diagrams and model fit statistics describing the best two models from the 

genomicSEM analysis of ALS and psychiatric traits. a.) Displays a model where a single 

shared latent genetic factor describes the observed genetic relationships between traits, 

and b.) displays a model where two correlated latent genetic factors describe the observed 

genetic relationships between traits. The modelled loadings of the latent factors (i.e. how 

much variance the factor explains for each trait) are labelled on single headed arrows from 

the factors (Pg, P1g, and P2g) to the traits (ALSg, PTSDg etc.). All trait loadings are positive 

indicating that traits are well described by these latent factors (estimate standard errors in 

brackets). Double headed arrows represent the residual variances of the indicators (traits) 

and the correlation between modelled factors. Both models are well behaved as indicated 

by their model fit statistics, however the two correlated factor model shows better overall 

fit. ALS, Amyotrophic lateral sclerosis; BIP, Bipolar disorder; SCZ, Schizophrenia; MDD, 

Major depressive disorder; PTSD, Post traumatic stress disorder; ANX, Anxiety disorder; 

ADHD, Attention deficit hyperactivity disorder.  
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To identify pleiotropic loci that may partially explain the genetic overlap between ALS and 

secondary traits we ran multi-trait GWAS using MTAG (Turley et al. 2018), which 

leverages correlated summary statistics from multiple traits to enhance power to detect 

causal SNPs. MTAG identified a number of novel loci that were jointly associated with 

ALS and: i.) bipolar disorder and schizophrenia; ii.) low cognitive performance in this multi-

trait analysis at genome wide significance which may represent signals of shared risk for 

these traits (Table 2.1). While some known ALS loci were implicated as pleiotropic (e.g. 

C9orf72), many loci only reach genome-wide significance in the GWAS for the secondary 

trait, and are only nominally associated for ALS, hence may be false positives. MTAG is 

known to produce false positives due to its assumption that SNPs share the same 

variance-covariance matrix of effect sizes across traits, meaning the MTAG effect will be 

biased away from zero for SNPs with a null effect in one trait if they have non-null effects 

in the others. This is expected to happen often for lower-powered GWAS. 

 

Table 2.1: MTAG hits for ALS and secondary traits.  

 ALS source GWAS 

P-value 

Secondary trait GWAS  

P-value 

MTAG ALS GWAS 

P-value 

CHR SNP Gene 2nd trait  (2016) (2018) Cog BIP SCZ (2016) (2018) 

1 rs7542974 NEGR1 Cog 1.28E-01 1.93E-02 6.00E-20 - - 2.10E-08 1.02E-10 

3 rs9848497 MON1A Cog 2.98E-01 1.27E-01 4.77E-25 - - 4.49E-09 7.36E-11 

6 rs9384679 FOXO3 Cog 9.55E-02 5.25E-01 1.14E-21 - - 3.36E-09 4.35E-08 

7 rs12707087 EXOC4* Cog 8.70E-05 1.41E-04 2.22E-08 - - 3.76E-08 1.71E-08 

7 rs6950324 EXOC4* Cog 1.92E-03 4.92E-03 2.64E-11 - - 4.62E-08 3.87E-08 

7 rs6956399 EXOC4* Cog 3.30E-04 5.35E-04 1.22E-10 - - 1.27E-08 5.30E-09 

7 rs12532950 EXOC4* Cog 2.30E-03 2.04E-02 4.86E-14 - - 4.60E-09 2.10E-08 

8 rs4976976 TSNARE

1 

Cog 1.34E-03 5.64E-04 1.24E-11 - - 2.24E-08 1.91E-09 

9 rs3849943 C9orf72, 

IFNK, 

MOB3B* 

Cog 1.71E-24 3.77E-30 5.55E-01 - - 1.72E-13 4.51E-17 

9 rs117204439 C9orf72* Cog 9.05E-16 3.08E-14 4.46E-01 - - 2.72E-09 7.25E-09 

15 rs12439619 EFTUD1* Cog 3.52E-04 3.01E-05 7.94E-11 - - 1.13E-08 1.83E-10 

9 rs117204439 C9orf72* BIP+SCZ 9.05E-16 3.08E-14 - 9.88E-02 8.58E-01 1.25E-08 1.71E-12 

10 rs12218148 AS3MT, 

CNNM2 

BIP+SCZ 2.32E-01 3.98E-03 - 4.32E-04 4.38E-13 9.43E-09 2.71E-08 

10 rs34747231 CNNM2 BIP+SCZ 2.75E-01 6.53E-03 - 2.45E-03 1.14E-14 5.31E-09 2.54E-08 

Lists independent SNPs (clumped) passing genome-wide significance threshold in MTAG 

in both ALS GWAS when run with secondary traits (Cog, cognition; BIP, Bipolar; SCZ, 

Schizophrenia). P-values are listed for the source GWAS for the primary and secondary 

traits and for the MTAG joint analysis. The closest gene is also listed for reference, 

however this has not been colocalised. Genes highlighted in bold are significant in the 

source single trait analysis for ALS. We expect a number of hits to be false positives as 

the maximum FDR analysis of MTAG suggests the false discovery rate could be high with 

such underpowered GWAS. *Genes also identified in cFDR multi-trait analysis. 
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To estimate the upper bound for the rate of false positives we ran the “maximum FDR” 

(maxFDR) analysis from the MTAG paper, which maximises the estimate of false 

discovery rate using a grid search over a range of mixing weights. Maximum FDR was 

high for this analysis for both ALS GWAS (van Rheenen et al. 2016; Nicolas et al. 2018) 

suggesting many of these hits could potentially be false positives, meaning we should 

interpret them with caution (ALS 2016: maxFDRbipolar/schizophrenia = 0.65, maxFDRcognition = 

0.4; ALS 2018: maxFDRbipolar/schizophrenia=0.33, maxFDRcognition=0.23). This indicates that 

ALS GWAS are likely still too small and underpowered to confidently perform analysis 

using the MTAG model with these traits, particularly for bipolar disorder and 

schizophrenia. To reduce the false discovery rate, we only accepted variants achieving 

genome-wide significance when analysed with secondary traits in both the 2016 and 2018 

ALS GWAS (van Rheenen et al. 2016; Nicolas et al. 2018) (Table 2.1).  

 

Functional analysis of tissue enrichment using the MAGMA gene set analysis tool (de 

Leeuw et al. 2015) for our MTAG runs showed significant enrichment of signal in genes 

expressed in several brain regions (Figure 2.5). In particular genes expressed in the 

frontal cortex and cerebellum showed enrichment across all ALS datasets with all 

secondary traits. This suggests that pleiotropic loci shared between ALS and cognitive 

and psychiatric phenotypes are typically expressed in the brain. Moreover while there was 

no significant enrichment in functional annotations for the multi-trait analysis of ALS and 

psychiatric traits, the analysis of ALS and cognition showed enrichment in genes 

associated with several biological processes (Table 2.2). In particular, genes with shared 

signal for ALS and cognition showed enrichment in processes related to neurone 

development and differentiation. Additionally, ALS and cognition showed enrichment in an 

annotation for the MECP2 reactome, which regulates many transcription factors involved 

in the functioning of the nervous system (Chahrour et al. 2008). These results may 

elucidate the genetic root of cognitive symptoms in ALS, as well as the known familial 

overlap between ALS and neuropsychiatric traits if validated, motivating follow-up analysis 

in larger datasets. To further address the biases potentially introduced by MTAG, we also 

ran an analysis using another pleiotropy detection method (conditional false discovery rate 

(Andreassen et al. 2013)). 
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Figure 2.5: ALS multi-trait analyses are enriched for genes expressed in brain. 

MAGMA tissue enrichment analysis of MTAG summary statistics for ALS (2016 and 2018) 

and correlated secondary traits (cognition, bipolar disorder and schizophrenia) shows an 

enrichment of signal in genes highly expressed in brain tissues, and the pituitary gland . 

Notably both frontal cortex and cerebellum annotations were significantly enriched across 

all MTAG runs. 

 

 

 

 

 



43 
 

Table 2.2: Functional annotations enriched in ALS and cognition MTAG analysis. 

 

Annotation 

ALS 2016 + Cognition ALS 2018 + Cognition 

GENES BETA p-val GENES BETA p-val 

Curated gene sets: 

Reactome mecp2 regulates transcription 

factors 

 

4 

 

2.7428 

 

5.3E-07* 

 

3 

 

3.7842 

 

2.6E-10* 

GO_bp: Neuron development 1031 0.093111 3.8E-04 1007 0.13527 1.7E-06* 

GO_bp: Cell part morphogenesis 636 0.11281 7.4E-04 615 0.17298 1.7E-06* 

GO_bp: Neurogenesis 1507 0.076112 5.2E-04 1465 0.12003 4.6E-07* 

GO_bp: Neuron differentiation 1268 0.089337 2.0E-04 1234 0.1266 8.8E-07* 

Summarises gene ontologies and curated gene sets with enriched signal from the FUMA 

analysis of MTAG summary statistics for multi-trait analysis run on ALS and cognition. P-

values below the Bonferroni-adjusted significance threshold are denoted with an asterisk.  

 

Given the likelihood of false positives in the MTAG analysis we decided to apply the 

conditional false discovery rate (cFDR) method (Andreassen et al. 2013) to further explore 

pleiotropic loci, with the aim of validating our MTAG results. cFDR conditions the 

association of a given SNP in a principal trait on the association in a second conditional 

trait, testing for the probability that association at a variant is null for the principal trait 

given p values of both, hence leveraging pleiotropy to gain power. Our cFDR results 

(Table 2.3) identified several putative loci shared between ALS and secondary traits. 

Notably these loci tend to have lower p-values in the base ALS GWAS than those 

identified by MTAG, indicating this method does not bias estimates away from zero as 

severely as the MTAG analysis. The cFDR analysis of ALS conditioned on cognition 

replicated signals from the MTAG analysis at the EXOC4, EFTUD1 and C9orf72 locus, 

suggesting these are likely real pleiotropic loci or true positives. This method also found 

hits in other known ALS loci (SARM1, UNC13A, SCFD1, TBK1, MOBP) and novel genes 

(NCKAP5L, KRT18P55, GGNBP2, CRHR1, MAPT, KANSL1, NSF, SRGAP1, SPIRE1), 

which despite their absence in the MTAG analysis, may also be pleiotropic loci shared 

between ALS and the secondary traits. Some of these novel loci are promising candidates 

for involvement in ALS, for example MAPT (microtubule-associated protein tau), which 

shows pleiotropic overlap with cognition in this analysis is well established as a 

monogenic causal gene for FTD (Takada 2015) was recently associated through cFDR 

with ALS when analysed with FTD as a secondary trait (Karch et al. 2018). Additionally, 
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NSF, KANSL1 and GGNBP2 were all identified as associated with ALS when conditioned 

on other diseases of the frontotemporal temporal dementia spectrum (Karch et al. 2018). 

Hence these variants appear to be robustly pleiotropically linked to ALS and cognitive and 

behavioural phenotypes.  

 

Table 2.3: cFDR hits for ALS and secondary traits. 

SNP CHR bp Trait 2 Closest gene p ALS p trait 2 cFDR 

rs6765697 3 39493239 Cog - 1.11E-07 4.97E-02 9.89E-03 

rs1768208 3 39523003 Cog MOBP 1.77E-08 3.97E-01 1.12E-03 

rs6956399 7 133305729 Cog EXOC4* 3.30E-04 1.22E-10 8.43E-03 

rs7813314 8 2415366 Cog - 3.14E-08 2.51E-02 4.88E-03 

rs147211831 9 27436084 Cog MOB3B* 3.38E-14 2.00E-01 6.96E-08 

rs10511816 9 27468461 Cog MOB3B* 1.24E-11 1.66E-01 2.26E-05 

rs4879515 9 27482235 Cog MOB3B* 5.13E-10 3.75E-01 4.70E-05 

rs139185008 9 27491942 Cog MOB3B* 1.38E-13 8.85E-01 1.14E-08 

rs4879524 9 27495362 Cog IFNK,MOB3B* 4.84E-10 2.81E-01 6.54E-05 

rs700786 9 27522925 Cog IFNK,MOB3B* 2.26E-10 2.11E-02 1.29E-04 

rs4879554 9 27546275 Cog C9orf728 4.98E-09 2.11E-01 8.15E-04 

rs774357 9 27559835 Cog C9orf72,IFNK,MOB3B* 4.76E-24 6.99E-01 3.85E-18 

rs2492816 9 27565105 Cog C9orf72,IFNK,MOB3B* 2.03E-11 3.91E-01 2.24E-06 

rs2120721 9 27566141 Cog C9orf72* 3.81E-10 7.21E-02 2.10E-04 

rs11795154 9 27577611 Cog C9orf72* 1.13E-09 4.04E-01 8.42E-05 

rs7864502 9 27583128 Cog C9orf72* 2.49E-12 2.70E-01 7.78E-07 

rs117204439 9 27607973 Cog - 9.05E-16 4.46E-01 9.33E-11 

rs79676202 12 50180558 Cog NCKAP5L 9.18E-08 3.16E-01 5.66E-03 

rs73124200 12 64949248 Cog - 7.78E-08 5.83E-01 3.55E-03 

rs74654358 12 64881967 Cog TBK1 6.65E-08 6.92E-01 3.14E-03 
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rs10139154 14 31147498 Cog SCFD1 4.95E-08 3.56E-01 3.10E-03 

rs12439619 15 82546946 Cog EFTUD1* 3.52E-04 7.94E-11 8.79E-03 

rs34517613 17 26610252 Cog KRT18P55 8.62E-08 8.66E-01 3.56E-03 

rs35714695 17 26719788 Cog SARM1 8.96E-11 9.52E-01 6.70E-06 

rs3736166 17 34900836 Cog GGNBP2 1.24E-06 8.01E-10 1.71E-03 

rs62057158 17 43907143 Cog CRHR1,MAPT 2.19E-04 3.08E-11 6.07E-03 

rs112073200 17 44201791 Cog KANSL1 2.29E-04 2.96E-11 6.11E-03 

rs7224296 17 44800046 Cog NSF 3.26E-04 6.06E-10 9.92E-03 

rs12608932 19 17752689 Cog UNC13A 2.69E-10 1.53E-01 1.17E-04 

rs4676496 3 39498005 BIP+SCZ MOBP 8.86E-08 8.18E-01 3.57E-03 

rs13067055 3 39510517 BIP+SCZ MOBP 2.15E-07 4.53E-01 5.28E-03 

rs616147 3 39534481 BIP+SCZ MOBP 1.43E-08 4.87E-01 4.79E-04 

rs7813314 8 2415366 BIP+SCZ LOC101927815 3.14E-08 9.36E-03 3.41E-04 

rs10511816 9 27468461 BIP+SCZ MOB3B* 1.24E-11 2.14E-01 3.33E-07 

rs4879515 9 27482235 BIP+SCZ MOB3B* 5.13E-10 6.74E-02 5.72E-06 

rs139185008 9 27491942 BIP+SCZ MOB3B* 1.38E-13 8.51E-03 7.38E-09 

rs4879524 9 27495362 BIP+SCZ IFNK,MOB3B* 4.84E-10 2.97E-03 4.59E-05 

rs700786 9 27522925 BIP+SCZ IFNK,MOB3B* 2.26E-10 3.48E-01 7.56E-06 

rs4879541 9 27533452 BIP+SCZ C9orf72,IFNK,MOB3B* 8.48E-10 8.80E-03 1.46E-05 

rs4879554 9 27546275 BIP+SCZ C9orf72* 4.98E-09 8.18E-01 2.58E-04 

rs17696570 9 27558437 BIP+SCZ C9orf72* 4.67E-07 9.24E-02 4.50E-03 

rs2484319 9 27563755 BIP+SCZ C9orf72,IFNK,MOB3B8 3.15E-24 1.71E-02 2.94E-19 

rs2120721 9 27566141 BIP+SCZ C9orf72* 3.81E-10 2.48E-01 9.83E-06 

rs7864502 9 27583128 BIP+SCZ C9orf72* 2.49E-12 5.27E-03 3.12E-07 

rs2453556 9 27586162 BIP+SCZ C9orf72* 3.18E-11 5.15E-02 3.57E-07 
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rs117204439 9 27607973 BIP+SCZ - 9.05E-16 2.39E-01 3.36E-11 

rs79676202 12 50180558 BIP+SCZ NCKAP5L 9.18E-08 3.82E-01 2.22E-03 

rs116900480 12 58656105 BIP+SCZ - 2.00E-07 7.64E-02 1.73E-03 

rs76805704 12 64532377 BIP+SCZ SRGAP1 5.65E-07 2.28E-01 8.92E-03 

rs74654358 12 64881967 BIP+SCZ TBK1 6.65E-08 4.00E-02 4.72E-04 

rs73124200 12 64949248 BIP+SCZ - 7.78E-08 3.86E-01 1.90E-03 

rs10139154 14 31147498 BIP+SCZ SCFD1 4.95E-08 4.46E-01 1.40E-03 

rs34517613 17 26610252 BIP+SCZ KRT18P55 8.62E-08 7.68E-01 3.33E-03 

rs35714695 17 26719788 BIP+SCZ SARM1 8.96E-11 3.32E-01 3.06E-06 

rs12967284 18 12532098 BIP+SCZ SPIRE1 7.33E-07 1.52E-01 8.79E-03 

rs12608932 19 17752689 BIP+SCZ UNC13A 2.69E-10 1.15E-01 4.33E-06 

rs117635456 21 43460912 BIP+SCZ - 2.52E-07 6.97E-01 7.02E-03 

Loci passing the cFDR threshold (cFDR<0.01) for ALS conditioned on cognitive 

performance (Cog) and a combined bipolar/schizophrenia (BIP+SCZ) GWAS. Genes in 

bold have been previously identified in the source ALS GWAS using standard single trait 

analysis. 

*Gene also identified in MTAG analysis. 

 

Genes closest to hits identified using cFDR on ALS conditional on cognition showed 

enrichment in sets of genes highly expressed in several brain regions (Table 2.4), as seen 

in the MTAG analysis of ALS and cognition, lending some support for their validity. These 

genes were also enriched in a large number of gene ontology annotations (Table 2.5), 

many of which have feasible links to ALS biology. Notably these ontologies indicate that 

several of these pleiotropic genes are functional in cell components of neurones including 

dendrites, axons and synapses, and fulfil biological processes relating to neurone death 

and synaptic connectivity, which may highlight shared biological features between ALS 

and cognition. In contrast loci identified as pleiotropic with psychiatric traits via cFDR do 

not show significant enrichment in tissue expression sets or gene ontologies. 

 

To further explore whether this overlap with psychiatric traits and cognition is partially 

driven by a shared tissue of expression of risk genes we performed partitioned LD score 

regression on ALS, bipolar disorder, schizophrenia and cognitive performance using 

annotations for cell type-specific gene expression. This analysis estimates whether 
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heritability is enriched in each annotation (i.e. does the per SNP heritability of that 

annotation exceed the per SNP heritability genome wide). These traits all showed a 

significant enrichment of heritability in genes which are highly expressed in the central 

nervous system (CNS) (Figure 2.6), as expected from our MTAG and cFDR analysis, 

suggesting the genetic correlation may be due to a tissue overlap. Regression of 

coefficients of enrichment across tissues between ALS and these traits showed significant 

linear relationships (Figure 2.7), supporting the hypothesis of shared tissues of effect 

across these correlated traits. While ALS showed a trend towards enrichment in the CNS, 

only the annotation for the frontal lobe passed the stringent Bonferroni-corrected multiple 

testing threshold. This could indicate that the CNS involvement in ALS is specific to the 

frontal lobe, or alternatively that the method used is insufficiently powered to identify other 

CNS enrichments. We note that cell types within a tissue are correlated for gene 

expression, meaning treating each test as independent and correcting in this manner is 

perhaps overly conservative and may lower power unnecessarily. In fact the source paper 

for this method instead employs a less stringent false discovery rate approach for 

identifying significant enrichments (Finucane et al. 2018), which may have improved 

resolution. To get a more nuanced picture of which regions of the brain may be involved in 

ALS pathology we also ran partitioned LD score regression on an annotation for genes 

expressed in different cell types in the brain (GTEx Brain dataset). This returned a 

significant enrichment for the frontal cortex (p=9✕10-4), consistent with the multi-tissue 

result of frontal lobe involvement, and the MAGMA tissue enrichment analysis (Figure 

2.5). Overall our results suggest that ALS and correlated traits are largely driven by genes 

expressed in the CNS, which may partially explain the genetic overlap between ALS and 

psychiatric and cognitive traits. 
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Table 2.4: Tissue expression annotations enriched for cFDR(ALS|Cognition) hits. 

Gene Set N genes 

in set 

N genes 

overlap 

p FDR adj p Genes 

 

Brain Amygdala 

 

9576 

 

13 

 

1.41E-04 

 

7.61E-03 

MOBP, EXOC4, MOB3B, C9orf72, 

NCKAP5L, TBK1, SCFD1, EFTUD1, 

CRHR1, MAPT, KANSL1, NSF, 

UNC13A 

 

Brain Anterior cingulate 

cortex BA24 

 

9101 

 

13 

 

7.87E-05 

 

4.25E-03 

MOBP, EXOC4, MOB3B, C9orf72, 

NCKAP5L, TBK1, SCFD1, EFTUD1, 

CRHR1, MAPT, KANSL1, NSF, 

UNC13A 

 

Brain Caudate basal 

ganglia 

 

9143 

 

12 

 

5.41E-04 

 

2.92E-02 

MOBP, EXOC4, MOB3B, C9orf72, 

NCKAP5L, TBK1, SCFD1, EFTUD1, 

MAPT, KANSL1, NSF, UNC13A 

 

Brain Hippocampus 

 

9541 

 

12 

 

8.32E-04 

 

4.49E-02 

MOBP, EXOC4, C9orf72, NCKAP5L, 

TBK1, SCFD1, EFTUD1, CRHR1, 

MAPT, KANSL1, NSF, UNC13A 

 

Brain Putamen basal 

ganglia 

 

9598 

 

12 

 

8.84E-04 

 

4.77E-02 

MOBP, EXOC4, MOB3B, C9orf72, 

NCKAP5L, TBK1, SCFD1, EFTUD1, 

MAPT, KANSL1, NSF, UNC13A 

Tissues showing significant differential expression of genes identified by cFDR analysis of 

ALS and cognition (either up or down regulated). Notably several tissues here match 

those identified in MTAG analysis of ALS and cognition (Figure 2.5). 
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Table 2.5: Gene ontology terms enriched for cFDR (ALS|Cognition) hits. 

Category GeneSet N genes 

set 

N genes 

overlap 

p FDR adj 

p 

Genes 

GO bp GO: VESICLE DOCKING 65 4 1.91E-08 1.40E-04 SCFD1, NSF, UNC13A, EXOC4 

GO bp GO: ESTABLISHMENT OF 

ORGANELLE LOCALIZATION 

491 6 5.13E-08 1.89E-04 SCFD1 ,CRHR1, MAPT, NSF, 

UNC13A, EXOC4 

GO bp GO: ORGANELLE 

LOCALIZATION 

685 6 3.64E-07 8.92E-04 SCFD1, CRHR1, MAPT, NSF, 

UNC13A, EXOC4 

GO bp GO: VESICLE DOCKING 

INVOLVED IN EXOCYTOSIS 

44 3 1.01E-06 1.59E-03 SCFD1, UNC13A, EXOC4 

GO bp GO: MEMBRANE DOCKING 177 4 1.08E-06 1.59E-03 SCFD1, NSF, UNC13A, EXOC4 

GO bp GO: EXOCYTIC PROCESS 81 3 6.47E-06 7.92E-03 SCFD1, UNC13A, EXOC4 

GO bp GO: VESICLE 

LOCALIZATION 

303 4 9.09E-06 8.72E-03 SCFD1, NSF, UNC13A, EXOC4 

GO bp GO: VESICLE TARGETING 92 3 9.49E-06 8.72E-03 SCFD1, NSF ,EXOC4 

GO bp GO: REGULATION OF 

AUTOPHAGY 

319 4 1.11E-05 9.09E-03 TBK1,SCFD1,MAPT,EXOC4 

GO bp GO: POST GOLGI VESICLE 

MEDIATED TRANSPORT 

104 3 1.37E-05 1.01E-02 SCFD1, NSF, EXOC4 

GO bp GO: NEURON DEATH 345 4 1.51E-05 1.01E-02 TBK1, SARM1, CRHR1, MAPT 

GO bp GO: REGULATION OF 

PEPTIDYL SERINE 

PHOSPHORYLATION 

139 3 3.27E-05 2.00E-02 TBK1, GGNBP2, IFNK 

GO bp GO: EXOCYTOSIS 897 5 3.70E-05 2.09E-02 SCFD1, CRHR1, NSF, UNC13A, 

EXOC4 

 

GO bp 

GO: REGULATION OF 

PEPTIDYL SERINE 

PHOSPHORYLATION OF 

STAT PROTEIN 

 

23 

 

2 

 

4.89E-05 

 

2.48E-02 

 

GGNBP2, IFNK 

GO bp GO: REGULATION OF 

CATABOLIC PROCESS 

959 5 5.09E-05 2.48E-02 TBK1, SCFD1, MAPT, NSF, 

EXOC4 

 

GO bp 

GO: PROCESS UTILIZING 

AUTOPHAGIC MECHANISM 

 

485 

 

4 

 

5.72E-05 

 

2.48E-02 

 

TBK1, SCFD1, MAPT, EXOC4 

GO bp GO: REGULATION OF 

MACROAUTOPHAGY 

168 3 5.74E-05 2.48E-02 TBK1, SCFD1, EXOC4 

GO bp GO: SERINE 

PHOSPHORYLATION OF 

STAT PROTEIN 

27 2 6.78E-05 2.77E-02 GGNBP2, IFNK 

GO bp GO: REGULATION OF 

SYNAPTIC PLASTICITY 

182 3 7.28E-05 2.82E-02 CRHR1, MAPT, UNC13A 

 

GO bp 

GO: MYD88 INDEPENDENT 

TOLL LIKE RECEPTOR 

SIGNALING PATHWAY 

 

32 

 

2 

 

9.56E-05 

 

3.37E-02 

 

TBK1, SARM1 

GO bp GO: INTRACELLULAR 

TRANSPORT 

1815 6 9.62E-05 3.37E-02 SCFD1, CRHR1, MAPT, NSF, 

UNC13A, EXOC4 
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GO cc GO: NEURON PROJECTION 1301 6 1.48E-05 1.31E-02 SARM1, CRHR1, MAPT, NSF, 

UNC13A, EXOC4 

GO cc GO: CELL PROJECTION 

PART 

1438 6 2.61E-05 1.31E-02 SARM1, CRHR1, MAPT, NSF, 

UNC13A, EXOC4 

GO cc GO: CYTOPLASMIC REGION 488 4 5.86E-05 1.38E-02 MAPT, UNC13A, MOBP, EXOC4 

GO cc GO: CELL CORTEX PART 176 3 6.59E-05 1.38E-02 UNC13A, MOBP, EXOC4 

GO cc GO: NEURON PART 1709 6 6.89E-05 1.38E-02 SARM1, CRHR1, MAPT, NSF, 

UNC13A, EXOC4 

GO cc GO: DENDRITIC TREE 588 4 1.20E-04 1.63E-02 SARM1, CRHR1, MAPT, NSF 

GO cc GO: SYNAPSE 1169 5 1.30E-04 1.63E-02 SARM1, MAPT, NSF, UNC13A, 

EXOC4 

GO cc GO: AXON 600 4 1.30E-04 1.63E-02 SARM1, MAPT, UNC13A, EXOC4 

GO cc GO: DISTAL: AXON 280 3 2.60E-04 2.89E-02 MAPT, UNC13A, EXOC4 

GO cc GO: CELL CORTEX 302 3 3.24E-04 3.24E-02 UNC13A, MOBP, EXOC4 

GO cc GO: SOMATODENDRITIC 

COMPARTMENT 

818 4 4.24E-04 3.86E-02 SARM1, CRHR1, MAPT, NSF 

GO cc GO: ORGANELLE 

SUBCOMPARTMENT 

375 3 6.09E-04 4.24E-02 SCFD1, CRHR1, NSF 

GO cc GO: AXON PART 376 3 6.14E-04 4.24E-02 MAPT, UNC13A, EXOC4 

GO cc GO: INCLUSION BODY 81 2 6.17E-04 4.24E-02 TBK1, MAPT 

GO cc GO: WHOLE MEMBRANE 1647 5 6.36E-04 4.24E-02 TBK1, SARM1, MAPT, NSF, 

UNC13A 

GO cc GO: MICROTUBULE 410 3 7.89E-04 4.93E-02 NCKAP5L, SARM1, MAPT 

GO mf GO: SYNTAXIN BINDING 70 3 4.16E-06 4.57E-03 SCFD1, NSF, UNC13A 

 

GO mf 

GO: PROTEIN CONTAINING 

COMPLEX BINDING 

 

1096 

 

6 

 

5.56E-06 

 

4.57E-03 

SCFD1, EFTUD1, CRHR1, MAPT, 

NSF, IFNK 

GO mf GO: SNARE BINDING 105 3 1.41E-05 7.74E-03 SCFD1, NSF, UNC13A 

GO mf GO: SYNTAXIN 1 BINDING 22 2 4.47E-05 1.84E-02 NSF, UNC13A 

Gene ontologies showing significant enrichment (5% FDR) for genes identified in the 

cFDR analysis of ALS and cognition. Abbreviations: bp, Biological process; mf, Molecular 

function; cc, Cell component 
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Figure 2.6: Cell type specific heritability enrichments. 

Panels display the probability that per SNP heritability is enriched (i.e. greater than 

expected genomewide; y-axis) for ALS and secondary traits in sets of genes (defined in 

Finucane et al. (Finucane et al. 2018)) highly-expressed in a range of cell types (points). 

The horizontal red line represents the Bonferroni-corrected p-value threshold for the 

analysis and the vertical dashed line highlights the Frontal lobe annotation which is 

significantly enriched in ALS (and other traits). Cell types passing Bonferroni-corrected p-

value threshold are enlarged for emphasis. Points are coloured by the tissue group their 

respective cell type belongs to as described in the legend of panel 1. Notably there is 

strong evidence of enrichment in the CNS for ALS and all secondary traits studied. 
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Figure 2.7: Cell type specific heritability enrichment correlations. 

Regressing the cell type specific coefficients of herability enrichment for ALS vs secondary 

traits shows a significant correlation between cell types involved in each trait 

(pals:bip=2.1✕10-19; pals:cog= 7.1✕10-16; pals:scz= 2.1✕10-17). Points representing cell types are 

coloured by their tissue of origin, and cell types significant in both traits are enlarged (e.g. 

frontal lobe). The line represents a linear model fit in R. BIP, Bipolar Disorder; ALS, 

Amyotrophic Lateral Sclerosis; SCZ, Schizophrenia; Cog VNR, Cognition Verbal Numeric 

reasoning.  
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The negative genetic correlation between ALS and cognitive performance is consistent 

with presentation of cognitive decline in ALS patients. To answer whether this correlation 

was simply due to shared genetic loci or whether ALS has a causal impact on risk for 

lower cognitive performance we performed latent causal variable analysis (LCV) 

(O’Connor and Price 2018). This analysis tests a model where a latent causal variable 

mediates the genetic correlation between the two traits. It then tests if one trait is highly 

correlated with the latent causal variable, suggesting that it is partially causal for the 

second (i.e. a large portion of its genetic component is causal for the second trait.). The 

analysis returns an estimate for the genetic causality proportion (GCP) and a p value that 

the GCP value is non-zero. LCV analysis run using a GWAS for ALS (Nicolas et al. 2018) 

and two GWAS for cognitive performance returns a significant intermediate value GCP 

(Table 2.6) suggesting that ALS is partially causal for lower cognitive performance (Verbal 

Numeric Reasoning: GCP=0.61, p=5.65✕10-8; cognitive performance: GCP=0.56, 

p=8.39✕10-8). This is interesting as it indicates that a large portion of the genetic 

component for ALS has a causal effect on cognition, potentially explaining findings of 

cognitive decline in ALS patients. This suggests that some future interventions treating the 

root genetic cause of ALS are likely to also offset cognitive decline if successful. In 

contrast other genetically correlated traits such as bipolar disorder and schizophrenia do 

not share a detectable causal relationship with ALS (bipolar disorder: GCP=0.02,p=0.75; 

schizophrenia: GCP=-0.15,p=0.45), suggesting that ALS variants do not have a causal 

impact on schizophrenia or bipolar disorder (or vice versa) (Table 2.6).  

 

Table 2.6: Latent Causal Variable analysis of ALS and secondary traits.   

Trait 1 Trait 2 GCP p GCP=0 

ALS Cognitive performance 0.56 8.39✕10-8 

ALS Cognitive verbal numeric reasoning 0.61 5.65✕10-8 

ALS Schizophrenia -0.15 0.45 

ALS Bipolar 0.02 0.75 

Summarises the estimated genetic causality proportion and probability that it is non-zero 

for ALS and correlated secondary traits.   
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2.3.2 - Sex specific architecture 

ALS heritability estimated from mother to daughter pairings in Ireland has been shown to 

be higher than other parent offspring pairings (Ryan et al. 2019), suggesting a potential 

sex specific component to the genetics of ALS. Additionally population registers in Italy 

and the UK show that ALS prevalence is much higher in males pre-menopause age 

(Manjaly et al. 2010), but closer to parity after, suggesting that sex plays a biological role 

in disease risk. To explore this hypothesis further we tested whether a fraction of the 

heritability of ALS could be explained by a gene-sex interaction. We fit sex as an 

interaction term in GCI-GREML model run on individual-level data from the 2016 ALS 

GWAS (van Rheenen et al. 2016), and tested its relative likelihood versus a standard 

model without this interaction using a likelihood ratio test. We observed a significant gene-

sex interaction in this ALS GWAS dataset (p=8.73×10-3). The total model estimated that 

SNP based heritability was ~7.8% (consistent with estimates in the source paper) with a 

gene-sex interaction accounting for about a third of this heritability (Figure 2.8 A). When 

partitioned by minor allele frequency the majority of heritability was in the lowest 

frequency bin (MAF 0.01-0.1), consistent with the source paper for the dataset (van 

Rheenen et al. 2016), with the gene by sex interaction accounting for close to 50% of this 

fraction. This result is particularly interesting as heritability estimates in this analysis are 

from the autosome, suggesting that the gene-sex interaction observed here is not 

explained by variants on the sex chromosomes interacting with ALS risk. However, it is 

possible hormones differentially affect expression of risk genes in males and females, 

resulting in a sex-gene interaction on the autosomes. Alternatively, female hormones may 

play a protective role against ALS, which may mean that a higher genetic load or a distinct 

set of risk variants is needed in females. Both endogenous female hormones (de Jong et 

al. 2013) and exogenous female hormones (e.g. hormone replacement treatment and oral 

contraceptives) (Rooney, Visser, et al. 2017) have been associated with lower risk of ALS 

in females, supporting the latter hypothesis. Together with the literature, our results 

suggest that the genetic architecture of ALS differs in males and females. 
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Figure 2.8: Genotype by sex interaction in ALS. 

Barplots displaying the GREML heritability estimates under a genotype by sex interaction 

model for (A) all SNPs and (B) SNPs partitioned by minor allele frequency (MAF). Main 

SNP effects are displayed in blue while SNP by sex interactions are displayed in red. Error 

bars represent the 95% confidence interval for the total heritability estimate. p-LRT = p 

value produced by the likelihood ratio test for a gene by sex interaction versus a model 

with only genetic effects.    
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To further explore the nature of the gene-sex interaction we split the GWAS dataset into 

male-only (n=18,730; 7,442 cases) and female-only (n=17,322; 5,135 cases) subsets and 

ran a mixed linear model GWAS for ALS in each dataset. Our goal here was to investigate 

differences in association signals in ALS in males and females, and additionally to assess 

if there are global differences in the genetic architecture of the disease between males 

and females. The datasets produced well-controlled summary statistics as seen by 

inspection of the qq-plots (Figure 2.9) and Lambda gc estimates which are close to one 

(Male = 1.086, Female = 1.08). We performed a genome-wide scan using these sex-

stratified summary statistics to identify sex-specific variants, which showed significant 

association with ALS in one sex but not the other. For our “sex-specific” scan we classified 

variants as “strongly” sex-specific if they were significantly associated with ALS at 5% 

FDR in one sex (pals|sex1<9.1✕10-7), and had no evidence of association in the other 

(pals|sex2>0.05), and “suggestively” sex-specific if they were associated with ALS in one sex 

(pals|sex1<9.1✕10-7) and only nominally associated in the other (9.1✕10-7<pals|sex2<0.05) 

(Figure 2.10). Variants meeting these criteria were then clumped to remove signals 

coming from the same LD region, and the closest gene was reported (Table 2.7). FUMA 

analysis of genes adjacent to independent loci with specific association in males or 

females indicates they are significantly upregulated in several brain annotations from 

GTEx expression data (Table 2.8). Additionally genes identified using this scan show 

enrichment in gene ontologies for several biological processes, many of which involve 

neuronal growth or cell projection (Table 2.9).    

 

 

Figure 2.9: Inflation in sex stratified GWAS for ALS. 

QQ-plots for sex stratified GWAS for ALS. Male (left) and female (right) show similar levels 

of inflation (λgc ~ 1.08) and appear well controlled (i.e. do not deviate excessively from the 

expected null distribution). 
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Figure 2.10: Genome wide sex-specificity scan for ALS. 

A Miami plot of a female-only (top) and male-only (bottom) GWAS for ALS. The horizontal 

red lines represent the 5% FDR threshold for significance (p=9.1✕10-7). SNPs in green 

show a suggestive signal of sex specificity (psex1 < 9.1✕10-7 and 9.1✕10-7 < psex2 < 0.05), 

and SNPs in red show a strong signal of sex-specificity (psex1 <9.1✕10-7 and psex2 > 0.05). 

Loci passing the scan are numbered, and the closest gene is reported (or rsid of lead SNP 

if no genes are proximal). Known loci are highlighted in bold. 
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Table 2.7 Sex-specific ALS GWAS scan results. 

CHR SNP BP p fem p male p diff Sex-specific Closest Gene Known 

3 rs816487 39487490 3.44E-02 7.10E-07 3.30E-02 Suggestive - Male MOBP Known 

3 rs28829975 39510671 1.38E-01 1.52E-07 5.04E-03 Strong - Male MOBP Known 

8 rs6996532 2417678 6.50E-02 1.56E-07 1.10E-02 Strong - Male LOC101927815 Known 

9 rs10511816 27468461 1.56E-04 1.32E-08 1.37E-01 Suggestive - Male MOB3B, C9orf72 Known 

9 rs4879515 27482235 7.97E-07 8.91E-05 5.12E-01 Suggestive - Female MOB3B, C9orf72 Known 

9 rs139185008 27491942 1.53E-06 8.42E-08 5.32E-01 Suggestive - Male MOB3B, C9orf72 Known 

9 rs2492816 27565105 1.19E-04 1.18E-07 2.62E-01 Suggestive - Male C9orf72 Known 

9 rs7864502 27583128 1.03E-06 1.92E-07 7.57E-01 Suggestive - Male C9orf72 Known 

9 rs2453556 27586162 6.86E-07 6.19E-06 7.90E-01 Suggestive - Female C9orf72 Known 

9 rs10869323 71424040 1.68E-01 7.13E-07 1.42E-06 Strong - Male PIP5K1B, FXN Novel 

9 rs117310802 138159175 6.74E-01 1.36E-07 2.38E-04 Strong - Male - - 

10 rs113944602 4185278 9.03E-07 6.69E-01 1.09E-04 Strong - Female - - 

13 rs112215101 26166022 7.17E-08 9.67E-01 8.06E-05 Strong - Female ATP8A2 Novel 

13 rs2419324 26254841 8.24E-07 1.96E-01 7.61E-03 Strong - Female ATP8A2 Novel 

13 rs9599108 66957056 7.50E-01 5.20E-07 5.02E-04 Strong - Male PCDH9 Novel 

14 rs1268411 21018970 4.09E-07 5.62E-02 2.54E-02 Strong - Female RNASE9 Novel 

15 rs183786557 31913997 4.00E-07 8.23E-01 3.33E-04 Strong - Female OTUD7A Novel 

16 rs58808799 19154719 3.97E-07 4.68E-01 1.66E-03 Strong - Female ITPRIPL2, SYT17 Novel 

17 rs35714695 26719788 2.23E-04 1.56E-07 2.13E-01 Suggestive - Male SARM1 Known 

17 rs11652539 73797775 5.30E-01 4.21E-07 2.54E-05 Strong - Male UNK Novel 

17 rs56174511 73903482 3.03E-01 5.36E-08 1.79E-06 Strong - Male FBF1 Novel 

19 rs12608932 17752689 3.44E-08 1.28E-04 2.67E-01 Suggestive - Female UNC13A Known 

Lists independent SNPs (clumped) passing 5% FDR threshold for association with ALS in 

one sex but not the other (suggestive evidence), or passing the 5% FDR threshold in one 

sex but not even reaching nominal significance in the other (strong evidence). The closest 

gene or genes are listed for each variant. P values are provided for the male and female 

only GWAS and the p value for the difference in their effects (p diff) is also listed. Rows 

are coloured to represent stretches of loci in or adjacent to the same gene.   
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Table 2.8: Tissue specific upregulation for sex-specific genes.     

GeneSet N genes 

set 

N genes 

overlap 

p FDR adj p Female-specific 

genes 

Male- 

specific genes 

 

Brain Amygdala 

 

1825 

 

6 

 

1.29E-04 

 

6.97E-03 

ATP8A2, OTUD7A, 

SYT17, UNC13A 

 

MOBP, PCDH9 

 

Brain Anterior cingulate 

cortex BA24 

 

2376 

 

6 

 

5.45E-04 

 

2.94E-02 

ATP8A2, OTUD7A, 

SYT17, UNC13A 

 

MOBP, PCDH9 

 

Brain Frontal Cortex BA9 

 

3142 

 

7 

 

3.33E-04 

 

1.80E-02 

ATP8A2, OTUD7A, 

SYT17, UNC13A 

 

MOBP, PCDH9,PIP5K1B 

 

Brain Hippocampus 

 

1970 

 

6 

 

1.97E-04 

 

1.06E-02 

ATP8A2, OTUD7A, 

SYT17, UNC13A 

 

MOBP, PCDH9 

 

Brain Hypothalamus 

 

2539 

 

6 

 

7.78E-04 

 

4.20E-02 

ATP8A2, OTUD7A, 

SYT17, UNC13A 

 

MOBP, PCDH9 

 

Brain Substantia nigra 

 

1650 

 

6 

 

7.37E-05 

 

3.98E-03 

ATP8A2, OTUD7A, 

SYT17, 

 MOB3B 

 

MOBP, PCDH9, MOB3B 

Tissue specific enrichments for genes closest to sex-specific loci (Table 2.7). Male- and 

female-specific genes are enriched in genes highly expressed in the brain (significant at 

5%FDR) 
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 Table 2.9: Gene ontology annotations enriched for sex-specific genes.     

GeneSet N genes 

set 

N genes 

overlap 

p FDR adj p Female-specific 

genes 

Male- 

specific genes 

GO: POSITIVE REGULATION 

OF GROWTH 

 

266 

 

4 

 

3.03E-06 

 

2.22E-02 

ATP8A2, SYT17, 

UNC13A 

 

FXN 

GO: REGULATION OF 

DEVELOPMENTAL 

GROWTH 

 

338 

 

4 

 

7.8E-06 

 

2.87E-02 

ATP8A2, SYT17, 

UNC13A 

 

FXN 

GO: NEUROMUSCULAR 

PROCESS CONTROLLING 

POSTURE 

 

16 

 

2 

 

1.76E-05 

 

4.03E-02 

 

ATP8A2 

 

FXN 

GO: POSITIVE REGULATION 

OF CELL GROWTH 

 

160 

 

3 

 

3.25E-05 

 

4.03E-02 

SYT17, UNC13A  

FXN 

GO: REGULATION OF 

NEURON PROJECTION 

DEVELOPMENT 

 

487 

 

4 

 

3.27E-05 

 

4.03E-02 

ATP8A2, SYT17, 

UNC13A 

 

SARM1 

GO: REGULATION OF 

DENDRITE EXTENSION 

 

23 

 

2 

 

3.71E-05 

 

4.03E-02 

SYT17, UNC13A  

- 

GO:  

NEURON DEVELOPMENT 

 

1094 

 

5 

 

4.59E-05 

 

4.03E-02 

ATP8A2, SYT17, 

UNC13A 

 

SARM1, UNK 

GO: POSITIVE REGULATION 

OF DEVELOPMENTAL 

GROWTH 

 

181 

 

3 

 

4.69E-05 

 

4.03E-02 

ATP8A2, SYT17, 

UNC13A 

 

- 

GO: CELLULAR 

COMPONENT 

MORPHOGENESIS 

 

1111 

 

5 

 

4.94E-05 

 

4.03E-02 

ATP8A2, SYT17, 

UNC13A 

 

SARM1, UNK 

Gene ontology enrichments for genes identified to be closest to sex-specific loci (Table 

2.7). All annotations listed are significant at 5% FDR.    

 

Sex-specific SNPs were identified in several known ALS loci in this scan (Table 2.7; e.g. 

MOBP, UNC13A, SARM1, C9orf72, LOC101927815). A key example of strong sex-

specificity at a known ALS locus can be seen at the MOBP locus, which shows strong 

association with ALS in males (pmale=1.5✕10-7), but almost no signal in females 

(pfem=0.14). In contrast, the UNC13A locus reaches genome wide significance 

(pfem=3.3✕10-8) in females, but has a nominal signal in males (pmale=1.3✕10-4), hence we 

would classify it as suggestively female-specific locus (Table 2.7). Of the known ALS loci 

identified with sex-specific association, MOBP and SARM1 have an interesting history in 
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ALS GWAS in that they show strong association in some GWAS, but not others, which 

could be attributed to sex-specific effects like those seen here confounding standard 

unstratified GWAS. For example the MOBP locus was only identified in the source GWAS 

for this dataset (van Rheenen et al. 2016) through application of the LMM model, and 

missed using a standard meta-analysis in the same dataset and a later meta-analysis with 

more samples (Nicolas et al. 2018). This could be due to model misspecification as meta 

analyses assume homogeneous effects across all sub cohorts, whereas the association 

between MOBP and ALS appears to be sex-dependent, and hence may be 

heterogeneous across cohorts depending on their sex balance. Similarly SARM1 was only 

identified in the 2016 ALS GWAS (van Rheenen et al. 2016) and not the 2018 ALS GWAS 

(Nicolas et al. 2018), and appears to have also had a male-specific effect. It is possible 

that the sex-biased sampling in the 2018 ALS GWAS (~60% female controls), may have 

reduced power to detect these loci in the 2018 ALS GWAS, despite its greater sample 

size.   

 

Of the known ALS loci identified in the scan, C9orf72 is interesting in that it seemingly 

harbours SNPs with sex-specific effects for both males and females. We note that sex-

specificity is only ever suggestive in each of these variants however, with quite low p-

values for both males and females indicating that these hits may be false positives for 

sex-specific association resulting from false negative association with ALS in either males 

or females. This may be due to the lower power of these stratified GWAS (caused by 

splitting sample size), which means we should be cautious of “suggestively sex-specific” 

variants which may sometimes be real associations in both males and females, but simply 

undetected in one sex due to power issues. In spite of this caveat, sex has been shown to 

have modifying effects on the impact of C9orf72 in ALS (Rooney, Fogh, et al. 2017), so 

there is potential for these effects to be real.   

 

Our sex-specific scan also found strong evidence of sex-specific associations in several 

novel loci which may have been missed by unstratified GWAS, many of which are near or 

in feasible candidate ALS genes. For example in our female-only GWAS we found several 

variants in the ATP8A2 gene (e.g. rs112215101, pfem=7.17×10-8) with no signal in males 

(pmale=0.97). This gene is widely expressed in the brain and spinal cord, and mutations in 

it have been shown to cause axonal degeneration in wabbler-lethal mice (X. Zhu et al. 

2012), making it a sensible candidate given the involvement in ALS. We also identify 

strong evidence of sex-specificity near PCDH9 in males (pmale=5.2✕10-7) with no signal in 

females (pfem=0.75), which shows high expression in the brain and spinal cord (GTEx 
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portal 2/6/2020) alongside involvement in major depressive disorder risk (Xiao et al. 

2018), meaning it may be involved in the genetic overlap between ALS and psychiatric 

traits discussed above. Notably PCDH9 was also identified in a cFDR scan for ALS and 

FTD (Karch et al. 2018), suggesting that it is a plausible candidate ALS gene. While these 

and several genes near other novel sex-specific ALS hits show heightened expression in 

brain tissue (e.g. OUTD7A, SYT17 and PIP5K1B; GTEx portal 2/6/2020 and Table 2.9), 

and hence may have some feasible mechanistic tie to ALS pathology, some of our novel 

hits are near genes most abundantly expressed in sex-specific tissues such as the testis 

(FBF1, RNASE9; GTEx portal 2/6/2020) or the cervix, ovary and uterus (UNK; GTEx 

portal 2/6/2020), which are more difficult to explain as these tissues are not directly linked 

to tissues of disease onset. However the latter genes are likely differentially expressed in 

males and females due to their presence in these tissues, meaning variants within them 

may differentially expose males and females to disease risk due to the relative abundance 

of their transcripts. This scan is quite permissive and results should be interpreted as 

suggestive hits until replicated in an independent sex-stratified GWAS, ideally with 

standard GWAS multiple testing thresholds.   

 

We also performed a “sex-differentiated” scan to identify variants with significantly 

different effect size in males and females (Figure 2.11). This scan is best powered for 

identifying variants with opposite effects in each sex, but could theoretically identify 

variants with majorly different effects in the same direction in males and females. As in the 

source paper for this method (Randall et al. 2013), this scan showed no significant hits at 

a 5% FDR, despite showing clear statistical inflation (lambda=1.073), and a borderline 

genome wide significant peak on chromosome 9 (Figure 2.11 A, p=8.9✕10-8), which is 

suggestive evidence of the variant having differing effects in males and females. This lack 

of genome wide significance here may simply be a matter of power which will be 

overcome by sample size increases in future sex-stratified ALS GWAS, as seen for BMI 

which returned no sex differentiated loci in the initial study applying this method (Randall 

et al. 2013), but several in a follow up study with more samples (Winkler et al. 2015). 

Notably the peak on chromosome 9 in this scan does not correspond to C9orf72, but 

instead falls within PIP5K1B, a gene which also harboured hits in our male-only ALS sex-

specific scan. Gene-based analysis using p-values from this scan in MAGMA (de Leeuw 

et al. 2015) shows SNPs in this gene are enriched for differential effects in males and 

females, suggesting this might be a real signal. This gene, and its neighbour FXN are 

implicated in Friedreich's Ataxia (Bayot et al. 2013), where it is likely silenced by the long 

FXN repeat expansion flanking it (Bayot and Rustin 2013). As both ALS and Friedreich's 
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Ataxia are neurodegenerative disorders mediated by large repeat expansions this seems 

like a feasible candidate ALS gene. It is also of note that this locus falls in 9q21-22 region 

of the genome, which was identified as associated with ALS-FTD in early linkage studies 

(Hosler et al. 2000), but has not been replicated in following years, which may be due to 

sex composition of the cohorts studied. Aside from the PIP5K1B locus, genes from our 

sex differentiated scan did not show clear enrichment in tissues or gene ontologies when 

analysed with FUMA, meaning further work will need to be done to characterise which 

functional regions are affected differently in ALS across sexes.   

 

Figure 2.11: Genome wide sex-differentiation scan for ALS. 

Manhattan plots for (A) SNPs and (B) aggregate p-values across genes (MAGMA) for our 

genome-wide sex-differentiation scan for ALS which tests for loci with divergent effects in 

males and females on ALS risk. The genome-wide significance line is plotted in red and 

the suggestive significance line is plotted in blue. For the MAGMA analysis genome wide 

significance is corrected for the number of genes tested (0.05/18900). Notably only one 

clear peak stands out (PIP5K1B on chromosome 9), which does not quite reach genome 

wide significance in the SNP based scan. The PIP5K1B gene in which this SNP is located 

does reach significance in our MAGMA aggregated gene based test, and was also 

identified by our sex-specific scan (Figure 2.10, Table 2.7).  

 

To further explore the differences in genetic architecture of ALS between males and 

females we ran univariate LD score regression on the male and female GWAS to estimate 

the SNP-based heritability from each. Notably the male-only sample had an extremely low 

SNP-based heritability estimate (LDSC Male: h2=0.001;SE=0.0124, Table 2.10) which 

was not significantly non-zero. In contrast the female-only GWAS had a non-zero SNP-
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based heritability estimate on par with the estimate from the meta-analysis of the full 

dataset (LDSC Female: h2=0.0434;SE=0.0144, Table 2.10), with substantially larger SE 

than the full analysis, probably driven by lower sample size. This higher SNP-based 

heritability estimate in females could indicate that ALS is more polygenic in females than 

in males, especially when noting the LDSC intercept, which was much higher in males 

than females (Male = 1.0896; Female = 1.0533, Table 2.10), indicating that a higher 

proportion of inflation in the male-only GWAS can be attributed to confounding. 

Considering that the male- and female-only GWAS show similar levels of inflation overall, 

this hypothesis seems likely.  

 

Table 2.10: Sex-partitioned SNP-based heritability and inflation. 

Analysis Cases Controls LDSC-intercept (SE) LGC Ratio  h2 SNP (SE) 

Male 7,442 11,288 1.0896 (0.0073) 1.086 0.9903 (0.0803) 0.001 (0.0124) 

Female 5,135 12,187 1.0533 (0.0068) 1.08 0.6393 (0.0814) 0.0434 (0.0144) 

Summaries of measures of inflation (LDSC-intercept and LGC) and SNP-based heritability 

(h2
SNP) from LD score regression on male-only and female-only GWAS. Ratio here refers 

to (LDSC intercept-1)/(mean(chi2)-1) and should reflect the proportion of inflation 

contributed by confounding. While the ratio in the female-only GWAS is high, indicating it 

is quite heavily confounded, the male-only GWAS ratio is near one indicating inflation is 

almost entirely confounding.  

 

However, the LDSC model assumes even spread of heritability across the genome, which 

is at odds with our MAF partitioned GREML result (Figure 2.8), which shows higher 

heritability in lower frequency variants, suggesting that the LDSC model may be 

misspecified here. To test this hypothesis further within another framework, we ran HESS 

(Heritability Estimation from Summary Statistics) on the male-only and female-only ALS 

GWAS to re-evaluate sex-partitioned heritability and test for patterns of enrichment of 

heritability across the genome. The output from HESS can be ordered by contribution to 

total heritability to create a plot of fraction of heritability explained by cumulative fraction of 

the genome, which can be thought of as a visualisation of the polygenicity of the trait 

(Figure 2.12 a). We noted that the male-specific polygenicity curve was marginally steeper 

than the female-specific polygenicity curve, suggesting that its heritability was explained 

by fewer variants and indicating that it may be less polygenic than female-specific ALS. 

However as both male and female curves are steeper than the total ALS curve, there is a 

possibility that this discrepancy is simply a power issue. Notably local male-specific 

heritability estimates for ALS were lower than local female-specific estimates using HESS 

(Figure 2.12 b),supporting our observations from LD score regression above. Additionally 

this analysis showed differing patterns of local heritability across the 1,700 independent 
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regions tested (Figure 2.12 b), suggesting a different local architecture. However due to 

large standard errors in the sex specific genome-wide heritability estimates produced by 

HESS, which encompass zero, it may be unwise to draw strong conclusions from this 

analysis (Total h2
male=0.022, SE=0.07; h2

female=0.039, SE=0.08). 

 

Figure 2.12: Sex stratified local heritability compared. 

A.) HESS contrast polygenicity curves for the female-only (ALS FEM), male-only (ALS 

MALE) and full GWAS (ALS TOT). The curves describe the cumulative percentage of total 

SNP-based heritability attributable to a fraction of the genome (i.e. the top 10%, top 20% 

etc). Where heritability is completely uniform we expect this to produce a 1:1 line. The full 

analysis is closest to the 1:1 line, followed by the female specific, and finally the male 

specific analysis in line with our LDSC intercept estimate suggesting that the male specific 

GWAS has the lowest polygenicity. 

B.) HESS cumulative genome-wide heritability plots show the relative patterns of 

heritability for the full GWAS (ALS TOT), the female-only GWAS (ALS FEM) and the male-

only GWAS (ALS MALE). 

 

Due to the statistically zero heritability of ALS in males using univariate LDSC and HESS, 

it was not possible to estimate genetic correlation between males and females based on 

summary statistics. We therefore instead ran univariate GREML analysis on individual-

level male- and female-specific data to improve power in estimating sex-specific 

heritability. The female-specific analysis showed a SNP-heritability on par with the full 

analysis from the source paper (GREML Female: h2=0.08;SE=0.01), and a linear 

relationship between SNP-heritability and chromosome length (Figure 2.13; 

r2=0.27;p=0.0074), suggesting that ALS is polygenic in females. In the male-only GREML 

analysis SNP heritability was significantly non-zero (unlike in LDSC), and only slightly 

lower than the female heritability (GREML Male: h2=0.06;SE=0.008). However there was 
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no significant linear relationship between SNP-heritability and chromosome length in 

males (Figure 2.13, r2=0.009,p=0.286), with heritability instead appearing to be 

concentrated disproportionately on chromosomes 5,9,10,11,15 and 17 providing further 

evidence that ALS might not be as polygenic in males. While male and female total 

heritability estimates overlap statistically, it appears from HESS (Figure 2.12b) and 

partitioned univariate GREML analysis (Figure 2.13) that they are driven by quite different 

genetic loci across the genome. For example a linear regression of heritability per 

chromosome in males and females shows zero correlation (r2=-0.045,p=0.99), suggesting 

variants contributing to the heritability of ALS in males may be distributed differently to 

those in females.  

 

 

 

Figure 2.13: Heritability vs chromosome length partitioned by sex. 

Male and female heritability estimates per chromosome (GREML) plotted against 

chromosome length demonstrate sex differences in the spread of genetic risk for ALS. 

Females (left) show a positive linear relationship between chromosome length and ALS 

heritability, suggesting that variants contributing to heritability are spread genome-wide, 

indicating polygenicity. In contrast Male ALS heritability estimates do not appear to have a 

linear relationship with chromosome length (right), and instead are concentrated in a 

number of key chromosomes likely representing a more oligogenic architecture. 

 

Finally we ran a bivariate GREML analysis to estimate genetic correlation between ALS in 

males and females, given that this was impossible using summary statistics due to the 

statistically zero estimates of ALS heritability in males. Contrasting our aforementioned 

evidence of apparent differences in distribution of heritability in males and females, 
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bivariate GREML analysis reveals a high genetic correlation between ALS in males and 

females (rg=1 (0.75-1.25)). While the point estimate for the genetic correlation between 

males and females for ALS is one, it is important to note the wide confidence interval 

which suggests correlation may not be perfect, indicating that males and females share 

most but not necessarily all genetic variation for ALS (i.e. risk variants might be highly 

overlapping but not necessarily identical). Larger sample sizes should improve the 

precision of this estimate to allow us to better understand how similar ALS genetics are in 

males and females.    
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2.4 - Discussion 

In this chapter we have expanded the insights into the genetics of ALS yielded from 

GWAS by exploring (i.) the shared genetic components with secondary neuropsychiatric 

and cognitive traits and (ii.) the potential differential genetic architecture of ALS in males 

and females. These analyses enable us to better understand the genetic root of clinically 

observed extra motor symptoms seen in patients, and genetically contextualize the 

difference in observed risk and heritability differences between males and females.  

 

2.4.1 - Genetic overlap with psychiatric and cognitive traits 

Towards our first aim (i) our analysis yielded a number of interesting results regarding the 

shared genetic architecture between ALS and secondary neuropsychiatric and cognitive 

traits. We uncovered a novel genetic overlap between ALS and bipolar disorder using LD 

score regression, alongside replicating known correlations with schizophrenia and lower 

cognitive performance. We observed that these traits all had enriched SNP heritability in 

genes highly expressed in the CNS, suggesting that all share a common tissue of effect. 

Multi-trait analyses using these correlated traits yielded several novel loci potentially 

associated with ALS and these secondary traits, and showed pleiotropic loci are enriched 

in genes highly expressed in the brain. ALS and cognition-related genes showed 

functional enrichment in several gene ontologies relating to neuronal function and 

development, solidifying the role of shared biological pathways in a shared tissue of effect. 

Beyond directly observed genetic correlations, structural equation model analysis 

revealed evidence that ALS shares a common genetic factor with an extended profile of 

psychiatric traits, pointing towards a genetic basis for the enrichment of psychiatric traits in 

ALS kindreds. However, latent causal variable analysis indicated that ALS does not have 

a causal genetic relationship with bipolar or schizophrenia, suggesting that while they 

share genetic features, exposure to one trait does not causally lead to the other. In 

contrast, we found evidence that ALS has a causal genetic impact on lower cognitive 

performance, suggesting that the exposure of having ALS may directly lead to the 

cognitive phenotypes observed in patients. This result highlights the differences between 

simple genetic pleiotropy across phenotypes and causal genetic links between 

phenotypes, and potentially explains the abundance of enriched functional annotations 

when analysing ALS and cognition in tandem, but not when analysing ALS and psychiatric 

traits.  

 

The novel genetic correlation we observed between ALS and bipolar disorder, and 
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replication of the correlation with schizophrenia strengthens the emerging narrative that 

ALS has a shared genetic component with psychiatric traits (R. L. McLaughlin et al. 2017), 

suggesting that possibly overlapping biological pathways or mechanisms drive ALS and 

psychiatric traits. Supporting this we found that ALS, bipolar disorder and schizophrenia 

all have enriched heritability in genes expressed in the central nervous system, indicating 

that their shared genetic features and coincidence in families may partially reflect 

perturbations of genes highly expressed in the same tissue. In our attempts to identify 

pleiotropic loci shared between ALS and psychiatric traits we identified putative signals in 

a number of novel putative ALS genes (CNNM2, SRGAP1, KRT18P55, SRGAP1, 

NCKAP5L, SPIRE1, AS3MT) and one known ALS gene (C9orf72). Functional analysis 

showed that pleiotropic genes appear to be particularly highly expressed in the cerebellum 

and frontal cortex, but show no significant functional enrichment across all gene 

ontologies, indicating that a shared burden in genes highly expressed in the brain may be 

the major feature responsible for their genetic overlap. However, given the relatively small 

sample sizes of both the ALS and secondary psychiatric trait datasets, we cannot 

conclusively rule out the existence of shared pathways between these traits. Future 

studies may be better powered to identify the functional overlap between ALS and 

psychiatric traits.  

 

Interestingly, despite a near 10-fold increase in sample size for MDD and ADHD GWAS 

compared to the initial study of genetic correlation between ALS and psychiatric traits (R. 

L. McLaughlin et al. 2017), bivariate LD score regression analysis of our data suggests 

that neither of these traits shares significant genetic correlations with ALS, implying 

secondary trait sample size is unlikely to be driving these null results. Moreover neither 

anxiety nor PTSD (which were absent from the aforementioned study) showed significant 

genetic correlation with ALS, despite evidence of increased diagnosis of stress related 

disorders and anxiety both before and after diagnosis with ALS (Longinetti et al. 2017). It 

is possible that the increased rates of these disorders in ALS patients is instead driven by 

a non-genetic component, such as the burden caused by ALS symptoms, though this 

does not explain the increased rate of diagnosis in the years preceding ALS diagnosis. 

While these results could be true negatives, it is important to note our study focused solely 

on common variation, while ALS is expected to have a rare variant architecture (van 

Rheenen et al. 2016), suggesting that the genetic overlap with these traits may be 

substantially underestimated. The use of large whole-genome sequencing datasets for 

ALS (e.g. those being developed by the Project MinE sequencing consortium (van 

Rheenen et al. 2018)) and secondary psychiatric traits will allow closer examination of 

overlapping rare variant burden in coming years. Nevertheless, when modelling for a 
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shared genetic component across all studied psychiatric traits and ALS using 

genomicSEM (Grotzinger et al. 2019) we found that either a single shared latent genetic 

factor or two correlated latent genetic factors best described the genetic covariance 

structure between these traits, indicating that there may in fact be a common genetic 

factor shared  between ALS and psychiatric traits, even for traits that appeared non-

correlated in the bivariate analysis.   

 

Our bivariate LD-score regression analysis also identified negative genetic correlations 

with two measures of cognition (verbal numeric reasoning and cognitive performance). 

This result adds to prior evidence that polygenic risk for ALS is associated with lower 

measures of cognition in the UK Biobank and the previously observed nominal genetic 

correlation with a proxy measure of cognitive performance (Hagenaars et al. 2018; 

Bandres-Ciga et al. 2019). Given the high rates of cognitive impairment in ALS patients, 

the potential existence of shared genetic pathways between ALS and cognition has many 

implications for understanding the root of these extra-motor symptoms and potentially 

treating them. Notably we observed that ALS not only shares a tissue of effect with 

cognition (CNS), but appears to be partially genetically causal for lower cognition, implying 

ALS doesn’t just share pathways with decreased cognitive function, but that the genetic 

exposure of ALS may result in these symptoms. Hence identifying treatments for ALS may 

not only alleviate motor symptoms, but could also improve negative cognitive symptoms in 

patients, greatly improving quality of life for both patients and caregivers. Notably while we 

have identified a number of putative pleiotropic loci affecting both ALS and cognition, 

whole-genome or exome sequencing patients with cognitive symptoms may further 

elucidate the overlap between these traits, providing a more direct assessment of the 

shared genetic architecture of cognition and ALS.      

 

Our multi-trait analysis between ALS and cognition showed significant enrichment in gene 

ontologies associated with neurone development, differentiation and general cell 

morphogenesis, all of which may play a role in neuronal vulnerability in ALS. On top of this 

we also saw enrichment in the MECP2 reactome, which affects transcription in the CNS 

and is a known contributor to many neurological diseases (Chahrour et al. 2008). MECP2 

expression is affected by the known ALS gene FUS, and has been observed to colocalise 

in FUS aggregates (Coady and Manley 2015), hence it is feasible that ALS pathology 

involves or leads to gene expression dysregulation via MECP2. It is possible that the 

disruption of this pathway plays a role in the extra-motor cognitive symptoms seen in ALS 

patients, given its widespread effects on gene expression central to the nervous system. 

MECP2 is associated with a number of neurodevelopmental disorders including autism 
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and Rett syndrome whose core shared phenotypic features include deficits in cognition 

and motor function, both of which are apparent in ALS (Gonzales and LaSalle 2010), 

lending some support to the possible involvement of the MECP2 reactome in ALS. 

Interestingly MECP2 is located on the X-chromosome, which is typically excluded in 

GWAS analysis due to dosage imbalance in males and females, hence it could not be 

detected directly in datasets used in this study. It would be worthwhile investigating if the 

dosage of this gene has any role in the sex differences in ALS risk and heritability 

discussed in the second half of this chapter. The observed enrichment of these neuronal 

developmental biological processes and the MECP2 reactome provide novel insights into 

the shared pathways and biological mechanisms between ALS and cognition which may 

inform future study into mechanism and treatment of extra-motor cognitive symptoms. 

However, careful replication of these observations may be needed given the limitations of 

our study, in particular the small sample size of the ALS GWAS used and the lack of a 

replication cohort.   

 

While the novel loci identified in our multi-trait analysis may represent true pleiotropic loci 

shared between ALS and secondary traits, there is a high chance that many of them are 

false positives. One noted cause of this is potential misspecification of the MTAG (Turley 

et al. 2018) model which assumes that all traits share the same variance-covariance 

matrix of effect sizes across traits, meaning a SNP which has a null effect in one trait but a 

non-null effect in the others will have an effect biased away from zero. Given many 

variants identified as pleiotropic with this method showed extremely weak association 

(p>0.1) in the base ALS GWASes, implying they may simply be loci associated with the 

secondary trait assayed, our results fit this profile of being biased from null effects to non-

null effects. We also observed high maxFDR values for all pairings of traits, confirming 

that MTAG analysis is likely to be biased. To address this bias we applied cFDR analysis 

as an alternative method to detect pleiotropic loci by conditioning association signals in 

the primary trait on association with a secondary trait. While this method identified some 

shared loci with our MTAG analysis (e.g. EXOC4 and EFTUD1 for cognition), it did not 

replicate a large number of our MTAG hits, in particular those with weak association in the 

main ALS GWAS indicating that these are likely false positives. cFDR also identified a 

number of novel loci missed by MTAG which have more clear evidence of association in 

the single trait ALS GWAS, including a number of known ALS loci, indicating that it is 

likely more robust in this setting. Some of these loci identified using cFDR on ALS 

conditioned on cognition have previously been identified in a cross-trait analysis with 

disease of FTD spectrum (GGNBP2, MAPT, KANSL1, NSF) (Karch et al. 2018), 

suggesting they are likely associated with the cognitive and behavioural profile of ALS. 
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However this analysis of pleiotropy between ALS and traits from the FTD spectrum was 

also run on the 2016 ALS GWAS, so it is not a fully independent replication of these loci. 

These genesets are enriched in the CNS, meaning they are feasible candidate genes for 

involvement in ALS pathology. However, replication of these signals in larger ALS GWAS 

is needed before any concrete action is taken with regards these loci.  

 

Our multi-trait analysis may also be biased by sample overlap in control panels across 

GWAS summary statistics investigated. Shared controls lead to a positive correlation 

between the principal and secondary phenotype studied even at null SNPs, leading to an 

inflation of false positives in cFDR analysis. While adjusted cFDR methods have been 

developed to accommodate for shared controls between principal and conditional traits 

(Liley and Wallace 2015), they require knowledge of the number of overlapping samples, 

which we unfortunately could not estimate or correct due to lack of access to the raw 

individual level genotype data for secondary traits. In the absence of this correction we 

would expect an increase in the number of false positives emerging from this analysis. A 

future direction for this analysis would be to acquire access to individual level data for the 

secondary datasets to fully assess this issue. However given the current power issues in 

the ALS dataset, it may be more profitable to wait for the release of larger ALS GWAS 

which are currently underway. For example an ongoing GWAS effort by the Project MinE 

GWAS consortium with large numbers of samples (N~150,000) is expected to be released 

in the next year or so (van Rheenen et al., personal communication), which may solve 

power issues seen in the MTAG analysis, and improve the return on the cFDR and MTAG 

analysis. Additionally this improved sample size may boost our power to detect genetic 

correlations with an extended set of psychiatric traits, which combined with other multi-trait 

analysis as seen in this chapter should yield further insights into the extra motor 

symptoms of ALS.    

2.4.2 - Differential genetic architecture of ALS in males and females 

Our analysis also uncovered a number of interesting results regarding the differential 

architecture of ALS in males and females (aim (ii) ). In line with observations of differential 

risk and heritability in males and females, we observed that a significant portion of ALS 

SNP-based heritability is explained by interaction with sex. Scanning for variants 

significant in only one sex, and those with differential effects across sexes, we identified a 

number of novel and known loci which may have a sex-specific effect on ALS risk. Many 

of these sex-specific loci are highly expressed in the CNS, suggesting they have a 

feasible role in ALS pathology. We also found suggestive evidence that ALS may be more 

polygenic in females than males, supported by LD score regression, HESS analysis and 
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GREML analysis. In spite of these observations however, genetic correlation for ALS 

between males and females as estimated using bivariate GREML was high, suggesting 

that these differences between sexes may be the exception to the rule, and the majority of 

genetic effects are likely shared across sexes. These results provide evidence of the 

heterogeneity of ALS genetics across sexes, with potential implications for clinical trial 

design, however there are also a number of caveats that must be considered for the 

above analyses. 

 

The interaction between sex and SNP-based heritability we observed mirrors recent work 

in pedigree studies showing increased heritability between mother and daughter pairings 

(Ryan et al. 2019) and suggests that the genetic component of ALS partially differs 

between males and females. As ALS is a complex disease, this gene by sex interaction 

could reflect a great number of influences from biological differences, to lifestyle and 

behavioural differences or differential environmental exposures related to these lifestyle 

and behavioural differences, all of which could modify the risk conferred by a given 

genetic variant. At base however a gene by sex interaction implies males and females 

have differential risk for developing ALS when exposed to a given set of genetic variants. 

This may boil down to different thresholds of the same genetic variants needed to develop 

the disease, or indeed distinct sets. To dissect this we scanned for variants that appear to 

a.) have a different degree of association with ALS in males and females or b.) have 

differential effects on males and females. We identified a number of novel and known 

variants with association signals in only males or only females, which may partially explain 

the differences in heritability seen. However, of these variants, only one also showed 

evidence of differential effect sizes in males and females (PIP5K1B), indicating that few of 

these variants have opposite effects on biology in males and females (i.e. protective vs 

risk). Instead variants likely confer risk in the same direction, but with different magnitudes 

of effect, or simply no effect in one sex. Genes proximal to sex specific loci were enriched 

for expression in the brain and several biological processes involving cell morphogenesis 

and growth, including neural and dendrite projection, which have feasible roles in ALS 

given that its defining feature is death of upper and lower motor neurones.  However due 

to power issues, these variants are unlikely to fully describe the extent of genetic 

difference between males and females for ALS, motivating replication in a larger sample 

size.  

 

The existence of variants with differential association with ALS in males and females may 

have important implications for the design of clinical trials and treatments, given the 

possibility of pharmacogenetic interactions disproportionately affecting each sex. For 
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example, a recent meta-analysis of the effects of lithium carbonate on survival in ALS 

patients showed no response in the unstratified cohort, but significantly improved survival 

in carriers of the UNC13A C/C genotype (van Eijk et al. 2017), suggesting that lithium 

carbonate modifies survival specifically in carriers of this mutation. Given that UNC13A 

shows evidence of stronger association with ALS in females in our data it might be 

important to consider this putative sex imbalance both for future trials and treatments with 

this drug.  Moreover loci that have a differential effect on risk in males and females such 

as PIPK51B, and not simply a difference in association, may further confound clinical trials 

and treatments as variants in such loci could feasibly interact with treatment differently in 

males and females. This highlights the potential importance of these sex differential loci to 

finding suitable treatments for ALS on an individual basis and motivates further efforts to 

identify and replicate sex dimorphic loci.  

 

To capture the full magnitude of sex differences globally we turned to methods combining 

the effects across the genome. Estimates of SNP-heritability were slightly lower in males 

in our data across three heritability methods (LDSC, HESS and GREML), consistent with 

the direction seen in pedigree studies, which also show lower heritability in male-male 

parent offspring pairs (Ryan et al. 2019). However rates of ALS are also puzzlingly higher 

in males than females (Johnston et al. 2006), meaning that while genetics appears to 

explain more of the variance in females, males are more likely to develop the disease. 

Together this suggests that affected females likely carry more genetic risk (hence the 

increased heritability among females), potentially due to a higher liability threshold for 

developing the disease. Alternatively male risk likely may have larger contributions from 

other non-genetic factors (e.g. environmental and lifestyle risks). If true, a higher non-

genetic risk left unaccounted for might have the potential to act as a confounder when 

studying ALS in males, which may bias our male-only GWAS estimates. Consistent with 

this hypothesis we noted that a larger portion of the inflation in GWAS in males was 

attributable to confounding (LD score intercept and ratio). It is possible that some of this 

inflation is caused by the spread of non-genetic environmental risk factors in our male 

dataset tracking with population structure, which due to drift would lead to falsely 

associated variants and bias our sex-specific estimates (although this would not track with 

LD in the LDSC model). While we have attempted to correct for population structure here 

using standard methods such as principal components, the existence of subtle residual 

confounding in GWAS due to subtle population structure is pervasive (Sohail et al. 2019) 

and may affect this study, which is a motivation for work in future chapters (Chapters 3-5) 

characterising finescale population structure.   
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Heritability per chromosome in males does not scale with chromosome length (Figure 

2.13), suggesting ALS in males may be explained by a much smaller set of variants than 

in females. Genetic signal for ALS in males also appears to be explained by a smaller 

fraction of the genome (HESS), suggesting the trait may be more polygenic in females. 

Combined with the higher heritability in females this could be indicative of a sex-

dependent genetic liability for ALS which is higher for females (i.e. females require more 

risk alleles to develop ALS, Figure 2.14 a). This higher liability may be coupled with a 

multifactorial model whereby protective effects lower the mean total liability in females 

(Figure 2.14 b), requiring greater genetic burden in female ALS patients on average to 

overcome this protective effect and develop ALS. This model is consistent with the 

observed protective effect of oestrogen (Manjaly et al. 2010; de Jong et al. 2013; Rooney, 

Visser, et al. 2017) and risk effect of testosterone (Vivekananda et al. 2011) in ALS. A 

higher genetic burden needed in one sex resulting in lower rates in that sex and higher 

transmission from affected individuals of that sex is termed the “Carter effect” 

(Khramtsova, Davis, and Stranger 2019) in reference to its proposal by Cedric Carter as 

an explanation for the lower rates of pyloric stenosis in females, but strikingly higher 

chance of a woman with the disease passing it on to their offspring (Carter and Evans 

1969). More recently, protective effects in females leading to a higher mutational burden 

and maternal transmission have been molecularly characterised for neurodevelopmental 

disorders (Jacquemont et al. 2014), lending credibility to the Carter effect. In further 

support of this model in ALS, children of female probands have been observed to have a 

higher relative risk of developing ALS than children of a male probrand, suggesting a 

higher genetic load in females (Fang et al. 2009). However the same study of familial 

aggregation saw no difference in the relative risk of siblings from male and female 

probands, which would also be expected under this model. Should this model hold, it may 

have important implications for genetic counselling of ALS patients as it could further 

inform the relative risk of a given patient’s children or relatives developing the disease.   

 

Despite significant evidence for sex-by-gene interaction effects, and lack of correlation of 

heritability estimates across chromosomes in males and females (linear regression:  

r2=-0.049,p=0.99, Appendix Figure 2.1), when we estimated between-sex genetic 

correlation using the genome wide relatedness of samples in bivariate GREML, we 

observed a high correlation estimate with a confidence interval bounding one (0.75-1.25), 

denoting near perfect shared genetic variance in ALS between males and females. This 

estimate is considerably higher than the pedigree-based genetic correlation estimate of 

0.628 (0.48-0.73). This high genetic correlation result seemingly conflicts our model of a 

sex-specific architecture in males and females, however the large standard error on this 
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estimate leaves room for the possibility that this correlation is not absolute. Combined with 

our other evidence of sex being a significant interaction term in ALS GWAS, it is likely that 

while sex- independent main effects make up the majority of the genetic component of 

ALS, the remaining proportion likely is composed of multiple small sex-dependent genetic 

effects. Similar statistically perfect correlations (interval overlapping one) between sexes 

in spite of evidence for widespread sex interactions have also been observed for 

numerous behavioural traits (J. Martin et al. 2020), meaning genetic correlation analysis 

may be currently underpowered to detect deviations from perfect genetic correlation 

between subgroups within a trait where main effects are large. Larger sample sizes and 

use of a wider set of variants (including rare variants) should enable us to construct more 

powerful GRMs allowing better characterisation of the true magnitude of genetic 

correlation between ALS across sexes.    

 

 

 

Figure 2.14: Illustration of sex differentiated liability threshold models  of disease. 

a.) A multi threshold model for disease liability. Where genetic liability is normally 

distributed in the population, but the thresholds for genetic liability differ for males (lower) 

and females (higher) we would expect that heritability is higher for females as a greater 

genetic load is needed to cause the disease. Equally rates of the disease are expected to 

be higher in males under this model as a greater proportion are expected to pass the 

lower liability threshold. NB: This model may also be reversed for a higher liability in 

males. 

b.) Multifactorial model: Multiple genetic and environmental factors etc contribute to total 

liability for males and females. Here multiple protective factors shift mean female liability 

away from the total liability threshold for the disease, leading to a lower rate of the disease 

in females, while risk factors shift males towards the disease liability threshold. In this case 

the heritability may be the same despite different rates of disease in males and females as 

other factors contribute to total liability.  

 

Figure adapted from (Khramtsova, Davis, and Stranger 2019) for illustrative purposes 

(https://www.nature.com/articles/s41576-018-0083-1#Sec7) 

https://www.nature.com/articles/s41576-018-0083-1#Sec7
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Sex has recently been observed to appear “heritable” on the autosome (falsely) in large 

biobank scale GWAS due to sex-mediated participation bias in studies that had active 

participation (Pirastu et al. 2020). This could impact analysis of sex differences genetic 

architectures of traits in GWAS datasets with similar recruitment schemes by altering the 

baseline frequencies of alleles associated with this participation bias in males and 

females. Sex-biased participation is likely to have less of an impact on recruitment of ALS 

patients as they are passively recruited for GWAS in the clinic at the time of ALS 

diagnosis (provided they consent), meaning they do not have to actively seek participation 

in the study. Due to the fatal nature of the disease and lack of a cure patients are typically 

keen to be involved in research, leading to high rates of participation. However this 

phenomenon may bias participation of controls, who may in some cohorts have to actively 

seek recruitment to the study. Hence at the moment it is not wise to fully rule out the 

possibility that some associated variants observed in our sex-specific analysis are driven 

partially or fully by differential sex participation bias. Unfortunately, testing for replication of 

sex-specific variants in an independent replication cohort may not fully address this if 

control participation bias remains as associated variants appear to show some (though 

not complete) consistency across studies (Pirastu et al. 2020). At present it is not clear 

how to account for this bias as all control data features it to some degree, but perhaps 

development of population level passive population control recruitment schemes will 

alleviate this problem in future studies. Establishing ethical practices to organise these are 

not trivial, though the authors suggest some feasible methods, such as genotyping 

neonatal bloodspots and releasing only the population level allele frequencies (Pirastu et 

al. 2020).   
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Chapter 3 - Finescale Irish Population Structure and Migration 

Now published in Byrne et al. Insular Celtic population structure and genomic footprints of 

migration. PLoS Genet. 2018;14: e1007152. 

 

3.1 - Introduction 

3.1.1 - Background 

Situated on the northwestern frontier of Europe, the Island of Ireland has a population of 

approximately 6.4 million. The island is politically partitioned into the Republic of Ireland 

and Northern Ireland, with the latter forming part of the United Kingdom (UK) alongside 

the neighbouring island of Britain. Alternative divisions separate Ireland into four provinces 

reflecting early historical divisions: Ulster to the north, including Northern Ireland; Leinster 

(east); Munster (south) and Connacht (west). The island has been inhabited by humans 

for over 10,000 years (Bayliss and Woodman 2009), and there is genetic evidence of 

strong genetic continuity from Early Bronze Age Irish (~2200 BCE) and modern individuals 

(Cassidy et al. 2016). This continuity may in part be explained by the relative isolation of 

the island from mainland populations, preserving the genetic signature of the Irish people.  

 

Despite this isolation, numerous settlements and invasions of Ireland from the 

neighbouring island of Britain and continental Europe have been recorded. This includes 

Norse-Vikings (9th-12th century), especially in east Leinster, and Anglo-Normans (12th-

14th century), who invaded through Wexford in the southeast and established English rule 

mainly from an area later called the Pale in northeast Leinster (Duffy 2000). There has 

also been continuous movement of people from Britain, in particular during the 16-17th 

century Plantation periods during which Gaelic and Norman lands were systematically 

colonized by English and Scottish settlers. These events had a particularly enduring 

impact in Ulster in comparison with other planted regions such as Munster. As with the 

previous Norman invasion, the less fertile west of the country (Connacht) remained largely 

untouched during this period. 

 

The genetic contributions of these migratory events cannot be considered mutually 

independent, given that they derive from either related Germanic populations (such as the 

Vikings and their purported Norman descendants) or from other Celtic populations 

inhabiting Britain, which had themselves been subjected to mass Germanic influx from 

Anglo-Saxon migrations and later Viking and Norman invasions (Leslie et al. 2015). 

Moreover, each movement of people originated from northern Europe, a region which had 
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witnessed a mass homogenizing of genetic variation during the migrations of the Early 

Bronze Age, possibly linked to Indo-European language spread (Haak et al. 2015; 

Lazaridis et al. 2016). However, each event had a geographic and temporal focal point on 

the island, which may be detectable in local population structure. 

 

While initial studies of (unlinked) genome-wide autosomal variation in Ireland have shown 

that the island has lower genetic diversity than mainland Europe (Cronin et al. 2008; 

O’Dushlaine et al. 2010), and detected little evidence of population structure, numerous 

studies using alternative measures of genetic similarity suggest that population structure 

is pervasive in Ireland. The earliest evidence of genetic structure in Ireland comes from 

analysis of the frequency of ABO blood group and Rhesus factor markers, which show a 

notable cline across Ireland from east to west (Relethford 1983). The authors of this study 

proposed this may reflect waves of east to west migration both during the peopling of 

Ireland and in more recent years (i.e. Anglo-Norman invasion) (Relethford 1983), 

suggesting migration has led to population structure in Ireland. Moreover analysis of 

patrilineal markers including several Y-haplogroups (Hill, Jobling, and Bradley 2000; 

Moore et al. 2006; McEvoy, Simms, and Bradley 2008) and the distribution of Irish family 

surnames (Smith and Macraild 2009) from the 19th century show clear geographic 

patterning in Ireland, suggesting that patrilineal ancestry is structured across the Irish 

population. Of note the haplogroup R1b3 reaches its European maximum in the west of 

Ireland (Hill, Jobling, and Bradley 2000), showing an east to west cline across the island 

similar to blood group frequencies. A sub haplotype of this group called the Irish Modal 

Haplotype (IMH) has been shown to be present almost exclusively in the northwest of the 

island, and was observed to be enriched in a cohort of individuals with surnames derived 

from the Uí Néill root (Moore et al. 2006), serving as a genetic signature of the dominance 

of the Uí Néill ruling clan in this region in the early medieval period. In addition long runs 

of homozygosity in Ireland correlate negatively with population density and diversity of 

grandparental origin (R. L. McLaughlin et al. 2015), suggesting that low ancestral mobility 

may play a role in preserving such regional genetic legacies in Ireland. Subsequent work 

on large autosomal genome-wide datasets described in this chapter (R. P. Byrne et al. 

2018) (n=911) and in an independent parallel study (n=194) (Gilbert et al. 2017) have 

enhanced our understanding of the genetic structure in Ireland in a manner unlimited to 

patrilineal ancestry through the use of haplotype sharing methods in place of the unlinked 

methods above.    

 

To investigate the potential of subtle population structure in Ireland, we applied the 

haplotype-based methods ChromoPainter and fineSTRUCTURE (Lawson et al. 2012),  
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which exploit rich haplotype sharing information across a sample population to partition it 

into distinct clusters of genetically similar individuals at a resolution not achievable by 

unlinked methods such as PCA or ADMIXTURE (Alexander, Novembre, and Lange 2009). 

This was motivated by previous work using these methods to reveal the hidden genetic 

structure in Britain (Leslie et al. 2015), which identified discrete genetic clusters of 

individuals that strongly segregated with geographical regions within Britain, even 

distinguishing the neighbouring regions of Cornwall and Devon. In doing so we identified 

subtle structure across the island which correlates strikingly with geography. We further 

explored patterns of haplotype sharing with both Britain and Europe to identify and date 

signals of admixture into Ireland in recent history using the GLOBETROTTER method 

(Hellenthal et al. 2014). The identified events correlated well with the historical record, 

revealing signals overlapping the Viking and Norman settlements across Ireland, and 

even the plantations in a restricted geographic range.  

3.1.2 - Research aims 

The chapter presents a study characterising Irish population structure using an Irish ALS 

case-control dataset and has been published in PLoS Genetics  

(https://doi.org/10.1371/journal.pgen.1007152). This research had three major aims: 

 

i.) To identify whether subtle population structure is present in Ireland in spite of reported 

homogeneity; 

ii.) To characterise the extent and geographic patterning of this population structure;  

iii.) To contextualise this structure in terms of the historical record and in relation to recent 

migrations from neighbouring populations, namely Britain and mainland Europe.  

 

While these questions have historical and cultural importance, the potential existence of 

systematic genetic differences in a supposedly isolated and homogeneous population also 

has relevance to medical genetics, in particular association studies which aim to identify 

disease related variants and must correct for confounding due to non-disease related 

variance in the data. As stated in the discussion of chapter 2, properly characterising 

subtle population structure may be of critical importance for disentangling correlated non-

genetic effects mediating disease. The goal of exploring the effects local population 

structure has on medical genetics is an ongoing project which will be explored further in a 

later chapter (Chapter 5), however our preliminary results in Ireland highlight an important 

consideration with regards the design of sound association studies. 

  

https://doi.org/10.1371/journal.pgen.1007152
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3.2 - Methods 

3.2.1 - Datasets 

Analyses in this chapter were carried out using three population level genotype datasets 

sampled from Ireland (n=991; EGA accession ID EGAS00001002769) (van Rheenen et 

al. 2016; R. P. Byrne et al. 2018), The UK (n=2,020; EGA accession ID 

EGAD00010000632) (Leslie et al. 2015) and across Europe (n=4514;  EGA accession ID 

EGAD00000000120) (Sawcer et al. 2011), and merges of these datasets. These datasets 

are described in detail below: 

 

1.) Irish dataset: 

Our Irish dataset is a population based ALS case control dataset composed of newly 

genotyped (R. P. Byrne et al. 2018) and previously published Irish samples (van Rheenen 

et al. 2016). The newly genotyped samples consist of 407 Irish samples (271 cases; 136 

controls) from the Irish ALS DNA bank which were genotyped at 2.5 million single 

nucleotide polymorphisms (SNPs) using the Infinium HumanOmni2.5-8 SNP array v1.2 as 

part of the Project MinE Sequencing Consortium effort (van Rheenen et al. 2018). This 

dataset was merged with published Irish data from an ALS GWAS dataset (van Rheenen 

et al. 2016) containing 713 individuals (265 cases; 448 controls) genotyped on the 

Infinium OmniExpress-24 kit. The final merge of these datasets following quality control 

(QC) contained a total of 991 Irish individuals genotyped at 407,750 SNPs. 

 

2.) UK/British dataset (PoBI dataset): 

The UK dataset from the People of the British Isles (PoBI) project (Leslie et al. 2015) was 

downloaded from the EGA (EGA accession ID EGAD00010000632). We retained only 

samples with a recorded geographic origin (n=2,039) prior to QC. Following QC 2,020 

individuals, genotyped at a total of 521,833 SNP sites remained. These were included in 

the initial UK-only fineSTRUCTURE run to define homogeneous clusters for use as 

surrogate/donor populations in GLOBETROTTER. 

 

3.) European dataset:  

We subsetted European individuals (n=6,670) from a Multiple Sclerosis (MS) GWAS 

dataset (Sawcer et al. 2011) for use as a reference dataset. Our initial QC reduced the 

European dataset to 4,737 individuals genotyped at 363,396 SNPs. A further 223 

individuals were removed prior to GLOBETROTTER analysis recommended by the 
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WTCCC quality control left 4,514 individuals.  

 

4.) UK-Irish Merge:  

Following the merging of Irish and UK datasets and an additional round of QC, three 

additional UK individuals were removed. The final UK-Irish merge contained 3,008 

individuals and 214,632 SNPs. This dataset was used for the Ireland/Britain 

fineSTRUCTURE analysis (Figure 3.2) and the GLOBETROTTER analysis of British 

admixture into Ireland. We also used a subset of this dataset containing Irish samples 

(n=991) and individuals from Northern Ireland from the UK dataset (n=44) amounting to a 

complete dataset of 1,035 individuals from the island of Ireland genotyped at 214,632 

SNPs (Figure 3.1) .  

 

5.) European-Irish merge: 

Following merging and additional QC our European-Irish merge contained 5,506 

individuals at 166,139 SNPs. This dataset was used for the GLOBETROTTER analysis of 

European admixture into Ireland. 

3.2.2 - Quality control 

We applied the following quality control to each single population and merged multi-

population dataset using PLINK 1.9 (Chang et al. 2015): First uncommon SNPs (--maf 

0.05) and those with missingness greater than 2% across samples (--geno 0.02) were 

filtered. Individuals with high missingness (--mind 0.1) or heterozygosity (--het; exceeding 

three median absolute deviations from the median) were then removed. Related 

individuals were next identified using an identity-by-descent matrix (--genome) and one 

individual from each pair exceeding 12.5% relatedness was removed from downstream 

analysis (retaining the sample with lower missingness). Principal component outliers were 

removed from the Irish population dataset (>4 standard deviations from the mean for 

principal components 1-2 for the Irish and European/Irish merge). Finally individuals who 

had been removed during the QC carried out in the source papers for the datasets 

(Sawcer et al. 2011; Leslie et al. 2015) were removed. 

 

As the European dataset included patients from a GWAS for MS, we additionally removed 

SNPs in a 15 Mb region surrounding the strongly associated HLA locus on chromosome 6 

(GRCh37 position chr6:22,915,594–37,945,593) for all datasets including the European 

dataset, to prevent haplotypic bias arising from this locus. 

 

Finally, prior to ChromoPainter analysis all SNPs with missingness in each single 



83 
 

population and merged dataset were removed to prevent bias arising from differentially 

missing data (--geno 0). We noted the SNP missingness filter (--geno 0) led to a 

significant loss of SNPs in the European dataset, particularly after merging with the Irish 

due to poor overlap of SNP panels with the Irish dataset. Given that the dataset was 

solely intended for use in the merge with the Irish dataset, we resolved to balance this 

SNP loss by removing individuals from the European dataset above a threshold of 

missingness prior to applying the --geno 0 filter. We assayed a range of thresholds to 

maximise SNP count while minimising individual loss using the --mind command in 

PLINK. We settled on the threshold --mind 0.0005 which maintained sufficient SNPs and 

individuals for a meaningful analysis.  

 

The post-QC Irish (n=991), British (n=2,020) and European (n=4,514) datasets retained  

407,750 SNPs, 521,883 SNPs and 363,396 SNPs at zero missingness, respectively. The 

merged British and Irish dataset (n=3,008) and the merged European and Irish dataset 

(n=5,506) retained 214,632 and 166,139 SNPs at zero missingness respectively. 

3.2.3 - Phasing 

We phased the autosomal chromosomes of each single population dataset and merged 

dataset using SHAPEIT V2 (Delaneau, Marchini, and Zagury 2011) with the 1000 

Genomes (Auton et al. 2015)(Phase 3) panel as a reference. A pre-phasing step was 

carried out (--check) to remove any SNPs missing in the reference panel or with alleles 

incompatible with the reference panel. Samples were split by chromosome and phased 

simultaneously, using the GRCh37 genetic map to estimate recombination rate.  

3.2.4 - fineSTRUCTURE analysis 

We ran the ChromoPainter/fineSTRUCTURE (Lawson et al. 2012) pipeline on each 

phased population dataset individually (Irish, British and pan-European), as well as on the 

merge of the Irish and British datasets to detect subtle population structure and partition 

the data into homogeneous clusters. We first ran ChromoPainter using the built in version 

in fineSTRUCTURE (fs-2.0.8) painting each individual with all others as donors (-a 0 0). 

We ran 10 expectation maximisation iterations to estimate Ne and Mu (switch rate and 

mutation rate) for each chromosome (for the analysis of the combined Irish and NIR 

dataset, which contained data from Northern Ireland and Ireland, we used the weighted 

average for Ne and Mu across chromosomes 1,8,15,20), and used these parameters for 

the final painting. Default settings were used for all other parameters with the exception of 

the “chunks” per region switch which was set to 50 (-k 50) for analyses including British or 

Irish individuals to account for the long haplotypes observed in these populations. 
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Individual paintings were then combined into a single “coancestry” matrix using the 

chromocombine function in fineSTRUCTURE.   

For the Irish and British datasets we ran the fineSTRUCTURE MCMC model on each 

“coancestry” matrix using 2,000,000 burn-in and 2,000,000 sampling iterations, sampling 

every 10,000 iterations. For reasons of computational tractability, for the much larger 

European dataset we ran 1,000,000 burn-in and 1,000,000 sampling iterations sampling 

every 1,000 iterations. fineSTRUCTURE samples the possible partitions of the 

“coancestry” matrix and estimates the posterior probability of each partition to search for 

population assignments where all individuals in a group share haplotypes consistently 

within their group and with other groups. Two MCMC chains were run to assess 

convergence of the final cluster membership. We extracted the state with the maximum 

posterior probability and ran an additional 10,000 hillclimbing iterations before building 

trees. Trees were built with both the default climbtree method and the maximum 

concordance method described in the PoBI study (Leslie et al. 2015). For all 

GLOBETROTTER analyses the maximum concordance method was used to define donor 

populations as it provides more confident cluster assignments. 

 

fineSTRUCTURE trees were visualised using the R scripts provided at 

http://www.paintmychromosomes.com. Cluster names were devised based on the 

geographic spread of a given cluster. 

3.2.5 - Cluster robustness 

We evaluated the robustness of the Irish clusters using the total variation distance (TVD) 

metric defined in the PoBI study (Leslie et al. 2015). This metric compares the “copying 

vectors” of pairs of clusters where the copying vector for a given cluster A is a vector of 

the average length (cM) of DNA donated by each cluster to individuals in cluster A, as 

estimated by ChromoPainter. The magnitude of the sum of absolute differences between 

the copying vectors (or TVD) of a pair of clusters is thus a measure of their distance in 

terms of haplotypic sharing with other clusters, which directly relates to ancestry. 

 

We used permutation testing to interrogate whether the fineSTRUCTURE clustering 

performed better than chance by permuting the individuals in each of our cluster pairings 

into pseudo clusters of the same size 1,000 times, and calculating the number of 

permutations exceeding our original TVD score. Where 1,000 permutations were not 

possible due to cluster size, the maximum number of unique permutations was used. P-

values were calculated based on the proportion of permutations greater than or equal to 

our original clustering. All p-values for irish clusters were less than or equal to 0.001. 

http://www.paintmychromosomes.com/
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We also calculated mean genome wide FST between cluster groups to demonstrate the 

degree of genetic differentiation between clusters with a non-haplotype based metric. 

Variants were first pruned  using PLINK 1.9 (Chang et al. 2015) (--indep-pairwise 1000 50 

0.25) and FST was calculated (--fst) between pairs of clusters groups. 

3.2.6 - Estimating admixture dates 

We used the GLOBETROTTER (Hellenthal et al. 2014) method to infer admixture events 

from Europe and Britain into Ireland separately. GLOBETROTTER uses ChromoPainter 

output to fit a mixture model for a target population’s haplotypic makeup as a combination 

of modern donor populations, which can be thought of as a proxy for the true ancestral 

groups. The better the ancestral groups are represented the cleaner the model fit will be. 

GLOBETROTTER then estimates the pairwise likelihood of being painted by two donor 

populations at a variety of genetic distances to generate coancestry curves. Under a 

simple single admixture event model the rate of decay of these exponential curves should 

equal the number of generations since the event. 

 

We performed two separate GLOBETROTTER analyses modelling admixture events from 

1.) British and 2.) European sources separately. First we defined homogenous subgroups 

in the British and European populations using the Maximum concordance trees generated 

for Europe and Britain above. Note that for the British analysis PoBI samples from 

Northern Ireland were excluded as donors from their clusters as they might confound the 

model by being overly similar to the target group. Using these populations as donor 

groups for each analysis, we painted target Irish individuals, and each respective donor 

population with ChromoPainter v2 to generate a copying matrix (chunk lengths). This 

matrix represents the average length of genetic material received from each donor 

population by each Irish individual and each individual in the donor populations. We also 

generated 10 painting samples for each Irish individual under the same model. We ran 

GLOBETROTTER twice for 5 mixing iterations: first using the null.ind:1 setting to test for 

evidence of admixture, and then the null.ind:0 setting to infer dates and sources. We 

generated 100 bootstraps for the admixture date and calculated the probability of a null 

model of no admixture as the proportion of nonsensical dates (<1 or >400 generations) 

produced by the null.ind:1 model, as in the original paper (Hellenthal et al. 2014). 

Confidence intervals for the date were calculated from the bootstraps of the null.ind:0 

model using the empirical bootstrap method. For all conversions of generation to year we 

assumed a generation time of 28 years as was done in previous studies. (Hellenthal et al. 

2014; Leslie et al. 2015). 
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3.2.7 - Ancestry proportion estimation 

We modelled each Irish cluster’s makeup in terms of European and British sources using 

GLOBETROTTER (Hellenthal et al. 2014) in order to investigate if there was ancestral 

variation across Ireland. GLOBETROTTER uses the ChromoPainter “Chunklength” output 

to model the average genome of each cluster as a linear mixture of the donor populations, 

and estimates the proportion of DNA which most closely matches individuals from each of 

the sources. The model also takes sharing between donor populations into account to 

correct for noise caused by population splits that may have occurred after the 

coalescence of these donor populations. A multiple linear regression is fitted of the form: 

 

                                                                           𝑌𝑝 =  𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ +  𝛽𝑔𝑋𝑔,                                                (5) 

 

where Yp is a vector of the average length in centimorgan of DNA that individuals of 

cluster p copy from each donor group (g) as a proportion of the total genome, and Xg is 

the vector describing the average proportion of DNA genome wide that a donor group G 

copies from each donor group including their own. This regression is solved for each 𝛽𝑔 

using a non-negative-least squares function implemented in GLOBETROTTER. Each 

coefficient Bg thus represents the average proportion genome-wide for which individual 

from cluster p  is most closely related to donor group g. We ran GLOBETROTTER using 

num.mixing.iterations:0 to carry out this regression. 

 

3.2.8 - ADMIXTURE analysis 

We ran ADMIXTURE (Alexander, Novembre, and Lange 2009) on the combined British 

and Irish datasets, alongside eighteen ancient individuals from the Iron age, Roman and 

Anglo-Saxon periods (Martiniano et al. 2016; Schiffels et al. 2016) to assess differential 

British admixture in Irish clusters. Pseudo-haploid genotypes were generated for the 

ancient genomes at the variant sites called in the British and Irish, as is standard for low 

coverage data. Data were merged and pruned for linkage disequilibrium using PLINK 1.9 

(r2>0.25 in a sliding window of 1000 SNPs advancing 50 SNPs at a time). No missingness 

was allowed in modern individuals while ancient individuals ranged from 33,643-85,553 

sites out of 86,481 sites. Cross validation error was used to determine the k value for 

which the model has the best predictive accuracy (--cv), for a default of five iterations. 

Additionally 200 bootstraps were run to estimate the standard error or parameters (--B). 

The British/Anglo-Saxon ADMIXTURE component was regressed against ChromoPainter 
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PC2 to determine the role of British ancestry in differentiation in Ireland. ANOVA was also 

applied to identify between cluster differences of this ancestry component.   

3.2.9 - PCA and t-SNE analysis 

We projected the ChromoPainter coancestry matrix in lower-dimensional space using both 

principal components analysis (PCA) and t-distributed stochastic neighbour embedding (t-

SNE). PCA was run using the R tools provided on the fineSTRUCTURE page 

(http://www.paintmychromosomes.com), while t-SNE was generated using the Rtsne R 

package (https://github.com/jkrijthe/Rtsne). We ran t-SNE on the coancestry matrix for 

5,000 iterations, using a perplexity of 30, a learning rate of 200 and 100 PCA dimensions 

as an input.  

3.2.10 - Mapping samples 

Of the 991 Irish samples in this dataset after QC, geographic information was available for 

544 in the form of home address. For the purposes of preserving anonymity this was 

jittered in all maps containing patients (Figures 3.1 and 3.8). Additionally, 44 PoBI 

individuals from Northern Ireland were used, but precise sampling location was not 

available so these are plotted as a circle in Figure 3.1. The maps were generated using 

Global Administrative areas from GADM version 2.8 (November 2015; 

http://www.gadm.org).  

 

For UK data sample location was described in terms of membership of 35 sampling 

regions in supplement to the PoBI data (Leslie et al. 2015). To plot these regions in Figure 

3.2 and Figure 3.6 we used the UK map and administrative boundary data from GADM 

(http://www.gadm.org) to approximate regions defined in NUTS 2010 (Commission and 

Others 2011) (Nomenclature of Territorial Units for Statistics). We then combined sets of 

these NUTS 2010 regions to best approximate the 35 sampling regions. The 35 sampling 

regions were then allotted to the cluster group containing the majority of samples from the 

respective sampling region and labeled accordingly. Where a cluster or cluster group had 

the majority of samples from multiple adjacent sampling regions (as in the case of 

southeast England), we subsumed these regions into one for visualisation. For 

consistency with the UK map we divided Ireland into regions using the NUTS 2010 

definitions (Commission and Others 2011), with each region assigned to the cluster with 

the majority of samples in that region as above (Figures 3.2 and 3.6). 

http://www.paintmychromosomes.com/
https://github.com/jkrijthe/Rtsne
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3.2.11 - Statistical analyses 

All ANOVA, linear regression and other statistical tests were carried out in R version 3.2.3 

(CoreTeam 2015) 
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3.3 - Results 

3.3.1 - Finescale population structure in Ireland 

We painted the phased genome of each individual in our combined Irish dataset (n=1,035 

individuals, including 44 Irish samples from PoBI (Leslie et al. 2015)) in terms of all 

remaining individuals using the ChromoPainter algorithm (Lawson et al. 2012) to generate 

a pairwise coancestry matrix of haplotypic sharing between samples. This coancestry 

matrix summarises genome wide ancestral “chunk” sharing between unrelated individuals, 

and thus can be used to determine subtle relationships between individuals not captured 

by independent marker summaries, which discard linkage information. To explore the 

structure in this matrix we first clustered it into homogeneous groups of individuals using 

fineSTRUCTURE (Lawson et al. 2012), a software which samples possible partitions of 

the coancestry matrix using a Markov Chain Monte Carlo (MCMC) algorithm with the goal 

of finding a split where all individuals within a cluster share similar numbers of “chunks” 

with individuals within the cluster, and with individuals from other inferred clusters. Upon 

convergence of the MCMC chains fineSTRUCTURE identified 23 genetic clusters, forming 

9 cluster groups (Figure 3.1 A; cluster groups described below), which were shown to be 

robustly defined by TVD analysis (p<0.001) and demonstrated clear but subtle differences 

using the unlinked FST statistic (Tables 3.1 and 3.2).  

 

Table 3.1: Mean pairwise FST between Irish cluster groups. 

FST NLU SMN NMN CLN CNN SLN WEX CRK ULS 

NLU 0 4.63E-04 3.36E-04 1.32E-04 2.01E-04 3.06E-04 5.27E-04 7.71E-04 4.74E-04 

SMN - 0 1.30E-04 2.56E-04 3.39E-04 2.46E-04 4.94E-04 1.49E-04 5.07E-04 

NMN - - 0 1.19E-04 1.97E-04 7.84E-05 2.84E-04 4.92E-04 3.14E-04 

CLN - - - 0 1.20E-04 2.02E-05 1.90E-04 5.79E-04 2.47E-04 

CNN - - - - 0 2.44E-04 5.05E-04 6.41E-04 4.80E-04 

SLN - - - - - 0 1.98E-04 6.07E-04 2.76E-04 

WEX - - - - - - 0 8.41E-04 3.69E-04 

CRK - - - - - - - 0 8.97E-04 

ULS - - - - - - - - 0 

Average Wright’s FST between pairs of cluster groups (Figure 3.1) calculated using PLINK 

1.9 (Chang et al. 2015). Broad patterns of FST between groups match the major 

differences described by the fineSTRUCTURE tree. 
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Figure 3.1: Fine-grained population structure in Ireland. 

(A) fineSTRUCTURE clustering dendrogram for 1,035 Irish individuals. Twenty-three 

clusters are defined, which are combined into cluster groups for clusters that are 

neighbouring in the dendrogram, overlapping in principal component space (B) and 

sampled from regions that are geographically contiguous. Details for each cluster in the 

dendrogram are provided in Appendix Figure 3.1 (B) Principal components analysis (PCA) 

of haplotypic similarity, based on ChromoPainter coancestry matrix for Irish individuals. 

Points are coloured according to cluster groups defined in (A); the median location of each 

cluster group is labeled with the cluster name. (C) Map of Ireland showing the sampling 

location for a subset of 588 individuals analysed in (A) and (B), coloured by cluster group. 

Points have been randomly jittered within a radius of 5 km to preserve anonymity. Precise 

sampling location for 44 Northern Irish individuals from the People of the British Isles 

dataset was unknown; these individuals are plotted geometrically in a circle. The map and 

administrative boundaries were produced using data from the database of Global 

Administrative Areas (GADM; https://gadm.org). (D) “British admixture component” 

(ADMIXTURE estimates; k = 2) for Irish cluster groups. This component has the largest 

contribution in ancient Anglo-Saxons and the SEE cluster. (E) Linear regression of 

principal component 2 (B) versus British admixture component (r2 = 0.43; p < 2×10−16). 

Points are coloured by cluster group. 

(Figure reprinted from Byrne et al. (R. P. Byrne et al. 2018)) 

     

  

https://gadm.org/
https://gadm.org/
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Table 3.2: Total Variation Distance between Irish cluster groups.    

TVD NLU SMN NMN CLN CNN SLN WEX CRK ULS 

NLU 0 1.05E-01 8.02E-02 4.36E-02 5.40E-02 7.11E-02 8.57E-02 1.34E-01 5.94E-02 

SMN - 0 4.17E-02 7.78E-02 7.80E-02 6.58E-02 8.60E-02 3.99E-02 7.60E-02 

NMN - - 0 4.30E-02 5.47E-02 3.39E-02 6.05E-02 8.16E-02 4.81E-02 

CLN - - - 0 3.16E-02 3.15E-02 4.83E-02 1.15E-01 2.33E-02 

CNN - - - - 0 5.15E-02 7.16E-02 1.11E-01 3.93E-02 

SLN - - - - - 0 2.90E-02 1.03E-01 3.64E-02 

WEX - - - - - - 0 1.17E-01 5.58E-02 

CRK - - - - - - - 0 1.13E-01 

ULS - - - - - - - - 0 

TVD measures the distance between clusters based on haplotypic sharing profiles (See 

methods). TVD between cluster groups (Figure 3.1) captures much of the structure seen 

in the fineSTRUCTURE tree. All pairwise TVD values between clusters are significant at p 

< 0.001 based on permutation testing. 

 

To visualise the geographic patterning of our data we plotted individuals for whom we had 

geolocations (n=588) onto a map of Ireland and coloured points by clusters assigned by 

fineSTRUCTURE (Figure 3.1 C). fineSTRUCTURE clusters demonstrated a clear 

relationship with geography, broadly segregating by province (Ulster, Leinster, Munster 

and Connacht), and even showing subtle within-province divisions. We noted that 

neighbouring clusters on the hierarchical fineSTRUCTURE tree localised to similar 

geographic regions displaying an isolation by distance-like effect (Figure 3.1). Deep cuts 

of the fineSTRUCTURE tree, which subsume closely related clusters, split samples 

approximately by province suggesting that genetic differences among individuals are 

deepest across provinces, while shallower splits exhibit clusters localised to neighbouring 

sets of counties, revealing structure even within Irish provinces.  

  

To supplement our clustering, and provide a more continuous picture of the variation in 

our coancestry matrix we performed principal component analysis (PCA), and projected 

the data onto the axes explaining the greatest components of variation in the data. The 
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first two ChromoPainter principal components (cp-PCs) separated the clusters well and 

captured many of the trends described by the hierarchical clustering (i.e. clusters which 

were proximal/distant on the fineSTRUCTURE tree were proximal/distant in cp-PC 

space). Projection into cp-PC space also enabled us to test the geographic correlation of 

our genetic structure more explicitly by providing genetic coordinates for each sample 

which could be regressed against latitude and longitude. Regression analysis 

demonstrated a strong relationship between cp-PC1 and latitude (r2 = 0.405; p < 2×10−16), 

and cp-PC2 with Longitude (r2 = 0.126; p = 5.9×10−16) describing north-south and east-

west genetic gradients in Ireland. When compared to PCA of independent markers 

calculated using a genetic relationship matrix (GRM) in GCTA (Yang et al. 2011), which is 

commonly used to correct population structure in GWAS, cp-PCs showed much stronger 

relationship to geography, with the first four components of the coancestry matrix 

explaining over 40% of the variance in Latitude and 33% of the variation in Longitude 

(Table 3.3). These observations suggest that the population structure we observe in 

Ireland is strongly linked to geography, following previous observations that genes mirror 

geography across Europe (Novembre et al. 2008) and more recent observations that local 

population structure in Britain segregates geographically (Leslie et al. 2015).   

 

As some clusters contained very small numbers of individuals, overlapped with other 

clusters both in cp-PC space and geographically, and were proximal on the 

fineSTRUCTURE tree, we decided to subsume our 23 clusters into 9 cluster groups for 

further analysis. Considering the relationships between these super-clusters in more 

depth revealed some interesting trends. Firstly the North Leinster cluster group showed 

greater affinity (in cp-PC space) to the Connacht and Ulster cluster groups than to the 

South Leinster cluster group, which in turn appeared more related to the North Munster 

cluster group demonstrating a deviation from the relationships we would expect given 

modern political boundaries. This relatively deep split between North and South Leinster 

could, however, be explained in terms of pre-Norman territorial boundaries which divided 

Ireland into fifths (cuige), with North Leinster belonging to the kingdom of Meath (mide) 

(Duffy 2012). While this interpretation is open to debate, it is nonetheless interesting, 

regardless of cause, that such subtle differences and nuanced structure are detectable 

within the Irish population despite its relative homogeneity and isolation from mainland 

Europe. 
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Table 3.3: Prediction of longitude and latitude using GCTA GRM and 

ChromoPainter. 

  GCTA GRM ChromoPainter Coancestry Comparison 

Predicted 

Variable 

Formula p (F-test) Adjusted R-

squared 

p (F-test) Adjusted R-

squared 

R-squared diff# 

(CP - GCTA) 

       

Latitude PC1 0.93 0.00 2.00E-16 0.40 0.41 

Latitude PC2 0.12 0.00 0.99 0.00 0.00 

Latitude PC1 + PC2 + PC1*PC2 0.40 0.00 2.20E-16 0.42 0.42 

Latitude PC1 + PC2 + PC3 + PC4 0.60 0.00 2.00E-16 0.40 0.41 

Latitude PC1 + ... + PC20 2.20E-16 0.25 2.20E-16 0.38 0.13 

       

Longitude PC1 0.99 0.00 1.99E-14 0.14 0.14 

Longitude PC2 0.47 0.00 5.90E-13 0.12 0.12 

Longitude PC1 + PC2 + PC1*PC2 0.78 0.00 2.00E-16 0.27 0.27 

Longitude PC1 + PC2 + PC3 + PC4 0.94 -0.01 2.00E-16 0.34 0.35 

Longitude PC1 + ... + PC20 1.80E-05 0.10 2.00E-16 0.33 0.23 

       

Linear regression of latitude and longitude of 544 geocoded Irish samples on principal 

components calculated from a GCTA GRM and the ChromoPainter coancestry matrix 

demonstrate that the ChromoPainter coancestry matrix explains a greater proportion of 

geographic variance. Here “R-squared diff” represents the difference in R-squared 

between the ChromoPainter PCs and the GCTA GRM PCs. 
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Another notable trend is the relatively high degree of differentiation between west Irish 

clusters along cp-PC1, compared to the more homogeneous eastern clusters. It is 

possible that this strong distinction between the western clusters may be due to the 

decreased impact of migration in these regions, allowing more ancient splits to be 

preserved. Indeed the South Munster cluster branches off from the fineSTRUCTURE tree 

first, demonstrating relatively strong differentiation from the neighbouring North Munster 

clusters. TVD analysis further supports that the Cork and South Munster clusters are the 

most distant from all other clusters (Table 3.2). It is possible that the isolating effects of 

mountain ranges surrounding Cork and Kerry may have restricted gene flow with the rest 

of Ireland, leading to the preservation of more ancient structure in Cork.  

 

Eastern Ireland shows relative homogeneity, demonstrating large clusters of individuals 

which cannot be easily distinguished from each other by fineSTRUCTURE or cp-PCA. 

Notably the largest of the Central Leinster (CLN) clusters comprises about a fifth of our 

dataset. This homogeneity on the east coast was also observed when applying 

fineSTRUCTURE to England in the PoBI study (Leslie et al. 2015), where a single cluster 

in the southeast of England comprised almost half the dataset. Such homogeneity could 

suggest better mobility on the east coast of Ireland, leading to more random mixing and 

less structure, but may also be an imprint of migration from the neighbouring island of 

Britain erasing ancient structure. To explore this hypothesis we estimated the degree of 

similarity between each Irish individual across our dataset with samples from modern 

Britain from the PoBI dataset, and 18 ancient individuals from the Iron age, Roman and 

Anglo-Saxon periods in northeast and southeast England (Leslie et al. 2015; Martiniano et 

al. 2016; Schiffels et al. 2016). We performed an unsupervised ADMIXTURE analysis 

(k=2) and identified a component that comprises the totality of several Anglo-Saxon 

individuals and forms the largest component in British samples, with lower but varying 

contribution to Irish samples (see section 3.3.2 below). This component showed 

significant variation across Irish fineSTRUCTURE clusters (ANOVA p<2×10−16), with 

lowest values in west coast clusters, and highest in the east coast clusters, lending 

support to the theory of differential impact of migrations from the Britain (Figure 3.1 D). 

Regression of PC2 of the coancestry matrix on this component was also highly significant, 

explaining 43% of the variance (p<2×10−16) suggesting that it may reflect an Anglo-Gaelic 

cline (Figure 3.1 E). Notably the Ulster cluster group harboured the greatest proportion of 

the Anglo-Saxon component, which may be explained by the strong impact of the Ulster 

Plantation in the 17th century on the genetic makeup of Ulster. 
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3.3.2 - The genetic structure of Ireland in the context of Britain 

We investigated the relationship between Britain and Ireland using a pooled dataset 

containing samples from PoBI and our Irish samples (n=3,008). Again we painted each 

individual in terms of all remaining individuals and generated a co-ancestry matrix 

representing pairwise haplotype sharing. Clustering with fineSTRUCTURE revealed 50 

clusters which segregated geographically both on a cohort wide and local level. The 

deepest split in the fineSTRUCTURE tree (k=2) separated most Irish and British data 

(Figure 3.2, with notable exceptions discussed below), while successive shallower splits 

showed more local regional clustering of the data. We noted our deepest split (k=50) had 

a number of small clusters (n<10), which may represent under sampled sub-populations, 

but are difficult to interpret meaningfully in the absence of more data, hence we decided to 

subsume them into their closest large cluster. However simply taking uniform tree cut to 

achieve this discarded subtle but meaningful splits such as the split between North and 

South Wales, where we had adequate sample size to distinguish with confidence between 

the clusters. Hence we decided to group clusters into cluster groups heuristically based on 

their proximity on the clustering dendrogram, geographic proximity and projection in cp-

PC space to ease interpretation.  

 

Projection of data into cp-PC space as above showed the principal split in the data was 

between Britain and Ireland (cp-PC1), (Figure 3.2) suggesting that the largest differences 

exist between Irish and British groups. Subsequently cp-PCs 2 and 3 separated out 

Orkney and Wales respectively (Figure 3.3) as expected from previous studies (Leslie et 

al. 2015); while cp-PC4 separated northern and southern regions in both Ireland and 

Britain. The projection of cp-PC1 vs cp-PC4 captures much of the geographic spread of 

samples, and clusters, suggesting that genes mirror geography across Britain and Ireland 

(Figure 3.2).  
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Figure 3.2: Genes mirror geography in the British Isles. 

(A) fineSTRUCTURE clustering dendrogram for combined Irish and British data. Data 

principally split into Irish and British groups before subdividing into a total of 50 distinct 

clusters, which are combined into cluster groups for clusters that formed clades in the 

dendrogram, overlapped in principal component space (B) and were sampled from regions 

that are geographically contiguous. Names and labels follow the geographical provenance 

for the majority of data within the cluster group. Details for each cluster in the dendrogram 

are provided in Appendix Figure 3.3. (B) Principal component analysis (PCA) of haplotypic 

similarity based on the ChromoPainter coancestry matrix, coloured by cluster group with 

their median locations labelled. We have chosen to present PC1 versus PC4 here as 

these components capture new information regarding correlation between haplotypic 

variation across Britain and Ireland and geography, while PC2 and PC3 (Figure 3.3) 

capture previously reported splitting for Orkney and Wales, respectively, from Britain. The 

PCA plot has been rotated clockwise by 5 degrees. A map of Ireland and Britain is shown 

for comparison, coloured by sampling regions for cluster groups, the boundaries of which 

are defined based on the Nomenclature of Territorial Units for Statistics (Commission and 

Others 2011) (NUTS 2010), with some regions combined. Sampling regions are coloured 

by the cluster group with the majority presence in the sampling region. NI, Northern 

Ireland; PC, principal component. Cluster groups that share names with groups from 

Figure 3.1 (NLU; SMN; CLN; CNN) have an average of 80% of their samples shared with 

the initial cluster groups. Map produced using data from the database of Global 

Administrative Areas (GADM; https://gadm.org). 

(Figure reprinted from Byrne et al. (R. P. Byrne et al. 2018)) 

https://gadm.org/
https://gadm.org/
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Figure 3.3: Principal components 2 and 3 of combined Irish and British coancestry 

matrix. 

(A) fineSTRUCTURE clustering dendrogram for combined Irish and British data, with 

cluster groups defined as in Figure 3.2. Immediately following the principal inter-island 

split, Orkney and Wales branch in sequence, consistent with previous observations. (B) 

Principal component analysis (PCA) of haplotypic similarity based on the ChromoPainter 

coancestry matrix, coloured by cluster group with their median locations labelled. PC2 

captures an Orkney split, while PC3 captures a Welsh split. 

(Figure reprinted from Byrne et al. (R. P. Byrne et al. 2018)) 
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One major advantage of cp-PCA over the hierarchical clustering dendrogram is that it 

displays data in a continuous space, and allows the relationships of clusters to be 

considered with greater nuance. For example while we can see from the 

fineSTRUCTURE tree that our South Scotland (SSC) cluster falls deep in the Irish branch 

of the tree, and the Northern Ireland/Cumbrian/South Scotland cluster (NICS) falls on the 

British branch of the tree, we can, however, see in cp-PC space that these clusters both 

span the gap between the British and Irish “genetic islands”, with sizable spread across 

cp-PC1 (Figure 3.4), suggesting that this genetic exchange is more continuous than 

discrete. This genetic exchange likely has its roots in three major historical contacts 

between Northern Ireland and Scotland. Firstly the third-generation PoBI Scottish samples 

(SSC) which look Irish are likely a result of major economic migrations from Ireland in the 

19th and 20th century. Secondly the Northern Irish samples (NICS) who resemble 

Scottish individuals are likely so due to the impact of the major settlement of Scottish 

farmers in the 16th Century Ulster Plantation, which led to Scottish individuals forming a 

majority of the population of Ulster. Finally the suspected Irish colonisation of Scotland 

through the Dál Riata maritime kingdom in the 6th and 7th centuries may have established 

earlier genetic continuity between the two regions.  

 

As noted for Ireland (Figure 3.1), ChromoPainter PCA demonstrates that Britain also 

shows eastern homogeneity and western diversity. We proposed that this may be due to 

the homogenising effects of migration erasing ancient structure in Ireland, a narrative 

which may also apply to England. The South East England cluster group (SEE), whose 

largest constituent cluster has over 818 individuals, and is indivisible by fineSTRUCTURE, 

shows the greatest homogeneity. This cluster shows the greatest affinity to the 

ADMIXTURE cluster (k=2) best describing the ancient Anglo-Saxon individuals in our 

ADMIXTURE analysis (Figure 3.5), and much of its geographic spread is in known Anglo-

Saxon territory. In contrast clusters originating from regions harbouring less Anglo-Saxon 

influence (Figure 3.5) separate out above and below SEE on cp-PC4, including 

Brittonic/Celtic speaking populations of England (Cornwall, Wales, Cumbria); the 

Gaelic/Celtic speaking populations of Scotland and Ireland, alongside Devon which 

resisted “Anglo-Saxonisation” for many years (Deacon 2007). Thus it is feasible that the 

Anglo-Saxon invasion is responsible for the loss of structure in the southeast of England.  
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Figure 3.4: Inter-island exchange of haplotypes between the north of Ireland and 

northern Britain. 

The boxplots show the distribution of individuals on ChromoPainter principal component 

(PC) 1 for each island and for specific sampling regions (Scotland/Northern Ireland) and 

cluster groups (SSC and NICS; see Figure 3.2). A substantial proportion of Northern Irish 

individuals fall within the expected range for Scottish individuals in ChromoPainter PC 

space and vice versa. This exchange is particularly pronounced for Northern Irish and 

Scottish individuals that fall within the NICS and SSC cluster groups (Figure 3.2), 

respectively.  

(Figure reprinted from Byrne et al. (R. P. Byrne et al. 2018)) 
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Figure 3.5: ADMIXTURE analysis for PoBI/Irish cluster groups with ancient British  

samples. 

Mean ADMIXTURE component (k = 2) for each cluster group in the PoBI/Irish 

fineSTRUCTURE tree (Appendix Figure 3.3) and 18 Ancient British Samples from the Iron 

age (IA; n = 4), Anglo-Saxon (AS; n = 8) and Roman (RM; n = 6) periods. Admixture 

proportions are averaged across each cluster group (left) for brevity of display, while 

individual proportions are plotted for ancient samples. The Anglo-Saxon individuals are 

best described by the red component. This component is high in British cluster groups 

from areas affected by the Anglo-Saxon invasion such as the large SEE cluster, while 

relatively low in Celtic populations such as Ireland, Scotland and Wales. 

(Figure reprinted from Byrne et al. (R. P. Byrne et al. 2018)) 
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As many important cp-PCs describe important trends in the variation of the Irish-British 

dataset, we applied t-distributed neighbour embedding (t-SNE) (Maaten 2009) to the 

British/Irish coancestry matrix to find the optimal low-dimensional embedding of the data 

in such a way that captured both local and global structure. By iteratively grouping points 

together in nodes based on degree of similarity or splitting them, t-SNE can capture the 

trends of many principal component axes in two dimensional space and thus may be more 

appropriate for summarising the differences between our cluster groups. Our t-SNE 

projection captured the global splits between Ireland, Britain, Orkney and North and South 

Wales (analogous to PCs 1-3) as well as the regional splits within the Britain and Ireland 

nodes (reflecting PC4), supporting that the most important local and global structure in the 

data is well explained by  cp-PCs 1-4 (Figure 3.6). We note that while t-SNE has been 

proposed for use with SNP data as early as 2013 (Platzer 2013) and has recently seen 

excellent use in visualising structure in the the large scale UK biobank (Diaz-Papkovich et 

al. 2019), t-SNE performed much less effectively when applied to SNP data from our 

dataset compared to the ChromoPainter coancestry matrix (Appendix Figure 3.2). While 

ChromoPainter t-SNE captures more global and local structure in data than cp-PCA, more 

structure is contained as a whole in the linked ChromoPainter co-ancestry matrix than 

independent SNP based similarity matrixes. Our publication was the first example of use 

of t-SNE on a ChromoPainter Coancestry matrix (R. P. Byrne et al. 2018), and we believe 

this method captures important trends in the data, and enables us to evaluate how well 

our fineSTRUCTURE clustering captures both global and local trends in the data.  

 

Both cp-PC4 and t-SNE dimension 2 show covariation of British and Irish regional clusters 

along a roughly north-south axis, with northern Irish clusters (NLU and ULS) occupying 

similar values on PC4 to northern English (NEE and CUM) and Scottish clusters (NICS, 

NSC and SSC), while southern Irish clusters (SMN and SLM) occupy similar values to 

southern English (SEE, BWA, DEV and COR) clusters. We hypothesised that this might 

indicate that Ireland and Britain share a haplotypic gradient north to south. To test this 

hypothesis we modelled our Irish genomes as a linear mixture of British genomes and 

regressed haplotype sharing from northern British groups and Scotland across the Irish 

north-south cp-PC (cp-PC1 from Figure 3.1). This resulted in a significant correlation 

between sharing from North-England/Scotland and Irish cp-PC1 (Linear regression: p < 

2×10−16, r2 = 0.24). However it is possible that this signal is largely driven by increased 

sharing between Northern Irish and Scottish samples as discussed above.   
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Figure 3.6: t-distributed stochastic neighbour embedding (t-SNE) of Irish and British 

coancestry matrix. 

(A) fineSTRUCTURE dendrogram with clusters and cluster groups defined as in Figure 

3.2. (B) Two-dimensional t-SNE embedding of ChromoPainter coancestry matrix, with 

median locations for cluster groups labeled. As t-SNE is a stochastic method, different 

runs produce different solutions to the 2-dimensional embedding; shown here is a typical 

result. t-SNE performed significantly better with the ChromoPainter coancestry matrix than 

with Hamming distances (identity-by-state) computed over single SNP markers (Appendix 

Figure 3.2). The map and administrative boundaries were produced using data from the 

database of Global Administrative Areas (GADM; https://gadm.org), note some boundaries 

have been subsumed or modified to better reflect sampling regions. 

(Figure reprinted from Byrne et al. (R. P. Byrne et al. 2018)) 

 

 

 

 

  

https://gadm.org/
https://gadm.org/
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3.3.3 - Evidence of migration into Ireland 

We next explored the genetic signatures left by migration events from Britain and Europe 

in samples from the Republic of Ireland (n=991) using GLOBETROTTER (Hellenthal et al. 

2014). GLOBETROTTER uses the ChromoPainter output to model the genomes of a 

target population as a linear mixture of user specified donor populations, which together 

act as surrogates for historical admixing populations. The program works on the principle 

that for a simple single pulse admixture event, segments from each admixing source will 

decay across subsequent generations due to recombination, leaving an exponential 

distribution of segment lengths from those sources with rate equal to the number of 

generations passed. The advantage of GLOBETROTTER over softwares such as 

ROLLOFF (Moorjani et al. 2011) is that the actual admixing sources needn’t be supplied, 

as the program models them as a mixture of modern surrogate populations.  

 

GLOBETROTTER found significant evidence for an admixture event with a group best 

represented by modern Scandinavians and northern Europeans (P<0.01;FQB > 0.985) 

with an estimated date overlapping the Norse-Viking invasion and settlement of Ireland 

(Figure 3.7). This signal was robust and replicated in 7/9 clusters defined using 

fineSTRUCTURE on the Republic of Ireland data, with the strongest signals in south and 

central Leinster (Figure 3.8). This strong signal in Leinster may have been bolstered by 

large sample sizes in Leinster clusters, leading to better statistical power, or alternatively 

due to the increased Viking influence in Leinster, particularly in Dublin (Formerly Dubh 

Linn, a Viking stronghold). This evidence for a significant contribution to the modern Irish 

genepool from Viking settlers contrasts the previous estimates of Viking ancestry in 

Ireland based on Y chromosome haplotypes which were low (McEvoy et al. 2006). 

Notably recent estimates of activity in Ireland from multiple archaeological proxies 

(radiocarbon date densities, dendrochronological date densities and entries in the Annals 

of Ulster) (R. McLaughlin, Hannah, and Coyle-McClung 2018) have demonstrated a 

decline in activity in Ireland beginning at roughly 823CE which could mark a population 

decline at this time. This population decline may have enabled the Viking genetic signal to 

persist by lowering baseline Irish diversity at the time. 
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Figure 3.7: All-Ireland GLOBETROTTER admixture date estimates for European and 

British surrogate admixing populations. 

A summary of (A) the date estimates and 95% confidence intervals for inferred admixture 

events into Ireland from European and British admixing sources (dating to the Norman and 

Viking invasions) with (B) ancestry proportion estimates for each historical source 

population for the two events and example coancestry curves. 

In the coancestry curves Relative joint probability estimates the pairwise probability that 

two haplotype chunks separated by a given genetic distance come from the two modelled 

source populations respectively (i.e. FRA(8) and NOR-SG); if a single admixture event 

occurred, these curves are expected to decay exponentially at a rate corresponding to the 

number of generations since the event. The green fitted line describes this 

GLOBETROTTER fitted exponential decay for the coancestry curve. If the sources come 

from the same ancestral group the slope of this curve will be negative (as with FRA(8) vs 

FRA(8)), while a positive slope indicates that sources come from different admixing groups 

(as with FRA(8) vs NOR-SG). The adjacent bar plot shows the inferred genetic 

composition of the historical admixing sources modelled as a mixture of the sampled 

modern populations.  

Cluster labels (for the European clustering dendrogram, see Appendix Figure 3.5; for the 

PoBI clustering dendrogram, see Appendix Figure 3.4): FRA(8), France cluster 8; NOR-

SG, Norway, with significant minor representations from Sweden and Germany; SE_ENG, 

southeast England; N_SCOT(4) northern Scotland cluster 4.  
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Figure 3.8: GLOBETROTTER breakdown for clusters in the Republic of Ireland. 

(A) Summary of the date estimates and 95% confidence intervals for inferred admixture 

events into Irish clusters from European (red) and British (blue) admixing sources. Faded 

lines highlight clusters in which there was no significant evidence of admixture (P>0.01).  

(B) fineSTRUCTURE clustering dendrogram and PCA of the coancestry matrix describing 

the Republic of Ireland clusters considered in (A). Sampling locations are mapped for a 

subset of 544 individuals for which locational information was available. Points have been 

randomly jittered within a radius of 5 km to preserve anonymity. All samples are coloured 

by cluster group. Map produced using data from the database of Global Administrative 

Areas (GADM; https://gadm.org). 

(Figure reprinted from Byrne et al. (R. P. Byrne et al. 2018))  
 

https://gadm.org/
https://gadm.org/
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When considering British admixing sources, GLOBETROTTER estimates from northwest 

Ulster overlapped the Plantation period, showing significant evidence of admixture 

(p<0.01), however due to the exclusion of Northern Irish samples from PoBI in this 

analysis the signal was largely diluted. The all Ireland (n=991) estimates instead span the 

Norman period, although the signal is much noisier than the European event as evident in 

the weaker fit of the coancestry curves (p<0.01; FQB<0.985) (Figure 3.7), and the poor 

replication across clusters (4/9; Figure 3.8). It is possible that GLOBETROTTER could not 

adequately disentangle the complex migrational history between Britain and Ireland which 

has involved extensive and continuous gene flow both to and from Ireland between the 

major population movements outlined in Figure 3.7 and since. We also note that due to 

the minimal sampling from Northern Ireland in our data, the power to detect the most 

significant effects of the plantations is lacking in this dataset. 
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3.4 - Discussion  

Our results demonstrate that significant regional population structure exists in Ireland in 

spite of its relative homogeneity compared to the European mainland (O’Dushlaine et al. 

2010). This genetic structure shows substantial ties to geography, and hence is likely 

influenced both by simple isolation by distance and social and political structures which 

have encouraged increased haplotype sharing within restricted regions. For example 

much of the population structure correlates well with the provinces of Ireland, and in fact 

the pre-Norman kingdoms, lending to a narrative that such territories may have influenced 

the mobility of Irish individuals in previous generations. While much of the structure is 

likely deep, it is also probable that the differential effects of recent migration from 

neighbouring countries including Britain and mainland Europe have played a role in some 

of the structure observed, given that many large migration events into Ireland in the past 

have been geographically punctuated. For example the Plantations of the 17th century 

had a clear focal point in Ulster, while sites of the Viking and Norman invasions are 

concentrated mostly on the East coast of Ireland. Indeed we find greater affinity to British 

and ancient Anglo-Saxon samples on the East Coast, and strong Scottish affinity in Ulster, 

lending credence to the potential role of differential gene flow from neighbouring 

populations in creating some of the observed structure. We also note that the clearest 

signal of the Viking admixture we observed using GLOBETROTTER was located in 

eastern clusters within Leinster, while the only signal of admixture from Britain overlapping 

plantation is found in a Northern cluster, further supporting the possible role of differential 

migration from neighbouring countries in defining the structure we see in Ireland.   

 

The structure described above is well defined, but also extremely subtle, with an average 

FST of 0.00036 between clusters observed. Notably a concurrent, yet independent, study 

of fine-scale structure carried out by Gilbert and colleagues in a smaller independent 

sample from the Irish population (n=194) found similar population structure in Ireland 

(Gilbert et al. 2017), with comparable FST estimates between clusters (Mean FST = 0.0003) 

indicating that the structure we are describing is not an artifact of our dataset, or biased by 

the inclusion of ALS cases in our sample. Aside from increased sample size, a major 

difference between our study design and the Gilbert et al study design is that we did not 

ascertain individuals with 4 grandparents from each region, but instead repurposed a 

medical genetics dataset, showing that such structure exists not only in studies optimised 

to detect it, but likely in all medical genetics datasets from this region. The implications of 

the existence of this structure for medical genetics are to date untested, however it is 

likely important as it highlights a source of confounding hitherto ignored. Given that this 
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structure was undetectable in studies relying on PCA of SNP data (Cronin et al. 2008; 

O’Dushlaine et al. 2010), the  method most commonly used to correct for population 

structure in association studies, there is a strong case to be made that similar local 

genetic structure may act as a source of residual confounding under current designs. 

Moreover, within our dataset we observed that the ChromoPainter coancestry matrix 

captured population structure to a greater extent than an unlinked GRM (Table 3.3), 

suggesting these matrices commonly used in GWAS likely undercorrect population 

stratification. Evidence is accumulating that population stratification remains despite 

correction in many published GWAS, in particular GWAS for height (Bhatia et al. 2016; 

Sohail et al. 2019; Berg et al. 2019), suggesting additional correction for structure is an 

avenue worth exploring. The effects of residual population stratification in GWAS are likely 

to have a large impact on methods combining information across many sub genome wide 

significant variants, such as polygenic scores.  In addition our cross-island ChromoPainter 

results (Figure 3.2, 3.3, 3.4 and 3.6) show that ChromoPainter captures both global and 

local structure where multiple countries are involved, describing differences between and 

within the islands, suggesting it may be applicable to multi-population GWAS. We will 

further explore the application of haplotype sharing matrices to correct subtle population 

structure in GWAS in single and multiple populations in Chapter 5. 

 

Our study also enriches the findings of the PoBI study through inclusion of samples from 

the Republic of Ireland, which were excluded from the 2015 study (Leslie et al. 2015). 

Primarily, through PCA of the ChromoPainter co-ancestry matrix, we demonstrate that the 

two islands are largely genetically distinguishable along the first axis of variation when 

haplotype sharing is considered (Figure 3.2). The notable exceptions to this rule are 

Scotland and Northern Ireland, which show strong signals of interisland exchange of 

genetic material (Figure 3.4), reflecting known historical movements of people between 

these regions. The inclusion of Irish data with British samples from the PoBI study 

provides an anchor for Celtic ancestry in the British Isles, filling out the genetic landscape 

of the islands. We see north-south covariation of the islands across the fourth axis of 

variation, demonstrating diversity in Celtic groups. Overall our study shows that 

haplotypes mirror geography across Britain and Ireland, revealing nuanced links between 

the two which may have important implications for future medical genetic studies.  
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Chapter 4 - Dutch Population Structure, Movement and 

Demographic Change 

Now published in Byrne et al. Dutch population structure across space, time and GWAS 
design. Nature Communications 2020;11 4556.   

4.1 - Introduction 

4.1.1 - Background 

The Netherlands is a densely populated country on the northwestern edge of the 

European continent, bounded by Germany, Belgium and the North Sea. The country is 

divided into twelve provinces and has a complex demographic history, with occupation by 

several Germanic peoples since the collapse of the Roman Empire, including the Frisians, 

the Low Saxons and the Franks. Over 17 million individuals now inhabit this relatively 

small region (41,500km2), making it one of the most densely populated countries in 

Europe. Despite its small geographical size, previous genetic studies of the people of the 

Netherlands have demonstrated coarse population structure that correlates with its 

geography, as well as apparent heterogeneity in effective population sizes across 

provinces (Abdellaoui, Hottenga, de Knijff, et al. 2013; Genome of the Netherlands 

Consortium 2014). These observations suggest that the demographic past of the Dutch 

population has left residual signatures in its present regional genetic structure; however 

this has not been fully explained in the context of neighbouring populations and thus far 

the use of unlinked genetic markers have limited the resolution at which this structure can 

be described. This resolution limit also confines the extent to which the confounding 

effects of population structure can be controlled in genomic studies of health and disease 

such as genome-wide association studies (GWAS). As these studies continue to seek 

ever-rarer genetic variation with ever-increasing cohort sizes, intricate understanding and 

fine control of population structure is becoming increasingly relevant, but increasingly 

challenging (Lawson et al. 2019). 

Recent studies have showcased the power of leveraging shared haplotypes to uncover 

and characterise previously unrecognised fine-grained genetic structure within 

populations, yielding novel insights into the demographic composition and history of 

Britain and Ireland (Leslie et al. 2015; R. P. Byrne et al. 2018; Gilbert et al. 2017) (Chapter 

3), Finland (Kerminen et al. 2017), Japan (Takeuchi et al. 2017), Italy (Raveane et al. 

2019), France (Pierre et al. 2020) and Spain (Bycroft et al. 2019). Haplotype sharing has 

also revealed genetic affinities between populations (Chacón-Duque et al. 2018), enabling 

inference of historical admixture events using modern populations as proxies for ancestral 
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admixing sources (Hellenthal et al. 2014). Furthermore, geographic information can be 

integrated to model genetic similarity as a function of spatial distance (Novembre and 

Peter 2016) to infer demographic mobility within or between populations; one approach 

uses the Wishart distribution to estimate and map a surface of effective migration rates 

based on deviations from a pure isolation by distance model (Petkova, Novembre, and 

Stephens 2016), allowing migrational cold spots to be inferred which may derive from 

geographical boundaries such as rivers and mountains. Almost half of the area of the 

Netherlands is reclaimed from the sea and its contemporary land surface is densely 

subdivided by human-made waterways and naturally-occurring rivers, including the Rhine 

(Dutch: Rijn), Meuse (Maas), Waal and IJssel. These rivers have been speculatively 

linked to genetic differentiation between northern and southern Dutch subpopulations in 

previous work (Abdellaoui, Hottenga, de Knijff, et al. 2013); however the explicit 

relationship between Dutch genetic diversity and movement of people within the 

Netherlands has not been directly modelled. 

The Dutch have previously received special interest as a model population (Abdellaoui, 

Hottenga, de Knijff, et al. 2013; Genome of the Netherlands Consortium 2014) and form a 

major component of substantial ongoing efforts to better understand human health, 

disease, demography and evolution. For example, at the time of writing, over 10% of all 

studies listed in the NHGRI-EBI genome-wide association study (GWAS) catalogue 

(Buniello et al. 2019) include the Netherlands in their “Country of recruitment” metadata. 

As well as offering insights into demography and human history, refined population 

genetic studies are important to identify and adequately control confounding effects in 

genomic studies of health and disease, especially if spatially structured environmental 

factors contribute substantially to variance in phenotype, which in particular impacts rare 

variants (Mathieson and McVean 2012). In this chapter, we harness shared haplotypes to 

examine the fine-grained genetic structure of the Netherlands. We show that Dutch 

population structure is more granular than previously recognised, with notable genetic 

clusters forming both between and within provinces. We demonstrate that the population 

structure from north to south is strong and stable over many generations, while east to 

west structure likely emerged more recently. These major axes of structure appear to be 

tied both to opposing gradients of gene flow from the neighbouring countries Germany 

and Belgium, as well as by the internal geographic boundary of the Rhine. Notably this 

genetic structure demonstrably confounds GWAS which we will explore in a later chapter 

(Chapter 5). Finally we investigate major changes in population size across time in the 

Netherlands and their relationship with the observed population structure, noting regional 

signals of population decline following the arrival of the Black Death to the Netherlands 
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(~14th century) and a major increase in population growth countrywide in the 17th 

century, corresponding to a period of prosperity in the Netherlands known as the Dutch 

Golden Age.  

4.1.2 - Research aims 

This chapter presents work carried out to characterise population structure, demographic 

change and the impact of internal and external migration on the modern Dutch population 

using data from Dutch ALS case control cohort. The research has four major aims: 

  

i.) To further dissect and characterise the population structure in the Netherlands in space 

and time using haplotype sharing metrics;  

ii.) To contextualise structure in terms of migration events and geneflow from neighbouring 

countries; 

iii.) To explore regional and global changes in population size across time using haplotype 

sharing and characterise their interplay with population structure; 

iv.) To investigate the impact of geographic boundaries on population structure.  

 

Our work provides several insights into the extent and potential historical relevance of 

genetic structure within the Netherlands. Additionally by revealing a more finescale picture 

of genetic structure in another small north-west European region using haplotype sharing 

profiles we emphasise the need to critically assess the suitability of current methods for 

correcting confounding in genetic association studies. The work in this chapter is as such 

a crucial motivation for the work in chapter 5 in testing the use of haplotype sharing 

methods as a method of correcting population stratification in genome-wide association 

studies.   

 

NB: The results of this chapter form the majority of an article now published in Nature 

Communications: (https://www.nature.com/articles/s41467-020-18418-4). 

 

 

 

 

 

 

  

https://www.nature.com/articles/s41467-020-18418-4


112 
 

4.2 - Methods 

4.2.1 - Data and quality control 

We mapped fine-grained genetic structure in the Netherlands using a population-based 

Dutch ALS case-control dataset (n=1,626; subset of stratum sNL3 from a genome-wide 

association study (GWAS) for amyotrophic lateral sclerosis (van Rheenen et al. 2016)) 

and a European reference dataset subsampled from a GWAS for multiple sclerosis 

(Sawcer et al. 2011) (MS; n = 4,514; EGA accession ID EGAD00000000120). 1,422 

Dutch individuals had associated residential data (hometown at time of sampling) which 

were used for geographical analyses. For population structure analyses, we applied 

quality control (QC) using PLINK v1.9 (Chang et al. 2015); briefly we removed samples 

with high missingness (>10%), high heterozygosity (>3 median absolute deviations from 

median) and single-marker PCA outliers (>5 standard deviations from mean for PCs 1-

20). We also filtered out A/T and G/C SNPs and SNPs with minor allele frequency <0.05, 

high missingness (>2%) or in Hardy Weinberg disequilibrium (p<1×10-6). Before running 

Chromopainter/fineSTRUCTURE we retained only one individual from any pair or group 

that exhibited greater than 7.5% genomic relatedness (�̂�) and removed SNPs with any 

missing genotypes as the algorithm does not tolerate missingness or relatedness well. For 

European reference data we also removed individuals past a missingness threshold 

defined in Chapter 3 (--mind 0.0005; to maximise SNP retention at zero missingness) and 

individuals suggested by the QC of the source study (Sawcer et al. 2011), extracting 

individuals only of European descent. As this European dataset included MS patients, we 

filtered out SNPs in a 15 Mb region surrounding the strongly associated HLA locus 

(GRCh37 position chr6:22,915,594–37,945,593) to avoid bias generated from this 

association, following previous works using this dataset (Leslie et al. 2015; Gilbert et al. 

2017; R. P. Byrne et al. 2018).  

 

The final Dutch and European reference datasets contained 374,629 SNPs and 363,396 

SNPs respectively at zero missingness. The merge of these datasets contained 147,097 

SNPs at zero missingness. Data were phased per chromosome with the 1000 Genomes 

Project phase 3 reference panel (Auton et al. 2015) using SHAPEIT v2 (Delaneau, 

Marchini, and Zagury 2011) (for ChromoPainter/fineSTRUCTURE) and Beagle v4.1 (S. R. 

Browning and Browning 2007) (for IBD estimation). For these and all subsequent runs of 

SHAPEIT and Chromopainter, we used the 1000 Genomes Project Phase 3 genetic map 

(Auton et al. 2015); while IBD analyses with Beagle were carried out using the Hapmap 

phase 2 genetic map (International HapMap Consortium et al. 2007), as used in the 

refinedIBD (B. L. Browning and Browning 2013a) and IBDNe (S. R. Browning and 
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Browning 2015) source papers. Both programmes were run with default settings; allele 

concordance was checked prior to phasing (SHAPEIT: --check; Beagle: conform-gt utility).  

4.2.2 - fineSTRUCTURE analysis 

We used ChromoPainter/fineSTRUCTURE (Lawson et al. 2012) to detect fine-grained 

population structure using default settings. In brief, each individual was painted using all 

other individuals (-a 0 0), first estimating Ne and (switch rate and mutation rate) with 10 

expectation-maximization (EM) iterations (using all samples and chromosomes), then the 

model was finally run using these parameter estimates. The fineSTRUCTURE Markov 

chain Monte Carlo (MCMC) model was then run on the resulting coancestry matrix with 

two chains for 3,000,000 burnin and 1,000,000 sampling iterations, sampling every 10,000 

iterations. We extracted the state with the maximum posterior probability and performed 

an additional 10,000 hillclimbing iterations before inferring the final trees using both the 

climbtree and maximum concordance methods. For all subsequent analyses the 

maximum concordance tree was used. 

 

4.2.3 - Cluster robustness and differentiation 

To assess the robustness of clustering in the Dutch data we calculated TVD (Leslie et al. 

2015) and FST. TVD is a distance metric for assessing the distinctness of pairs of clusters, 

calculated from the ChromoPainter chunklength matrix. TVD is calculated as the sum of 

the absolute differences between copying vectors for all pairs of clusters, where the 

copying vector for a given cluster A is a vector of the average lengths of DNA donated to 

individuals in A by all clusters. Intuitively, the TVD of two clusters reflects distance 

between those clusters in terms of haplotype sharing amongst all clusters, and is a 

meaningful method for assessing the effectiveness of fineSTRUCTURE clustering. To 

assess whether the observed clustering performed better than chance we permuted 

individuals between cluster pairs (maintaining cluster size) and calculated the number of 

permutations that exceeded our original TVD score for that pairing of clusters. We used 

1,000 permutations where possible, and otherwise used the maximum number of unique 

permutations. P-values were calculated from the number of permutations greater than or 

equal to the observed TVD divided by the total permutations; all p-values were less than 

0.001, indicating robust clustering. We generated a TVD tree for clusters from the k=16 

fineSTRUCTURE split by merging pairs of clusters with the lowest TVD successively 

using methods described previously (Kerminen et al. 2017), with the goal of providing an 

alternative representation of cluster relationships that is independent of sample size 
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(Appendix Figure 4.1). The tree was built in k-1 steps, with TVD recalculated at each step 

from the remaining populations. Branch lengths were scaled proportional to the TVD value 

of the corresponding pair of populations using adapted code from the original paper 

(Kerminen et al. 2017). Finally, to assess cluster differentiation independently of the 

ChromoPainter model, FST was calculated between Dutch clusters using PLINK 1.9. For 

this analysis we used the SNP overlap between Dutch and European datasets, pruning for 

LD (‑‑indep‑pairwise 1000 50 0.25) and simultaneously calculated FST between European 

countries present in the European dataset (Sawcer et al. 2011) for comparison. 

 

4.2.4 - Ancestry profiles 

We assessed the ancestral profile of Dutch samples in terms of a European reference 

made up of 4,514 European individuals (Sawcer et al. 2011) from Belgium, Denmark, 

Finland, France, Germany, Italy, Norway, Poland, Spain and Sweden. European samples 

were first assigned to homogeneous genetic clusters using fineSTRUCTURE as in 

previous work (R. P. Byrne et al. 2018) (Chapter 3) to reduce noise in painting profiles. 

We then modelled each Dutch individual’s genome as a linear mixture of the European 

donor groups using ChromoPainter, and applied ancestry profile estimation as described 

previously (Leslie et al. 2015) and implemented in GLOBETROTTER (Hellenthal et al. 

2014) (num.mixing.iterations: 0). This method estimates the proportion of DNA which is 

most closely shared with each individual from each donor group calculated from a 

normalised ChromoPainter chunklength output matrix, and then implements a multiple 

linear regression of the form: 

 

                                                 𝑌𝑝 = 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ + 𝛽𝑔𝑋𝑔,                                     (6) 

 

to correct for noise caused by similarities between donor populations. Here, Yp is a vector 

of the proportion of DNA that individual p copies from each donor group, and Xg is the 

vector describing the average proportion of DNA that individuals in donor group g copy 

from other donor groups G, including their own. The coefficients of this equation 𝛽1 … 𝛽𝑔 

are thus interpreted as the “cleaned” proportions of the genome that target individual p 

copies from each donor group, hence the ancestral contribution of each donor group to 

that individual. The equation is solved using a non-negative-least squares (NNLS) function 

such that 𝛽𝑔 ≥ 0 and the sum of proportions across groups equals 1. We discarded 

European groups that contributed less than 5% total to any individual, and refit to 

eliminate noise. We then aggregated sharing proportions across donor groups (genetically 

homogenous clusters) from the same country to estimate total sharing between an 
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individual and a given country to investigate the regional distribution of sharing profiles. 

Autocorrelation of ancestry profiles was assessed by Moran’s I and Mantel’s test (10,000 

permutations) in R version 3.2.3. Geographical directions of ancestry gradients were 

determined by rotating the plane of latitude-longitude between 0 and 360 in 1 degree 

steps and finding the axis Y that maximised the coefficient of determination for the linear 

regression  Y~Ac, where Ac is the aggregated ancestry proportion for country c . 

 

Additionally we compared the ancestry profiles estimated by the NNLS method to those 

estimated using the recently developed Bayesian algorithm SOURCEFIND (Chacón-

Duque et al. 2018). We ran SOURCEFIND on the ChromoPainter output described above 

using 50,000 burnin and 200,000 MCMC iterations, sampling every 5,000 iterations. For 

each Dutch individual we took the weighted average (weighted by posterior probability) of 

ancestry estimates with the highest posterior probability taken from 50 independent runs 

of the algorithm. We aggregated sharing portions across donor groups from the same 

country to estimate total sharing between an individual and a given country and 

investigate the regional distribution of sharing profiles. Ancestry gradients generated by 

each method were regressed against one and other to estimate correlation. We report 

both the results of both NNLS (Figure 4.3) and SOURCEFIND (Appendix Figure 4.2) for 

comparison. 

 

4.2.5 - Identity by descent analysis 

IBD segments were called in phased data using RefinedIBD (B. L. Browning and 

Browning 2013a) (default settings). Segments shared between pairs of individuals were 

summed to generate a pairwise matrix of the total length of IBD shared between these 

individuals, analogous to the ChromoPainter coancestry matrix. We additionally separated 

IBD segments by length into 1 centiMorgan (cM), 1.5cM and 2cM wide bins, taking a 

sliding window approach with increments of 0.1cM, and computed total IBD sharing 

matrixes for all length windows to explore temporal changes in IBD sharing. To identify 

population structure captured by IBD sharing patterns we performed PCA on these 

matrices using the prcomp function in R version 3.2.3 (CoreTeam 2015) and clustered the 

IBD matrices using a Gaussian mixture model implemented in the R package mclust 

(Scrucca et al. 2016). We note that while previous work (Lawson and Falush 2012) has 

shown that IBD matrices underperform the linked ChromoPainter matrix in identifying 

population structure, they are arguably more interpretable for visualising temporal change 

as they can be subdivided into cM bins corresponding to different time periods, a feature 
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leveraged by emerging work on local population structure (Al-Asadi et al. 2019). Patterns 

in IBD sharing that identify population subgroups in older (shorter) cM bins which are 

preserved in more recent (longer) bins are interpreted as persistent population structure 

that has been influenced by mating patterns both in old and recent generations. Structure 

which emerges in a specific cM bin and is lost is likely to reflect transient changes in 

panmixia that have not necessarily persisted. We approximated the age of segments in a 

given cM bin using equation s19 from Al-asadi et al. (Al-Asadi et al. 2019), under the 

assumption that the population is sufficiently large: 

                                           lim
N→∞

𝐸[𝑇|𝜇 ≤ 𝑙 ≤ 𝑣] = 75 (
1

𝐿1
+ 

1

𝐿2
), (Al-Asadi et al. 2019)                                   (7) 

where T is the random coalescence time in generations, l is the length of a segment (in 

base pairs), 𝜇 and 𝜈 are the upper and lower segment length bounds of the interval (in 

base pairs) and L2 and L1 are the upper and lower bounds of the interval rescaled to 

centiMorgan (i.e. multiplied by 100r, where r is the recombination rate). For the age 

estimates given in Figure 4.4, we multiplied the expected coalescence time in generations 

by the approximate human generation time (28 years).  

 

We generated an interactive web environment to visualise and explore population 

structure and clustering for all segment bins which is hosted at bioinf.gen.tcd.ie/ctg/nlibd. 

4.2.6 - Inferring admixture dates 

To infer and date admixture events from European sources we ran GLOBETROTTER 

(Hellenthal et al. 2014) with the Netherlands dataset as a whole and in individual cluster 

groups defined from the Dutch fineSTRUCTURE maximum concordance tree (Figure 4.1). 

To define European donor groups we used the European fineSTRUCTURE maximum 

concordance tree, as with previous work (R. P. Byrne et al. 2018)(Chapter 3) to ensure 

genetically homogenous donor populations. We used ChromoPainter v2 to paint Dutch 

and European individuals using European clusters as donor groups (estimating Ne and μ 

using the weighted average of 10 EM iterations on chromosomes 1, 8, 15 and 20, using 

all samples). This generated a copying matrix (chunklengths file) and 10 painting samples 

for each Dutch individual. GLOBETROTTER was run for 5 mixing iterations twice: once 

using the null.ind:1 setting to test for evidence of admixture accounting for unusual linkage 

disequilibrium (LD) patterns and once using null.ind:0 to finally infer dates and sources. 

We further ran 100 bootstraps for the admixture date and calculated the probability of no 

admixture as the proportion of nonsensical inferred dates (<1 or >400 generations). 

http://bioinf.gen.tcd.ie/ctg/nlibd


117 
 

Confidence intervals were calculated from the bootstraps from the standard model 

(null.ind:0) using the empirical bootstrap method, and a generation time of 28 years. 

 

4.2.7 - ADMIXTURE analysis      

We performed ADMIXTURE analysis (Alexander, Novembre, and Lange 2009) on the 

combined Dutch and European samples to explore single marker-based population 

structure in a set of 41,675 unlinked SNPs (LD-pruned using PLINK 1.9: r2 > 0.1; sliding 

window 50 SNPs advancing 10 SNPs at a time). ADMIXTURE was run for k=1-10 

populations, using 5 EM iterations at each k value. The k value with the lowest cross-

validation error was selected for further analysis using 15 fold cross-validation; where two 

k values had equal CV-error the lower k value was taken for parsimony (Appendix Figure 

4.3). We analysed the distribution of proportions for each ADMIXTURE cluster across the 

Dutch dataset, and its relationship with geography. 

4.2.8 - Estimating mean pairwise IBD sharing 

We compared IBD sharing within and between both clusters and provinces (Appendix 

Figure 4.4) using the mean number of segments within a given length range (e.g. 1-2cM) 

shared between individuals. To calculate this mean for a single group of size 𝑁 with itself 

the denominator was (𝑁2 − 𝑁)/2; when comparing two groups of sizes 𝑁 and 𝑀 the 

denominator was 𝑁𝑀. 

4.2.9 - Estimating recent changes in population size 

We used IBDNe (S. R. Browning and Browning 2015) to estimate historical changes in Ne. 

IBDNe leverages information from the length distribution of IBD segments to accurately 

estimate effective population size over recent generations, with a resolution limit of about 

50 generations for SNP data. We followed the authors’ protocol and detected IBD 

segments using IBDseq version r1206 (B. L. Browning and Browning 2013b) with default 

settings and ran IBDNe on the resulting output with default settings, removing IBD 

segments shorter than 4cM (minibd=4, the recommended threshold for genotype data). 

We compared estimated Ne with recorded census size 

(https://opendata.cbs.nl/statline/#/CBS/nl/dataset/37296ned/table?ts=1520261958200) for 

approximately equivalent dates (starting at 1946 CE for generation 0 and assuming 1 

generation is 28 years) and found that for generations 0 - 3 our Ne estimates were 

approximately ⅓ of the census population (Appendix Figure 4.5), which follows 

expectation if lifespan is ~3× the generation time (S. R. Browning and Browning 2015; 

https://opendata.cbs.nl/statline/#/CBS/nl/dataset/37296ned/table?ts=1520261958200
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Felsenstein 1971). The slope of the ratios for the three generations is near zero 

suggesting that our model tracks well with the census population; this is consistent with 

reported expectation (S. R. Browning and Browning 2015). 

4.2.10 - Estimating effective migration surfaces 

To model geographic barriers to geneflow in the Netherlands we ran EEMS (Petkova, 

Novembre, and Stephens 2016). This software provides a visualisation of hot and 

coldspots for geneflow across a habitat using a geocoded genetic dataset. To run EEMS, 

we generated an average pairwise genetic dissimilarity matrix from our genotype data 

using the bed2diffs utility provided with the software. We initially ran the EEMS model with 

10 randomly initialised MCMC chains for a short run of 100,000 burn-in and 200,000 

sampling iterations, thinning every 999 iterations, to find a suitable starting point. For 

these runs we placed the data in 800 demes and used default settings with the following 

adjustments to the proposal variances: qEffctProposalS2 =0.00008888888; 

qSeedsProposalS2 = 0.7; mEffctProposalS2 = 0.7. The resulting chain with the highest 

log-likelihood was then used as the starting point for a further ten chains for 1,000,000 

burn-in iterations and 2,000,000 sampling iterations, thinning every 9,999 iterations. The 

model was run for these chains with the same adjustments to the proposal variances as 

above. We plotted the results of our analysis using the rEEMSplot package in R and 

modified the resulting vector graphics using Inkscape v0.91 to remove display artefacts 

caused by non-overlapping polygons. MCMC convergence was assessed by inspecting 

the log-posterior traces (Appendix Figure 4.6). 
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4.3 - Results     

4.3.1 - The genetic structure of the Dutch population 

We summarised the haplotypic coancestry between 1,626 Dutch individuals using 

ChromoPainter (Lawson et al. 2012) and clustered the resulting matrix using 

fineSTRUCTURE (Lawson et al. 2012), identifying 40 genetic clusters at the highest level 

of the hierarchical tree which segregated with geographical provenance. We explored the 

clustering from the finest (k=40) to the coarsest level (k=2), settling on k=16 as it captured 

the major regional splits sufficiently with little redundancy. Clusters at this level were 

robustly defined, as evidenced by permutation testing of total variation distance (TVD; p < 

0.001) which showed non-random differences in haplotype sharing between clusters. In 

addition clusters showed subtle differentiation even when measured using fixation index 

(FST; Figure 4.1 a), which relies on unlinked markers rather than haplotype sharing; 

remarkably, some FST values between particularly differentiated Dutch clusters were 

comparable in magnitude to estimates between some European countries (calculated 

using data from the European reference dataset (Sawcer et al. 2011); Appendix Table 

4.1). Some clusters had expansive geographical ranges (for example NHFG, representing 

individuals from North Holland, Friesland and Groningen), while others neatly 

distinguished populations on a sub-provincial level (for example, NBE and NBW, 

representing east and west regions of North Brabant). For visualisation we projected the 

ChromoPainter coancestry matrix in lower dimensional space using principal component 

analysis (PCA; Figure 4.1 b) and assigned cluster labels based on majority sampling 

location (available for 1,422 individuals), arranging neighbouring and genetically similar 

clusters into cluster groups, as with previous work (R. P. Byrne et al. 2018) (Chapter 3). 

The first principal component (PC) of coancestry followed a strong north-south trend 

(latitude vs mean PC1 per town r2 = 0.52; p = 6.8×10−72) with PC2 generally explained by 

a west-east gradient (longitude vs mean PC2 per town r2 = 0.29; p = 3.4×10−33 ). Further 

PCs demonstrated more complex non-linear relationships with geography, with evidence 

of significant spatial autocorrelation when tested using Moran’s I (Figure 4.2). These PCs 

showed extreme values for extended geographic regions (e.g. the central band in PC3), or 

single provinces (e.g. North Holland on PC9), likely reflecting  genetic affinities within 

these geographic areas relative to the rest of the Netherlands. 
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Figure 4.1: The genetic structure of the people of the Netherlands.  

(a) fineSTRUCTURE dendrogram of ChromoPainter coancestry matrix showing clustering 

of 1,626 Dutch individuals based on haplotypic similarity. Associated total variation 

distance (TVD) and fixation index statistics between clusters are shown in the matrix. 

Permutation testing of TVD yields p<0.001 for all cluster pairs, indicating that clustering is 

non-random. Cluster labels derive from Dutch provinces and are arranged into cluster 

groups for genetically and geographically similar clusters (circled labels). (b) The first two 

principal components (PCs) of ChromoPainter coancestry matrix for all individuals 

analysed. Points represent individuals and are coloured and labelled by cluster group. (c) 

Geographical distribution of 1,422 sampled individuals, coloured by cluster groups defined 

in (a). Labels represent provinces of the Netherlands. Map boundary data from the 

Database of Global Administrative Areas (GADM; https://gadm.org). 

(Figure reprinted from Byrne et al. (R. P. Byrne et al. 2020)) 
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Figure 4.2: ChromoPainter-PCs relationship to geography.  

Points on maps are coloured by the average ChromoPainter PC value per town of 

sampling. Each displayed PC shows a significant relationship with geography as tested by 

Moran’s I (p<0.0001 for all PCs). PCs have been split into 10 bins for visualisation 

purposes as in previous works (Abdellaoui, Hottenga, de Knijff, et al. 2013). Map boundary 

data from the Database of Global Administrative Areas (GADM; https://gadm.org). 

(Figure reprinted from Byrne et al. (R. P. Byrne et al. 2020)) 

  

https://gadm.org/
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As previously observed in Ireland (R. P. Byrne et al. 2018) (Chapter 3), the distribution of 

individuals across the PC1 vs PC2 projection generally resembled their geographic 

distribution (Figure 4.1 c), with some exceptions. For example, North Brabant is 

geographically further north than Limburg, but its major genetic cluster is further separated 

by PC1 from northern clusters than the Limburg cluster. We explored the possibility that 

this could instead be explained by relative ancestral affinities to neighbouring lands by 

modelling the genome of each Dutch individual as a linear mixture of European sources 

(obtained from the European dataset (Sawcer et al. 2011)) using ChromoPainter, retaining 

source groups that best matched Dutch individuals for at least 5% of the genome (Leslie 

et al. 2015) (Figure 4.3). The resulting profiles of German, Belgian and Danish ancestries 

were significantly autocorrelated (pDE and pBE < 0.0001; pDK < 0.001; Moran’s I and 

Mantel’s test) and spatially arranged along geographical directions S66°W, N73°E and 

S73°E respectively, approximately corresponding to declining ancestry gradients directed 

away from the German and Belgian borders and the North Sea boundary (Figure 4.3; 

𝑟𝐷𝐸
2 = 0.31; 𝑟𝐵𝐸

2 = 0.35; 𝑟𝐷𝐾
2 = 0.12; 𝑝𝐷𝐸 = 9.4 × 10−119;  𝑝𝐵𝐸 = 2.7 × 10−133; 𝑝𝐷𝐾 =

1.1 × 10−39). In contrast the spatial distribution of French ancestry was comparatively 

uniform, with only a modest correlation due east (𝑟𝐹𝑅
2 = 0.014; 𝑝𝐹𝑅 = 9.5 × 10−6). The 

major trend across the Netherlands was thus of complementary Belgian and German 

ancestral affinities, decaying with distance from the respective borders. North Brabant 

clusters, however, showed a greater Belgian profile than Limburg clusters, despite similar, 

substantial Belgian frontiers in both Dutch provinces, potentially explaining the relative 

differentiation of North Brabant clusters from northern clusters compared to Limburg. 

Conversely, the German ancestry profile of Limburg greatly exceeded that of North 

Brabant, reflecting its 200-kilometre border with Germany and centuries of consequent 

demographic contact and likely genetic admixture. This analysis produced largely identical 

results when run with the NNLS (Figure 4.3) and SOURCEFIND methods (Appendix 

Figure 4.2), however while single marker ADMIXTURE runs demonstrate some degree of 

spatial structure in admixture components, they could not deconvolute the opposing 

ancestry gradients as clearly (Appendix Figure 4.7). 
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Figure 4.3: The ancestry profile of the Netherlands.  

(a) The Netherlands and its geographical relationship to neighbouring lands. (b) German, 

Belgian, Danish and French haplotypic ancestry profiles for 1,422 Dutch individuals. 

Arrows indicate the predominant directions along which the ancestry gradients are 

arranged across the Netherlands. Map boundary data from the Database of Global 

Administrative Areas (GADM; https://gadm.org) and Natural Earth 

(https://naturalearthdata.com). 

(Figure reprinted from Byrne et al. (R. P. Byrne et al. 2020)) 

4.3.2 - Genome flux and stasis in the Netherlands 

To explore temporal trends in Dutch population structure we called genomic segments of 

pairwise identity-by-descent (IBD) using RefinedIBD (B. L. Browning and Browning 

2013a). An IBD haplotype sharing matrix is conceptually similar to a ChromoPainter 

coancestry matrix (Lawson and Falush 2012), but trades some sensitivity to be more 

explicitly interpretable. As IBD segment length is inversely related to age (Palamara 2014; 

Al-Asadi et al. 2019), different length intervals can inform on structure at different time 

depths. Total pairwise IBD between Dutch individuals mirrored the structure observed with 

ChromoPainter (Figure 4.4 a), with 8 distinct clusters identified in the IBD sharing matrix 

that broadly segregated with geography and recapitulated some of the important splits 

obtained from fineSTRUCTURE, most strikingly the west-east split in North Brabant. 

Decomposing total IBD by centiMorgan (cM) length into short (1-3 cM), medium (3-5 cM) 

and long (5-7 cM) bins, we observed stability over time of north-south structure and the 

emergence of west-east structure embedded in 3-5 cM segments (Figure 4.4 b), 

corresponding to an expected time depth around 1,120 years ago (Al-Asadi et al. 2019). 

As this date and the structure observed is dependent on the (arbitrary) thresholds set for 

IBD segment length bins, we have also provided an interactive environment in which 

Dutch population structure can be explored across a range of IBD segment bins 

(bioinf.gen.tcd.ie/ctg/nlibd). 

 

https://gadm.org/
https://naturalearthdata.com/
http://bioinf.gen.tcd.ie/ctg/nlibd
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Figure 4.4: The changing genomic structure of the Dutch population over time.  

(a) Principal component (PC) analysis of pairwise total identity-by-descent (IBD) for 1,626 

Dutch individuals (top) and their geographical provenance (bottom). Points represent 

individuals and are coloured by cluster assignment (mclust on pairwise IBD matrix). (b) 

PCs (top) and geographical provenance (bottom) for pairwise sharing of 1-3, 3-5 and 5-7 

centiMorgan (cM) IBD segments, corresponding to point estimates of expected time 

depths at approximately 2,700, 1,120 and 720 years ago, respectively. Time depths for 

IBD segment bins have wide distributions (Al-Asadi et al. 2019); expected values 

presented here should be interpreted as a guide only and the changing west-east structure 

over time does not necessarily reflect (for instance) a precisely-timed admixture event. 

Map boundary data from the Database of Global Administrative Areas (GADM; 

https://gadm.org). Interactive visualisation of structure for different segment bins is 

available at: bioinf.gen.tcd.ie/ctg/nlibd 

(Figure reprinted from Byrne et al. (R. P. Byrne et al. 2020)) 

 

Although these observations could potentially be biased by differences in power to detect 

population structure in longer and shorter IBD segment bins, the temporally volatile west-

east structure contrasts with the stability and persistence of old north-south structure and 

possibly represents a genomic signature of historical demographic flux in the region and 

its surrounding lands. With this in mind, we investigated possible admixture from outside 

demographic groups using GLOBETROTTER (Hellenthal et al. 2014) with 4,514 

European individuals (Sawcer et al. 2011) representing modern proxies for admixing 

sources. Across the Dutch sample, a significant admixture event dating to 1088 CE (95% 

https://gadm.org/
http://bioinf.gen.tcd.ie/ctg/nlibd
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c.i. 1004-1111 CE) was inferred with the major contributing source best modelled by 

modern Germans and the minor source best modelled by southern European groups 

(France, Spain) (Table 4.1). This is supported by single-marker ADMIXTURE component 

estimates showing that the Netherlands has the closest profile to Germanic groups 

(Appendix Figure 4.7) and is consistent with the ancestry profile gradients detailed in 

Figure 4.3. The timing of the inferred 11th century event was stable across Dutch 

fineSTRUCTURE clusters (to varying degrees of confidence), suggesting that the signal 

represents an important period in the establishment of the modern Dutch genome (Table 

4.1); however, given the state of demographic flux in Europe at the time, its exact 

historical correlate is open to interpretation. Notably, a significant admixture event with a 

major Danish source was inferred between 759 and 1290 CE in the NHFG cluster group 

(representing Dutch northern seaboard provinces); this period spans a historical period of 

recorded Danish Viking contact and rule in northern Dutch territories. 

 

Table 4.1: Date and source estimates for admixture into the Netherlands. 

Cluster group Conclusion Minor Major Prop Date CE 95% c.i. CE p 

SHOL one-date multiway SPA-FRA(2) GER(5) 0.25 1169 1086-1244 0 

ZEE one-date-multiway FRA(8) GER(5) 0.4 1172 771-1773 0 

NBE one-date-multiway FRA(8) GER(5) 0.4 1085 939-1262 0 

NBW one-date-multiway GER(5) BEL(5) 0.34 1013 668-1383 0 

NEN one-date SPA-FRA(2) GER(5) 0.19 1172 925-1364 0 

DRO one-date-multiway FRA(8) GER(5) 0.16 1390 1116-1932 0 

GLO one-date SPA-FRA(2) GER(5) 0.14 1128 893-1306 0 

CEN one-date SPA-FRA(2) GER(5) 0.18 1049 854-1244 0 

GEL one-date SPA-FRA(2) GER(5) 0.17 1189 1046-1391 0 

NHFG one-date GER(9) DEN(5) 0.36 1060 759-1290 0 

LIM one-date ITA(8) GER(5) 0.34 1162 1044-1351 0 

ALL one-date SPA-FRA(2) GER(5) 0.25 1088 1004-1111 0 

Describes the GLOBETROTTER results for European admixture into the Netherlands 

for each cluster group. The Minor and Major column represent inferred proxy admixing 

sources. Prop represents estimated admixture proportion from the minor admixting 

source. Admixing sources are derived from ChromoPainter/fineSTRUCTURE clustering 

of 4,514 European reference individuals (Methods); labels represent principal country of 

origin (SPAin, FRAnce, GERmany, BELgium, DENmark) with cluster numbers arbitrarily 

assigned within countries. (Table reprinted from Byrne et al. (R. P. Byrne et al. 2020)) 
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In addition to influence from outside populations, the population structure detailed in 

Figure 4.1 and Figure 4.4 has likely been shaped by independent regional demographic 

histories within the Netherlands. In support of this, we noted that short (1-2 cM) IBD 

segments shared between northern clusters and provinces outnumbered those shared 

between southern clusters and provinces (Appendix Figure 4.4), and, as observed 

previously (Genome of the Netherlands Consortium 2014), northern provinces shared 

more short segments with southern provinces than southern provinces shared amongst 

themselves. Together, these results suggest that the north had a smaller ancestral 

effective population size (Ne) than the south and is probably derived from an ancient or 

historical founder event forming the northern population from a subset of southerners. We 

formally characterised ancestral trajectories in Ne for the north and the south of the 

Netherlands using the nonparametric method IBDNe (S. R. Browning and Browning 

2015), using two subsamples representing the principal fineSTRUCTURE north/south split 

(Figure 4.5 a), retaining a random sample of 641 individuals from each group. We also 

characterised historical Ne for countrywide Dutch samples (Figure 4.5 a) and within 

individual Dutch provinces for which genotypes for more than 40 individuals were 

available (Figure 4.5b). Countrywide, Ne has grown superexponentially over the past 50 

generations in the Netherlands (Figure 4.5 a) and has been consistently lower in the north 

than the south. Despite this, the pattern of growth in northern and southern groups was 

nearly identical, with a steady exponential growth up to around 1650 CE, when a major 

uptick in growth rate was observed. This corresponds to a period of substantial economic 

development in the Netherlands over the 17th century known to historians as the Dutch 

Golden Age. Preceding this period, historical Ne estimates for the entire country and for 

northern/southern groups showed only a modest response to the Black Death (Yersinia 

pestis plague pandemic) of the 14th century which claimed up to 60% of Europe’s 

population (Herlihy 1997). Conversely, Ne estimation within individual Dutch provinces 

revealed a much more detectable impact of the Black death, showing evidence of 

population decline in the majority of provinces following this historical event (Figure 4.5 b). 
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Figure 4.5: Dutch effective population size over time.  

(a) Historical change in effective population size (Ne) over the past 50 generations for all 

Dutch individuals and subsets of northerners and southerners. The top plot shows the 

principal components of ChromoPainter coancestry coloured by the first (k=2) 

fineSTRUCTURE split, which separates the Dutch population into northern (NNL) and 

southern (SNL) genetic clusters; inset shows geographical distribution of these individuals. 

The bottom plot shows growth in effective population size countrywide or per 

fineSTRUCTURE cluster over the past 50 generations. (b) Historical Ne trajectories for 

individual Dutch provinces with more than 40 individuals sampled. Ne plots show estimates 

± 95% confidence interval. and assume 28 years per generation and mean year of birth at 

1946 CE. Map boundary data from the Database of Global Administrative Areas (GADM; 

https://gadm.org). 

(Figure reprinted from Byrne et al. (R. P. Byrne et al. 2020)) 

 

 

4.3.3 - Genomic signatures of Dutch mobility   

We noted that long (>7 cM) IBD segments, which capture recent shared ancestry, were 

almost always shared within genetic clusters (and provinces), and rarely between 

(Appendix Figure 4.4). This indicates a propensity for genetically similar individuals 

(relatives) to remain mutually geographically proximal in recent years, suggesting a 

degree of sedentism that has likely influenced Dutch population structure over time. It has 

also previously been argued that genetic structure in the Netherlands may be partially 

rooted in geographic obstacles imposed by the country’s major waterways (Abdellaoui, 

Hottenga, de Knijff, et al. 2013) so we explicitly modelled genetic similarity as a function of 

https://gadm.org/
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geographic distance using EEMS (Petkova, Novembre, and Stephens 2016) to infer 

migrational hot and cold spots (Figure 4.6). The resulting effective migration surface 

showed several apparent barriers to gene flow, the strongest and most contiguous of 

which runs in an east-west direction across the Netherlands overlapping the courses of 

the Rhine, Meuse and Waal rivers. This inferred migrational boundary also approximately 

corresponds to the geographical division determining the principal fineSTRUCTURE split 

between northern and southern Dutch populations (Figure 4.5 a) as well as the 

geographical boundaries between clusters inferred from ancient IBD segments (Figure 4.4 

b), suggesting that these rivers have been a historically persistent determinant of Dutch 

population structure. 

 

 

Figure 4.6: The effective migration surface of the Netherlands.  

Contour map shows the mean of 10 independent EEMS posterior migration rate estimates 

between 800 demes modelled over the land surface of the Netherlands. A value of 1 (blue) 

indicates a tenfold greater migration rate over the average; -1 (orange) indicates tenfold 

lower migration than average. The courses of major rivers are included to highlight their 

correlation with migrational cold spots. Map boundary data from the Database of Global 

Administrative Areas (GADM; https://gadm.org); river course data  from Natural Earth 

(https://www.naturalearthdata.com). 

(Figure reprinted from Byrne et al. (R. P. Byrne et al. 2020)) 

https://gadm.org/
https://www.naturalearthdata.com/
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4.4 - Discussion 

In this chapter we have studied a densely sampled cohort of modern individuals from the 

Netherlands, harnessing information from shared haplotypes and recent developments in 

spatial modelling to gain insights into the geospatial distribution and likely origin of Dutch 

population genetic structure. The structure identified through shared haplotypes is 

surprisingly strong; some Dutch genetic clusters identified this way are more mutually 

distinct (by FST) than pairs of European countries. We characterised changing population 

structure over time, using our novel method leveraging length-binned IBD sharing 

combined with PCA and Gaussian mixture models, revealing transient genetic structure 

layered over strong and stable north-south differentiation in the Netherlands. This north-

south genetic split is contextualised by differing demographic histories between genetic 

groups in the Netherlands, with consistently lower Ne in the north than the south, 

suggesting an old split with little subsequent mixing between the groups. Combining 

genetic and geospatial data in a migration surface model suggests that east-west courses 

of the Rhine, Meuse and Waal form a boundary for this split, implicating impaired 

migration across these waterways as a potential cause for this population divide. 

Opposing ancestry gradients from Germany and Belgium overlaying this genetic structure 

suggest differential exchange with external groups likely contributes to the structure 

observed, which may be amplified by this internal boundary.   

 

The population structure observed in the Netherlands is especially remarkable when 

considered in terms of the country’s size and extensive infrastructure which might be 

expected to homogenise the population by reducing distance barriers to random mating; 

notably Denmark, which is roughly equal in geographical area, is in contrast genetically 

homogeneous, forming only a single cluster when interrogated using fineSTRUCTURE 

(Athanasiadis et al. 2016), despite its island-rich geography which would be expected to 

form isolated population sub groups. Moreover, while both the United Kingdom and 

Ireland exhibit at least one large indivisible cluster constituting a large fraction of their 

population when analysed with fineSTRUCTURE (Leslie et al. 2015; Gilbert et al. 2017; R. 

P. Byrne et al. 2018), no extraordinarily large clusters dominate the Dutch sample. In 

addition, mean FST between Dutch clusters is relatively high (mean FST=0.0005) and 

outmeasures that observed between Irish clusters (FST=0.00036; Chapter 3), suggesting 

that the extent of population differentiation between clusters is higher in the Netherlands, 

despite Dutch land area being less than half that of the island of Ireland. Given this 

comparatively strong structure in spite of its small geographic size, it is highly likely that 

factors beyond simple isolation by distance have led to the population structure observed 
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in the Netherlands including regional differences in geneflow from neighbouring countries 

and internal geographic boundaries.   

 

While coarse geographical trends in Dutch genetic structure have previously been 

described using single-marker PCA (Abdellaoui, Hottenga, de Knijff, et al. 2013), our use 

of shared haplotypes reveals structure at a much higher resolution, differentiating 

subpopulations between, and sometimes within, provinces (Figure 4.1 and Figure 4.4). As 

a striking example, individuals from the east and west of North Brabant (NBE and NBW in 

Figure 4.1) are mutually genetically distinguishable and are more distinct from clusters to 

their north than Limburg clusters are, despite being geographically closer to these 

northern clusters. This deviation from haplotype sharing mirroring geography appears to 

be driven by strong genetic affinity to Belgium (Figure 4.3), reflecting a long history of 

demographic and political overlap across a 100 km frontier spanning the recently formed 

modern Dutch-Belgian border (formed circa 1840). In contrast, the majority of ancestral 

influence in Limburg, which also shares a substantial border with Belgium, is from 

Germany to the east, with lower contributions from Belgium (Figure 4.3; Appendix Figure 

4.8). Notably, the Belgian border with the south of Dutch Limburg is almost entirely 

described by the course of the Meuse, which may have acted as a historical impediment 

to migration, thus distinguishing individuals in this region genetically. This is partially 

reflected in IBD clustering, in particular the distinction of southern Limburgish individuals 

from the rest of the Netherlands in short (1-3cM) segments, which otherwise only describe 

coarse north-central-south structure, with cluster boundaries roughly corresponding to the 

course of the Meuse (Figure 4.4). Future work explicitly modelling Dutch-Belgian and 

Dutch-German frontiers using additional Belgian and German genetic data with 

associated geography will resolve the historical and present-day role of the Meuse in 

distinguishing distinct population clusters in the south of the Netherlands. 

Similarly to North Brabant, groups of individuals in North and South Holland show 

significant genetic separation despite mutual geographic proximity. While we have chosen 

to group the four South Holland clusters (SHOL cluster group) for visual brevity in Figure 

4.1, they are robustly distinct by TVD permutation analysis (Figure 4.1; p<0.001), 

indicating that significant population differentiation exists even within South Holland. 

Migration and admixture in the highly urbanised Randstad has been proposed as a driver 

of genetic diversity and loss of geographic structure in this region (Abdellaoui, Hottenga, 

de Knijff, et al. 2013) which is supported by the overlaid geographical distribution of 

regional ancestry profiles (Figure 4.3) in this area. Previous studies have highlighted the 

correlation between decreasing autozygosity and increased urbanisation or population 
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density (Nalls et al. 2009), suggesting that urban centers are more outbred and diverse.  

In spite of this, the geographical ranges of the four South Holland clusters are somewhat 

independent (Appendix Figure 4.9), indicating that some degree of correlation between 

geographic and genetic structure has survived this urbanisation.  Future work leveraging 

our length-binned IBD and Gaussian mixture model-based clustering approach on densely 

sampled data from this highly urbanised region may more explicitly delineate the interplay 

between urbanisation and population structure over time. To this end, highly urbanised 

areas such as the Randstad will be particularly informative. The inflated degree of 

diversity in populous areas like the Randstad is likely to reduce rates of recessive or rare 

variant mediated diseases in these areas through reduction of autozygosity (Nalls et al. 

2009), with potential implications for study of disease in urban centres.  

The principal fineSTRUCTURE split in the Netherlands describes north-south genetic 

differentiation (Figure 4.1) that is strong and persistent over time (Figure 4.4). We 

hypothesised that this reflects partially independent demographic histories so we 

estimated ancestral Ne for northern (NNL) and southern (SNL) Dutch fineSTRUCTURE 

populations, revealing superexponential growth in both populations with a sudden 

increase in rate during the 17th century (Figure 4.5 a). Historical Ne follows the same 

approximate trajectory for both populations but is consistently lower for the northern 

cluster, corroborating previous observations of increased homozygosity in northern Dutch 

populations (Abdellaoui, Hottenga, de Knijff, et al. 2013) and consistent with a model of 

northerners representing a founder isolate from southerners (although a more complex 

demographic model may better explain these observations) (Abdellaoui, Hottenga, de 

Knijff, et al. 2013; Genome of the Netherlands Consortium 2014). At first glance the 

apparent absence of Ne decline in 14th-century in the full Dutch dataset hints at the 

possibility that the Black Death had a weaker impact in the region than elsewhere in 

Europe (e.g. France which shows a decline in Ne around this time (Pierre et al. 2020)). 

Although this hypothesis agrees with the views of some historians, it is hotly contested by 

others (Roosen and Curtis 2019). However, regional Ne estimates display a prominent dip 

following the Black Death in the majority of provinces (Figure 4.5 b), suggesting that the 

Black Death has a detectable impact on the effective population size when measured in 

individual regions of the Netherlands. It is thus possible that merging non-randomly mating 

subpopulations (e.g. our genetic clusters) into a countrywide group (Figure 4.5 a) may 

have artificially inflated diversity, thus smoothing over the signal of population crash 

following the Black Death. This is because estimation of effective population size with 

IBDNe assumes random mating (S. R. Browning et al. 2018), meaning deviations from 

this assumption caused by population structure in our countrywide dataset may upwardly 
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bias Ne estimates. Conversely, defining overly homogeneous groups for estimation of Ne, 

such as genetic clusters identified by fineSTRUCTURE, might be expected to downwardly 

bias Ne estimates, hence our decision to define “regional” groups based on province of 

sampling here. Population structure is thus likely important when estimating Ne and trends 

countrywide and in NNL and SNL clusters (Figure 4.5 a) should be interpreted carefully. In 

spite of these concerns, the rate of exponential growth in countrywide Ne (Figure 4.5 a) is 

marginally shallower in the 10 generations following the Black Death  (0.017; 95% c.i. 

0.016-0.018) compared to the 10 generations prior (0.024; 95% c.i. 0.0235-0.0251), 

indicating some evidence of impact on the overall Dutch population prior to its recovery in 

the 17th century. 

Previous works have hinted that north-south genetic differentiation in the Netherlands may 

have been facilitated by cultural division between the predominantly Catholic south and 

the Protestant north (Abdellaoui, Hottenga, de Knijff, et al. 2013). Given that the north-

south structure observed in 1-3 cM IBD bins (expected time depth ~700 BCE) greatly 

precedes different forms of Christianity (Figure 4.4), our data support an alternative model 

in which the Protestant Reformation of the 16th and 17th centuries exploited pre-existing 

demographic subdivisions, leading to correlation between population structure and this 

cultural divide which has potentially been further strengthened by assortative mating 

among religious groups (Abdellaoui, Hottenga, Xiao, et al. 2013). Geographical modelling 

supports the role of migrational boundaries in establishing and maintaining this population 

substructure, especially rivers (Figure 4.6). A substantial belt of low inferred migration 

runs across the Netherlands, corresponding closely to the roughly parallel east-west 

courses of the Lower Rhine, Waal and Meuse rivers and correlating with the geographical 

boundary of the principal north-south fineSTRUCTURE split. Absolute assignment of 

causality to these geographical correlates is, however, not possible and, given the dense 

network of waterways in the Netherlands, could be misleading. For example, a strong 

migrational cold spot in the east of the Netherlands runs parallel to the IJssel (Figure 4.6), 

but could potentially be better explained by the course of the Apeldoorn Canal, a politically 

fraught waterway constructed in the early 19th Century. Similarly, a cold spot in the 

northwest directly overlays the North Sea Canal (completed in 1876). As both of these are 

human-made waterways, it is not certain whether their courses are consequences or 

determinants of low movement of people across their paths. 

As well as internal geography, outside populations have also likely played an important 

role in the establishment and maintenance of population structure in the Netherlands 

(Figure 4.3; Table 4.1), with opposing gradients of Belgian-like and German-like ancestry 

overlaying the principal axes of structure in the country (Figure 4.3), and evidence of an 
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significant admixture event dating to 1088CE (1004-1111 CE) (Table 4.1). However due to 

the extent and variety of demographic upheaval and mobility of European populations 

over history, and regular changes in the political boundaries, interpretation of both our 

ancestry gradients and GLOBETROTTER admixture dates is complicated. For example 

Belgium only separated politically from the Netherlands in the past 180 years (~6 

generations) suggesting that the high levels of ancestry matching a modern Belgian 

source seen in southern provinces may simply reflect mixing within the then unified 

political region as opposed to subsequent geneflow. Similarly ascribing a single historical 

source to the countrywide admixture in the 11th century is difficult. However there is one 

source of ancestry that appears to have a very clear origin historically, namely the small 

but significant contribution of Danish haplotypes in the north and west of the Netherlands, 

a possible vestige of Viking raids in coastal areas in the 9th and 10th centuries. This is 

corroborated by an inferred GLOBETROTTER single-date admixture event in the NHFG 

(North Holland, Friesland and Groningen) cluster (Figure 4.1) between 759 and 1290 CE 

with Danish haplotypes as a major admixing source (Table 4.1), which differs from the 

German and Belgian sources seen in other clusters. The extent of legacy left by more 

than a century of Danish Viking raids and settlement in the Netherlands has been the 

subject of some debate. However, from our data, it appears that the modern Dutch 

genome has indeed been partially shaped by historical Viking admixture. This Danish 

Viking contact is contemporaneous with a critical period in the establishment of the 

modern Dutch genome from other outside sources (1004-1111 CE; Table 4.1), although 

the precise historical correlates of the admixture events detected in the remaining Dutch 

regions are less obvious.  

 

Future densely sampled ancient DNA datasets from informative time depths in the 

Netherlands and northwest Europe will enable direct estimation of ancestral population 

structure, admixture, demographic affinities and effective population sizes, improving 

precision over the current study which depends on proxy patterns of haplotype sharing 

between modern individuals. Similarly, regional ancestry and admixture inference are 

limited by the use of modern proxy populations in place of true ancestral sources; 

nevertheless, there are ample advantages to the use of modern data, including large 

sample size and relevance to research on modern human health and disease. In 

particular, as in our previous work in Ireland (R. P. Byrne et al. 2018) (Chapter 3), 

samples in the current Dutch dataset were not specifically selected to have pure ancestry 

in each geographical area (e.g. all grandparents from the same region (Leslie et al. 2015)) 

meaning the degree of structure observed is not idealised or exaggerated by sampling, 
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but instead representative of the structure expected in any GWAS that includes Dutch 

data. We will further explore the impact of the fine-scale genetic structure described in this 

study on GWAS statistics in chapter 5, where we will reflect on correcting GWAS 

performed on a larger Dutch dataset and a multi-population dataset using haplotype 

sharing profiles between samples.  
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Chapter 5 - Detecting and Correcting Confounding in GWAS 

Using Haplotype Sharing Methods. 

5.1 - Introduction 

5.1.1 - Background 

A history of non-random mating across human populations has led to detectable 

systematic differences in allele frequencies across populations in a phenomenon 

commonly referred to as population structure. These allele frequency differences can lead 

to statistical inflation and spurious associations in genome wide association studies 

(GWAS) where the phenotype being studied is unevenly distributed or stratified across 

these populations. Notable early examples of false genetic associations driven by 

population stratification include the apparent genetic associations between an 

immunoglobulin Gm haplotype (Gm3;5,13,14) with type two diabetes in Native Americans 

(Knowler et al. 1988) and an apparent association of a CYP3A4-V promoter variant with 

prostate cancer in African Americans (Kittles et al. 2002), both of which were due to 

confounding from admixture in their studied groups. A wide range of techniques have 

been developed to identify and address this problem, including genomic control (Devlin 

and Roeder 1999; Devlin, Roeder, and Wasserman 2001), structured association 

(Pritchard et al. 2000; Devlin, Roeder, and Wasserman 2001), principal component 

analysis (Price et al. 2006) and linear mixed models (Yang et al. 2011), which have 

greatly reduced the incidence of false positives in GWAS and controlled the level of 

genome wide statistical inflation caused by population structure. This is evidenced by 

linkage disequilibrium score regression results (LD score regression), which show that 

statistical inflation in many (but not all (Bhatia et al. 2016)) complex traits mostly results 

from polygenicity rather than confounding (Bulik-Sullivan, Loh, et al. 2015).  

 

However, emerging evidence suggests that residual effects of stratification can persist in 

GWAS in spite of these corrections; both single markers and polygenic scores for a 

number of traits show strong association with birth location in the UK Biobank even 

following correction for population stratification with 40 PCs (Haworth et al. 2019) 

suggesting that PCs cannot fully account for population stratification. It has been 

hypothesised that the residual correlations between polygenic scores and geography 

result from recent internal migrations in the UK driven by socioeconomic status 

(Abdellaoui et al. 2019). Emerging work supports this framework of residual structure 

resulting from recent migration, showing that principal components from common variants 

cannot fully account for or adjust for structure from recent demographic events (Zaidi and 
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Mathieson 2020). Residual confounding appears to have particularly strong impact on 

methods that rely on large numbers of effect size estimates from variants below genome 

wide significance in a studied trait (Lawson et al. 2019), as recently seen for estimates of 

polygenic signals of adaptation in height which were overestimated due to the residual 

effects of population stratification the source GWAS (Berg et al. 2019; Sohail et al. 2019). 

Similar biases have been proposed for other methods such as polygenic risk scores 

(Kerminen et al. 2019), and genome-wide SNP heritability estimates (Dandine-Roulland et 

al. 2016) in the presence of uncorrected population structure. These observations all 

motivate the search for novel methods to correct for population stratification that can 

account for both recent and long-standing structure in the data and improve effect 

estimates to limit the biases seen in polygenic scores and other methods leveraging 

genome-wide effect estimates for complex traits.    

 

As discussed in previous chapters (Chapters 3 and 4), matrices recording patterns of 

haplotype sharing between samples such as the ChromoPainter coancestry matrix 

(Lawson et al. 2012) and IBD sharing matrices (Lawson and Falush 2012) increase the 

resolution of population structure detected in genotype datasets compared to approaches 

based on unlinked markers (e.g. the covariance matrix used in SNP PCA). So far the 

ChromoPainter method has largely been applied to detecting and describing structure in 

single country populations (Leslie et al. 2015; R. P. Byrne et al. 2018; Takeuchi et al. 

2017; Kerminen et al. 2017; Raveane et al. 2019; Gilbert et al. 2017, 2019; Bycroft et al. 

2019; Pierre et al. 2020), however it may be well suited to the application of correcting 

residual confounding in GWAS. As stated in the methods paper for ChromoPainter, 

principal components from the normalised ChromoPainter coancestry matrix are a “natural 

extension” of the standard unlinked SNP PCA method proposed by Price et al. (Price et 

al. 2006) for cases where we have information on linkage relationships between densely 

genotyped markers (Lawson et al. 2012). This means ChromoPainter PCs are analogous 

to the EIGENSTRAT PCs (Price et al. 2006) commonly used to control for confounding in 

GWAS. The authors additionally show that in models where recombination rates approach 

infinity, PCs of the ChromoPainter coancestry matrix reduce approximately to those from 

the EIGENSTRAT method, suggesting standard SNP PCA is a “special case” of their 

method (Lawson et al. 2012). This indicates that ChromoPainter PCs should represent 

ancestry between samples more accurately in human populations, where recombination 

rates are much lower than this (International HapMap Consortium 2005). It follows that 

PCs from the coancestry matrix may be suitable for correction of population structure in 

GWAS, given that they too are orthogonal continuous proxies for sample ancestry, 

affording them many of the benefits which motivated the initial choice of standard SNP 
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PCA (Price et al. 2006). In addition as the ChromoPainter coancestry matrix 

simultaneously describes sharing patterns for both old (short) and recent (long) ancestry 

segments, ChromoPainter PCs likely capture patterns of both recent and older population 

structure. Hence ChromoPainter PCs may better address the residual confounding in 

GWAS datasets from recent demographic events (Abdellaoui et al. 2019; Zaidi and 

Mathieson 2020) that likely shapes biases in polygenic scores, while adequately 

controlling for structure caused by older events.  

 

Application of ChromoPainter to large datasets is currently hindered by computational 

cost, which scales quadratically with sample size, making it impractical for use in large 

GWAS. Fortunately a fast approximate chromosome painting method has been developed 

by Richard Durbin and Daniel Lawson (PBWT-paint; 

https://github.com/richarddurbin/pbwt; -paint switch) which exploits the quick haplotype 

matching of the Positional Burrows-Wheeler transform (Durbin 2014) to increase the 

speed and efficiency of the ChromoPainter approach, and is capable of handling 

hundreds of thousands of haplotypes. This method may provide a scalable alternative to 

ChromoPainter in a GWAS setting.     

In addition, downstream analysis of ChromoPainter output such as the fineSTRUCTURE 

clustering algorithm (Lawson et al. 2012), which identifies homogeneous sub-population 

groupings based on patterns of haplotype sharing within a dataset, is also much too 

computationally costly for large datasets. This limits finescale studies of population 

structure using these methods to modestly sized datasets (n<10,000), restricting analysis 

of local population structure in large muti-population datasets. Community detection 

algorithms which rapidly search for densely connected groups in large networks (e.g. 

social networks) may be a suitable alternative for finding homogeneous clusters at larger 

scales. One such method known as the Louvain community detection method (Blondel et 

al. 2008) has been successfully applied to identify genetic clusters in a huge IBD sharing 

dataset from the US (n=770,000) (Han et al. 2017) and is readily adaptable to this 

application. Hence analogous methods to those used in Chapters 3 and 4 are close to 

coming of age for use in large scale datasets, with potential applications in both describing 

and correcting for population structure in modern GWAS datasets.     

 

In this chapter we explore the application of ChromoPainter PCs and PBWT-paint PCs to 

detect and correct residual population structure in a small Dutch (n=4,753) and large 

multi-population (n=36,052) ALS GWAS dataset, comparing their performance with 

standard SNP PCA covariates. ChromoPainter PCs appear to reduce inflation due to 

confounding better than SNP PCs (measured by LD-score regression) when applied to a 

https://github.com/richarddurbin/pbwt
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GWAS conducted on a small ALS case control dataset (n=4,753) from the Netherlands, 

suggesting they can better correct for confounding caused by local structure in the 

Netherlands (see Chapter 4). Scaling to the full GWAS dataset, the approximate 

chromosome painting method PBWT-paint ran magnitudes faster than ChromoPainter 

while producing highly correlated results when tested on smaller datasets from Chapters 3 

and 4 suggesting it is a suitable alternative for larger datasets. When applied to the full 

2016 GWAS dataset (van Rheenen et al. 2016) (n=36,052) t-SNE of PBWT-paint PCs 

shows much clearer separation of sampling regions than t-SNE of SNP PCs, indicating 

the method captures additional structure missed by SNP PCA. We found that the Louvain 

Community detection method could identify sensible subpopulation groupings in this large 

haplotype sharing dataset, making it a viable alternative to fineSTRUCTURE for 

descriptive population groupings at this scale. Additionally the Louvain method identified 

splits missed by fineSTRUCTURE in the POBI dataset (Leslie et al. 2015) from Chapter 3, 

motivating application to smaller datasets. Finally, PBWT-paint corrected GWAS summary 

statistics calculated from the 2016 ALS GWAS dataset (van Rheenen et al. 2016) showed 

significantly lower inflation than SNP-corrected summary statistics while retaining the 

power to detect known ALS hits, implying the method is more stringent but doesn’t limit 

power excessively. Polygenic risk scores calculated from these PBWT-paint PC corrected 

GWAS summary statistics showed different distributions to those generated from SNP PC 

corrected GWAS, indicating the correction method affects not only association signal but 

distribution of effect sizes. These scores predicted the phenotype less accurately than 

SNP PC corrected scores, but also had lower signals of residual confounding from 

population structure. The loss of prediction accuracy is thus likely partially explained by 

the removal of residual confounding meaning scores generated using this approach might 

be more meaningful due to lower bias.     

5.1.2 - Research aims 

This chapter presents work carried out on individual-level genotype data from the 2016 

ALS GWAS (van Rheenen et al. 2016) with the aim of exploring novel methods for 

detecting and correcting latent population structure in large GWAS. In particular we will 

explore the impact of using principal components (PCs) derived from haplotype sharing 

matrices in place of standard SNP PCs, while also considering the scalable clustering 

methods in place of fineSTRUCTURE. We divide this global aim into three component 

aims: 

 

i.) To explore the application of ChromoPainter PCs to reduce inflation in a preliminary 

GWAS conducted in a single population with known local structure (The Netherlands). 



139 
 

 

ii.) To explore the scalability and accuracy of the PBWT-paint haplotype sharing method 

and the Louvain community detection method for detecting subtle population structure in a 

large GWAS dataset (2016 ALS GWAS; n=36,052). 

 

iii.) To explore the application of PBWT-paint PCs to reduce inflation in the full 2016 ALS 

dataset, and assess the impact of this correction on polygenic scores.  

 

Through this research we hope to potentially provide a remedy for confounding from 

population structure not addressed by current methods using unlinked markers such as 

SNP PCA, with potential benefits for polygenic methods such as PRS and unbiased 

heritability estimation.   

NB: Several results from this chapter feature in an article now published in Nature 

Communications: (https://www.nature.com/articles/s41467-020-18418-4). 

https://www.nature.com/articles/s41467-020-18418-4
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5.2 - Methods 

5.2.1 - Datasets and initial quality control 

Analyses in this chapter were carried out on two main datasets derived from the 2016 ALS 

GWAS (van Rheenen et al. 2016) (see Appendix Table 5.1 for sample breakdown). Firstly 

to explore the utility of haplotype sharing analysis in correcting confounding from finescale 

population structure in a single country GWAS context we analysed an ALS case/control 

dataset with samples from the Netherlands only (n = 4,753; strata sNL1, sNL3 and sNL4 

from the 2016 GWAS (van Rheenen et al. 2016)), excluding sNL2 due to severe case 

control imbalance in this stratum (case:control ~1:34 in this stratum).  Following this we 

then analysed the application of haplotype sharing analysis to correcting confounding in 

larger multi-population GWAS using the full 2016 ALS GWAS dataset (van Rheenen et al. 

2016) (n = 36,052) from which this Dutch subset was derived. In addition data from 

previous chapters (Chapters 3 and 4) were analysed following QC described in those 

chapters. 

 

For our baseline haplotype sharing analyses we extracted 1,060,224 zero-missingness 

Hapmap phase 3 SNPs (International HapMap 3 Consortium et al. 2010) that passed QC 

in the source paper for the dataset (van Rheenen et al. 2016) for both the Dutch and 

multi-population dataset. This SNP set was chosen as Hapmap3 SNPs are typically well 

imputed and lack A/T and C/G SNPs that could cause phasing errors. These SNPs also 

produce unbiased estimates when used in LD score regression. Reducing our dataset to 

these SNPs also lowered computational costs associated with ChromoPainter. Related 

individuals (�̂� > 0.1) and SNPs with greater than zero missingness (--geno 0) were 

removed using plink v1.9 (Chang et al. 2015) as cryptic relatedness and missingness 

confound both ChromoPainter and GWAS analyses. In addition following an initial round 

of painting with PBWT-paint (see below) extreme haplotype PCA outliers in the multi-

population dataset (>20 SD from mean on haplotype PC1-10) were removed, followed by 

repainting as an additional QC step. Final Dutch and multi-population datasets contained 

4,753 samples and 35,985 (12,510 cases and 23,475 controls) samples respectively.  

 

Finally for GWAS analyses carried out on the data described below we scaled back up to 

all variants passing QC in the source 2016 GWAS which had a mean imputation score 

greater than 0.9 across all strata (6,767,915 SNPs).  

 



141 
 

5.2.2 - Phasing 

Samples from each dataset were phased by running SHAPEIT v2 (Delaneau, Marchini, 

and Zagury 2011) using the 1000 Genomes Project phase 3 samples as a reference 

panel and the 1000 Genomes phase 3 genetic map (Auton et al. 2015). Allele 

concordance with the reference panel was checked prior to phasing (--check) in order to 

remove variants not aligned properly to the reference panel. Samples per dataset were 

phased together one chromosome at a time.  

 

5.2.3 - Haplotype painting analysis 

We estimated haplotypic sharing profiles between individuals in our i.) Dutch and ii.) multi-

population datasets separately as follows. 

 

i.) Dutch dataset: 

We ran ChromoPainter v2 on the phased Dutch dataset to paint all individuals in terms of 

one another (--a 0 0). For this analysis we first ran 10 EM iterations on chromosomes 1, 8 

, 15 and 20, using 10% of samples (chosen at random) to estimate model parameters Ne 

and μ. We then took the weighted average of these parameter estimates across 

chromosomes for use in a final run with all samples. Ne and μ were compared to estimates 

from the Dutch dataset in chapter 4 to evaluate if downsampling severely affected 

parameter estimation and was found to be consistent.  

 

ii.) Multi-population dataset:  

As ChromoPainter is computationally intractable for more than ~10,000 samples, we 

instead ran PBWT-paint (https://github.com/richarddurbin/pbwt; -paint switch) on our 

phased multi-population dataset (n=36,052) using the default settings. PBWT-paint is a 

fast approximate implementation of ChromoPainter suitable for large datasets.  

 

For each run we combined (summed) all 22 per-chromosome haplotype sharing matrices 

to create a genome-wide coancestry matrix for use in GWAS correction. We additionally 

constructed 22 matrices leaving one chromosome out (LOCO; one for each chromosome) 

to describe population structure on all but the target chromosome, allowing us explore the 

possibility of over-correcting in GWAS which may occur if our haplotype sharing profile 

describes variation in a target SNP or disease haplotype which is not simply due to 

background population structure.  

https://github.com/richarddurbin/pbwt
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5.2.4 - Principal component analysis and t-SNE 

For a number of analyses in this chapter we compare principal components calculated 

from unlinked genotypes (SNP PCs) to principal components from a haplotype sharing 

matrix calculated using ChromoPainter or PBWT-paint. SNP PCs were calculated in each 

dataset using PLINKv1.9 (--pca), first removing long range LD regions (Price, Weale, et al. 

2008) (https://genome.sph.umich.edu/wiki/Regions_of_high_linkage_disequilibrium_(LD)) 

and pruning for LD (--indep-pairwise 500 50 0.8). Haplotype PCs were calculated using 

the fineSTRUCTURE R tools (https://www.paintmychromosomes.com) on the normalised 

coancestry matrices for each dataset.  

 

Additionally SNP and haplotype PCs were used to initialise t-SNE (t-distributed stochastic 

neighbour embedding) analysis in our multi-population dataset in order to compare the 

resolution of structure observed. Samples from this dataset were projected onto a 2-

dimensional embedding using Rtsne (https://github.com/jkrijthe/Rtsne) to describe both 

global and local structure. For this analysis we ran Rtsne for 5,000 iterations using the top 

100 PCs from each method (haplotypic and unlinked markers) as a starting point using  

perplexity of 30.  

5.2.5 - Benchmarking PBWT-paint against ChromoPainter 

To evaluate the i.) accuracy and ii.) computational cost of PBWT-paint, we benchmarked it 

against ChromoPainter as follows: 

 

i.) Accuracy: 

We compared PBWT-paint and chromopainter outputs for the Irish and Dutch datasets 

from Chapter 3 and Chapter 4 for accuracy. PBWT-paint was run with standard settings 

on the phased Dutch and Irish datasets and compared to ChromoPainter output described 

previously in Chapters 3 and 4. We regressed PCs 1 and 2 of the coancestry matrices 

from each method (ChromoPainter vs PBWT-paint) against each other to evaluate if the 

two methods were picking up similar major trends in finescale ancestral structure 

described in previous chapters. Next we calculated Pearson’s ρ between the coancestry 

matrices from the two methods to evaluate the overall pairwise correlation across the full 

matrixes. As the ChromoPainter model is the gold standard here, high correlation across 

these metrics was deemed as high accuracy.   

 

ii.) Efficiency: 

The comparative runtime of ChromoPainter and PBWT-paint were estimated using a 

https://genome.sph.umich.edu/wiki/Regions_of_high_linkage_disequilibrium_(LD)
https://www.paintmychromosomes.com/
https://github.com/jkrijthe/Rtsne
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single chromosome (chromosome 20) for datasets of different sizes. Analyses were run 

on a single core on chromosome 20 of three datasets a.) Dutch single stratum dataset 

(n=1,626; Chapter 4), b.) Dutch multi stratum dataset (n=4,753) and c.) the multi-

population dataset (n=36,052).  

 

Estimates of runtime for all PBWT-paint runs were taken using the bash time command 

using all samples for each dataset, while runtime estimates for ChromoPainter were 

calculated by painting a single individual in terms of all others in the sample and 

multiplying by the sample size to reduce computational cost. While there may be slight 

variation in runtime speed across samples for ChromoPainter and hence taking the 

runtime for all samples would be more realistic than extrapolating from one sample each 

time, this estimate is purely to give a scale of runtime for comparison to PBWT-paint and 

hence does not need to be exact.   

 

As ChromoPainter runtime scales roughly quadratically with sample size (see 

https://people.maths.bris.ac.uk/~madjl/finestructure/manualse8.html), and thus runs are 

close to intractable for datasets over ~10,000, estimates of runtime for ChromoPainter for 

the largest dataset (n=36,052) were extrapolated from the runs on smaller datasets using 

the formula: 

                                          

                                     𝐸[𝑟𝑢𝑛𝑡𝑖𝑚𝑒(𝑁2)] = 𝑟𝑢𝑛𝑡𝑖𝑚𝑒(𝑁1)/𝑁1
2   ×  𝑁2

2,                        (8) 

 

where 𝑁1 is the sample size of the dataset we are extrapolating the runtime from and 𝑁2 is 

the size of the dataset we are extrapolating to.  

5.2.6 - GWAS analyses 

Haplotype sharing PCA vs SNP PCA covariates: 

We ran GWAS on both the single population and multi-population datasets using the 

logistic function in Plinkv1.9 (--logistic), fitting independent marker PCs (SNP PCA) and 

haplotype sharing PCs (ChromoPainter PCs or PBWT-paint PCs) as covariates 

separately. For these analyses we fitted 10, 20, 30 and 40 PCs to test how the number of 

covariates included affects the inflation of each method (Appendix Figure 5.1; see LD 

score regression for further details). We included all SNPs passing QC in the source 

paper (van Rheenen et al. 2016) with imputation info scores greater than 0.9 for each 

dataset in this analysis. Statistics of inflation were calculated for these GWAS using LD 

score regression as described below (Methods section 5.2.8).    

 

https://people.maths.bris.ac.uk/~madjl/finestructure/manualse8.html
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In addition to fitting PCs from the full genome wide haplotype sharing matrix to correct for 

population structure, we adopted a leave one chromosome out (LOCO) analysis approach 

analogous to those used in many LMM softwares (e.g. GCTA-LOCO (Yang et al. 2014, 

2011)). In this analysis logistic regression GWAS was run on each chromosome 

separately using PCs calculated on haplotype sharing matrices constructed from all 

chromosomes excluding the chromosome being tested. In doing this we hoped to avoid 

capturing disease-specific variation on haplotypes at the locus being tested for association 

in our covariates and over-correcting. This adjustment should help to prevent penalising 

real effects, while adequately describing population structure using the remaining 

chromosomes. This approach assumes that variation due to population structure does not 

massively vary across chromosomes, and hence should adequately be described by the 

remaining chromosomes included. We also tested inflation in this approach using LD 

score regression and compared results to the standard method using all chromosomes.  

 

ALS GWAS excluding Dutch subset for PRS: 

We excluded all samples in the Dutch dataset from the full 2016 GWAS dataset to create 

a training dataset (n = 31,299; 10,606 cases and 20,693 controls) for testing for 

enrichment in ALS signal in Dutch GWAS and PRS (See 5.2.10) under various correction 

schemes (eg. PBWT-paint PCs as covariates vs SNP PCs as covariates). We fit two 

logistic regression GWAS on this dataset fitting 20 SNP PCs or 20 PBWT-paint PCs as 

covariates respectively.  

5.2.7 - Estimating variance explained in phenotype 

In order to understand how well suited ChromoPainter PCs are to correcting population 

stratification we first compared how well these haplotype sharing PCs and standard SNP-

based PCs predicted ALS case/control status in our two datasets. The rationale here is that 

the ancestral structure described by PCs should only predict phenotype in cases where it is 

subtly stratified across population structure in our sample (assuming no ancestry by disease 

interaction), hence the variance in phenotype explained by each method should scale with 

the level of stratification captured by each method. 

 

To quantify the full variance explained by each method, we ran two separate logistic 

regression models per dataset, fitting 100 PCs from either the haplotype sharing or the 

SNP-based method. We estimated the cumulative variance in phenotype explained by 

successive PCs from each method using logistic regression in R (glm() function), 

evaluating the goodness of fit of these models using Nagelkerke R2 calculated with the 

fmsb package (Nakazawa 2018). Curves of this cumulative phenotypic variance explained 
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were plotted to inform an appropriate number of PCs appropriate for correction of GWAS 

based on where the slope begins to plateau (~20 for both the multi-population and Dutch 

only GWAS). 

5.2.8 - Estimating confounding with LD score regression 

Summary statistics from GWAS run using SNP PCs and haplotype sharing PCs as 

covariates were formatted for use with the LD score regression software using the 

“munge_sumstats.py” script provided with the software, retaining only SNPs present in the 

HapMap phase 3 dataset, which are typically well imputed. We ran univariate LD score 

regression in each GWAS using precomputed LD scores for European individuals: 

(https://data.broadinstitute.org/alkesgroup/LDSCORE/eur_w_ld_chr.tar.bz2). The LD 

score intercept was used to compare confounding between GWAS runs using different 

corrections.    

 

To test whether the differences in LD-score intercept were significant for each pair of 

methods in the same dataset we calculated Z scores as follows: 

 

                           𝑧𝑑𝑖𝑓𝑓−𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 =  
(𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡1−1)− (𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡2−1)

√𝑠𝑒(𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡1)2+ 𝑠𝑒(𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡2)2 
    ∼ 𝑁(0,1)                      (9) 

 

Here we subtract 1 from each intercept as this is the expectation of the intercept when 

there is no confounding present (See Chapter 1, Equation 1). 

 

5.2.9 - Clustering haplotype sharing datasets using the Louvain method for 

community detection 

We explored the iterative application of the Louvain method for community detection 

(Blondel et al. 2008) as an alternative clustering method to fineSTRUCTURE for use in 

large haplotype co-ancestry matrices. We first tested this method in the relatively small 

Dutch dataset from Chapter 4, and in the POBI dataset from Chapter 3 to assess whether 

it captured similar structure to fineSTRUCTURE, and then applied it to the larger multi-

population dataset.    

 

Haplotype sharing networks were constructed between individuals (nodes) from the 

respective coancestry matrices using the “graph_from_adjacency_matrix” function in the 

R igraph package (Csardi, Nepusz, and Others 2006). Here the edges between 

individuals were weighted based on the number of chunks individuals shared in the 

https://data.broadinstitute.org/alkesgroup/LDSCORE/eur_w_ld_chr.tar.bz2
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coancestry matrix. Next clusters were identified using the “cluster_louvain” function in 

igraph which greedily assigns samples to communities maximising a measure known as 

modularity, which compares the density of links within a community to those between 

communities. The modularity value can take any value from -0.5 (no modularity) to 1 (full 

modularity), and changes in the modularity are used to inform moves of individuals to 

different communities. Hence this method can identify structured groups of individuals 

where individuals share more haplotypes within the group than with individuals from other 

groups. Once the algorithm converged on a solution for the full dataset (iteration one), we 

took the cluster assignments and constructed new independent networks based on 

sharing within these clusters, repeating the process (iteration two to n). In this way the 

algorithm can be applied iteratively to its own output to reveal increasingly granular 

structure in the datasets until no structure is present in remaining groups. For our analysis 

we ran at most 3 iterations of this method, ensuring that modularity remained significantly 

greater than 0 for each iteration to avoid over splitting.  

5.2.10 - Polygenic risk scores and residual confounding 

We calculated ALS polygenic risk scores (PRS) in our Dutch only dataset using GWAS 

summary statistics calculated with all other samples from the 2016 GWAS (n=31,299, 

Dutch excluded) corrected using either 20 SNP PCs or 20 PBWT-paint PCs as covariates. 

PRS were computed using PRSice v2.1.2 (Euesden, Lewis, and O’Reilly 2015) with 

default settings, setting the prevalence of ALS to 1 in 400 (Johnston et al. 2006), and 

using 20 SNP PCs as covariates in the model to correct for structure in the target 

population. We evaluated the impact of using haplotype sharing PCs relative to SNP PCs 

in the training population by comparing the resulting geographic distributions of PRS in the 

Netherlands after adjusting for phenotype (i.e residual population stratification) and 

variance explained by the models (model performance) under various correction 

schemes.  

 

For analysis of residual population stratification in PRS we measured geographic 

autocorrelation of scores using Moran’s I. We first regressed the phenotype out of PRS 

scores for our samples to avoid measuring correlation with geography caused by 

geographic distribution of the phenotype in our samples as this would not represent 

confounding from population stratification. We then ran Moran’s I on the mean residuals of 

this regression for each unique geographic coordinate in our data using the “gearymoran” 

function in the ADE4 R package setting “nrepet” to 10,000 and using a two-sided test for 

significance. Moran’s I can range between 1 and -1, with values of 1 representing 

complete spatial clustering of a variable (i.e. similar values are adjacent spatially), values 
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of 0 representing spatial randomness and values of -1 representing complete spatial 

dispersal (i.e. distinct values are adjacent spatially). A Bonferroni adjusted significance 

threshold of 0.0041 (0.05/12) was used to assess significance in these analyses.     

5.2.11 - Stringent heritability estimation using haplotype sharing covariates 

We constructed a GRM using HapMap3 SNPs for the full 2016 ALS dataset using GCTA 

(Yang et al. 2011; S. H. Lee et al. 2011) to explore the impact of using haplotype sharing 

PCs as covariates in GREML analysis. We ran GREML (S. H. Lee et al. 2011) on the 

resulting GRM, fitting either 20 SNP PCs or 20 PBWT-paint PCs as covariates. We also 

split the data into minor allele frequency bins (MAF; 0.01-0.1, 0.1-0.2, 0.2-0.3, 0.3-0.4 and 

0.4-0.5) and by chromosome and estimated heritability per allele frequency bin and 

chromosome per method to compare the effects of the two population structure correction 

methods.  

 

To compare heritability estimates between methods for full datasets or partitions we 

calculated a z-score for the difference in estimates using the following equation : 

                         

                         𝑧𝑑𝑖𝑓𝑓−ℎ𝑒𝑟𝑖𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =  
ℎ𝑚𝑒𝑡ℎ𝑜𝑑1

2 − ℎ𝑚𝑒𝑡ℎ𝑜𝑑2
2

√𝑠𝑒(ℎ𝑚𝑒𝑡ℎ𝑜𝑑1
2 )2+ 𝑠𝑒(ℎ𝑚𝑒𝑡ℎ𝑜𝑑2

2 )2 

    ∼ 𝑁(0,1)                       (10) 
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5.3 - Results 

5.3.1 - Correcting GWAS confounding in a single population dataset (Dutch) 

In order to test the impact of the finescale structure identified in the Dutch population in 

Chapter 4 on GWAS association statistics we explored the effectiveness of using 

ChromoPainter PCs (cp-PCs) as covariates in a larger Dutch case-control dataset 

(n=4753: 1971 cases; 2782 controls) composed of strata sNL1, sNL3 and sNL4 from the 

2016 ALS GWAS (van Rheenen et al. 2016). Firstly, we assessed how well haplotype-

based PCs and standard SNP-based PCs described the effects of stratification of ALS 

cases and controls over population structure using logistic regression of case-control 

status versus successive PCs from each method. Comparing the cumulative variance in 

phenotype explained by logistic regression of successive PCs from either method versus 

ALS case-control status (Figure 5.1), we observed that ChromoPainter PCs explain a 

large portion of the variance in case-control status (Nagelkerke’s R-squared for 20 

ChromoPainter PCs = 0.205), while SNP PCs explain very little variance (Nagelkerke’s R-

squared for 20 SNP PCs = 0.015; ~14 fold lower). The rate of increase in variance 

explained appears to plateau for both methods at ~20 PCs (with minor increases 

thereafter), suggesting that this is an appropriate number of covariates to include in a 

GWAS in this context. The significant increase in phenotypic variance explained by 

ChromoPainter PCs likely indicates that ChromoPainter PCs detect significant 

stratification of samples across local ancestry groups that is not captured by standard 

SNP PCs. Alternatively, it could mean that ChromoPainter PCs capture differential 

haplotypic sharing between ALS cases and controls due to certain haplotypes associating 

with the phenotype, however this is less likely given that early haplotypic PCs tend to 

describe geographically structured patterns of ancestry, making population structure a 

more parsimonious explanation (Figure 5.2; also see Chapter 3 and Chapter 4). In fact, 

while at least the first 20 ChromoPainter PCs show significant evidence of geographic 

clustering by Moran’s I, only the first 5 SNP PCs geographically cluster (Appendix Table 

5.2), indicating SNP PCs miss substantial patterns in local population structure. 
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Figure 5.1: Phenotype stratification captured by ChromoPainter PCs and SNP PCA 

in Dutch dataset. 

Displayed are plots of the cumulative variance in phenotype (amyotrophic lateral sclerosis) 

explained by principal components (PCs) of the ChromoPainter coancestry matrix and 

standard SNP PCs in a Dutch only GWAS dataset (n=4,753). ChromoPainter PCs explain 

a greater amount of variance in phenotype and are hence expected to better correct for 

confounding due to stratification in GWAS. Phenotypic variance explained by 

ChromoPainter PCs increases rapidly, and then appears to plateau between 15-20 PCs, 

suggesting this is a suitable number of PCs to include as covariates to correct population 

stratification.  
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Figure 5.2: Comparing the relationship of cp-PCA and SNP PCA to Dutch 

geography. 

Displayed are maps demonstrating the geographic distribution of a.) SNP PCs and b.) 

ChromoPainter PCs for our Dutch only dataset (n=4,753). Points on the maps are 

coloured by the average PC value per town of sampling for a.) SNP PCA and b.) 

ChromoPainter PCA (cp-PCA) calculated using 4,753 Dutch samples (NB: Geography is 

only available for 1,352 samples). PCs have been split into 10 equally sized bins for 

visualisation purposes. Moran’s I values are included for each map representing the 

degree of geographic clustering. ChromoPainter PCs show a stronger relationship with 

geography for a greater number of PCs than SNP PCA as denoted by significant positive 

values of Moran’s I for these and further PCs (Appendix Table 5.2). Asterisks (*) signify 

PCs are significantly clustered in geographic space by Moran’s I, passing a Bonferroni 

corrected p-value threshold (p<0.0025). Exact values for these and further PCs are 

available in Appendix Table 5.2. Map boundary data from the Database of Global 

Administrative Areas (GADM; https://gadm.org). 

 

Next to test how well ChromoPainter corrects for inflation of GWAS summary statistics we 

performed a GWAS for ALS in the Dutch data adjusting for i.) 20 standard PCs; ii.) 20 

ChromoPainter PCs or iii.) 20 ChromoPainter PCs in a leave one chromosome out 

(LOCO) style analysis, recording the mean chi-squared and lambda GC result for each 

regression to test for inflation (Table 5.1). We also calculated the LD-score intercept 

resulting from each correction (Table 5.1), which is a metric that can distinguish inflation 

resulting from confounding from inflation resulting from polygenicity (Bulik-Sullivan, Loh, et 

al. 2015) making it particularly useful in this context. Inclusion of the ChromoPainter PCs 

led to subtly lower mean chi-squared, lambda GC and LD-score intercept values, all of 

which approached 1, signifying deflation of the GWAS summary statistics compared to 

SNP PC corrected GWAS. Notably our ChromoPainter LOCO analysis reduced inflation to 
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practically the same level as our standard ChromoPainter analysis, suggesting that the 

observed effect on LD score intercepts is due to correction of population stratification 

rather than loss of signal due to haplotype sharing mirroring variation in disease-

associated loci. This is because the LOCO analysis does not correct for haplotype sharing 

patterns at the locus being tested, instead using background sharing patterns to adjust for 

population stratification, hence it should not overcorrect at a given locus in theory. These 

results indicate that inclusion of ChromoPainter PCs as covariates lowers inflation in our 

GWAS without necessarily penalising disease-associated SNPs. 

 

Table 5.1: Measures of inflation in Dutch only GWAS of ALS with haplotypic (cp-

PCA) and unlinked (SNP PCA) ancestry covariates on HapMap SNPs.     

Covariates 

included 

LD score 

intercept 

LD score 

intercept SE 

Lambda GC Mean chi-squared 

20 SNP PCs 1.0292 0.0061 1.0195 1.0149 

20 cp-PCs 1.0159 0.0061 1.0046 1.0064 

20 cp-PCs 

(LOCO) 

1.0164 0.0061 1.0046 1.0053 

 

To further explore the differences in the inflation between SNP PCA corrected and cp-

PCA corrected GWAS we generated QQ-plots for each correction method (Figure 5.3). 

Firstly considering all SNPs (Figure 5.3; black) we observed that our SNP PC corrected 

GWAS showed the greatest overall inflation (lambda=1.017) as shown by a deviation from 

the expected uniform null distribution in the QQ plot for -log(p-values), which was not 

present in our cp-PCA (Lambda=1.003) or cp-PCA LOCO (lambda=1.002) corrected 

GWAS (Figure 5.3; black). This inflation could represent disease association, but could 

also be due to population stratification. To distinguish these sources of inflation we 

stratified the SNPs into bins based on their p-values in a larger independent subset of the 

2016 ALS GWAS (n = 31,299; Dutch samples excluded) (van Rheenen et al. 2016), which 

we take as a measure of confidence that they have a “true” association with ALS. This 

allowed us to explore whether inflation resided in likely disease-associated SNPs or not. 

The SNP PCA corrected GWAS shows clear inflation across all bins, including the bin for 

variants with the weakest association (Figure 5.3 a; orange) in the larger ALS dataset, 

with increasing inflation in bins more strongly associated with ALS. While the increasing 

inflation across these confidence bins suggests that this GWAS is enriched for association 

signal in variants likely associated with ALS, inflation in the weakest association bins 
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means it is likely also subject to some level of confounding. In contrast cp-PCA and cp-

PCA LOCO show almost no inflation in the weakest association bins, while retaining clear 

enrichment in the strongest association bin (Figure 5.3 b and c; Green), suggesting that 

they correct out noise missed by SNP PCA while preserving signal at important loci.  

 

However the cp-PCA correction shows evidence of deflation in the second strongest 

association bin (Figure 5.3 b; red, lambda = 0.764), which may imply it overcorrects 

potentially disease associated variants. Signal in this bin appears to be regained when 

using the cp-PCA LOCO approach (lambda = 1.329), which due to design is less likely to 

overcorrect. These results coupled with our LD score regression intercepts suggest that 

cp-PCA based correction approaches correct GWAS more stringently while retaining 

power to detect signal at variants likely associated with ALS. We will further explore this in 

a larger multi-population GWAS setting in section 5.3.3 affording us greater power to 

detect real associations. 

 

Figure 5.3: Stratified QQ-plots under unlinked and linked correction methods. 

QQ-plots for the Dutch ALS GWAS (n=4,753) corrected using a.) SNP PCs as covariates, 

b.) cp-PCs as covariates and c.) cp-PCs as covariates in a leave one chromosome out 

analysis (LOCO). Plots are stratified by p-value thresholds from an ALS GWAS run on 

samples from van Rheenen et al. (van Rheenen et al. 2016) excluding these Dutch 

individuals to demonstrate the relative effects of each correction on SNPs related to ALS 

at different confidences.  

a.) Considering all SNPs (black), SNP PCA corrected GWAS deviates significantly from 

the null for demonstrating clear inflation. This inflation is spread across all significance bins 

from the larger GWAS dataset, suggesting that it must be at least partially due to non-

disease related signal (e.g. confounding from population structure). b-c.) In contrast the 

GWASes run with cp-PC covariates show significantly reduced total inflation (black), and 

demonstrate lower inflation in bins with less evidence of association with ALS (orange and 

blue) suggesting this confounding is better corrected. Both cp-PCA and cp-PCA LOCO 

retain inflation in SNPs with strongest evidence of association with ALS (green) suggesting 

they retain ALS associated signal. Lambda for each SNP set is the observed median chi-

squared divided by 0.4549 (the expected median of a chi-squared distribution with 1 d.f.). 
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5.3.2 - Detecting population structure in large datasets with scalable methods 

As our Dutch-only haplotype sharing-based GWAS correction showed subtle reductions in 

confounding compared to SNP PCA (Table 5.1) we aimed to scale up to the full 2016 ALS 

GWAS dataset (n=36,052) and explore the effects of haplotypic correction in a larger 

multi-population setting. However ChromoPainter is extremely computationally costly to 

run and runtime scales quadratically with sample size making this analysis intractable at 

this scale. Hence we investigated the potential application of PBWT-paint 

(https://github.com/richarddurbin/pbwt; -paint switch), a tool which approximates the 

ChromoPainter algorithm using the Positional Burrows-Wheeler transform (PBWT) 

(Durbin 2014) to speed up haplotype matching in large datasets.  

 

We first estimated the runtimes of the PBWT-method for a single chromosome in datasets 

of varying sample sizes and compared them to the projected runtimes for ChromoPainter 

in these datasets to assess the computational gains (Figure 5.4). While PBWT-paint takes 

only ~30 minutes to run for chromosome 20 with 36,052 samples on a single core, 

ChromoPainter is projected to take ~26,300 days for the same data, hence PBWT-paint is 

magnitudes (~1.26 million fold) faster for our desired application. This implies that the 

PBWT-paint method is computationally scalable for detecting population structure in large 

GWAS datasets. With this in mind we next compared the accuracy of PBWT-paint to 

ChromoPainter.  

 

We ran PBWT-paint on the Irish dataset from Chapter 3 and the Dutch dataset from 

Chapter 4 to benchmark its accuracy against ChromoPainter. We assessed whether 

major trends in the haplotype sharing methods were consistent by regressing the first two 

PCs of each method against each other, which demonstrated strong concordance (Figure 

5.5). Additionally we estimated Pearson’s correlation coefficient for all pairwise entries 

between co-ancestry matrices produced with the two methods for the Irish and Dutch 

dataset (Pearson’s ρ Irish = 0.817 (0.816-0.818); Pearson’s ρ Dutch = 0.8204 (0.820-

0.8208); p<2.2×10-16 for both datasets), which demonstrated strong correlation between 

the outputs of each algorithm regardless of dataset used.  

 

 

 

 

 

 

https://github.com/richarddurbin/pbwt


154 
 

 

 

 

 

 

 

 

Figure 5.4: Runtimes for PBWT-paint compared to projected runtimes for 

ChromoPainter. 

Example runtimes for a.) ChromoPainter (days) and b.) PBWT-paint (minutes) for 

chromosome 20 calculated on a single core for three datasets (Dutch n=1,626; Dutch 

n=4,753 and 2016 GWAS 36,052). The axis for ChromoPainter runtimes is discontinuous 

due to large jump in runtimes between datasets. ChromoPainter runtimes are extrapolated 

from painting a single individual in terms of the remaining individuals in the dataset due to 

computational expense while PBWT-paint runtimes are directly measured. PBWT-paint 

shows magnitudes faster runtime particularly as sample sizes increase.   
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Figure 5.5: Benchmark of PBWT-paint vs ChromoPainter in Irish and Dutch data. 

Scatterplots comparing the first two principal components (PCs) of the coancestry matrices 

produced by ChromoPainter and PBWT-paint for the a.) Irish dataset (Chapter 3) and b.) 

Dutch dataset (Chapter 4). The two painting methods show strong correlation (r2>0.94 for 

all plots) indicating the methods produce similar results regardless of dataset. Points are 

coloured by cluster groups defined in Figures 3.8 (Irish) and 4.1 (Dutch). For the full set of 

pairwise comparisons in the Irish coancestry matrices Pearson’s ρ = 0.817 (0.816-0.818; p 

< 2×10-16) and for the Dutch coancestry matrices Pearson’s ρ = 0.82 (0.82-0.821; p < 

2×10-16). 
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Given the high fidelity and significantly reduced runtime of the PBWT-paint method on 

small test datasets we applied this method to detect structure in the full multi-population 

dataset (n=35,985; 67 haplotype sharing outliers removed). The resulting haplotype 

sharing matrix identified structure at a far more granular level than SNP PCA, as 

evidenced by t-SNE initialised with haplotype sharing PCs (Figure 5.6 b) which shows 

both strong global structure, separating samples from different countries into broad 

clusters in t-SNE space and even subdividing clusters into more fine-grained local 

subgroups within countries. For example t-SNE of this haplotype sharing matrix forms sub 

clusters within the Italian samples consistent with previous findings of finescale population 

structure in Italy (Raveane et al. 2019). In contrast, while t-SNE of SNP PCA shows some 

clustering of samples within countries (Figure 5.6 a) it largely forms a diffuse cloud of 

points with overlapping samples from many countries rather than tight clusters. This 

indicates that the structure detected using SNP PCs is less resolved. We later explore the 

relative gains of using these haplotype sharing PCs to correct confounding in GWAS 

(Section 5.3.3).  

 

Figure 5.6: Describing structure in large multi population datasets using t-SNE 

initialised with PBWT-paint PCs and SNP PCs. 

t-distributed stochastic neighbour embedding (t-SNE) plots for the multi-population dataset 

(n=35,985) initialised on a.) 100 SNP PCs and b.) 100 PBWT-paint PCs. Points are 

coloured by the country of sampling and semi-transparent to emphasise overlap of 

samples. Labels (right) follow ISO 3166-1 country codes, except IB, which was labelled 

Iberia (containing Spanish and Portuguese data) in the original GWAS dataset. The 

PBWT-paint method (a) shows discrimination of both between-country and within-country 

genetic structure, identifying several tight country and subcountry clusters. In contrast the 

SNP PCA initialised t-SNE projection forms a dispersed cloud of points with less obvious 

genetic structure.      
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As the clustering observed in our t-SNE plots is largely for visualisation purposes, and 

does not define meaningful boundaries for population subgroups we attempted to 

algorithmically define clusters to further describe the extent of structure seen in the 

dataset in a manner analogous to fineSTRUCTURE (used in Chapters 3 and 4). Given 

that fineSTRUCTURE is computationally intractable for large datasets such as this one, 

we adopted the Louvain community detection method (Blondel et al. 2008) as 

implemented in the R igraph package (Csardi, Nepusz, and Others 2006) which is used to 

detect densely connected groups in large networks. This algorithm has previously been 

successfully applied to identify recent population structure in a large IBD sharing dataset 

(Han et al. 2017). To ensure this algorithm returned sensible genetic clusters in this 

context we first applied it to the 1,626 Dutch samples from chapter 4 (Figure 5.7 a and b), 

before applying it to the PBWT-paint matrix of the multi population dataset (Figure 5.7 c 

and d). For these analyses we constructed haplotype sharing networks treating individuals 

as nodes and weighting edges between these nodes based on the number of haplotypic 

“chunks” they shared. Following the initial assignment of individuals to clusters, we 

applied the algorithm for a second iteration treating these clusters as independent 

networks to identify further subdivisions in the data. Our testing in the Dutch dataset from 

Chapter 4 produced genetic clusters with tight geographic distributions both in the first and 

second iteration, suggesting this method is suitable for identifying population subgroups 

(Figure 5.7 a and b). The groupings seen in the second iteration strongly resemble the 

clusters defined by fineSTRUCTURE in this data and include notable splits from our 

analysis in chapter 4, including the separation of eastern and western groups in North 

Brabant. These clusters have a mean FST on par with the fineSTRUCTURE clusters from 

Chapter 4 (mean FST = 5.9×10-4).  
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Figure 5.7: Louvain community detection method for identifying population 

subgroups in preliminary data. 

Displays genetic clusters identified using the Louvain community detection method on 

haplotype sharing data from a preliminary test set of 1,626 Dutch samples (data from 

Chapter 4). Samples are plotted on the first two principal components of the 

ChromoPainter coancestry matrix and according to geographic origin and coloured by 

clusters defined using the Louvain community detection method using a.) a single iteration 

and b.) two iterations. Clusters identified show clear definition in PC space and segregate 

well with local geography. Clusters from the second iteration capture most of the major sub 

populations identified by fineSTRUCTURE in this dataset in Chapter 4. 
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When applied to the larger multi population dataset the algorithm identified subgroups well 

defined in t-SNE space (Figure 5.8). After two iterations these subgroups typically consist 

of samples mostly from a single country of origin (i.e. Clust 1 - the Netherlands; Figure 5.8 

b), or mixtures of closely related groups (i.e. Clust 3 - the Netherlands and Belgium; 

Figure 5.8 b) suggesting this approach can successfully identify ancestral subpopulations 

in large datasets. Further iterations (Appendix Figure 5.2) identify several subgroups 

within single countries such as Italy, Finland, the Netherlands and the UK, all of which 

have previously been shown to harbour local fine scale genetic structure (Abdellaoui, 

Hottenga, de Knijff, et al. 2013; Leslie et al. 2015; Kerminen et al. 2017; Raveane et al. 

2019), suggesting that both broad and local population structure can be simultaneously 

detected in these large datasets using haplotype sharing and network clustering 

approaches. This means that the current study design of exploring finescale population 

structure using haplotype sharing as seen in Chapters 3 and 4 has come of age for 

application to large multi-population datasets allowing us to identify subtle structure both 

within and across countries. 

 

Unlike fineSTRUCTURE this approach does not have a clear protocol for deciding when 

to stop splitting, given that one can simply subset a given cluster and rerun the algorithm 

on the resulting network until modularity plateaus at its minimum value of -0.5. Hence this 

approach leaves some level of judgement to the user. While one could define a minimum 

modularity threshold at which to stop performing iterations in a particular chain of clusters, 

choosing a cutoff based on a minimum value of genetic differentiation between groups 

such as FST or TVD may prove a more sensible approach for this particular application as 

these values have more interpretable meanings in a population genetics context. An 

advantage of the loose termination criteria is that one can explore potentially meaningful 

subtle substructure even where methods such as fineSTRUCTURE would algorithmically 

assign a single cluster. As an example of this we ran a single iteration of Louvain 

clustering on the haplotype sharing matrix for a large fineSTRUCTURE cluster of 

individuals from the “South East England” cluster from Chapter 3 (SEE, also seen in the 

source PoBI paper (Leslie et al. 2015)) and observed meaningful subclusters (Figure 5.9) 

in this supposedly homogeneous cluster. These genetic clusters segregated reasonably 

well with geography (Figure 5.9 b) suggesting they may reflect real non-randomly mating 

subpopulations in the data. Hence it is possible that fineSTRUCTURE’s likelihood function 

under-split this group of individuals due to the minimal gains to model fit from separating 

them. Notably, FST estimates between these Louvain clusters are extremely low (mean FST 

=6.02×10-5 ) meaning that despite their geographic separation, these clusters are quite 

close to panmixia, and their differences are on a very fine scale. In fact, these clusters 
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have a significantly lower mean Fst than the Irish clusters seen in Chapter 3 (mean 

FST=3.5×10-4), despite occupying an equivalent geographic area. This demonstrates that 

Louvain clustering can divide highly homogeneous groups into extremely finescale, but 

potentially meaningful sub clusters.  

 

Figure 5.8: Detecting population structure in large haplotype sharing datasets with 

the Louvain community detection method. 

Displayed are clustering results obtained by running the Louvain community detection 

algorithm on the PBWT-paint co-ancestry matrix for the multi-population dataset 

(n=35,985) for a.) one iteration or b.) two iterations. Samples are projected into t-SNE 

space based on haplotype sharing patterns and coloured by cluster assignment (left).  

To the right are heatmaps of the proportion of samples from each cluster (rows) originating 

from a given country (columns). Cluster names are coloured according to the same 

scheme in the t-SNE plots for ease of reference. By the second clustering iteration, 

clusters are mostly composed of samples from a single country (i.e. Clust 1 and Clust 2 

are mostly samples from the Netherlands) or ancestrally related countries (i.e. Clust 13 is 

mostly from Ireland, with large numbers of samples from the UK and US, likely due to 

ancestral ties and migration).  
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Figure 5.9: Louvain method for community detection identifies extremely subtle 

splits missed by fineSTRUCTURE in the “indivisible” SEE cluster. 

a.) The geographic spread of a large seemingly indivisible fineSTRUCTURE cluster in the 

POBI dataset from chapter 3 (n=966; SEE; Appendix Figure 3.4). These samples form a 

single cluster at the finest level of the fineSTRUCTURE tree despite their wide geographic 

range. A similar indivisible cluster was observed spanning this geographic range in the 

original analysis of the data (n=1,006) (Leslie et al. 2015). 

b.) The geographic spread of six sub-clusters identified within this large fineSTRUCTURE 

cluster using the Louvain method for community detection on the haplotype sharing matrix 

for these samples. Genetically defined clusters show a clear relationship with geography 

indicating they represent meaningful subpopulations. Notably these clusters are very 

genetically similar (mean FST=6×10-5) suggesting the differentiation detected here is 

extremely finescale. 

NB: As only sampling regions are available, points are jittered around a fixed point in the 

sampling region to separate overlapping samples from the same sampling region.  
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5.3.3 - Correcting multi-population GWAS structure with haplotype sharing 

methods 

As the preliminary work exploring correction of GWAS using haplotype sharing PCs 

(section 5.3.1) was performed on a small underpowered GWAS (n=4,753), it is difficult to 

fully evaluate how well the method performs. For example, while ChromoPainter appears 

to correct confounding more stringently than SNP PCA (Table 5.1), there is little inflation 

to begin with; additionally it is difficult to assess whether the method overcorrects or 

produces more false negatives than SNP PCA corrected GWAS as no loci reach genome-

wide significance in the dataset under any correction scheme considered. Hence, we next 

expanded this analysis to the multi-population dataset using PBWT-paint PCs (calculated 

in section 5.3.2) as covariates.  

 

This dataset has two major advantages, the first being sample size and the second being 

that it is sampled from multiple populations, making its design closer to that commonly 

used in modern GWAS (with the exception of single population biobanks). Top PCs of 

PBWT-paint coancestry explained substantially more variance in phenotype than SNP 

PCs (Figure 5.10), recapitulating our result from the Dutch-only GWAS (Figure 5.1). The 

majority of variance explained by PCs from both methods was captured by PCs 1-20, 

motivating the choice of 20 PCs in downstream analyses. Strikingly, LD score regression 

intercepts show that GWAS statistics calculated including PBWT-paint PCs as covariates 

were significantly less confounded than statistics corrected by SNP PCA (p=1.5×10-10; 

Figure 5.11 d), while retaining the power to detect the same known ALS hits (Figure 5.11 

a-c). Together these results indicate that genetic structure described by PBWT-paint PCs 

captures patterns of stratification of ALS cases and controls in the data missed by 

standard SNP PCA and hence better corrects confounding when included as a covariate. 

Additionally it appears that PBWT-paint PCs do not overcorrect loci associated with the 

disease given that the method detected the same hits as SNP PCA corrected GWAS. As 

previously (Section 5.3.1) we also ran a GWAS using a leave one chromosome out 

(LOCO) approach when fitting PBWT-paint PCs to minimise overcorrection caused by 

patterns of haplotype sharing at the locus being tested. Notably the LD score intercept of 

this LOCO analysis was practically indistinguishable from the LD score intercept run using 

PCs calculated from the full PBWT-paint matrix (p=0.99), indicating that the decrease in 

LD score intercept from PBWT-paint is due to reduction of confounding, rather than loss of 

ALS-associated GWAS signal. 
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Figure 5.10: Phenotype stratification captured by PBWT-paint PCs and SNP PCA in 

multi-population dataset. 

Cumulative variance in phenotype (amyotrophic lateral sclerosis) explained by principal 

components (PCs) of the PBWT-paint coancestry matrix and standard SNP PCs in the 

multi-population GWAS dataset (n=35,985). As in the single population setting (Figure 5.1) 

PBWT-paint PCs explain a greater amount of variance in phenotype and are hence 

expected to better correct for confounding due to stratification in GWAS.    
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Figure 5.11: Comparing GWAS power and inflation when corrected with haplotype 

sharing or SNP PCA. 

a-c.) Manhattan plots for GWAS carried out on the multi-population ALS dataset 

(n=35,985) corrected using a.) SNP PCs as covariates b.) PBWT-paint PCs as covariates 

and c.) PBWT-paint PCs as covariates following a leave one chromosome out approach 

(LOCO). Each method appears similarly powered and detects the same genome-wide 

significant loci.  

d.) LD-score regression intercepts coloured by GWAS correction method demonstrate that 

PBWT-paint PCA corrected GWAS summary statistics (LOCO and regular) are subject to 

significantly (p=1.5×10-10) less confounding than SNP PCA corrected GWAS.   
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5.3.4 - Addressing bias from residual stratification in polygenic methods using 

haplotype sharing PCs 

Polygenic risk scores: 

We next explored the effect of PBWT-paint PC correction of ALS GWAS training data on 

the distribution of polygenic risk scores in our Dutch dataset and their relationship to 

geography. GWAS conducted on a training ALS dataset excluding the Dutch data were 

run using a.) 20 SNP PCs or b.) 20 PBWT-paint PCs as covariates. The best fit PRS 

model using summary statistics from a SNP PC corrected GWAS explained more 

variance in phenotype than the best PBWT-paint corrected model (Table 5.2). However, 

this model included variants from all significance thresholds, which may imply overfitting 

given the relatively low polygenicity of ALS (see Chapter 1; Figure 1.2), meaning not all 

variants are expected to have predictive power for this phenotype. In fact, most of the 

predictive power in the SNP PCA corrected model comes from variants which had a p-

value greater than 0.05 in the training dataset, supporting the hypothesis of overfitting 

(Figure 5.12 a). In contrast the best fit PBWT-paint PC corrected model only includes 

SNPs with p-values below a threshold of 2.15×10-3 in the base dataset which have much 

greater evidence of association with ALS. Higher p-value thresholds contribute almost no 

predictive power to the PBWT-paint corrected model (Figure 5.12 a), indicating it is very 

unlikely to be overfitted (though overcorrection is possible).  

 

Table 5.2: Best fit PRSice model details for SNP and PBWT-paint PC correction 

methods. 

Covariates in 
training GWAS 

PRS Model 
fit  

(R2) 

Model fit 
(p) 

SNP Inclusion threshold 
(p<x in training set) 

# SNPs 
 included 

20 SNP PCs 2.7×10-03 5.16×10-08 1 304,806 

20 PBWT-paint PCs 7.0×10-04 0.005 0.00215 3,317 

Model fits (liability scale) for prediction of phenotype from polygenic risk scores generated 
from SNP PC-corrected and PBWT-paint PC-corrected GWAS for ALS. The SNP PC-
corrected method better predicts ALS case-control status in the Dutch data, however this 
model uses all variants, including those with little association with ALS, meaning 
overfitting is probable. 
 

Distributions of PRS for the two correction methods are notably different across all SNP 

inclusion thresholds (Figure 5.12 b). While PBWT-paint PC-corrected PRS scores are 

roughly normally distributed around 0 for all inclusion thresholds, SNP PC-corrected PRS 

scores trend away from zero as more variants with less evidence of association with ALS 

are added. This growing separation of the distributions as variants with less evidence of 
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association with ALS are added suggests that the SNP PC-corrected PRS scores (and 

GWAS effect sizes) may be biased by residual confounding at these non-significant 

variants. To test for residual confounding in the PRS scores produced by each method we 

looked at the relationship between PRS scores and geography using Moran’s I, which 

measures the spatial autocorrelation of a variable. We first regressed the phenotype out of 

the PRS scores to get residual PRS scores which are non-correlated with phenotype (i.e. 

represent the component of the PRS that does explain the phenotype). This was done to 

correct for correlation between the phenotype and geography, which would confound our 

estimation of residual population structure. We then calculated Moran’s I for these residual 

PRS scores for Dutch samples with geographic information (n=1,352) to capture the 

relationship of the non-disease related component of the PRS scores with geography 

(representing population structure). Residual PRS scores calculated with all variants had 

a significant relationship with geography for the SNP PC-corrected analysis (Table 5.3; 

Moran’s I=0.06 ; p=9.9×10-05 ), but not for the PBWT-paint corrected method (Table 5.3; 

Moran’s I=-8.3×10-03 ; p=0.22 ). This suggests that the SNP PC-corrected training set 

produces scores that are predictive of population structure that does not relate to the 

phenotype at this threshold. Hence the differences in model fit and PRS distribution 

(Figure 5.12) are likely at least partially due to residual confounding from population 

structure in the effect size estimates from the SNP PC-corrected GWAS. Additional SNP 

inclusion thresholds show significant spatial autocorrelation in the SNP PC-corrected 

analysis (Table 5.3), all with values significantly greater than zero suggesting spatial 

clustering of PRS values. In contrast the PBWT-paint PC-corrected PRS scores showed 

no significant sign of bias due to residual confounding. Hence PBWT-paint corrected 

summary statistics appear to generate less biased PRS scores.  
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Figure 5.12: PRS model fit and distribution is affected by correction method. 

a.) PRS model fit (liability scale) for predicting ALS case-control status in the Dutch-only 

dataset (n=4,753) using the remaining data from the 2016 GWAS (n=31,299) corrected 

with SNP PCs or PBWT-paint PCs. The SNP PC-corrected analysis shows a trend 

towards better prediction (y-axis; PRS model fit: R2) as variants in less stringent p-value 

thresholds are included. The PBWT-paint PC-corrected analysis, however, shows best fits 

for lower p-value thresholds and limited signal as additional SNPs are added. 

b.) Distributions of PRS scores from both correction approaches at a range of p-value 

thresholds show differences in distributions. PRS from PBWT-paint PC corrected PRS are 

distributed closer to a mean value of zero while SNP PC-corrected PRS are shifted 

towards more negative scores. Differences in the distributions are most striking for the 

model with all SNPs included (threshold p<1) which includes many variants which should 

have a null effect on ALS status.    
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Table 5.3: Measures of spatial autocorrelation for PRS under SNP PC and PBWT-

paint PC correction. 

 

SNP inclusion threshold  

(p<x Training set) 

SNP PC-corrected 

 training set PRS 

PBWT-paint PC-corrected 

training set PRS 

Moran’s I p  Moran’s I p 

1 6.0×10-02 9.9×10-05 * -8.3×10-03 2.2×10-01 

0.1 4.1×10-02 9.9×10-05 * -5.3×10-03 5.5×10-01 

0.01 1.9×10-02 2.0×10-04 * -3.0×10-03 9.1×10-01 

0.001 3.5×10-03 1.9×10-01 6.9×10-04 5.0×10-01 

0.0001 4.1×10-03 1.6×10-01 -1.3×10-02 3.3×10-02 

0.00001 -5.6×10-03 4.9×10-01 -2.1×10-03 9.2×10-01 

Moran’s I values measure spatial autocorrelation for residuals of polygenic risk scores 

(PRS) with phenotype regressed out. Several inclusion thresholds show significant spatial 

clustering for the SNP PC corrected method suggesting the method is biased by residual 

population structure. In contrast none of the thresholds show significant spatial 

autocorrelation for the PBWT-paint corrected method. Values marked with an asterix (*) 

are significant at the Bonferroni corrected p-value of 4.1×10-03 . 

 

Estimates of SNP heritability: 

Controversially, the estimate of SNP heritability for ALS obtained using LD score 

regression on summary statistics from a larger ALS GWAS from 2018 (Nicolas et al. 

2018) (h2
SNP ALS 2018 = 0.016; 95% c.i: 0.009-0.023) is substantially lower than 

published GREML h2
SNP estimate from the 2016 ALS GWAS (van Rheenen et al. 2016) 

(h2
SNP ALS 2016 = 0.085; 95% c.i: 0.0752-0.0948) suggesting that bias from population 

structure may have inflated this earlier heritability estimate. To explore this possibility we 

ran GREML heritability analysis on the 2016 GWAS dataset controlling for population 

structure with 20 SNP-based PCs or 20 PBWT-paint PCs and compared the estimates of 

h2
SNP. The genome-wide estimate of h2

SNP controlling for PBWT-paint PCs was 

significantly lower than using standard SNP PC based correction (Table 5.4; p=9.6×10-5). 

This could mean that population stratification in this dataset is leading to overestimation of 

SNP-based heritability, or alternatively that the method is overcorrecting by capturing 

similar patterns of relatedness to the GRM. Notably our SNP PC-corrected estimate 

(h2
SNP=0.066) is also lower than the original published estimate (van Rheenen et al. 2016), 

however that estimate used only 10 PCs to correct for structure, meaning this difference 

may also be reconciled by residual structure.  
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Table 5.4: Total unpartitioned GREML SNP-based heritability estimates from 2016 

ALS GWAS under SNP and PBWT-paint PC corrections. 

Correction method h2
SNP SE 

20 SNP PCs  6.6E-02 4.8E-03 

20 PBWT-paint PCs 4.0E-02 4.6E-03 

Estimates of total unpartitioned SNP heritability from the 2016 ALS GWAS dataset 

corrected using 20 SNP PCs or 20 PBWT-paint PCs as covariates in the model. The 

PBWT-paint PC corrected estimate is significantly lower than the SNP PC corrected 

estimate (p=9.6×10-5) 

 

To explore if this decrease in heritability differentially affected regions of the genome, we 

partitioned the heritability estimates by chromosome using both correction methods. Per 

chromosome heritability estimates from each method were strongly linearly correlated 

(Appendix Figure 5.3; r2=0.877; p=9.2×10-11), and showed no significant per-chromosome 

differences (Appendix Table 5.3). This suggests that while correcting with PBWT-paint 

PCs reduces the total heritability estimate, it does not substantially alter the distribution of 

heritability across the genome. Additionally, following van Rheenen et al (van Rheenen et 

al. 2016) we explored the relationship between chromosome length and heritability to 

investigate if the signal of polygenicity in ALS remains after PBWT-paint correction. We 

found that both SNP PC corrected heritability estimates (r2=0.43, p=5.8×10-4) and PBWT-

paint heritability estimates (r2=0.24, p=0.013) show significant linear correlation with 

chromosome length, providing evidence of polygenicity under both models (Appendix 

Figure 5.4). Notably while the relationship between SNP heritability and chromosome 

length is statistically stronger for the SNP PC-corrected estimate, the slopes of these 

regressions are close to identical (Appendix Figure 5.4), indicating that a similar polygenic 

signal is present following both corrections. 

 

To further dissect this difference in SNP heritability under the two correction methods we 

compared the minor allele frequency (MAF) partitioned heritability estimates, from both 

methods, examining whether any allele frequency bins were more affected by this 

proposed latent structure (Table 5.5). Notably, while all MAF bins showed a slight 

decrease in h2
SNP when using PBWT-paint PCs as covariates in the model, only the lowest 

frequency bin considered (MAF=0.01-0.1) was significantly lowered (p=0.0042). This 

could either mean that PBWT-paint selectively overcorrects low-frequency variants, or that 

heritability is overestimated at low-frequency variants due to uncorrected latent structure 

missed by SNP PCA (Figures 5.6, 5.10 and 5.11 d). If the latter of these options were true 

this would have important implications for the study of ALS, given that the current model 
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driving mass genome wide sequencing of ALS patients is that the disease is mediated by 

a rare variant architecture (Nicolas et al. 2018).  

 

Table 5.5: MAF partitioned GREML SNP-based heritability estimates from the 2016 

ALS GWAS under SNP and PBWT PC correction. 

 

MAF 

SNP PC correction PBWT-paint PC correction  

p difference  

h2 SE h2 SE 

0.01-0.1 2.18E-02 3.63E-03 7.66E-03 3.34E-03 4.19E-03* 

0.1-0.2 1.72E-02 3.85E-03 8.04E-03 3.59E-03 8.27E-02 

0.2-0.3 2.01E-02 3.79E-03 1.73E-02 3.65E-03 5.93E-01 

0.3-0.4 2.32E-03 3.44E-03 2.11E-03 3.33E-03 9.64E-01 

0.4-0.5 1.04E-02 3.12E-03 6.03E-03 2.95E-03 3.04E-01 

 

Estimates of SNP heritability for ALS from the 2016 ALS GWAS dataset partitioned into 

MAF bins, using 20 SNP PCs or 20 PBWT-paint PCs as covariates in the model. Asterisk 

(*) denotes a significant difference between the estimates at the Bonferroni corrected level 

(i.e. p<0.01). 
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5.4 - Discussion 

In this chapter we explored the utility of applying haplotype based PCs to detect and 

correct for population structure in the 2016 GWAS dataset (n=36,052) (van Rheenen et al. 

2016), revealing a number of interesting findings which warrant application of this 

approach to further GWAS datasets. Preliminary work in a small Dutch subset (n=4,753) 

of this data showed ChromoPainter PCs corrected confounding in GWAS more 

comprehensively than SNP PCA, while retaining signal at variants with evidence of 

association with ALS in the remainder of the dataset (n=31,299). This motivated extension 

of the technique to the full dataset, however computational constraints prohibited use of 

ChromoPainter on this number of samples. Testing of an alternative haplotype sharing 

method, PBWT-paint, demonstrated that it performed nearly identically to ChromoPainter 

in small datasets, while saving significant computational time for large datasets, making 

application of haplotype sharing methods to the full dataset viable. PCs from the resulting 

haplotype sharing matrix detected structure at significantly higher resolution in the data 

than standard SNP PCs. Clusters from this matrix defined by the Louvain community 

detection method and t-SNE decomposition reveal that this matrix contains sufficient 

information to separate samples into country level and even finer subpopulations. GWAS 

summary statistics from the full dataset corrected by PBWT-paint PCs show reduced 

inflation while retaining the power to identify the same ALS associated loci as SNP PC-

corrected summary statistics, indicating the method is more stringent but likely doesn’t 

overcorrect. Finally two methods combining variants across the genome, namely 

polygenic risk scores and heritability estimates, behaved differently when corrected using 

PBWT-paint compared to SNP PCA, consistent with predictions of potential bias in these 

methods from residual population structure. SNP heritability estimates were also lower 

when corrected with PBWT-paint PCs which could mean SNP PC-corrected estimates 

were inflated by residual population structure. Strikingly, PRS for ALS calculated with SNP 

PC corrected summary statistics showed geographic clustering in the Dutch dataset after 

correcting out the relationship between geography and the phenotype, suggesting residual 

population structure biases these scores. In contrast, PBWT-paint PC-corrected PRS 

removed this geographic stratification of PRS, potentially eliminating this bias. While these 

results are promising there are numerous caveats and future directions that accompany 

them which will be addressed below.       

 

Results from our initial analysis in the Dutch-only dataset builds on work presented in 

Chapter 4 characterising the local population structure and demographic history of the 

Netherlands and indicate that this finescale structure has a measurable effect on 
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confounding in GWAS (Table 5.1). This could have important implications for single 

country biobank datasets, such as the UK Biobank (Bycroft et al. 2018) and the Biobank 

Japan (Nagai et al. 2017), especially given that both countries have been shown to 

harbour subtle but extensive local structure in smaller datasets using ChromoPainter 

(Leslie et al. 2015; Takeuchi et al. 2017). In fact, mounting evidence is emerging 

supporting the existence of residual confounding from uncorrected population structure in 

GWAS performed on the UK Biobank dataset; after correction using ancestry-informative 

principal components and even linear mixed models, clear associations have remained 

between birth location and genetic variants, as well as distributions of PRS (Haworth et al. 

2019; Abdellaoui et al. 2019; Cook, Mahajan, and Morris 2020). While haplotype PCs may 

partially address this issue of residual confounding in large scale biobanks by providing 

more refined vectors of ancestry it is unclear how well the results observed in the 

Netherlands will translate to larger single-country datasets due to disparities in sample 

size. One important reason for this is that as sample size increases, so too does the 

power to detect the structure present in the sample, even for subtle structure (Lawson et 

al. 2019), which could mean that unlinked methods such as SNP PCA might perform 

comparably to haplotype sharing PCs at these scales. This increase in power is apparent 

when comparing the extensive finescale structure that has been detected in the UK 

Biobank and Biobank Japan using single marker methods (Diaz-Papkovich et al. 2019; 

Sakaue et al. 2020) to measures taken in early smaller datasets from these countries. 

However, it is feasible that even at large sample sizes single markers may remain 

incapable of detecting certain types of population structure. In fact recent simulations 

showing SNP PCA from common variants cannot fully correct structure resulting from 

recent demographic events (Zaidi and Mathieson 2020), which were better corrected by 

rare variant PCA and IBD PCA. As haplotypes from chromosome painting are expected to 

capture both old and recent structure this might afford the method an edge even where 

large sample sizes drastically improve unlinked estimates of population structure. Hence 

future work is required to properly assess the effects of sample size and demographic 

history on the relative performance of haplotype sharing and unlinked methods.    

 

While the full dataset differs from the Dutch subset not only in size but in ancestry 

composition and overall diversity, it is reassuring given the above considerations that 

haplotype sharing methods still appear to correct more stringently than SNP PCA even in 

this much larger sample. This suggests that our observations are not simply driven by the 

low power of SNP PCA to detect population structure in small samples. In fact the 

difference in LD score intercepts is more pronounced in this larger dataset, achieving 

significance by our Z test (p=1.5×10-10) where the Dutch only sample was not significant 



173 
 

(p=0.12). This may be partially driven by the increased inflation that occurs in larger 

GWAS samples, though it is more likely driven by increased diversity of the dataset, given 

that greater differences in allele frequencies are expected across subpopulations from 

different countries within the dataset. While SNP PCA might be expected to correct most 

major differences between these countries, multiple sources of recent finescale structure 

between and within subpopulations may cumulatively account for the large differences in 

both variance explained in phenotype and estimates of confounding between haplotype 

sharing and SNP based PCA.  

 

It is also alternatively possible that haplotypic PCA may be overcorrecting disease 

associated variation here. The two most likely reasons for overcorrection would be if 

haplotype sharing was directly capturing and penalising patterns of disease-associated 

variation at a given locus or if causal variants were associated with ancestry (Lawson et 

al. 2019). The first of these possibilities is mostly ruled out by the similar results produced 

by the PBWT-paint LOCO analysis (Figure 5.11) which avoids overcorrection at a locus 

based on variation at that locus by only measuring population structure on the remaining 

chromosomes. However, it is difficult to measure or prevent overcorrection where 

ancestry is associated with causal variants, making the second of these possibilities a 

clear caveat of this analysis. Estimating whether disease is causally associated with true 

population structure or ancestry (and not simply environmental variation overlaying this) 

remains a difficult challenge which must be addressed to prevent overcorrection when 

using any ancestry-informed measure of population structure.  

 

Although our PBWT-paint corrected summary statistics for ALS identify the same hits as 

present in the SNP corrected method (Figure 5.11), both methods miss four loci identified 

by the powerful mixed linear model approach applied in the original analysis of the data 

(van Rheenen et al. 2016) (i.e. MOBP, SCFD1, LOC101927815 and C21orf2). Associated 

variants for one of these loci, C21orf2 were not included in our analysis due to exclusion 

during QC. In fact these variants initially failed the GWAS QC in the original analysis due 

to low frequency in a Swedish cohort (van Rheenen et al. 2016). Hence this loss cannot 

be attributed to overcorrection here but simply exclusion. A second locus LOC101927815 

did not replicate in the replication phase of the original analysis (van Rheenen et al. 2016) 

indicating it may be a false association, while the remaining two loci MOBP and SCFD1 

do not replicate in the larger 2018 ALS GWAS (Nicolas et al. 2018), meaning the veracity 

of association at these loci is currently under debate pending replication in subsequent 

larger GWAS. Additionally, variants in MOBP showed evidence of sex-specific association 

(Chapter 2) which means they may only affect ALS risk in a fraction of the dataset, making 
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them difficult to detect in the full GWAS. Hence it is currently unclear whether the 

disagreement of our approach and the mixed model approach at these loci represents a 

real loss of power, or more accurate correction. Notably, the PBWT-paint corrected LD 

score intercept (interceptpbwt-paint=1.046; 95% c.i: 1.031-1.06) was also significantly lower 

(p=4.76×10-8) than the intercept reported from a mixed linear model analysis 

(Interceptmlma=1.1; 95% c.i: 1.08 -1.12 ) (van Rheenen et al. 2016), suggesting that as a 

trade-off for its improved power compared to our method, the mixed linear model analysis 

of this dataset is subject to more inflation attributable to confounding genome-wide. 

Hence, while the PBWT-paint corrected GWAS shows comparable power to detect known 

(replicated) loci, it also reduces inflation resulting from confounding genome-wide. This 

may be important for generating unbiased effect sizes for use in polygenic methods such 

as polygenic risk scores.    

 

The differences in PRS distributions for ALS in the Netherlands, and changes in prediction 

accuracy when using summary statistics corrected with SNP PCA versus haplotype PCA 

appear to be partially explained by residual population structure in the SNP PC-corrected 

scores as evidenced by geographic clustering of these scores (Table 5.3 and Figure 

5.12). This is mainly evident for scores calculated with more permissive p-value 

thresholds, which include more variants with less significant association with the trait. This 

could suggest that variants less associated with a trait may contribute more bias to 

polygenic scores than strongly associated variants. However we would caution against 

extrapolating this result to the general application of PRS without further testing in a range 

of traits and datasets. Given that ALS is not a highly polygenic trait (see Figure 1.2) it is 

possible that PRS estimates here are more susceptible to noise from residual confounding 

in less associated variants than would be expected for highly polygenic traits such as 

height or schizophrenia, which have risk associated variation spread more evenly genome 

wide. This is because null variants are expected to be more abundant for ALS GWAS, and 

the variation in effect sizes (which weight PRS) at these null variants should likely only 

represent noise and confounding rather than having a true relationship to the disease. 

Hence the effects of residual stratification on PRS may be more visible in this trait due to 

its architecture. This motivates testing in other traits of varying polygenicity to assess the 

effect of trait polygenicity on differences in PRS distributions between methods.  

 

The study design behind the 2016 ALS GWAS is another factor to consider when 

assessing the degree of residual stratification we observed in SNP-corrected PRS. This 

dataset combines case-control cohorts sourced from collaborators at many European ALS 

centres with slightly different sampling practices at each centre (van Rheenen et al. 2016), 
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which may introduce a source of bias in the GWAS that tracks directly with ancestry. This 

sampling bias could inflate the level of residual population structure in the training GWAS 

to levels uncommon for GWAS performed in biobanks or under more standardised 

sampling schemes, which in turn could translate into abnormally biased PRS. Additionally, 

as geographic information was only available for a small number of individuals in our 

target dataset (1,352 of 4,753), and only in the form of current postal address rather than 

birth location, it is possible that the correlation of PRS with geography we observed is 

under- or over-estimated in this dataset. The ideal sample for testing how generalisable 

our findings are would thus be one with deep phenotyping of multiple traits, standardised 

sampling and rich associated geographic information such as the UK Biobank (Bycroft et 

al. 2018). Such a dataset would enable us to assess the effects of haplotype-based 

correction on both prediction from and distribution of PRS in multiple traits with different 

architectures with standardised sampling schemes. In addition the detailed information on 

both birthplace and current address would enable us to assess how much the use of 

current address can inflate or deflate the observed relationship between PRS and 

geography compared to the more appropriate birthplace, due to migration in the current 

population.       

 

Following the trend of our PRS scores, our GREML SNP heritability estimate for ALS 

calculated using PBWT-paint PCs as covariates in place of SNP PCs was also 

significantly deflated (Table 5.4, Appendix Table 5.3 and Table 5.5). While this could be 

due to overcorrection as a result of a real interaction between ancestry and disease, or 

PBWT-paint PCs capturing non-ancestry related disease variation, this estimate 

approaches univariate LD score regression estimates of heritability from the larger 2018 

ALS GWAS (Nicolas et al. 2018) (h2
SNP_2018=0.016; 95% c.i: 0.009-0.023), suggesting it 

may not be an overcorrection. Notably the 2018 ALS GWAS also shows significantly lower 

LD score intercept (Intercept2018=1.021; 95% c.i: 1.008-1.035 ) than the 2016 dataset 

corrected with SNP-based PCA (p=6.95e-19), indicating that confounding is better 

controlled in the 2018 GWAS. Combined, these observations support a model where the 

differences in heritability are likely partially driven by uncorrected population structure in 

the 2016 ALS dataset (Figure 5.6, 5.10 and 5.11). Hence the lower SNP heritability 

estimates in PBWT-paint PC corrected GREML analyses could simply be due to better 

correction of population structure in the dataset. The potential inflation of SNP heritability 

due to latent structure in the data has implications for the analysis in Chapter 2 which 

relied extensively on the use of SNP based covariates to correct population structure 

when estimating male specific and female specific heritability.  
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Partitioning heritability estimates per chromosome revealed a strong linear relationship 

between estimates from both methods (Appendix Figure 5.3) and no significant 

differences in per-chromosome heritability (Appendix Table 5.3). This indicates that while 

total heritability is reduced when using PBWT-paint PC correction, this reduction is spread 

relatively uniformly across the genome. Additionally per chromosome heritability estimates 

from both methods showed significant positive linear relationships with chromosome 

length with comparable slopes, supporting the model that ALS is polygenic even with this 

more stringent correction (Appendix Figure 5.4). The similar slopes in this regression 

indicate that the polygenic signal is preserved when correcting with PBWT-paint PCs, 

suggesting that it does not overcorrect.  

 

However, when considering MAF partitioned estimates of h2
SNP, a significant decline was 

seen for the lowest frequency variants (Table 5.5), seeding doubt on the observation that 

low frequency variants contribute the most to ALS heritability (van Rheenen et al. 2016). If 

true this could have important implications for study design in ALS, as this observation 

has partially motivated a large uptake of whole genome sequencing of ALS patients in 

consortia such as Project MinE (van Rheenen et al. 2018), with the aim of identifying 

causal variants in the lower frequency spectrum. However, given the low SNP heritability 

of ALS under any model considered here, it is still probable that SNP chip technology 

does not adequately capture genetic variation associated with ALS. Furthermore exome 

studies have since identified associated rare variants associated with ALS in genes 

including NEK1 (Kenna et al. 2016) and KIF5A (Nicolas et al. 2018) with far smaller 

sample sizes than this GWAS, suggesting that this approach remains valid regardless of 

whether this initial observation supporting a rare variant architecture holds up to scrutiny.   

 

In addition to our exploration of correcting residual population structure with haplotype 

based PCs, this chapter also demonstrates that finescale population genetic analyses 

such as those seen in Chapters 3 and 4 are scalable to large multi-population datasets. 

We demonstrated the power of applying the Louvain clustering method to both small and 

large scale haplotype sharing datasets as an alternative to conventional methods such as 

fineSTRUCTURE. This method produced similar splits to fineSTRUCTURE in our Dutch 

coancestry matrix from Chapter 4 with the comparable mean FST, suggesting that it is a 

viable alternative clustering method for identifying homogeneous subgroups in haplotype 

sharing datasets. The major advantage of this method is that it can be applied to massive 

datasets which are prohibitively computationally expensive to analyse with 

fineSTRUCTURE. Iterative application of this approach can also yield finer and finer splits 

in the data, allowing the researcher to choose the resolution of structure they wish to 
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investigate (presumably limited by the amount of structure contained in the coancestry 

matrix). To this end, the method was capable of identifying sub-clusters with overlapping 

but distinct geographic ranges when applied to previously “indivisible” cluster in the 

southeast of England (Figure 5.9). FST values between these subclusters were almost a 

an order of magnitude smaller than those between fineSTRUCTURE clusters identified in 

Chapters 3 and 4, suggesting this method can describe extremely finescale population 

structure. This algorithm should enable efficient clustering in haplotype sharing datasets 

from large GWAS datasets, greatly expanding the sample sizes viable for finescale 

population genetic analyses such as those carried out in Chapters 3 and 4. Combined 

with geospatial data such as that available for large biobank-scale datasets, PBWT-paint 

and Louvain clustering may yield important insights into recent finescale population 

structure underrepresented in smaller single-country datasets. In addition it should enable 

us to explore finescale links between countries, as seen in the clustering of Belgium and 

the Netherlands, or samples from the US and European groups in this chapter. 

Simultaneous analysis of haplotype sharing in large multi-country datasets may yield 

insights missed when projecting structure from an external reference panel into a small 

single country dataset as seen in Chapters 3 and 4. Hence our analysis highlights 

potential advances for both genetic epidemiology and the study of modern population 

genetics which are likely to yield interesting results for both fields when applied to large 

modern GWAS datasets.    
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Chapter 6 - Discussion 

This thesis describes work carried out across several distinct but complementary projects 

as described in Chapter 1 with the global aim of improving our understanding of the 

complex genetics of ALS and how residual finescale population structure impacts 

commonly used GWAS analysis techniques. Briefly, this work studied: the potential 

genetic overlap between ALS and comorbid cognitive and psychiatric traits (Chapter 2); 

the role of sex in ALS genetics (Chapter 2); the extent of finescale genetic structure and 

historical inferences from ALS GWAS data sampled across Ireland (Chapter 3) and The 

Netherlands (Chapter 4); and finally the application of haplotype sharing methods to 

correct for the observed finescale population structure seen in these countries and others 

in large GWAS (Chapter 5). This chapter will discuss the future directions for study that 

these analyses open up.        

      

6.1 - Future directions 

The results from this thesis, alongside the ideas and methods explored within, point 

towards several important avenues for future research.  

6.1.1 - Replication and functional validation of putative ALS loci 

The putative ALS loci identified in our sex specific scans and pleiotropic analysis (cFDR 

analysis) from Chapter 2 appear plausible based on their enrichment in disease related 

functional categories and tissue of expression. However, to be fully certain of their 

association with ALS these loci require replication in an independent cohort.  

For the both sex specific loci and the pleiotropic loci, independent samples from the 2018 

GWAS (Nicolas et al. 2018) may be an appealing sample for the replication stage. 

However, due to significant sample overlap with the 2016 ALS GWAS used in our study, 

exclusion of samples would lead to relatively small replication cohorts. Indeed, based on 

table s1 from the 2018 ALS GWAS (Nicolas et al. 2018) this would leave us with a total of 

8,229 ALS cases for the replication GWAS (3,433 female and 4,796 male cases), which 

may prohibitively reduce power for these analyses especially when split into male and 

female strata. Additionally, as the majority of controls from the 2018 ALS GWAS were 

gathered from 18 distinct studies (see table s1 from Nicolas et al. (Nicolas et al. 2018)), 

and show significant bias towards females (~69% female controls) gathering an unbiased 

control set for these replications would not be trivial. Instead, a more viable and powerful 

option might be to rerun both the sex-specific and multi-trait analysis in data from the 
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much larger upcoming Project MinE GWAS for ALS (n~150,000, Jan Veldink and Wouter 

van Rheenen, personal communication), using the data from Chapter 2 as a replication 

cohort. This approach would afford far greater power to identify robustly associated sex-

specific and pleiotropic variants associated with ALS and potentially be more efficient 

considering the limitations of both the 2016 and 2018 ALS GWAS datasets. Hence, while 

our multi-trait and sex-specific analyses have revealed novel loci with potential roles in 

ALS, they should at present be treated as exploratory results. Finally, following replication 

and fine-mapping of variants, further functional work, for example in mouse models or 

induced pluripotent stem cell-derived motor neurones, is required to validate the role in 

ALS pathology. 

6.1.2 - Updating multi-trait analysis for ALS in the face of growing GWAS datasets 

Analysis of genetic overlap between ALS and secondary psychiatric and cognitive traits in 

Chapter 2 of this thesis were performed on recent sets of GWAS summary statistics. 

However, while this work outlines interesting findings regarding the shared genetic 

components of these traits, datasets are constantly growing with larger GWAS releases 

occurring regularly for each of these traits, meaning this analysis is not the final picture. 

To illustrate this point, at the time of writing (13th of September 2020), the psychiatric 

genetics consortium has just released summary statistics for a massive GWAS of 

schizophrenia (Schizophrenia Working Group of the Psychiatric Genomics Consortium et 

al. 2020) studying 69,369 patients with schizophrenia and 236,642 controls. As these 

GWAS datasets grow, their increasing sample size leads to more robust estimates of SNP 

effect sizes with smaller errors, which will in turn increase the power of multi-trait analyses 

including these traits. Indeed, with an increase in sample size and power, we might expect 

additional psychiatric traits to show significant correlations with ALS, as seen for bipolar 

disorder in our study. Given that the projected sample size for ALS GWAS face greater 

limitations than more common traits due to the relatively low number of patients 

presenting with the disease at a given year, future studies informed by pleiotropic overlap 

of ALS and with larger GWAS from genetically correlated traits may become an important 

resource for boosting power to discover new ALS loci.  

6.1.3 - Towards greater diversity in the study of ALS genetics  

Analyses in this thesis are unfortunately restricted to European datasets and hence are 

not representative of the genetic architecture of ALS in the global population, which is a 

limitation both for the study of ALS and the field of GWAS in general (Need and Goldstein 

2009; Popejoy and Fullerton 2016). This lack of diversity not only creates a biased view of 

the genetic variation behind traits, which causes findings to translate poorly to individuals 
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of non-European ancestry (e.g. for PRS (A. R. Martin et al. 2017; Duncan et al. 2019)), 

but also lowers power for detecting causal variants which are at low frequency in 

European populations (Wojcik et al. 2019), limiting overall discovery of trait-relevant 

variation. In addition, fine-mapping has been shown to be more sensitive in mixed 

ancestry cohorts due to different LD blocks reducing the search space for the causal 

variant, improving detection of causal variants (Wojcik et al. 2019). Aside from these 

general advantages of diverse GWAS, there is mounting evidence that the prevalence of 

certain known ALS genes may differ across ancestries. For example, while the C9orf72 

hexanucleotide repeat expansion is the most common known genetic cause of ALS in 

Europeans, it is rare in China, where the most common mutation is instead SOD1 (Xiaolu 

Liu et al. 2018). Hence diversity is also an important factor for proper epidemiological 

characterisation of ALS risk worldwide. Thus a clear future direction would be to move 

towards greater diversity in ALS GWAS and other genetic studies, which may be achieved 

through expanding collaboration with ALS centres worldwide.  

 

Initial work in this direction meta-analysing ALS cases and controls from China (1,234 

cases and 2,850 controls) and Europe (2016 ALS GWAS (van Rheenen et al. 2016)) has 

shown some promising returns (Benyamin et al. 2017). Most notably, this cross-ethnic 

meta-analysis identified an association at the TNIP1-GPX3 locus (Benyamin et al. 2017), 

which had prior functional evidence of involvement in ALS, and has since been identified 

in larger GWAS (Nicolas et al. 2018). The lead SNP showed higher frequency in the 

Chinese cohort than the European cohort in this analysis, which may have improved 

power to detect this association. However, to date there are no further multi-ethnic ALS 

GWAS studies, and very little study of ALS genetics has been done outside of Europe and 

east Asia. Thus substantial further work dedicated to the inclusion of more diverse 

ancestry in ALS GWAS may yield even further returns and remedy European bias in 

resulting research.    

 

6.1.4 - Evaluating correction of confounding using haplotype sharing PCs in other 

traits and simulation studies 

The findings in Chapter 5 suggest that haplotype sharing PCs reduce bias resulting from 

latent population structure in GWAS and other analysis such as PRS and heritability 

estimation. However these findings are based on a single empirical dataset (the 2016 ALS 

GWAS) which means that they should be treated with due caution until replicated in other 

traits and simulated datasets. Given the rich phenotyping data for multiple complex traits 

and associated geographic data available for samples in the large UK Biobank (Bycroft et 
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al. 2018) this may be a suitable dataset for further evaluating the method. Furthermore, as 

there is emerging evidence of potentially uncorrected recent structure biasing both single 

marker associations and PRS in this dataset (Haworth et al. 2019), which both show a 

residual association with sample location, this dataset presents both a metric to assess 

performance of our method and a problem in need of solving. Should this method prove 

useful in this setting, the singular coancestry matrix generated from such a study could 

become a widely used resource for all researchers studying the many traits within the UK 

Biobank.    

 

However, there are limitations to testing this method in empirical datasets, namely that 

values such as trait heritability or true associated loci are unknown meaning we cannot 

conclusively separate useful correction from over-correction in some cases. Hence 

simulation studies where we can control which variants are associated with the trait, what 

the level of trait heritability is, how trait-associated variants are distributed across the 

genome and how recently the population structure emerged would be invaluable for 

evaluating whether the method comes with any of its own biases. Knowing which variants 

are associated would allow us to assess the false positive and false negative rate under 

the various trait architectures, and demographic models studied. Similarly knowledge of 

trait heritability would enable us to conclusively assess how well this method deals with 

bias from population structure in heritability estimation. Finally being able to test how well 

this method performs in data with differing levels and types population structure (i.e. 

recent vs old; admixed vs not admixed) would be crucial for understanding how applicable 

it is to non-European populations. Developing such a detailed simulation combining both 

realistic population structure and trait genetic architecture is a non-trivial exercise, 

however a similar set of simulations to those carried out by Zaidi et al. (Zaidi and 

Mathieson 2020) may prove a useful starting point.   

6.1.5 - Application of haplotype sharing methods to rare variant association studies 

In Chapters 3-5 we showed that haplotype sharing PCs can detect local population 

structure more sensitively than SNP PCs calculated from unlinked variants, and perform 

better at correcting latent population structure affecting the common variants studied in 

GWAS. However the question remains as to how well these PCs correct confounding in 

rare variants untyped by standard SNP arrays, which have been shown to suffer from 

differential stratification to common variants where environmental risk is unevenly 

distributed in simulation studies (Mathieson and McVean 2012). This is an important 

question as it is possible that much of the remaining differences between true narrow-

sense heritability and SNP-based heritability estimates lies in untyped rare variants, as 
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suggested by empirical studies of height using WGS data (Wainschtein et al. 2019). While 

this empirical study argues that its results are unbiased due to inclusion of large numbers 

of principal components, recent simulations have shown that other methods estimating 

heritability concentrated in rare variants using IBD as a proxy (IBD-GREML) are extremely 

sensitive to population stratification (Evans et al. 2018). Thus correcting for stratification of 

rare variants confounding both genome wide association studies using rare variation and 

indeed heritability estimates considering rarer variants may be crucial to further 

understanding the genetic roots of many traits. Promisingly, a study of IBD sharing in 

Finland has shown a clear relationship between haplotype sharing and variants of a rarer 

allele frequency (A. R. Martin et al. 2018), suggesting that haplotype sharing tracks well 

with rare variant sharing. It follows that PCs based on a haplotype sharing across all 

samples could suitably describe the population structure affecting rare variants, while also 

correcting common variants as seen above. This proposed method, however, comes with 

the caveat of overcorrection as these haplotype PCs could theoretically correct out 

patterns of disease rare variant sharing associated with the trait being studied. Future 

work assessing the suitability of this correction method in datasets with suitably rare 

variation is thus warranted. 

6.1.6 - Expanding our understanding of human history using large scale GWAS 

data 

Analyses in Chapters 3 and 4 applied several population genetics techniques to explore 

the genetic variation in modern individuals from Ireland and the Netherlands, evaluating 

local structure, signatures of historical admixture, changes in structure over time and 

changes in demography. These datasets were both repurposed from a much larger 

GWAS dataset, yet many of their findings were consistent with other studies from these 

countries (e.g. Gilbert et al. (Gilbert et al. 2017) and Abdellaoui et al. (Abdellaoui, 

Hottenga, de Knijff, et al. 2013)), suggesting that ascertainment hasn’t massively 

impacted the usefulness of this data to answer questions about how the past has shaped 

modern genomes. This suggests that the large modern GWAS datasets collected to study 

a range of traits may be similarly repurposed to uncover more features of human history. 

Indeed, many of the techniques used in these chapters are coming of age to be used 

effectively in extremely large datasets: a fast efficient implementation of the 

GLOBETROTTER method developed by Hellenthal et al. (Hellenthal et al. 2014) to detect 

and date human admixtures is undergoing development (Wangkumhang 2020); fast 

scalable IBD-calling methods using the PBWT algorithm have been released (e.g. RaPID 

(Naseri et al. 2019)), which could be used in our length-binned IBD approach from 

Chapter 5; and our pipeline substituting PBWT-paint and Louvain community detection for 
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the ChromoPainter/fineSTRUCTURE pipeline (see Chapter 5) greatly improves 

computational efficiency in detecting population subgroups from large datasets. Future 

work applying these and related methods to large GWAS datasets will likely yield vast 

insights into historical events (e.g. the impact of the Black Death in other countries) 

shaping modern individuals.    
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6.2 - Concluding remark 

In conclusion this thesis has deepened our knowledge of the complex genetics of ALS, 

the population genetics of Ireland and the Netherlands, and finally the extent and impact 

of finescale population structure on both GWAS and downstream analyses. While our 

work on the genetic architecture of ALS in the first results chapter provides novel insights 

into the genetic overlap between ALS and secondary psychiatric and cognitive traits, and 

demonstrates differences in the genetic architecture of ALS across sexes, it is reliant on 

the robustness of modern GWAS analysis to confounding from latent factors. Indeed, 

work in subsequent chapters (Chapters 3 and 4) highlights the extent to which a potential 

confounder, namely finescale population structure, pervades this GWAS data. Given that 

this structure is poorly detected by currently used methods such as SNP PCA, these 

findings have strong implications for GWAS study design in general. To address this 

concern we apply the methods built to detect this finescale structure to correct GWAS 

analysis in the final chapter, demonstrating clear reductions in statistical inflation, with little 

loss of power. Thus, in addition to novel findings regarding genetics of ALS and the 

population history of Ireland and the Netherlands, this thesis contributes an important 

methodological advance which may prove crucial to the robust study of complex traits. 
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Appendix - Supporting material 

Appendix material for Chapter 2 

 

 

Appendix Figure 2.1: Comparing male and female per chromosome heritability 

estimates from GREML shows strong differences in distribution of genetic effects. 

GREML estimates of heritability in males and females show a non-significant linear 

relationship (red dashed line: p=0.98; r2=-0.049). Several chromosomes show strong 

deviation from the 1:1 relationship line (black line) for heritability in males and females 

such as chromosome 9 which harbours the male specific hit in PIP5K1B and chromosome 

17 which harbours male specific hits in UNK, FBF1 and SARM1 both of which show strong 

inflation in heritability in males compared to females.   
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Appendix material for Chapter 3 

 
 

Appendix Figure 3.1: Irish fineSTRUCTURE tree cluster details. 

The fineSTRUCTURE tree presented in Figure 3.1 for Irish clusters with detailed 
breakdown of individual clusters. The individual labels for the clusters describe the 
geographic location of the majority of samples and the numbers of individuals within those 
clusters are provided in brackets. Cluster groups are identical to those defined in Figure 
3.1. 
(Figure reprinted from Byrne et al. (R. P. Byrne et al. 2018)) 
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Appendix Figure 3.2: t-SNE projection of British and Irish SNP data. 

t-SNE projection of the hamming distance matrix for samples from the combined PoBI/Irish 

dataset demonstrates that less global and local structure is contained within independent 

SNPs than in the ChromoPainter coancestry matrix (Compare to Figure 3.6). 

(Figure reprinted from Byrne et al. (R. P. Byrne et al. 2018)) 
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Appendix Figure 3.3: PoBI/Irish fineSTRUCTURE tree cluster details. 

The fineSTRUCTURE tree presented in figure 3.2, 3.3 and 3.6 for British and Irish clusters 

with detailed breakdown of individual clusters. The individual labels for the clusters 

describe the geographic location of the majority of samples and the numbers of individuals 

within those clusters are provided in brackets. Cluster groups are identical to those defined 

in Figure 3.2. 

(Figure reprinted from Byrne et al. (R. P. Byrne et al. 2018)) 
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Appendix Figure 3.4: PoBI maximum concordance fineSTRUCTURE tree cluster 

details. 

The fineSTRUCTURE maximum concordance tree for British clusters used in 

GLOBETROTTER analysis with detailed breakdown of individual clusters. The individual 

labels for the clusters describe the geographic location of the majority of samples and the 

numbers of individuals within those clusters are provided in brackets. Cluster groups 

describe clusters which are neighbouring in the tree and geographically adjacent. 

(Figure reprinted from Byrne et al. (R. P. Byrne et al. 2018)) 
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Appendix Figure 3.5: European maximum concordance fineSTRUCTURE tree cluster 

details. The fineSTRUCTURE maximum concordance tree for European clusters used in 

GLOBETROTTER analysis with detailed breakdown of individual clusters. Additional 

individuals from WTCCC exclusion list have been removed post fineSTRUCTURE 

clustering but prior to GLOBETROTTER analysis and the tree updated to reflect this. The 

individual labels for the clusters describe the geographic location of the majority of 

samples and the numbers of individuals within those clusters are provided in brackets. 

Cluster groups describe clusters which are neighbouring in the tree and geographically 

adjacent. 

(Figure reprinted from Byrne et al. (R. P. Byrne et al. 2018)) 
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Appendix Figure 3.6: Comparison of Linked vs Unlinked fineSTRUCTURE in Ireland 

at 166,139 SNPs. 

Displays ChromoPainter PC1 and PC2 alongside a fineSTRUCTURE Maximum 

Concordance clustering dendrogram for fineSTRUCTURE A.) Linked and B.) Unlinked 

analysis for 991 Irish individuals at the 166,139 SNP positions used for our European 

GLOBETROTTER run. Trees and PCA are coloured at a k = 11 split for ease of 

visualisation. Considerably more structure is apparent in the PCA of the Linked analysis 

indicating that linkage information defines meaningful haplotypes even at this number of 

SNPs. We report “Confidence of ind. assignment” for each method. This metric is the 

confidence of individual assignment to their final cluster based on their assignment across. 

This was on average 84.8% (95% CI: 83.9–85.7%) for the Linked analysis, while in the 

Unlinked analysis this was only 8.06% (95% CI: 8.03–8.09%), suggesting that the final 

clustering assignment in the unlinked mode is extremely uncertain and variable. This 

demonstrates that use of linkage information is informative even at the lowest SNP density 

in this Chapter 3. (Figure reprinted from Byrne et al. (R. P. Byrne et al. 2018)) 
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Appendix Table 3.1: Europe GLOBETROTTER table. 

Cluster Fit.quality. 

2events 

Conclusion Minor Source Major 

Source 

Date 

Estimate 

Lower Upper Prop maxR2 P No 

Admixture 

All Ireland 0.997 One-date Southern Europe 

(FRA(8)) 

Northern 

Europe 

(NOR-SWE-

GER(1)) 

949.473 823.099 1131.356 0.36 0.711 0.000 

NW Ulster 0.998 One-date Southern Europe 

(FRA(9)) 

Northern 

Europe 

(NOR-SWE-

GER(1)) 

1399.838 1141.77 1693.182 0.42 0.172 0.000 

N Leinster/Ulster 0.986 One-date- 

multiway 

Southern Europe 

(FRA(8)) 

Northern 

Europe 

(NOR-SWE-

GER(1)) 

770.882 367.116 1324.096 0.41 0.166 0.000 

Connaught 0.997 One-date Southern Europe 

(FRA(8)) 

Northern 

Europe 

(NOR-SWE-

GER(1)) 

950.909 567.449 1382.689 0.50 0.263 0.000 

Central Leinster 0.996 One-date Southern Europe 

(FRA(8)) 

Northern 

Europe 

(NOR-SWE-

GER(1)) 

1029.596 686.242 1353.035 0.37 0.261 0.000 

S 

Leinster/Munster 

0.998 One-date- 

multiway 

Southern Europe 

(FRA(8)) 

Northern 

Europe 

(NOR-SWE-

GER(1)) 

1029.596 815.532 1235.877 0.45 0.584 0.000 

Wexford 0.996 One-date Northern Europe 

(SWE(41)) 

Southern 

Europe 

(FRA(10)) 

1051.455 198.910 1926.223 0.24 0.097 0.000 

N Munster 0.992 One-date Northern Europe 

(NOR-SWE-

GER(1)) 

Southern 

Europe 

(FRA(9)) 

1216.368 838.765 1836.107 0.47 0.163 0.000 

SW Munster 0.990 One-date Northern Europe 

(NOR-SWE-

GER(1)) 

Southern 

Europe 

(FRA(9)) 

1083.725 397.966 1821.872 0.34 0.084 0.000 

Cork 0.978 No-Admix Northern Europe 

(NOR-SWE-

GER(1)) 

Southern 

Europe 

(FRA(9)) 

1125.783 347.566 2378.011 0.31 0.088 0.020 

Table describing the model fit of GLOBETROTTER for admixture events into Irish clusters 

from Europe (Figure 3.7 and 3.8). 

(Table reprinted from Byrne et al. (R. P. Byrne et al. 2018)) 
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Appendix Table 3.2: British GLOBETROTTER table. 

Cluster fit.quality.

2events 

Conclusion Minor 

Source 

Major 

Source 

Date 

Estimate 

Lower Upper Prop maxR2 P No 

Admixture 

 

All Ireland 

 

0.850 

 

Uncertain 

 

England 

(SE_ENG) 

 

Scotland 

(S_SCOT) 

 

1325.243 

 

1191.224 

 

1458.975 

 

0.380 

 

0.615 

 

0.000 

NW Ulster 0.973 Uncertain Scotland 

(S_SCOT) 

Scotland 

(S_SCOT) 

1538.944 1341.243 1780.356 0.320 0.365 0.000 

N Leinster/Ulster 0.860 No-Admix England 

(SE_ENG) 

Scotland 

(S_SCOT) 

1882.963 1861.926 2235.159 0.370 0.090 0.446 

Connaught 0.986 Uncertain Scotland 

(S_SCOT) 

England 

(SE_ENG) 

1146.397 486.185 1547.760 0.420 0.149 0.000 

Central Leinster 0.976 Uncertain Scotland 

(S_SCOT) 

Scotland 

(S_SCOT) 

1328.593 753.186 1616.627 0.300 0.346 0.010 

S Leinster/Munster 0.964 Uncertain England 

(SE_ENG) 

Scotland 

(S_SCOT) 

1430.666 1105.012 1605.811 0.470 0.371 0.000 

Wexford 0.952 No-Admix England 

(CHE) 

Scotland 

(S_SCOT) 

1713.425 1522.850 2242.600 0.440 0.085 0.743 

N Munster 0.893 No-Admix England 

(SE_ENG) 

Scotland 

(S_SCOT) 

1374.476 905.532 1686.670 0.460 0.088 0.040 

SW Munster 0.864 No-Admix England 

(SE_ENG) 

Scotland 

(S_SCOT) 

1701.700 1499.400 2432.485 0.330 0.190 0.376 

Cork 0.928 No-Admix England 

(SE_ENG) 

Scotland 

(N_SCOT) 

1904.000 1904.000 2826.637 0.430 0.049 0.644 

Table describing the model fit of GLOBETROTTER for admixture events into Irish clusters 

from Britain (Figure 3.7 and 3.8). 

(Table reprinted from Byrne et al. (R. P. Byrne et al. 2018)) 
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Appendix material for Chapter 4 

 

 

Appendix Figure 4.1: Total variation distance (TVD) tree for k=16 split in the 

Netherlands.  

TVD tree analysis provides an alternative view of the relationship between 

fineSTRUCTURE clusters based on their pairwise TVD scores (Figure 4.1a) which should 

be robust to differences in cluster size. Notably this tree prioritises the split between 

NBE/NBW/LIM with the rest of the Netherlands, which may reflect the geographic 

boundary seen in Figure 4.6. This tree is based on mean sharing between clusters and 

may thus miss subtle nuanced relationships where within cluster variation in sharing is 

non-zero. Clusters are coloured and labelled according to scheme in Figure 4.1. 

(Figure reprinted from Byrne et al. (R. P. Byrne et al. 2020)) 
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Appendix Figure 4.2: SOURCEFIND ancestry gradients.  

(a) The Netherlands and its geographical relationship to neighbouring lands. (b) German, 

Belgian, Danish and French haplotypic ancestry profiles estimated using the alternative 

method SOURCEFIND for 1,422 Dutch individuals. Arrows indicate the predominant 

directions along which the ancestry gradients are arranged across the Netherlands. Major 

ancestry sources from the NNLS method (Figure 4.3) are strongly correlated with these 

estimates (r2
DE=0.92; r2

BE=0.97; r2
DK=0.71). Map boundary data from the Database of 

Global Administrative Areas (GADM; https://gadm.org) and Natural Earth. 

(Figure reprinted from Byrne et al. (R. P. Byrne et al. 2020)) 

 

  

https://gadm.org/
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Appendix Figure 4.3: Dutch and European ADMIXTURE CV-error plot.  

Displays the cross-validation (CV) error for ADMIXTURE run with 1-10 components. 

Models with 4 and 5 components are tied for lowest CV error, suggesting choice of either 

is suitable. 

(Figure reprinted from Byrne et al. (R. P. Byrne et al. 2020)) 
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Appendix Figure 4.4: Old and recent IBD sharing per province and per cluster.  

Average sharing of IBD segments between provinces and clusters respectively is 

described for old (short) segments (1-2 cM) in (a) provinces and (c) clusters and for recent 

(long) segments (>7cM) in (b) provinces and (d) clusters. Average sharing of old (short) 

segments is enriched in northern provinces and clusters (a and c). Average sharing of 

recent (long) segments is higher on average within clusters than within provinces, 

indicating haplotypic clustering captures marginally more recent ancestry. 

(Figure reprinted from Byrne et al. (R. P. Byrne et al. 2020)) 
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Appendix Figure 4.5: Ratio of estimated Ne/Census is stable over the past 3 

generations. The red line at 0.33 corresponds to the expected ratio of Ne to census if 

lifespan is 3 times the generation time. Point estimates represent the ratio of estimated Ne 

to census value for a given generation in the full Netherlands dataset, while error bars 

represent 95% confidence interval for this value calculated using 80 bootstrap resamples 

in IBDNe (note this is not necessarily symmetric on the point estimate). 

(Figure reprinted from Byrne et al. (R. P. Byrne et al. 2020)) 
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Appendix Figure 4.6: Convergence of MCMC chains for EEMS run in The 

Netherlands.  

10 independently seeded MCMC chains reach approximate convergence. 

(Figure reprinted from Byrne et al. (R. P. Byrne et al. 2020)) 
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Appendix Figure 4.7: ADMIXTURE modelling for Dutch and European samples.  

Maps depict the regional breakdown of ADMIXTURE components for k=4 split. Dutch 

samples have a high value for admixture component 2, which is next highest in Germany 

and Belgium. Components 2 and 3 show opposing north-south gradients in the 

Netherlands, with component 2 highest in the north and component 3 highest in the south. 

Component 3 is best represented in southern European countries such as Italy. Map 

boundary data from the Database of Global Administrative Areas (GADM; 

https://gadm.org). 

(Figure reprinted from Byrne et al. (R. P. Byrne et al. 2020)) 

 

https://gadm.org/
https://gadm.org/
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Appendix Figure 4.8: Ancestry profile per Dutch cluster group. 

Bar charts displaying the GLOBETROTTER estimated European ancestry contribution 

profile for Dutch cluster groups (Defined in Figure 4.1) from clusters of 4,514 European 

samples (Appendix Figure 3.5). Only donors that make at least a 5% contribution to at 

least one Dutch cluster are displayed with the remaining proportions subsumed into the 

“other” category. Error bars represent a jack-knife approach (Montinaro et al. 2015) leaving 

one chromosome out (22 resamples). Label abbreviations: BEL, Belgium; Den, Denmark; 

FRA, France; GER, Germany. 

(Figure reprinted from Byrne et al. (R. P. Byrne et al. 2020)) 
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Appendix Figure 4.9: Geographic distribution of South Holland clusters from the 

SHOL cluster group.  

Plotted are the 2D kernel density estimates for the geographic spread of samples from 

clusters SHOL (yellow), HOL (blue), SHOL2 (red), and SHOL3 (green) which form the 

SHOL cluster group in Figure 4.1. Kernel density estimates were calculated using the 

stat_density2d function in ggplot2 (R version 3.2.3) with default settings. >80% of samples 

are contained within plotted polygons for each cluster. Notably, although overlapping, 

three of the four clusters show quite distinct geographic ranges. Map boundary data from 

the Database of Global Administrative Areas (GADM; https://gadm.org). 

(Figure reprinted from Byrne et al. (R. P. Byrne et al. 2020)) 

 

 

 

 

https://gadm.org/
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Appendix Table 4.1: Mean pairwise FST (×10-3) for Dutch clusters and European 

groups from Sawcer et al. (Sawcer et al. 2011) 

 

(Table reprinted from Byrne et al. (R. P. Byrne et al. 2020)) 
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Appendix material for Chapter 5 

 

 

 

Appendix Figure 5.1: LDSC intercepts from ALS GWAS using haplotype PCs vs SNP 

PCs.  

Displays LDSC intercepts (points) and 95% confidence intervals (whiskers) for (a) a single 

population GWAS and (b) a multi-population GWAS of ALS, fitting PCs calculated from 

haplotype sharing matrices (black) and SNPs (red) as covariates. Using PCs from 

haplotype sharing matrices reduces the LDSC intercept relative to using SNP PCs, 

suggesting haplotype sharing matrices correct for confounding not captured by SNP PCA. 

Error bars represent 95% confidence intervals centred on the LDSC intercepts. 

Abbreviations: CP PCA, ChromoPainter PCA; LDSC, LD score regression; PBWT-paint, 

positional Burrows-Wheeler transform-paint.  

 

NB: This analysis was run with a small number of individuals with relatedness over 0.075 

removed (reviewer request). It is clear from comparison with Table 5.1 and Figure 5.11 for 

the 20 PC run that this exclusion has no effect on the results, hence the analysis is 

expected to be unchanged by this exclusion.  

(Figure reprinted from Byrne et al. (R. P. Byrne et al. 2020)) 
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Appendix Figure 5.2: Louvain clustering third iteration breakdown. 

A breakdown of proportions of each cluster from the third iteration of Louvain community 

detection on the multi-population dataset (n=35,985). Each row represents a single cluster, 

with proportions of samples in that cluster from each country recorded. Notably most 

clusters are composed almost entirely of samples from a single country or two related 

countries with known immigration between them (e.g. Cluster on row 12 - Belgium and the 

Netherlands). Several sub country clusters are detected in the Netherlands, Italy, Finland, 

Sweden and the UK, many of which have recorded examples of finescale population 

structure from single population studies. 
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Appendix Figure 5.3: Correlation of per chromosome ALS heritability estimates 

corrected using PBWT-paint PCs and SNP PCs. 

Per chromosome heritability estimates for ALS calculated using GREML with 20 PBWT 

PCs as covariates (Y-axis) are regressed against estimates with 20 SNP PCs as 

covariates (X-axis). Despite consistently lower estimates from the PBWT-paint corrected 

model, there is a strong correlation between the two methods, indicating that there are few 

major differences estimated in the distribution of heritability from the two methods.   
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Appendix Figure 5.4: Heritability estimates corrected with PBWT-paint retain 

evidence of polygenicity. 

Per chromosome heritability estimates (GREML) corrected using 20 SNP PCs as 

covariates (left) or 20 PBWT-paint PCs (right) are plotted against chromosome length to 

investigate the distribution of heritability across the genome from each method. Both 

methods demonstrate a significant linear relationship between chromosome length and 

heritability, suggesting heritability is driven by many loci relatively evenly spread across the 

genome (i.e. polygenicity). Slopes from the two methods are practically identical, indicating 

there is equal evidence of polygenic signal in ALS from both the SNP PC corrected model 

(left) and PBWT-paint PC corrected model (right).  
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Appendix Table 5.1: Sample breakdown for the 2016 ALS GWAS dataset. 

Stratum Country Cases Controls Total Platform 

sBE1 Belgium 299 317 616 Illumina370K 

sBE2 Belgium 205 242 447 IlluminaOmniExpress 

sFIN1 Finland 378 378 756 Illumina370K 

sFIN2 Finland 135 97 232 Illumina1M+IlluminaOmniExpress 

sFR1 France 155 654 809 Illumina317K 

sFR2 France 327 1005 1332 Illumina550K+IlluminaOmniExpress 

sGER1 Germany 518 258 776 Illumina550K 

sGER2 Germany 1399 648 2047 Illumina550K+IlluminaCoreExome 

sIR1 Ireland 308 331 639 Illumina550K+Illumina610K 

sIR2 Ireland 264 443 707 IlluminaOmniExpress 

sIT1 Italy 382 244 626 Illumina610K+Illumina550K 

sIT2 Italy 290 93 383 IlluminaOmniExpress 

sIT3 Italy 1715 1075 2790 Illumina660W 

sNL1 Netherlands 423 420 843 Illumina317K 

sNL2 Netherlands 145 4882 5027 Illumina370K+Illumina550K 

sNL3 Netherlands 952 1829 2781 IlluminaOmniExpress 

sNL4 Netherlands 596 533 1129 Illumina2.5M 

sIB1 Portugal+Spain 126 99 225 IlluminaOmniExpress 

sSW1 Sweden 288 268 556 Illumina370K 

sSW2 Sweden 232 235 467 IlluminaOmniExpress 

sSWISS1 Switzerland 203 221 424 IlluminaOmniExpress 

sUK1 United Kingdom 168 159 327 Illumina317K 

sUK2 United Kingdom 614 2687 3301 Illumina550K+Illumina1M 

sUK3 United Kingdom 1032 2502 3534 Illumina1M+IlluminaOmniExpress 

sUS1 United states 598 1339 1937 Illumina317K+Illumina370K 

sUS2 United states 266 513 779 Illumina550K 

sUS3 United states 559 2003 2562 Illumina1M+IlluminaOmniExpress 

Breakdown of sample numbers, Country of origin and genotyping platform for each 

stratum from the 2016 ALS GWAS dataset (n=36,052) (van Rheenen et al. 2016) used in 

Chapter 5. Table compiled from Supplementary tables 1,4 and 5 from the source paper 

(van Rheenen et al. 2016) 
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Appendix Table 5.2: Geographic clustering of SNP and cp-PCs for Dutch only 

dataset. 

 

PC 

SNP Pcs ChromoPainter Pcs 

Moran’s I p Moran’s I p 

1 3.03E-01 1.00E-04 3.10E-01 1.00E-04 

2 1.76E-01 1.00E-04 2.39E-01 1.00E-04 

3 1.22E-01 1.00E-04 1.73E-01 1.00E-04 

4 7.81E-02 1.00E-04 2.12E-01 1.00E-04 

5 5.37E-02 1.00E-04 1.38E-01 1.00E-04 

6 6.65E-03 5.08E-02 1.40E-01 1.00E-04 

7 2.16E-04 5.36E-01 1.08E-01 1.00E-04 

8 5.02E-03 9.47E-02 1.42E-01 1.00E-04 

9 6.40E-03 5.56E-02 1.08E-01 1.00E-04 

10 1.09E-02 7.00E-03 1.08E-01 1.00E-04 

11 -2.17E-03 9.19E-01 1.05E-01 1.00E-04 

12 2.26E-03 2.87E-01 4.23E-02 1.00E-04 

13 4.62E-03 1.21E-01 9.66E-02 1.00E-04 

14 5.80E-05 5.57E-01 6.91E-02 1.00E-04 

15 2.55E-03 2.81E-01 9.45E-02 1.00E-04 

16 7.21E-03 3.77E-02 7.07E-02 1.00E-04 

17 9.73E-04 4.37E-01 7.99E-02 1.00E-04 
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18 -5.15E-03 5.81E-01 7.19E-02 1.00E-04 

19 -3.70E-03 8.20E-01 9.60E-02 1.00E-04 

20 9.29E-03 1.50E-02 3.49E-02 1.00E-04 

Geographic clustering of SNP and ChromoPainter PCs for 1,352 samples from the 

Netherlands measured using Moran’s I. Significant instances of clustering passing the 

Bonferroni adjusted significance threshold (p<0.0025) are highlighted in bold. Notably there 

is significant evidence of clustering for at least 20 PCs when using ChromoPainter PCs, but 

only 5 PCs when using SNP based PCs. 
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Appendix Table 5.3: GREML per chromosome heritability estimates from 2016 ALS 

GWAS under SNP and PBWT-paint PC corrections.      

 

Chr 

SNP PC corrected PBWT PC corrected  

p difference 

h2 SE h2 SE 

1 7.00E-03 1.45E-03 4.51E-03 1.36E-03 7.65E-01 

2 3.61E-03 1.33E-03 1.17E-03 1.21E-03 5.19E-01 

3 3.33E-03 1.21E-03 2.23E-03 1.14E-03 7.84E-01 

4 4.19E-03 1.22E-03 3.07E-03 1.18E-03 8.29E-01 

5 5.27E-03 1.30E-03 4.58E-03 1.25E-03 9.21E-01 

6 2.04E-03 1.08E-03 1.64E-04 9.50E-04 3.59E-01 

7 4.66E-03 1.22E-03 3.03E-03 1.14E-03 7.69E-01 

8 1.59E-03 9.93E-04 6.76E-04 8.66E-04 5.97E-01 

9 5.98E-03 1.20E-03 4.48E-03 1.13E-03 8.42E-01 

10 4.31E-03 1.19E-03 2.94E-03 1.13E-03 7.93E-01 

11 2.63E-03 1.05E-03 6.82E-04 9.21E-04 4.74E-01 

12 2.32E-03 1.05E-03 1.77E-03 1.01E-03 8.49E-01 

13 2.82E-03 1.01E-03 2.02E-03 9.57E-04 8.17E-01 

14 3.22E-03 9.78E-04 1.84E-03 8.94E-04 7.09E-01 

15 2.21E-03 8.90E-04 1.47E-03 8.28E-04 7.81E-01 

16 3.13E-03 9.67E-04 2.19E-03 9.07E-04 8.04E-01 

17 4.02E-03 9.96E-04 2.47E-03 8.94E-04 7.42E-01 
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18 1.42E-03 8.69E-04 3.64E-04 7.91E-04 4.71E-01 

19 6.44E-04 7.38E-04 3.48E-04 7.11E-04 6.86E-01 

20 1.44E-03 8.04E-04 6.86E-04 7.31E-04 6.36E-01 

21 9.18E-04 6.55E-04 2.81E-04 5.96E-04 5.07E-01 

22 1.58E-03 7.08E-04 6.02E-04 6.12E-04 5.64E-01 

Estimates of SNP heritability for ALS from the 2016 ALS GWAS dataset partitioned by 

chromosome, using 20 SNP PCs or 20 PBWT-paint PCs as covariates in the model. No 

chromosomes show significant differences (p difference) in heritability estimates across 

methods.  
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Abstract

Previous studies of the genetic landscape of Ireland have suggested homogeneity, with

population substructure undetectable using single-marker methods. Here we have har-

nessed the haplotype-based method fineSTRUCTURE in an Irish genome-wide SNP data-

set, identifying 23 discrete genetic clusters which segregate with geographical provenance.

Cluster diversity is pronounced in the west of Ireland but reduced in the east where older

structure has been eroded by historical migrations. Accordingly, when populations from the

neighbouring island of Britain are included, a west-east cline of Celtic-British ancestry is

revealed along with a particularly striking correlation between haplotypes and geography

across both islands. A strong relationship is revealed between subsets of Northern Irish and

Scottish populations, where discordant genetic and geographic affinities reflect major migra-

tions in recent centuries. Additionally, Irish genetic proximity of all Scottish samples likely

reflects older strata of communication across the narrowest inter-island crossing. Using

GLOBETROTTER we detected Irish admixture signals from Britain and Europe and esti-

mated dates for events consistent with the historical migrations of the Norse-Vikings, the

Anglo-Normans and the British Plantations. The influence of the former is greater than previ-

ously estimated from Y chromosome haplotypes. In all, we paint a new picture of the genetic

landscape of Ireland, revealing structure which should be considered in the design of studies

examining rare genetic variation and its association with traits.

Author summary

A recent genetic study of the UK (People of the British Isles; PoBI) expanded our under-

standing of population history of the islands, using newly-developed, powerful techniques

that harness the rich information embedded in chunks of genetic code called haplotypes.

These methods revealed subtle regional diversity across the UK, and, using genetic data
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alone, timed key migration events into southeast England and Orkney. We have extended

these methods to Ireland, identifying regional differences in genetics across the island that

adhere to geography at a resolution not previously reported. Our study reveals relative

western diversity and eastern homogeneity in Ireland owing to a history of settlement

concentrated on the east coast and longstanding Celtic diversity in the west. We show that

Irish Celtic diversity enriches the findings of PoBI; haplotypes mirror geography across

Britain and Ireland, with relic Celtic populations contributing greatly to haplotypic diver-

sity. Finally, we used genetic information to date migrations into Ireland from Europe

and Britain consistent with historical records of Viking and Norman invasions, demon-

strating the signatures of these migrations the on modern Irish genome. Our findings

demonstrate that genetic structure exists in even small isolated populations, which has

important implications for population-based genetic association studies.

Introduction

Situated at the northwestern edge of Europe, Ireland is the continent’s third largest island,

with a modern-day population of approximately 6.4 million. The island is politically parti-

tioned into the Republic of Ireland and Northern Ireland, with the latter forming part of the

United Kingdom (UK) alongside the neighbouring island of Britain. Alternative divisions sep-

arate Ireland into four provinces reflecting early historical divisions: Ulster to the north,

including Northern Ireland; Leinster (east); Munster (south) and Connacht (west). Humans

have continuously inhabited Ireland for around 10,000 years [1], though it is not until after the

demographic upheavals of the Early Bronze Age (circa 2200 BCE), that strong genetic continu-

ity between ancient and modern Irish populations is observed [2]. Linguistically, the island’s

earliest attested language forms part of the Insular Celtic family, specifically the Gaelic branch,

whose historic range also extended to include many regions of Scotland, via maritime connec-

tions with Ulster [3,4]. A second branch of Insular Celtic, the Brittonic languages, had been

spoken across much of Britain up until the introduction of Anglo-Saxon in the 5th and 6th

centuries, by which time they were diversifying into Cornish, Welsh and Cumbric dialects [5].

Since the establishment of written history, numerous settlements and invasions of Ireland

from the neighbouring island of Britain and continental Europe have been recorded. This

includes Norse-Vikings (9th-12th century), especially in east Leinster, and Anglo-Normans

(12th-14th century), who invaded through Wexford in the southeast and established English

rule mainly from an area later called the Pale in northeast Leinster [6]. There has also been

continuous movement of people from Britain, in particular during the 16-17th century Planta-

tion periods during which Gaelic and Norman lands were systematically colonized by English

and Scottish settlers. These events had a particularly enduring impact in Ulster in comparison

with other planted regions such as Munster. As with the previous Norman invasion, the less

fertile west of the country (Connacht) remained largely untouched during this period.

The genetic contributions of these migratory events cannot be considered mutually inde-

pendent, given that they derive from either related Germanic populations (such as the Vikings

and their purported Norman descendants) or from other Celtic populations inhabiting Britain,

which had themselves been subjected to mass Germanic influx from Anglo-Saxon migrations

and later Viking and Norman invasions [7]. Moreover, each movement of people originated

from northern Europe, a region which had witnessed a mass homogenizing of genetic varia-

tion during the migrations of the Early Bronze Age, possibly linked to Indo-European

Insular Celtic population structure in Ireland and Britain
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language spread. [8,9]. However, each event had a geographic and temporal focal point on the

island, which may be detectable in local population structure.

Previous genome-wide surveys have detected little to no structure in Ireland using methods

such as principal component analysis (PCA) on independent markers, concluding that the

Irish population is genetically homogenous [10]. However, runs of homozygosity are relatively

long and frequent in Ireland [10] and correlate negatively with population density and diver-

sity of grandparental origins [11], suggesting that low ancestral mobility may have preserved

regional genetic legacies within Ireland, which may be detectable in modern genomes as local

population structure embedded within haplotypes. This is further supported by the restricted

regional distributions of certain Y chromosome haplotypes [12,13].

The haplotype-based methods ChromoPainter and fineSTRUCTURE [14] were recently

used to uncover hidden genetic structure among the people of modern Britain [7]. These

approaches exploit the rich information available within haplotypes (usually statistically

phased) to identify clusters of genetically distinct individuals with a resolution that could not

be attained using single-marker methods. In doing so, the People of the British Isles (PoBI)

study was able to identify discrete genetic clusters of individuals that strongly segregate with

geographical regions within Britain, though notably, structure was undetectable across a large

southeastern portion of the island. However, although this study sampled over 2,000 individu-

als, only 44 were from Northern Ireland with none from the remainder of the island. Ireland

was also excluded from admixture and ancestry analyses due to the confounding effects of the

island acting as “a source and a sink for ancestry from the UK”. With this focus on a single

island, the PoBI study has an obvious limit, despite its title.

Here, we have used the methods of the PoBI study to explore fine-grained Irish population

substructure. We first investigate Ireland on its own, then we consider the genetic substructure

observed on the island in the context of Britain and continental Europe. Using modern indi-

viduals from these two sources as surrogates for historical populations, we apply the GLOBE-

TROTTER model to infer admixture events into Ireland and we consider these in the context

of historically recorded invasions and migrations. Our inclusion of Irish data with previously-

published data from Britain presents a more complete representation of genetic ancestry in the

contemporary populations of the British Isles, providing a comprehensive population genetic

perspective of the peopling of these islands.

Results and discussion

Celtic population structure in Ireland

We used ChromoPainter [14] to identify haplotypic similarities within a genome-wide single

nucleotide polymorphism (SNP) dataset of individuals from the Republic of Ireland and

Northern Ireland (n = 1,035, including 44 from the PoBI study), in which local geographic ori-

gin was known for a subset (n = 588). Clustering the resulting coancestry matrix using fineS-

TRUCTURE identified 23 clusters, demonstrating local population structure within Ireland to

a level not previously reported, with apparent geographical, sociopolitical and ancestral corre-

lates (Fig 1). All clusters were robustly defined, with total variation distance (TVD) p-values

less than 0.001 (S1 and S2 Tables). We projected the ChromoPainter coancestry matrix in

lower-dimensional space using principal component analysis (PCA) and, to ease interpretation

and for visual brevity with labels, we defined 9 cluster groups that formed higher order clades

in the fineSTRUCTURE dendrogram, overlapped in PC space and were sampled from geo-

graphically contiguous regions. These cluster groups also showed robust definition by TVD

analysis (S3 Table and S4 Table), suggesting they represent a meaningful grouping of the

data. ChromoPainter PCA revealed a tight relationship between haplotypic similarity and

Insular Celtic population structure in Ireland and Britain
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Fig 1. Fine-grained population structure in Ireland. (A) fineSTRUCTURE clustering dendrogram for 1,035 Irish individuals. Twenty-three clusters are defined, which

are combined into cluster groups for clusters that are neighbouring in the dendrogram, overlapping in principal component space (B) and sampled from regions that are

geographically contiguous. Details for each cluster in the dendrogram are provided in S1 Fig. (B) Principal components analysis (PCA) of haplotypic similarity, based on

ChromoPainter coancestry matrix for Irish individuals. Points are coloured according to cluster groups defined in (A); the median location of each cluster group is

plotted. (C) Map of Ireland showing the sampling location for a subset of 588 individuals analysed in (A) and (B), coloured by cluster group. Points have been randomly

jittered within a radius of 5 km to preserve anonymity. Precise sampling location for 44 Northern Irish individuals from the People of the British Isles dataset was

unknown; these individuals are plotted geometrically in a circle. The map and administrative boundaries were produced using data from the database of Global

Administrative Areas (GADM; https://gadm.org). (D) “British admixture component” (ADMIXTURE estimates; k = 2) for Irish cluster groups. This component has the

largest contribution in ancient Anglo-Saxons and the SEE cluster. (E) Linear regression of principal component 2 (B) versus British admixture component (r2 = 0.43;

p< 2×10−16). Points are coloured by cluster group. (Standard error for ADMIXTURE point estimates presented in S11 Fig.).

https://doi.org/10.1371/journal.pgen.1007152.g001
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geographical proximity, with ChromoPainter principal component (PC) 1 roughly describing

a north to south cline and PC2 largely describing an east to west cline (Fig 1B).

At a high level, both ChromoPainter PCA and fineSTRUCTURE clustering loosely sepa-

rated the historical provinces of Ireland (Ulster, Leinster, Munster and Connacht) suggesting

that these socially constructed territories may have had an impact on genetic structure within

Ireland which is deeply embedded in time. Careful inspection of the tree ordering and the

PCA revealed more nuanced relations between the provinces; for example south Leinster clus-

ters share more haplotypes with those from north Munster than with their central and north

Leinster counterparts. The geographical distribution of this deep subdivision of Leinster

resembles pre-Norman territorial boundaries which divided Ireland into fifths (cúige), with

north Leinster a kingdom of its own known as Meath (Mide) [15]. However interpreted, the

firm implication of the observed clustering is that despite its previously reported homogeneity,

the modern Irish population exhibits genetic structure that is subtly but detectably affected by

ancestral population structure conferred by geographical distance and, possibly, ancestral

social structure.

ChromoPainter PC1 demonstrated high diversity amongst clusters from the west coast,

which may be attributed to longstanding residual ancient (possibly Celtic) structure in regions

largely unaffected by historical migration. Alternatively, genetic clusters may also have

diverged as a consequence of differential influence from outside populations, as this diversity

between western genetic clusters cannot be explained in terms of geographic distance alone.

South Munster (SMN) and Cork (CRK) clusters branch off first in the fineSTRUCTURE tree

and show distinct separation from their neighbouring north Munster clusters (NMN), indicat-

ing that south Munster’s haplotypic makeup is more distinct from its neighbouring regions

and the remaining regions than any other cluster. TVD analysis supports this observation (S1

Table and S3 Table), with the Cork cluster in particular showing strong differentiation from

other clusters. This may reflect the persistent isolating effects of the mountain ranges sur-

rounding the south Munster counties of Cork and Kerry, restricting gene flow with the rest of

Ireland and preserving older structure.

In contrast to the west of Ireland, eastern individuals exhibited relative homogeneity; a sim-

ilar pattern was observed in the PoBI study [7], in which all samples in a large region in south-

east England formed a single indivisible cluster of genetically similar individuals comprising

almost half the dataset. However, while east coast clusters in Ireland are the largest and demon-

strate strong cluster integrity, the largest of these (Central Leinster, CLN) comprises roughly a

fifth of our dataset (S1 Fig), hence they are dwarfed proportionally in both number and geo-

graphical extent by the southeast England cluster (SEE), suggesting that deeper structure per-

sists in eastern Ireland than in southeast England. The overall pattern of western diversity and

eastern homogeneity in Ireland may be explained by increased gene flow and migration into

and across the east coast of Ireland from geographically proximal regions, the closest of which

is the neighbouring island of Britain.

To explore this, we estimated the extent of admixture per individual in the Irish dataset

from Britain, using samples from the PoBI dataset as a reference [7], along with eighteen ancient

British individuals from the Iron Age, Roman and Anglo-Saxon periods in northeast and south-

east England [16,17]. Using an unsupervised ADMIXTURE analysis [18], we observed that one

of the ADMIXTURE clusters (k = 2) comprises the totality of ancestry of several Anglo-Saxon

individuals and forms the largest proportion in British groups, with varying representation

across Irish clusters (S8 Fig). For simplicity we will call this the British component, which was

among the lowest for individuals falling in Irish west coast fineSTRUCTURE clusters, including

the south Munster and Cork cluster groups (Fig 1D), supporting the interpretation that these

regions differ in terms of restricted haplotypic contribution from Britain. Analysis of variance

Insular Celtic population structure in Ireland and Britain
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of the British admixture component in cluster groups showed a significant difference (p<

2×10−16), indicating a role for British Anglo-Saxon admixture in distinguishing clusters, and

ChromoPainter PC2 was correlated with the British component (p< 2×10−16), explaining

approximately 43% of the variance. PC2 therefore captures an east to west Anglo-Celtic cline in

Irish ancestry. This may explain the relative eastern homogeneity observed in Ireland, which

could be a result of the greater English influence in Leinster and the Pale during the period of

British rule in Ireland following the Norman invasion, or simply geographic proximity of the

Irish east coast to Britain. Notably, the Ulster cluster group harboured an exceptionally large

proportion of the British component (Fig 1D and 1E), undoubtedly reflecting the strong influ-

ence of the Ulster Plantations in the 17th century and its residual effect on the ethnically British

population that has remained.

The genetic structure of the British Isles

The genetic substructure observed in Ireland is consistent with long term geographic diversifi-

cation of Celtic populations and the continuity shown between modern and Early Bronze Age

Irish people [2]. However, this diversity is weaker on the east coast in a manner that correlates

with British admixture, suggesting a role for recent migrations in eroding this structure. We

therefore further investigated the relationship between Ireland and Britain by generating a

ChromoPainter coancestry matrix for all Irish and PoBI data combined (n = 3,008). Clustering

with fineSTRUCTURE revealed 50 distinct clusters that segregated geographically, both on a

cohort-wide and local level (Fig 2). Projecting this coancestry matrix in PC space revealed a

striking concordance between haplotypes and geography (sampling regions were defined

using Nomenclature of Territorial Units for Statistics 2010; [19]) for ChromoPainter PCs 1

and 4, reminiscent of previous observations for single marker-based summaries of genetic var-

iation within European populations [20].

The principal split in the combined Irish and British data defined two genetic islands, both

in the fineSTRUCTURE tree and in ChromoPainter PC1 (Fig 2). This distinction between

Irish and British genetic data was particularly pronounced when we applied t-distributed sto-

chastic neighbour embedding (t-SNE) [21] to the ChromoPainter coancestry matrix (Fig 3).

t-SNE is a nonlinear dimensionality reduction method that attempts to provide an optimal

low-dimensional embedding of data by preserving both local and global structure, placing sim-

ilar points close to each other and dissimilar points far apart. In principle, a two-dimensional

t-SNE plot can therefore summarize more of the overall differences between groups than those

described by any two principal components, although the relative group sizes, positions and

distances on the plot are less straightforward to interpret. Applying t-SNE to the Irish and Brit-

ish coancestry matrix captured the salient structure described by ChromoPainter PCA, and

particularly validates that observed in the plot of PC1 vs PC4. This clearly distinguishes the

two islands, discerns their north-south and west-east genetic structure and places Orkney and

north/south Wales, whose variation is captured in PCs 2 and 3 respectively (Fig 4), as indepen-

dent entities from the bulk of the British data.

As observed in Fig 1, ChromoPainter PCA in Ireland and Britain (Fig 2) demonstrates east-

ern homogeneity for each island and relative diversity on the west coast. The southeast

England (SEE) cluster group is centred at zero on PC4, representing a group with predomi-

nantly Anglo-Saxon-like ancestry (S8 Fig). Clusters representing Celtic populations harbour-

ing less Anglo-Saxon influence separate out above and below SEE on PC4. Notably, northern

Irish clusters (NLU), Scottish (NISC, SSC and NSC), Cumbria (CUM) and North Wales

(NWA) all separate out at a mutually similar level, representing northern Celtic populations.

The southern Celtic populations Cornwall (COR), south Wales (SWA) and south Munster

Insular Celtic population structure in Ireland and Britain

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007152 January 25, 2018 6 / 22

https://doi.org/10.1371/journal.pgen.1007152


Fig 2. Genes mirror geography in the British Isles. (A) fineSTRUCTURE clustering dendrogram for combined Irish and British data. Data principally split into Irish

and British groups before subdividing into a total of 50 distinct clusters, which are combined into cluster groups for clusters that formed clades in the dendrogram,

overlapped in principal component space (B) and were sampled from regions that are geographically contiguous. Names and labels follow the geographical provenance

for the majority of data within the cluster group. Details for each cluster in the dendrogram are provided in S2 Fig. (B) Principal component analysis (PCA) of haplotypic

similarity based on the ChromoPainter coancestry matrix, coloured by cluster group with their median locations labelled. We have chosen to present PC1 versus PC4

here as these components capture new information regarding correlation between haplotypic variation across Britain and Ireland and geography, while PC2 and PC3 (Fig

4) capture previously reported splitting for Orkney and Wales, respectively, from Britain [7]. A map of Ireland and Britain is shown for comparison, coloured by

sampling regions for cluster groups, the boundaries of which are defined based on the Nomenclature of Territorial Units for Statistics (NUTS 2010), with some regions

combined. Sampling regions are coloured by the cluster group with the majority presence in the sampling region; some sampling regions have significant minority cluster

group representations as well, for example the Northern Ireland sampling region (UKN0; NUTS 2010) is majorly explained by the NICS cluster group but also has

significant representation from the NLU cluster group. The PCA plot has been rotated clockwise by 5 degrees to highlight its similarity with the geographical map of the

Ireland and Britain. NI, Northern Ireland; PC, principal component. Cluster groups that share names with groups from Fig 1 (NLU; SMN; CLN; CNN) have an average

of 80% of their samples shared with the initial cluster groups. The map and administrative boundaries were produced using data from the database of Global

Administrative Areas (GADM; https://gadm.org), note some boundaries have been subsumed or modified to better reflect sampling regions.

https://doi.org/10.1371/journal.pgen.1007152.g002
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(SMN) also separate out on similar levels, indicating some shared haplotypic variation between

geographically proximate Celtic populations across both Islands. It is notable that after the

split of the ancestrally divergent Orkney, successive PCs describe diversity in British popula-

tions where “Anglo-saxonization” was repelled [22]. PC3 is dominated by Welsh variation,

while PC4 in turn splits North and South Wales significantly, placing south Wales adjacent to

Cornwall and north Wales at the other extreme with Cumbria, all enclaves where Brittonic lan-

guages persisted.

Scotland is another region of Britain which successfully retained its Celtic language, how-

ever in contrast to Welsh and Cornish clusters, the majority of Scottish variation is described

Fig 3. t-distributed stochastic neighbour embedding (t-SNE) of Irish and British coancestry matrix. (A) fineSTRUCTURE dendrogram with clusters and cluster

groups defined as in Fig 2. (B) Two-dimensional t-SNE embedding of ChromoPainter coancestry matrix, with median locations for cluster groups plotted. As t-SNE is a

stochastic method, different runs produce different solutions to the 2-dimensional embedding; shown here is a typical result. t-SNE performed significantly better with

the ChromoPainter coancestry matrix than with Hamming distances (identity-by-state) computed over single SNP markers (S9 Fig). The map and administrative

boundaries were produced using data from the database of Global Administrative Areas (GADM; https://gadm.org), note some boundaries have been subsumed or

modified to better reflect sampling regions.

https://doi.org/10.1371/journal.pgen.1007152.g003
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by ChromoPainter PC1. The three definable Scottish groups do not drive any further compo-

nents of variation (up to PC7 considered) and fall away from the bulk of British variation on

PC1 towards Irish clusters. This is most strikingly observed for the southern Scottish cluster

(SSC) which fell amongst Irish branches in the fineSTRUCTURE tree, overlapping with sam-

ples from the north of Ireland in PC space (Fig 2 and Fig 5). In an interesting symmetry, many

Northern Irish samples clustered strongly with southern Scottish and northern English sam-

ples, defining the Northern Irish/Cumbrian/Scottish (NICS) cluster group. More generally, by

modelling Irish genomes as a linear mixture of haplotypes from British clusters, we found that

Fig 4. Principal components 2 and 3 of combined Irish and British coancestry matrix. (A) fineSTRUCTURE clustering dendrogram for combined Irish and British

data, with cluster groups defined as in Fig 2. Immediately following the principal inter-island split, Orkney and Wales branch in sequence, consistent with previous

observations. (B) Principal component analysis (PCA) of haplotypic similarity based on the ChromoPainter coancestry matrix, coloured by cluster group with their

median locations labelled. PC2 captures an Orkney split, while PC3 captures a Welsh split.

https://doi.org/10.1371/journal.pgen.1007152.g004
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Scottish and northern English samples donated more haplotypes to clusters in the north of Ire-

land than to the south, reflecting an overall correlation between Scottish/north English contri-

bution and PC1 position in Fig 1 (Linear regression: p< 2×10−16, r2 = 0.24).

Fig 5. Inter-island exchange of haplotypes between the north of Ireland and northern Britain. The boxplots show the distribution of individuals on principal

component (PC) 1 for each island and for specific sampling regions (Scotland/Northern Ireland) and cluster groups (SSC and NICS; see Fig 2). A substantial proportion of

Northern Irish individuals fall within the expected range for Scottish individuals in PC space and vice versa. This exchange is particularly pronounced for Northern Irish

and Scottish individuals that fall within the NICS and SSC cluster groups (Fig 2), respectively.

https://doi.org/10.1371/journal.pgen.1007152.g005
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North to south variation in Ireland and Britain are therefore not independent, reflecting

major gene flow between the north of Ireland and Scotland (Fig 5) which resonates with three

layers of historical contacts. First, the presence of individuals with strong Irish affinity among

the third generation PoBI Scottish sample can be plausibly attributed to major economic

migration from Ireland in the 19th and 20th centuries [6]. Second, the large proportion of

Northern Irish who retain genomes indistinguishable from those sampled in Scotland accords

with the major settlements (including the Ulster Plantation) of mainly Scottish farmers follow-

ing the 16th Century Elizabethan conquest of Ireland which led to these forming the majority

of the Ulster population. Third, the suspected Irish colonisation of Scotland through the Dál
Riata maritime kingdom, which expanded across Ulster and the west coast of Scotland in the

6th and 7th centuries, linked to the introduction and spread of Gaelic languages [3]. Such a

migratory event could work to homogenise older layers of Scottish population structure, in a

similar manner as noted on the east coasts of Britain and Ireland. Earlier communications and

movements across the Irish Sea are also likely, which at its narrowest point separates Ireland

from Scotland by approximately 20 km.

Genomic footprints of migration into Ireland

To temporally anchor the major historical admixture events into Ireland we used GLOBE-

TROTTER [23] with modern surrogate populations represented by 4,514 Europeans [24] and

1,973 individuals from the PoBI dataset [7], excluding individuals sampled from Northern Ire-

land. Of all the European populations considered, ancestral influence in Irish genomes was

best represented by modern Scandinavians and northern Europeans, with a significant single-

date one-source admixture event overlapping the historical period of the Norse-Viking settle-

ments in Ireland (p < 0.01; fit quality FQB > 0.985; Fig 6). This was recapitulated to varying

degrees in specific genetically- and geographically-defined groups within Ireland, with the

strongest signals in south and central Leinster (the largest recorded Viking settlement in Ire-

land was Dubh linn in present-day Dublin), followed by Connacht and north Leinster/Ulster

(S5 Fig; S6 Table). This suggests a contribution of historical Viking settlement to the contem-

porary Irish genome and contrasts with previous estimates of Viking ancestry in Ireland based

on Y chromosome haplotypes, which have been very low [25]. The modern-day paucity of

Norse-Viking Y chromosome haplotypes may be a consequence of drift with the small patrilin-

eal effective population size, or could have social origins with Norse males having less influ-

ence after their military defeat and demise as an identifiable community in the 11th century,

with persistence of the autosomal signal through recombination.

European admixture date estimates in northwest Ulster did not overlap the Viking age but

did include the Norman period and the Plantations (S5 Fig). This may indicate limited Viking

activity in Ulster, or, that due to the similarity in sources for the Viking and Anglo-Norman

invasions and the Plantations, GLOBETROTTER failed to disentangle the earlier events from

the later. This is not unexpected given the extent of the Plantations in Ulster [26], the relative

timings of the invasions and the degree of Viking involvement in Britain and Europe. Indeed,

when considering Britain as an admixing source using PoBI data, GLOBETROTTER date esti-

mates for northwest Ulster overlapped the Plantations, although for other regions in Ireland

(and for Ireland considered as a whole) these admixture events were less clearly defined, likely

reflecting a history of continuous gene flow between the two islands in the prevailing years (Fig

6; S5 Fig and S7 Table). The all-Ireland point estimate for admixture from Britain spanned the

Norman settlement instead of the Plantations, but GLOBETROTTER was unable to adequately

resolve the model details for this event (fit quality FQB < 0.985; Fig 6), indicating that this esti-

mate is not a good reflection of the true timings and extent of admixture from Britain. As noted
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Fig 6. All-Ireland GLOBETROTTER admixture date estimates for European and British surrogate admixing populations. A summary of the date estimates and

95% confidence intervals for inferred admixture events into Ireland from European and British admixing sources is shown in (A), with ancestry proportion estimates

for each historical source population for the two events and example coancestry curves shown in (B). In the coancestry curves Relative joint probability estimates the

pairwise probability that two haplotype chunks separated by a given genetic distance come from the two modelled source populations respectively (i.e. FRA(8) and

NOR-SG); if a single admixture event occurred, these curves are expected to decay exponentially at a rate corresponding to the number of generations since the event.

The green fitted line describes this GLOBETROTTER fitted exponential decay for the coancestry curve. If the sources come from the same ancestral group the slope of

this curve will be negative (as with FRA(8) vs FRA(8)), while a positive slope indicates that sources come from different admixing groups (as with FRA(8) vs NOR-SG).
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in the PoBI study, the overall influence of British admixture in Ireland (and vice versa) has

involved extensive and constant gene flow before, during and after the major population move-

ments detailed in Fig 6, with particular swells of peopling during the Plantations. The genetic

legacies of the populations of Ireland and Britain are therefore extensively intertwined and,

unlike admixture from northern Europe, too complex to model with GLOBETROTTER.

Conclusions

Our results show that population structure is detectable on the island of Ireland and is consis-

tent with a combination of the homogenizing effect of geographically punctuated admixture

and diversification among Celtic subpopulations. The inclusion of Irish data with British sam-

ples from the PoBI study provides an anchor for Celtic ancestry in the British Isles, filling out

the genetic landscape of the islands. It is also clear that historical migrations into Ireland have

left a greater genomic footprint than previously anticipated; our consideration of autosomal

data escapes the constraints of patrilineal genetics and has allowed us to detect a much greater

Viking influence than previously estimated with Y chromosome data. Although the genetic

imprint of the British Plantations is much harder to delineate, the inter-island exchange and

clustering observed between present-day individuals from Northern Ireland and Scotland sig-

nals the enduring impact of these historical movements of people.

Unlike the PoBI study, Irish data were not specifically selected for longstanding pure ances-

try in each geographic region (for example, having four grandparents in a location), but

instead represent a repurposed medical dataset. Our data are therefore more representative of

those that are typically used in population-based genome-wide surveys for trait-associated

genetic variation; as these studies survey increasingly rare genetic variants in larger popula-

tions, the geospatial segregation of rare haplotypes and variants will become increasingly

important, especially when environmental effects and interactions play a role [27]. Our obser-

vation that these haplotypes are intricately tied to geography in Ireland and Britain highlights

the importance of considering fine-grained population structure in future studies.

Methods

Ethics statement

All Irish subjects provided written informed consent to participate in genetic research and the

study was approved by the Beaumont Hospital Research Ethics Committee in Dublin, Ireland

under approval number 05/49 following guidelines laid out at www.beaumontethics.ie.

Data and quality control

Our study included three datasets of genotype data: a population-based Irish ALS case-control

dataset (n = 991) incorporating existing [28] and newly-genotyped samples, the People of the

British Isles dataset (EGA accession ID EGAD00010000632; n = 2,020) [7] and a pan-Euro-

pean dataset derived from a genome-wide association study (GWAS) for multiple sclerosis

The adjacent bar plot shows the inferred genetic composition of the historical admixing sources modelled as a mixture of the sampled modern populations. A European

admixture event was estimated by GLOBETROTTER corresponding to the historical record of the Viking age, with major contributions from sources similar to modern

Scandinavians and northern Europeans and minor contributions from southern European-like sources. For admixture date estimates from British-like sources the

influence of the Norman settlement and the Plantations could not be disentangled, with the point estimate date for admixture falling between these two eras and

GLOBETROTTER unable to adequately resolve source and proportion details of admixture event (fit quality FQB< 0.985). The relative noise of the coancestry curves

reflects the uncertainty of the British event. Cluster labels (for the European clustering dendrogram, see S4 Fig; for the PoBI clustering dendrogram, see S3 Fig): FRA(8),

France cluster 8; NOR-SG, Norway, with significant minor representations from Sweden and Germany; SE_ENG, southeast England; N_SCOT(4) northern Scotland

cluster 4.

https://doi.org/10.1371/journal.pgen.1007152.g006
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(MS; EGA accession ID EGAD00000000120; n = 4,514) [24] (S1 Text: Populations). All Irish

subjects provided written informed consent to participate in genetic research and the study

was approved by the Beaumont Hospital Research Ethics Committee in Dublin, Ireland. We

applied quality control to each dataset using PLINK 1.9 [29] and merged data as detailed in

Supplementary Methods (S1 Text: Quality Control). Briefly, we excluded both infrequent and

high-missingness SNPs; individuals with high missingness, excessive heterozygosity or cryptic

relationships to other individuals in the data; and finally individuals who had been removed

during QC carried out in the source papers.

As the European dataset included patients and controls from a GWAS for MS, we addition-

ally removed SNPs in a 15 Mb region surrounding the strongly associated HLA locus on chro-

mosome 6 (GRCh37 position chr6:22,915,594–37,945,593), as is consistent with previous

studies using the data [7,30]. This was to avoid haplotypic bias arising from this association.

The final post-QC Irish (n = 991), British (n = 2,020) and European datasets (n = 4,514)

contained 407,750 SNPs, 521,883 SNPs and 363,396 SNPs at zero missingness, respectively.

The final merge of British and Irish data (n = 3,008) and European and Irish data (n = 5,506)

contained 214,632 SNPs and 166,139 SNPs respectively at zero missingness. Further details

regarding samples and QC per dataset are described in Supplementary Methods (S1 Text: Pop-

ulations and S1 Text: QC)

Geographic information was available for 544 of the 991 Irish samples in the form of home

address. To preserve anonymity this was jittered in all maps containing patients (Fig 1 and S5

Fig). For all British and some Northern Irish data, sample location was supplied by the authors

of PoBI [7] as membership of 35 sampling regions. Finally, for European data sampling coun-

try was available [24]. Full details of treatment of samples for mapping are available in Supple-

mentary methods (S1 Text: Mapping.)

Phasing

We phased autosomal genotypes in each dataset and merged dataset with SHAPEIT V2 [31]

using the 1000 Genomes (Phase 3) as a reference panel [32]. A pre-phasing step was carried

out (—check) to remove any SNPs which did not correctly align to the 1000 genomes reference

panel. Samples were then split by chromosome and phased together using default settings and

the GRCh37 build genetic map to estimate linkage disequilibrium.

fineSTRUCTURE analysis

To detect population structure we performed ChromoPainter/fineSTRUCTURE analysis [14]

on each of the population datasets (Irish, British and European) individually, and then sepa-

rately on a merge of the Irish and British datasets. In brief, we used ChromoPainter to paint

each individual using all other individuals (-a 0 0) using default settings with the exception that

the number of “chunks” per region value was set to 50 (-k 50) for all analyses including Irish

and British individuals to account for the longer haplotypes observed in these datasets, in keep-

ing with previous studies [7,30]. The fineSTRUCTURE algorithm was then run on the resulting

coancestry matrix to determine genetic clusters based on patterns of haplotype sharing. Further

details are included in the Supplementary Methods (S1 Text: fineSTRUCTURE analysis).

Cluster robustness

We assessed the robustness of Irish clusters by calculating total variation distance (TVD) as

described in the PoBI study [7]. This metric compares the “copying vectors” of pair of clusters.

Here we define the copying vector for a given cluster A as a vector of the average lengths of

DNA donated by each cluster to individuals within cluster A under the ChromoPainter model.
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Hence the magnitude of differences between copying vectors of two clusters reflects the dis-

tances between those clusters in terms of their haplotypic sharing with other clusters. TVD can

therefore be used to determine whether fineSTRUCTURE clusters detect significant differ-

ences in haplotype sharing, and hence ancestry.

We tested whether the observed clustering performed better than chance by permuting

(1,000 times) the individuals in each of our cluster pairings into clusters of the same size, and

calculating the number of permutations that exceeded our original TVD score. If 1,000 unique

permutations were not possible, the maximum number of unique permutations was used

instead. P-values were calculated based on the number of permutations greater than or equal

to the original TVD statistic. All p-values for Irish clusters were less than or equal to 0.001 indi-

cating robust clustering (S1 Table and S2 Table). We also applied these methods to our Irish

cluster groups (Fig 1) and observed that these are statistically distinct (S3 Table and S4 Table).

To provide an additional measure of population differentiation between “cluster groups”

we calculated mean FST between groups using PLINK 1.9 [29] which is reported in S5 Table.

Estimating admixture dates

We used the GLOBETROTTER method [23] to infer and date admixture events from Europe

and Britain into Ireland separately. GLOBETROTTER uses output from ChromoPainter to

estimate the pairwise likelihood of being painted by any two surrogate populations at a variety

of genetic distances to generate coancestry curves. Assuming a single admixture event, these

curves are expected to follow an exponential decay rate equal to the time in generations since

admixture occurred [23]. As the true admixing sources are modelled as a linear mixture of sur-

rogate sources rather than individual sources this method has the advantage of not requiring

exactly sampled source populations.

For our analysis we ran GLOBETROTTER with default settings twice to detect simple

admixture into the island of Ireland as a whole, as well as into individual genetic clusters from

the Republic of Ireland (S5 Fig). European clusters (S4 Fig) and British clusters (S3 Fig) were

used as surrogate populations to represent the admixing sources in two independent analyses.

Target and donor clusters for this analysis were defined using the fineSTRUCTURE maximum

concordance tree method described in PoBI [7] to ensure homogeneity (Supplementary meth-

ods S1 Text: fineSTRUCTURE analysis); hence, the Irish target clusters that were used differ

slightly from those in Fig 1. Briefly, for each surrogate population separately (Europe and Brit-

ain) we applied ChromoPainter v2 to paint Ireland and the surrogate population using the sur-

rogate population as donors and generated a copying matrix (chunk lengths) for all

individuals, and also 10 painting samples for each Irish individual as recommended. GLOBE-

TROTTER was then run for 5 mixing iterations twice, first using the null.ind:1 setting to test

for any evidence of admixture and then null.ind:0 setting to infer dates and sources. We ran

100 bootstraps for admixture date and calculated the probability of a null model of no admix-

ture as the proportion of nonsensical inferred dates (<1 or >400 generations) produced by the

null.ind:1 model, as in the GLOBETROTTER study [23]. Confidence intervals for the date

were calculated from the bootstraps for the standard model (null.ind: 0) using the empirical

bootstrap method. (See S1 Text: Globetrotter analysis of Admixture Dates for further details).

A generation time of 28 years was assumed as in previous studies of this nature [7,23] for con-

version of all date estimates from generations to years.

Ancestry proportion estimation

We assessed the ancestral make up of Ireland in terms of Europe and Britain for each Republic

of Ireland cluster (see Estimating admixture dates) to explore variation in ancestry across
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Ireland. To do so we modelled each cluster’s average genome as a linear mixture of the Euro-

pean and British donor populations using the method described in the PoBI study [7] and

implemented in GLOBETROTTER (num.mixing.iterations: 0). This approach uses the

ChromoPainter chunk length output to estimate the proportion of DNA which most closely

coalesces with each individual from the donor populations, correcting for noise caused by

similarities between donor populations whose splits may have occurred after the coalescence

event. This is achieved through a multiple linear regression of the form Yp = B1X1 + B2X2 + . . .

+BgXg, where Yp is a vector of the averaged length (cM) of DNA that individuals across cluster

P copy from each donor group, normalised to sum to 1 across all donor groups, and Xg is the

vector describing the average proportion of DNA that individuals in donor group g copy from

other donor groups including their own. The coefficients of this equation B1. . .Bg are thus

interpreted as the “cleaned” proportions of the genome ancestral to each donor group. The

equation is solved using a non-negative-least squares function such that Bg� 0 and the sum of

proportions across groups equals 1.

To assess uncertainty of these ancestry proportion estimates we again follow PoBI [7] and

resample from the ChromoPainter chunk length output to generate Np pseudo individuals for

each cluster P. We achieve this by randomly sampling each of the autosomal chromosome pairs

1–22 with replacement Np times from the pool of all autosomal chromosomes pairs 1–22 across

all individuals within that cluster, and then randomly summing sets of 22 of these chromosome

pairs to generate each pseudo individual. We then use these Np pseudo individuals as a boot-

strap for Yp above and solve for Bg. We resampled 1,000 times per cluster and used the inner

95% quantiles of this sampling distribution to estimate confidence intervals for the sample.

For comparison we implemented an alternative delete one chromosome jack-knife

approach as in Montinaro et al. [33], and estimated the s.e. as in ref. [34] (S6 Fig and S7 Fig).

We also used this linear regression model to determine per-individual ancestry proportion

estimates from different British clusters across Ireland, treating each individual as a cluster to

enable us to assess whether gene flow from northern Britain had a gradient across Ireland.

ADMIXTURE

To estimate the proportion of British admixture into Irish clusters, ADMIXTURE [18] was run

on the combined PoBI and Irish datasets, alongside eighteen ancient individuals from the Iron

Age, Roman and Anglo-Saxon periods of northeast and southeast England [16,17]. Pseudo-hap-

loid genotypes were generated for the ancient genomes at the relevant variant sites, as is standard

for low coverage data, and subsequently merged with the modern diploid dataset. Data were then

pruned for linkage disequilibrium between SNPs using PLINK 1.9 (r2> 0.25 in a sliding window

of 1000 SNPs advancing 50 SNPs each time) resulting in 86,481 remaining SNPs. No missingness

was allowed for modern individuals, with a range of 33,643–85,553 sites used for ancient samples.

Following ADMIXTURE estimation, cross-validation error was calculated using the—cv flag for 5

iterations to determine the K value for which the model has the best predictive accuracy (K = 2).

Additionally 200 bootstraps of the data were run to estimate the standard error of the parameters

using the–B flag. This British admixture component was regressed against PC2 of the Irish Chro-

moPainter coancestry matrix to determine the role of British ancestry in the differentiation of

PC2 in Ireland. We also performed analysis of variance (ANOVA) on British admixture compo-

nent per cluster group to identify if cluster by cluster differences existed.

PCA and t-SNE

ChromoPainter coancestry matrices were projected in lower-dimensional space using princi-

pal component analysis (PCA) and t-distributed stochastic neighbour embedding (t-SNE)
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[21]. PCA was run using the default approach provided as part of the fineSTRUCTURE R

tools [14] (http://www.paintmychromosomes.com). The R package Rtsne (https://github.com/

jkrijthe/Rtsne) was used to construct a 2-dimensional embedding of the ChromoPainter coan-

cestry matrix over 5,000 iterations using a perplexity of 30, a learning rate of 200 and an initial

PCA calculated over 100 dimensions. Several t-SNE runs were performed to assess concor-

dance between embedding solutions.

Other statistical analyses

All linear regressions and ANOVA tests were carried out in base statistics package in R version

3.2.3 [35].

Supporting information

S1 Fig. Irish fineSTRUCTURE tree cluster details. The fineSTRUCTURE tree presented in

Fig 1 for Irish clusters with detailed breakdown of individual clusters. The individual labels for

the clusters describe the geographic location of the majority of samples and the numbers of

individuals within those clusters are provided in brackets. Cluster groups are identical to those

defined in Fig 1.

(PDF)

S2 Fig. PoBI/Irish fineSTRUCTURE tree cluster details. The fineSTRUCTURE tree pre-

sented in Fig 2 for British and Irish clusters with detailed breakdown of individual clusters.

The individual labels for the clusters describe the geographic location of the majority of sam-

ples and the numbers of individuals within those clusters are provided in brackets. Cluster

groups are identical to those defined in Fig 2.

(PDF)

S3 Fig. PoBI maximum concordance fineSTRUCTURE tree cluster details. The fineS-

TRUCTURE maximum concordance tree for British clusters used in GLOBETROTTER analy-

sis with detailed breakdown of individual clusters. The individual labels for the clusters

describe the geographic location of the majority of samples and the numbers of individuals

within those clusters are provided in brackets. Cluster groups describe clusters which are

neighbouring in the tree and geographically adjacent.

(PDF)

S4 Fig. European maximum concordance fineSTRUCTURE tree cluster details. The fineS-

TRUCTURE maximum concordance tree for European clusters used in GLOBETROTTER

analysis with detailed breakdown of individual clusters. Additional individuals from WTCCC

exclusion list have been removed post fineSTRUCTURE clustering but prior to GLOBETROT-

TER analysis and the tree updated to reflect this. The individual labels for the clusters describe

the geographic location of the majority of samples and the numbers of individuals within

those clusters are provided in brackets. Cluster groups describe clusters which are neighbour-

ing in the tree and geographically adjacent.

(PDF)

S5 Fig. GLOBETROTTER breakdown for clusters in the Republic of Ireland. A summary

of the date estimates and 95% confidence intervals for inferred admixture events into Irish

clusters from European (red) and British (blue) admixing sources is shown in (A). Faded lines

highlight clusters in which there was no significant evidence of admixture (P>0.01). (B) Sum-

marises the fineSTRUCTURE maximum concordance tree cluster assignment for the 991 Irish

samples used as target populations in GLOBETROTTER estimates in (A). We present the
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fineSTRUCTURE clustering dendrogram, a PCA of the coancestry matrix coloured by cluster

group and a map of Ireland showing the sampling location for a subset of 544 individuals for

which locational information was available, coloured by cluster group. Points have been ran-

domly jittered within a radius of 5 km to preserve anonymity. The map and administrative

boundaries were produced using data from the database of Global Administrative Areas

(GADM; https://gadm.org).

(PDF)

S6 Fig. British ancestry profile in Irish clusters. Bar charts displaying the GLOBETROTTER

estimated British ancestry profile for Republic of Ireland clusters (Defined in S5 Fig; Only clusters

with 35+ samples displayed) from British clusters inferred from 2,017 individuals using fineS-

TRUCTURE (Defined in S3 Fig). Individuals from Northern Ireland were excluded to prevent

masking of ancestry leaving 1973 individuals. Only donors that make at least a 2.5% contribution

to at least one Irish cluster are displayed with the remaining proportions subsumed into the

“other” category. Error bars represent the bootstrapping procedure with 10000 resamples (Black)

and a jack-knife approach using 22 resamples (Red). Label abbreviations: S_SCOT, south Scot-

land; SE_ENG, southeast England; CHE, Cheshire; KEN, Kent; BWA, border Wales; DEV,

Devon; COR, Cornwall; N_SCOT north Scotland; SWA, south Wales; NWA, north Wales.

(PDF)

S7 Fig. European ancestry profile in Irish clusters. Bar charts displaying the GLOBETROT-

TER estimated European ancestry profile for republic of Ireland clusters (Defined in S5 Fig;

Only samples with 35+ samples displayed) from European clusters inferred from 4,514 indi-

viduals using fineSTRUCTURE (Defined in S4 Fig). Only donors that make at least a 2.5%

contribution to at least one Irish cluster are displayed with the remaining proportions sub-

sumed into the “other” category. Error bars represent the bootstrapping procedure with 10000

resamples (Black) and a jack-knife approach using 22 resamples (Red). Label abbreviations:

NOR-SG, Norway, with significant minor representations from Sweden and Germany; FRA,

France; NOR, Norway; BEL, Belgium.

(PDF)

S8 Fig. ADMIXTURE analysis for PoBI/Irish cluster groups with ancient British samples.

ADMIXTURE component (k = 2) for each cluster group in the PoBI/Irish fineSTRUCTURE

tree (S2 Fig) and 18 Ancient British Samples from the Iron age (IA; n = 4), Anglo-Saxon (AS;

n = 8) and Roman (RM; n = 6) periods. Admixture proportions are averaged across each clus-

ter group (left) for brevity of display, while individual proportions are plotted for ancient sam-

ples. The Anglo-Saxon individuals are best described by the red component. This component

is high in British cluster groups from areas affected by the Anglo-Saxon invasion such as the

large SEE cluster, while relatively low in Celtic populations such as Ireland, Scotland and

Wales.

(PDF)

S9 Fig. t-distributed stochastic neighbour embedding (t-SNE) of Irish and British geno-

types. A t-SNE solution for 2-dimensional embedding is displayed for Irish and British geno-

type data using Hamming distances (identity-by-state). As t-SNE is a stochastic method,

different runs produce different solutions to the 2-dimensional embedding; shown here is a

typical result. Clusters and cluster groups are defined as in Fig 2, with median locations for

cluster groups plotted. t-SNE performed significantly worse with the Hamming distances

(identity-by-state) computed over single SNP markers than with the fineSTRUCTURE coan-

cestry matrix (Fig 3).

(PDF)
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S10 Fig. Comparison of Linked vs Unlinked fineSTRUCTURE in Ireland at 166,139 SNPs.

Displays ChromoPainter PC1 and PC2 alongside a fineSTRUCTURE Maximum Concordance

clustering dendrogram for A.) Linked and B.) Unlinked analysis for 991 Irish individuals at

the 166,139 SNP positions used for our European GLOBETROTTER run. Trees and PCA are

coloured at a k = 11 split for ease of visualisation. Considerably more structure is apparent in

the PCA of the Linked analysis indicating that linkage information defines meaningful haplo-

types even at this resolution. We report “Confidence of ind. assignment” for each method.

This metric is the confidence of individual assignment to their final cluster based on their

assignment across all MCMC samples defined in PoBI [7]. This was on average 84.8% (95%

CI: 83.9–85.7%) for the Linked analysis, while in the Unlinked analysis this was only 8.06%

(95% CI: 8.03–8.09%), suggesting that the final clustering assignment in the unlinked mode is

extremely uncertain and variable.

(PDF)

S11 Fig. Bootstraps for British ADMIXTURE component estimates. Standard error calcu-

lated using 200 bootstrap resamples for each point in linear regression in Fig 1 (E.) are plotted

using error bars to show variability in ADMIXTURE point estimates.

(PDF)

S1 Table. TVD table for Irish clusters. Total Variation Distance (TVD) matrix between Irish

clusters described in Fig 1 and S1 Fig demonstrating the degree of differentiation between clus-

ters.

(ODS)

S2 Table. TVD p-values for Irish clusters. P-values that individuals are assigned randomly to

pairs of clusters based on permutation testing using TVD statistic from S1 Table.

(ODS)

S3 Table. TVD table for Irish cluster groups. Total Variation Distance (TVD) matrix

between Irish cluster groups described in Fig 1 and S1 Fig demonstrating the degree of differ-

entiation between Cluster Groups.

(ODS)

S4 Table. TVD p-values for Irish cluster groups. P-values that individuals are assigned ran-

domly to pairs of cluster groups based on permutation testing using TVD statistic from S3

Table.

(ODS)

S5 Table. FST table for Irish cluster groups. Mean FST statistic between Irish cluster groups

calculated using PLINK 1.9.

(ODS)

S6 Table. European GLOBETROTTER table. Table describing the model fit of GLOBE-

TROTTER for admixture events into Irish clusters from Europe in Fig 6 and S5 Fig.

(ODS)

S7 Table. British GLOBETROTTER table. Table describing the model fit of GLOBETROT-

TER for admixture events into Irish clusters from Britain in Fig 6 and S5 Fig.

(ODS)

S1 Text. Supplementary methods.

(PDF)
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ARTICLE

Dutch population structure across space, time and
GWAS design
Ross P. Byrne 1✉, Wouter van Rheenen 2, Project MinE ALS GWAS Consortium*, Leonard H. van den Berg2,

Jan H. Veldink 2 & Russell L. McLaughlin 1✉

Previous genetic studies have identified local population structure within the Netherlands;

however their resolution is limited by use of unlinked markers and absence of external

reference data. Here we apply advanced haplotype sharing methods (ChromoPainter/

fineSTRUCTURE) to study fine-grained population genetic structure and demographic change

across the Netherlands using genome-wide single nucleotide polymorphism data (1,626

individuals) with associated geography (1,422 individuals). We identify 40 haplotypic clusters

exhibiting strong north/south variation and fine-scale differentiation within provinces.

Clustering is tied to country-wide ancestry gradients from neighbouring lands and to locally

restricted gene flow across major Dutch rivers. North-south structure is temporally stable,

with west-east differentiation more transient, potentially influenced by migrations during the

middle ages. Despite superexponential population growth, regional demographic estimates

reveal population crashes contemporaneous with the Black Death. Within Dutch and inter-

national data, GWAS incorporating fine-grained haplotypic covariates are less confounded

than standard methods.
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The Netherlands is a densely populated country on the
northwestern edge of the European continent, bounded by
Germany, Belgium and the North Sea. The country is

divided into twelve provinces and has a complex demographic
history, with occupation by several Germanic peoples since the
collapse of the Roman Empire, including the Frisians, the Low
Saxons and the Franks. Over 17 million individuals now inhabit
this relatively small region (41,500 km2), making it one of the
most densely populated countries in Europe. Despite its small
geographical size, previous genetic studies of the people of the
Netherlands have demonstrated coarse population structure that
correlates with its geography, as well as apparent heterogeneity in
effective population sizes across provinces1,2. These observations
suggest that the demographic past of the Dutch population has
left residual signatures in its present regional genetic structure;
however, this has not been fully explained in the context of
neighbouring populations and thus far the use of unlinked genetic
markers have limited the resolution at which this structure can be
described. This resolution limit also confines the extent to which
the confounding effects of population structure can be controlled
in genomic studies of health and disease such as genome-wide
association studies (GWAS). As these studies continue to seek
ever-rarer genetic variation with ever-increasing cohort sizes,
intricate understanding and fine control of population structure is
becoming increasingly relevant, but increasingly challenging3.

Recent studies have showcased the power of leveraging shared
haplotypes to uncover and characterise previously unrecognised
fine-grained genetic structure within populations, yielding novel
insights into the demographic composition and history of Britain
and Ireland4–7, Finland8, Japan9, Italy10, France11 and Spain12.
Haplotype sharing has also revealed genetic affinities between
populations13, enabling inference of historical admixture events
using modern populations as proxies for ancestral admixing
sources14. Furthermore, geographic information can be integrated
to model genetic similarity as a function of spatial distance15 to
infer demographic mobility within or between populations; one
approach uses the Wishart distribution to estimate and map a
surface of effective migration rates based on deviations from a
pure isolation by distance model16, allowing migrational cold
spots to be inferred which may derive from geographical
boundaries such as rivers and mountains. Almost half of the area
of the Netherlands is reclaimed from the sea and its con-
temporary land surface is densely subdivided by human-made
waterways and naturally-occurring rivers, including the Rhine
(Dutch: Rijn), Meuse (Maas), Waal and IJssel. These rivers have
been speculatively linked to genetic differentiation between
northern and southern Dutch subpopulations in previous work1;
however the explicit relationship between Dutch genetic diversity
and movement of people within the Netherlands has not been
directly modelled.

The Dutch have previously received special interest as a model
population1,2 and form a major component of substantial ongo-
ing efforts to better understand human health, disease, demo-
graphy and evolution. For example, at the time of writing, over
10% of all studies listed in the NHGRI-EBI genome-wide asso-
ciation study (GWAS) catalogue17 include the Netherlands in
their “Country of recruitment” metadata. As well as offering
insights into demography and human history, refined population
genetic studies are important to identify and adequately control
confounding effects in genomic studies of health and disease,
especially if spatially structured environmental factors contribute
substantially to variance in phenotype, which in particular
impacts rare variants18.

In this study, we harness shared haplotypes to examine the
fine-grained genetic structure and demography of the Nether-
lands. We show that Dutch population structure is more granular

than previously recognised, and is ancient and persistent over
time. The strength and stability of the observed structure appears
to be tied to the relationship of the Netherlands to neighbouring
lands and to its own internal geography, and has likely been
shaped over history by migration, but preserved in recent gen-
erations by enduring sedentism of genetically similar individuals
within regions. We observe genetic evidence of regional popula-
tion crashes during the Black Death and a countrywide popula-
tion surge in the 17th century. Finally, we show that the complex
genetic structure observed demonstrably confounds GWAS;
however, through analysis of the Netherlands and more extensive
international data19, we demonstrate that using shared haplotypes
as GWAS covariates significantly reduces this confounding over
standard single-marker methods.

Results
The genetic structure of the Dutch population. We mapped the
haplotypic coancestry profiles of 1626 Dutch individuals using
ChromoPainter20 and clustered the resulting matrix using
fineSTRUCTURE20, identifying 40 genetic clusters at the highest
level of the hierarchical tree which segregated with geographical
provenance. We explored the clustering from the finest (k= 40)
to the coarsest level (k= 2), settling on k= 16 as it captured the
major regional splits sufficiently with little redundancy. Clusters
at this level were robustly defined by total variation distance
(TVD; p < 0.001) and fixation index (FST; Fig. 1a); remarkably,
some FST values between particularly differentiated Dutch clusters
were comparable in magnitude to estimates between European
countries (calculated using data from ref. 21; Supplementary
Table 1). Some clusters had expansive geographical ranges (for
example NHFG, representing individuals from North Holland,
Friesland and Groningen), while others neatly distinguished
populations on a sub-provincial level (for example, NBE and
NBW, representing east and west regions of North Brabant). For
visualisation we projected the ChromoPainter coancestry matrix
in lower dimensional space using principal component analysis
(PCA; Fig. 1b) and assigned cluster labels based on majority
sampling location (available for 1422 individuals), arranging
neighbouring and genetically similar clusters into cluster groups,
as with previous work6. The first principal component (PC) of
coancestry followed a strong north-south trend (latitude vs mean
PC1 per town r2= 0.52; p= 6.8 × 10−72) with PC2 generally
explained by a west-east gradient (longitude vs mean PC2 per
town r2= 0.29; p= 3.4 × 10−33). Further PCs demonstrated more
complex relationships with geography (Supplementary Fig. 1).

As previously observed in different populations6, the distribu-
tion of individuals in this genetic projection generally resembled
their geographic distribution (Fig. 1c), with some exceptions. For
example, North Brabant is geographically further north than
Limburg, but is further separated by PC1 from northern clusters.
We explored the possibility that this could instead be explained
by relative ancestral affinities to neighbouring lands by modelling
the genome of each Dutch individual as a linear mixture of
European sources (obtained from ref. 21) using ChromoPainter,
retaining source groups that best matched Dutch individuals for
at least 5% of the genome4 (Fig. 2). The resulting profiles of
German, Belgian and Danish ancestries were significantly
autocorrelated (pDE, pBE < 0.0001; pDK < 0.001; Moran’s I and
Mantel’s test) and spatially arranged along geographical direc-
tions S66°W, N73°E and S73°E respectively, approximately
corresponding to declining ancestry gradients directed away
from the German and Belgian borders and the North Sea
boundary (Fig. 2; r2DE ¼ 0:31; r2BE ¼ 0:35; r2DK ¼ 0:12;
pDE ¼ 9:4 ´ 10�119;pBE ¼ 2:7 ´ 10�133; pDK ¼ 1:1 ´ 10�39). The
spatial distribution of French ancestry was comparatively
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uniform, with only a modest correlation due east (r2FR ¼ 0:014;
pFR ¼ 9:5 ´ 10�6). The general trend across the Netherlands was
thus of complementary Belgian and German ancestral affinities,
decaying with distance from the respective borders. North
Brabant, however, showed a greater Belgian profile than Limburg,
despite similar, substantial Belgian frontiers in both Dutch
provinces. Conversely, the German ancestry profile of Limburg
greatly exceeded that of North Brabant, reflecting its 200-
kilometre border with Germany and centuries of consequent
demographic contact and likely genetic admixture.

Genome flux and stasis in the Netherlands. To explore temporal
trends in Dutch population structure we called genomic segments
of pairwise identity-by-descent (IBD) using RefinedIBD22. An
IBD haplotype sharing matrix is conceptually similar to a
ChromoPainter coancestry matrix23, but trades some sensitivity
to be more explicitly interpretable. As IBD segment length is
inversely related to age24,25, different length intervals can inform

on structure at different time depths. Total pairwise IBD between
Dutch individuals mirrored the structure observed with Chro-
moPainter (Fig. 3a), with 8 distinct clusters identified in the IBD
sharing matrix that broadly segregated with geography and
recapitulated some of the important splits obtained from fineS-
TRUCTURE, most strikingly the west-east split in North Brabant.
Decomposing total IBD by centiMorgan (cM) length into short
(1–3 cM), medium (3–5 cM) and long (5–7 cM) bins, we observed
stability over time of north-south structure and the emergence of
west-east structure embedded in 3–5 cM segments (Fig. 3b),
corresponding to an expected time depth around 1120 years
ago25. As this date and the structure observed is dependent on the
(arbitrary) thresholds set for IBD segment length bins, we have
also provided an interactive environment in which Dutch
population structure can be explored across a range of IBD seg-
ment bins (http://bioinf.gen.tcd.ie/ctg/nlibd).

Although these observations could potentially be biased by
power to detect population structure in longer and shorter bins,
the temporally volatile west-east structure contrasts with the
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Fig. 1 The genetic structure of the people of the Netherlands. a fineSTRUCTURE dendrogram of ChromoPainter coancestry matrix showing clustering of
1626 Dutch individuals based on haplotypic similarity. Associated total variation distance (TVD) and fixation index statistics between clusters are shown in
the matrix. Permutation testing of TVD yields p < 0.001 for all cluster pairs, indicating that clustering is non-random. Cluster labels derive from Dutch
provinces and are arranged into cluster groups for genetically and geographically similar clusters (circled labels). b The first two principal components
(PCs) of ChromoPainter coancestry matrix for all individuals analysed. Points represent individuals and are coloured and labelled by cluster group.
c Geographical distribution of 1422 sampled individuals, coloured by cluster groups defined in a. Labels represent provinces of the Netherlands. Map
boundary data from the Database of Global Administrative Areas (GADM; https://gadm.org).
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stability and persistence of old north-south structure and possibly
represents a genomic signature of historical demographic flux in
the region and its surrounding lands. With this in mind, we
investigated possible admixture from outside demographic
groups using GLOBETROTTER14 with 4514 European indivi-
duals21 representing modern proxies for admixing sources.
Across the Dutch sample, significant admixture dating to 1088
CE (95% CI 1004–1111 CE) was inferred with the major

contributing source best modelled by modern Germans and the
minor source best modelled by southern European groups
(France, Spain) (Table 1). This is supported by single-marker
ADMIXTURE component estimates showing that the Nether-
lands has the closest profile to Germanic groups (Supplementary
Fig. 3) and is consistent with the ancestry profile gradients
detailed in Fig. 2. The timing of the inferred 11th century event
was stable across Dutch fineSTRUCTURE clusters (to varying
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Table 1 GLOBETROTTER date and source estimates for admixture into the Netherlands.

Cluster group Conclusion Minor Major Prop Date CE 95% CI CE p

SHOL One-date multiway SPA-FRA(2) GER(5) 0.25 1169 1086–1244 0
ZEE One-date-multiway FRA(8) GER(5) 0.4 1172 771–1773 0
NBE One-date-multiway FRA(8) GER(5) 0.4 1085 939–1262 0
NBW One-date-multiway GER(5) BEL(5) 0.34 1013 668–1383 0
NEN One-date SPA-FRA(2) GER(5) 0.19 1172 925–1364 0
DRO One-date-multiway FRA(8) GER(5) 0.16 1390 1116–1932 0
GLO One-date SPA-FRA(2) GER(5) 0.14 1128 893–1306 0
CEN One-date SPA-FRA(2) GER(5) 0.18 1049 854–1244 0
GEL One-date SPA-FRA(2) GER(5) 0.17 1189 1046–1391 0
NHFG One-date GER(9) DEN(5) 0.36 1060 759–1290 0
LIM One-date ITA(8) GER(5) 0.34 1162 1044–1351 0
ALL One-date SPA-FRA(2) GER(5) 0.25 1088 1004–1111 0

Minor and Major represent inferred proxy admixing sources. Prop represents estimated minor admixture proportion. Admixing sources are derived from ChromoPainter/fineSTRUCTURE clustering of
4514 European reference individuals (Methods); labels represent principal country of origin (SPAin, FRAnce, GERmany, BELgium, DENmark) with cluster numbers arbitrarily assigned within countries.
Example coancestry curves are shown in Supplementary Fig. 2.
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degrees of confidence), suggesting that the signal represents an
important period in the establishment of the modern Dutch
genome (Table 1); however, given the state of demographic flux
in Europe at the time, its exact historical correlate is open to
interpretation. Notably, a significant admixture event with a
major Danish source was inferred between 759 and 1290 CE in
the NHFG cluster group (representing Dutch northern seaboard
provinces); this period spans a historical period of recorded
Danish Viking contact and rule in northern Dutch territories.

In addition to influence from outside populations, the
population structure detailed in Figs. 1 and 3 has likely been
shaped by independent demographic histories within the Nether-
lands. In support of this, we noted that short (1–2 cM) IBD
segments shared between northern clusters and provinces
outnumbered those shared between southern clusters and
provinces (Supplementary Fig. 4), and, as observed previously2,
northern provinces shared more short segments with southern
provinces than southern provinces shared amongst themselves.
Together, these results suggest that the north had a smaller
ancestral effective population size (Ne) than the south and is
probably derived from an ancient or historical founder event
forming the northern population from a subset of southerners.
We formally characterised ancestral trajectories in Ne between the
north and the south of the Netherlands using the nonparametric
method IBDNe26 for the entire Dutch sample and two
subsamples representing the principal fineSTRUCTURE north/
south split (Fig. 4a), retaining a random sample of 641 individuals
from each group. We also characterised historical Ne within
individual Dutch provinces for which genotypes for more than 40
individuals were available. Countrywide, Ne has grown super-
exponentially over the past 50 generations in the Netherlands

(Fig. 4a) and has been consistently lower in the north than the
south. Despite this, the pattern of growth in northern and
southern groups was identical, with a steady exponential growth
up to around 1650 CE, when a major uptick in growth rate was
observed. This corresponds to a period of substantial economic
development in the Netherlands over the 17th century known to
historians as the Dutch Golden Age. Preceding this period,
historical Ne estimates for the entire country and for northern/
southern groups showed only a modest response to the Black
Death (Yersinia pestis plague pandemic) of the 14th century
which claimed up to 60% of Europe’s population27. Conversely,
Ne estimation within individual Dutch provinces revealed a much
more detectable impact of the Black Death (Fig. 4b).

Genomic signatures of Dutch mobility. We noted that long (>7
cM) IBD segments, which capture recent shared ancestry, were
almost always shared within genetic clusters (and provinces), and
rarely between (Supplementary Fig. 4). This indicates a pro-
pensity for genetically similar individuals (relatives) to remain
mutually geographically proximal, suggesting a degree of
sedentism that has likely influenced Dutch population structure
over time. It has also previously been argued that genetic struc-
ture in the Netherlands may be partially rooted in geographic
obstacles imposed by the country’s major waterways1 so we
explicitly modelled genetic similarity as a function of geographic
distance using EEMS16 to infer migrational hot and cold spots
(Fig. 5). The resulting effective migration surface showed several
apparent barriers to gene flow, the strongest and most contiguous
of which runs in an east-west direction across the Netherlands
overlapping the courses of the Rhine, Meuse and Waal rivers.
This inferred migrational boundary also approximately
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corresponds to the geographical division determining the prin-
cipal fineSTRUCTURE split between northern and southern
Dutch populations (Fig. 4a) as well as the geographical bound-
aries between clusters inferred from ancient IBD segments
(Fig. 3b), suggesting that these rivers have been a historically
persistent determinant of Dutch population structure.

GWAS confounding by fine-grained structure. As population
structure confounds GWAS (for example due to stratification of
cases and controls between subpopulations), we investigated the
extent to which haplotype sharing captures confounding structure
in a Dutch sample of 1963 cases of amyotrophic lateral sclerosis
(ALS) and 2774 controls from a recent multi-population GWAS
for ALS19. PCs of the haplotypic ChromoPainter coancestry
matrix for these 4737 individuals explained substantially more
variance in ALS phenotype than PCs calculated from single
nucleotide polymorphism (SNP) genotypes alone, indicating
latent structure captured by ChromoPainter that is stratified
between cases and controls (Fig. 6a). To estimate the extent to
which this stratified structure confounds GWAS we calculated
case-control association statistics using a logistic model covarying
for either 20 ChromoPainter PCs or 20 SNP PCs and estimated
the linkage disequilibrium (LD) score regression intercepts for
both sets of resulting summary statistics. An intercept higher than
1 indicates confounding in the GWAS; Fig. 6a shows that GWAS
statistics calculated with ChromoPainter PCs as covariates are less

confounded than statistics using SNP PCs, albeit with overlapping
confidence intervals for the relatively small Dutch sample. To
more adequately represent the large-scale multi-population data
typically used in modern GWAS, we extended our analysis to the
full ALS case-control dataset from which the Dutch data derive19,
including 35,755 individuals from twelve European countries and
the USA. For computational tractability, instead of Chromo-
Painter we used PBWT-paint (https://github.com/richarddurbin/
pbwt), a scalable approximate haplotype painting method based
on the positional Burrows-Wheeler transform28. When run on
our original Dutch dataset of 1626 individuals, the structure
rendered by PBWT-paint was almost identical to ChromoPainter
(r2PC1 ¼ 0:99; r2PC2 ¼ 0:98; Supplementary Fig. 5), indicating its
suitability for this analysis. PBWT-paint captured pervasive glo-
bal and local structure in the multi-population GWAS data that
both separated and subdivided countries (Fig. 6b). Top PCs of
PBWT-paint coancestry explained substantially more variance in
phenotype than SNP PCs and GWAS statistics including PBWT-
paint PCs as covariates were significantly less confounded than
statistics corrected by SNP PCA (Fig. 6a, LD score regression
intercepts).

Discussion
The genomes of modern humans contain a detailed record of the
intricate histories that shaped them. Genomic signatures of these
histories are often reflected in present-day population structure
and have the potential to confound genomic studies of health and
disease through stratification across phenotypic categories. Here,
we have studied the Netherlands as a model population, har-
nessing information from shared haplotypes and recent devel-
opments in spatial modelling to gain intricate insights into the
geospatial distribution and likely origin of Dutch population
genetic structure. The structure identified through shared hap-
lotypes is surprisingly strong; some Dutch genetic clusters iden-
tified this way are more mutually distinct (by FST) than whole
European countries. We have also introduced a novel use of
length-binned IBD sharing combined with PCA and Gaussian
mixture model-based clustering to characterise changing popu-
lation structure over time, revealing transient genetic structure
layered over strong and stable north-south differentiation in the
Netherlands. This is contextualised by somewhat distinct demo-
graphic histories between genetic groups in the Netherlands, with
consistently lower Ne in the north than the south. A potential
source of the north-south differentiation is impaired migration
across the east-west courses of the Rhine, Meuse and Waal, which
effectively separate southern Dutch populations from the north.
The population structure observed in the Netherlands is espe-
cially remarkable when considered in terms of the country’s size
and extensive infrastructure; notably Denmark, which is roughly
equal in geographical area, is genetically homogeneous, forming
only a single cluster when interrogated using fineSTRUCTURE29,
despite its island-rich geography. Both the United Kingdom and
Ireland also exhibit at least one large indivisible cluster con-
stituting a large fraction of the population4–6, however no
extraordinarily large clusters dominate the Dutch sample. Mean
FST between Dutch clusters also greatly outmeasures that
observed between Irish clusters, suggesting that the extent of
population differentiation is higher in the Netherlands, despite
Dutch land area being less than half that of the island of Ireland.

While coarse geographical trends in Dutch genetic structure
have previously been described using single-marker PCA1, our
use of shared haplotypes reveals structure at a much higher
resolution, differentiating subpopulations between, and some-
times within, provinces (Fig. 1). As a striking example, individuals
from the east and west of North Brabant (NBE and NBW in

Waal

Meuse

Lower Rhine

IJssel

–2 –1 0 1 2

log10(posterior mean migration rate)

Fig. 5 The effective migration surface of the Netherlands. Contour map
shows the mean of 10 independent EEMS posterior migration rate
estimates between 800 demes modelled over the land surface of the
Netherlands. A value of 1 (blue) indicates a tenfold greater migration rate
over the average; −1 (orange) indicates tenfold lower migration than
average. The courses of major rivers are included to highlight their
correlation with migrational cold spots. Map boundary data from the
Database of Global Administrative Areas (GADM; https://gadm.org); river
course data from Natural Earth (https://www.naturalearthdata.com).
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Fig. 1) are mutually genetically distinguishable and are more
distinct from clusters to their north than Limburg, despite being
geographically closer. This deviation from haplotype sharing
mirroring geography appears to be driven by strong genetic
affinity to Belgium (Fig. 2), reflecting a long history of demo-
graphic and sovereign overlap across a 100 km frontier spanning
the modern Dutch-Belgian border. In contrast, the majority of
ancestral influence in Limburg, which also shares a substantial
border with Belgium, is equally split between Belgium to the west
and Germany to the east. Notably, the Belgian border with the
south of Dutch Limburg is almost entirely described by the course
of the Meuse, which may have acted as a historical impediment to
migration, thus distinguishing individuals in this region geneti-
cally. This is reflected in IBD clustering, in particular the dis-
tinction of southern Limburgish individuals from the rest of the
Netherlands in short (1–3 cM) segments, which otherwise only
describe coarse north-central-south structure (Fig. 3). Future
work explicitly modelling Dutch-Belgian and Dutch-German
frontiers using additional Belgian and German genetic data with
associated geography will resolve the historical and present-day
role of the Meuse in distinguishing distinct population clusters in
the south of the Netherlands.

Similarly to North Brabant, groups of individuals in North and
South Holland show significant genetic separation despite mutual
geographic proximity. While we have chosen to group the four
South Holland clusters for visual brevity in Fig. 1, they are
robustly distinct by TVD permutation analysis (p < 0.001), indi-
cating that significant population differentiation exists even
within South Holland. Migration and admixture in the highly
urbanised Randstad has been proposed as a driver of genetic
diversity and loss of geographic structure in this region1; the
overlaid geographical distribution of regional ancestry profiles
(Fig. 2) for this area lends support to this hypothesis. However,
the geographical ranges of the four South Holland clusters are
somewhat independent (Supplementary Fig. 6), indicating that
some degree of genetic structure has survived this urbanisation.
Previous studies have highlighted the correlation between

decreasing autozygosity and increased urbanisation30; future
work leveraging the ChromoPainter/fineSTRUCTURE frame-
work coupled with length-binned IBD and Gaussian mixture
model-based clustering will more explicitly delineate the interplay
between urbanisation and population structure over time. To this
end, highly urbanised areas such as the Randstad will be parti-
cularly informative.

The principal fineSTRUCTURE split in the Netherlands
describes north-south genetic differentiation (Fig. 1) that is strong
and persistent over time (Fig. 3). We hypothesised that this
reflects partially independent demographic histories so we esti-
mated ancestral Ne for northern (NNL) and southern (SNL)
Dutch fineSTRUCTURE populations, revealing superexponential
growth in both populations with a sudden increase in rate during
the 17th century (Fig. 4a). Historical Ne follows the same
approximate trajectory for both populations but is consistently
lower for the northern cluster, corroborating previous observa-
tions of increased homozygosity in northern Dutch populations1

and consistent with a model of northerners representing a
founder isolate from southerners (although a more complex
demographic model may better explain these observations)1,2.
The apparent absence of Ne decline in 14th-century Netherlands
initially hints at the possibility that the Black Death had a weaker
impact in the region than elsewhere in Europe; although this
agrees with the views of some historians, it is hotly debated by
others31. Per province, however, most Ne estimates display a
prominent dip at this time (Fig. 4b), suggesting that merging non-
randomly mating subpopulations into a countrywide group
(Fig. 4a) artificially inflates diversity, thus smoothing over any
population crash following the Black Death. Population structure
is thus important when estimating Ne and trends countrywide
and in NNL and SNL clusters (Fig. 4a) should be interpreted
carefully: it is possible that a substantial population crash brought
about by the Black Death might have had only a marginal impact
on the overall effective size of the breeding population in these
merged groups. Indeed, the rate of exponential growth in coun-
trywide Ne (Fig. 4a) is marginally shallower in the 10 generations
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following the Black Death (0.024; 95% CI 0.0235–0.0251) com-
pared to the 10 generations prior (0.017; 95% CI 0.016—0.018),
indicating enduring strain on the overall Dutch population prior
to its recovery in the 17th century.

Previous works have hinted that north-south genetic differ-
entiation in the Netherlands may have been facilitated by cultural
division between the predominantly Catholic south and the
Protestant north1. Given that the north-south structure observed
in 1–3 cM IBD bins (expected time depth ~700 BCE) greatly
precedes different forms of Christianity (Fig. 3), our data support
a model in which the Protestant Reformation of the 16th and
17th centuries exploited pre-existing demographic subdivisions,
leading to correlation between distinct cultural affinities and
clusters of genetic similarity which has potentially been further
strengthened by assortative mating among religious groups32.
Geographical modelling supports the role of migrational
boundaries in establishing and maintaining this population sub-
structure, especially rivers (Fig. 5). A substantial belt of low
inferred migration runs across the Netherlands, corresponding
closely to the roughly parallel east-west courses of the Lower
Rhine, Waal and Meuse rivers and correlating with the geo-
graphical boundary of the principal north-south fineS-
TRUCTURE split. Absolute assignment of causality to these
geographical correlates is, however, not possible and, given the
dense network of waterways in the Netherlands, could be mis-
leading. For example, a strong migrational cold spot in the east of
the Netherlands runs parallel to the IJssel (Fig. 5), but could
potentially be better explained by the course of the Apeldoorn
Canal, a politically fraught waterway constructed in the early 19th
Century. Similarly, a cold spot in the northwest directly overlays
the North Sea Canal (completed in 1876). As both of these are
human-made waterways, it is not certain whether their courses
are consequences or determinants of low movement of people
across their paths.

As well as internal geography, outside populations have also
played an important and significant role in the establishment of
population structure in the Netherlands (Fig. 2; Table 1); however
the variety and extent of demographic upheaval and mobility of
European populations over history obscure the likely historical
provenance of most inferred admixture signals. As an important
exception, however, ancestry profiles show a small but significant
contribution of Danish haplotypes in the north and west of the
Netherlands, a possible vestige of Viking raids in coastal areas in
the 9th and 10th centuries. This is corroborated by an inferred
GLOBETROTTER single-date admixture event in the NHFG
(North Holland, Friesland and Groningen) cluster (Fig. 1)
between 759 and 1290 CE with Danish haplotypes as a major
admixing source (Table 1). The demographic legacy of more than
a century of Danish Viking raids and settlement in the Nether-
lands has been the subject of some debate; from our data, it
appears that the modern Dutch genome has indeed been partially
shaped by historical Viking admixture. This Danish Viking
contact is contemporaneous with a critical period in the estab-
lishment of the modern Dutch genome from other outside
sources (1004–1111 CE; Table 1), although the precise historical
correlates of the admixture events detected in the remaining
Dutch regions are less obvious. Future densely sampled ancient
DNA datasets from informative time depths in the Netherlands
and northwest Europe will enable direct estimation of ancestral
population structure, admixture, demographic affinities and
effective population sizes, improving precision over the current
study which depends on proxy patterns of haplotype sharing
between modern individuals. Similarly, regional ancestry and
admixture inference are limited by the use of modern proxy
populations in place of true ancestral sources; nevertheless, there
are ample advantages to the use of modern data, including large

sample size and relevance to research on modern human health
and disease. In particular, as in our previous work in Ireland6,
samples in the current Dutch dataset were not specifically selected
to have pure ancestry in each geographical area (eg all grand-
parents from the same region4) meaning the degree of structure
observed is not idealised or exaggerated by sampling, but instead
representative of the structure expected in any GWAS that
includes Dutch data.

We therefore explored the impact of fine-scale genetic structure
described in this study and others4–12 on GWAS statistics, using
the ALS study from which the Dutch data derive as an exemplar
trait. Generally, population-based PCs should not predict case/
control status (in the absence of any disease-ancestry interaction);
if they do, this indicates that (sub)populations are stratified
between cases and controls, introducing bias that artificially
inflates GWAS statistics. In both Dutch-only and multi-
population analyses, fine-scale genetic structure detected by
haplotype sharing (ChromoPainter or PBWT-paint) explained
substantially more variance in phenotype (ALS case/control sta-
tus) than standard SNP-only PCA (Fig. 6a). This demonstrates
the power of shared haplotypes to simultaneously capture subtle
genetic structure within single countries (that is potentially
invisible to standard single-marker PCA) along with broader
structure between countries and potential cryptic technical arte-
facts such as platform- or imputation-derived bias. We found that
shared haplotypes are effective for controlling GWAS inflation:
statistics calculated using haplotype-based PCs as covariates
showed lower overall confounding than single marker-based
covariates, as measured by LD score regression intercepts
(Fig. 6a). In the age of large-scale, single-country and cross-
population biobanks, the additional power of haplotype sharing
methods to detect fine-scale local population structure will be
crucial for ensuring robust GWAS results unconfounded by
ancestry. For example, a recent study of latent structure in the UK
Biobank demonstrated that a GWAS for birth location returned
significant loci even after correction for 40 single-marker PCs33,
suggesting that residual fine-grained population structure may
influence other GWAS from this cohort (although others suggest
a role for socioeconomically-driven migration in this phenom-
enon34). Ongoing developments in scalable haplotype sharing
algorithms such as PBWT-paint will help to address this problem
by facilitating the creation of biobank-scale haplotype sharing
resources, simultaneously improving studies of human health and
disease and enabling large-scale, fine-grained population genetic
studies of human demography. Such resources will likely be
particularly useful in studies of rare variation, motivating future
work exploring the efficacy of such strategies in correcting con-
founding where rare variation is a factor.

Methods
Data and quality control. We mapped fine-grained genetic structure in the
Netherlands using a population-based Dutch ALS case-control dataset (n= 1626;
subset of stratum sNL3 from a GWAS for amyotrophic lateral sclerosis19) and a
European reference dataset subsampled from a GWAS for multiple sclerosis21 (MS;
n= 4514; EGA accession ID EGAD00000000120 [https://www.ebi.ac.uk/ega/
datasets/EGAD00000000120]). 1422 Dutch individuals had associated residential
data (hometown at time of sampling) which were used for geographical analyses.
For estimating GWAS confounding, we separately analysed the Netherlands on its
own using a larger ALS case/control dataset (n= 4753; strata sNL1, sNL3 and sNL4
from ref. 19) and the complete multi-population GWAS dataset19 (n= 36,052)
from which this Dutch subset was derived. Data handling for estimating con-
founding is further described under “Estimating GWAS confounding” below. For
population structure analyses, we applied quality control (QC) using PLINK v1.935;
briefly we removed samples with high missingness (>10%), high heterozygosity (>3
median absolute deviations from median) and single-marker PCA outliers
(>5 standard deviations from mean for PCs 1-20). We also filtered out A/T and G/
C SNPs and SNPs with minor allele frequency <0.05, high missingness (>2%) or in
Hardy Weinberg disequilibrium (p < 1 × 10−6). Before running ChromoPainter/
fineSTRUCTURE we retained only one individual from any pair or group that
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exhibited greater than 7.5% genomic relatedness (π̂) and removed SNPs with any
missing genotypes as the algorithm does not tolerate missingness or relatedness
well. For European reference data we also removed individuals suggested by the QC
of the source study21 and we extracted individuals only of European descent. As
this European dataset included MS patients, we filtered out SNPs in a 15Mb region
surrounding the strongly associated HLA locus (GRCh37 position
chr6:22,915,594–37,945,593) to avoid bias generated from this association, fol-
lowing previous works. The final Dutch and European reference datasets contained
374,629 SNPs and 363,396 SNPs respectively at zero missingness. The merge of
these datasets contained 147,097 SNPs at zero missingness. Data were phased per
chromosome with the 1000 Genomes Project phase 3 reference panel36 using
SHAPEIT v237 (for ChromoPainter/fineSTRUCTURE) and Beagle v4.1 (for IBD
estimation). For these and all subsequent runs of SHAPEIT and ChromoPainter,
we used the 1000 Genomes Project Phase 3 genetic map; IBD analyses with Beagle
were carried out using the Hapmap phase 2 genetic map38 as used in the Refi-
nedIBD and IBDNe source papers22,26. Both programmes were run with default
settings; allele concordance was checked prior to phasing (SHAPEIT: -check;
Beagle: conform-gt utility).

fineSTRUCTURE analysis. We used ChromoPainter/fineSTRUCTURE20 to detect
fine-grained population structure using default settings. In brief, each individual
was painted using all other individuals (-a 0 0), first estimating Ne and μ (switch
rate and mutation rate) with 10 expectation-maximisation (EM) iterations (using
all samples and chromosomes), then the model was finally run using these para-
meter estimates. The fineSTRUCTURE Markov chain Monte Carlo (MCMC)
model was then run on the resulting Dutch coancestry matrix with two chains for
3,000,000 burnin and 1,000,000 sampling iterations, sampling every 10,000 itera-
tions. To define European clusters for use in GLOBETROTTER and ancestry
profile estimation we instead used 1,000,000 burnin and sampling iterations,
sampling every 1000 iterations (due to large sample size). We extracted the state
with the maximum posterior probability and performed an additional 10,000
burnin iterations before inferring the final trees using both the climbtree and
maximum concordance methods. For all subsequent analyses the maximum con-
cordance tree was used.

Cluster robustness and differentiation. To assess the robustness of clustering in
the Dutch data we calculated TVD4 and FST. TVD is a distance metric for assessing
the distinctness of pairs of clusters, calculated from the ChromoPainter chunk-
length matrix. TVD is calculated as the sum of the absolute differences between
copying vectors for all pairs of clusters, where the copying vector for a given cluster
A is a vector of the average lengths of DNA donated to individuals in A by all
clusters. Intuitively, the TVD of two clusters reflects distance between those clusters
in terms of haplotype sharing amongst all clusters, and is a meaningful method for
assessing the effectiveness of fineSTRUCTURE clustering. To assess whether the
observed clustering performed better than chance we permuted individuals
between cluster pairs (maintaining cluster size) and calculated the number of
permutations that exceeded our original TVD score for that pairing of clusters. We
used 1000 permutations where possible, and otherwise used the maximum number
of unique permutations. P values were calculated from the number of permutations
greater than or equal to the observed TVD divided by the total permutations; all p-
values were less than 0.001, indicating robust clustering. We generated a TVD tree
for clusters from the k = 16 fineSTRUCTURE split by merging pairs of clusters
with the lowest TVD successively using methods developed in ref. 8, with the goal
of providing an alternative representation of cluster relationships that is inde-
pendent of sample size (Supplementary Fig. 7). The tree was built in k-1 steps, with
TVD recalculated at each step from the remaining populations. Branch lengths
were scaled proportional to the TVD value of the corresponding pair of popula-
tions using adapted code from the original paper8. Finally, to assess cluster dif-
ferentiation independently of the ChromoPainter model, FST was calculated
between Dutch clusters using PLINK 1.9. For this analysis we used the SNP overlap
between Dutch and European datasets, pruning for LD (--indep-pairwise 1000 50
0.25) and simultaneously calculating FST between European countries present in
ref. 21 for comparison.

Ancestry profiles. We assessed the ancestral profile of Dutch samples in terms of a
European reference made up of 4514 European individuals21 from Belgium,
Denmark, Finland, France, Germany, Italy, Norway, Poland, Spain and Sweden.
European samples were first assigned to homogeneous genetic clusters using the
fineSTRUCTURE maximum concordance tree6 to reduce noise in painting profiles.
We then modelled each Dutch individual’s genome as a linear mixture of the
European donor groups using ChromoPainter, and applied ancestry profile esti-
mation method developed in ref. 4 and implemented in GLOBETROTTER14 (num.
mixing.iterations: 0). This method estimates the proportion of DNA which is most
closely shared with each individual from each donor group calculated from a
normalised ChromoPainter chunklength output matrix, and then implements a
multiple linear regression of the form

Yp ¼ β1X1 þ β2X2 þ ¼ þ βGXG ð1Þ

to correct for noise caused by similarities between donor populations. Here, Yp is a

vector of the proportion of DNA that individual p copies from each donor group,
and Xg is the vector describing the average proportion of DNA that individuals in
donor group g copy from other donor groups G, including their own. The coef-
ficients of this equation β1 ¼ βG are thus interpreted as the “cleaned” proportions
of the genome that target individual p copies from each donor group, hence the
ancestral contribution of each donor group to that individual. The equation is
solved using a non-negative-least squares (NNLS) function such that βg ≥ 0 and the
sum of proportions across groups equals 1. We discarded European groups that
contributed less than 5% total to any individual, and refit to eliminate noise. We
then aggregated sharing proportions across donor groups (genetically homogenous
clusters) from the same country to estimate total sharing between an individual and
a given country to investigate the regional distribution of sharing profiles. Auto-
correlation of ancestry profiles was assessed by Moran’s I and Mantel’s test (10,000
permutations) in R version 3.2.3. Geographical directions of ancestry gradients
were determined by rotating the plane of latitude-longitude between 0° and 360° in
1° steps and finding the axis Y that maximised the coefficient of determination for
the linear regression Y � Ac , where Ac is the aggregated ancestry proportion for
country c.

Additionally we compared the ancestry profiles estimated by the NNLS method
to those estimated using the recently developed Bayesian algorithm
SOURCEFIND13. We ran SOURCEFIND on the ChromoPainter output described
above using 50,000 burnin and 200,000 MCMC iterations, sampling every 5000
iterations. For each Dutch individual we took the weighted average (weighted by
posterior probability) of ancestry estimates with the highest posterior probability
taken from 50 independent runs of the algorithm. We aggregated sharing portions
across donor groups from the same country to estimate total sharing between an
individual and a given country to investigate the regional distribution of sharing
profiles. Ancestry gradients generated by each method were regressed against one
another to estimate correlation. We report both the results of both NNLS (Fig. 2)
and SOURCEFIND (Supplementary Fig. 8) for comparison.

Identity-by-descent analyses. IBD segments were called in phased data using
RefinedIBD22 (default settings) to generate pairwise matrices of total length of IBD
shared between individuals for bins of different segment lengths. To identify
population structure captured by IBD sharing patterns we performed PCA on these
matrices using the prcomp function in R version 3.2.339 and clustered the IBD
matrices using a Gaussian mixture model implemented in the R package mclust40.
Plots of model selection are shown in Supplementary Fig. 9. We note that while
previous work23 has shown that IBD matrices underperform the linked Chromo-
Painter matrix in identifying population structure, they are arguably more inter-
pretable for visualising temporal change as they can be subdivided into cM bins
corresponding to different time periods, a feature leveraged by emerging work on
local population structure25. Patterns in IBD sharing that identify population
subgroups in older (shorter) cM bins which are preserved in more recent (longer)
bins are interpreted as persistent population structure that has been influenced by
mating patterns in old and recent generations. Structure which emerges in a spe-
cific cM bin and is lost is likely to reflect transient changes in panmixia that have
not necessarily persisted. We approximated the age of segments in a given cM bin
using equation s19 from ref. 25, under the assumption that the population is
sufficiently large:

lim
N!1

E T μj ≤ l ≤ υ½ � ¼ 75
1
L1

þ 1
L2

� �
; ð2Þ

where T is the random coalescence time in generations, l is the length of a segment
(in base pairs), μ and υ are the upper and lower segment length bounds of the
interval (in base pairs) and L2 and L1 are the upper and lower bounds of the
interval rescaled to centiMorgan (i.e. multiplied by 100r, where r is the recombi-
nation rate). For the age estimates given in Fig. 3, we multiplied the expected
coalescence time in generations by the approximate human generation time (28
years).

Inferring admixture events. To infer and date admixture events from European
sources we ran GLOBETROTTER14 with the Netherlands dataset as a whole and in
individual cluster groups defined from the Dutch fineSTRUCTURE maximum
concordance tree (Fig. 1). To define European donor groups we used the European
fineSTRUCTURE maximum concordance tree to ensure genetically homogenous
donor populations. We used ChromoPainter v2 to paint Dutch and European
individuals using European clusters as donor groups (estimating Ne and μ using the
weighted average of 10 EM iterations on chromosomes 1, 8, 15 and 20, using all
samples). This generated a copying matrix (chunklengths file) and 10 painting
samples for each Dutch individual. GLOBETROTTER was run for 5 mixing
iterations twice: once using the null.ind:1 setting to test for evidence of admixture
accounting for unusual linkage disequilibrium (LD) patterns and once using null.
ind:0 to finally infer dates and sources. We further ran 100 bootstraps for the
admixture date and calculated the probability of no admixture as the proportion of
nonsensical inferred dates (<1 or >400 generations). Confidence intervals were
calculated from the bootstraps from the standard model (null.ind:0) using the
empirical bootstrap method, and a generation time of 28 years.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-18418-4 ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:4556 | https://doi.org/10.1038/s41467-020-18418-4 |www.nature.com/naturecommunications 9

www.nature.com/naturecommunications
www.nature.com/naturecommunications


ADMIXTURE analysis. We performed ADMIXTURE analysis41 on the combined
Dutch and European samples to explore single marker-based population structure
in a set of 41,675 SNPs (LD-pruned using PLINK 1.9: r2 > 0.1; sliding window 50
SNPs advancing 10 SNPs at a time). ADMIXTURE was run for k= 1–10 popula-
tions, using 5 EM iterations at each k value. The k value with the lowest cross-
validation error was selected for further analysis using 15 fold cross-validation;
where two k values had equal CV-error the lower k value was taken for parsimony
(Supplementary Fig. 10). We analysed the distribution of proportions for each
ADMIXTURE cluster across the Dutch dataset, and its relationship with geography.

Computing mean pairwise shared IBD within and between groups. We com-
pared IBD sharing within and between both clusters and provinces (Supplementary
Fig. 4) using the mean number of segments within a given length range (e.g. 1–2
cM) shared between individuals. To calculate this mean for a single group of size N
with itself the denominator was ðN2 � NÞ=2; when comparing two groups of sizes
N and M the denominator was NM.

Estimating recent changes in population sizes. We used IBDNe26 to estimate
historical changes in Ne. IBDNe leverages information from the length distribution
of IBD segments to accurately estimate effective population size over recent gen-
erations, with a resolution limit of about 50 generations for SNP data. We followed
the authors’ protocol and detected IBD segments using IBDseq version r120642

with default settings and ran IBDNe on the resulting output with default settings,
removing IBD segments shorter than 4 cM (minibd= 4, the recommended
threshold for genotype data). We compared estimated Ne with recorded census size
(https://opendata.cbs.nl/statline/#/CBS/nl/dataset/37296ned/table?
ts=1520261958200) for approximately equivalent dates (starting at 1946 CE for
generation 0 and assuming 1 generation is 28 years) and found that for generations
0 - 3 our Ne estimates were approximately 1/3 of the census population (Supple-
mentary Fig. 11), which follows expectation if lifespan is ~3× the generation
time26,43. The slope of the ratios for the three generations is near zero suggesting
that our model tracks well with the census population; this is consistent with
reported expectation26.

Estimating effective migration surfaces. To model geographic barriers to
geneflow in the Netherlands we ran EEMS16. This software provides a visualisation
of hot and coldspots for geneflow across a habitat using a geocoded genetic dataset.
To run EEMS, we generated an average pairwise genetic dissimilarity matrix from
our genotype data using the bed2diffs utility provided with the software. We
initially ran the EEMS model with 10 randomly initialised MCMC chains for a
short run of 100,000 burn-in and 200,000 sampling iterations, thinning every 999
iterations, to find a suitable starting point. For these runs we placed the data in 800
demes and used default settings with the following adjustments to the proposal
variances: qEffctProposalS2= 0.00008888888; qSeedsProposalS2= 0.7; mEffct-
ProposalS2= 0.7. The resulting chain with the highest log-likelihood was then used
as the starting point for a further ten chains for 1,000,000 burn-in iterations and
2,000,000 sampling iterations, thinning every 9999 iterations. The model was run
with the following adjustments to the proposal variances: qEffctProposalS2=
0.00008888888; qSeedsProposalS2= 0.7; mEffctProposalS2= 0.7. We plotted the
results of our analysis using the rEEMSplot package in R and modified the resulting
vector graphics using Inkscape v0.91 to remove display artefacts caused by non-
overlapping polygons. MCMC convergence was assessed by inspecting the log-
posterior traces (Supplementary Fig. 12).

Estimating GWAS confounding. To examine the contribution of observed fine-
grained population structure to GWAS confounding, we estimated how well
phenotype could be predicted by principal components of haplotype sharing
matrices in a 2016 GWAS for ALS19, comparing our results to those obtained using
standard single marker PCA. We separately analysed 1,060,224 zero-missingness
Hapmap3 SNPs that passed QC in the original GWAS for Dutch data alone (1963
cases, 2774 controls) and for the complete multi-population GWAS (12,480 cases,
23,275 controls). Haplotypes for unrelated individuals (π̂ < 0.075) were phased
using SHAPEIT v237 and painted in terms of one another using ChromoPainter
v220 for the Dutch dataset (estimating Ne and μ using the weighted average of 10
EM iterations on chromosomes 1, 8, 15 and 20 in 10% of samples), and PBWT-
paint (https://github.com/richarddurbin/pbwt) for the considerably larger multi-
population GWAS dataset. PBWT-paint is a fast approximate implementation of
ChromoPainter suitable for large datasets. PCs of the resulting coancestry matrices
were calculated using the fineSTRUCTURE R tools (http://www.
paintmychromosomes.com), removing extreme haplotype PCA outliers (>20 SD
from mean on PC1-10) followed by repainting as an additional QC step. For
comparison we also calculated PCs on independent markers from the SNP datasets
using Plink v1.9, first removing long range LD regions44 (https://genome.sph.
umich.edu/wiki/Regions_of_high_linkage_disequilibrium_(LD)) and pruning for
LD (--indep-pairwise 500 50 0.8). Variance in ALS phenotype explained by
ChromoPainter/PBWT-paint PCs and SNP PCs (Nagelkerke R2) was estimated
using the glm() function and fmsb package45 in R version 3.2.3. To estimate
confounding in GWAS inflation, we implemented a logistic regression model
GWAS (--logistic) in PLINK v1.9 for each dataset using a range of ChromoPainter/

PBWT-paint PCs or SNP PCs (10, 20, 30 and 40 PCs) as covariates and ran LD
score regression46 on the resulting summary statistics using recommended settings
(Fig. 6 and Supplementary Fig. 13). Structure evident in the PBWT-paint matrix
was visualised and contrasted with corresponding SNP data in 2 dimensions using
t-distributed stochastic neighbour embedding (t-SNE)47 implemented in the Rtsne
package in R version 3.2.3 (5000 iterations; perplexity 30; top 100 PCs provided as
initial dimensions).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Data used in this study are available for academic use through the Project MinE
Consortium at https://www.projectmine.com/research/data-sharing/. MS GWAS data
used for European reference populations were downloaded from the European Genome-
phenome Archive under accession EGAD00000000120. Data availability subject to any
conditions outlined by source studies.
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