
Build Automation and Runtime Abstraction for
Partial Reconfiguration on Xilinx Zynq UltraScale+

Alex R. Bucknall⇤, Shanker Shreejith†, Suhaib A. Fahmy⇤
⇤School of Engineering, University of Warwick, Coventry, UK

†Department of Electronic and Electrical Engineering, Trinity College Dublin, Ireland

Abstract—Partial reconfiguration (PR) is fundamental to build-

ing adaptive systems on modern FPGA SoCs, where hardware

can be adapted dynamically at runtime. Vendor supported

reconfiguration is performance limited, drivers entail complex

memory management, and software/hardware design requires

detailed knowledge of the underlying hardware. This paper

presents a collection of abstractions that provide high per-

formance reconfiguration of hardware from within the Linux

userspace, automating the process of building PR applications,

and adding support for the Xilinx Zynq UltraScale+ architecture.

We compare our abstractions against vendor tooling for PR

management and open source tools supporting PR within Linux.

Our tools provides automation and abstraction layers, from

defining PR configurations through to compiling and packaging

Linux with support for userspace PR control, targeted for non-

experts.

I. INTRODUCTION AND BACKGROUND

FPGAs enable efficient acceleration of compute-intensive
and latency-sensitive tasks through custom datapaths that
exploit algorithmic parallelism. Partial Reconfiguration (PR)
is a well established feature of FPGAs, allowing portions
of the hardware fabric to be modified at runtime, permitting
different accelerators to be loaded into pre-defined regions.
This allows for the implementation of adaptive systems, where
accelerators are loaded into hardware on-demand at runtime.
Dynamic accelerator loading reduces the area (and power)
requirements of such adaptive systems as only the active
accelerators consume resources. While a variety of FPGA
systems using PR have been demonstrated [1], [2], these im-
plementations are often bespoke designs, requiring significant
FPGA expertise to exploit PR as well as interface to and
from software. More recently, PR has found renewed use in
abstracting interfaces for accelerators in cloud datecenters,
allowing a host server to load accelerators onto an FPGA
while keeping the PCI Express interface active. However, such
a controlled environment usually has fixed hardware/software
infrastructure and does not allow interfacing with peripherals.
Reconfiguration performance is also usually less important.
Adapting similar approaches to dynamic accelerators for edge
computing is an active area of research, and presents additional
challenges in terms of lightweight abstractions.

The tightly coupled Arm based processing system (PS)
and FPGA programmable logic (PL) in modern FPGA SoCs
represent an ideal computing platform for combining software
programmability and management with accelerator hardware.
These systems can exploit the standard peripherals available in
the PS, such as networking and control interfaces, as well as
utilise custom PL hardware. To enhance software productivity,

operating systems such as Linux are often deployed on the PS,
requiring suitable infrastructure to manage reconfiguration and
the interfaces between the PS and PL.

While there has been a strong body of research focusing
on FPGA PR to load accelerated tasks within a software
system generically, and more recently for multi-user systems,
the more complex challenges presented by an independent
adaptive system with custom PL peripherals have yet to be
explored in detail. This presents a significant barrier to entry
for designing combined software/hardware systems on FPGA
SoCs. The use of FPGA PR has been demonstrated in applica-
tions across automotive [3], image/signal processing [4], [5],
and space applications [6] among others. However, the design
approach has been ad-hoc and requires significant hardware
and software expertise. While FPGA vendors provide limited
support for PR, through design flows and low-level drivers,
this is not sufficiently abstracted for use by non-experts and
often exhibits poor performance. These problems become
more pronounced when layering a software platform on top
of an operating system like Linux, where layers such as the
filesystem, scheduler, and kernel add further latency between
application and accelerator.

To clarify the discussion of PR abstraction used in this
paper, we define a set of PR regions as labels, without any
definition of region location or size. A user then defines
multiple configurations of their system, each representing
one possible state. Within each configuration an additional
abstraction of modes is supported to allow a differentiation
between large scale structural changes and smaller differences
in individual modules used, such as memory addressing. For
each mode, a set of hardware modules is attached to each
region.

Managing PR accelerators can be done in software or
hardware. A variety of hardware controllers for PR were
proposed in the literature [7]. For Xilinx devices, the Internal
Configuration Access Port (ICAP) can be used to allow PR
control from hardware. To control reconfiguration, an external
interface can pass bitstreams to the ICAP, or alternatively, a
soft processor may used from the PL to manage this [8].

With the Xilinx Zynq SoC, the Processor Configuration
Access Port (PCAP) and accompanying software library were
introduced. This is a PS interface for managing reconfiguration
of Xilinx FPGA SoCs and can also be used to partially
reconfigure. While this interface and the vendor build flow
offer some abstraction, using both require the designer to have
detailed understanding of the PR process and that only PCAP

1



is supported by the software library.
Although ICAP offers considerably higher throughput and

lower latency [9] than PCAP, it requires custom control
hardware and software. Some frameworks have proposed
abstractions for the ICAP but these typically do not support a
Linux runtime or the newer Zynq UltraScale+ (ZynqMP) [10].

Presently Xilinx offers a Linux driver called FPGA Man-
ager, a hardware agnostic driver that manages loading of static
and PR bitstreams. FPGA Manager, offers an abstraction to
load bitstreams from the filesystem over PCAP but provides
limited support for high performance transfers or abstracting
bitstream management complexities, such as caching bit-
streams in DRAM, and offers no support for the ICAP on
the Zynq or ZynqMP [11]. Additionally, loading bitstreams
uncached from the Linux filesystem, rather than DRAM, is
inefficient and slow.

While FPGA Manager abstracts managing memory address-
ing of the PR bitstreams, it requires the user to manually
load PR device tree overlays (DTO) and required accelerator
drivers. DTOs are used to provide hardware awareness to
Linux and may be loaded/unloaded at runtime to alert the
kernel to a new PL accelerator provisioned with PR. High
performance applications may use multiple PR bitstreams
stored in memory, increasing the complexity of addressing
memory from Linux’s virtual memory mapping, for optimal
performance.

On the ZynqMP loading of bitstreams using FPGA Manager
is a blocking process, stalling the PS until direct memory
access (DMA) to the Configuration and Security Unit (CSU)
completes. The ZynqMP implementation of the driver per-
forms PR by first allocating the required memory for the bit-
stream, issuing a request to the Embedded Energy Management
Interface API for access to the Arm Trusted Firmware and
upon success, passes the bitstream to the Platform Manage-
ment Unit (PMU) which loads the PCAP using the Xilfpga
library [12].

By default, the driver outputs to the console (kernel log),
adding a magnitude of delay to the PR time. These factors all
render this driver a poor choice for adaptive systems, where
the PS is expected to perform computation while managing
PR. Additionally, programming the PL is managed differently
within the Zynq and ZynqMP architectures and this must be
handled at build time.

As a PR build flow, Xilinx offers the PR Wizard (Vivado
2018.2 onwards), renamed to Dynamic Function eXchange
(DFX) in 2019.1 [13]. This workflow imposes a sequence
of complex manual steps requiring specialised knowledge to
output PR bitstreams. Initially the designer must synthesize
a static wrapper for each of the PR modules, instantiated as
black boxes to preserve I/O buffers. Next each PR module
must be synthesised with identical interfaces to the wrapper,
in out-of-context mode to disable buffer insertion. Each of the
PR modules is then saved as a design checkpoint (DCP) for
implementation. The designer must then configure a unique
build run for each combination of PR modules by linking them,
loading design constraints and running the optimisation, place
and route for each combination.

The designer must initially preserve a base static implemen-
tation by issuing the design run for the initial combination of
modules and locking the design routing. Each PR module must
then be added to the static design, assigned to a collection
of logical resources, known as a pblock, and implemented to
save a new configuration for a routed design, repeating for
each PR module. This is a convoluted build process for a
non-expert, even before considering the DTO, custom drivers,
and application layers needed for use within Linux. Xilinx’s
PetaLinux tool can then be used to import hardware and
build Linux images for the target platform, however it cannot
manage generating device tree (DT) fragments for PR or
generate PR specific drivers.

Many steps can be automated, however altering the design
typically requires re-running the entire workflow. For example,
in Xilinx’s SDSoC framework, which provides high level
synthesis (in C/C++/OpenCL) [14], changes to the design
require hardware re-synthesis and recompilation of the kernel.

In this paper, we present a collection of tool abstractions
to simplify the PR design process for integrating FPGA SoCs
within Linux. These tools allow for various design automations
by extracting details from user PR configurations, generating
required wrappers and bitstreams as well as providing a
runtime for software control that includes Linux DTO support
for dynamic peripheral loading. The low-overhead runtime
API manages non-blocking reconfiguration requests within the
userspace, abstracting data movement between software and
accelerator. Finally, they offer a boot-time configuration for the
kernel and memory map, ensuring low latency reconfiguration
can be achieved. These tools are compatible with Zynq and
ZynqMP architectures, masking low-level PR implementation
details. We compare these abstractions against the Xilinx
Vivado PR design flow as well as other open source build
and runtime tools.

II. RELATED WORK

In this section we outline related tool and runtime abstrac-
tions for PR to differentiate our contributions.

Early work such as [15], [16], and [17] automate and ab-
stract tasks such as floorplanning, generating board constraints,
and integration of PR modules for the discontinued Xilinx
ISE tool. Frameworks such as [18] automated some manual
steps such as partitioning and limited floorplanning, however
these frameworks do not support Vivado, the ZynqMP, or
deployment on embedded Linux.

PR frameworks such as [19], use lightweight shell interfaces
aimed at on-demand acceleration rather than adaptive systems,
requiring that users conform their logic to the shell speci-
fication, trading off PL resources for standardized partially
reconfigurable regions (PRR). Limited recent research has
focused on improving the build flow; however most work
targets the deployment of PR modules rather than the design
process, driven by the wider adoption of PR for accelerator
platforms.

FOS [20] modularises the PR design flow for the Zynq and
ZynqMP. It abstracts the flow into discrete development stages
to offload complexity for designers with domain expertise.
Under the standard vendor flow, the designer must be aware

2



of non-trivial considerations for PR hardware such as PL
device constraints, generating a custom Linux DT, as well
as interfacing high level software applications with hardware
accelerators via kernel drivers or userspace abstractions. FOS
supports flexibly compiling PR modules independent of the
shell interfaces, using bitstream manipulation to assign PL
fabric mapping to the modules, abstracting resource allo-
cation [21], unlike the traditional flow which requires first
locking a static region. However, custom shell logic is still
required to interface directly with external PL peripherals. In
FOS, the scheduler and bitstream manipulation are controlled
from a software daemon that abstracts single and multi-user
accelerators. While FOS provides both build and runtime
management abstractions, domain expertise is still required
for the build process and PR latency is higher due to it
building on the Xilinx drivers that use the PCAP. It utilises
a runtime resource elastic scheduler designed for arbitrating
accelerator resources within the PL for single and multi-tenant
environments, and does not consider a peripheral rich system
as might be required for adaptive systems.

To allow for hardware access from within Linux, build tools
must be able to generate configurations for kernel drivers and
DTOs. Frameworks such as ReConOS [22] take a bespoke
approach to OS support, requiring custom kernel drivers, shell
interfaces, and build scaffolding. ReConOS manages the load-
ing and scheduling of PR bitstreams, including a custom Linux
operating system specifically designed to delegate hardware
as threaded resources, but is limited to the original Xilinx
Zynq. ReConOS enables generation of PR bitstreams but is
tightly coupled to the kernel as custom drivers and bespoke
RTL infrastructure; thus any PR modules added post-build,
require the kernel to be recompiled. Additionally, configuration
DTOs are not generated, so modules that require specific
configurations, such as unique drivers, require the user to
manage their own DTOs.

In an adaptive system, the cognitive functions that control
adaptation are best implemented in software, and hence run-
time PR management is important. [23] is one such approach
to runtime management comprising a soft coprocessor in the
PL for managing PR, however it is only capable of static
PR as the soft processor retrieves its state from the main
processor. To abstract the complexity of software to hardware
reconfiguration, PR controllers such as ZyCAP [10] have been
developed for the PL along with accompanying software in
the PS. ZyCAP provides a high performance configuration
hardware interface and software abstraction that hides the de-
tails of provisioning from the processor. The runtime manages
caching filesystem bitstreams into external memory as well as
loading bitstreams through DMA. However, such approaches
are implemented as bare metal APIs, currently without Linux
support for the ZynqMP.

Most Zynq and all current ZynqMP PR runtimes use
Xilinx’s supplied FPGA Manager driver, which abstracts the
PCAP interface for loading PR modules, hence suffering
higher PR latency than is achievable using the ICAP.

While existing PR frameworks provide access to PR with
the compromise of overhead, portability, and performance, we

propose a combination of lightweight build abstractions that
extend vendor tooling with limited modifications to kernel
drivers, focusing on abstracting control from the userspace
while providing the highest possible performance for both PR
and PL accelerators. Frameworks such as FOS divide the build
process between multiple domain experts and provide sup-
port for multi-user distributed accelerators. Our abstractions
focus on enabling a single user to develop and deploy high
performance adaptive system applications within Linux. The
complexity of standard vendor tooling presents a significant
barrier to entry for new users and we attempt to address this
with our tooling abstractions.

III. PR ABSTRACTION AND AUTOMATION

Our tools provide PR build and runtime management ab-
stractions across both Xilinx Zynq and ZynqMP device fami-
lies. They consist of various build automations for generating
PR bitstreams as well as providing a runtime service for
managing, caching, and controlling PR with minimal latency.
The tools provide a workflow for generating static wrappers
and PR bitstreams, exporting to a Linux build flow, using the
generated DTOs to configure the kernel with required drivers
for userspace PR. The runtime service manages high speed,
non-blocking loading of PR configurations while exposing a
high level userspace API to application designers. The tools
integrate with Vivado 2018.3 and will be updated to support
future versions.

extract
static
region

extract PR
module

generate
blackbox

for module

synthesise
checkpoint
for module

generated
check-

points for
all PR

modules?

select next
module

extract
base design
for board

generate
base con-
figurations

insert static
region

insert
blackbox
module

synthesise
design

route
design

open
routed
design

load PR
checkpoint
into static
blackboxes

synthesise
PR design

implement
PR design

route PR
design

export PR
bitstream
& HDF

generated
all PR bit-
streams?

select
next PR

checkpoint

finished
generating
bitstreams

extract
kernel
config

for board

generate
Petalinux
project

for target
device

configure
base

hardware
(device-
tree)

copy base
meta-user
layers &
recipes

copy driver
source for
udmabuf,

etc.

configure
Petalinux
project to
propagate
changes

build
Petalinux

prepare
SD Card
partitions

write FS
partition
to storage
medium

write boot
partition
to storage
medium

Petalinux
deployed

Hardware Extraction Generate Board Design Generate Bitstreams Build Linux Deploy Linux

no

yes

no

yes

Fig. 1. Stages of the PR build flow.

A. Build Tools
The build tools take a set of user configurations and source

files, specified in a config file, extract the PR module(s)
and generate a collection of PR bitstreams and DTOs cor-
responding to each configuration. It synthesises the modules
sequentially into a series of DCP files, built around a board
specific base design, including any required static interfaces
for peripherals such as cameras, Ethernet controllers, etc.
Fig. 1 outlines the typical workflow for Linux PR images.

3



1) PetaLinux Support: After each PRR run, the tools pro-
duce a hardware export file .hdf that allows the Xilinx SDK
to generate a custom DT, along with dynamically generating
DTOs for PR modes. To allow for multiple PR interfaces
within DTOs, such as AXI Stream and AXI Lite, we built
a tool that extracts interfaces exposed to the static design and
generates the DTOs accordingly. The .hdf file for the default
configuration is used to generate a base PetaLinux device
tree. At Linux compilation, bitstreams are packaged with the
runtime PR manager; by default, the total size of the bitstreams
is used to allocate PR memory buffers.

2) Partial Reconfiguration Hierarchy: Given resource
availability, multiple PRRs may be instantiated and grouped as
configurations and modes. Each hardware module’s structure
is parsed and parameters and ports are extracted to group
interfaces (e.g. AXI and AXIS); later used to generate the
structural buses between the PS and module. The user specifies
the top file/module in their RTL and any desired PR modules,
which are extracted and generated into PR compatible ver-
sions. Unlike other PR build abstractions, we generate shell
interfaces at build time, according to the exposed interfaces in
the modules, as seen in Fig. 2. This provides more flexibility
for custom hardware rather than conforming to defined shell
interfaces, however PR modules must use consistent interfaces
across modes.

Proposed API

User Software Application

PR Runtime API

PR Runtime Service

AXI DMA Driver DMA Arbitrator udmabuf Driver UIO Driver

PR Shell PR Shell PR Shell PR Shell

AXIS AXI Lite AXI

PR Cell 0 PR Cell 1 PR Cell ... PR Cell N

DMA Controller

&
Demux

AXIS Mux AXI 
Interconnect

PL Bus Arbitration

PS

PL
AXI

1:N N:1
ICAP

SPI
MIPI
Etc.

External 
Peripherals

Fig. 2. Example of our hardware architecture.

3) Extensible Build Structure: The tool takes the hierarchy
specified by the config file and generates the appropriate
PR configurations. It allows for easily extending support to
additional base designs, architectures (Zynq and ZynqMP),
multiple PRRs as well as custom DTOs. Additional devel-
opment boards can then be added by including the required
constraint files, TCL scripts for the base design and any spe-
cific drivers/recipes for Petalinux, such as networking drivers.
The hierarchical generation of PR modules enables the tool to
re-use static DCPs, allowing further PR configurations to be
generated, post-build. The tool uses existing static routing to
ensure that changes are compatible with existing bitstreams;
PR modules that do not use the maximum number of interfaces
available have these interfaces tied-off and unloaded via DTO.
Currently, our abstraction supports building PR modules from
Verilog and Xilinx IP core sources.

4) ZynqMP PMU: Previous PR controllers have utilised
DMA to load and trigger PR events, however they were

constrained to only the Zynq and used bare metal APIs. Our
tools support both the Zynq and ZynqMP architectures, where
the tools abstract the specific target architecture, handling the
differences automatically. For the ZynqMP, the PR software
must request ICAP access by writing to the pcap_ctrl register
in the CSU [13], managed by the PMU firmware. The default
Xilinx PMU firmware for the ZynqMP, restricts access to
the CSU and requires elevated security privileges; we bypass
this with a custom PMU firmware that enables access. After
setup, the CSU is no longer required to control the ICAP. The
change from the ICAPE2 primitive on the Zynq to the ICAPE3
on the ZynqMP is also handled within the build process.
ICAPE3 supports PR at higher frequencies and provides output
status unlike the ICAPE2 [24]. We have tested our system at
100 MHz and will investigate over-clocking in future work.

B. Runtime Service
The runtime service executes entirely from userspace to

utilise the multitude of software libraries available, unlike the
restrictive nature of kernel drivers. This has the advantage
of being independent of kernel configuration, reducing the
security risks of providing direct hardware control to the
user and allowing for the reliability of existing upstream
vendor drivers as opposed to custom drivers. The PR manager
runs as a Linux service, allowing the user to attach their
application and trigger PR from an API that exposes defined
configurations. The software abstraction can be seen in Fig. 3.

PS

PL

Kernel

PR Service

Xilinx AXI DMA 
Wrapper Udmabuf Driver

Linux Kernel

User Application

PR Shell

User PR Modules

UIO Driver
Userspace

Fig. 3. Linux software abstraction.

1) Reconfiguration Manager: Our PR manager provides
significant performance gains over current PR management
tools. It uses a DMA controller in the PL to load PR bitstreams
at near peak theoretical performance from external DRAM into
the ICAP interface. Our hardware PR manager builds on the
ZyCAP manager [10], using both a configuration (AXI4-Lite)
and transfer (AXIS) interface to connect between the PL and
the PS. The service abstracts managing bitstream and DMA
memory buffers, generating and resizing as required.

We provide a C API to encapsulate the software service,
which can be wrapped for languages such as Python. This
API abstracts bitstream and accelerator memory addressing,
allowing the user’s software to call buffers at runtime. The
service handles loading of DTO fragments with bitstream
provisioning such that mode settings are applied concurrently.
If a target bitstream is not currently cached in DRAM, e.g.
it was added post-build, the user can cache/remove additional

4



bitstreams from the userspace using the LoadBitstream() API
call. The runtime is non-blocking as we use DMA to load the
ICAP in the PL, allowing software applications to continue,
with an interrupt raised at completion. Xilinx’s FPGA Manager
driver forces blocking until PCAP is complete, must be polled
for status, and cannot cache bitstreams from the filesystem.

2) Bitstream Caching: For high speed reconfiguration,
Linux’s virtual memory addressing must be considered. Virtual
memory is used by the kernel as an expandable buffer for
files between the disk and physical memory, typically DRAM.
The kernel can allocate file buffers to a location mapped on
disk known as the swap. The kernel uses swap as a means
to temporarily store unused data (freeing memory) until it is
required when it is reloaded back into main memory. Virtual
addresses can map to physical addresses on DRAM, however
this process is invisible to the user and it is significantly
slower to read/write from disk than from DRAM. For high
performance PR, bitstreams should be located in physical
memory, yet be addressable from a virtual address map in
the userspace. At initialization, our runtime prepares buffers
for PR bitstreams and user accelerators, using a contiguous
memory allocation driver, udmabuf [25]. The FPGA Manager
runtime is limited in performance as bitstreams are stored on
disk rather than in memory.

3) DMA Controller: A DMA controller is used to move
PR bitstreams into the ICAP and may be shared by the PL
accelerators, reducing resource consumption and removing
the need for accelerator specific controllers. The controller’s
memory map to stream and stream to memory map interfaces
are connected to AXIS interfaces on PR accelerators by a build
time generated AXIS multiplexer/demultiplexer. The number
of AXIS interfaces is extracted from the required number
of streams in the user’s PR modules, shown in Fig. 2. The
runtime toggles between the interfaces to the ICAP and the
accelerators, as needed. An AXI interconnect is generated for
any accelerators that require it, along with memory maps in
the DTO and abstracted by the runtime API, thus exposing
read/write locations to accelerators. To manage this with
existing tools, the user would have to create bespoke control
hardware and software.

4) udmabuf Driver: To manage memory buffers, we use an
open source kernel module known as the userspace mappable
DMA buffer (udmabuf ) [25]. This allows for the allocation
of contiguous physical memory blocks within the kernel that
can be used as DMA buffers, mapped to virtual addresses and
available in the userspace. This permits the runtime to move
data from userspace into memory and to the PR controller
and/or accelerators within the PL. These DMA buffers are
used in conjunction with the userspace I/O (UIO) driver for
AXI memory transactions between the PS and PL.

5) Userspace IO Driver: The runtime utilises the Linux
UIO driver to abstract memory transactions over AXI inter-
faces to the PL and is used in the DT to expose PL AXI
interfaces to the userspace. It provides a generic software
interface for PR accelerator memory maps and hardware
interrupts. This allows the runtime to handle PR changes to
the accelerators without requiring custom drivers for each
configuration/mode. While Xilinx’s SDK DT generator can

TABLE I
EXAMPLE CUMULATIVE SETUP TIME.

Parameter Design Time (µs) Size (MiB)

Configure CSU Tconfig 5,576 N/A

Bitstream Buffer Tbitstream 1,277 1.08
Accelerator Buffer Taccel 3,785 7.63
Total Ttotal 10,638 N/A

TABLE II
PR MANAGER STATIC PL RESOURCES.

Conf. FFs LUTs BRAMs % of PL

1 AXI4 + 1 AXI4-S 8817 5619 2 7.96
3 AXI4 + 2 AXI4-S 8887 5698 2 8.08

populate the DT with UIO drivers for static designs, it cannot
generate this for PR modules. Our build tools extract AXI
devices from the PR configurations/modes and populate DTOs
with UIO fragments.

6) AXI DMA Driver: Xilinx’s vendor DMA driver provides
kernel access to the PL DMA controller but does not expose
an interface that is available from the userspace. This forces
the user to build their software as a kernel module and inject or
compile it into the kernel. Instead, our tools use an open source
userspace wrapper to control Xilinx’s DMA controller [26].
This allows for compatibility with the vendor supplied DMA
driver, which reduces the need for kernel maintenance unless
breaking changes occur upstream from the vendor. Although
this driver can use contiguous physical memory allocation, we
use the udmabuf driver for dynamic buffer resizing. udmabuf
is used in conjunction with the DMA driver for streaming data
to/from the PL.

IV. EVALUATION

We present experiments to quantify our runtime’s perfor-
mance against to the Xilinx FPGA Manager driver. Experi-
ments were performed on the Ultra96v1 (ZynqMP) board.

We benchmark loading 3 PR bitstreams (of sizes 5.67 MiB,
4.43 MiB and 0.86 MiB respectively) using the Xilinx FPGA
manager and our runtime service. We evaluate two versions
of the FPGA Manager; as provided by Xilinx (verbose output
from kernel) and with the kernel logging silenced. FPGA
Manager is verbose by default; outputting serial logs during
PR. We intentionally modify and optimise its source code to
disable logging to improve performance [11].

A single PR region with 3 different modes: a Xilinx AXIS
FFT IP Core, a Verilog AXI AES Cryptographic Module, and
an HLS generated AXIS FIR Module was defined. Given that
PR modes for the same PRR are equal in size, we vary pblock
size to simulate a range of bitstream sizes. Fig. 4 highlights
our runtime’s PR performance, showing a maximum of up
to a 66.9 % reduction in completion time over the FPGA
Manager, approaching 50.3 % as bitstream size increases (at
5.67 MiB). This equates to an approximate maximum through-
put of 398.6 MB/s for our tool, compared to the maximum

5



Bitstream 2 Bitstream 3Bitstream 1
0

10

20

30

40
tim

e
(m

s)
Proposed PR
FPGA Manager (silent)
FPGA Manager

Fig. 4. PR Manager Performance.

throughput of the FPGA Manager, 190.8 MB/s, under the
5.67 MiB bitstream. Larger bitstreams offer better throughput
as the fixed trigger overhead is amortised as transfer time
increases. The 5.67 MiB bitstream is approximately 12.07 %
of the available PL resources (logic CLBs).

These results are from the point of triggering PR as both
runtimes require an initial setup time with scaling factors
determined by bitstream and buffer sizes. Due to Linux’s non-
deterministic scheduler, we observed a maximum variation in
trigger latency of 7µs, across 20 runs. Table I shows the
variables relevant to our tool’s setup time; Tconfig, the time
consumed writing to the CSU register, Tbitstream, and Taccel.,
the cumulative time to allocate udmabuf buffers. We consider
this relevant as buffers must be allocated initially, prior to
triggering.

There are finite PL resources and it is important to minimize
the resources consumed by PL infrastructure to allow for
maximum user accelerator resources. In our tool, resource
usage scales according to the number/type of PR interfaces
in the designer’s modules. The number of PR accelerator
interfaces will vary the size of the AXI interconnect and the
AXIS multiplexer/demultiplexer. Table II shows the resource
consumption in the PR manager infrastructure, shown with
a combination of AXIS and AXI Lite interfaces, where the
majority of resources are consumed by the DMA controller.
Given that the DMA is the primary method for PL to PS data
transfer and is used by both the PR accelerators and the PR
controller, we consider that less than 10 % total usage of the
PL is acceptable.

V. CONCLUSION AND FURTHER WORK

We have presented a collection of abstractions for Zynq
and Zynq UltraScale+ devices, offering non-blocking PR from
within the Linux userspace, bitstream build and runtime ab-
straction, as well as improved PR performance. These abstrac-
tions allow for extensible hardware generation, building from
defined user configurations and modes and directly exporting
to Linux. Our runtime service demonstrates an up to 66.9% re-
duction in PR load time over the Xilinx FPGA Manager driver.
Additionally our abstractions prioritizes PR performance while
providing simple flow control to PL accelerators.

We intend to assemble these tools into an open source end-
to-end PR build and runtime framework for Zynq/MP families
in future work.

ACKNOWLEDGEMENT

This work was supported by the UK Engineering and
Physical Sciences Research Council, grant EP/N509796/1.

REFERENCES

[1] S. Bhandari, S. Subbaraman, S. Pujari, F. Cancare, F. Bruschi, M. D.
Santambrogio, and P. R. Grassi, “High speed dynamic partial reconfig-
uration for real time multimedia signal processing,” in Euromicro Conf.
on Digital System Design, 2012, pp. 319–326.

[2] J. Huang, M. Parris, J. Lee, and R. F. Demara, “Scalable FPGA-based ar-
chitecture for DCT computation using dynamic partial reconfiguration,”
ACM Transactions on Embedded Computing Systems (TECS), vol. 9,
no. 1, 2009.

[3] S. Shreejith, K. Vipin, S. A. Fahmy, and M. Lukasiewycz, “An approach
for redundancy in FlexRay networks using FPGA partial reconfigura-
tion,” in Design, Automation & Test in Europe Conf. (DATE), 2013, pp.
721–724.

[4] S. U. Bhandari, S. Subbaraman, S. Pujari, and R. Mahajan, “Real time
video processing on FPGA using on the fly partial reconfiguration,” in
IEEE Int. Conf. on Signal Processing Systems, 2009, pp. 244–247.

[5] B. Krill, A. Ahmad, A. Amira, and H. Rabah, “An efficient FPGA-
based dynamic partial reconfiguration design flow and environment
for image and signal processing IP cores,” Signal Processing: Image
Communication, vol. 25, no. 5, pp. 377–387, 2010.

[6] B. Osterloh, H. Michalik, S. A. Habinc, and B. Fiethe, “Dynamic partial
reconfiguration in space applications,” in NASA/ESA Conf. on Adaptive
Hardware and Systems, 2009, pp. 336–343.

[7] K. Vipin and S. A. Fahmy, “A high speed open source controller for
FPGA partial reconfiguration.” in Int. Conf. on Field Programmable
Technology, 2012, pp. 61–66.

[8] M. Hübner, D. Göhringer, J. Noguera, and J. Becker, “Fast dynamic and
partial reconfiguration data path with low hardware overhead on Xilinx
FPGAs,” in IEEE Int. Sym. on Parallel and Distributed Processing
Workshops and PhD Forum, 2010, pp. 1–8.

[9] S. Liu, R. N. Pittman, and A. Forin, “Minimizing partial reconfiguration
overhead with fully streaming DMA engines and intelligent ICAP
controller,” in MSR-TR-2009-150. Microsoft, 2010, p. 292.

[10] K. Vipin and S. A. Fahmy, “ZyCAP: Efficient partial reconfiguration
management on the Xilinx Zynq,” IEEE Embedded Systems Letters,
vol. 6, no. 3, pp. 41–44, 2014.

[11] “Solution ZynqMP PL programming.” [Online]. Available: https://xilinx-
wiki.atlassian.net/wiki/spaces/A/pages/18841847/Solution+ZynqMP+PL
Programming

[12] UG1137: Zynq UltraScale+ MPSoC Software Developer Guide, Xilinx
Inc., Dec. 2019, v11.0.

[13] UG909: Dynamic Function eXchange, Xilinx Inc., Jan. 2020, v2019.2.
[14] L. Wirbel, “Xilinx SDAccel: a unified development environment for

tomorrow’s data center,” The Linley Group Inc, 2014.
[15] S. Yousuf and A. Gordon-Ross, “DAPR: Design automation for partially

reconfigurable FPGAs,” in ERSA, 2010, pp. 97–103.
[16] A. A. Sohanghpurwala, P. Athanas, T. Frangieh, and A. Wood, “OpenPR:

An open-source partial-reconfiguration toolkit for Xilinx FPGAs,” in
IEEE Int. Sym. on Parallel and Distributed Processing Workshops and
PhD Forum, 2011, pp. 228–235.

[17] C. Beckhoff, D. Koch, and J. Torresen, “Go Ahead: A partial reconfig-
uration framework,” in IEEE Int. Sym. on Field-Programmable Custom
Computing Machines, 2012, pp. 37–44.

[18] K. Vipin and S. A. Fahmy, “Automated partial reconfiguration design
for adaptive systems with CoPR for Zynq,” in IEEE Int. Sym. on Field-
Programmable Custom Computing Machines, 2014, pp. 202–205.

[19] S. Byma, J. G. Steffan, H. Bannazadeh, A. L. Garcia, and P. Chow,
“FPGAs in the cloud: Booting virtualized hardware accelerators with
openstack,” in IEEE Int. Sym. on Field-Programmable Custom Comput-
ing Machines, 2014, pp. 109–116.

[20] A. Vaishnav, K. D. Pham, J. Powell, and D. Koch, “FOS: A modular
FPGA operating system for dynamic workloads,” ACM Trans. Recon-
figurable Technol. Syst., vol. 13, no. 4, Sep. 2020.

[21] K. D. Pham, E. Horta, and D. Koch, “BITMAN: A tool and API for
FPGA bitstream manipulations,” in Design, Automation & Test in Europe
Conf. & Exhibition (DATE), 2017, pp. 894–897.

[22] E. Lubbers and M. Platzner, “ReconOS: An RTOS supporting hard-
and software threads,” in Int. Conf. on Field Programmable Logic and
Applications, 2007, pp. 441–446.

[23] T. de Albuquerque Reis and A. A. Fröhlich, “Operating system support
for difference-based partial hardware reconfiguration,” in IEEE/IFIP Int.
Sym. on Rapid System Prototyping, 2009, pp. 75–80.

[24] UG570: UltraScale Architecture Config., Xilinx Inc., Sep. 2019, v1.11.
[25] K. Ichiro, “udmabuf driver,” https://github.com/ikwzm/udmabuf, 2015.
[26] B. Perez and J. Choi, “Xilinx AXI DMA Linux driver,”

https://github.com/bperez77/xilinx_axidma, 2015.

6


