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Cellular mitochondrial function has been suggested to contribute to variation in feed efficiency (FE) among animals. The objective
of this study was to determine mitochondrial abundance and activities of various mitochondrial respiratory chain complexes
(complex I (CI) to complex IV (CIV)) in liver and muscle tissue from beef cattle phenotypically divergent for residual feed intake
(RFI), a measure of FE. Individual DM intake (DMI) and growth were measured in purebred Simmental heifers ( n= 24) and bulls
( n= 28) with an initial mean BW (SD) of 372 kg (39.6) and 387 kg (50.6), respectively. All animals were offered concentrates ad
libitum and 3 kg of grass silage daily, and feed intake was recorded for 70 days. Residuals of the regression of DMI on average
daily gain (ADG), mid-test BW 0.75 and backfat (BF), using all animals, were used to compute individual RFI coefficients. Animals
were ranked within sex, by RFI into high (inefficient; top third of the population), medium (middle third of population) and low
(efficient; bottom third of the population) terciles. Statistical analysis was carried out using the MIXED procedure of SAS v 9.3.
Overall mean ADG (SD) and daily DMI (SD) for heifers were 1.2 (0.4) and 9.1 (0.5) kg, respectively, and for bulls were 1.8 (0.3)
and 9.5 (1.02) kg, respectively. Heifers and bulls ranked as high RFI consumed 10% and 15% more ( P< 0.05), respectively, than
their low RFI counterparts. There was no effect of RFI on mitochondrial abundance in either liver or muscle ( P> 0.05). An
RFI × sex interaction was apparent for CI activity in muscle. High RFI animals had an increased activity ( P< 0.05) of CIV in liver
tissue compared to their low RFI counterparts; however, the relevance of that observation is not clear. Our data provide no clear
evidence that cellular mitochondrial function within either skeletal muscle or hepatic tissue has an appreciable contributory role
to overall variation in FE among beef cattle.
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Implications

Selection for low residual intake facilitates improved feed
efficiency in beef cattle. However, the cost of identifying low
residual feed intake cattle is a limitation to genetic progress
in the area. Elucidating the biology underpinning residual feed
intake will provide critical information about the potential
scientific utility of biomarkers for the trait which will in turn
aid in more widespread adoption within beef cattle breeding
programmes. While a relationship between mitochondrial
abundance/activity and residual feed intake in beef cattle
has previously been hypothesised, there is little published infor-
mation to substantiate this. This study provides evidence high-
lighting that (i) differing potential for cellular mitochondrial
abundance or functionality in muscle and liver is not a major
contributor to variation in feed efficiency in beef cattle and
(ii) this observation is consistent across gender.

Introduction

Feed provision is the main cost in beef cattle production
systems and consequently there is considerable interest
in improved feed efficiency (FE) as a means of increasing
the economic and environmental sustainability of such enter-
prises (Fitzsimons et al., 2017; Kenny et al., 2018). Residual
feed intake (RFI), defined as the difference between observed
and expected feed intake requirements for maintenance of
BW and growth (Koch et al., 1963; Savietto et al., 2014) is
considered a useful index to examine the biological mecha-
nisms associated with variation in FE due to its phenotypical
independence from animal performance traits (Berry and
Crowley, 2013). In addition, RFI is moderately heritable
(Crews et al., 2004; Crowley et al., 2010) which has led to
interest in the trait as a candidate for genetic improvement
programmes. Research to date has demonstrated that RFI is a
complex multifaceted trait (Fitzsimons et al., 2017); thus, like† E-mail: david.kenny@teagasc.ie
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all key performance traits, a solid understanding of its under-
lying biological control is necessary to increase both the
utility and accuracy of genomic selection-based approaches.
While it has been estimated that two-thirds of variation in RFI
can be explained by inter-animal variation in the metabolic
processes associated with energy expenditure (Herd and
Arthur, 2009), there are little data available to substantiate
this. Mitochondria account for up to 90% of cellular oxygen
consumption and the bulk of adenine tri-phosphate (ATP)
synthesis (Herd and Arthur, 2009) and thus have an appreci-
able impact on overall metabolic efficiency in mammals.
The electron transport chain comprises four multi-protein
complexes (I to IV) which shuttle electrons down the chain
creating a proton motive force that drives ATP synthesis
(Berg et al., 2002). Research indicates differences in activity
of the electron transport chain in skeletal muscle (Iqbal et al.,
2004) and liver (Iqbal et al., 2005) of broilers and in the skel-
etal muscle of lambs (Sharifabadi et al., 2012) varying in FE.
Furthermore, Kolath et al. (2006) demonstrated that efficient
cattle have an increased rate of mitochondrial respiration
than their inefficient counterparts. Despite this equivocation
remains in the published literature regarding the relationship
between RFI and mitochondrial abundance and function in
beef cattle. The aim of the current study was to investigate
whether RFI phenotype has a basis in differential mito-
chondrial abundance and/or function in two key metabolic
organs: liver andmuscle, and whether effects were consistent
across sex.

Material and methods

Animals and management
A total of 52 purebred Simmental beef cattle (24 heifers and
28 bulls) as previously described by McKenna et al. (2018)
were used in this study. These animals were derived from
a herd previously described by Fitzsimons et al. (2014a) in
which animals were phenotypically ranked on RFI and char-
acterised for a large number of traits. For the current experi-
ment, the highest (n= 20) and lowest (n= 20) ranking cows
and heifers based on RFI phenotype were bred using artificial
insemination and multiple ovulation/embryo recovery tech-
nologies, to pedigree AI Simmental sires with estimated
breeding values for high or low RFI, respectively (Crowley
et al., 2010). Frozen-thawed embryos were transferred to
crossbred recipients, and the resulting calves were used
for the purpose of this study (Šavc et al., 2016). Calves were
reared by their dams for the first week of life after which they
were weaned and subsequently artificially reared on milk
replacer and concentrate using an electronic feeding system
(Vario; Foster-Tecknik, Engen, Germany) as described by
Byrne et al. (2017). Following weaning from milk replacer,
calves were turned out to pasture and rotationally grazed
on perennial ryegrass-dominated swards. At approximately
15 months of age, cattle were housed within pens (heifers
and bulls were accommodated separately within the same
shed) of between five and seven animals/pen in a slatted floor

shed (lying area= 2.82 m2/animal). Cattle were fed once daily
(0800 h) using the Calan gate feeding system (American Calan
Inc., Northwood, NH, USA) and were offered concentrate
(860 g/kg rolled barley, 60 g/kg soya bean meal, 60 g/kg
molasses and 20 g/kg minerals/vitamins) ad libitum and
3 kg grass silage to support ruminal function. All animals
had continuous access to clean fresh drinking water. Cattle
had an acclimatisation period of 14 days to the ad libitum
dietary regime and test facilities before the experimental
recording period commenced, which lasted for 70 days.
Mean age (SD) at the start of the RFI measurement period
was 413 (24.96) and 422 (23.21) days for heifers and bulls,
respectively.

Feed analysis. Concentrate and silage offered was sampled
three times weekly and samples were stored at -20°C pend-
ing laboratory analysis. Samples of concentrates and silage
were subsequently pooled on a weekly basis for DM deter-
mination. Concentrate samples were dried in an oven with
forced-air circulation at 98°C for 16 h for DM determination
and forage samples dried at 40°C for 48 h.

BW and body measurements. Body weight and measure-
ments for this trial have previously been described by
McKenna et al. (2018). Briefly, animal weights were recorded
prior to feeding, at the start and at the end of the trial and on
a weekly basis throughout the RFI measurement period.
Ultrasonic measurements were taken at the start and end
of the RFI measurement period to measure the fat depth
at the third lumbar vertebra, the 13th thoracic rib and the
rump on the animal’s right side.

Computation of traits. Calculation of RFI and other growth
traits for heifers and bulls has been previously described by
McKenna et al. (2018). Briefly, heifers and bulls were consid-
ered as separate groups for computation of traits and statis-
tical analysis. Expected DM intake (DMI) was computed for
each animal using a multiple regression model, regressing
DMI on metabolic BW (MBW), average daily gain (ADG)
and mean lumbar backfat (BF) change (mm). Some, though
not all studies have reported a relationship between ultra-
sonically measured BF deposition and RFI status in beef cattle
and have identified this trait as a small but statistically sig-
nificant energetic sink. This has been manifested as animals
with favourable phenotypes for RFI having leaner carcasses
(Nkrumah et al., 2007) which can lead to unfavourable impli-
cations for carcass quality (Arthur et al., 2001; Moraes et al.,
2017). For this reason, the current study corrected for BF
when selecting for RFI to avoid potential negative effects
of co-selecting for leaner animals (Hill and Ahola, 2012).
Residual feed intake was calculated within sex for each ani-
mal as the difference between actual DMI and expected DMI.

The model used to compute expected DMI, as described
by McKenna et al. (2018), was

Yj ¼ �0 þ �i þ �1MBWj þ �2ADGj þ �3BFj þ ej
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where Yj is the average DMI for the j th animal, β0 is the
regression intercept, τi is the fixed effect of the ith day of
birth, β1 is the partial regression coefficient for MBW, β2
is the regression coefficient for ADG, β3 is the regression coef-
ficient for BF and ej is the random error associated with the
jth animal. The coefficient of determination (R2)for the stat-
istical model produced from this equation accounted for 0.7
(P< 0.001) of the variation in DMI and was used to predict
DMI for each animal (Supplementary Material S1). Animals
were ranked according to RFI phenotypes within sex and then
divided into equal terciles of low (efficient), medium and high
RFI (inefficient) resulting in eight animals per group in each
of the high and low RFI heifer groups, and nine animals
per group in each of the high and low RFI bull groups,
respectively.

Biopsy sample collection. M. longissimus dorsi biopsies
were harvested as described by Kelly et al. (2011), and liver
tissue was collected by percutaneous punch biopsy as
described byMcCarthy et al. (2009) from animals deemed high
and low RFI under local anaesthetic (5 ml s.c. Adrenacaine;
Norbrook Laboratories (Ireland) Ltd, Newry, Co. Down,
Northern Ireland) at the end of the RFI measurement period.
All surgical instruments used for tissue collection were
sterilised and treated with 70% ethanol and RNaseZap
(Ambion, Applera Ireland, Dublin, Ireland). M. longissimus
dorsi biopsies were snap frozen in liquid nitrogen directly after
collection, and liver biopsies were washed in sterile Dulbecco’s
phosphate-buffered saline (Fisher Scientific, Dublin, Ireland)
and snap frozen in liquid nitrogen. All samples were sub-
sequently stored at −80°C pending further processing.

Tissue homogenate preparation and total protein
determination
Tissue homogenates ofM. longissimus dorsi and liver biopsy
samples were prepared as outlined by Spinazzi et al. (2012)
with slight modifications. Briefly, visible fat and connective
tissue were removed from 50 mg of tissue, which was then
dissected into small fragments. Tissue was diluted at a ratio
of 1 : 20 in ice : cold sucrose (250 mM) homogenisation buffer
(pH 7.4) containing tris(hydroxymethyl)aminomethane (Tris;
Sigma Aldrich Ireland Ltd, Vale Road, Arklow, Wicklow,
Ireland), potassium chloride (Sigma Aldrich Ireland Ltd)
and ethylenebis(oxyethylenenitrilo)tetraacetic acid (Sigma
Aldrich Ireland Ltd) diluted in distilled water. Sucrose
(Sigma Aldrich Ireland Ltd) was added on day of use.
Tissue was homogenised using a clean glass conical
tissue grinder on ice. Homogenate was centrifuged at 600 g
for 10 min at 4°C and supernatant was kept on ice and used
on the same day. Protein concentration of homogenates was
determined using the Pierce BCA Protein Assay Kit (Fisher
Scientific).

Citrate synthase assay
The activity of citrate synthasewas assayed by coupling the rate-
limiting reaction catalysed by citrate synthase (equation (1)) to
the irreversible chemical reaction (equation (2)):

Acetyl-CoAþ oxaloacetate þ H2O ! citrateþ CoA-SH
(1)

CoA-SHþ 5; 50-dithiobis-ð2-nitrobenzoic acid DTNBð Þ
! TNBþ CoA-S-S-TNB (2)

The reaction product 5-thio-2-nitrobenzoic acid has an
intense absorption at 412 nm and the absorbance increases
linearly with time. This increase in absorption was measured
using the Shimadzu UV-2600 spectrophotometer for 4 min
and rate of reaction was calculated. The enzymatic activity
of citrate synthase was calculated as nmol/min per mg mito-
chondrial protein using the molar extinction coefficient for
citrate synthase, which is 13.6 mM/cm (Spinazzi et al., 2012).

Measurement of mitochondrial electron transport chain
complex activities
The activities of electron transport chain complexes were
assessed in muscle and liver biopsy samples by UV spectro-
photometry as described by Spinazzi et al. (2012) with mod-
ifications using a UV spectrophotometer. All assays were
performed in duplicate at 37°C in 2 ml cuvettes. Activities
of all complexes were calculated as nmol/min per mg of pro-
tein and expressed in units normalised to citrate synthase
activity which is a marker of mitochondrial abundance within
a tissue/cell.

Complex I activity. The activity of complex I (CI) was assayed
as a decrease in absorbance at 340 nm by following the
oxidation of reduced NAD (Sigma Aldrich Ireland Ltd).
Mitochondria (40 μg of tissue homongenate) were incubated
at 37°C for 2 min in 700 μl of reaction medium (50 mM Tris-
hydrogen chloride (Sigma Aldrich Ireland Ltd) with 3 mg/ml
bovine serum albumin (BSA; Fisher Scientific), pH 8.0;
300 μM potassium cyanide (KCN; Sigma Aldrich Ireland
Ltd) and 100 μMNADH). Sixty micromolar Ubiquinone (coen-
zyme Q1) was added to initiate the reaction. Absorbance was
monitored for 3 min before and after the addition of 10 μM
Rotenone (Sigma Aldrich Ireland Ltd). The difference in the
decrease in absorption due to NADH oxidation was measured
in the absence and presence of rotenone, and the rotenone-
sensitive activity of CI was subsequently quantified using an
extinction coefficient of 6.22 mM/cm (Spinazzi et al., 2012).

Complex II activity. Complex II (CII) activity was deter-
mined by following the secondary reduction of 2, 6-dichlor-
ophenolindophenol (DCPIP; Sigma Aldrich Ireland Ltd)
by decylubiquinol (DUB; Sigma Aldrich Ireland Ltd) at
600 nm. Mitochondria (2 μg of protein) were added to a
buffer containing 25 mM potassium dihydrogen phosphate
(KH2PO4; Sigma Aldrich Ireland Ltd), 0.10 mM EDTA (Sigma
Aldrich Ireland Ltd), BSA (1 mg/ml), 300 μM KCN, 80 μM
DCPIP and 20 mM succinate (Sigma Aldrich Ireland Ltd) and
incubated for 10 min. Fifty micromolar DUB was added and
the reaction was initiated with the addition. Absorbance
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was monitored for 3 min before and after the addition of
10 mM malonate (Sigma Aldrich Ireland Ltd) which acts as
an inhibitor of the reaction. The difference in the decrease in
absorption before and after the addition ofmalonate represents
the complex activity. The extinction coefficient used for this
reaction was 19.1 mM/cm (Spinazzi et al., 2012).

Complex III activity. The assay was performed at 550 nm by
monitoring the rate of reduction of cytochrome c by ubiqui-
nol-2. Mitochondria (3 μg of protein) were added to medium
containing 25 mM KH2PO4 (pH 7.8), 0.10 mM EDTA and
75 μM oxidised cytochrome c (Sigma Aldrich Ireland Ltd)
and left to incubate for 2 min. The reaction was initiated
by the addition of 100 μM decylubiquinol (Sigma Aldrich
Ireland Ltd) and followed for 2 min. The non-enzymatic
reduction of cytochrome c was measured after the addition
of 4 μM antimycin A (Sigma Aldrich Ireland Ltd); the specific
activity of complex III (CIII) was calculated by subtracting the
non-enzymatic rate. An extinction coefficient of 18.5 mM/cm
was used (Spinazzi et al., 2012).

Complex IV activity. The activity of complex IV (CIV) wasmea-
sured by following the oxidation of reduced cytochrome c
(cytochrome c was reduced with sodium dithionite) as a
decrease in absorbance at 550 nm. The reaction medium con-
tained 25 mM KH2PO4, 1 mg/ml defatted BSA and mitochon-
dria (25 to 40 μg of protein). The reaction was initiated
by adding 60 μM reduced cytochrome c, and the reaction
was followed for 60 s. The specific activity was calculated
by using 18.5 mM/cm as the extinction coefficient (Spinazzi
et al., 2012).

Complex Iþ III combined activity. In order to measure the
flow of electrons between complexes, the combined activity
of CIþ CIII was measured by monitoring the reduction
of oxidised cytochrome c at 550 nm. Mitochondria (25 μg
of protein) were added to a medium containing 50 mM
KH2PO4, 1mg/ml BSA, 300 μM KCN and 50 μM oxidised
cytochrome c and left to incubate, and the baseline for the reac-
tion was recorded for 2min. The reaction was initiated by the
addition of 200 μM NADH. The differences in absorption were
measured in the presence and absence of rotenone, and
the combined specific activity was recorded as the rotenone
sensitive activity. The specific activity was calculated by
using 18.5 mM/cm extinction coefficient (Spinazzi et al., 2012).

Complex IIþ III combined activity. In order to measure the
flow of electrons between complexes, the combined activity
of CIIþ CIII was measured by monitoring the reduction
of oxidised cytochrome c at 550 nm in the presence of
succinate. Mitochondria (3 μg of protein) were added to
medium containing 20 mM KH2PO4, 1 mg/ml BSA, 300 μM
KCN and 10 mM succinate. Samples were pre-incubated
with succinate for 10 min to fully activate the enzyme. The
reaction was initiated by the addition of 50 μM oxidised
cytochrome c. The differences in absorption were measured
in the presence and absence of malonate, and the combined

specific activity was deemed as the malonate sensitive activity.
The specific activity was calculated by using 18.5 mM/cm
extinction coefficient (Spinazzi et al., 2012).

Statistical analysis
Normality of data distribution was tested using the
UNIVARIATE procedure of SAS 9.1 (SAS Institute Inc.,
Cary, NC, USA). The LSMEANS statement in PROC MIXED
SAS was used to examine the effect of RFI grouping on feed
intake, performance traits, body composition, mitochondrial
complex activities and mitochondrial abundance. The statis-
tical model used included the fixed effect of RFI group (high v.
low), sex (heifer v. bull) and RFI group × sex interaction.
A random sire effect was included in the final model for
all traits. Animal age in days was included in the model as
a linear covariate. Differences in RFI group were determined
by F tests using type III sums of squares. The PDIFF option and
the Tukey test were applied as appropriate to evaluate pair-
wise comparisons between RFI group means. The df method
used was Kenward Roger and an unstructured covariance
structure was chosen as the model included a random term
for sire. Effects were considered statistically significant with
an adjusted P< 0.05 and considered a tendency towards
statistical significance with an adjusted P< 0.10.

Results

Animal performance and residual feed intake
Animal performance and FE data have been described previ-
ously by McKenna et al. (2018); however, results pertaining
to animals specific to this study have been presented again in
Table 1. There were no interactions among the main effects
for RFI, DMI, MBW, initial BW, final BW, ADG and BF change
(P> 0.05). Animals of high and low RFI did not differ
(P> 0.05) in initial BW, final BW or ADG. There was an effect
of sex (P< 0.05) on RFI, final BW and ADG. Bulls had greater
variation in RFI coefficients, a higher final BW and a greater
ADG than heifers. As reported by McKenna et al. (2018),
heifers and bulls had a mean initial BW (SD) of 372 (39.6)
and 387 (50.6) kg, an ADG of 1.2 (0.4) and 1.8 (0.3) kg
and DMI of 9.1 (0.5) and 9.5 (1) kg, respectively, RFI
averaged 0.00 for both sexes and ranged from −0.4 to
0.6 kg of DM/day for heifers and −0.5 to 0.5 kg DM/day
for bulls. Heifers and bulls ranked as high RFI consumed
10% and 15% more than their low RFI counterparts
(P< 0.05), respectively.

Citrate synthase assay
Results for citrate synthase assays in muscle and liver tissue
are presented in Table 2. There was no RFI × sex interaction
and no effect (P> 0.05) of RFI or sex on citrate synthase
activity in muscle or liver tissue.

Mitochondrial electron transport chain complex activities
Results for mitochondrial electron transport chain complex
activity assays are presented in Table 2. There was an
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RFI × sex interaction (P< 0.05) for CI activity in muscle
tissue, whereby high RFI heifers had higher activity than
low RFI heifers (P= 0.03) and high RFI bulls tended to have
a lower activity than low RFI bulls (P= 0.07). Sex affected
(P< 0.01) CI activity in muscle tissue manifested as heifers
having a higher concentration of CI activity than bulls.
There was an effect of RFI status (P< 0.05) on CIV activity

in the liver tissue, whereby high RFI animals had higher activ-
ity than low RFI animals.

Combined activities of electron transport chain complexes.
Results for the combined activities of CIþ CIII and CIIþ CIII
in muscle and liver tissue are presented in Table 3. There
was no RFI × sex interaction or effect of sex or RFI status

Table 2 Mean activity of citrate synthase and complexes I to IV in muscle and liver of cattle divergent for residual feed intake (RFI)

Enzyme activity

RFI group Sex P-value

High Low SD Bulls Heifers SD RFI Sex RFI × sex

No. of animals 17 17 – 18 16 – – – –

Citrate synthase (CS) (nmol/min per mg)
Muscle 138.00 137.00 25.90 146.00 129.00 26.60 ns ns ns
Liver 61.00 82.00 19.20 80.00 63.00 19.70 ns ns ns

Complex activity in muscle (unit/cs)
CI 0.10 0.10 0.03 0.10 0.20 0.03 ns ** *
CII 0.40 0.40 0.22 0.20 0.50 0.23 ns ns ns
CIII 0.20 0.20 0.04 0.10 0.20 0.05 ns ns ns
CIV 0.70 0.40 0.30 0.30 0.80 0.31 ns ns ns

Complex activity in liver (unit/cs)
CI 1.20 0.90 0.30 1.00 1.20 0.31 ns ns ns
CII 1.80 1.90 0.55 2.00 1.80 0.56 ns ns ns
CIII 0.50 0.40 0.15 0.30 0.50 0.16 ns ns ns
CIV 3.20 2.10 0.44 2.40 2.90 0.45 * ns ns

nmol/min per mg= specific activity of enzymes; ns= not significant; unit/cs= specific activity normalised to citrate synthase activity; CI to IV= complex I to IV.
*P< 0.05, **P< 0.01.

Table 3 Mean combined activities of complexes Iþ III and IIþ III in muscle and liver of cattle divergent for residual feed intake (RFI)

Enzyme activity

RFI group Sex P-value

High Low SD Bulls Heifers SD RFI Sex RFI × sex

No. of animals 17 17 – 18 16 – – – –

C Iþ III muscle (unit/cs) 0.22 0.15 0.09 0.11 0.26 0.09 ns ns ns
C IIþ III muscle (unit/cs) 0.11 0.09 0.04 0.08 0.11 0.04 ns ns ns
C Iþ III liver (unit/cs) 0.29 0.21 0.07 0.29 0.21 0.08 ns ns ns
C IIþ III liver (unit/cs) 2.21 4.26 2.04 2.64 3.82 1.17 ns ns ns

CI to III= Complex I to III; unit/cs= specific activity normalised to citrate synthase activity; ns= not significant.

Table 1 Summary of mean phenotypic data of cattle divergent for residual feed intake (RFI)

Trait

RFI group Sex P-value

High Low SD Bulls Heifers SD RFI Sex RFI × sex

No. of animals 17 17 – 18 16 – – – –

DMI (kg/day) 9.70 8.80 0.20 9.47 9.10 0.21 ** ns ns
RFI (kg DM/day) 0.40 −0.40 0.02 0.03 −0.30 0.01 *** ns ns
MBW (kg0.75) 95.00 95.00 2.50 97.00 93.00 2.51 ns ns ns
Initial BW (kg) 382.00 373.00 16.00 382.00 372.00 16.50 ns ns ns
Final BW (kg) 488.00 483.00 16.70 509.00 462.00 17.20 ns ** ns
ADG (kg) 1.50 1.50 0.13 1.80 1.20 0.14 ns *** ns
Backfat change (mm) 1.30 1.70 0.24 1.30 1.70 0.25 ns ns ns

ns= not significant; DMI= DM intake; MBW=mid-test metabolic BW; ADG= Average daily gain.
**P< 0.01, ***P< 0.001.
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(P > 0.05) for activity of CIþ CIII or CIIþ CIII in muscle or
liver tissue.

Discussion

The objectives of this study were firstly to examine the effects
of RFI status and sex on key performance traits in beef cattle
and secondly to examine if mitochondrial abundance and
functionality in two metabolically important tissues are
affected by either sex or RFI status. The main findings of this
study were firstly, that mitochondrial abundance in either
longissimus dorsi or liver tissue is not affected by RFI status
in beef cattle. Secondly, we conclude that while CI activity in
muscle and CIV activity in liver are altered in response to RFI
status, the overall function of the respiratory chain does not
apparently contribute to variation in energetic efficiency
among growing beef cattle.

The ADG of the heifers (mean 1.2 kg) in this study was
lower than the bulls (mean 1.8 kg) which is not surprising,
and it has been widely documented that heifers have a slower
growth rate than bulls when managed similarly (McDonald
et al., 2002). In addition, the majority of studies comparing
growth rate across sexes are confounded with ‘system
related’ effects, and the current study is unique in that it
presents results for a contemporary group of genetically sim-
ilar purebred males and females reared similarly from birth to
slaughter. The range in ADG observed was consistent with
that of growing beef cattle offered an energy dense diet to
appetite (Fitzsimons et al., 2013; Fitzsimons et al., 2014b).

Consistent with our results, previous research has demon-
strated that when managed similarly bulls have a higher
growth potential than heifers (Bureš and Bartoň, 2012).
While BF accretion was numerically greater for heifers com-
pared with bulls, as might be expected, this difference did not
reach statistical significance. Additionally, RFI status by
design did not affect not only BW change but also BF accre-
tion for either sex, which is consistent with some (Basarab
et al., 2003; Nkrumah et al., 2007) but not all studies
(Gomes et al., 2012; Fitzsimons et al., 2014b). In accordance
with our experimental design, no differences in animal
performance were observed between the RFI groups,
despite a 10% and 15% difference in DMI within heifers
and bulls, respectively. This finding is in agreement with
other studies examining the relationship between RFI
and other productivity traits where RFI status was not
found, either phenotypically (Niemann et al., 2011) or
genetically (Crowley et al., 2010), to influence weight or
growth rate of beef cattle.

The linear regression model used to compute RFI in the
current study accounted for 70% of the variation in DMI.
This value is within the range obtained by Fitzsimons et al.
(2014b) where energy dense diets were offered to cattle
of a similar age and genotype. This higher coefficient
of determination is not surprising considering animals
were offered an energy dense low forage diet. Such
diets support high digestibility, low rumen fill and a fast

ruminal passage rate compared to more fibrous diets
(Forbes, 2007).

There is equivocation in the published literature on the
relationship between FE status and measures of body fat
content (Fitzsimons et al., 2017). For example, some studies
that used the base model (MBW and ADG) to predict
DMI have reported either a positive (Arthur et al., 2001;
Basarab et al., 2003; Basarab et al., 2007) or no relationship
(Gomes et al., 2012; Fitzsimons et al., 2014b) between
FE and carcass fatness traits (see review by Kenny et al.,
2018). In the current study, we included an adjustment for
BF accretion in our DMI prediction model. The conflicting
literature regarding the relationship between RFI and subcu-
taneous BF depth may be due to the variation in the extent
and timing of fat deposition in different breeds and also
differences in the site selected for ultrasonic measurements.
As expected, BF gain was numerically higher for heifers
compared with bulls though this bordered (P= 0.10) on stat-
istical significance.

Citrate synthase is a vital enzyme in the control of the
Krebs cycle and its kinetic properties have been shown to
be tightly correlated with the taxonomic status of mitochon-
dria (Else et al., 1988). Measuring the activity of this enzyme
is accepted as a reliable proxy for mitochondrial abundance
and can be used to normalise mitochondrial functionality,
and the use of this assay has been well documented
(Spinazzi et al., 2012). A relationship between mitochondrial
function and FE has been well documented (Fitzsimons et al.,
2017). Therefore, we hypothesised that given the metabolic
importance of liver and muscle, and the observations of
Bottje et al. (2017) who concluded that more efficient broilers
had a higher mitochondrial RNA content, an increase in mito-
chondrial number in these organs could be contributing to
variation in RFI. Despite this, we observed no differences
in mitochondrial abundance in muscle or liver in animals
divergent for RFI, a novel finding in beef cattle. This led us
to further speculate that while mitochondrial number is unaf-
fected, mitochondria may be functioning at different efficien-
cies between the two phenotypes.

As aforementioned, there is a plethora of information
relating to mitochondrial function and RFI across a number
of species (Fitzsimons et al., 2017). Notwithstanding this,
however, there is conflict, however, among published reports
in that some authors have observed a higher activity of res-
piratory chain enzymes in various tissues from more efficient
animals (Sharifabadi et al., 2012; Bottje and Kong, 2013)
while others have observed a decrease in activities of these
enzymes in more efficient animals (Sandelin, 2005). For the
majority of these enzyme complexes, we did not see any
difference in activity indices for either liver or muscle tissue
between RFI classifications, which would indicate that as a
whole there is no difference in the function of the electron
transport chain between RFI classifications which is con-
sistent with the observations of Kolath et al. (2006).
Complex I is the initiation point for the electron transport
chain and is the largest enzyme in the chain. It has previously
been found to be associated with FE at a transcript level in
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cattle (Ramos and Kerley, 2013). We did observe an RFI × sex
interaction for CI activity in muscle tissue. This observation
could indicate that there is a potential relationship between
CI and RFI, but it may be a function of sex and warrants
further investigation. We observed an effect of RFI on
CIV in liver, in which, those animals ranked as high had
a higher concentration of this enzyme than their lower
RFI contemporaries. This is in agreement with Sandelin
et al. (2005) who measured protein abundance of the com-
plexes and may be an indication that the mitochondria in the
less efficient animals have to ‘work harder’ to maintain energy
homeostasis.

Mitochondrial respiration is the product of the combined
action of the different components of the electron transport
chain. Firstly, the actions of the complexes, and secondly
the electron carriers, coenzyme Q10 and cytochrome c, are
required to transport electrons from CI and CII to CIII and sub-
sequently the electrons are transported to CIV by cytochrome c.
In the individual enzyme complex assays, the electron carriers
were included in the assay reaction as electron acceptors or
donors (Schwarzer, 2016). However, defects in mitochondrial
respiration due to changes in the interaction of individual
complexes or limited amounts of endogenous electron
carriers may be missed under these reaction conditions.
For example, coenzyme Q10 deficiency is known to impair
mitochondrial function, even in the absence of defects in
the mitochondrial complexes (Rooney et al., 2017). With this
in mind, it was decided to carry out specific experiments to
assess the combined action of two complexes, that is, CIþ III
activity or CIIþ III activity (Díaz et al., 2009). We observed
no differences in the combined activities of the electron car-
rier complexes, coenzyme Q10 and cytochrome c, between
animals divergent for RFI, indicating that there were no
differences in electron flow through the mitochondrial respi-
ratory chain between the phenotypes. These observations
combined with those of the complex assays provide further
evidence that the activity of the electron transport chain is
not affected by phenotypic RFI.

In conclusion, our findings highlight that mitochondrial
abundance is not related to variation in FE in cattle as mea-
sured by RFI. It follows that any changes observed in mito-
chondrial activity in muscle and liver tissue are as a result of
differences in mitochondrial functionality and not due to
the presence of more mitochondria. While our work and
the work of others highlight a potential shift in energy
metabolism between phenotypes, we conclude that it is
unlikely that differing potential for cellular mitochondrial
functionality is a major contributor to variation in FE in
cattle. A logistical limitation of the present study was that
frozen tissue was used and, thus, the mitochondria in the
respective tissues were no longer respiring. Future investi-
gation should focus on work with fresh biopsy samples.
This would allow for measurement of mitochondrial respi-
ration, proton leak and ROS production which may provide
further insight into the potential impact of cellular mito-
chondrial function on variation in the expression of pheno-
typic RFI.
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