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A B S T R A C T

Allostatic Load (AL) is posited to provide a measure of cumulative physiological dysregulation across multiple
biological systems and demonstrates promise as a sub-clinical marker of overall health. Despite the large het-
erogeneity of measures employed in the literature to represent AL, few studies have investigated the impact of
different AL scoring systems in predicting health. This study uses data for 4477 participants aged 50+ years
participating in the Irish Longitudinal Study on Ageing (TILDA) to compare the utility of 14 different scoring
algorithms that have been used to operationalise AL (i.e. count-based high-risk quartiles, deciles, two-tailed cut-
points, z-scores, system-weighted indices, clinical cut-points, sex-specific scores, and incorporating medication
usage). Model fit was assessed using R2, Bayesian Information Criterion (BIC), and the area under the Receiver
Operating Characteristic curve (AUC). The measure incorporating medications predicted walking speed and SRH
marginally better than others. In general, AL was not predictive of grip strength. Overall, the results suggest that
the choice of AL scoring algorithm exerts a relatively modest influence in predicting a number of important
health outcomes.

1. Introduction

Allostatic Load (AL) is posited to represent a sub-clinical measure of
physiological wear and tear resulting from chronic exposure to life
course stressors (McEwen and Stellar, 1993). In recent decades, the
framework has contributed to an enhanced interdisciplinary under-
standing of how social, environmental, and psychological factors im-
pact physiological functioning and shape health disparities (Beckie,
2012; Merkin et al., 2009; Upchurch et al., 2015). Despite this apparent
utility, AL is beset by a number of methodological and conceptual dif-
ficulties that have hampered its potential clinical utility. These include:
(1) the ongoing failure to agree a core set of biomarkers that define the
construct, and (2) a plethora of different AL scoring algorithms, limiting
our ability to compare results across studies. The former issue, con-
cerning the heterogeneity of biomarkers used across studies, has been
discussed at length in a number of recent reviews (Johnson et al., 2017;
Juster et al., 2010), but the latter issue has received rather less attention
in the literature, and is arguably just as important.

1.1. Different scoring systems for AL

Seeman et al. (1997) provided the first operational definition of AL

using a high-functioning sample of adults aged 60 years and older. They
employed 10 biomarkers across the neuroendocrine, immune, meta-
bolic and cardiovascular systems, and summed the number of para-
meters for which an individual had values in the highest risk quartile,
based on the sample distribution (Seeman et al., 1997). This measure
predicted physical and cognitive decline within the MacArthur Studies
of Successful Ageing in the US, and greater incidence of cardiovascular
disease over a three-year follow-up. The authors concluded that AL
might perform even better in general population studies. The original
scoring algorithm for AL remains a popular method today, with the
aforementioned systematic review (Johnson et al., 2017) reporting that
73 % of included studies utilised this approach, despite the potential
loss of information from the full risk spectrum.

Lack of consensus around an agreed biomarker panel (Johnson
et al., 2017; Juster et al., 2010; Szanton et al., 2005) and scoring system
(Beckie, 2012; Seplaki et al., 2005) has led to a proliferation of different
means for characterising AL. Considerable heterogeneity in AL calcu-
lation exists across studies utilising the MacArthur cohort alone, in-
cluding: the original count of high-risk quartiles (Seeman et al., 1997,
2004; Weinstein et al., 2003), recursive partitioning (Gruenewald et al.,
2006), and use of second-order terms (Karlamangla et al., 2006). Al-
ternate AL formulations from other international studies include: a sum
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of z-scores, which may be considered more informative as it retains the
continuous properties of the data (Hawkley et al., 2011; Levine and
Crimmins, 2014), or the use of decile cut-points which consider only the
top end of the risk distribution. Two-tailed approaches (i.e. top and
bottom quartiles or deciles) for some (Hwang et al., 2014; LeBron et al.,
2019) or for all biomarkers (Seplaki et al., 2006) have also been em-
ployed to account for the fact that biological risk may be non-linear.

Canonical correlation, a technique that measures the associations
between sets of inter-connected variables (Karlamangla et al., 2002),
and recursive partitioning, a decision-tree technique (Gruenewald
et al., 2006; Singer et al., 2004), have been criticised for incorporating
information on health outcomes in their derivation, which can result in
the over-fitting of models and limits replication across other datasets
(Seplaki et al., 2005). Clinical cut-points have also been used (Allen
et al., 2019; Borrell et al., 2010; Crimmins et al., 2009; Glei et al., 2013;
Petrovic et al., 2016; Vasunilashorn et al., 2013); but, the lack of uni-
versally agreed values (e.g. cut-points for parasympathetic or im-
munological markers) potentially limits their application. In addition,
such definitions of risk remove the potential utility of AL as a sub-
clinical disease measure for identifying risk prior to the emergence of
the clinical phenotype. More sophisticated attempts to develop AL
measures include multivariate methods, such as grade of membership
(GOM) which assesses how well an individual’s scores on the set of
biomarkers used to define AL correspond to a set of predefined arche-
typal profiles (Li et al., 2019; Seplaki et al., 2006). Interestingly, the
predictive utility of AL measures calculated using GOM and count based
methods are not dissimilar (Li et al., 2019). These dissimilarities, and
also how the use of such complex algorithms would not be practical in
clinical settings, may explain why more elaborate measures have not
been adopted more widely.

1.2. Does the choice of AL scoring method matter for predicting health?

Methodological disparities in the scoring of the AL index across
studies not only makes comparison of results challenging, but also
hampers progress towards the use of AL as an early diagnostic screener
and / or therapeutic target. This is an important theoretical and em-
pirical matter that has not been subjected to the type of systematic
investigation one might expect. Our review of the literature identified
only two studies to date (Li et al., 2019; Seplaki et al., 2005) that have
explicitly examined this issue.

Seplaki et al. (2005) compared the predictive utility of 9 different
AL scoring algorithms (including count of high-risk quartiles/deciles,
GOM, z-scores, and two-tailed quartiles/deciles, derived from two
biomarker panels) in identifying poor health outcomes. Results were
remarkably similar irrespective of the method used to calculate AL.
They did, however, suggest that two-tailed formulations, or measures
that retain the continuous properties of the biological variables, might
be preferred going forward. A separate investigation by Li et al. (2019)
involving the NHANES cohort compared the utility of 5 scoring algo-
rithms (i.e. count of high-risk quartiles, z-scores, logistic regression,
factor analysis, GOM) in predicting self-reported health, diabetes and
hypertension. The best predictive performance was provided by a
measure utilising the standardised coefficients from multivariable lo-
gistic regressions to weight individual biomarkers. However, similar to
canonical correlation, health outcomes were used in the development of
the scoring algorithm, which hampers replication across other popu-
lations. Li et al. (2019) recommended the original method of high-risk
quartiles as a good alternative.

1.3. Should we incorporate sex differences in the calculation of the al
index?

To date, despite evidence of sex differences within the stress re-
sponse (Juster et al., 2019; Verma et al., 2011), and in the downstream
biological parameters associated with the stress response (Freire et al.,

2020; Goldman et al., 2004; Santos-Lozada and Howard, 2018; Stoney
et al., 1988; Yang and Kozloski, 2011), there is no consensus regarding
the incorporation of sex-specific risk values in the calculation of AL
measures. Seplaki et al. (2006) were the first to suggest deriving an AL
score using sex-specific risk definitions, with a number of others
adopting this approach since (Castagné et al., 2018; Christensen et al.,
2018, 2019; Duru et al., 2012; Gustafsson et al., 2012; Robertson et al.,
2015). Notwithstanding the potential import of biological sex differ-
ences, a recent review of NHANES revealed that only 1/21 AL studies
incorporated sex-specific risk definitions (Duong et al., 2017), and to
date, no study has compared the predictive utility of an AL measures
including and excluding sex-specific risk definitions with alternate
calculations.

1.4. Should we incorporate medications in the calculation of the AL Index?

Whether and how doctor-prescribed medication should be in-
corporated into the development of the AL index is another bone of
contention (Lipowicz et al., 2014). Medications can act on the biolo-
gical systems to reduce observed values, reducing risk of disease
(Seeman et al., 2002, 2004). On the other hand, wear and tear may
already have occurred if there is a need to medicate, and this excess risk
should be accounted for when calculating the score. Varied approaches
to the resolution of this problem exist including: scoring an individual
at high risk if taking a medication which deflates values on the bio-
marker (Seeman et al., 2014); adding ‘medication use’ as a covariate in
regression models (Piazza et al., 2018); or increasing individual bio-
marker values in an attempt at increasing prediction accuracy (e.g.
systolic and diastolic blood pressure adjusted by adding 10mmHG and
5mmHG, respectively if taking anti-hypertensives) (Robertson and
Watts, 2016). To date, no study has compared the predictive utility of
AL measures including medication use compared with alternate for-
mulations.

1.5. The present study

The present study builds upon the work of Seplaki et al. (2005) and
Li et al. (2019) in several important ways. Firstly, we use a sample from
a nationally representative cohort of community-dwelling older per-
sons, whereas Seplaki et al. (2005) used a militaristic sample with
heavy male bias, and Li et al. (2019) used an all-female sample. Sec-
ondly, we use a number of objective measures of physical health
functioning (i.e. walking speed, grip strength) as the criterion variables
in the analysis. Thirdly, we incorporate sex-specific and clinical risk
definitions. Finally, we examine whether included medication usage
improves the predictive accuracy of AL.

2. Methods

2.1. Sample

This analysis used data from the first wave of The Irish Longitudinal
Study on Ageing (TILDA), a nationally representative prospective study
of over 8175 persons aged 50 years and over living in the Republic of
Ireland. Sampling involved a three-stage selection process with the Irish
Geodirectory as the sampling frame, where residential addresses were
divided into geographical clusters, of which 640 were selected based on
area level socio-economic status and location. Additional information
on the sampling frame and study design is available in detail elsewhere
(Whelan and Savva, 2013). Data was collected through computer as-
sisted personal interview (CAPI) carried out by a trained interviewer, a
leave behind self-completion questionnaire (SCQ), and a comprehen-
sive clinic-based, nurse-administered health assessment. These assess-
ments included the collection of blood samples for biomarker assess-
ment and a battery of cognitive and physical tests. Ethical approval for
the study was provided by the Faculty of Health Science Research
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Ethics board in Trinity College Dublin, while informed consent is ob-
tained from all respondents during data collection. In total, 5894 people
completed either the centre or home-based health assessment. Re-
spondents who were missing on any of the biomarkers were excluded
for this study, leaving a total analytical case base of 4,477. A flow chart
summarising inclusion criterion for analysis is provided in Supple-
mentary Fig. 1.

2.2. Physiological parameters

A total of 12 biomarkers across the cardiovascular, metabolic, renal
and immune systems were used to construct the various AL indices
examined in this study. Biomarkers were selected to reflect the most
commonly chosen systems in the AL literature (Juster et al., 2010). Two
of the biomarkers - pulse wave velocity (PWV) and cystatin C (Cysc) -
are relatively novel with respect to AL formulation but their inclusion
was theoretically motivated. For example, there is evidence to suggest
that acute and chronic stress may induce arterial dysfunction as indexed
using PWV (Logan et al., 2012; Matsumura et al., 2019). Similarly, Cysc
may serve as a preferred/complementary biomarker of kidney func-
tioning compared with creatinine in older cohorts as it is less affected
by declining muscle mass (Canney et al., 2018). The component bio-
markers and a description of their primary function is provided in
Supplementary Table 1.

In terms of the cardiovascular system, the average of two mea-
surements of seated Systolic Blood pressure (SBP), Diastolic Blood
pressure (DBP) and Resting Heart Rate (RHR) were obtained separated
by a 1-minute interval using an automatic digital oscillometric blood
pressure monitor (OMRONTM, M10-IT). An average of two measure-
ments between the carotid and femoral arteries was obtained using a
Vicorder system, representing PWV (Skidmore Medical Ltd, Bristol,
UK), a non-invasive gold standard method (Whelan and Savva, 2013).
Metabolic system biomarkers included waist-hip ratio (WHR), body
mass index (BMI) glycosylated haemoglobin (HbA1c), total cholesterol
(TChol), and high-density lipoprotein (HDL). Weight was measured
using a SECA electronic floor scales, and height was measured using a
SECA 240 wall mounted measuring rod. BMI was calculated by dividing
weight in kgs by height in metres squared. SECA measuring tapes were
used to record WHR with measurements taken to the nearest milli-
metre. TChol was obtained from non-fasting blood samples, with ve-
nepuncture performed with a butterfly and a green 21-gauge Vacu-
tainer needle and stored in EDTA tubes. A direct determination of HDL
was performed using PEG-modified enzymes and dextran sulphate.
HbA1c reflects blood sugar levels and metabolic functioning in the 8–12
weeks prior to blood sampling and were analysed by reverse-phase
action exchange chromatography using an ADAMS A1c HA-8180 V
analyser.

C-Reactive Protein (CRP) serves as our singular marker of im-
munological dysregulation as it was the only inflammatory marker
available in the full TILDA cohort at baseline. It was measured in non-
fasting blood serum on a Roche Cobas c 701 analyser using an im-
munoturbidimetric assay for the in vitro quantitative determination of
CRP. Detection limits ranged from 0.3-−350 mg/l. The two renal
markers included Creatinine (Crea) and Cysc, which were measured
simultaneously from frozen plasma. Crea was measured using an en-
zymatic method traceable to isotope-dilution mass spectrometry (Roche
Creatinine plus ver.2, Roche Diagnostics, Basel Switzerland), whilst
Cysc was measured using a second-generation particle enhanced im-
munoturbidimetric assay (Roche Tina-quant™) on a Roche Cobas 701
analyzer. This assay has a measuring range of 0.40–6.80 mg/L and is
traceable to the European reference standard material (ERM-DA471/
IFCC). Log transformations were applied to CRP and PWV to account
for right-skewed distributions.

2.3. Calculation of summary measures

High-risk quartiles (Classic Method): To re-create the original
and most commonly employed scoring algorithm across studies
(Seeman et al., 1997), dichotomous indicator variables were created for
each biomarker. HDL was reverse coded such that higher values re-
presented increased risk. Empirically defined high-risk thresholds were
distinguished based on the distribution of that biomarker in the sample;
“1” was assigned to values falling above the 75th percentile of the
distribution for each marker, and “0” was assigned to values below this
threshold. These biomarkers were summed to create an index, with
higher scores reflecting higher AL burden. Two-tailed high-risk
quartiles: Seplaki et al. (2005) suggested that including risk factors at
both high and low ends of the risk continuum may be more informative
than simply using high-risk quartiles. To re-create this score, a value of
“1” was assigned to values above the 75th percentile and below the
25th percentile of the distribution, and a value of “0” was assigned for
values that fell intermediate of these thresholds. A sum of these bio-
markers represented two-tailed physiological dysregulation.

Following the above methodologies, two further algorithms were
created employing decile cut-points, to measure risk at more extreme
levels of the distribution. High-risk Deciles: “1” was assigned for va-
lues above the 90th percentile, “0” was assigned to all values below this
threshold, and all biomarkers were then summed. Two-tailed high-
risk deciles: “1” was assigned for values above the 90th percentile and
below 10th percentile for the measure incorporating both ends of the
distribution, and “0” assigned to all values that lay intermediate be-
tween these thresholds, and scores on the individual biomarkers were
then summed.

Z-scores: To create a score that retained the continuous properties
of each physiological variable, each biomarker was standardised to a
mean of 0 and a standard deviation of 1, and then summed to generate
an overall AL score expressed in standard deviation units (Daly et al.,
2019; Hawkley et al., 2011; Levine and Crimmins, 2014). System
Weighted: It is common in the AL literature for some biological systems
to be more heavily represented than others, of which metabolic system
biomarkers tend to be most populous (Juster et al., 2010). A system-
weighted score was therefore created to reduce this bias. Firstly, bio-
markers were dichotomised following the classic methodology (Seeman
et al., 1997). Secondly, each dysregulated biomarker was weighted
according to the total number of biomarkers per system. System risk
indices were computed as the proportion of individual biomarkers for
each system for which participant values fell into high-risk quartiles
(Gruenewald et al., 2012). For example, in the present study, the car-
diovascular system was comprised of four biomarkers (SBP, DBP, RHR,
PWV). Therefore, the sum of dysregulated biomarkers within this
system were divided by 4 and expressed as a proportion ranging from
0.0−1.0. As CRP is the only immunological biomarker, no scaling oc-
curred, hence “0” indicated no risk, whilst “1” indicated high risk. Fi-
nally, an AL score was computed as the sum of these weighted systems.
This methodology has been used previously and ensures that each
system is equally represented in the overall AL index (Gruenewald
et al., 2012; Piazza et al., 2018; Read and Grundy, 2014).

Sex-specific cut-points: To account for variability in biomarker
values according to sex, each of these 6 scoring algorithms were re-
created using sex-specific cut-points (Table 2). Therefore, to create the
sex-specific count of high-risk quartiles measure, individuals falling
above the 75th percentile were identified using the sample distributions
for men and women separately, and scores were then pooled.

High-risk quartiles (incorporating medications): To allow for
the possibility that medication use was masking high values, prescrip-
tion drugs were incorporated into an additional algorithm based on the
classic methodology, with individuals taking medication automatically
reclassified as high-risk across affected biomarkers. In TILDA, medica-
tion usage was ascertained as part of the household interview, where
respondents were asked to retrieve the medicinal packaging of any
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regularly taken medications and interviewers transcribed the brand/
generic name of the prescription medication. The medications data was
then coded in-house by pharmacologists according to Anatomic
Therapeutic Classification (ATC) codes (Whelan and Savva, 2013).
HbA1c was coded as high risk if individuals were currently prescribed
medications of codes for insulin or analogues (A10), SBP was classified
as high risk if individuals were taking anti-hypertensive medication
(C02, C03, C09). RHR was recoded as high risk if taking beta-blockers
(C07) or calcium blockers (C08) and finally, HDL was recoded as high
risk if prescribed lipid modifying agents (C10).

Clinical: Finally, we derived a measure of AL using recognised risk
definitions according to clinical guidelines (Allen et al., 2019; Borrell
et al., 2010; Gruenewald et al., 2012; Prag and Richards, 2018). Clinical
cut-points for each biomarker are provided in Supplementary Table 2.

2.4. Health outcomes

We utilised two objectively measured health outcomes – walking
speed and grip strength (described below) - and to enable comparison
with Seplaki et al. (2005), a general self-reported health measure was
included.

2.4.1. Walking speed
In older adults, walking speed has been shown to be a good in-

dicator of overall physical function (Viccaro et al., 2011), and a pre-
dictor for hospitalisation (Studenski et al., 2003) and higher morbidity
(Guralnik et al., 2000). In TILDA, gait measurements were taken using a
4.88-metre computerised walkway with embedded pressure sensors
(GAITRite, CIR Systems Inc., New York, NY). Participants completed
two walks at their normal walking speed. The average of the two
readings represents the overall walking speed expressed in centimetres
travelled per second (cm/s).

2.4.2. Grip strength
Low grip strength has been robustly associated with functional de-

cline and mortality in older adults (Bohannon, 2008) and serves as a
proxy for the overall strength of the musculoskeletal system. Two
measures were taken from the dominant hand using a Baseline® Hy-
draulic Hand Dynamometer, and the highest of the two readings in
kilograms (kgs) per square inch represented the measure of grip
strength used in the analysis.

2.4.3. Self-rated health
Self-rated health (SRH) is a commonly assessed item in health sur-

veys (Manor et al., 2000), and can provide insight into the perceptions
that an individual has of their own health status relevant to their peers.
SRH has previously been associated with decreased physical perfor-
mance (Perez-Zepeda et al., 2016) and increased mortality risk (Jylha,
2009). Previous studies have reported that lower SRH predicts higher
AL (Vie et al., 2014; von Thiele et al., 2006). SRH was obtained during
the CAPI with the item “In general, compared to other people your age,
would you say your health is…” rated on a five-point scale of excellent,
very good, good, fair, and poor.

3. Statistical analysis

All analyses were conducted in Stata (v.15; StataCorp, 2017), using
TILDA dataset v.1.8.0. The outcome measures were regressed sepa-
rately on each of the 14 AL scoring algorithms, adjusting for age and
sex, using ordinary least squares regression with respect to walking
speed and grip strength, and ordinal logistic regression for SRH. Overall
model fit was assessed using the proportion of variance explained (R2

for OLS, pseudo R2 for ordinal logistic regression) and the Bayesian
Information Criterion (BIC). An obvious advantage of using information
measures is that one can compare the goodness of fit of non-nested
models (Williams, 2019) as the different AL scoring algorithms are

essentially just reformulations of the same underlying set of 12 com-
ponent biomarkers. The extent to which one model is preferred over
another depends on the magnitude of the difference between the in-
formation measures. Higher values of R2 and lower values of BIC in-
dicate better model fit. BIC values were obtained using the FITSTAT
package in Stata (Scott Long and Freese, 2014). Following guidelines
proposed by Raftery (1995), we noted a BIC difference> 10 to indicate
a better fitting model than the standard scoring algorithm. To reduce
the large number of potential contrasts between the different AL scoring
algorithms, we take as our reference, the overall (i.e. non-sex-specific)
quartile-based risk score (hereinafter referred to as classic method) as it
is the one that has been predominantly used in the AL literature.

In order to provide a comparison with Seplaki et al. (2005), binary
indicator variables were created for each of the health outcomes using
cut-points guided by previous literature. Grip strength was dichot-
omised at< 37 kg for men, and<21 kg for women (Sallinen et al.,
2010). Walking speed was dichotomised at< 120 cm/s (Studenski
et al., 2011). SRH was recoded as “1” if respondents rated their health
as fair/poor, “0” otherwise (Seplaki et al., 2005). Each of the binary
health outcomes were treated as dependent variables in separate lo-
gistic regression models, controlling for age and sex. The area under the
Receiver Operator Characteristic curve (AUC) was calculated for each
health outcome for each of the 14 different AL scoring algorithms using
the ROCTAB procedure (Pepe et al., 2009). Higher AUC values indicate
greater classification accuracy. Comparison of AUC estimates to test the
statistical significance of the difference between the classic AL algo-
rithm and all alternative algorithms were investigated using the ROC-
COMP procedure (Cleves, 2002). Finally, as age is the strongest pre-
dictor of health, we also examined which of the AL algorithms was most
strongly correlated with chronological age.

4. Results

Table 1reports sample characteristics. The mean age of the sample
was 61.8 years and female respondents accounted for 53.7 % of the
sample. Mean walking speed was 136.1 cm/s (SD = 20.4), and mean
grip strength was 27.5 kgs (SD = 9.88). 89.0 % of the sample reported
that they were in excellent/very good/good health. In total, 45.4 % of
the sample were taking prescribed medications that potentially im-
pacted values of biomarkers included in this study. Respondents in-
cluded in the study were younger than those who were missing bio-
marker data, more educated and had, on average, a lower average
count of chronic diseases. No sampling weights were applied however,
as the primary focus of this study was to compare the predictive utility
of various AL scoring algorithms and not to infer the relationship of AL
and the health outcomes to the population. The relationship between

Table 1
Sample characteristics.

Variable In sample (N = 4477) Missing (N = 3697)

Mean SD Mean SD

Sex (n, %)
Male 2071 46.3 1673 45.3
Female 2406 53.7 2024 54.7
Age 61.8 8.4 66.3 10.8
Education (n, %)
Primary 959 21.4 1545 41.8
Secondary 1882 42.1 1381 37.4
Tertiary 1635 36.5 768 20.8
Chronic diseases 1.6 1.4 1.8 1.5
Medications (n, %) 2033 45.4 697 18.85
Walking speed 136.1 20.4 132.5 22.0
Grip strength 27.5 9.88 25.6 9.59
SRH (n, %)
Excellent, very good, good 3978 89.0 2922 79.2
Fair, poor 494 11.1 766 20.8
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age and each of the AL scoring algorithms was assessed using Spear-
man’s correlations, reported in Supplementary Table 3. The measure
incorporating medications was most strongly correlated with age (r =
0.34), whilst the two-tailed measures revealed weak correlations with
age (e.g. overall quartile (r = 0.05), overall decile based (r = 0.06)).

Univariate statistics and percentile cut-points for each of the 12
component biomarkers defining the AL construct are presented in
Table 2. Two-sample t-tests revealed marked differences in biomarker
values according to sex. Specifically, male respondents were char-
acterised by significantly higher mean values for 9/12 biomarkers,
whilst female respondents had significantly higher mean values for the
latter 3 (RHR, CRP, Total Cholesterol). Supplementary Table 4 presents
univariate statistics in respect of each of the 14 AL scoring algorithms
used in the present study. Tables 3–5report the model fit statistics for
each AL scoring algorithm and the difference in model fit relative to the
classic scoring algorithm for walking speed, grip strength and SRH,
respectively. In this context, higher values for R2 and lower values for
BIC indicate a better fitting model compared with the standard model.
In general, the results indicate that the choice of scoring algorithm has
relatively modest effects on the proportion of variance explained in the
health outcomes.

4.1. Walking speed

Looking first at the results for walking speed, Table 3 shows that the
proportion of variance explained by the classic AL scoring algorithm
(including age and sex) was 20.3 %, compared with 17.8 % for the
worst (overall two-tailed quartiles and overall two-tailed deciles) and

Table 2
Univariate descriptives of individual biomarkers by sex.

Biomarker Mean SD Min 10th p 25th p Median 75th p 90th p Max p

Systolic blood pressure 134.67 19.49 78.50 111.00 121.00 133.50 146.50 159.50 220.00
Male 138.95 18.28 83.00 117.50 126.50 137.00 150.00 162.00 220.00 <0.001
Female 130.99 19.75 78.50 107.50 117.00 129.00 143.00 158.00 208.50
Diastolic blood pressure 82.30 11.06 51.50 68.50 75.00 82.00 89.50 96.50 132.00
Male 83.72 10.88 53.50 70.50 76.50 83.50 90.50 97.00 132.00 <0.001
Female 81.09 11.06 51.50 67.00 73.50 80.50 88.00 95.50 125.50
Resting heart rate 68.78 11.37 33.00 55.50 60.50 67.50 75.50 83.50 135.50
Male 67.81 12.00 33.00 54.00 59.50 66.50 74.50 83.50 135.50 <0.001
Female 69.62 10.73 35.00 56.50 62.00 68.50 76.00 83.50 116.50
Pulse wave velocity * 2.33 0.19 1.67 2.09 2.20 2.32 2.45 2.58 2.99
Male 2.37 0.18 1.82 2.14 2.25 2.37 2.49 2.61 2.99 <0.001
Female 2.29 0.19 1.67 2.05 2.15 2.28 2.42 2.54 2.94
High density lipoprotein (reversed) −1.56 0.44 −3.82 −2.13 −1.80 −1.49 −1.23 −1.07 −0.48
Male −1.36 0.34 −3.50 −1.80 −1.54 −1.31 −1.11 −0.99 −0.63 <0.001
Female −1.72 0.44 −3.82 −2.30 −1.98 −1.66 −1.41 −1.22 −0.48
Cholesterol 5.15 1.05 1.80 3.80 4.50 5.10 5.80 6.50 12.20
Male 4.88 1.05 1.80 3.50 4.20 4.90 5.60 6.20 9.10 <0.001
Female 5.39 1.00 2.20 4.10 4.70 5.30 6.00 6.70 12.20
Glycosylated haemoglobin 33.06 5.45 16.00 28.00 30.00 32.00 35.00 38.00 94.00
Male 33.47 5.72 17.00 28.00 30.00 32.00 35.00 39.00 88.00 <0.001
Female 32.72 5.18 16.00 28.00 30.00 32.00 34.00 37.00 94.00
BMI 28.51 4.82 17.08 23.00 25.24 27.99 31.12 34.58 61.86
Male 29.10 4.33 18.33 24.16 26.28 28.69 31.45 36.50 59.28 <0.001
Female 28.00 5.15 17.08 22.33 24.47 27.24 30.69 34.66 61.86
Waist hip ratio 0.90 0.09 0.63 0.79 0.84 0.90 0.96 1.01 1.29
Male 0.96 0.07 0.74 0.77 0.92 0.96 1.00 1.07 1.28 <0.001
Female 0.85 0.07 0.63 0.77 0.81 0.85 0.90 0.94 1.29
Cystatin C 0.97 0.21 0.46 0.77 0.84 0.93 1.05 1.18 3.95
Male 0.99 0.22 0.56 0.79 0.86 0.95 1.06 1.19 3.95 <0.001
Female 0.95 0.20 0.46 0.76 0.83 0.92 1.03 1.18 2.97
Creatinine 79.21 19.90 40.00 59.00 66.00 77.00 88.00 101.00 486.00
Male 89.09 20.21 49.00 71.00 78.00 86.00 96.00 109.00 486.00 <0.001
Female 70.71 15.13 40.00 56.00 61.00 68.00 77.00 87.00 231.00
C-Reactive protein * 0.69 0.77 0.00 0.00 0.00 0.47 1.17 1.79 6.28
Male 0.65 0.75 0.00 0.00 0.00 0.43 1.12 1.68 5.73 0.003
Female 0.72 0.78 0.00 0.00 0.00 0.51 1.22 1.84 6.28

Total sample n = 4477; male = 2071, female = 2406. p = significance level determined from two sample t-test, comparisons of mean values within biomarkers
between male and female respondents. *log transformed.

Table 3
Model Fit Statistics for different Allostatic Load Scoring Algorithms predicting
Walking Speed.

R2 DIFF R2 BIC DIFF BIC

High-risk quartiles
Overall 0.203*** REF 38344.70 REF
Sex-specific 0.209*** 0.006 38310.73 −33.97a

Two-tailed quartiles
Overall 0.178*** −0.025 38479.84 135.14
Sex-specific 0.182*** −0.021 38449.62 113.30
High-risk deciles
Overall 0.205*** 0.002 38329.40 −10.51a

Sex-specific 0.207*** 0.004 38322.91 −20.94a

Two-tailed deciles
Overall 0.178*** −0.025 38467.57 136.23
Sex-specific 0.180*** −0.023 38458.66 124.48
System weighted
Overall 0.207*** 0.004 38304.19 −22.17a

Sex-specific 0.208*** 0.005 38328.90 −27.40a

Continuous
Overall 0.204*** 0.001 38337.43 −7.27
Sex-specific 0.205*** 0.002 38331.71 −12.99a

Medications 0.212*** 0.009 38296.41 −48.29a

Clinical 0.199*** −0.004 38362.26 17.56

Note: Adjusted for age and sex. R2 = proportion of variance explained. R2 Diff
= gain in R2 compared with the classic AL scoring algorithm. BIC = Bayesian
Information Criterion. BIC Diff = Difference in BIC compared with the classic
AL scoring algorithm. *p<0.05, **p< 0.01, *** p< 0.001.

a Substantial decrease in BIC compared with the classic AL scoring algo-
rithm.
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21.2 % for the best (high-risk quartiles incorporating medications) fit-
ting models. The sex-specific high-risk quartiles, high-risk decile mea-
sures, weighted measures, sex-specific z-scores, and the algorithm in-
corporating medications led to a strong improvement in model fit
relative to the classic AL scoring algorithm, according to the BIC
guidelines proposed by Raftery (1995). However, it should be ac-
knowledged that the gain in R2 was typically very modest and
amounted to, at most, +0.9 %. The measures calibrated according to
sex performed marginally better when predicting walking speed than

the overall measures. The two-tailed measures by contrast performed
poorly, with lower values of R2 and large increases in BIC compared
with the classic algorithm.

4.2. Grip strength

For grip strength, Table 4 shows that the proportion of variance
explained by the classic AL scoring algorithm (including age and sex)
was 60.8 %, and this value did not vary substantially across the other
measures; +0.06 % for the best fitting model (overall two-tailed dec-
iles) compared with the classic model. Two-tailed decile measures,
clinical and z-scores were the only AL scoring algorithms that exhibited
statistically significant associations with grip strength independently of
age and sex. The strength of these relationships were small, however,
and the direction of these relationships differed; negative associations
were noted for overall (β = −0.16, 95 % CI: −0.27, −0.06) and sex-
specific (β=−0.11, 95 % CI: −0.02, −0.01) two-tailed deciles, whilst
positive associations were noted for the clinical measure (β = 0.13, 95
% CI: 0.02, 0.23), as well as the overall (β = 0.05, 95 % CI: 0.01, 0.09)
and sex-specific (β = 0.05, 95 % CI: 0.01, 0.09) z-score measures.

4.3. Self-rated health

Table 5 shows that the classic AL measure accounted for 1.1 % of
the variance in SRH, compared with 0.02 % for the worst fitting models
(overall high-risk deciles, two-tailed high-risk decile measures) and 1.9
% for the best fitting model (high-risk quartiles incorporating medica-
tions). The sex-specific high-risk quartile measure, overall weighted
measure, the measure incorporating medications, and the clinical
measure led to strong improvements in BIC values compared to the
classic AL index, whilst the two-tailed measures performed sub-
stantially worse.

4.4. Area under the receiver operating characteristic curve (AUC)

Supplementary Table 5 reports the AUC estimates for each of the AL
scoring algorithms separately for each of the three binary health out-
comes. Results were consistent with what was observed when using the
continuous measures. Notably, the two-tailed measures (quartiles and
deciles) performed worse than the classic algorithm when predicting
walking speed and SRH, whilst all measures predicted poor grip
strength to the same degree of accuracy as the classic score (Fig. 1).
Although a minority of AL algorithms reached statistical significance
with grip strength, no substantial differences in AUC were noted be-
tween these and the classic algorithm. In addition, the count of high-
risk quartiles measure incorporating medications predicted fair/ poor
SRH better than the classic measure.

5. Discussion

The present study assessed the explanatory utility of a multitude of
AL scoring algorithms for predicting a number of objective and sub-
jective age-related health outcomes in an older adult population re-
siding in Ireland. In accordance with the findings from a previous study
involving a Taiwanese sample (Seplaki et al., 2005), we found that the
choice of AL scoring algorithm has a relatively modest impact in terms
of variance explanation and classification accuracy in the prediction of
a number of important health outcomes. Although the differences be-
tween the 14 scoring algorithms were not pronounced in this study,
there were, nevertheless, some subtle nuances observed.

AL was strongly associated with walking speed across all 14 scoring
algorithms independently of age and sex, supporting prior findings re-
garding the predictive utility of AL for functional decline (Karlamangla
et al., 2002; Read and Grundy, 2014; Singer et al., 2004; Szanton et al.,
2005). Although the differences were small when compared to the
classic scoring algorithm, the count of high-risk quartiles incorporating

Table 4
Model Fit Statistics for different Allostatic Load Scoring Algorithms predicting
Grip Strength.

R2 DIFF R2 BIC DIFF BIC

High-risk quartiles
Overall 0.6078 REF 28968.53 REF
Sex-specific 0.6077 −0.0001 28968.90 0.37
Two-tailed quartiles
Overall 0.6078 0.0000 28967.96 −0.57
Sex-specific 0.6078 0.0000 28968.06 −0.46
High-risk deciles
Overall 0.6077 −0.0001 28969.34 0.82
Sex-specific 0.6076 −0.0002 28969.86 1.33
Two-tailed deciles
Overall 0.6084** 0.0006 28960.84 −7.68
Sex-specific 0.6080* 0.0002 28965.64 −2.89
System weighted
Overall 0.6077 −0.0001 28969.43 0.90
Sex-specific 0.6076 −0.0002 28969.74 1.21
Continuous
Overall 0.6082* 0.0004 28963.277 −5.25
Sex-specific 0.6082** 0.0004 28963.083 −5.44
Medications 0.6077 −0.0001 28969.45 0.92
Clinical 0.6081* 0.0003 28964.77 −3.76

Note: Adjusted for age and sex. R2 = proportion of variance explained. R2 Diff
= gain in R2 compared with the classic AL scoring algorithm. BIC = Bayesian
Information Criterion. BIC Diff = Difference in BIC compared with the classic
AL scoring algorithm. *p< 0.05, **p<0.01, *** p<0.001.
aSubstantial decrease in BIC compared with the classic AL scoring algorithm.

Table 5
Model Fit Statistics for different Allostatic Load Scoring Algorithms predicting
self-rated health.

R2 DIFF R2 BIC DIFF BIC

High-risk quartiles
Overall 0.011*** REF 12156.79 REF
Sex-specific 0.013*** 0.002 12133.15 −23.65a

Two-tailed quartiles
Overall 0.002*** −0.009 12256.37 99.58
Sex-specific 0.003*** −0.008 12248.24 91.44
High-risk deciles
Overall 0.011*** 0.000 12149.79 −7.00
Sex-specific 0.011*** 0.000 12158.46 1.67
Two-tailed deciles
Overall 0.002*** −0.009 12262.80 106.00
Sex-specific 0.002*** −0.009 12262.81 106.02
System weighted
Overall 0.012*** 0.001 12139.15 −17.64a

Sex-specific 0.011*** 0.000 12149.24 −7.56
Continuous
Overall 0.010*** 0.001 12163.989 7.20
Sex-specific 0.010*** 0.001 12158.346 1.55
Medications 0.019*** 0.008 12052.43 −104.37a

Clinical 0.008*** −0.003 12183.01 26.21

Note: Adjusted for age and sex. R2 = proportion of variance explained. R2 Diff
= gain in R2 compared with the classic AL scoring algorithm. BIC = Bayesian
Information Criterion. BIC Diff = Difference in BIC compared with the classic
AL scoring algorithm. *p< 0.05, **p<0.01, *** p<0.001.

a Substantial decrease in BIC compared with the classic AL scoring algo-
rithm.
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medications performed marginally better. In contrast, few significant
associations were observed between measures of AL and grip strength,
and no algorithm fit the data significantly better than the classic
method. Although few have investigated this relationship directly, grip
strength shows strong age-related decline and is an important compo-
nent of many frailty indices that have been found to be negatively as-
sociated with AL (Gruenewald et al., 2012; Szanton et al., 2005). The
null associations of the majority of AL scoring algorithms, and the
varied direction of the relationship noted for those algorithms which
did statistically predict grip strength is surprising, but not without
precedent. Freire et al. (2020) for example, arrived at the rather
counter-intuitive conclusion that higher AL burden (classic measure)
was associated with higher grip strength in a small sample of older
community-dwelling adults in Brazil (n = 256), yet they hypothesised
this contradictory result was due to survival bias. Perhaps the pre-
dominantly null results arise as there are other potential confounders
that we are not controlling for in this analysis, which may help preserve
muscle strength at older ages (e.g. height, occupational class etc).

In respect of SRH, results were more variable across scoring algo-
rithms, although differences were small in absolute terms. Similar to
walking speed, the algorithm incorporating medication use was the best
predictor of SRH in terms of model fit. This pattern of results begs the
obvious question as to whether the better predictive performance of a
measure incorporating medication when using a SRH measure is simply
a reflection of the individual being more aware of their ‘health state’ by
virtue of consciously taking prescribed medications on a regular basis.

5.1. Use of one vs two-tailed risk

Notably, the AL scoring algorithms incorporating risk in both tails of
the distribution of each biomarker underperformed relative to the
classic one-tailed measure in this study. These findings align with re-
sults from the Hawaii Personality and Health Cohort (n = 470), where
two-tailed measures of AL were less effective than one-tailed measures
in predicting SRH and depressive symptoms. In stark contrast, however,
Seplaki et al. (2005) found that two-tailed measures of risk accounted
for more variance across self-reported health measures than the classic
AL index. This discrepant pattern of results across studies could be
explained by differences in the biomarker panels employed to represent
AL. Seplaki et al.’s (2005) study included primary mediators of the
stress response such as cortisol, in which both high and low values can
characterize certain syndromes and diseases (Fries et al., 2005)
whereas, similar to the present study, Hampson et al. (2009) did not
include any markers of neuroendocrine dysregulation. Moreover, in the
context of the current study, it is difficult to see how low scores for
HbA1c or cystatin C would increase risk of disease, which reinforces the
need to think critically about whether risk on particular biomarkers is
best conceptualised as linear or curvilinear when developing AL in-
dices.

5.2. The importance of considering sex differences

Beyond the objective of comparing the predictive utility of various
AL algorithms, this study found significant differences across mean
biomarker values between male and female individuals. Furthermore,
the AL algorithms which were calibrated relative to sex generally per-
formed marginally better in terms of model fit than those derived from
the pooled sample with respect to walking speed and SRH.
Acknowledging that men and women may react differently to stress,
both psychologically and biologically (Stroud et al., 2002); we re-
commend that future investigations continue to examine the use of sex-
specific cut-points, particularly where the distributions on the compo-
nent biomarkers differ according to sex, or indeed, where there might
be large sex differences (Juster et al., 2016), in the outcome measure
(e.g. depression).

5.3. The importance of considering medications

The vexed question of whether to include medications in the cal-
culation of the AL measure is a recurring feature in many critiques of
the AL literature (Duong et al., 2017; Howard and Sparks, 2016;
Rodriquez et al., 2019). This issue has not always been afforded the
attention it arguably deserves in many empirical studies, presumably
because many studies either do not capture this information, rely on
self-report, or perhaps due to operational difficulties in how to treat the
data if using continuous measures (e.g. z-scores). We found that in-
cluding medications led to small improvements in performance relative
to the classic measure with respect to walking speed and SRH. It was
also the algorithm which was most strongly correlated with age.
Nevertheless, we applied only one of a number of potential techniques
for including medications in the development of the AL index, and fu-
ture studies may wish to consider alternative approaches such as in-
cluding medications as a covariate (Piazza et al., 2018) or adjusting
biomarker values upward to adjust for their deflationary effect on the
biomarker of interest (Robertson and Watts, 2016).

6. Strengths and limitations

This study is among the first to examine and compare the effects of
various AL scoring algorithms in a community-dwelling cohort of older
persons. It benefits from having a large sample pulled from a nationally
representative cohort, and gold standard measures of objective phy-
siological functioning measured using trained nurses according to

Fig. 1. AUC estimates for different scoring algorithms, predicting a) slow
walking speed, b) weak grip strength and c) poor self-rated health.
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standard operating protocols. It advances the current knowledge base
through the inclusion of these objective markers of physical fitness, by
considering sex as an important variable in the determination of AL
scores, and by accounting for medication use as a potential indicator of
physiological wear and tear. Despite these strengths, this study does not
have any neuroendocrine markers at baseline which is an important
limitation as they are hypothesised to play a central role in the stress
response. Furthermore, whilst TILDA is a nationally representative co-
hort study, the sample employed in this paper is not generalisable to
other populations. Similarly, the results from this study are not gen-
eralisable to studies employing biomarkers different to those used here.
It should also be acknowledged that although significant associations
were found between measures of AL and objective health outcomes in
this study, the estimated models control only for the effects of age and
sex. Instead, this study provides evidence for the construction of a
summary score from individual biological components to predict poor
health outcomes, without assuming a causal or directional relationship.

7. Conclusion

This study was motivated by the lack of empirical insight into the
effects the choice of AL scoring algorithm has on the predictive utility of
poor health outcomes. Seeman et al. (2010) claimed that their original
method did not represent a gold standard, yet the results of this study
suggest that this classic method performs well. We therefore echo the
conclusion of others (Berger et al., 2018; Li et al., 2019), that given that
this is the technique used in the vast majority of papers, perhaps the
notion of harmonising international work around this scoring algorithm
should be considered. Nonetheless, the findings of this paper can help
allay researchers concerns that the choice of scoring algorithm makes a
large difference to the results, but whether the composition of bio-
markers employed to reflect physiological dysregulation does remains
to be elucidated.
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