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Overview

The field of neurogenomics is coming of age, but not without some
teething problems. The aim of this field is to understand the genetic
basis of differences in brain structure and function, which in turn
underlie differences in behaviour, cognition, perception, mood and
other psychological faculties, as well as susceptibility to psychiatric
disorders. Both imaging and genomic technologies are now being
applied on a very large scale, greatly boosting the potential power
of this combined approach. However, the field is lagging behind
some others in the degree of rigour and quality control that is
demanded. Past practices have yielded a literature hopelessly pol-
luted with spurious findings. To make real progress, the field will
have to learn from these mistakes and adopt more rigorous stan-
dards. In addition, our emerging understanding of the genetic archi-
tecture of psychological traits or psychiatric disorders has important
implications for the design and interpretation of imaging and neu-
rogenomics experiments.

Introduction

Twin and family studies have shown that most behavioural and
cognitive phenotypes are at least moderately heritable. This includes
personality traits, which can be assessed in a pseudoquantitative
fashion using questionnaires, or cognitive traits, such as intelligence,
memory or a wide range of more specific faculties, which can be
assessed by psychometric tests. It even extends to observed occur-
rences of specific behaviours or life outcomes, such as educational
attainment, physical violence or divorce. For all of these phenotypes,
a substantial proportion of the variance across the population is attri-
butable to genetic variation (Polderman et al., 2015). The same is
true for psychiatric disorders, most of which also show high levels
of heritability (Polderman et al., 2015). However, in all of these
cases, the measurement of the phenotype itself is a limiting factor –
most psychological tests and even psychiatric diagnoses are some-
what fuzzy. One of the goals of neurogenomics is to move to a level
deeper – to define brain-based phenotypes that are more precisely
measurable and that may also reveal the biological mechanisms
underlying variation in behavioural or cognitive traits.
The application of neuroimaging technologies in twins and family

members, and also across only distantly related individuals, has
shown that a wide range of brain-based parameters is also quite
highly heritable (Jansen et al., 2015; Toro et al., 2015). On a struc-
tural level, these include overall brain size, grey matter volume,
white matter volume, sizes of various brain regions, fractional

anisotropy or other diffusion-based parameters. The same is true for
functional parameters, both in the response of particular brain
regions during specific tasks, or in more global resting state mea-
sures. This can also be extended to global measures of connectivity
or other network parameters such as small-worldness, modularity or
efficiency, which all also show at least moderate heritability (Fornito
& Bullmore, 2012). The hope in neurogenomics is now to identify
specific genetic variants contributing to these differences across the
normal range or to alterations in these parameters in disease. This
should in turn provide entry points to further elucidate the molecular
and neural mechanisms underlying the various cognitive and beha-
vioural faculties. However, the methods used to date in this field
have been plagued by statistical deficiencies and less than rigorous
research practices. In addition, assumptions about the genetic basis
of these kinds of phenotypes have turned out be na€ıve.

Methodological issues

Much of the research in this field has relied on candidate gene asso-
ciation studies. These studies analyse the relative frequency of com-
mon genetic variants in some particular gene or genes of interest,
across people with varying levels of some brain-based phenotype.
Throughout the human genome, there are millions of sites where the
DNA sequence comes in two versions – it might be an ‘A’ in 30%
of people and a ‘T’ in 70%. (Really, this should read 30% of chro-
mosomes, as we each carry two copies, so in the example above,
some people would have an AA genotype, others AT and others
TT). An association study simply asks whether one or other of the
versions of these so-called single nucleotide polymorphisms (SNPs),
or one of the genotypes, differs in frequency between two phenotyp-
ically distinct groups or along a phenotypic continuum. If it does,
the inference is that either that genetic variant itself, or another
variant nearby on the chromosome, is causally contributing to the
phenotypic difference.
In the 2000’s, an international effort mapped the common varia-

tion across the genome, thus allowing researchers to select particular
SNPs in their gene of interest and test association with their pheno-
types of interest (Consortium, International HapMap, 2003). The
nice thing about this is that the methods for genotyping people –
determining which versions of the SNP they carry – are cheap and
straightforward. So, if you have a sample of people with some
imaging phenotypes, performing an association study is relatively
trivial. In addition, an explicit argument was made that the sample
sizes required to detect a genetic association should be smaller for
structural and functional brain-based phenotypes than for ones mea-
sured in cognitive or behavioural tests. This was based on the idea
that brain-based phenotypes would be ‘closer to the action of the
genes’ than behavioural ones and that the genetic effects of common
variants would therefore be much larger in size (Gottesman &
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Gould, 2003; Glahn et al., 2007). Despite early reports of such large
effects, this has not held true. The genetics of these phenotypes do
not appear to be any simpler than that of psychological traits (Glahn
et al., 2014; Bearden & Thompson, 2017).
Candidate gene association studies are fine in principle, but in

practice have been beset by a host of methodological problems
(Flint & Munafo, 2013; Dumas-Mallet et al., 2017). These apply
whatever the phenotype, but for neuroimaging experiments, the
problems are compounded due to the increased number of possible
phenotypes to analyse (Ioannidis, 2005; Button et al., 2013). These
problems include the following: (i) small sample sizes; (ii) failure to
correct for testing of multiple SNPs; (iii) lack of pre-defined specific
hypotheses; (iv) excess researcher degrees of freedom in deriving
neuroimaging parameters to use as phenotypes; (v) lack of a replica-
tion sample; and (vi) publication bias favouring reporting of positive
findings. If you look at enough SNPs or genotypes, and define
enough different neuroimaging phenotypes, where any difference in
any direction in any parameter will do, you are certain to see some-
thing that appears statistically significant in any given sample of
limited size, or at least in many such samples. Selectively reporting
only the positive findings will make them seem much less spurious
than they actually are.
These practices, which have been standard operating procedure in

the field for many years, have produced a body of literature that is
dominated by false positives. There are much celebrated and famil-
iar examples of variants in genes like COMT (catechol-O-methyl-
transferase), BDNF (brain-derived neurotrophic factor), MAOA
(monoamine oxidase-A) and SLC6A4 (which encodes the serotonin
transporter), which have been associated with a huge array of struc-
tural and functional brain phenotypes, (reviewed in (Gelernter, 2014;
Hashimoto et al., 2015; Bogdan et al., 2017)), many with very large
reported effect sizes (Egan et al., 2001, 2003; Hariri et al., 2002;
Buckholtz et al., 2008; Gelernter, 2014). And there are scores of
other similar reported associations in less well-studied genes. Unfor-
tunately, these reports have not stood up to replication (Bogdan
et al., 2017). The same is true of candidate gene by environment
associations (Duncan & Keller, 2011).
In general, candidate gene association studies have proven to be

unreliable (Ioannidis et al., 2011), and the human genetics field has
largely stopped doing them. Regrettably, these lessons have not all
been taken on board by the neurogenomics community. Candidate
gene association studies with imaging phenotypes continue to be
carried out with all of the methodological problems referred to
above. Clearly they are still being positively reviewed, both for
funding applications and for publication, as they continue to appear
in the literature on a regular basis, including these examples just
from the last several months: (Bruce et al., 2017; Dalvie et al.,
2017; Gonzalez et al., 2017; Jasinska et al., 2017; Lubeiro et al.,
2017; Mallas et al., 2017; Swartz et al., 2017). This is despite the
very solid empirical finding that most, perhaps all, such reported
results will not generalise beyond the sample studied.
These problems pertain to all candidate gene association studies,

not just those using neuroimaging phenotypes. Thankfully, they
were recognised by the human genetics community, and steps were
taken to remedy them. Foremost among these was the development
of technology to enable genomewide association studies (GWASs)
(Visscher et al., 2017). Rather than testing SNPs only in a given
gene, GWASs allow researchers to look for frequency differences in
hundreds of thousands of SNPs across the entire genome. Because
this incurs a huge multiple testing burden, it requires massive sam-
ples to achieve genomewide statistical significance for any given
SNP. This has been achieved through the development of large

international consortia, which have pooled samples to reach the req-
uisite critical mass.
These consortia have developed rigorous statistical methods to

control for multiple testing and also demanded inclusion of separate
replication samples in the initial design of each study to ensure that
any primary findings are robust. Because GWASs report findings
for all SNPs, they also get around the pernicious problem of publi-
cation bias. GWASs have now successfully identified hundreds of
SNPs associated with all kinds of traits (Visscher et al., 2017),
including psychological ones such as intelligence (Direk et al.,
2017) and neuroticism (Luciano, 2017), as well as ones associated
with risk of psychiatric disorders, such as schizophrenia (Consor-
tium, Schizophrenia Working Group of the International Psychiatric
Genetics, 2014) and depression (Direk et al., 2017).
For neuroimaging-based studies, this is more challenging, as it is

much more time-consuming and expensive to collect large samples
with neuroimaging phenotypes and also more difficult to standardise
phenotyping across collection centres using different equipment and
protocols. Nevertheless, several large neuroimaging consortia have
been set-up, including ADNI (Shen et al., 2010) ENIGMA (Bearden
& Thompson, 2017), IMAGEN (Schumann et al., 2010), CHARGE
(Psaty et al., 2009) and the UK Biobank (Miller et al., 2016), for
example, and the sample sizes in these databases continue to grow.
These approaches have begun to yield positive results (Thompson
et al., 2017), with the identification of a small number of common
variants contributing to variation in hippocampal volume, for exam-
ple (Bis et al., 2012; Stein et al., 2012; Elliott, 2017; Hibar et al.,
2017) and a very recent, though still preliminary, report of a large
number of associations with diverse imaging phenotypes (Elliott,
2017).
Even at this early stage, there are a number of general conclu-

sions that can be drawn from these studies. First, none of the
reported candidate gene effects on brain anatomy have replicated in
these larger GWASs (Bogdan et al., 2017; Jahanshad, 2017).
Reported effects on size of various brain regions, such as that of a
variant in BDNF on the hippocampus, for example (Egan et al.,
2003), have not shown up in much more highly powered, unbiased
whole-genome analyses (Bis et al., 2012; Stein et al., 2012; Elliott,
2017; Hibar et al., 2017). Second, there are no common variants
that have even modest individual effects on brain structure. It is not
just that they have not been found – these studies were very well
powered to detect them if they existed. The negative result shows
quite conclusively that they do not. Identifying effects of common
variants will thus require much larger samples.
Finally, a number of techniques have been developed to use

GWAS statistics to estimate the total contribution of common vari-
ants to the heritability of the trait being studied (Vinkhuyzen et al.,
2013). Or, more accurately, the amount of variance signal that can
be tagged by common variation, as the methods only use common
variants to index distant relatedness and compare this with pheno-
typic similarity. As distant relatives actually share only small blocks
of the genome by descent, this signal may be driven by either rare
or common variants within such blocks. The application of these
techniques to brain-based phenotypes suggests that 40-50% of the
heritability of a variety of structural or functional measures can be
tagged in this way by common variants (Dickie et al., 2014; Chen
et al., 2015; Toro et al., 2015; Elliott, 2017; Thompson et al.,
2017). This suggests many more exist to be found, but these esti-
mates also put an upper bound on the collective effects of all com-
mon variants. They therefore provide strong evidence that much of
the variation in brain structure and function will be due to rare
genetic variants that are not captured by GWAS.
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Theoretical considerations

One of the rationales for studying brain-based phenotypes is that
they can act as ‘endophenotypes’ for psychiatric disorders (Gottes-
man & Gould, 2003; Glahn et al., 2007). The hope was that the
genetics of, say, working memory and of the neural correlates that
underlie it, would be simpler than the genetics of a condition like
schizophrenia, which affects this faculty. If many genetic variants
influence risk of schizophrenia, and working memory is only one of
the things affected, then maybe a smaller subset of the variants
would specifically affect working memory (and likewise for all the
other symptoms). If that were true, then common genetic variants
with small effects on schizophrenia risk might have larger and more
direct effects on the neural substrates of working memory.
That this turns out not to be the case should not be surprising, for

two reasons. First, there is no reason to think that the genetic architec-
ture of neural function should be modular. Most genetic variants that
affect one brain region or function will also affect many others and
most of their effects are highly indirect and emergent. There are no
genes ‘for working memory’ or for its supposed neural correlates,
such as hippocampal–prefrontal neuronal synchrony in the gamma fre-
quency range, any more than there are genes ‘for schizophrenia’.
There are certainly genetic variants that can affect these things, but
they are not specific and the genes involved are not dedicated to those
functions. Brain-based phenotypes are affected by hundreds of genetic
variants in any given person, in the same complex and indirect ways
that behavioural or cognitive traits are. When we look inside the big
black box, we should not expect to see lots of smaller black boxes – it
is a mess in there. Second, we should not expect common variants to
have large effects, for evolutionary reasons. Most large effects are
bad, because it is simply vastly easier to break an already highly opti-
mised system than to improve it with random tinkering. Most variants
that cause large effects are consequently selected against, and thus
never become common (Keller & Miller, 2006).
Rare variants, on the other hand, can have much larger effects. This

is particularly relevant to psychiatric disorders, where rare mutations
in hundreds of different genes have been found to be responsible for a
sizeable fraction of cases of intellectual disability, autism, schizophre-
nia, epilepsy and other conditions (Mitchell, 2015), with more being
reported on a weekly basis. In addition, there is very strong overlap in
genetic risk across what were previously thought of as distinct psychi-
atric disorders – mutations that predispose to one condition almost
always predispose to many (Moreno-De-Luca et al., 2013; Mitchell,
2015). These findings challenge the conception of psychiatric cate-
gories as natural kinds. They are more accurately thought of as a set of
psychopathological and pathophysiological states that the brain can
end up in, in response to any of a very large number of different
genetic insults. Diagnostic categories like autism or schizophrenia are
thus, like intellectual disability, umbrella terms for a hugely heteroge-
neous group of genetic disorders. This has important implications for
the design of neuroimaging studies looking for phenotypes associated
with diagnostic categories.

Recommendations

Increase sample sizes

This seems the most obvious means of reducing the occurrence of
spurious results due to random sampling error, especially for group
comparisons. It will likely require collaborations and the establish-
ment of large consortia, as achieved in many areas of disease genet-
ics. It is important to note, however, that by itself, increasing

sample size will not solve the problem of false positives. It will sim-
ply lead to greater power to attach statistical significance to effects
of smaller and smaller size.

Raise the P-value threshold?

Recent suggestions of lowering the P-value significance threshold
from <0.05 to <0.005 are welcome (Benjamin et al., 2017). This
should certainly reduce the flood of statistical blips that are pub-
lished as real findings. On the other hand, if you have a well-defined
hypothesis and a well-designed experiment to test it, P < 0.05 may
be perfectly adequate. By contrast, if you are doing exploratory
analyses, then no P-value threshold is really appropriate, because
inferential statistics should not be applied to exploratory data under
most circumstances.

Distinguish exploratory analyses from hypothesis testing

Many neurogenomics studies have only the vaguest possible hypoth-
esis – namely, that something, somewhere in the brain will differ in
some way between people carrying different versions of some
genetic variant (often any one of many such variants). You can set a
false discovery rate, using a variety of statistical methods (more on
that below), but it is simply not appropriate to perform null hypothe-
sis testing on the resulting data. You cannot test a hypothesis on the
same data that suggested it.
Richard Feynman once famously started a lecture with a story

about reasoning from known facts back to possible causes. ‘You
know, the most amazing thing happened to me tonight. . . I saw a
car with the license plate ARW 357. Can you imagine? Of all the
millions of license plates in the state, what was the chance that I
would see that particular one tonight? Amazing!’ As he later articu-
lated, in more precise terms: ‘To report a significant result and
reject the null in favor of an alternative hypothesis is meaningless
unless the alternative hypothesis has been stated before the data
was obtained’. There is nothing wrong with exploratory analyses –
this is how we generate hypotheses. But those hypotheses can only
be confirmed in independent experiments.

Define false discovery rates empirically

If I compare a thousand different imaging measurements between two
groups of random people, what will the frequency be of observing
some statistically significant differences, given a sample size of 20, or
50, or 1000, or 5000? Given the public availability of large imaging
data sets, it should be possible to directly measure this false discovery
rate using real data from random sets of people, for any given set of
neuroimaging parameters, as opposed to relying on the variety of sta-
tistical methods for estimating it from the same sample you are testing.
Such false discovery rates are clearly not well calibrated, judging by
the failure to replicate most results reported as surpassing that thresh-
old. Empirically determining false discovery rates should allow
researchers to more rigorously define which findings from exploratory
analyses are truly surprising and worthy of independent testing.

Restrict researcher degrees of freedom

In most neuroimaging experiments, there are dozens of different
parameters that can be played with to look for an effect and scores
of different measures that can be treated as phenotypes. You can
look at global differences, or by region of interest, or voxel-wise,
with varying cluster size and thresholds of significance. You can

© 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd
European Journal of Neuroscience, 47, 109–114

Editorial 111



look at volume, thickness, surface area, fractional anisotropy, mean
diffusivity, the size of specific axonal tracts. You can define any
number of task-based or resting state functional parameters. And
you can extract global measures of connectivity or other network
parameters that act as meta-phenotypes. If these parameters or
choices of phenotype are tweaked with the data in hand, based on
hints of an effect, it is almost inevitable that some spurious differ-
ence will emerge (Silver et al., 2011; Bennett et al., 2012; Button
et al., 2013). Every additional parameter change, and every covari-
ate thrown into the mix, exponentially increases the multiple testing
burden, though these are rarely corrected for. Ideally, the details of
the analytical pipeline should be pre-defined and, if possible, pre-
registered. If it really is an exploratory analysis, this should simply
be acknowledged and the inferences appropriately limited.

Replicate, replicate, replicate

Other areas of human genetics have recognised the need for replica-
tion and adopted it as standard practice. There is no reason why
imaging phenotypes should be different – in fact, you could argue it
should be especially required for imaging phenotypes, given the
huge number of degrees of freedom in defining them. The results of
exploratory analyses are simply things that could differ between
your groups of interest; they are not strong evidence that they actu-
ally generalise beyond the analysed sample, and most of them will
not. This is true no matter the sample size, if the effects are small.
Any suspected phenotypic differences should be tested specifically
in an independent replication sample, as a condition of publication.
Some researchers have objected to calls for larger samples and

for independent replication samples by saying it is simply impracti-
cal or too expensive for most research groups to collect them. The
argument is that such groups should be allowed to continue doing
smaller studies, that such studies should continue to be funded and
published, and that this will provide essential training for graduate
students who otherwise might have nothing to do. None of these
arguments is compelling. Underpowered, exploratory studies with
high degrees of freedom and without replication samples simply
generate noise, waste everyone’s time and resources, and pollute the
literature with false positives. They are worse than doing nothing.

Polygenic scores

Individual common variants are likely to have such small effects
that it may require enormous samples to identify them individually.
However, it is possible to generate polygenic scores based on the
highest-ranking sets of SNPs in a GWAS, which can be used to
look at the collective effect of many SNPs that may be involved in
the trait (Dima & Breen, 2015). Such scores can be treated as a
genetic variant that can be tested for association with all kinds of
brain phenotypes, and which presumably could show much greater
effect sizes. This approach has potential but is limited in two impor-
tant ways. First, most such polygenic scores explain only a small
percentage of the variance in the primary phenotype that they index.
For example, the most recent GWAS for intelligence identifies sev-
eral hundred significantly associated SNPs (Direk et al., 2017).
However, a polygenic score that incorporates their collective effects
explains only 4% of the variance in intelligence in another sample.
Polygenic scores for schizophrenia also explain only 3–7% of vari-
ance (Consortium, Schizophrenia Working Group of the Interna-
tional Psychiatric Genetics, 2014). Finding that such a score also
tracks some brain phenotype would be interesting, but its interpreta-
tion should be tempered by the marginal effects at play. Second,

using polygenic scores as the genotype in question still leaves all
the other problems of excess researcher degrees of freedom and
uncorrected multiple testing that can arise in exploratory neuroimag-
ing analyses. Any exploratory findings should still be replicated in
an independent sample.

Genotype first

The genetic and clinical heterogeneity of psychiatric categories will
make it almost impossible to extract meaningful information from
analyses of groups of patients with ‘autism’ or ‘schizophrenia’ or ‘de-
pression’. A hundred people with a diagnosis of autism may have a
hundred different underlying causes. This heterogeneity is a likely
cause of the failure of the extremely extensive psychiatric neuroimag-
ing literature to discover a single consistent imaging biomarker that is
specific for any diagnostic category (Sprooten et al., 2017). An alter-
native approach, made possible by the large-scale sequencing pro-
grams now underway in many places, is to identify smaller subsets of
patients with defined genetic conditions (Mefford, 2009; Stessman
et al., 2014). This list used to be limited to things like Fragile X syn-
drome, Rett syndrome, 22q11 deletion syndrome and a few others, but
there are now hundreds of such conditions identified. Of course, the
sample sizes will be much smaller, but the relative homogeneity may
enable identification of larger differences in brain structure or function
that characterise these rare conditions, though replication will still be
essential (Mahmood et al., 2010; Consortium, Simons VIP, 2012;
Green et al., 2015; Schmitt et al., 2015; Ulfarsson et al., 2017). Such
differences would otherwise be obscured by group comparisons that
bundle subjects together based on psychiatric diagnoses alone.

Conclusion

The revolution in genomics and the ever-increasing sample sizes of
neuroimaging databases present a golden opportunity to uncover the
genetic basis of variation in brain structure and function. But realis-
ing this goal will require more rigorous approaches that have typi-
cally been employed to date, and ones that are better grounded in
our understanding of the complex genetic architecture of these traits.
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