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Summary

This thesis is based on the author’s publications during the course of his PhD studies and

focuses on various aspects of the field of quantum integrable systems. The aim of this thesis is

to develop the so-called separation of variables program for high rank integrable systems and

to develop new efficient techniques to solve one of the central equations of integrability, the

Yang-Baxter equation. It is divided into five parts.

The first part is an overview of the subject of quantum integrability in particular its

mathematical description in terms of quantum algebras. We review standard textbook material

and explain how various objects of physical interest such as Hamiltonians and S-matrices fit

into the picture.

The second part reviews the state-of-the-art of the separation of variables (SoV) program and

discusses the author’s own contributions of this area and is based on the author’s publications

[1] and [5]. By exploiting a novel link between SoV and quantum algebra representation

theory we construct the separated variables for high-rank gl(n) bosonic spin chains for arbitrary

compact representations of the symmetry algebra and develop various new tools along the way,

in particular what we refer to as the embedding morphism.

The third part is based on the author’s publication [3] and part of the publication [7]. We

build on the previous part and develop new techniques for the computation of scalar products in

the SoV framework. Unlike the work in the previous part, which was operatorial, this approach

is functional and is based on the Baxter TQ equations. After developing this technique we

supplement it with a new operator construction providing a unified view of functional and

operatorial SoV.

The fourth part is also based on the publication [7] and generalises the results of the previous

part from compact spin chains to non-compact spin chains and also contains unpublished

work of the author relating to non-compact Gelfand-Tsetlin patterns and their relation to

hypergeometric functions. We also extend the previously mentioned functional formalism

for computing scalar products to more non-trivial quantities such as form-factors of various

operators including certain local operators.

The final part of this thesis is based on the development of tools for solving the Yang-Baxter

equation. It is primarily based on the publications [2, 6] with some reference to the publication

[4] and the preprint [8]. We develop a bottom-up approach for this based on the so-called Boost

automorphism and uses the spin chain Hamiltonian as a starting point. Our approach allows us

to classify numerous families of solutions in particular a complete classification of 4×4 solutions

which preserve fermion number which have applications in the AdS/CFT correspondence. A

summary of the work and directions for future research are presented at the end as well as an

appendix to supplement the main text.
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Chapter 1

Introduction

Quantum integrable systems [9] are one of the cornerstones of theoretical physics. Typically

these are models which possess a large number of conserved quantities. They are simple enough

to be an important testing ground for new techniques as well as being rich enough to have direct

physical applications. Famous integrable models such as the Heisenberg XXX spin chain and

one-dimensional Hubbard model have made appearances in statistical mechanics applications

and in the context of the AdS/CFT correspondence or gauge/gravity duality. Furthermore

their study often leads to new ideas in various areas of pure mathematics such as knot theory.

Spectral problem of N = 4 SYM A large amount of motivation for this work comes from

maximally supersymmetric Yang-Mills theory in 4d (N = 4 SYM) with gauge group SU(N)

which is dual under the AdS/CFT correspondence [10] to Type IIB superstrings on AdS5×S5.

The theory enjoys psu(2, 2|4) supersymmetry which contains the conformal algebra so(2, 4) ≃
su(2, 2) and the conformal symmetry remains unbroken [11] at all loop orders. As such the

primary objects of interest are its conformal data – scaling dimensions ∆ of all local operators

and three-point structure constants. Once these are determined the theory is considered solved.

Shortly after the turn of the millennium it was discovered that the one-loop spectral problem

is integrable in the planar limit N → ∞. Namely, it was observed [12] that the one-loop

dilatation operator could be mapped to the Hamiltonian of an integrable spin chain with single-

trace local operators corresponding to spin chain states. Around the same time it was discovered

that the non-linear sigma model describing classical superstrings on the AdS5×S5 background

is also classically integrable [13] and admits an infinite number of Poisson commuting integrals

of motion. Since its discovery integrability has also been found at higher loops and appears to

hold at all loops and has provided a novel framework for making testable predictions on both

sides of the AdS/CFT correspondence, see [14] for a review.

Figure 1.1: Correspondence between single trace local operators in the su(2) sector, comprised
of fields Z and X, of N = 4 SYM and spin chain states. Fields Z correspond to “up” states
↑ and fields X correspond to “down” states ↓. Cyclicity of the trace corresponds to periodic
boundary conditions on the spin chain.
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The road to the exact spectrum Since the discovery of integrability a significant amount of

work was put towards the problem of computing the spectrum of anomalous dimensions at finite

coupling. Under the AdS/CFT correspondence this is equivalent to finding the energies of string

states. The key tool for this is the Thermodynamic Bethe Ansatz (TBA) which was pioneered in

the work of Zamolodchikov [15] for relativistic theories in 1+1 dimensions. In essence the TBA

allows one to compute the finite-volume spectrum of an integrable quantum field theory using

its infinite-volume scattering data. Thankfully, integrability highly constrains this scattering

data – there is no particle production as well as factorised scattering meaning the number

of particles before and after the collision is preserved and a multi-particle scattering process

factorises into a product of two-particle scattering events. Consistency of this factorisation then

leads to the celebrated Yang-Baxter equation for the S-matrix

S12S13S23 = S23S13S12 , (1.0.1)

see Figure 1.2 and [16] for a review. In the uniform light-cone gauge the AdS5 × S5 string

Figure 1.2: The two ways to factorise a three-particle scattering process into a sequence of
two-particle scattering processes. Their equality leads to the Yang-Baxter equation.

sigma model is defined on a cylinder of circumference L. In the decompactifying limit L→∞
the model defines a massive 1 + 1-dimensional QFT with elementary excitations transforming

in two copies of the defining representation of the algebra su(2|2)ce := su(2|2) ⋊ R3 [17], an

enhancement of the superalgebra su(2|2) containing additional central charges. This symmetry

is constraining enough that it guarantees that the S-matrix satisfies the Yang-Baxter equation

[18, 19].

The starting point for the TBA is as follows. We consider a 1+ 1-dimensional QFT defined

on a cylinder of circumference L with its finite-temperature β−1 partition function given by

Z =
∑

n e
−βEn(L) where En(L) are a complete set of energies of the theory. In the zero-

temperature β → 0 limit the partition function is dominated by the ground state energy E0(L)

Z(β, L)→ e−βE0(L) . (1.0.2)

On the other hand, the theory on the cylinder can be viewed as the R → ∞ limit of a theory

defined on a torus with circumferences R and L and coordinates (τ, σ). One then performs a

double Wick-rotation introducing new coordinates (τ̃ , σ̃) by τ = i σ̃ and σ = i τ̃ obtaining a new

theory, the so-called mirror model. The zero-temperature limit β → ∞ in the original theory

corresponds to finite-temperature 1
L in the mirror theory but in infinite volume.

For relativistic models the mirror model coincides with the original model. This is not the

case for the AdS5 × S5 superstring, in uniform light-cone gauge where it lives on a cylinder of

circumference L, which lacks worldsheet Lorentz invariance and hence the mirror model deserves

a separate investigation. This was carried out in [20, 21, 22] leading to a detailed account of
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its finite-temperature thermodynamics and TBA equations, an infinite set of nonlinear integral

equations on functions Ya,s(u) of a complex variable u living on a T-shaped lattice of points

(a, s) [23, 24]. The TBA equations describe the exact spectrum of the theory.

Y-system and T-system The TBA equations are highly complicated but were nevertheless

suitable for numerical studies of the spectrum [25, 26]. It was realised that the Y-functions

appearing in the TBA equations could be packaged into the Y-system [23, 24], an infinite set

of functional relations on Y-functions Ya,s(u) reading

Y +
a,sY

−
a,s =

(1 + Ya,s+1)(1 + Ya,s−1)(
1 + 1

Ya−1,s

)(
1 + 1

Ya+1,s

) (1.0.3)

where we use the notation f± = f
(
u± i

2

)
. The functional relations (1.0.3) are not completely

equivalent to the TBA equations – one still needs to specify the analytic structure of the Y-

functions which have square-root discontinuities [27]. The Y-system (1.0.3) together with the

necessary analytic properties became known as an analytic Y-system.

The study of the spectrum simplifies even further when one recasts the analytic Y-system

as a T-system [24] of functions Ta,s related to the Y-functions as

Ya,s =
Ta,s+1Ta,s−1

Ta+1,sTa−1,s
(1.0.4)

and satisfying

T+
a,sT

−
a,s = Ta+1,sTa−1,s + Ta,s+1Ta,s−1 (1.0.5)

subject to certain analytic constraints resulting in an analytic T-system. The T-system (1.0.5)

is also known as the Hirota bilinear equation [28] and is one of the key equations in the study

of integrable systems both classical and quantum and both discrete and continuous.

Quantum spectral curve The ultimate solution of the N = 4 SYM spectral problem takes

the form of an analytic Q-system dubbed quantum spectral curve (QSC) [29, 30] – a set of

functional relations on a set of 28 Q-functions QA|I A, I ⊂ {1, 2, 3, 4} with certain analytic

properties called QQ-relations reading

QA|IQAab|I = Q+
Aa|IQ

−
Ab|I − Q−Aa|IQ

+
Ab|I

QA|IQA|Iij = Q+
A|IiQ

−
A|Ij − Q−A|IiQ

+
Ab|Ij

QAa|IQA|Ii = Q+
Aa|IiQ

−
A|I − Q−Aa|IiQ

+
A|I

(1.0.6)

forming a Q-system. The precise expressions for the T-functions Ta,s is not universal and

depends on the specific choice of a, s but always takes the form of simple determinants in Q-

functions and for this reason the Q-functions define a Wronskian solution of the T-system.

Remarkably, the complicated analytic structure first appearing in the TBA equations simplifies

drastically when reduced to the analytic Q-system.

The QSC formulation of theN = 4 SYM spectral problem has led to a plethora of remarkable

results. It has successfully been applied as a tool for perturbative QFT computations at weak

coupling [31] enabling the dimension of the sl(2)-sector Konishi operator to be computed to 10

loops which was subsequently generalised to the full theory [32, 33] and 11 loops. The QSC has

also allowed to probe the structure of the theory at strong coupling [34] and at finite coupling

numerically [35] and in particular analyse the theory when continued to non-integer spin S,

including the S = −1 case which is closely related to high-energy QCD scattering amplitudes
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[36, 37]. In addition to these developments it has also been possible to extend the QSC from

application to single-trace local operators to cusped Wilson loops [38], which remarkably only

requires a simple modification of the large-u asymptotics of the Q-functions, and was then used

to analyse the so-called quark-anti-quark potential [39]. Finally, the QSC has been extended

to a range of other theories such as ABJM [40, 41] based on the osp(4|6) algebra and the η-

deformed AdS5 × S5 superstring [42], a q-deformation of the original AdS5 × S5 superstring

based on the Uq(psu(2, 2|4) algebra. It is the triumph of the integrability-based approach to

N = 4 SYM, see [43, 44, 45] for reviews.

Towards QSC for correlators - Separation of Variables Despite the tremendous success

of using integrability techniques for the calculation of scaling dimensions ∆ of local operators

in N = 4 SYM the situation is far less satisfactory when it comes to computing three-point

correlation functions. It is tempting to hope that something similar to the TBA, which worked

so wonderfully for the spectral problem, can also be carried out for correlation functions but this

has not yet been realised, although there has been some progress for other quantities such as

the so-called g-function [46]. A novel approach for computing higher-point correlation functions

using integrability is the so-called Hexagon formalism [47] but this approach suffers from only

being valid in the asymptotic regime prior to the appearance of so-called wrapping effects.

Since its discovery it has been hoped that the QSC, which works so well for the spectrum,

could also be used to develop a non-perturbative finite-size formalism for correlation functions.

One of the main intuitions for this comes from the fact that in integrable spin chains the Q-

functions are the building blocks of the wave functions Ψ(x) of conserved charges in a certain

coordinate system xα dubbed Sklyanin’s separated variables [48, 49, 50, 51, 52]. The special

feature of these variables, as the name suggests, is that the wave-function in this coordinate

system factorises into a product of one-particle wave functions

Ψ(x) ∼
∏
α

Q(xα) (1.0.7)

for some choice of Q-functions Q. As a result of this, in these coordinates the matrix elements

of an operator A can be expressed in this basis as

⟨ΨA| A |ΨB⟩ =
∫

dxdx′µ(x)µ(x′)

(∏
α

Q(xα)

)
A(x, x′)

∏
β

Q(x′β)

 (1.0.8)

for some appropriate measure µ. Such a construction was successfully realised [53] in the context

of cusped Wilson loops of N = 4 SYM in the so-called ladders limit where only a certain family

of Feynman diagrams contribute. The result is that a certain three-point structure constant

C••◦123 could be expressed in terms of Q-functions q1 and q2
1 as

C••◦123 =
⟨q1q2e−ϕ3u⟩√
⟨q21⟩⟨q22⟩

(1.0.9)

where for a function f(u) the bracket operation ⟨f⟩ is defined by

⟨f⟩ :=
(
2 sin

β

2

)α ∫ c+i∞

c−i∞

du

2πiu
f(u), c > 0 . (1.0.10)

This result made clear that a separation of variables type approach to correlation functions

along the lines of Sklyanin could be within reach. Unfortunately, while tremendously successful

1Related to the QSC Q-functions by appropriate symmetry transformations.
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for gl(2)-based models, Sklyanin’s separation of variables program remained almost completely

undeveloped for higher-rank or supersymmetric models. The result (1.0.9) put the need to

develop the SoV program for higher-rank supersymmetric systems, in particular those related

to psu(2, 2|4) needed for N = 4 SYM, firmly in the spotlight and was one of the main driving

factors in a flurry of research which followed.

R-matrix program The Q-functions entering the QSC and the related T-functions are

expected to be eigenvalues of some yet-to-be-constructed Q and T-operators as is the case

in integrable spin chains. Unfortunately the governing algebraic structure is still not well-

understood and it is not known how to write down an algebra A with a commutative subalgebra

generated by such Q-operators at finite length and finite coupling. At one-loop the corresponding

algebra is given by a so-called Yangian algebra, in particular the Yangian of psu(2, 2|4). In the

lightcone gauge and asymptotic limit of operators with large length but finite coupling the

algebra is known to be related to that of the one-dimensional Hubbard model [54, 19] which is

described by a deformed Yangian of the centrally extended algebra su(2|2) [55].

The algebras describing quantum integrable systems generally fall into the realm of quasi-

triangular Hopf algebras, see [56] for an extensive treatment. Given a Hopf algebra A, which
in particular means that it is an algebra equipped with a coproduct ∆, we say that A is quasi-

triangular if there exists an invertible element R ∈ A⊗A with the property that for all a ∈ A
we have

∆op(a) = R−1∆(a)R (1.0.11)

where ∆op(a) denotes the “opposite” coproduct on A obtained by permuting factors. Together

with certain other assumptions this leads to the quantum Yang-Baxter equation

R12R13R23 = R23R13R12 (1.0.12)

on the triple tensor product A ⊗ A ⊗ A where the indices Rij indicate on which of the three

factors R is acting on.

The universal R-matrix is an extremely powerful tool. In physical applications one is

generally interested not in the algebra A itself but in certain representations. For example, in

the TBA for the AdS5×S5 superstring one needs to know the scattering matrix for elementary

excitations as well as for bound states [57, 58]. If one had access to the universal R-matrix

these could be simply obtained by evaluating it in the given representation. There are also

various other applications of the universal R-matrix, for example its use [59] in constructing

lattice-discretizations of integrable quantum field theories, a powerful method of dealing with

UV divergences in a rigourous way [60, 61, 62].

The quantum algebra describing the one-dimensional Hubbard model, the Yangian of centrally

extended su(2|2), is not quasi-triangular. However, it is possible that the algebra can be

extended to a new algebra which does admit a universal R-matrix. This is known as the

quantum double construction [63]. Although this has not yet been carried out for the deformed

su(2|2) Yangian it has been done for a simpler but related algebra in [64] giving hope that

the procedure can be extended for the full Hubbard model. Despite the algebra not being

quasi-triangular it is however “almost” quasi-triangular [55]. This means that while we cannot

construct a universal R-matrix an operator R satisfying the quantum Yang-Baxter equation

can be constructed at the level of representations. For practical applications this is usually

enough. Unfortunately one is then tasked with constructing the operator R, simply called an

R-matrix, for every situation at hand. For case of AdS5 × S5 strings scattering elementary
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excitations it is a 16 × 16 matrix [19]. Hence, one needs an efficient method for solving the

Yang-Baxter equation (1.0.12).

In this thesis we aim to make advancements in both of the discussed directions. We will

develop the SoV framework for high rank spin chains and develop new efficient techniques for

solving the Yang-Baxter equation.

Outline This thesis is organised as follows.

1. Part 1: Quantum algebras and quantum integrability In this part we review

the basic objects which will be used throughout the text. We will begin with a quick

review of the XXX spin chain – the prototypical example of a quantum integrable system.

We will then move on to the notion of quantum algebras which are the mathematical

framework for discussing quantum integrable systems. The primary object of interest will

be the so-called Yangian algebra and we will discuss its representation theory and how

the conserved charges of the XXX spin chain fit into a certain commutative subalgebra,

the Bethe algebra. We will then present a detailed review of the Bethe algebra including

the fusion procedure for transfer matrices, Baxter equations and Q-system.

2. Part 2: Separation of Variables The second part of this thesis focuses on the recent

developments of the SoV program for higher-rank integrable systems. After a short

review of separation of variables in the classical XXX spin chain we will discuss Sklyanin’s

quantum separation of variables and the recent progress made for its higher rank generalisation.

We will place particular emphasis on the relation between SoV and Yangian representation

theory for compact spin chains via Gelfand-Tsetlin patterns. This is based on the author’s

publications [1] and [5].

3. Part 3: Functional orthogonality and scalar products Next, we discuss a method

for the calculation of scalar products in the SoV framework based on the Baxter TQ

equations. We obtain determinant formulas for these scalar products and develop an

operatorial construction to supplement the functional approach. This is based on the

publications [3] and partly on [7].

4. Part 4: Non-compact spin chains In this Part we switch our attention from compact

spin chains to non-compact ones. We start with a brief overview of the corresponding

representation theory and explain how the functional scalar products of the previous Part

can be generalised to this case and construct a corresponding operatorial framework. We

give explicit examples of our constructions in sl(2) and sl(3) spin chains of low length and

explain how to calculate a number of non-trivial correlation functions, including form-

factors of local operators. This is based on [7].

5. Part 5: Solving the Yang-Baxter equation This Part has a different focus. We study

the Yang-Baxter equation and develop an efficient approach for obtaining and classifying

its solutions via the so-called Boost operator. In particular we classify all 4×4 R-matrices

which preserve fermion numbers. As an application, we classify all integrable deformations

of the AdS2×S2×T 6 S-matrix. This is based on the publications [2, 4, 6, 8] of the author.
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Part I

Quantum algebras and quantum

integrability

15



Chapter 2

A first look at the XXX spin

chain

Some of the most common methods for solving integrable systems go by the name of the Bethe

ansatz and are the Coordinate, Algebraic, Analytic, Functional Bethe ansatz. In essence, all

of them consist of proposing a suitable ansatz for the eigenvectors of the conserved charges.

Physical requirements such as periodicity of these eigenvectors then leads to a set of quantisation

conditions known as the Bethe Ansatz equations1. The first incarnation, the Coordinate Bethe

ansatz, was used by Hans Bethe [65] to write down the wave function in a simple model of

interacting electrons – the XXX spin chain.

2.1 XXX Hamiltonian, symmetries and higher charges

Hamiltonian The Heisenberg XXX spin chain consists of L spin- 12 particles on a circle with

the interaction governed by the following Hamiltonian

H =

L∑
α=1

Hα,α+1, Hα,α+1 = Sj
αS

j
α+1 −

1

4
, j = x, y, z, (2.1.1)

where as usual Sj = 1
2σ

j . The interaction is clearly only between nearest-neighbours on the

spin chain, manifest from the fact that the Hamiltonian is a sum of nearest-neighbour densities

Hα,α+1. Periodic boundary conditions are assumed, that is L+α = αmodL, α = 1, 2, . . . , L−1.

Symmetries The Hamiltonian (2.1.1) commutes with the global generators Sx,y,z of spin

Sx,y,z =

L∑
α=1

Sα
x,y,z . (2.1.2)

Hence, the eigenstates of (2.1.1) arrange themselves into irreducible representations of su(2).

Momentum can also be shown to be a conserved quantity. The momentum operator P is defined

as generating discrete shifts along the spin chain. Denoting by U = eiP the operator

UXnU
−1 = Xn+1 (2.1.3)

1Actually, in the Analytical Bethe Ansatz an ansatz is instead made for the eigenvalues of the conserved
charges. Imposing certain analytical properties then leads to the Bethe ansatz equations.

16



which shifts a local operator Xn at site n by one site we have

[U,H] = 0 . (2.1.4)

Higher conserved charges Although it is not at all obvious from the definition, the Hamiltonian

actually commutes with higher conserved charges. The first of these charges, to be denoted J3
is defined as

J3 =

L∑
α=1

[Hα,α+1,Hα+1,α+2] (2.1.5)

and is a range 3 operator, meaning it is a sum of densities which act on 3 neighbouring spin

chain sites, in contrast to the Hamiltonian which was a range 2 operator. In fact, there are

further independent conserved charges J4, J5, . . . which can be constructed and it is this tower

of higher charges which signals the integrability of the model.

Starting from the Hamiltonian it is impossible to guess that these higher charges exist.

However, they can actually be constructed in a systematic fashion which involves embedding

the Hamiltonian into a commutative subalgebra of some appropriate quantum algebra. It is

this embedding which renders a given quantum Hamiltonian integrable. We will see in Part V

how this procedure can be turned bottom-up allowing the quantum algebra itself to be obtained

from the Hamiltonian and a single higher charge. For now however we will proceed with the

direct diagonalisation of the Hamiltonian.

2.2 Coordinate Bethe ansatz

We can now try to diagonalise the Hamiltonian (2.1.1). We start with an appropriate vacuum

state |0⟩ where each spin site has spin up along the z-axis

|0⟩ =
L⊗

α=1

|↑⟩α (2.2.1)

where |↑⟩α =

(
1

0

)
in the α-th copy of C2. It can be easily checked that this state is an

eigenvector of the Hamiltonian with eigenvalue 0.

We now look for excited states obtained by flipping some of the spin up states to spin down.

A state |M⟩ with M excitations, dubbed magnons, is constructed as a superposition of states

with M -flipped spins

|M⟩ =
∑

1≤n1<···<nM≤L

a(n1, . . . , nM )S−n1
. . . S−nM

|0⟩ . (2.2.2)

The coordinate Bethe ansatz then involves making the following ansatz for the coefficients

a(n1, . . . , nM )

a(n1, . . . , nM ) =
∑

σ∈SM

Aσ(p1, . . . , pM )ei pσi
ni (2.2.3)

where pi are complex numbers referred to as magnon momenta and the sum is over elements

σ of the permutation group SM on M objects. The condition that this is an eigenstate of the

Hamiltonian, together with the periodic boundary conditions, leads to a quantization condition

for the magnon momenta

eipjL =
∏
k ̸=j

S(pk, pj), j = 1, . . . ,M (2.2.4)
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where S(p1, p2) is the magnon S-matrix

S(p1, p2) =
cot p1

2 − cot p2

2 − 2i

cot p1

2 − cot p2

2 + 2i
(2.2.5)

through which the coefficients Aσ can also be expressed. The equations (2.2.4) are the so-called

Bethe Ansatz equations and all variants of the Bethe ansatz eventually lead to these equations.

Once these equations are solved various physical quantities can be computed, for example the

energy for an M -magnon state is given by

E =

M∑
k=1

E(pk), E(p) = 4 sin2
p

2
. (2.2.6)

Physically, the Coordinate Bethe Ansatz is very reasonable and nothing beyond textbook

quantum mechanics is required to solve the model. On the other hand, it masks a very rich

and elegant underlying algebraic structure. As well as this, it is not at all obvious how to

tell from a given Hamiltonian if there exists higher conserved charges rendering the model

integrable. A beautiful reformulation of the problem was constructed by the Leningrad school

[9] which puts the notion of quantum integrability into the framework of quantum groups and

representation theory. In this language the key object underlying the XXX spin chain is not the

Hamiltonian but a certain associative algebra, called Yangian, and integrability, the existence of

a large family of commuting operators, is governed by the existence of a maximal commutative

subalgebra, dubbed Bethe (sub-)algebra. Yangian algebras will play a key role in the remainder

of this work and we will now start an in-depth analysis of them.
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Chapter 3

Quantum algebras

Historically, quantum algebras initially appeared in the work of the Leningrad school relating

to the problem of quantizing functions on a Lie group, see [66] for a historical overview and

introduction to the subject and [56] for a textbook treatment which we very closely follow.

The phase space M of a classical mechanical system naturally has the structure of a Poisson

manifold. The space F(M) of differentiable complex-valued functions on M has a Lie bracket

{−,−} : F(M)×F(M)→ F(M) (3.0.1)

such that for any function f ∈ F(M) its time evolutions is governed by

d

dt
f(γ(t)) = {Hcl, f}(γ(t)) (3.0.2)

where γ(t) ∈ M defines the trajectory and Hcl is the classical Hamiltonian. The problem of

quantization roughly speaking involves replacing F(M) with operators on some suitable Hilbert

space which reduces to F(M) in an appropriate classical limit ℏ→ 0.

Naturally, the algebra F(M) is commutative. The idea of deformation quantisation is to

replace the usual (commutative) product on F(M) with a non-commutative one ∗ℏ with the

resulting non-commutative algebra denoted Fℏ(M) with the property

lim
ℏ→0

f1 ∗ℏ f2 − f2 ∗ℏ f1
ℏ

= {f1, f2} . (3.0.3)

Under some additional technical assumptions the possible deformations are quite restrictive

– these restrictions correspond to so-called “rigidity theorems” [56]. The resulting deformed

algebra is known as a quantum algebra. Quantum algebras, as we will see, naturally fall into

the realm of Hopf algebras, which we will now briefly review.

3.1 Hopf algebras

Algebra A (unital, associative) algebra over a unital commutative ring R is defined as a triple

(A,µ, ι) where A is a (left) R-module and µ : A⊗ A→ A and ι : R → A are linear maps such

that the following diagrams commute:

A⊗A⊗A A⊗A

A⊗A A

µ⊗1

1⊗µ µ

µ

(3.1.1)
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A⊗R A⊗A

A A

1⊗ι

≃ µ

1

R⊗A A⊗A

A A

ι⊗1

≃ µ

1

(3.1.2)

Here 1 is the identity map from A to itself. µ is called the product and ι is called unit and the

first diagram expresses the associativity of multiplication. In the above diagrams ≃ denotes

the natural isomorphism between R⊗A and A. For most of our purposes R will simply be the

field C of complex numbers, but we will also consider the ring C[[ℏ]] of formal power series in

an indeterminate ℏ.

Coalgebra A coalgebra is defined by simply reversing all of the arrows in the above commutative

diagrams in the usual manner of obtaining a co-object from an object in category theory.

Namely, a coalgebra is a triple (A,∆, ε) where A is an R-module and ∆ : A → A ⊗ A and

ε : A→ R are linear maps such that the following diagrams commute:

A A⊗A

A⊗A A⊗A⊗A

∆

∆ 1⊗∆
∆⊗1

(3.1.3)

A A

A⊗A A⊗R

1

∆ ≃

1⊗ε

A A

A⊗A R⊗A

1

∆ ≃

ε⊗1

(3.1.4)

∆ is referred to as the coproduct and ε as the counit. The first diagram expresses that the

coproduct is coassociative.

Bialgebra A bialgebra is obtained by imposing a coalgebra structure on an algebra (or

vice versa) subject to certain compatability conditions. More precisely, a bialgebra is a tuple

(A,µ, ι,∆, ε) such that (A,µ, ι) is an algebra, (A,∆, ε) is a coalgebra and

1. ∆ and ε are algebra homomorphisms

2. µ and ι are coalgebra homomorphisms.

Hopf algebra Finally, a Hopf algebra A is a bialgebra equipped with a linear map S : A→ A,

called the antipode, such that

µ ◦ (1⊗ S) ◦∆ = µ ◦ (S ⊗ 1) ◦∆ = ι⊗ ε . (3.1.5)

We end our discussion of Hopf algebras with two examples.

Functions F(G) on a group G Let G be a group with identity element 1G and consider

the space F(G) of C-valued functions on G. The vector space and algebra structures on F(G)
are defined by the usual pointwise addition and multiplication. For the counit ε and antipode

S we define, for f ∈ F(G) and g ∈ G,

ε(f) = f(1G), S(f)(g) = f(g−1) . (3.1.6)

For the coproduct we notice that as C-algebras F(G)⊗F(G) ≃ F(G×G) and this isomorphism

takes f1 ⊗ f2 to the function mapping (g1, g2) 7→ f1(g1)f2(g2) and so naturally set

∆(f)(g1, g2) = f(g1g2) . (3.1.7)
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Universal enveloping algebra U(g) of a Lie algebra g If g is a C Lie algebra then U(g)

is a C-algebra in the usual way. We introduce the Hopf algebra structure on U(g) by setting

∆(x) = x⊗ 1 + 1⊗ x, ∀x ∈ g . (3.1.8)

and

S(x) = −x, ε(x) = 0, ∀x ∈ g . (3.1.9)

Opposite Hopf algebra Note that if (A,∆, ε) is a coalgebra then we obtain another coalgebra

(A,∆op, ε), usually denoted by the shorthand Aop, by setting

∆op = σ ◦∆ (3.1.10)

where σ : A⊗A→ A⊗A is the flip operator sending x⊗ y 7→ y⊗ x for all x, y ∈ A. Note that

if A is a Hopf algebra with antipode S then Aop becomes a Hopf algebra with antipode S−1.

Cocommutative A coalgebra is called cocommutative if ∆op = ∆.

We see that in the examples in the previous subsection U(g) is clearly cocommuative. In

general however Hopf algebras are neither commutative nor cocommutative. On the other hand,

from the point of view of quantum integrable systems special attention is paid to Hopf algebras

which are “almost” cocommutative, a notion which will now be made precise.

Almost cocommutative A Hopf algebra A is called almost cocommutative if there exists

an invertible element R ∈ A⊗A such that for all x ∈ A

∆op(x) = R∆(x)R−1 . (3.1.11)

If A is almost cocommutative with such an R we denote it with the pair (A,R). Since Aop must

itself be a Hopf algebra this places strong constraints on the form of R. Indeed, coassociativity
of ∆op is not guaranteed for a generic R but a sufficient condition is that

R12(∆⊗ 1)(R) = R23(1⊗∆)(R) (3.1.12)

where R12 = R⊗ 1 and R23 = 1 ⊗R. It is convenient to make a stronger assumption – that

A is quasi-triangular.

Quasi-triangular An almost cocommutative Hopf algebra (A,R) is called quasi-triangular

if

(∆⊗ 1)(R) = R13R23, (1⊗∆)(R) = R13R12 . (3.1.13)

If (A,R) is quasi-triangular then we call R the universal R-matrix of (A,R). It follows that

R12R13R23 = R12(∆⊗ 1)(R) = R23(1⊗∆)(R) = R23R13R12 (3.1.14)

and hence R satisfies the Yang-Baxter equation

R12R13R23 = R23R13R12 . (3.1.15)
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3.2 Quantised function algebras and quantised universal

enveloping algebras

We now return to the question of quantisation of the algebra of functions F(M) of a Poisson

manifold M . In the special case where M = G is a Lie group the algebra of functions F(G)
naturally acquires the structure of a Hopf algebra with the group multiplication and inverse

maps giving rise to the comultiplication and antipode, respectively, as was previously seen. On

the other hand, for any Lie group one can associate a second Hopf algebra, namely the universal

enveloping algebra U(g) of the Lie algebra g of G.

Quantum algebras, in the sense considered in this work, fall into two categories – quantized

function algebras and quantum universal enveloping algebras. As the name suggests, these

appear as quantisations, or deformations, of the Hopf algebra structures on the algebra of

functions F(G) and the universal enveloping algebra U(g), respectively. Again subject to

some technical assumptions it can be shown that these two notions are equivalent to each other

under an appropriate duality. This duality allows us to discuss the notion of quantizations using

two equivalent perspectives – on either a space of functions or universal enveloping algebras,

whichever is most convenient. Indeed, quantization of an algebra of functions coincides with

the intuitive notion of quantization of the functions on a phase space in classical mechanics

whereas quantised universal enveloping algebras are often easier to deal with.

We will now discuss the notion of deformations of Hopf algebras. Roughly speaking this

involves replacing a Hopf algebra A over C with a new Hopf algebra Aℏ over C[[ℏ]]. An

important point in this construction is that any algebra over C[[ℏ]] comes equipped with a

natural topology called the ℏ-adic topology in which two elements are “close” if they only differ

by a large power of ℏ and we will refer to a Hopf algebra equipped with this topology as a

topological Hopf algebra.

Deformations of Hopf algebras Let (A,µ, ι,∆, ε, S) be a Hopf algebra over C. A deformation

of A is a topological Hopf algebra (Aℏ, µℏ, ιℏ,∆ℏ, εℏ, Sℏ) over C[[ℏ]] such that

1. Aℏ ≃ A[[ℏ]] as C[[ℏ]]-modules

2. µℏ = µ mod ℏ and ∆ℏ = ∆ mod ℏ .

The first condition formalises the intuitive notion that if we multiply all elements of A by

all possible formal power series in ℏ and consider all possible linear combinations we obtain

Aℏ. The second condition is the statement that if we send ℏ → 0 then we obtain the original

product and coproduct. The deformed unit ιℏ and counit εℏ are obtained by simply extending

C[[ℏ]]-linearly those of A and similarly with the antipode.

Having defined deformations of Hopf algebras a technical comment is in order. The notation

A[[ℏ]] denotes the algebra of formal power series with coefficients in A which one may intuitively

think of as being A ⊗ C[[ℏ]] but actually the former is “bigger” and is the completion of the

latter in the ℏ-adic topology. We will not stress this point and prefer to sweep it under the rug

as we will not make much use of it.

Quantisations of Hopf algebras So far we have not yet said anything about a Poisson

bracket structure which is of course an important ingredient in quantization. Given a Poisson

algebra structure on a Lie group we can ask what is the corresponding structure on its Lie

algebra g and how this lifts to the universal enveloping algebra U(g). The required structure

is that of co-Poisson-Hopf algebra and we will discuss how quantisations are formulated in
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this language. Of course, we can also quantise in the usual sense of “Poisson bracket becomes

commutator”, but this former language is more useful for Yangians which we will look at later.

Co-Poisson algebra A co-Poisson algebra over a commutative ring R is a cocommutative

coalgebra (A, ε,∆) with a linear map δ : g → g ⊗ g called the Poisson co-bracket which is

skew-symmetric1 and satisfies

cp ◦ (δ ⊗ 1) ◦ δ = 0 (3.2.1)

where cp denotes summing over cyclic permutations of the factors in the triple tensor product

A⊗A⊗A (the co-Jacobi-identity) and

(∆⊗ 1)δ = (1⊗ δ)∆ + σ23(δ ⊗ 1)∆ (3.2.2)

where σ23 permutes the second and third factors in the tensor product.

Co-Poisson-Hopf algebra A co-Poisson-Hopf algebra is a co-Poisson algebra (A, ε,∆, δ)

which is also a Hopf algebra and the two structures are compatible in the sense that

δ(a1a2) = δ(a1)∆(a2) + ∆(a1)δ(a2), ∀a1, a2 ∈ A . (3.2.3)

Quantisation A quantisation of a co-Poisson-Hopf algebraA over C is a Hopf-algebra deformation

Aℏ of A such that

δ(x) =
∆ℏ(x)−∆op

ℏ (x)

ℏ
mod ℏ (3.2.4)

where x ∈ A and a ∈ Aℏ is any element such that x = amod ℏ.

Now we move on to some examples. We will mostly just sketch the details in order to eventually

motivate Yangians.

Fℏ(SL(2)) The discussion of the relation between quantum algebras and quantum integrable

systems is made clearest in terms of quantised function algebras.

Let us consider the algebra M2(C) of 2× 2 complex matrices and the algebra F(M2(C)) of
polynomial functions on M2(C). A general element T ∈M2(C) has the form

T =

(
a b

c d

)
(3.2.5)

and each of the entries a, b, c, d can be viewed as maps M2(C)→ C, that is they can be viewed

as elements of F(M2(C)) = C[a, b, c, d].

Matrix multiplication onM2(C) naturally endows F(M2(C)) with a bialgebra structure and

we further set det T = 1 and obtain F(SL(2)) as an appropriate quotient

F(SL(2)) = F(M2(C))/(det T − 1) . (3.2.6)

We now introduce the deformed algebra Fℏ(SL(2)). It is defined by the relations

ac = e−ℏ ca, bd = e−ℏ db, ab = e−ℏ ba, cd = e−ℏ dc

bc = cb, ad− da = (eℏ − e−ℏ)bc
(3.2.7)

1Let σ denote the permutation operator on g ⊗ g. Skew-symmetry of δ means that for all x ∈ g we have
σ δ(x) = −δ(x).
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which define a deformation of F(M2(C)) together with the requirement ad − e−ℏbc = 1. The

quantity ad− e−ℏbc is called the quantum determinant.

The resulting deformed algebra can be easily expressed in terms of an R-matrix R ∈
End(C2 ⊗ C2), which should not be confused with the universal R-matrix introduced above.

Let us denote by

Ta =

2∑
i,j=1

eij ⊗ 1⊗ T, Tb =

2∑
i,j=1

1⊗ eij ⊗ T (3.2.8)

where T is as in (3.2.5). Then the defining relations of the deformed algebra (3.2.7) can be

expressed simply as

Rab Ta Tb = Tb TaRab (3.2.9)

where

R =


eℏ 0 0 0

0 1 0 0

0 eℏ − e−ℏ 1 0

0 0 0 eℏ

 . (3.2.10)

Naturally one can now reverse the logic and, for any invertible operator R on Cn ⊗ Cn define

an algebra with generators T = (tij), i, j = 1, . . . , n by the relations

Rab Ta Tb = Tb TaRab . (3.2.11)

For any R the resulting algebra has a bialgebra structure given by

∆(tij) =

n∑
k=1

tik ⊗ tjk, ε(T ) = 1 . (3.2.12)

Now we consider the associativity of multiplication in the generated algebra. Since R is

invertible, swapping Ta with Tb equivalent to conjugating with Rab. Now consider the triple

product TaTbTc and note that we can reach TcTbTa in two different ways:

TaTbTc → TaTcTb → TcTaTb → TcTbTa

TaTbTc → TbTaTc → TbTcTa → TcTbTa
(3.2.13)

which gives

R−1ab R
−1
ac R

−1
bc TcTbTaRbcRacRab = R−1bc R

−1
ac R

−1
ab TcTbTaRabRacRab (3.2.14)

which is obviously satisfied if the (constant) quantum Yang-Baxter equation

RabRacRbc = RbcRacRab (3.2.15)

is satisfied. In fact, a huge benefit of this extra assumption from the point of view of integrable

systems is that it immediately provides a representation of the quantum algebra where T = R.

Such representations correspond to integrable spin chains.

Uq(sl(2)) We recall that sl(2) is the Lie algebra generated by elements e+, e−, h subject to the

commutation relations

[e+, e−] = h, [h, e±] = ±2e± (3.2.16)
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and equip U(sl(2)) with the Poisson co-bracket structure

δ(h) = 0, δ(e+) = e+ ∧ h, δ(e−) = e− ∧ h . (3.2.17)

The quantised universal enveloping algebra Uq(sl(2)) is the deformation of U(sl(2)) with generators

E±, q
± h

2 subject to the relations

q
h
2E± = q±1 E±q

h
2 , [E+,E−] =

q
h
2 − q− h

2

q − q−1
. (3.2.18)

The defining relations of sl(2) are recovered in the q → 1 limit if we assume that q = eℏ and

E± = e± +O(ℏ).

The coalgebra structure on Uq(sl(2)) is given by

∆ℏ(q
± h

2 ) = q±
h
2 ⊗ q± h

2

∆ℏ(E+) = E+ ⊗ qh + 1⊗ E+, ∆ℏ(E−) = E− ⊗+q−h ⊗ E−

εℏ(E±) = 0, εℏ(q
h
2 ) = 1

(3.2.19)

and the antipode Sℏ is given by

Sℏ(q
± h

2 ) = q∓
h
2 , S(E±) = −q±1E± . (3.2.20)

A straightforward calculation easily shows that Uq(sl(2)) is indeed a quantisation of U(sl(2))

in the sense that (3.2.4) is satisfied.

Uq(sl(2)) is a quasi-triangular Hopf algebra with universal R-matrix given by

R = q
1
2 h⊗h

∑
n≥0

(1− q−2)n

[n]q!
q

n−n2

2

(
q

n
2 h(E+)

n
)
⊗
(
q−

n
2 h(E−)

n
)

(3.2.21)

where we have used the q-factorial [n]q! defined by

[n]q! := [n]q . . . [2]q[1]q, [n]q :=
qn − q−n

q − q−1
. (3.2.22)

Duality The two examples Fℏ(SL(2)) and Uq(sl(2)) are dual to each other under the previously

mentioned duality between quantised function algebras and quantised universal enveloping

algebras. We will not concern ourselves with the precise nature of this duality but will comment

on the role the R-matrix plays in both cases.

In the case of Uq(sl(2)) the universal R-matrix R is a linear map Uq(sl(2)) ⊗ Uq(sl(2)) →
Uq(sl(2))⊗Uq(sl(2)). On the other hand, in the case of Fℏ(SL(2)) the R-matrix R is a numeric

4 × 4 matrix, or equivalently a linear operator on C2 ⊗ C2. In fact the numeric R-matrix is

simply the image of the universal R matrix in the standard representation of Uq(sl(2)) on C2.

Let v± be a basis of C2 with

v+ =

(
1

0

)
, v− =

(
0

1

)
(3.2.23)

and {v+ ⊗ v+, v− ⊗ v+, v+ ⊗ v−, v− ⊗ v−} a basis of C2 ⊗ C2 and consider the representation

of Uq(sl(2)) defined by

hv± = ±v±, E±v± = 0, E±v∓ = v± . (3.2.24)

In this representation and basis R coincides precisely with R.
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3.3 Integrable systems

Having reviewed the key concepts relating to quantum algebras we are now ready to see how

integrable systems fit into the picture.

Integrable spin chains We extend our previous discussion to include quantised function

algebras with a T -matrix depending on a spectral parameter u ∈ C which naturally appears in

the context of quantizing infinite-dimensional algebras such as the current algebra g[u] or the

loop algebra g[u, u−1]. We are then lead to the quantum algebra relation

Rab(u, v)Ta(u)Tb(v) = Tb(v)Ta(v)Rab(u, v) (3.3.1)

where R(u, v) is an invertible numeric n2 × n2 matrix and satisfies the Yang-Baxter equation

Rab(u, v)Rac(u,w)Rbc(v, w) = Rbc(v, w)Rac(u,w)Rab(u, v) . (3.3.2)

One of the main interests in quantum algebras generated in this way is that they have commutative

subalgebras which physically can be considered integrals of motion. Indeed, let us denote by

T(u) = traTa(u) where the trace is taken over the space a which is Cn. Then it follows from

(3.3.1) that

T(u)T(v) = T(v)T(u) . (3.3.3)

This is the key relation for integrability and the object T(u) is called a transfer matrix. Under

the assumption that T(u) is analytic around some point (say u = 0) then we can expand

T(u) =
∞∑

n=0

Inu
n (3.3.4)

which implies

[In, Im] = 0, n,m = 0, 1, 2, . . . (3.3.5)

and hence T(u) generates a commutative family of operators In. One then hopes to construct a

representation of the algebra generated by T such that some physical operator of interest, such

as a Hamiltonian, belongs to this family of operators. This is indeed the case of the XXX spin

chain as we will see later.

S-matrix in 1 + 1-dim QFT Before discussing the relation to Hopf algebras let us quickly

review the properties of the S-matrix in a QFT.

A scattering problem in QFT is naturally formulated using asymptotic “in” and “out” states

|. . .⟩in and |. . .⟩out. If a state with particle content with momenta p1, p2, . . . and other quantum

numbers i1, i2, . . . is prepared at t → −∞ then it is an asymptotic “in” state |p1, p2⟩ini1,i2,....
Similarly, if a state is found to have particle content with momenta p1, p2, . . . and other quantum

numbers i1, i2, . . . at t→∞ then it is the asymptotic “out” state |p1, p2⟩outi1,i2,...
. The S-matrix

is the unitary operator which relates the basis of asymptotic “in” and “out” states

S |. . .⟩in = |. . .⟩out . (3.3.6)

Asymptotic “in” and “out” states can be constructed by means of creation operators ain †i (p)

and aout †i (p). By definition, ain †i (p) creates an asymptotic “in” state from the vacuum state

corresponding to a particle with momentum p and the index i labels all other quantum numbers.

That is

|p⟩ini := ain †i (p) |0⟩ . (3.3.7)
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Similarly a multi-particle state can be constructed as

|p1, . . . , pn⟩ini1,...,in := ain †i1
(p1) . . . a

in †
in

(pn) |0⟩ (3.3.8)

and precisely the same construction goes through for “out” states

|p1, . . . , pn⟩outi1,...,in
:= aout †i1

(p1) . . . a
out †
in

(pn) |0⟩ . (3.3.9)

The above discussion is of course valid in any quantum field theory. We will now specialise to

an integrable QFT in 1+1-dimensions. An integrable QFT is characterised by the existence of

an infinite number of conserved quantities Jn, n = 1, 2, . . . , dubbed higher conserved charges,

which are diagonalised in one-particle states

Jn |p⟩ini = ω
(n)
i (p) |p⟩ini (3.3.10)

and the functions ω
(n)
i (p) are independent. The existence of such conserved quantities places

strong constraints on a scattering process [67]. They are as follows:

Absence of particle production and momentum conservation Consider a set of “in”

momenta {pi}in and “out” momenta {qi}out. The eigenvalues ω
(n)
i (p) roughly scale as pn and

since we must have

pn1 + pn2 + · · · = qn1 + qn2 + . . . (3.3.11)

for all n the only way this can be satisfied is if {pi}in = {qi}out.

Factorised scattering The most crucial consequence of higher conserved charges is factorised

scattering which means that a multi-particle scattering process factorises into a sequence of

2 → 2 body scattering processes. This is a consequence of the existence of higher charges and

the unique features of scattering in 1 + 1-dimensions [67].

Zamolodchikov-Faddeev algebra The implication of factorised scattering is that the 2→
2 S-matrix simply acts by swapping the two particles. We are then naturally led to the

introduction of a new set of creation operators A†i (p) such that [68]

|p1, . . . , pn⟩ini1,...,in := A†i1(p1) . . . A
†
in
(pn) |0⟩ , p1 > · · · > pn (3.3.12)

|p1, . . . , pn⟩outi1,...,in
:= A†i1(pn) . . . A

†
i1
(p1) |0⟩ , p1 > · · · > pn . (3.3.13)

and for simplicity have assumed the theory only contains bosons to avoid introducing extra sign

factors due to fermions.

The 2→ 2 S-matrix S(p1, p2) which relates these in and out states then satisfies

|p1, p2⟩(in)ij = S(p1, p2) |p1, p2⟩(out)ij (3.3.14)

which in component form states

|p1, p2⟩(in)ij = Sklij (p1, p2) |p1, p2⟩
(out)
kl (3.3.15)

and we sum over repeated indices. By using the definition of the “in” and “out” states using

the creation operators we are then naturally led to the following intertwining relation

A†i (p1)A
†
j(p2) = S

kl
ij (p1, p2)A

†
k(p2)A

†
l (p1) (3.3.16)
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which is just one of the commutation relations of the so-called Zamolodchikov-Faddeev algebra

which is obtained by also introducing annihilation operators Ak(p) conjugate to A†k(p) and

intertwined by the S-matrix, see [17].

Further relations arise from the consistency of 3→ 3 body scattering which can be decomposed

into 2 → 2 scattering events in two different ways. Let us introduce the matrix R(p1, p2) =∑
Ri1i2

j1j2
(p1, p2)ei1j1 ⊗ ei2j2 where the matrix elements are given by

Ri1i2
j1j2

(p1, p2) = Si2i1j1j2
. (3.3.17)

Imposing the equality of the two different ways to decompose 3 → 3 scattering events into

2→ 2 scattering events implies [17] the Yang-Baxter equation

R12(p1, p2)R13(p1, p3)R23(p2, p3) = R23(p2, p3)R13(p1, p3)R12(p1, p2), (3.3.18)

see Figure 3.1.

Figure 3.1: The two ways to factorise a three-particle scattering process into a sequence of
two-particle scattering processes. Their equality leads to the Yang-Baxter equation.
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Chapter 4

Yangian

We now turn our attention to the primary quantum algebra we will consider in this work –

the Yangian algebra. For any semi-simple complex Lie algebra g Drinfeld constructed [63] an

algebra Y(g), referred to as the Yangian of g, as a deformation of the current algebra g[u] of g

and this deformation is unique under appropriate assumptions.

The current algebra g[u] := g⊗ C[u] is spanned by elements of the form

a ur, a ∈ g, r = 0, 1, 2, . . . (4.0.1)

where u is some indeterminate. Clearly, g[u] is a Lie algebra under the point-wise-defined Lie

bracket induced from g and can furthermore be identified with the set of polynomial maps

f : C → g. Hence, a deformation of U(g[u]) can be viewed as a deformation of a space

of functions, in line with the formulation of quantum algebras as deformations of function

algebras. The co-bracket δ : g[u]→ g[u]⊗ g[u]⊗ g[u] = (g⊗ g)(u, v) is given by

δ(f)(u, v) = (adf(u) ⊗ 1 + 1⊗ adf(v))

(
t

u− v

)
(4.0.2)

where t ∈ sym2(g⊗g) is the Casimir on g associated to a fixed bilinear form and equips U(g[u])

with a co-Poisson-Hopf structure.

It is useful to introduce a basis Ji of g such that the commutation relations read

[Ji, Jj ] = fkijJk (4.0.3)

where fkij are the structure constants and summation over k = 1, 2, . . . ,dim g is implied. Then

the deformation Uℏ(g[u]) is defined by introducing a further set of object Ĵi with

[Ji, Ĵj ] = fkij Ĵk (4.0.4)

which behave as Ĵi = u Ji+O (ℏ) and so in the limit ℏ→ 0 we have Ĵi → u Ji and the coproduct

∆ℏ of the deformed algebra satisfies

δ(x) =
∆(x)−∆op(x)

ℏ
mod ℏ . (4.0.5)

Of course there are other technical assumptions but we will not concern ourselves with them.

The deformed algebra Uℏ(g[u]) is then denoted Y(g) and this presentation of Y(g) in terms of

Ji and Ĵi is called Drinfeld’s first realisation.

The algebra we will concern ourselves with is actually not Y(g) for a semi-simple g but rather
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Yn := Y(gl(n)) which we will define below using a different realisation – the RTT realisation

[69]. The algebra Y(sl(n)) can then be obtained from Yn as an appropriate quotient.

4.1 Defining relations, symmetries and quantum determinant

RTT formulation We will now begin our discussion of the Yangian algebra Yn := Y(gl(n)),
see [70] for a comprehensive overview which we closely follow. In the RTT realisation [69] it

is generated by countably many generators t
(r)
ij , i, j = 1, 2, . . . , n, r = 1, 2, . . . subject to the

relations

[t
(r+1)
ij , t

(s)
kl ]− [t

(r)
ij , t

(s+1)
kl ] = ℏ

(
t
(r)
kj t

(s)
il − t

(s)
kj t

(r)
il

)
. (4.1.1)

As before ℏ is an indeterminate. In fact, changing ℏ→ ℏ′ produces an isomorphic algebra and

it is common in mathematics literature to set ℏ = 1 while in physics the choice ℏ = i =
√
−1

is common. we will not concern ourselves with the value of ℏ and leave it arbitrary for the

majority of this work.

It is convenient to repackage the generators t
(r)
ij into formal power series tij(u) ∈ Yn[[u−1]]

with

tij(u) = δij1 + t
(1)
ij u

−1 + t
(2)
ij u

−2 + . . . (4.1.2)

which allows us to write the defining relations (4.1.1) as

(u− v)[tij(u), tkl(v)] = ℏ (tkj(u)til(v)− tkj(v)til(u)) . (4.1.3)

The parameters u, v are called spectral parameters. (4.1.3) can be compactly written by

introducing the rational R-matrix R ∈ End (Cn ⊗ Cn) with

R(u, v) = 1− ℏ
u− v

P (4.1.4)

where P is the permutation operator on Cn ⊗ Cn acting as

P (x⊗ y) = y ⊗ x (4.1.5)

which is given in the standard basis by

P =

n∑
i,j=1

eij ⊗ eji (4.1.6)

where eij furnish the defining (vector) representation of gl(n) and satisfy

eijekl = δjkeil . (4.1.7)

Then (4.1.3) is equivalent to

Rab(u− v)ta(u)tb(v) = tb(v)ta(u)Rab(u− v) (4.1.8)

where the monodromy matrix t(u) has been introduced with

ta(u) =

n∑
i,j=1

eij ⊗ 1⊗ tij(u), tb(u) =

n∑
i,j=1

1⊗ eij ⊗ tij(u) . (4.1.9)

The monodromy matrix t(u) is an element of End(Cn)⊗Yn[[u−1]] with the copy of Cn referred to

as the auxiliary space, in contrast to the physical space where the operators tij(u) act for some
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given representation. The notation Rab indicates that the R-matrix acts on the two auxiliary

spaces. Note that it is trivial to check this R-matrix satisfies the Yang-Baxter equation

Rab(u, v)Rac(u,w)Rbc(v, w) = Rbc(v, w)Rac(u,w)Rab(u, v) . (4.1.10)

Hopf algebra By definition Yn is a Hopf algebra deformation of U(gl(n)[u]). The coproduct

is given by

∆ (tij(u)) =

n∑
k=1

tik(u)⊗ tkj(u) (4.1.11)

while the counit is simply ε : t(u) 7→ 1 and the antipode is given by

S : t(u) 7→ t−1(u) . (4.1.12)

The Yangian algebra Yn admits a number of transformations which preserve the defining

RTT relations and we will make use of several of them throughout the text. We start by

considering some automorphisms.

Rescaling The transformation t(u) 7→ f(u)t(u) with

f(u) = 1 +O
(
1

u

)
∈ C[[u−1]] (4.1.13)

clearly preserves the RTT relation.

GL(n) symmetry and change of basis Yang’s R-matrix satisfies an important property –

it is GL(n) invariant. Specifically, for A ∈ GL(n) we have

[R,A⊗A] = 0 . (4.1.14)

Hence, if t(u) satisfies the RTT relation then so does A t(u)A−1, where matrix multiplication

is performed in the auxiliary space.

Anti-automorphisms Yn also admits a few anti-automorphisms which we will make use of

later in the text. They are given by the following three maps

1. t(u) 7→ t−1(u)

2. t(u) 7→ t(−u)

It is trivial to verify that these indeed constitute anti-automorphisms provided one notes that

the inverse of the R-matrix R(u, v) is simply given, up to an overall factor, by R(v, u)

R(u, v)R(v, u) = −
(
(u− v)2 − ℏ2

)
. (4.1.15)

This property is known as braiding unitarity.

4.2 Finite-dimensional irreducible representations

We now begin the study of representation theory of Yn. Since Yn is a deformation of the

universal enveloping algebra of gl(n)[u] it is not so surprising that the representation theory of

Yn and gl(n) is similar.
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Highest-weight reps of gl(n) Recall that gl(n) is the complex Lie algebra with generators

Eij , i, j = 1, . . . , n subject to the relations

[Eij ,Ekl] = δjkEil − δliEkj . (4.2.1)

Consider the root space decomposition of gl(n) and write

gl(n) = E− ⊕H⊕ E+ (4.2.2)

where the Cartan subalgebra H is

H = {Ejj | j = 1, 2, . . . , n} (4.2.3)

and the raising and lowering operators E± are given by

E+ = {Ejk | 1 ≤ j < k ≤ n}

E− = {Ekj | 1 ≤ j < k ≤ n} .
(4.2.4)

A representation V of gl(n) is called highest-weight if there exists a vector |Ω⟩ ∈ V with the

property that

Ejj |Ω⟩ = λj |Ω⟩

E+ |Ω⟩ = 0 .
(4.2.5)

The vector |Ω⟩ is called the highest-weight state and the numbers λ = [λ1, λ2, . . . , λn] are called

the highest-weights. The representation is finite-dimensional if and only if the differences

λj − λj+1 ∈ Z≥0, j = 1, 2, . . . , n− 1 . (4.2.6)

It is a standard result in the theory of Lie algebras that all finite-dimensional irreducible

representations of gl(n) are of highest-weight type [71].

Highest-weight reps of Yangian In analogy with the case of gl(n) we say a representation

V of Yn is highest-weight if there exists a vector |0⟩ ∈ V with the properties

tjk(u) |0⟩ = 0, j > k (4.2.7)

and

tjj(u) |0⟩ = λj(u) |0⟩ , λj(u) ∈ C[[u−1]], j = 1, 2, . . . , n . (4.2.8)

Note the order of indices in (4.2.7) compared to (4.2.5).

It is a well-known fact that all finite-dimensional irreducible representations of Yn are of

highest-weight type [70][56]. In fact one can even classify which irreducible representations of

Yn are finite-dimensional. The analogue of the condition (4.2.6) is replaced by the existence of

so-called Drinfeld polynomials.

Drinfeld polynomials An irrep of Yn is finite-dimensional if and only if [72], see also [56, 70],

there exists polynomials Pj(u) ∈ C[u], j = 1, 2, . . . , n− 1 satisfying

λj+1(u)

λj(u)
=
Pj(u+ ℏ)
Pj(u)

. (4.2.9)
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The polynomials Pj(u) are referred to as Drinfeld polynomials and if they exist they are unique

[72, 56, 70]. Notice that the Pj(u) can, without loss of generality, be taken to be monic

polynomials where we remind the reader that a polynomial p(u) of degree n is said to be monic

if p(u) = un + . . . . Hence, there is a one-to-one correspondence between finite-dimensional

irreps of Yn and monic polynomials.

Evaluation representations Our next task is to actually construct representations. A

particularly simple class of representations are the so-called evaluation representations evλθ ,

θ ∈ C, which produce Yn representations from representations of gl(n). They are defined by

evλθ (tij(u)) = δij −
ℏ

u− θ
πλ (Eji) (4.2.10)

where πλ (Eij) are the images of the gl(n) generators Eij in our chosen representation λ. A

straightforward calculation allows us to easily demonstrate that this is indeed a representation

of Yn. In fact the only requirement for this to produce a representation of Yn is that πλ is

a representation of gl(n). Hence evaluation representations can be used to construct infinite-

dimensional representations and even non-highest-weight representations of Yn.

We can now calculate the Drinfeld polynomials for the evaluation rep evλθ . Clearly, the

weight functions λj(u) are simply given by

λj(u) = 1− ℏ
u− θ

λj (4.2.11)

and hence
λj+1(u)

λj(u)
= 1 +

ℏ
u
(λj − λj+1) +O

(
u−2

)
. (4.2.12)

On the other hand
Pj(u+ ℏ)
Pj(u)

= 1 +
ℏ
u
degPj +O

(
u−2

)
(4.2.13)

and so we see that a polynomials Pj(u), j = 1, . . . , n − 1 satisfying (4.2.9) can exist only if

λj − λj+1, j = 1, . . . , n − 1, are integers which is precisely the requirement that the gl(n) rep

be finite-dimensional. A direct calculation shows that the Drinfeld polynomials are given by

Pj(u) =

λj−λj+1−1∏
k=0

(u− θ − ℏ(λj − k)) . (4.2.14)

We need to stress however that not every irrep of Yn is an evaluation representation. We will

give a simple example. By using the rescaling symmetry (4.1.13) we can set λ3(u) = 1 without

loss of generality. Then we put

λ1(u) =
u(u− 2ℏ)

(u+ ℏ)(u− ℏ)
, λ2(u) =

u− 2ℏ
u− ℏ

. (4.2.15)

The Drinfeld polynomials for this representation are easily worked out to be

P1(u) = u, P2(u) = u− 2ℏ (4.2.16)

and it is trivial to check that these do not coincide with (4.2.14) for any choice of θ, λ1,2,3. We

will not say too much about these types of representations apart from this: finite-dimensional

evaluation representations corresponded to finite-dim gl(n) irreps which are labelled by Young

diagrams λ. The non-evaluation representation we have constructed corresponds to a skew

Young diagram λ/µ obtained by removing a Young diagram µ from another Young diagram
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λ with their top left corners aligned. Our representation corresponds to the skew diagram in

Figure 4.1. We will return to skew Young diagrams in Section 13.3.

Figure 4.1: Skew diagram λ/µ obtained by removing the Young diagram µ = [1, 0, 0] from the
Young diagram λ = [2, 2, 0].

Spin chain representation We now turn to the representations we will focus on – tensor

products of evaluation representations, also known as spin chain representations since each

tensor factor can be interpreted as the Hilbert space of a particle transforming in that particular

gl(n) representation. It is convenient to introduce polynomial Lax operators Lλ(u, θ) =
∑

i,j Eij⊗
Lij(u, θ) ∈ End(Cn ⊗ Vλ) with

Lλ
ij(u− θ) = (u− θ) evλθ (tij(u)) (4.2.17)

and hence

Lλ(u− θ) = (u− θ)− ℏPλ, Pλ =

n∑
i,j=1

eij ⊗ πλ(Eji) (4.2.18)

where Pλ is referred to as a generalised permutation operator since when λ is the defining

representation it reduces to the usual permutation operator.

Let us fix a family of Young diagrams ν1, ν2, . . . , νL and label the corresponding representations

spaces Vνα

, α = 1, . . . , L. The number L is the length of the spin chain. By using the Yangian

coproduct we can construct a representation of Yn on the L-fold tensor product

Vν1

⊗ · · · ⊗ VνL

(4.2.19)

by setting

T (u) = Lν1

(u− θ1) . . .LνL

(u− θL) (4.2.20)

where each Lνα

acts on the same auxiliary space. Note that T (u) satisfies the RTT relation

(4.1.8) but unlike t(u) it is a polynomial of degree L. The highest-weight representation

structure (4.2.8) is left unchanged except now Tjj(u) act on the highest-weight state as polynomials

νj(u) given by

νj(u) =

L∏
α=1

(u− θα − ℏ ναj ) . (4.2.21)

Let us now consider the expansion of the operators Tij(u) at large u. By construction

Tij(u) = uLδij − uL−1
(
ℏ Eji + δij

L∑
α=1

θα

)
+O(uL−2) (4.2.22)

where Eji are the generators of the global gl(n) algebra

Eij =
L∑

α=1

πνα

(Eij) . (4.2.23)

By expanding the RTT relation (4.1.8) in powers of u we find the following commutation relation

[Eij , Tkl(v)] = δjlTki(v)− δkiTjl(v) (4.2.24)
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which we will make use of later.

Infinite-dimensional and non-highest-weight representations So far we have focused

much of our attention on finite-dimensional irreducible representations of Yn which, as we

established, are of highest-weight type. However, later in this work we will also consider highest-

weight representations which are not finite-dimensional. This case corresponds to case where

we choose highest-weights λj(u) ∈ C[[u−1]] for which some or all of the corresponding Drinfeld

polynomials do not exist. When we do consider these representations we shall construct them

as evaluation representations.

Finally, we note that, while we will not consider them in this work, non-highest-weight

representations of Yangian are also of importance and show up in a number of different contexts

in physics. We briefly outline a few of these:

Scattering amplitudes in QCD It was noticed by Lipatov [73] that certain hadron-hadron

scattering amplitudes in high-energy QCD could be described by an integrable system. More

precisely, a wave function of L gluons was shown to be an eigenfunctions of certain nearest-

neighbour Hamiltonians on a one-dimensional lattice. In [74] it was shown that this integrable

system was described by the Yangian Y2 but in an evaluation representation corresponding to

the principal series representations of SL(2).

Yangian symmetry in N = 4 SYM Scattering amplitudes in planar N = 4 SYM possess

Yangian symmetry [75] which means for all amplitudesM we have

JM = 0 (4.2.25)

for all J ∈ Y(psu(2, 2|4)). The representation is constructed from the infinite dimensional

representations of the superconformal algebra psu(2, 2|4) as differential operators with the

amplitudes corresponding to certain one-dimensional invariant subspaces calledYangian invariants

[76]. Yangian symmetry is also not just a feature of scattering amplitudes but also of the spectral

problem [77, 78] and the one-loop Hamiltonian commutes with the Yangian generators up to

boundary terms, and these vanish in the limit L→∞.

Conformal fishnet theory N = 4 SYM has a cousin – 4d conformal fishnet theory –

obtained as a certain double scaling limit of γ-deformed N = 4 SYM [79]. It maintains

the integrability of the former but also manifests it in new ways. The Feynman diagrams

contributing to certain two-point functions exhibit a simple iterative structure with each loop

order corresponding to action with a certain graph-building operator which corresponds to the

Hamiltonian of an infinite-dimensional spin chain [80, 81]. The Yangian symmetry of N = 4

SYM also remains in the fishnet theory [82, 83].

AdS5 fish chain The AdS5 fishchain [84, 85] corresponds to an L-fold tensor product of

evaluation representations of the Yangian of sl(4) ≃ so(1, 5) with each site carrying a representation

defined on functions on AdS5 subject to certain other physical constraints. The model is

holographically dual to 4d conformal fishnet theory [86, 84, 85], with the Hamiltonian wave

functions of the fishchain corresponding to an L + 1-point correlation function of the fishnet

theory.
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4.3 Algebraic Bethe ansatz

Having reviewed the basic features of the Yangian Yn and its representations we will now review

how to extract the XXX Hamiltonian (2.1.1) and diagonalise it. The procedure for doing this

is called the Algebraic Bethe ansatz [87].

We start by considering the Yangian monodromy matrix T (u)

T (u) =

(
T11(u) T12(u)

T21(u) T22(u)

)
. (4.3.1)

For notational simplicity it is common to relabel the algebra generators Tij(u) as operators

A,B,C,D as follows

T (u) =

(
A(u) B(u)

C(u) D(u)

)
. (4.3.2)

As was already mentioned in the previous chapter the aim when solving a quantum integrable

system is to diagonalise the family of commuting operators obtained from the transfer matrix

T(u) = trT (u). We will start our considerations by examining the Yangian representation

constructed of L copies of the evaluation representation with each site carrying the defining

representation of gl(2) before eventually moving on to the general case. In order to make

manifest the fact that we are trying to interpret the representation space as a chain of spin- 12
particles we will use su(2) generators instead of gl(2) generators, and so introduce the spin

operator Sz along the z-axis by

E11 =
1

2
+ Sz, E22 =

1

2
− Sz, Sz =

(
1
2 0

0 − 1
2

)
. (4.3.3)

In terms of these operators the local Lax operator Lα is given by

Lα(u) =

(
u− θα − ℏ

2 − ℏSz
α −ℏS−α

−ℏS+
α u− θα − ℏ

2 + ℏSz
α

)
. (4.3.4)

Extracting the Hamiltonian The transfer matrix T(u) = trTa(u) is the key object which

allows us to embed the Hamiltonian (2.1.1) into the quantum algebra construction. Indeed, as

was already mentioned the transfer matrix generates a commuting family of operators owing

to the commutativity condition

[T(u),T(v)] = 0 . (4.3.5)

Under an appropriate identification of the parameters θα and ℏ the XXX Hamiltonian belongs

to this commuting family of operators.

The first step is to take the homogeneous limit θα → −ℏ
2 . This guarantees that the conserved

charges generated by T(u) are local, which is certainly true of the XXX Hamiltonian. The next

is to notice that at the point u = ℏ
2 each Lax operator becomes the permutation operator

Lα

(
ℏ
2

)
= Paα (4.3.6)

which permutes vectors on the auxiliary space and the α-th spin chain site. At this point the

transfer matrix can be computed explicitly leading to

U := T
(
ℏ
2

)
= tra

(
L∏

α=1

Paα

)
= PL−1,L . . . P23P12 (4.3.7)
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which is a shift operator along spin sites – if Xα is an operator acting non-trivially on site α

then

UXαU
−1 = Xα−1 (4.3.8)

subject to periodic boundary conditions. Hence, all of the conserved charges are translationally

invariant.

Finally, we compute the first logarithmic derivative of the transfer matrix and evaluate at

u = ℏ
2 and have

d

du
log T(u)

∣∣∣∣
u= ℏ

2

:= T
(
ℏ
2

)−1
T′
(
ℏ
2

)
= U−1T′

(
ℏ
2

)
. (4.3.9)

A straightforward calculation then yields that

d

du
log T(u)

∣∣∣∣
u= ℏ

2

= H (4.3.10)

where H is the Hamiltonian (2.1.1) up to an overall rescaling and shift of the energy levels.

Furthermore, it can be demonstrated that the second logarithmic derivative of T(u) yields the
higher conserved charge J3 mentioned in (2.1.5). Finally, it can be demonstrated that all of the

conserved charges are Hermitian, guaranteeing their mutual diagonalisability.

Diagonalising the conserved charges We now proceed to the diagonalisation of the transfer

matrix for an arbitrary finite-dim irrep with weight functions ν1(u) and ν2(u) as in (4.2.21).

Since the transfer matrix commutes with itself at different values of the spectral parameter u

it follows that its eigenvectors do not depend on u and hence its eigenvectors are eigenvectors

for the full family of conserved charges.

We will denote the highest-weight state by |Ω⟩. On the highest-weight state we have

A(u) |↑L⟩ = ν1(u) |Ω⟩

D(u) |↑L⟩ = ν2(u) |Ω⟩

C(u) |↑L⟩ = 0

(4.3.11)

and both A and D are polynomial and hence so is the transfer matrix T(u). Starting from the

highest-weight state |Ω⟩ we wish to create new eigenvectors. This can be achieved with the

help of the operator B(u) which behaves at large-u as

B(u) = −ℏuL−1S− +O
(
uL−2

)
. (4.3.12)

Hence, any state of the form
M∏
j=1

B(uj) |↑L⟩ (4.3.13)

is a linear combination of states with M -flipped spins. However, not all values of the spectral

parameters uj will produce an eigenvector of the transfer matrix. The Yangian commutation

relations impose strong constraints on what values they take. By repeatedly using the relations

between A, B and D stemming from the RTT relation (4.1.8) one finds that in order for the

state (4.3.13) to be an eigenvector of the transfer matrix the following set of algebraic equations,

known as Bethe equations, must be satisfied:

ν1(uj)

ν2(uj)
= −q

[−2](uj)

q[2](uj)
, j = 1, 2, . . . ,M . (4.3.14)
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Here we have introduced the Baxter polynomial or Baxter Q-function q(u) =
∏M

j=1(u − uj)
together with the following notation for shifts of the spectral parameter

f [2n](u) = f (u+ n ℏ) , n ∈ Z (4.3.15)

for some function f(u). These Bethe equations are precisely those appearing in (2.2.4) upon

choosing the spin 1
2 evaluation representation with θα = i

2 , ℏ = −i and

uj =
1

2
cot

pj
2
. (4.3.16)

Eigenvalues When these equations are satisfied the corresponding eigenvalue T of the transfer

matrix on the state (4.3.13) can be worked out to be

T(u) = ν1(u)
q[2](u)

q(u)
+ ν2(u)

q[−2](u)

q(u)
(4.3.17)

which can be recast as Baxter’s famous TQ equation [88] which defines a finite-difference

equation for the function q(u)

T(u)q(u) = ν1(u)q
[2](u) + ν2(u)q

[−2](u) . (4.3.18)

At first glance it may seem like the transfer matrix eigenvalue T(u) has a pole at u→ uj which

is certainly not consistent with the fact that the transfer matrix and hence its eigenvalues is a

polynomial function of u. Thankfully, the coefficient of this pole is zero thanks to the Bethe

equations. In fact, one can reverse the logic and start from (4.3.17) and impose that it is

pole-free at u → uj . This then leads immediately to the Bethe equations. Deriving the Bethe

equations in this way is known as the Analytical Bethe ansatz [89].

Symmetry multiplets The transfer matrix commutes with the global su(2) symmetry generators

and hence every eigenstate constructed as in (4.3.13) is also an eigenvector for the global su(2).

The full spin chain representation space is clearly reducible as a representation of su(2) and

decomposes into a direct sum of irreps. It can be shown that for each Bethe state |Ψ⟩ we have

that

S+ |Ψ⟩ = 0 (4.3.19)

and hence the Bethe states are highest-weight states of the mentioned irreducible representations.

Clearly the highest-weight states do not form a basis of eigenstates by themselves and so we

must also construct descendants. These are obtained by acting on the Bethe states with the

global lowering operator S− or, equivalently, including Bethe roots at infinity, owing to the

relation (4.3.12). Since the transfer matrix T(u) commutes with the global su(2) generators its

eigenvalue is the same on state in a given irreducible su(2) representation.

Considering the simple example of L = 2 with the spin 1
2 evaluation rep, the representation

space C2 ⊗ C2 decomposes as

C2 ⊗ C2 = sym2
(
C2
)
⊕ ∧2

(
C2
)
. (4.3.20)

The symmetric space sym2
(
C2
)
is three-dimensional and is spanned by

|↑L⟩ , S− |↑L⟩ ,
(
S−
)2 |↑L⟩ (4.3.21)

38



while the antisymmetric space ∧2
(
C2
)
is one-dimensional and is spanned by

B(u1) |↑L⟩ (4.3.22)

where

u1 =
1

2
(θ1 + θ2 + ℏ) (4.3.23)

satisfies the Bethe equation
2∏

α=1

(
u1 − θα − ℏ
u1 − θα

)
= 1 . (4.3.24)

Problems with Bethe equations and completeness While the Bethe equations lead to

a simple characterisation of the transfer matrix (and hence Hamiltonian) spectrum they are

not without their faults. Indeed, one quite easily construct various non-physical solutions for

which the transfer matrix eigenvalue is not polynomial. At the level of Bethe equations it is not

always clear which solutions are physical and the non-physical ones must be removed by hand.

On the other hand it is also not clear that every transfer matrix eigenstate can be constructed

using the algebraic Bethe ansatz. This is the problem of completeness and an extensive amount

of effort has been put towards resolving this issue, see for example [90, 91, 92].

For spin chains in the defining evaluation representation of gl(n) and more recently gl(m|n)
this has been positively resolved [93, 94, 95]. The resolution is based on the fact that the

transfer matrix eigenvalue equation can be recast as

(
ν1(u)D − T(u) + ν2(u)D−1

)
q(u) = 0 (4.3.25)

where we have introduced the shift operator D which has the following action on functions f(u)

D±1f(u) = f(u+ ℏ) . (4.3.26)

(4.3.25) defines a finite-difference equation of order 2 and hence has two linearly independent

solutions which we denote as q1 and q2. For the defining representation in the homogeneous

limit θα → −ℏ
2 the two solutions satisfy the Wronskian relation

uL = q
[1]
1 q

[−1]
2 − q

[1]
2 q

[−1]
1 . (4.3.27)

If q1 corresponds to the Baxter polynomial constructed by the algebraic Bethe ansatz then all

non-physical solutions correspond to solutions of the Wronskian relation for which q2 is not a

polynomial. By imposing that both q1 and q2 be polynomial one obtains only physical solutions

and furthermore all transfer matrix eigenstates can by characterised in this way.

Higher-rank generalisation The generalisation of the algebraic Bethe ansatz to higher-

rank gl(n) cases is known as the nested Bethe ansatz, see [96, 97] for in-depth reviews. We will

only sketch some brief details.

Like in the su(2) case the transfer matrix T(u) = trT (u) commutes with the global gl(n)

symmetry algebra and hence the eigenspaces of T(u) correspond to irreps of gl(n). The

eigenvalue T(u) of the transfer matrix on the highest-weight state is given by

T(u) =
n∑

j=1

νj(u) . (4.3.28)
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The nested Bethe ansatz procedure for constructing eigenvectors of T(u) is based on first

diagonalising a family of auxiliary transfer matrices T (k)(u), k = 1, . . . , n−1 where T (k) denotes

the trace of the principal k×k submatrix of the monodromy matrix T (u). The procedure is quite

involved and the complexity increases drastically with rank so we will not spell out any further

details here. The main point is that an eigenvalue T(u) of T(u) is parameterised by not just

one polynomial q(u) like in the su(2) case but by n−1 polynomials q1(u), q12(u), . . . , q1...n−1(u)

with

q1...j(u) =

Mj∏
k=1

(u− u(j)k ) . (4.3.29)

A generic transfer matrix eigenvalue T(u) can then be expressed as

T(u) =
n∑

j=1

Λj(u) (4.3.30)

where Λj(u) are functions, known as quantum eigenvalues [98, 51] (of the monodromy matrix),

given by

Λj(u) = νj(u)
q
[−2]
1...j−1

q1...j−1

q
[2]
1...j

q1...j
. (4.3.31)

The Bethe equations describing the transfer matrix eigenstate are then given by

νk(u)

νk+1(u)
= −

q
[−2]
1...k−1

q1...k−1

q
[−2]
1...k

q
[2]
1...k

q1...k+1

q
[2]
1...k+1

, k = 1, . . . , n− 1 (4.3.32)

with both the l.h.s. and r.h.s. evaluated at a root u
(k)
j of q1...k and q1...n := 1.

4.4 Twisting and separation of variables: a first look

Owing to the gl(n) symmetry of the transfer matrix the spectrum is highly degenerate. In

many cases it is highly desirable to have a situation where the spectrum of conserved charges is

non-degenerate giving us a one-to-one correspondence between transfer matrix eigenstates and

eigenvalues. The procedure for doing this is known as twisting.

Twisting is based on the GL(n) symmetry of the R-matrix

[R(u, v), G⊗G] = 0 (4.4.1)

where G is any invertible n× n matrix. As a result of this, the RTT commutation relation

Rab(u, v)Ta(u)Tb(v) = Tb(v)Ta(u)Rab(u, v) (4.4.2)

remains satisfied if we replace T (u) → T(u) = H T (u)G for any two H,G ∈ GL(n). If we

consider the transfer matrix T(u) as being obtained from the trace of H T (u)G instead of T (u)

then only the product GH contributes due to the cyclicity of the trace and hence without loss

of generality set H = 1. Furthermore, the eigenvalues of the transfer matrix are only sensitive

to the eigenvalues of the twist matrix G. To see this, we note that the GL(n) symmetry of the

R-matrix implies gl(n) symmetry

[R(u, v), J⊗ 1 + 1⊗ J], J ∈ gl(n) (4.4.3)
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which extends to the Lax operator Lλ(u, θ)

[Lλ(u, θ), J⊗ 1 + 1⊗ πλ (J)], J ∈ gl(n) (4.4.4)

which in turn implies GL(n) symmetry of the Lax operator

[Lλ(u, θ), G⊗Πλ (G)] = 0, G ∈ GL(n) (4.4.5)

where Πλ denotes the image of the group element G induced from the representation πλ on

gl(n). Now consider the transfer matrix T obtained from the twisted monodromy matrix T =

T G constructed from L-copies of evaluation representations and consider the change of basis

Πλ(K) := Πλ1(K)⊗ · · · ⊗ΠλL(K) where K is such that KGK−1 = g. Then we have

Πλ(K)T(u)Πλ(K−1) = tra
(
Πλ(K)Ta(u)Π

λ(K−1)Ga

)
= tra

(
Πλ(K−1)a Ta(u)Π

λ(K)aGa

)
= tr (T (u) g)

(4.4.6)

where in the second equality we used the GL(n)-invariance of each Lax operator to move the

rotation Πλ(G) onto the physical space and in the third equality used the cyclicity of the trace.

An immediate consequence of this is that if |ΨG⟩ is some eigenvector of T(u) constructed with

G then |Ψg⟩ = Πλ(K−1) |ΨG⟩ is an eigenvector for T(u) constructed with g.

The physical consequence of twisting is breaking the global symmetry by deforming the

integrals of motion while still preserving integrability. The breaking of the global symmetry can

be seen by examining the effect of twisting on the Hamiltonian which can still be extracted from

the transfer matrix by taking the logarithmic derivative (assuming the defining representation

without inhomogeneities). The deformed Hamiltonians Hg reads, as is easily confirmed by

direct calculation,

Hg = H12 + . . .HL−2,L−1 + g−1L HL,1gL (4.4.7)

where gL denotes that the twist matrix g only acts non-trivially on site L. As a result of twisting

the deformed Hamiltonian no longer commutes with the full su(2) algebra and only the Cartan

subalgebra u(1) generated by the global Sz remains a symmetry.

Throughout this work we will denote the eigenvalues of the twist matrix G ∈ GL(n) as

z1, . . . , zn. As a result of twisting the transfer matrix no longer commutes with the full global

gl(n) algebra – only its Cartan subalgebra remains a symmetry. Furthermore the transfer

matrix eigenvalues and Bethe equations get modified. Both of these are conveniently described

by replacing the Baxter polynomials q1...j with what are referred to as twisted polynomials

which we define to be functions of the form κ
u
ℏ p(u) where κ ∈ C and p(u) is a polynomial. For

the situation at hand we define twisted polynomials q̂1...j defined by

q̂1...j = (z1 . . . zj)
u
ℏ q1...j(u) (4.4.8)

where q1...j now denotes a new polynomial, different from the original Baxter polynomial. The

modification of the Bethe equations and transfer matrix eigenvalues is then obtained by making

the simple replacement q12...j → q̂1...j . As an example, the eigenvalue of the transfer matrix

with diagonal twist on highest-weight state of the Yangian representation is given by

T(u) =
n∑

j=1

zjνj(u) . (4.4.9)
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Separation of Variables Before closing this chapter we will take a brief look at how a

separated variable basis can be constructed for the su(2) spin chain in the defining evaluation

representation, see [99] for an introductory overview. We constructed transfer matrix eigenstates

|Ψ⟩ by repeatedly acting with the operator B on the highest-weight state |Ω⟩

|Ψ⟩ =
M∏
j=1

B(uj) |Ω⟩ . (4.4.10)

Suppose that B were diagonalisable with a basis of left eigenvectors denoted ⟨x|. Note that

in this work we have not equipped the representation space V with any metric and so the bra

vectors ⟨v| are simply defined to be elements of the dual space V∗ and the scalar product ⟨v|w⟩
simply denotes the action of a dual vector ⟨v| on a vector |w⟩. In the basis ⟨x| of V∗ the transfer
matrix eigenstates will factorise

⟨x|Ψ⟩ = (−1)ML
L∏

α=1

q1(x
α) (4.4.11)

and we normalised ⟨x|Ω⟩ = 1 and xα denote the eigenvalues of the L roots of the polynomial

B(u). Each of the individual factors q1(x
α) can then be interpreted as a one-particle wave

function and we have succeeded in separating variables. Furthermore, since each of the one-

dimensional wave functions are solutions of the Baxter TQ equation we can view the TQ

equation as the one-particle Schrödinger equation in separated variables.

As it stands however this construction is moot as B is actually a polynomial of degree L−1

and when constructed with a diagonal twist is nilpotent since it behaves as lowering operator

at large u. Thankfully however both of these problems can be removed allowing us to realise

the above construction.

Consider the special twist T (u)g → KT (u)gK−1. This preserves all commutation relations

and further leaves the transfer matrix invariant. Hence the new operator B → B can also be

used to build transfer matrix eigenstates. A nice feature is that we can choose K to make B

diagonalisable and have simple spectrum allowing us to proceed with the above construction.

However, this relies on having a twist g ̸= 1 in the first place and so the presence of twist is a

crucial part of the construction.

We have now finished our review of the Yangian algebra. In the next chapter we will examine

the structure of the conserved charges arising from the transfer matrix in more detail.

42



Chapter 5

Bethe algebra

When discussing the generalisation of the algebraic Bethe ansatz to the higher rank case we

briefly discussed the diagonalisation of the transfer matrix T(u). This transfer matrix provides

us with L integrals of motion. However, these L integrals of motion are in general not enough to

completely characterise an eigenstate as for certain representations it has degenerate spectrum.

This can be seen by considering a gl(3) spin chain of length L = 1 with a diagonal twist. The

transfer matrix is given by

T(u) = (z1 + z2 + z3)(u− θ)− ℏ (z1 E11 + z2 E22 + z3 E33) . (5.0.1)

In this special case the non-trivial part of the transfer matrix is an element of the Cartan

subalgebra of gl(n) and the only requirement for the transfer matrix to have degenerate spectrum

is that the Cartan subalgebra has degenerate spectrum. This is the case for the [2, 1, 0]

representation, see Section 8.1. In order to remove these degeneracies it is necessary to construct

a larger family of integrals of motion. This family is known as the Bethe subalgebra, coined in

[100], and we will now present an in-depth review.

5.1 Fusion

Fusion [101, 98, 102, 103] is a procedure which allows us to construct new solutions of the

Yang-Baxter equation from old ones and is similar to the construction of irreps of GL(n) via

Young Symmetrisers [71], see Figure 5.1. See [104, 70] for reviews.

Figure 5.1: Any finite dimensional irrep GL(n) corresponding to a Young diagram λ can be
constructed by applying a suitable projection Pλ to the tensor product of |λ| copies of the
defining representation.

The rational R-matrix R(u, v) acts on two copies of Cn. Viewing Cn as the defining

representation of GL(n) the fusion procedure allows to construct more general R-matrices

Rλµ ∈ End
(
Vλ ⊗ Vµ

)
(5.1.1)
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acting on the tensor product of two finite-dim irreps Vλ and Vµ of GL(n) and satisfying a more

general form of the Yang-Baxter equation

Rλµ(u, v)Rλ ν(u,w)Rµ ν(v) = Rµ ν(v, w)Rλ ν(u,w)Rλ µ(u− v) (5.1.2)

for any Young diagrams λ, µ and ν. The term “fusion” comes from the fact that the defining

R-matrix can be viewed as the scattering matrix in an integrable field theory and the higher

R-matrices constructed in this way describe the scattering of bound states obtained by fusing

two elementary particles.

Fusion in the physical space We will start with fusion in the physical space and explain

how to construct the operator R□ µ where □ denotes the defining representation of GL(n).

In order to discuss fusion in simple terms it is convenient to introduce graphical notations

for performing calculations. First we need the R-matrix R(u, θ) which we write as in Figure 5.2

Figure 5.2: Graphical representation of R-matrix R(u, θ). The horizontal line with label u
labels the first space and the vertical line with label θ labels the second space. The directional
arrows can be placed anywhere on a given line.

In these graphical notations the Yang-Baxter equation

Rab(u, v)Rac(u, θ)Rbc(v, θ) = Rbc(v, θ)Rac(u, θ)Rab(u, v) (5.1.3)

is represented simply by Figure 5.3.

Figure 5.3: Yang-Baxter equation in graphical notations. By following the directions of arrows
from right to left we can distinguish between R(u, v) and R(v, u). Note that objects which
appear down and right in graphical notations act first on the Hilbert space.

The main point of the fusion procedure is that at certain values of the spectral parameters

the R-matrix R(u, v) reduces to projectors P
□□

and P □
□

R12(v + ℏ, v) = R12(u, u− ℏ) = 2ℏP □
□

R12(v − ℏ, v) = R12(u, u+ ℏ) = −2ℏP□□
.

(5.1.4)

In the decomposition

Cn ⊗ Cn = sym2(Cn)⊕ ∧2(Cn) (5.1.5)
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of GL(n) irreps the projector P
□□

projects onto sym2(Cn), and similarly P □
□

projects onto

∧2(Cn). The projectors are idempotent

P
□□
P

□□
= P

□□

P □
□
P □

□
= P □

□
(5.1.6)

and mutually orthogonal

P
□□
P □

□
= 0 . (5.1.7)

Focusing on the symmetric projection P
□□

, the Yang-Baxter equation implies that 1

Ra1(u, θ)Ra2(u, θ + ℏ)P□□

12 = P
□□

12 Ra2(u, θ + ℏ)Ra1(u, θ) (5.1.8)

which then guarantees that the projection survives scattering with the auxiliary space:

Ra1(u, θ)Ra2(u, θ + ℏ)P□□

12 = P
□□

12 Ra1(u, θ)Ra2(u, θ + ℏ)P□□

12 . (5.1.9)

Hence, we can view the symmetrised pair of R-matrices as a composite – fused! – particle

transforming in the symmetric representation of GL(n) and which doesn’t decompose into its

two constituent pieces upon scattering with the particle in the auxiliary space and hence define

R
□ □□

(u, θ) = P
□□

12 Ra1(u, θ)Ra2(u, θ + ℏ)P□□

12 , (5.1.10)

see Figures 5.4 and 5.5.

Figure 5.4: We use this notation to indicate that a collection of incoming particles have been
consistently projected onto the irreducible representation λ. The label θ indicates that the
left-most particle has rapidity θ.

Figure 5.5: Graphical representation of the fused R-matrix R
□ □□

(u, θ)

A straightforward calculation demonstrates that the YBE

R
□ □

(u, v)R
□ □□

(u, θ)R
□ □□

(v, θ) = R
□ □□

(v, θ)R
□ □□

(u, θ)R
□ □

(u, v) (5.1.11)

is satisfied on the triple tensor product of representations □⊗□ ⊗□□, see Figure 5.6.

1We have switched from v to θ to emphasise that the second space corresponds to a physical particle.
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Figure 5.6: Proof of the Yang-Baxter equation R
□ □

R
□ □□

R
□ □□

= R
□ □□

R
□ □□

R
□ □

. The
first equality follows from the fact that the symmetric projectors are idempotent and survive
scattering with the auxiliary spaces. The second equality follows from using the Yang-Baxter
equation to move the physical lines through the auxiliary R-matrix. Finally, projectors are
restored.

The procedure for constructing the fused R-matrix R□ λ(u) for any Young diagram λ is

totally analogous to the construction presented above for R
□ □□

. Namely, we write

R□ λ(u, θ) =

 |λ|∏
j=1

Raj(u, θ + ℏ cj)

Pλ = Pλ

 |λ|∏
j=1

Raj(u, θ + ℏ cj)

Pλ (5.1.12)

where cj are some appropriate numbers made precise below. The second equality above is

the statement that the projection Pλ onto the irrep λ of GL(n) survives scattering with the

auxiliary space. This is achieved by constructing Pλ as on appropriate product of fundamental

R-matrices and repeatedly applying the Yang-Baxter equation, similar to what we did for the

symmetric representation above, see for example [104]. The proof of the Yang-Baxter equation

R
□ □

R
□ λR

□ λ = R
□ λR

□ λR
□ □

(5.1.13)

is then performed in precisely the same way as in Figure 5.6.

The numbers cj can be read off from the Young diagram λ. We draw the Young diagram λ

and label the boxes in column-ordering. Then, to the box numbered j we associate the value

cj with

cj = s− a (5.1.14)

if box j has Cartesian coordinates (a, s), see Figure 5.7.

Figure 5.7: Left: Column-ordering of boxes on the Young diagram λ. Right: cj = s − a
associated with each box j.
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Drinfeld Polynomials for fused R-matrices By constructing the fusedR-matrixR□ λ(u, θ)

we have actually managed to seemingly construct two Yangian representations on the space Vλ.

The first is given using the Lax operator

T (u) = Lλ(u) (5.1.15)

while the second is given using the fused R-matrix R□ λ(u)

T (u) = R□ λ(u) . (5.1.16)

Both representations clearly satisfy the RTT relation and, initially, might seem rather different

– the Lax operator is a polynomial of degree 1, whereas R□ λ(u) is a Laurent polynomial.

Thankfully, and perhaps not so surprisingly, these two Yangian representations are isomorphic

as can be checked by computing their Drinfeld polynomials.

Fusion in the auxiliary space Fusion in the auxiliary space is almost exactly the same as

for the physical space. The fused R-matrix Rλ □(u, θ) is simply given by

Rλ □(u, θ) = Pλ

 |λ|∏
j=1

Raj1(u+ ℏ cj , θ)

 = Pλ

 |λ|∏
j=1

Raj1(u+ ℏ cj , θ)

Pλ (5.1.17)

Note that here we can pull Pλ all the way to the left – without affecting the ordering of R-

matrices – while for the physical space we could pull the R-matrices all the way to the right.

We can still pull Pλ all the way to the right in this case, but doing so will change the ordering

of R-matrices

Pλ

−→∏
j

Raj1(u+ ℏ cj , θ)

 =

←−∏
j

Raj1(u+ ℏ cj , θ)

Pλ . (5.1.18)

Finally, putting all the pieces together we can construct Rλ µ as

Rλ µ(u, θ) = PµPλ

 |λ|∏
j=1

|µ|∏
k=1

Rajk(u+ ℏ cλj , θ + ℏcµk)

PµPλ (5.1.19)

where cλj and cµk denote the content of the Young diagrams λ and µ, respectively. Checking the

Yang-Baxter equation is now a trivial consequence of the developed techniques, and is most

easily performed graphically.

Fusion for monodromy and transfer matrices The fusion procedure described above

extends immediately to allow us to construct fused monodromy matrices Tλ(u) which satisfy

a generalised version of the RTT relation:

Rλ,µ
ab (u, v)Tλ

a(u)T
µ
b (v) = Tµ

b (v)T
λ
a(u)R

λ,µ
ab (u, v) (5.1.20)

The fused monodromy matrix Tλ(u) is constructed in total analogy with the fused R-matrix:

Tλ(u) = Pλ

 |λ|∏
j=1

Taj
(u+ ℏ cj)

 = Pλ

 |λ|∏
j=1

Taj
(u+ ℏ cj)

Pλ . (5.1.21)

The proof of the fused RTT relation (10.2.9) is identical to that of the fused Yang-Baxter

equation.
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Since the fundamental R-matrices fused to create Rλ µ are invertible it follows that so is

Rλ µ and hence

[Tλ(u),Tµ(v)] = 0 (5.1.22)

where the fused transfer matrix Tλ(u) is given by Tλ(u) = trTλ(u) and the trace is taken over

the fused auxiliary space λ. The tower of commuting fused transfer matrices Tλ(u), where λ

ranges over all possible Young diagrams of GL(n), form a commutative subalgebra of Yn called

the Bethe subalgebra.

The fusion procedure presented here relied heavily on the fact that the R-matrix degenerated

to a projector when the difference of spectral parameters attained certain values. There are

numerous integrable systems for which the projectors onto symmetric and anti-symmetric

subpsaces can not be so easily extracted such as the one-dimensional Hubbard model. Nevertheless,

fusion can still be performed and higher transfer matrices can be obtained – in [105] an analogue

of the fusion procedure was developed which only relies on the fact that the rank of the R-matrix

drops at special points.

Quantum minors and quantum determinant It will be useful for later purposes to

consider the matrix elements of the fused monodromy matrices in anti-symmetric representations.

In the ∧a(Cn) representation these are given by

T
[
i1...ia
j1...ja

]
(u) =

∑
σ∈Sa

(−1)|σ|Tiσ(1)j1T
[−2]
iσ(2)j2

. . .T
[−2(a−1)]
iσ(a)ja

(5.1.23)

and are called quantum minors owing to the fact that they are minors of the n×n matrix T(u)

with extra (quantum) shifts included. We have chosen to present the quantum minor with

anti-symmetrisation performed over the upper indices. Since anti-symmetrisation commutes

with scattering we could just as well have performed the anti-symmetrisation over the lower

indices but with the opposite ordering of shifts

T
[
i1...ia
j1...ja

]
(u) =

∑
σ∈Sa

(−1)|σ|T[−2(a−1)]
i1jσ(1)

T
[−2(a−2)]
i2jσ(2)

. . .Tiajσ(a)
. (5.1.24)

A highly useful property of the quantum minors is as follows [70]. Let I and J denote

subsets of {1, 2, . . . , n}. If i ∈ I and j ∈ J then

[T
[
I
J

]
(u),Tij(v)] = 0 (5.1.25)

for any u, v. Of course this immediately implies that T
[
12...n
12...n

]
(u), known as the quantum

determinant qdetT(u) [106, 107], commutes with all elements of the Yangian Yn and hence is

central. In fact, its coefficients in its u expansion generate all central elements.

Since the quantum determinant is central it acts as a scalar multiple of the identity on any

irreducible representation. Its value can be easily computed by acting with the presentation

(5.1.24) on the highest-weight state leading to

qdetT(u) = det G

n∏
j=1

νj(u− ℏ(n+ 1− j)) . (5.1.26)

The Yangian of sl(n) mentioned in the introduction of the previous chapter is then obtained by

the simple quotient [70]

Y(sl(n)) = Y(gl(n))/(qdetT(u)− 1) . (5.1.27)
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Talalaev generating function We end this section by presenting an alternative way of

constructing the transfer matrices Ta,1 corresponding to the representation ∧a(Cn). Ta,1

correspond to traces of the monodromy matrices in anti-symmetric representations and hence

can be expressed in terms of quantum minors as

Ta,1(u) =
∑

1≤i1<···<ia≤n

T
[
i1...ia
i1...ia

]
. (5.1.28)

The transfer matrices Ta,1 can then be conveniently generated by using Talalaev’s formula [108]

det
(
1−T(u)D−1

)
=

n∑
a=0

(−1)aTa,1(u)D−a (5.1.29)

where we have used the shift operator (4.3.26). This may seem somewhat limited as we have a

family of transfer matrices Tλ at our disposal, not just the ones corresponding to antisymmetric

representations. In the next section we will see that this is all we need, as all other transfer

matrices can be expressed as simple polynomials in Ta,1.

It is also worth pointing out that Talalaev’s formula has other uses apart from being a tool

for generating transfer matrices. Let us define the two finite-difference operators
←−
O and

−→
O

where O is the finite-difference operator

O =

n∑
a=0

(−1)aTa,1(u)D−a (5.1.30)

and the arrows indicate in which direction the shift operators act. These two difference operators

define the Baxter equation and dual Baxter equation [109], generalising (4.3.18). We will return

to this at the end of this Chapter.

5.2 Transfer matrices and T-system

Using fusion we managed to construct a large family of integrals of motion – a transfer matrix for

every Young diagram. At first sight it may appear that we have constructed an infinite family

of conserved charges. After all, one can write down an infinite number of Young diagrams

for every GL(n). On the other hand if we are dealing with finite dimensional representations

(and we mostly will be) then clearly the infinite number of transfer matrices Tλ(u) cannot be

independent. Another reason can be found by relating transfer matrices to characters of GL(n)

group elements.

Quantization of classical characters The transfer matrices can be understood as a quantization

of classical GL(n) characters. Letting G ∈ GL(n) denote an invertible matrix with pairwise

distinct eigenvalues z1, . . . , zn then the character χλ of G in the representation λ can be obtained

in the large-u asymptotics of the transfer matrix Tλ(u) constructed with twist G:

lim
|u|→∞

Tλ(u)

uL|λ|
= χλ . (5.2.1)

The characters χλ are certainly not all independent - they are related [71] by the following

formula relating characters χa,s corresponding to rectangular Young diagrams with a rows and

s columns

χa,sχa,s = χa+1,sχa−1,s + χa,s+1χa,s−1 (5.2.2)
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as well as the Jacobi-Trudi formula allowing us to express all characters χλ in terms of χa,1

χλ = det
1≤i,j≤λ1

χλ′
j+i−j,1 (5.2.3)

where λ′j denotes the height of the j-th column of the Young diagram λ. The fact that the

transfer matrices are not algebraically independent at large u suggests they are not independent

in general. This is indeed the case and both (5.2.3) and (5.2.2) have analogues for transfer

matrices.

Hirota equation and CBR formula The Hirota equation [28] is the quantum analogue of

the relation (5.2.2) and reads

Ta,sT[2]
a,s = T[2]

a+1,sTa−1,s + Ta,s+1T[2]
a,s−1 (5.2.4)

and initially appeared in the theory of solitions in classical systems and describes numerous

integrable hierarchies such as those arising from the Korteweg-de Vries (KdV) equation and

Kadomtsev-Petviashvili (KP) equation, see [110] for an overview. In our case however the

Hirota equation relates quantum transfer matrices. As a special case of it we have the following

relation between the transfer matrices T1,1, T2,1 and T1,2

T1,1T[2]
1,1 = T1,2 + T[2]

2,1 (5.2.5)

generalising the familiar character relation following from the decomposition

Cn ⊗ Cn = sym2 (Cn)⊕ ∧2 (Cn) . (5.2.6)

We also have the Cherednik-Bazhanov-Reshetikhin (CBR) [111, 112, 113] formula which is

a quantum analog of the Jacobi-Trudi formula which states that for a Young diagram λ

Tλ(u) = det
1≤i,j≤λ1

Tλ′
j+i−j,1(u+ ℏ(i− 1)) . (5.2.7)

These formulae should be supplemented with the boundary conditions

T∅(u) = T0,1(u) = 1

Ta,1(u) = 0, a < 0
(5.2.8)

where T∅ denotes the transfer matrix corresponding to the empty diagram.

Gauge symmetries of Hirota equation The Hirota equation admits a number of symmetries

[114, 104] which we refer to as gauge transformations. Let us introduce a family of functions

g±,±a,s defined by

g(±,±)a,s (u) = f (±,±)
(
u+ ℏ

((
1

2
± 1

2

)
s−

(
1

2
± 1

2

)
a

))
(5.2.9)

Then

Ta,s(u)→ g(±,±)a,s Ta,s(u) (5.2.10)

is a symmetry of the Hirota equation and so there are four independent gauge transformations

which can be performed corresponding to the possible pairs (±,±). The choice of gauge largely
comes down to personal preference. For the most part we choose to work with what we call the

fusion gauge where all transfer matrices Tλ coincide with those constructed using the fusion
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procedure of the previous section. Various other gauges are possible and useful. Indeed, one

is often interested in the situation where the physical space carries the defining representation

and in this case most transfer matrices have a number of overall trivial zeroes resulting from

the fusion procedure and it is often convenient to choose a gauge which removes these trivial

zeroes, see [104, 115].

5.3 Q-system

We now introduce one of the key concepts in this work – the Q-system. The GL(n) Q-system is

a set [109, 116, 117, 118] of 2n functions QA(u) labelled by subsets A ⊂ {1, 2, . . . , n} subject to
relations known as QQ-relations2

QAbcQ
[−2]
A = QAbQ

[−2]
Ac − QAcQ

[−2]
Ab . (5.3.1)

It follows from the QQ relations that the Q-functions are anti-symmetric in all indices. The

Q-functions are related to the (twisted) Baxter polynomials which appeared in the nested Bethe

ansatz and we will explain precisely how later.

Geometric interpretation of the Q-system Q-functions can be naturally interpreted as

Plücker coordinates of certain hyperplanes. First, Q-functions can be packaged into exterior

forms and we closely follow [119]. Introduce a basis ζ1, . . . , ζn of Cn. Then define Q(k) ∈ ∧k(Cn)

by

Q(k) =
∑
|A|=k

QAζA ζa1...ak
:= ζa1

∧ · · · ∧ ζak
. (5.3.2)

Let V(k)(u) denote a k-dimensional linear subspace of Cn. Consider the collection

V(0)(u), V(1)(u), . . . , V(n)(u) (5.3.3)

with

V(k)(u) = {x |x ∧ Q(k)(u) = 0} . (5.3.4)

Then the QQ-relations are equivalent to the following union property

V(k) ∪ V
[−2]
(k) = V(k+1) (5.3.5)

for all u ∈ C apart from possibly a discrete set of points.

The Q-functions are clearly projective coordinates and so one is free to make the rescaling

QA(u)→ f(u)QA(u) for any function f(u) without spoiling the Q-system. As a result, one can

always use this rescaling freedom to set Q∅ = 1.

Hodge dual The presentation of the Q-system using exterior forms naturally allows us to

introduce a notion of Hodge duality for Q-functions. We define the Hodge dual map

∗ : ∧k (Cn)→ ∧n−k (Cn) (5.3.6)

which can be used to transform k-forms to n − k-forms and hence define the Hodge dual Q-

function QA of QA by

QA = εĀAQĀ (5.3.7)

2The QQ-relations presented here differ from the ones in the Introduction by means of a redefinition of the
Q-functions. The convention used here is most convenient for our purposes. The convention in the Introduction
is the one most used in AdS/CFT contexts.

51



where Ā denotes the complement of A in the set {1, 2, . . . , n} and we use the convention ε12...n =

1. Note that there is no sum over Ā in (5.3.7).

Q-system and Baxter equations The Q-functions entering the Q-system naturally appear

as solutions of the finite-difference Baxter equations [109, 115, 104]. We have two finite-

difference operators
←−
O and

−→
O where

O = det
(
1−TD−1

)
=

n∑
a=0

(−1)aTa,1(u)D−a . (5.3.8)

Since the transfer matrices mutually commute we could just as well consider (5.3.8) with the

operators Ta,1 replaced with their eigenvalues Ta,1, also known as T-functions. Let us denote

the n independent solutions of
−→
Of [2](u) = 0 as f(u) = Q1, . . . ,Qn (the overall shift is for

convenience). Since
−→
O has degree n we can formally factorise it as

−→
O =

(
1− Λn(u)D−1

)
. . .
(
1− Λ1(u)D−1

)
(5.3.9)

where Λj are some functions to be determined. This is often known as a quantum Miura

transform [120]. We can then fix the functions Λj uniquely by the property that Q1, . . . ,Qj

satisfy (
1− Λj(u)D−1

)
. . .
(
1− Λ1(u)D−1

)
Q

[2]
k = 0, k = 1, . . . , j (5.3.10)

and hence

Λj(u) =
Q

[−2]
1...j−1

Q1...j−1

Q
[2]
1...j

Q1...j
. (5.3.11)

The action of the operator
−→
O on a function f [2](u) can be conveniently expressed as a determinant

in the n solutions Q
[2]
1 , . . . ,Q

[2]
n as

−→
Of [2] = 1

Q∅̄

∣∣∣∣∣∣∣∣∣∣
f [2] f . . . f [2(1−n)]

Q
[2]
1 Q1 . . . Q

[2(1−n)]
1

...
...

. . .
...

Q
[2]
n Qn . . . Q

[2(1−n)]
n

∣∣∣∣∣∣∣∣∣∣
(5.3.12)

which allows us to conveniently express the T-functions Ta,1 as

Ta,1(u) =
∗
(
Q

[2]
(a) ∧ Q

[−2a]
(n−a)

)
Q∅̄

(5.3.13)

where Hodge duality has been performed to convert n-forms to 0-forms, i.e. functions.

We can now also demonstrate how the solutions f(u) of the dual Baxter equation f
←−
O fit

into the picture. In the factorised expression for the Baxter operator
−→
O the left-most factor is

given by (1− ΛnD−1) and it is obvious that

Qn(
Q∅̄
)[2] (1− ΛnD−1) = 0 (5.3.14)

and hence can be verified in general that

Qi(
Q∅
)[2]←−O = 0 . (5.3.15)

The presence of Q∅ in the denominator may look like there is an asymmetry between solutions
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for
−→
O and

←−
O but this is just a manifestation of that fact that we set Q∅ = 1 and in general we

have
Qi(

Q∅
)[2]←−O = 0,

−→
O Q

[2]
i

Q∅
= 0 (5.3.16)

which follows from the fact that Q∅ can be restored in the QQ-relations by transforming

QA →
QA

Q
[−2|A|]
∅

. (5.3.17)

Q-system and quantum Weyl-character formula The simplest possible solution of the

Q-system is the character solution where all Q-functions are given by

QA = NA

∏
a∈A

z
u
ℏ
a (5.3.18)

where NA is a normalisation factor needed to ensure the QQ-relations are satisfied. It is a

simple exercise to work out that

NA =
∏
a<b

(za − zb), a, b ∈ A (5.3.19)

where we assume that A is ordered in an increasing sequence. The character solution is referred

to as such because it is closely related to the Weyl-character formula

χλ =

det
1≤i,j,≤n

z
λ̂j

i

det
1≤i,j≤n

z1−ji

, λ̂j = λj − j + 1 (5.3.20)

where z1, . . . , zn are the eigenvalues of the GL(n) group element whose character we are computing.

By using the character solution χλ can be expressed in terms of Q-functions

χλ =

det
1≤i,j,≤n

Q
[2λ̂j ]
i

Q∅̄
, λ̂j = λj − j + 1 . (5.3.21)

Since transfer matrices Tλ are quantisations of the characters χλ it is natural to conjecture that

in general one also has

Tλ(u) =

det
1≤i,j,≤n

Q
[2λ̂j ]
i

Q∅̄
. (5.3.22)

This is indeed correct, and can be checked explicitly in the case of Ta,1 where (5.3.22) reproduces

(5.3.13). By restoring Q∅ using the transformation (5.3.17) we have in general that

Tλ(u) =
Q

[−2n]
∅
Q∅̄

det
1≤i,j,≤n

(
Qi

Q
[−2]
∅

)[2λ̂j ]

. (5.3.23)

Q-operators Since the functions Tλ are eigenvalues of the transfer matrices Tλ(u) one can

naturally ask if the Baxter Q-functions QA are eigenvalues of some yet to be constructed Baxter

Q-operators QA(u). This is indeed the case and these Q-operators have been constructed using

various different means, perhaps the most versatile of which corresponds to obtaining them as

traces of mondodromy matricies satisfying the RTT relation but carrying infinite-dimensional

representations of certain oscillator algebras in the auxiliary space [121, 122, 117, 123]. There

have also been other constructions, such as defining them as the traces of certain factorised

R-matrices [124] or through the elegant co-derivative formalism [118]. All of the relations we
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have written between T-functions and Q-functions continue to hold at the operatorial level, in

particular [117, 122, 123]

Tλ(u) =
Q[−2n]
∅
Q∅̄

det
1≤i,j,≤n

(
Qi

Q[−2]
∅

)[2λ̂j ]

. (5.3.24)

Analytic structure of Q-functions For highest-weight representations of gl(n) it was demonstrated

[123] from the explicit construction of Baxter Q-operators that all Q-functions have the form

QA(u) = NA × z
u
ℏ
A × qA(u)×

|A|∏
j=1

Γ[λ
[2(1−j)]
j ] (5.3.25)

where qA(u) is a polynomial and we use the following convention for the Γ-function

Γ[νj(u)] :=

L∏
α=1

Γ

[
u− θα − ℏ ναj

ℏ

]
(5.3.26)

which in particular implies that if f(u) is a monic polynomial in u then

Γ[f(u+ ℏ)] := f(u)Γ[f(u)] . (5.3.27)

Symmetries The Q-system admits a number of symmetries. The first are referred to as

gauge transformations and correspond to

QA(u)→ f|A|(u)QA(u) . (5.3.28)

The QQ-relations are preserved for functions f|A| satisfying

f|A|+1f
[−2]
|A|+2 = f|A|+2f

[−2]
|A| (5.3.29)

which can be solved by introducing two functions h(u) and g(u) with

f|A|(u) =
h(u)

g[−2|A|](u)
. (5.3.30)

The second class of symmetries are called H-rotations and correspond to

Q∅(u) 7→ Q∅(u), Qa(u) 7→
n∑

b=1

HabQb(u) (5.3.31)

where H is some invertible n× n matrix. The transformation properties of all Q-functions then

are given by

Qa1...aj 7→ Ha1b1 . . . HajbjQb1...bj (5.3.32)

and we sum over repeated indices. Note that H-rotations are local – they do not depend on the

spectral parameter u.
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Part II

Separation of Variables
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Chapter 6

Separation of Variables in the

classical XXX spin chain

We are now ready to turn our attention to the main concept in this work – separation of

variables. We will begin with an overview of how separation of variables works in the classical

XXX spin chain before constructing a quantum analogue.

6.1 Classical XXX spin chain

The classical XXX spin chain is obtained from the quantum XXX spin chain in an appropriate

ℏ→ 0 limit. We expand the R-matrix as

R(u, v) = 1− ℏ r(u, v) +O
(
ℏ2
)

(6.1.1)

where r(u, v) is called the classical r-matrix

rab(u, v) =
Pab

u− v
(6.1.2)

and then expand the RTT relation which provides the semi-classical formula

[Ta(u),Tb(v)] = ℏ [rab(u, v),Ta(u)Tb(v)] . (6.1.3)

In the classical limit [−,−] → ℏ{−,−} we then obtain the defining relations of the classical

XXX spin chain

{Ta(u),Tb(v)} = [rab(u, v),Ta(u)Tb(v)] . (6.1.4)

which in component-form reads

{Tij(u),Tkl(v)} =
1

u− v
(Tkj(u)Til(v)−Til(u)Tkj(v)) (6.1.5)

where now Tij(u) are functions on an appropriate phase space.

Representations of this algebra can be constructed in the same way as in the quantum case,

namely by taking products of Lax operators. We define

L(α)(u) = u 1− E(α) (6.1.6)

where E(α) is the n × n matrix whose (i, j)-th entry is E
(α)
ji which are the generators of the
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classical gl(n) algebra

{E(α)
ij ,E

(β)
kl } = δαβ

(
δjkE

(α)
il − δliE

(α)
kj

)
. (6.1.7)

The bracket {−,−} denotes the Poisson bracket of the classical system and a realisation of it

in terms of canonical variables will be given below. We can then construct, as in the quantum

case, the classical monodromy matrix T(u) as

T(u) = L(L)(u− θL) . . .L(1)(u− θ1)G (6.1.8)

where G is the twist matrix which is assumed to have distinct eigenvalues z1, . . . , zn. As was

the case for the quantum model the twist simply corresponds to a deformation of the classical

integrals of motion while still preserving integrability.

Phase space and local coordinates While it is possible to stick with the abstract Poisson

structure introduced above it can be useful to have a concrete representation in mind. For

example in gl(2) one could use

E11 = λ1 − q p

E22 = λ2 + q p

E12 = p

E21 = (λ1 − λ2)q − q2p

(6.1.9)

where q and p are canonically conjugate coordinates {p, q} = 1. This representation can be

obtained from the quantum representation (14.1.1)-(14.1.3) in the classical limit x→ q, ∂x → p.

By taking {p, q} = 1 it is a simple computation to verify the realisation of Eij in (6.1.9) indeed

satisfies the relation (6.1.7).

Integrals of motion The classical spin chain is Liouville integrable – we can construct d

independent integrals of motion Fj , j = 1, . . . , d which mutually Poisson commute

{Fj , Fk} = 0 . (6.1.10)

This is a trivial consequence of the fusion procedure. Indeed, all fused R-matrices Rλµ can be

shown by an easy calculation to have the structure

Rλµ(u, v) = 1− ℏ rλµ(u, v) +O(ℏ2) (6.1.11)

This then implies that

{Tλ
a(u),T

µ
b (v)} = [rλµ

ab (u, v),Tλ
a(u)T

µ
b (v)] (6.1.12)

and as a result

{Tλ(u),Tµ(v)} = 0, Tλ(u) = tra T
λ
a(u) . (6.1.13)

For generic values of the twist eigenvalues all integrals of motion are independent [50]. Since

each Ta,1 is a polynomial of degree uaL the total number of integrals of motion is n
2 (n − 1)

which matches half the dimension of the phase space hence the model is integrable. Note that

any of the integrals of motion Fk can be considered the Hamiltonian of the model and generate

a family of commuting flows where Fk generates shifts in the time tk. If one is to use the local

coordinates (6.1.9) then it can be checked explicitly, for example for n = 2 and length L = 2,

that the integrals of motion obtained from the expansion of T1,1(u) are indeed independent for
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z1 ̸= z2. Writing the expansion of the transfer matrix T1,1(u) as

T1,1(u) = trGu2 − F1 u+ F2 (6.1.14)

then an explicit calculation yields

F1 = z1E11 + z2E22, Ejj = E
(1)
jj + E

(2)
jj (6.1.15)

and

F2 = z1

(
E
(2)
11 E

(1)
11 + E

(2)
21 E

(1)
12

)
+ z2

(
E
(2)
12 E

(1)
21 + E

(2)
22 E

(1)
22

)
(6.1.16)

where E
(α)
ij can be obtained from the coordinate representation (6.1.9) by simply replacing

(p, q)→ (pα, qα). In the case that z1 = z2 then the transfer matrix only provides one of the two

integrals of motion needed to ensure integrability since in this case F1 becomes proportional

to one of the Casimir operators generated by detT(u). The global Cartan charge E11 provides

the second needed integral of motion to ensure integrability. The independence of the two

integrals of motion can be directly checked in the coordinate representation by verifying that

the one-forms dF1 (or dE11) are linearly independent.

6.2 Spectral curve and action-angle variables

A powerful technique for solving classical integrable systems is based the spectral equation

Γ : det (λ(u)−T(u)) = 0 (6.2.1)

of the monodromy matrix. For simplicity we will restrict our attention to the case n = 2. In

this case the spectral curve Γ defines a 2-sheeted covering of the complex plane – a point P

on this curve is a pair (u, λ(u)) and to each point u ∈ C there exists 2 points (λ+(u), λ−(u))

corresponding to the two eigenvalues λ±(u) of T(u).

The eigenvalues λ±(u) are completely fixed in terms of the integrals of motion – by expanding

(6.2.1) we obtain

λ2(u)− T1,1(u)λ(u) + T2,1(u) = 0, λ(u) = λ±(u) (6.2.2)

and

λ±(u) =
1

2
(T1,1(u)±∆(u)) (6.2.3)

where we have introduced ∆(u) =
√
T1,1(u)2 − 4T2,1(u). The spectral equation encodes all

kinematical information – the values of the conserved charges. All dynamical information is

contained in the eigenvectors of the monodromy matrix as we will now see.

Baker-Akhiezer function The Baker-Akhiezer function Ω(u) which can be viewed as a

function on the spectral curve Γ is eigenvector of monodromy matrix

T(u)Ω±(u) = λ±(u)Ω
±(u), Ω±(u) =

(
Ω±1 (u)

Ω±2 (u)

)
. (6.2.4)

The eigenvector is not yet completely fixed and we need to impose a normalisation. For

simplicity we impose Ω±1 (u) = 1 and so the eigenvalue equation (6.2.4) implies

Ω±2 (u) =
λ±(u)−A(u)

B(u)
=

C(u)

λ±(u)−D(u)
. (6.2.5)
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Hence, the poles of the Baker-Akhiezer function may be given by the zeroes of the functionB and

the points where λ(u)−D(u) = 0. Let xα be such that B(xα) = 0. At this point the monodromy

matrixT(xα) becomes upper triangular and hence its eigenvalues are given byA(xα) andD(xα).

Hence, at one of the two points above xα on the spectral curve λ(u) −A(u) must vanish and

so Ω must have only one pole at the point Pα with coordinates (xα, pα = D(xα)). The set of

points Pα, α = 1, . . . , L label the so-called dynamical divisor [110].

A straightforward calculation with the RTT relation allows one to easily deduce that the

coordinates (xα, log pα) are canonically conjugate [110, 48]

{xα, xβ} = 0 = {pα, pβ}, {xα, log pβ} = δαβ (6.2.6)

and hence the coordinates (xα, log pα) form a set of separated variables. We now demonstrate

how the equations of motion for the separated variables linearise. We have L independent

Hamiltonians at our disposal contained in T1,1(u) each generating independent flows. For a

function F on the phase space let Ḟ denote the evolution along a generic flow

Ḟ = {T1,1(u), F} . (6.2.7)

By using the RTT relations we can calculate the time evolution of the separated coordinates

xα to be given by

ẋα = (A(xα)−D(xα))
B(u)

(u− xα)B′(xα)
. (6.2.8)

Note that at the points xα we have A(xα)D(xα) = T2,1(x
α) and hence A(xα)−D(xα) = −∆(xα)

and so the evolution equation for xα reads

ẋα = −∆(xα)
B(u)

(u− xα)B′(xα)
. (6.2.9)

Clearly ẋα is a polynomial of degree L− 1 with zeroes at xβ , β ̸= α and ẋα(xα) = −∆(xα).

Linearisation of the equations of motion (6.2.9) is then achieved by introducing the Abel

maps Aα [110] defined by

Aα =

L∑
β=1

∫ Pβ

P0

ωα (6.2.10)

where P0 is some base-point and ωα are Abelian differentials

ωα =
uα

∆(u)
du, α = 1, . . . , L . (6.2.11)

It can then be easily worked out [110] that the evolution equations (6.2.9) are equivalent to the

linear evolution equations

Ȧα = uα . (6.2.12)

Indeed, the time evolution of Aβ is worked out from (6.2.10) to be

Ȧβ(u) =

L∑
β=1

(xα)β ẋα

∆(xα)
(6.2.13)

which when combined with (6.2.9) shows that Ȧα is a polynomial in u of degree L − 1. It

can then be fully reconstructed using Lagrange interpolation by evaluating it at the points xβ ,

β ̸= α which leads to (6.2.12).

59



6.3 Quantisation

Having discussed separation of variables in the classical XXX spin chain we now turn to the

quantum model. We saw in Section 4.4 that the Bethe algebra wave functions, in the basis

diagonalising the B operator, were given by a simple product of Q-functions

Ψ(x) =
L∏

α=1

q1(x
α) . (6.3.1)

We will now motivate this from a different perspective, namely as a natural consequence of

canonically quantizing the classical XXX spin chain in the separated variables, see also [125].

The canonical quantisation prescription is given by

x 7→ X, p 7→ P (6.3.2)

subject to the commutation relations

[P,X] = ℏP (6.3.3)

and so f(x, p) 7→ f(X,P) and we implicitly assume some normal ordering prescription, for

example we choose to place all X’s to the left of all P’s. Hence, in the coordinate representation

of the separated variables x we have

Pψ(x) = ∆(x)e−ℏ∂x ψ(x) (6.3.4)

where ∆(x) is an expected cocycle factor and the classical equation H(x, p) = E is then replaced

with the eigenvector equation

(
H(x, e−ℏ∂x)− E

)
ψ(x) = 0 . (6.3.5)

The cocycle factor is present due to the fact that for finite-dimensional models the allowed

range of values of x must be finite and ∆(x) is present to ensure that the action of P on the

wave function will eventually be zero ensuring the space of states is finite dimensional.

For the gl(2) spin chain the separated equations of motion had the form

1− T1,1(x
α)Pα + T2,1(x

α)Pα 2 = 0, α = 1, 2, . . . , L . (6.3.6)

Under the canonical quantisation prescription this classical equation is then replaced by the

Schrodinger equation(
1− T1,1(x

α)∆(xα)e−ℏ∂xα + T2,1(x
α)∆(xα)∆[−2](xα)e−2ℏ∂xα

)
ψ(xα) = 0 (6.3.7)

where now Ta,1 denote the eigenvalues of integrals of motion on the state ψ. By choosing the

cocycle factor appropriately this Schrodinger equation is none other than the Baxter equation

(4.3.18) with ψ(xα) = q[2](xα).

All information about the eigenvalues of the integrals of motion can be reconstructed from

the L separated equations. Since T2,1(u) takes the same value for every state it is non-dynamical

and so the only dynamical information comes from T1,1(u). Since T1,1(u) is a polynomial of

degree L with asymptotics T1,1(u) ∼ χ1,1u
L it is fixed by its value at L distinct points, say xα,

and can be fully reconstructed by Lagrange interpolation. The L separated equations provide
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the values T1,1(x
α). The full wave function Ψ(x) =

∏L
α=1 ψα(x

α) then satisfies

T1,1(u)Ψ(x) = T1,1(u)Ψ(x), Ψ(x) =
L∏

α=1

q1(x
α) (6.3.8)

where T1,1 is now considered as a normal-ordered operator in X and P.

We have just seen that wave functions of the XXX spin chain are given by Baxter Q-functions

in a natural way arising from the canonical quantisation of classical separated variables. This

quantisation however assumes some square-integrability properties on the wave functions ψ(x) is

not justified for finite-dimensional spin chains. On the other hand, we saw by direct construction

in the gl(2) case that the wave functions were still given by Q-functions and we will now proceed

with developing this further.
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Chapter 7

Higher-rank separation of

variables

7.1 Towards separation of variables for higher rank

The problem of generalising the previously outlined classical construction for gl(n) spin chains

was initiated by Sklyanin in [50] for gl(3) spin chains. Sklyanin constructed the classical B

function given by

B(u) = T23T
[
12
23

]
+T13T

[
12
13

]
(7.1.1)

where the minors (5.1.23) are now classical minors which commute with all other functions and

do not possess shifts in ℏ. By constructing a suitable generalisation of the D(u) function used in

the gl(2) case it was demonstrated that these operators provide a set of canonically conjugate

variables precisely as in the gl(2) case. The generalisation to classical gl(n) spin chains was

later carried out by Scott [126] and Gekhtman [127].

The quantisation of the classical separated variables for gl(3), resulting in a quantum B

operator, was carried out by Sklyanin in [51] at a formal operatorial level without appealing

to a specific representation and the separated Baxter equations were derived. A generalisation

of this construction was subsequently performed by Smirnov in [128] for the case of Uq(ŝl(n)).

Sklyanin’s expression for the B operator of Y3 is given explicitly by

B(u) = T23T
[2]
[
12
23

]
+T13T

[2]
[
12
13

]
(7.1.2)

which coincides with the classical expression (7.1.1) up to quantum corrections, that is shifts

in ℏ. It is worth noticing that expression (7.1.2) is cubic in Yangian generators Tij in contrast

to the Y2 case where B = T12 is only linear.

There are however some unresolved questions relating to these higher-rank construction.

The most pressing is how to actually construct the factorised wave functions and the SoV basis

for some concrete representations.

A crucial observation was made about B in [129] which shed a lot of light on this issue. It

was shown that for spin chains carrying the defining representation of gl(3) the eigenvectors

|Ψ⟩ of the transfer matrix could be constructed as

|Ψ⟩ =
M∏
j=1

B(uj) |Ω⟩ (7.1.3)

62



where uj are the roots of the Q-function Q1 of the gl(3) Q-system. This formula is remarkable

– it shows that one only needs a single operator B to generate transfer matrix eigenstates in

stark contrast to the nested Bethe ansatz approach [97] where one needs to use a family of

operators in a complicated nesting procedure. The formula (7.1.3) was proven in [129] for gl(3)

for spin chains of any length L for states with 1 and 2 magnons (excitations above the vacuum),

and further checks were carried out numerically for larger numbers of magnons. A full proof

for any number of magnons was subsequently obtained in [130] in the framework of the nested

Bethe ansatz.

It may seem surprising however, and perhaps even somewhat contradictory, that the transfer

matrix eigenstates can be generated entirely using the Bethe roots of q1 despite the fact that

the nested Bethe ansatz also requires one to use the roots of other Q-functions explicitly which

also appear in the transfer matrix eigenvalues

T1,1(u) = z1Q
[−2]
θ

q
[2]
1

q1
+ z2Qθ

q
[−2]
1

q1

q
[2]
12

q12
+ z3Qθ

q
[−2]
12

q12
(7.1.4)

as the roots of the polynomial q12. Here we have introduced the polynomial Qθ(u) =
∏L

α=1(u−
θα) as for the defining representation we have ν1(u) = Q

[−2]
θ (u) and ν2,3(u) = Qθ(u). This was

argued to be consistent in [130] at the level of Bethe equations where it was shown that the full

set of nested Bethe ansatz equations could be expressed solely as equations on the roots of q1.

Here we will present an alternative proof of this fact. Since the transfer matrix eigenvalue is a

polynomial of degree L with asymptotics

T1,1(u) ∼ (z1 + z2 + z3)u
L (7.1.5)

it is fixed by its value at L distinct points, say θα, α = 1, . . . , L, using Lagrange interpolation

T1,1(u) = (z1 + z2 + z3)

L∏
α=1

(u− θα) +
L∑

α=1

∏
β ̸=α

u− θβ
θα − θβ

T1,1(θα) . (7.1.6)

At these points the eigenvalue (7.1.4) reduces to

T1,1(θα) = z1Q
[−2]
θ (θα)

q
[2]
1 (θα)

q1(θα)
(7.1.7)

which only contains the roots of q1.

The eigenvalues ofB were also explicitly computed in [129] and yield, for gl(3) in the defining

representation,

κ

L∏
α=1

(u− xα1 )(u− xα2 )(u− θα + ℏ), xαj = θα + ℏλαj (7.1.8)

where λαj = 0, 1 with λα1 ≤ λα2 labels all possible eigenvectors and κ is some normalisation. We

see that B contains an overall trivial factor

L∏
α=1

(u− θα + ℏ) which can be factored out allowing

us to define b(u) by

B(u) = κb(u)

L∏
α=1

(u− θα + ℏ) . (7.1.9)

The Bethe algebra eigenstates |Ψ⟩ can then be constructed as

|Ψ⟩ =
M∏
j=1

b(uj) |Ω⟩ (7.1.10)
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and hence in the basis ⟨x| diagonalising B we have

⟨x|Ψ⟩ =
L∏

α=1

q1(x
α
1 )q1(x

α
2 ) (7.1.11)

demonstrating separation of variables.

The preceding remarks were also generalised to gl(n) in [129] where the following B operator

was proposed

B(u) =
∑

J1,...,Jn−1

T
[
J1
n

]
T [2]

[
J2

J1 n

]
T [4]

[
J3

J2 n

]
. . . T [2n−4]

[
Jn−1

Jn−2 n

]
(7.1.12)

where Jk is a multi-index with

Jk = (j1k, . . . , j
k
k ) (7.1.13)

and we sum over configurations with 1 ≤ j1k < j22 < · · · < jkk ≤ n.

The form of this operator was based on several requirements

1. It is constructed as a sum of products of quantum minors of increasing size.

2. In the classical ℏ→ 0 limit the known classical expressions [126, 127] should be reproduced.

3. [B(u),B(v)] = 0.

4. The transfer matrix eigenstates can be generated by repeated action of B(u) on the

transfer matrix vacuum state.

Further developments were made in [131] where an explicit construction of states ⟨x| was
proposed and is based on the following observation. Suppose for some generic enough covector

⟨S| we can generate a basis of the representation space by repeatedly acting with conserved

charges, for example by repeatedly acting with transfer matrices evaluated at some specific

points. For example, for gl(2) spin chains carrying L copies of the defining representation one

could take

⟨n1, . . . , nL| := ⟨S|
L∏

α=1

T1,1(θα)
nα , nα = 0, 1 . (7.1.14)

The main feature of this is that if (7.1.14) forms a basis then the wave functions |Ψ⟩ of the
transfer matrix T1,1 immediately factorise

T1,1(u) |Ψ⟩ = T1,1(u) |Ψ⟩ → ⟨n1, . . . , nL|Ψ⟩ =
L∏

α=1

T1,1(θα)
nα (7.1.15)

where we have chosen to normalise ⟨0, . . . , 0|Ψ⟩ = 1 for convenience.

This construction is extremely powerful. It doesn’t just provides a convenient mechanism

for constructing a basis of factorised wave functions but can also be used to completely solve

the integrable system. An important ingredient in the construction comes from the so-called

closure relation

T1,1(θα)T1,1(θα + ℏ) = T2,1(θα + ℏ) = z1z2Q
[−2]
θ (θα)Q

[2]
θ (θα) (7.1.16)

which is a consequence of the Hirota equation. The closure relation allows one to completely

characterise the action of the transfer matrix T1,1(u) on the basis (7.1.14) since

⟨. . . nα = 0 . . .|T1,1(θα) = ⟨. . . nα = 1 . . .| (7.1.17)
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and hence

⟨. . . nα = 1 . . .|T1,1(θα + ℏ) = z1z2Q
[−2]
θ (θα)Q

[2]
θ (θα) ⟨. . . nα = 0 . . .| . (7.1.18)

Hence, by using Lagrange interpolation we can determine the action of T1,1(u) on any state of

the form (7.1.14). From here, one can completely characterise the spectrum of the conserved

charges and re-derive various known tools of integrability such as the Baxter TQ equation.

It was proven in [131] that (7.1.14) indeed forms a basis for a generic enough ⟨S|. Furthermore,

by choosing ⟨S| appropriately the basis (7.1.14) even diagonalises Sklyanin’s B operator. This

was proven in [131] for gl(2) models and demonstrated for chains of small length for gl(3).

Hence, this approach seems to naturally complement that of [129] where it is simple to build

transfer matrix eigenstates but not clear how to build eigenstates ofB and the interplay between

these two approaches is one of the key focuses of this work. It is important to stress however

that the construction proposed by Maillet and Niccoli is independent of the existence of any

form of B operator and works in cases where the construction of a B operator is less clear,

such as in supersymmetric spin chains [132, 133], or in the long-standing case of the XXZ spin

chain with diagonal twist [131] which has previously only been amenable to SoV techniques

with so-called anti-periodic boundary conditions [134, 135, 136, 137]. On the other hand, in the

cases where Sklyanin’s B operator is available the two approaches are complementary. Since

the basis (7.1.14) is not unique – since one can change the reference vector ⟨S| and even the

conserved charges used – there is a question of what a natural choice for the SoV basis is. The

simplicity of the closure relations provides one notion of naturalness but even this does not

single out the SoV basis uniquely as was demonstrated in [138] for higher-spin representations

of gl(2). Having an explicit operator, the B operator, easily constructable within the given

quantum algebra provides another notion of naturalness.

Having discussed some initial facts about SoV for higher rank we will now begin a more

in-depth analysis, focusing on the interplay between Sklyanin’s approach using the operator B

and the basis construction proposed in [131].

7.2 Designing a good twist

As was already mentioned, the explicit expression for B in terms of the bare monodromy matrix

elements Tij depends on the specific choice of twist and the resulting operator can be more or

less complicated depending on the twist used. In this section we will design a twist with the

objective to make B as simple as possible. For the moment we will focus our attention on the

defining representation in the physical space. For a generic choice of twist the B operator is

rather complicated. On the other hand, it was demonstrated to be diagonalisable in [129] with

very simple eigenvalues (7.1.8). Hence, there exists a basis in the representation where, after

normalising B to be a monic polynomial in u, we have

B(u) = (u− θ + ℏ)

 (u− θ − ℏ)2 0 0

0 (u− θ − ℏ)(u− θ) 0

0 0 (u− θ)2

 . (7.2.1)

One may naturally wonder what the significance of the property B(θ − ℏ) = 0 is. After the

next Chapter its meaning will be clear and so we postpone discussion of this fact until then,

see immediately below (9.1.12).
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We now examine the transfer matrix T1,1(u) for length L = 1 which is given by

T1,1(u) = tra (L(u− θ)G) (7.2.2)

and by explicitly performing the trace we end up with

T1,1(u) = (u− θ)trG× 1− ℏG . (7.2.3)

Our aim is to find a twist G such that B is given by (7.2.1). We now demand that the transfer

matrix has eigenvectors

|Ω⟩ , B(u1) |Ω⟩ , B(u1)B(u2) |Ω⟩ (7.2.4)

where |Ω⟩ is a generic column vector corresponding to the T1,1 vacuum eigenvalue

z1Q
[−2]
θ (u) + (z2 + z3)Qθ(u) (7.2.5)

and {u1} and {u1, u2} are roots of q1 for two different states and B is given by its diagonal

representation (7.2.1). Since the transfer matrix eigenvalues are also known, by explicit computation

or by plugging the Bethe roots into Baxter TQ relations the transfer matrix and hence the twist

G can be totally reconstructed which follows from the simple fact that a diagonalisable matrix

is completely determined by its eigenvectors and eigenvalues. We point out that this procedure

is in fact more straightforward than the naive approach of simply computing B with generic

twist and solving for the entries of the twist to reproduce (7.2.1) due to the fact that B is a

polynomial in twist matrix entries of degree 3 and so solving the resulting equations is very

difficult. Instead, with the approach outlined above one only needs to solve linear equations for

the transfer matrix entries.

The conclusion is that the twist is fixed to be

G =

 χ1 − χ2

w1

χ3

w1w2

w1 0 0

0 w2 0

 (7.2.6)

where χ1, χ2 and χ3 are the elementary symmetric polynomials in the twist eigenvalues z1, z2, z3

χ1 = z1 + z2 + z3

χ2 = z1z2 + z1z3 + z2z3

χ3 = z1z2z3

(7.2.7)

and the parameters w1, w2 are arbitrary and can take any non-zero value. Furthermore the

eigenvalues of G do not depend on their value and they can always be set to 1 by means of

a diagonal change of basis. Hence, we refer to them as auxiliary twist parameters. Instead of

setting them to 1 we will keep them arbitrary for now as they will be useful later.

The procedure for determining G can be repeated for n = 2 and n = 4 leading to the

following forms of G in the cases n = 2, 3, 4:

(
χ1 − χ2

w1

w1 0

)
,

 χ1 − χ2

w1

χ3

w1w2

w1 0 0

0 w2 0

 ,


χ1 − χ2

w1

χ3

w1w2
− χ4

w1w2w3

w1 0 0 0

0 w2 0 0

0 0 w3 0

 . (7.2.8)
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Hence, we are naturally led to use the following matrix G for gl(n) with components Gij

given by:

Gij =
χjδi1
w|j−1|

+ δi,j+1wj , w|j| := (−1)j
j∏

k=1

wk . (7.2.9)

For the special case wj = 1, j = 1, 2, . . . , n the matrix (7.2.9) is known as the companion

matrix C for the eigenvalues z1, . . . , zn. A rather nice feature of the companion matrix is that

it generates the standard basis of (the dual space of) Cn. Indeed, letting ⟨e1| , . . . , ⟨en| denote
the standard basis such that ⟨ej | has 1 in position j and 0 everywhere else then

⟨ej−1| = ⟨ej |C, j = 2, 3, . . . , n . (7.2.10)

An immediate corollary of this is that any matrix with pairwise-distinct eigenvalues can generate

a basis by repeatedly acting on some generic enough reference vector and it is this which forms

the basis, excusing the pun, for the construction of Maillet and Nicolli [131].

Since the matrix (7.2.9) only differs from the companion matrix by the presence of the

additional parameters w1, . . . , wn−1 we naturally refer to it as the modified companion twist

matrix, or MCT matrix.

Computing B Having identified a twist which seems to result in a rather simple form of B

we will now compute it directly. The main property we will use is the transformation law for

quantum minors. That is if T(u) = T (u)G then

T
[
i1...ia
j1...ja

]
= T

[
i1...ia
k1...ka

]
Gk1j1 . . . Gkaja (7.2.11)

and we sum over all ki ∈ {1, 2, . . . , n}. Examining the quantum minors T
[
Ja+1

Ja n

]
which make

up B we have

T
[
Ja+1

Ja n

]
= T

[
Ja+1

k1...ka+1

]
Gk1j1a

. . . Gkajaa
Gka+1n . (7.2.12)

We now exploit the properties of the MCT matrix. Most importantly, we have

Gka+1n = (−1)n−1δka+11
χn

w1 . . . wn−1
(7.2.13)

and so the only terms which can survive in (7.2.12) are those with ka+1 = 1. Then by the

antisymmetry of quantum minors we must have ki > 1, i = 1, 2, . . . , 1 in which case Gkil =

wl δkil+1 which results in

T
[
Ja+1

Ja n

]
= (−1)n+a−1χnT

[
Ja+1

1 Ja+1

] wj1 . . . wja

w1 . . . wn−1
(7.2.14)

where Ja + 1 := {j1a + 1, . . . , jaa + 1}. Hence we arrive at

B(u) =
∑

J1,...,Jn−1

T
[
J1
1

]
T [2]

[
J2

1 J1+1

]
. . . T [2n−4]

[
Jn−1

1 Jn−2+1

] wJ1wJ2 . . . wJn−1

w1w12 . . . w1...n−1
, (7.2.15)

where wJk
:=

k∏
i=1

wjki
and we have removed an overall sign arising from the permutation of

indices in quantum minors and normalised the expression to be monic in u. As before we sum

over configurations with 1 ≤ j1k < j22 < · · · < jkk ≤ n.

At first glance this expression may not appear to be much of an improvement over (7.1.12).

However the first term in the sum with Jk = {1, 2, . . . , k}, which we denote as BGT is special
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and is given by

BGT(u) = T
[
1
1

]
T [2]

[
12
12

]
T [4]

[
123
123

]
. . . T [2n−4] [12...n−1

12...n−1
]
. (7.2.16)

The objects T
[
12...n−1
12...n−1

]
are the generators of the so-called Gelfand-Tsetlin subalgebra of Yn

which are diagonalised in the Gelfand-Tsetlin basis of Yn. Since the Gelfand-Tsetlin subalgebra

is one of the key concepts in this work we will now begin an in-depth review of it. A complete

account can be found in [139, 140] for gl(n) and in [141, 70] for the Yangian case and we closely

follow these works.
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Chapter 8

Gelfand-Tsetlin algebra

8.1 GT basis for gl(n)

Let us consider some finite-dim irrep Vλ of gl(n). By definition, we have

Ejj |Ω⟩ = λj |Ω⟩ , Ejk |Ω⟩ = 0, j < k (8.1.1)

where |Ω⟩ is the highest-weight vector. gl(n) has a subalgebra naturally identified with gl(n−1),
with

gl(n− 1) = {Ejk : 1 ≤ j, k ≤ n− 1} (8.1.2)

and we can consider the action of gl(n−1) on the gl(n) representation Vλ. In general this action

will be reducible and so the restriction Vλ|gl(n−1) of Vλ to gl(n − 1) decomposes into a direct

sum of irreducible gl(n− 1) modules Vµ of highest-weight µ:

Vλ|gl(n−1) =
⊕
µ

Vµ . (8.1.3)

It is a central result of representation theory [139, 140] that the decomposition of (8.1.3) is

multiplicity-free, meaning each possible weight µ appears at most once, and that the only

weights µ which can appear are those which satisfy the branching-rule

λj ≥ µj ≥ λj+1 . (8.1.4)

We can then consider the restriction of each of the gl(n − 1) irreps Vµ to gl(n − 2) and so on.

In total, we consider the chain of subalgebras

gl(1) ⊂ gl(2) ⊂ · · · ⊂ gl(n− 1) ⊂ gl(n) (8.1.5)

and let [λk1, . . . , λkk] denote the highest-weight of the gl(k) subalgebra appearing in the above

chain. Owing to the fact that all gl(1) irreps have dimension 1 it follows that there exists a

basis in the original Vλ irrep which is parameterised by the following array

λn1 λn2 . . . λn,n−1 λnn

λn−1,1 λn−1,2 . . . λn−1,n−2 λn−1,n−1

. . . . . . . . .

λ21 λ22

λ11

(8.1.6)

69



where λnj = λj are nothing other than the original gl(n) highest weights and all nodes on

the array satisfy the branching rule λjk ≥ λj−1,k−1 ≥ λj+1,k. Such an array is known as

a Gelfand-Tsetlin pattern, and the corresponding basis is known as the Gelfand-Tsetlin basis

[142].

Examples As an example we will construct the GT patterns for two representations of gl(3),

the defining representation λ = [1, 0, 0] and the adjoint representation (of sl(3)) λ = [2, 1, 0].

For [1, 0, 0] there are 3 such patterns

1 0 0

1 0

1

,

1 0 0

1 0

0

,

1 0 0

0 0

0

(8.1.7)

and for [2, 1, 0] there are 8 patterns

2 1 0

2 1

2

,

2 1 0

2 1

1

,

2 1 0

1 1

1

,

2 1 0

2 0

2

,

2 1 0

2 0

1

,

2 1 0

2 0

0

,

2 1 0

1 0

0

,

2 1 0

0 0

0

.

(8.1.8)

It is worthwhile to note that in the example of [1, 0, 0] we see that the node corresponding to λ22

is always fixed to 0, which is a consequence of the branching rule and the fact that λ2 = λ3 = 0.

This is an example of a rather general feature which is that coinciding weights results in nodes

on the pattern which do not change between states – they are non-dynamical. We will return

to this point later when discussing separation of variables.

Gelfand-Tsetlin algebra We now turn to the question of constructing the operators which

are diagonalised in the GT basis. To this end, we recall that the values of the Casimir operators

of U(gl(n)) on any finite-dimensional irrep allow us to determine the representation uniquely.

In other words, knowing the values of the Casimirs is equivalent to knowing the weights of the

representation.

The Casimir operators Ck, k = 1, . . . , n can be generated by the following row-ordered

determinant (Capelli determinant)

Gn(u) = det
1≤j,k≤n

[
((u− ℏ(n− 1)) δjk − ℏEkj) e

ℏ∂u
]
e−nℏ∂u (8.1.9)

and we have

Gn(u) = un + un−1C1 + · · ·+ Cn . (8.1.10)

Since Gn(u) is central it takes a constant value on any irreducible representation which can be

found by evaluating it on the highest-weight state, yielding

Gn(u) =

n∏
j=1

(u− ℏ(λ̂nj + n− 1)) (8.1.11)

where λ̂nj := λnj − j+1 are the so-called shifted weights. The fact that the centre is generated

by symmetric polynomials in the shifted weights is the Harish-Chandra isomorphism [143].

Similarly, for k = 1, 2, . . . , n−1 we can computeGk(u). On each irreducible gl(k) representation

70



Gk(u) takes the value

Gk(u) =

k∏
j=1

(u− ℏ(λ̂kj + k − 1)) . (8.1.12)

Since each Gk(u) is an element of the centre Z(U(gl(k))) of U(gl(k)) and we have the chain of

subalgebras

U(gl(1)) ⊂ U(gl(2)) ⊂ · · · ⊂ U(gl(n)) (8.1.13)

the set of Gk(u), k = 1, 2, . . . , n form a commutative subalgebra of U(gl(n)), called the Gelfand-

Tsetlin subalgebra. By construction, each Gk(u) acts diagonally on the Gelfand-Tsetlin basis.

Letting |Λ⟩ denote the GT basis element corresponding to the GT pattern Λ we have

Gk(u) |Λ⟩ =
k∏

j=1

(u− ℏ(λ̂kj + k − 1)) |Λ⟩ . (8.1.14)

Non-degeneracy For our purposes, the most crucial property of the Gelfand-Tsetlin algebra

is that it has non-degenerate spectrum for any finite-dim irrep λ. Indeed, the set of all possible

eigenvalues of the GT subalgebra correspond to all possible GT patterns which in turn label a

basis of the representation Vλ.

This non-degeneracy is in stark contrast to the Cartan subalgebra of gl(n) which is only non-

degenerate for special classes of representations. Indeed, the Cartan subalgebra is contained in

the Gelfand-Tsetlin subalgebra and so is also diagonalised in the GT basis. This follows from

the fact that

Gk(u) = uk − ℏuk−1
 k∑

j=1

k − j + Ejj

+O
(
u2
)

(8.1.15)

and so comparing with (8.1.14) we find k∑
j=1

Ejj

 |Λ⟩ =
 k∑

j=1

λkj

 |Λ⟩ . (8.1.16)

Hence, for a given GT pattern Λ the eigenvalue of Ejj is simply given by

j∑
k=1

λjk −
j−1∑
k=1

λj−1,k (8.1.17)

i.e. the sum total of the j-th row minus that of the (j − 1)-th row as read from the bottom

upwards.

The degeneracy of the Cartan subalgebra can be readily seen by examining the [2, 1, 0]

representation, where it is clear that both of the GT patterns

2 1 0

2 0

1

,

2 1 0

1 1

1

(8.1.18)

correspond to states with Cartan weights [1, 1, 1] and hence are indistinguishable using the

Cartan subalgebra alone. Thankfully, they are distinguishable when we extend from the Cartan

subalgebra to the Gelfand-Tsetlin algebra.

The only representations where the Cartan subalgebra can distinguish all states in the GT

basis are special cases of so-called rectangular representations (SA) corresponding to Young

diagrams of rectangular shape with S columns and A rows. Of these, the ones for which the
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Cartan subalgebra is non-degenerate are the symmetric powers of the defining representation

(S1) and their conjugates (Sn−1) as well as the anti-symmetric powers of the defining representation

(1A). For example, for gl(5) the family of representations for which the GT algebra has non-

degenerate spectrum correspond to GT patterns of the form

S 0 0 0 0

∗ 0 0 0

∗ 0 0

∗ 0

∗

1 1 0 0 0

1 ∗ 0 0

∗ ∗ 0

∗ ∗
∗

1 1 1 0 0

1 1 ∗ 0

1 ∗ ∗
∗ ∗
∗

S S S S 0

S S S ∗
S S ∗

S ∗
∗

(8.1.19)

where S denotes some element of Z≥0 and ∗ denotes dynamical nodes.

8.2 Gelfand-Tsetlin algebra for Yangian

We now turn to the construction of the Gelfand-Tsetlin basis for Yangian [141, 70]. The idea

is similar to the case of gl(n) – namely, we simultaneously diagonalise the centres

Z(Y1), Z(Y2), . . . , Z(Yn) (8.2.1)

and call the resulting commutative subalgebra the Gelfand-Tsetlin subalgebra of Yn.

Recall that the centre of Yn is generated by the quantum determinant qdetT (u) which

coincides with the transfer matrix Tn,1(u) in the totally anti-symmetric representation which

was written in terms of quantum minors as

Tn,1(u) = T
[
12...n
12...n

]
(u) . (8.2.2)

We define the objects GTa(u) by

GTa(u) = T
[
12...a
12...a

]
(u) (8.2.3)

which manifestly form a commutative algebra by the property (5.1.25).

GT algebra from Bethe algebra Note, that we can interpret GTa(u) as transfer matrices

in a special singular-twist limit. Indeed, the transfer matrices in anti-symmetric representations

Ta,1, with a diagonal twist g = diag(z1, . . . , zn), are given explicitly by

Ta,1 =
∑
J

zJT
[
J
J

]
(8.2.4)

where zJ =
∏

j∈J zj . Then in the limit

z1 ≫ z2 ≫ · · · ≫ zn ≫ 1 (8.2.5)

we obtain

Ta,1(u)→ GTa(u) (8.2.6)
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after appropriate normalisation. The fact that transfer matrices commute for different values of

the spectral parameter then guarantees the same property for the Gelfand-Tsetlin generators.

We can learn a lot about the Gelfand-Tsetlin algebra by considering the n = 2 case. In this

case the GT algebra is generated by T11(u). We can compute its eigenvalue on the lowest-weight

state ⟨0| of the representation leading to

⟨0|T11(u) = ν2(u) ⟨0| . (8.2.7)

We also have access to raising and lowering operators generated by T12(u) and T21(u). Let ⟨Λ|
be some eigenvector of T11(u) with eigenvalue λ11(u) with roots θα+ℏλα11. It then follows from

the RTT relation that

⟨Λ|T12(θα + ℏλα11), ⟨Λ|T21(θα + ℏλα11) (8.2.8)

are both eigenvectors of T11(u) with new eigenvalue where λα11 has been replaced with λα11 + 1

and λα11 − 1 respectively. By starting from the lowest-weight state ⟨0| we can then repeatedly

act with T12 creating more and more eigenvectors of T11(u) and eventually spanning the space

– this is the Gelfand-Tsetlin basis of the Yangian Y2. The constructed states are all non-zero

provided the numbers λα11 label a Gelfand-Tsetlin pattern.

We will now outline the general case. All GTa are diagonalisable and their eigenstates ⟨ΛGT|
are labelled as follows [70]. Each Λ is an L-tuple

Λ =
(
Λ1,Λ2, . . . ,ΛL

)
, (8.2.9)

where each Λα is a GT pattern. Namely, it is an array

να1 να2 . . . ναn

λαn−1,1 . . . λαn−1,n−1

. . . . . .

λα21 λα22

λα11

(8.2.10)

in which the nodes λαaj ∈ Z are subject to the branching rules

λαa+1,j ≥ λαaj ≥ λαa+1,j+1, a = 1, 2, . . . , n− 1, j = 1, 2, . . . , a , (8.2.11)

and ναj ≡ λαn,j are fixed numbers defined by the chosen representation να = (να1 , . . . , ν
α
n ) at

α-th site of the spin chain.

The eigenvalues of GTa are

⟨ΛGT|GTa(u) =

L∏
α=1

a∏
j=1

(u− θα − ℏ(λαaj + a− j)) ⟨ΛGT| . (8.2.12)

We see that GTa(u) measures the value of the a-th rows of the GT patterns which make

up ⟨ΛGT|. This hierarchical organisation comes from the original procedure to build up GT

patterns: one considers the tautological homomorphism ϕGT : Tij → Tij which, for i, j being

restricted to range 1, 2, . . . , a, can be considered as an injection of Ya into e.g. Ya+1. One then

builds the ascending chain

Y1
ϕGT

−−−→ . . .Ya
ϕGT

−−−→ Ya+1 . . .
ϕGT

−−−→ Yn (8.2.13)

for which GTa are precisely the central elements (quantum determinants) of Ya. The center of
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Ya acts as

⟨ΛGT|GTn(u) =

n∏
j=1

νj(u− ℏ(n− j)) ⟨ΛGT| , νj(u) :=

L∏
α=1

(u− θα − ℏ ναj ) . (8.2.14)

For each GTa there is also a corresponding raising operator GP+
a and a lowering operator GP−a

which act on the GT basis as [70]

⟨ΛGT|GP±a (θα + ℏ(λαaj + a− j)) ∝ ⟨Λ± δαajGT| . (8.2.15)

Here Λ± δαaj denotes a GT pattern where the node (a, j) of the α-th pattern has been changed

by ±1. The coefficient of proportionality is non-zero provided that the pattern Λ±ℏ δαaj satisfies
the branching rules, i.e. corresponds to a consistent GT pattern. Each GP±a (u) can be written

explicitly in terms of quantum minors. Specifically,

GP+
a (u) = T

[
12...a−1 a
12...a−1 a+1

]
(u), GP−a (u) = T

[
12...a−1 a+1
12...a−1 a

]
(u) . (8.2.16)

Dual diagonals We will find it convenient to introduce an alternative labelling of the GT

pattern entries, by µα
kj , where µ

α
kj = λαn−k+j−1,j . For example, for gl(4) we have

να1 να2 να3 να4

µα
11 µα

22 µα
33

µα
21 µα

32

µα
31

. (8.2.17)

This new labelling naturally suggests to parameterise GT patterns by what we refer to as dual

diagonals µα
k where we define

µα
k = (µα

k1, µ
α
k2, . . . , µ

α
kk), k = 1, . . . , n− 1 . (8.2.18)

Since the minimum value of each µα
kj allowed by the branching rules is µα

kj = ναk+1, it is also

convenient to introduce the parameters

µ̄α
kj = µα

kj − ναk+1 (8.2.19)

which measure how much a given dual diagonal has been excited above its minimum value.

Clearly, µ̄α
k corresponds to a gl(k) Young diagram. As we will see, dual diagonals turn out to

be a natural labelling of GT patterns in the context of separation of variables.

74



Chapter 9

Spectral problem for B

9.1 B eigenvalues

We will now begin using our knowledge of the Gelfand-Tsetlin algebra and the associated basis

to learn some things about B. We will begin with its spectrum.

Consider again the expression for B in the MCT frame

B(u) =
∑

J1,...,Jn−1

T
[
J1
1

]
T [2]

[
J2

1 J1+1

]
. . . T [2n−4]

[
Jn−1

1 Jn−2+1

] wJ1
wJ2

. . . wJn−1

w1w12 . . . w1...n−1
(9.1.1)

and the leading term BGT(u) given by

BGT(u) = T
[
1
1

]
T [2]

[
12
12

]
T [4]

[
123
123

]
. . . T [2n−4] [12...n−1

12...n−1
]
. (9.1.2)

We are going to show that

B(u) = BGT(u) + Nil (9.1.3)

where Nil refers to a nilpotent term which is strictly upper triangular in an appropriate

ordering of the Gelfand-Tsetlin basis which diagonalises BGT. To do this we introduce a partial

ordering on the Gelfand-Tsetlin basis vectors |Λ⟩ with respect to their global Cartan weight

λ = [λ1, . . . , λn] with

Eii |Λ⟩ = λi |Λ⟩ . (9.1.4)

We define λ ≻ λ′ if and only if λi > λ′i for the smallest i such that λi ̸= λ′i and hence say

|Λ⟩ ≻ |Λ′⟩ if and only if λ ≻ λ′.

Next we recall the commutation relation (4.2.24) between the global gl(n) generators Eij
and monodromy matrix elements Tkl(v) which we repeat here for convenience

[Eij , Tkl(v)] = δjlTki(v)− δkiTjl(v) (9.1.5)

which implies

[Ejj , Tkl(v)] = (δjl − δkj)Tkl(v) . (9.1.6)

Let O be an operator appearing as an individual summand of (9.1.1)

O = T
[
J1
1

]
T [2]

[
J2

1 J1+1

]
. . . T [2n−4]

[
Jn−1

1 Jn−2+1

]
(9.1.7)

with no sum over J ’s. We are going to show that the action of O ≠ BGT on a Gelfand-Tsetlin

basis vector |Λ⟩ is either zero or strictly positive in the sense of the partial order ≻. More
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precisely, we have

O |Λ⟩ =
∑
r

cr |Λr⟩ (9.1.8)

where the sum r ranges over all elements Λr of the GT basis. We will show that if cr ̸= 0 then

|Λr⟩ ≻ |Λ⟩ and hence O is strictly upper triangular in the GT basis with our ordering.

Let A =
[
α
β

]
where α denotes the upper indices appearing in O and β denotes the lower

indices, that is

α = {J1, J2, . . . }, β = {1, 1, J1 + 1, 1, J2 + 1, . . . } (9.1.9)

and we have, from (9.1.6),

[Eii,O] =

∑
b∈β

δib −
∑
a∈α

δia

O . (9.1.10)

We construct Areg =
[
αreg

βreg

]
from A by repeatedly removing pairs (αi, βj) with αi = βj until

no such pairs are left. Clearly this removal does not affect (9.1.10). The only possibility that

Areg =
[∅
∅
]
is O = BGT. For all other cases it is easy to see that min[βreg] < min[αreg] which

clearly implies that action of O on the elements of the GT basis, if non-zero, is strictly positive

in the above-defined sense, completing the proof.

Now we are ready to introduce the operators Xα
kj which will turn out to be the separated

variables. One can follow the following logic: Whereas B and BGT do not coincide, their

spectrum is nevertheless equal, since Nil is upper-triangular. Therefore we will label the

eigenvectors of B by ⟨ΛB|, where Λ is an L-tuple of GT patterns, but note that ⟨ΛB| ≠ ⟨ΛGT|
in general. We introduce a labelling of the operatorial zeros Xα

kj of B by

B(u) =

L∏
α=1

n−1∏
k=1

k∏
j=1

(u− Xα
kj) (9.1.11)

with their eigenvalues xαkj given by

xαkj = θα + ℏ (µα
kj − j + 1) (9.1.12)

where µα
kj label the dual diagonals (8.2.18). Note that the overall trivial factor of (u − θ + ℏ)

present in (7.2.1) is now understood as simply being a consequence of the fact that for the

defining representation we have µα
22 = 0 for all states.

The presented logic has however some subtleties and weak points. By subtlety we mean

a statement that requires further clarification and by weak point we mean a statement that

requires further arguments to prove being correct.

One technical subtlety is that B is a symmetric polynomial in X’s, so in (9.1.12) we actually

agree on a way to define e.g. X1,X2 from their known combinations X1 + X2,X1X2.

The second subtlety is that BGT has a degenerate spectrum, even assuming that θα are

distinct. Indeed, BGT is only a product of operators generating the GT algebra, so it bears

less information. The special cases when BGT is still non-degenerate are the rectangular

representations with A = 1, A = n−1, or S = 1, that is same ones when the Cartan subalgebra

is non-degenerate. Similarly to BGT, B turns out to be degenerate as well, and hence not all

⟨Λ| are uniquely defined from the fact that they are B-eigenvectors so we should provide a

separate prescription for which basis diagonalising B we would like to choose.
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The first weak point is that we never showed or even mentioned that [B(u),B(u′)] = 0 for

arbitrary u, u′. In fact, there is already an example of a super-symmetric analogue of B [132]

which is non-commuting. In our case, it turns out that B(u) and B(u′) commute indeed. This

was demonstrated in [51] for the gl(3) case by Sklyanin via direct computation. We will confirm

this fact in a more pedestrian way by computing the eigenvectors of B in a u-independent way.

Note that it was shown in [128] by Smirnov for the Uq

(
ŝl(n)

)
case that [B(u),B(u′)] = 0. It

is expected that the B operator there reproduces our B in an appropriate q → 1 limit which

would confirm commutativity in our case but such a computation has yet to be performed.

The second weak point is that B was not proven to be diagonalisable, and in principle it

might be not the case as B is equal to the degenerate diagonal matrix BGT added with an

upper-triangular matrix. Again, we shall not prove diagonalisability of B directly, but this will

follow after we construct enough of linearly independent eigenvectors ⟨ΛB|.

We therefore see that it is not enough to consider (9.1.12) simply as a consequence of (9.1.11).

For the above-outlined reasons, we need to construct the basis of ⟨ΛB|’s in an independent way.

We provide such a construction in the next section. Furthermore we will obtain results about

factorisation of the wave functions that allow one to indeed consider X’s as separated variables.

9.2 SoV basis for n = 2

In this section we will outline a procedure for constructing an SoV basis for Y2, in a way that

reproduces the proposal of [131] for the defining representation and also makes it precise for

higher-spin representations. This will serve as a precursor for our study of the higher-rank cases.

We omit some of the proofs as they are either available in the literature or follow naturally as

specialisations of the forthcoming more general discussion.

For the modified companion twist we have, after putting w1 = 1 for convenience,

B = T11(u), T1,1(u) = χ1T11(u) + T12(u)− χ2T21(u) . (9.2.1)

The state ⟨0| corresponds to the L-tuple of GT patterns with all λα11 = να2 , and we set να2 = 0

for simplicity – this can always be achieved by a redefinition of inhomogeneities θα. This state

satisfies

⟨0|Tj1(u) = δj1ν2(u) ⟨0| . (9.2.2)

We then obtain that the action of T1,1(θα) on ⟨0| simplifies to

⟨0|T1,1(θα) = ⟨0|T12(θα) . (9.2.3)

By using the RTT relation, one shows that ⟨0| is an eigenvector of B with the eigenvalue

(u− θα − ℏ)
∏
β ̸=α

(u− θβ) . (9.2.4)

As a result, this state is annihilated by the subsequent action of T11(θβ), β ̸= α.

This state is also annihilated by T21(θβ), which can be easily checked using RTT. Hence

⟨0|T1,1(θα)T1,1(θβ) = ⟨0|T12(θα)T12(θβ) , α ̸= β (9.2.5)

which can be shown to be an eigenvector of B with the eigenvalue (u − θα − ℏ)(u − θβ −
ℏ)
∏

γ ̸=α,β(u− θγ) . Then, by induction, it follows that for any subset I ⊂ {1, 2, . . . , L} we have
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that

⟨0|
∏
α∈I

T1,1(θα) = ⟨0|
∏
α∈I

T12(θα) , and (9.2.6)

⟨0|
∏
α∈I

T1,1(θα)B(u) =
∏
α∈I

(u− θα − ℏ)
∏
β/∈I

(u− θβ) ⟨0|
∏
α∈I

T1,1(θα) .

Furthermore, all of these states are non-zero, since T1,1(u) has no vanishing eigenvalues at

u = θα. In this manner we can construct 2L states. This precisely matches the dimension

of the Hilbert space if V is the defining representation να = 1. Hence, for the case of the

defining representation, the constructed states form a basis, since each corresponds to a different

eigenvalue of B.

An important point very useful for generalisations is that the constructed states are independent

of the twist eigenvalues, as they should be since B is independent of these and so naturally its

eigenvectors are as well. We will routinely make use of this fact.

For a more general case of symmetric power representation να = [S, 0] (we assume all sites

carry the same representation for convenience), the constructed states are not sufficient to span

the Hilbert space, and we should look for more. As noted in [131], it is natural to conjecture

that the basis is not constructed just with T1,1(θ), but also with T1,1(θ + nℏ), n ∈ Z. Indeed,

this is analogous to the way the GT basis is constructed [70] – a generic eigenvector of T11(u)

can be obtained by acting on ⟨0| with T12(θ)T12(θ + ℏ)T12(θ + 2ℏ) . . . . To put it more in the

perspective of a physicist, one can introduce operators Xα as operatorial zeros of T11(u) whose

spectrum was described in Section 8.2. One then finds, using RTT, that the ladder operators

are

P+
α = T12(Xα) , P−α = T21(Xα) , (9.2.7)

so that

⟨sα| ≡ ⟨0| (P+
α )

s = ⟨0|T12(θα + ℏ) . . . T12(θα + ℏ (s− 1)ℏ) (9.2.8)

is a B-eigenstate. Normal ordering is used in the above expressions, that is X’s are placed to

the left of other operators. However, the representation (9.2.8) of the B-eigenstates is not fully

satisfactory as it does not suggest yet that the wave functions would factorise in this basis, so

we would like to replace T12 with transfer matrices in order to make such conclusions.

The action of T1,1(θα) (once) is equivalent to the action of P+
α (once) on ⟨0|, as we learned

above. However, the action of T1,1(θα)T1,1(θα + ℏ) on ⟨0| does not yield ⟨0| (P+
α )

2 as we would

like. Instead, it yields

⟨0|T1,1(θα)T1,1(θα + ℏ) = ⟨0|T12(θα)T12(θα + ℏ)− χ2 ⟨0|T12(θα)T21(θα + ℏ) . (9.2.9)

The second term is non-vanishing, as can be checked using RTT. Instead, it can be rewritten

in a useful form

− χ2 ⟨0|T12(θα)T21(θα + ℏ) = χ2 ⟨0| (T11(θ)T22(θα + ℏ)− T12(θα)T21(θα + ℏ)) (9.2.10)

since the first term on the r.h.s. vanishes. We can recognise the transfer matrix T2,1 in the

expression on the r.h.s. and so we can see that the eigenstate ⟨2α| is actually given by

⟨2α| = ⟨0| (T1,1(θα)T1,1(θα + ℏ)− T2,1(θα + ℏ)) = ⟨0|T1,2(θα) , (9.2.11)

where the Hirota equation (5.2.6) enjoyed by the transfer matrices was used on the last step.
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The B-eigenvalue of ⟨2α| is (u − θα − 2ℏ)
∏

β ̸=α(u − θβ) . It is then natural to guess that,

in order to construct the eigenstate ⟨sα| of B with eigenvalue (u− θα − s ℏ)
∏

β ̸=α(u− θβ), we
should act on ⟨0| with T1,s(θα), and therefore

⟨0|T1,s(θα) = ⟨0|T12(θα) . . . T12(θα + ℏ(s− 1)) . (9.2.12)

This can be seen for instance by recursively using the relation [104]

T1,s+1(u) = T1,s(u)T1,1(u+ ℏ s)− T1,s−1(u)T2,1(u+ ℏ s) . (9.2.13)

which is a special case of the Hirota equation. We won’t present this computation here, but

instead give a quick argument supporting (9.2.12). As the result is not expected to depend on

twist, let us set χ1 = χ2 = 0 which sets the second term in (9.2.13) to zero and also simplifies

T1,1(u) to T1,1(u) = T12(u). Then the desired property (9.2.12) is demonstrated immediately

by recursion.

We can also produce formulae of the type (9.2.5) and finally conclude that all eigenstates

of B, which we label by ⟨Λ| = ⟨s1, . . . , sL| for sα ∈ {0, 1, . . . , S}, can be constructed as

⟨Λ| = ⟨0|
L∏

α=1

T1,sα(θα) . (9.2.14)

Their B-eigenvalues are

⟨Λ|B(u) =

L∏
α=1

(u− θα − ℏ sα) ⟨Λ| . (9.2.15)

In the case of n = 2, we were quite lucky to know the ladder operators (9.2.7), so deriving

(9.2.12) was sufficient for demonstration of (9.2.15). For higher-rank cases, we won’t be able

to get a straightforward generalisation of (9.2.7). Instead we will develop a related but more

flexible approach to show that the generalisation of (9.2.14) are eigenvectors of B.

9.3 B-T commutation relation

In the above the crucial feature was that ⟨0| was annihilated by Tj1(θ), j = 1, 2. This has an

obvious extension to higher rank. Hence, in order to diagonalise B using transfer matrices we

would like a relation of the following form

Tλ(v)B(u) = fλ(u, v)B(u)Tλ(v) +

n∑
j=1

Tj1(v)× . . . (9.3.1)

where fλ(u, v) is some function to be determined.

Null twist Since B is independent of twist so are its eigenvalues. Hence, if we create

eigenvectors of B by acting on an appropriate vacuum state ⟨0| by action of transfer matrices

this action should coincide with that of transfer matrices constructed with the null twist N
obtained from the companion twist after setting all zj → 0. That is, if ⟨0| is the SoV vacuum

state we should have

⟨0|Tλ(v) = ⟨0|TNλ (v) (9.3.2)

for appropriate values of v. Of course, in principle twist can appear in B eigenvectors through

normalisation but in the n = 2 case in the previous section we indeed needed to set the twist

eigenvalues to 0 and it is reasonable to suspect the same is true in the higher rank case.
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Hence in what follows we will consider transfer matrices constructed with the null twist. A

straightforward calculation yields that all such transfer matrices have the structure

Tλ(v) = TNλ (v) +

n∑
j=1

Tj1(v)× (9.3.3)

and we will make use of this fact in what follows.

Deriving relation Our starting point is the fused RTT relation

Rµλ
ab (u, v)T

µ
a (u)T

µ
b (v) = Tλ

b (v)T
µ
a (u)R

µλ
ab (u, v) (9.3.4)

We have included the subscripts a and b to make the ordering of spaces clear – the fused RTT

relation acts on the tensor product Vµ⊗Vλ, and we can consider each a and b as a multi-index

a := (a1, a2, . . . a|µ|) (9.3.5)

where each aj labels a copy of Cn and similarly with b.

By acting with the inverse of Rµλ we obtain

Tµ
a (u)T

µ
b (v)

(
Rµλ

ab (u, v)
)−1

=
(
Rµλ

ab (u, v)
)−1

Tλ
b (v)T

µ
a (u) (9.3.6)

which will turn out to be much more useful for deriving the relation we desire. On one hand

it may seem like taking the inverse1 of a generic fused R-matrix is a difficult task, but it is

simplified by the following observation. Let us denote by R̄(u, v) the operator

R̄ab(u, v) = (u− v) + ℏPab . (9.3.7)

Then

Rab(u, v)R̄ab(u, v) = (u− v − ℏ)(u− v + ℏ) . (9.3.8)

In order to take the inverse of Rµλ
ab (u, v) we should reverse the order of all factors and replace

each factor with its inverse. Instead of doing this we can reverse the order of all factors and

replace each factor of R with R̄. The two resulting operators will differ by an overall factor,

but this will drop out from the fused RTT relation. Since Rµλ
ab (u, v) is defined by

Rµλ
ab (u, v) = Pµ

 →∏
j=1

→∏
k=1

Rajbk(u+ ℏcµj , θ + ℏcλk)

Pλ (9.3.9)

we are then led to define

R̄µλ
ab (u, v) = Pλ

 ←∏
j=1

←∏
k=1

R̄ajbk(u+ ℏcµj , θ + ℏcλk)

Pµ (9.3.10)

which satisfies the fused RTT relation

Tµ
a (u)T

µ
b (v)R̄

µλ
ab (u, v) = R̄µλ

ab (u, v)T
λ
b (v)T

µ
a (u) . (9.3.11)

Let us now return to B but first we need to warn the reader of a conventional change. In

(9.1.1) B is defined with the minors increasing in size from left to right. For the calculation we

1It may seem like a fused R-matrix is not invertible due to the presence of projection operators. However
they are invertible on appropriately considered irreducible subspaces which we restrict to.
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are about to perform it will make our lives easier if we redefine B to have the same form but

now with the size of minors increasing from right to left. The calculation we present below for

this new convention was originally presented in author’s publication [1] for the former case, but

the proof is more streamlined if we update our conventions. Our main output if this calculation

is a commutation relation between B and Tλ. It is important to understand that all results

we will present later in the text depend only on this commutation relation, which is invariant

under the two choices of ordering, which will actually imply that B itself is invariant under this

reordering. Hence, we will allow ourselves to freely (and consistently!) switch between the two

orderings depending on what is more convenient.

Consider the standard unit vectors ej in Cn with components (ej)i = δij . Clearly, B,

with our updated choice of ordering, is an entry of the following product of fused monodromy

matrices

B(u) ∈ T∧
n

a1a2...an
(u+ ℏ(n− 1))T∧

n−1

a2...an
(u+ ℏ(n− 2)) . . .T∧

1

an
(u) (9.3.12)

and B is obtained by acting with this on e⊗n1 and projecting onto the physical space, provided

we agree that contraction of indices is done using the null twist, that is we define

Ti
jT

j
k := T i

j+1T
j
k . (9.3.13)

For example, using this rule and projecting onto the physical space

T∧
2

a1a2
(u+ ℏ)T∧

1

a2
(u) (e1 ⊗ e1) (9.3.14)

evaluates to ∑
j

T
[
12
1 j+1

]
(u+ ℏ)T

[
j
1

]
(u) = qdetT (u+ ℏ)×B(u) (9.3.15)

which coincides with B in the case n = 2 up to the irrelevant quantum determinant factor.

We will now derive the relation (9.3.1). We will introduce a graphical framework to make

the calculation as simple as possible and avoid unnecessary clutter with indices. We start by

defining Tij(u) as in Figure 9.1.

Figure 9.1: .

We will use the convention that objects which appear up and left in graphical notations act

last on the representation space. Now consider the following objects:

u ≡ ∧
u

u−ℏ
···

, λ ≡ Π

v

v+ℏ
···

. (9.3.16)

The first one is the minor defined by (5.1.23) and here
∧

stands for antisymmetrisation. The

second object is the generalisation of the minor to the case of arbitrary representations with Π

denoting the projection onto this irrep. We will call it λ-minor or, equivalently, (a component

of) the fused monodromy matrix.

To introduce B in graphical notations we first recursively define Bk, for k = 1, . . . , n, by

B1 ≡ u 1 ,B2 ≡ u+ℏ
u

1

1

, . . . ,Bk+1 ≡ u+kℏ

1

Bk

(9.3.17)

81



and then B = 1
qdetT (u+ℏ(n−1))Bn.

We will need scattering of the defining representation through the λ-minor:

Π

v

v+ℏ
···

u

=
∏
a,s

(va,s − u)
(
1 +

ℏ
v − u

Pλ

)
, (9.3.18)

where
∏
a,s
f(va,s) =

hλ∏
a=1

λa∏
s=1

f(v+ℏ(s−a)) , and where Pλ is the generalised permutation (4.2.18).

We will also need scattering in the opposite direction through an antisymmetric representation:

∧

u

u−ℏ
···

v

=

m−1∏
a=0

(v − u+ ℏa)
(
1 +

ℏ
v − u+ ℏ(m− 1)ℏ

P
)
. (9.3.19)

Consider the following chain of equalities

u+kℏ

1

Bk

λ

= u+kℏ

1

Bk

λ

=
∏
a,s

(va,s − u− kℏ) u+kℏ

1

Bk

λ

+Rk(u, v) ,

where Rk =
∑n

j=1 Bk+1(u)Tj1(v)× . . . , with dots standing for expressions whose explicit form

is not relevant for further computations and the closed loop indicates that the trace has been

taken over the λ representation. The expression on the l.h.s. is the following product

trλ

(
R̄∧

k+1λ(u+ k ℏ, v)Tλ
b (v)

)
Bk+1(u)

= trλ

(
R̄∧

k+1λ(u+ k ℏ, v)Tλ
b (v)T

∧k+1

(u+ k ℏ)Bk(u)
) (9.3.20)

where we used that the trace is only over the space Vλ. The first equality was obtained by

applying the RTT relation between fused monodromy matrices and results in

T∧
k+1

(u+ k ℏ)trλ
(
R̄∧

k+1λ(u+ k ℏ, v)Tλ
b (v)

)
Bk(u) (9.3.21)

where we also used the cyclicity of the trace over Vλ.

The second equality was obtained from the following scattering, cf. (9.3.18),

λ

1

=
∏
α

(vα − u− kℏ) λ

1

+ Π

1v

v+ℏ
···

× . . . . (9.3.22)

For the second term in the r.h.s. ., we need only that it is always of the form
∑
B T [

A
B ] × · · · ,

where 1 ∈ B. By using the symmetry imposed by the symmetrisation, one can prove that for any

B which contains 1, one can represent the λ-minor as linear combination T [AB ] =
∑
B′ #T [AB′ ],

where # stand for numerical coefficients irrelevant for us and all B′ are such that B′11 = 1.

Then it follows that the second term in (9.3.22) is always of the form
∑

j T [
j
1](v)× . . ..

We use relatons (9.3.20) to pull the trace over the λ-minors through the B-operator. At

the right-most step one gets TλBn plus R-terms. At the left-most step, one uses the scattering
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with the fully-antisymmetric representation

Π

v

v+ℏ
···

∧

u+(N−1)ℏ
···
u

=
∏
a,s

va,s − u+ ℏ
va,s − u

N−1∏
k=0

(va,s − u− kℏ)× 1 (9.3.23)

to take the trace cycle off the chain of Bk’s hence producing an operator proportional to BTλ.

In summary, one gets the following relation

TNλ (v)B(u) =
∏
a,s

u− va,s − ℏ
u− va,s

B(u)TNλ (v) +R(u, v) , (9.3.24)

where R(u, v) =
n−1∑
k=0

n∑
j=1

Bk(u)Tj1(v) × . . . , and the product over the Young tableau boxes

reduces to the following explicit expression

∏
a,s

u− va,s − ℏ
u− va,s

=

hλ∏
a=1

u− v + ℏ (a− 1− λa)
u− v + ℏ (a− 1)

. (9.3.25)

Next, we use the following commutation relation between a quantum minor and Tij(u) [70].

We have

(u− v)[Tkl(u), T
[
A
B

]
(v)] = ℏ

(
m∑
i=1

Tail(u)T
[
Ai,k

B

]
(v)− T

[
A
Bi,l

]
(v)Tk,bi(u)

)
(9.3.26)

where the notation Ai,k means that Ai has been replaced with k and similarly with B. We now

restrict to the case where k = j, l = 1 and b1 = 1. As a result of the anti-symmetry of quantum

minors the only term in the second sum on the r.h.s. which can contribute is that with i = 1.

Simplifying, we find

T
[
A
B

]
(u)Tj1(v) = Tj1(v)T

[
A
B

]
(u)× . . . (9.3.27)

By applying this recursively we obtain that the final form of the required commutation relation

Tλ(v)B(u) = fλ(u, v)B(u)Tλ(v) +

n∑
j=1

Tj1(v)× . . . (9.3.28)

where the null-twist transfer matrices TNλ have been upgraded to the full transfer matrices Tλ

and the function fλ(u, v) is given by

fλ(u, v) =

hλ∏
a=1

u− v + ℏ (a− 1− λa)
u− v + ℏ (a− 1)

. (9.3.29)

9.4 Using the commutation relation

Rectangular representations We will now demonstrate how to use this commutation relation

to diagonalise B in a simple set-up. We consider the length L = 1 case and the representation

of gl(3) corresponding to the representation ν = [2, 2, 0].

Starting from ⟨0| we have ⟨0|Tj1(θ) = 0 for j = 1, 2, 3. Hence, by virtue of the commutation

relation (10.2.4) we have that, for any λ, the state ⟨0|Tλ(θ) is an eigenvector of B. Of course

this representation is 6-dimensional and so the these states are not linearly independent for all
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λ. For gl(3) B has non-degenerate spectrum so, assuming the states are non-zero, we just need

to construct 6 states with different B eigenvalue.

We will not prove the details here, but if suffices to say that for any subdiagram λ ⊂ ν the

resulting set of states are non-zero and correspond to different eigenvalues of B, the latter point

which can be checked from our commutation relation. These states also form a basis since there

are precisely 6 subdiagrams of [2, 2, 0] (including the empty diagram). The most remarkable

feature however is the precise relation between the Young diagram λ and the corresponding

eigenvalue of B. Indeed, eigenvalues of B are labelled by Gelfand-Tsetlin patterns, so there

should be some relation between λ and GT patterns. The precise relation is incredibly simple.

A generic GT pattern for the representation we are considering has the form

2 2 0

2 λ22

λ21

(9.4.1)

It can be checked that if λ = [λ21, λ22, 0] ⊂ [2, 2, 0] is a subdiagram then the state ⟨0|Tλ(θ)

corresponds to precisely this GT pattern!

Owing to the incredible simplicity of this situation we can now conjecture what happens in

general. Let us consider a more involved setting with gl(6) and the representation [7, 7, 7, 0, 0, 0].

The relation between Young diagrams and nodes on GT patterns is illustrated in Figure 9.4.

Figure 9.2: Successive action of transfer matrices corresponding to different Young diagrams
on the vacuum state ⟨0|. The area in the rectangle corresponds to dynamical nodes which we
aim to excite. The transfer matrices act by filling up the dual diagonals with the numbers
corresponding to their Young diagram.

Degenerate spectrum While the above procedure for building eigenvectors ofB is tremendously

simple there is a caveat however and is associated with settings where the spectrum of B

is degenerate. When we have a representation where B has non-degenerate spectrum we

can immediately associate to each eigenvector a GT pattern and allows us to easily count

linearly independent vectors. On the other hand, for degenerate cases there can be two GT

patterns corresponding to the same eigenvalue. The simplest example where this arises is the
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representation ν = [2, 2, 0, 0] of gl(4). Indeed, the two GT patterns

2 2 0 0

2 1 0

2 0

1

,

2 2 0 0

2 2 0

2 0

0

(9.4.2)

correspond to the same eigenvalue of BGT. The corresponding eigenvectors of B are given by

⟨0|T[2,1,0](θ)T[1,0,0](θ), ⟨0|T[2,2,0](θ) . (9.4.3)

At present we have no way of telling if both of these states are linearly independent. In the

next Section we will develop a systematic approach for demonstrating linear independence.

Non-rectangular representations Our prescription for constructing eigenvectors for B

works very well for rectangular representations (where the Young diagram describing the physical

space is a rectangle) but obviously not every Young diagram is rectangular. The simplest non-

rectangular representation is ν = [2, 1, 0] for gl(3). The issue is that the method described above

is not sufficient to generate all eigenstates of B. As before, we start from the SoV vacuum state

⟨0| corresponding to the GT pattern

⟨0| ↔
2 1 0

1 0

0

(9.4.4)

We can then proceed to generate the following two states

⟨0|T1,1(θ) ↔
2 1 0

1 0

1

, ⟨0|T2,1(θ) ↔
2 1 0

1 1

1 .

(9.4.5)

On the other hand, there seems to be no way we can create the state corresponding to the GT

pattern

2 1 0

2 0

0 .

(9.4.6)

A natural guess would be to act with a transfer matrix Tλ(θ+ ℏ) but then the remainder term

R in our commutation relation will not vanish. However, the situation is not hopeless. By

direct comparison of eigenvalues one can check that the state ⟨0|T1,2(θ) corresponds to the GT

pattern

⟨0|T1,2(θ) ↔
2 1 0

2 0

1

(9.4.7)

Next, consider the state ⟨0′| which is the eigenvector of the Gelfand-Tsetlin algebra corresponding

to the pattern

2 1 0

2 0

0

(9.4.8)
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Remarkably, a direct calculation shows that this is also an eigenstate of B! Indeed, we have

B(u) = BGT(u) + T21(u)T
[2]
[
12
13

]
(u) (9.4.9)

and ⟨0′|T21(u) = 0. Furthermore, we also see that R(u, θ) annihilates ⟨0′| meaning we can use

it as an alternate SoV vacuum to generate states from. Indeed, we can immediately see that

⟨0′|T1,1(θ) corresponds to the state

2 1 0

2 0

1

(9.4.10)

precisely matching the GT pattern corresponding to ⟨0|T1,2(θ)! Hence, after appropriate

normalisation of ⟨0′| we have

⟨0′|T1,1(θ) = ⟨0|T1,2(θ) (9.4.11)

and hence

⟨0′| = ⟨0| (T1,1(θ))
−1 T1,2(θ) (9.4.12)

Hence, in lieu of our discussion of rectangular representations and how transfer matrices act on

GT patterns we can interpret this as the following sequence of steps

2 1 0

1 0

0

(T1,1(θ))
−1

−−−−−−−→

2 1 0

0 0

0

T1,2(θ)−−−−→

2 1 0

2 0

0

(9.4.13)

It is important to point out that the middle array is not a GT pattern as the branching rules

are not satisfied. Nevertheless allowing ourselves to imagine the existence of such a pattern

makes the procedure for constructing states very intuitive and indeed this intuition extends to

all representations and any rank of gl(n).

In the next section we will make this precise. The main tool we will use for this is the

so-called embedding morphism.

86



Chapter 10

Embedding Morphism

10.1 Embedding morphism and Gelfand-Tsetlin basis

As was described above, the Gelfand-Tsetlin algebra is constructed by considering the tautological

injection Tij 7→ Tij of Yk into Yk+1. Now consider a different (nearly) tautological injection of

Yk into Yk+1 defined by

ϕ : Tij(u) 7→ T1+i,1+j(u) . (10.1.1)

We use it for a different purpose: to construct a special embedding of a gl(k) spin chain into a

gl(k + 1) chain that shall be called embedding morphism. Formally the embedding morphism

is an induced map ϕ : Hk → Hk+1, where Hk is the Hilbert space of the gl(k) spin chain of

length L with spin chain sites in irreps (να1 , . . . , ν
α
k ), fully defined by the following property

ϕ : ⟨0k| J 7→ ⟨0k+1|ϕ(J ) , (10.1.2)

where J is any element of Yk, and ⟨0k| is the lowest-weight vector of the gl(k) chain – the state

whose GT pattern has the lowest possible entries µα
ij = ναi+1 for i = 1, 2, . . . , k−1, j = 1, 2, . . . , i.

Define V(k) := ϕ(Hk). By abuse of notation we may also use V(k) = ϕm(Hk), for m =

2, 3, . . . , n−k and so in particular we think about V(k) as a subspace in the full gl(n) spin chain

which represents a smaller gl(k) chain. Remarkably, the embedding morphism has a simple

coordinatisation using GT patterns:

ϕ


να1 . . . ναk

µα
ij

�
�

�@
@

@

 ∝
να1 . . . ναk ναk+1

µα
ij

ναk+1

ναk+1

. .
.

�
�

�@
@

@
, (10.1.3)

i.e. the image of a state with the GT pattern Λ′ for the gl(k) spin chain is the state for the

gl(k + 1) chain with the GT pattern which has the right-most dual diagonal at the lowest

possible value and the remaining triangular block coinciding with Λ′.

The above implies the following property ofHk+1 which we will frequently use. If ⟨Λ| ∈ Hk+1

is obtained from a vector in Hk by action of ϕ then T11(u) = GT1(u) ∈ Yk+1 has the eigenvalue

νk+1(u) on ⟨Λ|. Since the eigenvalue of T11, and hence of the global Cartan generator E11, is at
its lowest possible value and the eigenvalue of E11 is lowered by Tj1, j > 1 it follows that

⟨Λ|Tj1(u) = δj1νk+1(u) ⟨Λ| , j = 1, . . . , k + 1. (10.1.4)

To see why the property (10.1.3) indeed holds it is enough to check that the raising operators
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GP+
a act accordingly because their action generates the whole Hilbert space starting from the

lowest-weight state. To this end consider yet another family of homomorphisms [70] ψm :

Yk −→ Yk+m for m = 1, 2, . . . defined by

ψm : Tij(u) 7→ (GTm(u+mℏ))−1 T
[
1...m m+i
1...m m+j

]
(u+mℏ) . (10.1.5)

One can show that, for any quantum minor T
[A
B
]
(u),

ψm : T
[A
B
]
(u) 7→ (GTm(u+mℏ))−1 T

[
1...m A+m
1...m B+m

]
(u+mℏ) , (10.1.6)

and that ψm = (ψ1)
m. Then

ψ1(GP
±
a (u)) = (GT1(u+ ℏ))−1 GP±a+1(u+ ℏ) . (10.1.7)

Define an embedding morphism of spin chains ψ1 : Hk → Hk+1 by (10.1.2) with ϕ replaced by

ψ1. Given (10.1.7), relation (10.1.3) with ϕ replaced by ψ1 is obvious: on one hand, (10.1.7)

states that action of raising and lowering operators commutes, up to normalisation, with ψ1.

On the other hand, one gets in the image of ψ1 precisely the states of Hk+1 that are generated

by GP+
2 ,GP

+
3 , . . . ,GP

+
k acting on ⟨0k+1|. Finally, one notes that the last dual diagonal cannot

be excited by these operators if the node µα
k1 attains its lowest value µα

k1 = ναk+1. But µ
α
k1 can

only change by action of GP+
1 which cannot be represented as ψ1(GP

+
a ).

Now we remark that the embeddings ψ1 and ϕ coincide. Indeed, for any ⟨Λ| of the gl(k+1)

chain with µα
k1 = ναk+1 one has ⟨Λ|Tj1(u) = δj1νk+1(u) ⟨Λ| as was established above, and so

one computes

⟨Λ|ψ1(Tij(u)) = (νk+1(u+ ℏ))−1 ⟨Λ|T
[
1 1+i
1 1+j

]
(u+ ℏ) = ⟨Λ|ϕ(Tij(u)) . (10.1.8)

Hence ψ1(Tij(u)) = ϕ(Tij(u)) when restricted to V(k), and so (10.1.3) holds.

A roadmap to the GT basis Now we present a special generation of states in the GT basis

based on the embedding morphism. The idea is to consider a recursive procedure

· · · → Hk ↪
ϕ−−→ V(k)

S−→ Hk+1 ↪
ϕ−−→ · · · , (10.1.9)

where S is the introduced-below composite raising operator that excites the largest dual diagonal

from its lowest to the desired value. The recursion starts from the lowest weight state of the

gl(2) spin chain which spans V(1) and terminates with the full Hilbert space Hn.

We start by considering a state ⟨Λ| ∈ Hk+1 obtained from a state in Hk by action of the

embedding morphism. By definition, Λ is an L-tuple of patterns Λ = (Λ1, . . . ,ΛL) and each

Λα has µα
kj = ναk+1, j = 1, . . . , k. From here we will construct a state where µα

kj = ναk+1 + 1,

j = 1, . . . , a, µα
kj = ναk+1 for j > a, for some 1 ≤ a ≤ k. By the properties of the GT raising

operators we know that we can obtain such a state by acting on ⟨Λ| with the operators which

raise those particular nodes, obtaining

⟨Λ|GP+
1 GP

+
2 . . .GP

+
a , (10.1.10)

where each GP+ is evaluated at θα + ℏ ναk+1. This can be written explicitly in terms of minors

as

⟨Λ|T
[
1
2

]
T
[
12
13

]
. . . T

[
12...a−1 a
12...a−1 a+1

]
. (10.1.11)

By straightforward application of the quantum column expansion of minors [70] one can show
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that (10.1.11) coincides, up to a non-zero coefficient, with

⟨Λ|T
[
12...a
23...a+1

]
(θα + ℏ ναk+1) . (10.1.12)

From here, one can further excite the excited nodes, filling up a certain number of nodes

successively by 1 until the full dual diagonal has reached the desired value. In summary, we

have the following. For a Young diagram µ̄k of height hµ̄k
≤ k, let us define a composite

operator Sµ̄k
(u) by

Sµ̄k
(u) =

→∏
j∈col(µ̄k)

Sµ̄k,j(u+ ℏ(j − 1)) , (10.1.13)

where the product is over the number of columns col(µ̄k) of µ̄k; and Sµ̄k,j
is the raising operator

associated to the j-th column of µ̄k. Specifically, if we let hjµ̄k
denote the number of boxes in

the j-th column of µ̄k then

Sµ̄k,j(u) = T

[
1 2 ... hj

µ̄k

2 3 ... hj
µ̄k

+1

]
(u) . (10.1.14)

Then ⟨Λ|
L∏

α=1
Sµ̄α

k
(θα+ℏναk+1) is a state in Hk+1 whose k-th dual diagonals are excited to values

µ1
k, µ

2
k, . . . , µ

L
k . Finally, by running the recursion (10.1.9), we can write any element of the GT

basis as

⟨ΛGT| = ⟨0|
←∏
k

L∏
α=1

ϕn−k−1
(
Sµ̄α

k
(θα + ℏ ναk+1)

)
, (10.1.15)

where the first product ranges over k = 1, . . . , n− 1.

10.2 Embedding morphism and the B operator

We will explain how theB operator relates to the embedding morphism. The idea is to construct

the eigenvectors of B by ascending through the spin chains of increasing rank

· · · → Hk ↪
ϕ−−→ V(k)

Tµ̄k−−→ Hk+1 ↪
ϕ−−→ · · · . (10.2.1)

The procedure is rooted in the following two observations. Firstly,

B(k+1)|V(k)
∼ ϕ

(
B(k)

)
|V(k)

, (10.2.2)

where B(k) denotes the B-operator for the gl(k) spin chain, and ∼ means equality up to

multiplication by an operator which is proportional to the identity when restricted to V(k).
This property allows one to build all eigenstates of B(k+1) for which the last dual diagonal is

not excited, simply by applying the embedding morphism to smaller-rank chains.

Secondly, we excite the last dual diagonal of gl(k+1) patterns by action of transfer matrices

Tµ̄k
, where the choice of representation µ̄k dictates how the diagonal should be excited. This

step closely follows the procedure outlined in the previous Chapter.

Let us now understand how the crucial property (10.2.2) comes about. The r.h.s. of (10.2.2)

is the image of B(k), and B(k) is defined by (7.2.15) with n being replaced with k. It is an

operator acting on Hk. The l.h.s. of (10.2.2) contains the operator B(k+1) acting on Hk+1.

We illustrate its restriction to the subspace V(k) for the case k + 1 = n. From (10.1.4) and

the definition of minors (5.1.23) it follows that T [2r]
[
Jr+1

1 Jr+1

]
is only non-zero if Jr+1 contains

1. Denote then Jr+1 = (1 J ′r+1 + 1) and then simplify, using (10.1.4), T [2r]
[
1 J′

r+1+1

1 Jr+1

]
=
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νn(u+ ℏr)ϕ
(
T [2(r−1)]

[
J′
r+1

Jr

])
. Overall, one gets

B(n)|V(n−1)
=

n−2∏
r=0

νn(u+ ℏ r)ϕ
(
B(n−1)

)
|V(n−1)

. (10.2.3)

Obviously, the above conclusion holds when we replace n with k + 1 which confirms (10.2.2).

As already outlined, (10.2.2) ensures that eigenvectors of B(k) become eigenvectors of B(k+1)

upon using the embedding morphism. Moreover, one guarantees that ⟨ΛB| ∈ V(k) ⊂ Hn if and

only if at most the first k−1 dual diagonals are excited above their minimal values (for each Λα of

the pattern Λ = (Λ1, . . . ,ΛL)). This is not a trivial conclusion as ⟨ΛB| deforms ⟨ΛGT| and so its

relation to the subspaces V(k) could become obscured. It allows us to consider Xα
k′j as operators

defined for any gl(k) chain with Xα
k′j = ϕ∗(Xα

k′j), where ϕ
∗ is a pullback of the embedding

morphism. For k > k′, these operators, for generic representations, are dynamical having all

possible eigenvalues permitted by branching rules. For k ≤ k′, Xα
k′j are non-dynamical and

they attain only their lowest values.

Diagonalising the B-operator In the previous subsection we clarified how the embedding

Hk ↪
ϕ−−→ V(k) ⊂ Hk+1 works. This subsection focuses mostly on the excitation step V(k)

Tµ̄k−−→
Hk+1. We understand by now that one should focus on exciting the longest dual diagonal as

all the other diagonals should have been excited to the desired values at lower-rank stages of

the recursion.

The B-operator is independent of the twist matrix eigenvalues z1, . . . , zn and hence so are

its eigenvectors. Since we expect to construct eigenvectors of B with transfer matricies Tλ, it is

natural then to check the case of the null twist first, where the null twist is defined as the MCT

with zj = 0. In the previous chapter we derived the following commutation relation (9.3.1)

between B and transfer matricies Tλ:

Tλ(v)B(u) = fλ(u, v)B(u)Tλ(v) +R(u, v) , (10.2.4)

where fλ(u, v) is a function given explicitly by

fλ(u, v) =

hλ∏
a=1

u− v + ℏ(a− 1− λa)
u− v + ℏ(a− 1)

, (10.2.5)

and R(u, v) =
∑n

j=1 Tj1(v)× . . . .

Our goal is to engineer a situation when the remainder R(u, v) vanishes. Then we can use

(10.2.4) to intertwine between eigenstates of B. We say that ⟨Λ| is an admissible vector at

point v if it is an eigenstate of B and it satisfies ⟨Λ|Tj1(v) = 0 for all j and the given value of

v.

From (10.2.4), it is clear that if ⟨Λ| is admissible at point v then ⟨Λ|Tλ(v) is an eigenstate

of B provided that the action of Tλ(v) on ⟨Λ| is non-zero. We briefly discuss the relevant

properties of transfer matrices Tλ which we will use.

Transfer matrices Tλ(u) can be obtained as the trace of the fused monodromy matrix Tλ, see

Section 5.1. The elements of Tλ(u) are what we refer to as λ-minors Tλ

[A
B
]
(u). For a gl(k+1)

spin chain, A and B are sets of indices taking values 1, 2, . . . , k + 1 that are in correspondence

90



with semi-standard Young tableaux of shape λ

A =

a

s

A1,1 A1,2 . . . A1,λ1

A2,1 . . .

. . .

, B =

B1,1 B1,2 . . . B1,λ1

B2,1 . . .

. . .

. (10.2.6)

Tλ

[A
B
]
(u) are constructed by applying appropriate symmetrization of the indices in the ordered

product

−−−−→
hλ∏
a=1

λa∏
s=1

T
[
Aa,s

Ba,s

]
(u+ℏ(s−a)), of which (5.1.23) is an example for λ = (1a). The transfer

matrix Tλ is then defined as Tλ(u) =
∑
ATλ

[A
A
]
(u) , where the sum is over all admissible

tableaux A. It is then a straightforward computation to demonstrate

Tλ(v) =
∑
A
wATλ

[A
A+1

]
(v) +

∑
j

Tj1(v)×O(z1, . . . , zk+1) , (10.2.7)

where wA :=
∏

a∈A wa.

The first term in (10.2.7) coincides with TNλ and we clearly see that the second term vanishes

when acting on an admissible vector at point v and thus indeed ⟨Λ|TNλ (v) = ⟨Λ|Tλ(v). One

may ask how z1, . . . zk+1 – the eigenvalues of the MCT of the gl(k+1) spin chain are related to

z1, . . . zn – the original MCT eigenvalues. The point here is that none of the constructed states

depend on zi and so this relation is immaterial. The auxiliary parameters wi should however

be compatible with the injection (10.1.1) used in the embedding procedure: If w
(k)
i denote the

auxiliary parameters used for transfer matrices of Y(gl(k)) then w(k+1)
i+1 = w

(k)
i , i = 1, . . . , k.

Let ⟨Λ′| be an eigenvector of B(k). Then we use (10.1.4) to readily see that ⟨Λ| = ϕ(⟨Λ′|)
is an admissible vector at points θα + ℏ ναk+1. Hence, to excite the k-th dual diagonals µα

kj of

patterns Λα, α = 1, . . . , L we should consider the following product

⟨Λ|
L∏

α=1

Tµ̄α
k
(θα + ℏ ναk+1) (10.2.8)

as one can confirm from the explicit value of fλ(u, v) (10.2.5) for λ = µ̄α
k . The only thing to

check is that the action of Tµ̄α
k
at the point (θα + ℏ ναk+1) on ⟨Λ| results in a vector which is

still admissible at points (θβ + ℏ νβk+1) for β ̸= α. This is verified by considering the following

fused RTT relation [70]

(v − v′)[Tj1(v), Tµ̄k

[A
B
]
(v′)] =

∑
a∈A

Ta1(v)× · · · −
∑
a∈A

Ta1(v
′)× . . . . (10.2.9)

Taking v = (θβ + ℏ νβk+1), v
′ = (θα + ℏ ναk+1) and using (10.1.4) and (10.2.9) we conclude that

if ⟨Λ| is admissible at points v, v′ then ⟨Λ|Tµ̄k
(v) is admissible at the point v′.

Summarising, the recursion (10.2.1) yields the following recipe for an explicit build up of

the eigenstates of the operator B with pattern Λ

⟨ΛB| = ⟨0|
L∏

α=1

n−1∏
k=1

ϕn−k−1
(
Tµ̄α

k
(θα + ℏ ναk+1)

)
. (10.2.10)

Here ⟨0| is the lowest weight state (the GT vacuum) of the gl(n) spin chain, and terms in the

product with lower values of k should be left of those with higher values of k. We remind the

reader that ϕr amounts to the simple replacement of all Tij with Ti+r,j+r.
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We should still demonstrate that the constructed states are linearly independent. To this

end choose null-twist transfer matrices in (10.2.10) and use the CBR formula (5.2.7) to rewrite

them as a sum over products of transfer matricies in anti-symmetric representations. We then

take the auxiliary singular twist limit (ASTL) w1 ≫ w2 ≫ · · · ≫ wn−1 of (10.2.10). The leading

contribution comes from the term in the CBR expansion with the most number of products1,

and it exactly coincides with the composite raising operator (10.1.13). Hence the ASTL of

⟨ΛB| exists and coincides with ⟨ΛGT|. So ⟨ΛB| must be non-zero and moreover all ⟨ΛB| must

be linearly independent for generic enough wi because ⟨ΛGT| are linearly independent. Hence

⟨ΛB| form a basis (for generic wi) and thus B is diagonalisable.

One may ask what would happen if µ̄α
k in (10.2.8) are chosen to be some arbitrary integer

partitions that do not satisfy the branching rules of the GT patterns and hence cannot be

interpreted as dual diagonals. Then, if (10.2.8) is non-zero it would be an eigenvector of B

that is, in general, a linear combination of ⟨ΛB|. Hence the outlined construction (10.2.10)

and generated eigenvectors ⟨ΛB| are not unique. However, obvious advantages of the proposed

algorithm are that it has clear regular structure and that we can demonstrate that it indeed

produces a basis. How one can use this basis is discussed in the next section.

1after using the constraint that the transfer matrix corresponding to the empty diagram T∅ is simply the
identity operator
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Chapter 11

Factorised wave functions

In this Chapter we show that the basis (10.2.10) leads to separation of variables for the Bethe

algebra eigenstates.

If a basis is generated by action of transfer matrices on some reference state then factorisation

of wave functions is immediately obvious [131]. One can also use other objects in the Bethe

algebra such as Q-operators1 to reach the same conclusion. However, this is not how the basis

(10.2.10) is constructed currently because lower rank transfer matrices embedded into Yn using

ϕ are typically not elements of the Bethe algebra.

One of the main results to be demonstrated is that we can generate states (10.2.10) using

auxiliary transfer matricies T(k)
µ̄α
k
, k = 1, . . . , n− 1 who are Bäcklund transforms of the original

transfer matrices and who also belong to the Bethe algebra. Namely, we can demonstrate the

following equality for any ⟨Λ| ∈ V(k)

⟨Λ|
L∏

α=1

ϕn−k−1
(
Tµ̄α

k
(θα + ℏ ναk+1)

)
= ⟨Λ|

L∏
α=1

T(k)
µ̄α
k
(θα + ℏ ναk+1) . (11.0.1)

We first review the basic properties of the Bäcklund flow in section 11.1 and then focus

on derivation of (11.0.1) in section 11.2, with some technicalities delegated to appendix A.2.

After (11.0.1) is established, it is straightforward to use standard Wronskian formulae to obtain

factorised wave functions as is demonstrated in sections 11.3 and 11.4.

11.1 Quantum Eigenvalues, Q-system and Bäcklund Flow

Given a Young diagram λ and a group element g ∈ GL(n) with eigenvalues z1, z2, . . . , zn, its

character χλ(g) in the representation λ can be obtained from a summation over semi-standard

Young tableaux. A semi-standard Young tableau T of shape λ is obtained by filling up each box

in the Young diagram λ with elements of the set {1, 2, . . . , n} subject to the condition that the

numbers weakly decrease in every row and strictly decrease in every column2. The character

can then be computed as

χλ(g) =
∑
T

∏
(a,s)⊂λ

z#(a,s) , (11.1.1)

1While Q-operators do not belong to the Yangian as an abstract algebra, they do when we descend to
representations discussed in this paper. Also note that “other objects” does not mean new conserved charges
but rather their repackaging using e.g. Q-operators instead of transfer matrices.

2Note that our convention is the opposite to the widely used one where the numbers in a tableau strictly
increase in each column and weakly increase in each row. The resulting classical character is not sensitive to
this difference, however it becomes important for the construction of transfer matrices.

93



where #(a, s) denotes the number in position (a, s) of the tableau T and the product is over

all boxes (a, s) of the diagram λ.

A similar formula exists for transfer matrices [89, 144, 145]:

Tλ(u) =
∑
T

∏
(a,s)⊂λ

Λ#(a,s)(u+ ℏ(s− a)) , (11.1.2)

where the functions Λj(u), j = 1, 2, . . . , n are referred to as quantum eigenvalues of the Yn
monodromy matrix and satisfy

[Λi(u),Λj(v)] = 0, i, j = 1, 2, . . . , n (11.1.3)

and were defined in Section 5.3. In order to avoid needless looking back and forth we will recall

their construction here for the convenience of the reader.

Recall the generating function (5.1.29) for the transfer matricies Ta,1: det(1−T(u)e−ℏ∂u) =∑n
a=0(−1)aTa,1(u)e

−aℏ∂u . It then follows from (11.1.2) that we can write

det(1−T(u)e−ℏ∂u) =
(
1− Λn(u)e

−ℏ∂u
)
. . .
(
1− Λ1(u)e

−ℏ∂u
)

(11.1.4)

which can easily be seen by expanding the r.h.s. and comparing coefficients of e−aℏ∂u . The

Q-operators Qi(u), i = 1, . . . , n are annihilated by the above finite-difference operator

det(1−T(u)e−ℏ∂u)Q[2]
i (u) = 0, i = 1, 2, . . . , n . (11.1.5)

The complete family of Q-operators comprises operators QI , I ⊂ {1, 2, . . . , n} that are related

to Qi by means of the QQ relations

QIijQ[−2]
I = QIiQ[−2]

Ij −QIjQ[−2]
Ii (11.1.6)

supplemented with Q∅(u) = 1. The analytic structure ofQ-operators for spin chains in arbitrary

representation is known [123] to have the following form, see Section 5.3,

QI(u) = NI q̂I(u)

|I|∏
j=1

Γ
[
ν̂
[2(1−|I|)]
j (u)

]
, q̂I(u) := qI

∏
j∈I

z
u
ℏ
j , (11.1.7)

where ν̂j(u) :=
∏L

α=1(u− θα − ℏ ν̂αj ) with ν̂αj being the shifted weights ν̂αj := ναj − j + 1, qI(u)

is an operator-valued monic polynomial, and q12...n = 1. Finally NI is normalisation which is

well-defined with NI =
∏

j<k

zij−zik
zij zik

for I = {i1, . . . , i|I|} but is not relevant for our discussion,
and Γ[F (u)] has the property Γ[F (u+ ℏ)] = F (u)Γ[F (u)].

If I is a single index i, (11.1.7) becomes

Qi(u) = q̂i(u)Γ [ν1(u)] (11.1.8)

which should be considered as a gauge transformation between two ways to parameterise Baxter

Q-operators.

By using (11.1.5) together with (11.1.4) it easy to see that a solution for Λk(u) is given by

Λk(u) =
Q[−2]

σ(Ik−1)

Qσ(Ik−1)

Q[2]
σ(Ik)

Qσ(Ik)
, k = 1, . . . , n , (11.1.9)

where Ik := {1, 2, . . . , k}, while σ denotes some element of the permutation group Sn. Clearly,
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the quantum eigenvalues Λk are not invariant under choice of σ as they are sensitive to the

order of terms in the factorisation (11.1.4). However their (quantum) symmetric combinations,

transfer matrices, are invariant under this choice.

We will now introduce the notion of the Bäcklund transform. It traces its origins to the

solutions of the Hirota bilinear equation on the gl(n) strip [146, 104, 109] but we shall define it in

more compact terms. Consider the so-called Wronskian solution of the CBR formula [121, 109]

Tλ(u) =

det
1≤i,j≤n

Q[2λ̂σ(j)]

σ(i) (u)

Qσ(In)(u)
, (11.1.10)

where λ̂j = λ − j + 1 are the shifted weights and whose equivalence with (11.1.2) follows as a

result of the QQ-relations. The (n−k)-th Bäcklund transform of the transfer matrix Tλ(u) that

shall be denoted as T(k)
λ (u) is obtained by restricting the range of the determinant in (11.1.10)

to k components:

T(k)
λ (u) =

det
1≤i,j≤k

Q[2λ̂σ(j)]

σ(i) (u)

Qσ(Ik)(u)
. (11.1.11)

From (11.1.9), it is easy to deduce that T(k)
λ are expressed in terms of quantum eigenvalues as

T(k)
λ (u) =

∑
T

∏
(a,s)⊂λ

Λ#(a,s)(u+ ℏ(s− a)) , (11.1.12)

where the only difference with (11.1.2) is that the tableaux T are filled with the numbers

{1, 2, . . . , k}, instead of the full set {1, 2, . . . , n}. Notice that we have the property

T(k)
λ (θα + ℏ ναk ) = T(k−1)

λ (θα + ℏ ναk ) (11.1.13)

which follows as a simple consequence of the arguments in the next Section.

11.2 Action of transfer matrices

We prove (11.0.1) in two steps. First, we prove that

TFα
k +µ̄α

k
(θα + ℏ ναn )

TFα
k
(θα + ℏ ναn )

= T(k)
µ̄α
k
(θα + ℏ ναk+1) , (11.2.1)

and then we prove the equality between the l.h.s. of (11.2.1) acting on ⟨Λ| ∈ V(k) and the l.h.s.

(11.2.1). The second step is more technical and we leave it to appendix A.2, and we also prove

in appendix A.1 that the ratio of transfer matricies in the l.h.s. of (11.2.1) is well-defined. This

subsection deals with (11.2.1).

In our proofs we assume that inhomogeneities assume some generic value (that is we avoid

a certain subset of measure zero where the invoked arguments could fail). But since the l.h.s.

of (11.0.1) is polynomial in inhomogeneities, the final result should be correct for any θα. It is

however only useful if (10.2.10) form a basis for which sake a sufficient condition θα − θβ /∈ ℏZ
for pairwise distinct α, β is imposed [70].

In (11.2.1), TFα
k +µ̄α

k
and TFα

k
are usual Y(gl(n)) transfer matricies and ” + ” means gluing

of Young diagram shapes aligned on top. Denote by ν̄α the reduced Young diagram with

ν̄αj = ναj − ναn . Then Fα
k is any Young diagram satisfying the following constraints: its width

(value of the first component Fα
k1) is equal to ν̄

α
k+1, the height of its last column is equal to the

height of the ν̄αk+1-th column of ν̄α, and it must be that Fα
k + µα

k ⊂ ν̄α, see Fig 11.1.
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ν̄αk+1

Figure 11.1: Gluing of diagrams Fα
k and µ̄α

k . The dotted line is the boundary of the diagram
ν̄α. Crossed squares depict the column which should be of the same height for Fα

k and ν̄α.

The key feature we need is vanishing of quantum eigenvalues at specific points:

Λ(θα + ℏ ναr ) = 0, α = 1, 2, . . . , L, r = 1, . . . , n . (11.2.2)

It follows from

Λr(u) = zσ(r)νr(u)
q
[−2]
σ(Ir−1)

qσ(Ir−1)

q
[2]
σ(Ir)

qσ(Ir)
(11.2.3)

which can be derived from (11.1.7), and we assume to avoid situations when the denominator

of
q
[−2]

σ(Ir−1)

qσ(Ir−1)

q
[2]

σ(Ir)

qσ(Ir)
has a pole at θα + ℏ ναr .

Consider Tλ(θα + ℏ ναn ) – the transfer matrix in the representation λ evaluated at the point

θα + ℏ ναn , and consider its expansion in quantum eigenvalues (11.1.2). For this special point,

only a limited subset of tableaux T contribute to this expansion. Indeed, let T be a tableau that

provides a non-zero contribution to the sum. Then it cannot contain n at position a = 1, s = 1

because Λn(θα + ℏ ναn ) = 0. But since the numbers in a tableau should weakly decrease to the

right and strictly decrease down, T cannot contain n at all. This tableau cannot also contain

n− 1 at position a = 1, s = 1+ ν̄αn−1, due to (11.2.2) for r = n− 1. Then any boxes to the right

of the column s = ν̄αn−1 cannot contain n− 1. By repeating the argument we get that boxes of

T to the right of the column s = ν̄αk+1 can be populated at most by the indices 1, 2, . . . , k.

Now we turn to the case when λ = Fα
k + µ̄α

k . Let R be the maximal number for which

ν̄αR = ν̄αk+1, and r + 1 be the minimal number for which ν̄αr+1 = ν̄αk+1. Then we observe two

features. Firstly, entries in the µ̄α
k part of the tableau T can be only populated by indices

1, 2, . . . , r. Secondly, the height of the last column of Fα
k (denoted by crosses in Fig 11.1) is R

and, since ν̄αR+1 is strictly smaller than ν̄αR, this last column can be only populated by indices

1, 2, . . . , R. Hence it is fixed uniquely. Note that an immediate corollary of this discussion is

that Tλ(θα + ℏ ναn ) = 0 if λ is any shape not contained in ν̄α, in contrast to the fact that the

transfer matrix is invertible otherwise as is shown in appendix A.1.

Because for any non-vanishing T the last column of the Fα
k part is fixed uniquely, values in

other boxes of the Fα
k part do not affect possible values in the boxes of the µ̄α

k part and vice
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versa, and so the sum (11.1.2) factorises:

TFα
k +µ̄α

k
(θα + ℏ ναn ) =

∑
TF

∏
(a,s)⊂Fα

k

Λ#(a,s)(θα + ℏ ναn + ℏ(s− a))


×

∑
Tµ̄

∏
(a,s)⊂µ̄α

k

Λ#(a,s)(θα + ℏ ναk+1 + ℏ(s− a))

 . (11.2.4)

The first factor obviously evaluates to TFα
k
(θα + ℏ ναn ). For the second one, recall that the

possible entries in the tableaux Tµ̄ are constrained to be from the set {1, 2, . . . , r}, but then this

term is precisely T(r)
µ̄α
k
(θα + ℏ ναk+1), cf. (11.1.12). By using the same arguments as we invoked

after (11.2.2) we show that all T(k)
µ̄α
k
(θα + ℏ ναk+1) for R − 1 ≥ k ≥ r are in fact equal to one

another and hence (11.2.1) indeed holds.

We supplement this conclusion with the result of appendix A.2 and conclude the remarkable

equality (11.0.1). An immediate consequence of (11.0.1) is that the basis (10.2.10) can now be

constructed as

⟨ΛB| = ⟨0|
L∏

α=1

n−1∏
k=1

T(k)
µ̄α
k
(θα + ℏ ναk+1) . (11.2.5)

We are now one step away from writing concise expressions for wave functions in the SoV basis

which is our next goal.

11.3 Wave functions & separated variables

Expressing the basis (11.2.5) using the Wronskian solution (11.1.11) gives

⟨ΛB| = ⟨0|
L∏

α=1

n−1∏
k=1

det
1≤i,j≤k

Q[2ˆ̄µj ]

σ(i) (θα + ℏ ναk+1)

Qσ(Ik)(θα + ℏ ναk+1)
. (11.3.1)

It is convenient to introduce a new reference vector ⟨Ωσ| := ⟨0|
L∏

α=1

n−1∏
k=1

(
Qσ(Ik)(θα + ℏ ναk+1)

)−1
for which

⟨ΛB| = ⟨Ωσ|
L∏

α=1

n−1∏
k=1

det
1≤i,j≤k

Qσ(i)(x
α
kj) , (11.3.2)

where we have used that xαkj = θα + ℏ(µα
kj − j + 1), see (9.1.12). The Gamma-function

contribution to the Q-operators (11.1.8) nicely factorises from the determinants and we accordingly

introduce ⟨x| as rescaled basis vectors ⟨ΛB|:

⟨x| :=
L∏

α=1

n−1∏
k=1

1

Γ
[
ν1(xαkj)

] ⟨ΛB| = ⟨Ωσ|
L∏

α=1

n−1∏
k=1

det
1≤i,j≤k

q̂σ(i)(x
α
kj) . (11.3.3)

Let us choose the normalisation ⟨Ωσ|Ψ⟩ = 1 for all the Bethe algebra eigenvectors |Ψ⟩. Then

their wave functions Ψ(x) in the constructed basis are

Ψ(x) = ⟨x|Ψ⟩ =
L∏

α=1

n−1∏
k=1

det
1≤i,j≤k

q̂σ(i)(x
α
kj) (11.3.4)
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where q̂i(u) is the eigenvalue of q̂i(u) on the state |Ψ⟩. By choosing σ to be the identity

permutation we immediately obtain

Ψ(x) = ⟨x|Ψ⟩ =
L∏

α=1

n−1∏
k=1

det
1≤i,j≤k

q̂i(x
α
kj) . (11.3.5)

With the last formula we achieved our goal of wave function factorisation, and its explicit

form justifies why the operators Xα
kj – zeros of B(u) whose eigenvalues on ⟨x| are xαkj should be

considered as separated variables.

Define |Ω⟩ by the property ⟨x|Ω⟩ = 1 for all ⟨x|. Then (11.3.4) implies that all |Ψ⟩ can be

constructed as

|Ψ⟩ =
L∏

α=1

n−1∏
k=1

det
1≤i,j≤k

q̂σ(i)(X
α
kj) |Ω⟩ . (11.3.6)

We note that |Ω⟩ is not itself an eigenvector of the Bethe algebra. In some situations it could

be beneficial to select a certain Bethe eigenstate |ω⟩ as a reference and build excitations as

|Ψ⟩ =

L∏
α=1

n−1∏
k=1

det
1≤i,j≤k

q̂σ(i)(X
α
kj)

L∏
α=1

n−1∏
k=1

det
1≤i,j≤k

q̂
(0)
σ(i)(X

α
kj)

|ω⟩ , (11.3.7)

where q̂
(0)
σ(i) is the eigenvalue of q̂σ(i) on |ω⟩. The most natural candidate for |ω⟩ is one of

the ferromagnetic vacua of the spin chain. It is distinguished by the property q
(0)
σ(12...k) = 1,

k = 1, . . . , n. In the reference frame where the twist is diagonal it is the highest-weight vector

with respect to an appropriate choice of the Borel subalgebra:

Tij(u) |ω⟩ = 0, σ−1(i) > σ−1(j), Tjj(u) |ω⟩ = νσ−1(j)(u) |ω⟩ , (11.3.8)

and it should be rotated to the modified companion twist frame which we are using in this

paper.

The most drastic simplification of (11.3.7) happens when we consider spin chains in symmetric

powers of the fundamental representation. In this case ναj = 0 for j > 1 and so, by analysis

of section 11.2, we can replace T(k)
µ̄α
k
with T(1)

µ̄α
k
in (11.2.5). In particular, µ̄α

k consists of a single

row. Consequently, (11.3.7) becomes

|Ψ⟩ =

L∏
α=1

n−1∏
k=1

q̂σ(1)(X
α
k1)

L∏
α=1

n−1∏
k=1

q̂
(0)
σ(1)(X

α
kj)

|0⟩ =
L∏

α=1

n−1∏
k=1

qσ(1)(X
α
k1) |0⟩ ∝

∏
r

B(ur) |ω⟩ , (11.3.9)

where ur are zeros of qσ(1). We see that, in this special case,
∏
r
B(ur) acting on the ferromagnetic

vacuum creates all the Bethe states. This result was conjectured based on numerical evidence

and analytical tests for low numbers of magnons in [129] and then proven for gl(3) [130] and

gl(n) cases [1].

Finally, we make a few comments about the Bethe equations. To simplify our exposition,

we will consider all spin chain sites to have the same representation, that is να = ν for all

α = 1, . . . , L. In this case it is convenient to introduce the polynomial Qθ(u) =
∏L

α=1(u− θα).
We also normalise the twist matrix to detG = 1.

Originally, the Bethe equations for spin chains in arbitrary representation were written down
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in [147]. These were the equations on zeros of qσ(12...)(u) (nested Bethe roots). Instead of such

type of Bethe equations, one can write polynomial conditions that should be obeyed by (twisted)

polynomials q̂i. As a consequence of (11.1.6) and q∅ = 1 one derives det
1≤i,j≤n

Qi(u− ℏ(j − 1)) =

Q12...n. Then the requirement that q12...n = 1 in (11.1.7) provides a quantisation condition on

possible values of q̂i:

det
1≤i,j≤n

q̂i(u− ℏ (j − 1)) ∝
n∏

j=2

ν1∏
k=νj+1

Qθ(u− ℏ(k + n− j)) , (11.3.10)

where ∝means equality up to a constant multiplication. This quantisation condition is the same

as the demand that the Wronskian solution (11.1.10) for transfer matrices Tλ yields identity if

we take λ to be the empty Young diagram.

There exists also a dual description, in terms of Q-functions QI defined by QI := εĪIQĪ ,

where ε is the Levi-Civita symbol in n dimensions and Ī means the complimentary set to I (no

summation over Ī is performed). Again, we can exploit (11.1.6) to conclude that det
1≤i,j≤n

Qi(u−

ℏ(j − 1)) =
n−1∏
k=1

Q12...n(u− ℏ(k − 1)) which, in terms of q̂i := εīiq̂ī becomes

det
1≤i,j≤n

q̂i(u+ ℏ(j − 1)) ∝
n−1∏
j=1

νj∏
k=νn+1

Qθ(u+ ℏ(j − k)) . (11.3.11)

Note that fixing either qi or q
i would be sufficient to compute any element of the Bethe algebra.

Finally, let us point out that we do not rely on any statements about completeness of

Bethe equations. In fact, the situation is quite the opposite one – an important ingredient

of completeness theorems follows immediately from the proposed construction. Namely we

showed that the Bethe algebra is a maximal commutative subalgebra of the algebra of the

endomorphisms of the spin chain’s Hilbert space. Indeed, the SoV basis is generated by action

of transfer matrices, but it would be impossible to generate a basis if there was an extra

independent operator that commutes with the transfer matrices.

Maximality of the Bethe algebra implies that the eigenstates in the Hilbert space can

be unambiguously labelled by eigenvalues of Bethe algebra generators. As we can take Q-

operators as generators and zeros of the Q-operators satisfy Bethe equations, we conclude that

all physical states of the spin chain are labelled, and can be distinguished, by solutions of the

Bethe equations.

What is not guaranteed by the above argument is that each solution of the Bethe equations

labels some physical state. This question can be resolved by explicit counting but this requires

certain care, especially for spin chains in arbitrary representations that we consider, as is

discussed after (11.3.10). For the case of the fundamental representation the question was

resolved in various ways in the literature. We mention [133] where it was discussed for the

supersymmetric gl(2|1) case and also [148, 149] in the SoV framework of the same type as

considered in this paper; and [94] where completeness is proven for gl(n) spin chains with and

without twist, and for any value of inhomogeneities and for similar results. The results of [94]

also generalise to the supersymmetric gl(m|n) case [95].

In the case of a spin chain in the defining representation, ν = (1, 0, . . . , 0), the condition

(11.3.11) reads det
1≤i,j≤n

q̂i(u + ℏ (j − 1)) ∝ Qθ(u). It contains only the physical solutions for

arbitrary values of inhomogeneities [94] and hence can be used alone to fully characterise the

spectrum of the model. Similarly, for the conjugate representation ν = (1, 1, . . . , 1, 0), the
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condition (11.3.10) reads det
1≤i,j≤n

q̂i(u−ℏ (j−1)) ∝ Qθ(u−ℏ) and also is enough to characterise

the spectrum.

For more complicated representations than the mentioned two, there are more solutions to

(11.3.10) or (11.3.11) than the dimension of the Hilbert space. We should then impose extra

restrictions. This can be done by the requirement that Tλ(u) should be polynomials in u for

any λ and that qI(u) computed from qi(u) via (11.1.7) and (11.1.6) are also polynomials in u

for any I. By generalising the ideas of [150] it is possible to repackage these requirements in a

structurally simple manner that allows one simple explicit counting of the physical solutions of

(11.3.10) and to confirm that their number coincides with the dimension of the Hilbert space.

This result will be presented in some upcoming work.

Wave function examples For certain classes of representations the presented wave functions

simplify quite a bit. The largest simplifications occur for symmetric powers of the defining

(as was already demonstrated above) or anti-fundamental representations. In these cases, by

appropriate changes in normalisation of the SoV bases the wave functions simply become

Ψ(x) =
L∏

α=1

n∏
j=1

q1(x
α
j1), Ψ(x) =

L∏
α=1

det
1≤i,j≤n−1

qi(x
α
n−1,j) . (11.3.12)

We have singled out these examples in order to easily refer to these formulae later.

11.4 Conjugate momenta

This work realises to a large extent Sklyanin’s SoV program for compact rational gl(n) spin

chains. Indeed, the operators Xα
kj are naturally a quantisation of zeros xσ of the classical

B(u), and wave functions in the proposed SoV basis are products of determinants of Baxter

Q-functions who solve (11.1.5) – a quantisation of the classical spectral curve.

To accomplish the program, we should also quantise D(u) (see Chapter 6) to get the

conjugate momenta Pα
kj and then identify the spin chain with a representation of the algebra

generated by Pα
kj and Xα

kj . Quantisation of D(u) (also referred to as A(u) in some literature

depending on conventions) was formally suggested in [51, 128], however the procedure proposed

there becomes singular when explicitly applied to highest-weight spin chains, see for example

the discussion in [131]. Here we shall introduce conjugate momenta by different means and it

would be interesting to explore whether our proposal matches a regularised way to quantise

D(u).

The canonically conjugate momenta P±αkj associated to the separated coordinates Xα
kj satisfy

the commutation relation

[P±αkj ,X
β
k′j′ ] = ±ℏ δ

αβδkk′δjj′P
±α
kj . (11.4.1)

We propose their following realisation

P±αkj = c±αkj :

det
1≤i,l≤k

Qσ(i)(X
α
kl ± ℏδjl)

det
1≤i,l≤k

Qσ(i)(X
α
kl)

: , (11.4.2)

where c±αkj is some simple function of the separated variables to be fixed in a moment. We

use a normal ordering prescription : : where X’s are placed to the left of all the coefficients of

Baxter Q-operators. To see that the prescription (11.4.2) works, we utilise (11.3.1) and act on

⟨x| with P±α as defined above. By using that ⟨x|Xα
kj = xαkj ⟨x|, we immediately obtain (up to
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normalisation) the state where µα
kj has been replaced with µα

kj ± 1. In particular the action of

P±αkj on ⟨x| is well-defined.

The coefficient c±αkj in (11.4.2) is required in order to respect the branching rules of GT patterns.

Namelly, we have the constraints µα
k−1,j ≥ µα

kj ≥ µα
k,j+1 and µα

k,j−1 ≥ µα
kj ≥ µα

k+1,j on a given

GT pattern Λα and so P+α
kj should vanish when we act on a state with µα

kj = µα
k,j−1 or µα

kj =

µα
k−1,j , and similarly for P−αkj . Using the fact that µα

kj is related to xαkj as x
α
kj = θα+ℏ(µα

kj−j+1)

we see that we should take

c+α
kj = (Xα

k−1,j − Xα
kj)(X

α
k,j−1 − Xα

kj − ℏ) (11.4.3)

and similarly

c−αkj = (Xα
kj − Xα

k+1,j)(X
α
kj − Xα

k,j+1 − ℏ) . (11.4.4)

The separated variables Xα
kj are defined for indices in the range 1 ≤ k ≤ n− 1 and 1 ≤ j ≤ k,

but c±αkj can contain factors with Xα
kj outside of this range. In order to get around this we define

operators Xα
j,j+1, j = 0, . . . , n−1 to be scalar multiples of the identity operator with eigenvalue

θα + ℏ(ναj+1 − j). Furthermore, if c±αkj should contain a factor with Xα
kj outside of this newly

established set of operators, we simply declare that factor to be absent.
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Part III

Scalar products, functional

orthogonality relations and dual

separated variables
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Chapter 12

Baxter equation and functional

scalar product

12.1 Scalar products and overlaps in integrable systems

In the previous chapters we developed the separation of variables program for compact gl(n)

spin chains. We would now like to use the developed techniques to compute some quantities of

interest. A standard physical quantity of interest is the expectation value OA of some operator

O given by

OA =
⟨ΨA| O |ΨA⟩
⟨ΨA|ΨA⟩

(12.1.1)

where |ΨA⟩ is a Hamiltonian eigenstate.

At this point it is important that we make our notation clear and we stress that ⟨ΨA| is
not the Hermitian conjugate of |ΨA⟩ – ⟨ΨA| is simply a left eigenstate of the Bethe algebra

with the same eigenvalue as |ΨA⟩ and there is a bijection between such left and right states

owing to the non-degeneracy of the Bethe algebra. On the other hand, in many physically

reasonable scenarios the Bethe algebra is closed under Hermitian conjugation, for example in

the su(2) spin chain the various parameters can be chosen so that T1,1(u)
† = T1,1(ū) and hence

the left eigenstates of the transfer matrix are simply scalar multiples of any left eigenvector

with the same eigenvalue. Hence, if we introduce the corresponding inner product (−,−) on

the representation space turning it into a Hilbert space then the following ratios

⟨Ψ| O |Ψ⟩
⟨Ψ|Ψ⟩

=
(Ψ,OΨ)

(Ψ,Ψ)
(12.1.2)

are equal. Hence we can either work with left eigenvectors directly or the Hermitian conjugate

of right eigenvectors. Introducing Hermitian conjugation has several drawbacks however. The

transformation properties of the transfer matrices are not as transparent in the higher rank

case and it requires some work to prove for a given representation that the Bethe algebra is

closed under it. Hence, it will be more convenient to work with left eigenvectors.

The calculation of such expressions have received an extensive amount of attention in the

literature in part due to their relation various three-point functions in N = 4 SYM. It was

discovered in [151] that three-point functions could be expressed as in the form (12.1.1). This

direction has been extensively developed [152, 153, 154, 155] and has culminated in the elegant

Hexagon formalism for correlation functions [47, 156, 157].

The Quantum Inverse Scattering Method (QISM) is one of the main tools for calculating
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these objects in integrable systems [158], see [159] for an extensive treatment. It is based on

the fact that the any local operator E
(α)
ij acting on the α-th spin chain site can be expressed as

E
(α)
ij =

α−1∏
β=1

T1,1(θβ)

Tij(θα)

 α∏
β=1

T1,1(θβ)

−1 (12.1.3)

and hence the calculation of the expectation value ⟨Ψ|E(α)
ij |Ψ⟩ amounts to calulating the action

of Tij(u) on Bethe vectors. This has been achieved for rank 1 (i.e. gl(2)-based) spin chains in

the SoV framework [160, 160, 136, 161] which involves exploiting the simple action of the Tij

operators on the SoV bases in both finite volume and in the thermodynamic limit [162].

Of course one still needs to compute the norm of the state or the overlap of a right eigenvector

with a left eigenvector ⟨Ψ|Ψ⟩ which has been computed for numerous models [163]. In the

framework of the algebraic Bethe ansatz these states are constructed as

|Ψ⟩ =
M∏
j=1

B(uj) |Ω⟩ , ⟨Ψ| = ⟨Ω|
M∏
j=1

C(vj) (12.1.4)

where uj and vj are solutions of the Bethe equations. Overlaps of this type constitute a general

class of overlaps called on-shell/on-shell owing to the fact that uj and vj indeed satisfy Bethe

equations. A more general class of overlaps, dubbed off-shell/on-shell are obtained when one

set of parameters, say {v1, . . . , vM}, do not satisfy the Bethe equations, and similarly one can

consider off-shell/off-shell overlaps where neither set of rapidities satisfy Bethe equations. For

computing the overlap in these cases one can use the celebrated Slavnov determinant formula

[164]. In fact a determinant representation of these overlaps is a rather universal feature and

the reason for this was recently clarified in [165] by noting that the scalar product satisfies

a homogeneous system of linear equations and hence has a determinant representation. Such

determinant formulas have also been obtained in higher rank models [166, 167] and q-deformed

[168] and supersymmetric models [169]. The Bethe ansatz framework is not just limited to

scalar products and has also allowed the computation of form factors for higher rank models

[170, 171, 172]. It has also been possible to express the scalar product as a multiple integral

formula, see [99] for the su(2) case using the SoV approach and for higher rank models in the

Bethe ansatz formalism [173].

There are also other overlaps which are of direct interest in QFT calculations. One such

family of overlaps is the overlap of a Bethe state ⟨Ψ| with a boundary state ⟨B| given by

⟨B|Ψ⟩
⟨Ψ|Ψ⟩

(12.1.5)

whose interest stems from the fact that they are related to one-point functions in defect

conformal field theory [174, 175, 176], see [177] for a review. They are also related to the

computation of the so-called g-function [46] which is one of the simplest quantities one can

compute in an integrable QFT beyond its spectrum. These boundary states have also recently

been explored in the SoV framework [178].

12.2 Functional orthogonality relations

We now turn to the task of computing such quantities in the SoV framework, aided by the

tools we have developed so far. So far we have only discussed the construction of the right

eigenstates |Ψ⟩. We also need a way to construct left eigenstates ⟨Ψ| and then we need to
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calculate their overlap. This should be achieved by constructing the measure in the SoV basis.

In principal this should be analogous to calculations which have been done in the rank 1 sector.

However, Martin and Smirnov [179] suggest that things are not so clear cut in the higher rank

case based on a semi-classical calculation. They demonstrate that the expectation values of

certain operators do not factorise in the SoV representation and we should expect to run into

similar difficulties.

Nevertheless let us proceed. We will now discuss a method for computing the scalar product

in the SoV framework without a need to explicitly compute matrix elements of the measure or

construct states. This method is based on the use of the Baxter TQ equation and first appeared

[53] in the computation of three-point structure constants in N = 4 SYM and was subsequently

developed for spin chains, first for non-compact spin − 1
2 representations of sl(n) in [180] and

then for compact su(3) spin chains in [3] and compact and non-compact sl(n) spin chains with

generic spin in [7]. We will start our analysis with su(2) spin chains.

su(2) functional orthogonality relations Our starting point is the two Baxter equations

−→
O Q

[2]
i

Q∅
= 0,

Qi(
Q∅
)[2]←−O = 0 . (12.2.1)

where O is the finite-difference operator

O = 1− T1,1(u)D−1 + T2,1(u)D−2 (12.2.2)

where we remind the reader that the shift operator is D := eℏ∂u with

D f(u) = f(u+ ℏ), f(u)D = f(u− ℏ) (12.2.3)

and we use arrows on O to denote which direction the shift operators act.

The Q-functions Qj and Qj possess an infinite number of poles due to the structure

Qj(u) = q̂j(u)× Γ [ν1(u)] , q̂j(u) = z
u
ℏ
j × qj(u) (12.2.4)

and it will be convenient to redefine the difference operators O such that it satisfies

O q̂
[2]
j = 0 . (12.2.5)

A straightforward calculation shows that by redefining

O = 1− T(u)

ν1(u)
D−1 + ν2(u)

ν1(u)
D−2 (12.2.6)

then (12.2.5) is indeed satisfied. On the other hand, it is not true that qj
←−
O is zero now. Instead

we have O† qj = 0 where O† is a different operator given by

O† = 1− T[2](u)

ν
[2]
2 (u)

D +
ν
[2]
1 (u)

ν
[2]
2 (u)

D2 . (12.2.7)

By appropriate redefinitions it is possible to obtain a scenario where O† = O. However, this is

only the case for gl(2) and does not persist at higher rank so we do not use such conventions

here.

Since the Q-functions carry all the information about a given state it should be possible
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to formulate the notion of orthogonality of different Bethe states directly at the level of Q-

functions. The possibility of writing down such a functional orthogonality relation is based

on the existence of an integration measure K(u) such that the two operators O and O† are

conjugate under an appropriate scalar product. We consider the space of twisted polynomials

and equip it with the bilinear form (−,−) defined by

(f, g) :=

∫
C
duK(u) f(u) g(u) (12.2.8)

for arbitrary twisted polynomials f and g and the contour C is yet to be determined. We are

going to impose that

(f,O g) =
(
O† f, g

)
(12.2.9)

and use this to constrain the measure K and the contour C. We will proceed by direct

calculation. First, we have

(f,O g) =
∫
C
duK(u) f(u)

(
g(u)− T(u)

ν1(u)
g[−2](u) +

ν2(u)

ν1(u)
g[−4](u)

)
. (12.2.10)

We aim to move the shifts from g to f by shifting the integration contour. For the moment, let

us assume that we can freely shift the contour, giving

∫
C
du

(
K(u) f(u)−K [2](u) f [2](u)

T[2](u)

ν
[2]
1 (u)

+K [4]f [4]
ν
[4]
2 (u)

ν
[4]
1 (u)

)
g(u) (12.2.11)

which we demand be equal to

(
O† f, g

)
=

∫
C
duK(u)

(
f(u)− T[2](u)

ν
[2]
2 (u)

f [2](u) +
ν
[2]
1 (u)

ν
[2]
2 (u)

f [4](u)

)
g(u) . (12.2.12)

We immediately see that this will be satisfied if

K [2](u)

K(u)
=
ν
[2]
1 (u)

ν
[2]
2 (u)

(12.2.13)

which can then be solved by

K(u) =
Γ[ν

[2]
1 (u)]

Γ[ν
[2]
2 (u)]

ρ(u) (12.2.14)

where ρ(u) is a ℏ-periodic function.

It is at this point where the distinction between compact and non-compact models will play

a role. For now, we are only going to focus on compact models since all of our discussion

in the previous chapters has been about them. Later we will consider non-compact models.

For compact representation the ratio of Γ-functions in (12.2.14) reduces to a rational function.

Hence, if we choose the contour C to be a large circle containing all of the (finitely-many) poles

of K(u) and zeroes of ν1(u) then we will have no problems in shifting the contour. To be more

precise let A be the set of poles of K(u) and zeroes of ν1(u) and put r = max|A|+ 2ℏ. Then if

C is a circle of radius r + ε with ε > 0 then we can shift the contour C and conclude that

(f,O g) =
(
O† f, g

)
. (12.2.15)

The adjointness property (12.2.15) guarantees that for any twisted polynomial f we have

(
q̂j ,O f

)
= 0 (12.2.16)
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and hence, for any two states A and B we have

(
q̂jA, (O

A −OB) q̂Bi

)
= 0 (12.2.17)

where the finite-difference operators OA and OB depend on the states A and B through the

transfer matrix eigenvalue TA,B . This is the key relation which leads to the functional scalar

product. We first note that the only difference between the operators OA and OB is given by

the term corresponding to the transfer matrix and so

OA −OB =
1

ν1(u)

(
TA(u)− TB(u)

)
D−1 (12.2.18)

and hence

0 =

(
q̂jA,

1

ν1(u)

(
TA(u)− TB(u)

)
q̂Bi

)
. (12.2.19)

Next we notice that the transfer matrix can be expanded as

T1,1(u) = χ1,1u
L +

L−1∑
k=0

ukIk (12.2.20)

where Ik are the eigenvalues of the corresponding integrals of motion. Hence, we have

0 =

L−1∑
k=0

(IAk − IBk )

(
q̂jA,

1

ν1(u)
ukq̂Bi

)
. (12.2.21)

We now recall that the measure K was not unique – we are free to rescale it by a periodic

function ρ(u). Let us introduce a family of rescaled measure µα with

µα =
Γ[ν

[2]
1 (u)]

Γ[ν
[2]
2 (u)]

ρα(u)

ν1(u)
=

Γ[ν1(u)]

Γ[ν
[2]
2 (u)]

ρα(u), α = 1, 2, . . . , L (12.2.22)

with the periodic functions ρα to be determined later and to introduce a new bracket ⟨−⟩α by

⟨f g⟩α :=

∫
C
duµα(u)f(u)g(u) . (12.2.23)

Now, the relation (12.2.21) becomes

0 =

L−1∑
k=0

(IAk − IBk )⟨q̂jA u
k q̂Bi ⟩α, α = 1, . . . , L (12.2.24)

which constitutes L equations for the L unknowns IAk − IBk . Since at least one of the differences

IAk −IBk must be non-zero for two distinct states1 A and B the determinant of the linear system

must vanish and we find

δAB ∝ det
1≤α,β≤L

⟨q̂jA u
β q̂Bi ⟩α . (12.2.25)

Choosing the periodic functions The exact choice of the periodic functions ρα, like the

contour C, depends on whether we consider the case of compact or non-compact representations

and what exactly we hope to reproduce. For starters we can try to reproduce the scalar product

1Since the Bethe algebra is continuously connected to the Gelfand-Tsetlin algebra which has non-degenerate
spectrum.
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produced by the operatorial SoV construction of the previous chapters. s to choose

ρα(u) =
∏
β ̸=α

1− exp

(
2π

ℏ
(u− θβ)

)
. (12.2.26)

This then guarantees that the integration with µα only picks up poles associated with shifts of

θα and hence it is natural to conjecture that for two Bethe algebra eigenstates (12.2.25) defines

their scalar product in separated variables since by expanding the determinant and evaluating

the integrals by residues we obtain

det
1≤α,β≤L

⟨q̂jA u
β q̂Bi ⟩α =

∑
x

Mx

L∏
α=1

q̂jB(x
α)

L∏
β=1

q̂Ai (x
β) (12.2.27)

since the poles of the measure µα precisely match the spectrum of separated variables. Indeed,

(12.2.25) already passes a crucial test of the scalar product – it vanishes for two different transfer

matrix eigenstates – and the factor
∏L

β=1 q̂
A
i (x

β) coincides with the wave function in separated

variables, see (11.3.12).

Let us note that the choice of ρα is not even unique as we can always multiply any of the ρα

considered above by a ℏ-periodic function with no poles or zeroes. Indeed consider the integral

⟨p f⟩α =

∫
C
duµα(u)p(u) (12.2.28)

where p(u) is ℏ-periodic without poles and zeroes. Performing the integral by residues and using

the periodicity of p(u) guarantees that ⟨p f⟩ = p(θα)⟨f⟩. Hence the overall effect of modifying

the periodic functions in this way is that det1≤α,β≤L⟨q̂jA uβ q̂Bi ⟩α becomes rescaled by a non-zero

number.

Another possibility is to consider the homogeneous limit where all θα → 0. In this case

the simple poles of the measure µα collide producing higher-order poles. A simple calculation

yields that the result will take the following form in this case

det
1≤α,β≤L

⟨q̂jA u
β q̂Bi ⟩α = F ×W (ρ1, . . . , ρL) (12.2.29)

where F is a non-zero term which only depends on the Q-functions and all ρ’s enter through

the Wronskian

W (ρ1, . . . , ρL) = det
1≤α,β≤L

ρ(β)α (θ) . (12.2.30)

One possibility is that we choose

ρα(u) = e(α−1)
u
ℏ , α = 1, 2, . . . , L (12.2.31)

which obviously produces a non-vanishing Wronskian.

su(3) Having exhausted the su(2) case we now examine the case of su(3). Our starting point

is again the two Baxter equations

−→
O Q

[2]
i

Q∅
= 0,

Qi(
Q∅
)[2]←−O = 0 . (12.2.32)

Like before we introduce two finite-difference operators O and O† defined by

O = 1− T1,1(u)

ν1(u)
D−1 + T2,1(u)

ν1(u)ν
[−2]
1 (u)

D−2 − T3,1(u)

ν1(u)ν
[−2]
1 (u)ν

[−4]
1 (u)

D−3 (12.2.33)
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and

O† = 1−
T
[2]
1,1(u)

ν
[2]
3 (u)

D1 +
T
[4]
2,1(u)

ν
[2]
3 (u)ν

[4]
3 (u)

D2 −
T
[6]
3,1(u)

ν
[2]
3 (u)ν

[4]
3 (u)ν

[6]
3 (u)

D3 (12.2.34)

and satisfy

O q̂
[2]
i (u) = 0, O† q̂j(u) = 0 . (12.2.35)

By the method described previously it is straightforward to check that we have

∫
C
du

Γ[ν
[2]
1 (u)]

Γ[ν
[2]
3 (u)]

gO f =

∫
C
du

Γ[ν
[2]
1 (u)]

Γ[ν
[2]
3 (u)]

f O† g (12.2.36)

and so for any two states A and B we have

0 =

∫
C
du

Γ[ν
[2]
1 (u)]

Γ[ν
[2]
3 (u)]

q̂jA
(
OA −OB

)
q̂
B [2]
i =

∫
C
du

Γ[ν
[2]
1 (u)]

Γ[ν
[2]
3 (u)]

q̂
B [2]
i

(
O†A −O

†
B

)
q̂jA . (12.2.37)

Fundamental representation We will now proceed with a simple example which is the case

of the defining representation on each spin chain site. Hence, we have

ν1(u) = Q
[−2]
θ (u), ν2(u) = ν3(u) = Qθ(u), Qθ(u) =

L∏
α=1

(u− θα) (12.2.38)

and so
Γ[ν

[2]
1 (u)]

Γ[ν
[2]
3 (u)]

=
1

Qθ(u)
. (12.2.39)

A point to note for this representation which will also be used for su(n) case is that the

higher transfer matrices Ta,1 contain overall trivial factors of Qθ which is not true for general

representations. Indeed, we write

T2,1 = Qθ(u)t2(u) (12.2.40)

where t2(u) is a polynomial of degree L. To make the notation uniform we will also denote

t1(u) = T1,1(u).

From the operator SoV construction we know from (11.3.12) that for this representation the

right wave functions Ψ(x) are given by the product

L∏
α=1

q̂1(x
α
11)q̂1(x

α
21) . (12.2.41)

In order to attempt to reproduce this from the Baxter equation we will put all of the shifts

acting on the Hodge dual Q-functions qi and so use

0 =

∫
C
du

ρα(u)

Qθ(u)
q̂
A [2]
1

(
O†A −O

†
B

)
q̂jB . (12.2.42)

We now expand the difference operators and perform a shift u 7→ u− ℏ. The result is

0 =

∫
C
du µα(u)q̂

A
1

((
tB1 − tA1

)
D −

(
t
B [2]
2 − t

A [2]
2

)
D2
)
q̂
j [−2]
B . (12.2.43)

where the measure µα(u) is given as before by

µα(u) =
ρα(u)

Q
[−2]
θ (u)Qθ(u)

. (12.2.44)
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Next we expand the transfer matrices

tAa (u) =
L∑

β=0

uβ IAa,β (12.2.45)

and so finally obtain

0 =

L−1∑
β=0

⟨q̂A1 q̂
j
Bu

β⟩αIAB
1,β +

L−1∑
β=0

⟨q̂A1 q̂
j [2]
B uβ⟩αIAB

2,β (12.2.46)

where we have denoted IAB
a,β := (−1)a−1

(
IAa,β − IBa,β

)
.

The requirement that this linear system has a non-trivial solution then imposes that vanishing

of the following 2L× 2L determinant

δAB ∝ det
(α,i),(β,j)

⟨q̂A1 q̂
i+1 [2(j−1)]
B uβ−1⟩α . (12.2.47)

The notation is as follows: the indices α, β range over 1, 2, . . . , L and i, j range over 1, 2. A

row in the matrix is labelled by a pair (α, i) and the entries in each row correspond to the

coefficients in the expression (12.2.46) which are labelled by a pair (β, j). In the simplest case

of length L = 1 this corresponds to

δAB ∝

∣∣∣∣∣ ⟨q̂A1 q̂2B⟩1 ⟨q̂A1 q̂
2 [2]
B ⟩1

⟨q̂A1 q̂3B⟩1 ⟨q̂A1 q̂
3 [2]
B ⟩1

∣∣∣∣∣ (12.2.48)

while in the case L = 2 we have

δAB ∝

∣∣∣∣∣∣∣∣∣∣
⟨q̂A1 q̂2B⟩1 ⟨q̂A1 q̂2B u⟩1 ⟨q̂A1 q̂

2 [2]
B ⟩1 ⟨q̂A1 q̂

2 [2]
B u⟩1

⟨q̂A1 q̂3B⟩1 ⟨q̂A1 q̂3B u⟩1 ⟨q̂A1 q̂
3 [2]
B ⟩1 ⟨q̂A1 q̂

3 [2]
B u⟩1

⟨q̂A1 q̂2B⟩2 ⟨q̂A1 q̂2B u⟩2 ⟨q̂A1 q̂
2 [2]
B ⟩2 ⟨q̂A1 q̂

2 [2]
B u⟩2

⟨q̂A1 q̂3B⟩2 ⟨q̂A1 q̂3B u⟩2 ⟨q̂A1 q̂
3 [2]
B ⟩2 ⟨q̂A1 q̂

3 [2]
B u⟩2

∣∣∣∣∣∣∣∣∣∣
. (12.2.49)

Matching with wave functions We now expand the determinant for the case L = 1 and

obtain

δAB ∝
∫

du1du2µ1(u1)µ1(u2)× q̂A1 (u1)q̂
A
1 (u2)× det

1≤i,j≤2
q̂
i+1 [2(j−1)]
B (uj) (12.2.50)

which indeed matches the type of expression we expect from the operator SoV construction

(11.3.12) – when the integral is calculated by residues we will obtain a sum of the form

∑
x

F (x)×
L∏

α=1

q̂1(x
α
21)q̂1(x

α
11) (12.2.51)

where the sum is over all configurations xαj1 = θα, θα + ℏ and F (x) denotes all other terms. The

product of Q-functions in (12.2.51) precisely matches the wave functions built in the previous

Part, see (11.3.12).

Interestingly the dual wave functions corresponding to the term

det
1≤i,j≤2

q̂
i+1 [2(j−1)]
B (uj) (12.2.52)

look strikingly similar to the wave functions when the physical space is the anti-fundamental

representation (11.3.12). Naturally, we can then expect that the dual wave functions will be
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simple products of Hodge dual Q-functions and hence the left eigenstates can be built using B

or perhaps some yet-to-be-determined operator. Let us examine what happens now.

Anti-fundamental representation This case is largely the same as the previous case except

since we expect the right wave functions to be given by a 2 × 2 determinant we put the shifts

on q̂i instead of q̂j . Hence we consider

0 =

∫
C
du

ρα(u)

Qθ(u)
q̂jB
(
OA −OB

)
q̂
A [2]
i . (12.2.53)

We now proceed exactly as before, the only difference being that the non-dynamical factor in

T2,1(u) is different. We put

T1,1(u) = t1(u), T2,1(u) = t2(u)Q
[−4]
θ (u) (12.2.54)

and are hence led to the system of equations

0 =

L−1∑
β=0

⟨q̂1B q̂Ai uβ⟩αIAB
1,β +

L−1∑
β=0

⟨q̂1B q̂
A [−2]
i uβ⟩αIAB

2,β (12.2.55)

where we have fixed j = 1. We then obtain

δAB ∝ det
(α,i),(β,j)

⟨q̂1Buβ−1q̂
A [2(1−j)]
i ⟩α (12.2.56)

which in the case L = 1 produces

δAB ∝

∣∣∣∣∣ ⟨q̂1B q̂A1 ⟩1 ⟨q̂1B q̂
A [−2]
1 ⟩1

⟨q̂1B q̂A2 ⟩1 ⟨q̂1B q̂
A [−2]
2 ⟩1

∣∣∣∣∣ . (12.2.57)

We will examine the implications of this result in the next Chapter.

su(n) Having extensively treated the su(2) and su(3) cases we will now consider the general

su(n) case. For simplicity we will consider the same representation each site and specifically

consider representations corresponding to symmetric powers of the defining representations with

highest weight

να = [λ, 0, . . . , 0] . (12.2.58)

Hence the weight functions are given by

ν1(u) = Q
[−2λ]
θ (u), νk(u) = Qθ(u), k ≥ 2 . (12.2.59)

As in the su(3) case the anti-symmetric transfer matrices Ta,1(u) contain trivial non-dynamical

overall factors. We have

Ta,1(u) = ta(u)
a−1∏
k=1

Q
[−2(k−1)]
θ (u) . (12.2.60)

We expand each of these transfer matrices as

ta(u) =
L∑

β=0

uβ Ia,β . (12.2.61)
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From our experience with the operator SoV construction we know that the transfer matrix wave

functions Ψ(x) in this representation are given simply by

Ψ(x) =
L∏

α=1

n−1∏
k=1

q̂1(x
α
k1) (12.2.62)

and so in order to reproduce this result we put all the shifts on the Hodge dual Q-functions

and hence consider

0 =

∫
C
duK(u) q̂

A [2]
1

(
O†A −O

†
B

)
q̂jB . (12.2.63)

where the measure factor K(u) is given by

K(u) =
Γ[ν

[2]
1 (u)]

Γ[ν
[2]
n (u)]

ρ(u) =
ρ(u)

λ∏
k=1

Q
[−2(k−1)]
θ

. (12.2.64)

The finite-difference operator O† is given by

O† =
n∑

a=0

(−1)a ta,1

Q
[2]
θ (u)

(12.2.65)

and as a result we find that (12.2.63) becomes, after again performing a shift u→ u− ℏ,

0 =

∫
C
duµα(u)

n−1∑
a=1

(−1)aq̂A1 q̂j [2(a−1)]tAB [2(a−1)]
a (u) (12.2.66)

where we have now denoted the integration measure

µα(u) =
ρα(u)

λ∏
k=0

Q
[−2k]
θ

(12.2.67)

and tAB
a = tAa −tBa . If we now expand the difference of transfer matrices into integrals of motion

t[2(a−1)]a = (−1)a
L∑

β=0

uβIa,β (12.2.68)

then (12.2.66) constitutes a linear system on the differences IAa,β − IBa,β and the requirement

that this linear system has a non-trivial solution then imposes that vanishing of the following

(n− 1)L× (n− 1)L determinant

δAB ∝ det
(α,i),(β,j)

⟨q̂A1 q̂
i+1 [2(j−1)]
B uβ−1⟩α . (12.2.69)

where now the indices i and j range over 1, 2, . . . , n− 1.

This completes our study of the functional scalar product for compact su(n) spin chains.

Next we will construct an operator realisation of the dual wave functions using a new operator

C which plays a similar role in the construction of left wave functions as B did for right wave

functions. We will return to the functional scalar product later when we consider non-compact

spin chains. Effectively the only difference is that in the compact case the ratio of Gamma

functions in K(u) cancelled to produce a function with finitely many poles while in the non-

compact case there is no cancellation and the function K(u) has an infinite number of poles

and zeros which requires a careful analysis.
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Chapter 13

Dual separated variables

We saw in the previous chapter that when the physical space is in anti-fundamental representation

the dual wave functions are given by a simple product of Q-functions. When the physical space

is in the fundamental representation the wave functions were also given by a very similar

product and this coincided with the fact that we could create right Bethe algebra eigenstates

using B. We are then led to conjecture that when the physical space is in the anti-fundamental

representation we can build left Bethe algebra eigenstates using a new operator, naturally

denoted C.

13.1 Determining C from the functional scalar product

We can already say quite a lot about C from the functional scalar product. Expanding the

determinant (12.2.57) we find

δAB ∝
∫

du1du2µ1(u1)µ2(u2)

× q̂1B(u1)q̂
1
B(u2)×

(
q̂A1 (u1)q̂

A [−2]
2 (u2)− q̂A2 (u1)q̂

A [−2]
1 (u2)

)
.

(13.1.1)

Now we evaluate the integral as a sum over residues, picking up poles at θ, θ + ℏ, providing
three independent terms

q̂1B(θ)q̂
1
B(θ)×

(
q̂A1 (θ)q̂

A [−2]
2 (θ)− q̂A2 (θ)q̂

A [−2]
1 (θ)

)
q̂1B(θ + ℏ)q̂1B(θ)×

(
q̂
A [2]
1 (θ)q̂

A [−2]
2 (θ)− q̂

A [2]
2 (θ)q̂

A [−2]
1 (θ)

)
q̂1B(θ + ℏ)q̂1B(θ + ℏ)×

(
q̂
A [2]
1 (θ)q̂A2 (θ)− q̂

A [2]
2 (θ)q̂A1 (θ)

)
.

(13.1.2)

We now compare with the known wave function of |Ψ⟩ which is

det
1≤i,j≤2

q̂i(x
α
2j), xα2j = θα + ℏ(µα

2j − j + 1) . (13.1.3)

The Gelfand-Tsetlin basis vectors are associated to the spectra of x’s as follows:

1 1 0

1 1

1

=

 1

0

0

 ,

1 1 0

1 0

1

=

 0

1

0

 ,

1 1 0

1 0

0

=

 0

0

1

 .

(13.1.4)
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We would like to interpret the functions q̂1B(u1)q̂
1
B(u2) as the wave functions of states ⟨Ψ|

generated by a C operator such that

⟨Ψ| = ⟨Ω|C(v) (13.1.5)

where v is a root of q̂1. In order to reproduce the sum over wave functions produced by the

integral formula then in the Gelfand-Tsetlin basis diagonalising B the operator C must be given

by

C(u) ∼ diag
(
(u− θ − ℏ)2, (u− θ)(u− θ − ℏ), (u− θ)2

)
. (13.1.6)

We now ask ourselves – is there a product of Gelfand-Tsetlin generators with precisely this

spectrum? The answer is yes and turns out to be given by T11(u)T
[
12
12

]
which coincides with

BGT up to a different shift in the second minor. Hence, recalling that B is given by

B(u) = T11(u)
[2]T

[
12
12

]
+ T21(u)T

[2]
[
12
13

]
(13.1.7)

the most natural guess for the C operator for gl(3) is

C(u) = T11(u)T
[
12
12

]
+ T21(u)T

[
12
13

]
. (13.1.8)

This operator should satisfy several properties. To produce a set of separated variables in a way

analogous to B it should be diagonalised by transfer matrices on some appropriate reference

state. As well as this, for spin chains carrying the anti-fundamental representation of gl(3) it

should diagonalise the Bethe algebra as

⟨Ψ| = ⟨Ω|
M∏
j=1

C(uj) (13.1.9)

where uj in this case correspond to the roots of q12 instead of q1. These facts can indeed be

verified for chains of small length, with the eigenvectors of C being given by

L∏
α=1

T1,1(θα + ℏ)nα |0̄⟩ , nα ∈ {0, 1, 2} (13.1.10)

in the anti-fundamental representation where |0̄⟩ is the highest-weight Gelfand-Tsetlin basis

state corresponding to the pattern where all nodes take their maximal value in contrast to the

situation with B where its eigenvectors were generated from ⟨0|, the state where all nodes on

GT patterns took their minimal value. The wave functions can then be worked out in terms

of Q-functions and allow us to demonstrate that C indeed creates Bethe states in the proposed

way (13.1.9).

In analogy with B we now propose the following higher-rank generalisation of C:

C(u) =
∑

J1,...,Jn−1

T
[
Jn−1

1 Jn−2+1

]
. . . T

[
J2

1 J1+1

]
T
[
J1
1

]
(13.1.11)

where the order of minors has been reversed compared to B (7.2.15) for convenience, although

similar to B this reversal does not effect any properties we will use.
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13.2 C operator and ∗-map

The Yangian Yn admits a very useful anti-automorphism [70] which acts as

Tij(u)→ Tij(−u) (13.2.1)

and on products as

Tij(u)Tkl(v)→ Tkl(−v)Tij(−u) (13.2.2)

which is trivially equivalent to

Ta(u)Tb(v) 7→ Tb(−v)Ta(−u) . (13.2.3)

Applying this transformation to the RTT relation, we obtain

Rab(u− v)Tb(−v)Ta(−u) = Ta(−u)Tb(−v)Rab(u− v) (13.2.4)

and since Rab(u− v)−1 ∝ Rab(−u+ v) we find that the RTT relation is still satisfied and hence

this maps indeed constitutes an anti-automorphism. Note that this map is consistent with

twisting – Tij(u)→ Tij(−u) if and only if Tij(u)→ Tij(−u).

We now introduce a convenient notation. For elements F (u), G(u) ∈ Yn[[u]] we define F ∗(u)
by

F ∗(−u) = (F (u))
∗
, (F (u)G(u))

∗
= G∗(−u)F ∗(−u), T∗ij(−u) = Tij(−u) . (13.2.5)

The image of any element of Yn[[u−1]] can then be reconstructed from this basic definition. In

lieu of this notation we refer to the anti-automorphism T(u) 7→ T(−u) the ∗-map. Clearly it

corresponds to applying T(u)→ T(−u) followed by a simple relabelling of u→ −u.

One of the most important properties of the ∗-map is its action on quantum minors. A

straightforward calculation immediately yields

T
[
i1...ia
j1...ja

]
(u+ ℏ k)→ T

[
i1...ia
j1...ja

]
(u+ ℏ(a− 1− k)) . (13.2.6)

Armed with this transformation law we can now compute the action of ∗ on B. We consider

gl(3), in the companion twist frame, and have

B(u) = T11T
[2]
[
12
12

]
+ T21T

[2]
[
12
13

]
. (13.2.7)

By applying ∗ and using (13.2.6) we immediately obtain

B(u)→ T
[
12
12

]
T11 + T

[
12
13

]
T21 (13.2.8)

which is none other than C(u)! For higher rank we then make the definition

C(u) := B∗(u) (13.2.9)

which reproduces our conjecture (13.1.11). This simple relation allows us to apply essentially

all of the technology developed for studying B to C, in particular we can easily construct its

eigenvectors.

We will apply the ∗-map to the commutation relation between B and transfer matrices Tλ.
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We have

Tλ(v)B(u) = fλ(u, v)B(u)Tλ(v) +

n∑
j=1

Tj1(v)× . . . (13.2.10)

which leads immediately to

C(u)T∗λ(v) = fλ(−u,−v)T∗λ(v)C(u) +

n∑
j=1

· · · × Tj1(v) . (13.2.11)

This relation will serve to diagonalise C in the same way we diagonalised B, except now we

must act on |0̄⟩, the highest-weight Gelfand-Tsetlin state satisfying Tj1(u) |0̄⟩ = δj1ν1(u) |0̄⟩.
The only other remaining thing to look at are the objects T∗λ(v) obtained by applying the ∗-
operation to transfer matrices. In order to make any kind of conclusions about eigenvectors of

C factorising Bethe algebra wave functions we would like for these to also be transfer matrices.

13.3 ∗-map and Bethe algebra

By virtue of the relation (13.2.6) transfer matrices Ta,1 in anti-symmetric representations are

only modified by simple shifts under application of ∗ and we have

T∗a,1(u) = Ta,1(u+ ℏ(a− 1)) . (13.3.1)

Since these transfer matrices generate the Bethe algebra via the CBR formula it immediately

follows that the ∗-map preserves the Bethe algebra. In general however Tλ(u) does not get

mapped to itself with simple shifts. Let’s take a look at the transfer matrix in the rep λ =

[2, 1, 0]. By using the CBR formula this can be expressed in terms of anti-symmetric transfer

matrices as

T[2,1,0] = T2,1T[2]
1,1 − T[2]

3,1 . (13.3.2)

By applying ∗ we find

T∗[2,1,0] = T[2]
2,1T

[−2]
1,1 − T[2]

3,1 (13.3.3)

which does not coincide with T[2,1,0] for any choice of shift, and indeed does not coincide with

Tλ for any choice of shifts which is easily seen by writing down the CBR formula for all possible

Young diagrams with 3 boxes, of which there are precisely 3.

Apparently T∗[2,1,0] does not coincide with a transfer matrix corresponding to an irreducible

representation of gl(3) in the auxiliary space and so the other likely candidate is that it

corresponds to some reducible representation. Of course the other alternative is that it simply

does not have a simple interpretation but for the moment lets remain optimistic. Irreducible

finite-dimensional representations of gl(n) are classified by their characters and so a natural

starting point is to examine T∗[2,1,0] in the limit u→∞. In this limit shifts are irrelevant and so

both T[2,1,0 and T∗[2,1,0] coincide in this limit and hence the two representations are isomorphic

representation of gl(3)! Hence, the difference between T[2,1,0] and T∗[2,1,0] must be a purely

quantum effect obtained from taking ℏ contributions into account.

Further intuition can be obtained from expressing the relevant transfer matrices in terms

of quantum semi-standard Young tableaux (11.1.2). We recall that T1,1, T2,1 and T3,1 can be
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expressed as

T1,1 = Λ1 + Λ2 + Λ3

T2,1 = Λ3Λ
[−2]
2 + Λ3Λ

[−2]
1 + Λ2Λ

[−2]
1

T3,1 = Λ3Λ
[−2]
2 Λ

[−4]
1 .

(13.3.4)

We can then express T∗[2,1,0] in terms of Λ’s. If we demand that it corresponds to a table of

boxes with the conditions that numbers in a row weakly increase and numbers in a column

strictly decrease then the only possible shape we can draw with these properties and producing

the correct sum over Λ’s is given by Figure 13.1, a skew Young diagram.

Figure 13.1: .

Skew diagram representations A skew diagram λ/µ is defined by a pair of Young diagrams

λ and µ such that µ is contained in λ when the top left corners of both are aligned. Graphically,

λ/µ is obtained by removing the boxes of µ from λ. As an example, let λ = [7, 6, 5, 3, 2, 2, 1]

and µ = [4, 4, 2, 1]. The skew diagram µ/λ is displayed in Figure 13.2.

Figure 13.2: The Young diagram µ (bold boundary) is contained in the Young diagram λ (left).
The resulting skew diagram µ/λ is on the right.

At the level of representations skew diagrams appear as follows. We very closely follow

the exposition in [181]. Choose an m ∈ Z≥0 and consider gl(n + m) with basis Eij , i, j ∈
{1, . . . , n +m}. gl(n +m) has natural subalgebras identified with gl(n) and gl(m) spanned by

Eij with i, j ∈ {1, . . . , n} and i, j ∈ {n+ 1, . . . , n+m} respectively.

Let λ and µ be gl(n +m) and gl(m) Young diagrams respectively which give rise to irreps

Vλ and Vµ. Consider

Homgl(m)

(
Vµ,Vλ

)
(13.3.5)

which is the set of all linear maps from Vµ to Vλ which commute with the action of gl(m). This

space carries a natural action of gl(n) defined by

(x.ϕ)(v) := x.ϕ(v), x ∈ gl(n), v ∈ Vµ, ϕ ∈ Homgl(m)

(
Vµ,Vλ

)
. (13.3.6)

It can be shown that the space is non-zero if and only if λk ≥ µk and λ′k − µ′k ≤ n i.e. λ/µ

defines a skew diagram and furthermore the representation is independent on the choice ofm up

to isomorphism. Hence this representation is completely determined by the skew diagram λ/µ

and can furthermore be extended to a representation of the Yangian Yn. Representations of Yn
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obtained in this way are referred to as elementary representations and are irreducible Yangian

representations. Nazarov [181] provides an explicit construction of them in terms of a fusion

procedure similar to what we presented in 5.1. The transfer matrices Tλ/µ have been extensively

studied, in particular their expressions in terms of quantum eigenvalues in the analytical Bethe

ansatz framework, see [144, 145, 182].

∗-map and skew diagrams Now that we understand that the ∗-operation relates transfer

matrices Tλ to transfer matrices corresponding to some skew diagram it would be nice to be

able to write down an action of ∗ directly on the level of Young diagrams resulting in a relation

T∗λ/µ = T(λ/µ)∗ (13.3.7)

where (λ/µ)∗ is some skew diagram to be determined. The key tool we will use is the CBR

formula which is also valid [144, 183] for skew-diagram transfer matrices

Tλ/µ(u) = det
1≤i,j≤λ1

Tλ′
j+i−j−µ′

i
(u+ ℏ(i− 1− µ′i)) . (13.3.8)

In order to determine (λ/µ)
∗
it is convenient to introduce a certain redundant parameterisation

of the skew Young diagram λ/µ. Indeed, any Young diagram can be viewed as a square with

boxes removed from the lower right corner and a skew Young diagram can be viewed as a square

with boxes removed from the upper left and lower right corners. Let S be a square of size r× r
containing the Young diagram λ and embed λ in the top left corner of S. We define another

Young diagram ν by the property ν′i = r−λ′r+1−i. Note that ν indeed defines a Young diagram

since λ′1 ≤ r.

We use the notation ν\S to denote that ν, after being flipped upside down and backwards,

is removed from the lower right corner of S. Hence, λ = ν\S and hence λ/µ = ν\S/µ, see
Figure 13.3. We will now demonstrate that

(λ/µ)
∗
= (ν\S/µ)∗ = µ\S/ν . (13.3.9)

Figure 13.3: Left: Young diagram ν. Right: Young diagram λ obtained by flipping ν upside
down and backwards and removing it from the square S of size 6× 6.

Proof The proof is a straightforward consequence of the CBR formula. We have

Tλ/µ(u) = det
1≤i,j≤λ1

Tλ′
j+i−j−µ′

i
(u+ ℏ(i− 1− µ′i)) (13.3.10)

which can be rewritten as

Tλ/µ(u) = det
1≤i,j≤r

Tλ′
j+i−j−µ′

i
(u+ ℏ(i− 1− µ′i)) (13.3.11)
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for any r ≥ 0 by using the boundary conditions (5.2.8) and hence, by writing λ = ν\S,

Tν\S/µ(u) = det
1≤i,j≤r

Tr−ν′
r+1−j+i−j−µ′

i
(u+ ℏ(i− 1− µ′i)) . (13.3.12)

We can now conjugate the r × r matrix of transfer matrices we take the determinant of with

the matrix σ with σij = δ1,i+j−r which transforms a matrix with entries Aij as

Aij → Ar+1−i,r+1−j (13.3.13)

and of course does not change the determinant value. Applying this transformation to (13.3.12)

and performing the transpose Aij → Aji we obtain

Tν\S/µ(u) = det
1≤i,j≤r

Tr−ν′
i+i−j−µ′

r+1−j
(u+ ℏ(r − j − µ′r+1−j)) . (13.3.14)

Finally applying the ∗ map we obtain

T∗ν\S/µ(u) = det
1≤i,j≤r

Tr−ν′
i+i−j−µ′

r+j−i
(u+ ℏ(i− 1− ν′i)) = Tµ\S/ν(u) (13.3.15)

and hence identify

(ν\S/µ)∗ = (µ\S/ν) . (13.3.16)

Importantly, it can be checked as a consequence of the boundary conditions (5.2.8) that the

skew diagram (λ/µ)∗ is actually independent of the size r of the square S as long as S is

large enough to contain λ and hence this construction is well-defined. Graphically it is clear

that applying ∗ corresponds to flipping λ/µ upside down and backwards and aligning with the

bottom right corner of S.

Figure 13.4: Action of the ∗-map on a skew diagram λ/µ (bold) on the left embedded into the
square S of size 10× 10 (dotted lines). The ∗ operation flips λ/µ upside down and backwards
and aligns it with the bottom right corner of S.

A special case of this formula concerns the case when µ = ∅. In this case the resulting

skew diagram λ∗ is determined as in Figure 13.5. Let us point out that this special case was

previously obtained in the Yn case in the paper [7] of the author albeit in the framework of the

analytical Bethe ansatz. Here we have presented a derivation for any skew diagram which only

requires the CBR formula and hence is true as a statement in Yn and not of any particular

representation.

We should also point out that the flipping procedure also implicitly includes shifts of the

spectral parameter. This is done in the following way. To each box (a, s) of the square S we

associate a value ca,s = s− a (which is also how shifts are associated in the fusion procedure).

When a Young diagram is embedded in S each of its boxes naturally attains a value ca,s for each

box the Young diagram and S share in common. Hence, moving the Young diagram around
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Figure 13.5: Action of the ∗-map on a non-skew Young diagram.

in S corresponds to an overall shift in the transfer matrix, as the transfer matrix is defined

with left corners aligned. For example, we consider the case of T2,1 and following the flipping

procedure the result is T2,1(u+ ℏ), see Figure 13.6.

Figure 13.6: Flipping results in the Young diagram of T2,1 being moved to the right which
results in an overall shift of ℏ.

We have presented an in-depth analysis of the transfer matrices T∗λ which appear in the

commutation relation with C. From a physical point of view it may help to think of them like

this. In the classical limit ℏ → 0 B and C define the same set of classical set of variables and

Tλ and T∗λ(u) define the same set of integrals of motion. Hence, in the same way that B and

C can both be viewed as alternate quantisations of the classical separated variables Tλ and T∗λ
can be viewed as alternate quantisations of the classical integrals of motion, and this choice of

quantisation does not effect their mutual commutativity.

Physical interpretation of the ∗-map Having understood how transfer matrices transform

under the ∗-map we can provide a physical interpretation of this map. Since the transfer

matrices Tλ(u) are simply mapped to other transfer matrices and the separated variables

generated by B are mapped to another set of separated variables, generated by C, the ∗-
map has the interpretation of mapping between two distinct, but equivalent, quantisations of

the classical spin chain. Indeed, in the classical limit shifts of ℏ are ignored and so B and C

coincide in this limit and in the same way Tλ(u) and T∗λ(u) also coincide in this limit.

Baxter equation and Q-operators We now have a good understanding of the transfer

matrices T∗λ but in order to write wave-functions in the SoV basis we need to know how to

express them in terms of Baxter Q-operators. We know examine the effect of the ∗-operation
on the operatorial Baxter equation(

n∑
a=0

(−1)aTa,1(u)
−→
Da

)
F (u) =

n∑
a=0

(−1)aTa,1(u)F (u− ℏ a) = 0 (13.3.17)

where the generic solution F (u) is a linear combination of Q-operators of the form

F (u) =

n∑
j=1

cj
Q[2]

j

Q∅
(13.3.18)
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where cj are some constants. Recall also the dual Baxter equation

0 = G(u)

(
n∑

a=0

(−1)a
←−
DaTa,1(u+ aℏ)

)
=

n∑
a=0

(−1)aG(u+ aℏ)Ta,1(u+ aℏ) (13.3.19)

where the solution G(u) is given by certain Hodge-dual Q-operators

G(u) =

n∑
j=1

cj
Qj(
Q∅
)[2] . (13.3.20)

We now apply the ∗-operation to the Baxter equation (13.3.17), obtaining

n∑
a=0

(−1)aTa,1(u+ ℏ(a− 1))F ∗(u+ a ℏ) = 0 . (13.3.21)

Next, perform a shift of the spectral parameter u→ u+ ℏ to obtain

n∑
a=0

(−1)aTa,1(u+ a ℏ)F ∗(u+ (a+ 1) ℏ) = 0 . (13.3.22)

Hence, we clearly see that F ∗(u + ℏ) is a solution of the dual Baxter equation. By using the

basis of solutions in terms of Q-operators we then can choose, without loss of generality (i.e.

up to symmetries of the Q-system which preserve the Baxter equation)

Q[2]
i

Q∅
7→
(
Qi
)[−2]
Q∅

. (13.3.23)

By carefully comparing signs in the QQ-relations this suggests that

QA(u) 7→ Q
←−
A (u) (13.3.24)

where
←−
A denotes the reversal of the indices constituting the set A. For example, Q123(u) 7→

Q321(u).

Let us note that Qi 7→ Qi is only one possible transformation consistent with the Baxter

equation. In general we can have an extra H-transformation

Qi 7→
n∑

j=1

Hij Qj , H ∈ GL(n) . (13.3.25)

This extra H-symmetry drops out of transfer matrices which are our primary objects of interest

so we will ignore it and simply put Hij = δij .

Transfer matrices Now that we understand how Q-operators transform we can write wronskian

expressions for transfer matrices T∗λ in terms of Qi. Starting from

Tλ(u) =
Q[−2n]
∅
Q∅̄

det
1≤i,j≤n

(
Qi

Q
[−2]
∅

)[2λ̂j ]

(13.3.26)

it immediately follows that

T∗λ(u) = (−1) n
2 (n−1)

(
Q∅
)[2n]

Q∅̄
det

1≤i,j≤n

(
Qi(
Q∅
)[2]
)[−2λ̂j ]

(13.3.27)
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where the overall sign has arisen from using Qn...21 = (−1) n
2 (n−1)Q12...n = (−1) n

2 (n−1)Q∅̄.

Quantum eigenvalues Next we examine how quantum eigenvalues transform

Λk(u) =
Q[−2]
←k−1

Q←k−1

Q[2]
←k

Q←k
7→
(
Q←k−1)[2]
Q←k−1

(
Q←k

)[−2]
Q←k

(13.3.28)

Upon resolving Γ-functions we see that the r.h.s. has a factor νn−k+1(u) and so it is natural to

denote this image as

Λk(u) 7→ Λn−k+1(u) :=

(
Q←k−1)[2]
Q←k−1

(
Q←k

)[−2]
Q←k

= νn−k+1(u)

(
q←k−1)[2]
q←k−1

(
q←k

)[−2]
q←k

. (13.3.29)

We can now easily write down a recipe for expressing transfer matrices T∗λ in terms of the new

quantum eigenvalues Λk. Previously, we had

Tλ(u) =
∑
T

∏
(a,s)∈λ

Λ#(a,s)(u+ ℏ(s− a)) (13.3.30)

where #(a, s) denotes the number in box (a, s) of the semi-standard Young tableaux T with

the rule that the content of the tableaux is such that numbers strictly decrease in columns and

weakly decrease in rows. We see that we can immediately write

T∗λ(u) =
∑
T

∏
(a,s)∈λ

Λ#(a,s)(u+ ℏ(a− s)) (13.3.31)

but now with the rule that the content of the tableaux is such that numbers strictly increase in

columns and weakly increase in rows (which corresponds to how semi-standard Young tableaux

are usually defined).

Bäcklund Flow Bäcklund transformed transfer matrices T(k)
λ were constructed as in (13.3.30)

with the requirement that we only filled the tableaux of shape λ with numbers from {1, 2, . . . , k}.
A natural extension of this is to define a new set of Bäcklund transformed transfer matrices

T∗ (k)λ as in (13.3.31) but now with the property that we only fill tableaux with the numbers

{n− k + 1, . . . , n}. These transfer matrices admit the Wronskian expression

T∗ (k)λ = (−1) k
2 (k−1)

(
Q∅
)[2k]

Q1...k
det

1≤i,j≤k

(
Qi(

Q∅
)[2]
)[−2λ̂j ]

(13.3.32)

and satisfy the property

T∗ (k)λ (θα + ℏ ναk ) = T∗ (k−1)λ (θα + ℏ ναk ) (13.3.33)

similar to (11.1.13).

13.4 Diagonalising C and dual wave functions

The procedure for diagonalising C is totally analogous to what was done for B. As such we

will not derive all details but simply sketch the main results.

We start by introducing a dual embedding morphism ϕ̄ : Hk → Hk+1 with ϕ̄(Tij) = T1+i,1+j

defined by the property

ϕ̄ : J |0̄k⟩ → ϕ̄ (J ) |0̄k⟩ (13.4.1)
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where J is an element of Yk and |0̄k⟩ is the highest-weight state of the gl(k) spin chain.

Introduce subspaces V̄(k) := ϕ̄(Hk). In exactly the same way as with B it is possible to show

that

C(k+1) ∼ ϕ̄
(
C(k)

)
|V̄(k)

(13.4.2)

and henceC can be diagonalised by repeatedly acting with lower-rank transfer matrices embedded

into Yn as was done with B. A generic C eigenvector |ΛC⟩ can be constructed as

|ΛC⟩ =
L∏

α=1

n−1∏
k=1

ϕ̄n−k−1
(
T∗µ̄α

k
(θα + ℏ ναn−k

)
|0̄⟩ (13.4.3)

for some Young diagrams µ̄α
k .

Next, we can use the Backlund flow transfer matrices T∗ (k)λ to rewrite the constructed

eigenvectors as

|ΛC⟩ =
L∏

α=1

n−1∏
k=1

T∗ (k)µ̄α
k

(θα + ℏ ναn−k) |0̄⟩ (13.4.4)

which immediately implies separation of variables for left Bethe algebra eigenstates ⟨Ψ|. By

choosing to normalise

⟨Ψ|0̄⟩ =
L∏

α=1

n−1∏
k=1

q̂12...k(θα + ℏ ναn−k) (13.4.5)

and appropriately rescaling |ΛC⟩ → |y⟩ we obtain

Ψ(y) = ⟨Ψ|y⟩ =
L∏

α=1

n−1∏
k=1

det
1≤i,j≤k

qi(yαkj) (13.4.6)

where yαkj = θα+ℏ(ναn−k− µ̄α
kj+j−1). Note that the labelling for dual GT patterns is different.

Traditionally, GT patterns are labelled as

να1 να2 . . . ναn

λαn−1,1 . . . λαn−1,n−1

. . . . . .

λα21 λα22

λα11

. (13.4.7)

When dealing with ⟨x| we introduced a labelling of dual diagonals with µkj = λn−k+j−1,j . For

|y⟩ we introduce a natural labelling for the main diagonals µα
kj = λn+j−k−1,n−k For example,

in these coordinates a gl(4) GT pattern looks like

να1 να2 να3 να4

µα
33 µα

22 µα
11

µα
32 µα

21

µα
31

. (13.4.8)

For ⟨x| the parameter µ̄α
kj labelled how much a given node was excited above its minimum

value, whereas here it labels how much a node has been decreased from its maximum value.

Furthermore, transfer matrices now act by decreasing the value of nodes along the main diagonal

instead of increasing the values along the dual diagonals. For example, if we consider gl(3),
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L = 1 a generic GT pattern is labelled as

ν1 ν2 ν3

µ22 µ11

µ21

(13.4.9)

where µ̄kj = νn−k−µkj . Let’s now specialise to the representation ν = [3, 0, 0]. |0̄⟩ corresponds
to the pattern

3 0 0

3 0

3

. (13.4.10)

By acting with the transfer matrix T∗λ(θα + ℏ ν1) = T∗ (2)λ (θα + ℏ ν1) with λ = [3, 1, 0] we obtain

the GT pattern

3 0 0

2 0

0

. (13.4.11)

SoV measure We have succeeded in obtaining highly compact wave functions for the transfer

matrix eigenstates. However, for these to actual be useful we need to know the measureM in

the SoV basis defined as the inverse of the matrix of overlaps ⟨x|y⟩

M = (⟨x|y⟩)−1x,y . (13.4.12)

Computing this directly using the definition of the SoV bases in terms of transfer matrices is

a formidable task which was done for gl(3) in the defining representation in [184]. Part of the

trouble comes from the fact that the measure is non-diagonal meaning for a given ⟨x| there
can be more than one |y⟩ such that ⟨x|y⟩ is non-zero. This is in contrast to the gl(2) case

where the measure is indeed diagonal. This computation can however be avoided if we use the

functional integral approach which completely determines the measure. For simplicity we will

also consider the defining representation, although the argument goes through in general. For

the defining representation the space has dimension nL and hence the matrix of overlaps is size

nL × nL. On the other hand some overlaps ⟨x|y⟩ are zero since ⟨0| is an eigenstate of both B

and C and so the following overlaps vanish:

⟨0|y⟩ ∝ δ0,y (13.4.13)

where the constant of proportionality can be easily worked out. This reduces the number of

unknowns in the measure to nL × (nL − 1). As well as this we can consider the following

transfer matrix eigenstate overlaps ⟨ΨA|ΨB⟩ ∝ δAB with A ̸= B. This can be expanded into

a basis of Q-functions of the form precisely matching the SoV basis wave functions and there

are precisely nL × (nL − 1) possible pairs, matching the number of unknowns in the measure.

Hence, assuming these equations are indeed all independent (which we have confirmed for low

length) the measure can be fully reconstructed from the functional scalar product.

We would like to point out that in the spirit of [131] the SoV basis is not unique and we are

free to create it with any set of conserved charges we like. In [184] an alternate left and right

SoV basis was constructed to fulfil the purpose of obtaining a diagonal SoV measure for gl(3).

This was achieved in the following way. Consider the case where the (diagonal) twist matrix

g has one zero eigenvalue but still has simple spectrum. Then for generic choice of vectors ⟨L|
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and |R⟩ the following form SoV bases with diagonal measure

⟨L|
L∏

α=1

T1,1(θα)
δnα,2T2,1(θα + 2ℏ)δnα,0

L∏
α=1

T1,1(θα)
δnα,2T2,1(θα + ℏ)δnα,1 |R⟩ , nα = 0, 1, 2 .

(13.4.14)

The only requirement in demonstrating that the measure is diagonal is the fact that as a result

of having a zero twist eigenvalue the quantum determinant vanishes identically leading to the

reduced fusion relations

T1,1(θα)T2,1(θ + 2ℏ) = 0 = T2,1(θα + ℏ)T2,1(θ + 2ℏ)

T1,1(θα)T1,1(θα + ℏ) = T2,1(θα + ℏ) .
(13.4.15)

We then construct the following set of conserved charges for the case where the twist is invertible.

Define

T̃a,1(u) =

3L∑
j=1

t̃
(j)
a,1

|tj⟩ ⟨tj |
⟨tj |tj⟩

(13.4.16)

where t̃
(j)
a,1 are the eigenvalues of the transfer matrices with one-vanishing eigenvalue as described

above and |tj⟩ are eigenvectors of the full transfer matrices with invertible twist. These transfer

matrices commute with the usual transfer matrices and furthermore satisfy the reduced fusion

relations (13.4.15) meaning that one can use them to construct a diagonal measure. It would

be very interesting if this measure could be extracted from some functional scalar product

approach as we have done with our off-diagonal measure and this certainly deserves further

investigation.

Symmetric powers Before finishing this Chapter let’s consider representations of the form

[S, 0, . . . , 0]. The resulting formulas will be useful in the next Part of this work when we consider

a non-compact generalisation of such representations. For these representations only the first

main diagonal of a given GT pattern is dynamical and as such we only need to act with a single

transfer matrix. The eigenstates of C are then constructed as

|ΛC⟩ =
L∏

α=1

Tµ̄α
1
(θα + ℏS) |0̄⟩ . (13.4.17)

As in the case with ⟨x| wave functions we have the freedom to perform a permutation on the

index i in (13.4.6). It is convenient to perform i 7→ i + 1mod n which selects the Q-functions

most useful in the non-compact case. Hence, by choosing to normalise ⟨Ψ| with

⟨Ψ|0̄⟩ =
L∏

α=1

q23...n−1(θα + ℏS) (13.4.18)

and normalising |y⟩ appropriately we obtain only a single determinant for each α

⟨Ψ|y⟩ =
L∏

α=1

det
1≤i,j≤n−1

qi+1(yαn−1,j) . (13.4.19)
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Part IV

Non-compact spin chains
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Chapter 14

Representation theory

The non-compact highest-weight case is not a trivial modification of the compact case. As we

will see, new tools are required to be developed. Indeed, as we are now dealing with infinite-

dimensional representations the counting of states is more subtle. As well as this, one of the

main tools we used in the compact case, namely the GT basis, has not yet been developed

for non-compact representations. Finally, when constructing the SoV bases for the compact

case we constructed the right states from the highest weight and left states from lowest, and

so we need to modify this procedure to create both states from highest since we do not have a

lowest-weight state for non-compact representations.

14.1 Representations

It is well known that a generic highest-weight representation of gl(n) can be constructed in

terms of first order differential operators acting on polynomials of n
2 (n− 1) variables, see [185]

for a general construction, also [186, 140]. We present a brief review of generic highest-weight

representations with examples on gl(2) and gl(3). Note that highest-weight reps can also

be constructed in a simple manner using oscillator algebras which are also a useful tool for

classifying unitary representations [187].

gl(2) A representation of gl(2) on polynomials C[x] of one variable x is given as follows, where

we recall C[x] is the algebra of polynomials in x with complex coefficients. It is important to

emphasise that while a given polynomial has finite degree the algebra C[x] is infinite-dimensional

and is spanned by 1, x, x2, . . . . The Cartan subalgebra is represented by

E11 = λ1 − x∂x
E22 = λ2 + x∂x .

(14.1.1)

The raising operators are given by

E12 = ∂x (14.1.2)

and act by lowering the polynomial degree in x and annihilate the highest-weight state which

is simply given by the constant polynomial 1. Finally, the lowering operators are given by

E21 = (λ1 − λ2)x− x2∂x (14.1.3)

and raise the degree in x. The highest-weight of the representation is λ = [λ1, λ2].
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gl(3) A generic highest-weight representation of gl(3) can be constructed on the space of

polynomials C[x, y, z] in three variables x, y, z. The representation is completely fixed by the

highest-weights λ1, λ2, λ3 - the generators are then represented as differential operators in the

variables x, y, z.

The Cartan subalgebra is given by

E11 = λ1 − x∂x − y∂y
E22 = λ2 + x∂x − z∂z
E33 = λ3 + y∂y + z∂z ,

(14.1.4)

the raising operators are

E12 = ∂x

E13 = ∂y

E23 = x∂y − ∂z

(14.1.5)

and the lowering operators are

E21 = (λ1 − λ2)x− x2∂x − xy∂y + (y + xz)∂z

E31 = y(λ1 − λ3) + xz(λ2 − λ3)− yx∂x − y2∂y − z(y + xz)∂z

E32 = −z(λ2 − λ3) + y∂x + z2∂z .

(14.1.6)

The highest-weight is λ = [λ1, λ2, λ3]. Unlike in the case of compact representations there

is no restriction on the highest-weights and they are free to take any value. For generic

values the representation is infinite-dimensional and irreducible. When we consider λj − λj+1

a non-negative integer the representation is still infinite-dimensional (since the polynomial ring

is infinite dimensional) but is now reducible – the representation now contains an invariant

subspace (which contains the highest-weight state) and defines the finite-dim irrep with highest

weight λ.

14.2 Non-compact Gelfand-Tsetlin patterns

For compact representations we made extensive use of the fact that the spectrum of separated

variables coincided with the spectrum of the Gelfand-Tsetlin algebra. If we wish to develop

SoV for non-compact reps an obvious starting point is to construct a Gelfand-Tsetlin basis and

analyse the spectrum of the GT algebra. We will restrict our attention to a length 1 spin chain

in an evaluation representation corresponding to a generic highest-weight representation.

gl(2) In this case the Gelfand-Tsetlin algebra is generated by E11 whose eigenfunctions hΛ

with eigenvalue λ11 are trivially worked out to be

hΛ(x) = xλ1−λ11 (14.2.1)

where Λ denotes a GT pattern, where for the moment there are no branching rules and hence no

restriction on λ11. In order to be in our representation space we need that hΛ(x) is a polynomial.

Clearly, the only way that this can be a polynomial is that λ1 − λ11 be a non-negative integer

and hence λ11 should have the form

λ11 = λ− n, n ∈ {0, 1, 2, . . . } (14.2.2)
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where n is free to take arbitrarily large values.

gl(3) In this case the GT generators are E11 again along with E22 and E11E22 − E12E21. We

let hΛ(x, y, z) denote their joint eigenfunctions and have

E11hΛ = λ11hΛ

(E11 + E22)hΛ = (λ21 + λ22)hΛ

(E11E22 − E12E21 + E11)hΛ = λ22(λ21 + 1)hΛ .

(14.2.3)

We can now solve the resulting differential equations. A joint eigenfunction of the Gelfand-

Tsetlin algebra is then given by

hΛ(x, y, z) = xλ21−λ11yλ1−λ21zλ2−λ22
2F1

(
λ11 − λ21, λ22 − λ2, λ22 − λ21,−

y

xz

)
. (14.2.4)

The eigenfunction is the unique eigenfunction of the GT subalgebra corresponding to the GT

pattern Λ for a highest-weight representation with highest weight [λ1, λ2, λ3] and highest-weight

state corresponding to the polynomial 1.

A rather nice feature of the hypergeometric representation of the eigenfunction is that it

makes the branching rules for any highest-weight representation easy to derive – we simply need

that the hypergeometric function to be a polynomial for any physical (in the representation

space) state and we will now work them out.

Hypergeometric function 2F1 We will briefly recall some features of the hypergeometric

function 2F1(a, b; c; z), see [188]. 2F1 is defined, for |z| < 1, by

2F1(a, b; c; z) :=

∞∑
n=0

(a)n(b)n
(c)n

zn

n!
(14.2.5)

where (q)n is the Pochhammer symbol defined by

(q)n =

n−1∏
k=0

(q − k) . (14.2.6)

The most crucial property of 2F1 for us is that if either a or b is a non-positive integer −m then

the infinite series expansion in (14.2.5) terminates, resulting in a polynomial

2F1(−m, b; c; z) =
m∑

n=0

(−1)n
(
m

n

)
(b)n
(c)n

zn

2F1(a,−m; c; z) =

m∑
n=0

(−1)n
(
m

n

)
(a)n
(c)n

zn .

(14.2.7)

It immediately follows that if both a and b are non-positive integers, a = −m1, b = −m2 then

2F1(−m1,−m2; c; z) =

m∑
n=0

#nz
n, m := min (m1,m2) (14.2.8)

Since the prefactor of 2F1 must be polynomial we immediately get the constraints

λ1 − λ21 ∈ Z≥0
λ21 − λ11 ∈ Z≥0
λ2 − λ22 ∈ Z≥0

(14.2.9)
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and it is easy to check that these are necessary and sufficient conditions. These branching

rules should be compared with those of the compact case (8.2.11) which are naturally more

restrictive. Note that similar formulae appeared in [189] where Gelfand-Tsetlin eigenvectors for

the quantum algebra Uq(sl(3)) were constructed in terms of a q-deformed analogue of 2F1.

Counting of states We have successfully manage to construct a family of eigenvectors of

the Gelfand-Tsetlin algebra. We now need to ask if we actually form a basis in the infinite-

dimensional space. Unlike the finite-dimensional case the counting of states is more complicated

in the non-compact case. Certainly all of the states we have constructed are non-zero and are

linearly independent since they correspond to different eigenvalues of the GT algebra. It is not

clear however if every vector in our space can be written as a finite linear combination of GT

eigenvectors. Note that we use the word “basis” in the algebraic sense where only finite linear

combinations are allowed. Later we will also need a basis in the analysis sense, meaning every

vector can be written as a convergent infinite series and it is important to distinguish between

the two notions.

The GT eigenvectors we have constructed do indeed form a (algebraic) basis of the representation

space. We can decompose the representation space into weight subspaces of the Cartan generators

E11 and E22

Vλ =
⊕
µ

Vλ
µ1,µ2

(14.2.10)

where Vλ
µ1,µ2

is the joint eigenspace of E11 and E22 corresponding to the eigenvalue µ1 and

µ2 respectively. For a monomial xn1yn2zn3 the E11 eigenvalue is λ1 − n1 − n2 and the E22

eigenvalue is λ2 + n1 − n3 and hence the corresponding eigenspace is clearly finite dimensional

since n1, n2, n3 ≥ 0. Hence, in order to prove that we have enough GT eigenstates to form

a basis we simply need to check that we have enough to span each of the subspaces Vλ
µ1,µ2

since every element of C[x, y, z] has a non-zero projection onto only finitely many Vλ
µ1,µ2

and a

straightforward counting exercise verifies that this is the case.

Completion of gl(n) representations to GL(n) So far in this work when dealing with

representations spaces we have interchangeably considered them as representations of both a

Lie algebra and a Lie group – Lie algebra representations were used to construct representations

of the Yangian and Lie group representations were needed to rotate the transfer matrix between

diagonal and companion twist frames. However, now that we are considering infinite-dimensional

representations we must be more careful.

When we consider representations of GL(n) we encounter objects such as (consider GL(2)

for example)

exp (tE21) , t ∈ C . (14.2.11)

Suppose we consider a representation with λ1 − λ2 = −2s and consider the action of (14.2.11)

on the highest-weight state 1 in the space of polynomials. We find

exp (tE21) .1 = (1 + t x)−2s . (14.2.12)

When −2s is a positive integer there are no problems - the resulting state is a polynomial.

However, for generic values of s the r.h.s. should be expanded into an infinite series. The

representation space should then be understood as a completed space of polynomials, where

such analytic functions which are regular at the origin are included.
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Chapter 15

Non-compact functional scalar

product

Having discussed the fundamentals of non-compact representations we turn to the generalisation

of the functional scalar product developed in Chapter 12. Our first task will be to understand

the analytic structure of Q-functions which are no longer gauge-equivalent to polynomials.

15.1 Polynomial Q-functions

In general for non-compact representations Q-functions are not polynomial but it is still possible

to find at least a few, see [190] for their explicit construction from Baxter Q-operators. If

one performs the nested Bethe ansatz around the highest-weight state then all Q-functions

describing the excitations around this state will be polynomial by construction. The remaining

Q-functions will not be polynomial however. Consider the example of gl(2), length L = 1 and

highest-weights λ1, λ2. Then by analysing the QQ-relations at large u we find that if for an

integer M we have q1(u) ∼ uM then

q2(u) ∼ uλ1−λ2−M (15.1.1)

and hence can only be polynomial in the case where λ1 − λ2 is a positive integer, i.e. the

representation is finite-dimensional.

At higher-rank the situation is similar. We restrict ourselves to representations of the form

[S, 0, . . . , 0] where S is free to take any value. By performing the Bethe ansatz we obtain

(twisted) polynomial Q-functions q̂1, q̂12, . . . , q̂12...n−1. It can be checked as a consequence of

the QQ-relations that the Hodge dual Q-functions q̂2, q̂3, . . . , q̂n are also polynomial. Consider

for example gl(3). By construction q̂1 and q̂12 = q̂3 are polynomial and by the QQ-relations

we have

q̂1 ∝ q̂2q̂3 [2] − q̂3q̂2 [2] (15.1.2)

which can be solved for polynomial q̂3. The proportionality factor is a simple function of the

twist eigenvalues.

Note that the set of polynomial Q-functions matches the structure of the SoV wave functions

very closely – we need precisely one Q-function to construct the right wave functions Ψ(x) and

n − 1 dual Q-functions to construct the left wave functions Ψ(y). A natural choice is then to

choose the Q-functions entering the wave functions so that both wave-functions are (twisted)

polynomial functions of the SoV coordinates x and y.
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15.2 Analytic requirements

In order to simplify our analysis we will make certain assumptions. First, we choose all spin

chain sites to be in the same representation να1 = −2s, να2 = · · · = ναn = 0 and perform a shift

θα → θα + i s and we assume s > 11, θα ∈ R. Hence the highest-weight polynomials are given

by

ν1(u) = Q
[2s]
θ , νj(u) = Q

[−2s]
θ , j ≥ 2 (15.2.1)

where we have introduced Qθ(u) =
∏L

α=1(u− θα). It is most convenient to put ℏ = i =
√
−1 2.

We will start our considerations with the sl(2) case. Recall that the measure takes the

general form

µ(u) =
Γ[ν1(u)]

Γ[ν
[2]
2 (u)]

ρ(u) (15.2.2)

which now, if ρ were analytic, has an infinite number of poles located at

θα − i(s+m), m ≥ 0, α = 1, . . . , L (15.2.3)

and an infinite number of zeroes at

θα + i(s− n), n ≥ 1, α = 1, . . . , L . (15.2.4)

In order to deal with this we will choose the contour of integration to be over the whole real

line and perform the integral by residues by closing the contour in the lower-half plane. The

periodic functions ρα must be chosen so that 1) the integral converges, 2) there are no unwanted

contributions arising when we shift the contour.

Contour shifts Let’s consider what happens when we try to shift the contour. We demand

that ∫
duK(u)fOg =

∫
duK(u)gO†f (15.2.5)

where we remind the reader that the finite difference operators O and O† are given by

O = 1− T

Q
[2s]
θ

D−1 +
Q

[−2s]
θ

Q
[2s]
θ

D−2

O† = 1− T[2]

Q
[−2(s−1)]
θ

D +
Q

[2(s+1)]
θ

Q
[−2(s−1)]
θ

D2

(15.2.6)

where T denotes the eigenvalue of the transfer matrix T1,1 and as before we put µ = K(u)ρ(u)/Q
[2s]
θ .

The l.h.s. of (15.2.5) contains a term µ f T g[−2] in the integrand. In order to be able to

shift the contour and produce the term µ gT[2]f [2] on the r.h.s. we need that this term does not

contain poles in the strip 0 ≤ Imu ≤ 1. As a result of (15.2.4) for any s > 1 we will always have

a zero in this region for some n ≥ 1 and hence we can allow for ρ to have poles at θα+ i(s+m),

m ∈ Z and the single pole in the region will be cancelled by a zero allowing us to shift the

contour.

The next term in the l.h.s. of (15.2.5) is µ f g[−4]Q
[−2s]
θ and we require that it does not have

poles in the strip 0 ≤ Imu ≤ 2. From the previous analysis we know things will work out in

0 ≤ Imu ≤ 1 and so we need to consider 1 ≤ Imu ≤ 2. Now we might have a problem since one

1In the publication [7] we used the condition s > 0. This difference arises because in that paper symmetric
conventions are used for shifts in the difference operators, whereas here we put all shifts in a given direction.

2The paper [7] uses the convention ℏ = −i.
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of the previously allowed poles θα + i s could pose a problem, but thankfully this is cancelled

by the factor Q
[−2s]
θ . Hence, we are free to shift the contour.

Convergence We require that the integral∫ ∞
−∞

duµα(u)f(u)g(u)u
k, k = 0, 1, . . . , L− 1 (15.2.7)

converges where the test functions f and g are twisted polynomials behaving as

f(u) ∼ z−iu1 utf , g(u) ∼ z−iu1 utg (15.2.8)

for some integers tf and tg. Let ϕ1 = arg z1. We will assume for the moment that ϕ1 ∈ (0, π]

(we will comment on ϕ1 ∈ (−π, 0) later). The measure µα(u) behaves as

µα(u) ∼ u2sρ∞α (u) (15.2.9)

where ρ∞α denotes the u→ +∞ asymptotic of ρα(u), ρα(u) ∼ ρ∞α (u). Hence, we see

µα(u)f(u)g(u)u
k ∼ z−2iu1 utρ∞α (u) (15.2.10)

where we have dropped the irrelevant constant factor and denoted by t some irrelevant number

whose value will not spoil convergence. Convergence of the integral then requires that ρα decays

exponentially and faster than z−2iu1 . Similarly it should decay faster than z2iu1 at u→ −∞. As

a result of these conditions we see that z1 cannot be real and an imaginary part is required to

ensure the required behaviour at infinity.

Combining the requirements of convergence and shifting the contour we see that an i-periodic

function with the required properties is

L∑
α=1

Cα

1− e2π(u−θα−i s)
(15.2.11)

where Cα is a constant. We will then choose the L independent functions

µα(u) =
Γ[Q

2s]
θ ]

Γ[Q
[−2(s−1)]
θ ]

ρα
1− e2π(u−θα−i s)

(15.2.12)

as our measures as these are sufficient to reproduce the scalar product from the operatorial

construction of the SoV wave functions which will be done in the next Chapter. Note that if

we were to choose ϕ1 ∈ (−π, 0) we would simply need to change the sign in the exponent in the

denominator of (15.2.12) to ensure convergence. The poles of µα in the lower half plane are at

θα− i(s+n), n ≥ 0 which as we will see precisely matches the spectrum of separated variables.

In fact that it already be inferred by simply analytically continuing the results of the compact

case.

By repeating the steps from the non-compact case we then obtain that for two different

states A and B we have

δAB ∝ ⟨ΨA|ΨB⟩ = 1

N
det

1≤α,β≤L
⟨q̂1uβ−1q̂1⟩α (15.2.13)
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where N is chosen so that the sum over residues is of the form

⟨ΨA|ΨB⟩ =
L∏

α=1

q̂1(θα − is)2 + . . . (15.2.14)

similar to what was done in the compact case.

sl(3) We now examine the sl(3) case, which is largely similar to the su(3) case. Let us fix the

measure µα as in the sl(2) case and put

µα(u) =
Γ[Q

[2s]
θ ]

Q
[−2(s−1)]
θ

1

1− e2π(u−θα−i s)
. (15.2.15)

The adjointness property of the operator O we seek then amounts to showing that we can write

∫ ∞
−∞

duµα f

(
Q

[2s]
θ − t1D−1 +

Q
[−2s]
θ

Q
[2(s−1)]
θ

t2D−2 −
Q

[−2s]
θ Q

−2(s+1)
θ

Q
[2(s−1)]
θ

D−3
)
g

= .

∫ ∞
−∞

duµα
Q

[2s]
θ

Q
−2(s−1)
θ

g
(
Q

[−2(s−1)]
θ − t

[2]
1 D + t

[4]
2 D2 −Q[2(s+1)]

θ D3
)
f

(15.2.16)

where we have written T2,1 = Q
[−2s]
θ t2 and t2 is a polynomial of degree L. By our analysis

in the sl(2) case we know there will be no problems with shifting the contour in the region

0 ≤ Imu ≤ 2 so we just need to check the region 2 ≤ Imu ≤ 3. As before we indeed have

a pole in this region coming from ρα but it is cancelled by the factor Q
[2(s−1)]
θ and hence the

adjointness property is guaranteed.

We turn our attention to integral convergence where now we require that∫ ∞
−∞

duµα(u) q̂1u
kq̂i, i = 2, 3 (15.2.17)

converges where the Q-function asymptotics are now given by

q̂1 ∼ z−iu1 ut1 , q̂2 ∼ (z1z3)
−iuut2 , q̂3 ∼ (z2z3)

−iuut3 (15.2.18)

for some integers t1, t2, t3. Similarly to the sl(2) case we will assume for definiteness that

0 < arg z2 − arg z1 < π, 0 < arg z3 − arg z1 < π . (15.2.19)

These conditions ensure that the integral in (15.2.17) will be convergent for both choices of

i = 2, 3. Also, like for sl(2), if e.g. the first inequality in (15.2.18) is violated, we should

redefine µα by flipping the sign in the exponent in the denominator of (15.2.12).

Finally, the scalar product is then given by precisely the same formula as in the su(3) case

δAB ∝ det
(α,i),(β,j)

⟨q̂A1 q̂
i+1 [2(j−1)]
B uβ−1⟩α (15.2.20)

the only difference being the integration contour and measure. The generalisation to sl(n) is

immediate.

Analytic continuation in the spin s So far we restricted ourselves to the case s > 1. When

we consider the case s ≤ 1 we need to be careful that we do not have unwanted contributions

of poles when trying to shift the integration contour. The simplest way around this as follows.
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One can start by rewriting the integrals as a sum over poles and with appropriate overall

normalisation (as we will later see) the coefficients of the Q-functions in this infinite series are

polynomial functions of the spin s and can be trivially analytically continued to s ≤ 1 without

spoiling any properties such as convergence or orthogonality of different Bethe states.

Restriction to finite-dimensional case We now consider the finite-dimensional case s =

−m
2 , m ∈ Z≥0. It is not totally obvious that our integral expression reduces to what we had

in the compact case. However, as we explained above we can rewrite the integrations as an

infinite sum over poles. Upon restriction to the finite-dimensional case this infinite series will

truncate leaving only finitely-many terms, and this finite series can then be re-expressed using

contour integrals around finitely many poles as was done in the compact case.
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Chapter 16

Operatorial SoV

We now turn to the question of constructing the SoV bases for infinite-dimensional representations.

From the get-go we immediately run into two issues.

The first regards the explicit construction of states. Previously C was diagonalised starting

from |0̄⟩ while B was diagonalised starting from ⟨0|. For an infinite-dimensional highest-weight

representation we no longer have access to both of these vectors – we only have |0̄⟩. On the

other hand, ⟨0̄| is also an eigenvector of B in the compact case. Hence, we need to modify our

diagonalisation procedure to enable us to diagonalise B starting from ⟨0̄|.

The second issue involves the explicit counting of states. In the compact setting we made

extensive use of the fact that in the auxiliary singular twist limit the SoV basis reduces to

the Gelfand-Tsetlin basis. This was crucial for representations where the spectra of B and

C are degenerate. Unfortunately, to our knowledge Gelfand-Tsetlin bases have not yet been

constructed for generic highest-weight representations of the Yangian Yn and so in order to be

able to make accurate statements regarding whether or not a family of eigenvectors of B and C

constitute a basis we must restrict ourselves to representations where they have non-degenerate

spectra. After that, we need to perform a counting of states in some controlled manner. The

family of representations we will consider are those with ν1 = −s and ν2 = · · · = νn = s and

hence the weight functions are given by

ν1(u) = Q
[2s]
θ (u), νk(u) = Q

[−2s]
θ (u), k = 2, . . . , n (16.0.1)

i.e the same class of representations discussed in the previous Chapter for the functional

orthogonality approach. This class of representations can be thought of as a non-compact

analogue of the symmetric powers of the defining representation where the length of the single

row of the Young diagram is free to take any desired value, including negative values. For

this class of representations, for sl(3), the representation space, initially defined on C[x, y, z],
reduces to C[x, y] since it is not possible to create z excitations. Hence for practical purposes

one can use the differential operator realisation (14.1.4) and send all z-terms to 0. Similarly for

sl(n) we reduce from polynomials in n
2 (n − 1) variables to n − 1 variables. As a result of this

reduction B and C contain a number of overall trivial factors. It is convenient to introduce

operators b(u) and c(u) which have all trivial factors stripped out

B(u) = b(u)

n−1∏
a=2

a∏
k=2

ν[2(k−1)]n , C(u) = c(u)

n−1∏
a=2

a∏
k=2

ν[2(k−a)]n . (16.0.2)

Before tackling the discussed issues let us construct the eigenvectors ofC in the non-compact

case.
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16.1 Diagonalising C

The procedure for diagonalising C is essentially identical to the compact case when dealing with

symmetric powers of the defining representation and the corresponding wave functions written

down in (13.4.19) are given by

⟨Ψ|y⟩ =
L∏

α=1

det
1≤i,j≤n−1

qi+1(yαn−1,j) . (16.1.1)

The eigenstates |y⟩ are constructed up to normalisation as

|y⟩ ∼
L∏

α=1

T∗µ̄α(θα − ℏνα1 ) |0̄⟩ . (16.1.2)

This construction continues to work perfectly in the non-compact case with να1 = −s since

the commutation relation (13.2.11) is unchanged the fact that Tj1(θα − i s) |0̄⟩ = 0. The only

difference between the compact and non-compact case is the restriction on the Young diagrams

µ̄α in order to ensure that the eigenvector is actually non-zero. The analysis presented in the

compact case can be easily extended to the case when s is generic – for any Young diagram

µ̄α the resulting eigenvectors are non-zero, unlike in the compact case where these eigenvectors

would only be non-zero for µ̄α contained in the rectangle of size ν1 × n− 1.

In the next section we will demonstrate that these states indeed form a basis.

16.2 Counting with the SoV charge operator

For notational simplicity we denote by d, for fixed n and L, the number

d = L(n− 1) . (16.2.1)

Classically this is degrees of freedom of the spin chain, that is half of the dimension of the phase

space of the corresponding classical sl(n) spin chain, for the reduced representation space on

n− 1 variables instead of n
2 (n− 1).

We already saw thatB andC do not commute and hence in general do not share eigenvectors

except for a few special states. On the other hand, since B and C only differ by shifts of the

spectral parameter u they become related at large u where shifts become inconsequential.

Expanding b at large u we have

b(u) = ud − ud−1
(
(n− 1)

L∑
α=1

θα − 2ℏ d s− ℏN

)
+O

(
ud−2

)
. (16.2.2)

The operator N is known as the SoV charge operator and it can also be obtained in the

expansion of c(u) in the same way. It satisfies the following very useful property

[b(u),N] = [c(u),N] = 0 (16.2.3)

and also commutes with all Gelfand-Tsetlin generators

[N,GTa(u)] = 0, a = 1, 2, . . . , n− 1 (16.2.4)

and hence N acts diagonally on any eigenvector of B, C or the Gelfand-Tsetlin algebra.
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We saw in the previous section that a generic eigenvector of C can be constructed as

|ΛC⟩ =
L∏

α=1

T∗µ̄α(θα + ℏλα1 ) |0̄⟩ , λα1 = −s . (16.2.5)

By using the expression of the SoV charge operator extracted from c(u), like we did above with

b(u), we see that for such a state we have

N |ΛC⟩ =

n−1∑
j=1

L∑
α=1

µ̄α
j

 |ΛC⟩ (16.2.6)

and so the SoV charge operator counts the number of “excitations” above the SoV vacuum

state |0̄⟩. From this we see the following crucial property – the eigenspaces of N are finite-

dimensional. Indeed, since each µ̄α
j is a positive integer and the eigenvalue of N is a sum of

such terms there are only finitely many choices for µ̄α
j to produce the same eigenvalue. Hence,

in each subspace of fixed SoV charge we can express each vector as a finite linear combination

of basis monomials which can then be expressed as a finite linear combination of ⟨ΛC| and
hence the eigenvectors of C (in the MCT frame) form a basis of the representation space of

polynomials.

On the other hand, if we rotate back to the frame with diagonal twist then an eigenvector

of C (a polynomial) will be mapped to a convergent infinite series. In this case need to ask if

we can write any vector |v⟩ in this completed space as

|v⟩ =
∑
Λ

cΛ |ΛC⟩ (16.2.7)

where the sum is over all the eigenvectors |ΛC⟩ of C and cΛ are some finite coefficients. This

representation of |v⟩ does indeed exist. By definition we have

|v⟩ = lim
k→∞

k∑
r=0

c(r)e(r) (16.2.8)

where we sum over basis monomials e(r) of the polynomial space up to degree r. By choosing

k to be sufficiently large we can include all basis monomials up to a given SoV charge and no

others, which can then be expressed in terms of the eigenvectors |ΛC⟩ of C.

To demonstrate the procedure, let us consider sl(3) length L = 1. The basis monomials are

x and y with x contributing 1 unit to SoV charge and y 2 units. That is

Nxn1yn2 = (n1 + 2n2)x
n1yn2 . (16.2.9)

We can write any vector in the completed space as

|v⟩ = lim
k→∞

2k∑
r1=0

k∑
r2=0

cr1,r2x
r1yr2 (16.2.10)

and the finite sum

2k∑
r1=0

k∑
r2=0

cr1,r2x
r1yr2 contains all terms up to an including SoV charge 2k.

We then rewrite this finite sum in terms of C eigenvectors, completing the construction. This

guarantees that any element of the completed space of polynomials can be expressed as an
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infinite linear combination of the SoV basis elements. That is, we can write, for any vector |v⟩,

|v⟩ =
∞∑

n=0

|yn⟩ (16.2.11)

where |yn⟩ is a finite linear combination of right SoV basis states |y⟩ with the property

N |y⟩ = n |y⟩ . (16.2.12)

16.3 Diagonalising B and antipode

We now explain how to diagonalise B starting from ⟨0̄|. We recall that in the compact version of

the representations we are considering the eigenvectors of B are constructed, for length L = 1,

as

⟨ΛB| = ⟨0|
n−1∏
j=1

Tsj ,1(θ) ∝ ⟨0|
n−1∏
j=1

q̂
[2sj ]
1 (θ)

q̂1(θ)
, sj ∈ {0, 1, . . . , S} . (16.3.1)

The highest-weight state ⟨0̄| then corresponds to all sj = S and so

⟨0̄| ∝ ⟨0| (TS,1(θ))
n−1 ∝ ⟨0̄|

(
q̂
[2S]
1 (θ)

q̂1(θ)

)n−1

. (16.3.2)

We can now move back down the chain of eigenvectors by repeatedly acting with

q̂
[2(S−sj)]
1 (θ)

q̂
[2S]
1 (θ)

, sj ∈ {0, 1, . . . , S} . (16.3.3)

Seemingly we can diagonalise B starting from ⟨0̄| by acting with simple ratios of Q-operators.

On the other hand to be able to make formal statements regarding the construction it is

preferable to be able to diagonalise B using transfer matrices instead of Q-operators since the

former are usually easier to work with. We hence ask ourselves: does this ratio of Q-operators

coincide with a transfer matrix evaluated at some particular point? The answer is yes and it

coincides with the transfer matrix Tn−1,sj (θ+ ℏ (S + n− sj)). This can be easily seen by using

quantum eigenvalues. Consider sj = 1 and the expansion

Tn−1,1(u) =
∑

1≤i1<...in−1≤n

Λin−1
Λ
[−2]
in−2

. . .Λ
[−2(n−1)]
i1

. (16.3.4)

If Λ1 appears in a term it can only be in the right-most position which carries a shift Λ
[−2(n−1)]
1

and so vanishes at θ + ℏ(S + n− 1) due to the fact that

Λ1(u) = Q
[−2S]
θ

q
[2]
1

q1
. (16.3.5)

Hence

Tn−1,1(θ + ℏ(S + n− 1)) = ΛnΛ
[−2]
n−1 . . .Λ

[−2(n−1)]
2 (16.3.6)

where all terms on the r.h.s. are evaluated θ + ℏ(S + n − 1). By using the known expressions

for quantum eigenvalues in terms of Q-functions (11.2.3) we then obtain

Tn−1,1(θ + ℏ(S + n− 1)) ∝ q̂
[2(S−1)]
1 (θ)

q̂
[2S]
1 (θ)

. (16.3.7)
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We will now formalise this argument. The key tool we will use is the Yangian antipode map

S which is known to map the transfer matrix T1,1 to Tn−1,1 [70] and so seems like a natural

starting point. The antipode S is defined by

S : T (u)→ T−1(u) . (16.3.8)

Note that this is clearly compatible with twisting – if T(u) = T (u)G then we can extend S to

the twisted case by defining

S : T (u)G→ G−1T−1(u) = T−1(u) (16.3.9)

and hence S acts the same on both twisted and untwisted monodromy matrix elements. For

notational simplicity we will denote S(u) and S(u) by

S(u) = T−1(u), S(u) = T−1(u) . (16.3.10)

We will need to perform fusion with the inverse monodromy matrix. T satisfies the RTT

relation

Rab(u, v)Ta(u)Tb(v) = Tb(v)Ta(u)Rab(u, v) (16.3.11)

and hence S satisfies

R̄ab(u, v)Sa(u)Sb(v) = Sb(v)Sa(u)R̄ab(u, v), R̄(u, v) = u− v + ℏP . (16.3.12)

As a result, fusion for S is performed in precisely the same way as for T but now we use the

opposite sign of ℏ. Let us denote by Sλ(u) the transfer matrix constructed from S in the irrep

λ. In analogy with fusion for T is satisfies the a slightly modified CBR formula compared to

(5.2.7) and reads

Sλ(u) = det
1≤i,j≤λ1

Sλ′
j+i−j,1(u− ℏ(i− 1)) . (16.3.13)

Let’s examine the structure of these transfer matrices in a bit more detail. The transfer matrices

Sa,1 are linear combinations of quantum minors of size a built from S

Sa,1(u) =
∑
i,j

S
[
i1...ia
j1...ja

]
(16.3.14)

where we sum over all indices with 1 ≤ i1 < · · · < ia ≤ n and similarly for j and the quantum

minor built from S is defined as

S
[
i1...ia
j1...ja

]
=
∑
σ∈Sa

Siσ(1)j1S
[2]
iσ(2)j2

. . .S
[2(a−1)]
iσ(a)ja

. (16.3.15)

Notice the sign change compared to (5.1.23).

We are now in a position to relate the transfer matrices Sλ to the transfer matrices Tλ. The

main tool needed for this is the known formula [70] for the action of the antipode on quantum

minors. Let p = {i1, . . . , in} and q = {j1, . . . , jn} be two permutations of {1, . . . , n}. Then we

have

qdetT(u) S
(
T
[
jm+1...jn
im+1...in

]
(u− ℏm)

)
= sgnp sgn qT

[
i1...im
j1...jm

]
. (16.3.16)

It is trivial to work out the action of S on the minor constructed from T to produce

S
(
T
[
i1...ia
j1...ja

])
(u) = S

[
i1...ia
j1...ja

]
(u− ℏ(a− 1)) (16.3.17)
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and so by summing over indices in (16.3.16) we obtain

Sa,1(u) =
T[2(n−1)]
n−a,1

T[2(n−1)]
n,1

. (16.3.18)

Hence, the Bethe algebra is closed under the action of the antipode and as a result all transfer

matrices Sλ built from the inverse monodromy matrix can all be expressed in terms of the

transfer matrices constructed with T(u).

We now consider the commutation relation (9.3.1)

Tλ(v)B(u) = fλ(u, v)Tλ(v)B(u) +R(u, v) . (16.3.19)

We are going to apply some transformations to it and end up with a commutation relation

intertwining Sλ and B which will allow us to generate B eigenstates from ⟨0̄|. To do this

we need a map ω = S ◦ ∗ which, as a composition of Yangian anti-automorphisms, is an

automorphism and satisfies [70]

ω
(
T
[
i1...ia
j1...jj

]
(u)
)
= S

[
i1...ia
j1...jj

]
(u) . (16.3.20)

We also need the matrix σ with σij = δn+1−i,j and maps Tij → Tn+1−i,n+1−j . Note that these

monodromy matrix elements are bare, i.e. untwisted. Note that there is no argument in the

r.h.s. of (16.3.20) due to how the ∗-map was defined with an additional relabelling of u→ −u
compared with [70].

We now show that the composition ω◦σ transforms our commutation relation in the desired

way. We will demonstrate it first for gl(3). Let’s apply the sequence of maps to B, where we

have set all w’s to 1 for convenience. We have

B(u) = T
[
1
1

]
T [2]

[
12
12

]
+ T

[
2
1

]
T [2]

[
12
13

]
(16.3.21)

which becomes, after applying σ,

B(u)→ T
[
3
3

]
T [2]

[
23
23

]
+ T

[
2
3

]
T [2]

[
23
13

]
(16.3.22)

where we have also used the symmetry properties of quantum minors. We now apply ∗, the
first map in ω to obtain

B(u)→ T
[
23
23

]
T
[
3
3

]
+ T

[
23
13

]
T
[
2
3

]
. (16.3.23)

Finally, we apply S and use (16.3.16) to obtain

B(u)→ T [4]
[
12
12

]
T [2]

[
1
1

]
+ T [4]

[
2
1

]
T [2]

[
12
13

]
= B[2] (16.3.24)

where we have used the fact that minors and single monodromy matrix elements in B commute

with each other and have ignored overall factors of the quantum determinant which will drop

out of the resulting commutations relation. The calculation can easily be repeated for gl(n) –

the end conclusion is the same, B(u) → B[2](u) except this time we cannot freely reverse the

order of minors. On the other hand we argued earlier that this reversal does not effect the

commutation relation of interest, and so we obtain the result.

Next we consider the remainder term R(u, v) =
∑n

j=1 T
[
j
1

]
(v) × . . . . We clearly end up

with

R(u, v)→
n∑

j=1

S
[
j
n

]
(v)× . . . (16.3.25)
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where we also performed j → n+1− j. For the moment it is convenient to write the result like

this instead of re-expressing in terms of Tij .

Finally, we consider the action of our sequence of maps on the transfer matrix Tλ(u). For

illustrative purposes let us consider the case where λ is the defining representation. We have

T1,1(u) = tr (T (u)G)→ tr
(
S σ−1Gσ

)
. (16.3.26)

Unfortunately the object on the r.h.s. is not S1,1(u) since σ−1Gσ ̸= G−1. However, the difference

is quite manageable. Consider gl(3). We have

S1,1 = S21 + S32 +
1

χ3
S13 −

χ1

χ3
S23 +

χ2

χ3
S33 (16.3.27)

whereas

tr
(
S σ−1Gσ

)
= S21 + S32 + χ3S13 − χ2S23 + χ1S33 . (16.3.28)

We see that the only difference between these two objects is arising from terms Sjn, but these are

precisely the type of terms in the remainder (16.3.25)! We can then repeat the argumentation

we used earlier in deriving the commutation relation between B and Tλ to move all of these

terms into the remainder and hence for the purposes of the commutation relation we can simply

replace σ−1Gσ with G−1 and hence obtain S1,1 in the commutation relation.

We can now repeat the argument for other transfer matrices. First we look at Ta,1 and again

obtain Sa,1 up to terms which do not effect the commutation relation and then by using the CBR

formula the same statement is true for all Tλ. Under our transformation fλ(u, v)→ fλ(−u,−v)
and hence we finally obtain

Sλ(v)B[2](u) = fλ(−u,−v)B[2](u)Sλ(v) +
n∑

j=1

Sjn(v)× . . . . (16.3.29)

We will now prove that S1,s ∝ Tn−1,s. We use the CBR formulae

Tn−1,s = det
1≤i,j≤s

Tn−1+i−j,1(u+ ℏ(i− 1)) (16.3.30)

S1,s = det
1≤i,j≤s

S1+i−j,1(u− ℏ(i− 1)) (16.3.31)

and use the relation (16.3.18) to rewrite the second equation as

S1,s =
s∏

i=1

1

T[2(n−i)]
n,1

× det
1≤i,j≤s

Tn−1−i+j,1(u+ ℏ(n− i)) . (16.3.32)

We can conjugate the matrix inside the determinant with the matrix which transforms (i, j)→
(s+ 1− i, s+ 1− j) without changing the determinant value, obtaining

S1,s =
s∏

i=1

1

T[2(n−i)]
n,1

× det
1≤i,j≤s

Tn−1+i−j,1(u+ ℏ(i− 1 + n− s)) (16.3.33)

and hence conclude

S1,s =
s∏

i=1

1

T[2(n−i)]
n,1

× Tn−1,s(u+ ℏ(n− s)) . (16.3.34)

It is straightforward to verify that the remainder term will vanish for v = θα+ℏS and hence B

eigenstates are created by action of Tn−1,s(θα+ℏ(S+n−s), as claimed. Hence, the eigenvectors
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of B are constructed as

⟨ΛB| = ⟨0̄|
L∏

α=1

n−1∏
j=1

Tn−1,1(θα + ℏ(S + n− sj)) . (16.3.35)

Hence, by normalising |Ψ⟩ so that

⟨0̄|Ψ⟩ =
L∏

α=1

n−1∏
j=1

q̂
[2S]
1 (θα) (16.3.36)

and renormalising ⟨ΛB| → ⟨x| we obtain

⟨x|Ψ⟩ =
L∏

α=1

n−1∏
j=1

q̂
[2(S−sj)]
1 (θα) (16.3.37)

which holds regardless of what value S takes. Finally we perform the usual S → −2s and

θα → θα + is to obtain

⟨x|Ψ⟩ =
L∏

α=1

n−1∏
j=1

q̂
[−2(s+sj)]
1 (θα) . (16.3.38)

16.4 Explicit examples in sl(2) and sl(3) spin chains

In this section we will demonstrate the developed techniques on some explicit examples of low

rank and low length L. We will start with the sl(2) case and L = 1. For simplicity when dealing

with Hodge dual Q-functions we impose that det G = 1 and hence for sl(2) have z1z2 = 1 and

for sl(3) have z1z2z3 = 1. This results in Q-functions having the structure

q̂j = z−iuj × . . . , q̂j = ziuj × . . . . (16.4.1)

sl(2) spin chain We start by determining the vacuum state |Ω⟩ in the companion twist frame.

There are two ways to achieve this. The first is to construct a rotation matrix which brings the

diagonal twist matrix g to the companion matrix G, write it as a product of exponentials of Lie

algebra generators and then evaluate its action on the highest-weight state for diagonal twist.

An alternate approach is to write the transfer matrix in the companion twist frame explicitly

and solve the resulting differential equations using its known vacuum eigenvalue. The result is

of course the same in both cases, but we follow the second approach for simplicity and solve

T1,1(u) |Ω⟩ = T1,1(u) |Ω⟩ , T1,1(u) = z1Q
[2s]
θ + z2Q

[−2s]
θ . (16.4.2)

The result is

|Ω⟩ = z−i θ−s1

(
1 +

x

z1

)−2s
(16.4.3)

and is clearly not a polynomial for generic s as expected. The normalisation factor has been

chosen to ensure that ⟨0̄|Ω⟩ produces the expected value (16.3.38).

In order to compute the dual vacuum state ⟨Ω| we need to equip our representation space

with a scalar product and notion of transpose. Transposition T is naturally introduced by the

property

⟨Ψ1|OΨ2⟩ = ⟨OTΨ1|Ψ2⟩ . (16.4.4)

To proceed, we introduce an orthonormal basis of states |en⟩ on the representation which by
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definition satisfy

⟨en|em⟩ = δnm, n,m ≥ 0 . (16.4.5)

A natural guess would be to simply use en = xn but this is not compatible with the explicit

realisation of our Lie algebra generators. It is common to choose an explicit realisation of

generators with the property

ET
ij = Eji (16.4.6)

but it is more convenient in order to avoid messy signs to define the transpose with

ET
jj = Ejj , ET

12 = −E21 . (16.4.7)

Together with the requirement e0 = 1 this fixes the basis to be given by

en = xn

√
Γ(n+ 2s)

Γ(n+ 1)Γ(2s)
. (16.4.8)

At this point we should mention that our scalar product does not involve any complex conjugation

and the scalar product is linear in both arguments. To promote it to Hermitian conjugation

we need to impose that s is real. Furthermore, in order for Hermitian conjugation to lift to

the Yangian generators in a natural way one should make certain choices on the reality of the

parameters of the model such as inhomogeneities θα and twists zi. Instead we will view our

scalar product as simply defining the action of a dual vector on a vector.

Equipped with our scalar product we can now calculate ⟨Ω| using the differential equation

approach as before and we find

⟨Ω| = z−iθ−s1

(
1 +

x

z1

)−2s
. (16.4.9)

We can then calculate the overlap ⟨Ω|Ω⟩ which should be expanded into an infinite series.

To check convergence one can use the ratio test and we find that convergence is guaranteed

provided we take |z1| > 1 and so z1 cannot be a pure phase. Computing the overlap we then

find

⟨Ω|Ω⟩ = z
−2(iθ+s)
1

(
1− 1

z21

)−2s
. (16.4.10)

We now compare our results with the functional integral approach. We have that

⟨ΨA|ΨB⟩ := 1

N
⟨q̂A1 (u) q̂A1 (u)⟩ (16.4.11)

where N is a normalisation fixed as follows. The integral can be expanded into a sum over

residues

⟨ΨA|ΨB⟩ := 2πi

N

∞∑
n=0

M′nq̂A1 (θ − i(s+ n)) q̂B1 (θ − i(s+ n)) (16.4.12)

where M′n correspond to the residues of the measure at θ − i(s + n). The normalisation N
is then given by N = 2πiM′0 in order to match the normalisation of the SoV measure which

starts with the leading term ⟨0̄|0̄⟩ = 1 and by puttingMn = 2πiM′n/N we have

Mn =
1

n!

Γ[2s+ n]

Γ[2s]
. (16.4.13)

We now compare the results from the integral with our explicit computation of ⟨Ω|Ω⟩. The
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Q-function for this state is given by

q̂1 = z−iu1 (16.4.14)

and if we plug it into (16.4.12) we find

⟨Ω|Ω⟩ = z−2s1

(
1− 1

z21

)−2s
(16.4.15)

which perfectly reproduces the result of our direct computation and like in the case of the direct

computation (16.4.10) we find that for the infinite series (16.4.12) to converge we need |z1| > 1.

At this point it is useful to note that there is another, rather non-trivial, quantity we can

compute using our techniques. We made extensive use of the fact that in the companion

twist frame the SoV bases were independent of the twist eigenvalues and hence they serve to

separate the wave functions of a transfer matrix with a twist of companion form but with

different eigenvalues. The SoV measure is obviously unaffected by this and so we expect that

our integral can also be used to compute overlaps between states of different twists.

Let ⟨Ψ̃| and |Ψ⟩ be eigenstates of transfer matrices T̃ and T built with companion twist

matrices G̃ and G respectively different only in their eigenvalues. Then we claim that

⟨Ψ̃|Ψ⟩ = 1

N
⟨˜̂q1(u) q̂1(u)⟩ (16.4.16)

where ˜̂q1 is the Q-function corresponding to the state ⟨Ψ̃|. As before we will compare the

integral result with direct computation for the overlap ⟨Ω̃|Ω⟩ where

⟨Ω̃| = ⟨Ω| = z̃−iθ−s1

(
1 +

x

z̃1

)−2s
. (16.4.17)

A direct computation of the overlap yields

⟨Ω̃|Ω⟩ = z−iθ−s1 z̃−iθ−s1

(
1− 1

z1z̃1

)−2s
. (16.4.18)

Comparing with the integral we find precisely the same result!

So far we have performed a few non-trivial checks that the integral approach indeed reproduces

the correct expression for the overlaps. In this simple set-up we can show however that the

integral produces the correct SoV measure precisely without needing to consider special states

which amounts to computing the overlaps ⟨x|x⟩. We start by computing ⟨x|. Since these are

eigenvectors of the GT algebra they must be simple monomials xn, n ∈ Z≥0. Imposing the

normalisation

⟨x|Ω⟩ = z
−iθ−(s+n)
1 (16.4.19)

immediately yields ⟨x| = (−1)nxn = |x⟩. We can now easily work out the overlap ⟨x|x⟩ which is

given by

⟨x|x⟩−1 =
1

n!

Γ[2s+ n]

Γ[2s]
(16.4.20)

which precisely matches the measure (16.4.13)Mn obtained from the functional integral approach.

and demonstrating the equivalence between the two approaches.

sl(3) We now repeat the previous computations for the sl(3) L = 1 case which is a bit more

involved but nevertheless is straightforward.

Our starting point is to introduce a scalar product ⟨−|−⟩ such that the gl(3) Lie algebra
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generators satisfy ET
ij ∝ Eji where ∝ indices a possible sign. We impose that the sign is + for

the Cartan generators while ET
12 = −E21, E

T
13 = −E31 and ET

23 = E32. The representation space

is on C[x, y] and we introduce a basis en,k = cn,kx
nyk with the property ⟨en,k|en′,k′⟩ = δnn′δkk′ .

Our requirements then fix

en,k = xnyk

√
Γ[2s+ n+ k]

Γ[n+ 1]Γ[k + 1]Γ[2s]
(16.4.21)

once we impose 0,0 = 1.

As in the sl(2) case we can compute the transfer matrix vacuum eigenvectors |Ω⟩ and ⟨Ω| by
explicitly writing the transfer matrix as a differential operator and using its known eigenvalues.

We find

|Ω⟩ =
(
1 +

x

z1
+

y

z21

)−2s
× z−2(i θ+s)

1 (16.4.22)

⟨Ω| =
(
1 + x(z2 + z3)−

y

z1

)−2s
× z−i θ−s+1

1 (z2 − z3) . (16.4.23)

As before the normalisation factors are chosen to ensure we obtain the correct results for ⟨0̄|Ω⟩
and ⟨Ω|0̄⟩.

Like in the sl(2) case we can compute the overlap ⟨Ω̃|Ω⟩ where ⟨Ω̃| is the vacuum state for

a transfer matrix with twist eigenvalues z̃j , j = 1, 2, 3. We find

⟨Ω̃|Ω⟩ = z̃−i θ−s+1
1 (z̃2 − z̃3)z−2(i θ+s)

1

(
1− z̃2

z1

)−2s(
1− z̃3

z1

)−2s
. (16.4.24)

We will now attempt to reconstruct this result using the functional integral approach. We

need to compute

1

N

∣∣∣∣∣ ⟨q̂A1 q̂2B⟩1 ⟨q̂A1 q̂
2 [2]
B ⟩1

⟨q̂A1 q̂3B⟩1 ⟨q̂A1 q̂
3 [2]
B ⟩1

∣∣∣∣∣ (16.4.25)

where q̂A1 = z−iu1 and q̂2B = z̃iu2 , q̂3B = z̃iu3 . Expanding the determinant we obtain

1

N

∫
dudv µ1(u)µ1(v) f(u, v) (16.4.26)

where f(u, v) is the term containing Q-functions. Like before the normalisation is fixed so that

in the expansion over residues the coefficient of the f(θ− is, θ− is) term is 1 and so for the case

at hand

N =
4π2e8iπs

(−1 + e−4iπs)
2
Γ(1− 2s)2

. (16.4.27)

It is straightforward to perform the sum over residues yielding

1

N

∫
dudv µ1(u)µ1(v) f(u, v) =

∞∑
n,m=0

Γ[2s+ n]Γ[2s+m]

Γ[2s]2
f(θ−i(s+m), θ−i(s+n)) . (16.4.28)

By plugging in the simple expression for f(u, v) in terms of twist eigenvalues and performing

the sum we find that we perfectly reproduce (16.4.24)!

The fact that the such overlaps can be expressed as a simple determinant in Q-functions is

extremely powerful. As we already said, the SoV measure obtained from the matrix of overlaps

⟨x|y⟩ is non-diagonal in general means not having to compute it directly is a huge advantage.

In Figure 16.1 we present an example of the matrix of overlaps and associated SoV measure for

sl(3) length L = 2 to demonstrate its structure, keeping in mind that it is block diagonal since

146



x

y

y

x

Figure 16.1: Non-zero elements of the matrix ⟨x|y⟩ (Left) and its inverse (Right) up to SoV
charge 6. Blocks indicate fixed SoV charges.

both B and C commute with the SoV charge operator.
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Chapter 17

Computing observables –

determinant representations for

overlaps and expectation values

In this section we will extend the previous results by deriving SoV-based determinant representations

for overlaps and expectation values of various operators.

17.1 Defining det-product and its relation to SoV

Here we discuss the main tools for computing some physical observables with the help of the

SoV approach we developed in the previous sections. For simplicity we will mostly demonstrate

the method on the sl(3) example but in all cases the generalisation to sl(n) is clear.

One of the key quantities we will compute in this section is the overlap between transfer

matrix eigenstates corresponding to spin chains with different twist eigenvalues. Indeed, in the

MCT frame the SoV basis states are twist independent and hence factorise the wave functions of

transfer matrix eigenstates built with any twist. This implies that the integral representation we

derived in the previous section for states of the same spin chain can be, very non-trivially, used

to compute overlaps between the eigenstates of different transfer matrices. Such overlaps were

recently considered in the context of AdS/CFT correspondence [191] and can be interpreted

as 3-point correlation functions involving so-called color twist operators and have also been

studied in the Bethe ansatz framework [192].

For what follows it will be convenient to introduce notation for what refer to as the det-

product,

JG|F K =
1

N0
det

(α,i),(β,j)
⟨Fα(u)u

β−1D2(j−1)Gi+1
β ⟩α (17.1.1)

where the notation ⟨f⟩α initially referred to an integration

⟨f⟩α =

∫ ∞
−∞

duµα(u) f(u) (17.1.2)

we now understand more generally as a sum over the poles of the factors µα appearing in the

integration measure. The normalisation N is fixed in the way described in the previous Section.

For the case when G and F in (17.1.1) are Q-functions describing two spin chain states, the

det-product gives the overlap of these states we presented above in (15.2.20). By performing
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the integrations and sum over residues the expression (17.1.1) can be expressed

JGa
α|Fα K =

∑
x,y

My,x

∏
α,a

Fα(x
α
a )
∏
α

(
G2

α(y
α
1 )G

3
α(y

α
2 )−G3

α(y
α
1 )G

2
α(y

α
2 )
)

(17.1.3)

whereMx,y denotes the measure. We demonstrated the validity of this formula in some simple

L = 1 examples in the previous Chapter but it holds generally. We will not present the

somewhat involved combinatorics here put refer the reader to the original publication [7] of the

author.

We will see that a number of correlators can be expressed in terms of the det-product,

bypassing the need to explicitly compute the measure components Mx,y. In order for two

states |Θ⟩ and ⟨Φ| to have a scalar product which can be written in the det-product form, we

have to require what we call separability property from these states, which can be expressed as

⟨x|Θ⟩ =
L∏

α=1

Fα(x
α
1 )Fα(x

α
2 )

⟨Φ|y⟩ =
L∏

α=1

[
G2

α(y
α
1 )G

3
α(y

α
3 )−G3

α(y
α
1 )G

3
α(y

α
3 )
]
.

(17.1.4)

If that is the case, then as a consequence of the completeness of both SoV bases {x} and {y}
and due to the relation (17.1.3) we immediately get

⟨Φ|Θ⟩ = JG|F K . (17.1.5)

In what follows we explore a few examples when (17.1.4) does hold. One immediate example

is when both states are transfer matrix eigenstates. In this case of course we simply have

Fα = q̂1(x
α) and Gi+1

α = q̂i+1(yαi ), so that

⟨ΨA|ΨB⟩ =
q
q̂i+1
A |qB1

y
∝ δAB (17.1.6)

In the above expression the left and right wave functions are normalised according to our

conventions from Chapter 16.

17.2 Overlaps between wave functions with different twists

Another quite obvious example where the separability property (17.1.4) is satisfied for both

states but gives much less trivial overlap than (17.1.6) is the case when both states are eigenstates

of transfer matrices with different sets of twists eigenvalues za and zi. As we emphasised before,

the SoV states do not depend on z’s and thus should separate wave functions corresponding

to spin chains with arbitrary twist eigenvalues zj (provided the twist matrix is of MCT form)

and indeed we already saw an example of this in the previous chapter based on explicit L = 1

examples.

We thus conclude that the overlap between the states of the spin chains with different twist

eigenvalues can we written in the form

⟨Ψ̃|Ψ⟩ =
r
G̃|F

z
(17.2.1)

where G̃ and F are appropriate Q-functions. In the above expression we still assume that

the states are normalised in agreement with our conventions. However, we can also form a
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normalisation independent combination, for example

⟨Ψ̃|Ψ⟩ ⟨Ψ|Ψ̃⟩
⟨Ψ̃|Ψ̃⟩ ⟨Ψ|Ψ⟩

(17.2.2)

which we will make use of in a moment.

Probing the transition matrix. The overlap between two eigenstates of the transfer matrix

in different frames is sl(n) invariant. This means that one can diagonalise either one of the two

twist matrices appearing in the transfer matrices. The matrix which relates the two frames

that diagonalises one of these two twist matrices has the following general form, valid for sl(n):

Sab =
∏
i ̸=a

za − z̃a
zi − za

, S−1ab =
∏
i ̸=a

z̃i − zb
z̃i − z̃a

. (17.2.3)

Let us show that the above transformation is hard-wired into the SoV construction and into the

det-product in particular. Consider the normalisation independent combination of the scalar

products of two twisted vacua,

⟨Ω̃|Ω⟩ ⟨Ω|Ω̃⟩
⟨Ω̃|Ω̃⟩ ⟨Ω|Ω⟩

=
(z1 − z̃2)−2s(z1 − z̃3)−2s(z̃1 − z2)−2s(z̃1 − z3)−2s

(z1 − z2)−2s(z1 − z3)−2s(z̃1 − z̃2)−2s(z̃1 − z̃3)−2s
. (17.2.4)

Let’s now focus on the defining representation, i.e. s = −1/2. Let’s assume that |Ω⟩ is in

the diagonalised frame. We know that for the diagonal twist the ground is simply the highest

weight state |Ω⟩ = e⃗1, whereas the other state reads |Ω̃⟩ = S−1|Ω⟩ = S−111 e⃗1 + S−121 e⃗2 + S−131 e⃗3.

Similarly for the left states ⟨Ω| = e⃗1 and ⟨Ω̃| = ⟨Ω|S = S11e⃗1 + S21e⃗2 + S31e⃗3, from where we

would expect that for s = −1/2 we should get

⟨Ψ̃|Ψ⟩ ⟨Ψ|Ψ̃⟩
⟨Ψ̃|Ψ̃⟩ ⟨Ψ|Ψ⟩

= S11S
−1
11 (17.2.5)

which is indeed the case as we see from (17.2.4). Note that one can further interchange

the order of the eigenvalues, changing the vacua accordingly, to deduce any combination of

the form SabS
−1
ba , a, b = 1, 2, 3. One can invert the logic and verify that the knowledge

of all SabS
−1
ba , a, b = 1, 2, . . . , n allows one to reconstruct Sab modulo the transformation

S → D1.S.D2, where D1, D2 are two independent diagonal matrices. The diagonal matrices

will commute with the twist matrices and they reflect the freedom in the definition of S in the

first place.

17.3 On-shell off-shell overlap

In this section we explore the effect of the action by B(u) or C(u) operators on factorisable

states. Assuming the state |Θ⟩ is separated by the SoV basis like in (17.1.4), we have

⟨x|b(w) |Θ⟩ = ⟨x|Θ⟩
L∏

α=1

(w − xα1 )(w − xα2 ) (17.3.1)

where b(w) is the non-trivial part of the B(w) operator defined in (16.0.2) and we have

introduced the shorthand notation for its roots xαj1 → xαj . We see that the action by b(w)

simply translates into the replacement Fα(u) → (w − u)Fα(u). It is clear that there is a
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potential to generalise this further. We can define a “local” bα operator so that, for gl(n),

bα =

n−1∏
j=1

(u− Xα
j ) (17.3.2)

Repeating the same calculation as in (17.3.1) we see that bβ(w) acts on Fα as1

bβ(w) ◦ Fα(u) = (w − u)δβαFα(u) . (17.3.3)

To summarise, this means that multiple action of any bβ(w) operators does not spoil the

separability property of the wave function. This means that we can compute a set of rather

non-trivial form factors in a determinant form,

⟨Φ|bβ1(v1) . . .bβK
(vK) |Θ⟩

⟨Φ|Θ⟩
=

t

Ga
α|

K∏
i=1

(vi − u)δβiαFα

|

JGα,a|Fα K
. (17.3.4)

A particularly important case involves the following state

|Ψ⟩off−shell := b(v1) . . .b(vK) |Ω⟩ (17.3.5)

which in analogy with sl(2) one could call an off-shell Bethe state. To distinguish it from some

other off-shell Bethe states existing in the literature, one could call it algebraic off-shell Bethe

states as opposed to the hybrid coordinate-algebraic way of building eigenstates of transfer

matrix in the nested Bethe ansatz approach. It follows immediately from (17.3.4) that the

overlap between (17.3.5) and any separable state, and in particular with an eigenstate ⟨Φ| of
the transfer matrix, is of a determinant form

⟨Φ|Ψ⟩off−shell =

u

v q̂1,a+1|z−iu1

K∏
j=1

(u− vj)

}

~ . (17.3.6)

Note that for this to be true it is not required that {vj} are Bethe roots solving Bethe ansatz

equations. As we described before when the parameters {vk} do satisfy the Bethe ansatz

equations the state |Ψ⟩off shell does actually become an eigenstate of the transfer matrix.

In analogy with bα(u) we can also define cα(u), containing only those roots of c(u) that are

associated with θα. For the insertion of this operator we can use the relation

⟨Φ| cβ(w) |y⟩ = ⟨Φ|y⟩ (w − yβ1 )(w − yβ2 )

= (w − yβ1 )(w − yβ2 )
L∏

α=1

(G2
α(y

α
1 )G

3
α(y

α
2 )−G3

α(y
α
1 )G

2
α(y

α
2 ))

(17.3.7)

implying that Ga
β(u) → (w − u)Ga

β(u), leaving other Ga
α(u) with α ̸= β unchanged. Therefore

1One should be careful with the ◦ notation, as there is no linearity in the first argument, e.g. the sum of two
operators does not necessarily produce a factorisable state and thus does not have any well defined action on
individual Fαs. However, ◦ is an associative operation and does support an action by several operators.
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we can generalise the result (17.3.4) as follows:

⟨Φ| cγ1
(v1) . . . cγK

(vK)bβ1
(w1) . . .bβJ

(wJ) |Θ⟩
⟨Φ|Θ⟩

=

u

vGa
α

K∏
j=1

(vj − u)δγjα |
J∏

i=1

(wi − u)δβiαFα

}

~

JG|F K
.

(17.3.8)

17.4 Form factors of derivatives of the transfer matrices

In this section we show how our integral SoV approach leads to determinant representations

for a large class of diagonal form factors, extending the results of [180] from s = 1/2 to generic

s. We demonstrate the sl(3) case, but generalization to sl(n) is immediate as we will see. We

also show how to compute matrix elements of some local operators from this data.

We consider a basis of integrals of motion Ia,β defined by

Ta,1(u) = Qθ(u)
δa2

L∑
β=0

uβIa,β , a = 1, 2 . (17.4.1)

The form factors we consider are the diagonal matrix elements of the derivatives these integrals

of motion defined as
⟨Ψ| ∂Ia,β

∂p |Ψ⟩
⟨Ψ|Ψ⟩

=
Ib,β
∂p

(17.4.2)

where p is a parameter of the model (either an inhomogeneity θα or a twist zj). While the

spectrum of the model is under good control and one could in principle compute the derivative

in the r.h.s. of (17.4.2) directly (as a ratio of finite differences), here we rather wish to express

it in terms of Q-functions evaluated at one fixed value of p, and it is nontrivial that such an

expression exists at all. We will see that the result has a rather natural form of a ratio of two

determinants, with the denominator corresponding to the norm (15.2.20) and the numerator

given by the same expression with an extra insertion that we interpret as describing the operator

∂pIa,β we consider. In the AdS/CFT context correlators of this kind are also important as they

correspond to 3-point functions with marginal operators [193].

If we consider a small variation of our parameter p→ p+δp, the Q-functions q̂a+1 as well as

the difference operator O† in the Baxter equation (12.2.34) will change, but the equation will

remain satisfied, so that (O† + δO†)(q̂a+1 + δq̂a+1) = 0. Recall the bracket (f, g)α defined by

(f, g)α :=

∫
duKα(u) f(u) g(u) (17.4.3)

where Kα(u) = ν1(u)µα(u) which satisfies (f,O†g) = (O f, g). Using that the original Q-

function satisfies O†q̂a+1 = 0, and dropping the terms quadratic in variations, we have

0 = (q̂
[2]
1 (O† + δO†)(q̂a+1 + δq̂a+1))α = (q̂

[2]
1 O†δq̂a+1)α + (q̂

[2]
1 δO†q̂a+1)α . (17.4.4)

Now using the adjoint property (f,O†g) = (O f, g) we see that the first term vanishes so that

we get

(q̂
[2]
1 , ∂pO†q̂a+1)α = 0 . (17.4.5)

It is convenient to introduce a rescaled operator Ō with Ō = Q
[−2(s−1)]
θ O†. The benefit of this

is that Ō is easier to work with, being polynomial in θs. We still have the property Ōq̂a = 0
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and hence (
q̂
[2]
1 ,

1

Q
[−2(s−1)]
θ

∂pŌq̂a+1

)
α

= 0 . (17.4.6)

Explicitly, the variation ∂pŌ of Ō reads

∂pŌ =
∑
(β,b)

∂pIb,β−1(u+ ℏ)β−1Db − F [2]
p (17.4.7)

with

F [2]
p = −

(
∂pQ

[−2(s−1)]
θ − ∂pQ[2(s+1)]

θ D3
)
+
∑
b

∂pIb,L(u+ ℏ)LDb . (17.4.8)

We have singled out the integrals of motion Ib,L since they are simply proportional to the identity

operator and so do not carry non-trivial dynamical information which is only contained in the

functions Ib,β−1, β = 1, . . . , L. Plugging (17.4.7) into (17.4.6) we get a linear system for the

variations ∂pIb,β−1 of the form (after performing an overall shift u→ u− ℏ)∑
(β,b)

m(α,a),(β,b)∂pIb,β−1 − f(α,a) = 0, f(α,a) = ⟨q̂1 Fp ◦ q̂a+1⟩α (17.4.9)

where

m(α,a),(β,b) = det
(α,a),(β,b)

⟨q̂1uβ−1Db−1 ◦ q̂a+1⟩α (17.4.10)

is the same matrix appearing in the sl(3) scalar product (15.2.20) with the two states taken to

be the same. Note that in (17.4.9) we have switched from the brackets (f, g)α to the bracket

⟨f g⟩α) defined in (12.2.23) as a consequence of that fact that after a shift of u→ u−ℏ we have(
f,

1

Q
[−2(s−1)
θ

g

)
→ ⟨f [−2]g[−2]⟩α . (17.4.11)

We can write the solution of (17.4.9) using Cramer’s formula as

∂pIb′,β′−1 =
det(α,a)(β,b) m̃(α,a)(β,b)

det(α,a)(β,b)m(α,a)(β,b)
(17.4.12)

where m̃(α,a)(β,b) is the matrix m(α,a)(β,b) with the column (β′, b′) replaced with f(α,a) defined

in (17.4.9). This gives a determinant representation for the variation of integrals of motion and

the form factor (17.4.2). The generalisation to sl(n) is immediate.

Local spin expectation value One of the key quantities of interest in spin chains are

correlators of “local” operators, i.e. those that act on a particular spin chain site in contrast

to “global” operators such as the transfer matrix. While certain maps from local to global

operators are well known (see e.g. [194] and the review [97]), here we will demonstrate that

our approach offers yet another way to access local quantities. Namely, there is a remarkable

relation between a subset of local operators and derivatives of the integrals of motion ∂Ia,β/∂θα,
whose expectation values we computed in the previous section.

The main idea is that when taking the derivative in θα we can single out the α-th spin chain

site. To make it precise, let us write explicitly the large u expansion of the transfer matrix with

fundamental representation in the auxiliary space defined using the form of the Lax matrix

from (4.2.18),

T1,1(u) = χ1u
L − uL−1

(
L∑

α=1

χ1θα + ℏ tr
(
E(α)tG

))
+O(uL−2) . (17.4.13)
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The trace here is taken over the auxiliary space, and E(α) is an n× n matrix whose element at

position (i, j) is the operator i,j (the gl(n) generator) acting on the α-th site of the spin chain.

Note that E in this expression is transposed w.r.t. the indices i, j as we indicated with the

superscript t. We see that in (17.4.13) we have a sum of local operators over all sites of the spin

chain. Now we notice that when we differentiate the transfer matrix in θα, the Lax operator at

position α in its definition will be simply replaced by minus the identity matrix, so as a result

we will get the transfer matrix for the spin chain with the α-th site removed. This means that

the derivative will be given by the same result (17.4.13) but with sum taken over all sites except

one,

∂T1,1(u)

∂θα
= −χ1u

L−1 + uL−2

 L∑
β ̸=α

χ1θβ + ℏ tr
(
E(β)tG

)+O(uL−3) . (17.4.14)

By combining this with (17.4.13) we can therefore extract the contribution from the site α only,

T1,1(u) + u
∂T1,1(u)

∂θα
= −uL−1

(
χ1θα + ℏ tr

(
E(α)tG

))
+O(uL−2) (17.4.15)

Taking the coefficient of uL−1 in this relation, we finally get

I1,L−1 +
∂I1,L−2
∂θα

= −χ1θα − ℏ tr
(
E(α)tG

)
. (17.4.16)

We remind the reader that I1,α are the operator coefficients in the expansion of the transfer

matrices

T1,1(u) =

L∑
α=0

uαI1,α . (17.4.17)

We see that (17.4.16) is a relation between a local operator acting on the α-th site (in the l.h.s.)

and a global operator acting on all sites (in the r.h.s.). Sandwiching this relation between left

and right transfer matrix eigenstates |Ψ⟩ and ⟨Ψ|, we find that the expectation value is given

by

− i
⟨Ψ| tr

(
E(α)tG

)
|Ψ⟩

⟨Ψ|Ψ⟩
=
⟨Ψ| ∂I1,L−2

∂θα
|Ψ⟩

⟨Ψ|Ψ⟩
+ I1,L−1 + χ1θα . (17.4.18)

Let us note that this expression does not depend on normalisation of the states |Ψ⟩. The only

nontrivial correlator in the r.h.s. is the first term, which is given by the determinant (17.4.12)

we derived above in the SoV approach. Thus we find a compact result for the expectation value

of the local operator tr
(
E(α)tG

)
.

We can also repeat a similar argument starting from the transfer matrices in a-th antisymmetric

representation in the auxiliary space. We start with sl(3). A straightforward calculation yields

that for the class of representations we consider we have

L∧
2

(u− θ) = (u− θ − is) ((u− θ + i(s− 1)) + i E) (17.4.19)

from which we express the transfer matrix T2,1 as

T2,1(u) = tr
(
L∧

2

(u− θL) . . .L∧
2

(u− θ1)G∧
2
)
. (17.4.20)

By repeating the same procedure as before we can express the local operator tr
(
E(α)G∧

2
)
as

i
⟨Ψ| tr

(
E(α)G∧

2
)
|Ψ⟩

⟨Ψ|Ψ⟩
=
⟨Ψ| ∂I2,L−2

∂θα
|Ψ⟩

⟨Ψ|Ψ⟩
+ I2,L−1 + χ2θα . (17.4.21)
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The main point is now that when the twist is diagonal (17.4.18) and (17.4.21) together with

the constraint E
(α)
11 +E

(α)
22 +E

(α)
33 = −2s provide an inhomogeneous system of three independent

equations for the three form factors ⟨Ψ|E(α)
jj |Ψ⟩ / ⟨Ψ|Ψ⟩ which has a unique solution.

The procedure for gl(n) is analogous – in our particular class of representations in the

physical space each of the fused Lax operators L∧a

(u) contain (a − 1) trivial zeroes which

multiply a part linear in Eijs. The derivatives in θα together with the central charge constraint

E11 + . . .Enn = −2s provide n equations for the n unknowns E
(α)
ii allowing us to solve for them

in terms of the form factors ⟨Ψ| ∂Ia,α

∂θα
|Ψ⟩ / ⟨Ψ|Ψ⟩, fully expressible in terms of determinants of

Q-functions.

A natural question to ask is how tractable are such determinants of (integrals of) Q-

functions from a computational perspective. For low length spin chains with finite dimensional

representations there is no problem as Q-functions are simply polynomials and can be computed

very easily, see [150]. For non-compact representations the situation is similar provided one is

satisfied with some small excitations around the highest-weight state as was demonstrated in

the previous Chapter for non-compact sl(3) spin chains. For representations without highest-

weight the determinants in question can be efficiently computed numerically for example using

the techniques [35].

We note that form factors of exactly the type we can compute here are important e.g. in

Landau-Lifshitz models [195], and it would be interesting to further explore their properties. Let

us also point out that the expectation values of operators like ∂T(u)/∂θ are not straightforwardly
accessible by traditional methods of the algebraic Bethe ansatz, but appear to be natural objects

in the SoV approach. We believe that exploring the interrelations between the SoV and more

standard methods should open the way to computing a still larger class of correlators in the

future.
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Part V

Solving the Yang-Baxter

equation
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Chapter 18

Local charges and Boost

automorphism

In the previous sections we extensively developed the SoV program for integrable spin chains

based on the rational R-matrix R(u, v) = u − v − ℏP . In this Part we will take a different

route and examine more general solutions of the Yang-Baxter equation and develop an efficient

procedure for constructing them.

Throughout the history of quantum integrable systems numerous different approaches have

been developed for finding solutions of the Yang-Baxter equation. In the early days a very

fruitful approach has been through requiring the solutions to have certain symmetries [196,

101, 197]. For example, if we wish for the Hamiltonian H to commute with the generators a of

some Lie algebra g then one should impose that [R(u, v), a⊗1+1⊗a] = 0. More generally given

some bialgebra A we require that ∆op(a)R(u, v) = R(u, v)∆(a) where ∆ and ∆op denote the

coproduct and opposite coproduct on A, respectively, cf the general discussion in Chapter (3).

In many cases this is enough to completely fix R up to a small number of functions, drastically

simplifying the construction, as was demonstrated in the case of AdS/CFT integrable systems

[19, 198, 199, 200, 201, 202, 203, 204]. Of course, this approach first requires one to know what

the corresponding symmetry is and there are R-matrices which may have no such symmetry at

all.

Still within the realm of algebra, a more abstract approach is that of Baxterisation which

initially appeared in the realm of knot theory [205, 206, 207] and consists of constructing

solutions of the YBE as representations of certain algebras, for example Hecke algebras and

Temperly-Lieb algebras [208, 209, 210].

A more hands-on approach is to simply try and solve the Yang-Baxter equation directly.

The upside to this is that in principle one can obtain all solutions in this way, but this is

contrasted with the enormous difficulty of solving cubic functional equations. This approach is

usually supplemented with differentiating the YBE and reducing the cubic functional equations

to a system of coupled partial differential equations. This approach has recently been used to

provide a full classification of R-matrices of size 4× 4 so-called 8-and-lower-vertex models [211]

satisfying the difference property R(u, v) = R(u − v) and to obtain certain 9 × 9 models [212]

whose R-matrix satisfies the so-called ice rule but this method quickly becomes unwieldy as the

size of the R-matrix increases.

In this Part of the thesis we will describe a new approach for constructing solutions of the

Yang-Baxter equation which uses a suitably defined integrable Hamiltonian as a starting point.
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18.1 Solutions

Difference vs non-difference form TheR-matrixR(u, v) depends on two spectral parameters

u and v which in general are totally independent. There is a special class of models for which

the R-matrix is of difference form where R(u, v) = R(u − v). There are numerous physical

models which fall into this class such as the XYZ spin chain and its derivatives. As well as this

1+1-dimensional integrable S-matrices possessing this property correspond to models possessing

Poincare invariance such as in the O(N) sigma model. Most models however do not have this

property and it is not possessed by the integrable S-matrices associated with the AdS/CFT

correspondence, although in certain limits the difference form property can be re-established.

Nevertheless it is difference form models are useful and are especially easy to classify owing to

the fact that the R-matrix only depends on a single independent variable and in this case the

Yang-Baxter equation can be written as

R12(u− v)R13(u)R23(v) = R23(v)R13(u)R12(u− v) . (18.1.1)

We will now give some examples of solutions of the YBE and the integrable systems they

correspond to.

Rational XXX spin chain In the previous chapters we studied the Yangian Yn in depth.

It has the R-matrix

R12(u, v) = (u− v)112 − ℏP12 (18.1.2)

where P is the permutation operator on Cn. The Hamiltonian density H12 is simply given by

the permutation operator

H12 = P12 . (18.1.3)

The corresponding integrable system is the Heisenberg XXX spin chain and possesses gl(n)

symmetry. For the simplest case n = 2 the Hamiltonian is given by

H12 =
1

2
(σx ⊗ σx + σy ⊗ σy + σz ⊗ σz + 1⊗ 1) (18.1.4)

where σx,y,z are the usual su(2) Pauli matrices. At the point u = v the R-matrix becomes

proportional to the permutation operator and the R-matrix is manifestly of difference form.

Trigonometric XXZ spin chain A closely related solution corresponds to the quantum

algebra Uq(ŝl(n)) with R-matrix given by

R12(u, v) =
(u
v
q − v

u
q−1
) n∑

a=1

eaa ⊗ eaa +
(u
v
− v

u

) n∑
a̸=b

eaa ⊗ ebb

+
(
q − q−1

) n∑
a ̸=b

(u
v

)sign(a−b)
eab ⊗ eba .

(18.1.5)

The corresponding integrable system is the Heisenberg XXZ spin chain. We will write out the

Hamiltonian density explicitly in the simplest case n = 2. Before this, it is convenient to make

the transformation

R12(u, v)→ A1(u)A2(v)R12(u, v)A1(u)
−1A2(v)

−1, A(u) = diag
(
u−1, 1

)
. (18.1.6)
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This transformation does not modify regularity of the R-matrix nor the YBE and leads to an

equivalent quantum algebra but leads to a more transparent Hamiltonian which is given by

H12 = σx ⊗ σx + σy ⊗ σy +∆σz ⊗ σz +∆1⊗ 1 (18.1.7)

where ∆ = 1
2 (1 + q)(1 + q−1) is the so-called anisotropy parameter and physically corresponds

to switching on an external magnetic field in the z-direction. Clearly in the ∆ → 1 limit the

model reduces to that of the XXX model up to an overall rescaling of the Hamiltonian.

The quantum algebra Uq(ŝl(n)) contains Uq(sl(n)) as a subalgebra but it is not a symmetry

of the conserved charges which only have u(1)n (the Cartan subalgebra) as a symmetry. This is

a consequence of the fact that the other conserved charges possess a non-trivial coproduct and

so immediately can be seen to not commute with the momentum operator, for example.

Finally, we note that at the point u = v the R-matrix again becomes proportional to the

permutation operator. The R-matrix is also of difference form but in disguise – it becomes

manifestly of difference form by making the replacement (u, v)→ (eu, ev).

One-dimensional Hubbard model The quantum algebra describing the one-dimensional

Hubbard model is based on su(2|2)ce := su(2|2)⋉R2, where “ce” refers to “central extension”,

owing to the fact that that the algebra su(2|2) is extended by two central charges. The full

quantum algebra is a deformation of the super Yangian Y(su(2|2)) [55]. The model is not of

difference form, but like the previous two examples it becomes proportional to the permutation

operator at u = v. Owing to its bulky nature we will not write out the R-matrix explicitly but

it is similar in structure to the model presented in (19.4.19).

Regularity The three solutions presented above all share a common feature. Namely, at

the point u = v the R-matrix simply becomes the permutation operator. This has interesting

consequences and allows us to choose the conserved charges, which we label as J2, J3, . . . , to be

such that the charge Jr acts on r-neighbouring spin chain sites. The construction is as follows.

Any Lax operator L (or families of them) allows us to define a quantum integrable system by

defining the monodromy matrix T (u) as a product of such Lax operators. Since the R-matrix

can be itself be viewed as a Lax operator we can define an associated transfer matrix T(u, θ)
by

T(u, θ) = tra (RaL(u, θ) . . . Ra2(u, θ)Ra1(u, θ)) (18.1.8)

where we have chosen to specify the dependence on θ – we still have the property

[T(u, θ),T(v, θ)] = 0 . (18.1.9)

The spin chain is homogeneous – we have used the same inhomogeneity parameter θ at each

site. The crucial point which leads to local and homogeneous conserved charges is that at the

point u = θ the transfer matrix becomes the shift operator U along the chain

T(θ, θ) = U (18.1.10)

which we already saw for the special case of the XXX spin chain in Part I. It can then be

checked that the conserved charges J2, J3, . . . defined by

LogT(u) = 1 + (u− θ) J2(θ) +
1

2
(u− θ)2 J3(θ) + . . . (18.1.11)

159



are such that the charges Jr act on r neighbouring spin chain sites as a sum of local densities,

for example

J2 =

L∑
α=1

J (2)
α,α+1, J3 =

L∑
α=1

J (3)
α,α+1,α+2 (18.1.12)

where the indices are defined modulo L. Usually the charge J2 is taken to be the Hamiltonian

H of the model as is the case with the XXX spin chain. As well as locality and homogeneity

another highly useful property of the regularity is that the conserved charges all take a universal

form. Let us denote the Hamiltonian density as H12 and so

H(θ) =

L∑
α=1

Hα,α+1(θ) . (18.1.13)

Then the higher conserved charge J3(θ) takes the form

J3 =

L∑
α=1

[Hα,α+1,Hα+1,α+2] +
d

dθ
H(θ) . (18.1.14)

We will derive this in the next section using the so-called boost automorphism. Notice that a

consequence of this construction is that the R-matrix can always be expressed in terms of the

Hamiltonian density as

R12(u, v) = P12

(
1 + (u− v)H12

(
u+ v

2

)
+O (u− v)2

)
. (18.1.15)

18.2 Sutherland equations and Boost automorphism

Sutherland equations We will now begin setting up a systematic framework for solving

the Yang-Baxter equation for R-matrices satisfying the regularity condition. Attempting to

solve the YBE directly is a formidable task. It is more efficient to use the Sutherland equations

which are obtained from the YBE by differentiating and applying the regularity condition. This

results in two equations – the Sutherland equations [213]– and reads

[R13R23,H12(u)] = Ṙ13R23 −R13Ṙ23

[R13R12,H23(v)] = R13R
′
12 −R′13R12

(18.2.1)

where Rij := Rij(u, v) and Ṙ and R′ denote the derivatives of R with respect to the first and

second variables, respectively. Clearly this is at least some improvement – we have reduced a

functional equation in 3 variables to two ODEs in two variables. However, for this to be of any

use we need to specify initial conditions on R. We have the regularity condition but also need

to know the form of H as input. This can be done by consistency and was used to great effect

in [211] but the process is much simpler if the initial conditions leading to integrable models

are known from the start. In other words, how do we know from the start which function H12

will lead to an R-matrix satisfying the Sutherland equations?

Boost automorphism Our starting point is the Sutherland equation

[R13R12,H23(θ)] = R13R
′
12 −R′13R12, (18.2.2)

We now make the replacement 1 7→ a, 2 7→ k, 3 7→ k + 1, obtaining

[Ra,k+1Rak,Hk,k+1(θ)] = Ra,k+1R
′
ak −R′a,k+1Rak. (18.2.3)

160



We now consider an infinite spin chain with monodromy matrix Ta(u, θ) given by

Ta(u, θ) = . . . Ra1Ra0Ra,−1 . . . . (18.2.4)

Now take (18.2.3) and multiply from the left with the product of R-matrices . . . Ra,k+2 and

from the right with Ra,k−1 . . . . We then multiply the resulting equation by k and sum over k

from −∞ to ∞. The two terms on the right hand side of (18.2.3) telescopically cancel and we

are left with
∞∑

k=−∞

k [Ta(u, θ),Hk,k+1(θ)] =
dTa(u, θ)

dθ
, (18.2.5)

which gives
∞∑

k=−∞

k [T(u, θ),Hk,k+1(θ)] =
d

dθ
T(u, θ) (18.2.6)

after tracing over the auxiliary space. Finally, using the expansion

LogT(u, θ) = J1(θ) + (u− θ)J2(θ) +
1

2
(u− θ)2J3(θ) + . . . (18.2.7)

we obtain

Jr+1(θ) =

∞∑
k=−∞

k [Hk,k+1(θ), Jr(θ)] +
d

dθ
Jr(θ), r = 2, 3, . . . . (18.2.8)

It is common to use the notation B[H] to denote the formal sum

B[H] =

∞∑
k=−∞

kHk,k+1 (18.2.9)

which is referred to as the Boosted Hamiltonian. As we have just seen the boost operator allows

us to generate all conserved charges in a recursive fashion, without ever needing to construct

the transfer matrix! Indeed, the only input is the Hamiltonian density H12 which is determined

from the R-matrix.

We can now attempt to reverse the logic. Let H12(θ) be a linear operator on Cn ⊗ Cn for

some n ≥ 2. Define a Hamiltonian H as

H =

L∑
α=1

Hα,α+1 (18.2.10)

and impose that the towerH = J2, J3, J4, . . . mutually commute where Jr+1 is defined recursively

from J3 by (18.2.8). This will place very strong constraints on the matrix elements of the density

H12 and we can then ask ourselves: is this the Hamiltonian density of an integrable system

obtain from an R-matrix? To check this we have to plug the Hamiltonian density into the

Sutherland equations and determine R. Note that although the boosted Hamiltonian is defined

on a chain of infinite length it is enough to consider finite length chains with periodic boundary

conditions as in this case there is a huge cancellation in the commutators. For example,

∞∑
k=−∞

k [Hk,k+1(θ), J2] =
∞∑

k=−∞

[Hk,k+1,Hk+1,k+2] (18.2.11)

and we see that the overall dependence on k has dropped out leading to an expression which

can be reduced consistently to finite length.

In order to fully constrain the Hamiltonian density we require that the full set of commutators

[Jr, Js] = 0 for all r, s. For finite length these cannot all be independent since the spin chain
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Hilbert space is finite-dimensional. On the other hand it seems likely that we will need to

consider at least a few such commutators to constrain the Hamiltonian density. The length we

should consider depends on which commutators we are looking at. Since J2 is a sum of range

2 densities and J3 is a sum of range 3 densities the non-vanishing terms in their commutator

[J2, J3] is a sum of densities of range 2+3−1 = 4. Hence, if we restrict to a spin chain of length

3 say, then these non-zero commutators will effectively wrap around the spin chain producing

cancellations which do not happen in general. Hence we must consider spin chains of at least

length 4 in order to avoid this happening. In case one needs to consider the commutation

relations between higher conserved charges, the length of the spin chain needs to be adjusted

accordingly - if one wants to consider the commutator [Jr, Js] then a spin chain of length

L = r + s− 1 should be considered.
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Chapter 19

Implementation for local Hilbert

space of dimension 2

We will now explicitly implement the above-described procedure for spin chains with a local

Hilbert space of dimension 2. This is the simplest non-trivial case and includes the XYZ spin

chain and its derivatives.

19.1 Symmetries and example

Since our proposed method for solving the YBE is based on the brute-force solving of commutators

[Jr, Js] = 0 we would like the Hamiltonian density H12 to have as few free parameters as

possible. In our current set-up H12 is a 4 × 4 matrix and so has 16 free parameters. This is

rather unwieldy as even just the first commutator [J2, J3] = 0 amounts to solving a system of

first-order differential equations which are cubic in the unknown functions – a monstrous task.

We will now explain how various symmetries of the Yang-Baxter equation can be used to reduce

this number of free parameters without any loss of generality.

Local basis transformation If R(u, v) is a solution of the Yang-Baxter equation of size

n2 × n2 and V (u) an invertible n× n matrix then we can generate another solution R(V )(u, v)

of the YBE by defining

R(V )(u, v) =
[
V (u)⊗ V (v)

]
R(u, v)

[
V (u)⊗ V (v)

]−1
. (19.1.1)

This new solution is trivially compatible with regularity and just corresponds to a change of

basis on each site. On the level of the Hamiltonian it gives rise to a new integrable Hamiltonian

which takes the form

H(V ) =
[
V ⊗ V

]
H
[
V ⊗ V

]−1− [V̇ V −1 ⊗ I − I ⊗ V̇ V −1], (19.1.2)

where everything is evaluated at θ and I is the identity matrix. In particular, we see that

terms of the form A ⊗ I − I ⊗ A in the Hamiltonian can be removed by performing the basis

transformation (19.1.2) with the matrix V (u) satisfying V̇ = AV which can be solved by means

of a path-ordered exponential.

Reparameterization If R(u, v) is a solution, then R(g(u), g(v)) clearly is a solution of the

YBE as well. This transformation affects the normalization of the Hamiltonian since by the
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chain rule the logarithmic derivative of R will give an extra factor ġ, so that

H(u) 7→ ġH(g(u)). (19.1.3)

Notice furthermore that this will similarly affect the derivative term in the boost operator. We

are also free to reparameterize any other functions and constants in both the R-matrix and

Hamiltonian.

Normalization We can normalize the R-matrix in any way we want since multiplying any

solution R of the YBE by an arbitrary function g is clearly allowed. On the level of the

Hamiltonian this corresponds to a simple shift of the Hamiltonian

H 7→ H+ ġ I (19.1.4)

where I is the identity matrix. We have imposed g(θ, θ) = 1 in order to preserve R(θ, θ) = P .

Discrete transformations It is straightforward to see that for any solution R(u, v) of

the Yang-Baxter equation, PR(u, v)P,RT (u, v) and PRT (u, v)P are solutions as well. We

summarise the relation between these R-matricies and Hamiltonians below

R ↔ H (19.1.5)

PRP ↔ PHP (19.1.6)

RT ↔ PHTP (19.1.7)

PRTP ↔ HT (19.1.8)

and emphasise that the Hamiltonian associated to R(u)T is PHTP and not HT .

All the above transformations are universal and hold for any integrable model. Moreover,

they have a trivial effect on the spectrum, which means that they basically describe the same

physical model. Additionally, there are some transformations called twists that we can use for

identifications that are model dependent. Twists generically change the spectrum and more

generally the physical properties of the integrable model in a non-trivial way. However, on the

level of the R-matrix a twist is a simple transformation.

Twists If U(u) is an invertible n× n matrix which satisfies [U(u)⊗U(v), R12(u, v)] = 0 then

it can be shown that

U2(u)R12(u, v)U1(v)
−1 (19.1.9)

is a solution of the YBE provided R is. Note that much more general transformations which

preserve the YBE can be obtained by combining (19.1.9) together with other transformations.

For example, if both U and V are constant invertible matrices satisfying [U ⊗ U,R12] = 0 =

[V ⊗ V,R12] = 0 then the following is also a solution

U1V2R12U
−1
2 V −11 (19.1.10)

which can be obtained by applying (19.1.9) together with a similarity transformation and

applying (19.1.9) again. We will refer to any transformation obtained by combining (19.1.9)

with the other transformations mentioned above as a twist.

Under the transformation (19.1.9) the Hamiltonian density H12 transforms as

H12 7→ U1H12U
−1
1 + U̇1U

−1
1 (19.1.11)
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and the analogue of the condition [U(u)⊗U(v), R12(u, v)] = 0 for the Hamiltonian density can

be easily worked out to be

[U1U2,H12] = U̇1U2 − U1U̇2. (19.1.12)

Alternatively this relation may be derived by plugging the twisted R-matrix (19.1.9) and

Hamiltonian (19.1.11) into the Sutherland equations (18.2.1) and sending v → u, which is

not surprising given the striking similarity between (19.1.12) and the Sutherland equations.

Finally, there can be other, model dependent, twists such as Drinfeld twists [214, 215] which

we will not consider here.

Worked example As a demonstration of our method let us work out an example in full

detail. From here on we will use the following notation:

� hi(u) are matrix elements of H(u)

� ḣi(u) = ∂uhi(u)

� Hi(u) =
∫ u

0
hi and Hi(u, v) =

∫ u

v
hi = Hi(u)−Hi(v)

� ri(u, v) are matrix elements of R(u, v)

� ṙi(u, v) = ∂uri(u, v) and r
′
i(u, v) = ∂vri(u, v).

Hamiltonian Let us classify all regular solutions of the YBE whose Hamiltonian densities

have the following form

H12(θ) =


0 0 0 0

0 h1(θ) h3(θ) 0

0 h4(θ) h2(θ) 0

0 0 0 0

 . (19.1.13)

From the boost operator construction we find that the corresponding charge J3 has density

J123(θ) =



0 0 0 0 0 0 0 0

0 0 −h1h3 0 −h23 0 0 0

0 h1h4 ḣ1 0 ḣ3 − h2h3 0 0 0

0 0 0 ḣ1 0 ḣ3 + h1h3 h23 0

0 h24 ḣ4 + h2h4 0 ḣ2 0 0 0

0 0 0 ḣ4 − h1h4 0 ḣ2 h2h3 0

0 0 0 −h24 0 −h2h4 0 0

0 0 0 0 0 0 0 0


(19.1.14)

and is quadratic in the components hi(θ) of the Hamiltonian density H. We have suppressed

the θ dependence.

The next step is to impose [J2(θ), J3(θ)] = 0 which gives the equations

ḣ3(h1 + h2) = (ḣ1 + ḣ2)h3, ḣ4(h1 + h2) = (ḣ1 + ḣ2)h4. (19.1.15)

These are solved by

h3 =
c3
2
(h1 + h2), h4 =

c4
2
(h1 + h2), (19.1.16)
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for some constants c3,4. Thus we find that if H12 is to be obtained from an R-matrix it must

have the form

H(θ) =


0 0 0 0

0 h1
c3
2 (h1 + h2) 0

0 c4
2 (h1 + h2) h2 0

0 0 0 0

 . (19.1.17)

R-matrix We make an ansatz for our R-matrix of the following form

R =


r1 0 0 0

0 r2 r3 0

0 r4 r5 0

0 0 0 r6

 . (19.1.18)

We will first solve the Sutherland equations using brute force before using identifications to

greatly simplify the process. The Sutherland equations (18.2.1) give the following independent

set of PDEs

c3r2r6 = c4r1r5,
ṙ2
r2

=
ṙ3
r3

+ h1 + h3
r6
r5
,

ṙ4
r4

=
ṙ3
r3

+ h1 − h2,
ṙ1
r1

=
ṙ6
r6
, (19.1.19)

ṙ2
r2

=
ṙ5
r5
,

ṙ3
r3

=
ṙ1
r1

+ h2 + h3
r2
r1
,

c3
2

[r4r3
r1r5

− r6
r5
− r2
r1

]
= 1. (19.1.20)

From this we see that

r6 = Ar1, r5 = Br2 ⇒ Ac3 = Bc4. (19.1.21)

Since we need to impose regularity R(u, u) = P , we find that A = 1 and B = c3/c4. Next, we

derive that

r4 = r3e
H1(u,v)−H2(u,v) with Hi(u, v) =

∫ u

v

hi. (19.1.22)

We are then left with three unsolved PDEs

ṙ2
r2

=
ṙ3
r3

+ h1 + h3
r6
r5
,

ṙ3
r3

=
ṙ1
r1

+ h2 + h3
r2
r1
,

c3
2

[r4r3
r1r5

− r1
r5
− r2
r1

]
= 1. (19.1.23)

In order to solve these we redefine

r1 7→ r3

(
r̃1 −

r̃2
c4

)
, r2 7→ r3r̃2, r3 7→ r3 (19.1.24)

so that the last equation becomes

c24e
H1−H2 = c24r̃

2
1 + ω2r̃22, (19.1.25)

where Hi = Hi(u) − Hi(v) and we have put ω2 = c3c4 − 1. This equation can now be most

conveniently solved by substituting cylindrical coordinates, so that we find

r̃1 = e
H1−H2

2 cosϕ, r̃2 = e
H1−H2

2
c4
ω

sinϕ, (19.1.26)

for some function ϕ to be determined by the remaining two differential equations. Notice that

this is an overdetermined system. Plugging (19.1.26) then back into the remaining Sutherland
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equations gives the following

ϕ̇

ω
=
h1 + h2

2
, (19.1.27)

which is easily solved upon using the boundary condition that ϕ(u, u) = 0. Setting H±(u, v) =
H1(u,v)±H2(u,v)

2 and combining everything we are left with the following R-matrix

R = eH+


cosωH+ − sinωH+

ω 0 0

0 c4
sinωH+

ω e−H− 0

0 eH− c3
sinωH+

ω 0

0 0 0 cosωH+ − sinωH+

ω

 (19.1.28)

after choosing the overall normalisation r3 to correctly reproduce the Hamiltonian. Owing

to the dependence on both H+ and H−, this R-matrix is manifestly of non-difference form.

It is straightforward to check that R indeed satisfies the Yang-Baxter equation and that its

logarithmic derivative gives the density Hamiltonian (19.1.17).

Using symmetries The above method of finding the R-matrix can be greatly simplified if

we use some identifications that relate various solutions of the Yang-Baxter equation that we

discussed in the previous section.

We start from (19.1.17) and use a local basis transformation to set h1 = h2. This is achieved

using the matrix V (θ) with

V (θ) = exp

(
1

2
H−(θ)σz

)
, H±(θ) =

1

2
(H1(θ)±H2(θ)) (19.1.29)

together with the transformation law (19.1.2). Next, we use reparameterization symmetry to

set h1 = h2 = 1. Thus, it follows that all the entries of the Hamiltonian are constant and the

resulting Hamiltonian density has the form

H(θ) =


0 0 0 0

0 1 c3 0

0 c4 1 0

0 0 0 0

 . (19.1.30)

Moreover, we can use a twist and set c3 = c4 = c. Indeed, it is trivial to check that the twist

condition (19.1.12) is satisfied for any constant invertible diagonal matrix U and the matrix

U = diag (
√
c4,
√
c3) , (19.1.31)

can be used to bring the Hamiltonian density to the form

H(θ) =


0 0 0 0

0 1 c 0

0 c 1 0

0 0 0 0

 , (19.1.32)

after applying H12 7→ U1H12U
−1
1 .

The Sutherland equations are now also easily solved since all the coefficients of the Hamiltonian

are simply constants. As a consequence, the R-matrix is of difference form and is given by the
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usual XXZ solution. Putting ω2 = c2 − 1 we find

R = eu


cosωu− sinωu

ω 0 0

0 c sinωu
ω 1 0

0 1 c sinωu
ω 0

0 0 0 cosωu− sinωu
ω

 . (19.1.33)

In order to see that this solution is equivalent to the solution (19.1.28), let us undo the

identifications that we performed to make the Hamiltonian constant. First we undo the twist

and apply R12 7→ U−12 R12U1 to (19.1.33) and put c =
√
c3
√
c4 so that we arrive at the R-matrix

for the Hamiltonian (19.1.30). Next we reparameterize

u 7→ H+(u) (19.1.34)

and finally we apply the inverse of the local basis transformation (19.1.29), immediately obtaining

(19.1.28).

Difference vs. Non-difference After using all the identifications, we see that (19.1.28)

is actually just an R-matrix of difference form in disguise. The non-difference nature of the

rapidity dependence of the R-matrix only resides in local basis transformations, a rescaling

and a reparameterization. These can obviously be applied to any solution of difference form to

generate a non-difference form solution. In the remainder of this work we will also encounter

models which are genuinely of non-difference form, but it is easy to see already at the level

of the Hamiltonian if this is the case. More precisely, after solving the integrability condition

[J2(θ), J3(θ)] = 0 our Hamiltonian will depend on a number of free functions. One will usually

correspond to a shift, one can be absorbed in a reparameterization of the spectral parameter

and then remains a number that can be absorbed by local basis transformations and potentially

twists. The exact number of the latter will depend on the set-up. Thus in case of (19.1.17),

we count 2 free functions h1, h2 and we could have already at that point concluded that the

underlying model was actually of difference form.

Notice that in this example imposing [J2, J3] = 0 was enough to completely fix the Hamiltonian

to correspond to an R-matrix satisfying the YBE. This is related to a conjecture made in [216]

where it is suggested that a Hamiltonian (of range 2) is integrable if it commutes with a single

higher charge of range 3. This is also closely related to the fact that a single higher conserved

charge in 1 + 1-dim QFT is enough to guarantee factorisation of the scattering problem [67],

although two higher charges are needed in theories which are not parity-symmetric. Remarkably,

this observation will turn out to be true for all cases considered in this work and so far a counter-

example where even higher conserved charges are necessary has not yet been found.

19.2 Non-difference form

We will now apply the proposed method to 4 × 4 R-matrices of non-difference form. In order

to simplify the set-up we will consider so-called 8-vertex models which have the form

R =


r1 0 0 r8

0 r2 r6 0

0 r5 r3 0

r7 0 0 r4

, (19.2.1)
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and, consequently, the corresponding Hamiltonian densities are of the form

H =h1 1 + h2(σz ⊗ 1− 1⊗ σz) + h3σ+ ⊗ σ− + h4σ− ⊗ σ+
+ h5(σz ⊗ 1 + 1⊗ σz) + h6σz ⊗ σz + h7σ− ⊗ σ− + h8σ+ ⊗ σ+.

(19.2.2)

It is worth stressing that the restriction to 8-vertex models is based on physical grounds. Indeed,

an S-matrix of 8-vertex type is the most general type of S-matrix in a theory containing a single

boson and fermion which is consistent with conservation of spin statistics. Indeed, if we allowed

other non-zero entries in the R-matrix it would allow for scattering processes in which for

example two bosons could scatter to produce a boson-fermion pair.

We will now briefly outline the possible solutions. After performing symmetry transformations,

one finds only four different types of integrable 4× 4 Hamiltonians that solve the integrability

condition [J2(θ), J3(θ)] = 0. Two of them are of 8-vertex type (19.2.23) while two more are of

so-called 6-vertex type where the (1, 4) and (4, 1) components in (19.2.23) are set to 0. The

solutions are given as follows

� 6-vertex A, h6 ̸= 0 and h7 = h8 = 0

� 6-vertex B, h6 = h7 = h8 = 0

� 8-vertex A, h6 ̸= 0, h7 ̸= 0, h8 ̸= 0

� 8-vertex B, h6 = 0 and h7 ̸= 0, h8 ̸= 0.

Let us discuss the models in more detail.

6-vertex A Setting h7 = h8 = 0 and assuming h6 ̸= 0 we find that [J2(θ), J3(θ)] = 0 is

satisfied if and only if

h3 = c3h6e
4H5 , h4 = c4h6e

−4H5 , (19.2.3)

where c3,4 are constants. The Hamiltonian is actually equivalent to that of the XXZ spin chain.

Indeed, by applying a local basis transformation, twist, reparameterization and normalization

we can bring the Hamiltonian density to the form

H =


0 0 0 0

0 1 c 0

0 c 1 0

0 0 0 0

 , (19.2.4)

which is precisely the Hamiltonian density (19.1.32), and so its R-matrix is given by (19.1.33).

Notice that this solution also contains the most general diagonal Hamiltonian since only the

off-diagonal elements h3,4 are restricted by the integrability condition.

6-vertex B If we take h6 = h7 = h8 = 0 then it makes the Hamiltonian satisfy [J2, J3] = 0

for any choice of h1, . . . , h5. So, the Hamiltonian depends on five free functions. Three of these

functions can be absorbed in identifications. In particular, a local basis transformation (h2),

a normalization (h1) and a reparameterization of the spectral parameter (h3). Moreover, it is

convenient to redefine h5 → 1
2h4h5.

We normalize the R-matrix such that r5 = 1 and then it follows from the Sutherland

equations (18.2.1) that

r7 = r8 = 0, r6 = 1, ṙ2 = h4(r1 − h5r2), ṙ4 = −h4(r3 + h5r4), r1r4 + r2r3 = 1, (19.2.5)
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while r4 satisfies the second order version of the Riccati equation

r̈4 −
ḣ4
h4
ṙ4 + h4r4

[
h3 + ḣ5 − h4h25

]
= 0. (19.2.6)

We now introduce a reparameterization of the spectral parameter

ui 7→ xi =

∫ ui ḣ5
h4h25 − h3

, (19.2.7)

which kills the non-derivative term in the Riccati equation and removes the explicit dependence

on h3. It is then straightforward to solve our system of differential equations to find

r2(x, y) = H4(x, y), (19.2.8)

r1(x, y) = 1 + h5(x)H4(x, y), (19.2.9)

r3(x, y) = h5(x)h5(y)H4(x, y)− h5(x) + h5(y), (19.2.10)

r4(x, y) = 1− h5(y)H4(x, y), (19.2.11)

where again Hi(x, y) =
∫ x

y
hi.

It is instructive to write the R-matrix as

R = H4(x, y)


h5(x) 0 0 0

0 1 0 0

0 0 h5(x)h5(y) 0

0 0 0 −h5(y)

+


1 0 0 0

0 0 1 0

0 1 h5(y)− h5(x) 0

0 0 0 1

 . (19.2.12)

We see that h5 gives rise to the non-difference nature of this solution. In particular, when h5 is

constant the R-matrix reduces to an R-matrix of XXZ type. It is easy to show that it satisfies

the Yang-Baxter equation and the correct boundary conditions. This model can be mapped by

a twist into the solution A of the pure coloured Yang-Baxter equation considered in [217].

8-vertex A In the case h6 ̸= 0, the integrability constraint gives that

h4 = h3 = c3h6, h5 = 0, h7 = c7h6e
4H2 , h8 = c8h6e

−4H2 , (19.2.13)

where ci are constants. The resulting Hamiltonian is that of the XYZ spin chain [218, 211]

under our symmetry identifications.

8-vertex B In the case when h6 = 0, we find the following differential equations

ḣ7
h7

= 4h2 +
ḣ3 + ḣ4
h3 + h4

+ 4
h3 − h4
h3 + h4

h5, (19.2.14)

ḣ8
h8

= −4h2 +
ḣ3 + ḣ4
h3 + h4

+ 4
h3 − h4
h3 + h4

h5, (19.2.15)

ḣ5
h5

= −h
2
3 − h24
4h5

+
ḣ3 + ḣ4
h3 + h4

+ 4
h3 − h4
h3 + h4

h5. (19.2.16)
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We use a local basis transformation to set h2 = 0 and then these equations are solved by

h5 = −1

4
(h3 + h4) tanh(H3 −H4 + c5), (19.2.17)

h7 = c7
h3 + h4

cosh(H3 −H4 + c5)
, (19.2.18)

h8 = c8
h3 + h4

cosh(H3 −H4 + c5)
. (19.2.19)

By using a local basis transformation we can set c8 = c7 and after applying further identifications

the remaining functions can be brought to the following form

h3 =
1

2
csc(η(v))(2− η̇(v)), (19.2.20)

h4 =
1

2
csc(η(v))(2 + η̇(v)) (19.2.21)

where η is some free function. This further results in h7 = h8 = 2c7 := k, which all together

imply that r5 = r6 = 1 and r7 = r8 for the R-matrix. The remaining functions are easily

determined from the Sutherland equations and we find

r8(u, v) = k
sn(u− v, k2)cn(u− v, k2)

dn(u− v, k2)
, (19.2.22)

where sn, cn,dn are the usual Jacobi elliptic functions with modulus k2 and

r1 =
1√

sin η(u)
√

sin η(v)

[
sin η+

cn

dn
− cos η+sn

]
, (19.2.23)

r2 =
1√

sin η(u)
√

sin η(v)

[
cos η−sn + sin η−

cn

dn

]
, (19.2.24)

r3 =
1√

sin η(u)
√

sin η(v)

[
cos η−sn− sin η−

cn

dn

]
, (19.2.25)

r4 =
1√

sin η(u)
√

sin η(v)

[
sin η+

cn

dn
+ cos η+sn

]
, (19.2.26)

where η± = η(u)±η(v)
2 and all the Jacobi elliptic functions depend on the difference u − v, i.e.

sn = sn(u− v, k2). This solution indeed satisfies the Yang-Baxter equation and has the correct

boundary conditions. Moreover, it is easy to see that in the case where η is constant, it becomes

of difference form and reduces to the well-known solution found in [219, 220, 211].

8VB′ As can be seen from (19.2.14)-(19.2.16), the cases where h5 = 0 and h3 = −h4 need

special attention due to possible singularities. In particular it is easy to see that by setting

h5 = 0 it follows that the Hamiltonian is constant unless h3 = −h4. And, indeed, in our final

expression the limit h5 = 0 corresponds to setting η(x) = π/2.

However, the case h3 = −h4 warrants special attention. In this case, the entries of the

Hamiltonian are

h1 = h2 = h5 = h6 = 0, h7 = c8 h8, h3 = −h4. (19.2.27)

We see that the Hamiltonian for this model only has off-diagonal entries. It can be shown

that it is possible to recover this model, starting from the Hamiltonian of 8-vertex B. Since the

procedure is highly non-trivial, we explain the steps of this identification.

In order to recover (19.2.27) we followed the following steps:
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1. To the Hamiltonian density H8V B with entries (19.2.17)-(19.2.19), we apply the off-

diagonal constant twist

U =

(
0 a

b 0

)
(19.2.28)

to obtain H̃8V B = U1H8V BU
−1
1 . In order to make H̃8V B verify the integrability condition

[J2, J3] = 0, we fixed one entry of the twist a→ s1
√
c8b, with s1 = ±1,±i and we had to

impose a constraint on the entries of the Hamiltonian

h3 + h4 = α′3 , h3 − h4 =
α′3 sinhα3√
cosh2 α3 + 1

, (19.2.29)

with α3 some θ-dependent function. Notice that this twist is non-standard as is does not

satisfy (19.1.12).

2. We apply a diagonal local basis transformation V (θ). In particular by using (19.1.2), we

first fix V̇ V −1 to eliminate the elements in the (2,2) and (3,3) positions of the Hamiltonian.

Then by solving the differential equations, we fixed the matrix V (θ).

3. We get an off-diagonal Hamiltonian density and we checked that the sum of the elements

at position 2,3 and 3,2 is zero if s1 (defined in step 1) is ±i. Moreover the ratio between

elements in 1,4 and 4,1 is constant.

In this way we have recovered model (19.2.27) from H8V B . Since the twist that we used is

non-standard, it is unclear how to easily lift it to the level of the R-matrix. Nevertheless, it is

easy to solve the Sutherland equations for this model directly and we obtain

R8VB′ =


coshH3(u, v) 0 0 sinH7(u, v)

0 − sinhH3(u, v) cosH7(u, v) 0

0 cosH7(u, v) sinhH3(u, v) 0

sinH7(u, v) 0 0 coshH3(u, v)

 . (19.2.30)

We see that it is of quasi-difference form, meaning all of the dependence on the spectral

parameters is of the form H3(u)−H3(v) and H7(u)−H7(v).

19.3 Difference-form

We will now consider the case of difference form where the R-matrix satisfies R(u, v) = R(u−v).
In this setting a number of simplifications take place, most notably the derivative term vanishes

in the recursive expression for the conserved charges using the boost and as a result we obtain

Jr+1 = [B[H], Jr] (19.3.1)

and hence the solving the integrability condition [J2, J3] = 0 amounts to solving a system of

cubic polynomial equations instead of differential equations. As a result of this simplicity we

are in a position to classify all solutions of the difference-form YBE, not just those of 8-vertex

type.

Before presenting the solutions we will comment on a certain peculiarity regarding the

expansion of the R-matrix in terms of the Hamiltonian. We already know that we can write

(restricting to difference form)

R(u) = P
(
1 + uH+O(u2)

)
. (19.3.2)

172



The higher order corrections can by found by requiring that we reproduce the form of the

conserved charges generated by the boost automorphism and satisfy the YBE. It is not hard to

work out that at the next order in the expansion we have

R(u) = P

(
1 + uH+

u2

2
H2 +O(u3)

)
. (19.3.3)

This is highly suggestive. We are then led to make an ansatz for the R-matrix of the form

R(u) = P

( ∞∑
k=0

gk(u)Hk

)
(19.3.4)

for some functions gk(u). We can then exploit the Cayley-Hamilton theorem – since our vector

space is 4 dimensional all powers Hk for k ≥ 4 can be expressed in terms of 1, H, H2, H3 and

so our ansatz reduces to

R(u) = P
(
f0(u) + f1(u)H+ f2(u)H2 + f3(u)H3

)
(19.3.5)

and we can also use the freedom to renormalise the R-matrix to set f0(u) = 1 – since the

R-matrix is assumed to be regular f0(u) must be non-zero in some neighbourhood of 0, and the

other functions must be of the form

fk(u) = uk × analytic, k = 1, 2, 3 (19.3.6)

where “analytic” refers to some function which is analytic at 0.

Remarkably, despite the simplicity of our ansatz in captures a large number of models!

Indeed, it can be checked that the XXX, XXZ and XYZ spin chains can all be expressed in this

form. However, the coefficients are model-dependent which suggests that the R-matrix cannot

be expressed generically as a power series in the Hamiltonian and hence something special must

happen for the models where this ansatz works.

In order to see what is going on let’s expand the Yang-Baxter equation up to third order as

follows

R(u) = P

(
1 + uH+

u2

2
H2 +

u3

3!

(
H3 +G

)
+O(u4)

)
. (19.3.7)

for some operator G. If we then plug this ansatz into the YBE we find that the function G

must satisfy

G12 −G23 = [H12 +H23, [H12,H23]] . (19.3.8)

This condition was previously obtained by Reshethikin [221] and the function G is known as

Reshethikin’s G-function. We can then repeat to fourth order and remarkably no new function

is needed. We find

R(u) = P

(
1 + uH+

u2

2
H2 +

u

3!

(
H3 +G

)
+
u4

4!

(
H4 +GH+HG

)
+O(u5)

)
. (19.3.9)

Unfortunately at higher orders things become less clear - it is generically not possible to express

the coefficient of u5 in terms of G and H and a new function G̃ is needed which satisfies

G̃12 − G̃23 = polynomial inH12, H23, G12, G23 (19.3.10)

and sinceG12−G23 can be expressed in terms ofH it is not clear what the simplest representation

is. Furthermore it seems likely that at higher orders we need more and more functions.
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Mysteriously, the existence of Reshethikin’s G-function for a given H seems to be equivalent

to the Yang-Baxter equation, despite the fact that we need at least another function G̃ and

presumably an infinite number of others. To see this, one can consider the commutator [J2, J3] =
0. Explicitly working it out on an infinite chain then lead to the existence of a function which

we call G such that

[J2, J3] = 0 if and only if G12 −G23 = [H12 +H23, [H12,H23]] . (19.3.11)

Since all evidence suggests that the condition [J2, J3] = 0 is enough to ensure integrability and

higher commutators are unnecessary this suggests that Reshethikin’s G-function guarantees

integrability. We do not have a proof of this but all evidence suggests this is the case and it

has been extensively tested. The models for which the form (19.3.5) applies then seem to be

rather degenerate since G and all of the higher functions G̃ are expressable as polynomials in

H itself, even though this applies to a wide range of models – certainly one does not think of

the XYZ spin chain as being particularly degenerate due to the presence of a number of elliptic

functions, yet remarkably the form (19.3.5) holds.

We will now present the solutions of integrability condition for difference form models. The

first family of solutions are well-known 8-and-lower vertex models. Their Hamiltonians take

the form

HXY Z =


a1 0 0 d1

0 b1 c1 0

0 c2 b2 0

d2 0 0 a2

 . (19.3.12)

There are eight independent generators of this type. These models are well-known in the

literature but for completeness, we will list these Hamiltonians explicitly.

Diagonal (4 vertex) Any diagonal Hamiltonian gives rise to an integrable system

HXY Z
1 =


a1 0 0 0

0 b1 0 0

0 0 b2 0

0 0 0 a2

 . (19.3.13)

XXZ There are two families of XXZ type, which agrees with [222]

HXY Z
2 =


a1 0 0 0

0 b1 c1 0

0 c2 b2 0

0 0 0 a1

 , HXY Z
3 =


a1 0 0 0

0 b1 c1 0

0 c2 b2 0

0 0 0 −a1 − b1 − b2

 . (19.3.14)

7–Vertex There are two families of models which are of 7–vertex type

HXY Z
4 =


a1 0 0 d1

0 a1 + b1 c1 0

0 −c1 a1 − b1 0

0 0 0 a1

 , HXY Z
5 =


a1 0 0 d1

0 a1 − c2 c1 0

0 c2 a1 − c1 0

0 0 0 a1 − c1 − c2

 .

(19.3.15)
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8–Vertex Finally, there are three families of models which have all coefficients non-zero

HXY Z
6 =


a1 0 0 d1

0 b1 c1 0

0 c1 b1 0

d2 0 0 a1

 , HXY Z
7 =


a1 0 0 d1

0 b1 c1 0

0 c1 b1 0

d2 0 0 2b1 − a1

 , (19.3.16)

HXY Z
8 =


a1 0 0 d1

0 a1 b1 0

0 −b1 a1 0

d2 0 0 a1

 . (19.3.17)

All corresponding R-matrices are listed in [223].

We now list the remaining class of models. Remarkably, the R-matrices for all of these

models can be written in the form (19.3.5). In some cases we will write the R-matrix explicitly

as a 4× 4 matrix or in the form (19.3.5), whichever is most convenient. The models are

Class 1 The generator of the next class of Hamiltonians we find takes the form

H1 =


0 a1 a2 0

0 a5 0 a3

0 0 −a5 a4

0 0 0 0

 , (19.3.18)

where a1a3 − a2a4 = 0. Its R-matrix is given by

R1(u) =


1 a1(e

a5u−1)
a5

a2(1−e−a5u)
a5

a1a3+a2a4

a2
5

(cosh(a5u)− 1)

0 0 e−a5u a4(1−e−a5u)
a5

0 ea5u 0 a3(e
a5u−1)
a5

0 0 0 1

 . (19.3.19)

It is easy to check that this R-matrix is regular, satisfies the Yang-Baxter equation as well as

braided unitarity, R12(u)R21(−u) ∼ 1.

Class 2 The second class of integrable Hamiltonians is

H2 =


0 a2 a3 − a2 a5

0 a1 0 a4

0 0 −a1 a3 − a4
0 0 0 0

 , (19.3.20)

which has the R-matrix

R2(u) = uP
[ a1
sinh(a1u)

+H2 +
tanh(a1u

2 )

a1
H2

2

]
. (19.3.21)

This R-matrix is regular, satisfies the Yang-Baxter equation as well as braided unitarity,

R12(u)R21(−u) ∼ 1.
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Class 3 The third family of solutions is generated by

H3 =


−a1 (2a1 − a2) a3 (2a1 + a2) a3 0

0 a1 − a2 0 0

0 0 a1 + a2 0

0 0 0 −a1

 , (19.3.22)

which has the following R-matrix

R3(u) =


e−a1u a3

(
e(a1−a2)u − e−a1u

)
a3
(
e(a1+a2)u − e−a1u

)
0

0 0 e(a1+a2)u 0

0 e(a1−a2)u 0 0

0 0 0 e−a1u

 . (19.3.23)

This Hamiltonian can be seen as a deformation of a specific case of the four-vertex model, with

deformation parameter a3. When we set a3 = 0 we obtain

H12 =


−a1 0 0 0

0 a1 − a2 0 0

0 0 a1 + a2 0

0 0 0 −a1

 , (19.3.24)

which has an R-matrix which appeared in the classification of [223]. This R-matrix can be

expressed in terms of powers of H as

R12(u) = P12(f0(u) + uf1(u)H+ u2f2(u)H2), (19.3.25)

where fj(u) are easily determined functions of u, a1, a2. What is rather remarkable is that the

R-matrix is the same function of H for both a3 = 0 and a3 ̸= 0: a3 enters the R-matrix only

through the Hamiltonian, and does not appear in the coefficient functions fj(u).

Class 4 The next independent generator has a similar structure as H3 and is

H4 =


a1 a2 a2 a3

0 −a1 0 a4

0 0 −a1 a4

0 0 0 a1

 , (19.3.26)

with R-matrix

R4(u) =


ea1u a2 sinh(a1u)

a1

a2 sinh(a1u)
a1

ea1u(a2a4+a1a3 coth(a1u)) sinh
2(a1u)

a2
1

0 0 e−a1u a4 sinh(a1u)
a1

0 e−a1u 0 a4 sinh(a1u)
a1

0 0 0 ea1u

 . (19.3.27)

Braided unitarity is again satisfied.
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Class 5 The fifth family has a different off-diagonal structure

H5 =


a1 a2 −a2 0

0 −a1 2a1 a3

0 2a1 −a1 −a3
0 0 0 a1

 . (19.3.28)

The corresponding R-matrix is again regular and unitary

R5 = (1− a1u)


2a1u+ 1 a2u −a2u a2a3u

2

0 2a1u 1 −a3u
0 1 2a1u a3u

0 0 0 2a1u+ 1

 . (19.3.29)

Class 6 The final integrable Hamiltonian is

H6 =


a1 a2 a2 0

0 −a1 2a1 −a2
0 2a1 −a1 −a2
0 0 0 a1

 , (19.3.30)

together with the unitary R-matrix

R6(u) = (1− a1u)(1 + 2a1u)


1 a2u a2u −a22u2(2a1u+ 1)

0 2a1u
2a1u+1

1
2a1u+1 −a2u

0 1
2a1u+1

2a1u
2a1u+1 −a2u

0 0 0 1

 . (19.3.31)

This R-matrix satisfies braiding unitarity as well.

Properties of the new models Let us briefly discuss some properties of the new classes

of integrable models that we have encountered. A feature which arises for generic choice of

parameters in all of these models is non-diagonalisability of the corresponding Hamiltonians. In

some cases this is more severe than in others - for example some of the Hamiltonians we find are

nilpotent, i.e. they only have eigenvalue zero. A less severe case is those Hamiltonians which are

non-diagonalisable but still contain different eigenvalues - in other words the conserved charges

contain non-trivial Jordan blocks. While models with similar properties have been studied

before, see [224], there has recently been a surge of interest in them due to their appearance

in the conformal fishnet theories [225, 80, 226]. Models with non-trivial Jordan structure also

appear in the context of Temperley-Lieb or Hecke type integrable models [227]. However, it

can be checked that none of our newly formed models fall in this category.

Class 1 and 2 The conserved charges in models 1 and 2 are nilpotent. Nilpotency of the

Hamiltonian is a feature of fishnet models as well [226].

Class 3, 4, 5 and 6 While generically these Hamiltonians are non-diagonalisable they are

actually diagonalisable for certain values of the parameters. In particular,

� Class 3 is diagonalizable if a3 = 0, in which case it reduces to a simple 4 vertex model.

� Class 4 is diagonalizable if a2 = a4 and a1a3 = a2a4.

� Class 5 is diagonalizable if a2 + a3 = 0.
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� Class 6 is diagonalizable if a2 = 0.

Remarkably, all eigenvalues seem to only depend on the parameter a1. Hence the eigenvalues

of Hamiltonians of Classes 3 and 4 correspond to the eigenvalues of the integrable spin chain

with Hamiltonian density H = Sz ⊗ Sz. The eigenvalues for the spin chains of Classes 5 and 6

correspond to a spin chain with the Hamiltonian density H = 1− 2P .

19.4 Integrable deformations of the AdS2 × S2 × T 6 model

As an application of the constructed R-matrices we will discuss how to obtain an integrable

deformation of the S-matrix governing the scattering of massive particles in the AdS2×S2×T 6

model [202]. We start by reviewing the corresponding symmetry algebra and how to obtain the

R-matrix from it and we very closely follow [202].

Symmetry algebra The symmetry algebra of this model is psu(1|1)ce where ce denotes

“central extension”. That is we adjoin three central charges to psu(1|1) to obtain

psu(1|1)ce := psu(1|1)⋊R3 . (19.4.1)

The algebra is spanned by two fermionic generators Q± along with three bosonic central charges

P± and C subject to the relations

{Q±,Q±} = 2P±

{Q+,Q−} = 2C
. (19.4.2)

The representation we are considering acts on a boson |ϕ⟩ and a fermion |ψ⟩ and we identify

|ϕ⟩ =

(
1

0

)
, |ψ⟩ =

(
0

1

)
. (19.4.3)

In this basis the supercharges Q± take the form

Q+ =

(
0 b

a 0

)
, Q− =

(
0 d

c 0

)
. (19.4.4)

We denote by P± and C the eigenvalues of P± and C respectively. Then the commutation

relations imply

ab = P+, cd = P−, ad+ bc = 2C . (19.4.5)

So far we have not specified the real form we are working with. It is given by

Q†+ = Q−, P†+ = P−, C† = C (19.4.6)

which further implies the constraints

a∗ = d, b∗ = c, C∗ = C, P ∗+ = P− . (19.4.7)

Furthermore, it follows from the closure relations (19.4.5) that

C2 =
(ad− bc)2

4
+ P+P− . (19.4.8)
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The parameter m := ad − bc is interpreted of the mass of the particle being scattered and is

free to take any value.

Graded coproduct We need to equip the above algebra with a co-algebra structure. The

coalgebra structure is not the standard one ∆(x) = x⊗ 1+ 1⊗ x and is instead constructed by

twisting with an invertible (bosonic) element U which we will define in a moment. In terms of

this the coproduct is given by

∆(Q±) = Q± ⊗ 1 + U± ⊗Q±

∆(P±) = P± ⊗ 1 + U±2 ⊗P±

∆(C) = C⊗ 1 + 1⊗ C

∆(U) = U⊗ U .

(19.4.9)

It is important to remember that since we are dealing with a superalgebra the tensor product

is also graded and hence for elements x1,2 and y1,2 we have

(x1 ⊗ y1)(x2 ⊗ y2) = (−1)[x2][y1]x1x2 ⊗ y1y2 (19.4.10)

where [x] denotes the grading for the element x, which is 0 for bosonic elements and 1 for

fermionic ones.

If x is a central element it must cocommute with R, which if assumed to be invertible,

implies ∆op(x) = ∆(x). This implies strong restrictions on the relations between P± and U.

In particular we have

P± =
h

2
(1− U±2) (19.4.11)

where h is a generic number which is required to be real by our reality properties and is the

interpretation of a coupling constant.

Denote by U the eigenvalue of U on the representation. Our set of constraints can be

conveniently solved by introducing the Zhukovski variables x± defined by

U2 =
x+

x−
, 2C +m = ih(x− − x+), x+ +

1

x+
− x− − 1

x−
=

2im

h
. (19.4.12)

In terms of these the entries a, b, c, d of the supercharges Q± take the simple form

a = e−i
π
4

(
x+

x−

) 1
4
√

h

2
η, b = e−i

π
4

(
x−

x+

) 1
4
√

h

2

η

x−

c = ei
π
4

(
x+

x−

) 1
4
√

h

2

η

x+
, d = ei

π
4

(
x−

x+

) 1
4
√

h

2
η

(19.4.13)

where η =
√

i(x− − x+). The R-matrix is now fixed in terms of these parameter by requiring

that ∆op(a)R = R∆(a) together with requiring that R satisfies the Yang-Baxter equation. It is

important to note that the representation we have constructed in terms of x± can be different

for each particle and so we use the labels x±u for the first and x±v for the second. We can solve

for x±u in terms of u by introducing x(u) with

x(u) +
1

x(u)
=

2m

h
u (19.4.14)

and then defining x±u = x(u± i
2 ).

In order to write down the AdS2 R-matrix we must introduce some notation. First, we
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introduce the functions

sε1 ε2(u, v) = i
xε1u − xε2v
γu γv

(
x+u
x−u

) 1
4 (1−ε1)(x+v

x−v

) 1
4 (1−ε2)

(
1 +

1− 1

x
−ε1
u x

−ε2
v

xε1u − xε2v
fu,v

)
(19.4.15)

where ε1 and ε2 are signs, ε1, ε2 ∈ {+,−} and the function fu,v is given by

fu,v =

(
x−u − 1

x+
u

)√
x+
u

x−
u
−
(
x−v − 1

x+
v

)√
x+
v

x−
v

1− 1
x+
u x−

u x+
v x−

v

(19.4.16)

and as usual we have

γu =

(
x+u
x−u

) 1
4 √

i
(
x−u − x+u

)
. (19.4.17)

Finally, we put

s(u, v) =
fu,v√

x+u x
−
u x

+
v x
−
v

. (19.4.18)

In terms of these functions the AdS2 R-matrix RAdS2 is given by

RAdS2(u, v) =


s−+ 0 0 s

0 s++ 1 0

0 1 s−− 0

s 0 0 s+−

 . (19.4.19)

Embedding in 8VB Now that we have constructed the AdS2 R-matrix we will explain how

to embed it in our previously obtained R-matrices. Obviously, it can only fit into 8VA or 8VB,

and we can quickly rule out 8VA since the (4, 4) component is not equal to the (1, 1) component.

The main issue to be overcome is that the spectral parameters appearing in both models

are different despite being denoted by the same letters u and v. To get around this we need to

transform (u, v) 7→ (G(u), G(v)) in one of the R-matrices and we take this to be in R8V B . We

start by considering the (1, 4) component of both R-matrices which are, for R8V B and RAdS2

respectively,

(R8V B)14 = k sn(G(u)−G(v)) cn(G(u)−G(v))
dn(G(u)−G(v))

, (19.4.20)

(RAdS2)14 =
1√

x+u x
−
u x

+
v x
−
v

(
x−u − 1

x+
u

)√
x+
u

x−
u
−
(
x−v − 1

x+
v

)√
x+
v

x−
v

1− 1
x+
u x−

u x+
v x−

v

(19.4.21)

Clearly, the (1, 4) component of R8VB is of difference form, that is it only depends on the

difference G(u)−G(v) of the spectral parameters. Let us now expand the (1, 4) component of

the AdS2 R-matrix in u around v. We find

(x+x−)
′

2
√
x−
√
x+(x+x− − 1)

(u− v) +O
(
(u− v)2

)
(19.4.22)

In order to be purely of difference form we must have that the coefficient of u− v is a constant

which we denote A:
(x+x−)

′

2
√
x−
√
x+(x+x− − 1)

= A. (19.4.23)

Hence, after reinstating the G dependence, we solve to obtain

x+(v) =
Tanh

(
AG(v) + c1

2

)
x−(v)

. (19.4.24)
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This completely fixes G in terms of x±.

After substituting (19.4.24) back into the (1, 4) component of the AdS2 R-matrix we find

that it reduces to simply1

(RAdS2)14 = −Tanh (A(G(u)−G(v))) . (19.4.25)

A comparison with the (1, 4) component with the 8VB R-matrix then tells us that we should

take the limit k → ∞ in order to have this entry reduce to Tanh and furthermore the precise

agreement requires that A = −i and we can take c1 = 0, and so we find that

x+(u) = −Tan2(G(u))

x−(u)
. (19.4.26)

Next, we make the substitution η(u) → arccot (kF (u)) and expand the 8VB R-matrix

around k →∞. By subsequently expanding around u = v we find that setting

F (u) = −1

2
cscG(u) secG(u)

cotG(u)x− + i

cotG(u)x− − i
(19.4.27)

indeed reproduces the AdS2 R-matrix.

Since neither of the functions F and G depend on k and the only k dependence appeared in

the function η(u) and in the Jacobi elliptic functions we can simply restore the k-dependence and

hence obtain a deformation of the AdS2 R-matrix which continues to satisfy the Yang-Baxter

equation. We plan to return to the analysis of its physical properties in the future.

1Working in an appropriate region such that we avoid branch cut issues
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Part VI

Summary and outlook
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Summary Let us summarise the results of this work. After reviewing some fundamentals of

quantum algebras, integrable systems and the separation of variables program for gl(2) spin

chains we began investigating higher-rank SoV. We constructed a twist matrix (7.2.9) such

that the structure of the B operator simplified drastically and the Gelfand-Tsetlin generators

emerged providing a direct link between SoV and Yangian representation theory. Armed with

the GT basis we proved that the spectrum of B coincided with the GT algebra.

One of our main results is a commutation relation (10.2.4) between B and fused transfer

matrices Tλ which allowed us to generate eigenvectors ofB in a way which guaranteed separation

of variables. We demonstrated in various examples how the Young diagram λ controls the

excitations of the Gelfand-Tsetlin patterns labellingB eigenvectors for rectangular (SA) representations.

Next, we introduced the embedding morphism ϕ (10.1.1) as a way to deal with generic

representations and situations where the spectrum ofB is degenerate. The embedding morphism

was an embedding of a gl(k) spin chain into a gl(k+ 1) spin chain which had extremely simple

action on the Gelfand-Tsetlin basis and the B operator with ϕ(B(k)) ∼ B(k+1). By applying ϕ

to the commutation relation (10.2.4) we were able to fully diagonalise B and show that every

eigenvector coincided with a GT basis vector in the auxiliary singular twist limit.

Our next goal was to show that the constructed basis was an SoV basis. We showed that

the previously constructed basis of B eigenvectors could be equivalently constructed by using

ratios of fused transfer matrices which coincided with transfer matrices constructed from the

Bäcklund flow procedure. It was then a simple application of Wronskian formulae to obtain the

factorised wave functions as an ascending product of Slater determinants

Ψ(x) = ⟨x|Ψ⟩ =
L∏

α=1

n−1∏
k=1

det
1≤i,j≤k

q̂i(x
α
kj) . (19.4.28)

The restriction of this formula to the case of symmetric power representations (S1) immediately

implied that transfer matrix eigenstates could be constructed by repeated application of the B

operator

|Ψ⟩ =
M∏
j=1

B(uj) |Ω⟩ (19.4.29)

bypassing the nested Bethe ansatz and proving the conjecture of [129] for gl(n) spin chains.

We then began the task of using our new SoV wave functions to compute various quantities of

interest just as scalar products of Bethe states and correlation functions. Instead of constructing

the SoV measure directly we developed a functional approach to orthogonality relations generalising

a construction which first appeared in the AdS/CFT context [53] and for non-compact spin

chains [180] to compact spin chains.

The developed functional scalar product linked the SoV wave functions (19.4.28) to another

set of SoV-like wave functions and so we sought out an operatorial construction of them. This

involved introducing a new operator called C which was analogous to B for factorising left

wave functions. Both of these operators corresponded to two different quantisations of classical

separated variables which coincided in the classical ℏ→ 0 limit.

In order to begin the procedure of diagonalising C and constructing the new SoV basis

we introduced the ∗-map, a Yangian anti-automorphism with the property C = B∗. This

allowed us to transfer all of the techniques developed for diagonalising B to C, in particular

the commutation relation (9.3.1). This introduced a new set of transfer matrices T∗λ which we

identified as transfer matrices corresponding to right-aligned (skew) Young diagrams instead of

left-aligned and, similar to the relation between B and C, constituted an alternate quantisation
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of classical conserved charges. We then repeated the same story as was done for B resulting in

the factorisation of left wave functions

Ψ(y) = ⟨Ψ|y⟩ =
L∏

α=1

n−1∏
k=1

det
1≤i,j≤k

q̂i(yαkj) (19.4.30)

as an ascending chain of Slater determinants but now featuring Hodge dual Q-functions q̂i.

At this point we had extensively developed the SoV program for compact spin chains.

We had access to left and right SoV wave functions as well as a highly efficient formalism for

computing overlaps in this basis given by the functional orthogonality relations. We then moved

on to analysing non-compact spin chains. We began by analysis the Gelfand-Tsetlin algebra for

low rank gl(2) and gl(3) cases and found a generalisation of the GT branching rules for these

infinite-dimensional representations.

Next we generalised the functional orthogonality relations to the non-compact setting.

Remarkably, the only modifications were in the integration contour, which became the whole

real line in contrast to the compact case which featured a circle containing finitely-many poles,

and the integration measure µα which now contained an infinite number of poles and was

carefully selected to ensure convergence of the integral and functional orthogonality.

Afterwards, we began the task of constructing the SoV bases along the lines of what we

achieved for the compact case to match with the functional approach. Diagonalisation of C was

straightforward with the only difference being the range of the separated variable spectrum.

The situation was more involved for B - we no longer had access to the lowest weight state

previously used to generate B eigenvectors from. We managed to get around this issue by

demonstrating that B could also be diagonalised starting from the highest-weight state. Doing

so required application of the Yangian antipode map and allowed us to obtain a new version of

the commutation relation (10.2.4) but involving fused transfer matrices built from the inverse

monodromy matrix.

After a rather abstract journey we then included numerous explicit examples of various

computations using the developed techniques in sl(2) and sl(3) spin chains. We explicitly

computed various overlaps and showed how they matched computations from the functional

orthogonality approach and also demonstrated that the SoV measure could be computed exactly

and precisely matches the functional results.

We finished our SoV discussion by demonstrating how our developed SoV framework involving

the interplay between operator and functional approaches could be used to compute various

non-trivial quantities. A key tool for this was the det-product (17.1.1) which allowed us to

present the obtained quantities as simple determinants in Q-functions. We successfully used

it to compute overlaps between transfer matrix eigenstates corresponding to different twists,

overlaps with insertions of B and C operators and on-shell/off-shell overlaps as well as form

factors of local operators, a special case of an overlap with an insertion corresponding to a

derivative of the transfer matrix with respect to some parameter.

We then changed direction and turned our attention to the Yang-Baxter equation with the

aim of developing efficient new techniques for constructing integrable spin chains. Our proposal

was based on the boost automorphism which allows the conserved charges of regular models

to be constructed in a systematic recursive fashion with the Hamiltonian density being the key

input. By solving the integrability condition [J2, J3] = 0 we found a plethora of new integrable

systems and in all cases could reconstruct the corresponding R-matrix.
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Among the new models found we obtained a complete classification of 4×4 R-matrices which

preserve fermion number in scattering processes which include the R-matrices of integrable

superstrings on AdS2×S2×T 6, AdS3×S3×S3×S1 and AdS3×S3×T 4, at least in their massive

and chirality-preserving sectors . As an application of our classification we demonstrated how

the R-matrix of the AdS2 model could be embedded into our classification. This provided a

source of a tunable parameter k hence allowing us to obtain integrable deformations of this

superstring model.

Future directions We now summarise some future research directions, some of which are

formal developments and the others are applications of the developed techniques.

The focus of this work has been on highest-weight bosonic spin chains. An open question is

the generalisation of the discussed techniques to the case of non highest-weight representations

and supersymmetric spin chains and more general classes of highest-weight representations such

as those with su(p, q|m) symmetry necessary for AdS/CFT applications. For the construction

of the SoV basis in a rigorous way a natural starting point is the construction of the Gelfand-

Tsetlin basis and the development of the branching rules. An SoV basis was constructed in [133]

for the case of the defining representation of gl(m|n) super spin chains and the Hubbard model,

and it would be interesting to attempt relating the constructed basis to the B-type operator

constructed in [132], as well as generalise findings beyond the fundamental representation, as

it was done here in the bosonic setting.

One should also generalise the discussed techniques to models based on the principal series

representations of gl(n). The SoV framework for models with principal series representations of

gl(2) has been carried out in [228, 229], with some initial progress being made for the gl(3) case

in [230]. A feature of the principal series setting is that, in contrast to the compact case, it is

not necessary to introduce a boundary twist in order for the B-operator to be diagonalisable,

and hence such a twist is not usually employed. However, doing so may be beneficial as the

B-operator can still be related to the Gelfand-Tsetlin subalgebra with the use of the companion

twist. Study of the Gelfand-Tsetlin subalgebra in the principal series setting was carried out in

[231, 232]. The SoV framework in the principal series setting of gl(2) was recently utilised in

[233] for the computation of Basso-Dixon correlators in two-dimensional fishnet CFT [79, 234]

and a set of separated variables for the case of so(1, 5) spin chains were constructed in [235]

and used in the computation of four-point correlation functions in [236] which are related to

the computations of [237].

It would be interesting to extend our results to other quantum integrable models not based

on the rational R-matrices. In particular, an SoV basis for the case of Uq(ŝl(n)) was constructed

in [238] and it would be interesting to check if it diagonalises the B operator proposed in [128].

The simplest case to examine would be with the so-called spin torus model [239] which is a

special case of the Uq(ŝl(n)) spin chain with a twist matrix which is a reduction of the companion

matrix and so the techniques developed here are likely to be directly applicable.

One very promising direction of research regards the computation of correlation functions

in 4d fishnet CFT and eventually N = 4 SYM. For the case of 4d fishnet CFT one has access

to the holographic dual [86, 84, 85] which is essentially an sl(4) spin chain albeit in a non-

highest-weight representation. Nevertheless the functional scalar product approach to overlaps

and correlators was recently developed [240] and would be very instructive to match it with

an explicit diagonalisation of the B operator to single out the natural basis of Q-functions.

In a similar manner to the closed AdS5 fishchain mentioned above an open fishchain has also

been constructed [241] to describe cusped Wilson loops in a certain ladders limit of Feynman
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diagrams. This warrants the further development of separation of variables for open integrable

systems with high-rank symmetry which has recently been analysed in [242].

An open problem is the development of the SoV program for models based on algebras other

than the Ar series. The Q-system of so(2r) integrable systems has been extensively developed

recently [243, 244, 245] which will hopefully lead to an analogue of the functional integral

approach to scalar products developed here for Ar models.

Another interesting problem regards the construction of the SoV basis in the Gaudin model.

This was carried out by Sklyanin in [246] for gl(2) highest-weight representations. Recently

there has been a large amount of interest in the Gaudin model for higher-rank and non-highest-

weight representations. It has been shown in [247] that the sl(2) Gaudin model describes

tree-level scattering amplitudes of ambitwistor strings on AdS3 × S3. As well as this it was

demonstrated in [248, 249] that conformal blocks of five and higher point functions correspond

to the eigenfunctions of the conserved charges in an so(1, 5) Gaudin model.

Regarding our work on the Yang-Baxter equation there are also numerous avenues of future

research. The mechanism we proposed for constructing integrable spin chains produces closed

spin chains. For physical applications open spin chains [250, 251] are important such as the

example described above regarding cusped Wilson loops. It would be interesting to construct

finite length open versions for all the new models constructed in this work. In order to do that,

the first step would be the construction of all possible integrable boundary conditions, meaning

all solutions of the Boundary Yang-Baxter equation for each of the R-matrices introduced here.

One natural direction involves applications to holography and the integrable systems which

appear in that context. Although we did not discuss it in this thesis we have successfully

used our construction to obtain new R-matrices with su(2) × su(2) symmetry [8], similar to

Shastry’s R-matrix [252] for the one-dimensional Hubbard model. Generalised Shastry-type

models provide a base for a search of new types of solutions that are relevant for AdS4,5

integrable models. In particular it would be interesting to search for new deformations of the

AdS4,5 S-matrix and establish potential contact with q-deformations of the underlying twisted

Hopf algebra as for η-deformed AdS5×S5 [253, 254] or for λ-deformed systems [255]. We have

shown that the AdS2 R-matrix could be embedded into the 4 × 4 model 8VB and admitted a

one-parameter deformation. It would be highly interesting to find a physical interpretation for

this parameter and to determine the symmetry algebra of the resulting R-matrix and perhaps

it is related to the known η-deformation [256].

Remarkably, all of our solutions of the Yang-Baxter equation can be characterized by the

integrability condition [J2, J3] = 0. It is unclear to us why this is the case. Indeed, all the

reverse lines in the flowchart, Figure 1, can be shown to hold. The reverse arrows that we

exploit here, however, appear to be valid as well and it seems to indicate an equivalence relation.

It would be very important to understand and prove these relations. There are also interesting

related mathematical questions to be asked. In the case of difference form models the condition

[J2, J3] = 0 results in a set of cubic polynomial equations for the Hamiltonian entries which

seems to be fully equivalent to the Yang-Baxter equation. It would be highly interesting to

construct a proof of this claim and in doing so perhaps obtain a closed form expression for the

R-matrix in terms of the Hamiltonian entries. In this work we have relied on a brute force

approach to solving the constraint [J2, J3] = 0 and to a large extent have exhausted the cases

where such an approach is applicable.

In order to make more progress it could be important to make use of the extensive toolbox

of algebraic geometry. Indeed, [J2, J3] = 0 describes an algebraic variety in projective space

described by a set of coupled, cubic polynomials. For instance, in the 4× 4 case the integrable
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models will correspond to algebraic varieties in CP16. It would be very interesting to exactly

understand what the algebraic varieties are that describe integrable models and how exactly

they can be characterized.
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Appendix A

Appendices

A.1 Invertability of transfer matricies

Here we prove that Tλ(θα + ℏ ναn ) is invertible when λ ⊂ ν̄α, where ν̄α denotes the reduced

Young diagram ν̄αj = ναj − ναn , j = 1, . . . , n. We will see below that provided inhomogeneities

are largely separated, that is |θα − θβ | ≫ 1 for α ̸= β then the transfer matricies effectively

become equal to those of L = 1. Hence, we start by considering this case. Any given transfer

matrix Tλ(u) is a polynomial in θα and the entries of the twist matrix G. Hence if we can

prove the claim for a specific value of the twist then it must be true generically, i.e. away from

some measure zero subset. To this end, let us make use of the fact that transfer matricies are

central for L = 1 when G = 1 where the computation simplifies. In what follows we will omit

the α-index.

A convenient tool to prove the claim is the quantum eigenvalues introduced in Section 5.3.

By acting on the highest-weight state it is easy to see that Λj(u) = (u− θ− ℏ νj). The transfer

matrix Ta,1(u) can be written as a sum over quantum semi-standard Young tableaux of the

form
ia
...

i2

i1

(A.1.1)

subject to the constraint i1 < i2 < · · · < ia. By using the recipe to assign products of quantum

eigenvalues to a tableau we associate the factor
∏a

k=1(u − θ − ℏ(νik + a − k)) to the above

tableau. Let us now evaluate this factor at θ + ℏ νn. We obtain

(−ℏ)a(ν̄ia)(ν̄a−1 + 1) . . . (ν̄i1 + a− 1) . (A.1.2)

Since ν̄j ≥ 0 for all j = 1, . . . , n it follows that the above expression is non-negative. Note that

if some weight νk = νn, it forces ν̄k = ν̄k+1 = · · · = ν̄n = 0 and hence the indices k, k + 1, . . . , n

cannot appear in the tableau as they provide vanishing contributions. Hence, in order to have

a non-vanishing term we must at least have ν̄a ≥ 1 and hence ν̄1 ≥ ν̄2 ≥ · · · ≥ ν̄a ≥ 1. Hence,

Ta,1(θ + ℏ νn) is non-zero if

(1a) ⊂ ν̄ . (A.1.3)

Now we consider an arbitrary Young diagram λ. Tλ(θ + ℏ νn) can be written as a sum over

Young tableaux as before, and we will consider the factors of quantum eigenvalues associated

to each column separately. The admissible indices such that a given column is non-vanishing

directly effects what indices can appear in the columns to the right. Indeed, we already know
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the first column will always be non-negative, and we will get a non-zero contribution if

(1λ
T
1 ) ⊂ ν̄ . (A.1.4)

Now we go to the second column which gives the contribution

(−ℏ)λ
T
2 (ν̄i

λT
2

− 1)(ν̄i
λT
2
−1 − 2) . . . (ν̄i1 + λT2 − 2) . (A.1.5)

Since the first column is non-zero, if we put some number k in the top box of the second column

we must have that ν̄αk > 1 and hence the second column will be non-zero if

ν̄1 ≥ ν̄2 ≥ · · · ≥ ν̄λT
2
≥ 2 . (A.1.6)

Hence, the contribution from the first two columns will be non-zero if

(1λ
T
1 1λ

T
2 ) ⊂ ν̄ . (A.1.7)

Continuing in the same way, we find that if λ ⊂ ν̄ there will always be a tableau which does

not vanish and the signs of the contributions of all non-vanishing tableaux are all the same and

equal to the sign of (−1)|λ|, where |λ| denotes the number of boxes in the Young diagram λ.

Hence for L = 1 Tλ(θ + ℏ νn) is non-zero.

Now we consider L > 1. The transfer matrix Tλ is obtained by taking the trace of the fused

monodromy matrix Tλ(u) which itself is a product of fused R-matricies Rλ,να

Tλ(u) =
∑

i1,...,iL

Rλ,ν1

i1i2
(u− θ1)⊗ · · · ⊗Rλ,νL

iLi1
(u− θL) , (A.1.8)

where the sum ranges over 1, 2, . . . ,dimλ. Since Rλ,νβ

(u) ∼ u|λ| at large u, with |λ| denoting the
number of boxes in the Young diagram λ, we can consider Tλ(θα+ℏ ναn ) in the limit |θβ−θα| ≫ 1

for all β ̸= α. In this limit Tλ(θα + ℏ ναn ) coincides (up to irrelevant normalisation) with the

L = 1 transfer matrix which we know is invertible and so Tλ(θα + ℏ ναn ) is invertible for generic

values of inhomogeneities, completing the proof.

A.2 Action of transfer matricies – technical details

We need to prove that

⟨Λ|
L∏

α=1

TFα
k +µ̄α

k
(θα + ℏ ναn )

TFα
k
(θα + ℏ ναn )

= ⟨Λ|
L∏

α=1

ϕn−k−1
(
Tµ̄α

k
(θα + ℏ ναk+1)

)
(A.2.1)

if ⟨Λ| ∈ V(k). This result easily follows from the following one which we are going to prove: For

a state of the form

⟨ΛI | := ⟨Λ|
∏
γ∈I

ϕn−k−1
(
Tµ̄γ

k
(θγ + ℏ νγk+1)

)
, (A.2.2)

where ⟨Λ| ∈ V(k) and I is a subset of {1, . . . , L}, it is true that

⟨ΛI |ϕ
(
Tµ̄α

k
(θα + ℏ ναk+1)

)
= ⟨ΛI |

TRn−1+···+Rk−1+µ̄α
k

TRn−1+···+Rk−1

(A.2.3)
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for α /∈ I. Here both transfer matrices on the r.h.s. are evaluated at θα + ℏ ναn , and Rn−1 +

· · ·+Rk−1 is a specific choice of Young diagram Fα
k to be made precise below1.

We will need two technical results. First, let us note that quantum minors satisfy the

following commutativity property [70]. If A and B are subsets of {1, 2, . . . , n} then

[T
[A
B
]
(u), Tab(v)] = 0 (A.2.4)

for all a ∈ A and b ∈ B. Next, suppose ⟨Λ| of GT1, . . . ,GTr for some r, for which the dual

diagonal µα
r takes its minimal allowed value µα

rj = ναr+1, j = 1, . . . , r and µα
r+1 takes its maximal

allowed value given the previous constraint µα
r+1,j = ναr+1, j = 1, . . . , r + 1. Then we have

⟨Λ|Tj,n−r(θα + ℏµα
n−r+1,1) = 0, j = n− r − 1, . . . , n (A.2.5)

which is simply the statement that the dual diagonal µα
r+1 cannot be excited further without

changing µα
r and that µα

r cannot be lowered without first lowering µα
r+1. The proof of this is

very similar to that of the statements (3.36-3.38) in [1] adapted to this more general setting

and so we do not repeat it here. The motivation for this statement is that when we act with

transfer matricies TRn−1+···+Rk−1+µ̄α
k
the action on ⟨ΛI | will factorise, and each TRj

factor will

act as a raising operator exciting a dual diagonal to its maximal where it is equal to the next

dual diagonal, allowing us to use the previous result.

Let ν̄α denote the reduced Young diagram ν̄αj = ναj − ναn , j = 1, . . . , n − 1. ν̄α splits into

the rectangular regions Rj , j = 1, . . . , n− 1, where the width of Rj is ν̄αj − ν̄αj+1 and its height

is j. By Rn−1 + · · ·+Rk−1 we denote the subdiagram of ν̄α comprising the first ν̄αk−1 columns

of ν̄α. Note that the state ⟨ΛI | is an admissible vector at point θα + ℏ ναn and so the action of

TRn−1+···+µ̄α
k
(θα+ℏ ναn ) with the MCT (7.2.9) coincides with that of the null twist, cf. page 90.

For simplicity of exposition, we will assume that all weights ναj are distinct, and will comment

later on what happens when they are not. For all weights being distinct, the region Rj has

non-vanishing width and furthermore we have the following factorisation

TRn−1+···+µ̄α
k
(u) = TRn−1

(u)TRn−2+···+µ̄α
k
(u+ ℏ ν̄αn−1) . (A.2.6)

To see this we utilise the CBR formula (5.2.7) which says that for some Young diagram λ one

has

Tλ(u) =
∑
σ∈Sn

TλT
1 +σ(1)−1,1(u+ ℏ(σ(1)− 1))× . . . . (A.2.7)

When we use the null twist, all λ are constrained to have height at most n− 1, and for the case

of interest to us we have λT1 = n − 1. In the above sum, if for some permutation σ we have

σ(1) ̸= 1 then σ(1) > 1 and so the sum contains a transfer matrix of height greater than n− 1

and so must vanish. Hence, we must have that the transfer matrix factorises into TλT
1
(u)× . . .

where . . . refers to the transfer matrix corresponding to the Young diagram obtained from λ

by removing its first column. If the second column also has height n− 1 then it also factors out

and so on. Hence (A.2.6) follows, where now

TRn−1
(u) = Tn−1,1(u) . . .Tn−1,1(u+ ℏ(ν̄αn−1 − 1)) , (A.2.8)

and so the r.h.s. (A.2.8) coincides with the composite raising operator (10.1.13) for the right-

most dual diagonal. Hence, evaluating at u = θα + ℏ ναn we see that acting with TRn−1
takes us

1Recall that the ratio in the l.h.s. of (A.2.1) is invariant under variations of Fα
k subject to certain constraints,

we are making one particular choice that simplifies computations.
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from ⟨ΛI | to the state ⟨Λ′I | with µα
n−1,j = µα

n−2,j = ναn−1, j = 1, . . . , n− 2 and µα
n−1,n−1 = ναn−1

which satisfies (A.2.5).

The action of TRn−2+···+µ̄α
k
(u+ℏν̄αn−1) on ⟨Λ′I | is expressed as a sum over tableaux

∑
A T

[A
A+1

]
where A+1 cannot contain the number 2 by (A.2.5), and so A cannot contain 1, forbidding us

from having transfer matricies of size n− 1 and so the action again factorises into

⟨ΛI |TRn−1TRn−2TRn−3+···+µ̄α
k
(u+ ℏν̄αn−2) . (A.2.9)

Hence when the TRn−2
factor acts on ⟨Λ|TRn−1

it will excite the dual diagonals to the configuration

where µα
n−2,j = µα

n−3,j = ναn−2, j = 1, . . . , n − 3 and µα
n−2,n−2 = ναn−2 and again the results of

(A.2.5) apply, further limiting the indicies which can populate the tableaux making up the

TRn−3+... factor.

The end result is that the action of TRn−1+... completely factorises into

⟨ΛI |TRn−1TRn−2 . . .TRk−1
Tµ̄α

k
(θα + ℏ ναk+1) , (A.2.10)

where we have omitted the spectral parameters of the TRj
factors for brevity and Tµ̄α

k
should be

understood as
∑
A Tµ̄α

k
whereA can only be populated with indices from the set {n−k, . . . , n−1}.

Then, using (A.2.4) we can move this factor to the left, obtaining

⟨ΛI |TRn−1+···+µ̄α
k
(θα + ℏ ναn )

= ⟨ΛI |ϕn−k−1
(
Tµ̄α

k
(θα + ℏ ναk+1)

)
TRn−1+···+Rk−1

(θα + ℏ ναn ) .
(A.2.11)

This completes the proof since invertiblity of the transfer matrix was proven in the previous

appendix.

Finally, let us briefly discuss the case of coinciding weights. As we have seen above, each

factorisation into a rectangular region results in a reduction of the number of indices in the

factors which appear to the right of it. If two weights coincide, say ναj = ναj+1 then the rectangle

Rj has vanishing width and so does not contribute to the factorisation. One could then expect

that at the end the right most factor could contain more than just the indices n− k, . . . , n− 1,

ruining our conclusion. However, if two weights coincide then ⟨ΛI | will have extra dual diagonals
µα
k+1, µ

α
k+2, . . . whose entries are all equal to ναk+1. They will extend the range of indices in

(A.2.5) which annihilate ⟨Λ| similar to the case of rectangular representations discussed in [1],

which will further constrain the indices that can appear in the sum over tableaux. Taking this

into account we find that the end conclusion is the same.
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worldsheet S matrix,” J. Phys. A 48 (2015), no. 41 415401, 1506.00218.

[202] B. Hoare, A. Pittelli, and A. Torrielli, “Integrable S-matrices, massive and massless

modes and the AdS2 * S2 superstring,” JHEP 11 (2014) 051, 1407.0303.
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