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Abstract— To operate in unstructured settings, robots require
control strategies that effectively respond to temporal changes
in their environment. In the domain of robotic manipulation,
most state-of-the-art approaches assume the objects to be
grasped are static. Although some research has investigated
the challenges of grasping moving objects, these studies have
tended to use grasping plans which require a real-time estimate
of a gripper-object interception point, which can be difficult to
precisely obtain. The goal of this research was to investigate
the performance benefits of using a controller with a reactive
component for grasping tasks involving moving objects. We hy-
pothesised that using a reactive control strategy, based on tactile
sensing in the fingertips, would lead to improved performance
and robustness across a wider range of grasping conditions.
To test this hypothesis, the ability of a two-finger gripper to
grasp a moving ball under a range of dynamic conditions was
tested in simulation using the Gazebo robotic simulator and
ODE physics engine. Tests revealed that for controllers where
the grasp was not informed by tactile sensing, grasping success
dropped significantly with increased misalignment between the
centre point of the gripper and the point of interception with
the moving object. In contrast, the performance of a reactive
grasping strategy based on tactile sensing was found to be
more robust across these conditions. These findings indicate
that tactile sensing could play an important role in enabling
robots to interact more effectively with dynamic objects.

I. INTRODUCTION

Despite increasing demand, the use of robotic manipula-
tion outside controlled environments (factories, warehouses,
etc) remains low. In these settings, factors in the environment
can be tailored to reduce the complexity of the grasping chal-
lenge (i.e. use of environmental sensors, consistent lighting,
clutter-free workspace). While a lot of recent research has
focused on improving grasp robustness in tasks involving
unfamiliar objects [1], changing lighting [2], and in settings
with occlusions [3], [4], relatively little has addressed fun-
damental aspects of grasping moving objects. The inability
for robot manipulators to grasp objects in motion limits the
applicability of the technology in both traditional industrial
settings, such as on assembly lines where the emergence
of flexible manufacturing has driven major improvements
in productivity, as well as in nontraditional robotic settings,
such as homes, hospitals, and logistics where new applica-
tions for mobile manipulators are emerging.

Current state-of-the-art grasping approaches for grasping
moving objects have broadly followed the same approach,
whereby the robot moves its end-effector to a gripper-object

*This work was supported the Irish Research Council
1School of Engineering, Mathematics and Science, Trinity College

Dublin , Ireland lynchp13@tcd.ie

interception point, estimated by tracking the objects trajec-
tory [5]–[9]. There are several common problems associated
with this approach, owing mainly to the dependence of these
systems on computer vision. Vision sensing is computa-
tionally expensive and gaining the required accuracy at the
point of interception often necessitates the use of distributed
motion tracking hardware which is costly and rarely practical
in everyday settings. Vision sensing is also subject to issues
such as occlusion and poor lighting conditions which can
further impact their accuracy. Finally, a robotic manipulator
is typically a long, open, kinematic chain, making it difficult
to achieve high positional accuracy at its end-effector. Each
of these issues contribute to an error in the interception of
the object by the gripper.

The aim of this research was to explore if performance
could be improved when grasping moving objects through
incorporation of reactive grasping behaviour, driven by tactile
sensing in the gripper’s fingertips. It was hypothesised that
this approach would enable the gripper to better adapt to
errors at the gripper-object interception point, leading to
improved overall grasp performance. To test this hypothesis,
a series of grasping tests were performed on a virtual gripper
in simulation.

The remainder of this paper is structured as follows.
Section II details relevant, existing research in the areas of
grasping moving objects and visuotactile systems. Section
III describes the simulated gripper and environment used,
the grasping strategies which are compared and outlines
the experimental procedure. Section IV presents the results
obtained from testing. Section V examines the presented
results, discusses the findings and outlines future work.
Finally, section VI draws conclusions from the research
presented.

II. PRIOR WORK

Previous research connected with the problem of grasping
moving objects has explored catching dropped objects [10],
catching a flying object [8], [9], and the ability to grasp
irregularly shaped moving objects [5]. A number of other
relevant studies have centered on robot participation in games
and sport, where the robot was required to autonomously
interact with a dynamic object. For example, robots have
been trained to play table tennis [7], catch [6], [11] and
kendama [12]. In each of these studies, the performance
of the robot was critically dependant on the ability of its
vision system to accurately track the target moving object
and estimate an appropriate interception position and time.



The combination of vision and tactile sensing has been
shown to be effective in grasping applications involving static
objects. The fusion of these modalities has been used to
monitor the relationship between gripper and grasped object
during a drilling operation [13] and to ensure stability when
grasping static objects [14]. There has been an explosion in
recent years of research aiming to use machine learning tech-
niques to process a combination of vision and tactile sensor
data to complete a range of goals, including assessing grasp
stability [15], inferring information about the objects surface
properties [16], informing and improving a reattempted grasp
of a static object [17], and to improve a robot’s ability to
identify and recognise unknown objects [18], [19].

Visuo-tactile sensing systems have also previously been
used to aid in the grasping of moving objects [20]–[22].
One example is manipulation of an object on a conveyor
belt [20], [21], however this application is able to leverage
some of the advantages of a structured environment. Tracking
the object with the gripper simplifies the grasp to a quasi-
static problem. More recently, researchers used a visuo-
tactile system to grasp falling objects, aiming to minimise
the forces, and therefore deformation, applied to a soft object
during grasping [22]. Their grasp adaption strategy was
optimized for minimising deformation and did not examine
how to adapt the grasping motion in the face of uncertainty
in the interception position and time.

The reliance on vision sensing when tackling the problem
of grasping moving objects is pervasive throughout the prior
art, while the potential contribution of other sensing modal-
ities remains a relatively poorly understood topic. There is a
need for fundamental research to help better understand how
factors, such as tactile sensing, could enhance the perfor-
mance of robots in these situations. This research addresses
this by examining how tactile feedback can effect the grasp’s
robustness to errors in the interception of a moving object
by a robot.

III. METHODS

The experiment involved an under-actuated, two finger,
pincer gripper grasping a ball moving on a horizontal plane.
Each finger possessed 3 tactile sensors, 3 degrees of freedom
(Fig. 1a) and was controlled by a single actuator. All tests
were performed in simulation. In recent years, simulation
has emerged as a popular means of initially testing a research
hypothesis in robotics manipulation research, since it is faster
and less resource intensive than real-world testing with a
physical robot [7], [11], [23]. The simulation environment
developed in this research was informed by a number of
recent studies involving the simulation of robotic grasping,
including [24] and [25].

A. Simulation Environment

A virtual model of the robotic gripper (Fig. 1b) and a
ball was created using the Gazebo robotic simulator (ver-
sion 9.12.0). The simulation adopted the Open Dynamics
Engine (ODE) physics engine and the control interface was
implemented using the Robotic Operating System (ROS).

(a)
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Fig. 1: Design of gripper: (a) Drawing, with dimensions and
legend (b) Screenshot from simulation

The dimensions of the gripper, shown in Fig. 1b, are based
on the dimensions of a typical male human hand while the
ball is based on a standard billiards ball, with a diameter of
57mm. Since the ratio of gripper size to ball size will impact
performance, the chosen dimension make the results relevant
for a humanoid gripper grasping a sphere of similar size to
a sports ball which a robot could expect to encounter, i.e. a
billiards ball is slightly larger than a golf ball or squash ball
but slightly smaller than a baseball, or tennis ball.

A Gazebo plugin was developed to simulate the behaviour
of the under-actuated gripper. Each joint was controlled using
a velocity PI controller and the torque at each joint was
monitored. Initially all joint velocities were set to 0. When
grasping, the plugin provided a step increase in the target
velocity of the controller for the first joint. For subsequent
joints, only when the torque of the parent joint exceeded an
empirically determined threshold, corresponding to when it
meets an obstacle in simulation, would the next joint start to
move. This behaviour can be seen in Fig. 2b. This is a direct
parallel of how the tendons leverage decreasing mechanical
advantage for subsequent joints in hardware and results in
a sequential closing motion, and inherently adaptive grasp,
characteristic of this type of under-actuated gripper.

Tactile sensors were implemented using the built-in
gazebo ros bumber plugin, which monitors all contacts with
each sensor and publishes them to a ROS topic where they
can be used by the grasping strategy to inform the grasping
motion. Each simulated tactile sensor was modeled using
multiple discrete Gazebo links, resulting in multiple contact
points per sensor. Tuned dynamic stiffness (kp) and dynamic
damping (kd) collision parameters, approximated the de-
formable nature of silicon-based tactile sensors. Furthermore,
a non-zero patch and surface radius are used for more
accurate simulated frictional behaviour between each sensor
and the object. An aspect of the reactive motion, driven
by tactile sensors, was the lateral movement of the gripper,
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Fig. 2: Graphs showing (a) ball and gripper position and (b)
joint angles, during a successful grasp

illustrated in Fig. 2a. The lateral speed was dependant on
tactile sensor feedback and speeds of up to 0.85m/s were
used. This was achieved using a gazebo prismatic joint and
a position controller which interfaces with ROS through a
ROS service call.

B. Experimental Procedure

The experiment investigated the effectiveness of two dis-
tinct control strategies at grasping a moving object. The first
strategy involved initiating the grasp a set time before col-
lision, requiring an estimate of the time at which the object
would come into contact with the gripper. This provided
a proxy to current state-of-the-art approaches that depend
exclusively on an estimated interception point to trigger the
grasp. A series of experiments were performed to determine
the best time to initiate the grasp using this strategy. This
involved examining grasp success rates as a function of
different ball speeds, ball-gripper contact points and grasp
initiation times. The optimal time to initiate the grasp was
taken as the point that had the highest overall mean grasp
success rate (approximately 0.17s before the collision), the
results from these simulations is given in Fig. 3. Two other
control conditions were taken at 0.30s and 0.04s before
contact (these are equidistant, either side of the optimum)
and were also analysed in the experiment. This examines
how errors in the estimated optimum time to intercept can
effect performance.

The second strategy involved a reactive control component
that used feedback from tactile sensing to inform the grasping
motion. This was achieved through the implementation of
three basic heuristics:

Fig. 3: Initial tests were conducted to determine the optimal
grasp initiation time for use in subsequent tests. The optimum
time to initiate the grasp was found by determining the
grasp initiation time with the highest mean grasp success-rate
across different spatial offsets and ball speeds. The optimum
time to initiate the grasp was found to be at approximately
0.17s before contact as indicated by the vertical black line.

1) The grasp was triggered when the object first made
contact with any of the tactile sensors in the gripper.

2) Upon detection of contact with an object, the gripper
moved laterally such to reduce the spatial offset and
centre the object in the gripper.

3) The closing motion of the finger that first comes into
contact with the object is delayed relative to the other
finger.

For each test, the ball was spawned at the desired location
and programmed to move at the specified speed for the test.
The ball moved toward the gripper and the gripper attempted
to grasp it. After the attempt, the gripper lifted off the ground
plane still attempting to hold the object. A grasp was deemed
successful if the gripper could successfully lift and support
the full weight of the ball after the grasp.

IV. RESULTS

A series of experiments were conducted to investigate the
performance of both grasping strategies. Testing was con-
ducted at three different ball speeds, evenly spaced between
0.8m/s and 1m/s. Thirteen different spacial offsets were
tested, equally spaced between -69mm and 69mm. These
conditions are illustrated in Fig. 4.

Four controllers were implemented in the experiment. The
first three controllers used planners that initiated the grasp
based on the predicted point of contact between the ball
and gripper. These involved initiating the grasp at 0.04s,
0.17s and 0.30s from the point of contact respectively. The
fourth control condition was the reactive approach, which
responded only once the ball had been detected by one of the
gripper’s tactile sensors. For each test condition, a minimum
of 100 tests were conducted and the results at each ball speed
are summarised in Fig. 5a - Fig. 5c.

Statistical tests, undertaken using a chi-square test of in-
dependence were used to compare the success of the reactive
grasping strategy with each of the three control conditions.
These results are presented in Table I. Due to the symmetry
of the gripper, only results from positive offsets (i.e. offsets



Fig. 4: Tests were performed at 3 ball speeds and 13 spacial
offsets as indicated in this graph.

in the range 0-69mm) are presented. It is observed from
Table I that the reactive controller outperforms each of the
predictive controllers at significant levels for many of the test
conditions.

V. DISCUSSION

The performance of the control condition (i.e. the ap-
proach which relied exclusively on an estimated interception)
performed well at low offsets but the grasping success
rate dropped as the offset increased. This observation rein-
forces what was forecast, namely high grasp performance
of dynamic objects is only possible using this approach
when an accurate estimate of an appropriate interception
can be provided. We observed that the performance of this
strategy is dependent on the magnitude of the errors (i.e. the
distance between the midpoint of the ball and the centre
of the gripper) at the point of interception, which would
be hard to avoid in many real-world scenarios. This effect
is amplified at higher object speeds, where sensitivity to
errors was larger and grasp performance observed to be
worse, even at small induced errors. In contrast, the reactive
grasping strategy demonstrates a robustness to these induced
errors, showing the ability to grasp at higher induced spatial
offsets, while matching the performance of the estimate-only
strategy at lower offsets. This suggests that the techniques
implemented as part of the reactive grasping strategy, i.e.
the reactive lateral movement and finger coordination, were
able to mitigate the effects of an error in the interception, and
achieve a successful grasp which would otherwise have been
impossible. These techniques are only possible due to the low
bandwidth, low latency, and local nature of the implemented
tactile sensing and reactive grasping strategy. This reduces
the accuracy demands on the estimated interception and
is a step toward making such a system effective in an
unstructured environment.

The range of spatial offsets which were tested represents
the range at which a successful grasp is possible with

TABLE I: Summary of results from simulated grasping
experiments. Where ‘delay‘ is the grasp time minus the
optimum time , ‘n‘ is the number of tests conducted, χ2

is the chi-squared value and P − val is the probability
that there is no different between the control and reactive
strategies. A single asterisk indicates a significant difference
in performance at a significance level(α) < 0.05, a double
asterisk indicates a significant difference in performance at
α < 0.01

.
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Fig. 5: Results for different speeds of the moving object: (a)
Slow speed, (b) Medium speed, (c) High Speed

this gripper, beyond 69mm the grasping success rate drops
to zero. To understand the conditions which may lead to
interception offsets in the range tested, a theoretical analysis
of the trajectory of a flying ball was conducted using a purely
gravity-based model, neglecting air resistance. It was found
that for a ball thrown at a 45°angle toward the robot from two
meters away, a 2% error in the measurement of the object
velocity, both in magnitude and angle of the velocity vector,
when extrapolated will lead to an error in the estimated
point of interception of approximately 76mm. This represents
grasping under poor conditions where the robot must extrap-
olate from sensor data collected when the ball is relatively
far from the robot. That said, due to occlusion and poor
lighting conditions commonly experienced in unstructured
environments it is not an unrealistic scenario. Furthermore,
this only accounts for errors in the estimated interception

point and not errors in the robot’s ability of move the gripper
to this position.

The optimum time to initiate the grasp was defined as the
time which achieved the highest average grasping success
rate, and was determined empirically to be 0.17s before
interception. However, results suggest that there may be alter-
native ways in which to define this, depending on the context.
Fig. 3 demonstrates that grasping performance deteriorates
quicker when the grasp is early compared to when the grasp
is late. An alternative way to define the optimum time would
be to select a time from which both positive and negative
offsets would result in similar performance. Fig. 3 also shows
that each speed has a distinct optimum time to initiate the
grasp. This suggests that the object speed should be included
when calculating the optimum time to initiate the grasp. The
data collected shows that this approach could increase the
average grasping success rate, from 42% when the optimum
time is defined as an average of all speeds, to 52% when
each tested speed has a distinct optimum time.

In Fig. 5a, it is worth noting some asymmetry in the grasp-
ing success rate for the reactive strategy with positive spatial
offsets (to the right of optimum) at lower speeds. This feature
became apparent during analysis of the results performed,
and on reflection is likely due to a slight asymmetry in
the alignment of the tactile sensors in simulation. This does
not effect the conclusions drawn from this research, and a
conservative view of the results was taken when conducting
statistical analysis. Positive spatial offsets were considered,
rather than the potentially more favourable negative spatial
offsets. This does however underlie the importance of sensor
position.

In Fig 5c, there is a distinctive drop in performance for low
spatial offset, high object speed, test conditions. The grasping
motion, as determined by the reactive grasping strategy, was
to move the gripper laterally so as to reduce the distance
between the center of the gripper and the initial contact point.
However, at these low offsets it was found that the rebound
resulted in the object crossing the center line of the gripper,
resulting in movement of the gripper away from the target
object. This suggests that, despite performance improvements
at higher offsets, the reactive strategy presented does not
necessary react optimally and would achieve yet better results
through further refinement. One example of how this might
be achieved is by increasing the density of tactile sensing.
Higher resolution information about the contact point, would
allow the strategy to identify the scenarios in which the
object is likely to rebound across the center line of the gripper
and trigger a more appropriate response.

An improvement in grasp robustness is shown using a
relatively simple tactile sensing implementation. Improve-
ments in both sensor density and sensitivity have the potential
to further improve the gripper performance while grasping
moving objects and is the subject of future research. There
are also several parameters related to grasp uncertainty that
remain to be examined, such as variation in the angle at
which the gripper intercepts the object and the spin of the
object. Further optimization of the time to initiate the grasp,



in particular the effect of the object speed, is also a topic
for future research. The simulation environment presented
in this work provides an ideal test-bed for tackling these
questions. Current modeling is simplified to a 2D problem of
a ball rolling on a horizontal plane. This is valuable for initial
testing and development of the hypothesis, but the benefits
of this approach will be best realized when the methodology
is applied to 3D grasping. Validation of the results presented
here in a real-world experiment is a necessity and is the topic
of ongoing research.

VI. CONCLUSIONS

This research hypothesised that using a reactive control
strategy, based on tactile sensing in the fingertips, could
lead to improved grasp robustness when grasping moving
objects. In theory, real-time, tactile feedback could detect
errors in the interception of the object by the gripper and
enable a grasping motion which reacts appropriately. This
results in successful grasps in situations where interception
errors would make a successful grasp impossible for a
strategy which solely relies on an estimation of the point
of interception.

This was tested in simulation, where a two finger gripper
attempted to grasp a ball rolling on a horizontal plane.
Two different strategies were compared, first a traditional
approach, common in prior work on this problem, which
relied exclusively on an estimate of a position and time of
interception. Second, a reactive strategy which used feedback
from tactile sensors to adapt the grasping motion. Results
demonstrate that the reactive strategy was able to mitigate the
effects of errors at the point of interception in a way which
was impossible for the traditional strategy. This showed
a clear improvement in the robustness of the strategy to
interception errors.

This research represents early stage validation that tactile
sensing can play a role in enabling robots to autonomously
interact with dynamic objects. To enable the research pre-
sented here to have a real impact on enabling robots to
interact with dynamic objects, it is essential that these results
are replicated in the real world and similar strategies are
applied to more complex grasping scenarios.
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