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ABSTRACT 1 
 2 
As climate change and greenhouse gas emissions receive increasing levels of attention, the need for 3 
sustainable transport solutions becomes increasingly apparent. The Luas is Dublin’s Light Rail Transit 4 
(LRT) network and, since completion in 2004, it has become key component of the city’s transport system, 5 
with plans for further expansion in the near future. Ensuring that sustainable transport options, such as the 6 
Luas, are attractive to users by providing a reliable service is a key step in increasing their usage and 7 
environmental benefits. This research investigates the effects of the weather on the reliability of the Luas 8 
trams, with a focus on identifying specific sections of the network and time periods that are increasingly 9 
vulnerable to weather-related disruption.  10 
 11 
A large dataset of Automatic Vehicle Location (AVL) data was received from Transport Infrastructure 12 
Ireland (TII) from which the required headways for the analysis were derived.  Precipitation, air temperature 13 
and wind speed for the same time periods were obtained from the Irish weather service (Met Eireann). The 14 
two datasets were then combined and analysed using multiple linear regression. 15 
 16 
Precipitation was found to be the most influential weather variable for negative impacts on LRT 17 
performance. Unexpectedly, increases in wind speed resulted in decreases in headway times.  Weather was 18 
found to have more substantial effects on the Luas Red Line than on the Green Line. The results of this 19 
study would be useful to transport authorities in their efforts to increase the resilience of the Luas network 20 
to adverse weather conditions. 21 
 22 
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INTRODUCTION 1 
 2 
In recent years, the issues of greenhouse emissions and resulting climate change have received increasing 3 
amounts of public attention. In Ireland, the transportation sector is one of the largest sources of CO2 4 
emissions, accounting for 20.3% of total emissions (1). To facilitate a move away from private cars, public 5 
transport options must be attractive to users and ensure they function efficiently and effectively is necessary.  6 
All modes of transport have a degree of vulnerability to external conditions such as adverse weather. 7 
However, the degree of disruption varies depending on the specific characteristics of the transport system. 8 
Efforts have been made by researchers to investigate the effects of weather on various modes such as bus 9 
and heavy rail networks (2,3,4).  10 
 11 
Dublin’s Light Rail Transit (LRT) network known as the Luas and shown in Figure 1 is an important 12 
component of the city’s transportation system, having an average daily usage of 150,000 people (5). It 13 
consists of two lines: The Red Line, currently 21km in length with 32 stops, begins on the south-west 14 
periphery of Dublin, in the suburb of Tallaght and proceeds northeast to Dublin City Centre before 15 
terminating at the Point in Dublin’s Docklands. The Green Line with a length of 22km and 35 stops, runs 16 
from Bride’s Glen in Southeast County Dublin to Broombridge in Dublin’s Northern suburbs.  17 
 18 

 19 
Figure 1. Luas Network (6). 20 

Dublin’s climate, like the rest of Ireland’s, can be classified as being oceanic and is strongly influenced by 21 
the country’s proximity to the Atlantic Ocean. The North Atlantic Drift is a warm water current that ensures 22 
the sea temperatures around Ireland remain relatively warm year-round, giving Ireland a milder climate 23 
than other nations at a similar latitude. Irish winters tend to be cool and windy with snowfall irregular and 24 
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infrequent. Summers tend to be mild with slightly less rainfall than the winter. The overall seasonal 1 
temperature variation is quite low, and rainfall is plentiful, occurring year-round (7). Dublin’s climate is 2 
summarised in Figure 2. 3 
 4 

 5 
 6 

Figure 2. Summary of Dublin’s climate (8) 7 
 8 
It is expected that climate change may include an increase in both the frequency and severity of adverse 9 
weather conditions in combination with rising sea levels in the Irish Sea where an increase of 0.47m could 10 
occur by the end of the 21st Century (9). These effects could be potentially result in devastating 11 
consequences for Dublin (10). This is especially important in terms of the transportation sector, the fastest 12 
growing producer of greenhouse gases in Ireland between 1990 and 2016 (11). The Luas system, due to its 13 
electrification, could prove to be an important asset in Ireland’s bid to mitigate climate change. By better 14 
understanding the impact of weather on its performance, the operations of the network can be optimised 15 
ensuring maximum attractiveness to potential consumers and environmental benefits.  16 
 17 
The main objectives of the research are as follows: 18 
 19 

(1) To identify any sections of the Luas network which are increasingly vulnerable to disruption. 20 
(2) To determine which weather variables have the greatest effect on the performance of the Luas. 21 
(3) To explore if weather impacts the two Luas lines differently. 22 
(4) To highlight any specific time periods where weather-related disruption is more likely to occur. 23 
(5) To compare expected tram frequencies with actual values. 24 
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 1 
The next section of the paper will provide relevant background for the research.  This will be followed by 2 
a summary of the methodology used.  The results of the analysis will then be presented and discussed 3 
followed by conclusions of the work and relevant recommendations. 4 
 5 
BACKGROUND 6 
 7 
Rail networks have much lower densities than road networks resulting in fewer alternative routes (12). 8 
Therefore, an isolated event can lead to a bottle-neck effect which disrupts all traffic along a railway section 9 
and this cascading effect often results in a decrease in transportation service quality and significant 10 
economic losses (13, 4). Studies focused on weather-related disruption are often more difficult to draw 11 
conclusions from compared to those that relate to a random failure of a singular component or an intentional 12 
attack on the railway (14). In an investigation by (15) on Melbourne’s tram network, it was found that every 13 
additional 1mm of precipitation increased trip time by 8 seconds, while every 1°C deviation from 15°C 14 
resulted in an increase of 1 second of trip time. 15 
 16 
Weather-Related Disruption in Ireland 17 
The railway network in Ireland is composed of 1700km of track mainly concentrated on the east coast and 18 
the midlands with only a small number of stations on the wetter west coast (16).  An investigation of the 19 
incidence of landslides in the Irish railway network (16), using weather data from The Irish Meteorological 20 
Service (Met Eireann) found that only 2 landslide failures had been reported in October on average despite 21 
it being the wettest month on average. However, 63% of reported events occurred between November and 22 
January indicating, the potential influence of antecedent rainfall on the likelihood of soil slope failures.  23 
 24 
A study carried out by (17) focused on weather-related disruption on the heavy commuter rail line in Dublin, 25 
known as the DART. The greatest delays occurred during November, a period typically known for high 26 
winds and rainfall. A large proportion of the DART network is lined by deciduous trees and this combined 27 
with adverse weather conditions can result in a large amount of leaves blown onto the tracks limiting the 28 
speed at which the trains may operate.  29 
 30 
Climate Change and Network Resilience 31 
 32 
Climate change is expected to increase both the frequency and severity of certain weather phenomena in 33 
the foreseeable future (18). The increase in extreme rainfall events will likely be seen in Ireland and will 34 
occur due to winter temperatures warming. Rises in sea levels will likely occur due to the melting of polar 35 
ice caps which may threaten transport infrastructure in low-lying maritime areas as coastal flooding and 36 
storm surges becomes more common (17).  37 
 38 
The concept of resilience describes a system’s capacity to maintain its original function after a major 39 
disruption. It also may consider the speed at which the system can return to a state of normal operation (19). 40 
Successful rail operations generally are considered to be less flexible and less robust systems of 41 
transportaton than travelling by private car. However, in the event of severe disruption the possibilities for 42 
coordinated restoration are greater with rail, and other forms of public transport, than with private 43 
transportation (20). 44 
 45 
One means of conducting vulnerability studies requires detailed information regarding supply and demand 46 
patterns in combination with sophisticated modelling software (19). The potential decisions of passengers 47 
in the event of disruption are directly influenced by the amount of information available to them, such as 48 
the expected duration of the delay and details of possible diversions. This parameter can therefore be highly 49 
influential (21).  In a study by (22) the importance of informing passengers about disruption as soon as 50 
possible is highlighted. The robustness of the transport network in Stockholm was investigated by (20) and 51 
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they found that increasing the capacity on key links within the network would help absorb unplanned 1 
disruptions and increase the overall robustness of the network.   2 
 3 
Responding to Disruption 4 
 5 
When considering a railway’s performance, a flexible service and recovery strategy was highly ranked in 6 
terms of importance yet poorly ranked in terms of performance (23). Although risk managers and logistics 7 
experts who work for rail companies are aware of the potential for disruption, effective mitigation strategies 8 
and tools are often scarce (4).  In research by (24), similarities and differences between disruption 9 
management processes in several European countries were examined.  They found that management 10 
systems vary significantly with some having highly centralized control centres, such as in Denmark, with 11 
others having their control more widely distributed, or decentralized, such as in Germany. Decentralized 12 
systems involve decisions made at a local level; therefore, they usually do not benefit the network as a 13 
whole and can contribute negatively to the overall performance of the system. A highly centralized structure 14 
can lead to railway operators being overloaded with information and decisions lagging behind the 15 
progression of the local situation. 16 
 17 
Many papers in the literature focus on hypothetical scenarios in which disruption effects the network by 18 
making a specific section of track unavailable for a set period, while not many investigate the effects of 19 
actual weather events. The scenarios modelled in many studies often make assumptions regarding the 20 
behaviour or railway operators and passengers, such as consistent rational decision-making.  Furthermore, 21 
a gap in the literature exists regarding disruption on LRT networks. There is a need to better understand 22 
this the vulnerability of LRT networks to weather as they increasingly become the back bone of urban 23 
public transport systems.  The objective of the research here is to address this gap in the literature. 24 
 25 
METHODOLOGY 26 
 27 
Data 28 
 29 
Luas Data 30 
 31 
The Luas tram schedule is presented by frequency and not as a fixed schedule.  The scheduled tram 32 
frequency is dependent on the time of day with peak hours having a typical frequency of 3 to 5 minutes and 33 
off-peak hours having a significantly lower frequency of 12 to 15 minutes (25). The Luas dataset received 34 
from TII contained entries relating to every actuation that occurred on the Luas network for the full year of 35 
2020. With 360 data entries per minute, the data file contained over 200 million datapoints. To proceed 36 
with the analysis, it was necessary to filter the dataset into a more manageable size.  The data for seven 37 
days in February 2020, a very wet and windy month, were extracted along with seven days of data for a 38 
much calmer and drier period in April 2020. The objective was to examine the differences between days 39 
with ideal and days with poor weather conditions.  How ideal and poor weather conditions were defined 40 
are presented later.  The numbers of tram arrivals analysed at each station were in the range 2,495 – 4,919. 41 
 42 
The impact of weather on the timetabled arrival of trams at stations required filtering of the data to remove 43 
data entries corresponding to readings taken by the system when trams were between stations. Recoding 44 
was necessary to separate entries for the Luas Green Line and Red Lines, different stations, direction of 45 
travel, weekday, weekend and peak and off-peak hours.  The headway calculation involved subtracting the 46 
time value of each actuation at a station by the proceeding time.  47 
 48 
The dataset contained data for all 67 stations in the Luas network. Running an analysis for all stations would 49 
be unnecessary as adjacent stops are likely to be impacted in a similar way by local weather conditions.  50 
Therefore one stop was selected from each zone of the system (see Figure 1), for both lines, for 51 
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consideration in the analysis. Stops serving as termini were omitted as trams often turn at termini. Stops 1 
near busy commercial areas such as Balally and Jervis were selected as these stations are likely to 2 
experience larger passenger numbers and could be considered more important in the context of the whole 3 
network. At Belgard, the Red Line deviates into two separate sections, heading towards Saggart and 4 
Tallaght respectively. As can be seen in Figure 1, these two distinct branches are in the same zone (Zone 5 
Red 4) and stations were selected on both branches. An additional station in this zone (Kingswood) was 6 
selected at the section before the deviation occurs. The Green Line stations chosen were: Phibsborough, 7 
Dawson, Cowper, Balally, Glencairn and Cherrywood. The Red Line stations chosen were: Spencer Dock, 8 
Jervis, Rialto, Bluebell, Kingswood, Citywest Campus and Hospital. A map showing the chosen stations in 9 
relation to the rest of the Luas network is shown in Figure 3.  Descriptive statistics for each of the chosen 10 
stations are shown in Table 1. 11 
  12 

13 
Figure 3.  Key stations chosen for analysis (26) 14 

 15 
 16 
 17 
 18 
 19 
 20 
 21 

Table 1.  Descriptive statistics relating to headways at key stations. 22 
 23 
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Station Min (s) Max (s) 
Mean 

(s) 
Standard 
Deviation N  

Phibsborough 58 1958 725 252 2495  

Dawson 61 1966 416 238 4314  

Cowper 41 1985 415 238 4318  

Balally 37 1923 414 233 4315  

Glencairn 38 1930 684 258 2734  

Cherrywood 19 1983 685 259 2731  

Spencer Dock 34 1991 552 269 3310  

Jervis 49 1985 401 250 4566  

Rialto 33 1982 405 249 4504  

Bluebell 34 1851 403 250 4516  

Kingswood 18 1986 383 240 4919  

Hospital 38 1968 630 246 2991  

Citywest 42 1921 636 217 2817  

 1 
 2 
Weather Data 3 
The weather data used in this study was obtained from the Met Eireann (27). As the Luas network is located 4 
entirely within Dublin, only weather stations in Dublin were of interest. Furthermore, it was decided that 5 
weather data used in this study should be on an hourly basis. This ensured a higher level of accuracy and 6 
allowed weather data to be mapped with the Luas data more readily. Although there are 9 weather stations 7 
in County Dublin, only three record on an hourly basis: Dublin Airport, Phoenix Park and Casement, the 8 
locations of which are shown in Figure 4.  9 
 10 
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 1 
  2 

Figure 4. Location of weather stations in relation to Luas network (26).  3 
 4 
In keeping with other weather impact research, the key weather variables selected were precipitation, wind 5 
speed and air temperature (17, 15). Data from the Casement weather station was excluded due to its location 6 
in the foothills of the Dublin Mountains and resulting elevation of nearly 100m above sea level. Most of 7 
the Luas network is closer to sea level.  The Phoenix Park station is the closest to most of the Luas stations. 8 
However, values for wind speed are not measured at this station. It was hence decided that wind speed data 9 
would be taken from the Dublin Airport station. Data from both Phoenix Park and Dublin Airport would 10 
be used to determine the air temperature and precipitation values used in the analysis. Hourly data 11 
corresponding to air temperature, wind speed and precipitation for the two chosen weather stations was 12 
downloaded from the Met Eireann website (27).  13 
 14 
The average air temperature in April was higher at 9.3°C (48.8°F) that the average of 5.9°C (42.6°F)  in 15 
February. February experienced much greater rainfall events, receiving an hourly maximum of 16 
6.8mm/hour. The highest hourly total for precipitation in April was just 1.1mm/hour. The mean wind speed 17 
in February was also greater than April, averaging 6.7 m/s as opposed to 4.3 m/s.  18 
  19 
Seven days were selected as having ideal conditions whereas the other seven had poor weather conditions. 20 
To decide which days were eligible for selection, numerical values were assigned to each hourly datapoint 21 
reading based on their weather conditions. Values were assigned in the 3 categories of air temperature, 22 
precipitation and wind speed with lower values being closer to ideal. For example, a datapoint with 0mm 23 
of precipitation would be assigned a value of 1 while another datapoint with a precipitation value between 24 
0 and 1mm would be assigned a value of 2. For air temperature, ideal values were considered to be in the 25 
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range 5-20 °C (41-68°F), with temperatures outside this range being assigned higher values in increments 1 
of 5°C (41°F). A similar process was carried out for wind speed with values being assigned in increments 2 
of 5 m/s with the ideal value less than 5 m/s. The values were then summed on an hourly basis and 3 
subsequently on a daily basis giving each day an overall score relating to its weather conditions. 4 
 5 
To maintain the balance between weekday and weekend data, each of the 7 chosen days in February 6 
corresponded to a different day of the week; the same was true of the April data. Based on the scoring 7 
system, the 9th, 10th, 11th, 14th, 15th, 26th and 27th of April were selected to represent ideal weather 8 
conditions and the dates in February selected were the 6th, 8th, 9th, 18th, 19th, 21st and 24th representing 9 
poor weather conditions.  10 
 11 
A bivariate Pearson Correlation was performed to assess correlation between the weather variables.  A 12 
weak negative correlation (-0.011) was found between temperature and rain but it was not statistically 13 
significant (p = 0.836). Likewise, the relationship between air temperature and wind speed is not statistically 14 
significant (p = 0.16), however and very weakly correlated (0.077). There is a statistically significant (p = 15 
0.000) greater positive correlation (0.3) between wind speed and rain. 16 
 17 
Statistical Analysis 18 
 19 
Multiple linear regression (MLR) (28) was selected as the most suitable analysis method due to its use in 20 
other studies with similar research objectives (2, 15). Its ability to account for multiple predictor variables, 21 
in this case weather effects, meant it suited the scope of this research well. To address the first objective of 22 
the research i.e. to assess the impact of weather on headway, headway (s) was selected as the dependent 23 
variable and the independent variables were rain (mm), temperature in °C and wind speed in m/s. 24 
 25 
Another research objective of this study was to identify any sections of the Luas network which are more 26 
vulnerable to weather related disruption. To carry out this comparison between different sections of the 27 
network, the MLR analysis was run separately for each of the chosen stations. The analysis was also run 28 
for each peak hour period to identify time periods which are increasingly sensitive to weather related 29 
disruption. This was carried out by separating the analysis file based on the numerical peak hour values. 30 
 31 
RESULTS 32 
 33 
Multiple Linear Regression Results for Chosen Stations 34 
 35 
The MLR results for the chosen Luas Green Line stations are shown in Table 2. As can be seen the p-values 36 
(Sig. column) associated with the coefficients are less than 0.05 in most cases, indicating statistical 37 
significance. The exceptions are wind speed in the models for Phibsborough, Glencairn and Cherrywood, 38 
and air temperature for Cowper and Balally. Rain is statistically significant in all cases. The Durbin-Watson 39 
values range from 0.740 to 1.453, with all falling outside the ideal range of 1.5 – 2.5. Three stations 40 
(Dawson, Cowper and Balally) have Durbin-Watson values less than 1.0, indicating some levels of positive 41 
autocorrelation.  42 
 43 
The adjusted R2 values range from 0.011 to 0.023 indicating that 1.1% to 2.3% of the variance in headway 44 
can be explained by the weather variables. The Beta values (B column) for rain are positive in all cases, 45 
indicating a positive correlation between precipitation and headway times. Wind speed is negatively 46 
correlated with headway in all cases while temperature is positively correlated in half the cases and 47 
negatively correlated in the other half.  48 
 49 
 50 
 51 
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Table 2. MLR results for chosen Green Line stations 1 
  2 

  
B 

Std. 
Error 

Beta t Sig. Lower 
Bound  

Upper 
Bound 

Adj R2 D-W ANOVA 
Sig.  

Green Zone 1 (Phibsborough)  

Constant 678.572 15.400   44.063 0.000 648.373 708.770 

0.020 1.453 0.000 

 

Rain 48.745 9.034 0.111 5.396 0.000 31.031 66.459  

Temp 6.507 1.277 0.101 5.096 0.000 4.003 9.011  

Wind  -3.770 1.657 -0.047 -2.275 0.023 -7.019 -0.521  

Green Central (Dawson)  

Constant 459.592 11.431   40.205 0.000 437.181 482.003 

0.022 0.740 0.000 

 

Rain 70.104 7.721 0.142 9.080 0.000 54.967 85.242  

Temp -2.811 0.913 -0.047 -3.079 0.002 -4.601 -1.022  

Wind  -4.956 1.197 -0.065 -4.142 0.000 -7.302 -2.610  

Green Zone 2 (Cowper)  

Constant 452.605 11.356   39.857 0.000 430.342 474.868 

0.023 0.838 0.000 

 

Rain 70.186 7.219 0.152 9.722 0.000 56.032 84.340  

Temp -2.224 0.908 -0.037 -2.449 0.014 -4.004 -0.443  

Wind  -4.881 1.187 -0.064 -4.111 0.000 -7.209 -2.553  

Green Zone 3 (Balally)  

Constant 444.214 11.195   39.679 0.000 422.265 466.162 

0.018 0.892 0.000 

 

Rain 61.841 7.217 0.134 8.569 0.000 47.692 75.989  

Temp -1.666 0.893 -0.028 -1.865 0.062 -3.417 0.085  

Wind  -4.231 1.168 -0.057 -3.622 0.000 -6.521 -1.941  

Green Zone 4 (Glencairn)  

Constant 628.866 14.866   42.304 0.000 599.717 658.015 

0.011 1.302 0.000 

 

Rain 27.388 8.751 0.062 3.130 0.002 10.229 44.548  

Temp 6.149 1.254 0.093 4.904 0.000 3.691 8.608  

Wind  -0.752 1.627 -0.009 -0.462 0.644 -3.942 2.438  

Green Zone 5 (Cherrywood)  

Constant 629.249 14.879   42.292 0.000 600.075 658.424 

0.011 1.200 0.000 

 

Rain 25.050 8.571 0.058 2.923 0.003 8.244 41.857  

Temp 6.252 1.259 0.095 4.965 0.000 3.782 8.721  

Wind  -0.739 1.627 -0.009 -0.454 0.650 -3.929 2.451  

  3 
 4 
The analysis results for the chosen Luas Red Lines are shown in Table 3. All results from this analysis are 5 
statistically significant (p-values less than 0.05) apart from temperature at Citywest Campus (0.660) and 6 
Hospital (0.322). The Durbin-Watson values for the Red Line stations range from 1.049 and 1.735. Two 7 
stations, Citywest and Spencer Dock have values in the ideal range of 1.5 – 2.5. None of the Durbin-Watson 8 
values were under 1.0 or over 3.0, indicating that autocorrelation is not present.  9 
 10 
The adjusted R2 values range from 0.011 at Citywest to 0.064 at Rialto indicating that 1.1% to 6.4% of the 11 
variance in Red Line headway times can be attributed to the variation in weather conditions. In all cases 12 
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increases in precipitation correspond to increases in headway time. Wind speed is negatively correlated in 1 
all cases. Temperature is negatively correlated in all cases apart from Citywest.  2 
 3 

Table 3.  Multiple Linear Regression Results for Chosen Red Line Stations 4 
 5 

 

B 
Std. 

Error 
Beta t Sig. Lower 

Bound  
Upper 
Bound 

Adj R2 D-W ANOVA 
Sig.  

Red Zone 1 (Spencer Dock)  

Constant 687.899 14.885   46.213 0.000 658.713 717.084 

0.047 1.619 0.000 

 

Rain 77.235 8.768 0.155 8.808 0.000 60.043 94.427  

Temp -8.867 1.182 -0.128 -7.504 0.000 -11.184 -6.551  

Wind  -11.732 1.499 -0.138 -7.828 0.000 -14.671 -8.794  

Red Central (Jervis)  

Constant 553.692 11.959   46.299 0.000 530.247 577.138 

0.062 1.049 0.000 

 

Rain 84.102 7.533 0.165 11.165 0.000 69.334 98.869  

Temp -10.414 0.933 -0.162 -11.158 0.000 -12.244 -8.585  

Wind  -11.884 1.183 -0.149 -10.046 0.000 -14.204 -9.565  

Red Zone 2 (Rialto)  

Constant 556.030 11.986   46.391 0.000 532.532 579.528 

0.064 1.128 0.000 

 

Rain 88.488 7.641 0.172 11.580 0.000 73.507 103.469  

Temp -10.434 0.932 -0.163 -11.195 0.000 -12.261 -8.606  

Wind  -11.542 1.187 -0.145 -9.723 0.000 -13.869 -9.214  

Red Zone 3 (Bluebell)  

Constant 555.376 11.995   46.299 0.000 531.859 578.893 

0.062 1.217 0.000 

 

Rain 85.123 7.647 0.165 11.131 0.000 70.131 100.115  

Temp -10.311 0.934 -0.161 -11.035 0.000 -12.143 -8.479  

Wind  -11.904 1.190 -0.149 -10.000 0.000 -14.238 -9.571  

Red Zone 4 (Kingswood)  

Constant 505.924 10.766   46.994 0.000 484.818 527.029 

0.048 1.447 0.000 

 

Rain 72.230 6.980 0.149 10.349 0.000 58.546 85.913  

Temp -8.088 0.852 -0.133 -9.490 0.000 -9.759 -6.417  

Wind  -10.441 1.100 -0.137 -9.490 0.000 -12.598 -8.284  

Red Zone 4 - Branch 1 (Hospital)  

Constant 695.732 13.765   50.544 0.000 668.720 722.721 

0.021 1.465 0.000 

 

Rain 34.847 7.702 0.085 4.524 0.000 19.745 49.950  

Temp -1.135 1.147 -0.018 -0.990 0.322 -3.383 1.113  

Wind  -11.358 1.457 -0.147 -7.795 0.000 -14.216 -8.501  

Red Zone 4 - Branch 2 (Citywest Campus)  

Constant 663.855 12.957   51.236 0.000 638.449 689.261 

0.011 1.735 0.000 

 

Rain 29.729 6.964 0.083 4.269 0.000 16.074 43.383  

Temp 0.465 1.056 0.008 0.440 0.660 -1.605 2.535  

Wind  -6.870 1.342 -0.100 -5.119 0.000 -9.501 -4.238  

  6 
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While the R2 are generally relatively low for both lines, the values for the Green Line stations are relatively 1 
consistent and lower than the Red Line values. Acknowledging that the R2 values are quite low generally, 2 
some further exploration of the results was conducted using QGIS, shown in Figure 5. Sections of the 3 
network were assigned a colour based on their adjusted R2 value. The section appearing most sensitive to 4 
weather disruption is between George’s Dock and Red Cow, while the section between Belgard and Saggart 5 
shows the least variation in headway. The section of the Green Line closer to Dublin City Centre, from 6 
Broombridge to Dundrum shows a higher sensitivity to weather related disruption in comparison to the 7 
more peripheral section, from Dundrum to Bride’s Glen.  8 
  9 

 10 
 11 

Figure 5: Map of Adjusted R2 values at different sections of the Luas network 12 
 13 
Analysis of the Effects of Each Weather Variable on Luas Performance 14 
 15 
To better understand the effects of each of the three weather variables, the Beta coefficients from the MLR 16 
analysis were examined in Figure 6.  Precipitation is positively correlated with headway in all cases and in 17 
10 out of 13 stations, precipitation is the weather condition with the most influence on headway. 18 
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Interestingly, wind speed is negatively correlated in all cases and has a more substantial influence on 1 
performance at the Red Line stations. Temperature is negatively correlated at most stations with the 2 
exceptions being Phibsborough, Glencairn, Cherrywood and Citywest. The impact of temperature varies 3 
significantly based on each station. For example, at Citywest it is almost negligible while at Cherrywood it 4 
is the most significant factor.  5 
 6 

7 
Figure 6. Beta coefficients at chosen stations 8 

 9 
 10 
Weather Related Disruption at Different Time Periods 11 
 12 
Ideal weather compared with poor weather days 13 
 14 
An MLR analysis was carried out to assess the differences in impact on headway of the weather variables 15 
on days of ideal conditions and those with poor weather conditions.  The table of results are not presented 16 
due to paper length considerations but a summary of the key findings are discussed here.  All results were 17 
statistically significant at the p < 0.05 level. The Durbin-Watson values are both slightly outside the range 18 
of ideal values (1.5 - 2.5). The standard error value associated with the unstandardized coefficient for 19 
precipitation is noticeably large (413.336) and is most likely due to the very low number of datapoints in 20 
April having precipitation values associated with them. The adjusted R2 value is slightly lower for the period 21 
of non-ideal conditions in February than it is the ideal conditions in April, 0.037 compared to 0.046. This 22 



15 
 

indicates that in April, a larger amount of the variance in headway can be attributed to the weather 1 
conditions in comparison to February.   2 
 3 
The Beta values for both sets are shown in Figure 7.  An increase in rainfall correlates with an increase in 4 
headway, while an increase in temperature correlates with a decrease in travel time. Although precipitation 5 
has a greater impact on headway in February compared with April a decrease in temperature has a greater 6 
impact on headway in April compared to February. Interestingly, wind speed is both positively and 7 
negatively correlated with headway times in February and April respectively but the coefficient is very 8 
small in both cases and so no conclusion can be drawn.  9 
 10 

 11 
 12 

Figure 7. Beta Coefficients for February and April Analysis Periods 13 
 14 
Peak Hours 15 
 16 
In order to investigate the effects of weather on headway at different time periods, another MLR analysis 17 
was conducted. The four time periods under consideration were weekday morning peak hour, weekday 18 
evening peak hour, and weekend peak and off-peak times. Descriptive statistics for each time period are 19 
shown in Table 4.  20 
 21 

Table 4. Descriptive Statistics for Headways at Different Time Periods 22 
 23 

Period Min (s) Max (s) 
Mean 

(s) 
Standard 
Deviation 

N 

 
Weekday Morning Peak 41 1930 371.4 231.5 7785  

Weekday Evening Peak 39 1707 370.9 203.1 7742  

Weekend Peak 33 1928 561.8 216.9 6052  

Off Peak 18 1991 542.6 291.6 26951  

            24 
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The p-values for weekend peak and off-peak were all statistically significant. For weekday evening peak 1 
the results for rain and wind are not statistically significant. All but rain is statistically significant for 2 
weekday morning peak and for the evening peak, rain and wind are not statistically significant. The Durbin-3 
Watson values for 3 out of the 4 time periods lie within the ideal range of 1.5 – 2.5, the one exception being 4 
the off-peak time period, which is slightly less than 1.5 (1.392), indicating some positive autocorrelation.  5 
 6 
The Beta coefficients for all 4 time periods are graphed in Figure 8. Precipitation is positively correlated in 7 
all cases, although its effect is negligible for the weekday evening peak. Wind speed is negatively correlated 8 
for 3 out of the 4 time periods. Temperature is positively correlated with increases in headway for both the 9 
morning and evening weekday peak hours, however, it is negatively correlated during weekends and off-10 
peak times. This may indicate that there are other factors which influence Luas performance differently 11 
during peak periods in comparison to off-peak periods, such as congestion or the effects of larger passenger 12 
demand.  The adjusted R2 values range from 0.012, for the weekday morning peak hour, to 0.077, occurring 13 
at both the weekend peak and off-peak times indicating that 1.2% to 7.7% of the variance in headway can 14 
be attributed to weather impacts.  15 
 16 
 17 

 18 
  19 

Figure 8. Graph of Beta Coefficients at Different Time Periods 20 
 21 
 22 
Comparison of Actual and Scheduled Headway Times 23 
 24 
This section investigated the variation between the actual Luas headways and scheduled tram frequencies. 25 
The actual headway values for each time period were average values taken from the descriptive statistics 26 
table, shown in Table 5, along with scheduled. Maximum scheduled values were obtained from the Luas 27 
website (25). In peak hours this was 5 minutes (350 seconds) and for off-peak hours it was 15 minutes (900 28 
seconds). The headways during the peak hours were slightly greater than the scheduled values. The 29 
measured weekend peak headway of 561 seconds substantially exceeds the scheduled value of 350 seconds. 30 
The off-peak service, at an average frequency of 542.6 seconds, was more frequent than the maximum 31 
scheduled value of 15 minutes. It was also more frequent than the minimum scheduled value of 12 minutes.  32 
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 1 
Table 5.  Headway Comparison 2 

 3 

Period 
Average 

Headway 
(s) 

Max. 
Scheduled 

Headway (s) 
Difference 

(s)  
Weekday Morning Peak 371.4 350.0 21.4  

Weekday Evening Peak 370.9 350.0 20.9  

Weekend Peak 561.8 350.0 211.8  

Off Peak 542.6 900.0 -357.4  

 4 
 5 

 6 
DISCUSSION 7 
 8 
Increases in precipitation resulted in increases in headway times at all chosen stations and for all studied 9 
time periods. In the case of most of the chosen stations, precipitation was the weather variable with the 10 
most influence on headway times. This result was somewhat expected as similar studies found that increases 11 
in rainfall leads to an increase in the travel time of both light and commuter rail (15, 17). 12 
 13 
Decreases in wind speed corresponded to increases in headway times and this was true in the cases.  This 14 
was an unexpected result and was different to the findings of other studies (2, 17, 29). The absence of severe 15 
wind events in the analysis period may explain this result.  The maximum wind speed over the course of 16 
the analysis period was 12.9 m/s. This value falls significantly short of the wind speed needed for a yellow 17 
warning to be issued, which is 65 km/hr, roughly 18 m/s (27). It would be interesting to explore this on a 18 
larger dataset with a greater range of wind speeds. 19 
 20 
Air temperature was the least consistent of the analysed predictor variables. Increases in temperature were 21 
both positively and negatively correlated to increases in headway with the results varying on a station-by-22 
station basis. At some stations, such as Glencairn, temperature was the most significant predictor variable, 23 
while at other, such as Citywest, its influence was negligible. As in the case for wind speed, the variance in 24 
temperature over the analysis period was not large, -1.5°C to 19.6°C.   Dublin’s mild climate and lack of 25 
extreme temperatures limits the influence of air temperature on the performance of the Luas. 26 
 27 
The adjusted R2 values at Red Line stations were generally greater than those for Green Line stations. The 28 
section of the Red Line from the Red Cow station close to the M50 motorway in the west of the city to the 29 
George’s Dock station located just east of Dublin City Centre.  The exposed nature of the landscape 30 
surrounding this section of track could be influencing this result. For much of this section, the Luas runs 31 
parallel to the Grand Canal with the tracks located quite far from buildings or trees. In contrast, the sections 32 
of the Green Line that have lower R2 values have much better shelter. Interestingly, the R2 values of both 33 
lines are lower at locations nearer the termini at the periphery of Dublin in comparison to stations closer to 34 
the city centre. These areas would generally be expected to have lower passenger numbers than their more 35 
central counterparts and it is likely that this may be a factor that affects the headway analysis.  36 
 37 
The adjusted R2 values at weekday peak times, both morning and evening, are significantly lower than those 38 
at weekend peak and off-peak times. This illustrates that during the weekday peak the frequency of the 39 
Luas is not as strongly influenced by the weather as it is at weekends. Once again, this indicates that 40 
passenger activity is likely to be having more influence on Luas performance than weather. It is also 41 
possible that congestion could be influencing headway times during peak hours.  42 
 43 
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Policy Implications 1 
 2 
Given the effect of precipitation on performance, it is recommended that rainfall should be prioritised for 3 
policy measures to be introduced to improve the resilience of the Luas to adverse weather conditions. 4 
Examples of such policies might include increasing Luas frequency by giving trams an increased level of 5 
priority at signalized junctions on shared roadways to reduce dwell time or increasing the number of trams 6 
running on the network. The operation of these policies could be carried out in conjunction with Met 7 
Eireann with the measures coming into effect during periods of high rainfall.  8 
 9 
Climate change will result in the increase in both the frequency and severity of adverse weather events (9) 10 
and this will likely affect the performance of the Luas as extreme rainfall events and flooding become 11 
commonplace. Measures to improve the resilience of the Luas network should therefore be made sooner 12 
rather than later. One of the key targets set out by the Dublin City Council Climate Action Plan is to make 13 
Dublin a climate resilient region (10). From the findings of the research presented here, the section of the 14 
Red Line from Red Cow to George’s Dock should be one of the first areas to be addressed. Putting measures 15 
in place to protect the Luas line from flooding at the Grand Canal could be an option to protect the network 16 
from the effects of increasingly adverse weather conditions.  17 
 18 
The analysis methods used in this study could be used to examine weather impacts on other public transport 19 
networks.  Analysing the effects of weather in a climate with much greater seasonal variation would be 20 
very interesting. The findings of such work could further enhance the collective knowledge of interactions 21 
between the weather and transport systems, leading to improvements in design and operation. 22 
 23 
 24 
CONCLUSIONS 25 

The main findings of the research are as follows: 26 

• Increases in precipitation correlate with increases in headway at all analysed locations and time 27 
periods. In most cases, precipitation was the weather variable with the greatest influence on LRT 28 
performance. 29 

• At all analysed stations, increases in wind speed correlated with decreases in headway. This was 30 
an unexpected result and may be influenced by the absence of extreme wind speeds over the course 31 
of the analysis period.  32 

• The impact of air temperature on Luas performance was found to be inconclusive as its effects 33 
varied significantly at different stations and analysis periods.  34 

• Weather had a more substantial effect for stations on the Luas Red Line in comparison to their 35 
counterparts on the Green Line.  36 

• Based on the results of the MLR analysis, the section of the Luas Red Line from Red Cow to 37 
George’s Dock was identified as the area of the network that is most sensitive to the effects of the 38 
weather.  Generally, its landscape is more open and this is considered to be a contributing factor.  39 

• It was found that headway times during weekday peak times were not as strongly influenced by 40 
weather conditions as weekend peak and off-peak times. This may indicate that during these 41 
periods, other factors such as congestion have a greater influence on Luas performance. 42 
 43 

With the increasing threat of climate change and planned expansions to rail networks in Ireland and at an 44 
international level, it is recommended that similar studies that investigate the effects of the weather on 45 
transport systems should be carried out. Future work relating specifically to the Luas should have a larger 46 
analysis period and a focus on more stations. It is also recommended that similar studies be undertaken in 47 
regions with different climatic conditions, as the results of these could provide valuable insight regarding 48 
the interactions between weather and transport systems, leading to improvements in design and operation.  49 
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