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A linear chain of hard spheres, confined by a transverse harmonic potential, buckles under compression
between two hard walls. Jacobi functions provide exact analytic solutions of a differential equation
(related to the Duffing equation) for the displacement profile of this chain, within a continuum
approximation. Here we explore these solutions, describing their forms and the way in which they
vary as system parameters are changed. This is illustrated by reference to two-dimensional diagrams
in which each such solution is represented by a point and contour plots illustrate various characteristics
of the solutions (period, compression, localization, etc.). Our findings enrich the study of the buckling
instability for a linear chain of particles. The approach presented here has the advantage of being
based on a simple chain of hard spheres and is straightforward in its interpretation. As such these
results may provide insight into more complex experiments, such as those involving the buckling of
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1. Introduction

When a confined linear chain of hard spheres (e.g. ball bear-
ings in a horizontally placed cylinder) is compressed between
hard walls, the chain buckles. The result is a modulated zig-zag
structure of lateral sphere displacements, with a displacement
profile which becomes increasingly localized as compression is
increased.

This interesting nonlinear system is readily accessible to ex-
periment (including some very simple procedures [ 1-4]) and may
be simulated by straightforward numerical methods [2,4]. Its
properties include the appearance of further equilibrium states
of sphere displacements at high values of compression and the
eventual occurrence of additional contacts between spheres, at
which point new structures begin to form [4].

Systems in which analogous examples of one-dimensional
pattern formation have been observed include cold ions in traps
[5-13] (with possible relevance to quantum computing [14,15]),
dusty plasmas [16], droplets in microfluidic crystals [17], para-
magnetic colloidal particles in an external field [18], and linear
chains of magnetic spheres [19]. In contrast, the system that we
study here, consisting of hard spheres in a harmonic confining
potential, is much more tractable in both theory and experi-
ment [3,20], yet displays the rich buckling phenomena observed
in the more complex systems listed above.
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In the experimental system which stimulated the work pre-
sented here, a small number of ball-bearings (between five and
eight) was placed inside a horizontal cylindrical tube, sealed with
stoppers at both ends [4]. One of the stoppers is movable, allow-
ing for a compression of the chain of spheres. For a tube diameter
much greater than that of the spheres the resulting buckling
structures are approximately planar. The transverse harmonic
potential that we use in our model is provided by gravity, as
spheres are displaced transversely in the tube upon compression.
While we cannot eliminate friction in our existing set-up [4] we
have reduced it by immersing the spheres in vegetable oil.

When such a chain of hard spheres is compressed, it buckles
to form a modulated zig-zag structure, of which several examples
can be seen in [3,4], and in Section 2.

In previous work [2-4] we have developed a numerical sim-
ulation of this system; a summary of that methodology is pre-
sented in Appendix A. In these discrete simulations it was evident
that there is a wide range of the total number of spheres N and
values of compression for which the profile of the magnitude of
transverse displacement as a function of sphere number is very
smooth. As localization increases (with increasing compression),
this is less true, since the localization peak, within which the
amplitude of the displacement is strongly varying, includes only
a few spheres.

We have developed a continuum theory, expected to conform
well to the discrete simulations for large N and small compres-
sion. In this theory, which was first introduced in [4], discrete
recursion relations are replaced by differential equations. This
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Compression

Fig. 1. Simulations of a two-dimensional liquid foam with corresponding contact force network. The highlighted areas show an initially linear arrangement of three
bubbles which undergoes buckling upon a small increase of compression of about three percent. In the context of the present work, the contacts in direction
perpendicular to the axis of the three-bubble chain provide a transverse confining potential for the chain. (For simulation details of the bubble packing see [22].).

procedure is analogous to the development of the Sine-Gordon
equation in the theory of solitons [21].

In both discrete and continuous descriptions, there are equa-
tions that must be satisfied for equilibrium, and their general
solutions are periodic. In the case of the hard wall boundary
conditions used here, the simplest equilibrium state is such that
one half period of such a solution is required. This state is nec-
essarily stable with respect to small perturbations. Further stable
and unstable states exist: for example represented by multiples
of the half-period of N. These will not be considered here, and
this restriction is implied throughout.

We have structured this article as follows. We first describe
the discrete model, for completeness. We then focus on the
continuum description, deriving a differential equation for the
equilibrium profile, an improvement on our previous version [4].
While this equation can be solved numerically, we instead resort
to a further approximation that is analytically tractable. This sim-
pler equation is an example of the well known Duffing equation
(without damping and forcing terms). The Jacobian elliptic func-
tions play a major role here as solutions to the Duffing equation:
we discuss the relevant functions in detail. Quantities directly
relevant to experiments, such as compression and localization,
may be easily evaluated and related to each other in this way.
We use diagrams to make manifest these results and provide a
guide to the relationships of the many parameters in this system.
Much of the insight thus gained would be very difficult to acquire
directly from the original exact but discrete description of the
system.

Instabilities that lead to buckling are prominent in the theory
of engineering structures and in materials science [23,24]. In the
present case buckling takes place under infinitesimal compres-
sion, whereas finite compression is required for buckling of a
chain of elastic spheres. In both cases the buckling is in the form
of a smoothly modulated zig-zag displacement: its localization
for higher compression is central to the present paper. This is
analogous to the localized deformation that occurs when some
materials are compressed [25], depending critically on their elas-
tic/plastic properties. Further examples of systems with similar
properties include: [26], which explores the buckling of a growing
linear filament confined to a substrate, the reversible buckling of
an elastic shell (with potential for information storage) [27], as
well as a vast literature devoted to the buckling of thin-walled
cylinders under loading (see [28] for a recent example).

Our work is also related to models used in studies of “force
chains” in 2D or 3D granular materials [29,30], a wide class of ma-
terials that includes colloidal packings [31] and wet foams [22].
When these have a disordered structure, the larger contact forces
form a random network of more or less straight chains, playing
the major role in supporting an imposed stress. Each of these
is rather similar to our single chain: the confining transverse
potential in our case corresponds to the weaker forces due to
surrounding grains or bubbles. An example of the sudden local
buckling of a chain, induced by increasing compression, is shown
in Fig. 1 for a two-dimensional packing of bubbles [22], as sim-
ulated by the Morse-Witten method [32,33]. Note that buckling
takes place over a small range of compression. However, in this
case, such recognizable events are mainly associated with very
short chains, typically only involving three bubbles.

This appealing scenario, which suggests that local buckling
plays a role in response to applied stress in such materials,
has been studied in particular by Hunt et al. [34]. The main
difference to the work presented here is the incorporation of
bending forces between spheres in Hunt’s model. This makes the
detailed buckling behaviour rather different, as the presence of
these bending forces discourages the modulated zig-zag displace-
ment of spheres that we find in our model. However, qualitative
similarities may be seen in the examples shown by these authors
and ourselves.

2. The discrete chain
2.1. The buckling profile

Fig. 2(a) shows a buckling profile which develops when a
linear chain of hard spheres is compressed by a small amount;
the dimensionless compression A is defined as the reduction of
length from that of the straight linear (touching) chain, divided
by the sphere diameter, corresponding to

N
A:N—Zcos@n. (1)
n=0

The buckling profile takes the form of a modulated zig-zag
structure, with alternating transverse displacements of (here N =
10) successive spheres. Fig. 2(b) shows the corresponding profile
of angles 6, (with 0 < n < N, see also Fig. A.1 in Appendix A),
note the symmetry about the centre.
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Fig. 2. Simulation results for the buckling of a chain of ten spheres under compression with hard wall boundary conditions (see [4] and Appendix A for simulation
details). The angle 6, between the centres of contacting spheres (or a sphere-wall contact) and the x-axis plays an important role in what follows. Its definition
alternates for successive contacts, so that (in this case) it remains positive, as in the buckling profile shown in (b). 6 is zero at each end of the chain (hard wall
boundary condition). The “modulated zig-zag” structure shown is for a compressive force Gy = 0.2435, resulting in a compression A = 0.297, as computed using

Eq. (1).

The definition of 6, that we use is such that it is always of
the same sign for the states considered in this paper, and chosen
to be positive (the states with negative sign have identical form
and properties) for a modulated zig-zag structure, to which all
the structures described in this paper conform.

2.2. Compressive force

The compressive force Gy exerted at each hard wall plays an
important role in what follows. The straight chain remains stable
for Go less than a critical value that depends on the number
of spheres N. By considering the balance of forces on a single
displaced sphere one may deduce an upper bound Gy = 1/2 for
the critical force (expressed in the dimensionless form introduced
in Appendix A). The value Go = 1/4 is more significant as the
buckled structures take different qualitative forms above and
below this threshold (see also Appendix B for the case of the
uniform zig-zag structure).

3. The continuum formulation
3.1. Continuum equations

The buckling profile, of which an example was shown in
Fig. 2, has a shape which evolves as compression is increased,
with the central peak becoming narrower, so that buckling is
more localized. In seeking to describe this we have found that
a reformulation in terms of a continuous variable 6(u) (the angle
indicated in Fig. 2), where u is the continuous counterpart of the
integer variable n, offers advantages [4], and it is the main basis of
what follows. The transition from the discrete to the continuous
description is described in detail in Appendix C.

The resulting differential equation for ¢(u) = tan6(u) is as
follows,

2) ¢(u)

¢"(u) = —4p(u) + (4 +« :
14 ¢%(u)

(2)

where we represent the compressive force Gy exerted at both
ends of the chain by the quantity «2, which is defined as

’=G,' -4 (3)

It may be positive or negative, so that the square root x may be
real or imaginary. However, a finite positive compressive force Gy
requires k2 > —4. (In our original paper [2] the quantity x* was
denoted by €.)

The differential equation stated in [4] was of a different form
than that of Eq. (2) (arising from a different method for the
approximation of derivatives). Although resulting in very similar
numerical solutions for O(u), it did not preserve the symme-
try of the solution; the derivation in Appendix C satisfies that
requirement, as well as using ¢ = tan6 as the dependent
variable.

Fig. 3 shows a numerical solution of Eq. (2) corresponding to
the calculation for the discrete case in Fig. 2, for the hard wall
boundary conditions (6 = ¢ = 0 at the two end points of the
chain, at u = 0 and u = N). Compression A (Eq. (1)) in the
continuum formulation is given by the integral

/(l—coseu))du_/ '1+¢2 )_]
V1+¢2(u)

where the integration has generally to be performed numerically
for given ¢(u) = tan6(u).

By expanding the square root in Eq. (2) to order ¢ the equa-
tion may be reduced to the following,

(4)

2
¢ =x2¢—2(1+K4) ¢, ©)

which we may call the reduced equation. It is correct to order
0(¢3) (see also Appendix C).

In Section 6 we show that its analytical solutions compare
well with numerical solutions of the full equation, Eq. (2), for
sufficiently small values of compression. (This is also the case for
solutions of 6” = k20 — 263, the reduced equation that we had
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Fig. 3. Results for the continuum model applied to the example shown in Fig. 2,
i.e. for ten spheres with a compressive force Go = 0.2435 (corresponding to
k% = 0.1068, Eq. (3)). The solid line is a numerical solution for 6(u) for the full
continuum differential equation Eq. (2) under these conditions. The dashed line
is the analytical solution of the reduced equation, Eq. (5). Also shown are the
data points for the corresponding discrete system, as in Fig. 2(b).

originally formulated [4].) Fig. 3 shows solutions of both full and
reduced equation for the example of 2 = 0.1068.

The reduced equation, Eq. (5), is one particular case of the
Duffing equation [35], well known in the theory of oscillations,
where it serves as an analytically tractable approximation to a
wide range of dynamical systems, including the nonlinear pen-
dulum, the forced oscillations of beams and cables, as well as
nonlinear electrical circuits [35]. In its most general form the
Duffing equation is given by

X(t) = —6x — Bx — ax’ + y cos(wt). (6)

In the absence of both a damping term (§ = 0) and a driving force
(y = 0) this is equivalent to Eq. (5).

The character of the phenomena described by the Duffing
equation depends on the nonlinear term —fx — ax. For 8 > 0 it
describes an oscillator with a nonlinear restoring force, while for
B < 0 it describes the dynamics of a point mass in a double well
potential. In our case this cross-over is governed by the value of
2, as we shall show in the following section.

While much of the analysis of the Duffing equation has been
directed towards understanding dynamic properties (e.g. the pen-
dulum), the present problem represents a realization of a partic-
ular case of the equation in a static system.

3.2. Properties of the reduced equation

Many of the general properties of the full equation, Eq. (2), and
its reduced form, Eq. (5), are obvious and well illustrated by their
phase portraits shown in Fig. 4. These include symmetry under
¢ — —60 and u — —u, periodicity (with an exception noted
below) and the dependence on the sign of k2. The key feature
that can be seen in the phase portraits as «? goes from «? < 0
to k> > 0 is the transition from a system with one stationary
point to a system with two stationary points (the case of k2 =0
is intermediate between these two regimes).

For k2 > 0 the solution of the reduced equation, Eq. (5), has
inflection points (¢” = 0) wherever

K2

2(14«%/4)

(In this paper 6 (and thus ¢ = tan@) is always positive, with
¢ <« 1.) For the allowed range of negative values of x? (—4 <

$=0, or + (7)
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k% < 0, corresponding to a positive compressive force Gy, Eq. (3))
the second type of inflection point does not arise.

For the hard wall boundary conditions applied here (¢(0) =
¢(N) = 0), the solutions are symmetric about the midpoint of the
system. It is clear therefore that for k% < 0, the relevant solution
is “cosine-like” (see Section 5, Fig. 6, example G).

For ¥? > 0O the solution develops a more or less prominent
peak at the centre (localization of buckling), see Fig. 6, example
C). This type of solution may extend to infinity with exponential
tails, 6 ~ exp(=%«u), if the separation of the hard walls is taken
to the infinite limit.

The intermediate case x = 0 has solutions with no second,
third, and fourth derivatives at the two edges, so that it takes
a roughly triangular form (see Fig. 6, example E). In this case
the following approximate relationship holds for compression A
(Eq. (4)), A~ SNL

4. Jacobi functions

While not entirely elementary, the reduced equation, Eq. (5),
does have analytic solutions in the form of Jacobi functions, as has
been recognized in other contexts in which the Duffing equation
is applied. The solutions which are categorized in the following
are for the boundary condition # = 0 (and thus also ¢ = 0)atu =
—N/2 and u = N/2 (corresponding to a centering of the profiles
shown in Fig. 2 and Fig. 3 on u = 0). This requires a Jacobi func-
tion with real zeros, from which we extract the part between two
Zeros.

To our knowledge, within the realm of physics these “mythical
functions” [36] occur mainly in the theory of various problems
in classical dynamics and electronic/optical oscillators [36-38],
with only a limited number of applications in statics, e.g. for the
bending of thin rods [39]. The mathematical background features
“notations and conventions that are often contradictory or diffi-
cult to understand by physicists” [36]. Hence we will spell out
our findings with explicit detail. We will formulate the analytical
theory and in Section 5 encapsulate our findings in a number of
diagrams which should make the role of Jacobi functions trans-
parent. Before doing so, we will introduce relevant notation and
then define relevant solutions of the reduced equation (for hard
wall boundary conditions) in terms of scaled Jacobi functions (see
also Appendix D).

The reduced equation, Eq. (5), is only an approximation to
the full one, but offers many opportunities to develop the math-
ematics of its solutions, including bringing the Jacobi functions
into play. Jacobi functions play a similar role in the theory of
the pendulum, where they arise in two ways. In the first case
the Jacobi functions can be used to provide exact solutions for
the sine of the angle of displacement [38,40,41]. In the second
case, an approximate solution to the differential equation for the
pendulum can be obtained by truncating to the third order in the
angle of displacement; this leads to a reduced equation that has
solutions directly in terms of a Jacobi function (see Appendix E
and [35,41]).

4.1. Notation for Jacobi functions

There are twelve different Jacobian elliptic functions whose
primary definition is framed in terms of the inversion of inte-
grals [42,43]. These functions are solutions of first and second
order differential equations [42] and it will be this aspect which
concerns us here.

Only four Jacobi functions satisfy differential equations which
may be transformed into the reduced equation, Eq. (5). These four
functions may be rescaled, as detailed below, to give explicit an-
alytic solutions of the equation. However, our present restriction
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Fig. 4. Phase portraits for both full equation, Eq. (2), (left), and reduced equation, Eq. (5), (right). (a) For «?> < 0 the trajectory orbits the stationary point at (0,0),
shown also for 2 = 0 in (b). For 2 > 0 (c) the trajectory may orbit either one or both of the two stationary points at (arctan (:I: /L) s 0), depending on

the boundary conditions.

to hard wall (¢ = 0) boundary conditions further reduces the
available function types to two, which have zeros. These are cn
and sd, but these are related by a translation (like the sin and cos
functions), so that only one of them is required: we choose cn.

There is a one-parameter set of cn functions, each being gener-
ally denoted by cn(x|m), and the individual function is identified
by m, where /m is the so-called modulus. It is real for our
purposes. The parameter m is related to the period of the Ja-
cobi functions, which is stated in terms of the complete elliptic
integral of the first kind; see Section 4.2.

By convention, m is restricted to the range 0 < m < 1. Elliptic
functions with a value of m outside this range can be rewritten
as other elliptic functions where m lies between 0 and 1 [42,43].
Hence the set of functions used here is that of cn(x, m) for this
range.

2(1+x2/4)

4.2. Jacobi function solution of the reduced equation

The Jacobi cn(x|m) function is a periodic even function with
zeros, and a maximum of 1 at x = 0, see Fig. 5. Its (real) period
is 4K(m), where K(m) is the complete elliptic integral of the first
kind.

For the range 0 < m < 1 the function y(x) = cn(x|m) satisfies
the differential equation [36,42]

Yy = —(1=2m)y —2my°>. (8)

which is to be compared with the reduced equation, Eq. (5).
Matching the two forms, Eq. (8) and the reduced equation, it
is easily shown (see Appendix D) that a solution of Eq. (5) for
given 2 (with k2 > —4 for finite positive compressive force G
(Eq. (3))) and satisfying the hard wall boundary conditions may
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Solutions of the reduced equation for three special cases (see also Appendix D).

m (u)

Half period (number of spheres) N

1 (for ¥? > 0)

1 (for k2 =0)

cn (ﬁul%)

— 0 (for k2 < 0)

V(1 + «2/4) sech (Jﬁu)

— my/—k2/(1+ «2/4) cos(—+/k2u)

o0
2K[1]12~3.70815
7 /N —K?

cn(x|m)
1.
\ — m=0
of m=0.5
-‘IIO f -é" /g | 1‘0x m=0.95
\ 0.5 / = m=1
-1.0t

Fig. 5. Examples of the Jacobi function cn(x, m) for different values of the
modulus m'/2. Their shape varies smoothly between cos(x) (for m=0) and the

hyperbolic secant, sech(x) = # (for m = 1).

be written as a scaled Jacobi cn function,

#(u) = tan O(u) = Pmax c(v/«%/(2m — 1)u|m). 9
The peak value ¢nqy of the variable ¢ (at u = 0) is given by

m
= 2 for0O<m=<1. 10
¢max \/(1+K2/4)(2m—1)K < = ( )
The peak value of the corresponding angle variable 6 (at u = 0)
is

Omax = arctan Ppgy. (11

For ¢mex (and thus 6mge) to be real, positive values of «2
require m > 1/2. Imaginary values of « are only possible in
the range —4 < «? < 0, where the lower limit is set by the
condition of having a positive compressive force Gy; in this case
the requirement is m < 1/2, with k = 0 for m = 1/2. This defines
the solution space that we will explore in Section 5, see Fig. 6.

As with other special functions, cn(x|m) (and thus 6(u), Eq. (9))
is readily called up from, for example, Mathematica [44], as is the
complete elliptic integral of the first kind K(m), which gives its
period. Examples were already shown in Figs. 3 and 5; several
more will be shown in what follows.

For m = 1 and m = 0 the Jacobi functions simplify to more
familiar forms, that is, cn(x|1) = sech x and cn(x|0) = cosx,
respectively. The corresponding scaled Jacobi functions ¢(u) are
listed in Table 1.

In the continuum representation of the single peak solutions,
considered throughout this article, N is half the period of the
scaled Jacobi function, Eq. (9) (for the rescaled variable u =
Xy/(2m — 1)/x?2), and thus given by

2m—1

N = 2K(m) —,

(12)

K
where K(m) is the complete elliptic integral of the first kind. For
the case N — oo (k2 — 0, m # 1/2) the solution asymptotes to
zero in the limits u — +oo.

In the next section we shall examine the variety of these
solutions for hard wall boundary conditions, an arbitrary number
N of spheres and an arbitrary value of compression A, which are
the parameters defining a typical experimental measurement.

5. Solution diagrams

The solution space is rich in detail, but the many parameters
involved make it difficult to comprehend. The graphical method
introduced here offers a transparent way to explore it.

Every solution for the specified boundary condition (¢,0 =
0 at the end points, for N spheres) must satisfy the reduced
equation for some value of «? (corresponding to the compressive
force) and, from the above, can be expressed as an appropriately
scaled Jacobi cn function, Eq. (9), with squared modulus m. We
will use the parameters, m and «?2, to label all of the solutions
which they uniquely define when subjected to scaling. This leads
us to construct “solution diagrams”, with every solution (for the
stated boundary conditions) represented by a point. We have
found it convenient to use a nonlinear scale for «? for graphical
purposes, so that all values of «? are captured on the diagrams.
Hence, instead of «2, we use

R2=K2/(1+k?) (13)

when making these plots.

The form of such a diagram is shown in Fig. 6. This > — m
plane will be our “playing field” in describing all of the different
forms of solutions that can arise, and their variation.

The requirement of having a real value for 64, Eq. (11),
leads to the identification of forbidden regions, i.e. areas in the
x% — m plane for which no solutions exist (see Section 4.2). The
requirement x? > —4, ie. K* > —32 corresponds to a positive
compressive force Go. We will also, as discussed below, restrict
ourselves to regions of the diagram for which the number of
spheres, N, exceeds two. There is no such limitation inherent in
the continuum formulation, but a contour defined by N = 2 is
to be regarded as representing the boundary beyond which the
continuum model is unphysical.

Fig. 6 shows sample solutions for both negative and positive
values of «2, together with the only solution at x> = 0. Special
forms (solution or absence of any finite solution) are to be found
on the various boundaries of the allowed regions.

As anticipated in Section 3.2, the solutions are qualitatively
different in the two allowed regions, as exemplified by those
associated with the points G (for k> < 0) and C (for ¥ > 0).
The first type has no inflection points, while the second has
inflection points (at & = arctan/«2/(2(1 + «2/4))), giving rise
to a localized peak.

In Fig. 7 we use our playing field to show how the number of
spheres N varies with m and «2, by plotting contours of N using
Eq. (12). (The dependence of N (periodicity) on the values for «?
and m is also visible in the example solution of Fig. 6.) All of the
contours pass through the point m = 1/2, k> = 0, so that the
function cn(x|m) can be scaled to provide a solution for «? and
any N. The contours asymptote to the m axis as N — oc.

In Fig. 8 we show contours of constant maximum angle 6,4y,
Eq. (11). In an experiment, the number of spheres N is constant,
a change in compression (i.e. a change in «?) is thus represented
by following a constant N contour, see the examples for N = 5
and N = 10 shown in Fig. 8. O, is seen to increase with «?
along such a contour. This is accompanied by an increase in the
compressive strain, defined as € = A/N, as can be seen in Fig. 9
which shows contours of constant e.
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m =1 tan(6(w) = [«2/ (1+k?/4) sech( k2
o m=1:tan(6(u)) = K2/ (1+K%[4) sec (1/K_u)
A C B
0.8
Forbidden Region
0.6
D E E
7 -05 0.5 e
0.4 RN
G Forbidden Region
0.2
H aall
m - 0: tan(6(u)) = Vm -K2[ (1+K2/4) cos(\l—K2 u)
e(u) 6(u)
0.6

-4 -3
6(u)

0.6

0.5

0.4

u

0.3
0.2
0.1
4 3 2 0 1 2 3 4

Fig. 6. Jacobi cn functions can be scaled to give solutions 6(u) (Eq. (9)) of the reduced equation, Eq. (5), between two values of u at which the boundary condition
is @ = 0. These solutions are qualitatively different in the two pink domains indicated in the x> — m “solution diagram”, where m'/? is the modulus of the Jacobi

1

function (& is defined by Eq. (13)). Inflection points only occur for m > 5. Typical profiles are shown for the points G, (—1/2, 1/4), and C, (1/2, 0.95). Solutions at

the boundary A-B have the following properties: 64 is finite and N infinite, except
(0, 0.5), is given by the scaled Jacobi cn function of roughly triangular form, cn(ﬁu

An appropriate characteristic of a solution is its degree of
localization. This may be defined by [45]

+N/2 2 +N/2
D(m, k%) = <f 6(u)du> / <Nf Qz(u)du> , (14)
—N/2 —N/2

with N given by Eq. (12),
This “participation ratio”, used for example in the treatment
of Anderson localization in solid state theory [46], answers the

at the limit; 6,4, is zero and N is infinite at A. The intermediate solution at E,
[1/2). At F, (1, 1/2), the amplitude diverges while the period is zero.

question: roughly speaking, over what proportion of the spheres
is buckling concentrated?

Contours of constant participation ratio D are shown in Fig. 10,
where the integrals in Eq. (14) were computed numerically, using
6 = arctan¢ for our scaled Jacobi functions ¢(u) (Eq. (9)). The
smaller the value of D the more localized is the solution, as in
the limits of large N and «2.

A further measure of localization which can be expressed
analytically also for the case of the full differential equation,
Eq. (2), is examined in Section 6.
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-
P

N—)rr/\/?

Fig. 7. Contours of constant number of spheres N, up to N = 15. All contours pass through the point x* = 0, m = 1/2. In the limit N — oo, the contours coincide
with the vertical axis, i.e. k> = 0 (c.f. Eq. (12)). In the limit m — 1 we find N — oo and for m — 0 we have N — —Z =. Regions corresponding to N < 2 are
shown in dark grey since they no longer represent a buckling chain. The highlighted contours for N =5 and N = 10 also feature in the other contour plots below.
The case N = 10 is the one shown in Figs. 2 and 3.

Fig. 8. Contours of constant maximum angle 6pma, Eq. (11). Regions corresponding to N < 2 are shown in dark grey. Also shown are the constant-N contours for
the examples N = 5 (red) and N = 10 (yellow) displayed in Fig. 7. O is seen to increase monotonically with «? along such a contour. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

6. Estimate of accuracy of the reduced equation From the full equation, Eq. (2), we obtain

. . . . . 2 —1/2
The previous sections d.escrlbed analytical solutl.ons of. the W fun = /29mux [sin Omax COS Ormax (1 1+ K )cos Gmux):|
reduced equation, Eq. (5), in terms of scaled Jacobi functions. 4

Here we will introduce a quantitative measure to assess how (16)
well the reduced equation approximates the full equation, Eq.
(2). This involves the introduction of an alternative measure of ~ While the reduced equation, Eq. (5), gives
localization, in terms of a peak width w,, which can be expressed X S\ -1y
analytically for both equations. Wp reduced = v/ 20max [sin Ormax COS Ormax (1(1 + 5 ) tan? Gy — ’L)]

The peak width w, may be defined as 2 4 4
(17)

(15) The relative difference in width w,, defined as

where Opqx is the peak, and thus 6”(0ma) < 0. (The quantity w, €up = |Wp ful = Wp reduceal /Wp (18)

simply corresponds to the distance between the two zeros of an may then serve as an estimate of the error of the solutions of the
inverted parabola with maximum 6,4, at u = 0.) The merit of this reduced equation in relation to the full equation, Eq. (2); €,, may
definition lies in providing an analytical expression for comparing be expressed analytically in terms of 0,,qx and «2, using Eq. (16)
solutions of the full equation to those of the reduced equation. and (17).
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A
Compressive Strain, € = ﬁ =0

f Lﬁ1 - cos(arctan( , cc;s(\j—i(2 u))))du
—, 1= KZ

Fig. 9. Contours of constant compressive strain € = A/N, computed numerically by evaluating the integral in Eq. (4) for the scaled Jacobi solutions. The value of
€ is zero in both limits m — 0 and m — 1. Regions corresponding to N < 2 are shown in dark grey. Red and yellow lines are contours of N =5 and N = 10,
respectively. € is seen to increase monotonically with x? along such a contour. (For interpretation of the references to colour in this figure legend, the reader is

referred to the web version of this article.)

m->1:D-0

m-0:D - 0.810569

Fig. 10. Contours of constant localization measure (“participation ratio”) D(m, x?), computed numerically using Eq. (14). The increased localization (i.e. lower values
of D(m, «?) for k% > 0 is due to the presence of inflection points in the profiles A(u) for m > % see Fig. 6. Regions corresponding to N < 2 are shown in dark grey.
Red and yellow lines are contours of N =5 and N = 10, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to

the web version of this article.)

Fig. 11 shows contours of constant error €,,. In line with our
expectations the relative error vanishes in the limit of Oq, €2 —
0, and thus of compression. The error is less than 10% even for
values of G4 =~ 0.5, i.e. above the ¢ < 1 limit of the reduced
equation.

7. Conclusion

Localized buckling of the confined linear chain of spheres
offers a problem for nonlinear theory which, inter alia, roughly
represents localized failure in materials, and should repay further
study, in particular by experiment [3,4]. Further generalization
could incorporate, for example, elastic interactions. For such fu-
ture work it will be convenient to have the background of analytic
theory, as presented here.

Jacobi functions provide a full range of approximate solutions,
easily evaluated and visualized, minimizing numerical calcula-
tions, elucidating qualitative features, and providing an

accessible guide to the relationships of the several parameters
(N, Omax, A, D) that characterize the chain buckling.

It must be acknowledged that the continuum model fails to
encompass one important aspect of the original discrete system:
it does not produce the alternative asymmetric equilibrium pro-
files referred to earlier, which are not localized at the centre of
the system [4]. These alternative equilibria are essential to an
investigation of the Peierls-Nabarro potential, for example. We
have undertaken a detailed study of this potential for the con-
fined hard sphere system which again provides a straightforward
context for its interpretation. It requires only the addition of a
longitudinal force, modifying the equations presented here [47].
Other anticipated developments include changes of boundary
conditions.

Looking further afield, we note that the confined linear chain
of ions (with long-range Coulomb interactions) continues to at-
tract interest, due to its possible application to quantum comput-
ing [15]. While numerical simulations of its buckling properties
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Fig. 11. Contour plot showing an estimate of the difference between solutions
for the full equation and for the reduced equation. The contours are lines of
constant values for €,,, Eq. (18). Errors less than 10% are achieved for the shown

range of «% and 6. The black lines show the variation of x2 as a function
of Opax, computed from Eq. (11), for six different values of the squared Jacobi
modulus m. Only values of (O, ) lying below the line for m = 1 are possible.

have been investigated to some extent, including the computation
of a Peierls-Nabarro potential [9], results and interpretations
remain limited. The mathematical description of this system is
significantly more difficult, however, we expect that some aspects
of our analysis will prove fruitful for its understanding.

Another practical problem in which buckling plays a role is
the design of ‘mechanical meta-materials’. A key feature of such
systems is that the mechanical properties of the system emerge
as a consequence of geometry as opposed to the material com-
position of the system [48]. Examples of such systems include
linear columns with regularly arranged voids; under compression
such porous columns are found to buckle, causing the voids to
deform in a variety of modes [49,50]. The present work, while
for a series of hard spheres, displays many of the same nonlinear
behaviours as observed for the porous columns. As such, some of
the analysis developed here may find applications in the study of
various meta-material designs.

The confined and compressed chain model developed here
was invoked in order to describe particular experimental systems,
as explained in Section 1. It has much wider relevance, as a
transparent illustration of the general phenomena of buckling,
bifurcation etc.
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Appendix A. Modelling the discrete system

A chain of N contacting identical hard spheres is compressed
between hard walls, as in Fig. A.1. Displacement of a sphere by
a distance R, away from the central axis results in a transverse
restoring force f, with magnitude kR,, where k is a force constant.
We introduce non-dimensional quantities by defining r, = R,/D,
where D is the sphere diameter. The dimensionless transverse
force F, is defined as F, = f,/(kD). Inserting for f, leads to
F, = r,; in our non-dimensional formulation the transverse force
F, acting on a sphere equals its transverse displacement r,,, a
positive quantity.

The compressive forces between contacting spheres are given
by

G, cosb,_1 = Gy (A.1)

from the condition of force equilibrium, where G, is the mag-
nitude of the compressive force at each end of the system. As
with F, we will express the compressive forces G, and Gy as
non-dimensional quantities (division by kD) [2].

Transverse force balance for the displaced n™ sphere is ex-
pressed as

Fy, = G, sin6,_1 + Gyyq 5in6, = Go(tan,_1 + tanb,). (A.2)

The centres of contacting spheres are separated by their di-
ameter. Hence in our dimensionless variables the radial distances
and forces are given by

Fy + Fpp1 =1y + pyp = Sin6,. (A.3)

Eq.(A.2) and (A.3) provide an iterative scheme for relating 6,
and F,1 to 6, and F,.

0 (A4)

Fy1q = sinf, — F,

Fy
6, = arctan e tan6,_4

These equations can be used in a shooting method to find
solutions for a specified value for Gq [2,4]. The hard wall boundary
condition for sphere n = 1 requires the first angle 6, to be zero,
with an arbitrary F;. The spheres are not confined to the axis, F;
and Fy (and thus r; and ry) can differ from zero.

Using Eq. (A.4) we proceed iteratively to (6y, Fy). The angle 6y
corresponds to the contact of the N sphere with the wall, which
can be made equal to zero by adjusting the value of F; [2,4].

Compression A is defined as A = (ND — L)/D, where L is the
total chain length. This results in

N
A=N-Y"cosb,. (A5)
n=0

Appendix B. The uniform zig-zag structure

If periodic boundary conditions are applied to a finite chain
(with even sphere number) then a simple solution is provided
by a sphere arrangement where all transverse displacements are
equal (and alternate in sign). This corresponds to constant values
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Fig. A.1. Schematic diagram for a chain of hard spheres in a transverse harmonic potential, under compression. In non-dimensional units the transverse restoring
forces F, equal the transverse displacements. G, is the compressive force between contacting spheres n and n — 1, Gy = Gp is the compressive force at each end
of the chain (sphere-wall contacts). The angles 6, are defined so as to be always positive for the modulated zig-zag structures discussed in this manuscript (hard

walls: 6y = 6y = 0).

for 6,, F, and G, for all n. We refer to this as the uniform zig-
zag structure [4], and all solutions discussed in this paper are
modulations of it.

From Eq. (A.2) we obtain the following relationship between
transverse forces (displacements) F and compressive forces G, for
this structure

F = 2Gsiné. (B.1)

The geometry of the zig-zag structure (see also Eq. (A.3)) results
in sinf = 2F, i.e. G = 1/4 for the compressive force between
contacting spheres, independent of the value of compression. The
longitudinal component of this force, G is thus given by

1
Go = 1 cos 6. (B.2)

(We note that in [2,4] we erroneously wrote Go = 1/4, i.e. the
limiting value for small transverse displacements.) The compres-
sive force at each end of the chain thus decreases with compres-
sion, since compression leads to an increase in the angle 6. This
implies the instability of the uniform zig-zag structure.

Appendix C. Transition to the continuum formulation

In a continuum description both the angle 6 and the transverse
force F are functions of a continuous variable u. Compression
A, Eq. (A5), is then obtained from evaluation of the following
integral,

N
A =/ (1 — cos6(u)) du. (C.1)
0

The approximate continuum representation of the iterative
relations Eq. (A.4) may be obtained as follows. By introducing a
new variable ¢, as ¢, = tan6,, we re-express the two iterative
Eqs. (A.4) as

F
¢n:é_
®n
o1 = ——= —F,
n+ /;14_(]5% n

where we used the identity sin 8, = tan6,//1 + tan? 6,.
Using the first of these equations we obtain

Fn + Fn+1 = GO(¢n+l + 2¢n + ¢n—l)- (CB)

Re-expressing the left hand side using the second iterative equa-
tion in Eq. (C.2) results in

®n
V1+ @2

¢n—l
(C2)

= Go(@nt1 — 20 + Pn—1) + 4Goy. (C4)
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The term in brackets on the r.h.s. may be identified as a central
difference approximation of the second derivative of a continuous
function ¢(u) with respect to a continuous variable u, evaluated
at u = n. A continuum formulation of this equation is thus given

by

¢/ (u) = —ag(u) + — 2

Goy/1+ ¢2(u)

Gy is the compressive force exerted at both ends of the chain
(see Appendix A). We find it convenient to express it in terms of
a complex number «, so that ¥? may take on positive or negative
values,

Go= (44 «?)"L (C6)

(C5)

This choice of the definition is motivated by the value Gy >~ 1/4
for the uniform zig-zag structure discussed in Appendix B.

The second order differential equation for the continuum for-
mulation for our buckling chain is thus given by

P(u)
V1+¢2(u)
Eq. (C.7) can be solved numerically, using for example Mathemat-

ica. However, we found it useful to expand the square root to
order ¢2. This results in

¢"(u) = —4p(u) + (4 +«?) (C7)

2
¢ =K2p—2 (1 + K4) ¢’ (C8)

correct to order O(¢3). We call Eq. (C.8) the reduced equation.
Having a finite positive compressive force Gy at both ends of the
chain of spheres requires x> > —4 (from Eq. (C.6)).

In previous work [4] we presented a reduced equation which
corresponds to approximating ¢ = tan 6 by 0 here and neglecting
the «? term in the bracket. Clearly this has some validity for small
6 (tanf ~ ). Alternative derivations of the continuum equation
will be explored in future work [51].

Appendix D. Rescaling of Jacobi functions

We will show that a solution ¢(u) which satisfies the re-
duced equation, Eq. (5), (C.8), can be expressed in terms of a
Jacobi function y(x) = cn(x|m) for appropriately rescaled vari-
ables. Back-substitution then results in the angle profile 6(u) =
arctan ¢(u).

We proceed by introducing real constants ¢; and c;, whose
value remains to be determined, and set ¢ = c1y and u = cx.

The second derivative of ¢ with respect to u is thus given by
2o _ ady
du?2 T 2 dx?”
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In the newzvariables y(x) the reduced equation, Eq. (5), is re-
written as E—%% = «%c1y —2c3y?. This results in our key equation
for further analysis,

d%y

ax?

In this rescaled equation the y> term features with a minus
sign. This rules out 8 of the 12 Jacobi functions.

Eq. (D.1) is solved by the Jacobi cn(x|m) function if we set
cic = m and «*c; = 2m ~ 1. Solving for c¢? and ¢ we obtain
¢ =25t and f = /4T

Using ¢ = c1y and x = u/c, from above yields our scaled
Jacobi cn solution ¢(u) of the reduced Eq. (5),

— 202 2.2,3
=Kk°Cyy — 2¢165y°.

(D.1)

2
—ujm|,
2m—1

mi?
A+c2/aem—1"

¢(u) =tanb(u) =

(D.2)

with «? > —4, as discussed in Appendix C.

We have 0 < m < 1, this requires k> < 0 for m < 1/2 and
k%> > 0form > 1/2. m = 1/2 can only lead to a solution for
k% = 0 (division 0/0).

Limiting cases:

m— 0,—4 < k?> < 0 : tanf(u) — /my/—«k2/(1+«2/4)
cos(~/ —k2u)

m=1,k*=0:tan6d(u)=cn (ﬁu|%)

m=1,«% > 0:tan6(u) = /k2/(1+ «2/4)sech <«//?u)

Here the case for m = % can be obtained by setting
mi2 _ K2 _ . .
T jaenT) = 1 and 5, — = 2, from which it follows that

m= 1 and x? = 0.

Appendix E. Relevance to the pendulum

The reduced equation, Eq. (5), is also relevant to the theory
of the mathematical pendulum. The pendulum equation for the
angle of displacement y(t) from the vertical is

2

J(t) = —wyp siny(t), (E.1)

where wé is the angular frequency for small amplitude oscilla-
tions (i.e. the case of the harmonic oscillator). An exact solution
for all amplitudes may be expressed in terms of Jacobi func-
tions [41,52], but various transformations are required to derive
this. An intermediate approximation can be applied using

siny ~y —y%/6, (E.2)
resulting in

. wg

(t) = —agy(t) + EOyB(t). (E3)

This equation may be treated in the manner of Section 4.2 to
derive a solution in terms of the Jacobi cd function,

2 2
_Youl_Jo

, E4
12 112 -y (E4

y(t) =yo cd | wo
with initial displacement y, = y(t = 0). ,

The period of this solution, T = i—’;(l + f—g +(’)(yg)) agrees with
that of the mathematical pendulum up to order yﬁ.

12

Physica D 433 (2022) 133177
References

[1] T. Lee, K. Gizynski, B.A. Grzybowski, Adv. Mater. 29 (2017) 1704274.
[2] J. Winkelmann, A. Mughal, D. Weaire, S. Hutzler, Europhys. Lett. 127 (2019)

44002.

[3] D. Weaire, A. Irannezhad, A. Mughal, S. Hutzler, Amer. J. Phys. 88 (2020)
347.

[4] S. Hutzler, A. Mughal, J. Ryan-Purcell, A. Irannezhad, D. Weaire, Phys. Rev.
E 102 (2020) 022905.

[5] S. Ejtemaee, P.C. Haljan, Phys. Rev. A 87 (2013) 051401.

[6] M. Mielenz, ]. Brox, S. Kahra, G. Leschhorn, M. Albert, T. Schdtz, H. Landa,

B. Reznik, Phys. Rev. Lett. 110 (2013) 133004.

[7] J. Pyka, H. Keller, R. Partner, T. Nigmatullin, D. Burgermeister, K. Meier,
A. Kuhlmann, M.B. Retzker, K. Plenio, W. Zurek, et al., Nature Commun. 4
(2013) 1.

H. Landa, B. Reznik, J. Brox, M. Mielenz, T. Schdtz, New ]. Phys. 15 (2013)
093003.

H.L. Partner, R. Nigmatullin, T. Burgermeister, K. Pyka, ]J. Keller, A. Retzker,
M.B. Plenio, T.E. Mehlstaubler, New J. Phys. 15 (2013) 103013.

(8]

[9]

[10] R.C. Thompson, Contemp. Phys. 56 (2015) 63.

[11] H.L. Partner, R. Nigmatullin, T. Burgermeister, J. Keller, K. Pyka, M.B. Plenio,
A. Retzker, W.H. Zurek, A. del Campo, T.E. Mehlstdubler, Physica B 460
(2015) 114.

[12] R. Nigmatullin, A. del Campo, G. De Chiara, G. Morigi, M.B. Plenio, A.
Retzker, Phys. Rev. B 93 (2016) 014106.

[13] L. Yan, W. Wan, L. Chen, F. Zhou, S. Gong, X. Tong, M. Feng, Sci. Rep. 6
(2016) 21547.

[14] H. Landa, S. Marcovitch, A. Retzker, M.B. Plenio, B. Reznik, Phys. Rev. Lett.
104 (2010) 043004.

[15] I Georgescu, Nat. Rev. Phys. 2 (2020) 278.

[16] A. Melzer, Phys. Rev. E 73 (2006) 056404.

[17] T. Beatus, T. Tlusty, R. Bar-Ziv, Nat. Phys. 2 (2006) 743.

[18] A.V. Straube, R.P. Dullens, L. Schimansky-Geier, A.A. Louis, ]. Chem. Phys.
139 (2013) 134908.

[19] L. Helseth, T. Johansen, T. Fischer, Phys. Rev. E 71 (2005) 062402.

[20] https://physicsworld.com/a/physics-in-the-pandemic-there-are-some-
great-experiments-that-can-be-done-safely-and-simply-at-home/.

[21] O.M. Braun, Y.S. Kivshar, Phys. Rep. 306 (1998) 1.

[22] E.F. Dunne, ]J. Winkelmann, D. Weaire, S. Hutzler, Phil. Mag. 99 (2019)
2303-2320.

[23] J.E. Gordon, The new science of strong materials, in: Pelican Books, second
ed., 1976.

[24] L.P. Lebedev, M. Cloud, Approximating Perfection, Princeton University
Press, 2004.

[25] LJ. Gibson, M.F. Ashby, Cellular Materials, Cambridge University Press,
1997.

[26] T.C.T. Michaels, R. Kusters, AJ. Dear, C. Storm, J.C. Weaver, L. Mahadevan,

Proc. Math. Phys. Eng. Sci. 4 (2019) 249.
[27] ].Y. Chung, A. Vaziri, L. Mahadevan, Proc. Natl. Acad. Sci. USA 115 (2019)
75009.
R.MJ. Groh, G.W. Hunt, A. Pirrera, Int. ]. Mech. Sci. 196 (2021) 106297.
D.E. Wolf, Modelling and computer simulation of granular media, in: KH.
Hoffmann, M. Schreiber (Eds.), Computational Physics, Springer Verlag,
1996, pp. 64-95.
A. Tordesillas, Stranger than friction: force chain buckling and its impli-
cations for constitutive modelling, in: T. Aste, T. Di Matteo, A. Tordesillas
(Eds.), Granular and Complex Materials, World Scientific, 2007, pp. 95-109.
M.C. Jenkins, M.D. Haw, G.C. Barker, W.C. Poon, S.U. Egelhaaf, Soft Matter
7 (2011) 684-690.
D.C. Morse, T.A. Witten, Europhys. Lett. 22 (1993) 549-555.
R. Hohler, D. Weaire, Adv. Colloid Interface Sci. 263 (2019) 19-37.
G.W. Hunt, A. Tordesillas, S.C. Green, ]. Shi, Phil. Trans. R. Soc. A 368 (2010)
249.
I. Kovacic, M.J. Brennan, The Duffing Equation: Nonlinear Oscillators and
their Behaviour, John Wiley & Sons, 2011.
AlJ. Brizard, Eur. J. Phys. 30 (2009) 729.
K.R. Meyer, Amer. Math. Monthly 108 (2001) 729.
W.A. Schwalm, Lectures on Selected Topics in Mathematical Physics:
Elliptic Functions and Elliptic Integrals, Morgan & Claypool Publishers,
2015.
Y.V. Zakharov, K. Okhotkin, J. Appl. Mech. Tech. Phys. 43 (2002) 739.
A. Beléndez, C. Pascual, D.I. Méndez, T. Beléndez, C. Neipp, Rev. Brasileira
Ensino FiSica 29 (2007) 645-648.
D.F. Lawden, Elliptic Functions and Applications, Vol. 80, Springer Science
& Business Media, 2013.
P.F. Byrd, M.D. Friedman, Handbook of Elliptic Integrals for Engineers and
Physicists, Vol. 67, Springer, 2013.

[28]
[29]

[30]

[31]
[32]
[33]
[34]
[35]
[36]

[37]
[38]

[39]
[40]
[41]

[42]


http://refhub.elsevier.com/S0167-2789(22)00015-X/sb1
http://refhub.elsevier.com/S0167-2789(22)00015-X/sb2
http://refhub.elsevier.com/S0167-2789(22)00015-X/sb2
http://refhub.elsevier.com/S0167-2789(22)00015-X/sb2
http://refhub.elsevier.com/S0167-2789(22)00015-X/sb3
http://refhub.elsevier.com/S0167-2789(22)00015-X/sb3
http://refhub.elsevier.com/S0167-2789(22)00015-X/sb3
http://refhub.elsevier.com/S0167-2789(22)00015-X/sb4
http://refhub.elsevier.com/S0167-2789(22)00015-X/sb4
http://refhub.elsevier.com/S0167-2789(22)00015-X/sb4
http://refhub.elsevier.com/S0167-2789(22)00015-X/sb5
http://refhub.elsevier.com/S0167-2789(22)00015-X/sb6
http://refhub.elsevier.com/S0167-2789(22)00015-X/sb6
http://refhub.elsevier.com/S0167-2789(22)00015-X/sb6
http://refhub.elsevier.com/S0167-2789(22)00015-X/sb7
http://refhub.elsevier.com/S0167-2789(22)00015-X/sb7
http://refhub.elsevier.com/S0167-2789(22)00015-X/sb7
http://refhub.elsevier.com/S0167-2789(22)00015-X/sb7
http://refhub.elsevier.com/S0167-2789(22)00015-X/sb7
http://refhub.elsevier.com/S0167-2789(22)00015-X/sb8
http://refhub.elsevier.com/S0167-2789(22)00015-X/sb8
http://refhub.elsevier.com/S0167-2789(22)00015-X/sb8
http://refhub.elsevier.com/S0167-2789(22)00015-X/sb9
http://refhub.elsevier.com/S0167-2789(22)00015-X/sb9
http://refhub.elsevier.com/S0167-2789(22)00015-X/sb9
http://refhub.elsevier.com/S0167-2789(22)00015-X/sb10
http://refhub.elsevier.com/S0167-2789(22)00015-X/sb11
http://refhub.elsevier.com/S0167-2789(22)00015-X/sb11
http://refhub.elsevier.com/S0167-2789(22)00015-X/sb11
http://refhub.elsevier.com/S0167-2789(22)00015-X/sb11
http://refhub.elsevier.com/S0167-2789(22)00015-X/sb11
http://refhub.elsevier.com/S0167-2789(22)00015-X/sb12
http://refhub.elsevier.com/S0167-2789(22)00015-X/sb12
http://refhub.elsevier.com/S0167-2789(22)00015-X/sb12
http://refhub.elsevier.com/S0167-2789(22)00015-X/sb13
http://refhub.elsevier.com/S0167-2789(22)00015-X/sb13
http://refhub.elsevier.com/S0167-2789(22)00015-X/sb13
http://refhub.elsevier.com/S0167-2789(22)00015-X/sb14
http://refhub.elsevier.com/S0167-2789(22)00015-X/sb14
http://refhub.elsevier.com/S0167-2789(22)00015-X/sb14
http://refhub.elsevier.com/S0167-2789(22)00015-X/sb15
http://refhub.elsevier.com/S0167-2789(22)00015-X/sb16
http://refhub.elsevier.com/S0167-2789(22)00015-X/sb17
http://refhub.elsevier.com/S0167-2789(22)00015-X/sb18
http://refhub.elsevier.com/S0167-2789(22)00015-X/sb18
http://refhub.elsevier.com/S0167-2789(22)00015-X/sb18
http://refhub.elsevier.com/S0167-2789(22)00015-X/sb19
https://physicsworld.com/a/physics-in-the-pandemic-there-are-some-great-experiments-that-can-be-done-safely-and-simply-at-home/
https://physicsworld.com/a/physics-in-the-pandemic-there-are-some-great-experiments-that-can-be-done-safely-and-simply-at-home/
https://physicsworld.com/a/physics-in-the-pandemic-there-are-some-great-experiments-that-can-be-done-safely-and-simply-at-home/
http://refhub.elsevier.com/S0167-2789(22)00015-X/sb21
http://refhub.elsevier.com/S0167-2789(22)00015-X/sb22
http://refhub.elsevier.com/S0167-2789(22)00015-X/sb22
http://refhub.elsevier.com/S0167-2789(22)00015-X/sb22
http://refhub.elsevier.com/S0167-2789(22)00015-X/sb23
http://refhub.elsevier.com/S0167-2789(22)00015-X/sb23
http://refhub.elsevier.com/S0167-2789(22)00015-X/sb23
http://refhub.elsevier.com/S0167-2789(22)00015-X/sb24
http://refhub.elsevier.com/S0167-2789(22)00015-X/sb24
http://refhub.elsevier.com/S0167-2789(22)00015-X/sb24
http://refhub.elsevier.com/S0167-2789(22)00015-X/sb25
http://refhub.elsevier.com/S0167-2789(22)00015-X/sb25
http://refhub.elsevier.com/S0167-2789(22)00015-X/sb25
http://refhub.elsevier.com/S0167-2789(22)00015-X/sb26
http://refhub.elsevier.com/S0167-2789(22)00015-X/sb26
http://refhub.elsevier.com/S0167-2789(22)00015-X/sb26
http://refhub.elsevier.com/S0167-2789(22)00015-X/sb27
http://refhub.elsevier.com/S0167-2789(22)00015-X/sb27
http://refhub.elsevier.com/S0167-2789(22)00015-X/sb27
http://refhub.elsevier.com/S0167-2789(22)00015-X/sb28
http://refhub.elsevier.com/S0167-2789(22)00015-X/sb29
http://refhub.elsevier.com/S0167-2789(22)00015-X/sb29
http://refhub.elsevier.com/S0167-2789(22)00015-X/sb29
http://refhub.elsevier.com/S0167-2789(22)00015-X/sb29
http://refhub.elsevier.com/S0167-2789(22)00015-X/sb29
http://refhub.elsevier.com/S0167-2789(22)00015-X/sb30
http://refhub.elsevier.com/S0167-2789(22)00015-X/sb30
http://refhub.elsevier.com/S0167-2789(22)00015-X/sb30
http://refhub.elsevier.com/S0167-2789(22)00015-X/sb30
http://refhub.elsevier.com/S0167-2789(22)00015-X/sb30
http://refhub.elsevier.com/S0167-2789(22)00015-X/sb31
http://refhub.elsevier.com/S0167-2789(22)00015-X/sb31
http://refhub.elsevier.com/S0167-2789(22)00015-X/sb31
http://refhub.elsevier.com/S0167-2789(22)00015-X/sb32
http://refhub.elsevier.com/S0167-2789(22)00015-X/sb33
http://refhub.elsevier.com/S0167-2789(22)00015-X/sb34
http://refhub.elsevier.com/S0167-2789(22)00015-X/sb34
http://refhub.elsevier.com/S0167-2789(22)00015-X/sb34
http://refhub.elsevier.com/S0167-2789(22)00015-X/sb35
http://refhub.elsevier.com/S0167-2789(22)00015-X/sb35
http://refhub.elsevier.com/S0167-2789(22)00015-X/sb35
http://refhub.elsevier.com/S0167-2789(22)00015-X/sb36
http://refhub.elsevier.com/S0167-2789(22)00015-X/sb37
http://refhub.elsevier.com/S0167-2789(22)00015-X/sb38
http://refhub.elsevier.com/S0167-2789(22)00015-X/sb38
http://refhub.elsevier.com/S0167-2789(22)00015-X/sb38
http://refhub.elsevier.com/S0167-2789(22)00015-X/sb38
http://refhub.elsevier.com/S0167-2789(22)00015-X/sb38
http://refhub.elsevier.com/S0167-2789(22)00015-X/sb39
http://refhub.elsevier.com/S0167-2789(22)00015-X/sb40
http://refhub.elsevier.com/S0167-2789(22)00015-X/sb40
http://refhub.elsevier.com/S0167-2789(22)00015-X/sb40
http://refhub.elsevier.com/S0167-2789(22)00015-X/sb41
http://refhub.elsevier.com/S0167-2789(22)00015-X/sb41
http://refhub.elsevier.com/S0167-2789(22)00015-X/sb41
http://refhub.elsevier.com/S0167-2789(22)00015-X/sb42
http://refhub.elsevier.com/S0167-2789(22)00015-X/sb42
http://refhub.elsevier.com/S0167-2789(22)00015-X/sb42

D. Weaire, A. Mughal, J. Ryan-Purcell et al.

[43] M. Abramowitz, Appl. Math. Ser. (1964).

[44] Mathematica, Version 12.1, Wolfram Research Inc.

[45] D. Weaire, A. Williams, J. Phys. C Solid State Phys. 9 (1976) L461.
[46] V. Srivastava, D. Weaire, Phys. Rev. B 18 (1978) 6635.

[47] A. Mughal, D. Weaire, S. Hutzler, Europhys. Lett. 135 (2021) 26002.

13

[48]
[49]
[50]
[51]
[52]

Physica D 433 (2022) 133177

X. Yu, J. Zhou, H. Liang, Z. Jiang, L. Wu, Prog. Mater. Sci. 94 (2018) 114.
G. Oliveri, ]J.T.B. Overvelde, Adv. Funct. Mater. 30 (2020) 1909033.

A. Nazir, A.B. Arshad, J.-Y. Jeng, J. Jeng-Ywan, Materials 12 (2019) 3539.
D. Weaire, A. Mughal, J. Ryan-Purcell, S. Hutzler, in preparation (2022).
E.T. Whittaker, A treatise on the analytical dynamics of particles and rigid
bodies, 1937, CUP Archive.


http://refhub.elsevier.com/S0167-2789(22)00015-X/sb43
http://refhub.elsevier.com/S0167-2789(22)00015-X/sb44
http://refhub.elsevier.com/S0167-2789(22)00015-X/sb45
http://refhub.elsevier.com/S0167-2789(22)00015-X/sb46
http://refhub.elsevier.com/S0167-2789(22)00015-X/sb47
http://refhub.elsevier.com/S0167-2789(22)00015-X/sb48
http://refhub.elsevier.com/S0167-2789(22)00015-X/sb49
http://refhub.elsevier.com/S0167-2789(22)00015-X/sb50
http://refhub.elsevier.com/S0167-2789(22)00015-X/sb51
http://refhub.elsevier.com/S0167-2789(22)00015-X/sb52
http://refhub.elsevier.com/S0167-2789(22)00015-X/sb52
http://refhub.elsevier.com/S0167-2789(22)00015-X/sb52

	Description of the buckling of a chain of hard spheres in terms of Jacobi functions 
	Introduction
	The discrete chain
	The buckling profile
	Compressive force

	The continuum formulation
	Continuum equations
	Properties of the reduced equation

	Jacobi functions
	Notation for Jacobi functions
	Jacobi function solution of the reduced equation

	Solution diagrams
	Estimate of accuracy of the reduced equation
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Appendix A. Modelling the discrete system
	Appendix B. The uniform zig-zag structure
	Appendix C. Transition to the continuum formulation
	Appendix D. Rescaling of Jacobi functions
	Appendix E. Relevance to the pendulum
	References


