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Abstract

The soil-transmitted helminth Ascaris lumbricoides infects ∼800 million people worldwide.
Some people are heavily infected, harbouring many worms, whereas others are only lightly
infected. The mechanisms behind this difference are unknown. We used a mouse model
of hepatic resistance to Ascaris, with C57BL/6J mice as a model for heavy infection and
CBA/Ca mice as a model for light infection. The mice were infected with the porcine ascarid,
Ascaris suum or the human ascarid, A. lumbricoides and immune cells in their livers and
spleens were enumerated using flow cytometry. Compared to uninfected C57BL/6J mice,
uninfected CBA/Ca mice had higher splenic CD4+ and γδ T cell counts and lower hepatic
eosinophil, Kupffer cell and B cell counts. Infection with A. suum led to expansions of
eosinophils, Kupffer cells, monocytes and dendritic cells in the livers of both mouse strains
and depletions of hepatic natural killer (NK) cells in CBA/Ca mice only. Infection with
A. lumbricoides led to expansions of hepatic eosinophils, monocytes and dendritic cells and
depletions of CD8+, αβ, NK and NK T cells in CBA/Ca mice, but not in C57BL/6J mice
where only monocytes expanded. Thus, susceptibility and resistance to Ascaris infection are
governed, in part, by the hepatic immune system.

Introduction

An estimated 800 million people are infected with the human roundworm Ascaris lumbricoides
(Pullan et al., 2014). Despite this high number of infected individuals, ascariasis remains a
neglected tropical disease (Deslyper and Holland, 2017; Hotez et al., 2020; World Health
Organization, 2020). Intensity of infection is not evenly distributed among the population,
where a small subset of the population carries the majority of the worm burden (Bethony
et al., 2006). Furthermore, people regain similar worm burdens upon reinfection, even after sev-
eral rounds of chemotherapy (Seo et al., 1979; Anderson and May, 1982; Croll et al., 1982; Elkins
et al., 1986; Holland et al., 1989). This is known as predisposition and appears to be multifac-
torial in origin (Holland, 2009) with both long-term (host genetics and socio-economic status)
and short-term (host-acquired immune system) factors involved (McCallum, 1990).

As heavy worm burden is associated with more severe symptoms (Croll and Ghadirian,
1981; Holland, 2009), it is important to understand the underlying molecular mechanisms
associated with the observed predisposition. Because the early life cycle of the parasite includes
internal organs of the host, it is necessary to use animal models (Holland et al., 2013). Building
on an earlier study (Mitchell et al., 1976), our group (Lewis et al., 2006) developed a mouse
model for resistance to Ascaris suum infection. We identified two mouse strains, one
(C57BL/6J) as a model for susceptibility to heavy infection and another (CBA/Ca) as a
model for resistance to Ascaris infection. Using this mouse model, the hepatic stage during
larval migration was identified as the most likely time at which the observed differences
between the two mouse strains in eventual lung larval burdens were generated (Lewis et al.,
2007; Dold et al., 2010). We subsequently used this mouse model to investigate the liver pro-
teomes of the relatively resistant (CBA/Ca) and relatively susceptible (C57BL/6J) mouse
strains, infected with A. suum (Deslyper et al., 2016; Deslyper et al., 2019b). We found intrinsic
differences between the two mouse strains at the level of oxidative phosphorylation at days 4
and 7 post infection (p.i.) and at the level of the immune response proteins at day 7. The rela-
tively resistant strain had a higher abundance of proteins associated with complement activa-
tion, whereas the relatively susceptible strain had a higher abundance of proteins associated
with complement inhibition. These mouse models were also found to be suitable for infection
with the human ascarid, A. lumbricoides (Deslyper et al., 2020).

The liver has special immunological properties. It receives blood directly from the gut via
the hepatic portal vein. This blood carries with it antigens from both gut commensals and diet-
ary products (Doherty, 2016). Because these antigens could cause unwanted chronic inflam-
matory responses, the hepatic immune system favours tolerance over immunity, which is
mediated by specialized liver-resident antigen-presenting cells (Thomson and Knolle, 2010;
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Crispe, 2011). This feature makes the liver a potentially ideal
organ for several parasites, including Ascaris, to incorporate in
their migratory path, as a safe refuge and hence for immune eva-
sion (Deslyper et al., 2019a).

To our knowledge, little research has been performed on the
immune response in the liver to Ascaris infection. The only evi-
dence of the immune response in the liver is the presence of
white spots which have been observed in A. suum-infected pigs
(Ronéus, 1966), A. lumbricoides-infected humans (Javid et al.,
1999) and A. suum-infected mice (Dold et al., 2010). In the
current study, we performed flow cytometry on spleen and liver
samples from susceptible and resistant mice before and after
infection with A. suum and A. lumbricoides. We selected day 7
p.i., because at this time point we previously found evidence for
an altered immune response between the two mouse strains dur-
ing A. suum infection (Deslyper et al., 2019b).

Materials and methods

Parasite eggs

The A. lumbricoides eggs were extracted from adult worms, which
were obtained from dewormed children in Ile-Ife, Nigeria, using
pyrantel pamoate. The adult worms were transported on ice in
4% formalin. They were dissected upon arrival and the uteri
were mechanically broken up and sieved (425 μm). The eggs
were placed in 0.05 M H2SO4 (Aldrich) in culture flasks with a
ventilated cap for embryonation of the eggs. The flasks were
stored at 26°C and oxygenated twice per week.

The A. suum eggs were kindly donated by Dr Johnny Vlaminck
(Ghent University). These were shipped in a water solution, stored
at 26°C in 0.05 M H2SO4 and oxygenated twice per week.

Infection of mice with Ascaris eggs

Fifteen male mice of both CBA/Ca OlaHsd (Envigo, UK) and
C57BL/6J OlaHsd (Comparative Medicine Unit, Trinity College
Dublin) were purchased; all mice were 8 weeks old at the time
of the experiment. Five mice of each strain received oral gavage
(Instech, FTP-20-38-50, USA) with either 1000 eggs of
A. suum, 1000 eggs of A. lumbricoides or 100 μL 0.05 M of
H2SO4. The mice were culled at day 7 p.i. and the livers and
spleens removed for flow cytometric analysis of immune cells.
Additionally, the lungs were removed for larval counts using
the modified Baermann method (Lewis et al., 2006).

Larval recovery and enumeration for the lungs

After 24 h, the resulting samples from the Baermann method were
centrifuged at 1389 g for 5 min. The supernatants were removed
and 70% ethanol was added (50% v/v). Subsequently, the larvae

were counted in 1 mL of sample solution, using a nematode
counting chamber (Chalex Corporation, Park City, UT, USA).

Retrieval of spleen and liver immune cells

After dissection, livers and spleens were kept in ice cold phosphate-
buffered saline (PBS). Both organs were mechanically minced using
sterile scalpels and sieved through a 70 μm-gauge mesh in complete
RPMI medium (cRPMI) (RPMI GlutaMAX™ supplemented with
1.25mM HEPES and 10% foetal bovine serum, pH = 7.4). This
resulted in single suspensions of spleen cells, of which the majority
are circulating blood cells.

Since the liver contains resident, non-circulating immune cells
embedded in a network of sinusoids which traverse the parenchy-
mal tissue (Doherty, 2016), the immune cells must first be enzy-
matically extracted and separated from the parenchymal cells. The
liver cell suspensions were suspended in 50 mL cRPMI and cen-
trifuged for 1 min at 60 g without brake to remove undissociated
tissue. The top 45 mL was removed and centrifuged again at 530 g
for 10 min at 4°C. The resulting pellet was resuspended in 10 mL
of digestion buffer (0.2 g L−1 collagenase from Clostridium
histolyticum (Sigma-Aldrich) and 0.02 g L−1 DNase I (Sigma-
Aldrich)) and incubated at 37°C for 30min while shaking. Next,
30mL PBS was added and left to rest on ice for 5 min before cen-
trifugation at 528 g for 10min at 4°C. The pellet was resuspended
in PBS and layered over Lymphoprep™ (STEMCELL
Technologies) and centrifuged at 400 g for 25min without brake.
The buffy coat layer, containing mononuclear cells (MNCs), was
removed and kept aside. The pellet, containing erythrocytes and
polymorphonuclear cells (PMNs), was incubated for 5 min at
room temperature in red cell lysis buffer (0.1mM EDTA, 155mM

NH4Cl, 10mM KHCO3). Both MNC and PMN were centrifuged
for 8 min at 480 g and the pellet resuspended in PBS and counted.

Antibodies and flow cytometry

Approximately 0.5 × 106 liver and spleen cells were pelleted by
centrifugation and stained with a dead cell stain (Flexible viability
dye; eBioscience; diluted 1/1000 in PBS) for 15 min at room tem-
perature in the dark. Cells were then washed in PBA buffer (PBS
containing 1% bovine serum albumin and 0.02% sodium azide),
blocked with FcR blocking reagent (Miltenyi Biotec) to prevent
non-specific binding of the antibodies to Fc receptor-positive
cells, and washed again. Next, the antibodies were added and
incubated for 15 min at room temperature in the dark. The
panel for staining lymphocytes (Table 1) consisted of the follow-
ing antibodies: APC/Cy7-conjugated anti-mouse NK-1.1
(PK136), PerCP/Cy5.5-conjugated anti-mouse CD19 (1D3/
CD19), APC-conjugated anti-mouse CD69 (H1.2F3), FITC-
conjugated anti-mouse CD4 (GK1.5), PE/Cy7-conjugated

Table 1. Antibody panel used for detection of lymphocytes for both liver and spleen

NK1.1 CD19 CD3 CD4 CD8 CD69 γδ TCR

NK cells + −

B cells + −

CD4+ T cells + + −

CD8+ T cells + − +

γδ T cells + +

αβ T cells + −

Activated cells +

NKT cells + +
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anti-mouse CD8 (53–5.8), PE-conjugated anti-mouse TCR γ/δ
(UC7-13D5) and Pacific Blue™-conjugated anti-mouse CD3ϵ
(145-2C11). The panel for the myeloid cells (Table 2) consisted
of the following antibodies: PerCP/Cyanine5.5-conjugated anti-
mouse F4/80 (BM8), APC/Cyanine7-conjugated anti-mouse
CD11c (N418), APC-conjugated anti-mouse CD170 (Siglec-F)
(S17007L), PE-conjugated anti-mouse CD200R3 (Ba13), Pacific
Blue™-conjugated anti-mouse CD45 (30-F11), FITC-conjugated
anti-mouse CD317 (BST2, PDCA-1) (927) and PE/Cy7-
conjugated anti-mouse/human CD11b (M1/70). All antibodies
were purchased from BioLegend (San Diego, USA). After staining,
the samples were washed, fixed with 1% paraformaldehyde,
washed again and analysed on a Becton Dickinson FACSCanto
II flow cytometer. Data were analysed using Flow Jo software
(Tree Star). Gating strategies for the detection and enumeration
of lymphoid and myeloid cells are shown in Figs 1 and 3.
Absolute numbers of splenic cell subtypes (per whole spleen)
were calculated from the proportions determined by flow cytome-
try and viable cell counts obtained by fluorescent microscopy.
Relative counts of liver cells (per mL of liver lymphoid or myeloid
cell extract) were similarly determined, but the numbers of cells
per whole liver were not calculated because parenchymal cells
were removed and then lymphoid and myeloid cells were
separated by centrifugation with cell losses, making it impossible
to accurately relate cell yields to initial cell numbers.

Statistical analysis

The flow cytometry data were overdispersed, therefore a negative
binomial distribution was found to be most appropriate. The
MASS package (Venables and Ripley, 2002) was used for the
negative binomial (log link) on each cell type. The most parsimo-
nious model, a negative binomial without interaction between
mouse strain and infection status of the mouse, was considered
the default model. This model was compared to an interaction
model, with an interaction between the mouse strain and infec-
tion status of the mouse. If the difference in absolute values of
the Akaike information criterion (AIC) of the models (Δi =
AICi −AICmin) was greater than 2, then the interaction model
was used (Burnham and Anderson, 2004). Post-hoc tests with a
multivariate testing adjustment were performed using contrasts
in the emmeans package (Lenth, 2019). Post-hoc tests were per-
formed between mouse strains for each species.

Results

Lung larval counts in susceptible and resistant mice

The mean number of larvae recovered from the C57BL/6J strain
was higher for both A. suum and A. lumbricoides infection, com-
pared to the respective CBA/Ca-infected mice. The larval counts
were: C57BL/6J infected with A. suum: 31 ± 37.3 (mean ± S.D.),
C57BL/6J infected with A. lumbricoides: 3 ± 2.74, CBA/Ca

infected with A. suum: 7 ± 8.37 and CBA/Ca infected with A. lum-
bricoides: 1 ± 2.24.

Effect of A. suum infection on spleen and liver cell numbers
and phenotypes

Spleen lymphoid cells
Infection with A. suum did not elicit a statistically significant
change in the numbers of any of the investigated spleen cell popu-
lations, CD8+ T cells, CD4+ T cells, αβ T cells, B cells, natural
killer (NK) cells, γδ T cells, NKT cells or activated cells (Fig. 1).
However, an intrinsic difference between the two mouse strains
was observed for CD4+ T cells (z ratio: 2.505, P < 0.05) and γδ
T cells (z ratio: 5.644, P < 0.01). For these cell populations, there
were significantly higher numbers in the CBA/Ca mouse strain,
compared to the C57BL/6J mouse strain, both with and without
infection.

Differences in liver lymphoid cell numbers are mainly between
mouse strains
For the liver lymphocytes (Fig. 2), the numbers of only one cell
type, NK cells, was found to be statistically significantly different
(z ratio: −2.766, P < 0.05) when comparing infected samples to
their uninfected controls, and that occurred only for the CBA/
Ca strain. Here, the control samples were found to have more
NK cells than the infected samples.

An intrinsic difference between the two mouse strains, was
found for hepatic B cell numbers (z ratio: −7.054, P < 0.01),
with the C57BL/6J strain having a higher number of B cells com-
pared to the CBA/Ca strain. Although the numbers of the other
lymphoid cell populations tested were similar in both mouse
strains, after infection with A. suum, the numbers of several
cell types were found to be present in higher numbers in the
livers of C57BL/6J mice compared with those of CBA/Ca
mice. These are: CD8+ T cells (z ratio: −2.783, P < 0.05),
B cells (z ratio: −7.054, P < 0.01), NK cells (z ratio: −4.003,
P < 0.01), γδ T cells (z ratio: −2.761, P < 0.05) and NKT cells
(z ratio: −3.293, P < 0.01).

Differences between hepatic myeloid cells are mainly between
control and infection
Analysis of liver myeloid cells, revealed higher numbers of eosi-
nophils (z ratio: −5.070, P < 0.01), and KCs (z ratio: −4.143, P
< 0.01) in uninfected C57BL/6J compared to uninfected CBA/
Ca livers (Fig. 3). For the eosinophils, this difference disap-
peared under A. suum infection. However, for the KCs this dif-
ference remained with the C57BL/6J mouse strain having a
higher cell count (z ratio: −4.143, P < 0.01) than the CBA/Ca
strain.

In both mouse strains, the numbers of eosinophils (C57BL/6J:
z ratio: 3.309, CBA/Ca: z ratio: 7.095, both: P < 0.01), KC (C57BL/
6J: z ratio: 4.648, CBA/Ca: z ratio: 4.648, both: P < 0.01),

Table 2. Antibody panel used for detection of liver myeloid cells

CD45 F4/80 CD11b CD11c CD317 CD170 CD200R3

Kupffer cells + + +/− −

Eosinophils + + + +

Monocytes + +

Myeloid dendritic cells + + −

Plasmacytoid dendritic cells + + +

Mast cells and basophils + +
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monocytes (C57BL/6J: z ratio: 4.962, CBA/Ca: z ratio: 4.962, both:
P < 0.01) and dendritic cells (C57BL/6J: z ratio: 4.401, CBA/Ca: z
ratio: 4.553, both: P < 0.01) were significantly higher in

A. suum-infected livers compared to uninfected. In contrast, baso-
phils and mast cells were found in similar numbers when compar-
ing uninfected and infected mice.

Fig. 1. Lymphoid cell subtype numbers in the spleens of uninfected and Ascaris suum-infected C57BL/6J and CBA/Ca mice. (A) Gating strategy for the definition of
lymphoid cell populations in spleens and livers. Following flow cytometric acquisition of MNCs, an electronic gate was placed on the lymphocytes based on forward
and side scatter areas (FSC-A vs SSC-A) followed by gating of singlets (FSC-A vs FSC-H). Next, the live cells were gated upon in a dot plot of FSC-A vs dead cell stain
(DCS). From these live cells, the activated cells were identified as CD69+ cells, T cells were identified as CD3+ cells and NKT cells were identified as CD3+ NK1.1+ cells.
B cells were identified as CD19+ cells. αβ T cells (CD3+ and TCR γ/δ−) and γδ T cells (CD3+ and TCR γ/δ+) were identified after gating on CD3+ NK1.1− cells. Finally, the
αβ T cells were used to identify CD4+ and CD8+ T cells. (B) Scatter plots showing the lymphoid cell subtype numbers in the spleens of uninfected and A.
suum-infected C57BL/6J and CBA/Ca mice. The numbers of cells per whole spleen for the different cell types for each sample are shown. The means are indicated
with the red horizontal bars. **P < 0.01.
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Effect of A. lumbricoides infection on spleen and liver cell
numbers and phenotypes

Splenic lymphocytes
When the immune cell composition in spleens of C57BL/6J and
CBA/Ca mice infected with A. lumbricoides were examined, the
frequencies of CD4+ T cells, CD8+ T cells, αβ T cells, B cells,
NK cells, γδ T cells, NKT cells and activated T cells were found
to be similar to those in uninfected mice. The only statistically
significant differences (Fig. 4) found were higher numbers of
CD4+ cells (z ratio: 2.505, P < 0.05) and γδ T cells (z ratio:
5.644, P < 0.01) in the CBA/Ca strain compared to the C57BL/
6J strain. These higher numbers of CD4+ and γδ T cells were
found in both uninfected and infected CBA/Ca mice.

Differences between liver lymphocytes
Infection with A. lumbricoides did not lead to any statistically sig-
nificant changes in numbers of hepatic lymphoid cells in C57BL/
6J mice (Fig. 5). For the CBA/Ca strain, infection with A. lumbri-
coides led to significant decreases in the numbers of CD8+ T cells
(z ratio: −2.939, P < 0.05), αβ T cells (z ratio: −2.895, P < 0.05),
NK cells (z ratio: −3.049, P < 0.05) and NKT cells (z ratio:
−3.783, P < 0.01). Compared to infected CBA/Ca mice,
A. lumbricoides-infected C57BL/6J mice had higher numbers of
CD8+ T cells (z ratio: −3.893, P < 0.01), B cells (z ratio: −7.054,
P < 0.01), NK cells (z ratio: −3.345, P < 0.01), γδ T cells (z ratio:
−2.918, P < 0.05) and NKT cells (z ratio: −4.258, P < 0.01).

Differences between liver myeloid cells
Analysis of hepatic myeloid cell numbers in control and A.
lumbricoides-infected mice revealed that eosinophils (z ratio:
5.978, P < 0.01), DC (z ratio: 3.969, P < 0.01) and monocytes
(z ratio: 2.483, P < 0.05) were expanded in infected CBA/Ca
mice, whereas only monocytes (z ratio: 2.483, P < 0.05) were
expanded in infected C57BL/6J mice. KCs were the only cell
type whose numbers differed significantly in the two mouse
strains after infection with A. lumbricoides (z ratio: −4.143,
P < 0.01), with the C57BL/6J-infected samples having a higher
number of cells compared to CBA/Ca-infected samples
(Fig. 6).

Discussion

In this study, we investigated the immune response in the liver
during Ascaris infection, using a model of hepatic resistance,
where one mouse strain (C57BL/6J) is relatively susceptible
and another mouse strain (CBA/Ca) is relatively resistant to
Ascaris infection (Lewis, 2006; Deslyper et al., 2020). The larval
burdens in the lungs at day 7 p.i. support this model, with means
of 7 and 31 A. suum larvae observed in the relatively resistant
and relatively susceptible mouse strains, respectively, and 1
and 3 A. lumbricoides larvae observed in the resistant and sus-
ceptible strains.

The results of the current study indicate that the differences in
susceptibility to Ascaris infection between the two mouse strains

Fig. 2. Lymphoid cell subtype numbers in the livers of uninfected and A. suum-infected C57BL/6J and CBA/Ca mice. The numbers of cells per mL of liver extract for
the different cell types for each sample are shown. The means are indicated with the red horizontal bar. *P < 0.05; **P < 0.01.
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correlate with differences in the distributions of liver and spleen
lymphoid cells. These differences are present both in uninfected
and infected mice and are reflective of previous studies which

found clear differences in the liver proteome in the two mouse
strains, both uninfected and with A. suum infection (Deslyper
et al., 2016; Deslyper et al., 2019b).

Fig. 3. Myeloid cell subtypes in the livers of uninfected and A. suum-infected C57BL/6J and CBA/Ca mice. (A) Gating strategy for the definition of myeloid cell popu-
lations in livers. For analysis of myeloid cells, debris was eliminated by gating based on FSC-A vs SSC-A followed by isolation of singlets (FSC-A vs FSC-H) and live
cells (FSC-A vs DCS). Next, the monocytes were identified by plotting CD11b against F4/80. Eosinophils and KCs were identified by gating on the F4/80+ CD11b+ cells
and plotting FSC-A against CD170. Myeloid and plasmacytoid DC were identified from gated F4/80− CD11b− cells and plotting CD317 against CD11c. Finally, baso-
phils and mast cells were identified by gating on CD11c− and CD137− cells and plotting FSC-A against CD200R3. Gates for spleen and liver lymphoid and myeloid
cells were manually adjusted for every sample. (B) Scatter plots showing numbers of myeloid cell subtypes in the livers of uninfected and A. suum-infected C57BL/
6J and CBA/Ca mice. The number of cells per mL of liver extract for the different cell types for each sample is shown. The means are indicated with the red hori-
zontal bar. **P < 0.01.
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Our data indicate that infection with Ascaris is mainly asso-
ciated with expansions or influxes of populations of myeloid
cells in the livers. The relatively susceptible mouse strain had
more eosinophils than the relatively resistant strain. However,
under infection with either A. suum or A. lumbricoides, both
mice showed expansions of eosinophils in their livers. Given
the importance of eosinophils in parasite immunity in the
lung and the gut, this is an expected finding (Enobe et al.,
2006; Masure et al., 2013; Nogueira et al., 2016; Vlaminck
et al., 2016; Weatherhead et al., 2018; Gazzinelli-Guimaraes
et al., 2019). Eosinophils have been reported to expand in mur-
ine lungs during A. suum infection (Enobe et al., 2006; Nogueira
et al., 2016; Weatherhead et al., 2018; Gazzinelli-Guimaraes
et al., 2019) and are involved in reducing larval numbers
(Gazzinelli-Guimaraes et al., 2019). In pigs, the presence of eosi-
nophils has been linked to elimination of Ascaris in the gut
(Masure et al., 2013; Vlaminck et al., 2016). Eosinophils also
play roles in human ascarid infections, with expansions of
these cells and elevated production of eosinophil cationic pro-
tein in putatively immune Nigerian children (McSharry et al.,
1999) and chronically-infected Ecuadorian children (Reina
Ortiz et al., 2011). Eosinophils can also paralyse Schistosoma
mansoni (McLaren et al., 1984) and kill Trypanosoma cruzi
and Brugia malayi in vitro (Hamann et al., 1990). A recent
study found that immune serum-activated human macrophages
coordinate with eosinophils to immobilize A. suum larvae
(Coakley et al., 2020). The results of the current study further
implicate hepatic eosinophils in the immune response to
A. suum and A. lumbricoides in both mouse strains.

Monocytes and macrophages are also thought to contribute to
immunity against Ascaris, being present in lung samples from A.
suum-infected mice (Gazzinelli-Guimaraes et al., 2019) and cap-
able of recognizing and responding to A. suum in vitro (Almeida
et al., 2018; Coakley et al., 2020). We found that uninfected
C57BL/6J and CBA/Ca had similar numbers of monocytes in
their livers, and these cells were found in significantly higher
numbers after infection with either A. suum or A. lumbricoides.
However, the liver-resident macrophages, Kupffer cells, were pre-
sent in higher numbers in the relatively susceptible C57BL/6J
mice compared to the resistant CBA/Ca mice, both without and
with infection by either Ascaris type. Under A. suum infection,
however, there was a significant increase in Kupffer cell numbers
for both mouse strains, but the relatively susceptible strain still
had more of this cell type than the relatively resistant strain.

DCs are of interest in parasite infections because these cells are
required for the induction of Th2 responses. Previous studies have
found that A. suum has immunomodulatory effects on human
DCs in vitro and that A. suum can upregulate a negative regulator
of reactive oxygen species production (Favoretto et al., 2014;
Midttun et al., 2018; Summan et al., 2018; Arora et al., 2020).
We found that both myeloid and plasmacytoid DC were found
in similar numbers in the livers of the two mouse strains, and
that their numbers were significantly higher in A. suum-infected
livers but only slightly higher in A. lumbricoides-infected livers.

Immune responses against parasites are controlled by a num-
ber of lymphoid cell types, in particular those that produce Th2
cytokines, such as interleukin (IL)-4, IL-5 and IL-13, which pro-
mote immunoglobulin E production and recruit and activate

Fig. 4. Lymphoid cell subtypes in the spleens of uninfected and Ascaris lumbricoides-infected C57BL/6J and CBA/Ca mice. The number of cells per whole spleen for
the different cell types for each sample is shown. The means are indicated with the red horizontal bar. *P < 0.05; **P < 0.01.
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eosinophils and mast cells. We enumerated CD4+ and CD8+ T
cells, T cells expressing αβ and γδ T cell receptors, NKT cells, B
cells and NK cells in the spleens and livers of A. suum and A.
lumbricoides-infected C57BL/6J and CBA/Ca mice. We found
that the relatively resistant mouse strain had significantly more
CD4+ and γδ T cells in their spleens than the relatively susceptible
strain before infection and after infection with either ascarid spe-
cies. While both CD4+ and γδ T cells can release Th2 cytokines,
future studies are required to determine if the increased numbers
of these cells in CBA/Ca mice compared to C57BL/6 mice reflect
expansions of Th2 cells. A previous study, however, observed a
reduction in CD4+ IL-4+ T cells in the spleen of A. suum-infected
BALB/c mice (Gazzinelli-Guimarães et al., 2013), suggesting that
the parasite may inhibit Th2 cell differentiation.

Analysis of liver lymphocytes from the relatively susceptible
C57BL/6 mice revealed a pattern whereby the numbers of every
investigated cell population increased slightly or significantly
with infection by either Ascaris species. The opposite was true
for the relatively resistant CBA/Ca mice, where all hepatic lymph-
oid cell numbers decreased with infection. This observation sug-
gests, surprisingly, a more pronounced immune response to
Ascaris by lymphoid cells in the susceptible C57BL/6 mice. It
applies to B cells and conventional αβ T cells and their CD4+

and CD8+ T cell subsets, which can mediate pathogen-specific
adaptive immunity via selective Th1/Th2/Th17 cytokine secretion
and antibody production. It also applies to the innate

lymphocytes, including γδ T cells, NK and NKT cells, which
are uniquely abundant in the liver (Doherty, 2016).

NK cells, γδ T cells and NKT cells recognize conserved struc-
tures on pathogens and stressed host cells and respond rapidly by
killing target cells and rapidly releasing cytokines. They account
for the majority of lymphocytes in the liver and are thought to
play roles in the initiation of immune responses against pathogens
and tumours in an environment where immune tolerance is
favoured over active immunity (Doherty, 2016). Little is known
about the roles of these innate lymphocytes in Ascaris infection,
but they are implicated in immunity against other parasites. γδ
T cells are found in elevated numbers in the blood of patients
with cutaneous leishmaniasis (Darabi et al., 2002), Toxoplasma
gondii (Prigione et al., 2006) and Schistosoma infections
(Schwartz et al., 2014) and in the mesenteric lymph nodes of
Schistosoma-infected mice (Yu et al., 2014). γδ T cells numbers
also increase after the acute phase of Plasmodium infection
(Mamedov et al., 2018) and are required for the induction of
immunity against Plasmodium in vaccination studies in mice
(Zaidi et al., 2017). Subsets of NKT cells produce IFN-γ and
IL-4 during egg deposition in the liver in mice infected with S.
mansoni (Mallevaey et al., 2006; Mallevaey et al., 2007).
Although these innate lymphocyte populations can selectively
release Th2 cytokines and can polarize immune responses
towards Th2, future studies are required to determine if any of
these innate lymphocyte populations exhibit skewed Th2

Fig. 5. Lymphoid cell subtype numbers in the livers of uninfected and A. lumbricoides-infected C57BL/6J and CBA/Ca mice. The number of cells per mL of liver
extract for the different cell types for each sample is shown. The means are indicated with the red horizontal bar. *P < 0.05; **P < 0.01.
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phenotypes in response to Ascaris infection. Future studies are
also required to explain why innate T cells exhibit opposite
dynamics in the relatively susceptible and relatively resistant
mouse strains in response to Ascaris infection.

In summary, our data demonstrate that infection with A. suum
or A. lumbricoides results in increases in the numbers of myeloid
cells, including monocytes, dendritic cells, Kupffer cells and eosi-
nophils in the livers of both C57BL/6J and CBA/Ca mice, suggest-
ing that these cells are likely to contribute to parasite elimination.
Unexpectedly, the numbers of all hepatic lymphocyte subsets
examined increased in the susceptible C57BL/6J mice but
decreased in the relatively resistant CBA/Ca mice after infection
with both parasite species, suggesting that the susceptible mice
mounted more robust immune responses to the worms. This
might be explained by the responses being more tolerogenic in
C57BL/6J mice, leading to higher subsequent worm burdens in
the lungs. Liver dendritic cells, Kupffer cells and monocytes are
well-documented to preferentially induce tolerance over immun-
ity to antigens encountered in the liver (Thomson and Knolle,
2010; Crispe, 2011; Doherty, 2016). Alternatively, the livers of
the susceptible C57BL/6J mice may receive higher numbers of
worms producing stimulatory antigens, requiring a more robust
hepatic immune response compared with that of CBA/Ca mice.
Consistent with the latter hypothesis, intestinal/rectal worm bur-
dens are reported to be higher in C57BL/6J mice compared to
CBA/Ca mice 6 days p.i. (Lewis et al., 2007), suggesting that pre-
disposition may take place before the ascarid reaches the liver.
Uninfected and Ascaris-infected CBA/Ca mice had higher num-
bers of CD4+ T cells and γδ T cells in their spleens which

might arise from mesenteric lymph node activation by parasite
antigens. Future functional studies are needed to elucidate the
immunogenic vs tolerogenic roles of hepatic leucocytes in
Ascaris infection.
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