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Abstract: The dynamics that lead to the spread of an infectious disease through a population can
be characterized as a complex system. One way to model such a system, in order to improve
preparedness, and learn more about how an infectious disease, such as COVID-19, might spread
through a population, is agent-based epidemiological modelling. When a pandemic is caused by an
emerging disease, it takes time to develop a completely new model that captures the complexity of the
system. In this paper, we discuss adapting an existing agent-based model for the spread of measles in
Ireland to simulate the spread of COVID-19. The model already captures the population structure and
commuting patterns of the Irish population, and therefore, once adapted to COVID-19, it can provide
important insight on the pandemic, specifically in Ireland. We first investigate the different disease
parameters that need to be adjusted to simulate the spread of COVID-19 instead of measles and then
run a set of experiments initially comparing the model output for our original measles model with
that from the adjusted COVID-19 model. We then report on experiments on how the different values
of the basic reproductive number, R0, influence the simulated outbreaks, and find that our model
behaves as expected: the higher the R0, the more agents are infected. Then, we demonstrate how
different intervention strategies, such as vaccinations and school closures, influence the spread of
measles and COVID-19 and how we can simulate real pandemic timings and interventions in our
model. We show that with the same society, environment and transportation components among
the different disease components lead to very different results for the two diseases, and that our
COVID-19 model, when run for Leitrim County, Ireland, predicts a similar outbreak length to a real
outbreak in Leitrim County, Ireland, but the model results in a higher number of infected agents
compared to the real outbreak. This difference in cases is most likely due to identifying all cases
of COVID-19 in the model opposed to only those tested. Once an agent-based model is created to
simulate a specific complex system or society, the disease component can be adapted to simulate
different infectious disease outbreaks. This makes agent-based models a powerful tool that can be
used to help understand the spread of new and emerging infectious diseases.

Keywords: COVID-19; agent-based model; infectious disease model; complex systems; epidemiology

1. Introduction

As the COVID-19 pandemic continues, countries throughout the world are attempting
to find the best strategies to slow the spread of the disease so that it does not overwhelm the
health care systems. Epidemiological modelling can play an important role in developing
and implementing successful intervention strategies, but in many cases, an appropriate
model needs to be developed. In this study, we demonstrate the feasibility of taking a
previously developed and validated model for the spread of infectious diseases in Ireland
and adjusting the parameters of the disease components to model the spread of COVID-19.

COVID-19 is known to be more severe in older patients and those with co-morbidities [1].
Thus, having a population in the model that has the appropriate age structure could be
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important in capturing the severity of the pandemic in a given region, and the response of
older individuals might be different to the response of younger individuals. For example,
an older individual might be more likely to reduce contacts and remain home due to their
risks. Additionally, commuting patterns and differences in intra-city mobility have been
shown to influence how a disease spreads through a city [2,3]. Interactions between the
regional characteristics, such as commuting patterns, age structure, the number of schools,
and different immunity levels can influence an outbreak in a town or region [4]. As these
interactions are complex, being able to simulate the specific characteristics of a given region
can be important in infectious disease modelling and capturing that complexity. These
interactions can lead to large events, such as super spreader events and the adaptation
of agents as they change their behaviours due to the outbreak. Having a model that can
simulate the society, transport networks and patterns, and environment of a given region
or country, and that is adaptable to different diseases can reduce the time it takes to create
a new model (as compared with creating a complete model from scratch). This reduction
in model creation time will allow for quicker results to help guide decision-making during
an outbreak. If such detailed models are only commissioned after the start of a pandemic,
it may be too late for the results to have a substantial effect [5]. While the dynamics of a
disease might vary, the underlying structure of the population will not. Here, we show
that it is possible to adjust an agent-based model designed for the spread of measles to
model the spread of COVID-19. Once a model is adjusted for a specific disease, it can be
used to test how different intervention strategies will work to mitigate an outbreak and
help to support decision-making. For example, will school closures be enough to slow the
spread of an outbreak, or will more drastic measures be needed? While there are existing
high-level models that have been used to show this [6], a more country-specific model can
show how populations might respond differently to a given intervention. For example,
a densely populated city or town that relies heavily on public transportation might need
stricter movement restrictions compared to a more rural county in order to achieve the
same flattening of the curve.

Once the disease component has been adapted, it is an important step in the validation
process to compare the results of the model simulating outbreaks of different diseases.
It is important to understand how changes interact with other components of the model
and the complexity of the system. Having a validated model can help in making difficult
decisions on interventions. As COVID-19 spreads throughout the world, it is clear that
predicting and preparing for a pandemic is an important aspect of global health, and
modelling should play an essential role in that prediction and preparation.

In this work, we start by briefly discussing the COVID-19 pandemic, and then discuss a
number of existing COVID-19 models. Then, we introduce an agent-based model designed
to model the spread of measles in the Irish context, and explain how it is adjusted for
COVID-19 dynamics. It is important to note that while we discuss adapting the disease
component (specifically, the parameters needed to adapt the component to a new disease)
of our model, due to the flexibility of agent-based models, these might not be the same
parameters that need to be adjusted to adapt other agent-based models for the spread
of an infectious disease to COVID-19. We then run a number of experiments using the
COVID-19 version of the Irish agent-based model. First we compare the results of the
adapted COVID-19 model with the original measles model so as to validate the changes in
the model parameters and disease dynamics. This allows us to get a better understanding
of the complexity in the model and the impact of adjusting the model parameters. As far
as we are aware, this analysis does not exist in the current COVID-19 literature. Once
we have validated the adapted model in this way, we then report three experiments that
demonstrate the usefulness of agent-based models to the study of COVID-19 in the Irish
context. The first focuses on how the characteristics and dynamics of the COVID-19 disease
affect the spread of the disease, with a particular emphasis on the R0 parameter of the
disease. Currently, in the literature on COVID-19, there are a range of values reported
for R0; this is not surprising, given that R0 is a function of both the disease itself and
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also the specifics of the environment and society that it is spreading through. In this
experiment, we use our adapted agent-based model to forecast the range of outcomes for
COVID-19 in Ireland that can be expected for the spread of COVID-19 under different
R0 values reported in the literature. As part of the experiment, we also report a study
examining how presymptomatic individuals, those who have not yet developed symptoms
but who are infectious, can affect the spread of disease. In the next experiment, we use
the adapted model to examine how different intervention strategies affect the spread
of different diseases (in this case, measles versus COVID-19) in Ireland. Finally, in the
last experiment, we use the adapted model to simulate the spread of COVID-19 in an
Irish county, replicating the Irish responses to COVID-19 with school closures and agent
movement restrictions.

1.1. COVID-19 Pandemic

On 31 December 2019, a cluster of patients with pneumonia of unknown cause was
detected in Wuhan, China. By 9 January 2020, China reported that a novel coronavirus was
the cause of the outbreak [7]. By 27 August 2020, the virus had led to over 24.2 million
cases, and over 827,000 deaths [8]. The first case of COVID-19 in the Republic of Ireland
was reported on 29 February 2020 [9]. By 27 August 2020 there were 28,453 notified cases
and 1777 deaths, with all counties affected [10].

1.2. COVID-19 Models

One almost immediate response to the COVID-19 outbreak was to create models to
help understand the spread of the disease and to help predict the spread. While many
models focus on estimating disease parameters, such as the basic reproductive number or
the length of time between exposure and when an individual becomes infectious, here we
focus on those models created to simulate the spread of the disease through a population, so
as to get a better understanding of how COVID-19 will affect a particular country, and the
likely outcomes of different interventions. For example, Wang et al. [11] used a basic SEIR
model to predict the number of COVID-19 cases in Wuhan in China, and looked at different
scenarios for prevention and control measures. A number of studies have looked into
different intervention measures and their effectiveness, such as differences in how strictly
and for how long social distancing measures are enforced [6], airport screenings [12], or
contact tracing and isolation [13].

Beyond SEIR-based models, there are a number of equation-based models that can
take into account other factors important to the spread of an infectious disease, such as
the spatial spread of the virus. A common method for this is use of a metapopulation
model that breaks the population into subpopulations that can represent different regions
or cities. Each subpopulation has independent disease dynamics. There are limited inter-
actions between subpopulations, but these interactions simulate transportation between
subpopulations [14]. Danon et al. [15] adapted an existing metapopulation model of disease
transmission in England and Wales to capture the spread of COVID-19. They used the
model to look at a number of factors, including the potential seasonality of COVID-19 and
how changes in the location of the initial infection within the country have an effect on the
timing of the epidemic and when the peak reaches different regions. The authors compare
the results of their equation-based models that do not include the spatial spread of the
disease with the results of their metapopulation spatial model. Their results show that
the spatial model forecasts that the country will reach its peak four times slower than the
model that does not include spatial spread. The non-spatial-equation-based model does
not consider the spread of the disease across regions of the country because it does not
consider transportation patterns, and thus misses key factors in the spread of the disease.

Agent-based models are particularly suited to understanding how population, trans-
portation, and environmental characteristics and the interactions of these characteristics
can influence the spread of an infectious disease [16]. They not only take into account
spatial characteristics of the spread, but can also consider individual actions and how they
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influence the spread of the virus. However, creating and validating an agent-based model
that is specific to a certain population can take both time and data. When trying to respond
to an emerging disease, that time may not be available. A number of groups have taken
existing agent-based models and shown how they can be adapted to simulate the spread
of COVID-19. Marini et al. [17] took the EnerPol model that had been previously used to
look at scenarios of influenza spread in Switzerland, as well as a number of other scenarios
for different countries, such as the U.S., Japan, and South Korea, and adapt the model
for COVID-19. The model is data-driven and uses the exact start date of the pandemic
in Switzerland, combined with accurate seeding of initial cases. The model determines
where potential hotspots of infection around the country will be, and also shows how
uncertainties in model parameters due to the characteristics of modelling an emerging
disease can lead to a wide variation in model results. Chang et al. [18] used AceMod,
an agent-based epidemic model that was created using Australian census data, and ad-
justed the disease component of the model for COVID-19 while keeping the population the
same. They then used the model to look at various intervention strategies and determined
that a combination of several strategies, such as school closures, case isolation, and social
distancing produces the best results. Ferguson et al. [19] created a model that simulated the
spread of pandemic influenza in the United Kingdom and in the United States, and more
recently, this model has been adapted to simulate the spread of COVID-19.

The taxonomy of agent-based models for epidemiology presented in [16] identi-
fies four major components within these models: environmental, society, transportation,
and disease components. Adapting an agent-based model from one disease (such as
measles) to another (such as COVID-19) primarily involves adapting the parameters of
the disease component. Indeed, this is one of the real benefits of agent-based models for
epidemiology: the environmental, society and transport components of the model can be
reused in the creation of a model for a new disease, thus saving the time and effort required
to develop these components and speeding up the development of a model specific to the
region or country. Having a model that is specific to a region or a country is an important
advantage when modelling the spread of an infectious disease, as it can use the unique
characteristics of a region, such as transportation patterns, to show how the region will
be affected.

However, the forecasts generated by an agent-based model emerges from the interac-
tions between these different components and the region’s characteristics. Consequently,
when adapting an agent-based model to a new disease, it is important to compare the fore-
casts generated by the adapted model to those of the original model in order to check that
the new disease component has an appreciable effect on the generated forecasts (or in other
words, that the dynamics of the new disease are not dominated by the other components
of the model). Once the model has been validated in this way, we can run experiments
using the new disease dynamics. In the following section, we will describe the agent-based
model we used for this work and explain how it was adapted to COVID-19. Following this,
we report a number of experiments that study COVID-19 in the Irish context.

2. Materials and Methods

Agent-based models are particularly suited to model complex systems, as complex
systems are systems of interdependent, diverse, and adaptable entities. The agents in an
agent-based model embody these characteristics: the heterogeneous characteristics of the
agents lead to their diversity; in the case of an infectious disease model, an agent can adapt
their behaviour based on their own characteristics, their disease status, and the overall
level of disease in the society; and an agent’s own disease status is interdependent on other
agents, in terms of the contacts they have had with other agents, and the actions of those
other agents. We use the agent-based model developed by Hunter et al. [20], to simulate
the spread of measles in Irish counties, as the basis for the work reported in this paper.
The model we use in this work has the same environmental, societal, and transportation
components as that model, and runs on discrete time-steps, with each time-step equating
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to two hours of an agent’s day. Thus, 12 time-steps equals one day. However, the disease
component is updated in two ways. First, structurally, the disease component used in
our experiments is designed as a hybrid agent-based and equation-based component that
switches between these two modes based on the number of infected or exposed agents
in a given town in the region. This disease component uses the same hybrid architecture
that was used in Hunter et al. [21]. The model code and a detailed description of the
hybrid disease architecture, along with exemplary input data is available on the CoMSES
Network—Computational Model Library as: Hybrid Agent-Based and Equation-Based
Model for Infectious Disease Spread (version 1.0.0), https://www.comses.net/codebases/
e30e36f0-5471-46b5-9c78-27b3f2185ff9/releases/1.0.0/ (accessed on 19 April 2020) [22].
Second, to model COVID-19, the parameters of the disease component are naturally set
to values that reflect the known dynamics of COVID-19. We will describe the COVID-19
disease parameters and characteristics later in the paper. In the following sections, we
provide a brief description of the four model components and the experiments we run
using the model.

2.1. Environment Component

The model environment was created using data from the Irish Central Statistics office.
The region being modelled was broken up into a number of smaller regions using Irish
census small areas. Small areas contain between 50 to 200 dwellings and are the smallest
geographic area that the Irish census statistics are aggregated over [23]. Each small area in
the model is represented by one Netlogo patch or grid cell. Any agents that are in the same
small area are coded in the same physical location in the model; however, agents keep
track of their location within the small area. Agents can be in one of four locations—home,
school, work, or the community. An agent’s location within a small area will determine
their contact with other agents. Agents only interact with other agents who are in the
same small area and location within the small area. An agent can access information about
the small areas, including the real-world distance to other small areas and the number of
agents there at a given time. Agents can move between small areas.

2.2. Society Component

The society in the model was created using census data from the Irish Central Statistics
Office [23]. For each small area, the assigned population matches the age, sex, household
size, and economic status breakdown of the real population. Social networks are also
included in the model and created from the agents’ simulated schools, workplaces and
families. Agents have a family social network made up of agents in their household, or
a work or school social network made up of other agents in their workplace or their school,
and students have an additional class network made up of agents who are in their school
and of the same age. Social networks, along with the agent’s location, help to determine
the contacts an agent has in the model.

Although in real systems, there is a level of immunity in the population (for measles,
this is due to both past infection and vaccination, and for COVID-19, in many countries,
vaccination campaigns began in the winter of 2020–2021), to initially investigate the dy-
namics of the two diseases we start with a completely susceptible population, and in the
later experiments reproduce measles vaccination rates for the measles version of the model
based on Irish vaccination data.

2.3. Transportation Component

Agents’ movements in the model are either predetermined, with agents moving
between home and school or home and work at set times, with commuting patterns to
school and work determined using the CSO Place of Work, School or College—Census of
Anonymity Records (POWSCAR) data [24], or determined using a gravity model. The grav-
ity model determines where an agent will move when they are moving through the
community during day-time hours. A gravity model gives the interactions between two

https://www.comses.net/codebases/e30e36f0-5471-46b5-9c78-27b3f2185ff9/releases/1.0.0/
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location pairs, and determines those interactions based on the characteristics of a location
and the distance between locations [25]. In our model, the probability of an agent moving
to another small area is proportional to the population density of the small area, with small
areas that contain a lot of other agents being more attractive, and inversely proportional to
the distance to the small area from the agent’s current location, with small areas that are
farther away being less attractive.

Agents’ movements can be influenced by their disease statuses. If an agent is sick
and symptomatic, they will adjust their movements to stay home more often. The amount
of time that they stay home is determined by the modeller, and can be influenced by the
disease being modeled. For example, agents would be much more likely to stay home
when sick with measles than if they had the common cold.

2.4. Disease Component

The disease component is the hybrid disease component used in the model described
in Hunter et al. [21]. The hybrid disease component allows for the model to switch between
an agent-based disease component and an equation-based disease component when the
number of agents infected or exposed in a town (a town can be made up of one small area
or a group of small areas) reaches a certain threshold. The model starts with all towns
using an agent-based disease component, and when the threshold in the town is reached,
the town is switched to an equation-based disease component. Other towns that have not
reached the threshold will remain entirely agent-based, and transportation between towns
is still driven by the agent-based model regardless of whether the town has switched to an
equation-based disease component or not. When the number of infected or exposed agents
in a town that has switched to an equation-based component drops below the threshold, it
returns to an agent-based disease component. In all experiments reported in this paper,
the towns will switch when 10% of agents are infected or exposed.

At the agent level, the agents will move between four states: susceptible, exposed,
infected, and recovered. A contact between a susceptible and an infected agent has a certain
chance of resulting in the susceptible agent moving to the exposed states. They will remain
in the exposed state for a defined period of time where they are not yet infectious, and then
will move to an infected state. The agent will remain in the infected state for a set period of
time, where they are able to infect other agents that they might come into contact with, and
then will move to the recovered state where they will no longer be able to infect others or
become infected.

2.5. Adapting from Measles to COVID-19

Measles and COVID-19 are two distinctly different viruses with different levels of
infectiousness, severity, and immunity within the population. However, the society and
environment through which they spread do not change. If an outbreak of measles occurs
in the county of Leitrim in Ireland, the population structure, population density, and initial
commuting patterns and mobility would be the same as those that occur in the county
of Leitrim during an outbreak of COVID-19. Thus, to adapt a model that captures the
disease dynamics of measles to the disease dynamics of COVID-19, we only need to adjust
the disease component of the model and not the society, environment, or transportation
(admittedly, in some cases, such as the current COVID-19 pandemic, agent transportation
patterns will change in response to dynamics of the pandemic—for example, in response to
the number of cases of COVID-19 in an area, or because of government restrictions—and
an agent-based model can be created to account for these changes in transportation as well;
however, in this paper we are focusing on the difference in disease dynamics). As a first
step in adjusting the model to simulate the spread of COVID-19, it is important to look at
the set of parameters that must be adjusted to change the model from simulating measles to
COVID-19. The main parameters required to change the model from a model for measles
to a model for COVID-19 are the incubation period, the infectious period, and the basic
reproductive number (R0). These three parameters can help to understand how fast an
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infectious disease will spread. The incubation period is the amount of time between initial
contact with an infectious individual and a subject developing symptoms. For infection
with COVID-19, the mean incubation period is between 5 and 6 days, and ranges from
1 to 14 days [26]. The infectious period is defined as the amount of time an individual can
pass the disease to others. As an estimate for the infectious period, we take the median time
from the development of symptoms to clinical recovery. For mild cases, this is 2 weeks, but
can be 3–6 weeks for severe cases [26]. The last parameter, the basic reproductive number,
R0, gives an estimate of how quickly the disease will spread, and is the expected number of
new cases of a disease infected by a single infected individual in a completely susceptible
population. There are a range of estimates for the basic reproductive number of COVID-19:
although the World Health Organization (WHO) estimates it to be between 2 and 2.5 [26],
a review of the existing studies measuring the basic reproductive number found it to range
from 1.4 to 6.49, with a mean of 3.28 [27]. In order to investigate the scale of potential
outbreaks compatible with this range of values for the basic reproductive number, in our
second experiment reported below, we used the model to simulate a number of different
outbreak scenarios.

Additionally, COVID-19 has some other characteristics that make it different from
measles. While there are many severe cases of COVID-19, approximately 81% are classified
as mild [28]. There is evidence that individuals are infectious with COVID-19 2.5 days
before they develop symptoms [29]. Both of these factors could influence the spread
of the disease affecting individual behaviours, and thus influence transmission (those
who are not yet symptomatic or only appear to have a cold will likely still interact with
others). Additionally, there is an existing level of immunity to measles in the population
through vaccinations and those who have previously had measles, and there is no existing
immunity for COVID-19. These factors, especially being infectious prior to showing
symptoms, should be included in an agent-based model for the spread of COVID-19 in
order to completely capture the dynamics of the disease.

In the agent-based disease component, the parameters are used as follows: the in-
cubation period determines the number of days that the agent is exposed but does not
have symptoms (and thus does not know that they are infected); if the disease allows for
the agent to be infectious while presymptomatic, this is included in the exposed period.
The infectious period determines the number of days that the agent has symptoms, and this
is the period that the agent will pass the infection on to others while they have symptoms.
It is also the period when an agent’s behaviour will change based on having symptoms,
with agents more likely to stay home. R0 is used to determine how likely agents are to
infect each other when they meet. R0 can be broken down into three parameters: the time
per infection, the contacts per time, and the infections per contact. From the agent-based
model, we can determine the average number of contacts per time-period for the agents in
the model, and we know the time per infection based on the infectious period. With those
two parameters and R0, we can calculate the likelihood of an infection per contact.

To account for the number of mild and asymptomatic cases of COVID-19, we reduce
the likelihood that agents will stay home when sick compared to the measles model. We
also adjust the agent-based model so that agents are infectious for, on average, 2.5 days
before they develop symptoms, while they are still in the exposed state. These agents will
not adjust their movements to stay home when sick, and will continue their movements
as normal.

2.6. Experiments

In all of the experiments that we run in this paper, we simulate the spread of the
infectious disease, either measles or COVID-19, through the county of Leitrim, Ireland.
Leitrim is a county in Ireland that has a population of approximately 32,000 people over
an area of 1590 km2. The county is made up of 173 small areas. If the measles vaccination
is included in the model, approximately 12.3% of the population is not vaccinated or
otherwise immune to measles.
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In the original model with measles dynamics, we take the R0 to be 12, the incubation
period to be 10 days, and the infectious period to be 8 days. In the COVID-19 model, we
set the average incubation period of exposed agents to 5 days, and the average infectious
period to 2 weeks. As these are the averages to get the incubation period and the infectious
period for each individual agent, we sample from normal distributions with means of 5 and
14 days, respectively, with standard deviations of 0.5 days. Additionally, to account for the
large number of mild cases of COVID-19, we set a parameter for severity, with older agents
more likely to have more severe cases. This severity parameter will influence the agents’
decisions to interact with other agents when sick. The severe cases will be much less likely
to leave their homes when sick, while the mild cases have a higher chance of going out
and interacting with others. As a base, we set the R0 to be the mean value reported in the
literature, 3.28, but in our second experiment we look at the effects of changing the R0.

To test the effects of changing the model parameters from those for measles to COVID-
19, we first run the model 300 times (the model is run 300 times to account for the stochas-
ticity in the agent-based model; this is based on methods in [30]) using measles dynamics,
and then 300 times for COVID-19 dynamics with the mean R0 of 3.28, and compare the
results for the two outbreaks. To make the models more comparable, we do not include
existing immunity in the measles model. We compare the results from the measles model
and the COVID-19 model as a basis for assessing whether changing the disease dynamics
has an effect on the model output. If the model results are not different, there would be an
error in our simulation. There should be a number of differences seen between the two
outbreaks (we consider an outbreak to last from when one agent is infected until the time
when no other agents in the model are infected).

The second experiment we report was designed to determine if the COVID-19 model
is affected, as we would expect by changing certain disease dynamics. This experiment
compared the results from three versions of the COVID-19 model, each with a different R0
value: one with an R0 of 2, which is at the low end of the WHO range; one with an R0 of
3.28, which is at the mean of the studies in the review; and finally, one with an R0 of 6.49, the
largest R0 calculated for COVID-19. R0 in this agent-based model impacts the chances that
an agent will be infected upon contact with an infectious agent. The relationship between
R0 and the probability of infection is discussed further in [4]. To generate the results, each
of these three versions of the model was run 300 times. We then do one additional run of
COVID-19 dynamics by including agents being infectious before they develop symptoms.
For this run, we take the average R0 value of 3.28. If the model is capturing the COVID-19
dynamics correctly, then the size and growth rate of COVID-19 outbreaks should increase
as R0 increases, and also when agents are infectious before symptoms begin. If this pattern
is not evident across the results from the different models, this would indicate that there is
an error in the disease dynamics of the model.

Finally, we look at how an agent-based model can be used to simulate different inter-
vention strategies. We first consider two possible theoretical interventions, vaccinations,
and school closures. We run the measles model 300 times, including existing immunity
from vaccination or having previously had measles, and run the COVID-19 model 300 times
with the same level of immunity as the measles model. To show the adaptability of the
model and how different infectious diseases will respond to different interventions, we
also look at how school closure policies influence the spread of the two diseases, running
the model 300 times for the measles model and 300 times for the COVID-19 model with the
same school closure strategy. Then we run the model on a scenario that mimics the real
policies implemented during the COVID-19 pandemic in Ireland with school closures and
a lockdown.

3. Results

The following sections present the results of the experiments outlined in the previous
section. First, we compare the COVID-19 results to the model results for measles, then we
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show the differences in the COVID-19 model based on different R0 values and infectious
periods, and finally, we look at how two different interventions influence both outbreaks.

3.1. COVID-19 Model Results vs. Measles Model Results

In order to be sure that the model is taking into account the interactions of the
different parameters that describe the disease, we compare the outbreaks produced from
the model with COVID-19 dynamics to the model with measles dynamics. If we do not
see key differences in the results, it would be concerning that the COVID-19 model was
not accurately capturing the dynamics of COVID-19, but instead just reproducing the
measles dynamics. Although the R0 of COVID-19 is still only being estimated, for ease
of comparison, we compare the results from the measles model to the results from the
COVID-19 model with an R0 of 3.28. To also make the models more comparable, we do not
include any existing immunity in the measles model, so all agents are susceptible.

The results, showing some key outbreak characteristics for the measles model and the
COVID-19 model, can be found in Table 1.

Table 1. Key outbreak characteristics from the measles model and the COVID-19 model (R0 = 3.28).

Measles COVID-19

Total Infected 29,275 26,134
(27,120 31,430) (23,870 28,367)

Maximum Infected 1441 2144
(1333 1548) (1956 2331)

Total Days 113.12 114.86
(105.44 120.79) (107.28 122.44)

Days to Max Infected 74.18 57.11
(67.14 81.21) (52.13 62.09)

From the table, we can see that the measles outbreak has a higher total number of
infected. This is likely because measles has a higher R0; therefore, the virus is more
easily transmittable. The differences between the two outbreaks can be further seen in
Figure 1. The COVID-19 outbreak seems to take off faster, and reaches a higher peak.
Although at first, this higher peak and faster initial spread might seem counter-intuitive,
because measles has a higher R0 than COVID-19, there are a number of factors that are
causing this difference. One is the other characteristics of the virus, especially the incubation
period. While COVID-19 has an average incubation period of approximately 5 days,
measles has a much longer incubation period, with an average of approximately 10 days.
This means that the serial interval, the time between the symptom onset of a primary case
and the symptom onset for a secondary case, will be longer for measles, and it takes longer
for an agent infected in the measles model to move between the exposed and infected state
than in the COVID-19 model; thus, the number of agents in the infected state for COVID-19
will grow faster earlier on in the model. Additionally, because there is a high percentage
of COVID-19 cases that are mild and in some cases, asymptomatic, we have built it into
the model so that mild cases are not as likely to stay at home when sick compared to more
severe cases. Because a number of agents with mild cases will be going about their day as
normal, they will be infecting more cases compared to the agents with measles who have
a higher likelihood of staying home. The differences between the two models show that
it is important to tailor the disease dynamics and behaviors of the agents to a particular
infectious disease.

3.2. Modelling COVID-19 Dynamics

After determining that changing the disease dynamics of the model from those for
measles to those for COVID-19 leads to expected differences in model results, we next
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consider how altering the COVID-19 dynamics will further affect the model. Although there
are estimates of the parameters needed for modelling the spread of COVID-19, they are
only estimates based off of available data. We set the exposed period from the estimated
values and the infectious period as the estimated symptomatic period but investigate the
effects of different R0 values on the model output. R0 is an important parameter because it
modulates how infectious a disease is, and also influences what level of herd immunity
would be needed for an outbreak to not take hold. Herd immunity is the concept that
if a population contains a certain proportion of immune individuals, this will result in
population-level protection from the disease. The higher the R0 value, the higher the
herd immunity that is needed [31]. This should result in a larger number of individuals
becoming infected in an entirely susceptible population. In order to investigate the scale of
potential COVID-19 outbreaks compatible with the possible range of values for the basic
reproductive number, we used the COVID-19 model to simulate a number of different
outbreak scenarios.

Figure 1. Infection curves for all model runs for a measles outbreak (R0 = 12) and a COVID-19
outbreak (R0 = 3.28).

Figure 2 shows the curves for the 300 runs for the COVID-19 model for the number
of infected agents for each time-step with three different values of R0. As expected, the
results show that with a higher R0, the outbreak has a greater magnitude.

Figure 2. The number of infected agents by time-step (each time-step represents two hours) in the
simulation with different R0 values.

Some key characteristics of the simulated outbreaks can be seen in Table 2 for model
runs where the disease spreads beyond the initially infected agent. Without interventions,
the model shows that, on average, the total number of individuals infected by the end of
the outbreak ranges between 25,671 and 28,058. The average length of the outbreak ranges
from 105.22 days to 114.86 days. The average maximum number of agents infected at any
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one time ranges from 2240 to 2766, and this peak occurs, on average, between 43.88 days
into the outbreak to 59.06 days.

Table 2. Key characteristics from the COVID-19 model by R0.

R0 2.00 3.28 6.49

Total Infected 25,671 26,134 28,058
(22,820 28,522) (23,870 28,367) (25,979 30,137)

Max Infected 2240 2144 2766
(1993 2489) (1956 2331) (2558 2973)

Total Days 114.49 114.86 105.22
(106.09 112.89) (107.28 122.44) (98.93 111.52)

Days to Max 59.06 57.11 43.88
(53.46 64.66) (52.13 62.09) (40.30 47.46)

The model behaved as we expected, with regard to the difference in the R0 values.
A higher R0 results in a greater number of cases and faster growth in the outbreak, reaching
the peak sooner.

To further adjust the model, we change the infectious period so that agents can be
infectious before they are symptomatic. Not only does being infectious before developing
symptoms give the agents a longer infectious period, which influences the number of
agents they can spread the virus to, but it also influences their actions. When an agent
has no symptoms, they will not consider staying home, thus spreading the virus to more
agents. Table 3 shows the results comparing the COVID-19 model with the average R0 of
3.28 with two different infectious period scenarios.

Table 3. Key characteristics from the COVID-19 model with an R0 of 3.28 with and without agents
being infectious before symptoms begin.

Infectious before Symptoms Yes No

Total Infected 27,927 26,134
(25,741 30,112) (23,870 28,367)

Max Infected 2536 2144
(2332 2740) (1956 2331)

Total Days 112.04 114.86
(105.32 118.76) (107.28 122.44)

Days to Max 48.08 57.11
(43.81 52.36) (52.13 62.09)

From the table, we can see that the total infected and the maximum number infected
are significantly greater when the agents are infectious before symptoms begin, and we
claim significance here as the confidence intervals do not overlap. Additionally, we see
that the days to the maximum number of people infected is lower, and when agents are
infectious before symptoms, it reaches the peak faster. We can see the differences by
further comparing the infection curves for the model where agents are infectious before
they develop symptoms and the model where they are only infectious after developing
symptoms in Figure 3. Although there is variation in the runs, we can see that there is a
higher peak in the model where agents are infectious before symptoms begin, and faster
initial growth.
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3.3. Interventions and Their Influence on the Outbreaks

One advantage of agent-based models is their adaptability to simulate different out-
breaks on the same population, as seen in the previous two sections. However, another
advantage is the ability to simulate intervention strategies. The outbreaks in the previous
sections for both measles and COVID-19 stopped after herd immunity was reached. How-
ever, in both cases, there were a large number of total infected by the end of the outbreak
which, especially in the case of COVID-19, would lead to a relatively large number of
deaths. An outbreak of the severity of measles or COVID-19 spreading through a popula-
tion unimpeded is unrealistic. In any population, there is a level of immunity to measles
due to individuals having the disease or having been vaccinated, and as we have seen
with COVID-19, most countries have implemented a number of measures to control the
pandemic, such as school closures and movement restrictions that are aimed at isolating
the individuals who are infectious so that they cannot spread the disease to others.

Figure 3. Infection curves for model runs with and without infectious agents before they begin to
show symptoms.

In this section, we simulate two intervention strategies on the measles model, and two
intervention strategies on the COVID-19 model. One strategy is including vaccination
and existing immunity. For the vaccination policy, for comparability, we base the level of
immunity in the population on Irish measles vaccination rates. An agent’s immunity is thus
determined by their age: older agents are assumed to have had measles and be immune,
and for younger agents we take the percentage of agents that were vaccinated for measles
for each age group and give that percentage of agents immunity. For the vaccination
policy scenario, we apply the same measles vaccination rates by demographics to the
COVID-19 model. This, in effect, turns COVID-19 into a childhood disease, as measles is,
because the older population has pre-existing immunity while the younger population is
not fully immune due to lower-than-desired vaccination rates. While this is unrealistic for
the current situation with COVID-19, running the vaccination intervention experiment in
this way enables us to directly compare the effectiveness of the vaccination intervention for
diseases with different R0s and symptomatic/infectious dynamics. Furthermore, it also
enables us to consider COVID-19 dynamics after a vaccination has been developed and
deployed in the population for a number of years.

The second intervention strategy considered is a school closure policy where schools
in the county will close when 100 agents are infected and will reopen when there is only
one agent infected in the county. In this school closure scenario, there is no pre-existing
immunity in the population for either the measles or COVID-19 model. This intervention
strategy is more analogous to the strategies used to control COVID-19 so far with movement
restrictions and control of the outbreak through isolation.
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The results for the measles scenario with no interventions, with vaccination, and with
school closures for runs when outbreaks occur can be found in Table 4.

The table shows results for when the outbreak takes off and more than one agent
is infected. We can see that with Irish vaccination rates, the outbreaks are significantly
reduced in size, dropping from an average of 29,275 agents infected in the scenario with no
interventions to 602 in the scenario with vaccination. The scenario with school closures also
reduces the number of agents infected, but only to 868. Similarly, the maximum number of
agents infected drops when either intervention is introduced, but more so with vaccinations
than with school closures. Although the number of days to reach the peak does not change
much between scenarios, the total number of days of the outbreak is increased for the
scenario with school closures. This is likely because the school closures result in multiple
waves of the outbreak when the schools reopen again. The multiple peaks of the outbreak
can be seen in Figure 4, which shows the infection curves for all 300 runs of each scenario
presented in Table 4 and in Figure 5, which shows the infection curves for nine individual
runs of the measles school closure scenario.

Table 4. Key characteristics from measles models with different interventions.

No Interventions Vaccination School Closures

Total Infected 29,275 602 868
(27,129 31,430) (419 784) (724 1010)

Max Infected 1,441 110 208
(1333 1548) (78 143) (185 232)

Total Days 113.12 100.88 149
(105.44 120.79) (92.16 109.62) (137 170)

Days to Max 74.18 69.26 66
(67.14 81.21) (61.99 76.53) (49 83)

Figure 4. Infection curves for all model runs for school closures in a measles outbreak.

Results for the COVID-19 scenarios with no interventions, with vaccinations, and with
school closures using an R0 of 3.28 across all three scenarios can be seen in Table 5.
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Table 5. Key characteristics from COVID-19 models with different interventions.

No Interventions Vaccination School Closures

Total Infected 26,134 2339 1078
(23,870 28,367) (2256 2422) (953 1203)

Max Infected 2144 753 373
(1956 2331) (723 784) (343 404)

Total Days 114.86 135.38 141.44
(107.28 122.44) (131.48 139.47) (127.84 155.04)

Days to Max 57.11 81.13 54.51
(52.13 62.09) (78.15 85.10) (46.56 62.47)

Figure 5. Infection curves for nine individual model runs for school closures in a measles outbreak.

From the table, it can be seen that compared to the scenario with no interventions,
both using measles-level vaccinations and immunity and closing schools in the county of
Leitrim, Ireland results in a large decrease in the average total infected agents, as well as the
maximum number of agents, with school closures resulting in a greater decrease in cases
than vaccination. This is a surprising result, as we would expect that reducing the number
of susceptible agents through vaccination would have a greater impact on reducing the
size of the outbreak; however, this is likely due to the interaction of different character-
istics of COVID-19 and the intervention strategies. Because agents are infectious before
showing symptoms and do not adjust their actions in the exposed state, these infectious
but presymptomatic agents will continue to go to school, bringing the disease to school
where they have a high number of contacts with other students who will become infected
and bring the disease home to spread to their family and others in their social networks.
Similarly, those infected but only with mild symptoms will continue to go to school again,
bringing the disease to their classmates who will take it home. Although COVID-19 is
often thought of as a disease that affects the older populations, there is growing evidence
that children are also infected at a higher rate than previously thought. Closing schools
stops infected students from bringing the disease into the school population, where it will
have many opportunities to spread.
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We also see that while the time to the maximum number of agents infected or the
time to the peak does not change much between the scenario without interventions to the
scenario with school closures, the time to the max infected increases by almost 20 days going
from the scenario without interventions to the scenario with vaccinations. Additionally,
the average total length of the outbreak increases from about 115 days without interventions
to about 135 days with vaccinations, and about 141 days with the school closures. Thus,
while both interventions lead to a decrease in the total number of cases, they increase
the length of the outbreak by almost a month. The reason for this increase in the length
of the outbreak can likely be seen when looking at the curves showing the total number
of infected agents over time. Figure 6 shows the infection curves for all of the 300 runs
of the three different scenarios of the COVID-19 model: no interventions, vaccinations,
and school closures, and Figure 7 shows the infection curves for nine individual runs of
school closures.

Figure 6. Infection curves for all model runs for school closures in a COVID-19 outbreak (R0 = 3.28).

In both figures, we can see that in a number of runs, there are multiple peaks of
the outbreak. Even though the schools do not reopen until there are fewer than two
agents infected in the county, this does not count exposed agents, and if there are a
number of agents exposed, they may start spreading the virus again once the schools are
re-opened. Comparing the results of the model for the intervention scenario for measles
with vaccination and the scenario for COVID-19 with school closures, we can see that the
responses to interventions are very different. The measles outbreaks reach one small peak
and then die out, whereas in many cases, the COVID-19 outbreaks reach multiple peaks.

Comparing the results between diseases, it is interesting to note that the measles out-
breaks with vaccination and school closures are significantly smaller than the COVID-19
outbreak with the same vaccination rates. This is likely because of a number of characteris-
tics of COVID-19 that are different than measles: agents are infectious before showing any
symptoms, and there are a large number of mild cases. Agents who are presymptomatic
but infectious will not change their behaviour in the model, and agents with mild cases
will likely stay home less often than those with more severe cases; both of these factors
should drive up the number of those infected, and are not present in the measles model. It
is also important to see that the school closure policies reduce the size of the COVID-19
outbreak more than vaccinations, while the vaccinations reduce the size of the measles
outbreak more than school closures. Again, this can be contributed to the characteristics of
the disease. The presymptomatic and mild COVID-19 cases play a large role in the outbreak
dynamics, and these individuals do not change their behaviour to staying home more when
sick, as the symptomatic agents in the measles model would; thus, movement restrictions
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are more successful at controlling the COVID-19 outbreak, because these individuals will
not be mixing with their peers, leading to fewer infections.

Figure 7. Infection curves for 9 individual model runs for school closures in a COVID-19 outbreak
(R0 = 3.28).

3.4. COVID-19 in Leitrim: Real Interventions and Timings

The experiment reported in the previous section demonstrated the flexibility of agent-
based models in terms of simulating the effect of interventions on the complex dynamics
of a disease spreading through a population and environment. In this section, we report on
an experiment that assessed the ability of our COVID-19-adapted, agent-based model to
replicate the dynamics of a real COVID-19 outbreak through a population when the actual
interventions imposed during the real outbreak are simulated in the model.

We focus on simulating the COVID-19 outbreak in Leitrim County, Ireland, using
real timings and interventions. Although the first case of COVID-19 was reported in the
Republic of Ireland on 29 February 2020, there were no cases reported in Leitrim until the
21st of March, when three cases were reported. In response to the COVID-19 outbreak,
Ireland has taken a number of country-wide mitigation measures. On 13th March, all
schools and universities were closed, and on 28th March, a nationwide lockdown was
implemented. The initial lockdown required all non-essential workers to stay within 2 km
of their home, and all restaurants, pubs, and non-essential shops were closed.

To simulate these measures, we make a number of changes to the model, mostly to the
transportation component of the model. When schools are closed, students do not attend
school, and move about their day as if it was a weekend until lockdown occurs. Working
agents are classified as either essential or non-essential to determine if they continue to
work during lockdown, and 20% of working agents are considered to be essential [32].
During lockdown, all non-essential agents stay within their small area, and have a 90%
chance of being in their home at a given point during daytime hours. Although Ireland
has gone through a number of phases to lift the lockdown measures starting with Phase
1 on 18 May 2020, in the modelling scenario, we do not lift the lockdown measures but
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run the simulation until there are no additional cases in the county. To mimic the outbreak
in Leitrim, we start the scenario with three agents infected after the schools have already
been closed.

The results from running the model mimicking the real Irish interventions for COVID-
19 compared to no interventions can be found in Table 6. As expected, implementing the
interventions results in a large reduction of agents infected, with an average of 304 agents
having been infected at the end of the outbreak compared to 26,134 with no interventions.
Similarly, there are, on average, only 48 agents infected at the peak of the outbreak with
interventions, compared to 2144 without interventions. Looking at the timings of the
outbreaks, the interventions increase the total number of days until there are no longer
any exposed or infected agents to 142 days from 115 days, and increase the days until
the peak to 63 from 57. This is likely due to the slower spread because agents are staying
home and not interacting with each other as often, thus, the rapid growth in cases is not
seen in the intervention scenario. This results in the susceptible pool of agents staying
larger for a longer period of time. However, reducing the number of contacts an agent
has also reduces the effective reproductive number (Rt): Rt is reduced because it takes
into account both the number of individuals who are no longer susceptible (which still
grows under the intervention, if at a reduced rate), and how public health interventions
slow transmission. This reduction in Rt also leads to a reduction in the number of non-
susceptible individuals in the population needed to reach herd immunity. Therefore,
the outbreak with the intervention results in fewer people being infected overall, because
there is a lower level needed for herd immunity, but the outbreak lasts longer because the
slower growth rate means it takes longer to reach this reduced herd immunity level.

Table 6. Key characteristics from the COVID-19 model with an R0 of 3.28 with and without
Irish Interventions.

No Intervention Irish Interventions

Total Infected 26,134 304.41
(23,870 28,367) (198.71 410.11)

Maximum Infected 2144 48.14
(1956 2331) (33.12 63.17)

Total Days 114.86 142.13
(107.28 122.44) (118.91 165.34)

Days to Max 57.11 63.43
(52.13 62.09) (48.60 78.25)

In the real COVID-19 epidemic, there were 83 confirmed cases in Leitrim from
29 February until 19 July 2020. This is 142 days into the epidemic, the average time
for the outbreak to last in the simulation model. From 19 July through 5 August 2020, there
were only two more cases identified in the county. Although, at first, 83 cases appears to be
much smaller than the simulated 304 cases in the agent-based model, the model identifies
all cases including those who would be asymptomatic or mild and would not have been
tested, while the 83 cases are only those who have been identified through testing. If we
assume that the average number of cases simulated in the model is the real number of
cases in Leitrim, this would result in approximately 27% of cases being identified. This
is in line with the results from a seroprevalence study that was carried out in Ireland in
the summer of 2020 which found that the number of estimated cases based on the study
results was three times higher than the identified cases [33].

4. Discussion

Our results show the feasibility of transforming an agent-based model for the spread
of measles to a model for the spread of COVID-19. We show that when porting an
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existing model to a new disease, we can alter a few key disease parameters and capture
the dynamics of the other disease. The differences in the results are what we would
expect from the different diseases and parameters. These differences highlight the complex
nature of the system and how that complexity needs to be considered when simulating the
infectious disease dynamics. This is important, as the COVID-19 pandemic has shown us
that the next pandemic will not always be a disease known to us or that is expected. To be
better prepared for the future infectious diseases, a model that can accurately simulate
the intricacies of a given population but that is portable between diseases could provide
valuable information.

We look at three different possible values for R0, and although the scale of outbreaks
in all three simulated scenarios is extremely worrying, it is important to recognize the
relative differences between these scenarios. Increasing from an R0 of 2 to 6.28 results in a
9.3% increase in total cases and a 23.5% increase in the maximum number of cases. It is also
important to recognize that the differences between these scenarios is the basic reproductive
number R0, and that (unlike the incubation period and infectious period) the R0 parameter
is something that can be affected by societal interventions, such as social distancing. Thus,
the main conclusion we draw from the differences in the outbreak structure between the
different R0 values is the importance in reducing the number of contacts any one infected
individual has. Additionally, the differences in the results show the importance of knowing
the R0 in predicting outbreaks. If a predictive model uses an R0 that is too small, then a
model will underestimate the number of cases, and a country using a model with an R0
that is too low may not be entirely prepared for the actual size of the outbreak.

The importance of the disease dynamics is further seen when we adjust the model to
account for agents being infectious before they show symptoms. This does not just increase
the infectious period, but it influences agent behaviour. Agents who do not have symptoms
act as if they are not sick, and thus will spread the disease unknowingly, whereas an agent
who knows that they are sick will adapt their behaviour and isolate. While we did not find
a significant difference in the total number of agents infected, we see an increase in the peak,
and the peak is reached faster. The faster growth when agents are infectious before they
show symptoms show the potential importance of identifying and isolating the contacts
of those who are infected as a strategy of slowing the spread of the virus. Going forward,
it will be important to get a better understanding of these parameters for the specific
population and how adjusting behaviours as the outbreak progresses might influence the
spread of the virus. Agent-based models allow us to adjust behaviours for an entire run or
for the entire population, but also have the ability to allow for different behaviours within
different groups and for these behaviours to change over time. Unlike a compartmental
SEIR model where everyone in a compartment is homogeneous, an agent-based model
gives us the ability to have each agent adopt a set of behaviours based on their unique set
of characteristics.

Finally, we looked at how the model performs when simulating a scenario that repli-
cates the interventions that were used in Ireland at the start of the pandemic. Our results
show that when lockdown measures are not lifted in the simulation, the number of days the
pandemic lasts in the simulation of Leitrim corresponds relatively well with the number of
days the pandemic lasted in the real county. Although the model shows a higher number
of cases than what were identified in the real county, the real cases are the identified cases
while the model shows all cases. The similarities between our modelling scenario for
Leitrim and the real outbreak in Leitrim might suggest that even after restrictions were
lifted, people continued to practice safer behaviours. Evidence for the continuation of safer
social distancing practices and additional measures to stop the spread of the virus, such as
hand washing and mask wearing after movement restrictions were lifted, can be found in
the public opinion surveys carried out in Ireland [34]. Future work can be done to account
for identified and unidentified cases by including testing and asymptomatic agents in the
model. Using real data on the number of tests run in Ireland and the percentage of positive
tests would allow us to better capture the outbreak.
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One limitation of our study is that we only simulate the spread of the infectious
diseases through Leitrim, Ireland. Leitrim is a small county with no major urban areas.
The size of the population, as well as the population density may have a large impact on
the results, especially once we consider school closure and movement restriction policies.
However, this does not reduce the importance of our results. In developing intervention
strategies for an infectious disease, it is vital to understand how it will affect all types
of areas, from larger cities to smaller counties. Understanding how a disease spreads
through different counties based on their population structure and transportation networks
is an important aspect in fully understanding how the disease will affect an entire country.
The ability of an agent-based model to be tailored to the specific characteristics of different
regions or counties makes them an important tool in learning as much detail as we can
about the spread of infectious diseases. Future work will focus on modelling the spread
of COVID-19 both in other counties and in an all-Ireland model. Additionally, when we
look at the intervention strategies of closing schools, we only look at one scenario, closing
schools when 100 agents are infected and reopening the schools when less than two agents
are infected, and additional scenarios should be analysed to determine the ideal school
closure policy.

As we first want to investigate how the changes we made to the disease parameters
impact the disease dynamics, we only restrict our focus to just changes in the disease
component of the model. However, there are a number of other differences that could occur
when comparing an outbreak of a well-known disease, such as measles, where there is a
large level of pre-existing immunity compared to an emerging disease such as COVID-19,
especially in the movements and actions of the agents. While most people or agents might
not greatly adjust their behaviour during a measles outbreak, the COVID-19 pandemic has
caused significant changes in individual behaviours and mobility. Agent-based models
are able to capture these changes, and future work on the adapted model will focus on
how agents change their actions based on the level of disease within the community.
However, we feel that prior to looking at the changes in agents’ behaviour, it is important
to understand the changes in the underlying disease dynamics.

5. Conclusions

We have shown the adaptability of the disease component of an agent-based model
for the spread of an infectious disease and how the changes in the parameters related to the
disease component can lead to complex changes in the model results. This adaptability is an
important characteristic of agent-based models for epidemiology, which means that creating
and maintaining an agent-based model of a society and region is a useful investment as
part of pandemic preparedness, because such a baseline model can be adapted to the
specific characteristics of different diseases relatively quickly. The response of the modeling
community to COVID-19 was the creation of a number of agent-based models for the
spread of COVID-19, some of which had been adapted from a pre-existing agent-based
model designed to simulate a different disease, as we have done here. However, we are
unaware of work that provides a comparison (or validation of the differences) of the output
between the original and adapted disease components. This comparison is an important
step in understanding the agent-based model being used and the complexity of the system,
and validating the model for further use.

Even with the reduction in time of adapting an existing agent-based model by chang-
ing the disease component, the time required to test the adapted model and run the
required simulations still will likely be more than that required to create a more classic
mathematical equation-based model, such as the SEIR model, to simulate the spread of a
disease within a population. However, it is a well-known fact that all models are wrong,
but useful information can still be determined from some of those models, and different
types of models can provide different information. While a population-level SEIR model
can look at the dynamics of the pandemic at a higher level, agent-based models allow
for a detailed analysis of agent movements, characteristics, and contact patterns and how
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changes in any of these can impact the course of a pandemic. The agent-based model can
capture the complexity between these different parts of the system where SEIR models
cannot. This level of detail can provide information on specific regions, groups of agents,
or the relative success of an intervention.
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